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Abstract Minimizing the weighted completion time of jobs in the unrelated parallel machines model
is a fundamental scheduling problem. The first (3/2− c)–approximation algorithm for this problem, for
some constant c > 0, was obtained in the work of Bansal, Srinivasan, and Svensson (SIAM J. Computing,
2021). A key ingredient in this work was the first dependent-rounding algorithm with a certain guaranteed
amount of negative correlation. We improve upon this guaranteed amount from 1/108 to 1/27, thus also
improving upon the constant c in the algorithms of Bansal et al. and Li (SIAM J. Computing, 2020) for
weighted completion time. Given the now-ubiquitous role played by dependent rounding in scheduling
and combinatorial optimization, our improved dependent rounding is also of independent interest.
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1 Introduction

We consider the well-known problem of scheduling jobs on unrelated machines to minimize the sum of
the weighted completion times of the jobs. Herein, we are given a set J = {1, 2, . . . , n} of jobs and a set
M = {1, 2, . . . ,m} of machines; each job j has a weight wj ≥ 0 and requires a given processing time
of pij ≥ 0 if it gets scheduled on machine i ∈ M . The objective is to find a non-preemptive schedule
that minimizes the weighted completion time

∑
j∈J wjCj of the jobs, where Cj denotes the completion

time of job j in the final schedule. The first (3/2 − c)–approximation algorithm for this problem, for
some constant c > 0, was obtained in the work of Bansal et al. (2021). A key ingredient in this work
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was the first dependent-rounding algorithm with a certain guaranteed amount of negative correlation.
We improve this “measure of negative correlation” from 1/108 to 1/27, thus also improving upon the
constant c for weighted completion time in (Bansal et al., 2021; Li, 2020). Given the growing ubiquity of
dependent rounding in scheduling (see, e.g., (Bansal et al., 2021; Im and Shadloo, 2020; Kumar et al.,
2009; Li, 2020; Li et al., 2016; Saha and Srinivasan, 2018)) and combinatorial optimization, we believe
our improved dependent-rounding approach is of independent interest.

Total completion time is a classical problem that goes at least as far back as the work of Smith
(1956). Since many natural versions of the problem are NP -hard, one is interested in approximation
algorithms: recall that a ρ-approximation algorithm for a minimization problem, where ρ ≥ 1, is a
polynomial-time (randomized) algorithm whose (expected) objective-function value is at most ρ times
optimal. The approximability of completion-time objectives has been studied since the work of Phillips
et al. (1998). We now have a nearly-complete understanding of the problem’s approximability in simpler
models: e.g., for identical and related machines (Afrati et al., 1999; Chekuri and Khanna, 2001; Skutella
and Woeginger, 1999) (with some of these holding under other generalizations such as release dates
for jobs). For our more-general problem with unrelated parallel machines, (3/2)-approximations were
obtained independently by obtained by Skutella (2001) and Sethuraman and Squillante (1999). After a
while, the first approximations of the form (3/2−Ω(1)) were obtained by Bansal et al. (2021); Li (2020);
Im and Shadloo (2020) through convex-programming approaches; we contribute to this line of research.
On the negative side, the problem is APX-hard (Hoogeveen et al., 2001).

1.1 Dependent rounding and its connection with our problem

A common approach to many discrete-optimization problems is to introduce and solve a continuous
relaxation, and to then use (probabilistic) techniques to round the resulting values. For many assign-
ment problems, most notably in scheduling, these techniques are applied to bipartite graphs—with one
side corresponding to the jobs, and the other to the machines; see, e.g., Shmoys and Tardos (1993).
It is often the case that naive independent randomized rounding—where we round the fractional val-
ues independently—cannot accommodate hard constraints, or is not powerful enough to prove desired
bounds. Thus, dependent rounding, where we carefully introduce dependencies among various random
variables, has seen much use in scheduling: see applications of this, e.g., in (Kumar et al., 2009; Li et al.,
2016; Saha and Srinivasan, 2018) for other scheduling models, and, as mentioned above, (Bansal et al.,
2021; Li, 2020; Im and Shadloo, 2020) for our problem of weighted completion time. (More generally,
dependent rounding has seen several applications in combinatorial optimization; see, e.g., Bansal (2019)
for some exciting progress in the area.) Many of these probabilistic approaches are offshoots of the
deterministic pipage-rounding technique of Ageev and Sviridenko (2004).

In this work, we will consider a special kind of dependent rounding on bipartite graphs: specifically,
one that induces strong negative correlation between subsets of vertices without introducing positive
correlations at pairs of edges with a common endpoint. This is an approach initiated by Bansal et al.
(2021). Formally, consider a bipartite graph G = (U ∪ V,E ⊆ U × V )—where U is interpreted as the
set of machines and V as the set of jobs—with fractional values ye ∈ [0, 1] assigned to each e ∈ E. Let
δ(v) be the set of edges incident to vertex v and denote y(S) =

∑
e∈S ye for S ⊆ E. Then, the approach

of Bansal et al. (2021) yields a randomized polynomial-time algorithm that rounds each ye to a random
variable Ye ∈ {0, 1} such that the following properties hold (stated informally here, and defined formally
in Theorem 1):

Property 1.1 [Job Assignment]: Let E∗ be the set of edges e with Ye = 1. Then |E∗ ∩ δ(v)| = 1 for
all v ∈ V , with probability one.

