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ABSTRACT

Advanced probabilistic programming languages (PPLs) use hybrid inference systems to combine
symbolic exact inference and Monte Carlo sampling to improve inference performance. These
systems use heuristics to partition random variables within the program into variables that are
represented symbolically and variables that are represented by sampled values, and in general,
they make no guarantee that the partitioning is optimal. In this thesis, I present inference plans, a
programming interface that enables developers to choose a specific partitioning of random variables
during hybrid inference. I further present Siren, a new PPL that enables developers to use
annotations to specify inference plans. To assist developers with statically reasoning about whether
an inference plan can be implemented, I present an abstract-interpretation-based static analysis
for Siren for determining inference plan satisfiability, and prove the analysis is sound with respect
to Siren’s semantics. In my evaluation, the results show that custom inference plans can produce
up to 1000x better accuracy compared to the default heuristics. They further show that the static
analysis is precise in practice, identifying all satisfiable inference plans in 6 out of 7 benchmarks.
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Chapter 1

Introduction

Probabilistic programming languages (PPLs) support primitives for modeling random variables
and performing probabilistic inference (Goodman and Stuhlmüller, 2014, Holtzen et al., 2020,
Murray and Schön, 2018, Narayanan et al., 2016, Tolpin et al., 2016). They provide high-level
abstractions for probabilistic modeling that hide away the complex details of inference algorithms
while leveraging common programming language constructs such as functions, loops, control flow.
PPLs serve as an expressive and accessible tool for solving such problems. Users can focus on
modeling the problem, rather than the details of inference techniques.

1.1 Hybrid Inference Systems

Hybrid inference systems – such as delayed sampling (Lundén, 2017, Murray et al., 2018), semi-
symbolic inference (Atkinson et al., 2022), Sequential Monte Carlo with belief propagation (Azizian
et al., 2023), automatically marginalized MCMC (Lai et al., 2023) – automatically incorporate exact
inference with Monte Carlo methods to improve performance without exposing programmers to the
details of the inference techniques. They utilize a symbolic representation of random variables to
encode some or all parts of the model, enabling symbolic computation that lowers the variance of es-
timations. Hybrid inference algorithms that apply to particle filters (Gordon et al., 1993) implement
an automatic Rao-Blackwellization of the particle filter (Doucet et al., 2000); hybrid inference algo-
rithms that apply to MCMC algorithms automatically implement collapsed sampling (Liu, 1994).

Figure 1.1 depicts hybrid inference using particle filtering as the approximate inference method.
The algorithm maintains a collection of parallel instances of execution, represented by the boxes.
Each instance contains a symbolic structure that encodes certain random variables symbolically, as
shown by the circles in the diagram; other random variables are treated as constant samples drawn
from probability distributions, depicted as squares. The sizes of the boxes correspond to the associ-
ated weight, which indicates how likely these instances are based on observed data (the white circles).
The instances execute in parallel until they hit a checkpoint at which point the system resamples
the instances, meaning the system adjusts the distribution of instances based on the weights.

9



Figure 1.1: Hybrid inference with particle filtering.

1.2 No Global Guarantee

When hybrid inference systems cannot solve the entire program with symbolic computation,
they use local heuristics to partition the random variables into variables that are represented
symbolically throughout the program and variables that are represented by sampled constant
values. Consequently, the systems make no general guarantee that the partitioning of how variables
are represented is globally optimal. As this thesis empirically shows, the built-in heuristics do not
always make partitions that produce the best performance. In fact, there might not be a globally
optimal partition at all, so the better partition depends on the objective of the problem, which the
heuristics are oblivious to. In these cases, users need a mechanism to guide the inference system
to partition the random variables in a specific way.

1.3 Thesis

Programming constructs such as annotations or types can serve as a mechanism for developers
to guide hybrid inference systems in choosing how to represent random variables. In this thesis,
I investigate using annotations and program analyses to guide inference systems.

Inference Plans I present inference plans, a programming interface that enables developers
to choose a specific partitioning of random variables during hybrid inference. Developers may add
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distribution encoding annotations to encode constraints on whether random variables must be
represented as symbolic expressions or as samples.

Satisfiability Analysis A key challenge to delivering this interface is that not all inference
plans can be implemented by an inference algorithm. Some variable partitionings are unsatisfiable
because the inference algorithm does not know how to analytically solve the encoded symbolic
structure. An additional key challenge to reasoning about the satisfiability of an inference plan
is that many hybrid inference algorithms dynamically perform local optimizations because some
symbolic structures can only be fully exploited at runtime (Lai et al., 2023, Lundén, 2017). While
the design choice to operate dynamically rather than statically enables these systems to identify
more opportunities for symbolic optimizations than if they only reasoned statically about the
program, the satisfiability of an inference plan is then only fully determined at runtime. To assist
developers with statically reasoning about inference plans without requiring in-depth knowledge of
the inference algorithm, I present a static analysis that identifies the satisfiability of inference plans.

Contributions In this thesis, I present the following contributions:

• I present Siren, a first-order functional PPL. Siren introduces distribution encoding
annotations that programmers can use to assert an overall specification for how variables
are represented by the inference algorithm; I term this specification an inference plan.
Siren implements several existing hybrid inference systems, unified via the hybrid inference
interface, an extension of the symbolic interface (Atkinson et al., 2022). I define the syntax
and semantics of the language in Chapter 3.

• I present an inference plan satisfiability analysis, which determines statically if the user-
provided inference plan is satisfiable for all executions of a program. I formalize this analysis
via abstract interpretation and present a proof of its soundness in Chapter 4.

• I implement the interface with semi-symbolic inference, delayed sampling, and Sequential
Monte Carlo with belief propagation, and empirically show in Chapter 5 that using custom
inference plans can produce up to 1000x better accuracy compared to the default plan.

• I empirically evaluate the completeness of the analysis in Chapter 5. Against a suite of 7
benchmarks, using the 3 algorithms, the analysis identifies all satisfiable plans in 20 out
of the 21 benchmark-algorithm combinations.

With inference plans and the satisfiability analysis, developers can customize how hybrid inference
algorithms execute programs to improve performance without detailed knowledge of the algorithms.

11



Chapter 2

Example

To demonstrate how a developer can use inference plans to customize and improve inference
performance, I present an example adapted from Wu (1993) and Li et al. (2014). Figure 2.1a
shows a cartoon diagram of a radar tracker. The goal of the radar tracker is to plot the movement
of an aircraft on a map by estimating the position of the aircraft as it moves over time. The radar
tracker can be specified as a probabilistic model. The model captures both the aircraft’s movement
noise and also the radar’s measurement noise. The movement noise captures the uncertainty in
the model’s prior belief of the movement of the aircraft relative to the tracker’s estimate in the
last timestep. The measurement noise captures the fact that 1) radar measurements naturally
have white noise and, additionally, 2) the angle of the aircraft can induce electromagnetic wave
reflections that result in random, spiking noise in a measurement as well (Li et al., 2014).

(a) Diagram.

q

r

. . . xt

obst

spktotht

xt+1 . . .

obst+1

spkt+1 otht+1

(b) Graphical representation.

Figure 2.1: A radar tracker estimating the position x of an aircraft, subject to movement noise
q and measurement noise, which is modeled by white noise r with a spk random chance of
encountering spiking noise other.

Figure 2.1b presents the graphical representation of the radar tracker’s probabilistic model.
A series of xt random variables model the position at each timestep t. Every xt depend on the
movement noise random variable q. The radar measurements are the observed variables obst. All
of the obst random variables depend on the white noise variable r and the spike noise variables
spkt and othert.
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1 let step = fun (obs, (xs,q,r)) ->
2 let x0 = hd(xs) in
3 let symbolic x <- gaussian(x0+5.,q) in
4 let sample spk <- bernoulli(0.0001) in
5 let sample other <- invgamma(1.,1.) in
6 let v = if spk then r+other else r in
7 let () = observe(gaussian(x,v),obs) in
8 (cons(x,xs),q,r) in
9 let sample q <- invgamma(1.,1.) in

10 let sample r <- invgamma(1.,1.) in
11 fold_resample(step,data,([0.],q,r))

(a) Annotated with Symbolic x Inference Plan.

1 let step = fun (obs, (xs,q,r)) ->
2 let x0 = hd(xs) in
3 let sample x <- gaussian(x0+5.,q) in
4 let sample spk <- bernoulli(0.0001) in
5 let sample other <- invgamma(1.,1.) in
6 let v = if spk then r+other else r in
7 let () = observe(gaussian(x,v),obs) in
8 (cons(x,xs),q,r) in
9 let sample q <- invgamma(1.,1.) in

10 let symbolic r <- invgamma(1.,1.) in
11 fold_resample(step,data,([0.],q,r))

(b) Annotated with Symbolic r Inference Plan.

Figure 2.2: A program written in Siren that implements target position tracker with smoothing.

2.1 Specification in Siren

Figure 2.2 presents two implementations of the radar tracker as Siren programs, each with different
annotations that denote different inference plans. Each program models the movement noise q and
white noise r defined on Lines 9 and 10 with Inverse-Gamma distributions. The step function
defined on Lines 1-8 updates the predicted position and conditions the model on radar measurement
data. The x positions are modeled by a Gaussian distribution with a mean equal to the sum of the
previous position and a constant velocity and with variance equal to q. Lines 4 to 6 model the spik-
ing measurement noise v. If spk is true, the program models the measurement noise as r+other;
the variable other models the irregular spike as a separate Inverse-Gamma distribution from the
white noise r. Otherwise, there is no spike in the noise, so the program models the measurement
noise as only the white noise r. The measurement is modeled as a Gaussian distribution centered
around the predicted position x and with the measurement noise as variance. Line 7 conditions
the model on the measurement being equal to the data value obs. The fold_resample operation
on Line 11 iterates step on the measurement data (provided by the free variable data) with an
initial accumulator composed of an initial position and the noises q and r. The program returns
the final accumulator: the list of estimated positions, the movement noise, and the white noise.

2.2 Inference Plans

The two programs in Figure 2.2 differ in only the annotations of the random variables on Lines 3
to 5, 9 and 10 with symbolic or sample. Each distribution encoding annotation directs the inference
algorithm to encode the annotated random variable as either a symbolic expression encoding
the specified distribution or a constant sample drawn from the distribution, respectively. Siren
executes a program using hybrid inference – a combination of particle filtering with symbolic
computation. A particle is a program expression to be evaluated and a symbolic state encoding
the symbolic distributions of random variables; random variables that are encoded as samples
are treated as constant values in the expression. Each particle evaluates its program expression
in parallel. The diagram in Figure 1.1 shows an execution of the program in Figure 2.2a.

For example, in one particle evaluation, on the first iteration, the variable q is bound to the
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constant value 1.7, a random sample drawn from the Inverse-Gamma distribution on Line 9.
Likewise, r is bound to 0.2. Then, the symbolic random variable Xx created on Line 3 has the
symbolic distribution N (5.,1.7). This particle also has spk as false, so the observed variable on
Line 7 has the symbolic distribution N (Xx,0.2). In another particle, q is bound to 0.6, r to 3.1,
spk to true, and other to 0.1. Then, Xx has the symbolic distribution N (5.,0.6) and the observed
variable has N (Xx,3.2), since r+other evaluates to 3.2

To evaluate the particle, the inference algorithm uses symbolic computation to solve symbolic
expressions analytically where possible and falls back on sampling random variables in the ex-
pressions otherwise. In the example program, the algorithm solves for the analytical solution of
the posterior symbolic distribution of Xx, making Xx a child of the observed variable. When a
symbolic random variable has to be sampled because the algorithm cannot find a closed-form
solution, the program throws an annotation violation error. The particle accumulates a weight
from conditioning the model on input values. The evaluations pause at resampling checkpoints,
where a new collection of particles is resampled from the existing collection. In Figure 2.2a, the
resampling step occurs at the end of each fold_resample iteration. When all particles have been
evaluated, Siren returns the mixture distribution of the results using the weights.

Accuracy and Performance Analysis To deploy the radar tracker presented in Figure 2.2, the
developer must ensure that it will achieve adequate performance at runtime. This task is challenging
because predicting how many particles a particle filter requires to achieve adequate accuracy is
difficult.1 It is further complicated by the fact that the accuracy of hybrid inference depends
unpredictably on the inference plan. The inference plan will determine which random variables the
inference system samples and which ones it keeps symbolic. Keeping variables symbolic can reduce
the number of particles the system requires to achieve adequate accuracy. However, this behavior
is not guaranteed, although a developer can empirically determine an inference system’s behavior
by executing the program with multiple different inference plans to build a performance profile.

