DESIGN AND MEASUREMENT OF A RECONFIGURABLE
MULTI-MICROPROCESSOR {ACHINE

by

Charles Zukowski

Submitted in partial fulfilliment
of the requirements for the
degrees of
Bachelor of Science
and
Master of Science
at the
Massachusetts Institute of Technology
May, 1982
(© Charles Albert Zukowski 1982

The author hereby grants to MIT permission to reproduce and to
distribute copies of this thesis document in whole or in part.

Signature of Author

Department of Elezzrical Engineering and
Computer Science, May 7, 1982

Certified by _
Thesis Supervisor Donald E. Troxel, Associate Professor

Certified by X e — e e
” Sqmpany Supervisor Howard M. Brauer

Accepted é

Chairmen; Departmental Qommirfee on Graduate Students
Archives

MASSACHUSETTS INSTITL ™2
OF TECuNGLOEY T

OCT 291382

LIBRARIES

PAGE 2

DESIGN AND MEASUREMENT OF A RECCONFIGURABLE
MULTI-MICROPRCCESSOR MACHINE

by

Charles Zukowski

Submitted to the Department of Electrical Engineering
on May 7, 1982, in partial fulfillment of the
requirements for the Degrees of Bachelor of Science and
Master of Science.

ABSTRACT

Multiple-microprocessor systems have become a cost effective method
for implementing special high-throughput computer tasks. This thesis
describes a flexible multi-microprocessor machine {(MMU) designed for such
tasks and measures its performance in actual operation. A simple model is
developed for estimating its marginal performance. The hardware design is
described in detail and compared to that of other multiprocessor machines

designed in the past.

Thesis Supervisor: Donald E. Troxel
Title: Associate Professor of Electrical Engineering

I
L
@
i1
(O]

ACKNCWLEDGEMENTS

I would like te thank 3
were very helpfui during the en
particular I would like
Troxel for their excelle:

1T supervisi = spec 3
am also grateful to John Anthony and Pete Henne: for their help in making
tue MU a reality. Also deserving mention are Dick Hadsell, Keith
Milliken, and Marzin Kienzle, as their ideas defined the software
architecture of the machine necessary for its target application.

Table of Contents

Abstracto L L.
Acknowledgements

Table of Contents
List of Figures

Chapter 1 - Introduction

1.1 - Motivation of Thesis
1.2 - Thesis Project
1.2 - Thesis Content

Chapter 2 - Previous Work

- Introduction

NN

WNMNRPRDNNDMNNNNDNNDN -
FTRNDENNNRNNNDNNNDNDNDI

- C.mmp

- Pluribus . e e
=MCS 0L

- HP Machine .

- Minerva

CM=* .

- Lockheed %ach*ne .

- EPOS .

- AMP-1 . e
Single User Wultlprocessor .
1APX432

Summary .

(=]
]

[l 2K RN I o NV, I SR FURY NS
=
[}]

N

Chapter 3 - System Overview

- Introduction

- Overall Strategy

.2.1 =~ Introduction

.2.2 - System Memory

.2.3 - System Organization .
- System Interrupt Handling

Architecture e e e

.1 - Introduction . .

.2 - Local Processor Bus

.3

A

3.
3

- Global Bus
CPU Module .

uuwuuuwwumo-‘
N
()

Uwqu

Previous Designs of blmllar ﬂachlnes

PAGE &

12

12
13
13
14
15
15
16
17
18
19
19

. 20
. 20
.21

. 22

. 22
. 22
. 22
. 22
. 24
. 26
. 26
. 26
. 27
. 28
. 29

w
. .
NWLLLWESLWLW

w

.

VP BEERERRLLLW
m PN VVIN SR o BENING (N W,

esig

roto

Hemory Medule

. e s
civek <A
0

10 ——-

c!n

Interrupt lliccele .

n Considerations
Introduction . . . e e .
Degree of Giobal Bus Inter‘eav1rg
Global Bus Arbitration Mechanism .
Semaphore Cperation

type Configuration as an Example .

Chapter 4 - Detailed Kardware Description

F 3

P N N N N N N N N N NN NN NN

FERWR SN

[V, IRV IRV, IV, RV, IV, BV, Ry &‘bbbbb&‘bb&bt*&‘!bbl\wwwl

- Intro
- Local
.1 -

N

2.2 -

N
w

O AdAUN L WNMIZT =00 ~NNAAVNEWNEHOWWWWNDEW®
|

hare

ae)
c

LN O
)

emor

duction
Processor Bus

Data Signais .

Address Signals

Contrel Signals

d Processor Bus

Bus Signals

Bus Arbitration

Bus Transactions
- Memory Transactions
- Interrupt Transactions .
- DMA Transactions .

Terminating Res*stors
Address Drivers
Internal Data Bus
Upper Data Path

Lower Data Path and Programmable Tlmer .

General Purpcse Registers
Counters ..

Address Decode . . .
Control Drivers and Reset Loglc
Control Logic

Parity Generator and Checker
Interrupt Encoder

Critical Timing Paths
y Module . . . e e e e e e
Internal Address BuS e e e e

Upper Data Fath

Lower Data Path and Control
Address Window Select
Address Decode .

Data Storage .

Parity Storage .

Timing Circuits

PAGE 5

. 30

30

21

. -~

32

. 32

32

. 33
. 33
. 34

. 36

36

. 36
. 37

-
7

. 37
. 39
. 39

40

. 41
. 41
. 42

42

. 43
. 43
. 44
. b4
. 45
. 45
. 46
. 46

47

. 48
. 49
. 51
. 51
. 52
. 53
. 53
. 53

54

. 54
. 55
. 56
. 56
. 56

PAGE 6

4.5.9 - Critical Timing57

4.6 - Swizch Medule 0 0 0 0>58
£.6,1 - Ioczl Zus Windew58

4.6.2 - Upper Address Path59

4.6.3 - Lower Address Path60

4.6.4 - Upper Data Path&60

4.6.5 - Lower Data Path®60

4.6.6 - Interrupt Buffers . B 3 |

4.6.7 - Interrupt and Global Bus Hold Clrcu1t< ¥4

4.6.8 - Inter-bus Control Path v+« « . . . 63

4.6.9 - Global Bus Arritration and kcﬂtrol I -148

4.6.10 - Local Bus Arbitration and Control 65

4.6.11 - Terminating Resistors 66

4.6.12 - Critical Timing66

4.7 - Interrupt and I/0 Module 68
4.7.1 - Global Bus Window68

4.7.2 - Data Bus Tranceivers . . . T)

4.7.3 - Interrupt Vector and Mask Reglsters B A ¢

4.7.4 - Internal Address Bus70

4.7.5 - Glcbal Bus Control171

4.7.6 - Memory Timing Circuits 72

4.7.7 - Interrupt Level Generator 73

4.7.8 - Terminating Resistors73

4.7.9 - Critical Timing « 173
Chapter 5 - Performance Measurement 175
5.1 - Introduction75

5.2 - Measurement Results and “ar01na1 Perfornance ﬂodel . .75

5.3 - Performance Measurement Tools 78
5.3.1 - MMU Test Programs78

5.3.2 - Timing Simulator . . . B < 3 1

5.3.3 - Comparison of Wcasurement Tools e+« + B3

5.4 - Marginal Performance Model Development 85
$.4.1 - Analyvtic Model of Marginal Processor Performance . 85

5.4.2 - Testing of Dummy Load Approximaticn 87
Chapter 6 - Conclusions v 4 « ¢« v « « « « « . . 89
6.1 - Summary of Experiment and Results 89

6.2 - Future Research90
Appendix A - CPU Module Block Diagram and Circuits 99
Appendix B - Memory Hodule Block Diagram and Circuits 112

Appendix C - Switch Module Block Diagram and Circuits 121

Appendix D
Appendix E
Appendix F

References

Interrupt Module Block Diagram and Circuits

Ft
}

Per

Dummy Load Circuits .

crmance Measurement

Cr

zohs

PAGE 7

155

Figure

OSSN WN

List of Figures

Title

Overall architecture

Local Bus Transactions
Global Bus Transactions
Bus Electrical Schematic
Local Bus Timing

Global Bus Timing

Global Bus Arbitration
Marginal Performance Model

Page

92
93
94
95
96
97
98
98

PAGE 9

Chapter 1

Intreduction

1.1 - Motivation of Thesis

Due to the recent availability of inexpensive LSI components,
multi-microprocessors are now feasible in many applicaticns. One of these
applications is the processing and control of high-throughput data
streams typically found in I/0 paths of large computers. A few
multi-microprocessors have been built for this type of application in the
past, but questions of feasibility and performance have not been fully
investigated yet.

Each new multi-microprocessor developed, along with its performance
model, represents a significent experiment in evaluating the feasibility
of alternative approaches. A useful multi-microprocessor experiment
involves proposing an original hardware desien and building a prototype to
demonstrate its feasibility. The performance of the system must then be
determired by modeling, by simulation, or by execution monitoring. A
rough model for performance variations is essential for ascertaining both
the range of applications for the system and the hardware requirements for

a particular application.

PAGE 10

1.2 - Thesis Project

This thesis describes and evaluates the design of a
multi-microprocessor unit (MMU) flexible enough for use in a wide range of
high-throughput applications. The prototype built is configured to
monitor many real-time signal and data samples taken from an IBM mainframe
computer.

The prototype application places certain constraints on the design of
the MMU. First, the application requires the processing power of at least
six 68000 microprocessors (1), chosen for the high power they deliver and
for the convenience they provide in application software development.
Next, the application requires a large shared memory for common data
structures, along with local memories to reduce memory interference and
increase throughput. Finally, provisions are necessary for the
channelling of interrupts throughout the system.

The MMU design maintains generality while fulfilling the requirements
of the prototype application. First, the design implements a flexible,
modular . architecture that is easily adaptable to different processing
requirements. This increases the range of possible uses for the MMU and
also allows the machine to change over the lifetime of a particular
application. Second, the system components are kept as manageable as
possible. Finally, the degradation of performance incurred by

interprocessor communication overhead is minimized.

PAGE 11

1.3 - Thesis Content

This thesis begins with a survey of related multi-processor projects
undertaken in the past, including a discussion of how some of the
techniques used in these past designs pertain to the goals of the MMU. A
description of the system architecture along with its rationale follows,
leading to a detailed description of all system ccmponents. Next, the
performance of the MMU with various configurations and loads is analyzed.
A simple method is proposed for estimating this performance. Finally,

conclusions are drawn from the results of the experiment.

