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ABSTRACT

Enzymes play a critical role in catalyzing the chemical reactions that underpin metabolic
processes in living organisms. Despite their importance, a vast majority of enzymes remain
uncharacterized, limiting our understanding of their potential roles in metabolism and disease.
This thesis aims to address this gap by leveraging recent advancements in protein and
molecular modeling to predict the outcomes of enzymatic reactions and identify functions of
unannotated enzymes. Two key contributions are highlighted. Firstly, a graph-based forward
synthesis prediction model is introduced, which relies only on the molecular structure of the
substrates and the enzyme’s primary sequence. By capturing the biochemical interaction
between enzyme residues and substrate atoms, the model achieves better generalization
to new chemistry, demonstrating significant improvements in predicting unseen products
and showcasing its potential for drug metabolism prediction. The second contribution is
CLIPZyme, a contrastive learning method for virtual enzyme screening that frames the task
of identifying enzymes catalyzing a reaction of interest as a retrieval problem. CLIPZyme
outperforms the baseline approach of screening enzymes via their enzyme commission (EC)
number. The combination of CLIPZyme with EC prediction consistently yields improved
results over either method alone. Both of these contributions aim to provide the initial
building blocks to model entire complex metabolic networks with downstream applications
including metabolic engineering and drug discovery.

Thesis supervisor: Regina Barzilay
Title: Distinguished Professor for AI and Health
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Chapter 1

Introduction

The intricate web of metabolic processes forms the foundation of biological function, under-

pinning everything from cellular energy production to the synthesis of essential biomolecules.

At the heart of metabolism lie enzymes, the catalysts driving these chemical reactions. Their

role extends beyond mere facilitation of biochemical transformations; they are the linchpins

in the regulation and efficiency of metabolic pathways. Despite their critical importance, a

vast majority of enzymes remain uncharacterized, their potential roles in metabolism and

disease largely unexplored. This gap in our understanding represents a significant barrier to

both fundamental biological insights and the practical application of enzymatic reactions in

industry.

Traditionally, in silico modeling of metabolism has relied on genome-scale metabolic

models (GEMs). These models, built upon years of research, provided valuable insights

through methods like flux balance analysis (FBA) [1]. However, FBA often falls short in

capturing the nuances of protein function and changes under perturbations which lead to

effects on downstream metabolic fluxes. Recent advancements in protein and molecular

modeling offer a promising avenue to bridge this gap. We now have effective and accurate

methods to model protein-ligand binding [2], protein structure [3, 4] and protein localization

[5, 6]. By accurately simulating enzymatic reactions, and capturing the impact of mutations or
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molecular perturbations, we unlock the potential for many impactful downstream applications.

Such applications include metabolic engineering, for example via novel biosynthesis routes,

and improved target identification and validation, for example through enzyme deorphaning.

Despite huge advances in protein and molecular modeling, challenges remain, particularly

in predicting enzymatic reaction outcomes and functions of unannotated enzymes – both

active areas of research. Forward and retro-synthesis models have focused on general chemical

reactions, where there are rich sources of data such as the USPTO reaction dataset [7, 8, 9].

Attempts to transfer these methods to enzymatic reactions have lacked success. Similarly,

attempts to computationally categorize enzymes have focused on predicting Enzyme Com-

mission (EC) numbers, which provides only a partial solution. Even for highly documented

reaction classes EC prediction models lack useful performance. For novel enzymes and

reactions, no method has found to be effective as EC numbers for these reactions do not

exist. As such, metabolic engineering continues to rely heavily on experimental methods

to optimize pathways [10] and enzyme function elucidation remains time, cost and labor

intensive, limiting the number of enzymes that can be reasonably screened. Recent releases

of highly curated datasets such as ECReact [11] and EnzymeMap [12] provide an opportunity

to significantly improve these methods to a point where such applications become realistic.

The broader objective of this work is to lay the groundwork for modeling entire metabolic

networks, addressing the critical gap posed by uncharacterized enzymes. This thesis presents

two building blocks towards this goal: a novel method for predicting the products of biocat-

alyzed reactions and a new method and approach to virtually screening enzymes and thereby

characterizing their function.

This thesis is based on the following works:

Graph-Based Forward Synthesis Prediction of Biocatalyzed Re-

action. Peter Mikhael*, Itamar Chinn*, and Regina Barzilay. Generative

and Experimental Perspectives for Biomolecular Design Workshop at the

12th International Conference on Learning Representations (GEM Workshop,

7



ICLR 2024). [13]

CLIPZyme: Reaction-Conditioned Virtual Screening of Enzymes.

Peter Mikhael*, Itamar Chinn*, and Regina Barzilay. Forty-first Interna-

tional Conference on Machine Learning (ICML 2024). [14]
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Chapter 2

Graph-Based Forward Synthesis

Prediction of Biocatalyzed Reaction

2.1 Motivation

A key computational task in biocatalysis is predicting the products of a reaction from an

enzyme and its substrates. In silico methods for this task enable new opportunities in enzyme

discovery, therapeutic development, and metabolic engineering. Current machine learning

models have shown initial feasibility at automating this process; however, thus far they rely on

information that may not be available for novel chemistry (e.g. Enzyme Commission number).

As a result, this limits their practical use as an alternative to experimental methods.

The goal of our work is to improve the generalization capacity of these models to new

chemistry. To this end, we assume access to only the molecular structure of the substrates and

the enzyme primary sequence, without any additional information. In predicting the products

of spontaneous chemical reactions, graph-based methods have outperformed both language

model and rule-based approaches. These methods, however, fail to take into consideration the

enzyme and therefore experience a significant drop in performance on biocatalyzed reactions.

We hypothesized that better generalization can be achieved by a mechanistically-inspired
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model that captures the biochemical interaction between the enzyme residues and substrate

atoms. We demonstrate that these interactions can be learned through a multi-headed cross

attention using graph convolutions to encode the substrates as 2D molecular graphs and a

protein language model to encode the enzyme’s amino acid sequence.

In the context of drug design, the metabolism of small molecule drugs impacts their

efficacy, toxicity, and mechanism of action. For example, Fenofibrate, which is used to treat

high cholesterol, must first be metabolized into fenofibric acid by liver carboxylesterase 1

in order to become active. Therefore, we consider phase II metabolism of small molecule

drugs as a potential real-world application and a prime example of generalization to a novel

chemical space. Specifically, we use a dataset of drug reactions from DrugBank to predict the

products generated by the reaction of a drug with its target enzyme. This is an interesting

and challenging generalization scenario since the chemical distribution of therapeutics differs

significantly to that of metabolites on which these models are trained.

We develop our model using the EnzymeMap Version 1 dataset, consisting of 103,120 pairs

of atom-mapped reactions and UniProt-SwissProt proteins. We demonstrate a significant

improvement in predicting unseen products on a standard product split. For instance, we

obtain 89% accuracy in generating correct products when evaluating the top 10 predictions

and outperform current methods that range between 50%-70%. The comparison between

our method and previous methods highlights the importance of adequate enzyme encoding.

Ignoring the enzyme altogether or utilizing the protein EC numbers leads to significantly

worse performance [11, 15]. Finally we show comparable improvements using a dataset from

DrugBank.

2.2 Background

Enzyme Modeling Central to correctly predicting the product of a biochemical reaction

is learning the function of the enzyme. In fact, depending on the enzyme identity, the same
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substrates can undergo different chemical transformations [16]. Prior research on biocatalyzed

reaction prediction considers two alternative methods for incorporating enzyme information:

using enzyme nomenclature [15] or EC number [11]. The former method encodes the scientific

name of the enzyme using a language model, while the latter relies on expert defined enzyme

classes (i.e., their EC numbers). In both cases, enzymes with similar characteristics are

likely to exhibit similarity in their encoding. However, both methods only provide limited

generalization capability especially for unseen enzymes where categorization information may

not be available. Moreover, these methods ignore the rich biological information embedded

in protein sequences. In operating on enzyme classes, previous research also disregards the

specificity of proteins and treats all enzymes of a particular class as capable of catalyzing the

same substrates. In contrast, utilizing sequence information, our method can be applied to

unseen enzymes, without relying on functional annotations.

Chemical Reaction Prediction The field of biocatalyzed reaction prediction is still

relatively nascent, and prior methods frame the task as a machine translation problem using

language models. However, language-based generation does not make use of the fact that

the atoms of the reactants are conserved, and small mistakes in generation can lead to

widely different molecules. Our work most closely follows graph-based approaches developed

for the small molecule, general chemistry, space. These methods leverage this inductive

bias and learn the graph edits to apply on the molecular graph encoding of the reactants,

and recently demonstrated better generalization than language model based approaches

[9, 17, 18, 19, 20, 21, 22]. Our approach builds on the success of these graph based methods

and develops it further to include enzyme sequences and exploit the interactions between the

sequences and substrates.

Drug Metabolism Prediction In the pharmaceutical industry, drug metabolism screening

is typically done through experimental assays. Existing analytical methods largely rely on

rule-based approaches [23, 24, 25, 26, 27, 28, 29, 30]. For example, [31] used a template-based
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search to predict that the anti-cancer drug 5-fluorouracil can be metabolized into competitive

inhibitors of native enzymes, which can help explain the observed toxicity of the drug. As

an alternative to rule-based approaches, several machine learning methods have emerged.

