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Abstract 

Chemical kinetics mechanisms are essential for understanding, analyzing, and simulating 

complex combustion phenomena. In this study, a Neural Ordinary Differential Equation (Neural 

ODE) framework is employed to optimize the kinetics parameters of reaction mechanisms. Given 

experimental or high-cost simulated observations as training data, the proposed algorithm can 

optimally recover the hidden characteristics in the data. Different datasets of various sizes, types, 

and noise levels are systematically tested. A classic toy problem of stiff Robertson ODE is first 

used to demonstrate the learning capability, efficiency, and robustness of the Neural ODE 

approach. A 41-species, 232-reactions JP-10 skeletal mechanism and a 34-species, 121-reactions 

n-heptane skeletal mechanism are then optimized with species' temporal profiles and ignition delay 

times, respectively. Results show that the proposed algorithm can optimize stiff chemical models 

with sufficient accuracy, efficiency and robustness. It is noted that the trained mechanism not only 

fits the data perfectly but also retains its physical interpretability, which can be further integrated 

and validated in practical turbulent combustion simulations. In addition, as demonstrated with the 

stiff Robertson problem, it is promising to adopt Bayesian inference techniques with Neural ODE 

to estimate the kinetics parameter uncertainties from experimental data.  

 

Key Words: Chemical kinetics; Parameter optimization; Adjoint sensitivity; Neural networks 
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1. Introduction 

Well-developed chemical kinetics models, with satisfying accuracy and conciseness, are 

essential in the research and design of energy conversion devices and biochemical processes. 

Classical approaches to building these models include ab initio calculations and reaction templates 

developed with expert knowledge [1]. Further parameter estimation may use rate rules and other 

functional group methods. However, these parameter estimates are seldom accurate enough to 

predict the quantity of interests (QoIs), and a refinement process to optimize the kinetics models 

is often needed. Generally, the kinetics model structures for small hydrocarbon and oxygenated 

fuels are relatively complete, while the kinetics parameters still have large uncertainties [2]. 

Consequently, in order to meet the accuracy criterion, it is necessary to use experimental data or 

high-cost data from computational quantum chemistry to optimize the kinetics parameters. On the 

other hand, with more experimental data accumulated in the past decades, optimizing and updating 

existing mechanisms with newly acquired data also plays an important role in chemical kinetics 

research. 

The kinetic model optimization process is generally treated as solving an inverse problem 

with the aid of sensitivity analysis [3, 4], uncertainty analysis [5, 6], and subsequent data regression 

[7-9]. For chemical kinetics, the procedure is generally divided into the forward and reverse 

uncertainty quantification (UQ) steps. Forward UQ will build a response surface mapping from 

the kinetics parameters to a specific QoI, such as ignition delay times (IDTs) and laminar flame 

speeds, with its form being unlimited. Thus, the output can be obtained at a relatively low cost. 

Commonly used mapping functions are polynomial chaos expansion (PCE) [5, 7], high 

dimensional model representation (HDMR) [8], and artificial neural network (ANN) [8]. Since the 

kinetics parameter space is always high-dimensional, techniques such as sensitivity analysis [10] 

and the active subspace method [6, 11] are often employed to perform a reduction in the parameter 

space. With the response surface acquired, Monte Carlo sampling can be straightforwardly 

conducted to quantify the uncertainty of the output QoI. Then the reverse UQ employs the response 

surface as a surrogate and optimizes the kinetics parameters, i.e., pre-exponential factors, 

temperature coefficients, and activation energies. With the response surface being constructed with 

sufficient samples, one can train the low-cost surrogate models with widely used optimization 

approaches, such as genetic algorithm (GA) [12], stochastic gradient descent (SGD) [13], and 

Bayesian regression [2, 9]. However, building the response surface is often time-consuming, while 
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insufficient samples could lead to non-physical behaviors in the surrogate models [2]. Besides, the 

response surface is usually used to map some representative global characteristics such as IDTs, 

and it is difficult to map the data with temporal and spatial evolution, such as the species profiles 

from shock tube experiments. To overcome these problems, efficient modeling of chemical 

kinetics and affordable gradient calculation holds the potential to update the parameters of 

chemical models directly. 

During the past decade, advances in deep learning have offered opportunities for efficient 

high-fidelity combustion simulations. The most important advantages include the universal 

approximation ability, well-developed optimization techniques, and open-source ecosystems. 

Ihme et al. [14, 15] employed ANN to tabulate the filtered thermochemical quantities, including 

the filtered reaction rate of the progress variable, from the mean, the variance of mixture fraction 

and the mean of the progress variable. Owoyele et al. [16] stepped further with the mixture of 

expert (MoE) approach that splits the input space into different sections and fine-tunes specific 

neural networks for each section. Rassi et al. [17] proposed the physics-informed neural network 

(PINN) that allows physical constraint of governing equations during the neural network training 

process, which enables the distillation of the physical behavior in datasets to control the parameters 

of a given system. Following that, Ji et al. [18] employed PINN in combustion scenarios and 

proposed the stiff-PINN method to optimize kinetics parameters. There are also plenty of neural 

network-related studies focusing on building surrogate chemical models [19], constructing sub-

grid chemical source terms [20], and discovering unknown reaction pathways [21]. Thus, it is a 

promising method to utilize neural networks to optimize kinetics mechanisms. 

Recently, Chen et al. [22] proposed the neural ordinary differential equation (Neural ODE) 

approach in deep learning and showed its capability for learning computer vision tasks. It employs 

multi-layer perceptron (MLP) layers as the ODE layer and uses neural networks to approximate 

the given ODE systems or classification tasks by the gradient descent method, with the gradients 

calculated via the adjoint sensitivity method. The applications of Neural ODE have inspired 

extensive recent developments in the adjoint sensitivity algorithms [23, 24] and associated open-

source software ecosystems [25, 26]. For example, Ma et al. [24] studied the performance of 

different implementations of the adjoint sensitivity method and suggested guidelines on the choice 

of adjoint sensitivity algorithms based on the size and stiffness of the ODE system. Ji et al.[21, 26-
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28] proposed chemical reaction neural networks (CRNN) and augmented them with neural ODE 

to facilitate learning reaction pathways of the biomass pyrolysis process. 

In the present work, we introduce the Neural ODE concept to optimize realistic chemical 

ODE systems to take advantage of these recent developments. Note that the neural ODEs are not 

black boxes or fully connected layers that are only used to fit experimental data, but are sparse 

connections that share the same pathways of chemical kinetics models. With automatic 

differentiation techniques enabled by differentiable programming, one can optimize the neural 

ODEs with training data efficiently. The proposed kinetics parameter optimization framework is 

integrated into a trackable data structure in the Julia language [25]. The gradient of the loss 

function against model parameters is obtained by the adjoint sensitivity method, which is 

accelerated by utilizing the Jacobian function from automatic differentiation. Specifically, the 

ODEs are written as neural networks and then integrated by stiff ODE solvers, and the kinetics 

parameters are then constrained by the loss function. Meanwhile, the neural network is still 

interpretable, which facilitates providing physical insights and integration of the kinetic model into 

large-scale turbulent combustion simulations. 

