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Abstract

Propagating uncertainties in kinetic models through turbulent combustion simulations to properly quantify the
uncertainties in the simulation results remains a challenging and numerically expensive problem. Efficient ap-
proaches have been proposed for certain flames in the flamelet region by reducing their uncertainty input from a
high-dimensional kinetic parameter space to a one-dimensional variable. However, this one-dimensional assump-
tion does not apply to all flamelet regimes. In the current work, we developed a systematic approach to discover
low-dimensional active subspace reductions that apply to the entire mixture fraction space of the flamelet, and
that function even in cases where the uncertainty response is not uniform across the entire solution domain and
the one-dimensional assumption does not apply. In doing so, we are able to achieve uncertainty quantification
with a tunable tradeoff between high accuracy and low computational cost through careful selection of subspace
dimensionality. We facilitated computation in this method using a specifically designed deep neural network
based surrogate model to compute the temperature gradients of the flamelet profile to the kinetic parameters. We
presented, as a proof-of-concept, a two-stage active subspace reduction on the kinetic parameter space of a non-
premixed methane flamelet. In doing so we demonstrated that its uncertainty response cannot be represented by a
one-dimensional kinetic variable due to its uncorrelated behavior across the mixture fraction domain. We instead
proposed a four-dimensional active subspace that captures 98% of the uncertainty response in the flame profile
at largely reduced computational cost compared to the full kinetic parameter space. The tunability, generality,
and reduced computational cost of this method demonstrate its potential to facilitate uncertainty quantification of
complex and large-scale combustion problems.
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1. Introduction

Combustion simulations for practical applications
usually involve turbulent flows and hundreds of chem-
ical species and reactions [1]. The kinetic parame-
ters of these reactions are not precisely known, and
their uncertainties can propagate through the combus-
tion model and result in substantial uncertainties in
the simulation results [2–5]. Uncertainty quantifica-
tion, such as Monte Carlo sampling, aims to evalu-
ate the effect of kinetic uncertainties on the simula-
tion results [6]. However, due to the computational
cost needed to run many turbulent combustion simu-
lations, directly propagating high-dimensional kinetic
uncertainty is not feasible [2].

In the seminal work of Mueller et al. [2], a physics-
informed dimension reduction was proposed to rep-
resent high-dimensional kinetic uncertainties in a
flamelet-based turbulent combustion model. This ap-
proach first propagates the kinetic uncertainty (about
300 dimensions for methane) onto the flamelets, then
assumes that the temperature at different mixture frac-
tions and scalar dissipation rates are correlated with
each other such that the uncertainty across both do-
mains can be parameterized with only one variable.
If such an assumption is universally valid, huge com-
putational savings can be expected for kinetic uncer-
tainty quantifications in turbulent combustion simula-
tions in the flamelet regime.

The active subspace method [3, 7, 8] is an alterna-
tive solution to derive a low-dimensional representa-
tion to high-dimensional kinetic uncertainties. This
approach seeks to identify a low-rank kinetic sub-
space within which changes in the kinetic param-
eters have the greatest effect on the flame simula-
tion results. Uncertainty quantification can be car-
ried out in this subspace, instead of the full, high-
dimensional space, to reduce computational cost. The
eigenvalue-based decomposition used in the active
subspace method is similar to principal component
analysis (PCA) in its discovery of low-dimensional
directions in a high-dimensional space. It differs in
that PCA typically reduces the dimension of the out-
put space itself, while the active subspace method
uses output data and gradients in order to reduce the
dimension of the input space [9]. A key difference
from traditional methods such as [10] in this specific
combustion case is that the active subspace method
analyzes the response across the full input uncertainty
space, not just at the nominal value. This method has
previously been successful in propagating kinetic un-
certainty to the lift-off height of the Cabra flame [3].

Previous active subspace work generally examines
only a single quantity, such as liftoff height [3] [11]
or ignition delay time [11], rather than the response
of the entire temperature profile as is analyzed in
this work. It is expected that if the aforementioned
assumption of a one-dimensional flamelet response
to kinetic uncertainties is valid across different mix-

ture fractions and strained conditions, then a one-
dimensional active subspace could also be found for
the entire flame profile. However, validating this as-
sumption is nontrivial. The active subspace method is
computationally cheaper than many other sensitivity
analysis-based methods, but still requires thousands
of evaluations of flamelet profile gradients with re-
spect to the kinetic parameters to obtain good accu-
racy.

