620.8 Thesis 1891 MASS, INSTITUTE TECHNOLOGY MAR 27 1893 LIBRARY. J A Determination of the Discharge Connecticut River, at South Secrifield mas Clement march,

Part I Measurements made with the Ellis Sub-surface Houts. 14871

The base line was laid out upon the west bank of the Connecticut niver, at a point some eight hundred feet below the highway bridge, which croses the river between Deerfield and Sunderland. The base line was two hundred and fifty feet in length, and was divided into sections of fifty feet each. a second line was laid out on the East bank of the wing but, oring to restacle such as tree, ctc, it was found impossible to make this line parallel to the original ne. It's length varied but slightly, havever, from the original line, and like that me it was divided and fir sections, the Ends of which were marked by range pres. The ranges were numbered from 0-0 to 5-5, the former being farthest up stream. The stage of water was obtained by means Julidings on a five fort gange, placed on neg the western piers othe bridge above mentioned; and readings were taken three times, daily.

The Cross Sections On the diagram of Ellis float measurements page 69, are shown cross sections af the river at each range. The data from which these sections were plotted, are to be found on pages 4 to 17 ind, in the "Table of Soundings". The first column contains the numbers of the stations, which ware intended the approximately equi- distant from Each other. The second column is made up of angles which were found as follows: The boat containing the sounding party is kept, as nearly as possible, on Range (say) 09, by means of signals from the tonnseltman at 0; and the instant the sounding is taken, the angle of the boat from station 250, to taken by means of the transit at that station. The base of the triangle being two hundred and fifty feet, it follows that, the distance

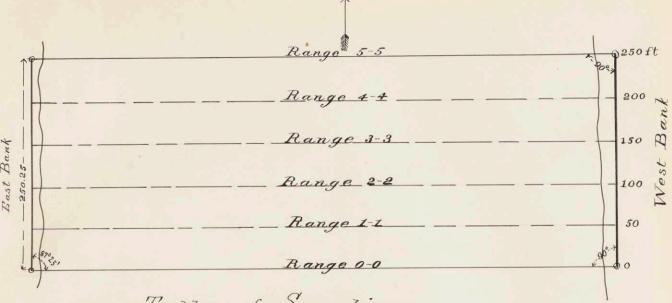


Table of Soundings

			Range	ę 0-0		
Sta.	Angle at Bas Transit at Pt 250		Cale	Sounding gauge at 3.10	Adjsta Sounding at -0.56	Romarks
0 W, Bass				+ 8,6) the
/	Bas	e of		+7.5		(praters edge.
2		Triangle	_	+ 4,4		x m
3		= 250 f		+2,3		Sauge
4			19	0.0	- 3. 7	finie 16 9. a. m. 3,10
5 5a			21.2	1.6	-2.1	1 P. m. 3.10 6 P. m. 3.05
6	6-371	0,11600	29.0	5.6	1.9	fink 17 9:9.m 2.8
7	6°-09'	0.10775	26.9	5.0	1.3	1. Pm 2,5 4 2,45,
8	6°-47'	0.11895	29,7	5.8	2.1	
9	9-39'	0.17004	42,5	8.0	4.3	
10	20 - 00'	0.36397	91.0	7.8	4.1	
11	210-501	0.40065	100.2	7.9	4.2	

		R	ange	2 0-0		
~	Angle from Base		1	Sounding Gauge at	Adjot & Sride	
Sta.	Jransit at	Nat Jang	Dist.	3.70	Gaugo at -0.56	Remarks
12	25-471	0.48306	120.8	9,7	6.0	
.~	~~ / /					
/3	36 - 15'	0.73323	183,3	10.5	6,8	
/ 5	00 10	0110020	/ -/ 0			
14	50°-55'	1,23123	307.8	9.0	5.3	
15	590-08'	1.67309	418,3	7,6	3.9	
10						
16	65°-22'	2,15084	545.2	9.0	5,3	
10		2110001				
17	64°-57'	2,13963	534.8	9.3	5.6	
	- / 0 /	4110100				
18	670 440	2,44230	611.6	10.9	7.2	
10	0/-//	~/// ~00	- 10 10	1011	1100	
19	70°-00'	2,74748	6.81.9	11.3	3,6	
	10 -00	~1/+/40	and Gr/	/// ~	1,0	
20	710-221	2,96573	741,4	10,1	6,4	
20	11 - dd	2,903/3	14117	10,1	014	
21	790-12	3,09914	774,8	7,0	3.3	
21	12 VI	-74/177	11710	170	0.0	
22	720-301	3,17159	792,9	50	1,3	
aa	12 00		11217	00	110	
23	720-35	3.18775	7919	4,1	0,4	
23.2	12 00		798,4		0.0	A . 1
24	720-54'	3.25855		0.0	-3.7	waters Edge
27	12 -57	0,2000	012,0	0.0	0, /	Ou river Bonk
25	770-11	3,28452	8311	×38		
Sisidr.	10 04	0120702	0~111	1 -10		
- 17- C.	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			0		
1. 6. 6		Base g	.7 "	00		n It.
		onde of	ona	gee	520	pu,
			- P			
		+	+	+	4	

			h	lang	e 1-1		
t		Angleat Base	9	Carc.	Soundin	stojsto	
	Sta.	Transit at	Nat, Tang,	Dist.	Gauge	Sounding at -0.56	Remarks.
-	pica.	2.50		-	3.10	ac 5.56	
	E side						On River Bank
	1 & side	76-17	4.09699	819.4			
ł		710 21	400000	8112	0.0	-3.7	malers edge
	2 2a	10 -0	7.02092	7998	0,0	0.0	in the star
I,		sort	4.050 92. 3.98117	7912	2.4		
ł	3	10-004	2, 78 117	11012	0,0	1,3	
1							
	4	75-55	3,98607	797,2	5,0	1.3	
1							
	5	75-41	3,91839	783.7	6.18	3.1	
1	V		0111001	,			
3		750 311	1 00 844	2128	02	DD	
ł	6	13 -24	3,83906	16.110	9.2	55	
ļ					1		
3	7	75-13	3,78931	757,9	10,7	7.0	
	8	740_49	3.68485	>371	11.0	7.3	
	0	11-71	2,60483	101,0	1110	110	
		20 1	, .	1.1.1.	11 3		
	9	13 -32	3,38317	676,6	11,3	7.6	the second second
	10	210-10	2.93189	586,4	10,3	6,6	
	11	690 50	2,72281	51111	8.8	51	Base of triangle
	()		~((220)	5 T716		- 1/	
		130,51	2 2 2 2 2 2	1.4.	2.7	11 8	= 200 ft.
	12	61-12	2,37891	476,0	"	4,0	0
	13	63-20	1.99116	398,2	7.8	41	
			A 15.3	ale de la			
	14	57-191	1,55866	311.7	8.8	511	
	14	- / / /	1155040			- 1/	
	1.5	49-51	1.000	3511	11 1	1 11	
	15	47-51	1,18344	201.1	10.1	6.4	
		0.000					
	16	38-391	0.79972	159,9	11,1	7.4	
		11 - 1					
	17	320-281	0.63625	127.5	10,1	6.4	
		5					
	18	230-101	0.42791	85.6	7.4	3,>	
	/ 0		014-111		II F		
	19	130351	0.24162	48,3	29	4.2	
	11	10 00	0.24/02	1010		110	

Range 1-1

		\mathcal{R}	ange	1-1		
Sta	Angle Pransit at 250	Nat Targ.	~	Soundin Gauge at 3.10	g Adjstd at-0.56	Remarks.
	an ist	ALPECE	3117	6,3	2.6	
20 20 a	9-01	0.15868	251		0.0	
21	>0-00'	0,12278	24,6	3.5	26	
22	40-451	0.08309	16.6	0.0	-3,7	Walind Edge
23	4-12'	0.07344	14,7			On workank.
24 W	st Bank		4			

		Re	inge	2-2		
d	Angle		1 .	Sounding Gauge	Adj's't'd Sounding	
Sta.	Iransit at 250	Nat. Jang	Dist.	at 3.95	at-0.56	Remarks
& west		0.10805	1612			On war Bank,
R 2. a	8-05	0,14202	21,3	0.0	-3,6	tratino Edge.
3	11,-'30	0.20345	30,5	5.2	1.6	and a second second
4	15-50	0.28360	42,5	615	2,9	*
5	23-34	0,43620	65,4	6.8	3.2	
6	33-28	0.66/05	99.2	8,5	4,9	
7	34-20	0,68301	102,5	9-0	5.14	Base of triangle = 150 ft.
8	41-51	0.89567	134,4	10,9	7.3	
9	53-40	1,35 968	204,0	11,9	8.3	
10	61-51	1.86891	280,3	9,8	6.2	
11	68-00	2,47509	371,3	8,0	4,4	
12	73-28	3,3682	375,3	8,3	4.7	
13	73-55	3146837	520,2	9,4	5.8	

		Ta	lange	2-2		
Sta.	Angle Transit at 250	Nat Tang.	Calc. Dist.	Sounding Gauge at 3.05	AJ's't'd Sounding at-0.56	Remarks.
14	750-421	3,923/6	388,5	10,8	712	
15	>>-00	4, 33/48			8.8	
. 16	77-46	4,6/219	691,8	10,9	713	
17	78-24	4,87/62	730,7	11.9	8.3	Base of breangle
18	78-45	5.02734	7541	10.0	6.4	= 150 ft.
19	79-03	5-16863	77573	6.5	2,9	
20 20 a	79-08	5.20925	787,4	5.0	1.4	
21	79-21	5,31778	79717	0,0	-36	Waters Edge
22852	5					Run Bank.