This work is the first comprehensive study that introduces Neural ODE to optimize kinetics 

parameters of practical chemical models. The optimizations of hydrocarbon kinetics of various 

complexity with different data types, noise levels and mutable parameters are systematically 

tested. The subsequent contents are arranged as follows. In Section 2, the algorithm is detailed and 

the training progress is briefly introduced, with a toy problem Robertson ODE tested against 

different noise levels. In Section 3, a JP-10 skeletal mechanism is used to demonstrate the 

optimization ability of the proposed method and to show the accuracy against noise levels in the 

practical chemical system. Furthermore, an n-heptane skeletal mechanism is generated and 

optimized against its parent mechanism under the constraint of ignition delay times, with different 

mutable parameters. The relationship between the reverse UQ and the Bayesian Neural ODE is 

briefly discussed in Section 4. Conclusions are presented in Section 5. 

2. Methodology 

2.1 The neural network architecture 

Consider a typical dynamics system described by an ordinary differential equation (ODE):  
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𝑑𝒖

𝑑𝑡
= 𝒇(𝒖, 𝜽, 𝑡) (1) 

where 𝒖 of size 𝑛 is the state variable vector, 𝜽 of size 𝑚 the model parameters that control the 

dynamics and 𝑡 the time. Given the initial state, this system can be integrated by an ODE solver 

𝒖(𝑡1) = 𝒖(𝑡0) + ∫ 𝒇(𝒖, 𝜽, 𝑡)𝑑𝑡
𝑡1

𝑡0

 (2) 

For simple non-stiff ODE systems such as the Lotka-Volterra model for predator-prey 

population dynamics [24], one can use explicit ODE solvers, e.g., Runge-Kuta methods. However, 

the chemical kinetics of hydrocarbon fuels generally involve a wide range of chemical timescales, 

and the resulting ODEs are highly stiff. The largest and smallest eigenvalues of the system’s 

Jacobian matrix can differ by many orders of magnitude. In this study, the implicit second-order 

backward difference formula with trapezoidal rule (TRBDF2) is employed for integrating stiff 

chemistry assisted by the interface of the Arrhenius.jl package [29]. 

In the following, a simple reaction system involving three species [A, B, C] is used to 

illustrate the network structure in neural ODEs 

𝐴
𝑘1
→ 𝐵

𝐵 + 𝐵
𝑘2
→ 𝐶 + 𝐵

𝐵 + 𝐶
𝑘3
→ 𝐴 + 𝐶

 (3) 

Where𝑘1, 𝑘2, 𝑘3 are the rate constants of each reaction. Without loss of generality, all the reactions 

can be written in the form of 

𝑣𝑖,𝐴
𝑓

𝐴 + 𝜈𝑖,𝐵
𝑓

 𝐵 + 𝜈𝐶,𝑖
𝑓

𝐶
𝑘𝑖
→ 𝜈𝑖,𝐴

𝑟 𝐴 + 𝜈𝑖,𝐵
𝑟 𝐵 + 𝜈𝑖,𝐶

𝑟 𝐶. (4) 

The constants 𝑣𝑖,𝑗
𝑓

, 𝜈𝑖,𝑗
𝑟  are forward and backward stoichiometric coefficients of species j in the i-

th reaction. The reaction rate of the i-th elementary reaction is described by the power-law 

expression as 

𝑟𝑖 = 𝑘𝑖[𝐴]𝜈𝑖,𝐴
𝑓

[𝐵]𝜈𝑖,𝐵
𝑓

[𝐶]𝜈𝑖,𝐶
𝑓

. (5) 

Viewing from the perspective of a neural network, this equation can be formed by a series of linear 

combinations and activation functions, i.e., 
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𝑟𝑖 = exp(ln 𝑘𝑖 + 𝜈𝑖,𝐴
𝑓

ln[𝐴] + 𝜈𝑖,𝐵
𝑓

ln[𝐵] + 𝜈𝑖,𝐶
𝑓

ln[𝐶]), (6) 

in which the dependency of 𝑘𝑖  on temperature is usually described by the three-parameters 

Arrhenius formula, 

𝑘𝑖 = 𝐴𝑖𝑇
𝑏𝑖 exp (−

𝐸𝑎𝑖

𝑅𝑇
). (7) 

where 𝐴𝑖 is the pre-exponential factor, 𝑏𝑖 is the temperature exponent, and 𝐸𝑎𝑖 is the activation 

energy. And Eq. (7) can be rewritten as ln 𝑘𝑖 = ln 𝐴𝑖 + 𝑏𝑖 ln 𝑇 −
𝐸𝑎𝑖

𝑅𝑇
. Note that the reaction rate of 

species (say [A]) is a linear combination of the reaction rates of elementary reactions, i.e., 

𝑑[𝐴]

𝑑𝑡
= ∑ −𝜈𝑖,𝐴

𝑓
𝑟𝑖 + 𝜈𝑖,𝐴

𝑟 𝑟𝑖.

𝑖

 (8) 

Therefore, the chemical reaction network can be formulated as a neural network that consists of 

multiple layers of activation functions and linear connections. As shown in Fig. 1, the ODEs of 

the simple reaction system are transformed to an ODE Layer in the Neural ODE’s network. For 

the neural ODE framework, following ResNet [30], the integration process is achieved by adding 

the ODE Layer’s input to its output, i.e., 𝒖𝑖+1 = 𝒖𝑖 + ODELayer(𝒖𝑖). Note that this neural ODE 

framework is different from the one proposed by Chen et al. [22, 31, 32]. In [22], the network also 

consists of ODE layers and is integrated by ODE solvers, but each ODE layer is still made of MLP 

layers constructed by fully connected neural networks, to approximate an unknown dynamical 

system. In this study, the ODE layer is however made of exactly the original chemical ODEs that 

are viewed, modeled, and optimized in the neural network perspective. Thus, the proposed 

framework is based on the knowledge that one has already known the controlling mechanism of 

the target system but with uncertain parameters to be fine-tuned. In other words, it can also be 

viewed as CRNN [21, 27] with all pathways fixed and all other unnecessary connections trimmed. 
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Fig. 1. Schematics of network architecture for neural ordinary differential equations. 

Thus, the chemical reaction models are now transformed into neural networks and one can 

train the learnable parameters with datasets, as well as get the ODE system constrained on given 

observations. Under this implementation, one can optimize the kinetics parameters with SGD 

optimizers like Adam [33] once the gradient of the loss function is obtained. 

2.2 Adjoint sensitivity method 

There are generally two kinds of methods, i.e., forward sensitivity analysis and adjoint 

sensitivity analysis, to obtain the gradient of the loss function. For illustration, let us consider a 

loss function given by the integral up to the time point 𝑡𝑒𝑛𝑑: 

𝑚𝑖𝑛 𝐿(𝒖, 𝜽) = ∫ 𝑔(𝒖, 𝜽)
𝑡𝑒𝑛𝑑

0

𝑑𝑡

𝑠. 𝑡. 
𝑑𝒖

𝑑𝑡
= 𝒇(𝒖, 𝜽, 𝑡)

 (9) 

To optimize this system, the gradient of loss function against the parameters, 
𝑑𝐿

𝑑𝜽
 is needed. And it 

can be obtained by 

𝑑𝐿

𝑑𝜽
= ∫

𝑑𝑔

𝑑𝜽
𝑑𝑡

𝑡𝑒𝑛𝑑

0

= ∫ (
𝜕𝑔

𝜕𝒖

𝑑𝒖

𝑑𝜽
+

𝜕𝑔

𝜕𝜽
) 𝑑𝑡

𝑡𝑒𝑛𝑑

0

. (10) 
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The terms 
𝜕𝑔

𝜕𝑢
 of size 1 × 𝑛 and 

𝜕𝑔

𝜕𝜃
 of size 1 × 𝑚 can be acquired by automatic differentiation (AD) 

techniques, so the only unknown is the first-order sensitivity coefficient matrix 𝒘 ≡
𝑑𝒖