Performance Profile Figure 2.3 presents the performance profiles for the programs in Figure 2.2.
These graphs present scatter plots of accuracy and run time over a range of particle counts and
for a variety of different inference plans. Each graph uses an accuracy metric measuring the error
of the inference algorithm’s estimate of either x, q, or r. The red squares present the time and
accuracy tradeoff for the default inference plan that makes no annotations. The green diamonds
present the tradeoff for annotating with the Symbolic x Inference Plan from Figure 2.2a. The
blue triangles present the tradeoff for the program annotated with the Symbolic r Inference Plan
from Figure 2.2b. Additionally, the yellow crosses present the tradeoff for annotating with the
Sample All Plan, where all random variables are given the sample annotation.

In the context of radar tracking, the most important variable is the target’s position x, so a
developer can conclude from the performance profile in Figure 2.3 that the Symbolic x Inference
Plan is better than the other plans because it leads to the lowest error on the x random variable.
However, this property is not universal. In a context where the developer is trying to estimate the
noise r, the developer could conclude that the Symbolic r Inference Plan is better than the other
two plans because its annotations enable the inference system to achieve lower error on the r
random variable when the execution time is greater than 1 second. The heuristics of the inference

1The execution time of a particle filter is generally proportional to the number of particles used during execution.
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Figure 2.3: Accuracy and runtime performance of the example program from Figure 2.2. Each
scatter plot presents the program execution time and accuracy for particle counts ranging from 1
to 1024 and multiple inference plans. Each data point measures an experiment that – across 100
runs – measures the median runtime and the 90th percentile of the Mean Squared Error for the
relevant random variable – either x, q, or r.

algorithms are ultimately oblivious to the developer’s objectives and cannot adapt to those metrics.
This demonstrates the value of inference plans: They enable a developer to optimize the inference
algorithm to achieve the best accuracy on the random variables relevant to their objectives.

Inference Plan Violations However, the annotated program in Figure 2.2b reveals a challenge
with empirically determining the behavior of a hybrid inference algorithm that is also a randomized
algorithm. In Figure 2.2b, if the inference system samples the variable spk and receives a result of
false – which will happen 99.99% of the time according to spk’s distribution specified on Line 4 –
then the observed variable on Line 7 has a symbolic Gaussian distribution with variance Xr. The
Inverse-Gamma distribution of Xr is conjugate with the Gaussian distribution, which means that
inference systems can find a closed-form solution to the model and can keep r symbolic. However,
in the very rare case that the system samples spk and the result is true, the program specifies that
the observed variable on Line 7 has a symbolic Gaussian distribution with variance equal to the sum
of two Inverse-Gamma random variables r and other. This sum does not have an Inverse-Gamma
distribution and is not conjugate with the Gaussian distribution on Line 7. Without a conjugacy
relationship to exploit, the inference system cannot solve the model analytically. Instead, it will
need to sample the variable r to reduce the number of symbolic random variables and simplify
the model such that it can find a closed-form solution. This produces a different inference plan
in which all random variables are sampled i.e. the Sample All Plan.

The performance profiles in Figure 2.3 show that the Sample All Plan performs worse than
the ideal Symbolic r Plan where spk is always false and r is always symbolic. This unexpected
performance degradation resulted from an assertion violation; the developer annotated variable r
as symbolic, but the inference system requires r to be sampled to solve the program. When there
is an assertion violation in the program, Siren will throw an exception to alert the developer of
the system’s deviation from the specified plan. Thus, the behavior of the program in Figure 2.2b
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presents a major challenge to developers. Developers evaluating this program for a radar tracking
system may not find such a rarely occurring exception during testing, leading them to believe
their program is working properly when it could in fact suffer a catastrophic failure in production.

2.3 Inference Plan Satisfiability Analysis

When a program executes without failures, the annotations encode a satisfiable inference plan. To
enable developers to test for this satisfiability property without repeatedly executing a program
on a large space of potential inputs that is difficult to cover, Siren performs the inference plan
satisfiability static analysis to determine whether the annotated inference plan is satisfiable during
all possible executions of the program using the hybrid inference algorithm.

The analysis uses an abstract interpretation of the program. It maintains abstract symbolic
distributions of random variables and uses abstract expressions to over-approximate program exe-
cutions. Consider the unsatisfiable program from Figure 2.2b. On Line 6, because the analysis does
not know the exact value of spk, it uses an abstract value to over-approximate the subexpressions
in the branches. If spk is false, the abstract subexpression is X̂r, referring to the abstract random
variable from Line 10. If spk is true, the subexpression is X̂r +̂ UnkC. The abstract value UnkC
represents some unspecified constant. All random samples are constant values, so other evaluates
to UnkC. The analysis over-approximates these subexpressions as a single abstract expression:
UnkE({X̂r}) – an unspecified abstract expression that references the random variables X̂r.

The analysis also performs an abstraction of how the inference system finds closed-form solutions.
On Line 7, the observed variable has the abstract distribution N̂ (UnkC, UnkE({X̂r})). The variance
UnkE({X̂r}) represents any expressions that reference X̂r, including complex expressions such as
X̂r +̂ UnkC. The inference system cannot find closed-form solutions when the variance is a complex
expression. So, X̂r (i.e. the program variable r) must be sampled. Because r is annotated with
symbolic, the analysis rejects the program, correctly identifying the inference plan as unsatisfiable.

The satisfiability analysis will always reject unsatisfiable inference plans, but it may be overly
conservative and erroneously reject satisfiable inference plans. Nevertheless, the analysis is precise
in practice. For example, it correctly determines the program in Figure 2.2a is satisfiable. At Line 7,
the observed variable has the symbolic distribution N̂ (X̂x, UnkC), where X̂x refers to the symbolic
random variable created on Line 3. The variance is a constant, the mean is a linear expression, and
X̂x also has a Gaussian symbolic distribution. This program only consists of linear-Gaussian distri-
butions – a class of probabilistic models that the inference system can find closed-form solutions of.
Then, x will always be kept symbolic as the annotation requires. No annotations are violated, so the
analysis accepts the program. The developer can have confidence that the performance profile for
the Symbolic x Plan in Figure 2.3 is representative of the inference system’s behavior in production.

Using annotations, the developer can select an inference plan that produces better performance.
With the satisfiability analysis, the developer can further guarantee the inference plan will never
produce an annotation violation error in any execution. If Siren successfully compiles a program,
then any variable annotated with symbolic will always be represented symbolically in any execution,
and any variable annotated with sample will always be sampled.
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Chapter 3

Language Syntax and Semantics

In this chapter, I present the syntax and semantics of the first-order functional PPL, Siren, adapted
from Staton (2017). I have extended the language to support distribution encoding annotations
and adapted it to use hybrid inference, and specify its semantics via the hybrid inference interface.

3.1 Syntax

Figure 3.1 presents the syntax of Siren. The type t of an expression is either unit, real, int,
a product type, or a list. An expression e is either a value v (constant; variable; pair; or the
application of an operator, e.g., an arithmetic operation, a distribution, or a list), a function
application, a conditional, or a local definition. To manipulate lists, I add the classic fold operator.
Siren also supports probabilistic operators. The expression let x← op(v) in e introduces a new
local random variable x with distribution op(v) to be used in expression e. Optionally, a symbolic
or sample annotation adorns a random variable declaration. The observe(v1, v2) expression
conditions the model on the variable with distribution v1 having the value v2. The resample
operator instructs the program to perform resampling for particle filtering. The fold_resample
operation used in Chapter 2 is syntactic sugar for applying resample at the end of each fold
iteration. A program is a sequence of function declarations d followed by a main expression.

t ::= unit | bool | real | t× t | t list
v ::= c | x | (v, v) | op(v) | nil | cons(v, v)

e ::= v | f(v) | if v then e else e
| let x = e in e | fold(f, v, v)
| let κ x← op(v) in e | observe(v, v)
| resample

κ ::= ε | symbolic | sample
d ::= let f = fun x→ e

prog ::= d∗ e

Figure 3.1: Syntax of the Siren language.
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D ::= N (E,E) | B(E) | Γ−1(E,E)

| δ(E) | δs(E) | . . .
E ::= c | X | E + E | E - E | E * E

| E / E | ite(E,E,E) | E Cmp E

Cmp ::= = | != | < | <= c ∈ V,X ∈ RV

Figure 3.2: Grammar of symbolic expressions.

assume : A×D×G→RV ×G

observe :RV ×V×G→ G×R
value :RV ×G→ V×G | fail

value∗ : E ×G→ V×G | fail

Figure 3.3: Hybrid Inference Interface.

3.2 Operational Semantics

Siren interprets the model described in a program as a weighted sampler that returns a value and
a score measuring the likelihood of the result with respect to the model. To approximate the poste-
rior distribution, basic Monte Carlo methods launch a set of independent executions of the sampler,
the particles, and return a categorical distribution that associates each value with its score. Unfor-
tunately, for models involving multiple random variables, there is very little chance that a series of
random guesses returns a meaningful result. To mitigate this issue, Siren implements a particle fil-
ter, an advanced weighted sampler that occasionally resamples the set of particles according to their
score during executions. The resampling step duplicates the most probable particles and drops the
least probable. Following (Lundén et al., 2021), I add an explicit resample operator to the language
to enable programs to explicitly trigger resampling.1 In this section, I present the operational
semantics of Siren which is a big-step semantics extended with checkpoints for resampling.

3.2.1 Hybrid Inference Interface

Hybrid inference algorithms reduce variance in particle filters by computing closed-form distribu-
tions where possible and only drawing random samples if symbolic computation fails. I first present
definitions for the hybrid inference interface, an extension of the symbolic interface (Atkinson
et al., 2022), that underpins the operational semantics.

Symbolic Expressions Figure 3.2 presents the grammar of symbolic expressions used by hybrid
inference algorithms implementing the hybrid inference interface. It specifies a grammar of distribu-
tions D that includes, but is not limited to, Gaussian, Bernoulli, Inverse-Gamma, and Dirac Delta
distributions. D can also be a sampled-Delta distribution (denoted as δs), which is a Dirac Delta
distribution that is used only to represent a sample drawn from a probability distribution. Figure 3.2
further specifies a grammar of expressions E that uses operators to combine constant values c and
random variables X. The operators include standard arithmetic and comparison operators and a
conditional operator ite. The meaning of the conditional operator is that ite(Ei,Et,Ee) returns
the value of the expression Et if the condition Ei is true, and otherwise returns the value of Ee.

1Automatic selection of resampling locations for optimal performance is an open problem (Lundén et al., 2021).
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Symbolic State A symbolic state g ∈ RV → A×D×N is a finite mapping whose domain
is the set of random variable names and where A = {sample, symbolic, ε}. It maps each random
variable to an entry consisting of an optional annotation (ε represents no annotation), a symbolic
representation of a distribution, and a data field that is implementation-specific. I use the notation
g(X)a for the annotation of the variable X, use g(X)d for its distribution, and use g(X)n for the
data field. The entire entry is referred to as g(X).

Interface The hybrid inference interface uses four operations to manipulate the symbolic state,
shown in Figure 3.3. The assume operation takes an annotation, a distribution, and a symbolic
state, and returns a new random variable with the given distribution and the updated symbolic
state. The observe operation conditions the symbolic state on the input variable having the given
value and returns the updated state and a score for the particle filter to use as the weight. The
value operation replaces the input variable with a sample from its distribution, turning it into
a sampled-Delta distribution. It must also check the annotation for violation; if the annotation is
symbolic, it throws a runtime error. The Siren semantics also makes use of the operation, value∗,
which calls value on all random variables in the given symbolic expression and fully evaluates
it into a constant value. It propagates failure if any value call fails. The value∗ operation is the
same across implementations. I will discuss different implementations of the interface in Section 3.3.

3.2.2 Big-step Semantics with Checkpoints

Next, I present the semantics of Siren. Figures 3.4 and 3.5 show the semantics formalized as
a big-step semantics extended with checkpoints. A particle is represented by a pair (expression,
symbolic state). A Siren program is described by three types of rules:

• Particle Evaluation. The evaluation relation e, g ↓r e′, g′,w evaluates a particle (e, g) and
returns an updated particle (e′, g′), the associated score w, and a resample flag r indicating
if the evaluation was interrupted.