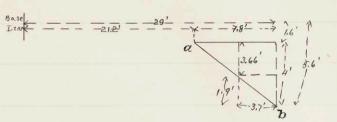
P				122 1223
11	a	na	0	3-3
	-			

	Kange 3-3						
	Sta.	Angle Transit at 0	Nat. Iang,	Calc. Dist.	Sounding Gauge at 3.05	Adjost'd Sounding at-0.56	
	1 Eeast Bank	790-341			+1,8	-374	On wir Bank
	2 2a		5.35206		0,0	-36	patiro Edge.
4	3	79-16	5127533	791,3	4.9	0.0	
	4	79-13	5-25048	7876	5.8	2,2	
	5		5117671			4,4	Bati
	6		3703499			7.8	Base of triangle = 150 ft.
	7		4.77978			7.4	
	8	11-31	4,64480	01011	1111	1.0	

		, Z	Range	3-3		
Sta.	Angle Transit at 0		2	Sounding Gauge at 3.05	Adj'st'd Sounding at-0.56	Remarks
9	760-401	4,21933	63219	11,9	813	
10	74-28	3,59775	539,7	8:9	5,3	
11	70-28	2,81870	422,8	715	3,9	Base of treangle
12	63-40	2,02039	383,1	8,9	6.3	= 150 ft i
/3		1,64256			6.6	
14	45-44	1,12593	153,9	11.0	714	
15	29-57	8,57619	86,4	716	4.0	
16	17-40	0-31850	47,8	6.1	215	
17	10-25	0-18384	27,6	4.0	14	
17 a 18 West	7-30	0,18384	1917	0.0	-3,6	matero Edge.

		E	lang	e 4-	4	
Sta.	Angle Iransit	Nat. Tang.	Calc. Dist.	Sounding Gauge at 2.80	Adj'st'd Sounding at -0.56	Remarks
WEat 1 Bank						River Bank
2	60-101	0.10805	2/16	0.0	- 3,4	matiró edge.
2a 3	9-45	0,17183	2816	6.2	2,8	Base of triangle . = 200 ft.
4	13-37	0,24223	48,4	5.5	2.1	= 201 ft.
5	20-42	0.37787	7516	610	2,6	
6		0,50368		8.7	5,3	
7	32-54	0,64693	129,4	9,8	6,4	

Range 4-4							
Sta.	Angle Transit	Nat. Tang,		Sounding Gauge at 2.80	Adj'st'd Sounding at -0.5%	Remarks	
8	420-171	0.90940	181.9	1016	712		
9	53-56	1,37302	274,6	900	516		
10	58-59	1.66318	332,6	7.8	4,4		
11	65-19	2,17582	43512	6,9	3,5		
12	70-09	2,77002	554,0	8.9	5,5	Base Stringly	
/3	70-52	2,88240	57615	10.0	616	= 200 ft.	
14	72-57	3, 2.40 49	64811	11,2	7.8		
15	74-17	3,53364	71017	10,6	7,2		
16	75-13	3,78931	751,9	10,0	6.6		
17	75-30	3,86671	773,3	8.1	4,7		
18 18a	75-44	3,9327	786,5	514	2,0		
19		4.00582			-3,4	materio Edge	
Eeast 20 Side	76-10	4.06107	812,2	+ 510	-8,4	OnRiver Bruk	


R	
Range	0-0

1		, Ila	nge	5-3		
Sta.	Angle Transit at 0	Nat, Zang,	Catc. Dist.	Sounding Gauge at 2.75	Adj's't'd Sounding at -0.56	Remarks
East O Bruk	720-571	3.24049	810,1	+2.0	- 373	On River Bank,
1	72-41	3,20734		0.0	- 3,3	maters edge
2	72-32	3,17804	795,8	4.0	0,0	
3	.72-13	3,11775	779,4.	6.9	3,6	

	1	R	ange	5-5		
Sta.	Angle Transit at 0	Nat. Pang.	Calc. Dist.	Sounding Bange at 2,75	Adjista gauge at-0.56	Remarks.
4		3,06837		9,0	517	
5	71-17	2,95155	737,9	10.9	7,6	
6	70-30	2,82 391	70 6.0	1017	714	
7	69-49	2,72036	680.1	11,4	8.1	
8	68-57	2,58484	64612	11,0	717	
9	66-02	2,24956	562,4	916	6.3	Base of triangle
10	63-20	1,99116	497,8	717	4,4	= 250 ft;
11	38-37	1.63934	409,8	6,8	3,5	
12	53-50	1.22758	386,9	812	4,9	
13	44-35	0,98356	24614	915	6,2	
14-	36-47	0,74764	186.9	1014	711	
15	28-12	0153620	134,0	10.1	6.8	
16	24-35	0145748	114,4	914	6.1	
17	17-14	0,3/019	775	7.0	3.7	
18	12-25	0-22017	55.0	511	1.8	
19	2-50	0.13758	2/1	5.0	1.7	
19a 20	6-04	0,10628	31.7 26.6	0.0	+3.3	Waters Edge
21 West	3-42	0.06467	16.2	+5:0		Oukirs Bank
22 Brank	7-42	0,02968	7.4	+6.0		11 11 11

out from the base line, of the boat, is the product A the pase and the natural tangent of the angle found as mentioned. By this method, we find the numbers which make up the fourth column. The fifth column contains the soundings as actually taken, some being taken at a different stage of water from others. They must all be reduced to a common stage, which is here taken as -0.56; that being the lowest stage of the water during the period in which the measurements were taken. The method preduction is extremely simple; thus, on page . I, Range 0-0. the gauge stort at 3.10; the reduced gauge reiding is -0. 56; therefore, the realts in the oight column are obtained by subtracting 3.66 from each munter in the fifth column. It is important for us to know the distance art from the base line, of the water's edge

at a reduced sounding. This may be found in the following manner, a figure being shown to illustrate it.

We start with the gauge reading 3.10. The distance at from the base line to the point "a", is 21.2 feet and, to the point "3" is 29 feet; the depth of water at "a" is 1,6 feet; and at "t", 5.6 feet. how when the gauge reading is -0.56, the level of the water is 3.66 feet below the former level, Therefore, under the new condition, the depth of water at "3" is 1.9 feet. We assume the bank to have a continuous slope from "a" to "". Jofind the position of the waters Edge under the new conditions of things, we see that 19:4" 7.8: X i' X=3,7 feel; and therefore the distance out, of the water's edge, from the base line under a reduced gauge reading,

to 25,3 feet. We proceed in this manner for each range, finding the priling the waters edge at each end under a reduced water level. This gives no complete data for a crossection of every range. These crossections are now plotted, and are show in the diagram for the float meaomements on page. 68. mext wish to get an average cross-section, and the principle upon which This is accomplished, may be seen from the follow ing figure: a b c d e f c so' x so' x so' x so' x so' x manppel, a, k, c, d, e, & f, the the depths of points at a distant & (any distance), from the mat bank, at different ranges. The bottom of the wer at that distance ant. from the base ling has they the shape of the proken line; the shaight line representing the surface of the saver. The average depth of water at