Property 1.2 [Marginal Preservation]: For every e ∈ E, E[Ye] = Pr[e ∈ E∗] = ye.

Property 1.3 [Weak and Strong Negative Correlation]: For every u ∈ U and e ̸= e′ ∈ δ(u),
Pr[e, e′ ∈ E∗] ≤ yeye′ (“weak negative correlation”). Additionally, for some constant ζ > 0, we have that
Pr[e, e′ ∈ E∗] ≤ (1 − ζ)yeye′ if e and e′ belong in “certain given subsets”—to be defined precisely in
Theorem 1—of δ(u); we refer to this as “strong negative correlation”.

Properties 1.1 and 1.2, along with the weak-negative-correlation bound of Property 1.3, are present
in most dependent-randomized rounding schemes, including the works mentioned above. The work of
Bansal et al. (2021) proves the strong-negative-correlation bound of Property 1.3 with the constant of
ζ = 1/108, using an algorithm that maintains certain invariants. In this work, we will modify their
algorithm in order to improve the invariants, and, importantly, the constant ζ to 1/27.
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Strong negative correlation and weighted completion time. The work of Bansal et al. (2021) showed that
with a rounding scheme such as the above, we can get a (3/2 −Kζ)–approximation for our problem of
minimizing the weighted completion time, for some absolute constant K > 0. This result, along with the
value ζ = 1/108, led to a (3/2 − 10−7)–approximation in Bansal et al. (2021), the first (3/2 − Ω(1))–
approximation as mentioned above; the constant 10−7 can be improved somewhat. Li used the strong-
negative-correlation result of Bansal et al. (2021) as a black box with a different, simpler, relaxation
and other interesting ideas to obtain a (3/2 − 1/6000)–approximation (Li, 2020). Our improved value
of ζ helps improve upon both of these algorithms. However, by developing a somewhat-different notion
of strong negative correlation with new iterative fair contention-resolution techniques, Im & Shadloo
have developed the current-best approximation for our problem, which is 1.488 (Im and Shadloo, 2020).
Specifically, instead of the “Pr[e, e′ ∈ E∗] ≤ (1 − ζ)yeye′” in Property 1.3 above, the work of Im and
Shadloo (2020) obtains (and uses) the upper bound(

eye + ey
′
e

1 + e

)
· yeye′

as the right-hand side; note that by a slight overload of notation, e here denotes the base of the natural
logarithm as well as edges (as in e and e′). Thus, two closely-related notions of strong negative correlation
have been key in developing (3/2−Ω(1))–approximations for our problem. We focus here on improving
the value of ζ from 1/108 to 1/27, via a modification of the rounding algorithm of Bansal et al. (2021).
This makes progress on a question due to Singh (2016) on what the optimal value of ζ can be. While our
algorithm follows from a small added ingredient of randomness to the algorithm of Bansal et al. (2021),
the analysis to obtain our improved ζ is significantly more involved. We also remark that the work of Im
and Shadloo (2020) does not yield an improvement such as ours on ζ: thus, there could conceivably be
future applications where our result is applicable while that of Im and Shadloo (2020) is not.

2 Algorithm

We will first formally state the theorem from Section 1, and then describe the modified version of the
algorithm developed in Bansal et al. (2021) which proves the theorem. Along with several steps of the
algorithm, we will also make observations key to the analysis. As mentioned above, our main contribution
here is that we improve the value of the negative-correlation constant ζ of Bansal et al. (2021) from
1/128 to 1/27. We describe the main changes from the algorithm and analysis of Bansal et al. (2021) in
Section 2.1.

Theorem 1 (From Bansal et al. (2021), but with our improved ζ.) Let ζ = 1/27. Consider a
bipartite graph G = (U ∪ V,E) and let y ∈ [0, 1]E be fractional values on the edges satisfying y(δ(v)) = 1
for all v ∈ V . For each vertex u ∈ U , select any family of disjoint subsets of edges incident to u,

E
(1)
u , E

(2)
u , . . . , E

(κu)
u ⊆ δ(u), such that y(E

(ℓ)
u ) ≤ 1 for ℓ = 1, 2, . . . , κu. Then there exists a randomized

polynomial-time algorithm that outputs a random subset of the edges E∗ ⊆ E satisfying

(a) For every v ∈ V , we have |E∗ ∩ δ(v)| = 1 with probability 1;
(b) For every e ∈ E, Pr[e ∈ E∗] = ye;
(c) For every w ∈ U and all e ̸= e′ ∈ δ(w),

Pr[e ∈ E∗ ∧ e′ ∈ E∗] ≤

{
(1− ζ) · yeye′ if e, e′ ∈ E

(ℓ)
w for some ℓ ∈ {1, 2, . . . , κw},

yeye′ otherwise.

Remark. We typically reserve symbols such as u to denote elements of U ; however, we use “w” in part
(c) of Theorem 1 since this part (c) is heavily connected to the situation depicted in Figure 1, wherein
“u” has a special meaning.

Notation. A value z ∈ [0, 1] will be called “floating” if z ∈ (0, 1).

We divide the algorithm into three phases and present each phase along with some observations that
will be useful in Sections 3 and 4.