PAGE 12

Chapter 2

Previous Work

2.1 - Introduction

Over the last decade, research has started in the area of using
multi-microprocessing to improva cost-performance ratios in computers.
Microprocessors have reached the performance levels reserved for much
larger computers in the early 1970s and multiprocessing provides benefits
such as potential modularity and reliability (1).

Recent research projects have included the design of both
general-purpose computers and machines used in particular capacities
within larger systems. Most of the documented projects on alternate
architectures for multiple-instruction multiple-data stream (MIMD)
multiprocessors is related to the work in this thesis. Although only a
few successful, flexible multi-microprocessor systems have been built,
they have contributed useful ideas about multi-microprocessor
architectures. The architectures of some multi-minicomputers are also
applicable. Some major design attempts in this area will be described in

this chapter in chronological order.

-,

N

.2 Previous Designs of Similar Machines

The design of one of the first relevant multiprocessors buil: was
started in 1971 at Carnegie-Mellen University (2). C.mmp, as the cersuter
is called, was intended to experiment with multiprocessor issues as well
as support a timeshared operating system.

C.nmp is designed to combine several slightly modified 252-11
computers into a larger system. Each PDP-11 is sble to run by itseif if
needed and contains private memory and I/0. Three attachments are z22ded
to each processor bus for conrection to the C.mmp system.

The first attachment is a link to a central time counter, providing
access to time stamps, and an interrupt unit, enabling each processor to
send interrupts throughout the system. The second is an address ma2oping
link to a crosspoint switch unit, providing access for each processor to
any of sixteen shared memory modules. The third is another link to 2
crosspoint switch, providing access for each processor io several
Unibuses containing I/0 devices and secondary memory. Both crosspoint
switches are controlled by one of the processors or by manual overrice.

The fast, pipelined crosspoint switch units in C.mmp illustrate one
possible strategy for reducing memory contention in a multiprocessor
system. The efficient design of such a unit is critical for the

feasibility of a system like C.mmp.

PAGE 14

2.2.2 Piuribus

Another early multiprocessor project, called Pluribus, was documented
in 1973 at Bolt Beranek and Newman, Inc. (3). This machine was intended
as a reliable message receiver for the ARPANET and not described as a
general purpose computer.

The system consists of several buses, each contained in a separate
chassis and supervised by an arbitration module. Seven processor buses
are required, each one with two SUE microprocessors and a small amount of
program memory. Two additional buses contain system memory and a fiﬂal
bus holds all necessary I/0 modules. Bus transactions generally require
more than one bus access and bus couplers are provided to link each
processor bus with every non-processor bus. These bus couplers,
consisting of two interface cards and a connecting cable, also link the
10 bus to the memory buses. The couplers provide for both segmented
address mapping and protection against broken processors bringing down
the whole system. The couplers between the I/0 bus and the processor
buses have bidirectional control for system initialization. Instead of
providing facilities for interprocessor interrupts, Pluribus handles job
allocation with a hardware job queue included on the I/O bus.

The design of Pluribus illustrates the modularity that can be obtained
by dividing all system resources among expandable buses, and providing a
mechanism for the addition of an arbitrary pattern of windows between
them. Crosspoint connections between processor clusters and memory
clusters can be produced with a net of cables instead of the separate

crosspoint switch units used in C.mmp.

PAGE 15

2.2.3 4CS

The MCS machine was designed at Honeywell in 1975 to experinent with
multiprocessing in real-time control (4). Each MCS processor contains its
own memory and I/O devices, allowing it to execute independent control
functions. The machine also provides its processors with the abi ity to
affect each other's memory, easing coordination between the various
control functions.

Block transfers between processors and non-locai memory pass over
four global buses. Distinct paths are provided between each processor,
its local bus, and its global bus interface. Global bus arbitration is
implemented by providing cach processcr with a different time slot to send
a block of data (up to 256 bytes long). I/0 buffers are then provided at
each interface to temporarily hold these data blocks. Any processor uses
the first available global bus. A hardware semaphore device is included
on the global buses to enforce mutual exclusion.

One goal of MCS is to simplify the writing of software by
incorporating a complicated interface to the global buses to make message
sending transparent. The utilization of four global buses illustrates
another method to relieve bandwidth problems, as opposed to the last two

examples.

2.2.4 HP Machine

A multiprocessor architecture was proposed at Hewlett-Packard in 1975

with a goal of facilitating VLSI implementation (5). The system is based

PAGE 16

on one o~ more main buses that are compatible with processors, interrupt
preccessors, and bus interface mcdules. Bus arbitration is implemented
with a hierarchy of arbiter modules. Each module is designed to fit on
one VLSI chip.

The main system bus contains thirty-eight signals, similar in
opevation to those on a PDP-11 Unibus. The signals are compatible with
those «of a proposed forty pin microprocessor. Microprocessors can be
added to the bus until its bandwidth is fully utilized. All the devices
placed on a single bus are controlled by a tree structure of arbiter
modules that select the next bus master.)

An interrupt processor module is provided as an interface between I/0
requests and the microprocessors on a single bus. This module channels
interrupts to particular processors if needed. It also has the highest
priority on the bus when included in the system.

The final module, requiring sixty-six pins, is an interface between
two buses. It provides & bidirectional window and simplifies system
growth if inter-bus communication is kept at an acceptable level.

The HP system has a flexible multiple, uniform bus system similar to
Pluribus, except for bus protocol and bus arbitration methods. The major

goals of the HP system are to minimize the number of I/O signals on each

module in the system, and to facilitate expandability.

2.2.5 Minerva

The Minerva Multi-microprocessor, developed at Stanford in 1976, was

built to study the loading of a central bus in a multiprocessor system

PAGE 17

(6). It contains two different kinds of processors, memory, and various
other I/0 devices, all cornected through one main system bus. The main
bus is asynchronous and arbitration is handled by a central arbiter.
Interrupts are received by processors in response to accesses at fixed
addresses on the bus. A fixed amount of local memory, not accessible from
the bus, is included with each processor.

Since one of the processors has a thirty-two bit data path and the
other has eight bits, a four byte prefetch buffer is incorporated into the
CPU module of the eight bit processor. The thirty-two bit processor
module contains a cache that monitors the main system bus to determine if
its contents have become outdated.

The contribution of this project is experience with methods, such as
the use of caches, for reducing bus bandwidth requirements in

multiprocessors organized around a main system bus.

2.2.6 CM*

Afrer completion of C.mmp, work started at Carnegie-Mellon in 1977 on
a new multiprocessor called CM* (7). This new general- purpose machine
consists of many LSI-11 processors, each having an associated portion of
main mehory on its local bus. Processors are able to access portions of
main memory contained in other modules by sending packets over a network
of interconnection buses forming a grid. Efficient operation depends on
the locality of most meméry accesses. Adequate buffering for packets in
the switches of the interconnection network is necessary to prevent

network deadlock.

PAGE 18

This project experiments with the idea of distributing many
processors and shared memory throughout a system and adding more overhead
for a memory transaction as the distance between processor and memory
increases. Such a system is expandable but is only efficient if memory

references are kept as local as possible in software.

2.2.7 Lockheed Machine

In 1978 a multiprocessor based on the TI9900 microprocessor was
designed at Lockheed to facilitate data processing at remote sites (8).
The machine is built around one main system bus providing connections
between processor modules, shared memory, and I/0 devices.

The system consists of four processor modules, each of which contains
a processor, some local memory, and an interface to a common bus.
Internal to each processor module are three separate data paths:
processor to local memory, processor to main bus, and main bus to local
memory. Since decoding circuitry allows each local memory to be accessed
directly from the main bus, programs are loaded from an I/0 device placed
on the main bus.

Thi§ multiprocessor project is snother experiment using one main bus
both for I/0 and shared memory access. All synchronization between
processors and synchronization with the I/O devices is accomplished
through main memory, since no provisions are made for distributing

interrupts throughout the system.

PAGE 19

2.2.8 EF0OS

In 1979, Toshiba Research Center reported work on a general-purpose
multiprocessor called EPOS (9). Four homozencous global buses provide the

interconnection between proczessc

8]

s i

s]

1 this system. I/0 is controlled by
special-purpose I/0 processors attached to all the buses. Shared Tenory
modules also interface with each bus. Bandwidth on the global buses is
optimized by placing memory transactions into small synchronous time
windows allocated after arbitration. Modularity is sacrificed to cbtain
better performance by the addition of a separate mutual exclusion rodule
that is directly accessible to the microinstructions of each processor.
The use of four alternate paths into shared memory is the same
bandwidth increasing technique used in the MCS. Now features included

special 1/0 processors on the global buses and fast semaphore operation.

2.2.9 AMP-1

During 1980 at the University of Illinois, a multiprocessor (AP-1)
was designed, based on a time division multiplexed global bus (10). The
global bus interfaces with both processor and memory modules. Each of the
eight processors is sequentially given a 125 nsec time window on the bus
for streamed wemory transactions. A small amount of local wmemory provides
each processor space for local variatles but the system is meant primarily
for use with a high bandwidth, completely shared main memory. Extra

interconnection circuitry, other than the main bus, is needed between the

PAGE 20

processors and the memory modules to implement address mapping and timing
for transaction streaming.

The AMP-1 project experimented with implementing a time division
multiplexed global bus. With this strategy the speed of the bus must

surpass that of each processor by the number of processors in the system.

2.2.10 Single User Multiprocessor

A multiprocessor for « single user was recently developed at the
Australian Atomic Energy Commission (11). While its basic architecture is
similar to the Lockheed machine, there are two major differences. First,
each processor is able to protect a portion of its local memory from
global access. Second, a separate interrupt bus is provided between the
processors to allow the transfer of both interrupts and interrupt vectors.
The hardware for this machine was developed with a programming language
that supports multiprocessing in a single-user environment.

This project experiments mainly with adding hardware support for
multiprocessor software. Memory protaction capability is an example of
such support. Also of interest is the choice of a special bus dedicated

to sending interrupts.

2.2.11 iAPX432

Intel recently announced an iAPX432 microprocessor system capable of
supporting multiprocessing {12). CPU chips in the system are added in

arbitrary numbers, along with memory chips, to an interconnect bus.

PAGE 21

Interface processors are also compatible with this bus and connect to I/0
buses controlled by an 8086 attached I/0 processor. The system supports
capability based memory management and a high level language which is
transparent to the number cf processors on the interccnnect bus.

While the 1APX432 system is designed for the construction of
general-purpose computers with a high- overhead operating system, it
illustrates that modular multiprocessing is now reaching the marketplace.
It combines a flexible architecture similar to that of a system like

Pluribus with hardware support for a general-purpose operating system.

