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Abstract

Chemical kinetic modeling is an integral part of combustion simulation,

and extensive efforts have been devoted to developing high-fidelity yet com-

putationally affordable models. Despite these efforts, modeling combustion

kinetics is still challenging due to the demand for expert knowledge and

high dimensional optimization against experiments. Therefore, data-driven

approaches that enable efficient discovery and calibration of kinetic mod-

els have received much attention in recent years, the core of which is the

high-dimensional optimization based on big data. Evolutionary algorithms

are usually adopted for optimizing chemical kinetic models, although they

usually suffer from high computational costs and are limited to a small num-

ber of parameters. Meanwhile, gradient-based optimizations, especially the

stochastic gradient descent (SGD) methods, have shown success in developing

complex models by training large-scale deep learning models. Therefore, this
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work explores the applications of SGD-based optimizations in tuning mech-

anistic kinetic models and learning hybrid kinetic models. We first showed

that SGD-based optimizations could substantially save computational cost

compared to evolutionary algorithms when the number of kinetic parameters

in mechanistic models reached about one hundred. We then demonstrated

that the SGD-based optimization enabled us to use a neural network model to

represent the pyrolysis of the Hybrid Chemistry and optimize the associated

hundreds of weights in the neural network . These proof-of-concept studies

showed that the SGD-based optimization is more efficient than evolutionary

algorithms, is a promising approach for developing chemical kinetic mod-

els with high dimensional parameters, and is capable of developing hybrid

mechanistic-machine learning kinetic models.

Keywords: Stochastic Gradient Descent (SGD), Data-driven Modeling,

Chemical Kinetics, Hybrid Modeling, Auto-differentiation

1. Introduction

The optimization of model parameters plays a critical role in the de-

velopment of chemical kinetic models. The widely adopted optimization

techniques in combustion kinetic modeling can be categorized into heuristic

algorithms and response surface techniques [1, 2]. Heuristic algorithms [3–8]

such as genetic algorithms usually perform well with less than 100 parameters

and small datasets. This is due to fact that the genetic algorithms require a

large number of samples to explore the parameter space, and the computa-

tional cost of genetic algorithms scales with the number of parameters and

number of samples in the dataset. Response surface techniques [9] alleviate
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the intensive computational cost in performing target simulations with the

proposed kinetic models by building a function approximation that maps the

model parameter space to model predictions. Similar to heuristic algorithms,

however, response surface techniques are also limited to low dimensional

model parameter space [10] and small datasets, for the cost of building a

response surface scales with the dimension of parameter space and the num-

ber of quantities of interest. Meanwhile, recent development in diagnostic

techniques and experiment automation [11] have significantly increased the

efficiency of experimental data generation and driven combustion research

into the big data regime. Therefore, optimization methods that can handle

large dataset effectively and efficiently would greatly benefit the development

of chemical kinetic models in addition to high-throughput experimentation.

While seldom exploited in combustion modeling, optimization algorithms

based on stochastic gradient descent (SGD) has shown promise in nonconvex

optimization for complex nonlinear models, and SGD has played a central

role in driving the boom of deep learning in the last decade [12]. Further-

more, various techniques have been developed in conjunction with SGD to

increase the generalization performance of the optimized model. For instance,

a modern deep learning optimizer not only focuses on minimizing the loss

functions but also regularizes the model to increase the extrapolation capabil-

ity. Generalization to different conditions and tasks is an important feature

for classical physics-based chemical models. With good generalization capa-

bility, a chemical model that was developed based on canonical combustion

experiments should also work reasonably well in simulating the reactions in

practical combustion systems. Therefore, SGD is potentially not only more
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efficient but also more generalizable compared to heuristic optimization al-

gorithms.

One of the major obstacles for exploiting SGD in combustion model-

ing is the lack of software ecosystems that can efficiently and accurately

compute the gradient of simulation output to model parameters. For in-

stance, the finite difference method (often termed the brute-force method)

usually suffers from both computational inefficiency, as the cost scales with

the number of parameters, and inaccuracy due to truncation error. Con-

versely, stochastic gradient descent based on auto-differentiation (AD) has

shown both efficiency and accuracy in the training of large-scale deep neural

network models [12]. Many open-source AD packages have been developed

in the last decade, including TensorFlow [13], Jax [14] backed by Google,

PyTorch [15] backed by Facebook, ForwardDiff.jl [16] and Zygote.jl [17] in

Julia. Fortunately, an open-source AD-powered differentiable combustion

simulation package Arrhenius.jl [18] has been developed recently to enable

differentiable programming in combustion modeling. The package incorpo-

rates combustion physics models into AD ecosystems in Julia and thus enable

auto-differentiation across combustion models, such as computing the gradi-

ent of species concentrations with respect to the kinetic parameters. This

work thus employs Arrhenius.jl to explore the opportunities of SGD-based

optimization in modeling complex combustion kinetics.

