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Abstract

Multiprocessor architectures require sophisticated, yet fast memory management primi-

tives to support procedure calls in implicitly parallel high level languages. These primi-

tives serve two intertwined purposes — allocation of activation area, called a frame, for

an invocation of a procedure, and, if a frame resides on a single processor, distribution

of work across the nodes of the multiprocessor.

We will describe several implementations of an activation frame memory management

system written for the implicitly parallel language Id and running on the experimental

dataflow processor Monsoon. We will also present and analyze their run-time behavior

on several benchmarks. For an eight-processor Monsoon, we found that a simple quick-fit

allocator employing round-robin load distribution gave the best results.
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Chapter 1

Introduction

This thesis describes the design, implementation and performance evaluation of a set of

frame managers written for the implicitly parallel Id language running on the Monsoon

multiprocessor system. This chapter will examine our paradigm for executing parallel

programs. We will then introduce Monsoon our target experimental dataflow machine.

1.1 Implicitly Parallel Languages

[n sequential programming languages, textual code order defines execution order. A line

of code that textually precedes another will execute first. In tmplicitly-parallel languages,

however, code order does not define execution order. Execution order is constrained only

by data dependences which occur when the result of one instruction is an argument to

another instruction. When an instruction’s data is available, that instruction is ready

to execute. Strict implicitly parallel languages, such as SISAL[4], are data-driven within

each procedure but are not data-driven across procedure boundaries. In other words, all

arguments to a procedure must arrive before the procedure can start. Limiting a language

in this way makes it easier for the compiler to produce more efficient code. Non-strict

implicitly parallel languages are data-driven across procedure boundaries — procedures

can start (if there is work to do) when any argument arrives. Though compiling non-strict

iL
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def fib n =

if n &lt; 2 then 1

alse fib (n-1) + fib (n-2);

RYgdi€ 1.1: Id code for Fibonacci

def test n =

{b=a=x*2;

a=n+n;

b}:

Figure 1.2: Id code with a Data Dependency

implicitly parallel languages is especially challenging, non-strictness allows the maximum

amount of parallelism and is often convenient for the programmer.

Id[21, 20, 22] is a non-strict implicitly parallel language being researched at MIT. An

implementation of Fibonacci in Id is shown in Figure 1.1. Because there are no data

dependences between the recursive calls to Fibonacci, it is possible for both recursive

calls to be active simultaneously. For example, if we called fib with 2 as its argument,

potentially three invocations of fib may be active simultaneously. It is also possible for

either of the two recursive calls to start and/or end before the other starts/ends.

A simple example illustrating data dependency can be found in Figure 1.2. In this

example, the first line cannot execute until the second line has completed execution. The

multiply on the first line must wait for the add on the second line to complete since it

needs the value a produced by the second line. In a given block we can only assign a

variable once; it would be impossible to tell which version of a variable was valid if the

variable was assigned more than once in a single block of code.

An important consequence of a non-strict, implicitly parallel language is the fact that

many procedures may be active simultaneously. This fact places a new burden on the

management of local storage for these procedures. As we shall see, stack allocation is

insufficient and more general management of local storage is required.



1.2 Program Execution

Like all languages that support re-entrant code, some state (called a frame) must be

associated with every invocation of a procedure. To call a procedure, the parent procedure

first obtains a frame. Arguments are then sent to the frame and the child procedure

is started (in a non-strict implicitly parallel language, the child starts when the first

argument arrives.) When the child has finished, it returns its results to the parent

(except where tail calls are involved.) The parent procedure then deallocates the frame

in which its child ran. Blocks of memory that are shared between different procedure

invocations are allocated in the heap. The heap manager, however, is not in the scope of

this thesis.

1.2.1 Sequential Language Execution

Figure 1.3 shows the dynamic call tree of Fibonacci when n = 4. The tree shows all

the frames allocated and used by the program run. The dynamic call tree is the same

whether we execute it using a sequential language or a parallel language. The difference

between sequential language execution and parallel language execution is how the tree

is traversed. Sequential languages have only one procedure active at any given time.

A child procedure must return control to its parent before the parent can continue to

execute. Since only one invocation is active at any time and the active invocation is the

latest procedure call, frames can be managed by a simple stack. Figure 1.4 shows the

stack every time a frame is allocated.

Stacks have been used for sequential language frame management for some time[l].

The compiler inlines the necessary stack management. Stack frames contain linkage back

to the parent procedure and arguments passed to the called procedure. The rest of the

frame is used to store temporary procedural variables.

e),



1.2.2 Parallel Language Execution

In contrast to a sequential language, during the execution of an Id program, any procedure

may have one or more active child procedures. Child procedures do not have to terminate

in the same order in which they were invoked. It is possible that any subtree of frames

containing the root frame to be eztant or active at any time. An extant frame is a frame

that is allocated and that might be active. There is a tree of executing invocations in

the parallel case, rather than just a single executing invocation in the sequential case. A

tree of executing invocations is a very intuitive way of exploiting parallelism. Figure 1.5

shows some checkpoints of a possible traversal of the dynamic call tree for fib where n

= 4. Note that all of the subtrees include the root frame.

Because frame managers for parallel languages must manage a tree-like structure of

frames, they are essentially heap managers. A general heap manager is likely to be too

expensive to run as a frame manager, however, motivating a special case frame manager.

By placing a few restrictions on the frame manager, we can make it much more efficient

than a heap manager. In addition, the decision of where to allocate a frame (i.e., on which

processor) has a direct effect on the distribution of computation across the system. Thus,

a frame manager is also different than a heap manager to the extent that it allocates

storage and affects load balance.

1.. [4 Parallel Execution on Monsoon

Monsoon|23, 25, 9, 30, 24] is an experimental eight-stage pipelined parallel processing

node designed at MIT and built by Motorola. Monsoon was designed to run Id programs

in a dataflow style. Its pipeline stages are interleaved like the Denelcor HEP[29] — a

single thread! can only execute one out of every eight cycles.

1A thread is a sequential sequence of code that executes uninterrupted. Interruptions only occur

when waiting for synchronization or when a thread explicitly stops. Jumps do not cause interruptions.

i 3
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Our largest configuration contains eight Monsoon processing elements and eight I-

structure (remote memory) boards. We refer to a processing element or an I-structure

board as a “node”. The eight processor, eight I-structure configuration is the largest that

will be built. The processors run at ten megahertz.

Monsoon processes tokens that are packets containing a continuation consisting of

an instruction-pointer, frame-pointer, processor number and a value. The value can

be thought of as an accumulator register. In a given procedure call, the frame pointer

remains constant. Offsets from the frame pointer are encoded into the instruction stream.

When a token leaves the bottom of the pipeline, it is automatically passed to the correct

processor be it the same processor or a different one. Please refer to Chapter 3 for a

more complete description of Monsoon.

On Monsoon, a frame is currently the smallest quantum of work. Frames exist on a

single processor and are the smallest unit of load-distribution. Frame managers return

full continuations — a node number is part of a continuation. Thus, load balancing is

part of frame management, since each frame lives on a single processor and frames are

the smallest quantum of work.

A frame is required for every executed iteration of a loop body. There are three

loop schemas available in the Id language: sequential, unbounded and bounded. The

| R



sequential loop schema allocates a single frame for all iterations of that instance of the

loop. The unbounded loop schema allocates a new frame for every iteration of an instance

of a loop. The bounded schema allocates a set number (determined at run-time, usually

as a parameter input by the user) of frames — all iterations of a instance of the loop

execute within those frames. Bounded loops are used to control the amount of work

available within the system so that the program does not overrun the available resources.

Our frame managers are called via trap instructions inserted into compiled Id code.

They are all written in MONASM, Monsoon’s assembly code. Frame managers have a

single goal — to allow application programs to run as efficiently as possible. Efficiency is

achieved by good load balancing and low frame manager latencies and critical sections.

Reducing memory fragmentation is a secondary concern. Although better use of frame

memory will allow more parallelism to be exposed, a real machine can only exploit a

certain amount of parallelism at a time. Therefore, as long as a frame manager effectively

runs application code, memory fragmentation is ignored.

Our experience indicates that round-robin load distribution coupled with low latency

frame management performs best over a range of benchmarks. Overall, simplicity and

speed win out over more sophisticated and time-consuming schemes.

1.4 Overview

The next chapter discusses the frame management problem for parallel languages in

greater detail. We examine problems faced by all frame managers for parallel languages,

independent of the language and the system on which it is running. We then discuss the

Monsoon system for which we designed and implemented frame managers. We explain the

frame managers we have implemented and some of our design decisions. The benchmarks

are then defined and results are presented along with analysis. We close with future work,

related work, and conclusions.
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Chapter 2

Multiprocessor Frame Management

This chapter explores the activation frame management problem for multiprocessors.

We start by defining what a frame is, then explain frame management for sequential

languages. Frame management for parallel languages is discussed, followed by a section

on the principle goals of a frame manager for a parallel language. Lastly, we discuss

important frame manager characteristics, and the design space of a frame manager for a

parallel language.

2.1 What is an activation frame?

A frame is a block of memory used to store data associated with the invocation of a

procedure!. A frame stores both procedural variables and linkage data required by the

procedural calling convention. When a procedure finishes, its frame is returned for reuse.

All of the data stored in the frame is ignored when the frame is reallocated, essentially

erasing the data. That is, the lifetime of the data stored in a frame is the same as the

lifetime of the invoked procedure. If the data lifetime was longer than that of a procedure,

that data should be stored in a heap.

1 Although the user defines procedures, the compiler makes the final decision as to what blocks of

code make up a procedure.

7



2.2 Frame management

Frame allocation is easy if deallocation is unnecessary. For all but the smallest program

runs, however, frame memory must be reused — a program will run out of memory oth-

erwise. Frame reuse implies a frame manager. Frame management can be implemented

in many different ways. The simplest method to implement (assuming a garbage col-

lector) is to allocate with abandon and garbage collect/compact when necessary. Since

we know precisely when a frame is allocated and when a frame is deallocated (when a

procedure is invoked and when a procedure terminates, respectively) the compiler can

easily generate code to allocate and deallocate frames. Virtually all sequential languages

work this way. Our Id compiler also generates activation frame allocate and deallocate

code. Frame managers for sequential languages are significantly different, however, from

frame managers for parallel languages.

2.2.1 Frame Management for Sequential Languages

As explained in Section 1.2.1, frame management for sequential languages is simply a

matter of incrementing and decrementing a stack pointer. A possible procedure calling

convention, shown in Figure 2.1, requires a base frame pointer BASE and a top-of-stack

pointer TOS. When a procedure is called, its arguments are pushed onto the stack in a

specific order, along with the instruction and frame base pointer to return to when the

called procedure is finished. The TOS and BASE pointers are incremented by appropriate

values. The calling procedure then jumps to the procedure being called which reads

its parameters from negative offsets from the BASE. The callee procedure finishes its

computation, which may include procedure calls, puts its result(s) onto the stack, and

returns control to the calling procedure by resetting the instruction pointer and BASE.