However, these approaches are limited in their reach as they are typically trained on a specific

class of enzymes (e.g., cytochrome P450s) [32, 33, 34, 35]. In contrast, our method provides

a more general framework that can be applied to any chemical matter while delivering strong

performance on a curated dataset from DrugBank [36].

2.3 Method

2.3.1 Biocatalyzed Product Generation

We present here an overview of the method. We first predict whether and how the reactant

bonds change conditioned on both the set of reactants and the protein sequence of the

associated enzyme (Section 2.3.1). We deterministically perform chemically valid graph edits

to obtain all products that can be generated with up to k of the most likely predicted bond

changes. We train a second model to retrieve the correct product given the full reaction and

the protein sequence (Section 2.3.1).

Reaction Center Prediction

Reactants and products are constructed as 2D graphs G = (V , E), with node features vi ∈ V

and edges eij ∈ E . While the bonds we predict correspond to the overall net change between

the atom-mapped reactants and products, they are nonetheless dependent on chemical

interactions between atoms in the same reactants, atoms in different reactants, and the

enzyme amino acid residues. We model each type of interaction and use them together to

predict all bond changes.

First, a Graph Attention Network [37] flocal is used to encode each reactant separately
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and obtain node embeddings for each atom:

A = flocal(V , E)

where A = {a1, a2, . . . , an} is the set of reactant node features after applying the GNN and

ai ∈ Rd.

Similarly to [9], a second model, fglobal, is then used to encode the interaction between

atoms in different molecules by constructing a complete graph from the reactants. Specifically

we add an edge between every pair of nodes: e′ij = [1same ∥ 1diff ∥ eij], where 1same indicates

whether the atoms are in the same molecule, 1diff indicates whether the atoms are in different

molecules, and eij are the bond features. We set eij = 0 when the atoms are not connected

by a chemical bond. We compute a pairwise attention with every atom in the complete graph

and obtain the global node embeddings a′i ∈ Rd as a weighted sum:

αij = σ(u⊤ReLU (Pa(ai + aj) + Pbeij))

a′i =
∑
j

αijaj

A′ = {a′1, a′2, . . . , a′n}

Third, we use ESM-2 [4] as the protein encoder fp to obtain residue-level representations

P = {r1, r2, . . . , rm} and perform a multi-headed cross-attention [38] between the residues

and the node embeddings of the reactant graphs ai:

A′′ = softmax
(
QKT

√
d

)
V

where

Q = WQA; K = WKP ; V = W V P

Finally, for each atom pair (i, j), we compute the probability that a particular bond
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Figure 2.1: Schematic of the model architecture for predicting the bond changes associated
with a given an enzyme and its substrates.

change k occurs between them, which consists of either the loss of a bond or the formation of

a single, double, triple, or aromatic bond:

ci = Wa[ai ∥ a′i ∥ a′′i ]

bij = Wbeij

sijk = WkReLU ([ci + cj ∥ bij])

To force the model to focus on bond changes associated with substrate, we do no compute

the loss over bond changes associated with common co-factors and co-enzymes like ATP,

which often comprise most of the bond changes associated with the reaction.

Candidate Product Ranking

Given the predicted bond changes above, we select the top k predictions. We empirically

predefine a k′ as the maximum number of changes that could occur within a biochemical
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reaction and construct all sets of size at most k′ consisting of chemically valid changes.

Each set of bond changes is applied as graph edits on the original reactant graphs to obtain

candidate products. We then train a classifier to retrieve the products associated with the

ground truth set of changes from the list of all candidate products.

The identity of the correct product depends on the reactants and enzyme, and the most

likely products are those whose transition state is stabilized by the enzyme [39, 40]. As a result,

we represent a pseudo-transition state using the condensed reaction graph [41, 42] for each

prediction by superimposing the reactants and generated products and concatenating their

node and edge features. This aims to incorporate all representations of the predicted reaction

and the enzyme together. We then encode the graph structure with a directed message

passing neural network frxn [43] to obtain atom-level features ai and obtain residue-level

features ri of the enzyme using ESM-2.

ai = frxn

([
v
(reactants)
i ∥ v(products)

i

]
,
[
e
(reactants)
ij ∥ e(products)

ij

])
a =

∑
i

ai; p =
1

|P |
∑
i

ri

g = frank([a ∥ p])

Finally, we aggregate both the reaction graph representations and the protein represen-

tations, and pass them together through a small feed-forward network, frank, to score each

proposed reaction.

2.3.2 Model Training

Reaction center prediction We use pre-trained ESM-2 with 35M parameters

(esm2_t12_35M_UR50D) to encode the enzyme sequences. We use Graph Attention Networks

[37] for flocal with 3 layers, 16 attention heads, and a hidden dimension of 480. We construct

a complete graph of the reactants to compute the pairwise attentions across all atom pairs in

15



Figure 2.2: Schematic of the ranking model used to select the correct product from a list of
candidates by considering the enzyme and the full predicted reaction. The red and green
dashed edges represent bonds that are predicted to be deleted and created, respectively.
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the fglobal model. The multi-head cross-attention between the protein residues and reactant

atoms is implemented with 4 attention heads. Individual atom representations from each are

concatenated and passed through a linear projection layer (3× 480 to 480) before predicting

pair-wise bond changes.

Candidate product ranking We apply chemprop [43], a directed message passing network,

on the condensed graph reaction representation of the reactants and candidate products with

5 layers and a hidden dimension of 480. We obtain the mean protein embeddings from ESM-2

(35M parameters) and concatenate them with the graph-level feature representations of the

reaction. The final ranking is done with a 2-layer feed-forward network with layer norm [44].

Training parameters We use a batch size of 16, learning rate of 1e−4, learning rate decay

of 0.1, and the Adam optimizer [45]. Training is done with half precision training with

bfloat16 [46], and we train the reaction center for 20 epochs and the ranker for 5 epochs.

2.4 Experimental Setup

2.4.1 EnzymeMap Dataset

We train all models on data derived from EnzymeMap [12], which consists of biocatalyzed

reactions paired with protein UniProt identifiers and their EC numbers. All reactions are

fully atom-mapped, meaning that every atom in the products can be traced back to an atom

in the reactants of the reaction. To obtain protein sequences, we consider only reactions

associated with UniProt or SwissProt identifiers and pull their sequences from their respective

databases. As is standard in the literature, we remove products that occur as reactants in the

same reaction, common byproducts, and products with fewer than 4 heavy atoms. We follow

[11] and split reactions with multiple products and exclude reactions with large molecules

(> 100 heavy atoms). To control for the size of the proteins, we only consider sequences that
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are no more than 800-amino acids long. This yields 103,120 enzyme-catalyzed reactions with

20,385 unique chemical reactions, 12,541 enzymes, covering 2743 EC numbers.

We consider several splits of the dataset. In keeping with previous work, our primary test

set is constructed using a product split, where no product in the test set is seen in the training

set. Additionally, we explore a structure similarity split and an EC split in the appendix.

In particular, enzymes are clustered using Foldseek [47] with a 90% structure overlap and a

sequence identity of 0, and enzymes in the same cluster are assigned to the same split. We

split the data into train, development, and test datasets with a ratio of 8 : 1 : 1. For the

EC split, we held-out reactions in an EC for the test set and split the remaining reactions

into (∼89%) train and (∼11%) development. Details on data processing are provided in

Section 2.4.4.

2.4.2 DrugBank Dataset

We consider the out-of-distribution chemical domain of drug metabolism and showcase the

improved performance of our model as compared to other models on this task. We obtain

drug reactions from DrugBank for which a UniProt ID is available. Since our graph-editing

procedure requires all reactant molecules present, including co-factors, we obtain from UniProt

all reactions annotated for each protein entry and extract the substrates that are common

among all reactions of an entry and add them to the corresponding DrugBank data samples.

We further focus our analysis on reactions from phase II metabolism and exclude reactions

catalyzed by cytochromes. The cytochrome P450 superfamily is known to perform a wide

range of chemical transformations and is often non-specific to location or to substrate such as

hydroxylation of unactivated C-H bonds, C-C or C-N bond formation, heteroatom oxidation,

oxidative C-C bond cleavages, and nitrene transfer [48]. Since these chemical transformations

can be stochastic in their location, annotated datasets represent only a small subset of possible

products making it hard to evaluate predictions using the same method and so we exclude

them. This curated dataset yields 804 reaction-enzyme pairs, with 160 unique proteins and
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342 drugs.