In this work, we explore the capability of SGD-based optimization in

two optimization tasks: optimizing a mechanistic kinetic model and learning

a hybrid neural-mechanistic kinetic model. Optimization of a mechanistic

model is usually an integral part of calibrating kinetic models against exper-
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imental data [6] or a reference model. For example, optimizing an empirical

kinetic model or an overly reduced kinetic model against a detailed kinetic

model [7, 19]. It proceeds by tuning the Arrhenius parameters to enable the

predictions of the optimized kinetic model to agree with the target detailed

kinetic model.

For the hybrid kinetic model [20], a neural network model is used to repre-

sent part of the kinetic process, e.g., the pyrolysis of large hydrocarbon fuels,

and thus one can train a neural network model to predict the combustion

process without providing a reaction template based on expert knowledge.

When simulating combustion processes, the neural network takes the species

concentrations and temperature as inputs and predicts the production rate

of each species, similar to a mechanistic model. Learning a hybrid neural

network/mechanistic model is a relatively new adventure since it is com-

putationally infeasible to train the neural network model using conventional

evolutionary optimization algorithms. While SGD-based optimization should

be able to handle the computational load, the training is not trivial. Since

the neural network is coupled with the mechanistic model, one has to take

the mechanistic model into the gradient calculation as well. Previous work

[20] has assumed that all intermediate species are measurable and thus one

can decouple the neural network model from the mechanistic model during

training. However, this assumption often does not hold due to the complex-

ity of the chemical kinetics and limited diagnostic capability. Here we adopt

the Arrhenius.jl to enable computing the gradient for the hybrid model and

explore the possibility of learning the hybrid model using SGD-based opti-

mization.
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This paper is structured as follows: we shall first briefly introduce the

numerical approaches in Sec. 2, including the package of Arrhenius.jl 2.1 and

the equations for various gradient calculations in Sec. 2.2. We then present

the application in optimizing mechanistic kinetic model and hybrid neural

network/mechanistic kinetic model in Sec. 3. Finally, we draw conclusions

in Sec. 4.

2. Numerical Approaches

2.1. Arrhenius.jl

Arrhenius.jl [18] is built in the programming language of Julia to leverage

the rich ecosystems of auto-differentiation and differential equation solvers.

Arrhenius.jl does two types of differentiable programming: (i) it can differen-

tiate elemental computational blocks. For example, it can differentiate the re-

action source term with respect to kinetic and thermodynamic parameters as

well as species concentrations. Arrhenius.jl leverages the language-wide auto-

differentiation of Julia programming language to do the auto-differentiation

and thus preclude the need of deriving the formula of the gradient/Jacobian

matrix. (ii) It can also differentiate the numerical solvers in various ways, such

as solving the continuous sensitivity equations [21] as done in CHEMKIN [22]

and Cantera [23] and in adjoint methods [24, 25]. An example of this type

of differentiation is computing the gradients of species concentrations with

respect to chemical kinetic model parameters and initial compositions. The

first type of differentiation is usually the basis of the second type of higher-

level differentiation. Arrhenius.jl offers the core functionality of combustion

simulations in native Julia programming, such that users can conveniently

6



build applications on top of Arrhenius.jl and exploit various approaches to

do high-level differentiation.

Figure 1 shows a schematic of the structure of the Arrhenius.jl pack-

age. Arrhenius.jl reads in the chemical mechanism files in YAML format

maintained by the Cantera [23] community; the chemical mechanism files

contain the kinetic model, thermodynamic, and transport databases. The

core functionality of Arrhenius.jl is to compute the reaction source terms

and mixture properties, such as heat capacities, enthalpies, entropies, Gibbs

free energies, etc. In addition, Arrhenius.jl offers flexible interfaces for users

to define neural network models as submodels and augment them with ex-

isting physical models. For example, one can use a neural network submodel

to represent unknown reaction pathways and exploit various scientific ma-

chine learning methods to train the neural network models, such as neural

ordinary differential equations [26–29] and physics-informed neural network

models [30, 31]. One can then implement the governing equations for dif-

ferent applications with these core functionalities and solve the governing

equations using classical numerical methods or neural-network-based solvers,

such as physics-informed neural networks [30]. Arrhenius.jl provides solvers

for canonical combustion problems, such as simulating the auto-ignition in

constant volume/pressure reactors and oxidation in jet-stirred reactors. The

governing equations implemented in the package is generally following those

of CHEMKIN [22] and Cantera [23]. The package has also been validated

against Cantera [23] in various canonical programs, such as pyrolysis, igni-

tion, and sensitivity analysis of one-dimensional flame.
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Figure 1: Schematic showing the structure of the Arrhenius.jl package.