Phase 1 (Forming the collection of edges R∗). Let y∗ denote the initial fractional assignment,
and let s be a fixed integer that we will optimize over later. For each v ∈ V , partition δ(v) into at
most s disjoint groups by letting each group—except possibly for at most one group—be an inclusion-
wise minimal set of edges with y-value at least 1/s. (Note that this is possible because y(δ(v)) = 1,

3            
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u1 u2u

v1 v2

Fig. 1: Illustration of the update step in Phase 2. Either both red edges are increased by α and both
blue edges are decreased by α, or vice versa. The thick edges are in R and the thin edges are not. With
probability at least 1/2, at least one of these four edges will get an integral y-value after the probabilistic
update of Phase 2.

and that the following simple greedy algorithm will construct the partition. Let S(v) be the sequence
(ye : e ∈ δ(v)) ordered in some fixed way; take the first block of the partition to be the edges in the
first prefix of S(v) that adds up to at least 1/s, and then iterate on the remaining suffix of S(v) to
construct the further blocks of the partition.) We then select a random group, uniformly at random and
independently for each vertex v, and let R be the set of selected edges.

Observation 2.1. Let e, e′ ∈ δ(u) for some u ∈ U . Then, Pr[e, e′ ∈ R∗] ≥ 1/s2.

Proof The events that e ∈ R∗ and that e′ ∈ R∗ are independent, as they are incident to different vertices
in V . The statement then follows as for each v ∈ V we select a random group out of at most s many.

We can vary s as we please in order to optimize the value of ζ. The result in Bansal et al. (2021) uses
s = 6, but we will use s = 3 here. The exact details will be elaborated on in Section 3.

Phase 2 (Updating the assignment). Initially let y = y∗, R = R∗. Repeat the following steps while

there exist edges {u, v1}, {u, v2} ∈ R ∩E
(l)
u for some l and {u1, v1} ∈ δ(v1) \R and {u2, v2} ∈ δ(v2) \R,

with all four of these edges having floating y-values. Here u, u1, u2 ∈ U, v1, v2 ∈ V , but are otherwise
arbitrary. See Figure 1.

1. Let α be the following minimum of eight quantities:

α = min{yu1,v1 , 1− yu1,v1 , yu,v1 , 1− yu,v1 , yu,v2 , 1− yu,v2 , yu2,v2 , 1− yu2,v2};

note that α > 0 due to our “all four of these edges have floating y-values” assumption, and that
α ≤ 1/2 since α ≤ min{yu1,v1 , 1− yu1,v1}.

2. With probability 1/2, update y as follows for each e ∈ E:

ye =


ye + α if e = {u1, v1} or e = {u, v2},
ye − α if e = {u, v1} or e = {u2, v2},
ye otherwise.

Otherwise, with the remaining probability 1/2, update y as follows for each e ∈ E:

ye =


ye − α if e = {u1, v1} or e = {u, v2},
ye + α if e = {u, v1} or e = {u2, v2},
ye otherwise.

(We remark that this step, where we either add or subtract the same value α probabilistically, is
different from that of Bansal et al. (2021), where different values α and β can be added/subtracted.
Our approach can double the expected run-time, but makes the analysis simpler since only one
parameter α is involved.)

3. For v ∈ {v1, v2}, if y(δ(v) ∩R) = 1, then update R as

R = (R \ δ(v)) ∪ {e},

where the single edge e ∈ δ(v) is selected with probability ye. As with the randomized steps above,
the random choice here is made independently of all random choices made thus far by the algorithm.

4            
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Our key modification in Phase 2 is in the third step: in contrast, the algorithm in Bansal et al.
(2021) removes all but the edge e with the largest y-value. Our modification, as we will see in Section 4,
makes for our improved ζ. Because α depends on the values of all four edges in consideration, there is
a probability of at least 1/2 that a single iteration of Phase 2 will have at least one edge with floating
y-value reach an integral y-value. Furthermore, these events are independent from each other. We can
thus observe the following:

Observation 2.2. With high probability, Phase 2 will terminate within c · 2|E| iterations, for any given
constant c > 1.

Proof Note that a single iteration of Phase 2 yields a probability of at least 1/2 that at least one edge
with floating y-value will reach an integral y-value in that iteration. Thus, since there are |E| edges in
total, the random number N of iterations of Phase 2 is upper-bounded (i.e., stochastically dominated)
by the time it takes for a sequence of independent tosses of a fair coin to output “Heads” at least |E|
times. That is, we have a Negative Binomial distribution with parameter 1/2 from which we ask of |E|
“Heads”. It is immediate that the expected value of N is at most 2|E|; for a concentration bound on N ,
note by the Chernoff bound (Chernoff, 1952) that the probability that 2c|E| independent tosses of a fair
coin yield less than |E| Heads, is exponentially small in |E| for any given constant c > 1.

Observation 2.3. Phase 2 satisfies the invariants y(δ(v)) = 1 and ye ≥ 0 for every v ∈ V, e ∈ E.

Proof Notice that the selection of α in Phase 2 guarantees ye ≥ 0 at all times, and keeps y(δ(v)) constant.
Thus the statement follows as y(δ(v)) = 1 at the start.

Observation 2.4. The set R does not get any new elements during Phase 2.

Proof This follows directly from Step 3 of Phase 2.

Observation 2.5. When Phase 2 terminates, we have for all u ∈ U and l ∈ {1, 2, . . . , κu} that |{e ∈
E

(l)
u ∩R : ye > 0}| ≤ 1.