Calculation of Depths for Average Section,

Lalç	ula	con,	01	Dep	Je no	101		age		0010
Distance out						¥4				
West Bank	40	50	60	70	80	90	100	110	120	130
TILDE DWICK	3.8	4,3	4.2	4.2	4.1	4,1	4.2	5.0	3.9	6.1.
	3,4	4.2	4.0	3.9	4.0	4.0	4.7	5.2	Biy	6.2
	3.4	4,2	4.0	3.9	410	4.0	417	5.2	5.7	6.2
	2.6	3.0	31/	3.5	3.8	4,2	417	5.3	6.0	6.4
	2.6	3.0	3.1	3.5	3,8	4,2	417	5.3	6.0	6,4
	2,5	2.6	3.0	3,4	3,1	4,2	5.0	5.7	6.1	6.5
-	2,5	2.6	3.0	3,4	3.1	4.2	5.0	5.7	6.1	65
	1.7	2.1	2,3	2.5	3.8	4.5	5.3	5.9	6.4	7.0
	1.7	2.1	2,3	2,5	3,8	415_	5.3	5.9	6.4	7.0
	1,8	1.8	2.2	3.1	3.9	415	312	3.8	6.3	6.7
	26.0	29,9	31.2	33.9	37.4	42,4	48.8	33.0	60.6	65.0
mean Depth	2.6	2,99	3.12	3,39	3.74	4,24	4.88	5,50	6,06	6.50
Distance out from West Bank	140	150	160	170	180	190	200	210	220	230
TTESE ZUICA	6.3	6.3	6.5	6.6	6.8	6.7	6.6	6.5	6.4	6.2
	6.6	6.7	6.9	7.0	7.1	7.0	6.9	6.7	6.6	6,4
	6.6	6.7	6.9	7.0	7.1	7.0	6.9	6.7	6.6	6.4
	6.7	7.1	7.4	7,3	7.2	7.1	7.0	6.8	6.6	6.5
	6.7	7.1	7,4	7.3	7.2	7.1	710	6.8	6.6	6.5
	6.8	7.2	7,4	7.3	712	7.1	6.9	6.9	6.8	6,7
	618	7.2	7.4	7,3	7.2	7.1	6.9	619	6.8	6.7
	7,4	7.5	7.7	7.8	7.9	8.1	8.3	8.1	7.9	7.5
States and the second	714	7.5	7.7	7,8	7.9	8.1	8.3	8.1	7.9	7,3
	6.8	6.9	6.9	7.0	7.1	7.1	6.9	6.9	6.6	6.5
	68.1	70.2	72,2	72.4	7217	72,4	71.7	70.4	68.8	66.9
Mean Depth	6.81	7.02	7.22	7,24	7.27	7,24	7.17	7,04	6.88	6.69
Distance out from West Bank	240	250	260	270	280	290	300	310	320	330
The core is with	6.1	6.0	5.9	5.8	5.6	5,5	5.4	5,3	51	5.0
	6.2	6.0	5.8	5.7	5,5	5.3	51	4.9	417	4.5
	6.2	6.0	5.8	5:7	5.5	5,3	5.1	4.9	417	415
	6.3	6,1	5.9	5.7	5.6	5.4	5.2	5.0	4.9	4.8
	6,3	6.1	5.9	5.7	5.6	514	5.2	5.0	4,9	418
	6.7	6,5	6.3	6.1	5.9	5.6	5.4	5,2	511	5.0
	617	6.5	6.3	611	5.9	5.6	514	5.2	sil	5.0
	7,3	7.0	6.7	6.5	6.2	6.0	518	5,6	3.4	5.2
	7,3	7,0	6.7	63	6.2	6.0	518	316	5.4	512
	6.3	61	6.0	5.8	5.7	5,5	514	6.2	5.0	4.9 48.9
2		63.3	61,3	59.6	57.7	53.6	53,8	51,9	5,03	4,89
mean Depth.	6,54	6.33	6,13	5.96	5.77	556	538	5.19	0,00	7107

(Calculate	on	of De	epths	for h	rerage	l'ross-2	Sectu	on
- ÷	Trans. 1								

Distance			/	101						
Distance out from	340	350	360	370	380	390	400	420	420	430
West Bank										
	419	4.8	4,6	4.5	4,4	413	411	4,0	3.9	411
	4,4	4.6	4,6	45	4,4	4,3	4,1	411	3.9	411_
	414	4.6	416	415	4,4	4,3	4.1	411	3.9	411
	4.7	4.3	4,6	414	4,4	4,4	4,1	411	411	415
	417	4,3	416	4,4	4,4	414	411	411	41/	4.5
1	4.9	418	4.5	4,4	4,3	4,2	4.5	415	45	410
	4.9	4.8	4,5	4,4	4,3	4,2	4,5	415	4,5	4,0
	5.0	4.8	4,2	411	4,0	3.9	3,8	3,7	317	3,6
	5.0	4,8	4,2	411	4,0	3,9	3.8	317	3,7	3,6
	4.7	4.5	4,4	4,2	4,0	3,8	3,7	3,5	3.6	3,7
	47,6	46.3	44,8	43.5	42,6	41.7	40,8	40.3	39,9	40.2
mean Depth	4176	4,63	4,48	4,35	4,26	4.17	4,08	4,03	3,99	4,02
Distance out	11.				10.	100	A	Des	~~	~
West Bank	440	450	460	470	480	490	500	510	520	530
	4,2	4,4	415	417	418	5.0	5.1	512	55	5.4
	416	416	416	416	417	417	4.8	511	6.0	318
	4.6	4.6	4,6	4.6	417	417	418	511	6.0	318
	4,1	412	4,4	4.5	4,6	417	4,7	5.0	5.2	5.1
	411	412	4194	415	4,6	417	417	510	5,2	311
	4.1	4.0	40	411	4,3	4,5	416	418	51	4.9
	411	410	4,6	41	4.3	415	4,6	4,8	511	419
	3,6	3,8	3.9	4.0	411	412	414	416	419	4.7
	3.6	318	3,9	410	411	4,2	4,4	416	4,9	417
	3,8	3,9	4,0	411	4,2	4,3	4.5	417	5,4	511
	40,8	41,5	42,3	43.2	44,4	45,3	4616	48.9	53,3	5,15
Mean Depth	4.08	4,15	4,23	4,32	4.44	4.53	4,66	4,89	5,33	5,13
Distance out From		-					100	1 10		
West Bank	540	550	560	570	580	590	600	670	620	630
	515	515	5.8	6.0	6,3	616	6,9	712	712	713
	6.2	5.4	5.7	6.1	614	6.7	6.8	712	7.0	2.1
	612	5.4	5.7	6.1	614	617	6.8	7,2	2.0	711
	5.3	5.3	5.8	6,3	6.6	6,8	710	6.9	7,3	7.5
	5.3	5.3	5.8	6,3	6,6	6,8	7,0	6,9	7,3	2,5
	5.2	5.6	6.0	6.3	6.7	6.9	712	7.6	7.9	8,2
	5.2	5.6	6.0	6.3	617	6.9	7,2	7.6	7.9	8,2
	5.0	614	6,6	6.8	70	7,2	7.5	7,8	8.0	8.3
	5.0	6.4	6.6	6.8	710	712	7,5	7,8	8,0	8.3
	5,6	6.1	6.2	6.4	6,6	6.8	6.9	7,1	7.3	714
	545	57,0	60,2	63,4	66.3	66.6	70.8	73,3	7419	76.9
mean Depth	5,45	5,70	6.02	6.34	6.63	6.66	7.08	7,33	7.49	7,69

Calculat	tion	of D	epti	hs f	orAr	erage	ross	Section	-
	the second s						Contraction and the state of th		

Ditacculat	2010	012	eper			crag	0.01			0010
Distance out						10.		100 B		
West Bank	640	650	660	670	680	690	200	710	720	730
VICOL DUIN	7,4	7.4	7.5	7.5	7,6	7.5	7.3	711	6.9	6.6
	7.2	713	7,4	7.5	7.5	7,4	7.3	7.2	21	7,0
	7.2	7.3	714	7,5	7.5	714	7.3	7.2	7.1	2.0
	7.7	718	7.7	7.6	716	7,4	7.5	7.4	714	7.3
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1200	7.6	7.6	7,4	7.5	714	714	7.3
	717	7.8	7,7		7.7	7.5	7,6	7.4	7.5	7.6
-	8.2	8.1	8.0	7.9	7.7	7,5	7.6	7.4	7.5	7,6
	8.6	8,8	8.4	8.1	7.7	7.6	7.5	7,8		8.3
	85	8,8	8,4	8,1	7.7	7,6	7,5	718	8.0	8,3
	7,6	7.7	7.9	8.0	8,1	7.8	7.6	7,4	7,5	7,5
1	78.2	79,1	78,4	77.7	76,7	75.1	7417	74,1	74,4	
mean Depth	- GA	7.91	7.84	7.77	7.67	7.51	7.47	7141	7,44	7.45
Distance out			1.0.7							
from West Bank	740	750	760	770	780	12170				
	614	5,6	417	317	218					
	6,8	6.7	6.4	3,7	3.2		•			
	6,8	617	514	3,7	3,2					
	7.3	6,7	6,4	5.1	3,7					
	7,3	617	6.4	511	3.7					
	7,5	7.1	6.8	5.2	3.8					
	715	7.1	6,8	5,2	3,8					
	716	718	7.0	5.4	1,8					
	716	7.8	7.0	5.4	1.8					
	715	6.5	6.2	512	3.6					
	72,3	68.7	62.1	4717	31,4					
mean Depth	7.23	6.87	6.21	4.77	3,14					
Distance out from				Right	Eeast					
West Base 1				Right	Left					
to Water's.	E'Jge		- 1 C	25,3	798.4		6, 5,			
				2.5,7	799,8		1			
					286.0					
	61-1	1.000		27.7	786.0					
In the bolish					794,4					
and the second second					794,4					
				28,6	791,9					
				25.6	791,9					
				27311	795.8					
					793.84					
mean. Dise	fanced	ut,		0.004	110.04	1				

the particular distance out X, with then be 250 (atsb+2c+2d RE+f), the length of base line being 200 feet, and the length of a section being 2x25 = 50 feet. This principle is used a pages 15 to 17, in the calculation of the depttes for the average crossection; the distances apart being ten feet. The same principle is used to prid. the average distance mt, A the water's Edge, from the base line, This is calculated on page 17. In this case the vertical lines represent distances out from the base luse and, the broken live represents the water's edge along the enlive course. On page 69, 6 ohow the average cross section, in which the ordinates represent the depths quater, while, the abscissae represent the distance pat from the west base line.