𝑑𝜽
 of size 𝑛 ×

𝑚. Differentiating Eq. (1) against the parameters 𝜽 leads to 

𝑑

𝑑𝜽
(

𝑑𝒖

𝑑𝑡
) =

𝑑

𝑑𝑡
(

𝜕𝒖

𝜕𝜽
) =

𝑑𝒇

𝑑𝜽
=

𝜕𝒇

𝜕𝒖

𝑑𝒖

𝑑𝜽
+

𝜕𝒇

𝜕𝜽
, (11) 

where 
𝜕𝒇

𝜕𝒖
 of size 𝑛 × 𝑛 and 

𝜕𝒇

𝜕𝜽
 of size 𝑛 × 𝑚 are the Jacobian matrices that can be acquired by AD 

techniques. Thus, one can get the governing equation for 𝒘 as 

𝑑𝒘

𝑑𝑡
=

𝜕𝒇

𝜕𝒖
𝒘 +

𝜕𝒇

𝜕𝜽
. (12) 

In forward sensitivity analysis, one can integrate Eqs. (1) and (12) together and the final gradient 

of the loss function is acquired by Eq. (10).  

However, the forward sensitivity analysis for a system with 𝑛  state variables and 𝑚 

parameters requires solving a set of ODEs of size 𝑛(𝑚 + 1). Forward sensitivity analysis hence 

scales linearly in the number of parameters and in the number of state variables, which is 

computationally demanding for large 𝑛  and 𝑚  [34]. In the context of chemical kinetics 

optimizations, the state variables 𝒖  consist of the temperature and mass fractions, while the 

parameters 𝜽 are the Arrhenius parameters in kinetics mechanisms. The number of state variables 

𝑛 and the number of parameters 𝑚 can be up to 103 and up to 104, respectively. 

To reduce the computational cost and memory requirements, the adjoint sensitivity method 

[34-36] is instead employed by Chen et al. [22]. For the sake of better understanding, the 

derivations of the adjoint sensitivity method are described with the Lagrangian multiplier function, 

which is defined as 

ℒ(𝜽) = ∫ 𝑔(𝒖, 𝜽)𝑑𝑡
𝑡𝑒𝑛𝑑

0

+ ∫ 𝝀𝑇 (
𝑑𝒖

𝑑𝑡
− 𝒇(𝒖, 𝜽, 𝑡)) 𝑑𝑡

𝑡𝑒𝑛𝑑

0

, (13) 

where 𝝀 is of size 𝑛 × 1. One can optimize the original loss function 𝐿(𝒖, 𝜽) along with the 

dynamics trajectory that satisfies 
𝑑𝒖

𝑑𝑡
− 𝒇(𝒖, 𝜽, 𝑡) = 𝟎, where 

𝑑ℒ

𝑑𝜽
=

𝑑𝐿

𝑑𝜽
. Differentiating Eq. (13) 

leads to 
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𝑑𝐿

𝑑𝜽
= ∫ (

𝜕𝑔

𝜕𝒖

𝑑𝒖

𝑑𝜽
+

𝜕𝑔

𝜕𝜽
) 𝑑𝑡

𝑡𝑒𝑛𝑑

0

+ ∫ 𝝀𝑇 (
𝑑

𝑑𝜽
(

𝑑𝒖

𝑑𝑡
) −

𝜕𝒇

𝜕𝒖

𝑑𝒖

𝑑𝜽
−

𝜕𝒇

𝜕𝜽
) 𝑑𝑡

𝑡𝑒𝑛𝑑

0

, (14) 

where the term involving in 
𝑑

𝑑𝜽
(

𝑑𝒖

𝑑𝑡
) can be rewritten using integration by parts as 

∫ 𝝀𝑇
𝑑

𝑑𝜽
(

𝑑𝒖

𝑑𝑡
) 𝑑𝑡

𝑡𝑒𝑛𝑑

0

= 𝝀𝑇
𝑑𝒖

𝑑𝜽
|

0

𝑡𝑒𝑛𝑑

− ∫
𝑑𝝀𝑇

𝑑𝑡

𝑑𝒖

𝑑𝜽
𝑑𝑡

𝑡𝑒𝑛𝑑

0

. (15) 

Substituting this into Eq. (14) and rearranging to group together terms involving the sensitivity 

matrix 
𝑑𝒖

𝑑𝜽
 gives 

𝑑𝐿

𝑑𝜽
= ∫ (

𝜕𝑔

𝜕𝒖
− 𝝀𝑇

𝜕𝒇

𝜕𝒖
−

𝑑𝝀𝑇

𝑑𝑡
)

𝑑𝒖

𝑑𝜽
𝑑𝑡

𝑡𝑒𝑛𝑑

0

+ ∫ (
𝜕𝑔

𝜕𝜽
− 𝝀𝑇

𝜕𝒇

𝜕𝜽
) 𝑑𝑡

𝑡𝑒𝑛𝑑

0

+ 𝝀𝑇
𝑑𝒖

𝑑𝜽
|

0

𝑡𝑒𝑛𝑑

. (16) 

The adjoint sensitivity vector 𝝀𝑇 of size 1 × 𝑛 can be used to eliminate the first term involving the 

sensitivity matrix, which requires 

𝑑𝝀𝑇

𝑑𝑡
=

𝜕𝑔

𝜕𝒖
− 𝝀𝑇

𝜕𝒇

𝜕𝒖
. (17) 

In this study, the initial conditions do not depend on parameters 𝜽, thus 
𝑑𝒖

𝑑𝜽
|

𝑡=0
= 𝟎. And to 

eliminate the last term in Eq. (16), one can let 𝝀𝑇|𝑡=𝑡𝑒𝑛𝑑
= 𝟎. Therefore, the gradient of the loss 

function is 

𝑑𝐿

𝑑𝜽
= ∫ (

𝜕𝑔

𝜕𝜽
− 𝝀𝑇

𝜕𝒇

𝜕𝜽
) 𝑑𝑡

𝑡𝑒𝑛𝑑

0

. (18) 

To reduce time complexity, one can also backward integrate 
𝜕𝑔

𝜕𝜽
− 𝝀𝑇 𝜕𝒇

𝜕𝜽
 and combine it with 

the backward integration of 𝝀𝑇. Therefore, one can conduct the augmented dynamics with 𝝀𝑎𝑢𝑔
𝑇 ≡

[𝝀𝑇 , 𝝁𝑇]  of size 1 × (𝑛 + 𝑚) , 𝝁𝑇|𝑡=𝑡𝑒𝑛𝑑
≡

𝜕𝑔

𝜕𝜽
|

𝑡=𝑡𝑒𝑛𝑑

, 𝝀𝑇|𝑡=𝑡𝑒𝑛𝑑
≡ 𝟎  and with 𝒖𝑎𝑢𝑔 ≡ [𝒖, 𝜽]  of 

size (𝑛 + 𝑚). The governing equation for 𝝀𝑎𝑢𝑔
𝑇  is 

𝑑𝝀𝑎𝑢𝑔
𝑇

𝑑𝑡
=

𝜕𝑔

𝜕𝒖𝑎𝑢𝑔
− 𝝀𝑇

𝜕𝒇

𝜕𝒖𝑎𝑢𝑔
, 𝝀𝑎𝑢𝑔

𝑇 |
𝑡=𝑡𝑒𝑛𝑑

= [𝟎,
𝜕𝑔

𝜕𝜽
|

𝑡=𝑡𝑒𝑛𝑑

], (19) 
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where 
𝜕𝑔

𝜕𝒖𝑎𝑢𝑔
≡ [(

𝜕𝑔

𝜕𝒖
) , (

𝜕𝑔

𝜕𝜽
)] is of size 1 × (𝑛 + 𝑚) and 

𝜕𝒇

𝜕𝒖𝑎𝑢𝑔
≡ [(

𝜕𝒇

𝜕𝒖
) , (

𝜕𝒇

𝜕𝜽
)] is of size 𝑛 × (𝑛 +

𝑚).  