• Particle Set Evaluation. The evaluation relation {ei, gi}1≤i≤N ⇊ D gathers the results of
a set of particles into a distribution D.

• Model Evaluation. The evaluation relation e ⇓N D evaluates a program expression e into
a distribution D using N particles.

Particle Evaluation Figure 3.4 shows the particle evaluation rules. A constant v is already
fully reduced so the resample flag r is set to true. Since it is a deterministic value, the associated
score is 1. The resample operator interrupts reductions by setting the resample flag r to true; it
reduces to the unit value. To evaluate a function call f(v), the rule evaluates the function body.
The semantics of if v then e1 else e2 consists of two cases. If e1 and e2 are pure (i.e. they do
not perform any observe or resample) and the condition v is not a constant (i.e. it contains some
symbolic random variables) then the rule reduces to an ite symbolic expression used for symbolic
computation. Since there is no observe, the score is 1. Otherwise, the rule evaluates the condition
to a constant value with value∗ and uses it to decide which branch to execute. The semantics of
a local declaration let x = e1 in e2 depends on resample operators. If there is a resample in e1 the
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v, g ↓false v, g,1 resample, g ↓true unit, g,1
let f = fun x→ e e[x← v], g ↓r e′, g′,w

f(v), g ↓r e′, g′,w

pure(e1, e2) ¬const(v) e1, g ↓false v1, g1,1 e2, g1 ↓false v2, g
′,1

if v then e1 else e2, g ↓false ite(v, v1, v2), g′,1

value∗(v, g) = true, gv e1, gv ↓r e′1, g′,w
if v then e1 else e2, g ↓r e′1, g′,w

value∗(v, g) = false, gv e2, gv ↓r e′2, g′,w
if v then e1 else e2, g ↓r e′2, g′,w

e1, g ↓true e′1, g
′,w

let x = e1 in e2, g ↓true let x = e′1 in e2, g
′,w

e1, g ↓false v1, g1,w1 e2[x← v1], g1 ↓r e′2, g2,w2

let x = e1 in e2, g ↓r e′2, g2,w1 ∗w2

fold(f, nil, v), g ↓false v, g,1

let x = f((lhd, v)) in fold(f, ltl, x), g ↓r e, g′,w
fold(f, cons(lhd, ltl), v), g ↓r e, g′,w

κ ∈ {ε,symbolic} assume(κ,dist(v), g) = X,gX e[x← X], gX ↓r e′, g′,w
let κ x← dist(v) in e, g ↓r e′, g′,w

assume(sample,dist(v), g) = X,gX value(X,gX) = vx, g
′
X e[x← vx], g

′
X ↓r e′, g′,w

let sample x← dist(v) in e, g ↓r e′, g′,w

assume(ε,dist(v1), g) = X,gX value∗(v2, gX) = v, gv observe(X,v, gv) = g′,w

observe(dist(v1), v2), g ↓false unit, g′,w

Figure 3.4: Particle evaluation rules.

{
ei, gi ↓false vi, g

′
i,wi

}
1≤i≤N∧

1≤i≤N (vi ≠ fail)
{
Distribution(vi, g′i) = Di

}
1≤i≤N

W =
∑

1≤i≤Nwi

{ei, gi}1≤i≤N ⇊
∑

1≤i≤N

wi

W
×Di{

ei, gi ↓ri e′i, g′i,wi

}
1≤i≤N∨

1≤i≤Nri
∧

1≤i≤N (e′i ≠ fail) µ = cat
({

wi, (e
′
i, g

′
i)
}
1≤i≤N

)
{draw(µ)}1≤i≤N ⇊ v

{ei, gi}1≤i≤N ⇊ v{
ei, gi ↓ri e′i, g′i,wi

}
1≤i≤N

∨
1≤i≤N (e′i = fail)

{ei, gi}1≤i≤N ⇊ fail

Figure 3.5: Particle set evaluation rules.
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first rule reduces e1 up to the first resample and stops the evaluation (i.e. the resample flag is set to
true). Otherwise, e1 fully reduces without interruption. Then, e2 is evaluated and the total score is
the product of the score of e1 and e2. The expression fold(f, l, v) is a standard fold, where the
expression evaluates to the accumulator v if the list is empty. Otherwise, the semantics evaluates the
function call of f on the first element of l and the accumulator v and recurses on the rest of the list.

A random variable let κ x← dist(v) in e uses assume to create a new random variable in
the symbolic state. The annotation sample denotes that the variable must be represented using
samples, symbolic denotes it must be represented symbolically, and ε denotes that the runtime
should decide. If a random variable is annotated sample, the operation value draws a random
sample from the variable’s distribution and updates the symbolic state. The observe operator
uses assume to create a new random variable without annotations in the symbolic state and uses
observe to condition the random variable and compute the score of the particle. The value to
condition on must be a constant value, so the rule uses value∗ to turn v2 into a constant value.

Particle Set Evaluation Figure 3.5 shows the particle set evaluation rules. The rules handle
resuming execution from checkpoints on a set of N particles. There are three possible cases during
evaluation. If all the particles finish execution (i.e. the resample flag is false), the semantics gather
the computed distributions into a mixture distribution where Distribution(v, g) returns the
distribution of v with respect to the symbolic state g and wi/W are the normalized scores. If one
of the particles stopped at a resample step, the rule builds a categorical distribution µ of particles
using the weights and resamples a fresh set of particles {draw(µ)} before resuming the execution.
Lastly, the entire evaluation immediately fails if any particle fails.

Model Evaluation To evaluate the main expression e with a set of N particles, the model evalua-
tion rule launches the particle set evaluation with N independent particles (e,∅) where each particle
starts with an initially empty symbolic state. The program evaluates to a distribution or fail.

{e,∅}1≤i≤N ⇊ v

e ⇓N v

3.3 Implementing the Hybrid Inference Interface

The hybrid inference interface can be implemented by different hybrid inference algorithms. The
full implementations of these algorithms are quite complex, so I defer the full details to the
respective works. To provide an intuition of how these algorithms implement hybrid inference
and incorporate the distribution encoding annotations, I summarize here how semi-symbolic infer-
ence (Atkinson et al., 2022) and delayed sampling (Lundén, 2017, Murray et al., 2018) implements
the interface operations and the data field.

3.3.1 Semi-symbolic Inference

In semi-symbolic inference (SSI), a random variable can only be sampled and scored if it is a root – a
variable that does not have any upstream dependencies. The core of SSI is using a hoisting algorithm
that turns random variables into root variables. I describe here the hoisting algorithm and how
the hybrid inference interface is implemented, but defer auxiliary details to Atkinson et al. (2022).
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Hoisting Algorithm The hoisting algorithm takes a random variable and symbolic state and
returns the updated state wherein the input variable is now a root variable in the graph. To achieve
this, the algorithm recursively swaps the parent-child dependency relationship between random
variables by exploiting conjugate priors (Fink, 1997). A conjugate prior is a parent distribution to a
child distribution that has a known analytical solution for rewriting the distributions such that the
dependency relationship between the two random variables is reversed. The algorithm performs the
swap by manipulating the symbolic distributions in the symbolic state, keeping the random variables
represented as symbolic expressions. When the algorithm encounters a parent-child relationship that
it cannot swap, it samples the parent using value. Sampling the parent removes the dependency
since the parent variable now represents a constant value rather than a symbolic distribution.

Algorithm 1 hoist: Hoisting a random variable to be a root depending on no other variables.
function hoist_helper(Xcur, roots, g)

parents ← topo_sort(get_parents(Xcur, g))
roots’← roots
g′ ← g
for Xpar ∈ parents do

if Xpar ∉ roots then
g′ ← hoist_helper(Xpar, roots’, g′)
roots’← Xpar :: roots’

end if
end for
g′′ ← g′

for Xpar ∈ reverse(parents) do
if Xpar ∉ roots’ then

(g′′,conjugate)← swap(Xpar, Xcur, g′′)
if not conjugate then

throw (Xpar,Xcur)
end if

end if
end for
return g′′

end function
function hoist(Xin, g)

try
return hoist_helper(Xin, {}, g)

catch (Xpar,Xchild)
(_, g′)← value(Xpar, g)
g′′ ← eval∗(Xchild, g

′)
return hoist(Xin, g′′)

end try
end function

I present the definition of hoist in Algorithm 1. The hoist_helper operation recursively
calls itself on the parents of Xcur in topological order. The topological ordering is a requirement to
prevent creating cycles in the dependencies of the random variables as I perform swaps. After each
recursive call, the hoisted parent is added to the next calls’ roots set. Members of the roots set are
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not hoisted or swapped. The roots set enforces that subsequent parents will only be descendants
of the earlier parents so no cycles will be created. Then, hoist_helper iterates through all
parents in reverse topological order and swaps Xcur with each. If Xcur cannot be swapped with one
of its parents, the operation throws an exception that is caught at the outermost level. The hoist
operation calls hoist_helper with an empty roots set, thus turning Xin into a root. In the
event of an exception, it forces the parent of the offending variable to be sampled using the Value
operation. It then uses the eval∗ operation to eliminate the resulting Delta distribution from the
symbolic state. After thus eliminating this variable, it again attempts to hoist the variable Xin.

The hoist function relies on the swap function to detect conjugacies and invert the parent-
child relationship between random variables. I summarize the workings of swap here to show how
SSI decides whether to keep a random variable as a symbolic expression or to sample it.

swap(X1,X2, g) = match g(X1)d, g(X2)d with
| N (µ0, var0),N (µ, var) if (µ = a ∗X1 + b)∧ const(var0, var) :
let (µ′

0, var′0) = ((a * µ0) + b, (a * a) * var0) in
let (var′′0, µ′′

0) = (1 / (1 / var0 + 1 / var), (µ′
0 / var′0 + X2 / var) * var′′0) in

(g[X1 7→ N ((µ′′
0 - b) / a, var′′0 / (a * a))][X2 7→ N (µ′

0, var′0 + var)], true)
. . .
| _ : (g, false)

The operation can be extended with any pair of conjugate distributions; here I show the case
for linear-Gaussians. When 1) both X1 and X2 are Gaussian-distributed, 2) the variance of each
distribution is constant (i.e., does not depend on any random variables), and 3) the mean of X2 is
expressible as an affine function of X1, the swap operation performs linear-Gaussian swapping. The
swap operation computes the new parameters of the swapped distributions according to the stan-
dard rules for conjugate priors (Fink, 1997) and updates the new distributions in the symbolic state.
It returns the updated state with a true flag indicating a swap occurred. Otherwise, it returns the
state unchanged and false. If swap returns false, hoist calls value to sample the parent variable.

Interface SSI implements the hybrid interface using hoist. First, the assume operation returns
a new random variable and the updated state. SSI does not use the data field of the symbolic state.

assume(κ,D, g) = let g′ = g[Xnew 7→ (κ,D)] in
(Xnew, g

′)

The value operation replaces a random variable with a sample from its distribution. The
intervene operation updates the distribution of the given variable in the symbolic state.

value(X,g) = if g(X)a = symbolic then fail
else let g′ = hoist(X,g) in let v = draw(g′(X)) in
(v, intervene(X,δs(v), g

′))

If the random variable has a symbolic annotation, value throws a runtime annotation violation
error. Otherwise, value hoists the variable X with hoist, turning it into a root. The function
then draws a sample from the root random variable’s distribution. Finally, the intervene function
uses sampled-Delta distribution to mark X as a random variable that was reduced to a sample.
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The observe operation also uses hoist to turn the input random variable into a root variable.
Then, it computes the score, which is the probability density of variable’s distribution at the input
value. It updates the symbolic state with the input value.

observe(X,v, g) = let g′ = hoist(X,g) in let s = score(g′(X)) in
(intervene(X,δ(v), g′), s)

3.3.2 Delayed Sampling

Delayed sampling (DS) is an alternative hybrid inference algorithm that also exploits conjugacy
relationships (Lundén, 2017). It is an alternative implementation of the interface that does
not reverse parent-child relationships between random variables. DS uses the symbolic state to
represent the model as a forest of disjoint trees, where each node is a random variable. The
variables maintained symbolically in the tree are all conjugate priors to their children.