The caller can then reset the TOs. Generally the BASE and the TOS pointers are stored

in registers. Of course there are variations of this calling convention — the callee, rather

than the caller, could reset the TOS or registers could be used to pass arguments for

instance. The basic algorithm, however, is the same for all sequential languages.

|
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2.2.2 Frame Management for Parallel Languages

Because frames for parallel languages may not, in general, be deallocated in the reverse

order that they were allocated, frames cannot be managed by a simple stack. A solution

more similar to heap management is required. System designers may also decide that a

frame corresponds to the smallest quantum of work executing on a single processor. If a

frame corresponds to the smallest quantum of work, the frame manager also distributes

work. Load balancing with frames is rather logical in some sense. Frames correspond to

code-blocks which roughly correspond to procedures. Programmers are used to trying to

reduce the number of arguments passed between procedures which would cost in network

traffic if each procedure invocation is executed on a different processor. Frames tend to

have a reasonable number of passed arguments and are large enough to amortize load

balancing costs but not so large that load balancing becomes difficult.

The complexity size of a frame manager for a parallel language makes it difficult to

inline into compiled code. Frame manger services appear more like procedures themselves.

Of course the longer the frame manager takes to run, the slower the total run-time. The

rest of the chapter will discuss frame managers for parallel languages, the goals of their

design, characteristics of the managers and a design space.

{



2.3 Goal: Application Speed

There is only one goal of a frame manager — to maximize application speed. To achieve

this goal, a frame manager for a sequential language must minimize the number of ma-

chine cycles it consumes. A frame manager for a parallel language must not only minimize

the number of machine cycles it consumes, it must also distribute work across the ma-

chine. These two requirements for parallel frame managers are coupled — better load

balancing generally requires more overhead. Thus, the goal of the frame manager is to

optimize application speed by trading execution overhead for load balancing performance.

2.4 Frame manager characteristics

Frame managers may be characterized by several metrics. The first set of metrics in-

-ludes latency, throughput, and load balancing which apply directly to the goal (appli-

cation speed) of our frame manager. Other metrics, fragmentation and how to store the

waiting frames, are more implementation-specific but indirectly related to application

performance. This section examines each characteristic.

2.4.1 Latency and Throughput

Latency is the amount of the time it takes to allocate/deallocate a frame. Throughput

is the number of frame allocation/deallocations performable in a unit of time. Both

affect application performance, but to varying degrees, depending on the application.

Latency becomes more important if an application has low to moderate amounts of

parallelism. The faster a frame can be allocated, the sooner the child procedure can

start executing. Throughput is more important when there is lots of exposed parallelism.

Higher throughput will allow more parallelism to be exploited in a shorter amount of time

since the startup time will be shorter. Of course latency and throughput are coupled —

20



assuming a single set of resources, throughput is the inverse of latency. When the number

of resources increases, however, throughput can increase with no decrease in latency.

Of course, when resources are finite, as in all real machines, one might not want to

exploit all available parallelism since exploiting more parallelism requires more resources.

One might argue for a frame manager with longer latencies and/or lower throughput to

throttle parallelism. Our view, however, is that throttling parallelism is the scheduler’s

job — conceptually the frame manager is at a lower level.

2.4.2 Load balancing

Load balancing is difficult to quantify. Speedup is our basic measure of load balancing

performance. Speedup is computed by comparing the number of cycles executed by a

single processor running an application to the total number of cycles executed across

multiple processors. We assert that a single processor executes with a minimum number

of cycles, since no load balancing is necessary. Assuming a perfect architecture, an

increase in cycle count from multiple processors is due to either a lack of parallelism, or

a poorly balanced load. It is difficult, however, to differentiate idles caused by a lack

of parallelism and the idles caused by load imbalance. One must be able to tell at any

instance if some processors are working while others are idled and that there is enough

work to keep all processors busy. We generally assume parallelism is sufficient and blame

unexplained idles on less than ideal load balancing.

Conceptually, the smaller the unit of load to balance the easier to balance the load.

[t is easier to evenly distribute lots of sand than a few large boulders. It is also important

that units of like size are distributed separate from units of different sizes. Distributing

pebbles and rocks between buckets could have one bucket wind up full much before the

others. Care needs to be taken when distributing work of varying sizes.
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2.4.3 Fragmentation

Fragmentation[15] occurs when free memory is unusable. Internal fragmentation occurs

when a block of memory larger than necessary is allocated — the extra memory is

unusable until the object is deallocated. External fragmentation occurs when free memory

is available but not in a usable form. Small blocks of free memory interleaved with blocks

of allocated memory is an example of external fragmentation. The more efficient the

memory usage, the smaller the memory requirements for a specific amount of exploited

parallelism. More efficient memory usage means we can exploit more parallelism with

the same machine. More exploited parallelism generally means better speedup.

2.4.4 Memory Usage

The memory requirements of the frame manager itself should be kept as low as possible

as long as application speed does not suffer for it. Storing waiting frames can take

a percentage of the frame memory, depending on how the frames are stored. Storing

frames in linked-lists uses very little memory since only one word of extra storage per

list (to store the head) is required. In a parallel system, all frames on a single list should

be from the same processor to keep accesses to the list fast. If frames on a single list

are from different processors, getting the next element in the list may require a remote

memory reference. Using a queue to store returned frames reverses the advantages and

disadvantages of a linked list — extra storage is used for the array but frames in a single

queue can be from different processors.

2.5 Design Space

There are many degrees of freedom in frame manager design. Several design parameters

are listed in Table 2.1. In this chapter, we will discuss each of these parameters in some

22



detail. In future chapters, we will describe implemented frame managers in terms of these

parameters.

Clearly, we cannot cover all of the design space for frame managers, since the space

is so large. If there was enough memory in the system, we could forego deallocation.

Frame management would become very easy since we simply advance a pointer into

free memory. We could write a frame manager that allocates from a large block of free

memory, garbage collecting when necessary. We could also write a simple frame manager

that would use a single free list and allocate frames in a first-fit or even a best-fit fashion.

Load balancing, an orthogonal issue, introduces many options. To keep our experiments

reasonable, we impose a few limits on the range of the parameters.

We assume that all frame managers will use a quick-fit algorithm to manage the

frames. Quick-fit groups objects of the same size into a common “bucket”. When an

object of a certain size is requested, the correct bucket is determined and a frame is

fetched from that bucket. The quick-fit algorithm is very efficient and is very well suited

for frame management. It is powerful enough for heap management — in fact, our heap

manager is also based on the quick-fit algorithm.

Unlike our heap manager, further restrictions are placed on our frame manager in

order for it to run as quickly as possible. We constrain our frame managers by limiting

the number of different frame sizes. If we did not have this constraint, frame management

would be equivalent to heap management.

Before we discuss frame manager design parameters, we must first define some terms.

P,cquest is the processor from which the frame request originates. Pf.am. is the processor

on which the to-be-allocated frame exists. P, 40m 1s a random processor and Pj.icrministic

is a specific processor set before run-time.

The rest of this chapter discusses some parameters of frame management design.

Most of the important parameters are listed. Some combinations of parameter values

that are listed were not implemented — it was decided that they had little chance of

being efficient.
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Category

Resource Set

Number of Resource Sets

Frame Sizes

Load Balancing

Frame Bucket Datatype
AT

Where Load is Balanced

Where Frame is Managed

Choices

rframesizes
npersystem
‘n perprocessor
Static

Dynamic

"Random

Adaptive

‘LinkedList

Arrays

Prequest

Prrame

Pranidom

Pirterministic

Prequest

Prrame
Prequest + Pirame

Brawn

 I

Table 2.1: Some Frame Manager Design Parameters
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2.5.1 Resource Set

The composition of the frame manager’s resource set consists of the number of allowable

frame sizes. The simplest frame managers only allow one frame size. Every frame request

receives a frame of that size. Unless all procedure calls require the same frame size, this

scheme will produce much internal fragmentation. Depending on the number of resource

sets (see Section 2.5.2), few frame sizes can also increase contention for frame management

resources.

Of course, we could allow every possible frame size. That would mean there would

be no internal fragmentation. The performance of the frame manager, however, would

suffer on two counts. If no frames of a certain size are available, it may take a long time

to get a larger sized frame. Also, because there are many different sized frames, it is very

for a program to run out of a specific size frame. In this case external fragmentation can

severely reduce the number of available frames a given size or larger.

2.5.2 Number of Resource Sets

The number of sets of resources indicates the number of sets of frame management

resources. The most common number of sets is one per processor. It is conceivable,

however, to have a larger number of resources per processor or just one set of resources

for all the processors. It is difficult to share resources between different sets of resources

quickly. More sets of resources, however, reduces frame management contention. Thus,

the number of sets of resources is a tradeoff and depends on the length of the frame

manager’s critical sections and its ability to communicate with other sets of resources.

2.5.3 Erame N17

At some point, the frame sizes have to be chosen. It can be done either statically, before

an application program is run. or dynamically, while an application is running. Frame
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sizes do not have to be consistent across all processors; however, it is a lot easier to

handle consistent frame sizes.

2.5.4 Load Balancing

Load balancing has been the subject of much research[11, 31, 17]. Load balancing can be

done in one of two styles. The first style distributes the load based on the state of a single

processor. Round-robin and random schemes fall under this category. The second style

tries to figure out which processor is the least loaded by querying other processors. One

algorithm in this style would poll every processor to see which one was the most idle every

time a frame is allocated. This algorithm takes some time to run, however, and the load

distribution may change before the frame is allocated. Algorithms requiring information

from more than one processor will take more time than algorithms requiring information

from only one processor. It is also unclear that instantaneous load information is an

accurate predictor of future load.

All of our frame managers use round-robin load balancing. Our rational for using

round-robin is simple — we expect much parallelism in the programs we run. In other

words, we expect many procedures to be active at any given time. If procedures are

being called all the time, it is logical for the load balancing algorithm to spread the work

out as evenly as possible. Round-robin distribution of work operates like a rotating lawn

sprinkler — it constantly squirts out units of work to each processor in a deterministic

order. At best, Pr.quc,: balances the load that it produces across all the processors in

the system. If all processors can balance their own loads across the system the system

will be balanced. As long as there is enough work of small enough size to keep the

distribution going and enough work to keep all of the processors busy, a round-robin

scheme intuitively works.