By backward integrating the augmented ODEs Eq. (19), one can obtain the full gradients of 

the given loss function with respect to the training datasets, which is 
𝑑𝐿

𝑑𝜽
= −𝝁|𝑡=0 +

𝜕𝑔

𝜕𝜽
|

𝑡=𝑡0

. The 

detailed steps to compute the gradient of the loss function are shown in Algorithm 1. Thus, the 

adjoint sensitivity analysis solves a set of ODEs of size (2𝑛 + 𝑚) and is more computationally 

effective than the 𝑛(𝑚 + 1) ones solved in the forward sensitivity analysis. Readers can refer to 

[22, 34, 35] for more details. 

Algorithm 1 Gradient of an ODE problem using adjoint method 

Input: dynamics parameters 𝜽, initial state 𝒖0, time range [0, 𝑡𝑒𝑛𝑑], functions 𝒇(⋅) and 𝑔(⋅) 

1. Integrate 
𝑑𝒖

𝑑𝑡
= 𝒇(𝒖, 𝜽, 𝑡) for 𝒖 from 𝑡 = 0 to 𝑡𝑒𝑛𝑑 with initial condition 𝒖|𝑡=0 = 𝒖0. 

2. Integrate 
𝑑𝜆𝑎𝑢𝑔

𝑇

𝑑𝑡
=

𝜕𝑔

𝜕𝒖𝑎𝑢𝑔
− 𝝀𝑇 𝜕𝒇

𝜕𝒖𝑎𝑢𝑔
 for 𝝀𝑎𝑢𝑔

𝑇 ≡ [𝝀𝑇 , 𝝁𝑇]  from 𝑡 = 𝑡𝑒𝑛𝑑  to 0  with initial 

condition 𝝀𝑎𝑢𝑔
𝑇 |

𝑡=𝑡𝑒𝑛𝑑
= [𝟎,

𝜕𝑔

𝜕𝜽
|

𝑡=𝑡𝑒𝑛𝑑

]. 

3. Compute the gradient 
𝑑𝐿

𝑑𝜽
= −𝝁|𝑡=0 +

𝜕𝑔

𝜕𝜽
|

𝑡=𝑡0

. 

Output: 
𝑑𝐿

𝑑𝜽
 

Note: Jacobian functions, i.e., 
𝜕𝒇

𝜕𝒖
,

𝜕𝑔

𝜕𝒖
,

𝜕𝒇

𝜕𝜽
,

𝜕𝑔

𝜕𝜽
, can be acquired via automatic differentiation. 

For time-discrete measurements, the loss function is not continuous and one needs to re-

initialize 𝝀 at each time point of the measurements. Taking the Lotka-Volterra ODEs, also known 

as the predator-prey equations, 

𝑑𝒖

𝑑𝑡
=

𝑑

𝑑𝑡
[
𝑢1

𝑢2
] = [

𝛼𝑢1 − 𝛽𝑢1𝑢2

𝛿𝑢1𝑢2 − 𝛾𝑢2
], (20) 

as an example, where 𝑢1(𝑡) and 𝑢2(𝑡) denote the populations of prey and predator at time 𝑡, 

respectively. By default, the parameters are = 1.5, 𝛽 = 1, 𝛿 = 3, 𝛾 = 1 and initial conditions are 

𝑢1 = 1, 𝑢2 = 1. If given measurements of six time points, one uses the loss function of 
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𝐿(𝒖, 𝜽) = ∑ ‖
𝒖𝑡𝑘

− 𝒖𝑡𝑘

𝑜𝑏𝑠

𝒖𝑠𝑐𝑎𝑙𝑒
‖

25

𝑘=0

+ 𝛼𝜽𝑇𝜽, (21) 

where 𝒖𝑡𝑘

𝑜𝑏𝑠 is the observed data at time 𝑡𝑘, 𝒖𝑠𝑐𝑎𝑙𝑒 is a scaling vector to balance the contribution of 

𝑢1 and 𝑢2, 𝛼 is a regulation term to prohibit unnecessary parameter changes. During the backward 

integration of adjoint state variable 𝝀(𝑡), it should be re-initialized at each 𝑡𝑘 by 

𝝀(𝑡𝑘) = lim
𝑡→𝑡𝑘

+
𝝀(𝑡) + ∇𝒖 (‖

𝒖𝑡𝑘
− 𝒖𝑡𝑘

𝑜𝑏𝑠

𝒖𝑠𝑐𝑎𝑙𝑒
‖

2

) 

= lim
𝑡→𝑡𝑘

+
𝝀(𝑡) + 2(𝒖𝑡𝑘

− 𝒖𝑡𝑘

𝑜𝑏𝑠)/𝒖𝑠𝑐𝑎𝑙𝑒
2 . 

(22) 

As shown in the top panel of Fig. 2, the forward integration will get the state variables of the 

ODEs, and there are discrepancies between the state variables and the data represented by symbols. 

Backward integration of the augmented dynamics results in the adjoint state shown in the bottom 

panel of Fig. 2. When multiple time points are used to constrain a given system, the backward 

integration takes the errors at each time point into account, as demonstrated by the step change of 

adjoint state at corresponding time points. Readers can refer to [22, 24] for more details. 

 

Fig. 2. Demonstration of forward and backward integration of the Lotka-Volterra ODEs and the 

augmented dynamics. The top panel shows the state variables 𝒖(𝑡)  obtained by forward 

integration, with symbols being the observed data. The bottom panel shows the adjoint state 

variables 𝝀(𝑡) obtained by backward integration of the augmented dynamics. 
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2.3 Kinetics parameter optimization 

In general, traditional gradient evaluations for transient solutions involving stiff chemical 

kinetic models are extremely expensive, as the computation time of forward sensitivities usually 

scales with both the number of species and the number of parameters. Compared with the 

numerical Jacobian, the analytical Jacobian can be acquired with lower cost and higher accuracy 

by differentiable programming. Thus, once combined with the adjoint sensitivity method, the 

gradients of the loss function can be evaluated efficiently and hence can be used in stochastic 

gradient descent (SGD) methods to optimize kinetics parameters. The stiff ODE solvers enable the 

ability to handle stiff chemical models, while the SGD methods leverage the ability to extract 

information from noisy experimental data. Note that recently the newest released version of 

Cantera has also enabled the capability of analytical Jacobian. So, one can also implement the 

proposed method in Cantera, but all the other necessary gradient evaluations and adjoint 

sensitivities integration should be manually added. 

By integrating the adjoint sensitivity, one can easily get the loss gradients and optimize the 

kinetics parameters of any chemical model under various types of datasets. As for biomedical 

processes or chemical pyrolysis processes, time-related species profiles are generally measured or 

estimated in experiments and models are trained to fit the experimental observations. In 

combustion scenarios, shock tube oxidation data plays a similar role, with much more available 

data being indirect characteristics of given models, such as ignition delay times (IDTs) or laminar 

flame speeds. 