Associated with each node in the tree are pointers to its children as well as its prior distribution
before any observing or sampling, all represented with symbolic expressions. DS specifies three
types of nodes: Initialized, Marginalized, and Realized nodes. Node types are used by DS to
determine whether a variable needs to be marginalized. Initialized nodes represent random
variables that have a conditional distribution dependent on their parent; Marginalized nodes
represent variables that have marginal distributions, and may have an optional prior distribution
(and associated parent); and Realized nodes represent variables that have been replaced by a
constant value through sampling or observing. The DS symbolic state uses the data field g(X)n
to track the node type for each random variable, where Srv ⊆ RV are the children of the node:

N ::= marginalized(Srv) | marginalized(X,D,Srv) | initialized(X,Srv) | realized

Grafting Algorithm DS may only observe or sample a random variable that is a terminal node
(i.e. a Marginalized node with no Marginalized children). DS turns variables into terminal nodes
with a grafting algorithm that recursively converts Initialized nodes into Marginalized nodes by
symbolically marginalizing the parent of Initialized nodes and removing edges to its Marginalized
child by sampling. The graft operation uses the node type to determine which operations
convert the node into a terminal node: If the node is a Marginalized node, graft retrieves its
Marginalized child and removes the edge to that subtree using prune, which recursively samples
Marginalized children using value; if the node is an Initialized node, graft ensures the parent
node is also terminal by recursively calling graft and then symbolically marginalizing with
marginalize. At the end of graft, the variable X is a terminal node. I defer further details
of graft to Lundén (2017) and Murray et al. (2018).

graft(X,g) = match g(X)n with
| marginalized(Srv) | marginalized(X ′,D,Srv) :
let Xchild = marginalized_child(Srv) in prune(Xchild, g)
| initialized(X ′, Srv) :
let g′ = graft(X ′, g) in marginalize(X,g′)

Interface DS requires additional helper functions to implement the interface. To implement the
assume operation, DS uses conjugate_dist to ensure the new random variable has at most one
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parent and that the parent must be a conjugate prior. If it has more than one parent or the parent
is not a conjugate prior, those parents are sampled with value. Then, assume inserts the variable
and its annotation into the symbolic state with the appropriate node type using initialize.

assume(κ,D, g) = let D′, g′ = conjugate_dist(D,g) in
(Xnew, initialize(Xnew, κ,D

′, g′))

DS implements the value and observe operation by first using graft to turn the variable
into a terminal node, before drawing a sample or computing the score. The realize operation
updates the symbolic state with the sample and makes the node a Realized node.

value(X,g) = if g(X)a = symbolic then fail
else let g′ = graft(X,g) in let v = draw(g′(X)) in
(v,realize(X,δs(v), g

′))

observe(X,v, g) = let g′ = graft(X,g) in let s = score(g′(X)) in
(realize(X,δ(v), g′), s)
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Chapter 4

Inference Plans

Using the symbolic and sample distribution encoding annotations, developers can express an
inference plan specifying their requirements for how each random variable is represented. Siren
samples sample annotated variables upon instantiation. The hybrid inference interface dynamically
enforces the symbolic annotation with a check in the value operation and throws an annotation
violation error if a symbolic variable is sampled. If a program annotated with an inference plan
executes without any annotation violations, the inference plan is satisfiable.

Definition 4.0.1 (Satisfiable Inference Plan). Given a program e and N particles, the inference
plan is satisfiable if e ⇓N v and v ≠ fail.

For hybrid inference algorithms that are also randomized algorithms, the satisfiability of an
inference plan depends on the runtime execution. This means that when a programmer annotates
the program with an inference plan, 1) the prescribed inference plan may not be satisfiable, 2)
the satisfiability is determined by running the program, and 3) the satisfiability is not guaranteed
to be the same across executions due to data-dependent control flow.

I next present the inference plan satisfiability analysis, which statically determines inference
plan satisfiability for all possible runtime executions of a Siren program. The analysis is unified
across different hybrid inference algorithms using the hybrid inference interface. I formalize the
analysis as an abstract interpretation and prove the soundness of the analysis.

4.1 Abstract Hybrid Inference

The analysis performs an abstract interpretation of the program with an abstraction of the hybrid
inference interface. I construct abstract symbolic expressions and abstract symbolic states that
the abstract interface operates over and manipulates. The abstract interface operations mirror
the concrete operations, except that ̂Observe does not perform scoring or sampling.

Abstract Symbolic Expressions Figure 4.1 shows the grammar of the abstract expressions.
For every symbolic expression, there is a corresponding abstract symbolic expression. Abstract ex-
pressions can also be UnkC, representing all constants, or TopE, representing all possible expressions.
Additionally, they can also be the UnkE(Ŝrv) expression, where Ŝrv is a set of abstract random
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D̂ ::= N̂ (Ê, Ê) | B̂(Ê) | Γ̂−1(Ê, Ê) | δ̂(Ê) | δ̂s(Ê) | . . . | TopD | UnkD(Ŝrv)

Ê ::= ĉ | X̂ | Ê +̂ Ê | . . . | UnkC | TopE | UnkE(Ŝrv)

ˆCmp ::= =̂ | !̂= | <̂ | <̂= ĉ ∈ V̂, X̂ ∈ R̂V, Ŝrv ⊆ R̂V

Figure 4.1: Grammar of abstract symbolic expressions. Grayed-out expressions are identical to
those in Figure 3.2.

variables; the UnkE(Ŝrv) expression represents all expressions that reference any number of the
random variables in Ŝrv . Likewise, abstract distributions also can be TopD or UnkD(Ŝrv).

Abstract symbolic expressions are equipped with a partial order, which I summarize as follows:

ĉ ≤ UnkC UnkC ≤ X̂

X̂ ≤ UnkE({X̂})
UnkE(Ŝrv) ≤ TopE UnkD(Ŝrv) ≤ TopD
UnkE(Ŝrv) ≤ UnkE(Ŝ′

rv) ⇐ Ŝrv ⊆ Ŝ′
rv

UnkE(Ŝrv,1) +̂ UnkE(Ŝrv,2) ≤ UnkE(Ŝ′
rv) ⇐ Ŝ′

rv = Ŝrv,1 ∪ Ŝrv,2

Ê1 +̂ Ê2 ≤ Ê′
1 +̂ Ê′

2 ⇐ Ê1 ≤ Ê′
1, Ê2 ≤ Ê′

2

. . .

The abstract expression UnkC subsumes all constants and is itself considered a constant. Abstract
random variables subsume constants. The UnkE({X̂}) expression subsumes variable X̂. The
UnkE(Ŝrv) expression is a refinement of the top expression TopE and the relative ordering between
UnkE(Ŝrv) expressions is defined by their variable sets. Likewise, UnkD(Ŝrv) is a refinement of
TopD. A plus expression subsumes another plus expression if the subexpressions also subsumes the
subexpressions of the other expression. Other complex expressions and distributions are symmetric.

Multiple abstract expressions can be over-approximated as one expression via a joining ex-
pression, defined as taking the least upper bound according to the partial ordering. The partial
ordering is designed to maintain more precise abstract expressions and distributions by recursing on
subexpressions if the top-level expression type matches. For example, the join of X̂1 +̂ 1̂ and X̂2 +̂ 2̂
produces UnkE({X̂1, X̂2}) +̂ UnkC. Random variables are not equivalent to each other, so their least
upper bound can only be the UnkE({X̂1, X̂2}) expression. Retaining a precise representation of
expressions is essential to the precision of the analysis because the heuristics of the hybrid inference
algorithms depend on identifying expressions of certain classes (e.g. linear-Gaussians).

Abstract Symbolic State An abstract symbolic state ĝ is a finite mapping of abstract ran-
dom variables to tuples of annotations, abstract distributions, and the implementation-specific
abstract data field: ĝ ∈ Ĝ = R̂V → Â× D̂ × N̂. Each entry is a constraint on what entries
exist in the concrete state. For example, ĝ(X̂)d = N̂ (UnkC, UnkC) requires the concrete state
to map the corresponding random variable to Gaussian distributions with constant parameters.
Â =

{
ŝample, ̂symbolic, ε

}
is the abstraction of annotations that is equipped with a partial

ordering that defines its join operation: ε ≤ ŝample ≤ ̂symbolic.
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Abstract states are equipped with a partial order and a join operation:

ĝ1 ≤ ĝ2 ⇐⇒ ∀X̂∈dom(ĝ1)
ĝ1(X̂) ≤ ĝ2(X̂)

I also define a weak equivalence between two abstract symbolic states that only compares random
variables that are reachable from the given expression. Additional unreachable random variables
in a symbolic state do not affect execution, so abstract symbolic states are equivalent for the given
expression if all reachable variables from the expression have the same entries.

ĝ1 ∼=e ĝ2 ⇐⇒ ∀X̂∈reachable(e, ĝ1, ĝ2) ĝ1(X̂) = ĝ2(X̂)

Precision of Joining Expressions When a program contains data-dependent control flow,
the static analysis does not know which branch would be evaluated. In such cases, the analysis
must over-approximate the true states of the program by joining the abstract expressions and
symbolic states from the branches. This can lose critical information about the structures of the
subexpressions. Hybrid inference relies on matching symbolic expressions to detect exact inference
opportunities, so the over-approximation can significantly impact the precision of the analysis.

let symbolic x1 <- gaussian(1.,1.) in
let symbolic x2 <- gaussian(0.,1.) in
let x = if cond then x1+1. else x2+2. in
observe(gaussian(x,5.), obs)

Figure 4.2: Example program.

For example, consider the program in Fig-
ure 4.2, where cond and obs are constant val-
ues. The variables x1 and x2 refer to the ab-
stract random variables X̂1 and X̂2. No matter
which branch the runtime executes, the ob-
served Gaussian is a linear-Gaussian. In SSI,
the parent variable in both cases would remain
as symbolic expressions, so the inference plan is satisfiable for all possible executions. However,
the analysis does not know the value of cond, so it must over-approximate the program state
by joining X̂1 +̂ 1̂ and X̂2 +̂ 2̂ into UnkE({X̂1, X̂2}) +̂ UnkC. The analysis concludes the resulting
abstract observed Gaussian is not necessarily linear-Gaussian, as the UnkE({X̂1, X̂2}) expression
also represents expressions that are non-linear to X̂1 and X̂2. Consequently, the analysis cannot
be sure X̂1 and X̂2 will not be sampled and cannot determine the inference plan is satisfiable even
though it is. Ideally, the join of the expressions should maintain that both are linear-Gaussians.

I define a special operation for joining expressions that takes advantage of the fact abstract
random variables can be renamed without compromising soundness, which I prove in Section 4.4.
The key idea is that abstract random variables and concrete random variables exist in different
namespaces. A single abstract variable can represent more than one concrete variable if its abstract
symbolic state entry over-approximates the entries of those concrete variables. By renaming two
otherwise disparate variables to the same name, their entries are forced to be joined into one. I
define the special join of two expressions Ê1 and Ê2 under symbolic states ĝ1 and ĝ2 as:

rename_join(Ê1, Ê2, ĝ1, ĝ2) = let (Ê3, ĝ3) = rename(Ê1, Ê2, ĝ2) in (Ê1 ⊔ Ê3, ĝ1 ⊔ ĝ3)

where ⊔ refers to the basic join operation implied by the partial orders for abstract expressions
and abstract symbolic states. The rename(Ê1, Ê2, ĝ2) function returns renamed versions of Ê2

and ĝ2 that maximize the similarities between Ê1 and Ê2 with capture-avoiding substitution.
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For the program in Figure 4.2, the analysis renames the random variable X̂2 to X̂1. The joined
expression is the more structurally precise expression X̂1 +̂ UnkC, and the joined state assigns
X̂1 to N̂ (UnkC, 1̂). Then, the observed random variable has the distribution N̂ (X̂1 +̂ UnkC, 5̂).
rename_join retains the shared structure in the expressions, and analysis recognizes the
observed variable as a linear-Gaussian.

Fail Throughout execution, the program may produce an annotation violation error, represented
as fail. The abstract equivalent, f̂ail is the top of all abstract values, such that any value joined
with f̂ail results in f̂ail. Any operation that receives f̂ail as inputs also returns f̂ail as the output.

4.2 Abstract Interpretation Rules

Figures 4.3 to 4.5 present the interpretation rules of a Siren program using the abstract hybrid
inference operations. Most of the abstract interpretation rules follow from the concrete semantics.
I discuss the rules that differ in detail in this section.

Conditionals The analysis mirrors the concrete semantics when the subexpressions are pure
and the condition is not constant, and when V̂alue

∗
returns t̂rue or f̂alse. When V̂alue

∗
returns

UnkC, the analysis cannot determine which branch is taken, so it interprets both branches and joins
the resulting abstract expressions with rename_join to approximate the program execution.