2.4.3 Baselines

We consider the two prior works on biocatalysis prediction as baselines [15, 11]. We retrain

the transformer models on the USPTO and EnzymeMap training sets following the paradigm

reported in the publications and detailed in Section 2.8.1. [15] uses the enzyme names to

encode the protein, therefore we map protein identifiers from EnzymeMap to their annotated

name in UniProt. In cases where annotated names are missing we mark the name as

"unknown" in order to avoid skipping many samples. Providing the protein name as input

to the model suggests that the protein’s function has already been studied and its function

characterized, thus defining the name of the protein. In cases where the name does not

provide any indication of the function, it should not provide useful information to the model

(e.g. "unknown"). In these cases the model must rely on the substrates alone. On the

other hand, [11] encodes the first three levels of the EC number of the reaction; similarly,

knowing the associated EC number suggests that much of the biochemical reaction is already

characterized and provides the model with information that is beyond what we assume to be

available at inference time.

2.4.4 Data Splits

Product Split We follow prior work and split the data such that there is no overlap of

products between the three data splits. We use the rxn4chemistry tools (https://github.

com/rxn4chemistry/biocatalysis-model, [11]) to pre-process our data and exclude reactions

with large molecules (> 100 heavy atoms), those with products with fewer than 4 heavy

atom, and those with proteins that are more than 800-amino acids long. This yields 95,318

training samples, 5,037 development samples, and 2,765 test samples.
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Structure Split We download predicted protein structures from AlphaFold [3] as .cif

files. We use Foldseek [47] to cluster our database of structures using easy-cluster with

–min-seq-id = 0.0 and -c = 0.9. We obtained 13,866 clusters which were split into 80%

train, 10% development, and 10% test. Samples were placed in a split according to the

enzyme’s cluster identity. This yields 79,443 training samples, 11,208 development samples,

and 10,781 test samples.

EC Split For each EC, ec ∈ {1, 2, 3, 4, 5, 6}, we held out all reactions with that specific ec

number, considering only the top level class. The remaining reactions were split according to

product-based split into 8
9

training and 1
9

development sets (maintaining the ratio of 8:1:1).

The number of samples in each split are provided in Table 2.1.

Table 2.1: Number of reactions in each data split when using the top-level EC number to
construct the test sets.

Held-out EC Training Split Development Split Test Split

1 64,065 8,159 30,896
2 65,652 8,247 29,221
3 68,462 7,335 27,323
4 82,669 10,809 9,642
5 88,352 10,751 4,017
6 89,907 11,192 2,021

2.5 Results

2.5.1 EnzymeMap

While prior deep learning methods developed specifically for this task use more detailed data

on the enzyme identity (either the EC number or the enzyme nomenclature) our method

assumes that only the amino-acid sequence of the enzyme and the substrate molecules are

known. However, we compare against these methods for completeness. Additionally, we
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Table 2.2: Top-k accuracy of our graph-based method compared to existing approaches for
biocatalyzed forward synthesis. Published methods are trained as detailed in their respective
GitHub codebases (Section 2.8.1). Performance is evaluated on EnzymeMap using a product
split.

Model Top 1 Top 3 Top 5 Top 10

[15] 35.3% 43.6% 46.0% 47.8%
[11] 50.5% 61.7% 65.4% 68.8%
Ours 72.5% 84.3% 87.3% 89.4%

impose a conservation of mass constraint and only generate bond changes whereas existing

baselines use free generation to decode the product SMILES.

We test the hypothesis that encoding the protein and molecular structure leads to better

generalizability in predicting unseen products. We find that our model is able to generalize

better to unseen reaction products and surpasses other models by a considerable margin

with a top-1 accuracy of 72.5% relative to 35.5% and 50% using enzyme name and EC,

respectively (Table 2.4). Since reactions can have multiple possible products, we expect that

not all products can be recovered within the first prediction. Considering the top k > 1

predictions, we observe sustained performance gains in recovering all products, approaching

90% accuracy with k = 10. We also consider other biologically relevant splits based on protein

structure similarity and the reaction classes defined by EC numbers, and observe that our

model exhibits comparable on these harder splits, albeit without assuming any additional

protein annotations (Section 2.6).

2.5.2 Impact of Protein Sequence

Enzymes play an important role in biocatalysis. However, since the molecular structure

of the substrates alone provides some information about the potential sites of metabolism

[49], we sought to evaluate the extent to which these models simply memorize reaction rules

versus take into account the impact of the enzyme itself. Here, we show how well each

model predicts the products of enzymatic reactions from the reactants alone without enzyme
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information. We train both the Molecular Transformer architecture [50] and WLN [17]

without incorporating any protein information. Since our primary task is to generalize to new

products, we focus our analysis on the product split. We observe that both models achieve

improved performance when the protein sequence is included (Table 2.3), with the top 1

accuracy of our method obtaining a 14% gain in performance relative to the WLN model (no

protein sequence). However, this gap decreases to 4% as more candidates are considered (top

k=10). We also find that both graph-based models perform better over sequence-to-sequence

models.

Table 2.3: Top-k accuracy of a transformer and graph model that exclude protein information
compared to our full model. Performance is evaluated on EnzymeMap using data splits based
on a product split.

Model Top 1 Top 3 Top 5 Top 10

[50] 35.0% 50.6% 55.5% 58.9%
[17] 58.3% 75.9% 81.8% 85.2%
Ours 72.5% 84.3% 87.3% 89.4%

2.6 Performance Along Additional Splits

2.6.1 Performance on Structure Splits

We assign proteins to the training and testing splits based on their Foldseek [47] cluster

identity. We observe that all models achieve similar performance ranging from 60% top-1

accuracy to 80% top-10 (Table 2.4). While the proteins in the test are expected to assume

different 3D folded structures, they may still share catalytic activities with proteins seen

during training [51]. For instance, convergent evolution can result in significantly different

proteins that catalyze the same reaction. As a result, this can result in data splits where the

encoding used in our model does not provide an advantage.
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Table 2.4: Top-k accuracy of our graph-based method compared to existing approaches for
biocatalyzed forward synthesis. Published methods are trained as detailed in their respective
GitHub codebases (Section 2.8.1). Performance is evaluated on EnzymeMap using data splits
based on protein structure similarity using FoldSeek [47].

Model FoldSeek 90% Split
Top 1 Top 3 Top 5 Top 10

[15] 64.5% 77.5% 79.8% 81.2%
[11] 60.2% 75.0% 77.9% 80.3%
Ours 60.4% 71.7% 75.9% 78%

2.6.2 Performance on EC Splits

The EC system defines seven large classes of biochemical transformations. To measure the

generalization across enzyme families and types of chemical transformations, we trained

six models separately, holding out each time all reactions with a specific EC number (only

six classes are contained in the EnzymeMap dataset). This constituted the hardest setting

among the three splits. Since [11] utilizes the EC number as an input, we omitted it from

this experiment since it would never see the test-set EC during training. We observe that our

method is comparable to [15] on ECs 2,3, and 5, better on ECs 1 and 4, and significantly

worse on EC 6 (Table 2.5) . Across ECs, however, both models achieve poor performance in

terms of absolute accurate generalization, demonstrating the challenge of truly learning the

chemistry underlying enzymatic catalysis.

2.6.3 Attention Analysis

While the results of Table 2.3 suggest that the model is utilizing the protein sequence in

improving its final prediction, they provide no indication whether it learns any biologically

meaningful properties regarding the protein’s catalytic function. Our architecture, however,

learns a multi-head cross-attention between the full protein sequence and the latent atom

representations of the substrates, yielding attention scores for every residue-atom pair. By
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Table 2.5: Top-k accuracy of our graph-based method compared to existing approaches for
biocatalyzed forward synthesis on different EC-based splits. Each model is trained on all
other ECs and tested on the held-out EC.

Model Held Out EC Top 1 Top 3 Top 5 Top 10

[15]
EC 1 (n=30,896)

8.6% 17.3% 21.9% 26.3%
Ours 9.4% 22.2% 27.2 % 34.0 %
[15]

EC 2 (n=29,221)
9.1% 16.6% 20.9% 26.2%

Ours 8.0% 15.9% 20.7% 25.8%
[15]

EC 3 (n=27,323)
26.8% 47.7% 55.2% 61.7%

Ours 32.1% 45.9% 52.9% 60.7%
[15]

EC 4 (n=9,642)
13.9% 19.8% 23.0% 28.6%

Ours 7.4% 20.1% 29.0% 35.1%
[15]

EC 5 (n=4,017)
2.4% 6.4% 7.1% 11.9%

Ours 1.7% 9.0& 10.9% 12.0%
[15]

EC 6 (n=2,021)
20.6% 41.5% 47.0% 48.3%

Ours 4.1% 15.9% 21.4% 26.1%
[15]

Mean
13.5% 24.9% 29.2% 33.8%

Ours 10.5% 24.0% 27.0% 32.3%

summing over the attentions scores across all atoms, we obtain a weighting per residue. We

extract active site annotations from the Mechanism and Catalytic Site Atlas [52] for both the

reference sequences as well their homologs, which are assumed to have identical active sites,

and we compare them with the top-scoring residues according to the learned attention scores.

We take the residues with the top q-th quantile of attention scores and compute the fraction

of annotated active site residues included in that predicted set. We find that our learned

attention has a consistently better correspondence with the active site than an equivalent

random guess (Figure 2.3). This suggests that our model is able to learn a functionally

meaningful association between the protein sequence and the substrates.