A consideration for round-robin distribution is the number of round-robin counters

and what each counter is associated with. It is possible for each processor to have a single

round-robin counter. Although the counter is a bottleneck, it can be incremented within
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a minimum critical section and thus will not reduce throughput by much if any. It is also

possible for each frame size to have a round-robin counter which will, in general, improve

load balancing over the single round-robin counter case. The improved load balancing

comes from the fact that frames of the same size will often execute procedures with

approximately the same amount of work. Each round-robin counter, then, distributes

quanta of work that are about equivalent in size, unlike the single counter case that

distributes quanta of work of varying size. For example, if a round-robin scheme tries to

allocate frames containing very different amounts of work with the same counter, it is

possible for one processor to get most of the work. One could also associate a counter with

every procedure. There can be any arbitrary number of counters — the only problem is

choosing which counter to use.

Another possibility for load balancing is choosing P¢,qme randomly. It is possible that

a random scheme will do better than a round-robin scheme if one or more round-robin

counters are distributing work of varying size or there is not enough parallelism to make

effective use of round-robin distribution.

2.5.9 Frame Bucket Datatype

We can store ready frames in either an array or in a linked-list. An array can be accessed

with a single indirect memory access while a linked-list requires two indirect memory

accesses. Linked-lists, however, do not require the additional memory that arrays require.

2.5.6 Where the Load is Balanced

When a frame request is made by Prequest; Pframe must be determined. In order for the

frame manager to run quickly, the algorithm for choosing Pf,ame must be very simple. A

fast distributor of work that does not balance the load well, however, will do very poorly

overall. The processor that determines Py,,n. depends somewhat on the load balancing
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algorithm. If a random or round-robin load balancing scheme is used we usually have

P,cquent decide Pirames

Yet another possibility is to have a processor Pgeterministic that balances the load.

Every frame request would be sent to that processor which would decide which processor

the requested frame would live on. The advantage of using a single Pj.icrministic is that

all of the load balancing information is local and thus a good distribution of work can be

done quickly. The disadvantage of this scheme is that Pg.terministic is a bottleneck, since

every frame request must go to that processor.

2.5.7 Where a Frame Request is Processed

When processor Pg, requests a frame from the frame manager, it eventually gets one

of Pframe’s frames. Frame manager code must run somewhere. It is possible to process

the entire frame request on P, quest. This technique, in its simplest, most efficient form,

starts out with each processor having a set of frames it can allocate from every processor

in the system. Satisfying frame requests on P,. yc, has a latency advantage — no network

access is made to allocate a frame. If a processor runs out of frames to allocate, however,

it is difficult to request frames from another processor. Since each processor, assuming

an even distribution of frames, has the number of frames that exist on a single processor,

it can only allocate a few frames compared to the total number of frames in the system.

It is also possible to do the actual frame allocation on Pg.gme. Every time Prgue,t

wants a frame from Pframe, Prequest Must send a message to Pypome requesting that frame.

Pframe must send a message back containing a pointer to the requested frame. This

technique increases both network traffic and the latency of getting a frame, but also

permits any processor to potentially allocate all frames in the system.

Yet another option is to have part of the frame management done on P,egu.,: and

the other part of the frame management done on Pj.4m.. For instance, a small pool of

frames could be managed by P,. ues. When Pye, runs out of frames from Py, ope, a
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request is sent to Pram. to send back more. This technique combines the advantages of

our two previous schemes and is akin to catching frames for further use. The cache size

is an important number to consider.

One could also envision sending the frame request to some random processor P,;niom

or a deterministic processor Pjeterministice In the latter case, perhaps one processor in

the system would contain all of the frame management information. There would be,

however, a bottleneck through Peterministice The first two methods, Prequest and Preguest +

P¢.ame, are the most logical since the frame management is distributed and unnecessary

network traffic is avoided.
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Chapter 3

Monsoon

Since we tailored our frame managers for the Monsoon processor, it is important to

describe how its architecture and how it might affect our code. This chapter will examine

the dataflow paradigm and the Monsoon processor and system architecture, focusing on

areas that affect the frame manager. This chapter borrows heavily from Chiou[6].

3.1 Dataflow Background

Dataflow is a relatively old idea in the field of computer architectures. It was first pro-

posed by Dennis and Misunas[10] and later refined by a number of projects including the

Manchester Machine[12], Sigma-1[28], and TTDA[3]. The basic concept behind dataflow

is that execution is data-driven rather than instruction-driven. An instruction executes

only after all the data it requires have been received. Conventional computers, on the

other hand, execute instructions in a specific sequential order with little run-time regard

to data dependences. It is evident that dataflow computers have the potential for ex-

ploiting large amounts of parallelism inherent in many applications, and that data-driven

execution readily extends to parallel architectures.

The standard abstraction of a tagged-token dataflow machine was developed indepen-

dently by groups at Manchester University of Manchester, England, at the University of
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California, Irvine, and later refined by the Monsoon processor, where associative mem-

ory has been replaced by explicit memory storage techniques. Data travels through a

dataflow machine in packages called tokens consisting of data along with control infor-

mation, called tags (also called continuations in Monsoon), which encode such data as

the destination instruction. The advantage of using a tag is that each instruction is

synchronized on its own — it requires no external information. Thus, it is easier to keep

processors busy using tokens with tags than tokens without tags.

The basic operation of a tagged-token dataflow processor is described. A token enters

a processor and checks for its partner, presumably by checking for equal tags. If the

partner is present, it is fetched and the instruction is executed. Obviously, if the instruc-

tion is unary, such as NOT, the processor does not need to check for a partner. The part

of the machine that checks for partners is generally called the waiting/matching area.

Newly calculated data is encapsulated into tokens that are sent back into the system. A

dataflow processor cycles through tokens until an answer is produced.

Though dataflow is intuitive, efficient ways of implementing it are not so intuitive.

Some problems with dataflow are the necessity of immutable data-structures to prevent

out-of-order errors, large, fast waiting/matching sections, garbage collection of objects

being referenced in an out-of-order fashion, deadlock resolution, and so on. Efficient

dataflow processors are thought to require special hardware to support the dynamic

scheduling associated with the computation model. Though implementation challenges

exist, however, the promise of exploiting nearly all parallelism within an algorithm is too

good to pass up.

A few dataflow machines have been built, the most notable being the Sigma-1[28],

EM-4[16, 27] and the Manchester Dataflow Machine[12]. Various design details, however,

hamper these machines. A major detail is the implementation of the waiting/matching

area. The simplest waiting/matching area has fully-associative memory so that partner

searches take unit time. Fully-associative memory is much too expensive for any rea-

sonably sized waiting/matching area. so cumbersome hashing techniques are generally

used. Papadopoulos[23] provides an elegant solution to the matching problem in the
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Figure 3.1: Monsoon Processing Pipeline Overview

.mplementation of Monsoon, a pipelined dataflow processor.

3.2 Monsoon: a Dataflow Processor

Monsoon is a fully pipelined dataflow processor — thus, none of its stages can take more

than unit time to execute (there are a few exceptions, but they rarely occur.) Monsoon’s

basic architecture, some of its unique features, and an overview of its microcode decoding

are described in this section. This discourse follows Papadopoulos[23].

[he basic stages of Monsoon, as shown in Figure 3.1, are instruction fetch, effective
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address generation, fetch presence bits, operand fetch and/or store, ALU/FPU and next

address generation, and form token. The operation occurring in any stage of the pipeline

is completely independent of the operations occurring in the rest of the pipeline. Each

stage is also non-blocking except for some exceptions due to read/writes to memory and

long floating-point operations. Though the pipeline can block to permit long operations

to finish, the pipeline never needs to be flushed since each pipeline stage is independent

of the others. This is especially advantageous for branches and hazards. Unlike standard

pipelined RISC processors that must flush their pipelines whenever a wrong control path

is taken, Monsoon never wastes any of the processing done on a token.

3.2.1 Explicit Token Store

The major innovation of Monsoon is its implementation of the waiting/matching area.

The technique, called Explicit Token Store (ETS), allows waiting/matching to be done

in unit time. This is accomplished by activation frames. Activation frames are very

similar to stack frames found on conventional computers. The base address is known,

and variables are referenced by offsets to that base address. Activation frames are created

when a codeblock is executed and contain all necessary matching locations along with

their presence state bits. Since each token carries its base frame pointer and fetches its

frame offset with its instruction, it knows exactly where it should look for its partner.

Activation frames, besides making waiting/matching quick, also reduce the amount of

memory required. Instead of storing the entire token, including the tag, only the data

needs to be stored (recall that tags are normally used for matching.)

Implementing activation frames requires pointers to the frames within the tags of

the tokens. fp represents such a pointer. tp : fp is often written to represent the

instruction /frame pointer combination found in a Monsoon tag.

An activation frame and its corresponding program text are shown in Figure 3.2.

Notice that the * depends on the +, and the — depends on both the x and the +.

Monsoon fetches its instruction that tells it the matching location of the token in terms
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Figure 3.2: Activation Frame and Code

of an offset to the activation frame base pointer, and up to two destinations for its result

tokens. An interesting point to notice is that both the + and the — instructions use

the same matching location. This is possible because the — instruction can only receive

input tokens after the + instruction is done and has reset the presence bits to empty.

Another dataflow innovation found in Monsoon is its technique for token matching.

Monsoon uses presence bits to indicate the state of a particular matching location in an

activation frame. An example of token waiting/matching is shown in Figure 3.3. In the

standard tagged-token dataflow model, the check is done on the tags of the tokens that

must be stored along with the data. Monsoon checks presence bits associated with the

partner’s location rather than checking for valid data. If the partner is present or the

operation is unary, the instruction is fetched and applied to the data (Figure 3.3, part c.)

Otherwise the data is written to memory where it will wait for its partner (Figure 3.3,

part b.) Thus, the basic order of operations is as follows.

The first token enters its processing element and checks the presence bits of its

predetermined meeting point for the state of its partner. Since the state is empty,

the token knows that its partner has not yet arrived. The token is written to the

specified meeting place, and the presence bits of the location are mutated to a

present state.
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Figure 3.3: Token waiting and matching

» The second token enters the processor some undetermined amount of time after-

wards. It checks the presence bits of the predetermined meeting location and finds

that the present state is set. Thus, it knows that its partner is available, fetches that

partner and executes the instruction. The presence bits are reset back to empty.

This reset is important if the location in the activation frame is to be reused.

This matching technique has a couple of advantages. The first benefit is that the data

path and the hardware necessary to check on a match are much less than a system that

compares entire tags. Of course, knowing where to look for the partner (ETS) is crucial

to this advantage. The second benefit is that a stored token can have more than two

states of presence. This is especially advantageous for complicated instructions, such as

gates with two triggers.