Proof Suppose that there exist e1, e2 ∈ E
(l)
u ∩ R with ye1 , ye2 > 0. Then, the fact that any iteration

of Phase 2 maintains the value of y(E
(l)
u ∩ R), along with Observation 2.4, shows that y(E

(l)
u ∩ R) ≤

y∗(E
(l)
u ∩ R∗) ≤ 1, implying that ye1 , ye2 are floating. Now let e1 = {v1, u}, e2 = {v2, u}. Then, Step 3

of Phase 2 guarantees that y(δ(v1) ∩ R), y(δ(v2) ∩ R) < 1. Thus, there exist edges {v1, u1} ∈ δ(v1) \ R
and {v2, u2} ∈ δ(v2) \ R with floating y-values, implying that Phase 2 has not terminated yet, which is
a contradiction.

Phase 3 (Randomized Rounding). (Note that Phase 2 has a “repeat while” loop. Phase 3 is run
after Phase 2 terminates.) Construct E∗ by, independently for each vertex v ∈ V , selecting a single edge
e ∈ δ(v) so that an edge e is selected with probability ye. This is possible because y(δ(v)) = 1 and ye ≥ 0
for all v ∈ V and for all e.

2.1 Main changes from Bansal et al. (2021)

As mentioned above, our key modification to Bansal et al. (2021) is in Step 3 of Phase 2: in contrast
to our randomized approach, the algorithm of Bansal et al. (2021) removes all but the edge e with the
largest y-value. This modification makes for our improved ζ. A less-important modification—to optimize
the value of ζ—is that we use s = 3 here, as opposed to the choice s = 6 in Bansal et al. (2021).

In terms of the analysis, our main improvement is in Invariant 3 of Section 3: the corresponding
invariant in Bansal et al. (2021) has a further factor of 2 in the right-hand side of Invariant 3, which we
are able to avoid due to our modified Step 3 of Phase 2.

3 Analysis

We first note that the algorithm terminates in (random) polynomial time. Phase 1 and Phase 3 both
clearly run in polynomial time, and Phase 2 does as well by Observation 2.2.

Now, we will prove the properties stated in Theorem 1. First, property (a) holds from Observation 2.3
and the mechanics of Phase 3. To show properties (b) and (c), we will inductively show some invariants.

5            
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Let Y (k) = (y
(k)
e : e ∈ E) denote the collection of y-values of edges and let R(k) be the set R at the end

of iteration k of Phase 2. For an edge e = {u, v} ∈ R with u ∈ U, v ∈ V , let Re = {e′ ∈ δ(v)∩R : e′ ̸= e}
be the other edges in R incident to v.

We show that the following invariants hold after each iteration k, where conditioning an event on
Y (k) and R(k) means the probability of that event if the iterations in Phase 2 are applied starting from
the assignments of Y (k) and R(k).

Invariant 1. Pr[e ∈ E∗
∣∣ Y (k), R(k)] = y

(k)
e for all e ∈ E.

Invariant 2. Pr[e ∈ E∗ ∧ e′ ∈ E∗
∣∣ Y (k), R(k)] ≤ y

(k)
e y

(k)
e′ for all w ∈ U and all distinct e, e′ ∈ δ(w).

Invariant 3. Pr[e ∈ E∗ ∧ e′ ∈ E∗
∣∣ Y (k), R(k)] ≤

(
y(k)(R

(k)
e ) + y(k)(R

(k)

e′
)
)
y
(k)
e y

(k)
e′ for all w ∈ U, l ∈

{1, . . . , κw}, and all distinct e, e′ ∈
(
E

(l)
w ∩R(k)

)
.

Remark. As mentioned in Section 2.1, our key improvement is in Invariant 3: the corresponding invariant
in Bansal et al. (2021) has a further factor of 2 in the right-hand side of Invariant 3, which we are able
to avoid due to our modified Phase 2.

We defer the proof of these invariants to Section 4. Let us first show properties (b) and (c) of
Theorem 1, assuming these invariants.

By definition of Phase 2 we have y(0) = y∗ and R(0) = R∗. Thus, applying Invariant 1 to k = 0 yields
property (b) and applying Invariant 2 to k = 0 yields the weak bound in property (c). For the stronger

bound, consider two edges e ̸= e′ ∈ E
(l)
w . Then by Invariant 3, we have that

Pr[e ∈ E∗ ∧ e′ ∈ E∗] = ER∗ [Pr[(e ∈ E∗ ∧ e′ ∈ E∗)
∣∣ Y ∗, R∗]]

≤ Pr[e, e′ ∈ R∗] ·
(
y∗(R∗

e) + y∗(R∗
e′
)
)
y∗ey

∗
e′ + (1− Pr[e, e′ ∈ R∗]) · y∗ey∗e′

≤ Pr[e, e′ ∈ R∗] · 2y
∗
ey

∗
e′

3
+ (1− Pr[e, e′ ∈ R∗]) · y∗ey∗e′

= y∗ey
∗
e′ · (1− (1/3) · Pr[e, e′ ∈ R∗])

≤ 26

27
y∗ey

∗
e′ ;

the second inequality follows from the fact that y∗(R∗
e), y

∗(R∗
e′
) ≤ 1/3, which is because in Phase 1 we

chose s = 3. The third inequality follows from Observation 2.1.

4 Induction

We will prove the three invariants of Section 3 using reverse induction on the iterations of Phase 2, as
in Bansal et al. (2021). This will then conclude the proof.