Our multi-head cross-attention in the reaction center prediction model is performed

between the full protein sequence embedding and the latent atom representations of the

substrates, yielding attention scores for every residue-atom pair, A ∈ R|V|×|P |, with Aij ∈ [0, 1].

For every residue, we sum the attentions scores across all reactant atoms and obtain a weight

per residue ri: ai =
∑

v Avi.

24



Where available, we collect a set of indices, RAS for each sample in the test set corre-

sponding to the location of annotated active sites from the Mechanism and Catalytic Site

Atlas. For each protein p, We take the residues in the top q-th quantile of attention scores

and compute the fraction of annotated active site residues included in that predicted set:

R̂ = {i|ri > k, k = jth quantile of a} (2.1)

s(k)p =
|RAS ∩ R̂|
|RAS|

(2.2)

Figure 2.3: Fraction of true active site residues included in the top q quantile of attention
scores extracted from the multi-head cross-attention layer used to predict the bond changes in
each reaction. For every quantile, we take a random permutation over all residue indices and
select the same number of predictions as in that quantile to obtain a random guess baseline.
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We plot s
(k)
p for all test sample proteins with annotations at 10 equally spaced quantile

levels. As a control, we compare these scores with those obtained by randomly selecting an

equivalent number of indices spanning the length of the protein.

2.6.4 Predicting Drug Metabolism

Here, we take the metabolism of small molecule drugs as a potential real-world application of

our model and showcase the improved performance of our model as compared to others on

this task. How a drug is metabolized has important implications for its efficacy, toxicity, and

mechanism of action. While some experimental approaches exist to study drug-metabolizing

enzymes, there remains a critical need for in-silico drug metabolism models to address the

cost, time, and human expertise required by in-vitro and in-vivo methods. We evaluate our

model on drug reactions from DrugBank for which a UniProt ID is available and focus on

non-cytochrome-catalyzed biotransformations [36]. We find that our model is able to predict

the correct drug metabolite with a 60.1% top-10 accuracy and outperform other deep learning

models (Table 2.6).

Table 2.6: Performance on the DrugBank drug reactions.

Model Top 1 Top 3 Top 5 Top 10

[15] 28.6% 37.2% 40.8% 43.8%
[11] 25.7% 33.0% 38.1% 42.8%
Ours 40.7% 56.0% 58.0% 60.1%

To better understand the errors observed on drug reactions, we manually inspect cases

where the model fails to find an exact match to the annotated product within the top

ten predictions. In many cases, we find that the model comes close in identifying the

reaction type but focuses on incorrect, yet similar, sites of metabolism. For example, the

model correctly predicts the reaction in Figure 2.4(a) to be a hydroxylation but predicts

the wrong methyl group to which to add the OH group, though it is near the true site.

We also identify cases where the model predictions are considered wrong as a result of
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inconsistencies in the databases. Raloxifene (DB00481) is reported to be metabolized by a

UDP-glucuronosyltransferase (Q9HAW8) (Figure 2.4(b)). Since we obtain enzyme co-factors

from UniProt, we utilize UDP-α-D-glucuronate as the other substrate in the reaction. Our

prediction matches exactly the chemical pattern annotated in UniProt and provided by the

Rhea database. However, this appears to be inconsistent with the metabolic reaction of

raloxifene in DrugBank and results in our prediction to be considered incorrect. In some

cases, the model is not able to fully capture the complexity of the biochemical reaction.

The metabolism of morphine (DB00295) consists of the transfer of glucuronic acid and ring

breaking (Figure 2.4(c)). The model is found to be partially correct as it predicts the right

glucuronidation site but is unable to identify the bond changes to the ring in any of its top-k

predictions.

Figure 2.4: Illustrative examples of errors made by our model, where (a) the predicted
reaction type is correct but the reactive site is misclassified; (b) the mistake is possibly due
to inconsistencies between databases; and (c) the reaction consists of several changes that
the model is unable to fully recover.

27



2.7 Conclusion

This paper presents a novel graph-based method for predicting the products of biocatalyzed

reactions given a set of substrates and an enzyme sequence. We show that incorporating the

enzyme sequence in the input improves performance compared to other methods that include

alternative representations of enzymes, namely EC numbers and enzyme names. We report

an improvement of 37.2 points in top-1 accuracy against preceding state-of-the-art methods

on the EnzymeMap dataset. Lastly, we note that by relying on enzyme sequence, we widen

the utility of our model compared to previous models to encompass unannotated and orphan

enzymes.

The results presented also exhibit a number of limitations. While we show that the model

has a capacity to generalize to out-of-distribution molecules, like small molecule drugs, there

still remains room for improvement especially for completely new chemical transformations.

Furthermore, enzymes are critically stereo-selective, and the current method is not capable

of distinguishing between stereo-isomers in its predictions. Moreoever, biochemical trans-

formations in the active site pockets of enzymes occur in a three-dimensional space, often

accompanied by conformational changes in the protein structure. None of these aspects are

modeled here, but they provide ample opportunity for future work.

2.8 Additional Implementation Details

2.8.1 Training of transformer-based models

We train existing deep learning model for biocatalysis [15] and [11] according to the code-

bases associated with their respective publications: https://github.com/rxn4chemistry/

OpenNMT-py/tree/carbohydrate_transformer and https://github.com/rxn4chemistry/biocatalysis-model.

Specifically, we use the same tokenization scheme for the enzyme names with either byte pair

encoding or the EC numbers. We pre-process (onmt_preprocess) the data with the default
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parameters of sequence source and target lengths of 3000 and a shared vocabulary, and we

train the models (onmt_train) simultaneously on the USPTO dataset [7, 8] and the same

splits of EnzymeMap that we use for our model. We use the default hyper-parameters for

training (Section 2.8.1).

ll

Hyper-parameter Value

data_weights (9,1) (for USPTO and EnzymeMap, respecitvely)

seed 42

gpu_ranks 0

world_size 1

train_steps 250,000

param_init 0

param_init_glorot true

max_generator_batches 32

batch_size 32768

batch_type tokens

normalization tokens

max_grad_norm 0

accum_count 1

optim adam

adam_beta1 0.9

adam_beta2 0.998

decay_method noam

warmup_steps 8,000

learning_rate 2

label_smoothing 0.1
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layers 6

rnn_size 512

word_vec_size 512

encoder_type transformer

decoder_type transformer

dropout 0.1

position_encoding true

share_embeddings true

global_attention general

global_attention_function softmax

self_attn_type scaled-dot

heads 8

transformer_ff 2048
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Chapter 3

CLIPZyme: Reaction-Conditioned

Virtual Screening of Enzymes

3.1 Motivation

Biosynthesis is the method of choice for the production of small molecules due to the cost

effectiveness, scalability and sustainability of enzymes [53, 54]. To find enzymes that can

catalyze reactions of interest, practitioners often begin by identifying naturally occurring

enzymes to repurpose or optimize. Only 0.23% of UniProt is well studied and efficient

enzymes likely lie among the hundreds of millions of sequences that are yet to be explored

[55]. As a result, the ability to computationally identify naturally occurring enzymes for

any reaction can provide high quality starting points for enzyme optimization and has the

potential to unlock a tremendous number of biosynthesis applications that may otherwise be

inaccessible.

In this work, we propose CLIPZyme, a novel method to address the task of virtual enzyme

screening by framing it as a retrieval task. Specifically, given a chemical reaction of interest,

the aim is to obtain a list of enzyme sequences ranked according to their predicted catalytic

activity. In order to identify reaction-enzyme pairs, methods must contend with several
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unique challenges. First, in some cases, small changes in enzyme structures can lead to a

large impact on its activity. Yet in other cases, multiple enzymes with completely different

structural domains catalyze the same exact reaction [55]. Similar principles hold for changes

to the molecular structures of the reactants (substrates). This makes the task particularly

challenging as methods must capture both extremes. Second, the efficacy of an enzyme is

intricately linked to its interaction with the reaction’s transition states [39, 56], which are

difficult to model. Finally, in addressing the challenge of screening extensive datasets of

uncharacterized enzymes, the scalability of computational methods becomes a critical factor.

CLIPZyme is a contrastive learning method for virtual enzyme screening. Originally

developed to align between image-caption pairs, CLIP-style training has been successfully

extended to model the binding of drugs and peptides to their target protein [57, 58]. Unlike

binding, however, the need to achieve transition state stabilization makes enzymatic catalysis

a more nuanced process (in fact, very strong binding may inhibit an enzyme). Therefore, in

order to represent the transition state, we develop a novel encoding scheme that first models

the molecular structures of both substrates and products then simulates a pseudo-transition

state using the bond changes of the reaction. To leverage the 3D organization of evolutionarily

conserved enzyme domains, we encode AlphaFold-predicted structures [3, 59]. Since enzyme

embeddings can be precomputed efficiently, screening large sets of proteins sequences for a

new query reaction is computationally feasible.

Since no standard method currently exists for virtual enzyme screening, we utilize enzyme

commission (EC) number prediction as a baseline. Specifically, the EC number is an expert-

defined classification system that categorizes enzymes according to the reactions they catalyze.