To evaluate the gradients of flamelet responses to
kinetic uncertainties efficiently and accurately in the
current work, we built a deep neural network sur-
rogate model for flamelet simulation. Neural net-
works trained using the traditional backpropagation
algorithm [12] are capable of highly efficient gradient
computation, though are limited by their fixed grids
and struggle to adapt to training data generated us-
ing PDE solvers with adaptive mesh refinement such
as Cantera [13]. As will be discussed in Sec. 2,
our method utilized the Non-linear Independent Dual
System [14] neural network structure, which is sim-
ilar to the Deep Operator Neural Network [15]. It
is able to evaluate the effects of rate constant pertur-
bations on the temperature profiles of nonpremixed
flamelets on any arbitrary grid with a single training
cycle due to its unique structure, while maintaining
the inexpensive gradient evaluations inherent to tra-
ditional networks. With the network-supplied gra-
dient information, we then characterized the uncer-
tainty of the flamelet and investigated if there exists
a low-dimensional kinetic subspace that can capture
the uncertainty response of its entire mixture frac-
tion profile with high accuracy. We did so by adapt-
ing the recently developed vector-valued active sub-
space method [16] and applying a two-stage singular-
value decomposition (SVD). The first SVD was to
identify local active subspaces at each fixed mixture
fraction. Then, the second SVD identified the global
kinetic subspace from the set of all local subspaces.
The terms ”local” and ”global” are used here to dis-
tinguish between a local subspace at a fixed mixture
fraction, and a global subspace applicable across the
full mixture fraction domain. Both cases are found
using the entire kinetic uncertainty space. Variable
strain rates were not considered based on previous
work suggesting that they do not greatly impact ki-
netic sensitivity directions [17], though verifying such
a result in this context is a focus of our future work.

We aimed to demonstrate the skill and efficiency of
this neural network surrogate model and leverage its
numerically inexpensive and discretization-agnostic
gradients to discover a low-dimensional kinetic sub-
space that applies across the entire mixture fraction
domain of a nonpremixed methane flamelet. This
novel and efficient approach is able to represent the
flamelet uncertainty response in greatly reduced di-
mensionality, even in cases where the local active sub-
space depends on the mixture fraction. Such a method
has potential to be scaled up and applied to facilitate
the uncertainty quantification of large eddy turbulent
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combustion simulations through the laminar flamelet
model.

2. Methods

In this work, we investigated if a global ki-
netic subspace for a one-dimensional nonpremixed
methane flamelet can be constructed using the active
subspace method, facilitated by a neural network sur-
rogate model of the flamelet. In Secs. 2.1 and 2.2, the
methodologies for propagating kinetic uncertainties
to flamelet temperature profiles and obtaining low-
dimensional active subspaces are introduced. In Sec.
2.3, the structure, training, and validation of the neu-
ral network used to compute gradients for the sub-
space algorithm is discussed.

Throughout this work, a normalized version of the
rate constant uncertainty ranges computed in previous
work [18] is utilized,

xℓ =
ln kℓ/kℓ,0

1
3
lnuℓ

∼ N(0, 1), (1)

where xℓ is the ℓth index of the normalized rate con-
stant perturbation vector x, kℓ is the perturbed value
of the ℓth rate constant, kℓ,0 is the nominal value of
the ℓth rate constant, uℓ is the uncertainty factor cor-
responding to kℓ,0 as reported in the literature [18],
and N(0, 1) denotes the standard normal distribution
with zero mean and unit variance. This normalization
facilitates the neural network training and subspace
analysis presented below.

2.1. Local Active Subspace at Fixed Mixture Fraction

The general algorithm, methodology, and proofs
for the active subspace method are presented in [7].
The following will present a basic overview of the
concepts specific to our applications.

The one-dimensional flame is solved in the phys-
ical space instead of the mixture fraction space. The
mixture fraction used throughout this work is then de-
fined using the hydrogen elemental mass fraction

Z =
Wmix −Wox

Wfuel −Wox
, (2)

where Z is the mixture fraction at a given location,
and Wmix, Wox, and Wfuel represent the hydrogen
mass fractions of the mixture, oxidizer stream, and
fuel stream, respectively.