To demonstrate the proposed framework’s capability and robustness of optimizing kinetics 

parameters under different scenarios, a classical model problem, the stiff Robertson ODE [37], is 

first tested. The Robertson ODE shares the same dynamics with Eq. (3) but does not involve 

temperature-dependent or pressure-dependent rate constants. The generally used rate constants 

𝒌𝑡𝑟𝑢𝑒 = [0.04, 3 × 107, 1 × 104] are adopted to generate the ground truth data with the initial 

value 𝒚0 = [1, 0, 0]. All the simulations and optimizations for the Robertson ODE are under the 

default tolerances, i.e., 𝑎𝑡𝑜𝑙 = 10−6 for the absolute tolerance and 𝑟𝑡𝑜𝑙 = 10−3 for the relative 

tolerance. The data samples are drawn from 50 uniform time instants in the log time scale of range 

[10−4, 108] s. 
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Randomly perturbs the kinetics parameters by sampling from log (
𝒌𝑖𝑛𝑖𝑡

𝒌𝑡𝑟𝑢𝑒) ∼ 𝑈[−1,1], which 

is equivalent to an uncertainty factor [5] of 𝑈𝐹𝑖 =
𝑘𝑖

𝑚𝑎𝑥

𝑘𝑖
𝑡𝑟𝑢𝑒 =

𝑘𝑖
𝑡𝑟𝑢𝑒

𝑘𝑖
𝑚𝑖𝑛 ≈ 2.7 for all parameters, and leads 

to 𝒌𝑖𝑛𝑖𝑡 = [0.023, 1.88 × 108, 1.96 × 103] . With 10% noise added to the state values of the 

datasets, one can then train the Robertson ODE with loss function constraining on the state variable 

𝒚. Based on the fact that chemical species concentration span across several orders of magnitude, 

the loss function utilizes a normalization via 𝒚𝑠𝑐𝑎𝑙𝑒, which is a vector in the same shape of 𝒚0 and 

each value describes the scale of each state variable, 𝐿𝒚(𝜽) = 𝑀𝑆𝐸 (
𝒚𝑚𝑜𝑑𝑒𝑙−𝒚𝑜𝑏𝑠

𝒚𝑠𝑐𝑎𝑙𝑒
) where 𝒚𝑚𝑜𝑑𝑒𝑙 is 

the prediction of neural networks, 𝒚𝑜𝑏𝑠 is the observed noisy data, 𝒚𝑠𝑐𝑎𝑙𝑒 is obtained by subtracting 

the min from the max of each state variable, and 𝑀𝑆𝐸 represents the mean squared error function. 

The loss of parameters is defined as 𝐿𝒌(𝜽) = 𝑀𝑆𝐸 (
𝒌𝑚𝑜𝑑𝑒𝑙−𝒌𝑡𝑟𝑢𝑒

𝒌𝑡𝑟𝑢𝑒 ), where 𝒌𝑚𝑜𝑑𝑒𝑙  is the current 

parameters of neural networks. 

As shown in Fig. 3, the predictions with parameters 𝒌𝑖𝑛𝑖𝑡 differ significantly from the ground 

truth data. For each epoch of the training progress, the gradients of the loss function are computed 

and fed to the Adam [33] optimizer with an initial learning rate of 𝑙𝑟 = 0.1 and default weight 

decay parameters of 0.9 for the 1st-order moment and 0.999 for the 2nd-order moment. After 200 

epochs of training, the optimized ODE well predicts the data behavior and the optimized 

parameters 𝒌𝑜𝑝𝑡 = [0.041, 3.00 × 107, 1.02 × 104] is very close to the ground truth ones 𝒌𝑡𝑟𝑢𝑒. 
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Fig. 3. Training results of Robertson ODE with 10% noise level. 

To further examine the robustness of the Neural ODE method, another 100 training 

experiments are performed under noise levels between 0.1% to 20%. Each experiment uses random 

initial parameters generated with 𝑈𝐹 ≈ 2.7 and a fixed 300 epochs training with the same setting 

is employed. The evolution of losses is shown in the left panel of Fig. 4, which guarantees each 

training process has converged to its optimum, To quantify the training results, normalized errors 

of 𝒚 and 𝒌 are defined as 𝑦𝑒𝑟𝑟 = √ 1

𝑛⋅𝑑
∑ (

𝒚𝑜𝑝𝑡−𝒚𝑜𝑏𝑠

𝒚𝑠𝑐𝑎𝑙𝑒
)

2

and 𝑘𝑒𝑟𝑟 = √ 1

𝑚
∑ (

𝒌𝑜𝑝𝑡−𝒌𝑡𝑟𝑢𝑒

𝒌𝑡𝑟𝑢𝑒 )
2

, where 𝑛 =

3 is the dimension of state variables, 𝑑 = 50 is the number of data samples and 𝑚 = 3 is the 

number of parameters. The results of 𝑦𝑒𝑟𝑟  and 𝑘𝑒𝑟𝑟  are shown in the right panel of Fig. 4. 

Intuitively, converged training leads to 𝑦𝑒𝑟𝑟  being comparable to noise level so 𝑦𝑒𝑟𝑟  collapses 

around the line 𝑦 = 𝑥. The 𝑘𝑒𝑟𝑟 results show that the learned kinetics parameters have a similar or 

smaller scale of error compared to the noise level, which suggests good learning ability and 

robustness of the Neural ODE method. 
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Fig. 4. The evolution of losses and final errors of Robertson ODE’s training results against 

different noise levels. 

Note that the tests against noise are performed with random initial parameters from fixed 𝑈𝐹. 

With large uncertainty factors, it will be harder to converge to the optimum. One can take a series 

of 𝑈𝐹s, and conduct the performance tests for each 𝑈𝐹 to validate the ability of convergency with 

different parameter uncertainties. However, it will relate to not only the studied dynamics system 

but also the hyper-parameters of the optimizer, which is beyond the scope of this paper. 

3. Results 

In this section, we demonstrate the capability of the Neural ODE approach in optimizing the 

kinetics parameters of a JP-10 skeletal mechanism with known species profiles and optimizing an 

over-reduced n-heptane mechanism with known ignition delay times from the detailed one.  

3.1 Case 1: JP-10 pyrolysis 

Jet propellant 10, or JP-10, is one of the leading high volumetric energy density fuel 

candidates for propulsion devices. Tao et al. [38] developed a 41-species, 232-reaction mechanism 

for JP-10 surrogate 𝐶10𝐻16 by constraining this hybrid chemistry model with high temperature 

pyrolysis experimental data. Here by artificially perturbing the kinetics parameters, e.g., rate 

constants 𝒌, the test aims to demonstrate whether Neural ODE can recover the original ones with 

the dataset of species profiles generated from the Tao mechanism. The datasets consist of 20 
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training sets with an initial temperature range of 1000-1200 K, an initial mass fraction of 𝐶10𝐻16 

in the range of 0.02-0.2; and another 5 validation sets with an initial temperature of 1200-1400 K 

and an initial 𝑌𝐶10𝐻16
 in 0.2-0.3. The detailed initial conditions are shown in Table A1 in the 

Appendix. The true parameters 𝒌𝑡𝑟𝑢𝑒 are the original Arrhenius parameters proposed by Tao et al. 