2.3 Summary

The machines described in this section have contributed many useful
concepts for use in multi-microprocessor designs. Issues pertaining to
bandwidth problems of global system buses have been explored in some
detail. Practical methods of connecting microprocessors to shared memory
have also been examined. The implementation details of these machines
have differed widely, though, and many other methods remain to be

explored.

PAGE 22

Chapter 3

System Overview

3.1 - Introduction

The MMU system designed in this thesis is aimed at special-purpcse
high-throughput applications. The architecture is described and compared
to that of the machines presented in the previous chapter. Particular
design decisions are explained and the prototype MMU serves as an example

of system configuration. .

3.2 - Overall Strategy

3.2.1 - Introduction

This section describes the main aspects of the MMU design strategy.

All decisions are discussed in the context of the designs presented in the

last chapter.

3.2.2 - System Memory

Multiprocessor systems must include some sharing of memory between
processors to cbtain close reai-time synchronization. In general, this is
accomplished by placing a switch between processors and memory that

provides for all necessary data paths.

PAGE 23

Since the MMU uses microprocessors as CPUs to reduce cost aad
complexity, the system must be limited to sequential microprocessor
memory accesses. Only the addition of a cache or prefetch buffer on each
processor would allow shared memory accesses to be pipelined through a
switch as in C.mmp or CM*. The extra hardware needed for this is too large
for a simple system like the MMU and the benefit is small. The special-
purpose nature of the machine makes feasible the expectation that software
can use some local processor memory as a non-transparent cache. As a
result, each processor must cc-iplete one memory access (to either local or
shared memory) before continuing with the next. This places the
constraint on the shared memory switch that its throughput is inversely
proportional to its total delay.

Many of the systems mentioned in the last chapter are designed as
general-purpose computers. Therefore eacﬁ processor needs access to the
entire memory of the system, with varying degrees of overhead for
different portions. In this way system jobs can be allocated among the
processors in a general manner. The MMU does not need the overhead of
this requirement as the local and shared memory in the system are
dedicated for particular functions in its special-purpose application.
As a result, a bidirectional network between processors and memory is
unnecesgary. This simplification over many of the previous designs allows
the switch into shared memory to run faster than each local processor bus.
One other system that dedicates switch accesses to a fast shared memory is
the AMP-1. The streamed.transactions in AMP-1, though, assume that all
memory is shared and the switch can go fast enough to reach each processor

once during each memory transaction. The MMU would not be able to meet

PAGE 24

such a speed requirement, especially since the number of processors should
be expandable. The MMU uses a switch with a speed that is raised to the
highest reasonable level.

The shared memory switch specification proposed for the MMU involves
creating a dynamically reconfigured switch that can operate from
processors to shared memory in a fixed fraction of the time taken for one
microprocessor memory cycle. The switch cannot connect one slow processor
to another, because the response would be slcwer than that of the shared
memory, but the switch can operate in reverse to allow certain I/0 devices
to have DMA access to each processor's local memory. The MMU switch must
be similar to the ones used in Minerva, Pluribus, and the cther shared bus
machines, but the major difference is that a switch access can be made

faster than internal processor accesses.
3.2.3 - System Organization

In terms of system organization, the MMU requires the most flexible
design. The multiple-bus architectures used in systems such as Pluribus
and the HP machine seem well suited for this purpose. TFor compactness,
however, a grid of buses wired along a backplane is preferable to the
cards aﬁd cables used in Pluribus. Connections between the intersections
of these buses can be contained on one card and can implement the function
of the shared memory switch. The resulting crossbar switch is a special
case of the multiple-gus architecture and provides the necessary
high-throughput connection for the MMU. The major difference between this

multiple- bus architecture and the previous ones is that the shared memory

PAGE 25

buses are slightly modified to obtain better speed. C.mmp uses a fixed
-crossbar switch to boost sharad memory bandwidth, but one created from
multiple buses is expandable in both directions.

The basic crganization of én U systen is pictured in figure one. A
switch is formed by the crossing cf the two bus types in the system, local
and global. Each local bus is associated with one HﬁU processor and each
global bus has a pcrt on each local bus. A global bus contains devices
shared by all processors. The number of local buses is adjusted to match
the required processing power and the number of global buses is adjusted
to match the required bandwidth to shared devices. The global buses do
not provide a fixed number of alternate paths to shared devices as in MCS
and EPOS, but instead are each associated with distinct shared devices.
The overhead involved in providing multiple ports for shared devices is
Lanecessary in a system that can intentionally distribute accesses among
global bus2s in its software. Instead of providing transparent address
mapping, the MMU allows the addresses of all devices to be fixed at
locations known to software.

The method of creating a flexible, high-throughput crossbar switch
into shared memory proposed for the MMU is to form a grid of
microprocessor buses wired on the backplane of the system. The shared
memcry suses are similar to but faster than the lccal processor buses,
unlike in the general multiple bus systems. The simple technique used to
help software distribute memory accesses among the global buses in the MMU
1s to allow interleaving of the address spaces of the global buses as seen
by the processors. This method proves to be a useful technique as opposed

to the MCS and EPOS method, at least for the special-purpose MMU.

PAGE 26

3.2.4 - System Interrupt Handling

In those systems described in the last chapter that had provisiorns for
processor interrupts, they were ei:her handled by a special purpose
processor or distributed to particular processors. Interprocessor
interrupts could be obtained by a memory mapped access to a fixed location
in the address space of another processor in the Minerva machine. The MMU
uses a small portion of the bandwidth of a global bus to send interrupts
as some other systems do, but greater flexibility is desired in the types
and destinations of interrupts sent.

The method of distributing interrupts proposed for the MMU involves
rlacing a special interrupt I1/0 device on a global bus. This device is
programmable from any processor to send an interrupt with any vector tec
any combination of MMU processors. The sending of an interrupt is
triggered either internally or externally to the MMU. The interrupts are
buffered in the switch as they pass to the selected processors after being

broadcast on the global bus.

3.3 - Architecture

.

3.3.1 - Introduction

The four basic logic modules in the MMU system include a CPU, Memory,
Switch, and Interrupt Module. One CPU module is placed on each local bus,
forming one MMU processor. The Memory modules are compatible with both

bus types, forming the local and shared memories for the processors. The

PAGE 27

Switch modules create the interface between each local and global bus.
The Interrupt module sends interrupts along a global bus directed toward
some or all MMU processors. Any MMU system contains these four basic
modules along with I/0 interfaces on either or both bus types. The I/0
interfaces are application dependant. Any device placed on a local bus is
cedicated to one processor while those placed on a global bus are shared
by all prccessors.

The MMU combines some of the useful concepts tried in other machines
with some unique features just described. The techniques used in the MMU
are described in more detail in the following sections about the six basic

components of the MMU system: the two bus types and four logic modules.
3.3.2 - Local Processor Bus

The local processor bus is a standard 68000 bus with sixteen bits of
data and a one megabyte address space. All control signals follow the
asynchroncus protocol of the 68000 but their generation is expected to
coincide with an edge of a universal clock common to ali modules in the
system. The 68000 controls bus arbitratvion through a daisy-chained grant
signal reaching all switch modules and I1/0 devices on the local bus. All
seven 65000 interrupt levels can be generated on the bus from any device
but convention reserves one level for each device. Therefore the
interrupt acknowledge signal is not daisy- chained.

The three types of bus transactions allowed on the local bus by a bus
master are a memory write, a memory read, and an interrupt acknowledge.

Any slave device can be addressed for the memory transactions. Figure two

PAGE 28

gives a rough timing diagram for each of these operations. Further
explanation is available in the 68000 users manual (13) and timing details
are explained in the next chapter. All cycles are extended if the
ackncwledge signal is not received by the bus master before & certain

point in the transaction.
3.3.3 - Global Bus

A global MMU bus is similar to a local bus in most respects, but has a
few significant differences. Arbitration and memory transactions are
synchronous, interrupt transactions follow a different protocol, and a
bus transaction exists to logically connect the bus to one of the local
buses through a Switch module.

Memory read and write transactions, as well as interrupt
transactions, are allocated two global bus clock cycles as shown in figure
three. No acknowledge signal is required from a slave device.
Daisy-chained arbitration for bus ownership in each transaction occurs
during the last clock cycle of the previous transaction. Since bandwidth
is a bottleneck only on a global bus, the memory transactions are not
constrained to be as slow as 68000 transactions. The signals and
protocois on the two buses, however, are similar enough for a single
memory module to be compatible with each. The MMU system combines the
convenience of a universal bus type with the high throughput of fast
global bus cycles.

During an interrupt transaction, an interrupt is broadcast to one or

many of the Switch modules on the global bus. The bus interrupt lines

PAGE 29

select a buffer in the Switch module(s) to hold the interrupt until its
CPU responds. The highest order address bits are used to indicate the
interrupt level, while the lower order data byte is used to indicate the
interrupt vector. The high order data byte is used to mask which Switch
modules will receive the interrupt.

The global bus also contains an additional signal allowing an I1/0
device to force one of the Switch modules to become a logically
transparent port to its local bus. Once local bus arbitration is
completed after this signal is asserted, the I/0 device acts as if it were
directly on the selected local bus and has direct access to the processor
address space. This type of DMA transaction is not used by one processor
to access another because Switch modules can only generate fast global bus

transactions and not slow local bus ones.
3.3.4 - CPU Module

The CPU module controls the arbitration for a local processor bus and
is the usual bus master. As bus master, it executes 68000 instructions.
The complete CPU module is logically similar to the 68000 chip but
contains, some additional devices. Parity is generated for the data as it
leaves ;he module and a programmable interrupt timer is included along
with some diagnostic registers. Devices internal to the CPU module are
not accessible to any local bus master other than the €8000. Appendix Al

contains a block diagram of the module.

PAGE 30

3.3.5 - Memory Module

The Memory module is a slave device on an MMU bus providing a window
of thirty-two or sixtyv-four kilobytes of read-write memory. The address
window of the module is positioned in the bus address space by switches.
Parity bits for the data are also stored in this module. A block diagram
for the Memory is located in appendix Bl. Depending on location within
the MMU system, a Memory module serves as part of local or part of shared

memory.
3.3.6 - Switch Module

The Switch module provides the interface between a local bus and a
global bus. Besides being a bidirectional bus port, the Switch also
contains interrupt buffers that Lold interrupts for the processors until
they are acknowledged. Appendix Cl contains a block diagram of the
module.

As a global bus port, the Switch channels memory transactions at
certain addresses on the local bus to the global bus. The address window
on the local bus is variable, ard can even be limited to odd or even word
addressés. This allows the processor addresses of two global buses to be
interleaved for even distribution of accesses between them. For a
processor access to a global bus, the Switch requests the bus and returns
an acknowledge after it is obtained. If there is no global bus
arbitration delay, & processor write completes in the minimum five clock

cycles while a processor read is extended from four to six clock cycles.