Base Case (when Phase 2 terminates): In this case Phase 2 will not change any of the y-values.
Then by the edge selection of Phase 3, we have that Pr[e ∈ E∗] = ye, so Invariant 1 holds. Similarly for
Invariant 2, we note that for two edges e ̸= e′ ∈ δ(w), it holds that Pr[e ∈ E∗ ∧ e′ ∈ E∗] = yeye′ , as
desired.

Finally, Observation 2.5 says that the number of edges in E
(l)
w ∩ R with positive value is at most 1,

so for e ̸= e′ ∈ E
(l)
w ∩R, we must have that Pr[e ∈ E∗ ∧ e′ ∈ E∗] = 0 and Invariant 3 holds.

For the inductive step, we will assume that our invariants hold at the end of iteration k and prove
that they hold at the end of iteration k − 1. Let us denote Y = Y (k−1) and R = R(k−1); also let
Y ′ = Y k, R′ = Rk respectively denote the updated y-values and set R at the end of iteration k. Note
that for a given Y and R, Y ′ and R′ are random variables.

Inductive step for Invariants 1 and 2: For Invariant 1, notice that Pr[e ∈ E∗
∣∣ Y ] = EY ′|Y [Pr[e ∈

E∗
∣∣ Y ′]] = EY ′|Y [y

′
e] by the inductive hypothesis. But if Phase 2 did not update the value of edge e,

then y′e = ye. Otherwise, EY ′|Y [y
′
e] =

1
2 (ye + α) + 1

2 (ye − α) = ye, as desired.
We proceed similarly for Invariant 2. By the inductive hypothesis, we have

Pr[e ∈ E∗ ∧ e′ ∈ E∗ ∣∣ Y ] = EY ′|Y [Pr[e ∈ E∗ ∧ e′ ∈ E∗ ∣∣ Y ′]] ≤ EY ′|Y [y
′
ey

′
e′ ].

If Phase 2 changes the y-value of at most one of e and e′, then by independence the right-hand side is
at most EY ′|Y [ye]EY ′|Y [y

′
e] = yeye′ . On the other hand, if Phase 2 changed both values, then we have

EY ′|Y [y
′
ey

′
e′ ] =

1

2
(ye + α)(ye′ − α) +

1

2
(ye − α)(ye′ + α) ≤ yeye′ .
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This completes the proof for Invariant 2.

Inductive step for Invariant 3: The proof for Invariant 3 is more tricky because the set R may

change after an iteration. Fix w ∈ U , l ∈ {1, . . . , κw}, and e ̸= e′ ∈
(
E

(l)
w ∩R(k−1)

)
. Call an edge

{x0, x1} dangerous, where x0 ∈ U and x1 ∈ V , if it is possible that y(δ(x1) ∩R) = 1 just after the edge
values are updated in iteration k (i.e., just after Step 2). Let e1 = {u, v1} and e2 = {u, v2} along with
{u1, v1} and {u2, v2} be the edges being updated in iteration k, as in Figure 1. let α > 0 be the update
parameter as in our algorithm. We will then split our proof into cases based on how many among e and
e′ lie in {e1, e2}, and then into sub-cases based, e.g., on the number of dangerous edges among e and e′.
Note in particular that since e and e′ lie in R = R(k−1), they cannot be either of the edges (u1, v1) and
(u2, v2) in Figure 1, since these latter edges do not lie in R.

Case 1: e, e′ ̸∈ {e1, e2}. We consider sub-cases here, based on how many of e and e′ (if any) have v1 or
v2 as an end-point.

Case 1(a): Neither e nor e′ has v1 or v2 as an end-point. In this case, none of ye, ye′ , Re, Re′ ,
y(Re), and y(Re′) changes in iteration k. Therefore,

Pr[e ∈ E∗ ∧ e′ ∈ E∗ ∣∣ Y,R] = Pr[e ∈ E∗ ∧ e′ ∈ E∗ ∣∣ Y ′, R′] ≤ (y(Re) + y(Re′)) yeye′ ,

where the inequality follows from the induction hypothesis.

Case 1(b): Exactly one of e and e′ has v1 or v2 as an end-point. Suppose (without loss of
generality) that this edge is e, and suppose e has v1 as an end-point. We now consider two further
sub-cases based on whether e is dangerous or not.

Case 1(b)(i): e is not dangerous. In this case, two outcomes are possible in iteration k: with proba-
bility 1/2, y(Re) is incremented by α, and with the remaining probability of 1/2, y(Re) is decremented
by α. All other parameters relevant to us remain unchanged. Thus,

Pr[e ∈ E∗ ∧ e′ ∈ E∗ ∣∣ Y,R] = EY ′,R′|Y,R[Pr[e ∈ E∗ ∧ e′ ∈ E∗ ∣∣ Y ′, R′]]

≤ EY ′,R′|Y,R
[(
y′(R′

e) + y′(R′
e′
)
)
y′ey

′
e′
]

(by the inductive hypothesis)

=
(
EY ′,R′|Y,R [y′(R′

e)] + y(Re′)
)
yeye′

= (y(Re) + y(Re′)) yeye′

as required.

Case 1(b)(ii): e is dangerous. This case needs more work. Note that since e is dangerous,

y(Re) = 1− ye − α.

There are three possible relevant outcomes in iteration k here:

(O1) with probability 1/2, y(e1) gets decremented by α, in which case the only relevant change for us is
that y(Re) is also decremented by α.

(O2) with probability (1/2) · ye, y(e1) gets incremented by α, and in the random pruning of R in step 3,
e is chosen to be kept in R′. Here, e stays in R′, but y′(R′

e) becomes zero since R′
e is the empty set.