3.2.2 Microcad »
ag

For experimental purposes, Monsoon’s pipeline is controlled by a microcode (refer to

Figure 3.4.) The microcode is not microcode in the traditional sense of instructions for a
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microengine processor. Monsoon’s microcode controls the actions of each of the pipeline

stages. For example, the microcode controls how a token is to be constructed, which

functional unit is to execute the instruction, and what memory operations are to be

performed. The specific microcode that will be run on a specific token is decided by the

instruction pointer inside the token, the type of value of the token, the port of the token,

and the presence bits of the ETS memory associated with that token.

The decoding process starts with a token coming into the processor.

~onsists of the fields of data as shown below.

—

Token

Tag-part
TYPE ' TAG

64

| TYPE |

Value-part
VALUE

)
n 64

The token

The structure of the tag is shown below.

PORT | MAP
71

TF

 LZ

TAG

i]

)

©)
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where.

PORT

MAP

[P

PE

FP

Indicates whether the token is coming on the left port (I) or the

right port (r) of the instruction specified by PE:IP. This field is

called INPUT-PORT throughout the rest of the document.

Alias and interleave control. Increments to FP affect PE as specified

by MAP. (This field is presently not operational.)

Instruction pointer. The absolute address of an instruction on pro-

cessor number PE.

Processing element number. For machines with less than 1024 phys-

ical processors, the LSBs of PE can be concatenated with the MSBs

of FP, extending the physical address space of each PE

Frame pointer. The absolute address of a 72 bit location on processor

number PE. PE:FP describes a global address, so a machine is limited

to a maximum of 4000 megawords of physical memory.
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Once the token enters a processor, its instruction is fetched by reference to its IP

(refer again to Figure 3.4.) The instruction consists of a OPCODE, offsets r and s and the

OUTPUT-PORT. The OPCODE references to the first level decode (1ST-LEVEL-DECODE)

table of the microcode. The 1ST-LEVEL-DECODE is comprised of a base pointer (BASE)

to the second level decode tables, a type map (TMAP) pointer, a presence map (PMAP)

pointer, and an effective address mode (EA.) Once we have the 1ST-LEVEL-DECODE,

the proper TMAP is referenced using the TYPE of the token’s data and its PORT, pro-

ducing a two bit type code (TC.) The effective address is computed in parallel with the

computation of TC and is used to read the presence bits (CURRSTATE) associated with

the activation frame matching location. TC, CURRSTATE, and the INPUT-PORT of the

token are used to reference the proper PMAP from which a presence map entry (PENT) is

obtained. A PENT consists of an offset to the BASE of the second level decode (BRA), a

force-to-zero bit (Fz) which forces the BASE to zero if true, a fetch and/or store operation

(FOP), and the next state (NEXT) of the effective address location.

The second level decode table is referenced by the BASE, which is forced to zero if Fz

if true, added to BRA. The returned result, 2ND-LEVEL-DECODE, contains information to

control the functional units, the next address unit, and the form token unit. The pipeline

can finish processing the token with the information from the 2ND-LEVEL-DECODE.

See Papadopoulos’s[23] Appendix for details on the microcode.

3.2.3 Hardware Hazard

There is a structural hazard in Monsoon that creates an idle whenever an instruction

produces a network token and no recirculating token. The end of the pipeline feeds a bus

that is connected to the network and to the token queues (see Figure 3.1.) That bus is a

bottleneck, only permitting one transaction per cycle. When an instruction produces a

single token destined for the network, it is impossible for the processor to obtain another

token from the token queues or the network. The hazard forces an idle in this case.

Another way this bottleneck may cause an idle is when the processor reads a token from
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the network. The processor will try to fill the idle pipeline slots from the network. If the

pipeline is full, however, the processor will take a network token periodically, pushing

the token it displaces onto a token queue. The same hazard prohibits pushing a token

on a queue and reading another from the network on the same cycle — when the token

is pushed on the queue, an idle is created.

Clearly, compiled code could use a recirculating token to avoid idles caused by the

hardware hazard. Our compiler, however, currently does not generate such code.

3.2.4 Statistics

Every cycle, Monsoon increments one of 64 statistics counters. The statistics counter to

increment is determined by the microcode of the opcode being executed and a color tag,

found on every token. The color tag is set by the frame manager whenever a frame is

allocated. By examining the statistics registers, one can account for all cycles executed

on every Monsoon processor.

Each procedure can be assigned a color. The statistics can also be separated into

different colors, effectively allowing dynamic procedure profiling with only the overhead

of setting the color tag every time a frame is allocated. Colors can be inherited from

the calling procedure, increasing the usefulness of coloring.

3.2.5 Threaded Coac

Critical tokens, which are created by a special subset of the instruction set (distinguished

by a bit in the microcode), creates a critical thread[26] which is very useful for system

code. Critical threads have deterministic behavior since they are not permitted to do

any delayed synchronization — only spinning waits are permitted. Thus, we can write

critical sections into critical threads to avoid some forms of deadlock. Of course we still

have to be careful of deadlock and livelock, but not as careful as we would have to be

running in non-threaded mode.
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The interleaving in Monsoon makes atomic operations difficult. We can create special

instructions that allow atomic operations using presence bits. The problem is that to do

even a simple read-modify-write operation requires 16 cycles to complete since only one

“operation” is performed every eight cycles. Multiplying critical sections by eight forces

as to minimize them as much as possible. Some special instructions are written to make

critical sections as low as eight cycles but none of our run-time systems can take full

advantage of them since they must refer to a specific, hardware memory location.

Threaded code gives the assembly programmer additional “ephemeral” state. Each

of the eight interleaved threads has both a frame and a set of three registers associated

with it. As long as a thread keeps its position in the pipeline (stays critical), it can use

this ephemeral state. Using ephemeral state requires critical instructions and excludes

delayed synchronization.
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Chapter 4

Frame Management for Monsoon

This chapter focuses on frame managers for the Id language running on Monsoon pro-

cessors. The first section reiterates constraints imposed by the Monsoon architecture.

Subsequent sections discuss the evolution of our frame managers and the lessons we

learned during the development process. Results follow in the next chapter.

4.1 Monsoon’s Effect on Frame Management

Monsoon’s architecture strongly affects aspects of the design and implementation of our

frame managers. Interleaving, which multiplies critical section lengths by eight, greatly

influenced the design of the instruction set as well as the frame manager. Special in-

structions were developed to reduce critical sections. Code is carefully tuned to reduce

possible contention and minimize resource usage. Atomic operations depend on the pres-

ence bits to define locked /unlocked states. Monsoon’s interleaving increases compiled

code throughput but reduces threaded (read run-time system) code throughput because

of the expansion of critical sections.

We must use ephemeral state (frames and registers) to write efficient frame managers.

No instructions are executed to allow access to the registers and only one instruction is

executed to open access to an ephemeral frame. Any other scheme to get temporary
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space would require more instructions and would essentially be a frame manager request.

It is difficult to allocate frames when a frame must be allocated to do so. Thus, we

are forced to use threaded code to use the ephemeral state. It is unfortunate there are

only three registers available for each executing thread — registers must often be spilled,

slowing computation.

Threaded code on Monsoon has both advantages and disadvantages. Its advantages

are that it is relatively easy to write critical sections and the execution time is determinis-

tic. The disadvantages are that it is impossible to do remote fetches and hold ephemeral

state and it is possible to livelock since a critically recirculating token cannot be forced

out of the pipeline. When a thread wants to start another thread, all necessary state

must fit in a single token — synchronization is not allowed.

Weak addressing modes affect instructions that do indirect memory references. An

indirect local store takes three cycles while an indirect local read takes two cycles. The ad-

dresses must be fully computed for stores — one cannot automatically add an immediate

value to the addresses before storing. These cycle penalties increase frame management

latencies substantially.

4.2 Black-box functionality

An Id procedure gets a context by executing the SVCO trap instruction, passing in a

pointer to the code-block descriptor (CBD) of the procedure that will run in that frame.

The code block descriptor contains necessary information about the procedure to be

called such as its instruction pointer, its statistics color, and the frame size it needs.

The frame manager will select a frame that is at least the desired size and return an

instantiated pointer to that frame. “Instantiated” means that pointer has the correct ip

and color(see Section 3.2.4.) When the frame is returned, the SVC2 trap instruction is

called with the frame pointer as an argument. The frame manager disposes of the frame.
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4.3 Multiple frame sizes

To support multiple frame sizes, we have to be able to figure out the frame size of a

frame being returned. There are two physical ways to do this — we can have the frame

size passed to the frame manager as an argument, or we can write the frame size into

a “hidden” location in the frame. We do the latter. Every frame is actually one bigger

than its reported size. The frame size is written to the location right before the pointer to

the frame. Thus, it is easy for the frame manager to figure out the size of any frame and

the user does not notice any difference (except a slight decrease in the maximum number

of frames.) Any other scheme also needs to store a size somewhere so the overhead must

be incurred. Another advantage of this scheme is that a frame only has to be at least

as large as the desired size. The frame manager has the flexibility of allocating a frame

larger than necessary.

4.4 Dynamic allocation of frames

The earliest versions of the queue-based frame manager required the user to specify frame

sizes and the number of each sized frame. During initialization, the frame memory would

be partitioned into frames, writing the frame size into each frame as described in the

previous section and filling the queues with pointers to those frames. Thus, the user

would have to intelligently select both frame sizes and the number of each frame size.

A frame manager that would dynamically allocate frames was then implemented.

The queues (or linked-lists) start out empty. When a request for a frame arrives, the

appropriate queue or free-list is checked first. If a frame is available, it is allocated from

the queue; otherwise, a frame is created from the free frame memory. Creating a new

frame takes between 15 and 20 instructions, adding very little to the total running time of

the problems we have run. Dynamically allocating frames gives us an additional bonus

— by examining the quick-fit buckets at program termination time, we can learn the

maximum number of frames that are required by a particular run of a program.
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4.5 Single Frame Allocation

Our model of frame management has the frame manager called every time a frame is

required. It is possible to allocate a single large frame and have the requesting procedure

cut that frame for its children. Since each procedure will get and return a single frame,

management costs could be reduced.

Though having the calling procedure cut frames up is desirable to minimize the num-

ber of frame requests, it makes the frame manager more complicated by increasing the

range of desired sizes and throttles load balancing performance. The frame size requested

from the frame managers might be unbounded since any number of children may be called

by a procedure. Load balancing would degrade because the large frames would exist on

a single processor. It is possible that a limited form of this scheme would increase perfor-

mance because children would run on the same processor, in the same frame. Argument

passing would be much cheaper. Future frame manager/compilers may experiment with

this scheme.

4.6 Frame Manager Evolution

Many frame managers were written for Monsoon over a period of about a year. The

genealogy of the frame managers is shown in Figure 4.1. The first frame manager,

written by Hicks, had a single frame size, stored its frames on a linked list and only

ran on a single processor. Young[32] improved on Hicks’s algorithm by increasing the

number of resources per processor to eight, one per interleave. Cycles spent waiting for

the critical resources were reduced immensely. The scheme, however, did not scale well

to an arbitrary number of different frame sizes and would return an out-of-frames error

even when frames were available in other pipeline interleaves.