PAGE 31

At least one cycle is required for global bus arbitration and two are
required to carry out the transaction on the global bus.

As a local bus port, the Switch logically connects all local bus
signals to the corresponding global bus ones as described in the section
outlining operation of the global bus. This function is triggered by a
special slave request global bus transaction.

An interrupt buffer in the Switch is loaded during global bus
interrupt transactions and holds a processor interrupt until an
acknowledge is received on the local bus. Each buffer stores an interrupt
level and the interrupt vector to be returned during the processor
acknowledge. If an interrupt arrives in a buffer before the previcus one
has been acknowledged, the new interrupt is lost and a pulse is generated

for diagnostic monitoring.

3.3.7 - Interrupt Module

The Interrupt module is a global bus device dedicated to generating
interrupt transactions on the bus. The module also supervises global bus
arbitration. The interrupt vectors and masks for the interrupt
transactions are stored in registers accessible to the global bus address
space. 'The transmission of intarrupts is triggered either by a global bus
memory transaction at a particular address or an external signal. A block

diagram of the module is included in appendix D1.

PAGE 32

3.4 - Design Considerations

3.4.1 - Introdvction

This section discusses the factors involved in some significant MMU design
decisions. The explanations of smaller design decisions are contained in
the next chapter along with the detailed description of the hardware.
Advantages of the overall architecture are explained along with the

architecture description.

3.4.2 - Degree of Global Bus Interleaving

The overhead for increasing the potential degree of global bus
interleaving is substantial. An increase from the two-way interleaving
implemented in the MMU to a four-way interleave requires an extra level of
address multiplexing. As well as introducing extra hardware in the Switch
module, this adds extra delay to an address path critical in some DMA
operations.

Some degree of interleaving, though, is very useful. If only one
global yus is used for shared memory, a block transfer into shared memory
through' DMA will cause severe performance degradation by locking out
processors accessing shared memory. A second global bus will only
eliminate this problem if it is interleaved to distribute all block
accesses across both buses. Otherwise, one or the other of the buses will

be locked out and any processor accessing it could stop for a long time.

PAGE 33

As a result, two-way interleaving is used in the MMU system. When
more than two banks of shared memory are used in the system, the software
must distribute concurrent data accesses among non-interleaved blocks to
improve performance. Distributing shared accesses among the global buses

is no longer transparent to the software.
3.4.3 - Global Bus Arbitration Mechanism

Many algorithms exist for bus arbitration including static priority,
dynamic priority, fixed time slice, and first-come first-served. Static
priority is usually the easiest to implement, often with a daisy-chained
bus grant signal, but does not distribute bus accesses fairly among
processors (14). In a general purpose computer, this unfair distribution
is considered undesirable because most users and jobs need equal
treatment. In a special-purpose machine such as the MMU, however, the
static priority is often useful because software can allocate the most
critical functions to the highest priority processors. As a result, the

MMU uses static priority for all its buses.
3.4.4 - Semaphore Operation

The indivisible test and set instruction is a general and convenient
way to enforce process synchronization for critical events. In a
multiprocessor environmeﬁt, these instructions must not permit a memory
location to be accessed between the read cycle and write cycle of their

execution. The 68000 microprocessor provides a special test and set

PAGE 34

instruction that holds the processor bus by not removing its address
strobe between the cycles. This special instruction is not flexible and
does not signal the Switch module that it is a semaphore operation until
after the Switch has already released the global bus in the read cvcle.
As a result, the MMU uses an otherwise unused high order address bit to
signal mutual exclusion in shared memory to the Switch. Any 68000
instruction with a read and write cycle can be used on a semaphore 5}
offsetting its operand address. When the mutual exclusion bit is
detected, the Switch keeps possession of its global bus between the read
and write tramsactions, or until a timeout occurs in the event of an
error. Therefore global bus memory transactions occasionally hold the bus

longer than two clock cycles before another master is selected.
3.5 - Prototype Configuration as an Example

As mentioned previously, the prototype MMU is configured to control
the monitoring of real-time hardware and software samples from a large
computer. Six processors are used in this application to provide the
necessary processing power.

All prototype MMU modules are implemented on separate boards with
MC68000 chips along with SSI and MSI TTL integrated circuits. Each
processor is contained in a separate chassis, one on top of the next. One
final chassis on the top is dedicated to holding all shared hardware in
the system. All MMU buses are wired on the chassis backplanes.

The prototype provides one I/0 device on each local processor bus

connecting the processors to a system controller. The controller is a

PAGE 35

computer used to initialize the system as well as collect the results of
the sampling. These I/0O devices allow the controller to access each
processor's address space, to interrupt each processor, and to reset each
processor.

The prototype MMU uses three global buses, two interleaved cnes for
shared memory and one dedicated to a device obtaining the software
samples. The global bus dedicated to the software sampler is used
primarily for control of the device and for use by the device to load
blocks of samples into MMU memory through DMA. The devices collecting
hardware samples for the system are connected through circuits added to
the Interrupt modules on each of the shared memory buses. In addition to
providing MMU processor access to shared memory, these buses allow MMU
processor access to the hardware sampler and provide a path for interrupts
generated by the hardware sampler to enter the system. The interrupt
traffic on the shared memory buses generated by the Interrupt modules uses
only a small fraction of their bandwidth.

The prototype machine illustrates the method for constructing a
particular MMU configuration. The number of processor chassis included
was matched to the expected amount of processing necessary. The bandwidth
to shared hardware required was distributed equally among the number of
global buses required to avoid shared hardware bottlenecks. Estimates for
choosing these numbers are provided in the chapter covering MMU
performance measurement. Neither decision is fixed throughout the life of

the machine if original estimates were incorrect.

PAGE 36

Chapter &

Detailed Hardware Description

4.1 - Introdugtion

The feasibility of the MMU architecture is demonstrated by the
operation of the prototype machine. The details of implementation, as
described in this’ chapter, involve no major unforeseen difficulties. The
size and complexity of the system fall within reasonable limits.

The following six sections provide detailed descriptions of the six
basic MMU building blocks. All descriptions use the prototype

implementation as an example.

4.2 -~ Local Processor Bus

The local processor bus consists of fifty-nine active-low signals,
most of which are on open-collector lines. Most of these are logically
identical to 68000 pin signals as described in the MC68000 users manual
(13). Only the system clock and the bus arbitration daisy-chain are not
bidirectional, open collector lines with terminating resistors. Figure
four iliustrates the electrical schematic for most of the bidirectional
bus lines. All compatible modules use AMD bus driver/receiver chips
(26510-12) to interface with the bus lines. In the prototype, all signals
except the bus arbitration daisy-chain are wired across each card position
on a chassis backplane. The daisy-chain signals jump from one card to the

next, originating at the CPU side of the processor. Since the prototype

PAGE 37

bus is less than two feet in length, signals are delayed at most by about

four nancseconds while crossing it.
4.2.1 - Data Signals

The dzta portion of the bus contains sixteen lines (MDATO-15) which
transmit two bytes in parallel. In addition, each byte is provided with a
single parity line (MDATPH and MDATPL). Separate parity is provided for
each byte tc enable 8-bit 68000 data transfers. The 68000 includes this
ability to maintain compatibility with 8-bit devices still on the market.

All date lines can be driven and received by any local bus device.
4.2.2 - Address Signals

The 1local processor bus contains twenty address lines (MADR1-20),
nineteen of which are used to create a one megabyte local address space.
The most significant address bit is asserted during a3 read-modify-write
instruction to maintain exclusion as described earlier. A switch module
will maintain possession of its global bus between the read and write
transaction only if the most significant address bit is being asserted.

The address lines can be driven by any local bus master.
4.2.3 - Control Signals

The local bus contains all the 68000 control signals, except the

function code bits which are decoded into one signal which indicates when

PAGE 38

an interrupt acknowledge operation is occurring on the bus (MIACK). A
-separate interrupt line is provided for each of the seven 68000 interrupt
levels (MINT1-7). Protocol for interrupts and interrupt acknowledges are
identical to, those described in the 68000 users manual. A bus error
signal (MBERR) is alsc provided to signal errors during local bus
transactions.

Bidirectional reset and halt 1lines (MRESET and MHALT) allow the
processor to be initialized or stopped, while also allowing the processor
to reset external circuitry and indicate when it has halted itself. The
system clock (MCLK) is driven onto the local bus and received by all
Switch modules, Memory modules, and by the CPU module. Clock
synchronization with the rest of the system is handled internally to each
of these modules.

Four bus signals are provided for arbitration of local bus control. A
bus request line (MBRQ) is provided for either a Switch wodule or an I/0
device to signal the 68000 that it would like to take control of the bus.
When the bus is availabie, the 68000 sends a bus grant down the
arbitration daisy-chain which is comprised of two signals at each card,
grant-in (MBGRIN) and grant-ou. (MBGROUT). The final signal is bus
acknowlgdge (MBACK), which is asserted by the new bus master for the
duratioﬁ of its local bus transaction.

The final five control signals are used for memory transactions on the
bus. An address strobe (MAS) and two data strobes (MUDS and MLDS), one
for each data byte, are.used to confirm or request stable addresses and
data. A read line (MRD) specifies the direction of the memory transfer

and an acknowledge line (MDTACK) indicates that the transaction is being

PAGE 39

completed. Detailed timing diagrams for both reads and writes on the

local bus can be found in figure five.

4.3 - Shared Processor Bus

4.3.1 - Bus Signals

The global bus is pin compatible with the local bus and contains many
of the same signals with slightly different uses. It is electrically
identical but can incur more delay due to its long length in a system with
a large number of processors.

The address and data portions (CADR1-23, CDATO0-15, CDATPH, and
CDATPL) are identical to those onr the local bus, except for the additiom
of three more high-order address lines. These address signals are not
used to expand giobal bus address space, but rether to identify which of
the eight possible processors is the source of any global bus transaction.
The three extra address lines are also used to send interrupt levels
during interrupt bus transactions and to select a processor during a DMA
operation. Address bits nineteen and twenty are unused in the prototype
and always remain inactive. They are available for expansion beyond eight
processors.

A memory inhibit line (CINH) replaces the interrupt acknowledge line,
but these act in an identical way on the memory modules. The memory
inhibit signal prevents all slave devices on the bus from responding to a

merory transaction. This is used, for example, during a DMA access into

PAGE 40

one of the processors when all memory on the global buc must be disabled
to prevent it from conflicting with the local bus address space.