We aim to identify, at a given location Z, an rZ -
dimensional subspace in the d-dimensional kinetic
rate constant space (with rZ < d) that describes the
bulk of the variation of the flame temperature TZ at
location Z, such that

TZ(xd) ≈ TZ(xrZ ), (3)

where xd is a full-rank vector of rate constant per-
turbations for the d reactions in the kinetic model,

while xrZ is the same vector expressed with rank rZ ,
reduced in an information-preserving way using the
rZ -dimensional subspace. We identify this active sub-
space of dimension rZ with the eigen-decomposition
of the matrix C at the location Z, which is analogous
to the SVD of the temperature gradients.

C =
1

M

M∑
j=1

∇xTZ(xj)(∇xTZ(xj))
T

= WΛWT . (4)

Here, M is the total number of rate constant samples
j that we generate from the full rate constant uncer-
tainty space in x, with the gradient ∇xTZ(xj) evalu-
ated once per iteration j. We compute these gradient
values in our specialized neural network, as detailed
in Sec. 2.3. By virtue of the network-powered gradi-
ents, we do not need to treat M with as much care as
in more computationally expensive methods, and can
simply choose a larger M if the results do not con-
verge properly. From the decomposition WΛWT ,
we can extract d eigenvectors w1 through wd of
length d each, corresponding to d eigenvalues λ1

through λd. Due to the symmetry of C, these eigen-
vectors form an orthonormal basis that can be used to
fully describe any sample xd. The reduced dimension
rZ is chosen by identifying the first two eigenvalues
λr and λr+1 between which there is a substantial dif-
ference of multiple orders of magnitude. This gap in-
forms us that the primary direction(s) of variation in
the flame temperature occur in the first r eigenvec-
tors w1 through wr , the set of which is defined as the
active subspace. The accuracy of the reduced dimen-
sion subspace in reconstructing the matrix C and thus
capturing the gradient behavior is dictated by the per-
centage of the sum of all eigenvalues captured by the
sum up to the index r. We can project a given sample
xd onto this subspace in order to express it as a linear
combination of these r basis eigenvectors, reducing
the space within which we need to perturb the kinetic
model to characterize uncertainty by d− r.

2.2. Global Active Subspace Across A Flamelet

Performing this reduction at a given location Z
generates one subspace of dimension rZ . However,
the active subspace does not necessarily remain the
same or even similar at different mixture fractions,
as will be shown in Sec. 3.2. To investigate if a
global kinetic subspace across a flamelet can be con-
structed, we develop a second stage of SVD reduc-
tion. We assume for now (to be demonstrated as well
in Sec. 3.2) that rZ = 1 for all Z and thus the lo-
cal active subspace at any given Zi is described with
the single vector w1, which we denote wi hence-
forth to distinguish between local subspaces at differ-
ent mixture fractions. This assumption is made here
to simplify notation but is not a prerequisite for use of
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this method, which is applicable to subspaces of arbi-
trary dimensions. The methodology presented below
serves to reduce the set of one-dimensional subspaces
at n mixture fractions, where n is a sampling number
larger than d, down to a final global subspace basis
of dimension ru that is applicable across the entire
mixture fraction domain.

We define A as the n× d matrix with each row i
defined by wi. It therefore contains the local active
kinetic subspaces at all n grid points in the mixture
fraction domain. The singular value decomposition
on A follows

A = USVT , (5)
where S is an n × d diagonal matrix with d singular
values σ that correspond to the relative importance
of the principal directions V. The squared singu-
lar values σ2 relate to the eigenvalues of the matrix
AAT , and can be analyzed similarly to the eigen-
decomposition of C in Eq. (4). If we do not observe a
large gap between the first two squares of singular val-
ues, as may occur in cases where a multidimensional
subspace is necessary to fully characterize the uncer-
tainty response, we can select our reduced dimension
ru such that the percentage of the sum of all squared
singular values represented by the sum of those from
1 to ru meets our accuracy needs. For example, if the
sum of the first three squared singular values repre-
sents 95% of the total sum, then we expect the basis
formed by the collection of principal directions up to
ru = 3 to capture 95% of the variance in matrix A,
and thus of the variance in the local subspaces. In this
way, we can tune the accuracy versus computational
cost tradeoff of the method to any specific applica-
tion’s needs. After selecting ru, we obtain from V a
reduced space vk with k ranging from 1 to ru, where
the vectors v describe the same rate constant space as
the vectors w but at greatly reduced dimensionality.
While the first stage of our reduction method in Sec.
2.1 evaluated local subspaces from the correspond-
ing temperature gradients at fixed mixture fractions,
the second stage here combines all local results to
discover a global subspace across the entire flamelet.
We emphasize that in contrast to other local subspace
analyses seen in the literature, our approach allows us
to generate not only a local reduced-dimension sub-
space w1, but also a globally applicable and further
reduced subspace basis of vk. We also note that the
method is easily generalizable to universal cases with
scopes beyond this proof of concept. In this work, we
investigated the flamelet at a fixed strain rate, as pre-
vious research suggests that strain rates have minimal
effects on kinetic sensitivity directions [17]. However,
for future applications that require sampling of strain
rate or other inputs, any local subspace may be in-
cluded in the A matrix and then reduced further with
Eq. (5).