In contrast to legacy combustion simulation packages, Arrhenius.jl can

not only provide predictions given the physical models but also optimize

model parameters given experimental measurements. By efficiently and ac-

curately evaluating the gradient of the solution outputs to the model param-

eters, experimental data can be incorporated into the simulation pipeline to

enable data-driven modeling with deep learning algorithms. Note that one

can also achieve differentiable capability with existing combustion software,

such as CHEMKIN [22] and Cantera [23]. For example, ADIFOR [32] devel-

oped in 1970s can be employed to do auto-differentiation over subroutines

in CHEMKIN. However, modern optimization and machine learning pack-

ages are usually in high-level languages (e.g., Python and Julia [33]), and

8



thus one has to deal with the compatibility issues among modern high-level

languages and low-level languages (e.g., C++ and FORTRAN). On the con-

trary, Arrhenius.jl can conveniently connecting combustion modeling with

optimization and machine learning without introducing the complexity of

low-level languages.

2.2. Gradient Calculation

In this section, we briefly discuss how Arrhenius.jl can enhance various

approaches for computing the gradient (sensitivity) in jet-stirred reactors,

shock tubes, and laminar flame experiments. In general, we deal with two

kinds of gradient calculations [22], i.e., steady-state solutions and transient

solutions.

Examples of steady-state solutions are the modeling of species profiles in

jet-stirred reactors and steady laminar flames. Without loss of generality, we

can write down the governing equations in vector form as

F (φ(α);α) = 0, (1)

where F corresponds to the residual vector, φ corresponds to the solution

vector, and α corresponds to model parameters, such as the kinetic, thermo-

dynamic, and transport parameters. By differentiating Eq. 1 with respect

to the α, we obtain matrix equations for the gradients.

∂F

∂φ

∂φ

∂α
+
∂F

∂α
= 0, (2)

where ∂φ
∂α

are the Jacobian matrices of the solution vector with respect to

model parameters. Normally, for optimization, we have a scalar loss function
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defined as L(φ). The gradient of the loss function with respect to model

parameters can be readily achieved via

∂L

∂α
=
∂L

∂φ

∂φ

∂α
. (3)

With Arrhenius.jl, we can leverage AD to compute the two Jacobian ma-

trices of ∂F
∂φ

and ∂F
∂α

. Unlike packages for calculating the analytical Jacobian

[34], efficient computation of the Jacobian can be achieved without develop-

ing the analytical form. In addition, general AD enables us to differentiate

over neural network submodels, which is difficult to implement using analyt-

ical approaches. If the solution variables are discretized in a computational

domain, e.g., the one-dimensional freely propagating flame, one can readily

leverage multi-threading to evaluate the two Jacobians without complex code

re-factorization using parallel computing.

Examples of transient solutions are auto-ignition and fuel pyrolysis in

shock tubes. The governing equations are in the general form of

dφ

dt
= F (φ, t;α), (4)

where t is the time. A natural approach to compute the gradient W = ∂φ
∂α

is

solving the governing equations of W , i.e.,

dW

dt
=
∂F

∂φ
W +

∂F

∂α
. (5)

In addition to solving Eq. 5, Arrhenius.jl leverages various adjoint sen-

sitivity algorithms provided in DifferentialEquations.jl. For comprehensive

comparisons of various algorithms in computing the gradient of solution vari-

ables for transient solutions, readers shall consult [24].
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In general, calculating the gradient for transient solutions involving stiff

chemical kinetic models is expensive, as computation time usually scales

with both the number of species and the number of parameters. Meanwhile,

global combustion behaviors, such as ignition delay times (IDTs), are usually

more experimentally accessible compared to measurements of concentration

profiles. Recent work [21, 35–37] has substantially advanced the algorithms

for computing the gradient of IDT. Therefore, the current work employs the

sensBVP method [35], which converts the initial value problem (IVP) to a

boundary value problem (BVP) by treating the temperature at ignition as a

boundary condition and the IDT as a free variable to solve. In other words,

the problem is converted from a transient problem to a steady-state problem,

similar to the solution of a one-dimensional freely propagating flame.