As mentioned in Section 2.5, all frame managers we have investigated use a quick-

fit algorithm for managing the frames. Frame managers we implemented were divided
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Figure 4.1: Frame manager genealogy
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into ones based on queues that hold pointers to frames and ones based on linked-lists of

frames. Hicks’s frame manager, which was written to bootstrap the machine, was based

on a single linked-list of frames. Since supervisor calls must be written in single-threaded

code, a specific processor’s linked-list can only contain frames that live on that processor.

A linked-list with frames from different processors would require split-phase fetches that

would not be single-threaded.

4.7 Prototype Frame Managers

At first, we felt that since a linked-list could not contain frames from a variety of pro-

cessors, linked-lists would not be useful for multiprocessor frame managers. The first

multiprocessor frame managers used queues that could contain pointers to frames on any

DrOCEsSOor.

Our first multiprocessor frame managers had P,.gi.,: load balancing and managing

the frames. We wrote several versions of a frame manager that, when initialized, would

build a set of queues on each processor containing frames from all processors. Each queue

contained frames of a single size. When a frame was requested, the processor would take

a frame off the head of the queue. When a frame was returned, its pointer was written

to the end of the queue compiler convention has a frame returned by the same processor

that allocated it — thus, there was no frame migration between processors.

After a queue had been run for some time, however, the frames in the queue would

tend to clump with other frames from the same processor. This clumping would lead

to poor load-balancing performance. We tried correcting this problem by having each

processor contain only frames from other processors, but this solution did even worse

when bounded-loops are used. Since a single processor will allocate all frames for a

specific bound loop, having a processor allocate frames only on other processors would

sometimes starve the allocating processor.
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Another problem with predistribution is that the maximum number of frames a pro-

cessor could request would be the number of frames that existed on itself'. Since a

processor could only allocate frames from the queues that it held, and all processors had

the same size queues, every processor’s queues only contained the number of frames that

existed within its own memory. Thus, the number of allocable frames was limited to the

number present on a single processor.

4.7.1 Split-Phase Get-Frame

The problems with P,. yc, handling an entire frame request caused a revision of the frame

allocation strategy. If each processor manages its own frames, there would be more load

balancing flexibility and every processor could allocate every frame in the whole system.

Implementing the idea, however, was tricky due to the supervisor calling convention that

requires single-threaded code to hold the state. If we wanted to do a remote request

for a frame, that request could only be one token large, since we had no memory to use

for synchronization and the token would start a critical thread on Pj,4pm.. Allocating

a frame requires a return continuation and a code-block descriptor. By replacing the

frame pointer with the code-block-descriptor in the token tag, and carrying the return

continuation in the value, we were able to squeeze both values into a single token, allowing

remote frame requests.

The two network tokens required for a remote request (one there and the other back)

are minimal, and the benefits of remote requests convinced us to move in that direction.

Having Py,,m. manage all of its own frames allowed us to use linked-lists instead of queues

to store frames.

4.7.2 Queue frame manager

We wrote several versions of a queue-based frame manager. Each of them has incre-

mentally more functionality than the one before it. We will discuss the latest version.

10Of course, requests could be sent to other processors.
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Performance measurements, written up in the next chapter will give numbers for all of

the different frame managers and their performance tradeoffs.

Design Space Descripuiou

The latest version of a queue-based frame manager, Tt34ucuc, has sixteen frame sizes, all

multiples of sixty-four. There is one set of these resources per processor. Available frames

are stored in queues that are allocated during initialization. The queues are large enough

to guarantee that they will never overflow. Load balancing is done on Prequest. Each

frame size has its own round-robin counter which are incremented by 2 * penumber + 1.

The frame management is performed on Pj.4me. If a smaller frame is unavailable and

there is no more free frame memory to create new frames, a larger frame can be allocated

0 satisfy a frame request.

Functional Description

The queue sizes are computed by the initialization procedure — the queue size is equal to

the total frame memory area divided by the frame size rounded up to the nearest power

of 2. The queue sizes have to be a power of two since we want to use masking to simulate

modulo arithmetic. The offset counter is masked by the queue size minus 1 and added

to the base pointer. Thus the counter never needs to be reset to 0 and provides us with

a count of the number of frames allocated.

Our early queue-based managers were the first developed. This frame manager, how-

ever, descends from our rts;nineq frame manager (see Section 4.7.3.) The only real dif-

ference is that it uses queues instead of linked-lists to store available frames. Because

queue access is faster than list access, the critical sections in r¢8gy.y. are shorter than the

critical sections in r8;ninea. The total latency of rtsgueue, however, is longer than that

of Tt8;n1ined-

Special instructions were written for rts yey. that allow us to lock a word of memory

and add an integer to the contents of that memory location in a single instruction. The
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new value can be put back into the memory location, unlocking the location, on the next

instruction. Thus, the lock is only held for eight cycles. Unfortunately, a conditional

instruction must be inserted into the critical section, extending it to sixteen cycles.

When a procedure running on processor P,.g..,. wants a frame, the first part of

PtSqueue TUNS ON Progue,e- A pointer to a data structure called a code-block descriptor

defining the procedure to be called is passed to the frame manager as an argument.

The frame manager reads the data structure to determine the desired frame size and

selects the appropriate actual frame size. The round-robin counter for that frame size

is incremented mod the number of processors to determine the processor Pt,qme Where

the frame will live. A message containing the return continuation and the CBD are sent

to the second part of Pf.4pm.’s frame manager. There the appropriate queue is checked

for an available frame, which is instantiated and returned if one is found. If a frame is

not available, we attempt to cut one off the tail of frame memory. When cutting a new

frame off the tail, r¢8,y.u. uses inlined blocked clears, clearing sixty-four locationswith

four instructions. If not enough free memory is available, the frame manager causes an

error and halts the machine. All of the queues start empty — thus frames are allocated

dynamically.

4.7.3 Linked-List Frame Managers

Linked-list frame managers store returned frames in linked-lists. Each linked-list contains

frames of precisely the same size.

Design Space Description

We have two linked-list frame managers. The first one, rt8;,;..4, has sixteen different

frame sizes. all multiples of sixty-four. There is one set of these frames per processor.

Available frames are stored in linked lists. Load balancing is done on P,.4y.,: Where there

is one round-robin counter per frame size. The round-robin counters are incremented by
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2 * Penumber + 1. Frame management is performed on Pf.gme. If a frame size is unavailable

and there is no more free frame memory from which to allocate a new frame, a larger

frame may be allocated.

The second frame manager, rtSconlesce, Nas six frame sizes, all a power of two starting

at thirty-two. rtscoalesce also uses one to increment its round-robin counters and only has

one round-robin counter per processor. All of its other specifications are the same as

PtSinlined- TtScoalesce, NOWever, can coalesce frames if there is no other option.

functional Description

Both use approximately the same algorithm for frame allocation. Both frame managers,

ike PES ueue, get frames by executing two distinctive parts of the frame manager. The first

part of 7tscoalesce 1s essentially the same as the first part of 78g cue. TE3inlined, increments

the round-robin counters (one counter per linked-list, which means one counter per frame

size per processor) by the processor number x 2+1. This difference in the increment step

seems to help load balancing to some degree since it is impossible for any two processors

to choose P¢,qme with the same pattern.

When the second half the frame manager is entered, the correct quick-list is checked

for a frame. If there are no frames on the correct quick-list, the algorithm attempts to

allocate a frame from the tail of the frame memory. If there is not sufficient memory in

the tail to allocate a frame of the desired size, the algorithm looks for a frame larger than

the desired size. If a frame of a larger size is not found, behavior between the two frame

managers differs. The first frame manager, rts;niined, Will return an error and halt the

machine while the other frame manager, rtscoqiesce, Will attempt to coalesce the frames.

TlSinlinea Was written after several months of using a preliminary version, rts;;,,. We

found that frame sizes that are multiples of sixty-four worked best for a wide range

of applications. By inlining all code for the frame manager, we were able to make

it extremely fast. Because of its simplicity and the elimination of jumps by inlining,

rtSinlined 15 our fastest frame manager.
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Pt8coalesce Uses a deferred coalescing buddy-system. Because we use a stock buddy-

system algorithm, the frame sizes are all powers of two, starting with thirty-two. When

there are no more frames to be allocated, the system will coalesce frames in an attempt

to get a frame of the desired size. Coalescing takes a long time, but can extend program

runs and may allow higher loop bounds than a stock frame manager.

As with 78 ueue, TtSintined and TtScoalesce both use block clears of frames being allocated

off the tail.

21



Chapter 5

Performance

In this chapter we will present Monsoon performance numbers and try to relate them

to the frame manager. Of course, a large part of Monsoon performance is due to the

compiler. The frame manager’s performance becomes more evident during multiprocessor

runs since load balancing becomes important.

The goal of a frame manager is to make the applications using it run quickly. The

frame manager does that by balancing the load and managing the memory efficiently in

both time and space. Generally the faster the frame manager can deliver a frame, the

faster the application will run and the more efficiently the frame manager can manage

its memory, the more parallelism the application can exploit.

This chapter will first discuss the methodology for collecting data and the data format

that we will be using. Then we will explore the performance of the frame managers we

have written in four application programs. The first section will describe the applications.

The second section will look at load balancing performance. The third section will

examine the efficiency of the memory usage.
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[ Name | Size Cycles | Frame

Gamteb 1 40000 13233 M | 85M

 Matrix-Multiply | 500 1058 M | 98 M
" Paraffins | 22 322M |.00334 M

| Simple | 100 iter. 100x100 "4682 M | 12 M

Ratio I Memory

379 | 232K
10,800,000 ! 17.5K

 9650 | 99K |
390 139K

Table 5.1: Benchmark Summary

5.1 The Benchmarks

Our benchmarks are summarized in Table 5.1. The cycle counts, number of frame

requests, and the amount of memory used were taken from one processor runs using

rtSinsined- The first column states the name of the benchmark, the second column the

parameters used to run the benchmark, the third column the total number of cycles used

to run the benchmark, the fourth the total number of frame requests, the fifth column

the ratio of the number of cycles to the number of frame requests, and the sixth column

the total amount of frame memory used (which could be smaller than the number of

frame requests times the frame sizes since frames are reused.)

This section was taken from Hicks, Ang, Chiou, and Arvind[13]. We studied five

benchmarks: Fibonacci, Gamteb, Matrix-Multiply, Simple, and Paraffins. These bench-

marks are described in this section. Members of CSG and CSG’s collaborators have

written other applications as well, although we will not discuss the performance of those

applications in this paper. One of the largest Id applications currently being developed

is a version of the Id compiler written in Id. The MCNP application is being written by

people at Los Alamos.