To fully validate the global kinetic subspace, Can-
tera [13] was utilized to simulate temperature profiles

from perturbations in the full d-dimensional kinetic
space, which were compared against those simulated
using the reduced ru-dimensional kinetic subspace.
We generated, based on Eq. (1), 5,000 random per-
turbation vectors. To compare the subspace and full
space results, we projected these samples into the ru-
dimensional subspace and then reconstructed the full-
dimensional samples using these projections. In do-
ing so, we created new samples representing the same
data with greatly reduced rank that can still be used
with Cantera or the neural network:

bru,j =

ru∑
k=1

[(bd,j · vk)vk]. (6)

Here bd,j is the jth sample in the full kinetic space
d, and bru,j is the same sample expressed in reduced
rank using the ru basis vectors vk. This operation re-
duces each vector bd,j to a linear combination of the
vk basis directions. From this linear combination it
reconstructs parameter vectors of length d but rank ru
to test in Cantera using the same boundary conditions
as in the initial data generation in Sec. 2.3. This en-
ables comparison of temperature profiles based sepa-
rately on the sets of vectors bru,j and bd,j , to evalu-
ate how much of the original information is captured
by the ru-rank sample.

2.3. Neural Network Surrogate Model for Flamelets

Gradient computation to construct the matrix C
in Eq. (4) was performed by our specifically struc-
tured neural network. Given a rate constant pertur-
bation vector x as defined in Eq. (1), this network
was trained to predict the full temperature response
profile of a single flamelet in the mixture fraction
space. We started by generating 5,000 nonpremixed
methane/oxygen counterflow training data sets using
the GRI-Mech 3.0 mechanism [19] with Cantera [13]
at a pressure of 1 bar, strain rate of 4600 s−1, inlet
temperatures of 300K, and global equivalence ratio of
2, on an 18 mm wide domain in which methane enters
from one boundary and oxygen from the other. We
trained a neural network on this data with a structure
inspired by the Non-linear Independent Dual System
network [14], shown in Fig. 1. In the top (blue) pa-
rameter network depicted in Fig. 1, the jth rate con-
stant perturbation vector xj of length d = 217 gener-
ated from Eq. (1) is fed to the 217-node input layer.
This is passed through eight layers with 16 nodes each
until it reaches the final parameter layer. Similarly,
the bottom (red) coordinate network has a one-node
input layer for the ith mixture fraction within the grid
of sample j, (Zj)i. It is passed through six layers
with 16 nodes each until it reaches the final coordinate
layer. The inner product of the two networks’ final
layers provides the scalar output temperature value
T (xj)((Zj)i) at that location i. By running the net-
work in a batch over all grid points i, we can recon-
struct the full temperature profile T (xj).
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Fig. 1: Neural network surrogate model. The parameter and coordinate branches are independent until the last layer in which
their results are combined via inner product to arrive at a final temperature prediction. A batch of runs throughout the mixture
fraction domain can recreate the full temperature profile. Skip connections are not shown to maintain clarity. Training occurs
independently of discretization, and the network can be evaluated on any input Z in an arbitrary mesh.