3. Results and Discussion

We now present case studies using SGD-based optimization for optimizing

complex combustion kinetic modelings where the dimension of parameters is

too high for traditional optimization algorithms, such as genetic algorithms.

3.1. Optimizing Mechanistic Kinetic Model

Most skeletal chemical models are obtained by removing unimportant

species and the associated reactions from the master model, leaving the ki-

netic parameters of the remaining pathways unchanged after the reduction.

Various systematic mechanism reduction approaches have been developed to

generate skeletal mechanism [38–40]. There has also been increasing interest

in optimizing the kinetic parameters in overly reduced reaction models to

compensate for the error introduced by over-reduction [7, 19]. Regardless of
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the controversy of tuning the kinetic parameters during optimization, this

approach has the potential to produce a smaller model with higher fidelity

than the ones obtained via traditional reduction methods. The reduction-

optimization approach proceeds by sampling from target conditions and then

optimizing the reduced model to achieve similar predictions as the master

mechanism under all sampled conditions. This work thus takes this optimiza-

tion process as a case study for SGD-based optimization, i.e., using SGD-

based optimization to minimize the discrepancies between reduced model and

original detailed mechanism.

We demonstrate SGD-based optimization in reducing and optimizing two

chemical models for natural gas and n-heptane, the master models of which

are the GRI3.0 mechanism [41] and the Nordin1998 mechanism [42], respec-

tively. As previously discussed, overly reduced models using classical re-

duction approaches with a large threshold or intuition are firstly obtained,

with the number of species in GRI3.0 reduced from 53 to 23, and that in

Nordin1998 reduced from 41 to 34. The reduction is targeted for simulat-

ing natural gas engines and diesel engines with the commercial software of

Converge [43]. For GRI3.0, we first removed the following species using an it-

erative reduction involving DRG [44], DRGEP [45], PFA [40], and sensitivity

analysis: C, CH3OH, C2H, C2H2, HCCO, CH2CO, HCCOH, NH, NH2, NH3,

N2O, HNO, CN, HCN, H2CN, HCNN, HCNO, HOCN, HNCO, NCO, Ar,

and CH2CHO. We then further removed the species of CH3CHO, NO2, NO,

NNH, N, C2H3, and CH2OH, CH by removing NO-chemistry for Converge

has a built-in NO module and following the reduction of DRM19 [46]. The

overly reduced model is denoted as SK23 with 23 species. For Nordin1998,
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the following species were removed based on the reduction of GRI3.0: C3H5,

C3H4, C2H6, CH4O2, CH3O2, CH3O, and C2H2. The overly reduced model

is denoted as SK34 with 34 species. Note that the way to produce an overly

reduced model can be regarded as a hyper-parameters subject to explore.

This work focuses on the demonstration of the optimization algorithms, and

we leave the optimal choice of removed species to future studies. It should be

noted that one can also optimize an existing empirical semi-global reaction

model against a detailed model without consulting the skeletal mechanism

reduction.

The kinetic parameters of these overly reduced models were subsequently

optimized to retain the predictability of the master models. The ignition de-

lay times and laminar flame speeds (SLs) are utilized as performance metrics

to validate the overly reduced and optimized models against the correspond-

ing master models. As shown in Fig. 2, for GRI3.0, SK23 over-predicts IDT

at high temperatures and under-predicts SL at all equivalence ratios. For

Nordin1998, SK34 significantly over-predicts the IDT at low temperatures,

especially within the negative temperature coefficient region, while the flame

speeds are hardly affected by the reduction.

The optimization of the kinetic parameters of the over-reduced models

was conducted on all three Arrhenius parameters, namely, A, b, Ea. Al-

though both IDT and SL could be selected as targets for optimization, we

only utilized the IDT for its relatively lower computational cost than SL.

Moreover, the top ten reactions selected based on the sensitivity analysis

for the SL were excluded from the optimization, such that the optimiza-

tion will not change these key reactions for SL. We then randomly sampled
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Figure 2: Predicted ignition delay times and flame speeds for representative cases: (a-b)

the mixture of natural gas/air using the master mechanism GRI3.0, skeletal mechanism

SK23 and optimized SK23 OP. The ignition delay time was simulated using the fuel com-

position of CH4 : C2H4 : C3H8 = 0.85 : 0.1 : 0.05 by volume, pressure of 40 atm,

equivalence ratio of 0.9. The flame speed was simulated at 40 atm and 300 K, and (c-d)

the mixture of n-heptane/air using the master mechanism Nordin1998, skeletal mechanism

SK34 and optimized SK34 OP. The ignition delay time was simulated at pressure of 40

atm, equivalence ratio of 1.2. The flame speed was simulated at 40 atm and 500 K.