The clock line on the global bus (CCLK) is only wired along the shared
hardware pcrtion of the bus. The Switch mocdules get their cleck signals
from their 1local bus. In the prototype MMU, the system clock is
distributed through the 1/0 devices on each bus. The reset line (CRESET)
is wired along all shared hardware on every global bus and to all I/0O
devices. As a result, any I/O device in the MMU prototype can generate a
global reset.

The halt (CHALT), bus error (CBERR) and data acknowledge (CDTACK)
signals are not used in the prototype global bus. An acknowledge signal
is generated by memory modules but it is ignored on tﬁe global bus. Since
the prototype global bus is not longer than about ten feet, the maximum
possible delay for signals travelling along it is about twenty

nanoseconds.
4.3.2 - Bus Arbitration

Synchronous bus arbitration occurs on the global bus in one clock
cycle. 0On each negative edge of the system clock, all requesting devices
latch their requests (CBREQ) and a bus grant signal is sent down the
daisy-chain (CBGRIN and CBGROUT) if the bus is available. The first
requesting device to receive a grant returns an acknowledge (CBACK) which
must be returned befcre the next negative clock edge to suppress the next
arbitration cycle. The acknowledging device becomes bus owner at this

next clock edge and immediately removes its acknowledge if it is executing

PAGE 41

a two cycle bus transaction. This allows arbitration for the next owner
to overlap with the second clock cycle of the transaction. The timing for
this operation is illustrated in figure six.

.

4.3.3 - Bus Transactions

The bus transactions used on a global bus fall into th;ee categories.
Memory transactions allow a bus master to read data from or write data to
a slave device. Interrupt transactions allow an Interrupt module to
distribute interrupts to Switch modules. Also, DMA transactions allow bus
masters to access a local processor bus through one of the Switch modules.
All three transactions are illustrated in figure six.and are explained in

the following sections.

4.3.3.1 - Memory Accesses

The two clock cycle memory read and write transactions follow the
protocol illustrated in figure six. During Soth operations, the address
is sent after the first negative clock edge while the address strobe (CAS)
and one or both of the data strobes (CUDS and CLDS) are asserted after the
next poéitive edge. The read-write signal (CRD) is asserted along with
the address. During a write operation the master sends data along with
the address and the slave device must latch the data before the second
negative clock edge. During a read operation, the slave must return data

to the master slightly before the second negative edge so that the master

PAGE 42

is able to latch it on that edge. In both cases each data strobe controls

8 separate data byte.
4.3.3.2 - Interrupt Transactions

A two clock cycle interrupt transaction begins with the bus master
asserting address and data signals after the first negative clock edge.
The high order data byte contains a one in each bit position corresponding
to a processor (zero-seven) that will receive the interrupt. The low
order data byte contains the interrupt vector used during the interrupt
acknowledge and the most significant address lines indicate the level of
the interrupt (one to seven). After the second negaiive clock edge, one
of the global bus interrupt lines (CINT1 and CINT2) is asserted to strobe
the interrupt information into one of the interrupt buffers on the
selected Switch modules. All signals are removed after the final negative

edge of the transaction.
4.3.3.3 - DMA Transactions

A DMA transaction is iritiated by an I/0 device on the global bus for
gaining' access to a local processor bus. The number of the selected
processor is first asserted on the three most significant address lines
and then the slave request line (CSRQ) is asserted. This signal is not
used on a local bus. The slave request causes the selected Switch module
to obtain control of its local bus and pass memory transactions through.

The slave request must remain asserted during the entire DMA operation and

.

PAGE 43

the I/0 device must issue local bus memory transactions. It need not,
however, run as slowly as the 68000 when accessing a fast local bus
device. A DMA write to local memory takes at least two clock cycles and a
DMA write to shared memory takes at least four clock cycles. Either may
be extended due to bus arbitration delays. The memory inhibit line must
also be asserted during DMA transactions to suppress the response of other
global bus devices to the memory transactions transmitted to the local

bus.

4.4 - CPU Module

The detailed schematics for the CPU module logic can be found in
appendix A. The logic has been split up into twelve pages, A2-A13, each
of which is described separately in this section. The 68000 chip is split
up among many of the pages because of its large size and diverse
functions. A blcck diagram of the entire CPU module can be found in
appendix Al.

The CPU module is wired on a board compatible with the local processor
chassis. The board contains sixty-three chips and approximately 550

wires.

4.4.1 - Terminating Resistors

Schematic A2 shows all the local bus signals connected to the split

termination chips B2, B3, B9, and B10. These lines have the electrical

configuration illustrated in figure four. The interrupt lines on the

PAGE 44

local bus are connected to 4.3K ohm pullup resistors in chip Dil. Chip

E15 contains resistors used to tie inputs high throughout the board.

4.4.2 - Address Drivers

Schematic A3 follows the twenty least significant address lines of the
68000 from the microprocessor to the local bus. Since the 68000 outputs
are not capable of driving the local bus signals, five 26510 driver chips
(A6-A10) are used to buffer the signals. The open collector drivers are
disabled when the 68000 gives the local bus to another bus master, as
indicated by the BGACK signal. The four least significant 68000 address
bits are also used to address local CPU modules in séhematics A6, A9, and
Al3. No péth is provided to enable the local bus address bits onto the
internal address lines because other devices on the local bus are not

provided with the ability to access devices internal to the CPU module.

4.4.3 - Internal Data Bus

Schematic A4 illustrates the connection between the data pins of the
68000 and the internal CPU data bus. The 680Q0 has tri-state data outputs
so no e*tra buffers are needed for interface with the tri-state internal
data bus. Also pictured are the 68000 output signals VMA and E, used to

access a 6800 compatible device in schematic A6.

PAGE 45

4.4.4 - Upper Data Path

Schematic A5 contains the interface between the local data bus and the
internal CPU data bus for the most significant data byte and the two data
parity bits. Drivers A1-A3 are used to send data from the internal bus to
the local bus when enabled by the signal DOUT. Receivers B4 and B5 enable

data onto the internal tri-state bus when DIN is asserted.

4.4.5 - Lower Data Path and Programmable Timer

Schematic A6 contains the buffers between the lower byte of the
internal and local data buses, as well as a programméble timer chip. The
data bus buffers operate just as the ones for the upper data byte, with
chips A4 and A5 driving the local bus aiad chip B6 driving the internal
bus. The programmable timer (PTM) is an internal CPU device which only
has eight data bits because it is a 6800 compatible device. The BE signal
is provided in the 68000 to simulate 6800 memory cycles for such devices
along with the 68000 derived BWR signal. Address decoding to be described
later causes the CPU to generate BVMA for certain memory locations
reserved for 6800 compatible devices. The four least significant address
bits aré used to address the PTM control registers. RST will reset the
PTM during an internal CPU reset and PTMINT triggers 68000 interrupts on

schematic Al3.

PAGE 46

4.4.6 - General Purpose Registers

Schematic A7 illustrates the two eight bit general purpose registers
contained in the CPU module as internal devices. These registers can not
be accessed from the local processor bus, but only by the 68000 itself.
Register bl4 latches its eight bits from the high order byte of the
internal data bus while register B15 is connected to the low order byte.
Tri-state buffers C10 and Cl1 are used to enable the outputs of both
registers back onto the internal data bus when the 68000 reads their
contents. Both registers are accessed through internal device location
one, as reflected by the one appearing in all of their control signals. A
positive edge on WH1 or WL1 will load the respectiﬁe registers and the
assertion of RD1 will enable the contents of the registers onto the
internal data bus for a 68000 read. An internal CPU reset will blank the
contents of both registers. The outputs of the registers can be connected
to the backplane through unused edge pins for distribution to any desired

location, such as display lights.

4.4.7 - Counters
\

Schematic A8 contains two eight bit counters also provided on the CPU
module as internal devices. The counter chips (A12-A15) are connected to
the internal data bus just as the general purpose registers are, and can
be read through chips B12 and B13. Since the counters are writeable, they
can be used as another set of general purpose registers. By connecting

external signals to the clock inputs the counters can be used to monitor

PAGE 47

the frequency of external events. This is a very useful tool for system
debugging. The carry outputs are also brought out to the backplane so
that the counters can be cascaded. Together the counters are accessed as
internal devjce two, as indicated by the two appearing in the control

signals WH2, WL2, and RD2.

4.4.8 - Address Decode

Schematic A9 contains the address decoding circuits for internal CPU
devices. Since the lower twenty address bits of the 68000 map directly to
the local bus address space, the three most significant 68000 address bits
are left to select internal CPU devices. Address bit 23 is used to select
internal 6800 compatible devices while address bit 22 is used to select
all other internal devices. Gates A and B of chip E5 allow these devices
to be selected during any memory cycle except an interrupt acknowledge, in
which the address lines are always high. Gate B of chip E6 generates an
internal 68000 acknowledge as soon as a memory cycle begins for a non-6800
internal device because all internal devices are fast enough to respond
within the shortest possible memory cycle.

Gatq A of chip E6 enables data from the internal data bus onto the
local bus whenever the 68000 has not released control of the local bus and
when the 68000 is executing a write memory cycle. Data is enabled onto
the local bus during the loading of internal devices but it is ignored.
Gate A of chip D9 only enables data from the local bus onto the internal

bus during memory read cycles in which internal CPU devices are not

PAGE 48

selected. In this case a bus conflict with the internal devices must be
avoided.

Gate B of chip D9 disables the 68000 control signals from reaching the
local bus during an internal reset, an access to an internal device, or a
period when the 68000 is not the local bus master. When the control
signals are disabled, they remain high and do not trigger memory cycles on
the local bus. Gates A and B of chip D7 are necessary for fanout
requirements.

Decoder C6 enables the reading of both non-6800 compatible internal
devices. Decoders C7 and C8 cnable the loading of both internal devices,
one controlling the high order data byte and the other controlling the low
one. BUDS and BLDS are strobe signals originating from the 68000 which

can separately select each byte of the data bus.
4.4.9 - Control Drivers and Reset Logic

Schematic AlQ0 contains the circuits driving local bus control signals
along with a bidirectional reset buffer. Driver chips Bl and B7 send the
68000 memory control signals onto the local bus when enabled by COUT.
These qontrols include the address strobe, the data strobes, the
read/write signal, and the interrupt acknowledge signal. The interrupt
acknowledge signal is produced by chip C3 which decodes level seven from
the 68000 function code bits. Gates A and B of chip E1ll produce strobes
for each data byte during memory accesses from the local bus. These

strobes are used to latch error conditions in the parity arriving from the

PAGE 49

local bus. Gates C and D of chip D7 act as buffers for the bus grant
signal being sent to the local bus from the 68000.