We note here that the grid size is not directly spec-
ified in the network structure. The network is there-
fore not constrained to a fixed grid, and can solve
for a temperature profile on any arbitrarily discretized
Zj . We can thus train without interpolation on simu-
lation data from Cantera, which solves on adaptively
refined grids that differ with each j. After training
is complete, we can again take advantage of the net-
work structure to generate temperature profiles on any
grid of our choice, simplifying downstream calcula-
tions. We additionally remark that the isolation of
the parameter and coordinate networks separates the
two fundamentally different inputs: rate constants and
mixture fractions. In doing so, it may wield greater
performance than standard networks due to the in-
ductive bias, or existing knowledge of the problem’s
structure, encoded directly into the network [15].

In order to optimize performance, we selected the
hyperparameters of the network such as the number
of layers, nodes per layer, and learning rate using
the Ray Tune package [20], which methodically and
efficiently sweeps through a provided hyperparame-
ter input range in order to select the best values to
use during training. While this tool does not pro-
vide an exactly optimal network structure, it greatly
increased performance in this case when compared to
initial testing. The final network is shown in Fig. 1.
The learning rate and batch size used in training were
0.00076 and 64, respectively.

Certain other features in the network were se-
lected manually. Residual networks [21] with skip
connections every two layers were used for both
the coordinate and parameter networks. Sigmoid-
weighted Linear Units [22] were used as activa-
tion functions. The ADAM optimizer [23] was
used to train for the first eight hundred epochs,
after which a second-order limited memory Broy-

den–Fletcher–Goldfarb–Shanno (LBFGS) optimizer
was used until the training plateaued to improve fi-
nal performance while limiting overfitting. 15% of
the data was withheld as out of sample testing data,
and 33% of the remainder for in-sample validation.

After training, we verified the network’s gradients
against the Cantera solver. The network trains to min-
imize error in the temperature values, but this does
not guarantee low error in their gradients. We jus-
tified use of the network for gradient-intensive sub-
space computation by comparing its gradients against
those found analytically in Cantera. At each location
Z in Z we computed gradient values from the net-
work using the same automatic differentiation algo-
rithm as was used in network training, and those from
Cantera using built-in analytical sensitivity packages,
then compared their cosine similarities,

CSZ =
⟨∇xTZ,net,∇xTZ,Cantera⟩

∥ ∇xTZ,net ∥∥ ∇xTZ,Cantera ∥ . (7)

Here CSZ is the cosine similarity at the mixture
fraction Z, ∇xTZ,net is the temperature gradient
vector evaluated through the network at Z, and
∇xTZ,Cantera is the same in Cantera. CSZ ranges
from −1 to 1, where a value of ±1 indicates perfect
directional alignment but positive or negative correla-
tions, respectively, and a value of 0 indicates orthog-
onality.

3. Results and Discussion

3.1. Surrogate Neural Network Training

We present mean squared error training results for
our specialized neural network surrogate model in
Fig. 2. The ADAM optimizer ran for roughly 800
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training epochs, though in Fig. 2 we observe fu-
ture training may be accelerated through earlier stop-
ping. The LBFGS optimizer then ran just until the
error plateaued. This second step improved accuracy,
while its brevity limited overfitting. A plot compar-
ing a sample network-generated temperature profile
against the Cantera solution is shown in Fig. 3. We
observe strong qualitative agreement between the net-
work and Cantera, and a quantitative error of less than
1% within the high-temperature (>1000K) region.

Fig. 2: Neural network mean squared error loss at each
epoch. Sharp decay at end of training from LBFGS opti-
mizer. Training, validation, and testing error decreased sim-
ilarly throughout training, suggesting minimal overfitting.

Fig. 3: Network temperature evaluation on testing data at the
end of training. Error in flame is kept below 1%. Qualitative
agreement with the Cantera solutions is strong.

In addition to the standard network loss, we report
out-of-sample gradient validation against the Can-
tera data. The network loss and comparison against
Cantera from Figs. 2 and 3 is based solely on the
temperature values T taken directly from the final
layer of the network. However, our sensitivity analy-
sis method primarily involves use of temperature gra-
dients ∂T/∂x, which require an additional auto-dif-
ferentiation step. In Fig. 4, we report the cosine simi-
larity of gradients computed through auto-differentia-
tion in the trained network against those computed an-
alytically in Cantera. We observe a cosine similarity

of 0.99 on average in the high-temperature flame re-
gion. As expected, the low-temperature out-of-flame
regions with behavior not captured by the trained
chemical kinetic model do not see useful agreement
and are not relevant to the analysis at hand. With
strong agreement in temperature and temperature gra-
dient between our specialized neural network and
Cantera, we proceed in the next section to the ap-
plication of our neural network in kinetic sensitivity
analysis and uncertainty quantification.