[38]. By defining 𝜽 ≡ log (
𝒌

𝒌𝑡𝑟𝑢𝑒), the true kinetics parameters are hence represented by 𝜽𝑡𝑟𝑢𝑒 =

𝟎. The datasets are obtained by solving the chemical ODEs with 𝒌𝑡𝑟𝑢𝑒 and sampling 10 points 

uniformly in the range of 10−6 s – 10−1 s in the log scale. 

The loss function for training has a MSE term and a regularization term as 

𝐿(𝒚, 𝜽) = 𝑀𝑆𝐸 (
𝒚𝑚𝑜𝑑𝑒𝑙 − 𝒚𝑜𝑏𝑠

𝒚𝑠𝑐𝑎𝑙𝑒
) + 𝛼𝜽𝑇𝜽 (23) 

where 𝛼 is a small number, e.g., 1 × 10−4 to avoid unnecessary parameter changes. During the 

training process, the 20 training sets are randomly permutated and employed to compute gradients 

in each epoch. To accelerate the training process, larger ODE tolerances and fewer timesteps are 

used at the beginning of training and gradually adjusted to finer tolerances and timesteps. 

The initial parameters are given randomly in the range of [−1, 1], which means they can be 

around 2.7 times smaller or larger than the original rate constants 𝑘𝑡𝑟𝑢𝑒  and 𝑈𝐹 ≈ 2.7 . The 

simulations are conducted with zero-dimensional, adiabatic, constant pressure reactors. The 

training process is divided into three steps to reduce the computational cost: (i) train 10 epochs 

with 50% data of each initial condition, with tolerances 𝑎𝑡𝑜𝑙 = 10−9, 𝑟𝑡𝑜𝑙 = 10−6 and learning 

rate 𝑙𝑟 = 0.05; (ii) train 40 epochs with 100% data, 𝑎𝑡𝑜𝑙 = 10−9, 𝑟𝑡𝑜𝑙 = 10−6 and 𝑙𝑟 = 0.01; (iii) 

train 50 epochs with 100% data, 𝑎𝑡𝑜𝑙 = 10−12 , 𝑟𝑡𝑜𝑙 = 10−9  and 𝑙𝑟 = 0.01 . Note that these 

hyper-parameters are manually decided and are not optimal. Further investigation of hyper-

parameters might need to be conducted for better performance on large kinetics mechanisms. 

After 100 epochs of training, the parameters are well optimized to capture the evolution 

characteristics of data. As shown in Fig. 5, the initial parameters 𝜽𝑖𝑛𝑖𝑡 result in significant errors 

in the pyrolysis process. After training, all the species correlate perfectly with the ground truth 

data. Note that the validation sets are not exposed to the training program, which means the 

algorithm learned the inner kinetics from training sets and it applies to other thermochemical 

conditions. 
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Fig. 5. Training results of JP-10 pyrolysis with temperature and all profiles as training data. 

Squares: Data, dash lines: Initial, solid lines: Optimized. 

One can further check if the parameters are trained to the true kinetics parameters used in 

datasets. As shown in Fig. 6, the ground truth 𝜽𝑡𝑟𝑢𝑒 = 𝟎 for every elementary reaction, and the 

initial parameters 𝜽𝑖𝑛𝑖𝑡  randomly distribute in the range [−1, 1]. In contrast, for the sensitive 

reactions, most optimized parameters 𝜽𝑜𝑝𝑡 collapse to the x-axis, which means they are optimized 

toward the ground truth ones. This further confirms that the optimization algorithm extracts the 

inner kinetics behavior from datasets and gets the parameters optimized to the real ones effectively.  
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Fig. 6. The initial and optimized kinetics parameters with the ground truth being all zero. Only 

the most sensitive 20 reactions under initial condition #1 in Table A1 are plotted. 

Figure 7 further demonstrates the capability of the optimization algorithm by showing that it 

can well reproduce the pyrolysis process of all species even if only the profiles of a small subset 

of species are available for training. Note that the information of species 𝐶5𝐻5, 𝐶𝐻3 and 𝐻 are not 

available, but their evolutions are well reproduced after the kinetics parameters are optimized. The 

demonstration reveals that it is possible to learn the kinetics parameters from partially observed 

species profiles. For instance, one can employ the approach on synthesized data to identify the 

most influential measurements on the kinetics parameter optimization and guide the design of 

experiments. 

 

Fig. 7. Training results of JP-10 pyrolysis with only the profiles of 𝐶𝐻4, 𝐶2𝐻4 as training data. 

Squares: Data, dash lines: Initial, solid lines: Optimized. 

The accuracy of measurements will definitely influence the accuracy of model prediction. 

Therefore, various noise levels are tested and compared in the JP-10 cases, with either all species 

profiles or only the profiles of 𝐶𝐻4, 𝐶2𝐻4 as the training data. For example, with 5% noise added 

to all species profiles, after the training 100 epochs mentioned before, one can get a set of 

optimized parameters. With that optimized parameters, the predictions under all initial conditions 
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listed in Table A1 are computed and compared to the ground truth ones without noise, and then 

the average error under each initial condition can be obtained and statistically counted for its PDF 

among 25 initial conditions. 

As shown in Fig. 8, for two kinds of training data, the errors of the final predictions get 

gradually increased with increasing noise levels. When all data profiles are employed, the errors 

under the same noise levels are generally smaller than that trained with 𝐶𝐻4 and 𝐶2𝐻4. It is worth 

noting that with only the data profiles of 𝐶𝐻4 and 𝐶2𝐻4 being used, noises smaller than 5% lead 

to only limited performance of final errors. However, for the one trained with all data profiles, 

there are still improvements with the noise level getting down to 1%. It suggests that when 

optimizing this chemical system with limited data, adding data abundance may perform better than 

pursuing ultimate data accuracy. 

 

Fig. 8. Final errors of the JP-10 pyrolysis case with different training data under different noise 

levels. The width of each violin-shaped plot shows the probability of the corresponding 𝑦𝑒𝑟𝑟 

among the 25 datasets shown in Table A1 and the bars are the corresponding means of 𝑦𝑒𝑟𝑟.  

3.2 Case 2: n-heptane autoignition 

Most skeletal chemical models are obtained by removing unimportant species and the 

associated reactions from the master model, leaving the kinetics parameters of the remaining 

pathways unchanged after the reduction. There has been increasing interest in optimizing the 

kinetics parameters in overly reduced reaction models to compensate for the error introduced by 

over-reduction [12, 28]. Thus, one can obtain a smaller model with higher fidelity than those 

acquired via traditional reduction methods. 



21 
 

Here a widely used 41-species, 168-reaction n-heptane mechanism developed by Nordin et 

al. [39] is employed to demonstrate the ability of neural ODE for optimizing reduced models. The 

species 𝐶3𝐻5 , 𝐶3𝐻4 , 𝐶2𝐻6 , 𝐶𝐻4𝑂2 , 𝐶𝐻3𝑂2 , and 𝐶2𝐻2  are removed via an iterative reduction 

process involving direct relation graph (DRG) [40], sensitivity analysis (SA) [41] and directioni 

relation graph with error propagation (DRGEP) [42]. The overly reduced model is denoted as 

SK34 with 34 species and 121 reactions. It is noted that one can also optimize an existing empirical 

semi-global reaction model against a detailed model without consulting skeletal reduction. 