Fold. If the fold operation receives a list argument l̂ that is not a constant list, such as UnkE(∅),
the analysis over-approximates the operation by computing the fixpoint of the function f . The
analysis first interprets f on (̂l, v̂). Since l̂ is not a constant list, it is either UnkE(Ŝrv) or TopE,
which also over-approximate any particular item in the list. The analysis computes (v̂j, ĝj) using
rename_join, which are the over-approximations of the current inputs and the inputs of the
next iteration for f . If they are equal to the current inputs, no further application of f could be
different; the fixpoint computation stops when v̂ and v̂j are equal and ĝ and ĝj are weakly equal
with respect to (̂l, v̂).

During fixpoint computations, the analysis could be joining UnkE(Ŝrv) expressions. However,
Ŝrv can grow arbitrarily large, so the analysis widens the joined expression by converting UnkE(Ŝrv)
to TopE if |Ŝrv | ≥ N for some parameter N. My implementation uses N = 4, but the parameter
may be adjusted for greater precision at the cost of more fixpoint iterations.

Particle Set and Model Evaluation Unlike the concrete semantics, the abstract semantics
spawns only a singleton set of particles to evaluate, as there are no weights to consider. All
possible particles from a program are accounted for in a single abstract particle evaluation. Thus,
there is no abstract equivalent of the resampling step, and resample is a no-op. The particle set
interpretation rule applies the particle evaluation rules and extracts the resulting distribution.
The abstract interpretation of a program is then simply whether the abstract particle evaluation
rules encounter failures or not. If they do not encounter failure, the model evaluation – and the
analysis – return the judgment that the program is satisfiable.
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v̂, ĝ ↓̂ v̂, ĝ resample, ĝ ↓̂ ûnit, ĝ
let f = fun x→ e e[x← v̂], ĝ ↓̂ v̂′, ĝ′

f(v̂), ĝ ↓̂ v̂′, ĝ′

pure(e1, e2) ¬ĉonst(v̂) e1, ĝ ↓̂ v̂1, ĝ1 e2, ĝ1 ↓̂ v̂2, ĝ′

if v̂ then e1 else e2, ĝ ↓̂ îte(v̂, v̂1, v̂2), ĝ′

V̂alue
∗
(v̂, ĝ) = t̂rue, ĝv̂ e1, ĝv̂ ↓̂ v̂1, ĝ′

if v̂ then e1 else e2, ĝ ↓̂ v̂1, ĝ′
V̂alue

∗
(v̂, ĝ) = f̂alse, ĝv̂ e2, ĝv̂ ↓̂ v̂2, ĝ′

if v̂ then e1 else e2, ĝ ↓̂ v̂2, ĝ′

V̂alue
∗
(v̂, ĝ) = v̂′, ĝv̂ e1, ĝv ↓̂ v̂1, ĝ′1 e2, ĝv ↓̂ v̂2, ĝ′2 rename_join(v̂1, v̂2, ĝ′1, ĝ

′
2) = v̂, ĝ′

if v̂ then e1 else e2, ĝ ↓̂ v̂, ĝ′

e1, ĝ ↓̂ v̂1, ĝ1 e2[x← v̂1], ĝ1 ↓̂ v̂2, ĝ2
let x = e1 in e2, ĝ ↓̂ v̂2, ĝ2 fold(f, nil, v̂), ĝ ↓̂ v̂, ĝ

let x = f((̂lhd, v̂)) in fold(f, l̂tl, x), ĝ ↓̂ v̂, ĝ′

fold(f, cons(̂lhd, l̂tl), v̂), ĝ ↓̂ v̂, ĝ′

f((̂l, v̂)), ĝ ↓̂ v̂f , v̂f rename_join(v̂, v̂f , ĝ, ĝf) = v̂j, ĝj v̂ = v̂j ĝ ∼=(̂l,v̂) ĝj

fold(f, l̂, v̂), ĝ ↓̂ v̂, ĝ

f((̂l, v̂)), ĝ ↓̂ v̂f , v̂f rename_join(v̂, v̂f , ĝ, ĝf) = v̂j, ĝj fold(f, l̂, v̂j), ĝj ↓̂ v̂′, ĝ′

fold(f, l̂, v̂), ĝ ↓̂ v̂′, ĝ′

κ ∈ {ε,symbolic} Âssume(κ,dist(v̂), ĝ) = X̂, ĝX̂ e[x← X̂], ĝX̂ ↓̂ v̂
′, ĝ′

let κ x← dist(v̂) in e, ĝ ↓̂ v̂′, ĝ′

Âssume(ŝample,dist(v̂), ĝ) = X̂, ĝX̂ V̂alue(X̂, ĝX̂) = v̂x, ĝ
′
X̂

e[x← v̂x], ĝ
′
X̂
↓̂ v̂′, ĝ′

let sample x← dist(v̂) in e, ĝ ↓̂ v̂′, ĝ′

Âssume(ε,dist(v̂1), ĝ) = X̂, ĝX̂ V̂alue
∗
(v̂2, ĝX̂) = v̂, ĝv̂ ̂Observe(X̂, v̂, ĝv̂) = ĝ′

observe(dist(v̂1), v̂2), ĝ ↓̂ ûnit, ĝ′

Figure 4.3: Abstract interpretation rules for particle evaluation.

ŜD =
{

̂Distribution(v̂, ĝ′) | (e, ĝ) ∈ Ŝp, (e, ĝ ↓̂ v̂, ĝ′)
}

Ŝp ⇊̂
⊔

D̂i∈ŜD
D̂i

Figure 4.4: Abstract particle set evaluation.

{e,∅} ⇊̂ D̂

e ⇓̂ satisfiable
{e,∅} ⇊̂ f̂ail

e ⇓̂ f̂ail

Figure 4.5: Abstract model evaluation.
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4.3 Implementing the Abstract Hybrid Inference Interface

In this section, I define the abstract counterparts to the operations presented in Section 3.3
and summarize the implementations of the abstract hybrid inference interface for semi-symbolic
inference and delayed sampling.

4.3.1 Semi-symbolic Inference

The abstract interpretation of SSI uses an abstract interpretation of the hoisting algorithm to
implement the interface.

Hoisting Algorithm The abstract ĥoist operation, shown in Algorithm 2, is the same
algorithm as the concrete hoist, where the helper functions are replaced with their abstract
counterparts. The helper function ̂get_parents returns parent random variables of X̂cur.

Algorithm 2 Abstract hoist.
function ̂hoist_helper(X̂cur, roots, ĝ)

parents ← topo_sort( ̂get_parents(X̂cur, ĝ))
roots’← roots
ĝ′ ← ĝ
for X̂par ∈ parents do

if X̂par ∉ roots then
ĝ′ ← ̂hoist_helper(X̂par, roots’, ĝ′)
roots’← X̂par :: roots’

end if
end for
ĝ′′ ← ĝ′

for X̂par ∈ reverse(parents) do
if X̂par ∉ roots’ then

(ĝ′′,conjugate)← ŝwap(X̂par, X̂cur, ĝ
′′)

if not conjugate then
throw (X̂par, X̂cur)

end if
end if

end for
return ĝ′′

end function
function ĥoist(X̂in, ĝ)

try
return ̂hoist_helper(X̂in, {}, ĝ)

catch (X̂par, X̂child)

(_, ĝ′)← V̂alue(X̂par, ĝ)
ĝ′′ ← êval∗(X̂child, ĝ

′)
return ĥoist(X̂in, ĝ′′)

end try
end function
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The abstract version of the swap operation simulates the concrete function by detecting
conjugacy and performing computation where it can, as defined in Section 3.3. I show the match
case for linear-Gaussians.

ŝwap(X̂1, X̂2, ĝ) = match ĝ(X̂1)d, ĝ(X̂2)d with

| N̂ (µ0, var0), N̂ (µ, var) if (µ = a *̂ X̂1 +̂ b)∧ ĉonst(var0, var) :
let (µ′

0, var′0) = ((a *̂ µ0) +̂ b, (a *̂ a) *̂ var0) in
let (var′′0, µ′′

0) = (1̂ /̂ (1̂ /̂ var0 +̂ 1̂ /̂ var), (µ′
0 /̂ var′0 +̂ X̂2 /̂ var) *̂ var′′0) in

(ĝ[X̂1 7→ N̂ ((µ′′
0 -̂ b) /̂ a, var′′0 /̂ (a *̂ a))][X̂2 7→ N̂ (µ′

0, var′0 +̂ var)], true)
. . .

| UnkD(_),_ : (set_top(X̂1), f̂alse)

| _ : (ĝ, f̂alse)

Because the analysis is performed at compile-time, it can only perform a best-effort detection of
conjugates, given that parameters might be represented by the opaque UnkE(Ŝrv) and UnkD(Ŝrv)
expressions. If the abstract distribution of the parent variable X̂1 is UnkD(Ŝrv) or TopD, the analysis
recursively sets X̂1 and its ancestors to TopD using set_top(X̂1). During this process, if the
random variable or any of its ancestors (i.e. the parents of the variable and their parents and
so on) are annotated ̂symbolic, the analysis cannot be sure if the variable is a conjugate prior
nor that it is not a conjugate prior (meaning that the variable will be sampled), so the analysis
conservatively returns f̂ail. If ŝwap returns f̂alse, the ĥoist operation calls V̂alue on the parent
variable like in the concrete implementation. Then, the analysis simulates the runtime heuristics
of SSI and detects if an ̂symbolic variable might be sampled. The analysis does not consider the
expressions UnkE(Ŝrv) and TopE affine. If abstract expressions are not precise enough, the analysis
would not match with any distributions in ŝwap and would conservatively reject the program.

Interface The implementations of the abstract interface operations depend on the abstract
counterparts of the operations implementing the concrete interface. The operation Âssume is the
same as assume but it operates over the abstract domain.

Âssume(κ̂, D̂, ĝ) = let ĝ′ = ĝ[X̂new 7→ (κ̂, D̂)] in
(X̂new, ĝ

′)

In V̂alue, instead of drawing values, the abstract UnkC value is used instead to represent constant
values. ̂intervene updates the abstract symbolic state with the given abstract distribution,
similar to intervene. The ̂Observe operation does not perform scoring.

V̂alue(X̂, ĝ) = if ĝ(X̂)a = ̂symbolic then f̂ail
else let ĝ′ = ĥoist(X̂, ĝ) in

(UnkC, ̂intervene(X̂, δ̂s(UnkC), ĝ′))

̂Observe(X̂, v̂, ĝ) = let ĝ′ = ĥoist(X̂, ĝ) in

̂intervene(X̂, δ̂(v̂), ĝ′)
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4.3.2 Delayed Sampling

The abstract node types of DS can be Initialized, Marginalized, or Realized. Initialized and
Marginalized nodes still track their parent variables, their prior distributions (using abstract
expressions), and their children. The fourth abstract node type, TopN, is the top of all node states.
It indicates that the analysis does not know the node’s type. No prior and no parent to the
random variable are tracked for TopN, only its children.

N̂ ::= ̂marginalized(Ŝrv) | ̂marginalized(X̂, D̂, Ŝrv) | ̂initialized(X̂, Ŝrv) | ̂realized | TopN(Ŝrv)

Here, Ŝrv ⊆ R̂V represents the set of possible child random variables. The abstract node states
are equipped with a partial ordering:

̂realized ≤ TopN(∅)
̂marginalized(Ŝrv) ≤ ̂marginalized(Ŝ′

rv) ⇐ Ŝrv ⊆ Ŝ′
rv

̂marginalized(Ŝrv) ≤ TopN(Ŝ′
rv) ⇐ Ŝrv ⊆ Ŝ′

rv

̂marginalized(X̂, D̂, Ŝrv) ≤ ̂marginalized(X̂ ′, D̂′, Ŝ′
rv) ⇐ (X̂, D̂) ≤ (X̂ ′, D̂′), Ŝrv ⊆ Ŝ′

rv

̂marginalized(X̂, D̂, Ŝrv) ≤ TopN(Ŝ′
rv) ⇐ Ŝrv ⊆ Ŝ′

rv

̂initialized(X̂, Ŝrv) ≤ ̂initialized(X̂ ′, Ŝ′
rv) ⇐ X̂ ≤ X̂ ′, Ŝrv ⊆ Ŝ′

rv

̂initialized(X̂, Ŝrv) ≤ TopN(Ŝ′
rv) ⇐ Ŝrv ⊆ Ŝ′

rv

TopN(Ŝrv) ≤ TopN(Ŝ′
rv) ⇐ Ŝrv ⊆ Ŝ′

rv

The join operation defined by the partial ordering is used when the analysis has to compute
the join of two abstract symbolic states. Even though Initialized and Marginalized node states may
be tracking parent and prior distributions, TopN does not. This is because as soon as an abstract
node type becomes TopN, the analysis recursively over-approximates the parent and Marginal
children to the node by setting them to TopN node states as well. During this process, if any of
these random variables has a ̂symbolic annotation, the analysis returns f̂ail.