Fig. 4: Cosine similarity of temperature gradients across the
flame. Very strong gradient agreement of 0.99 on average
is seen between network predictions and Cantera solutions
throughout the high-temperature in-flame region.

3.2. Kinetic Subspace Identification

We implemented the active subspace algorithm de-
tailed in Eq. (4) and computed the eigenvalues and
eigenvectors of the matrix C. Fig. 5 depicts the eigen-
values at three representative locations in the flame:
the oxidizer side, the fuel side, and near the peak tem-
perature location. A large drop of roughly two or-
ders of magnitude is seen between the first and second
eigenvalues in all three examples. While not pictured,
a similar result was also found in the rest of the mix-
ture fraction domain. Thus, we chose r = 1 for the
local active subspaces and defined each with w1 only,
discarding the extra dimensions w2 through wd as the
inactive subspace.

In Fig. 6, we inspect three of these active subspaces
wi at the same three representative locations across
the flame (oxidizer side, near temperature peak, and
fuel side) in an attempt to discover generality across
the domain. We do not see strong agreement in the
local subspace directions, indicating that a single-
dimension global subspace does not exist. We note,
however, that of the 217 rate constants/reactions, the
subspaces at the three locations seem to all include
the same five or ten most influential reactions, with
different ratios, in their active directions. This ob-
served similarity motivates the second stage of reduc-
tion detailed in Eq. (5) to an ru-dimensional global
subspace.

We present the results of obtaining the global ki-
netic subspace via singular value decomposition in
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Fig. 5: First ten eigenvalues from C matrix in Eq. (4). Sharp
decline of roughly two orders of magnitude is visible be-
tween the first and second value seen in three samples spaced
around the temperature peak at Z = 0.2, justifying truncation
of active subspace to one direction per coordinate.

Fig. 6: Single-direction local active subspaces w1 reported
at the same three mixture fractions as Fig. 5. Lack of direc-
tional agreement suggests that a single local subspace cannot
describe behavior across the entire mixture fraction domain.

Fig. 7: Squares of singular values (σ2) from the SVD de-
composition of subspace matrix A in Eq. (5). Sharp drop-
off like that in Fig. 5 is not observed after the first index,
motivating the use of more than one basis to capture full be-
havior.

Figs 7, 8 and 9. As shown in Fig. 7, the SVD yields
squared singular values that do not drop off as sharply
as the original subspace eigenvalues do. This is ex-
pected from our hypothesis based on Fig. 6 that we

Fig. 8: Squares of singular values from SVD on matrix A,
expressed as the percentage of all squares of singular values
in the sum up to a given index. 100% at ru would indicate
that subspace variation across A could be represented by the
set of directions up to ru. Here 99.5% at the fourth index
justifies the truncation to ru = 4.

would need ru > 1 basis directions to describe the
variation in subspaces across the mixture fraction do-
main. In Fig. 8, we take the sum of these squared
singular values up to each index to inform our choice
of ru, the dimension of the final subspace basis. We
see that with just two active directions we can ac-
count for over 90% of the subspace variation across
the mixture fraction, with three directions over 98%,
and with four over 99.5%. With one, however, we can
only capture 62%. We selected the basis with ru = 4,
made up of the four vectors shown in Fig. 9 as our fi-
nal global active subspace basis, though ru = 2 or
ru = 3 would be valid options in applications that
require lower computational cost and lower accuracy,
and conversely ru > 4 if extreme accuracy is needed.
In our case, we are able to accurately reduce the di-
mensionality of the uncertainty quantification prob-
lem at hand from d = 217 for this methane reaction
model down to ru = 4. A more detailed summary
of the kinetic composition of this 4-dimensional sub-
space is available in the supplementary material.

Fig. 9: Final four active subspace directions chosen from
the 217-dimensional kinetic space, each shown in a different
color.