All Id programs described in this document were written in 1d90.1 with some an-

notations for storage deallocation{21]. These programs are available from Computation

Structures Group upon request.

Our two large benchmark programs, Simple and Gamteb, were all originally written

in Fortran. The Fortran code was written by experts and existed before the Id code.
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Paraffins was originally written in Id. It was then ported to C by an expert. Matrix-

Multiply is trivial and versions were written in Id, C, and Fortran.

5.1.1 Fibonacui

The Fibonacci numbers are defined recursively as follows: Fo = 0, F; =1, F,, = F,,_; —

F._, where n &gt; 2. An Id program that generates the nth Fibonacci number is shown in

Figure 1.1 code runs in exponential time. It is a great torture test for a frame manager

since an exponential number of frames need to be allocated and the amount of work

found within each code-block corresponding to a frame is very small. Thus, the amount

of real application work to the amount of frame management is very low. We will use

this program to show the effect of critical sections.

5.1.2 Matrix Multiply

This benchmark creates two matrices of size n xX n, multiplies them, and returns the sum

of the elements of the product matrix as its result. The matrices all contain double-

precision floating point numbers. Matrix-Multiply is written as a straightforward triply

nested loop. In early versions of this benchmark, run during or before August 1991, the

innermost loops of the matrix creation, multiplication and summation routines were all

unfolded 10 times by the compiler to ameliorate the overhead of loop iteration. Compiler

improvements since then reduced the overhead of loop iteration by a large amount. We

scaled down unfolding to 4 times as further unfolding increases code size without giving

very much improvement in run time.

This program is invoked by supplying a matrix size n and several loop bounds. The

loop bounds control how much parallelism is exposed in the outer loops of the matrix

creation, multiplication and summation routines.

This benchmark has been coded in C so as to compare the performance of Id with the

performance of C. We have also written a 4 x 4 blocked Matrix-Multiply in both Id and
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C. This blocked version simultaneously computes the value of 16 elements in the final

matrix that forms a 4 x 4 block. The net effect is to reduce the number of fetches that

we perform on the two source matrices. Thus, each time through the innermost loop, we

fetch 8 matrix elements, 4 from each source matrix, and use them to update 16 elements

of the final matrix that we are computing. This reduces the number of fetches by a factor

of 4. Although the numbers reported here for Id are obtained by changes to the source

code, work is underway to have the compiler perform this transformation automatically

as an optimization.

Our Matrix-Multiply runs are of size 500 by 500. The Id code implementation is

about 130 lines, including comments.

d.l.o Gale

Gamteb[5] statistically simulates the trajectory of particles (photons) through a carbon

rod that is partitioned into cells. Each particle is statistically weighted to emphasize

particles that are in rightmost cells. Gamteb was written by researchers from Los Alamos

National Laboratories and is a standard supercomputer benchmark derived from a real

application, MCNP. MCNP principally run on Crays but is difficult to vectorize.

We have two versions of Gamteb, corresponding to two different rod geometries. In

the first version, gamteb-2c, which corresponds to the Fortran benchmark code, the rod

is divided into 2 cells with 4 surfaces. In the second version, gamteb-9c, the rod is divided

into 9 cells and 11 surfaces. The second version is much more computationally intensive

than the first, because each particle is split many more times. We use Gamteb-9c in this

thesis.

The simulation considers n particles independently, where typical problem sizes are 40

thousand to several million particles. Particles all enter the simulation through the front

surface, and may exit the simulation in one of 4 ways: escaping through the cylindrical

surface, back scattering through the front surface, transmitting through the back surface,
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or dying due to lack of statistical significance. The result is three histograms of the

energies of the particles that exited, and counts of particles that underwent various

processes.

This program is intensive in storage. It operates on particles and counts functionally,

so whenever a new particle or count of events is needed, a new nine-tuple is allocated.

This code has been hand annotated with some storage reclamation pragmas so that the

compiler will insert calls to deallocate storage.

Gamteb runs are of forty thousand particles, which is a small but standard benchmark

size. The Id code implementing Gamteb is about 750 lines, including comments. Real

srogram runs would be in the millions or tens of millions of particles.

5.1.4 Sim } NL

This application is a hydrodynamics and heat conduction simulation programs known as

the Simple code[8]. The Simple document, along with the associated Fortran program,

was developed as a benchmark (unclassified) to evaluate various high performance ma-

chines and compilers. Though Simple is supposed to reflect some “real applications”, it

is contrived to reflect a more complex mix of numerical methods than the usual problems

in that class.

Simple uses a Lagrangian formulation of equations to simulate the behavior of a fluid

in a sphere. To simplify the problem, only a semicircular cross-sectional area is considered

for simulation. The area is divided into parcels by neighboring radial and axial lines. Each

parcel is called a zone. The intersection of radial and axial lines is called a node. In the

Lagrangian formulation, the nodes are mapped onto a 2-dimensional logical grid where

grid points have coordinates (k,I) for kin &lt; k &lt; kmazy min &lt; | &lt; lpas. The product,

kmazlmaz, is the grid size of the problem. A parameter of ghost zones is added around

the rectangular grid to incorporate the appropriate boundary conditions. For each time

step, the simulation computes the velocity and position of each node, and area, volume,
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density, pressure, artificial viscosity, energy and temperature of each zone based on the

values of these quantities in the previous time step. Some additional calculations are

performed to compute the size of the time step to be taken and to check the energy

balance.

The simulation is performed a specified number of cycles. Simple runs reported here

are of 100 cycles with a grid size of 100 by 100. The Id code implementing Simple is

about 1000 lines, including comments.

5.1 5 Paraffins

The Paraffins benchmark([2] enumerates all of the distinct isomers of each paraffin of size

up to n. Paraffins are molecules with chemical formula C,H;,,3, where C and H stand

for carbon and hydrogen atoms, respectively, and n &gt; 0.

Paraffins is an example of a non-numeric program. The algorithm is O(e™). The

program generates lists of paraffins and finally returns an array filled with the number

of distinct paraffins of each size up to and including the maximum size specified by the

adser.

Paraffins runs are of size 22, meaning paraffins up to and including those of size 22 are

generated. The Id code implementing Paraffins is about 300 lines. including comments.

5.2 Run-time Parameters

It is important to understand some of the decisions we made when running the pro-

grams. As explained in Section 1.3, loops must be bounded in order to balance exposed

parallelism and memory usage. We explain our method for selecting loop bounds in this

section. We also justify the use of the same frame managers for single and multiprocessor

runes
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Loop bounds must be either input by the user or computed by user-code during run-

time. Since there is currently no general algorithm for choosing good loop bounds, we

iterated over a fixed set of loop bounds and chose the ones that performed best. Iterating

over loop bounds is non-optimal and is very tedious. Performance can be strongly tied

strongly to the choice of loop bounds, and the choice of which loops to execute in parallel.

Further work to automate bounded loops through some sort of compiler and/or RTS

mechanism is needed.

We use the same run-time system for one processor and for multiple processors. If

we knew that the run-time system would be running only on a single processor, it could

be made more efficient, since the load balancing could be removed. Since roughly 50%

»f frame management is spent balancing the load, frame management times could be

teduced by at most 50%. Though reducing frame management overhead by one half may

seem like a lot, the vast majority of programs spend less than 15% of their time in the

frame manager. In general, optimizing a frame manager for a single processor will save

at most 7.5% of the total cycles, and will often save less than that.

Id is inherently a parallel language and is compiled to be executed in parallel. Only

one object file needs to be produced for each program, and we can use the same, unaltered

object code for any number of processors.

5.3 Data Format

The data format we use to present our results is a set of bargraphs that show a summed

total of the instructions executed on a specific configuration of Monsoon. For each ap-

plication program, there are two sets of bargraphs. One shows the statistics data by

“colors” (seen as grey scales on our black-and-white graphs), where each color corre-

sponds to some part of the code. An example of such a graph is in Figure 5.3. We

divide all of our data into six colors: frame management, application code, heap alloca-

tion, heap deallocation, second part of split-phase instructions, recirculations, and idles.

Recirculations are simply spinning wait instructions used by the frame manager.
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The second set of bargraphs shows the statistics data by operation categories. An

example of this type of graph is in Figure 5.4. The different categories we show in this

thesis are floating-point operations, integer operations, fetches, stores, switches, tags,

identities, bubbles, second part of split-phase transactions and idles. The two categories

that might need explanation are tags and switches. Tags are operations that build and

send tokens. For instance, the instruction that sends an argument to a new procedure

is a tag operation. The switch category contains switches, which are essentially gates

that allow a value to pass depending on another value, and also contains miscellaneous

operations such as conversion instructions and traps.

Bargraphs for one processor runs are self explanatory. Bargraphs for multiprocessor

runs are the sum of statistics from all of the processors that participated in that run.

Runs using different run-time systems are all displayed on the same graph. Runs using

the same run-time system are grouped together. An example is shown in Figure 5.3. The

first set of four show data from runs of Gamteb on 1, 2, 4, and 8 processors running with

rtSqueue- Lhe second set of four were run with rtsiniinea and the third set of four were

run with 7t8coalesce-

5.4 Frame Manager Time

Frame manager cycle counts and frame manager critical sections are shown in Table 5.2

and Table 5.3. Tts;nin.a takes the fewest number of total cycles. rts... has the shortest

critical sections. Most of the time shorter latencies, even with longer critical sections,

allow the application to run faster.

We ran the doubly recursive Fibonacci on Monsoon with our three frame managers

to see how well the frame managers performed under heavy loading. Since the recur-

sive version of Fibonacci performs so many procedure calls, and the work done in each

procedure is so little, the ratio of frame allocations to other work is very high.

The results of Fibonacci 17 are shown in Table 5.4. All relevant statistics are listed.
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Frame Access + PES8queue

Get-frame, found | 41 )

Get-frame, create 46

Return-frame 21
Critical Get-frame, found | 12

Critical Get-frame, create | 20

Critical Return-frame 920

' PESinlined I i 2 TO !

37 51

43 67 |

19 19

8 23

 18 33

18 18

Table 5.2: Frame manager cycle times

Frame Access | TES queue 1 PtSintined | TtSconlesce

Get-frame, found 1'8+16 8+24 8+48

Get-frame, create | 842448 | 8+16+8  8+32+8

Return-frame I 8 48 | 48

Critical Get-frame, found 16 24 48

Critical Get-frame, create 24+8 16+8 3248

Critical Return-frame ‘8 48 48

Table 5.3: Frame manager critical sections (in cycles)

The first row, total cycles, shows the total number of cycles executed to complete the

problem. The second row, fib cycles, shows how much time was spent executing user-

written Fibonacci code. The third row shows the number of instructions executed by

the frame manager. The fourth and fifth rows, recirculate and second-phase, indicate

overhead associated with frame management. Recirculate indicates the number of cycles

spent spin-waiting for a resource, most likely the head of a list. Second-phase operations

are the second halves fetches and stores performed on processor local memory.