Grafting Algorithm The implementation of the interface using DS uses the abstract version
of the grafting algorithm. However, because an abstract node can have more than one marginal
child, ĝraft has to invoke p̂rune on each child.

ĝraft(X̂, ĝ) = match ĝ(X̂)n with

| ̂marginalized(Ŝrv) | ̂marginalized(X̂ ′, D̂, Ŝrv) :

let Ŝrv,children = ̂marginalized_children(Ŝrv) in
let ĝ′ = ĝ in
for X̂child ∈ Ŝrv,children :

let ĝ′ = p̂rune(X̂child, ĝ
′) in

ĝ′

| ̂initialized(X̂ ′, Ŝrv) :

let ĝ′ = ĝraft(X̂ ′, ĝ) in ̂marginalize(X̂, ĝ′)

Interface Finally, as with SSI, the DS-implementation of the interface operations is the same as
the concrete implementation, except the abstract operations and abstract values are used instead.

33



Âssume(κ̂, D̂, ĝ) = let D̂′, ĝ′ = ̂conjugate_dist(D̂, ĝ) in
(X̂new, ̂initialize(X̂new, κ̂, D̂

′, ĝ′))

V̂alue(X̂, ĝ) = if ĝ(X̂)a = ̂symbolic then f̂ail
else let ĝ′ = ĝraft(X̂, ĝ) in

(UnkC, ̂realize(X̂, δ̂s(UnkC), ĝ′))

observe(X̂, v̂, ĝ) = let ĝ′ = ĝraft(X̂, ĝ) in

̂realize(X̂, δ̂(UnkC), ĝ′)

4.4 Properties

In this section, I show that the inference plan satisfiability analysis is sound. The approach is
mostly standard (Cousot and Cousot, 1977, 1992), except for how it handles random variable
names and the variable sets in abstract expressions. I will highlight these nonstandard elements
throughout the formal development. First, I define the collecting semantics for sets of program
states that serves as the basis of the soundness proof. The collecting semantics accumulates from
program executions the information relevant to the program properties under study. The abstract
states computed by the analysis must over-approximate the collected concrete states to ensure
soundness. Next, I define the abstraction and concretization functions that relate abstract values
to concrete values. Finally, I present key lemmas and theorems that prove the analysis is sound.

4.4.1 Collecting Semantics

The collecting semantics is a forward collecting semantics (Cousot and Cousot, 1992) based on the
operational semantics. The program states collected differ between the three types of evaluation
rules. Even though the operational semantics uses weight values and performs resampling, the
collecting semantics ignores these aspects. The analysis is interested in the possible particles
produced during program execution. The resampling step does not introduce any new particles
to the execution, only duplicating or removing existing particles. Additionally, weight values do
not affect the representation of random variables. As such, weight values are not collected and
resampling is a no-op.

Particle Evaluation The collecting semantics of particle evaluation collects any particle that
can result from applying concrete particle evaluation rules to the particle. The rules may produce
more than one evaluated particle due to data-dependent control flow. The collecting semantics
returns all such possible evaluated particles with the resample flags, dropping weight values. I call
these tuples configurations.

Sc =
{
(e′, g′, r) | (e, g ↓r e′, g′,w)

}
e, g ↓̃ Sc

Particle Set Evaluation While the bulk of the soundness proof refers to the collecting particle
evaluation ↓̃, the top-level theorems also refer to collecting analogs of the particle set and model
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evaluation semantics in Section 3.2. The relation (Sp ⇊̃ SD) means that the set of particles Sp

evaluates to the set of distributions SD, and the definition of ⇊̃ refers to the definition of ↓̃. The
given set of particles is first evaluated using the collecting semantics of the particle evaluation
(which operates on a set of particles) to produce a set of configurations. If any of the particles
return fail, the semantics return a singleton set containing fail. If all of the particles have a
false resample flag (i.e. they all terminated), the semantics return a set of distributions using the
Distribution operation. If at least one of the particles has a true resample flag, the collecting
semantics iterates on the particle set evaluation rule.

Sc =
{
(e′, g′, r ′) | (e, g) ∈ Sp, (e, g ↓̃ S′

c), (e
′, g′, r ′) ∈ S′

c

}
∧

(e,g,r)∈Sc
¬r

∧
(e,g,r)∈Sc

(e ≠ fail) SD = {Distribution(v, g) | (v, g, r) ∈ Sc}
Sp ⇊̃ SD

Sc =
{
(e′, g′, r ′) | (e, g) ∈ Sp, (e, g ↓̃ S′

c), (e
′, g′, r ′) ∈ S′

c

}
∨

(e,g,r)∈Sc
r

∧
(e,g,r)∈Sc

(e ≠ fail) S′
p = forgetr(Sc) S′

p ⇊̃ SD

Sp ⇊̃ SD

Sc =
{
(e′, g′, r ′) | (e, g) ∈ Sp, (e, g ↓̃ S′

c), (e
′, g′, r ′) ∈ S′

c

} ∨
(e,g,r)∈Sc

(e = fail)

Sp ⇊̃ {fail}

Model Evaluation The relation (e ⇓̃ SD) means that the program e evaluates to the set of
distributions SD, and the definition ⇓̃ depends on ⇊̃. The collecting semantics of the model
evaluation rules constructs a particle from the given program with an empty symbolic state and
evaluates with the particle set evaluation rules.

{e,∅} ⇊̃ SD

e ⇓̃ SD

4.4.2 Abstraction

The abstraction function α maps sets of concrete values to an abstract value. I define the function
first for singleton sets of concrete values. The abstraction of sets of multiple values is then the
join of the corresponding abstracted values.

Concrete variable names and abstract random variables have different namespaces. To account
for this, the abstraction function assumes the existence of a default mapping R̂V canon :RV → R̂V
that maps concrete variable names to abstract variable names. The abstractions of both random
variables and symbolic states use this to produce the appropriate name in abstract values.

Definition 4.4.1 (Abstraction Function). The abstraction function α uses the default mapping
function R̂V canon maps every concrete variable to a unique, canonical abstract variable as follows:
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α({c}) = ĉ α({X}) = R̂V canon(X)
α({E1 + E2}) = α({E1}) +̂ α({E2}) α({(v1, v2)}) = (α({v1}), α({v2}))

α({N (E1,E2)}) = N̂ (α({E1}), α({E2})) α({symbolic}) = ̂symbolic
α({marginalized(X,D,Srv)}) = ̂marginalized(R̂V canon(X), α({D}),{R̂V canon(Xs) | Xs ∈ Srv})

· · ·
α({g}) =

{
R̂V canon(X) 7→ α({g(X)})

∣∣∣ X ∈ dom(g)
}

α({fail}) = f̂ail α(Sv) =
⊔

v∈Sv
α({v})

For example, consider a particle (E,g) with symbolic expression E = X1 + 1 and sym-
bolic state g = {X1 7→ (symbolic,Γ(1,1), realized)}. Assuming that R̂V canon maps X1 to
the abstract variable X̂a, we have that α({E,g}) = (X̂a +̂ 1̂, α({g})) where α({g}) = {X̂a 7→
( ̂symbolic, Γ̂(1̂, 1̂), ̂realized)}.

4.4.3 Concretization

The concretization function γ plays the opposite role to the abstraction function: it maps every
abstract value to a set of concrete values. While I formalize abstraction with a default mapping
function, the concretization needs to account for all possible mappings. I first define a version of the
concretization function that is parameterized by a surjective function R̂V :RV → R̂V that maps
concrete random variables to abstract random variables. The function must be surjective since
every abstract random variable must have a corresponding concrete random variable. The function
does not have to be injective, because an abstract variable can represent multiple concrete variables
that share properties in the symbolic state. The concretizations for UnkE(Ŝrv) and UnkD(Ŝrv)
incorporate the variable set Ŝrv by ensuring that the concretization includes only those expressions
whose free variables are a subset of Ŝrv . I formalize this using the operation FV (E, R̂V ) that
returns the set of free variables in E, mapped to abstract names using R̂V .

The concretization of an abstract symbolic state is defined by a set of properties that the
concrete symbolic states must satisfy. If a concrete random variable maps to an abstract random
variable that is in the abstract state, the concrete random variable must be assigned to an entry in
the concrete state. Additionally, the entry must be in the concrete set of the abstract entry of that
abstract variable. The concrete state must also have no additional random variables that do not
map to an abstract variable in the abstract state. If a concrete state exhibit these properties with
respect to the given abstract symbolic state, then it is in the concrete set of the abstract state.
Finally, I define the concretization function by taking the union over all possible name-mapping
functions; the set resulting from the concretization function is closed under name re-mappings.

Definition 4.4.2 (Concretization Function). First, γ is defined as a function that takes in an
abstract state and the name-mapping function R̂V . The function R̂V is surjective and it maps
concrete random variables into abstract random variables.
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γ(̂c, R̂V ) = {c} γ(UnkC, R̂V ) = V
γ(X̂, R̂V ) = {X | R̂V (X) = X̂}

⋃
V γ( ̂symbolic, R̂V ) = {symbolic}

γ(TopE, R̂V ) = E

γ(UnkE(Ŝrv), R̂V ) = {E | FV (E, R̂V ) ⊆ Ŝrv}
γ(Ê1 +̂ Ê2, R̂V ) = {E1 + E2 | E1 ∈ γ(Ê1, R̂V ),E2 ∈ γ(Ê2, R̂V )}

γ(N̂ (Ê1, Ê2), R̂V ) = {N (E1,E2) | E1 ∈ γ(Ê1, R̂V ),E2 ∈ γ(Ê2, R̂V )}
γ((v̂1, v̂2), R̂V ) = {(v1, v2) | v1 ∈ γ(v̂1, R̂V ), v2 ∈ γ(v̂2, R̂V )}

γ( ̂marginalized(X̂, D̂, Ŝrv), R̂V ) =
{
marginalized(X,D,Srv) | R̂V (X)=X̂,D∈γ(D̂,R̂V ),

S⊆{Xs | R̂V (Xs)∈Ŝrv}

}
· · ·

γ(ĝ, R̂V ) = {g | ∀X if R̂V (X) ∈ dom(ĝ) then g(X) ∈ ĝ(R̂V (X)) else X /∈ dom(g)}

Now, I define γ by taking the union over all possible surjective naming functions:

γ(v̂) =
{
v
∣∣∣ v ∈ γ(v̂, R̂V ), R̂V ∈ X → X̂, R̂V is surjective

}
For example, the concrete symbolic state {X1 7→ (sample, δ(1)),X2 7→ (sample, δ(2))} is in-

cluded in the concretization γ({X̂b 7→ (ŝample, UnkD(∅))}, R̂V ). However, the concrete symbolic
state {X1 7→ (sample, δs(1))} is not. Additionally, the abstract distribution D̂ = N̂ (X̂a, X̂b +̂ 1̂)
has a concretization γ(D̂), such that N (X0,X1 + 1) ∈ γ(D̂) and N (X1,X0 + 1) ∈ γ(D̂).

4.4.4 Soundness of Analysis

I present the formalization and proof of soundness for the analysis. The proofs rely on the
soundness of abstract hybrid inference interface implementations. Implementations of the abstract
interface must be sound with respect to those of the concrete interface:

Assumption 4.4.1 (Abstract Hybrid Inference Interface Soundness). For every i ∈ {Assume,
Value,Observe} and input values vi, it holds that i(vi) ∈ γ(̂i(α({vi}))).