The Hoat measurements. On pageo 20 to 25, are given tables for the position of the cellis floats. an explanation of them will now be given. The first column contains the number of the series; and, the second, the number of the float in that series. In the third column are to be found the angles at the lower transit, when the float is capping the upper transit line. This last line is Range oo, while the lower transit is statimed at the point 250, on Range 5-5. The fourth column is made up of the natural tangents of angles shown in the third column; and column I is found by multiplying the result in the third column by the length of base, 250 ft. The sixth column contains the angles at the upper transit, when the float is crosing Range 55, the lavro transit

T'	262e	for	Pose	ition	of -	Fille	's F	Toat	<u>.</u>
Series	No. of Float	Angle to Float at Upper Line	Nat Tang.	Dist, out from Transit Irne River Bank	6 Ploat	6	Dist.out from Aransil Time River Bank	Mean. Disc	Remarks
1	1	80-40'	. 15243	3811	10-58	,19378	4514	43.2	
	2	8-25	. 14796	37,0	nottakin			37,0	
	3	7-48	.13698	34,2	9-06	.16017	40.0	3711	
2	/	130-361	,24/93	6013	300-/1	,57774	144,4	10215	
2	2	13-0	,23087	57,7	28-1	. 53208	133,0	9573	
	3	13-37	,2.42.23	69.6	28-53	,55765	137,9	9913	
									Gauge
3	1	260-81	,49012	12217	340-22	,68386	171.0	146,8	8,30 A.M0.56
	2	36-2	.48843	12211	32-12	, 62973	157,4	139,8	1. P. M -0.58'
	3	3-6-15	,49315	123,3	30-52	,59770	149,4	136,3	6. P. M 0.52
	4	26-24	,49640	124,1	32-58	, 64853	16211	143,1	Mean for Day 0.56
	5	26-11	49170	122,9	31-38	- 61601	154,0	138.5	
	6	26-25	,4967	12412	30-33	. 59/01	147,8	136,0	
1			1. 						
4	1	34-421	,69243	173,1	43-42	1,95562	238,9	206,0	
	2	34-45	. 69372	173,4	4 3-53	.962.88	240,7	207,1	
	3	34-42	. 69243	173,1	45-31	. 1,0/820	254,3	213,8	

	Tab	20 1	for Po	sitze	on o	f Fie	IZis	Filo	ats
Series	No. of Ploat	Angle & Fload at Upper Iine	Stat. Tang.	Dist. outfront	Angle to Fload at I, ower Iire	Net. Tang.	Dist. out fron Transit Line River Line	Mean Dist.ou	Remarks
4	4	34-35	,68942	172,4	. 46°-46	1,06363	265,9	219,1	
	5	34-25	,68514						
	>		, 63830						
	8	34-47	,69459	173,6	46-12	1.04279	268,7	217.1	
5	1	45-00	1,0000	250	520-00	1,29994	319,9	28576	
	NON.	44-46	.99189	247,9	56+43	1,52523	387,3	314,6	
	4 's		,99189						
	6		,99536 ,96288		10.24	0.1			
	2	45-16	1,00933	257,3	53-33	1.372/8	343.0	297,9	
6	1	556-56'	1,47883	36917	640-03	2.03485	513,7	44/17	
			1.48722						
	34		1,48816				- <u>-</u>		
	5		1.48070						-

. Z	abi	le	for	Post	itio	n o	f. II	Ilis	Floats
Series	Wa of Ploat	Anglets Ploat at Upper Line	Sat. Targ.	Dist. out from Pransic Line on Rive Banks	Anglet Prod at Lower Iizno	Sat. Tang.	Pist out from Transic It in on River Bank	Mean Dist Out	Remarks
7	1		3,1 4 517 3,15877			a. • •			
8	1		3.09298 3.17>69						
	3		3,07464 3,05349						
9	1 2 3	70-39	2,82914 2,84758	711,9	70 - 41	2, 85289	713,2	712,3	
	4	70-41	2,84494 2,85289 2.83702	713,2	70-50	2,87700	719,3	716,2	
	67	70-34	2,83439 1,85°623	788,6	70-29	2,82130	705:3	706,9	
	8 9 18	70-33	2,82914 2,83176 2,83176	707.9	70-20	2,>9802	699,5	703.7	

	Ta	62e	for	Po	site	on	of I	Fillis	Floats
Series	No. of Float	Angloto Fload al Upper Iiine		Dist.out From Pransi I. in on River Bank	Troa	Wat. Tang.	Distout from Transit Lin River Bank	n D Duch	Remarks.
10	1	680-20	2,51715	629,3	68°-16'	2,50 864	627,2	628,2	
	2	68-20	2,51713	629,3	68-13	2,50229	625,6	627.5	
	3	68-28	2.53432	633,6	68-40	2,56046	640,1	636,8	
	4	68-26	25300/	632,5	68-01	2,47716	619,3	625,9	
	5	68-26	2,5300/	632,5	68-19	2.5150	628,7	630,6	
	6	68-25	2,52786	631,9	68-27	2153217	6330	632,4	
	7	68-23	2,52787	631,9	68-39	2,5582,	639,6	635,8	
4	8	68-2:	2,52142	630,4	68-01	2,47716	619,3	624,8	
	9	68-35	2,54952	637.4	67-50	2,45 451	613.6	625,5	
	10	68-16	2,50869	627,2	68-21	2,51929	629,8	6283	
11	,	64023	2,08561	521,4	650-01	2,14614	526,5	524,9	
	2	64-21	2,08250	520,6	65-08	2,15760	539,4	530,0	
	3	64-24	2.08716	521,8	64-49	21/2671	531,7	526,8	
	4	64-22	2,18403	521,0	65-08	2,15760	539,9	530,2	
	5	64-18	2.07783	529,0	64-58	2.14123	535.3	527,4	
	6	64-20	2,08094	520,2	65-08	2,75760	539,4	529,8	

	Ta	ble	for	Pe	site	ion	of I	Fillis	Floats
Series	No. of Float	Hugiela Pload al Upper Iine	Nat. Tang.	Dist. Out From Transi Line on River Bank	Anglets Pload al I ower Tine	Ital. Tang.	Pist, out From Transi Line on River Bank	n Dis	Remarks
12	,	560-15	1,49661			1,5 4085	38572	359,7	
	3	56-11	1,49284	373,2	57-14	1,55368	388,4	381,8	
	4	56-13),49472	373,7	36-29	1,50988	377,5	375,6	
	5	36-30	1,51684	347,7	58-06	1,60657	401,6	389,6	
	6	56-24	1,50512	376,3	36-03	1,48536	371,3	373,8	
13	1	59-36	1,>0446	426,1	600-48	1,78-929	447,3	436,7	
	2	59-34	1,70219	4255	60-09,	1.74257	435,6	430,6	
	3	60-00	1,73205	433,0	61-15	1, 82276	453,7	444,8	
	4	39-51	1,72/63	430,4	60-21	1, 25623	439,2	434,8	
14	1	62-26'	1,91334	478,	63°-06	1.97111	492,8	48378	
	2	62-33	1,92508	481, 3	63-10	1,97681	49412	487,8	
	3	62-28	1,91826	479,6	63-20	1.99116	497,8	488,7	
	4	62-38	1,93123	483,0	63-15	1,98396	49610	489,5	
15	1	520-061	1,28456	321,0	52001	1.2807	320,2	320.7	
	.2	57-55	1,27611	319,0	57-50	1,27230	318.0	318.5	

SI 25 Oriess Soncess	Jemar KS
15 3 52°-06' 1,28450 321,0 × × × 321,0	
4 57-53 1,27458 31816 32-06 1,28456 321,0 319,8	
5 51-44 1,26774 316,9 51-15 1,24397 311,5 314.2	
6 51-55 1,27611 319,0 51-51 1,27306 318.3 318,7	
	_

line, The seventh and eighth columno are found from the sixth column, in the same manner that the fourth and fifth columns were found from the third, The minth column is found by averaging the results of the fifth and eighth columno. Jable of Veloatiles On pages 27532, are given tables as designated above. The first two columns explain themselves. The third column contains the depths of the centres of the sub-ourf ace floats below the surface of the water The fourth column is made up of distances passed over. These are not shicly correct, as, the path pursued by a float was not parallel to the base line; but, the variation was slight, and for our puppe amounted to nothing.