3.3. Global Kinetic Subspace Validation

7



We validated the accuracy and generality of the
obtained kinetic subspace by comparing results from
propagating rate constant perturbations in the full d-
dimensional (d = 217) kinetic space and in the re-
duced ru-rank (ru = 4) space through the Can-
tera solver according to Eq. 6. This simultaneously
validated the network’s ability to perform the sub-
space reduction accurately, since the subspace was
constructed by the network and is being validated in
Cantera. We computed the 2.5 and 97.5 quantiles of
the temperature variation around the nominal (unper-
turbed) value in each case to generate upper and lower
temperature bounds, as reported in Fig. 10. These er-
ror bounds have excellent agreement of 98% on aver-
age between the full (d) perturbation sample and the
reduced (ru) perturbation sample, demonstrating suc-
cess of the network-powered reduction from the full
kinetic space of 217 dimensions in this application
down to a more tractable 4-dimensional subspace.

We additionally demonstrate in Fig. 11 that tem-
perature distributions in Cantera from perturbations in
the full d = 217 kinetic parameter space are uncor-
related between the fuel-lean side and fuel-rich sides
of the flame, thus an ru = 1 dimensional subspace
would not suffice to capture uncertainty responses
across the entire domain. This confirms a result pre-
viously discovered using the network. We also re-
mark that the distributions generated from our ru = 4
dimensional subspace accurately represent those in
the full parameter space, even across these uncorre-
lated mixture fractions. Future turbulent combustion
work applying this information in the flamelet regime
could maintain high accuracy while only needing to
quantify uncertainty across four input dimensions in-
stead of 217, indicating substantial savings in com-
putational cost. For example, to propagate methane
flamelet uncertainty to LES simulations, Mueller et
al. found that exploration of the full kinetic space took
between 2,000 and 10,000 samples (or even up to
50,000), while exploring a one-dimensional reduced
space took seven or fewer [2].

This work demonstrated the feasibility of our novel
dimension reduction methodology in a proof-of-con-
cept flamelet example. We note that the methodology
is designed to scale up easily to expanded input and
output domains. By adding strain rate, equivalence ra-
tio, or other parameters to the input layer of the pa-
rameter network and augmenting the training data ac-
cordingly, a subspace can be discovered that describes
a more comprehensive set of flamelets. By adding
neurons to the final output layer and modifying the
loss function accordingly, the uncertainty response of
species concentrations and other quantities of interest
can be analyzed along with temperature. Further work
to apply this methodology to a turbulent combustion
simulation may adapt the framework of [2]. The re-
duced subspace would allow for a series of flamelet
tables that capture the uncertainty response in an LES

simulation with greatly reduced samples compared to
the full kinetic space, while maintaining a verifiable
and user-selectable level of accuracy.

Fig. 10: 95% uncertainty bounds in high-temperature re-
gion. (a) Nominal temperature values and full sample un-
certainty range. (b) Uncertainty ranges predicted with full
and reduced subspace inputs centered on nominal tempera-
ture. Agreement of 98% on average.

Fig. 11: Joint temperature distributions that show weak cor-
relation at fuel lean and fuel rich Z. Strong agreement be-
tween those predicted with the full rate constant space and
with the reduced subspace demonstrates the accuracy and
mixture fraction generality of the ru = 4 subspace.

4. Conclusions
In this work, we demonstrated a novel methodol-

ogy for efficient uncertainty quantification in combus-
tion simulations. A two-stage active subspace analy-
sis powered by a specifically designed neural network
surrogate model was performed on one-dimensional
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nonpremixed methane flamelets with GRI-Mech 3.0
[19]. The propagation of the kinetic uncertainty from
the rate constants to the flame temperature profile was
found to be more complex than can be described with
a single variable (a one-dimensional active subspace)
due to lack of correlation across the mixture fraction
domain, thus a global kinetic subspace with a dimen-
sionality reduction of two orders of magnitude and
demonstrated accuracy was computed.

The accuracy of this reduced global subspace can
be finely tuned through choice of the truncation in-
dex at each stage, giving users the option to tailor the
low dimensional subspaces to meet their own accu-
racy or computational cost needs. Additionally, this
method can be further extended to scale to augmented
solution domains by adding further stages of sub-
space analysis, to include other target quantities such
as species profiles by extending the neural network
surrogate model, and to discover a universal sub-
space across various flame conditions by considering
strained effects. The flexibility, general applicability,
and low computational cost of this method make it a
promising tool for efficient uncertainty quantification
in large eddy simulations of turbulent combustion in
the flamelet regime.
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