Our fastest frame managers, rtSgycue and 7s;niined, take about 364,000 cycles and

387,000 cycles respectively while the actual Fibonacci code takes about 229,000 cycles.

For each call to Fibonacci, however, a call is made to the frame manager. Thus, our

frame managers take about the same order of time as the body of a compiled Fibonacci.

Though rtsgu.u. performs better than r¢sinin.a on Fibonacci, it generally does not

do as well. rts, has a very short critical section. Because Fibonacci always requests
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 oo TtSqueue  TtSinlined | Tt8coalesce

em ~3071 258 — 7328recirculate 3 | 60 74

~second-phase R4 A9 103

Table 5.4: Fibonacci Statistics in Thousands of Cycles

frames of the same size, the same quick-fit bucket is always used. Critical section length

becomes very important in this case, as can be seen in Figure 5.2. Although rts;nineq

is significantly faster than rts yey. in terms of frame management time, rt¢siniin.d spends

a lot more time spin waiting (recirculating) for resources. Thus, for Fibonacci, 7£3,yeq.

performs best.

Fibonacci is a worst case program. Most real programs will not tax the frame manager

nearly as much. Though we always want more performance, we judged the performance

of Tt8,ucue and Tt8;n1inea 10 be acceptable.

B.S Efficiency of Memory Usage

One might consider frame management space to be two distinct parts: the space efficiency

of the frame manager itself (how much memory it takes) and how well it manages the

frame memory. TtSgueye takes O(n) space where the constant is generally very small

(around .01 or less) while rts; ined and Tt8coqiesce take O(1) space. The memory used by

the frame manager, therefore, is negligible.

How well the frame manager manages the memory for the user, however, is sometimes

difficult to measure. We can think of two ways to measure memory usage efficiency.

The first is comparing maximum loop bounds — one would think the larger the loop

bounds, the greater the amount of allocated frame memory. This is not always true,

since a slower frame manager running a program with a certain loop bound might use
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less memory than a faster frame manager running the same program with the same

loop bounds. This is because the faster frame manager will deliver the bounded loop

frames faster, thus expanding the parallelism faster. Since the amount of parallelism

for a fast frame manager might be higher than for a slow frame manager, the amount

of active frames could be higher for the faster frame manager. The reverse could also

happen. The slower run-time system could have more frames outstanding than the fast

frame manager, causing a lower maximum loop bounds. If the total run-time is different

between the two frame managers being compared, it becomes difficult to use maximum

loop bounds as a measure of frame management efficiency.

Another way to measure frame manager memory efficiency is to look at the amount

of frame memory tail that has been allocated. For the same reasons as maximum loop

bounds, this measurement is flawed if the total run-time is different between runs with

different run-time systems.

We believe that frame memory usage efficiency is not an important part of frame

management characteristics since it only indirectly affects application speed. As stated

before, the only real measure of a frame manager is how fast it allows the applications

to run.

5.06 Load Balancing Results

[t is difficult to measure load balancing performance since it is nearly impossible to

distinguish poor load balancing from a lack of parallelism using Monsoon!. We assert

that if a program has close to linear speedup, the load is balanced — if the load is not

balanced, linear speedup is impossible. Table 5.6, Table 5.5, Table 5.7 list speedups

and cycle-times with different run-time systems for each application program. Gamteb,

Matrix-Multiply and Paraffins speed up well. Simple could do better, but loops to bound

were chosen poorly so we have not yet been able to run Simple at its full potential.

10Of course, our simulator could give us the numbers we need. The simulator, however, is at least

10,000 times slower than our hardware and we could not run any real examples on it.
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5.7 Accounting for the Idles

There are four sources of all the idles on Monsoon. These sources are as follows.

» Lack of parallelism

» Load imbalance

» Startup and termination latencies

Hardware hazard

Generally, there will be idle cycles from all four sources in every program that runs

on Monsoon. We can often reduce the number of idle cycles by adjusting loop bounds

and by using clever compile-time optimizations and run-time system strategies.

5.7.1 Lack of Parallelism

[f an algorithm does not have enough parallelism to keep a specific machine configuration

busy, the machine will idle. A lack of parallelism could be caused by the compiler, poorly

chosen loop bounds, the size of the problem being run, or the algorithm itself. Loop

bounds are easy to change. Sometimes, however, the only fix is to rewrite the program

with new a algorithm that it has more inherent parallelism.

5.7.2 Load Imbalance

If the load is not balanced between all of the processors in a specific configuration, the

processors with less work will idle. Load imbalance simply means that one or more

processors are idle because they have no work, while the other processors have more

than enough work to keep them busy. Note that load imbalance cannot occur on single

processor configurations. If only a few processors are busy, but there is not enough work
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to keep all of the processors busy, there is a lack of parallelism rather than a misbalanced

load. For Monsoon, balancing the load is the responsibility of the frame manager.

From the run time statistics, it is difficult to differentiate idles caused by a lack

of parallelism and the idles caused by load imbalance. One must be able to tell at

any instance if some processors are working while others are idled and that there is

enough work to keep all processors busy. On Monsoon, it is impossible to get all of this

information simultaneously. MINT, our simulator, could be modified to do so, but the

size of problem runable on MINT are very small and mostly unrealistic.

5.7.3 Startup and termination latencies

The execution of Id on Monsoon starts with the invocation of the top level procedure on

one processor and spreads out to other processors. The computation ends in a similar

way, but in reverse order on the same processor that computation started on. Startup

and termination costs are incurred whenever the architecture and/or the run-time system

limit the expansion or contraction of work to/from the processors. Startup and ending

latencies essentially cause an artificial lack of parallelism.

In order to call a procedure, a frame needs to be allocated and arguments need to be

sent to the new invocation. Frame allocations and network sends take time — waiting for

these events to occur delays the parallelism that will be available in the called procedure.

Startup and end costs are often constant per processor, regardless of how many pro-

cessors there are in the system. When a single processor shows 1% idles due to startup

and end costs, an n processor system will generally show at least n% accumulated idles

due to startup and end costs. Multiprocessor systems cannot startup or end any faster

than a single processor system and thus every processor in the system must pay at least

the same startup and end cost as a single processor. The more processors involved.

the longer it takes to distribute the initial work to fill up the machine (startup) and to

synchronize the final termination.

37



5.7.4 Hardware Hazard

We have already described the hardware hazard in Section 3.2.3. Most fetches and stores

in our compiled Id code will excite the hardware hazard, causing an idle. Instructions that

send arguments to other procedures, when the callee procedure is on another processor,

may also excite the hardware hazard. Sending arguments on a single processor will never

cause a hazard — the hazard is excited only when arguments are sent to other processors.

An argument send instruction is very similar to a store instruction.

5.7.5 Idles in Multiprocessors

Overall, multiprocessor systems are guaranteed to have more idles than single processor

systems. A lack of parallelism due to the algorithm, problem size, or loop bounds will

show up much more on a multiprocessor since more parallelism is required to keep it busy.

A single processor cannot have a load imbalance, but a multiprocessor configuration can

have idle processors even though there is plenty of parallelism to exploit. Since all

programs start and finish from a single processor, startup and termination costs are at

best constant per processor in the system. Finally, multiprocessor configurations require

more tokens to and from the network and so there are more idles due to Monsoon’s

hardware hazard.

Startup and termination latencies can be reduced by improving the run-time system.

The latency of frame allocation, in the absence of other data dependences, limits the

rate at which parallel activities can be spawned. The latency of heap allocation also

often adds to the idle time at program startup. Likewise, the latencies of frame and heap

deallocation often contribute to the idle time at program termination. Reducing these

latencies will reduce the overhead of program start and termination.
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5.7.6 Categorizing idles

It is difficult to sort the idles into our four categories. It is especially difficult, however, on

the hardware to differentiate idles caused by load imbalance as opposed to idles caused by

lack of parallelism. Startup and end costs are visible using our performance visualization

tools as a ramp up and a ramp down. The number of hardware hazard idles is determined

by counting the number of instructions that would cause them.

One heuristical way to find the source of idles is to watch the LED’s found on all

Monsoon processors. These LED’s indicate when a token enters the pipeline. When there

is a lack of parallelism across the system, all of the lights dim simultaneously. When there

is a load imbalance, some lights are brighter than others. Startup and termination costs,

special cases of lack of parallelism, show up as a dimming of the lights during the startup

and termination of a program run. Unfortunately, watching the lights is not very precise,

but it does give us hints as to where to look. Though we have visualization tools, they

do not work well on multiprocessor configurations since it is difficult to start and stop

all of the processors exactly at the same time. The inherent skew warps the statistics to

a point where they are often useless.

One way to examine the source of idles is to compare simulation runs with real hard-

ware runs. Qur simulator, MINT, does not model network latencies, hardware hazards,

and can be made to execute run-time system trap instructions in a single cycle. Thus,

a run on MINT can be made very idealized and can give a lower limit on the number of

idles. The only problem is that MINT runs much slower than Monsoon and thus cannot

perform full runs with large data sets. MINT statistics, however. can help us understand

where idles come from.

For each of our benchmarks, we will try to explain the idles found in all runs. Although

we cannot explain idles extremely precisely since many of them are due to dynamic

conditions in the hardware, we will try our best.
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5.8 Gamte.

The program Gamteb was described in Section 5.1.3. We understand Gamteb and

its run-time behavior very well and can explain virtually every idle from the program

runs. In Figure 5.4 in the rts;niined and rts oqiesce Pargraphs, we noticed that the number

of idles seemed to exponentially approach some maximum. We knew that the idles in

a single processor case were caused by a hardware hazard that prohibits a token going

to the network while a token is taken from the token queue. This hazard produces an
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idle when a fetch without a recirculating token is executed or about 50% of the time

that a network token enters the processor. Thus, the idles in a single processor run were

unavoidable. We did not understand, however, where the the extra idles in the two, four,

and eight processor runs were coming from.

After some puzzlement, we noticed that tag operations, when going to another pro-

cessor, act like a fetch in that they could cause an idle. Since all tag operations on a

single processor go to the same processor, no idles were caused by them. Once we go to

n processors, approximately (n — 1)/n of the tag operations go off the processor, causing

a hazard idle. From Figure 5.4 we can see that the number of idles for two processors is

approximately the number of idles from one processor plus half the tag operations. For

four processors, the number of idles is about the number of idles from one processor plus

three-quarters the number of tag operations. The same progression goes for eight pro-

cessors as well. With this observation, we were able to explain all of the idles produced

during Gamteb runs with r¢3;ninea and 7t3coatesce-

5.8.1 Frame Manager Analysis

All the frame managers performed as expected. Speedups are perfect, after taking the

hardware hazard into account. The run-times differed because of different latencies in

the frame managers.