T'	able	of	Ve	laci	ties	at	Pour	its i	n Cr	oss S	ection
Series	Na.	Depth Carlre Of Float	Dist passed over	Time Interval	vel.	mean Dist. Out.	trean for Series	Area of Curve in Sq.m.	Area, Sq. FC.	Tength of:Base Of Curve	
			ft	min. sec					-		
1	1	0,4	250	3-18,2	1,26	43,2					
	2	1,0		4+13,5	.99	37.0	39.1	2,855	2,284	2,55	0,895
	3	1,5		4-50	,86	37.1					
2	1	0,4	250	2+4 9	1,48	102.5					
	2	1.0		3+13,7	1,29	95,3	99,0	7,17	5,736	4,85	1,183
	3	1,5		3-16	1,27	99,3		•			
3	1	20	230	2-22,2	1.77	146,8					
	2	3,0		2-37	1,59	1.39,8					
	3	4,0		2-33	1,63	136,3					
	4	0,4		2-24	1.74	143,1	140.0	13,30	10,79	6.80	1,587
	5	1.0		2-25	1172	138,5					
	6	5,0		2-43	1,53	136,0					
4	1	0,4	250	2-26.2	1.7/	206,0					
	2	1.0		2-11	1.91	207,1					
	3	5.0		2-54	1.44	213,8					
	4	2.0		2-27	1.70	219.1					

Z	ai	Ze	of	Vel	ocit	ies	ati	Poin	ts i	n Cr	oss e	Section
Ser	573	JYo. of.	Depth of Centre	Dist,	(TT)	Vel. In f.p.s	mean Dist, out.	mean for Series	Area of Curre	Actual Area in Sg Ft.	Length Base Curve	Mean Vez. in Vertical f.p.s.
				pt.	min. 200							
4	4	5	4.0	250	2-32	1,64	203,3					
-		6	3,0		2-32	1,64	223,0	202,6	14,033	11,24	7,10	1,586
		7	Surf		4-45	188	131,3					
		8	6.0		3-00	1,39	217,1					
			-									
3	~	_/	3	250	2-04	2,02	285,6	·				
	2	2	5		2-38	1.58	314,6					
		3	2		2-5,8	1.99	312,6	305.9	12,30	9,888	3,30	1,866
		4	4	· · · · · ·	2-30	1.67	308.6		Ĺ			
		5	0.4		2-7,4	1.96	316,6					
		6	1		2-3	2.03	297,9					
					* 							
	6	1	0,4	258	2-32	1,64	441,7					
		2	1	in (2-33	1,63	429,5					
		3	2		2-45	1,51	433,4	433,7	7.415	5,932	4.05	1,467
		4	3		3-05	1.35	432,5					
		5	3		2-52	1,45	431,3					
	1											

Ta	22e	of	Ve	loci	ties	at	Poin	ts in	n Cr	ass e	Section
Series	No. of	Depth			1/07	Contraction of Contraction of Contraction	mean for	0	Area	Tarta	Mean Vez. in Verticas
7	1	8,4	250	3-46	1.11	784,2	782,0	3,06	2,448	2, >0	0,988
	2	1		4-24	,95	780,3					
8	/	014	250	3-46	1,11	766.0					
	2	/		3-50	1,19	771.3	765.0	5.855	4,684	5.52	0,850
	3	2		4-01	1.04	761,4					
	4	3		4-37	,90	761,5					
	-	-			1.01						
9	1	2	250	209	1,94	704.1					
	2	3		×	X	712,5					
	3	04		2-07	1,97	710,6					
-	4	3		2-12	1,90	716,2		 			
	5	1		1-57	2,14	709,9	787,6	17,175	13,74	7,40	1,859
	6	4		2-10	1,92	>06,7					
	7	5		2-07	1.97	706,9					
	8	6		2-25	1,72	700,9					
	9	7		4-17	,97	703,>					
	10	6		2-26	1.7/	783,7					

	To	2620	of	Vel	ocit	zes	at I	Point	s in	, Cre	955 - e	Section
			Denth	7 .4	Time	Vel. in f.p.s	mean	mean	Area of Curre Sq. In.	Actual	Length Base	mean Vel. in
	10	1	7	250	3-20	1,25						
and the second		2	6		X	X	627,5					
		3	5		2-39	1,57	636,8					
		4	6		2-22	1176	625,9					
and the second second		5	4		2-14	1,86	630,6	629,4	17,075	13,66	9,70	1,774
and the second second		6	3		2-01	2,07	632,4					
		>	2		2-03	2,03	635,8					
		8	1		1-58	2,12	624,8					
and the second second		9	0,4		2-13	1,88	625,5				.	
		10	3		2-09	1,94	628,3					
	11	1	0,4	250	2-40	1.56	524,9					
		2	3		2-57	1,41	530,0					
		3	1		2-27	1,70	526,8				•	
		4	2		2-34	1.62	830,2	527.8	8.90	7,12	3730	1,344
		5	1		2-50	1,47	527,4					
		6	4		3-52	1,08	529,8					
			10									

Ta	62e	of	Vel	ocit	ies	at	Poin	ts in	r Cre	755 0	rection
Series	IVo. of Float	07	Dist. passed over	Time	Vel. in f.p.s	mean Dist. Out.	116 Gan	Curve	Actual Area in Sg. IT.	I, ength of Base Curve	Tel.in
12	1		250	2-42	1,54	359,7					
	3	2		3-00	1,39	381,8					
	4	3		3-16	1,27	37516	380,0	7,135	5.70	4,75	1,342
	5	2		2-52	1,45	389,6					
	6	0,4		2-45	1.52	373,8					
13	1	2	250	2-56	1,42	436,7					
	2	0,4		2-39	1.57	430.6	436,6	6,435	5.148	4.07	1,263
	3	3		3-51	1.08	444,8					
	4	1		2-44	1,52	434,8					
14	1	3	250	3-26	1,21	485,8					
	2	1		2-46	1,57	487,8					
	3	1,4		2-30	1,67	488,7	487,9	7,385	5,908	4,52	1,308
	4	2		3-15	1.35	489,5					
15	1	0,4	258	2-12	1,89	320,7					
	2	2		2-15	1,85	318,5	318,8	9.94	7,932	5.025	1,583
	3	/	n 4	2-22	1.76	321.0					

Tab	2e	of V	eloci	ities	at	Poin	ts z	n Cr	055-	Sect	ion
Series	Tro.	Dach				mean Dist, out.	mean for		Actual	Irength of Base	Vertican
15	4	-	250	2-36	160	319,8					
	5	1				314,2					
	6 .	4				318,7					
			-								
								11			
+			0						and the second second		her warmen and a start of the

The fifth column shows the time taken by the floats in passing over the distance between the upper and lower ranges, and is determined by stop-watch. The sixth column is obtained by dividing the results in the fourth column, by three in the fifth. The results in the seventh column were determined on pages 20 to 25, and, are repeated for convenience only. The Felocity Curves. From the results of the third and sixth columns, the velocety curves mpages, 67868. Athe diagrams, are plotted. They are numbered from I & XF: In these, the ordinates represent velocities in feet plr seend; and, the abscessar mark the depths of water. The points are plotted and connected by shaeght lines. a curve is then drawn in such pointin, that, the sums of the vertical devidious

Athe points on either site of the curve from the curve, are equal. This curve is continued until it meets the lines which represent the surface of the river, and the bottom of the sheam. The broken lines are then continued to these points this found. The area of this figure is then determined by use of a planimeter, and the result we show in the ninth column. The teath column is obtained by multiplying the results of the preceding column by . This is necessary on account of the use of different scale for the admates and the abscissae in the curves shown on pages 67868 Athe diagram for float measurement. The results in the column headed, "Leugth of Based Curve", are obtained by measurement of the bases of the curves metationed above. and, the results in the last column are found by dividing Each number in the

teath column by the corresponding number in the eleventh. The results of the eighth and twelfth columno are now plotted, as shown by the small circles in the Diagram of Ellis Hoat measurements. A curve is then drawn in such position that the sums of the vertical deviations, from the curve A point meither side of the curve, shall be equal. Calculation of Q. Me have now an average cross-section and a velocity curr covering points in the entire width of the stream. We now proceed to calculate the discharge of the stream, and for this purpose, the latte n pageo 36 and 37 are given. The first column contains the numbar of the sections shown in the Hagram for Hont measurements, page 69 .. The sections are made of such length, that,