Ignition delay times (IDTs) are used as the single target characteristics to optimize the skeletal 

mechanism SK34. Note that the parameter studies [43, 44] suggested that there is strong 

correlation between the temperature exponent 𝑏, the activation energy 𝐸𝑎 and the pre-exponential 

factor 𝐴; thus, adding 𝑏, 𝐸𝑎 to be mutable parameters will not help much on the final accuracy. 

Therefore, usually only 𝐴 is optimized in many related works. In this study, the optimizations are 

conducted either with only 𝐴 being optimized or with all the Arrhenius parameters being mutable 

to validate the efficiency and effectiveness of the proposed method. The mechanism optimized 

with only 𝐴 and the one optimized with 𝐴, 𝑏, 𝐸𝑎 are hereby denoted as SK34OPa and SK34OPb, 

respectively. 

The training sets 𝜏𝑜𝑏𝑠 are IDTs under 500 thermochemical conditions sampled in the range 

of 700-1600 K for initial temperature 𝑇0, 1-50 atm for pressure 𝑃, and 0.5-2.0 for the equivalence 

ratio 𝜙. Splitting the datasets with 80% as the training set and 20% as the validation set, one can 

optimize the problem with the training set and check the validity and reliability with the validation 

set. The loss function adopted is also an MSE term accompanied with a regularization term: 

𝐿(𝜽) = (log
𝜏

𝜏𝑜𝑏𝑠
)

2

+ 𝛼𝜽𝑇𝜽, (24) 

where 𝛼 = 1 × 10−4. The gradient of 𝐿(𝜽) is 

𝑑𝐿

𝑑𝜽
=

𝜕𝐿

𝜕𝜏

𝑑𝜏

𝑑𝜽
+

𝜕𝐿

𝜕𝜽
= 2 (log

𝜏

𝜏𝑜𝑏𝑠
)

𝑑𝜏

𝑑𝑇

𝑑𝑇

𝑑𝜽
+ 2𝛼𝜽, (25) 

where 
𝑑𝑇

𝑑𝜽
 are obtained via the adjoint sensitivity method and 

𝑑𝜏

𝑑𝑇
 are obtained after the integration 

of the ODE solver (by numerical gradient evaluation from temperature profile). 

The ignition delay times are simulated by zero-dimensional, adiabatic, const pressure 

reactors. All the simulations share the same tolerances 𝑎𝑡𝑜𝑙 = 10−12 and 𝑟𝑡𝑜𝑙 = 10−9. In each 
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epoch, a batch of 40 samples are randomly chosen from the training set and the gradients are fed 

to the Adam [33] optimizer with an initial learning rate of 2 × 10−3 and default weight decay 

parameters of 0.9 for the 1st-order moment and 0.999 for the 2nd-order moment.  

After 100 epochs training, as shown in Fig. 9, the skeletal mechanism is optimized and the 

predictions of the optimized ones on IDTs match well with the original Nordin mechanism. By 

averaging over all the tested thermochemical conditions, i.e.,  𝑇0=[650, 700, 750, 800, 850, 900, 

950, 1000, 1100, 1200, 1300, 1400, 1600] K, 𝑃 = [10, 30, 60] atm and 𝜙 = [0.5, 1.5, 2.0], one 

can compute the mean relative error of IDT as 𝜏𝑒𝑟𝑟 =
1

𝑁
∑ |

𝜏𝑖−𝜏𝑖
𝑜𝑏𝑠

𝜏𝑖
𝑜𝑏𝑠 |𝑁

𝑖=1 , where 𝑁 is the number of 

tested thermochemical conditions and | ⋅ | is the absolute function. The mean relative errors for 

SK34OPa and SK34OPb are 3.5% and 2.2%, respectively, which implies that the optimization 

with 𝐴, 𝑏, 𝐸𝑎 leads to a little higher accuracy than the one with only 𝐴. 

As for the computational efficiency, the entire optimization process with 363 mutable 

parameters is about 6 times expensive than the one with 121 pre-exponential factors, and it takes 

about 10 CPU hours on a normal PC. For reference, the optimization of an overly reduced Jet A 

kinetic model with 30 mutable parameters among 254 reactions using evolutionary algorithms has 

to rely on high-performance clusters and costs around hundreds of CPU hours [12]. The MUM-

PCE method [7] can provide a comparable time cost with around 30 mutable parameters, but if all 

parameters are taken into account, it will be unaffordable to build the response surface. 

 

Fig. 9. Prediction on IDTs of Nordin (Data) with its skeletal (SK34) and the optimized 

mechanisms with 𝐴 (SK34OPa) and with 𝐴, 𝑏, 𝐸𝑎(SK34OPb). 
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Figure 10 further validates the evolution of species and temperature during the autoignition 

process. As shown in Fig. 10, SK34OPa and SK34OPb both perform better than SK34, while 

SK34OPb performs even better for the high-temperature pathway. Generally, the optimized 

skeletal mechanisms, especially SK34OPb, can not only well predict IDTs and temperature 

evolution, but also preserve the physical interpretability of the original mechanism, which leads to 

correct predictions of minor species evolution. Similar observations can be made for other species. 

 

Fig. 10. Profiles of temperature and species OH during autoignition, where the left panels show 

high-temperature pathway and the right panels for the low-temperature pathway. The lines are for 

the Nordin (Data) with its skeletal (SK34) and the optimized mechanisms with 𝐴 (SK34OPa) and 

with 𝐴, 𝑏, 𝐸𝑎 (SK34OPb). 

4. Discussions 

Kinetics parameter optimizations with experimental data and theoretical calculations as 

constraints are generally widely used in the development of combustion chemical models [2, 5]. 

In addition to point estimation of model parameters, the reverse UQ strategies have been advocated 

to constrain the uncertainty space of the input parameters, i.e., to reconstruct the probability 

distribution of input parameters via given constraints. Li and Frenklach [45, 46] developed the 

bound-to-bound data collaboration (B2BDC) method with source code released. Sheen [7, 10] and 

Wang [5] proposed the method of uncertainty minimization by a polynomial chaos expansion 

(MUM-PCE). Cai and Pitsch [47, 48] adopted the MUM-PCE and optimized large alkane 
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mechanisms. Tao and Wang [38, 43] investigated the uncertainty and sensitivity of all the 

Arrhenius parameters of the FFCM-1 chemistry model. 

As mentioned above, by using the reverse UQ methods, the uncertainties of model predictions 

are estimated and minimized against the given dataset. The inherent nature behind is Bayesian 

regression that treats the model parameters as random variables and estimates the posterior 

distributions from prior distributions and the ground truth distribution of the QoI [49]. The reverse 

UQ methods utilize the response surfaces to map the input parameters to the QoI, which facilitates 

the sampling process of the Markov chain Monte Carlo (MCMC) approach. Wang et al. [9] 

introduced artificial neural networks (ANN) as the response surface and combined it with the 

Bayesian analysis to estimate the posterior of kinetics parameters. 

In neural network scenarios, the reverse UQ is often termed as variational inference (VI) and 

has been studied by many researchers [50, 51]. The universal approximation ability and automatic 

differential platform empower the neural networks to be a promising method to estimate posterior 

from limited datasets. Recently, Dandekar and Rackauckas [52] proposed the Bayesian Neural 

ODE with stochastic gradient Hamiltonian Monte Carlo (SGHMC) sampler and illustrated the 

ability to forecast the dynamics against ground truth data. Besides, Xu et al. [53] utilized the 

Bayesian neural networks with stochastic differential equation (SDE) and trained it with the 

evidence lower bound (ELBO) loss function. 