The flip-flops of chip D14 are used for synchrconous arbitration of the
bidirectional, reset siznal of the 68000. Latch A will send a reset to the
68000 while latch B will send one out to the local bus through driver B8.
Latch A is only set if a new reset has arrived from the local bus, as
indicated by latch D, and the 68000 is not generating a new reset, as
indicated by latch C. Latch B is set with the opposite conditions. This
arbitraticn allows resets to flow in both directions while insuring
against the possibility of a deadlocked situation in which the resets

cannot be withdrawn.
4.4.10 - Control Logic

Schematic All contains various control circuits external to the 68000
on the CPU module. Gate A of chip All receives the system clock signal
from the local bus for use in the CPU module. Chip B1ll then is used to
synchronize the internal BCLK signal with the BCLK signals on all other
modules in the MMU system. The range of five to twenty-five nanoseconds
is eno?gh to compensate for clock skew that is encountered in
distribucion. Gates A and B of chip C9 produce both phases of the clock
signal for the module. The 68000 microprocessor uses the inverted phase
of the clock so that it is clocked slightly ahead of the system clock.

The bus request and sus grant acknowledge inputs to the 68000 come
directly from the local bus signals while the memory cycle acknowledge

(DTACK) 1is derived through gate A of chip D6 either from the local bus

PAGE 50

acknowledge or one generated for internal devices. The bus error
condition in the 68000 is triggered through gate A of chip E8 either by a
parity error in one of the data oytes, a bus error signal asserted on the
local bus, or a device response timeout generated by counter E12. Chips
E12 and E13 form an eight bit counter which is enabled to count by gate C
of chip E7 when a 68000 memory access has begun and no acknowledge has
been received. If this condition remains for 25§ clock cycles, it is
assumed that the accessed device is not responding correctly and a bus
error is generated.

A halt request to the €8000 is generated by gate B of chip D5 when a
halt is asserted on the local bus and the 68000 is not in the middle of a
read-modify-write transaction. The 68000 receives the locai bus halt
signal as soon as it is finished with such a transaction. If the 68000
generates a halt, this is not passed on to the local bus. Since the reset
is bidirectional, it requires both gate A of D5 to pass a reset to the
68000 and gate C of chip D15 to send a reset out if it is initiated from
the 68000.

The VPA input to the 68000 is asserted during a memory cycle if a 6800
compatible cycle is desired and during an interrupt acknowledge if an
autovector is desired. Thus gate B of chip E7 generates a VPA either
during an iuternal 6800 compatible device access or during the acknowledge

of an interrupt from the programmable timer.

PAGE 51

4.4.11 - Parity Generator and Checker

Schematic Al2 contains the CPU circuits dedicated to generating and
checking parjty for MU data. Chips C4% and C5 act both as parity
generators and checkers for the two data bytes transferred over the local
bus. When data is being sent out to the local bus, PARINH and PARINL are
tri-stated and the resistors in chip D11 are used to pull them high.
Chips C4 and C5 then generate odd parity to be sent out to the local bus
along with the data bytes. When data is being received, latches A and B of
chip E10 receive a zero at the end of the transaction if their respective
data byte did not have odd parity. Latches A and B of chip E9 then
generate a bus error during tle next transaction if there was an error and

reset the error condition.
4.4.12 - Interrupt Encoder

Schematic Al3 illustrates the 68000 interrupt generating circuits in
the CPU module. Chip D3 is used to encode the interrupt lines on the local
bus into the three signals which the 68000 uses as inputs. Chip D4 can
assert qgne of these local bus interrupts if enabled by the programmable
timer iﬁterrupt. The level of the timer interrupt is determined by the
positions of the first three DIP switches at chip location D13. An open
switch corresponds to a logic one due to the pullup resistors in chip D12.
Chip D8 generates an acknowledge for a PTM interrupt if the 68000
acknowledges an interrupt on a level which matches the one reserved for

the PTM.

PAGE 52

4.4.13 - Critical Timing Paths

The timing of the CPU module is described relative to the timing
diagrams for local bus transactions contained in figure five. All the
delays are adjusted for efficient interface between the CPU module and the
rest of the MMU systen.

A valid address leaves the CPU board within 22 nsec pf the negative
edge of the clock that starts state twc of a 68000 bus cycle. The system
clock is being used for reference and not the inverted 68000 clock. The
IACK line is valid within 16 nsec later. The address and data strobes
enter the local bus within 16 nsec of the positive edge first occurring
after they are generated. The RD line, which is the inverse of the 68000
WRITE signal, takes up to 6 nsec longer than the strobes. When data is
leaving thg CPU board the 16 data bits enter the local bus within 22 nsec
of the negative edge of the clock that starts state four of a 68000 bus
cycle, but the parity bits take 23 nsec longer.

When data is being returned to the 68000 over the local bus, it must
arrive at the board at least 30 nsec before the positive edge of the
system clock that will latch it (the end of state six in a normal 68000
read cyqle without delay). DTACK must arrive 28 nsec before the positive
edge of the system clock at which it is to be recognized. This would be at
the end of state four in a normal fast read and the end of state six in a
normal fast write. Any other asynchronous inputs (BERR, BGACK, BR, VPA,
and IPLO-IPL2) must a&rrive at the 68000 chip at least 20 nsec before a

positive edge of the system clock if they are to be detected then.

PAGE 53

4.5 - Memory Module

The detailed schematics for the Memory module can be found in dppendix
B. The repetitive memory chips are picture? cnly once, with the positicns
of all the actual memory chips listed in tables on the schematics. The
schematics are divided up into 8 pages, B2-B9, and are described in turn
in this section. Appendix Bl contains a block diagram of the entire
Memory module. The prototype Memory board contains seventy-five chips and

approximately 1300 wires.

4.5.1 - Internal Address Bus

Schematic B2 illustrates how the least significant address lines from
the backplane bus (local or global) are received by the memory module.
The receiver chips distribute these address signals to all the memory
chips in the module. The ten least significant bits feed the data storage
chips and must be faster than the higher-order bits. The higher-order
bits are only used on the parity storage chips which are not in the
critical timing path. Therefore fast Schottky gates (A10-A12) are only
used on the bottem ten. The rest are received by Schmitt trigger

low-power Schottky inverters (chip A8).

PAGE 54

4.5.2 - Upper Data Path

Schematic B3 contains the interface between the backplane data bus and
the internal memory data bus for the twelve most significant bics.
Drivers A3-A5 are used to send datz from the internal bus to the backplane
bus when enabled by the signal DOUT. Receivers B4 and B5 enable data onto

the internal tri-state bus when DIN is asserted.

4.5.3 - Lower Data Path and Control

Schematic B4 contains the buffers between the lower four bits of the
internal and backplane data buses, along with the parity bits and the
receivers for some bus control signals. Chips A2 and A6 drive data
signals onto the external bus and chip B6 receives them exactly as is done
with the more significant bits in schematic B3. Chip A9 contains the
inverters used tc receive some of the control signals on the external bus
and gate A of chip A8 receives the clock. Chip B8 is used to synchronize
the internal clock signal with the rest of the modules in the system and
both phases of the clock are distributed throughout the board by gate B of

chip B7 and gate A of chip A9.

4.5.4 - Address Window Select

Schematic B5 contains the circuitry in the memory module that

determines which bus addresses the module will respond to. Comparator A7

enables a response when bus address bits fifteen to eighteen match the

PAGE 55

four values selected by switches S3 to S6. Gate A of chip B7 inhibits this
enable when address bit nineteen is a logic one or the memory inhibit line
is asserted. As a result, the memory can be placed in any 32K byte block
in the bottom 512K of the bus address space.

When the module contains 32K bytes of memory, S1 must be open and S2
must be closed. Gate C of chip Al2 then distributes ; logic one to the
latch input of all the 1K byte memory chips. When the module contains 64K
bytes of memory, S1 must be closed and S2 must be open. Gate C of chip Al2
then distributes address bit 15 to the 2K byte memory chips. When S1 is
closed only three address bits are comparad, enabling the module to
respond to a 64K byte block of the bus address space. S3 must be open when
S1 is closed to prevent address line fifteen on the bus from being pulled
low.

Gate A of chip Al3 enables the mecdule to send a bus acknowledge
through chip A2 only if the module has been selected for a memory
transaction. Gate C of chip C6 enables the output data drivers during a

bus read of the module.

4.5.5 - Address Decode

Schematic B6 illustrates how the enable signals for each memory chip
in the memory module are generated. Decoders B9 and B10 create the enable
signals for each of the.sixteen pairs of byte-wide data storage chips.
Address bits eleven to fourteen are used to make this selection. Decoder
Bll creates the enable signals for the eight 4K by one bit high-order

parity memory chips and decoder B12 creates those for the eight low-order

PAGE 56

ones. When the memory module is configured for operation as a 32K byte

memory, only the top half of the parity enables are generated.
4.5.6 - Data Storage

Schematic B7 illustrates how one pair of byte-wi&e static RAMs is
connected to the internal address and data buses. While IK byte chips are
shown, the only difference in the 2K byte chips is that the latch input is
replaced by another address bit. The tables at the top of the schematic
list the chip locations of the high-byte and low-byte RAM chips associated

with each of the sixteen enable signals.
4.5.7 - Parity Storage

Schematic B8 shows one of the eight pairs of 4K bit memory chips in
the memory module. The tables at the top of the schematic list the chip
locations of the high and lou parity chips associated with each of the

eight pairs of enables.
4.5.8 - Timing Circuits

Schematic B9 contains the two flip-flops that synchronize the memory
module control signals. Gates A and B of chip C6 detect one of the data
strobes being asserted on the external bus and flip-flop A latches this on
the next falling edge of the clock. This flip-flop generates the

acknowledge signal that is returned on the bus if the memory module is

PAGE 57

selected. Gates A and B of chip C5 generate the write pulses sent to upper
and lower byte memory chips during the half clock cycle after flip-flop A
is set. Gate delays insure that the gates of chip C5 will be disabled
before the flip-flops are cleared. Gate D of chip C6 enables data onto
the internal data bus during memory cycles in which a write is occurring.

Chip B15 contains the resistors used for pullups throughout the module.

4.5.9 - Critical Timing

The logic delays in the Memory module are adjusted for efficient
operation on either a local or global MMU bus. Since the bandwidth of the
global bus is a critical system bottleneck, the meméry speed is greater
than that needed on the local bus to allow a faster global bus cycle.