Cal	culati	ion of	Q from	Diag.	ram of I	Fillis Floats
Section IVo.		Actual Area Sg. Fl	Ц. гл f, p.s.	Q. in c.f.p.s.		rarks
1	0,23	18,4	0.66	12,14		
2	0,735	58,8	0,93	54,68		
3	0,84	67,2	1,13	75,94		
4	2,425	194,0	1,32	256,08		
5	3,355	26814	1,47	394,53		
6	3,62	289,6	1,59	46846		
7	3,435	214,8	1.67	458.92		
8	3,86	244,8	1173	423,50		
9	2,69	215,2	1,735	373,37		
10	2,365	189,2	1,63	308A0		
• 11	2,11	168,8	1.39	234,63		
12	2,06	164,8	1,31	215,89		
13		169,6	1,30	220,48		
14	2,35	188,0	1,33	250,04		
		222,0	1,425	816,35		
		259,6		420,55		
17	3,735	298,8	1,78	531.86		
18	3,905	312,4	1.86	581,06		
19	1,88	150,4	1,85	278,24		

Calculation of & from Diagram for Fillis Floats V in f.p.s Section Area Actual Q 2'n C.f.p.s Area Sq. Ft Sg. In Remarks JVo. 1.85 148,0 1,80 266,40 20 245,68 148,0 1,66 1,85 21 1,39 136,0 189,04 1,70 22 95.6 0,93 88,91 23 1,195 18,20 0,70 26,0 24 0,325 Notal Discharge = 6675,37 c.f. p. 5

the polin of the velocity curve intercepted between dotted lines projected vertically through the extreme ends of the sections, shall be straight, or nearly so. The second column represents the area of the sections on the diagram, in square inches, as determined by the use A a planimeter. In using the planimeter, enough readings wir laten to secure two readings which agree within twome-hundereths fan inch The third column contains the actual areas of the sections in square feet. The scales of akscissae and ordinates on the diagram are different, and the readings obtained by planimeter must, therefore, be modified. In this case the scale of readings in square wiches to areas in square feet, is me to lighty. The results in the third column are thetained, therefore, by multiplying Each

number in the second column by eighty. The fourth column is that of velocities in feet per second. These are found by projecting the middle ordinate of each section In the deagram, vertically, until it mets the velocity curve. The intercept on this line, between the belocity curve and the base line, represents the mean velverty, in the section under consideration, in feet per second. The product of the area peach section by the velocity corresponding to the middle ordinate of that section, gives the discharge for that section; and, this is placed in the fifth column. She sum of the numbers in this column is, therefore, the discharge in cubic feet perseend for the entire stream, and, as stated on page 37, is 6675.37 C.F. p.S

40 Part II measurements made with Current meters. .

Sata. The entire set of meter measurements. was made on Range 250-200, is; at the lower End of the transit line. They were begun on fune 18, 1890, and wire completed on fune 23rd Suring that period, the siver fell from 1,9 by Juge at 9. a.m. on fune 18th, to -0. 48 at 6P. m mfnne 23 d. The lowest stage of water any time, during the stay of the party at Deerfield, was -, 56, n fime 26th and the measurements are, for the sake A simplicity, reduced to that stage of water. On pages 44 and 45 is a lattle Ameasurements for the Steley meter.

Column I contains the minsters of the sta-

times and requires no explanation.

Column II, is that of the distances out for the west bank of the river. Where more than

ne measurement was taken at a station,

the mean distance out is placed in the column,

Column III is a column of depths as actually measused with the meter; while, the fourth column is me of conceted depths to be used in plotting the correspection of the river. The results of the third column could be used, but, as or already have a very large number of fromto calculated from the float measurement, in which the gauge reading is -. 56, we can by reducing the results in the third column to that in the fourth, obtain addetional prints at a stage quatic. 52; and, thus obtain a very accurate crosssection. This fourth column is, therefore, obtained by reducing the depths in the third column from their uspection gauge-readings to -, 5% Column I is the time expressed in seconds, and represents the period required for a vertical integration at that particular station. The time was determined by sty watch. Where more than me cate-

grating was taken, the mean my, is placed in the table. The sixth column contains the number of revduting back integration and is read directly fom the meter. Column XII is a column of velocities expressed in feet per second, this is obtained from deagrams of meters which have been pret pared, and are in use in the Curl Engineering Department of the matitute: On the diagrams, the ordinates represent the number of revolutions persecond, and the abscissae, the velocities in fact perseend, the horizontal and Vertical projections respectively, meeting on the curve. The eighth column contains, among other things, the gauge-readings read form a gauge five feet long, placed on one of the western piers of the highway bridge

between Deerfield and Funderland.

	T	able or	F M	Leasur	emen	ets n	rith th	teley Meter
		Lesc. Oucl	Depth	Reduced	time	Jro. of	Velocity in	
	No.	from West Bank	Weter	Depth	Sec.	Rev	F. P. S	Remarks.
								Gaugeat
	1	37	4,6	2,14	160	197	1.04	1.9 9 A.m.
	·							1.7 4 P.m
	2	60	5.0	2.64	1817	372	1.63	
T	×	00	5.0	2107	101	012	1100	
	3	88	6,3	4,04	356	760	1.76	
	0	159,5	015			1 02 10	1.10	
	1	162.0	9.3	7,44	150	10.01	1,94	12 9 1 2
	4	161.0	1.0	1,77	737	1044	1114	1,3 9 Am,
	-	447		1	2.2.4		10.	111 5, P.m.
-	5	451	6,1	4,24	226	331	1.92	
		783.5			11.		1.4.5	
-	6	783	4,4	2,64	165	2/2	1.08	
		764				- 5		
4	7	770	711	5,44	228	318	1.17	
						1		0.70 8 a m
	8	.717	9.2	7.54	190	506	2,17	0,60 5 P.m
		240,5						
	9	260.9 260.6	7.4	6.14	349	868	2,03	
		623,5	L					
	10	626,1 624,8	819	7164	338	835	2,02	ColumnIV contains
	11	55	3,2	1.94	209	78	1.42	depths reduced to
	//							inpuno namaa no
	10	88	611	4.84	454	150	1.41	and ind - st
1	12	128,8	- 41/-	TIOT	Td/	10 /		gauge reading - 56
		126,9	a 1	601	NE	101	187	led 1/2 Charles
	13	23916	8,1	6,94	565	274	1,80	Vel veilies in f.p.s
		240.0	2		TA I		1 16	11-+11 1.
+	14	2 39,8	7.6	6,44	036	305	2.08	are obtamed from Drigon
		368,1 369,0	5.2	1. J. J. J. J.	~		1 ~	and the of t
	15	365,5	212	4.04	340	171	1.86	getre Faley meter.
		776						0.1 9.a.m.
	16	778	3.9	3,24	237	56	0.97	-0.3 21 P.m.
		737,5 734.3						
	17	735.9	8,4	7.84	512	239	1.74	
		693,7						
	18	694,4	8,3	7.84	278	142	1.89	
	10		~	0.44	345	150		
	19	623.9	8.3	7,94	308	158	1.90	

Tab	le of Ji	Vease	uremen	ts w	ith t	he Et	eley The	Teter
Sta	Dist. out from	Depth	Reduced	Time	J80. 07	in		
No.	West Bank	Meter	Depth,	Sec.	Rer.	F. P. S	Rema	
20	499.2 498.6 498.9	4.9	4.64	223	91	1,53	Gauge	at
	203,9 202,6						0.44	9,a,m
37	203,3	7,3	7121	534	1140	1.75	-0,48	6, P.m.
38	777,9	3,6	3,51	479	455	0,81		
39	743.6	7,3	7,21	8-19	1402	1,42		
40	698.2	7.6	7,51	521	1219	1,92		
41	. 653.0	8,1	8.01	581	1340	1,86		
42	547.3	5.9	5.81	390	760	1,60		
4-3	439,8	3,8	3,72	262	469	1.47		
44	332,6	4,7	4.62	330	6.27	1.56		
4.5	256,5	6.2	6.12	450	1019	1.87		
46	155,0	7,5	7,42	557	1107	1,65		
47	93,5	5.5	5,42	402	337	1.16		
48	60,4 60,9 60,6	2,5	2,42	166	165	1,83		
				-				4 14-1
							1.1	