(O3) with probability (1/2) · (1 − ye), y(e1) gets incremented by α, and due to the random pruning of
R in step 3, e is not present in R′; in this case, we can use Invariant 2.

Thus, by the inductive hypothesis (Invariant 3 for outcomes (O1) and (O2), and Invariant 2 for (O3)),
we obtain

Pr[e ∈ E∗ ∧ e′ ∈ E∗ ∣∣ Y,R] ≤ 1

2
· (y(Re)− α+ y(Re′)) · yeye′ +

ye
2

· (0 + y(Re′)) · yeye′ +

(1− ye)

2
· yeye′

=
yeye′

2
· (y(Re)− α+ y(Re′) + y(Re′)ye + 1− ye)

≤ yeye′

2
· (y(Re)− α+ y(Re′) + y(Re′) + 1− ye)

= yeye′ · (y(Re) + y(Re′))

as desired, since y(Re) = 1− ye − α.

7            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

8 Baveja, Qu, Srinivasan

Case 1(c): Each of e and e′ has an end-point in {v1, v2}. We may assume that e has v1 as an
end-point and that e′ has v2 as an end-point. (Note that since e and e′ already share the end-point w,
their respective other end-points have to differ.) We consider three sub-cases, based on how many of e
and e′ are dangerous.

Case 1(c)(i): neither of e and e′ is dangerous. Here, the only relevant changes for us are:

– with probability 1/2, y(Re) gets incremented by α and y(Re′) gets decremented by α; and
– with the remaining probability of 1/2, y(Re) gets decremented by α and y(Re′) gets incremented by

α.

Either way, the sum y(Re)+y(Re′), as well as ye and ye′ , remain unchanged, so we are done by Invariant
3 of the inductive hypothesis.

Case 1(c)(ii): exactly of e and e′ is dangerous. Suppose without loss of generality that e is dangerous;
so, y(Re) = 1−ye−α. As in Case 1(b)(ii), there are three possible outcomes in iteration k, which happen
with the respective probabilities of 1/2, (1/2) · ye, and (1/2) · (1− ye):

– y(Re) gets decremented by α and y(Re′) gets incremented by α;
– y(Re′) gets decremented by α, e ∈ R′, and R′

e becomes empty (hence y′(R′
e) = 0); and

– y(Re′) gets decremented by α, and e ̸∈ R′.

As in Case 1(b)(ii), we apply Invariant 3 to the first two of these outcomes and Invariant 2 to the
third outcome, to obtain inductively that Pr[e ∈ E∗ ∧ e′ ∈ E∗

∣∣ Y,R] is at most

yeye′ · [(1/2) · (y(Re)− α+ y(Re′) + α) + (ye/2) · (y(Re′)− α) + ((1− ye)/2) · 1]

=
yeye′

2
· [y(Re) + y(Re′) + 1− ye + ye · (y(Re′)− α)]

≤ yeye′

2
· [y(Re) + y(Re′) + 1− ye + y(Re′)− α]

= yeye′ · [y(Re) + y(Re′)] ,

and hence the inductive step for Case 1(c)(ii) is complete.

Case 1(c)(iii): both e and e′ are dangerous. There are four possible relevant outcomes now:

(O1’) with probability (1/2) · ye, ye1 gets incremented by α, ye2 gets decremented by α, and e is selected
to be in R′. Here, R′

e = ∅, and y(Re′) is decremented by α.
(O2’) with probability (1/2) · (1 − ye), ye1 gets incremented by α, ye2 gets decremented by α, and e is

not selected to be in R′.
(O3’) with probability (1/2) ·ye′ , ye2 gets incremented by α, ye1 gets decremented by α, and e′ is selected

to be in R′. Here, R′
e′
= ∅, and y(Re) is decremented by α.

(O4’) with probability (1/2) · (1− ye′), ye2 gets incremented by α, ye1 gets decremented by α, and e′ is
not selected to be in R′.

Thus by inductively applying Invariant 3 to outcomes (O1’) and (O3’), and Invariant 2 to outcomes
(O2’) and (O4’), we get that Pr[e ∈ E∗ ∧ e′ ∈ E∗

∣∣ Y,R] is at most

(1/2) · ye · (0 + y(Re′)− α)yeye′ +

(1/2) · (1− ye) · yeye′ +
(1/2) · ye′ · (y(Re)− α+ 0)yeye′ +

(1/2) · (1− ye′) · yeye′

=
yeye′

2
· [yey(Re′) + ye′y(Re)− α(ye + ye′) + 2− (ye + ye′)] . (1)

The equalities y(Re) = 1− ye − α and y(Re′) = 1− ye′ − α help us simplify (1) and to arrive at

Pr[e ∈ E∗ ∧ e′ ∈ E∗ ∣∣ Y,R] ≤ yeye′ · [1− yeye′ − α(ye + ye′)] . (2)

This thus leads us to what we want to show (WTS), in order to complete the induction:

1− yeye′ − α(ye + ye′) ≤ y(Re) + y(Re′), i.e.,

1− yeye′ − α(ye + ye′) ≤ (1− ye − α) + (1− ye′ − α), i.e.,

(1− ye)(1− ye′) + α(ye + ye′ − 2) ≥ 0. (3)
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We now establish (3). Suppose without loss of generality that

ye ≥ ye′ . (4)

Note from (O3’) that y(Re)− α ≥ 0, i.e., 1− ye − α− α ≥ 0, which implies that α ≤ 1−ye

2 . Thus, since
the multiplier “(ye + ye′ − 2)” of α in (3) is non-positive and the rest of (3) does not involve α, it suffices
to verify (3) for α = 1−ye

2 . So, our WTS (3) becomes

(1− ye)(1− ye′) +
(1− ye)

2
· (ye + ye′ − 2) ≥ 0, i.e.,

2(1− ye′) + ye + ye′ − 2 ≥ 0, i.e.,

ye ≥ ye′ ,

which is true by our hypothesis (4). Therefore, the proof of the inductive step for Case 1(c)(iii) is
complete.