BSEL is generated within 18 nsec of the arrival of the last input to
chip A7 or B7. This includes address lines fifteen to nineteen and either
MIACK or CINH, depending on whether the module is on a local or global
bus. Any input needs up to 12 nsec to affect the decoder outputs so the
strobes must arrive at least 30 nsec after the address and IACK do to
aveid glitches on the chip selects. The RD signal must arrive no later
than AS so that the chip select will initiate the correct cycle.

During a read, the memory can respond within 120 nsec of getting an
address or within 60 nsec of getting a chip select, whichever is longer.
Adding in buffer delays, this means that data will leave the module within

148 nsec of the receiving of an address or within 86 nsec of the receiving

of an address strobe, whichever is longer.

PAGE 58

During a write, the address must arrive 30 nsec before the AS as
before. The data strobe or strobes must arrive at least 18 nsec before a
negative edge of the clock as should AS. The inverse of the read signal
must arrive 27 nsec before this edge. Data must arrive with or before the
data strobes and stay until 44 nsec after the next positive edge of the
clock. The address need only remain valid until 7 nsec after the same
positive edge. Both reads and writes take at least the two clock cycles
used on the global bus. The timing is also compatible with the 68000 bus
cycles as a DTACK signal leaves within 24 nsec of the first negative clock

edge after the data strobes are detected.
4.6 - Switch Module

The detailed schematics for the Switch module can be found in appendix
C. The schematics have bee. divided up into twelve pages, C2-C13,
described in turn in this section. Appendix Cl contains a block diagram
of the entire Switch module: The prototype Switch board contains ninety

chips and approximately 1000 wires.
4.6.% - Local Bus Window

Schematic €2 illustrates the selection of an address window on the
local bus for the Switch module. Switches S1, S3, S5, and S7 select the
use of address bits one, sixteen, seventeen, and eighteen respectively to
determine the module window on the local bus. A logic one, corresponding

to an open switch, enables the selected address bit to be sent to

PAGE 59

comparator D6 along with its desired value, as determined by switches S2,
S84, 86, and S8 respectively. Enabling fewer address bits to the
comparator through chips C5 and C6 increases the size of the address
window that the Switch responds to. Switches S2, S4, S6, and S8 will
match a logic one on an address bit if they are closed. Switch S9
positions the window in the top 512K bytes of local bus address space if
open or the bottom 512K bytes if closed.

Gates A, B, and C of chip C7 enable all unselected address bits onto
the global bus so that the full address window can be mapped to the bottom
of global bus address space. The selection of address bit one generates
an INTRLEV signal that shifts all address bits down one location while

passing to the global bus.

4.6.2 - Upper Address Path

Schematic C4 contains the path of the most significant address bits
between the local and global buses. Chips A5 and A6 serve as local bus
tranceivers while chips A13-A15 serve as global bus tranceivers.
Multiplexers Cl4 and C1l5 shift the address bits passing from the local to
global bus down one position each if the INTRLEV signal is asserted. The
signal CADR enables addresses to pass from the local to global bus and
MADR enables addresses to pass in the opposite direction. .

Address bits twenty-one to twenty-three on the global bus are derived
from the Switch module identification bits (CPIDO-CPID2) when sent to the
bus. When received from the global bus, these address bits are used to

carry an interrupt level (BCATR21-BCADR23).

PAGE 60

4.6.3 - Lower Address Pzth

Schematic C4 contains the inter-bus address path for the least
significant address bits. All chips function as evxtensions of the
previous schematic. Chips A7-A9 are tranceivers for the local bus and
chips A16-A18 are tranceivers for the global bus. Chips C17-C19 are the
multiplexers that can shift the least significant address bits when the

interleave option is selected for the Switch.

4.6.4 - Upper Data Path

Schematic C5 contains the inter-bus data path for the most significant
data byte, as well as a Switch mask detector. Chips Al and A2 are local
bus tranceivers and Al0 and Bll are global bus tranceivers. Chips C1 and
C2 are used to latch data passing from the global to the local bus when the
signal LDAT is removed. The signal CDAT enables data to pass onto the
global bus and the signal MDAT enables data to pass onto the local bus.
Chip E2 selects the bit in a received high order byte which corresponds to
the ID bits of the Switch. This determines whether the Switch is being

selected during a global bus interrupt transaction.
4.6.5 - Lower Data Path
Schematic C6 contains the inter-bus data path for the least

significant data byte alonz with both data parity bits. All chips

function the same as the corresponding chips in schematic C5. Chips B1,

PAGE 61

A3, and A4 are local bus tranceivers while chips B10, All, and Al2 are
global bus tranceivers. Chips B2, C3, and C4 latch data passing from the

global bus to the local bus.
4.6.6 - Interrupt Buffers

Schematics C7 and C8 contain the logic for the two interrupt buffers
in each Switch module. Sirce only the gates and chip locations differ
Letween the two circuits, only the first will be described.

Gate B of chip D15 generates an active low pulse when the
corresponding Switch and buffer are selected during a global bus interrupt
transaction. This pulse (BCINT1) is used by gate A of chip E9 to generate
a pulse that loads a new interrupt vector into chip D11 if a previous
interrupt is not pending. Flip-flop A of chip E4 is set to indicate a
pending interrupt through gate A of chip E5. When an interrupt is
pending, chip D1 asserts the appropriate interrupt line on the local bus
to get the attention of the processor. The BCINT pulse also enables a new
interrupt vector to be latched in chips C10 and Cll when a previous
interrupt is not pending.

When the CPU is acknowledging an interrupt at the level contained in
the buffer as detected by comparator D9 and gate A of chip E8, an ENVEC
signal is generated. The ENVEC signal enables the buffer vector onto the
internal vector bus and sets flip-flop A of chip E3. This flip-flop is
then used to reset the interrupt flip-flop through gate C of chip E6 when

the acknowledge cycle has completed.

PAGE 62

4.6.7 - Interrupt and Global Bus Hold Circuits

Schematic C9 contains interrupt circuits common to both buffers as
well as logic controlling the read-modify-write capability of the Swi:ich
and the clock drivers for the module. Gate D of chip E7 detects when
either of the buffers is acknowledging an interrupt and enzbles drivers B3
and B4 to place the contents of the internal vector bus onto the local
data bus for the CPU. Gate C of chip E8 then generates an acknowledge to
be seat to the CPU. An acknowledge can aiso be generated by two other
sources on the module, DTACK1 and DTACK2.

Gate A of chip B9 receives the clock signal from the local bus and F9
synchronizes it with the clocks on all other modules in the system. Gates
A and B of chip F10 then generate both phases of the clock to be used
throughout the module. The negative phase of the clock is slightly ahead
of the positive one to speed up the generation of some signals in the
Switch.

Flip-flop A of chip F11 is used to 1latch the read-modify-write
condition in the Switch. When the glcbal bus is taken for a read
operation as indicated by gate A of chip F7, and the lockcut address bit
(twenty), is asserted, gate B of chip F13 sets the flip-flop. The signal
CHOLD is then generated and the Switch keeps possession of the global bus
until the write operation occurs. The write operation is detected by gate
C of chip F13 and it resets the flip-flop. The flip-flop can also be reset
by a timeout counter F12'or a local bus reset through gate C of chip F8.

The counter begins counting when gate D of chip D13 detects the completion

PAGE 63

of the read operation. Eight clock cycles are allowed before & write

operation is expected.
4.6.8 - Inter-bus Control Path

Schematic C10 contains the drivers for the control signals on both the
local and global bus. Drivers B5 and R6 are permanently enabled to send
control signals to the local bus and driver B15 is enabled to send control
signals to the global bus. Driver B7 is enabled to send signals to the
local bus when MSTB is asserted and driver Bl6 is enabled to send strobes
to the global bus when LDAT/ and DTACK1 are asserted. The address and
data strobes can be enabled in either direction between the local and
global buses depending on the enabling signals. The bus read line is
similar except the local to global direction is controlled by CADR through
gate A of chip E7. DTACK is sent from the local bus to the global bus
thrcugh gate B of chip E7 and only enabled when the Switch is the local bus
master. BREQ and BACK are generated for the global bus in the global bus
arbitration circuit in schematic Cl1. DTACK is gzenerated for the local
bus in Switch control circuits on schematic C9 while BREQ and BACK are
generated for the local bus in schematic C12. Chip B6 is also used to
receive IACK, DTACK, and BACK from the local bus. Chip B5 receives the
local bus reset for the Switch and gate A of chip F15 generates a local bus
BERR either in the case of a global bus BERR or a read-modify-write
timeout on the Switch. Géte A of chip F5 generates one of the sources of a

DTACK signal for the local bus when a write operation is under way and

PAGE 64

CADR is enabling signals orto the global bus. This synchronizes the 68000

write cycle with the corresponding global bus tramsaction.
4.6.9 - Glcbal Bus Arbitration and Centrol

Schematic Cll1 contains the circuits that control global bus
arbitration and memory transactions. Flip-flops A and B of chips E1Z and
E13 control the timing of a two clock cycle global bus memory transaction.
The first is set at the negative edge marking the start of physical
ownership of the bus by the Switch. The second is set at the next positive
edge, the third is set at the second positive edge, and the fourth is set
at the final negative edge.

Flip-flop B of chip El1 is set when it is determined that the local
bus is requesting a memory transaction on the global bus. Gate B of chip
E15 detects a valid request and gate A of chip F13 suppresses the setting
of the request f{lip-flop only when possession of the bus has just been
granted, as indicated by gate A of chip F8, or a global bus transaction
has already been triggered, as indicated by gate D of chip D15. Gate B of
chip B8 passes the bus grant daisy-chain along if the Switch module is not
making a request during a particular arbitration cycle. Normally gate D
of chipoS generates a global bus acknowledge only during the clock cycle
that the Switch receives a bus grant but a CHOLD signal from the
read-modify-write logic extends the acknowledge and therefore global bus
possession. .

The first of the global bus timing flip-flops is set immediately after

global bus possession is obtained. After the bus transaction is

PAGE 65

completed, the flip-flops are reset one by one through gate A of chip D13
unless possession of the bus is being held. The absence of an address
strobe can also reset the first flip-flop through gate A of chip D15 if
bus possessign is not being held. In either case, the Iinal three
flip-flops are reset when the data strobes are removed as detected by gate
C of chip B8. The address strobe cannot be used for this because the 68000
contains & special test and set instruction which does not remove the
address strobe between its read and write transactions. Gates E and F of
chip E5 insure that the final flip-flop will be the last to be reset and
glitches will not be produced on the global bus during transactions from
another Switch mcdule. The first flip-flop enables an address to be sent
to the global bus by generating CADR and also enablies data during a read
operation through gate B of chip F7. The second flip-flop generates a
DTACK for a read operation to synchronize the transaction with the 68000
memory cycle. This flip-flop elso enables the global bus strobes. The
last flip-flop latches data passing from the global bus to the local bus

with the LDAT signal and also disables the global bus strobes.