	Tabl	te of Ji	Teast	ureme	nts	with	the -	Eillis Meter
ĺ	Sta	Distou	+ Depth	Roducod	Thing	JV 0.0f	Velocity	RHI
	IVo.	Distou From West Bank	Mater	Depth.	Sac.	Rer	Velocity Tr. P.S	Remarks
	21	776.3	3,7				0,88	Gauge at . -0.44 9 a.m
		761,9 761,1						-0.48 to P. m.
	22	761.5 718:6 719:3	6,1	4,98	429		1.04	
	23	719.0 686.9 686.2	7,2		508		1.81	
	24	686,5	7.0	6,88	499	269	1,98	
	25	643,4 642,6 5957	7.8	7,68	551	286	1,91	Column IV contain
State of State	26	595.2	7,2	7,08	515	240	1,74	depths reduced
	27	545,6	517	5,59	393	176	1,68	to gauge reading
	28	4-90,3	4,4	4.29	297	1/3	1,45	-,36
	29	432.7 432.9	3.6	3.49	218	88	1,53	
	30	3.87,7	3.7	3,59	240	96	1151	Velocities in
	31	313,9 314,7 314,3 245,4	5.0	3.99	335	147	1.64	feet per second
	32	245,7	6,4	6.3	44.8	226	1,86	are blamed pom
	33	50.5	21/	2,0	127	31	0.98	Iragonus of the
	34	84,5 8 <u>3</u> ,4 84,9	4.6	4,5	282	76	1.08	Ellis meter.
	35	139,4	7,2	7.1	496	224	1.69	
	36	203,9 203,4	7.0	6.9	493	233	1175	
				P : C				

Rage to contains a similar table for the measmements by used the Ellis meter, and requires no explanation On page 4.8 will be found a series of soundings taken on range 5-5 (~ 250-250) n fune 17th. The transit station being at o it follows that the base of the heavyle to be calculated is 250 ft; and therefore the column of calculated distances is rolamed for the column of natural taugent by dividing each number in the latter column by 4. The uduction of gauge readings is precisely like Those previnely made, Cross Section of River at Range 55 The data for plotting this case sectionare to be found on pages 10811 of the float measurement, and pages . 4.8 of the meter measurements. The cross-section as plotted, is to be found in the deagram for meter measurement on fage as stated an the diagram, the admates represent depths in feet, and the akscissa E represent distances out from the West bank

Range 5-5. Additional Soundings used in Cross Section

	ofRir	er in I	liagre			leter Measurement
Sta. No. from	Angle from Base.	Wat	Calc.	Soundin Gauge	Rodused Sounding	
E Bank	571 11		Dist.	Gauge at 2.45	gauge at	Remarks
/	72,40'	3.20406	801.0	0,0	X	
,	12170	5150 406	00110			
2	72027'	3,16197	790,5	3,8	0.79	
~	12 21	5116111	11015	210	0.77	
	72 02'	3,08379	770,9	7.9	4.89	
3	12 02	2100 211	11011		710 1	
4	710 32'	1 001110	0101	9,9	6.89	ne de state de la transferencia en est
4	11 - 52	2,99447	748,6	117	6,0 /	
	70 °581	0 6 0 - 0 0	50.0		NIA	
5	10 00	2,89873	724,7	10,2	7.19	
	690 01	2				
6	69 01	2,60736	651,8	11,0	7,99	
		1				
7	66 37'	2,35015	587,5	10,2	7,19	
8	63 321	2,00862	500,2	7,6	4.59	Base of triangle 5250p
9	60 05'	173788	4345	6,7	3,69	
10	500 38	1,23343	308.4	8,0	4.99	
11	410 20'	0,87933	219,9	9,6	6.59	
12	36°481	0,74810	187,0	9,9	6.89	
13	18 0 181	1.33072	82,7	7.4	4.39	
				111		
14	110511	0,20982	52.5	49	1.89	
	11 51	0120102		101	11-1	
15	90 161	0,16017	400	49	1.89	
	1 00	011001/	1010	1.1		
16	50 101	0,9923	300	0.0	$\mathbf{\mathbf{x}}$	
West	70	011720	~~~~~	010	-	
mest side						
	- 11 A.					

of the rever. The gauge-reading is -. 56 For convenience and reference points flotted from different sets of measurements are marked difficiently, and in this manner: " a small circle, thus, designates points obtained by the first set of soundings. " A half circle placed thus, designates points determined from the second set of soundings c Points marked thus, work obtained for use of the Heley meter, and > Points designated thus, were found by use of the allis meter. Where the points occur in groups, they are "weighted"; it : the curve is passed through a point, such that the sums of the vertical deviations on either side of the curve are equal. The velocity anores. The velocities in column III rupages 44 to 46 are used to plot the curves shown in the deagram for meter measurements a page 7.0.

The points, marked with circles, are projected vertically form their distances out, which are represented by the abscissae; and, the ordinate measured from the base line represent veloceties in feet per second. The point are grouped in nearly all cases, and the seems of the vertical deviations on either side of the curve are, in all cases, equal. Calculation of Q Tables showing the calculation of are given on pages 53556 and an explanation of them will now be given. The first column contains the numbers of the sections shown on the diagram of meter measurements, page - Ic. The sections are made I such leagth, that the polin of the velocity curve, intercepted between the dotted lines projected vertically through the Extreme ends of the section, shall be shaight, or nearly so. The second column represent the area of

the sections on the diagram in square wiche, as determined by use of a planimeter. In using the planmeter, euorgh measurement were taken to seeme two readings within two out hundreths of a square aich of Each other. The third column ontains the actual area of the sections in square feet. The scales of abscissae and ordinates in the diagram are not the same, and therefore, the reading obtained by planimeter must be modified. In this case, the scale of read mps in oquare miches to actual areas in square flet is me to eighty. The results in the third column are oblimed, therefore, by multiplying each multo in the seend column by Eighty. The fourth column contains veloceties in . cubic feet persecond. These velocities are oblamed by projecting the meddle ordinate of Each section, Vertically, until it meets The

velocety curve. The intercept on this line, between the velocity curve and the base line, is the mean velocity for the section. The fifth column is obtained by multplying the area of each section in square feet, by the mean velocity of that section. This gives the discharge, Q, for the section. The sum of the numbers in this column will be the discharge for the cutie cros-section.

Cal	gulati	on of G	byme	ans of l	Diagram for Fledey Meter
	Area Sq. In	Actual Area	j.p.s	Qin Cifip.S	Remarks
		Sq. Ft	F , D , 3		10 01/10
1	0.18	14,4	0.62	8.93	
2	0.51	40.8	0,75	30.60	
3	0.80	64.0	0.94	60.16	
4	1,25	180.0	1,13	113.0	
5	3.19	255,2	1.37	348,62	Stage quater for this
6	3.66	292,8	1,63	477.26	cross section used
7	3,45	276.0	1.79	494,04	10-0,56
8	3,175	254.0	1,83	464.82	The correction to made
9	2,865	22.9,2	1.78	407,98	m Pages 59 \$ 60
10	2,40	192,0	1.65	316,80	
//	2.065	165.2	1.53	252,76	
12	1,755	140,4	1,48	207,79	
13	1,915	153,2	1.47	225,20	
14	2,16	172,8	1,49	257,47	
15	2,60	208.0	1,54	320,32	
16	3,12	249.6	1.64	409,34	
17	3.62	289.6	1.76	509,70	
18	3.905	312,4	1,88	587,31	
19	4.00	320,0	1.94	620.80	

Calci	ulatio,	n of Qb	y means	of Diay	ram for.	Floley Mete
Section	ATER	Actual Area	1Z zin	in		4
Number	Sq.in.	Sq. Ft	f.p.s	C. F. p.S	Ren	arks
20	2107	293.6	100	504.99		
20	3.67	×10.0	1.72	007.11		
21	1.663	133.2	1.30	173,16		
		24.2		00.0		
22	1.185	94,8	0.95	90,06		
23	0.35	28.0	0.70	19.20		
				. ,		
		7.11	1	1 1 200	1 14	
		vrac .	vila =	4239.	2 og ft.	
1993		11	Q =	7000.	31 C.f.	5.5
					1	
1.1						
	a					
		0				
					5. X	
-						
		in start				
			1.84			
			1.1			

Cale	ulation	r of Q by	means	of Diag	ram for Ellis Meter
Section	Area	Area	VETOCITY	Q	
Number	Sq. in.	Sq.Ft.	f.p.s	C. f. p.S	Remarks
	100 Jan 19				
1	.18	14.4	0,75	10.80	
2	. 51	40.8	0.87	35,50	
			- Li - Li		
3	. 80	64.0	1.05	67,20	
	1. St. 1				
4	1,25	100.0	1.24	12.4.00	
5	J .19	253,2	1,47	375,14	Stage of water for
4.42,0			3.5		
6	3.66	292.8	1,71	500.69	Cross-section used
7	3,45	276.0	1.83	505.08	6 -056
8	3,175	254.0	1,84	467,36	The Correction is made
9	2.865	229,2	1.77	405,68	m Page.
					0
10	2,40	1920	1,66	318.72	
1947 - 1					
11	2.065	165,2	1,55	256.06	
12	1,755	140,4	1.49	209.20	
13	1.915	153.2	1.47	225,20	
14	2.16	172,8	1.49	257,47	
15	2.60	208.0	1.56	324,48	
- 4- 1					
16	3.12	249,6	1.67	416.83	
17	3.62	289.6	1,82	527.07	
18	3.905	312,4	1.96	612,30	
				-	
19	4.00	320.0	1,98	633.60	