5.9 Matrix-Multiply

Most of the idles found in Matrix-Multiply are explainable. The opcode mix graph for

Matrix-Multiply is found in Figure 5.6. Looking at the one processor bar, one can see

that the fetches take up about 6% of the total cycles and the idle count is around 9.4%

of the total cycles. The fetches used in the Matrix-Multiply inner loop excite a hardware

hazard (see Section 3) which forces an idle for every fetch. Also tokens returning from
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the network into a processor can cause an idle about 50% of the time if the pipeline is

full. This idle is caused by the same hardware hazard. Thus it is possible to account for

between 8% and 9% of the idles found in a one processor run. The extra 1% or 2% of

the idles can be explained by startup and ending costs as well as some of the frame and

heap management latencies.

For multiprocessors, accumulated idles increase very slowly. We believe that these

idles are due in part to multiplied startup and end costs but mostly to the hardware

hazard. Currently, the run-time system allocates the initial two matrices on the same

processor and this can be a bottleneck. Even if this problem was fixed, however, only

one processor can allocate any specific heap object. Thus, since only three matrices

are created at most three processors can work during their allocation. There is a lack

of parallelism until the three matrices are allocated. It is possible to distribute part

(clearing presence bits) of the allocation procedure, but we have not yet done so.

5.9.1 Frame Manager Analysis

Matrix-Multiply was run with an assembly code heap manager. Heap deallocation is

not supported, making heap allocation a lot faster. Specializing the heap manager is a

common technique used by C and Fortran programmers (actually, Fortran programmers

often statically allocate heap area), and thus is not unreasonable.

Our Matrix-Multiply numbers show linear speedup for rts ycue and rtsinin.q after

taking the hardware hazard into account. rtS.salesce is probably a little too slow to get

great performance for eight processors. Most likely, rts.oqicsce Would do much better on a

longer run. The run times were less than fifteen seconds for eight processors. Such short

runs magnify the startup and end costs dramatically.

Matrix-Multiply does very few frame allocations and even fewer heap allocations.

The structure of our Matrix-Multiply with the two outermost loops bounded and the

innermost loop sequential will tend to allocate frames in the beginning of the run. Thus,
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load balancing is relatively static. We believe that in these kinds of programs, a simple

round-robin scheme may introduce less than optimal load balancing. Watching the work-

load lights on the Monsoon hardware supports this theory. We can actually see poor load

balancing. Using a single round-robin counter for each frame size on each processor can

prevent perfect load balancing. For example, let us say that two loops are being unfolded

simultaneously on the same processor. One loop simply traverses a list to find its length

and thus does very little work inside each frame. The other loop, on the other hand, does

a lot of work inside each frame. If the frame sizes used by both loops are the same, it is

possible for all of the little-work frames to be allocated on one processor and all of the

big-work frames allocated on the other processor. Load balancing will be poor in this

case,

Another scheme would have each code-block have a round-robin counter. Although

this scheme will prevent the problem posed in the previous chapter, it is still possible

to get uneven load balancing from recursive calls to a procedure. In a two-processor

example, if the round-robin counters for a specific procedure become synchronized across

all processors, it is possible for each processor to execute an instance of that procedure and

its recursive child. In the unfortunate circumstance that all active procedures’ counters

are synchronized, it is possible that only one processor is active at any one time. This

possibility is very low. We should, however, try to implement this scheme sometime in

the future. It will require changes outside the frame manager (adding counters to all

code-block descriptors) as well and thus is difficult to do.

5.10 Paraffins

When we first started running Paraffins in parallel, we did not achieve the speedups

that we expected. After modifying heap management extensively, Paraffins ran much

better but still did not perform as we expected. Since Paraflins’ complexity is exponential

in space, we ran out of memory very quickly on a one processor one I-structure board

configuration. The runs we were making were taking about .4 seconds on eight processors
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and we were only seeing about 5.5 times speedup. Recently we ran all of the different

configurations with eight I-structure boards, allowing larger runs. Now we see about

7.3 times speedup. On very short program runs, however, the accuracy of our statistics

gathering is poor since it is currently impossible to start and stop all the processors at

the same time.

We believe that the speedups seen for two and four processors are completely ex-

plainable by the hardware hazard. We believe a lack of parallelism in the tail of the

computation reduces the efficiency of each processor in the eight processor case. This

theory is supported by manually observing the work lights found on the Monsoon hard-

ware. Toward the tail end of the computation, the work lights on all processors get

dimmer simultaneously, showing a lack of work. A larger problem size will probably

amortize the tail and increase efficiency. The final results are shown in Figure 5.7 and

Figure 5.8. Note that heap management is grouped with frame management and is not

separated out into alloc and dealloc, even though the graph still lists the alloc and dealloc

Keys.

5.10.1 Frame Manager Analysis

The heap management used in the Paraffin runs, like the Matrix-Multiply runs, were

hand-coded in assembly code for speed. All of the frame managers to perform the same,

implying that frame management does not take much time. Most likely, the heap man-

agement is consuming the run-time system cycles shown as the frame key. Because we

hand-coded the heap manager, it is counted as part of the frame management. The heap

management’s large percentage of the run-time is not unreasonable — we see the same

in an equivalent C program.
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5.11 Simple

We run Simple for one hundred iterations of one hundred by one hundred matrices. Loop

bounds were arbitrarily placed within the code — there are too many loops in Simple.

Because the loops to bound were not well chosen, the performance is very poor. We get

at most 6.2 speedup on eight processors.

Part of the poor speedup problem is the while main loop. The while conditional

depends on all of the elements in the computed matrix and thus creates basically a

barrier between iterations. This barrier is tolerable on a single processor configuration but

destroys performance on eight processors. Lam[18] showed that this control dependence

can severely reduce parallelism and urges speculative execution to reduce the problem.

We can alleviate the problem by simply unrolling the while loop a small number of times.

5.11.1 Frame Manager Analysis

Because loops selected for bounding were arbitrary, we were not able to get much speedup

performance. We only ran with rts ucue and rts;niined to save time. It is clear that our one

processor performance is still excellent. The idle count for the one processor case can be

completely explained by the hardware hazard. Poor performance for multiprocessors can

be easily explained by the loop bounds and the control dependence. We did examine the

Monsoon load lights during several program runs and noticed that there were periodic

dimmings of the lights, corresponding to the end of an iteration.
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Chapter 6

Discussion and Future Directions

From the Results chapter, it is easy to see that r¢sgu.ue produces the best runs. Its

critical path is the shortest and it uses more randomized round-robin counters to avoid

bunching. Clearly, minimizing frame management latencies does affect application speed

when many frames are allocated.

8.1 Future Directions

TtSqueue aNd TtScoalesce are as fully optimized as r¢s;pjin.d. Some work should be done to

equalize the optimization level. Many more points need to be investigated. The first one

is testing exactly how much frame management latency affects application run-time. We

can do this experiment perfectly in MINT by modifying the fictitious run-time system

to consume a constant number of pipeline cycles for every frame allocation/deallocation.

Another option is to modify rts... to execute in some fixed number of cycles. We can

do this by adding a counter that will count to a specific number before continuing with

the frame allocation/deallocation.

We can also investigate better load balancing techniques. For an accurate study,

experiments must be run in MINT since idealized load balancing can be simulated in

MINT. We can try other heuristical load balancers such as the one found in rts ucye,
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using a random number generator, and one that queries the load on other processors

every so often.

Frame management itself can be further investigated. We should reexamine the sce-

nario where each processor is statically allocated a set of frames that it can allocate. If

it runs out of frames to allocate, it either crashes or asks another processor for a frame.

A frame manager similar to that could cache a few frames, but have each processor still

manage all of its own frames. We could also examine dynamically deciding frame sizes.

Currently, we only allocate a predetermined set of frame sizes.

It is possible that the compiler can help us allocate frames more efficiently. For

example, if it is known that a procedure will definitely call another, it is possible for the

calling procedure to allocate both frames at once by requesting a frame large enough for

both called procedures. This will reduce the number of frame allocations at the possible

cost of poor load balancing since the super-frame will exist only on one processor. It is

also possible for the compiler to inline the run-time system code, thus saving at least

three instructions that are required when executing a trap.

8.2 Related Work

Very little has been written up about work related to ours. Sakai and company at ETL

in Japan have implemented a series of frame managers, but make no direct reference to

the frame managers in their papers. They do discuss load balancing, however, and have

performed similar experiments to ours{17].

Parallel Prolog researchers have also probed the frame management question. Prolog

must often examine the values stored in ancestor frames. The required values can be

copied[7, 14], as we do on Monsoon, or references can be made to ancestor frames[19] in

a shared memory scheme. We have not been able to find any literature on their actual

frame management techniques when their frame management is similar to our distributed

frame memory. Most likely, our solutions are similar to theirs.
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Chapter 7

Conclusion

In conclusion, frame management is a tractable problem for eight processors. We discov-

ered that simple systems work best, since they were easy to write, ran quickly, and used

the same load balancing scheme as the more complicated systems. Our speedups are

quite respectable, since each Monsoon processor requires at least eight fold parallelism

to keep busy. Frame manager latencies are important — in fact, frame managers with

shorter latencies often run faster than frame managers with slightly longer latencies and

shorter critical sections.

A simple round-robin load balancing scheme, though not perfect, works very well.

Round-robin works best when the work done in a certain size frame is similar to the

amount of work done in other frames of the same size. Although round-robin still per-

forms reasonably when frames of the same size contain different amounts of work, things

would work even better if each round-robin counter was associated with code-blocks con-

taining equal quanta of work. Since round-robin depends on the “circular sprinkler”

distribution of work, it is important to continuously distribute the work. If frame allo-

cations are lifted, much care needs to be taken to keep load balancing reasonable. Loop

bounds must be chosen to provide the right amount of parallelism so that all processors

can receive an equal amount of work and care must be taken so that the work really is

evenly distributed. The dataflow intuition that given sufficient parallelism, load balanc-

ing 1s relatively easy, is true.
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We can explain the idles seen in Gamteb runs as artifacts of Monsoon’s hardware

hazard. Matrix-Multiply’s idles come mostly from the hardware hazard but also from

the startup costs of allocating heap objects. Paraflin’s idles, at least for an eight processor

run, are probably due to the short run-time. The short run-time will make startup and

end costs take a larger percentage of the total run-time. Simple’s loop bounds need to

be improved in order to get the necessary parallelism for good speedups.
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