The basic idea of Bayesian inference comes from the Bayes’ theorem 

𝑝(𝜽|𝓓) =
𝑝(𝜽)𝑝(𝓓|𝜽)

𝑝(𝓓)
, (26) 

where 𝑝(𝜽|𝓓) is the posterior probability of the parameters 𝜽 with given data 𝓓; 𝑝(𝜽) is the prior 

distribution of parameters 𝜽, representing the initial beliefs about the parameters before observing 

the data; 𝑝(𝓓|𝜽) is the likelihood that describes the probability of 𝓓 with given parameters 𝜽; 

𝑝(𝓓) the marginal likelihood or evidence, which is the normalizing constant that ensures the 

posterior is a proper probability distribution. Since 𝑝(𝓓) is constant, 𝑝(𝜽|𝓓) ∝ 𝑝(𝜽)𝑝(𝓓|𝜽), 

therefore log posterior  

log 𝑝(𝜽|𝓓) = log 𝑝(𝓓|𝜽) + log 𝑝(𝜽), (27) 

is often used as the optimization target and once the optimization is complete, one needs to 

normalize 𝑝(𝜽|𝓓). The log likelihood log 𝑝(𝓓|𝜽) is usually defined as the negative sum of the 
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residuals between the observed data and the model predictions, weighted by the observational 

noise: 

log 𝑝(𝓓|𝜽) = −
1

2
∑ (

𝝁𝑜𝑏𝑠 − 𝒖𝑝𝑟𝑒𝑑

𝝈𝑜𝑏𝑠
)

2

, (28) 

where 𝒖𝑝𝑟𝑒𝑑  is the model prediction with given 𝜽, 𝝁𝑜𝑏𝑠  is the observed mean and 𝝈𝑜𝑏𝑠  is the 

observed noise or standard derivation. The gradient of log 𝑝(𝜽|𝓓)  can be calculated by 

differentiating the log likelihood log 𝑝(𝓓|𝜽) and log prior log 𝑝(𝜽) via automatic differentiation. 

With the gradient of the likelihood obtained, MCMC sampler can then use it to efficiently 

explore the posterior distribution and generate samples from the posterior. The No-U-Turn 

Sampler (NUTS) was introduced by Hoffman et al. [54] as an efficient and automatic alternative 

to traditional MCMC methods and has been shown to be highly effective in a wide range of 

applications, including complex models with multi-model distributions and high-dimensional 

parameters. 

With the NUTS algorithm implemented in Turing.jl [55], the Robertson ODE described in 

Section 2.3 is employed to demonstrate the variational inference ability of the Bayesian Neural 

ODE. Firstly, the arbitrary independent PDFs of parameters 𝜽 ≡
𝒌

𝒌𝑡𝑟𝑢𝑒 are taken as the ground truth 

to generate the training data. The prior parameter distributions are specified to be uniform 

distributions, as shown in the right panel of Fig. 11. Then as constrained by the data with the 

corresponding uncertainties, the posterior profiles and parameter distributions represent the 

learned dynamics and the learned uncertainties. As shown in Fig. 11, the posterior profiles lie 

between 2𝜎 range of training data, with the marginal parameter distributions overlapping well with 

the ground truth ones. Note that the Bayesian inference of Neural ODE shown here is only for 

demonstration and warrants further analysis of its performance and robustness, under more 

practical conditions. 
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Fig. 11. Profiles and parameter distributions of Robertson ODE in the Bayesian inference 

process of Neural ODE. 

Regarding the mechanisms of hydrocarbon fuels, using Bayesian Neural ODE to infer 

kinetics parameter distributions would be a promising way to conduct efficiently reverse UQ from 

limited datasets and is worthy of further investigation. 

5. Conclusion 

In this work, the Neural ODE architecture with the adjoint sensitivity method is proposed for 

kinetics parameter optimization with efficient and accurate gradient evaluation of chemical ODE 

models. And it is the first time demonstrated with systematically tests for the optimization of 

hydrocarbon fuels’ mechanisms of various complexity, with different noise levels and mutable 

parameters. 

The numerical experiments of optimizing the Robertson problem show that the proposed 

method can optimize kinetics parameters effectively and robustly, even with a substantial level of 

noise. The case study of JP-10 pyrolysis demonstrates the ability of the proposed method to learn 

the true kinetics parameters instead of being trapped into a local minimum, in practice chemical 

models. Though few data are exposed to the optimization process, the kinetics parameters are 
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adequately optimized and their predictions well fit the training sets and validation sets. Further 

tests against different noise levels suggest that when optimizing the chemical system with limited 

data, adding data abundance may perform better than pursuing ultimate data accuracy. 

Additionally, the parameter optimization of the n-heptane skeletal mechanism shows that reduced 

models can be trained to perform as well as the detailed ones, while not only matching the datasets 

constraint but also preserving the physical interpretability. And the optimization with all the 

Arrhenius parameters only brings little improvement than the optimization with only pre-

exponential factors 𝐴. 

Despite the capability to optimize various types of data, including temporal profiles and 

typical combustion characteristics, one can also adopt Bayesian inference techniques with Neural 

ODE to estimate the parameter uncertainties from experimental uncertainties. The proposed 

method can also be employed to optimize global reaction mechanisms, with available experimental 

data in species profiles or global characteristics such as laminar flame speeds. Assisted with high-

efficiency neural network platforms and specific acceleration hardware units, e.g., TPU, one can 

optimize even larger kinetics models with thousands of reactions. 
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Appendix 

The initial conditions for the JP10 pyrolysis example are shown in Table A1, where 𝑌0,𝐶10𝐻16
 

is the initial mass fraction of JP10, and 𝑇0 is the initial temperature. The first 20 conditions are 

used as training set, with 𝑇0 in the range of 1000-1200K and  𝑌0,𝐶10𝐻16
 in the range of 0.02-0.2; 

and the other 5 conditions are used as validation set, with 𝑇0 in the range of 1200-1400K and 

𝑌0,𝐶10𝐻16
 in the range of 0.2-0.3. 

Table A1. Initial conditions for the JP10 pyrolysis example. 

  𝒀𝟎,𝑪𝟏𝟎𝑯𝟏𝟔
 𝑻𝟎 (K) 

Training Set 

𝑻𝟎 ∈ [𝟏𝟎𝟎𝟎, 𝟏𝟐𝟎𝟎] K 

𝒀𝟎,𝑪𝟏𝟎𝑯𝟏𝟔
∈ [𝟎. 𝟎𝟐, 𝟎. 𝟐] 

#1 0.0920 1192 

#2 0.1064 1104 

#3 0.1640 1080 

#4 0.1928 1048 

#5 0.1496 1184 
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#6 0.0272 1088 

#7 0.1208 1096 

#8 0.0560 1136 

#9 0.1784 1176 

#10 0.0848 1168 

#11 0.0992 1072 

#12 0.1352 1040 

#13 0.1856 1064 

#14 0.0632 1032 

#15 0.1424 1152 

#16 0.1568 1024 

#17 0.0776 1128 

#18 0.1280 1008 

#19 0.1136 1016 

#20 0.0416 1112 

Validation Set 

𝑇0 ∈ [1200,1400] K 

𝑌0,𝐶10𝐻16
∈ [0.2,0.3] 

#21 0.2080 1256 

#22 0.3000 1320 

#23 0.2160 1360 

#24 0.2840 1400 

#25 0.2280 1344 
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