Each EC number is a four-level code where each level provides progressively finer detail on

the catalyzed reaction. For this reason, if a novel reaction is associated with an EC class, EC

predictors can be used to identify candidate enzymes matching that EC class.

We establish a screening set of 260,197 enzymes curated from BRENDA, EnzymeMap

and CLEAN [60, 12, 61]. In our evaluation, we adopt the BEDROC metric, as is standard
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for virtual screening, and set its parameter α = 85. This places the most importance on

the first ∼10,000 ranked enzymes, which constitutes a reasonable experimental screening

capacity. We compare CLIPZyme to CLEAN, a state-of-the-art EC prediction model, on the

virtual screening task and showcase its superior performance. While CLIPZyme can perform

virtual screening without any expert annotations of reactions, methods like CLEAN cannot.

We show that even when given some knowledge of a novel reaction’s EC class, CLIPZyme

is still superior to EC prediction for virtual screening (BEDROC85 of 44.69% compared to

25.86%). Additionally, we show that combining CLIPZyme with EC prediction consistently

achieves improved results. We also demonstrate that our reaction encoding outperforms

alternative encoding schemes. Finally, we test our method on both unannotated reactions in

EnzymeMap and a dataset of more challenging reactions involving terpene synthases [62].

3.2 Background

Reaction representation learning Methods to encode chemical reactions have been

developed for a range of different computational tasks. This includes language models

operating on reaction SMILES strings [63, 64] and graph-based methods operating on the

individual molecular structures of a reaction or on the condensed graph representations

[9, 65, 41]. These have shown strong performance on tasks like reaction rate prediction and

forward synthesis [66, 42], but fail to take advantage of the data to effectively learn transition

state representations. Models developed explicitly for transition state prediction are trained

on simulations of very small molecules and are not scalable to enzymatic reactions [67, 68].

In contrast to existing approaches that deterministically featurize bond changes, our method

learns the features of these transition states directly from the data.

Catalysis of novel reactions Successful design of enzymes most often begins with finding

natural proteins that can subsequently be repurposed or optimized [69, 70]. One option is

to use EC prediction to filter enzyme screening sets. However, EC numbers are predefined
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by experts and provide a relatively coarse characterization of enzymes. As a result, one EC

can capture many different reactions, while none may be able to capture a completely novel

reaction. Therefore, filtering large libraries of enzymes by EC may yield impractically large

sets of enzymes or none at all. Lastly, state-of-the-art EC predictors still show limited success

(top F1 scores of 0.5-0.6) [71, 61, 72, 73]. In this work, we move away from human-crafted

enzyme classes and instead operate directly on molecular and protein structures.

Alternatively, the rational design of a new enzyme or active site requires a thorough

understanding of the underlying mechanism [74, 75, 76, 77, 78]. While methods for protein

sequence and structure generation have shown promise in creating custom folds and strong

binders [79, 80, 81], unnatural enzymes still suffer from low activity relative to naturally

occurring ones [54]. Instead, we focus on identifying natural protein leads that can be

optimized further either computationally or experimentally [69, 53, 70].

3.3 Method

We formulate enzyme screening as a retrieval task, where we have access to a predefined list of

proteins and are asked to order them according to their ability to catalyze a specific chemical

reaction. The representation of a protein P is denoted by p ∈ Rd and the query reaction R by

r ∈ Rd. We aim to learn a scoring function s(r, p) such that a higher score corresponds to a

higher likelihood that P catalyzes R. We jointly learn a reaction encoder, frxn, and a protein

encoder, fp, to compute r and p (Figure 3.1). We adopt a contrastive learning objective

[82, 83] to maximize the cosine similarity between the embeddings of biochemical reactions

and their associated enzymes (Equations (3.1) and (3.2)). We treat all enzymes in a training

batch that are not annotated to catalyze a reaction as negative samples. Implementations
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Figure 3.1: Overview of our approach. We encode atom-mapped chemical reactions using a
DMPNN. We combine the substrate and product graphs by adding the hidden embeddings of
their corresponding bonds to obtain an intermediate graph representing a pseudo transition
state. A second DMPNN computes an embedding for the entire reaction. Enzymes are encoded
with an EGNN using their predicted crystal structure and ESM-2 sequence embeddings. The
reaction and enzyme representations are aligned with a CLIP objective.

details are provided in Sections 3.3.3 and 3.5.3.

sij = s(ri, pj) =
ri
ri

· pj
pj

(3.1)

Lij = − 1

2N

(
log

esij/τ∑
i e

sij/τ
+ log

esij/τ∑
j e

sij/τ

)
(3.2)

3.3.1 Chemical Reaction Representation

To obtain a functionally meaningful representation of the reaction, we leverage the key insight

that the active sites of enzymes have evolved to stabilize the transition state(s) of their

corresponding reactions [84]. As a result, there is a geometric complementarity between the

3D shape of the protein active site and the molecular structure of the transition state. This

complementarity determines to a large extent the catalytic activity of enzymes [39, 56]. While

we do not have access to ground truth or predicted transition states, we use the atom-mapping

available in the dataset to learn a superposition of the reactant and product molecular graphs
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and obtain the reaction embedding.

Specifically, reactants and products are constructed as 2D graphs, where each molecular

graph G = (V , E) has atom (node) features vi ∈ V and bond (edge) features eij ∈ E . A

directed message-passing neural network (DMPNN) [43], fmol, is used to separately encode

the graph of the reactants Gx and that of the products Gy. This results in learned atom and

bond features ai, bij ∈ Rd. To simulate the transition state, we construct a pseudo-transition

state graph, GTS = (VTS, ETS), by adding the bond features for edges connecting the same

pairs of nodes in the reactants and the products. Edges between atom pairs that are not

connected have bond features set to zero. We use the original atom features vi as the nodes

of GTS to preserve the atom identities.

ai, bij = fmol(Gx,Gy) (3.3)

v
(TS)
i := v

(x)
i (= v

(y)
i ) (3.4)

e
(TS)
ij := b

(x)
ij + b

(y)
ij (3.5)

We jointly train a second DMPNN, fTS to encode GTS and obtain the reaction embedding r

by aggregating the learned node features.

a′i, b
′
ij = fTS(GTS) (3.6)

r =
∑
i

a′i (3.7)

3.3.2 Protein Representation

Enzyme representation plays a pivotal role in modeling their function and interaction with

substrates. To this end, we leverage advancements in both protein language models and

graph neural networks.

Each protein is represented as a 3D graph Gp = (V , E), with residue (node) features hi ∈ V

and bond (edge) features eij ∈ E . Additionally each node i has coordinates ci ∈ R3. The
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node features of Gp are initialized using embeddings from the ESM-2 model with 650 million

parameters (esm2_t33_650M_UR50D) [85], which has demonstrated success in capturing many

relevant protein features for a range of downstream tasks. The ESM model produces a feature

vector for each residue denoted as h ∈ R1280.

To encode the protein graphs, we utilize an E(n)-Equivariant Graph Neural Network

(EGNN) with coordinate updates [86]. This network is particularly suited for our purpose as it

preserves translation, rotation and reflection equivariant graph features but is computationally

inexpensive. Alternative methods preserve additional symmetries that are relevant to proteins

such as SE(3) equivariance but are much more computationally expensive. We follow the

implementation outlined in [86] except that the relative distances between nodes are encoded

using a sinusoidal function (Section 3.3.3), as is common in protein structure modeling

[87, 88, 38].

3.3.3 Implementation Details

All models are developed in PyTorch v2.0.1 [89] and trained using PyTorch Lightning v2.0.9

[90].

fmol and fTS We implement our reaction encoder (3.3.1) as two DMPNNs [43]. We use

standard node and edge features (Table 3.1) to initialize the reactant and product graphs,

with input node dimensions of 9 and input edge dimensions of 3. The first encoder, fmol has

5 layers and a hidden dimension of 1,280. The node features for the second encoder, fTS are

unchanged, while edges are obtained from taking the sum of the hidden edge representations

from fmol. Hence the node dimensions are still 9, while the input edge features have dimensions

1,280. The model also consists of 5 layers and a hidden size of 1,280. We aggregate the graph

as a sum over the node features.

Condensed Graph Reaction We construct the condensed graph reaction as described in

[42]. Specifically, the atom and edge features for the reactants and products are created as
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Table 3.1: Chemical properties used as node and edge features in constructing molecular
graphs.

Entity Features
atom (node) features atomic number, chirality, degree, for-

mal charge, number of hydrogens, num-
ber of radical electrons, hybridization,
aromaticity, belonging to a ring

bond (edge) features bond type, stereochemistry, conjugation

binary vectors for the properties detailed in Table 3.1. For node features x
(r)
i , x

(p)
i and edge

features e(r)ij , e
(p)
ij , we compute x′ = x

(r)
i − x

(p)
i and e′ij = e

(r)
ij − e

(p)
ij . We do not use the atomic

number in calculating x′. Concatenating these with our reactants’ features, our final CGR

graph consists of 225 atom and 26 edge features, xCGR
i = [x

(r)
i ∥ x′

i] and eCGR
ij = [e

(r)
ij ∥ e′ij],

respectively.