500 initial conditions covering a wide range of mixture compositions and

thermodynamic states for training. For GRI3.0, the range of the pressure,

initial temperature, and equivalence ratios are 1-60 atm, 1100-2000 K, and
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0.5-1.8, respectively, and the fuel composition is set as CH4 : C2H4 : C3H8

= 0.85 : 0.1 : 0.05 by volume. Similarly, for Nordin1998, the ranges of the

pressure, initial temperature, and equivalence ratio are 1-60 atm, 850-1800

K, and 0.5-1.5, respectively.

The datasets were split into training and validation datasets with a ratio

of 70:30. During each parameter update, one case was randomly sampled to

evaluate its IDT, and this process can be viewed as mini-batching with the

batch size of one. Instead of optimizing the Arrhenius parameters directly,

we optimized the relative changes of Arrhenius parameters compared to their

nominal values, i.e.,

p = [ln(A/A0), b− b0, Ea− Ea0], (6)

where the subscript 0 refers to the base model. The units of Ea are specified

as cal/mol as we tried to minimize the changes in Ea. However, if one wants

to ensure the change in Ea is relatively comparable to the change in A, one

may specify the unit of Ea as kcal/mol, as a change of 2 kcal/mol in Ea is

close to e times of change in A, such that the changes in A and Ea will be

balanced and avoid stiffness in the parameter space.

The loss function was defined as the mean square error (MSE) between

the predicted IDTs in the logarithmic scale using the reduced model and the

master model:

Loss = MSE
(
log(IDT sk), log(IDTmaster).

)
(7)

The gradients of IDT to kinetic parameters were computed using the sens-

BVP method proposed in [35]. The Adam [47] optimizer with the default

learning rate of 0.001 was adopted. Weight decaying and early stopping were
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employed to regularize the parameters, such that the optimization prefers

kinetic parameters that are close to their original values. Figure 3 shows the

training history of the loss function and the L2-norm of the model parameters

for the Nordin1998 model. We trained the reduced model for 100 epochs and

stopped the training when the loss function as well as the model parameters

reached a plateau.

Figure 3: Training history of loss functions, L2-norm of model parameters. Regularization

settings: weight-decay of 1e-4 with a learning rate of 1e-3.

The performance of the optimized skeletal mechanisms is also shown in

Fig. 2. For the IDT, as targeted in the optimization, the optimized models

agree with the master models very well for both two fuels. One interesting

observation is that the optimized models also work well for SL, although SL

is not targeted for optimization. This could be attributed to several rea-

sons. For GRI3.0, the optimization compensates for the errors in the high-

temperature chemistry seen in the predicted IDT, and those re-calibrated
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high-temperature chemical pathways lead to accurate predictions of SL. For

Nordin1998, the skeletal models already accurately predict the IDT at high

temperatures as well as the SL, and the optimization does not degrade the

prediction of SL thanks to the regularization. It is worth noting that the

optimized SK23 still under-predicts SL at fuel-rich conditions, potentially

because some of the sensitive reactions for fuel-rich conditions are not fixed

during optimization; further refinement of the fixed reactions is therefore

suggested. Furthermore, the optimization is computationally efficient. Qual-

itatively speaking, previously employed genetic algorithms have to be per-

formed on clusters [19], while the current work was performed on an ordinary

workstation within an hour. In summary, these two case studies demonstrate

the ability of SGD-based optimization to optimize complex reaction models

with high accuracy, good generalization capability, and high efficiency. Such

optimization capability will help augment current mechanism reduction tech-

niques.

3.2. Optimizing Hybrid Neural Network/Mechanistic Kinetic Models

We then explore the optimization of hybrid neural network/mechanistic

kinetic model to develop a neural-network-based pyrolysis submodel [20]

within the HyChem model framework [48]. Our recently developed Chem-

ical Reaction Neural Network (CRNN) [28] approach was employed to de-

velop the neural network model for its interpretability, such that the learned

model complies with fundamental physical laws and provides chemical in-

sights, as well as its compatibility with large-scale combustion simulation

package/software. The conventional HyChem-based pyrolysis submodels re-

quire expert knowledge on the chemical kinetics which takes years to de-
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velop. On the contrary, the CRNN approach aims to autonomously discover

the reaction pathways and kinetic parameters simultaneously to accelerate

high-fidelity chemical model development. In the following demonstration,

the CRNN-HyChem approach was utilized to model the jet fuel of JP10.