Because of the join operation on abstract symbolic states, an abstract operation might
compute an abstract symbolic state that has variables that are not reachable from the computed
expression. The concretization of abstract symbolic states retains those unreachable variables
in the concrete symbolic states. Symbolic states with different domains are not strictly equal.
However, unreachable variables do not alter the evaluated expression nor the reachable entries in
the resulting symbolic state. To account for this property, I define a weak equivalence relation for
concrete symbolic states, analogous to the weak equivalence relation for abstract states. The weak
equivalence comparison between two symbolic states only compares random variables that are
reachable from the given expression.

g1 ∼=e g2 ⇐⇒ ∀X∈reachable(e, g1, g2) g1(X) = g2(X)

From the weak equivalence relations, I prove the weakening properties of concrete and abstract
symbolic states. Informally, this property states that adding random variables that are not already
in a symbolic state does not alter the evaluated expression nor the original entries in the resulting
symbolic state.
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Lemma 4.4.1 (Weakening). If (e, g ↓r e′, g′,w) and g ∼=e g1, then (e, g1 ↓r e′, g′1,w) and g′ ∼=e′ g
′
1.

Proof. By structural induction on derivations of ↓.

Lemma 4.4.2 (Abstract Weakening). If (e, ĝ ↓̂ v̂′, ĝ′) and ĝ ∼=e ĝ1, then (e, ĝ1 ↓̂ v̂′, ĝ′1) and
ĝ′ ∼=v̂′ ĝ

′
1.

Proof. By structural induction on derivations of ↓̂.

Next, I prove two helper lemmas for the soundness of the rename and rename_join
operations used when over-approximating control flow and loops during particle evaluation. First,
rename(Ê1, Ê2, ĝ) preserves the concretization of the pair (Ê2, ĝ).

Lemma 4.4.3 (Renaming Soundness). For any abstract expressions Ê1 and Ê2, and any abstract
symbolic state ĝ, if (Ê′

2, ĝ
′) = rename(Ê1, Ê2, ĝ) then γ((Ê′

2, ĝ
′)) = γ((Ê2, ĝ)).

Proof. The key idea is that, for any R̂V used in the computation of γ((Ê2, ĝ)), I can construct
a R̂V

′
that incorporates the renaming of X̂ to X̂ ′. Suppose that in R̂V , the concrete random

variable X is mapped to X̂. Let R̂V
′
be a copy of R̂V , except that X maps to X̂ ′ in R̂V

′
, and a

fresh concrete random variable Xnew maps to X̂. Then, the computation of the union in γ((Ê′
2, ĝ

′))
is simply a reordering of the one from γ((Ê2, ĝ)).

Next, the rename_join operation soundly over-approximates its input, given that additional
unused random variables may be present in the over-approximation.

Lemma 4.4.4 (Rename-Join Expression Soundness). For any two abstract expressions Ê1 and
Ê2, abstract symbolic states ĝ1 and ĝ2, there exists some abstract symbolic states ĝ′1, ĝ

′
2 such that

ĝ1 ∼=Ê1
ĝ′1, ĝ2 ∼=Ê2

ĝ′2, and (γ((Ê1, ĝ
′
1))∪ γ((Ê2, ĝ

′
2))) ⊆ γ(rename_join(Ê1, Ê2, ĝ1, ĝ2)).

Proof. Let ĝ′1 and ĝ′2 be the following abstract symbolic states:

ĝ′1 =

{
X̂ 7→

ĝ1(X̂) X̂ ∈ dom(ĝ1)

ĝ2(X̂) X̂ ∈ dom(ĝ2) \ dom(ĝ1)

}

ĝ′2 =

{
X̂ 7→

ĝ2(X̂) X̂ ∈ dom(ĝ2)

ĝ1(X̂) X̂ ∈ dom(ĝ1) \ dom(ĝ2)

}

By construction, ĝ1 ∼=Ê1
ĝ′1 and ĝ2 ∼=Ê2

ĝ′2. During rename-join, we have an intermediate, renamed
abstract expression and abstract symbolic state, Ê3, ĝ3 = rename(Ê1, Ê2, ĝ2). The operation
may rename a random variable X2 ∈ dom(ĝ2) to a random variable X̂1 ∈ dom(ĝ1) and X̂1 may or
may not be in dom(ĝ2). However, the operation never renames a random variable X̂1 /∈ dom(ĝ2)
to a variable X̂2 ∈ dom(ĝ2). So the random variables in dom(ĝ1) \ dom(ĝ2) either becomes a part
of dom(ĝ3) or remains unreachable from Ê3. Thus, we have Ê3, ĝ

′
3 = rename(Ê1, Ê2, ĝ

′
2) where

ĝ′3 =

{
X̂ 7→

ĝ3(X̂) X̂ ∈ dom(ĝ3)

ĝ1(X̂) X̂ ∈ dom(ĝ1) \ dom(ĝ3)

}
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It follows from the definition of basic expression join, abstract symbolic state join, and concretization
that (γ((Ê1, ĝ

′
1))∪γ((Ê3, ĝ

′
3))) ⊆ γ((Ê1⊔Ê3, ĝ1⊔ĝ3)). Following from Lemma 4.4.3, the concrete set

of the intermediate, renamed abstract expression and abstract symbolic state preserves the concrete
set of the original: γ((Ê3, ĝ

′
3)) = γ((Ê2, ĝ

′
2)). Therefore, we have (γ((Ê1, ĝ

′
1)) ∪ γ((Ê2, ĝ

′
2))) ⊆

γ(rename_join(Ê1, Ê2, ĝ1, ĝ2)).

I next prove a lemma stating that substituting abstract values that over-approximates the
original abstract value, soundly over-approximates the original results.

Lemma 4.4.5 (Substitution Soundness). If (e, ĝ1 ↓̂ v̂′1, ĝ
′
1) and (e[v̂1← v̂2], ĝ2 ↓̂ v̂′2, ĝ

′
2) and

γ((v̂1, ĝ1)) ⊆ γ((v̂2, ĝ2)), then γ((v̂′1, ĝ
′
1)) ⊆ γ((v̂′2, ĝ

′
2)).

Proof. By structural induction on derivations of ↓̂, with appeal to Theorems 4.4.2 and 4.4.4.

Now, using the above helper lemmas, I show that the analysis is sound when the particle
evaluation terminates. As shorthand, I write configuration sets that have weakly equivalent
symbolic states as Sc

∼= S′
c ⇐⇒ S′

c = {(e, g′, r) | (e, g, r) ∈ Sc, g ∼=e g
′}. I also use an auxiliary

operation to drop the resample flag in configurations: forgetr(Sc) = {(e, g) | (e, g, r) ∈ Sc}.
Lemma 4.4.6 (Terminating Particle Evaluation Soundness). For every particle (e, g), such that
(e, g ↓̃ Sc) and ∀(v, g′, r)∈Sc (v = fail) ∨ ¬r, it holds that (e,α({g}) ↓̂ v̂′, ĝ′) and there exists a
configuration set S′

c such that Sc
∼= S′

c and forgetr(S′
c) ⊆ γ((v̂′, ĝ′)).

Proof. By structural induction on derivations of ↓, by definition of abstraction, concretization, and
interpretation rules, with appeal to Assumption 4.4.1 and Theorems 4.4.1, 4.4.2, 4.4.4 and 4.4.5.

However, not all particle evaluations terminate; particle evaluations can be interrupted from
resample operators. I prove that resuming evaluation from a configuration preserves soundness.

Lemma 4.4.7 (Preservation). If (e, g ↓r e′, g′,w), then (e,α({g}) ↓̂ v̂, ĝ) ⇐⇒ (e′, α({g′}) ↓̂ v̂′, ĝ′)
and there exists some abstract symbolic state ĝ′′ such that ĝ′ ∼=v̂′ ĝ

′′ and γ((v̂′, ĝ′′)) ⊆ γ((v̂, ĝ)).

Proof. By structural induction on derivations of ↓, by definition of abstraction, concretization,
and interpretation rules, with appeal to Theorems 4.4.2 and 4.4.4 to 4.4.6

Then, from the previous properties, repeatedly evaluating a particle until it has terminated is
sound. I formalize this notion with an auxiliary operation ↓̃∗ for repeatedly evaluating a particle
until termination.

Definition 4.4.3 (Particle Evaluation until Termination). The operation ↓̃∗ evaluates an expression
on a set of symbolic states until completion.

e, g ↓̃ Sc
∧

(e′,g′,r ′)∈Sc
¬r ′

∧
(e′,g′,r ′)∈Sc

(e′ ≠ fail)

e, g ↓̃∗ Sc

E,g ↓̃ Sc
∨

(e′,g′,r′)∈Sc
e′ = fail

E,g ↓̃∗ {(fail, fail, fail)}

e, g ↓̃ Sc
∨

(e′,g′,r ′)∈Sc
r ′∧

(e′,g′,r ′)∈Sc
(e′ ≠ fail) S′′

c =
{
(e′′, g′′, r ′′) | (e′, g′, r ′) ∈ Sc, (e

′, g′ ↓̃∗ S′
c), (e

′′, g′′, r ′′) ∈ S′
c

}
e, g ↓̃∗ S′′

c
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Lemma 4.4.8 (Particle Evaluation Soundness). For every particle (e, g), such that (e, g ↓̃∗ Sc),
it holds that (e,α({g}) ↓̂ v̂, ĝ) and a configuration set S′

c such that Sc
∼= S′

c and forgetr(S′
c) ⊆

γ((v̂, ĝ)).

Proof. By structural induction on derivations of ↓̃∗, with appeal to Theorems 4.4.6 and 4.4.7.

Additionally, every distribution resulting from a particle set evaluation can be traced back to a
particle in the particle set and be equivalently derived by evaluating the particle until termination.

Lemma 4.4.9 (Particle Trace). If (Sp ⇊̃ SD), then for all D ∈ SD, there exists (e, g) ∈ Sp such
that (e, g ↓̃∗ Sc) and D ∈ {Distribution(v, g) | (v, g, r) ∈ Sc}.

Proof. By structural induction derivations of ⇊̃.

From the particle trace property with the fact the analysis is sound when evaluating a particle
until termination, the analysis is sound with respect to evaluating sets of particles. The soundness
of the model evaluation follows.

Theorem 4.4.10 (Particle Set Evaluation Soundness). For every particle set Sp, and distribution
set SD such that (Sp ⇊̃ SD), it holds that {e,α({g}) | (e, g) ∈ Sp} ⇊̂ v̂ and SD ⊆ γ(v̂).

Proof. By Theorems 4.4.8 and 4.4.9 and the definition of abstraction and concretization.

Corollary 4.4.11 (Model Evaluation Soundness). If e ⇓̃ {fail}, then e ⇓̂ f̂ail.
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Chapter 5

Evaluation

In this section, I empirically evaluate the efficacy of Siren on a set of probabilistic programs. I
also empirically evaluate how well the inference plan satisfiability analysis is at identifying whether
an inference plan is satisfiable. I seek to answer these research questions:

RQ1. Can inference plans improve hybrid inference performance?
RQ2. How precise is the inference plan satisfiability analysis? Section 4.4 proves the analysis

is sound, so it will never state an unsatisfiable inference plan is satisfiable. The task remains to
empirically determine whether the analysis can detect satisfiable inference plans in practice.

5.1 Benchmarks

I evaluate the performance of different hybrid inference algorithms and the analysis on a set of
benchmark programs, each of which requires sampling because it cannot be solved purely with
exact inference. I describe here the benchmarks and identify the variables evaluated for accuracy.

Noise is a one-dimensional particle filter with a hidden state modeled by Gaussian distributions
(x) with variance modeled by an Inverse-Gamma distribution (q). Observations are made on
Gaussian distributions centered around the previous state with variance also modeled by an
inverse-Gamma distribution (r). This program is adapted from Duník et al. (2017).

Radar models the glint noise that may be present in radar target tracking applications (Wu,
1993) and is the example in Chapter 2. It is similar to Noise but the observation noise is modeled
by the sum of two independent Inverse-Gamma distributions (r and other) if the env random
variable – modeled by a Bernoulli distribution – says there is glint noise.

EnvNoise is similar to Radar , but the noise variable other is modeled by the more flexible
Beta distribution (Arazo et al., 2019, Ma and Leijon, 2011).

Outlier models a one-dimensional particle filter with potential sensor errors producing outlier
observations. The hidden state is modeled by Gaussian distributions (xt), the sensor error rate as
a Beta prior (outlier_prob) to a Bernoulli, and observations are made on Gaussian distributions.
This program was implemented by Atkinson et al. (2022) and adapted from Minka (2001).

OutlierHeavy is the same program as Outlier but the outlier observations are modeled by a
long-tailed location-scale t distribution as used in Chang (2014).