Reaction SMILES The reaction SMILES is first canonicalized then tokenized according

to [50] without atom-mapping. We create a vocabulary based on this tokenization scheme and

use a tranformer architecture [38] as implemented by the Hugging Face library (we use the

BertModel) [91]. The transformer is initialized with 4 layers, a hidden and intermediate size

of 1,280, and 16 attention heads. An absolute positional encoding is used over a maximum

sequence length of 1,000. We prepend the reaction with a [CLS] token and use its hidden

representation as the reaction embedding.

WLDN We implement WLDN as originally described in [9] and initialize it with 5 layers

and a hidden dimension of 1,280. The difference graph is calculated as the difference between

atom-mapped node embeddings of the substrate and product graph. We apply a separate

1-layer WLN to obtain the final graph-level representation.

EGNN Node features are initialized with residue-level embeddings from ESM-2 (the 650M

parameter variant with 33 layers) [85]. We use a hidden size of 1,280, 6 layers, and a message
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dimension of 24. Both features and coordinates are normalized and updated at each step.

Neighborhood aggregation is done as an average, and protein-level features are taken as

a sum over the final node embeddings. Repurposing the positional encodings used in [38],

pairwise distances are transformed with sinusoidal embeddings. For a given relative distance

dij between nodes i and j, the encoding function f : N → Rd transforms this distance into a

d-dimensional sinusoidal embedding. The encoding is defined as follows:

f(dij)
(k) =


sin
(

1
θk/2

· dij
)
, k < d

2
,

cos

(
1

θ
k− d

2
2

· dij
)
, k ≥ d

2
.

(3.8)

where k is the index of the dimension of the distance vector, θ is a hyperparameter that controls

the frequency of the sinusoids, which in our case is set to 10,000. The resulting embedding

for a particular relative distance dij is constructed by concatenating the sine-encoded and

cosine-encoded vectors, thus interleaving sinusoidal functions along the dimensionality of the

embedding space.

CLEAN We train CLEAN with the supervised contrastive ("Supcon-Hard") loss following

the training protocol and parameters loss described in the project’s repository (https://github.

com/tttianhao/CLEAN). Specifically, we use the supervised contrastive loss and the data

split in which none of the test enzymes share > 50% sequence identity with those in the

training set. At inference, we use the same approach described in [61] to compute the EC

anchors. We obtain the predicted distance between each enzyme in our screening set and each

EC anchor. We extend this to parent classes of the ECs. For instance, the representation for

EC 1.2.3.x is the mean embedding of all CLEAN proteins in that class. We also predict the

EC numbers for all of the enzyme sequences in our screening set using the “max-separation"

algorithm.
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3.3.4 Training Details

All models are trained with a batch size of 64 with bfloat16 precision and trained until

convergence (approximately 30 epochs). We use a learning rate of 1e−4 with a cosine learning

rate schedule and 100 steps of linear warm-up. Warm-up starts with a learning rate of 1e−6,

and the minimum learning rate after warm-up is set to 1e−5. We use the AdamW optimizer

[92] with a weight decay of 0.05 and (β1, β2) = (0.9, 0.999). When training the ESM model,

we initialize with the pretrained weights of esm2_t33_650M_UR50D and use a mean of the

residue embeddings for the sequence representation. We train all models on 8 NVIDIA A6000

GPUs.

3.4 Experimental Setup

Figure 3.2: Overview of dataset construction and statistics. (a) Reaction-enzyme pairs are
obtained from the EnzymeMap dataset [12] and split based on their reaction rules. At test
time, a reaction is queried and enzymes are ranked from a screening set composed of sequences
from EnzymeMap, UniProt*, and BRENDA. (b) Averge number of sequences in each EC
class when considering different levels of the EC hierarchy. (c) Distribution of sequences in
the screening set according to their first EC level.
*The UniProt dataset is obtained from [61].
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3.4.1 EnzymeMap Dataset

Similarly to Section 2.5.1, our method is developed on the EnzymeMap Version 2 dataset [12],

which includes biochemical reactions linked with associated UniProt IDs and their respective

EC numbers. Each reaction is atom-mapped, allowing every atom in the product to be

traced back to a corresponding atom in the reactants. To acquire the corresponding protein

sequences, we select reactions linked to UniProt or SwissProt IDs and retrieve their sequences

from their respective databases [93]. Additionally, we retrieve the predicted enzyme structures

from the AlphaFold Protein Structure Database [3, 59]. We filter samples to include protein

sequences up to 650 amino acids in length only. EnzymeMap provides a reaction rule for

each reaction, which captures the bio-transformation in a reaction and can be applied to

recreate the products of a reaction from its substrates [94]. With the goal of extending our

model to unfamiliar chemical reactions, we divide our dataset into training, development,

and testing groups based on these reaction rules (Figure 3.2). This results in a total of 46,356

enzyme-driven reactions, encompassing 16,776 distinct chemical reactions, 12,749 enzymes,

across 2,841 EC numbers and 394 reaction rules.

EnzymeMap includes additional reactions that are associated with an EC number but lack

an annotated protein sequence. We identify 7,967 of these unannotated reactions involving

1,101 EC numbers, distinct from our training data in terms of reaction rules. This subset

serves as an additional validation set, allowing us to evaluate how our method ranks enzymes

in relation to the EC number for each reaction. More information on how the data was

processed can be found in ??.

Data Processing

We obtain version 2 of the EnzymeMap dataset [12] and use only the reactions with assigned

protein references from either SwissProt or UniProt. Our method requires that the same

atoms appear on both sides of the reaction, so we exclude samples where this is not the case.
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We also filter reactions where the EC number is not fully specified, the sequence could not be

retrieved from UniProt, or there wasn’t a computable bond change. We restrict our data

to proteins of sequence length no more than 650 (maintaining 90% of the sequences) and

those with a predicted structure in the AlphaFold database. We remove duplicate reactions,

where the same reaction and sequence appear for multiple organisms. We split reactions

into train/development/test splits with a ratio of 0.8/0.1/0.1 based on the reaction rule IDs

assigned in the dataset. The statistics for the final dataset are shown in Table 3.2.

Table 3.2: Statistics of the EnzymeMap dataset used to develop CLIPZyme after pre-
processing.

Training Split Development Split Test Split
Number of Samples 34,427 7,287 4,642
Number of Reactions 12,629 2,669 1,554
Number of proteins 9,794 1,964 1,407
Number of ECs 2,251 465 319

3.4.2 Terpene Synthase Dataset

Terpenoids are a large and diverse family of biomolecules with wide applications to medicine

and consumer goods. The reactions generating these natural compounds involve particularly

complex chemical transformations that are typically catalyzed by a class of enzymes called

terpene synthases [62]. This enzyme class is noteworthy for utilizing a relatively small

number of substrates (∼11) but is capable of generating thousands of distinct products.

This presents a significant challenge with substantial implications. To further evaluate our

method’s performance on reactions known to involve challenging chemistry, we use a dataset

of terpenoid reactions made available by recent work in detecting novel terpene synthases

[62]. We exclude reactions that are themselves or their enzyme included in our training set,

obtaining 110 unique reactions and 99 enzymes.
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3.4.3 Enzyme Screening Set

To construct our screening set of enzymes, we include sequences annotated in the EnzymeMap

dataset [12], Brenda release 2022_2 [60], and those used in developing CLEAN (UniProt

release 2022_01) [61]. We filter our set to those of sequence length < 650 with available

AlphaFold predicted structures [3, 59] and obtain a final list of 260,197 sequences.

3.4.4 Protein Structures

We obtain all protein structures as CIF files from the AlphaFold Protein Structure Database

[3, 59]. We parse these files using the BioPython MMCIFParser. We then construct graphs

for use in the PyTorch Geometric library [95]. First we filter out the atoms from the CIF

file to only include the Cα atoms of the protein. Each graph node as a result represents a

residue and the associated coordinates from the CIF file. The edges are determined using the

k-nearest neighbors (kNN) method, creating a connected graph that reflects the chemical

interactions within the protein. We use a distance of 10 angstroms as a cutoff for the edges.

3.4.5 MSA Embeddings

We explore using the hidden representations from the MSA Transformer [96] as node embed-

dings of the enzyme 3D structure. Rather than using HHblits [97], we opt for MMSeqs2 [98]

because of its speed and efficient search. We follow the pipeline employed by ColabFold [99]

but use only the UniRef30 (uniref30_2302) database and do not use an expanded search

[100, 101]. We sample 128 sequences for each MSA using a greedy search (maximum similar-

ity) to obtain the input for the MSA-Transformer. We keep only the hidden representations

of the query enzyme sequence and discard those from the MSA search. For an enzyme of

length n, this yields sequence embeddings h ∈ Rn×768.
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3.4.6 Computing Screening Set Enzyme Clusters

To exclude from our enzyme screening set those proteins that are similar to sequences used in

our training dataset, we compute protein clusters using MMSeqs2 [98] and Foldseek [47]. For

MMSeqs2, we use the default parameters with --min-seq-id= 0.3 and --similarity= 0.8.