As shown in Fig. 4, the CRNN-HyChem approach models the fuel chem-

istry of JP10 with two submodels, similar to the original HyChem concept.

The CRNN submodel models the breakdown of JP10 fuel molecules into

smaller hydrocarbons up to C6H6, and the submodel for C0-C6 describes the

oxidation chemistry. For proof-of-concept, we chose the same species in the

original HyChem pyrolysis submodel [48] to be included in the CRNN model;

however, it should be noted that the such chosen species can be treated as

hyper-parameters to circumvent the need for expert knowledge and achieve

potentially better performance. In the original CRNN approach [28], the

Law of Mass Action and Arrhenius Law are enforced by the design of the

structure of the neural network. Reaction orders are assumed to be equal

to the stoichiometric coefficients for the reactants. In the present study, el-

emental conservation is further guaranteed by projecting the stoichiometric

coefficients into the elemental conservation space. For better convergence,

the stoichiometric coefficients for JP10 are fixed as -1, and during the train-

ing, the stoichiometric coefficients are regularized to achieve better numerical

stability. The training data were generated by simulating the IDT using the

original JP10 HyChem model. A wide range of thermodynamic conditions

were considered: pressures of 1-60 atm, initial temperatures of 1100-1800 K,

and equivalence ratios of 0.5-1.5. In total, 500 thermodynamic conditions

were randomly generated using the latin hypercube sampling method. The
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dataset was split into training and validation datasets with a ratio of 70:30,

respectively.

Figure 4: Schematic showing the structure of the CRNN-HyChem approach.

The learned stoichiometric coefficients and kinetic parameters are shown

in Table 1, where negative and positive stoichiometric coefficients correspond

to reactants and products, respectively. Qualitatively, most of the learned

pathways are H-abstraction reactions, which is consistent with the expert-

derived HyChem models. However, quantitatively, the learned pathways are

not the same as those in the HyChem model, and further efforts will be

directed to extracting physical insights from the learned pathways. Figure

5 compares the results of the learned CRNN model and the IDTs gener-

ated using the original HyChem model [48], and they agree very well. The

results thus demonstrate the capability of SGD-based optimization in learn-

ing CRNN models with hundreds of parameters, which is computationally

challenging with evolutionary algorithms. With the increasing demand for
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rapidly developed kinetic models for new renewable fuels for screening and

fuel design, hybrid neural network/mechanistic modeling provides an elegant

approach to autonomously derive kinetic models from experimental data.

SGD-based optimization will play a vital role in enabling such kind of au-

tonomous model discovery algorithms. While this manuscript focuses on

learning the reaction pathways from scratch, one can also develop a data-

driven model based on existing kinetic models for similar fuels and utilize

SGD-based optimization for the training, as demonstrated in [49].
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Figure 5: Comparisons between the predicted ignition delay times using the learned CRNN

model (Y-axis) and the HyChem model (X-axis) for both the training and validation

datasets.
21



Table 1: Learned stoichiometric coefficients and kinetic parameters. Reaction orders are

assumed to be equal to the stoichiometric coefficients for reactants.

4. Conclusions

This work explores SGD-based optimization for optimizing complex chem-

ical kinetic models, including both mechanistic kinetic models and hybrid

neural network/mechanistic kinetic models. The results show that SGD-

based optimization requires significantly less computational resources com-

pared to traditional evolutionary optimization approaches for hundreds of

model parameters. Furthermore, SGD-based optimization enables us to aug-

ment neural network models to represent the unknown reaction pathways

and optimize the involved hundreds of parameters, which is computationally

intractable with traditional genetic algorithms.

We expect that SGD-based optimization could greatly facilitate the inte-

gration of modern deep learning techniques into combustion modeling, espe-

cially the physics-informed machine learning [50] that takes the advantage of

both physics-based and data-driven modeling. This work is proof-of-concept

study to take advantage of SGD-based optimization for optimizing combus-

tion models and only deterministic forward problems are presented. There
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are a lot of opportunities and open challenges to extend the approaches to

inverse problems and design of experiments using Bayesian inference which

also heavily relies on differential programming and SGD-based optimization

[51, 52].
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