Case 2: Exactly one of e and e′ lies in {e1, e2}. We assume without loss of generality that e = e1,
and hence that e′ ̸= e2. We first argue that we may assume that e′ does not have an end-point in {v1, v2}:
if this was indeed the case, then e′ would have been a parallel edge with e1 or e2, but we have a simple
graph and this is not possible. Thus we will assume that e′ does not have an end-point in {v1, v2}. We
consider two cases, based on whether e is dangerous or not.

Case 2(a): e = e1 is not dangerous, and e′ does not have an end-point in {v1, v2}. The two
relevant possibilities here are:

– with probability 1/2, ye gets decremented by α, while y(Re), y(Re′), and ye′ remain unchanged.
– with the remaining probability of 1/2, ye gets incremented by α, while y(Re), y(Re′), and ye′ remain

unchanged.

Thus, by Invariant 3 applied inductively, we get

Pr[e ∈ E∗ ∧ e′ ∈ E∗ ∣∣ Y,R] ≤ ye′ (y(Re) + y(Re′)) · EY ′,R′|Y,R [y′e] (5)

= yeye′ (y(Re) + y(Re′))

as needed.

Case 2(b): e = e1 is dangerous, and e′ does not have an end-point in {v1, v2}. We have
y(Re) = 1− ye − α here again. The three relevant outcomes are:

(C1) [Happens with probability 1/2:] ye gets decremented by α;
(C2) [Happens with probability (1/2) · (ye + α)):] ye gets incremented by α, e remains in R′, and R′

e

becomes empty.
(C3) [Happens with probability (1/2) · (1− ye −α)):] ye gets incremented by α, and e does not lie in R′.

Thus, by applying Invariant 3 inductively to cases (C1) and (C2) and Invariant 2 to (C3), we see that
Pr[e ∈ E∗ ∧ e′ ∈ E∗

∣∣ Y,R] is at most the sum of the following three terms, each of which corresponds
to the respective outcome above (i.e., term (T1) corresponds to case (C1), etc.):

(T1) (1/2) · (y(Re) + y(Re′)) · (ye − α) · ye′ ;
(T2) (1/2) · (ye + α) · y(Re′) · (ye + α) · ye′ ; and
(T3) (1/2) · (1− ye − α) · (ye + α) · ye′ .
Note from cases (C2) and (C3) that ye + α ≤ 1; we of course also have ye ≥ 0 and α ≥ 0. Thus, using

(ye + α)2 ≤ ye + α (6)

and upper-bounding (T2) by (1/2) · (ye+α) · y(Re′) · ye′ and adding (T1) and (T3) to this upper-bound,
we get that

Pr[e ∈ E∗ ∧ e′ ∈ E∗ ∣∣ Y,R] ≤ (y(Re) + y(Re′)) yeye′ .

Case 3: {e, e′} = {e1, e2}. We will assume without loss of generality that e = e1 and e′ = e2.

Case 3(a): Neither e1 nor e2 is dangerous. As in Case 2(a), neither of y(Re) and y(Re′) changes
here. Thus Invariant 3 yields, analogously to (5),

Pr[e ∈ E∗ ∧ e′ ∈ E∗ ∣∣ Y,R] ≤ (y(Re) + y(Re′)) · EY ′,R′|Y,R [y′ey
′
e′ ]

= (y(Re) + y(Re′)) · ((1/2)(ye + α)(ye′ − α) + (1/2)(ye − α)(ye′ + α))

≤ (y(Re) + y(Re′)) · yeye′ .
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Case 3(b): Exactly one of e1 and e2 is dangerous. Without loss of generality suppose e = e1 is
dangerous and that e′ = e2 is not. Then it must be the case that y(Re) = 1− ye − α.

The three possible outcomes here are:

– with probability 1/2, we have y′(e) = y(e)− α and y′(e′) = y(e′) + α;
– with probability (1/2) · (ye +α), we have y′(e) = y(e)+α as well as y′(e′) = y(e′)−α, and we choose

to keep e in R′;
– with probability (1/2) · (1− ye − α), we have y′(e) = y(e) + α as well as y′(e′) = y(e′)− α, and e is

not in R′.

Thus, inductively applying Invariant 3 to the first two outcomes and Invariant 2 to the third, we obtain

Pr[e ∈ E∗ ∧ e′ ∈ E∗ ∣∣ Y,R] ≤ 1

2
(1− ye − α+ y(Re′))(ye − α)(ye′ + α) +

1

2
(ye + α)(y(Re′))(ye + α)(ye′ − α) +

1

2
(1− ye − α)(ye + α)(ye′ − α)

≤ 1

2
(1− ye − α+ y(Re′))(ye − α)(ye′ + α) +

1

2
(y(Re′))(ye + α)(ye′ − α) + (we used (6) in this line)

1

2
(1− ye − α)(ye + α)(ye′ − α)

=
1

2
(1− ye − α+ y(Re′)) · [(ye − α)(ye′ + α) + (ye + α)(ye′ − α)]

≤ (1− ye − α+ y(Re′)) · yeye′
= (y(Re) + y(Re′)) · yeye′

as desired.