Tree is a particle filter that makes an observation centered around a single random variable
modeled by a Gaussian distribution (a) and another centered around random variables (b) that are
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sampled from a Gaussian distribution every timestep. This program was previously implemented
by Atkinson et al. (2022) and adapted from Lundén (2017).

SLDS is a switching linear dynamical system adapted from Obermeyer et al. (2019). The
model switches between two nonlinear Kalman filters that each have unknown measurement
noises. The switching label follows Markovian dynamics and is modeled by two Beta priors
(trans_prob0 and trans_prob1). The filters uses Gaussian distributed hidden states (x0 and x1).
The measurement noises are modeled by Inverse-Gamma distributions (obs_noise0, obs_noise1).

Runner , adapted from Azizian et al. (2023), models the 2-D position (x, y) and speed (sx, xy)
of a runner based on speedometer readings and the altitude, modeled by Gaussian distributions.

5.2 Methodology

I implemented Siren in Python with semi-symbolic inference and delayed sampling. I also imple-
mented a third hybrid inference algorithm, SMC with belief propagation (SMC with BP) (Azizian
et al., 2023). The algorithm swaps parent-child dependencies using conjugate distributions similar
to SSI and maintains node types in the data field like DS.

RQ1 Methodology To determine Siren’s performance properties for RQ1, I execute each
benchmark 100 times for 100 timesteps with an exponentially increasing number of particles from
1 to 1024. I execute each benchmark using all satisfiable inference plans, except for SLDS with
SSI and DS, where due to the large number of inference plans, I sort the plans by the number of
symbolic variables in descending order and only compare the first 4 plans (and any plans tied with
those) against the plan with all sampled variables. I measure the accuracy by the Mean Squared
Error (MSE) of the inferred expected value of the variable compared to its ground truth value,
which is available as all data were generated by sampling from the prior. I conduct experiments
on a 60-core Intel Xeon Cascade Lake (up to 3.9 GHz) node with 240 GB RAM.

RQ2 Methodology To determine Siren’s analysis precision for RQ2, I enumerated all satisfiable
and unsatisfiable inference plans, and measured if the inference plan satisfiability analysis correctly
determines the satisfiability of each plan.

5.3 Results

RQ1 Results Figure 5.1 plots the experiment results of Outlier and Noise using the SSI
algorithm. For each particle count, I plot the median runtime to the 90th percentile of error for
each variable of interest. Plots for the remaining algorithms and benchmarks are in Appendix A.

The Outlier results show that, when the execution time is greater than 10 seconds, the
annotated Plan 2 achieves the best accuracy for both xt and outlier_prob by a factor of 2.1x
than the default Plan 6. However, if the runtime cannot exceed 10 seconds, Plan 6 achieves the
best accuracy, and the alternative Plan 7 may also be acceptable, particularly in a context where
the developer cares most about xt. The optimal inference plan depends on the context in which
the system is deployed.
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(a) Outlier . Unannotated program executes Plan 6.
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(b) Noise. Unannotated program executes Plan 5.

Figure 5.1: For each particle count, I plot the median execution time to the 90th percentile of
error for each variable using different satisfiable inference plan.

The results for Noise show that it achieves the lowest error for x with the annotated Plan
3 by a factor of 7.9x over the default Plan 5, but the alternative Plan 4 and the default Plan 5
achieve the lowest error for q. Thus, the optimal plan depends on the context – in particular
which variable the developer considers most important.

Appendix A shows similar results for other algorithms. For example, executing Runner using
SMC with BP with an annotated plan achieves a speedup of 1166x over the default plan.

Overall, these results demonstrate that inference performance depends strongly on the inference
plan, that the optimal inference plan is context-dependent, and that annotated inference plans
enable substantial speedups over the default.

RQ2 Results To evaluate the analysis precision for RQ2, we run the analysis on all benchmarks
and inference algorithms, and summarize the results in Table 5.1. I manually count the total
number of satisfiable plans in each case and how many plans the analysis identifies. The analysis
identifies all the satisfiable plans in every case except for SLDS with SSI, where the analysis only
identifies 28 out of 36 satisfiable plans. This shows that the analysis is precise in practice.
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The loss of precision in SLDS executed with SSI is due to aliasing. When joining expressions
in conditionals and fold fixpoint computations, the analysis loses information. This introduces
an aliasing problem; inconsistent branch conditions are not detected. Consider this program:

let symbolic x1 <- gaussian(0.,1.) in
let symbolic var1 <- invgamma(1.,1.) in
observe(gaussian(if cond then x1 else 1., if !cond then var1 else 1.), obs)

where cond and obs are constants. Because cond and !cond are inconsistent branch conditions, in
any execution SSI only needs a conjugacy relation for either x1 or var1. Such a single-variable
conjugacy relation always exists, so annotating both x1 and var1 symbolic will not throw an
error in any execution. However, the analysis approximates the observed Gaussian distribution as
N̂ (X̂x1, X̂var1), meaning that the distribution is potentially depending on both x1 and var1, which
would require a conjugacy relationship for both variables simultaneously. SSI does not support this,
so the analysis concludes that SSI may throw an error when in fact no such error-throwing execution
exists. This problem manifests in SLDS with SSI but does not affect any other benchmarks.

Table 5.1: Number of satisfiable inference plans identified by the inference plan satisfiability
analysis out of the total number of satisfiable inference plans for each benchmark and algorithm.

Identified Satisfiable Plans / Satisfiable Plans

Algorithm Noise Radar EnvNoise Outlier OutlierHeavy Tree SLDS Runner

SSI 5/5 3/3 3/3 4/4 2/2 4/4 28/36 4/4
DS 4/4 2/2 2/2 2/2 2/2 3/3 16/16 1/1
SMC w/ BP 2/2 2/2 2/2 2/2 1/1 4/4 4/4 4/4

Total Possible Plans 8 32 32 8 8 4 128 16
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Chapter 6

Related Work

Static Hybrid Inference Hakaru (Narayanan et al., 2016), Autoconj (Hoffman et al., 2018),
and automatic marginalization (Lai et al., 2023) perform static transformation to solve the model
analytically, and allowing the rest to be solved with some approximate inference technique. In
such systems, the partition of random variables that must be sampled and those that do not
is inherently known at compile time. However, the concept of inference plans and distribution
encodings can still provide an explicit interface for reasoning about these partitions.

Programmable Inference Autoconj (Hoffman et al., 2018) provides an interface for users to
specify where the system should perform marginalization to implement inference, while automati-
cally detecting exact inference opportunities. My approach only requires the generative model
and the annotations from the programmer, while the system automatically figures out how to
perform inference. Works in the programmable inference space (Cusumano-Towner et al., 2019,
Lew et al., 2019, Mansinghka et al., 2014, 2018, Tehrani et al., 2020) also hand over control of the
inference procedure to the user at varying stages of inference. My interface applies specifically
to hybrid inference algorithms and enables users to provide high-level guidance to the inference
system without requiring a deep understanding of the algorithm.

Probabilistic Program Analyses Several efforts have been made on using program analyses
to detect structure to optimize in probabilistic programs (Cheng et al., 2021, Gorinova et al., 2020,
Huang et al., 2017, Ritchie et al., 2016, Zhou et al., 2020). Other works also use program analyses to
statically infer properties about the outputs or resource usage of probabilistic programs (Atkinson
et al., 2021, Cousot and Monerau, 2012, Di Pierro and Wiklicky, 2000, Gorinova et al., 2021,
Lee et al., 2023, Monniaux, 2000, 2001, Ngo et al., 2018, Smith, 2008, Trilla et al., 2020, Wang
and Reps, 2024). My analysis infers properties about the runtime behavior of the probabilistic
inference algorithm.
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Chapter 7

Conclusion

Probabilistic programming languages take advantage of the expressivity and accessibility of
programming abstractions to enable developers to easily create systems for probabilistic modeling
and inference. These abstractions automate the intricate details of inference algorithms, so the
languages do not require in-depth knowledge about the algorithms to use. Amongst general-
purpose programming languages, different levels of memory abstractions present a tradeoff between
ease of use and control: Python fulfills the need for high-level programming with little memory
management required, whereas C fulfills the the need for highly optimized code at the expense of
user-directed memory management; Java lies in the middle of the spectrum, balancing control
and ease of use. Comparitively, the levels of abstraction in PPLs present a tradeoff between the
required level of expertise for the inference algorithm of the system and the amount of control the
developer has over the system. The more automation and abstraction, the less the developer is
required to know about the inference algorithm and the less control the developer has over how
the inference algorithm implements the system, and vice versa. Different problem constraints and
requirements call for different points on the spectrum. For the PPL space to be mature, a suitable
tool should fulfill each point on the spectrum.

One type of abstractions in PPLs is the method of implementing hybrid inference, which
incorporates symbolic exact inference with Monte Carlo sampling to improve inference performance.
Works like semi-symbolic inference fully automate hybrid inference and require little inference
expertise, whereas works like Autoconj require an understanding of marginalization and inference
but allow for greater control of how inference is applied. This thesis provides developers with
control over the partitioning of random variables into sampled and symbolic variables in hybrid
inference systems. It presents a new PPL, Siren, that enables developers to use annotations to
select an inference plan that specifies a particular partitioning. To assist programmers in reasoning
about inference plans, Siren employs a static analysis that determines if an inference plan is
satisfiable in all possible executions of the program. Through annotated inference plans and the
satisfiability analysis, Siren enables developers to exercise fine-grained control over their inference
algorithms without having to understand the intricate details of how they are implemented.

To the best of my knowledge, this thesis presents the first interface that balances control and
ease of use for hybrid inference systems, such that users do not need to manually implement how
exact inference is applied in the model but can still manipulate how it is applied. Other designs
using programming constructs could provide developers with varying degrees of control and ease of
use over hybrid inference. I hope this work serves as a basis for exploring other potential interfaces.
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Appendix A

Additional Performance Evaluation

For each particle count, I plot the median execution time to the 90th percentile of error for
each variable of interest using each satisfiable inference plan. I execute each benchmark using all
satisfiable inference plans, except for SLDS with SSI and DS, where due to the large number of
inference plans, I sort the plans by the number of symbolic variables in descending order and
only compare the first 4 plans (and any plans tied with those) against the plan with all sampled
variables. The SMC with BP algorithm only has one inference plan on OutlierHeavy and likewise
for DS on Runner . I omit the performance evaluation in those cases.
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(a) SSI. Unannotated program executes Plan 5.

10−1 100 101 102

Execution Time in s (log scale)

100

101

102

103

Er
ro

r(
lo

g
sc

al
e)

x

10−1 100 101 102

Execution Time in s (log scale)

10−1

100

101

102
q

10−1 100 101 102

Execution Time in s (log scale)

100
101
102
103
104
105
106
107

r

Plan 4 Plan 5 Plan 6 Plan 7

(b) DS. Unannotated program executes Plan 5.
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(c) SMC w/ BP. Unannotated program executes Plan 3.

Figure A.1: Noise
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(a) SSI. Unannotated program executes Plan 29.
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(b) DS. Unannotated program executes Plan 29.
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(c) SMC w/ BP. Unannotated program executes Plan 15.

Figure A.2: Radar
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(a) SSI. Unannotated program executes Plan 29.
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(b) DS. Unannotated program executes Plan 29.
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(c) SMC w/ BP. Unannotated program executes Plan 15.

Figure A.3: EnvNoise
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(a) SSI. Unannotated program executes Plan 6.
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(b) DS. Unannotated program executes Plan 6.
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(c) SMC w/ BP. Unannotated program executes Plan 3.

Figure A.4: Outlier
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(a) SSI. Unannotated program executes Plan 6.
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(b) DS. Unannotated program executes Plan 6.

Figure A.5: OutlierHeavy. SMC w/ BP only has one satisfiable inference plan on this program.
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(a) SSI. Unannotated program executes Plan 0.
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(b) DS. Unannotated program executes Plan 2.
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(c) SMC w/ BP. Unannotated program executes Plan 0.

Figure A.6: Tree
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(a) SSI. Unannotated program executes Plan 115.
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(b) DS. Unannotated program executes Plan 115.

Figure A.7: SLDS
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(a) SMC w/ BP. Unannotated program executes Plan 79.

Figure A.8: SLDS (continued)
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(a) SSI. Unannotated program executes Plan 3.
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(b) SMC w/ BP. Unannotated program executes Plan 11.

Figure A.9: Runner . DS only has one satisfiable inference plan on this program.
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