For Foldseek, we use the default parameters with --min-seq-id= 0 and --c= 0.3.

3.4.7 Baselines

Ranking Enzymes via EC Prediction

The ultimate goal of enzyme screening is to identify candidate proteins from large protein

databases, including the hundreds of millions of unannotated sequences. Since no standard

computational procedure for enzyme screening has emerged, a reasonable approach is to

first assign an EC number to the query reaction and then select all enzymes that share that

EC class. To identify the EC classes of the enzymes in the screening set, one can use an

EC predictor. On the other hand, assigning the full EC number of a reaction is not always

straightforward or possible. For this reason, we consider baselines where between 1 to 4 levels

of a query reaction’s EC number are assignable (e.g., 1 level: 1.x.x.x to 4 levels: 1.2.3.4).

We evaluate EC prediction and CLIPZyme on ranking the enzymes screening set for each

reaction in the EnzymeMap test set.

We use CLEAN, a state-of-the-art EC predictor, to obtain a ranked list of enzymes for

each EC [61]. CLEAN computes a single representation for every EC in its dataset as the

mean embedding of sequences in that class and uses these as test-time anchors. The predicted

EC class of a new sequence is then determined by the Euclidean distance to each EC anchor.

Accordingly, given a reaction’s assigned EC number, we rank our screening set enzymes by

their distances to the reaction’s EC anchor (Figure 3.3). If a reaction’s EC class does not

exist in the CLEAN dataset, we broaden the search to one level higher. As an example, for a

reaction with EC 1.2.3.4, if this EC is not in the CLEAN dataset, we rank enzymes according
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Figure 3.3: Approaches for adapting EC prediction to virtual enzyme screening. We first
assign a reaction an EC up to some level of specificity (here, level 2). To obtain rankings
based on CLEAN, we use each sequence’s distance to the EC class. To combine CLEAN and
CLIPZyme, enzymes are first sorted according to their predicted EC class. Then they are
ranked within each class using CLIPZyme.

to their distances to the mean representation of EC 1.2.3 (and so on). For consistency with

previous work, we use the CLEAN model trained on a split where none of the test enzymes

share more than 50% sequence identity with those in the training set [61].

We hypothesize that combining CLEAN to obtain EC predictions and CLIPZyme to

rank them presents an opportunity for improved performance. Specifically, we predict the

EC numbers for all of the enzyme sequences in our screening set using CLEAN. Given the

reaction’s assigned EC number, we first filter our screening set to those enzymes with the
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same exact predicted EC and rank this list using CLIPZyme (Figure 3.3). We then filter

all remaining enzymes to those that belong to one EC level above and again rank that list

using CLIPZyme. As an example, given an input reaction with assigned EC of 1.2.3.4, we

identify all enzymes predicted for that EC and rank them with CLIPZyme. We then rank all

remaining enzymes with predicted EC 1.2.3. This process is repeated until all enzymes are

ranked.

Reaction Representation

We explore three alternative methods for encoding the reaction and compare against these

in our results. The first uses the condensed graph reaction (CGR) representation [41] by

overlaying the reactants and products and concatenating the edge features. A DMPNN

encodes the CGR to obtain a hidden representation of the reaction. The second approach

is to use the full reaction SMILES [63] as an input to a language model and obtain a final

representation of the reaction. We follow the tokenization scheme for SMILES introduced by

the Molecular Transformer [50] and train a transformer model as our encoder [38]. We also

consider the Weisfeiler-Lehman Difference Network (WLDN) architecture and implement it

as described in [9]. We train all models until convergence, using the same data splits and

hyper-parameters (Section 3.5.3).

Protein Representation

We focus on achieving a balance between efficiency and the ability to process extensive enzyme

datasets. To this end, we explore both sequence-based and structure-based approaches,

acknowledging the critical influence of structure on enzymatic activity despite its inherent

computational demands. We train ESM-2 [85] as a sequence-based baseline for protein

encoding. We also encode the structure with an EGNN [86] and compare initializing node

embeddings from either the MSA-transformer [96] or ESM-2, to identify the best method in

terms of both performance and speed.
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3.4.8 Evaluation Setup

We aim to simulate the scenario where an enzyme is desired to catalyze a novel reaction, and

it exists in nature but is not annotated. We compare different approaches to encoding the

reactions and their enzymes, and compare our method to an alternative approach using EC

prediction.

As our main aim is to generalize to novel chemical transformations, our test set consists

of reactions with reaction rules that are unseen during training, queried against all 260,197

sequences. However, this means our screening set does include proteins used in training

the model. Therefore, we also evaluate model performance when excluding proteins used in

training. Additionally, we use MMSeqs2 [98] and Foldseek [47] to exclude proteins based on

their similarity to the training set proteins in terms of sequence identity and protein fold,

respectively. If the exclusion of a protein results in a test reaction having no actives in the

screening set, we exclude the entire reaction.

Throughout our evaluations, we take the BEDROC score as our primary metric [102]. We

focus on the case α = 85, where the top 3.5% of predictions contribute to 95% of the score,

and as suggested in [102], we also calculate the BEDROC score for α = 20. We also report

the enrichment factor (EF) when taking the top 0.5% and 1% of predictions. This estimates

the fraction of catalyzing enzymes found in our top predictions relative to random selection.

3.5 Results

We present here an overview of our key results. In Table 3.3, we compare CLIPZyme’s

performance to that of EC prediction with CLEAN and show the benefit of combining

methods. CLIPZyme shows improved performance in all comparisons. Table 3.6 shows

the impact of different protein and reaction representations and highlights the superior

performance of our novel reaction encoding. In Table 3.7, we show that CLIPZyme’s

performance extends to a challenging dataset of terpene synthase reactions and unannotated
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reactions. Lastly, we show in Table 3.8 that CLIPZyme’s performance drops when screening

enzymes that significantly differ from those it was trained on, but still maintains useful

predictive value. Additional analysis is provided in ??.

3.5.1 Enzyme Screening Evaluation on EnzymeMap

Table 3.3: Enzyme virtual screening performance compared to using EC prediction alone
and together with CLIPZyme. For a given reaction EC level, enzymes are ranked according
to their Euclidean distance to EC class anchors when using CLEAN [61]. Alternatively,
CLEAN is first used to place enzymes into successively broader EC levels matching that of
the reaction, and CLIPZyme is used to reorder the enzymes within each level. BEDROC:
Boltzmann-enhanced discrimination of receiver operating characteristic; EF: enrichment
factor.

EC Level
Assumed Available

Method
BEDROC85

(%)
BEDROC20

(%)
EF0.05 EF0.1

- CLIPZyme 44.69 62.98 14.09 8.06

Level 1 (x.-.-.-)
CLEAN 0.96 6.53 1.22 1.72
CLIPZyme + CLEAN 57.03 78.50 17.84 9.56

Level 2 (x.x.-.-)
CLEAN 4.86 14.10 3.23 2.49
CLIPZyme + CLEAN 75.57 90.20 19.40 9.84

Level 3 (x.x.x.-)
CLEAN 25.86 36.75 8.03 4.81
CLIPZyme + CLEAN 82.69 93.23 19.43 9.84

Level 4 (x.x.x.x)
CLEAN 89.74 93.42 18.97 9.60
CLIPZyme + CLEAN 89.57 95.24 19.43 9.84

CLIPZyme effectively ranks the screening set against reactions in the EnzymeMap test

set with an average BEDROC85 of 44.69% and an enrichment factor of 14.09 when choosing

the top 5% (Table 3.3). We compare its performance to ranking using EC prediction with

CLEAN. Since it is not always possible to assign all 4 levels of an EC to a chemical reaction,

we examine scenarios where different EC levels are assumed to be known for query reactions

in the test set.

For example, with only the first EC level known, using EC prediction alone obtains a

BEDROC85 score of 0.96% (Table 3.3). This improves to 25.86% when we are able to specify

48



a reaction up to the third EC level. With four EC levels known, the CLEAN method becomes

more effective than CLIPZyme alone. However, being able to assign all four EC levels for a

reaction may not be always feasible in real-world applications.

Combining the CLEAN method with CLIPZyme achieves improved performance regardless

of how many EC levels we assume to be known for reactions. Here, CLEAN is first used

to predict the EC classes of enzymes in the screening set. Enzymes within the predicted

EC class are re-ranked using CLIPZyme (Figure 3.3). Even basic knowledge of the first EC

level of a chemical reaction enhances CLIPZyme’s performance from a BEDROC85 of 44.69%

to 57.03%. With the first two levels assumed to be known, performance also improves to

75.57%.

We note that EC classification may be insufficient for categorizing chemical reactions that

do not fit in existing EC classes. As a result, any EC prediction method is not applicable in

that setting, while CLIPZyme is as it operates directly on the reaction.

3.5.2 Enzyme Screening Within EC Classes

Table 3.4: Performance of CLIPZyme when limiting the screening set to enzymes belonging
to the query reaction’s top EC level.

BEDROC85 (%) BEDROC20 (%) EF0.05 EF0.1

36.25 51.61 11.30 6.83

We also explore CLIPZyme’s ability to discriminate between enzymes within the same

EC class, where enzymes are more likely to share function and physical-chemical features.