Calc	ulation	r of Q by	means	of Diagi	ram for El	tis, Meter
Nection	Area	Actual Aroa	V			
Num.	Sq. In	Sq Pt	f. p.s	in c.f.p.S	Ren	rarks
		1				1
20	3.67	293.6	1.77	579.67		
	1112					
21	1,665	133.2	1.26	167,63		
2.6	1100	91 0	101	68 11		
22	1,185	94,8	0.94	89.11		
23	0,35	28,0	0,78	21,84		
	01-0		. , 0			
				1.00		
	Lot	el Area	= 423	-9.2 pg	ft.	
	"	d Area Q	= 707	1.63 0	CLA	
			, . ,	0.05 0	· t p . S	
					7	
	1.				1	
	S					
						
					1	

These results are not strictly accurate, and a correction must be added to them; since, they were calculated ipon the assumption that the slage of water, at the time the meter measurements were made, was -0.56 ft. This assumption & not creet. The following little shows the stages? water at short intervals during the day (fime 2 3rd) the meter measurements wir made: . Jauge 9. a.m. -0,44 11.a.m -0.45

1. P. m 3. P. m

6 P. m

We may therefore make the statement, without appreciable error that the mean water level from 9 a.m. until 2, 30 P. m. methat day, corresponded to a gauge reading of -0.45; while that from 2.30 to 6, Pm, corresponded to a reading of -0,47. We now proceed as follows, drawing the figure, first : $\begin{array}{c} B \\ B \\ -.56 \end{array} \end{array}$ The line AB represents the surface of the water when the gauge reading is -0.36. When the reading is 445;

-0,46

- 0.147

- 0,78

the surface of the water may be represented by the line CD at a distance . 11 ft above AB. now the additional discharge dur to this increased depth of water may be correctly accertained by multiplying the area of each small section crossbatched, by the velocity corresponding to the nieddle ordinate of that section, - the velocity is obtained from the Dragram of meter measurements, - and taking the sum of the results thus obtained. I now this addition. al discharge be added to the quantity obtained on page 56. the final sum will be the true diacharge of the river as determined by the use A the allis meter. Similarly, the true discharge by use the Heley meter may be found. The following lable shows the additional discharge Jeach section, due to an increase in the water level. The numbers of the sections, and the vel-

ocities are taken directly from the Dragram for meter measurements and are identical with

columns, I and IF on pages 53 to 56 melusive.

Calculation of Additional Discharge due to Increase of Water Lievel

	Z	szzis	M	eter			teles	v Ma	leter
Section Number	Area	$\overline{\mathcal{V}}$		Remarks	Section Number	Area Sg Ft.	K F. p. 3	Q c.f.fo.s	Remarks
1	1,32	0.75	0,92			1.08	0.62	0.67	
1			1191					1,35	
3	2,20	1,05	2,31	Stays Juster	5	1.80	0,94	1.69	Stage zmater
4	4.40	1,24	5,45	9a, m62,30P2	4	3,60	1,13	4.07	2.3066. Pm
5	4,40	1.47	6,46	-,45	5	3.60	1.37	493	-0,47
6	4,40	1.71	7,52	Stagipmeter	6	3.60	1.63	5.87	Stage quate
7	4,40	1.83	8.05	on deagram	1	3,60	1.79	6,44	mdiagram
8	4.40	1.84	8,10	1 meter meas	8	3.60	1,83	6,58	1 meter meg
9	4,40	1.77	7.78	urement	9	3,60	1178	6,41	urement
/1	4.40	1.66	7,30	-,36	10	3,60	1.65	3,94	-0,5%
11	4,40	1,55	6,82	Difference	11	3,60	1,53	5,51	Difference
12	4.40	1.49	6,55	equal 1/1	12	3.60	1,48	5,33	= .09/0.
13	4,40	1.47	6,46		13	3,60	1.47	5,29	
14	4,40	1,49	6,55		14	3,60	1,49	5,36	
15	440	1,56	6,86		15	3.60	1,54	5154	
16	440	1.67	7,35		16	3,60	1,64	5.90	
17	440	1,82	8,00		17	3,60	1.76	6,33	
			8.62				1,88		
19	4.40	1198	8,71		19	3,60	1.94	6.98	

Calculation of Additional Discharge due to Increase of Water Lievel

		E	izzi	s JV	Teter		F	teles	y N	Teter
	Section Number	Area	V Fips	Q C.f.p.s	Remarks	Section Number	σ	+7	0	
	20		1.77					1.72		
	31	2,20	1.26	2,77		21	1,80	1,30	2,34	
	22	2,20	0,94	2.07				0,95		
	23	1.76	0,78	1.37		23	1,44.	0,70	1.01	
		Tota	t q=	135,71		I	Totat	P =	108,28	
			н 							
		. 8 8								
			15 di 10							
							-			
-										
		l,								

The column of areas is made up by finding the product of the ordinate (which is the increase in water-level shown in the column of Remarks), and the length of the section & which is determined by scale pour the crossection of the river show on the Diagram for meter measurements). The numbers in the column headed Q, are I course the product of the corresponding Areas and velocities, and are easily found.

On page 5.4 the discharge of the river as determined by use of the Pteter meter is found to be 7000.31 C.f.p.S., the gauge reading being-0.56. For a gauge reading 0.47, we have just calculated an increase of 108.20 c.f.p.S. The total dia charge is therefore 7108, 54 cubic feetper seend. Similarly by reference to pages 55 and 56 we find the total discharge of the rever, as found by measurements with the Ellis metio, the 7206.34 cubic feet per second.

62 Part III Estimation of the Probable Discharge at Holyoke mass.

Calculation of the Discharge at Holyske mass.

We now wish to calculate the discharge of the river at Holyske mass, a place about thirty mile distant, by the invercouse, below South Deerfield. It is first necessary to obtain, by some means, the additional drainage area between Deerfield and Holyoke, and, from that, to calculate the discharge dur tothis additional drainage area. From the maps published by the State Sofryngh. val Survey, we find the dramage area, mentioned above, to be 375 square miles in Extent. In ader to obtain the discharge dur tittus area, weldhall use a method, to be given presently, which intolors the assumption that the relation of the dramage area between Deerfield and Holyoke, to the total drain age area at Desifield is the same as that of the discharge at those place. This assumption we know is not true for a reason which will how be given. The area between Holyske and Deerfield is male up of fort hill meadows and very few pondo. mill hiver is the my stream of any

consequence, which discharges into the Connecticut River between the places mentioned. Above Deerfield we find a different country, from a topographical point porceiv. The mountains are high the slopes the hills, sleep, and the country more rocky. Inow on the western slopes of the white shound ains melts in the spring, and the water descends the slopes to form the animanoosue and other rivers, ablese in turn flow out the Connecticat and form the largest fostion of its discharge. In northern massachusette, the Deerfield and miller's River flow into the Connectecut, and as there streams are either, of much larger size than the Mill River, it is fair to claim?, that the discharge due to the drainage area between Holyoke and Deerfield, dres not bear the same ratio to the total discharge at Deerfield; as that of the respective dramage areas. Mi will use the method, however, with the following realts. From the portion of the Teuth Census Reports.

devoted to water-power, we find the drainage area at Holyoke the 8006 square mile ; Subtracting 375 square miles from that member we obtain 7631 square nule, as the total dramage area at Sterfield massachusett. The average discharge of the Connecticut River at Secofield, as calculated from both float and meter measurements is found to be almost exactly 7000 cubic feet for second. Drinding the latter number by the former, and in have . 92 outre feet per second per square mite of drainage area. For the reason mentime upn a previous page, this amounts to large, and we must, in some way, modely it. from a study of the topographical makes of massachusetts we learn that the drainage bisin of the Sudbury River, in the Eastern part Athe state, a very similar to that believen Holyoke and Deerfield. Furthermore, astudy and comparison, the causes of flow of

the Sudbury and Connecticut wirs reveals the fact that, when the discharge of the latter 10? 12 cubic feit per stend per quare mile I drainage area, that I the former is 0.75 cubic fat per seend per quare mile. We shall therefore asserine this last number as correct for that portion of massachusetts adjacent to Holyoke and Decofield. We then find the descharge to be 287 cubic feet per seend, this being the product of it's a f. p. S. p. g. mi, and 375 g. mi. Adding this number to the discharge at Deerfield We obtain 7288, ~7300, cubic feet per second as the true discharge at Holyoke man.