Case 3(c): Both of e1 and e2 are dangerous. This is our most involved case. As before, it must be
the case that y(Re) = 1− ye − α and y(Re′) = 1− ye′ − α. Transitioning from Y,R to Y ′, R′ yields one
of four possible cases now:

– with probability 1
2 · (ye + α), we have y′e = ye + α, y′e′ = ye′ − α, e ∈ R′, and R′

e = ∅.
– with probability 1

2 · (1− ye − α), we have y′e = ye + α, y′e′ = ye′ − α, and e ̸∈ R′.
– with probability 1

2 · (ye′ + α), we have y′e = ye − α, y′e′ = ye′ + α, e′ ∈ R′, and R′
e′
= ∅.

– with probability 1
2 · (1− ye′ − α), we have y′e = ye − α, y′e′ = ye′ + α, and e′ ̸∈ R′.

As before, we apply Invariant 3 of the inductive hypothesis to the first and third of these cases, and
Invariant 2 to the second and fourth. Hence we obtain

Pr[e ∈ E∗ ∧ e′ ∈ E∗ ∣∣ Y,R] ≤ 1

2
(ye + α)(ye + α)(ye′ − α)(1− ye′ − α)

+
1

2
(1− ye − α)(ye + α)(ye′ − α)

+
1

2
(ye′ + α)(ye′ + α)(ye − α)(1− ye − α)

+
1

2
(1− ye′ − α)(ye′ + α)(ye − α).

We must show that the right-hand side above (the sum of four terms) does not exceed our targeted
term (y(Re) + y(Re′)) yeye′ = (1−ye−α+1−ye′ −α)yeye′ . Expanding this right-hand side above yields
our WTS (“what we want to show”, as mentioned above):

α4 + α3(ye + ye′)− α2 − αyeye′(ye + ye′)− y2ey
2
e′ + yeye′ ≤ (2− ye − ye′ − 2α)yeye′ . (7)

For the sake of notation, let P = ye, Q = ye′ . We are given that α ≤ min{P,Q}, and we can take
P ≤ Q without loss of generality. By construction we have that α ≤ 1 − Q, which also means that
α ≤ 0.5.

We next fix α as well as Q, and take P as our variable. Moving everything in (7) to the left-hand
side yields a quadratic in P with leading term Q(1−Q− α) ≥ 0, which is maximized at one of its two
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endpoints that are P = Q and P = α. Thus, it suffices to show that inequality (7) holds at these two
endpoints.

In the former case where P = Q, the WTS (7) simplifies to

α4 −Q4 − α2 +Q2 − 2αQ3 + 2α3Q ≤ (2− 2Q− 2α)Q2, i.e.,

(Q2 − α2)(1− (Q+ α)2) ≤ 2(1− (Q+ α))Q2, i.e.,

(Q2 − α2)(1 +Q+ α) ≤ 2Q2,

where we get the last line from 1 − (Q + α) ≥ 0; we are done here because 1 + Q + α ≤ 2 (this holds
since α ≤ 1−Q).

In the latter case where P = α, the WTS (7) simplifies to

2α3 − α− 2αQ2 ≤ Q−Q2 − 3αQ, (8)

where we divided both sides by α because α = 0 yields the desired result trivially. Moving everything to
the left-hand side, this is a quadratic in Q with leading term 1− 2α ≥ 0, so again we only have to prove
that (8) holds for the endpoints, i.e., for Q = α and Q = 1− α. When Q = α, (8) becomes

2α3 − α− 2α3 ≤ α− α2 − 3α2, i.e.,

0 ≤ 2α− 4α2 = 2α(1− 2α),

which is true because α ≤ 0.5. When Q = 1− α, (8) becomes

2α3 − α− 2α(1− α)2 ≤ (1− α)− (1− α)2 − 3α(1− α), i.e.,

2α(2α− 1)− α ≤ (1− α)α− 3α(1− α), i.e.,

0 ≤ α+ (1− 2α)2α− 2α(1− α) = α(1− 2α),

which is also true because α ≤ 0.5. Therefore, our WTS inequality is true and the proof is complete.

5 Conclusion

We have shown how to improve the strong-negative-correlation constant ζ of Bansal et al. (2021) via
a modified algorithm. A few natural questions remain. The first is, as asked in (Singh, 2016): what
is the best ζ possible? The second is to pinpoint the approximability of our fundamental weighted-
completion-time problem: e.g., is an approximation such as 4/3 achievable? Third, the flow time is a
more-challenging objective in the computational context, as compared to the completion time (Becchetti
et al., 2016); a general open question is to expand our understanding of this key metric. Fourth, in a
somewhat different, but critical dimension, there is an increasing push for energy-efficient computing
(Pruhs, 2019); since scheduling over the cloud, for instance, has expanded significantly, it would be very
interesting to investigate improved—as well as modern—models and algorithms for problems such as
ours. Finally, it would be fruitful to obtain further applications of strong negative correlation and of
related notions in scheduling and combinatorial optimization.
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