To do so, for each query reaction in the test set, we adjust the screening set to include only

those enzymes belonging to its EC class. The number of enzymes quickly diminishes when

considering EC subclasses to the extent that the EC-based screening sets become too small

for virtual screening (Figure 3.2b) – for example, the BEDROC metric is only valid only

when (α× proportion of actives) ≪ 1. For this reason, we consider only the top EC level in
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this analysis. We observe that it is more difficult to rank the correct enzymes higher when

only considering sequences in the same EC class but that the top predictions are still enriched

for the active enzymes (Table 3.4).

3.5.3 Adapting CLEAN for Ranking Enzymes

We consider using both CLEAN EC predictions and computed distances to perform virtual

screening similar to Section 3.4.7. Here we present an alternative reranking approach than

that in Section 3.5.1. We follow the exact same setup as reranking EC predictions using

CLIPZyme but instead rerank using the distance to the EC anchors. For example, given

a query reaction with EC 1.2.3.4, we first predict the EC numbers for all of the enzymes

in the screening set using CLEAN. We then rank the enzymes with predicted EC of 1.2.3.4

by the distance from the anchor with EC 1.2.3.4 (computed as the mean embedding of all

ECs in the CLEAN training set with EC 1.2.3.4). We then rank all remaining enzymes with

predicted EC of 1.2.3.x by their distance to the anchor embeddings of EC 1.2.3.4 (this is the

same anchor). This differs from the Section 3.5.1 approach since CLEAN assigns EC numbers

based on a varying threshold (i.e., max-separation) for each embedding. By first ordering by

EC and then reranking within each EC we achieve different results than by ranking all at

once by distance to the 1.2.3.4 anchor.

Table 3.5: Enzyme virtual screening performance when using CLEAN to first place enzymes
into successively broader EC levels matching that of the reaction, then re-ranking them
according to their Euclidean distance to the reaction’s EC.

EC Level BEDROC85 (%) BEDROC20 (%) EF0.05 EF0.1

Level 1 5.43 26.94 5.55 6.33
Level 2 35.56 71.10 18.95 9.72
Level 3 63.40 85.61 19.35 9.74
Level 4 92.65 96.16 19.48 9.80
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3.5.4 Impact of Reaction and Protein Representation

Table 3.6: Performance of various protein and reaction encoding schemes on virtual screening
for reactions in the EnzymeMap test set. The symbol ^ denotes models where the weights
are kept unchanged during training.

Protein Encoder Reaction Encoder
BEDROC85

(%)
BEDROC20

(%)
EF0.05 EF0.1

ESM^ Ours (Section 3.3.1) 17.84 29.39 6.61 4.17
ESM Ours (Section 3.3.1) 36.91 53.04 11.93 6.84
MSA-Transformer^ +

EGNN
Ours (Section 3.3.1) 28.76 46.53 10.34 6.67

ESM^ + EGNN CGR [41] 38.91 57.58 13.16 7.73
ESM^ + EGNN Reaction SMILES 29.94 46.01 10.34 6.32
ESM^ + EGNN WLDN [9] 29.84 46.70 10.71 6.41
ESM^ + EGNN Ours (Section 3.3.1) 44.69 62.98 14.09 8.06

We explore a number of different encoding methods for both reaction and protein repre-

sentations and find that the model is highly sensitive to changes in both (Table 3.6). Using

the molecular structures of the reaction obtains better performance than language-based

methods operating over the reaction SMILES, with the former achieving a BEDROC85 of

44.69% compared to 29.94%. This suggests that structural representations may capture

chemical transformations that correspond to enzyme activity more explicitly than language

based ones. The patterns observed in structures may be more difficult for language models

to capture without additional features or data. Employing a more expressive model also

improves performance when compared to using WLDN as the reaction encoder. While all

reaction representation methods include the full reaction, they differ in how the bond changes

are encoded. Methods that explicitly delineate chemical transformations between substrates

and products appear to obtain generally better performance.

We find a similar sensitivity to enzyme encoding. We compare using ESM embeddings

alone and using ESM embeddings together as node features for EGNN. We find that using an

EGNN to capture the structural components of the enzyme improves performance compared

to training a sequence-based model alone (44.69% compared to 36.91%), which indicates that
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enzyme structure is important for achieving good performance on this task. We also explore

initializing the EGNN node features with embeddings from the pre-trained MSA-Transformer

[96]. These embeddings do not appear to improve performance, although they capture

evolutionary information of the sequence. This, however, may be due to differences in quality

of representations learned by ESM and MSA-Transformer in which ESM-2 was trained on

much larger set of sequences.

3.5.5 Evaluation on Reaction-Specific Datasets

Table 3.7: Performance of CLIPZyme on additional biochemical reactions. The terpene
synthase dataset is obtained from [62] and includes reactions considered to involve more
complex biotransformations. The unannotated subset of EnzymeMap consists of reactions
in the dataset that are not assigned a UniProt or SwissProt identifier. In this case, virtual
screening is evaluated as the ability to highly rank proteins with the correct EC class.

Dataset BEDROC85 (%) BEDROC20 (%) EF0.05 EF0.1

Terpene Synthases 72.46 85.89 18.29 9.42
Unannotated EnzymeMap 42.94 61.39 13.92 7.73

We extend our evaluation to two additional datasets to further assess CLIPZyme’s utility

in practical applications in Table 3.7. The first dataset encompasses reactions catalyzed

by terpene synthases. We evaluated CLIPZyme using the same screening set and observed

robust performance, evidenced by a BEDROC85 score of 72.45%. Due to the small and

uniform substrate pool, the model might be preferentially ranking terpene synthases as a

whole, rather than effectively distinguishing between specific reactions.

Additionally, we present an evaluation using unannotated reactions from EnzymeMap. For

the sake of evaluation, we assume the true enzymes in the screening set for a given reaction are

those with EC classes matching that of the reaction. Under this setup, CLIPZyme achieves a

BEDROC85 of 42.94%, which aligns closely with the results from the annotated subset of

EnzymeMap. Because the metrics are calculated relative to the EC classes of each protein,

this result suggests that the CLIPZyme rankings correspond with the proteins’ EC numbers.
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3.5.6 Generalization to Novel Proteins

Table 3.8: Performance when excluding sequences from the screening set with various levels
of similarity to training set enzymes.

Exclusion criteria BEDROC85 (%) BEDROC20 (%) EF0.05 EF0.1

Exact Match 39.13 58.86 13.40 7.81
MMSeqs 30% Similarity 35.32 54.86 12.43 7.30
Foldseek 30% Similarity 21.44 35.39 7.93 4.93

Our primary focus has been on evaluating the generalization of CLIPZyme on reactions

unseen during training. However, given the ultimate goal of screening a wide array of both

annotated and unannotated enzymes, it’s crucial to understand the model’s efficacy in ranking

proteins dissimilar to those in the training set.

To do so, we exclude proteins that are similar to our training set according to three

similarity metrics. We first exclude training set enzymes. Second, we apply MMSeqs2 [98] to

remove enzymes with 30% or greater sequence similarity. Lastly, we exclude enzymes with

30% fold similarity as determined by Foldseek [47]. By measuring performance on these three

screening subsets, we demonstrate CLIPZyme’s generalizability across both reactions and

enzymes.

Each exclusion criteria led to a reduction in performance. For example, CLIPZyme’s

performance decreases by approximately 5 percentage points on both BEDROC metrics

when excluding training set enzymes Table 3.8. The most marked impact was observed with

Foldseek-based filtering, showing a 23.25 point decrease in BEDROC85 scores. This aligns

with our previous findings that protein structural features play a critical role in effective

screening. Despite this, the model still demonstrated a notable ability to rank enzymes

effectively as the top-ranked candidates consistently showed enrichment for active enzymes.
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3.6 Conclusion

We present here the task of virtual enzyme screening and a contrastive method, CLIPZyme,

to address it. We show that our method can preferentially rank catalytically active enzymes

against reactions across multiple datasets. Without a standard baseline, we examine enzyme

screening through EC prediction and highlight CLIPZyme’s competitive ability. We further-

more show that combining EC prediction with CLIPZyme achieves significantly improved

performance. Lastly, we evaluate CLIPZyme’s capacity to generalize by evaluating it on

additional challenging reaction datasets and on unseen protein clusters. In practical scenarios,

where millions or even hundreds of millions of enzymes need screening, we foresee the necessity

of methods like CLIPZyme with even higher sensitivity for effective enzyme design at scale.

Among its limitations, the current approach does not model the physical interactions

between reactants and enzymes, and it is unable to capture the mechanisms that give rise

to the observed reaction. Moreover, the available data covers a relatively small chemical

space and includes a restricted set of reactions and enzyme sequences (e.g., EC class 7 is

completely unrepresented). We also note that our approach of random negative sampling

may give rise to false negatives due to the promiscuity of many enzymes and the method may

benefit from alternative sampling techniques. Directions for future work include modeling the

3D interactions characterizing biochemical reactions (e.g., through docking) and leveraging

transition state sampling through quantum chemical simulations.
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