4.6.10 - Local Bus Arbitration and Control

Schematic C12 contains the circuits that control local bus
arbitration. Before SRQ is asserted on the globa! bus, or during a local
bus reset, gate C of chip E7 resets all of the arbitration flip-flops.
When SRQ is asserted an& the three most significant global bus address
lines match the Switch ID number as detected by comparator D8, gate D of

chip F5 causes the request flip-fiop, part A of chip E10, to be set. Gate

PAGE 66

A of chip B8 only passes along the bus grant daisy-chdin if no local bus
request is pending. Gate A of chip D14 detects when all the conditions
are met for obtaining ownership of the bus and triggers the setting of the
acknowledge flip-flop, part B of chip E10. The acknowledge flip-flop
resets the request flip-flop and returns a bus acknowledge to the CPU.
Flip-flop A of chip E11 enables the global bus strobes to drive the local
bus strobes at the next positive clock edge after the bus is obtained.
Gate C of chip F7 detects the condition of the global bus writing data to
the local bus, and gate A of chip E15 detects the condition of the local
bus reading data from the global bus. Gate A of chip E14 allows either

condition to enable the data drivers onto the local bus.

4.6.11 - Terminating Resistors

Schematic C13 shows all the global bus signals connected to the split
termination chips B2, B3, B9, and B10. These resistor chips are only
inserted in modules placed at one end of a global bus. The global bus
signals with terminating resistors are electrically identical to their
counterparts on the local bus. Chip D3 contains resistors used to tie

inputs high throughout the module.
4.6.12 - Critical Timing
The 1logic delays in the Switch are «critical for efficient

interprocessor communication. The delays in all paths are tuned to mesh

with the other modules in the system to require a minimum number of clock

PAGE 67

cycles for each transaction. The timing constraints of global bus
transactions are met and the delay invelved in a local bus access to the
global bus is kept small in the case of the bus being free.

During a, shared =~mory 2access by a processor, the PSEL signal is
generated within 62 nsec of the time that the address arrives from the
local bus. By then the address has long since arrived at the global bus
output buffers and is waiting to be enabled when the bus is next free. The
local bus address strobe must arrive at least 45 nsec before a negative
edge of the system clock to start global bus arbitration at that edge.
The address must arrive 9C nsec before the same edge to initiate a cycle
in the correct Switch module. IACK must arrive before the address strobe.
A local pus acknowledge leaves within 32 nsec of the'first negative edge
of a global bus transaction during a write and within 27 nsec of the
following positive edge during a read. The ackncwledges are timed to
cause the 68000 memory cycles to extend just long enough to encompass the
global bus cycles. During a read operation, the data must arrive from the
global bus at least 35 nsec before the final edge to get latched and held
for the CPU.

During an interrupt acknowledge by the CPU to one of the Switch
buffers, an acknowledge is returned within 74 nsec of the address strobe.
The address must have arrived slightly before the address strobe. The
interrupt vector is returned within 37 more nsec in time to be latched by
the 68000. The interrupt acknowledge runs at top 68000 speed.

During a slave request transaction on the global bus, the SRQ signal
must arrive at the Switch at least 45 nsec before a negative edge of the

clock. The Switch ID bits (address 21-23) must have stabilized 56 nsec

PAGE 68

before the same clock edge. Once the Switch has obtained control of the
local bus, the global bus appears the same as the local bus except for
some added signal delay. Addresses take 30 nsec to cross the Switch while
data takes 30 nsec passing to the global bus and 537 nsec passing to the
local bus.

During an interrupt transaction on the giobal bus, an INT signal must
arrive at the Switch 53 nsec before the final negative clock edge in the
global bus cycle. The interrupt level must be steble at the Switch 35
nsec before that. The interrupt vector need only arrive 32 nsec before
the final negative edge but the interrupt mask requires 59 more nsec for

decoding by the selected Switches.

4.7 - Interrupt and I/0 Module

The detailed schematics for thz Interrupt and I/0 module (IMOD) can be
found in appendix D. The schematics are divided up into ten pages,
D2-D11, described in turn in this section. Appendix D1 contains a block
diagram of the entire IMOD. The prototype IMOD board contains fifty-six
chips and approximately 600 wires.

»

4.7.1 - Global Bus Window

Schematics D2 and D3 contain the address decoding circuits for the
IMOD that detect an access from the global bus. Switches S1-S12 select a
128 byte window on the global bus address space. A closed switch

corresponds to a logic one on each corresponding address bit. Comparators

PAGE 68

before the same clock edge. Once the Switch has obtained control of the
local bus, the global bus appears the same as the local bus except for
some added signal delay. Addresses take 30 nsec to cross the Switch while
data takes 30 nsec passiang to the global bus and 37 nsec passing to the
local bus.

During an interrupt transaction on the global bus, an INT signal must
arrive at the Switch 53 nsec before the final negative clock edge in the
global bus cycle. The interrupt level must be stable at the Switch 35
nsec befcre that. The interrupt vector need only arrive 32 nsec before
the final negative edge but the interrupt mask requires 59 more nsec for

decoding by the selected Switches.

4.7 - Interrupt and I/0 Module

The detailed schematics for the Interrupt and 1/0 module (IMOD) can be
found in appendix D. The schematics are divided up into ten pages,
D2-D11, described in turn in this section. Appendix D1 contains a block
diagram of the entire IMOD. The prototype IMOD board contains fifty-six
chips and approximately 600 wires.

»

4.7.1 - Global Bus Window

Schematics D2 and D3 contain the address decoding circuits for the
IMOD that detect an access from the global bus. Switches S1-S12 select a
128 byte window on the global bus address space. A closed switch

corresponds to a logic one on each corresponding address bit. Comparators

PAGE 69

A17-A19 detect an address which matches the specified high order address
bits along with gate B of chip B17. Gate A of chip B17 disables the
selection of the IMOD if addres; bit 19 or the memory inhibit line are
asserted.

Gate A of chip E7 generates a pulse during an access to the top
sixty-four bytes of the IMOD address space. This pulse is used to trigger
the sending of an interrupt from buffer zero. Since any processor can
trigger this buffer by accessing global bus address space, it is used for
interprocessor interrupts.

Gate A of chip C9 signals a write operation to any of the bottom
sixty-four bytes of the IMOD address space. This signals a write to one
of the vector or mask registers in the interrupt buffers. Gate B of chip
C9 and gate C of chip B17 signal a read operation to one of these
registers. Gate C of chip D8 then enables the IMOD to send data to the
global bus either during such a read or during the sending of an interrupt

to the Switches.

4.7.2 - Data Bus Tranceivers

Schematic D4 contains the tranceivers on the IMOD for the data lines
of the global bus. Chips A11-Al4 and D18 receive the global data bus onto
the internal input bus and drive the internal output bus onto the global

bus. The signal DOUT enables all the drivers.

PAGE 70

4.7.3 - Interrupt Vector and Mask Registers

Schematics D5 and D6 contai:. the memory chips used for the interrupt
buffer contrgl registers. Schematic D3 contains those used for the
interrupt vectors on the low data byte and schematic Dé contains those
used for the interrupt masks on the high data byte. In each case a table
at the top provides the chip locations for the corresponding chips in each
interrupt buffer, as cnly one set ic pictured. For example chips D13,
D14, and E18 serve to store the sixteen interrupt vectors for buffer zero.
Each register is stored along with parity. Only one interrupt vector and

interrupt mask can be sent from an interrupt buffer at once.

4.7.4 - Internal Address Bus

Schematic D7 pictures the four bit internal address bus that selects
which of the sixteen interrupt types in each buffer is being accessed.
Receiver Al5 normally drives the tri-state bus with the four least
significant bits of the global address bus for glcbal bus memecry
transactions to the interrupt buffer registers. During and interrupt
transaction, though, chip D15 selects the interrupt type if buffer zero is
being u;ed and chip A9 selects the type if buffer onc is being used. Chip
D15 is loaded with the four least significant data bits during a write
that triggers an interprocessor incverrupt and chip A9 is loaded with four
external bits during an externally triggered interrupt from buffer one.

Driver Al0 asserts one of the global bus interrupt lines, depending on

which buffer is being used, during the second clock cycle of an interrupt

PAGE 71

transaction. ITRANA is asserted during both clock cycles of the

transaction and ITRANB is asserted only during the second.
4.7.5 - Globa] Bus Control

Schematic D8 contains the control circuits for the IMOD. Flip-flop A
of chip C6 stores a pending interrupt from buffer zero and flip-flop B
stores a pending iaterrupt from buffer one. If one of the interrupts is
pending, gate B of chip D8 loads a request for the global bus into
flip-flop B of chip D9. This request latches a selection of which buffer
is being serviced into flip-flop B of the same chip. Buffer zero is given
priority if both have pending interrupts. A request also inhibits further
bus grants through gate A of chip D8 and gate A of chip E12. Gate B of
chip E12 detects when the previous bus owner is finished and the interrupt
transaction can begin.

An interrupt transaction starts with the setting of flip-tlop C in
chip C10. Flip-flop D of the same chip is set at the start of the second
cycle of the interrupt transaction. ITRANA enables a new bus request to
be sent from flip-flop A of chip C10 during the second cycle of the
transact}on to overlap arbitration for the next global bus owner. Gates A
and B of chips C7 and D7 clear a pending interrupt either during a system
reset or after the interrupt has been sent.

Bus grant is normally sent to the global bus except during an
interrupt transaction aﬁd during the clock cycle followihg a bus

acknowledge. Flip-flop B of chip C10 stores the acknowledge to indicate

PAGE 72

that another module is in any but the last clock cycle of a global bus

transaction.

4.7.6 - Memory Timing Circuits

Schematic D9 contains the IMOD clock drivers, the memory timing
circuits, and some further address decoding. The clock is received by
gate C of chip Bll and synchronized with the rest of the system by the
delay element in location B9. Gates A and B of chip B10 generate both
phases of the clock for distributior inside the IMOD. The negative phase
is slightly ahead of the positive phase for pre-clocking of some critical
signals.

The two flip-flops in chip D10 are used to generate write pulses for
the interrupt buffer registers. Gate A of chip E10 produces the pulse for
the low byte and gate B of the same chip produces the pulse for the high
byte. Gate A of chip E8 causes the flip-flops to enable the pulse during
the half clock cycle following the first negative clock edge after the
data strobes arrive. Gates C and D of chip E9 enable one or both of the
write pulses depending on whether the memory transaction is for a byte or
a word. Gate C of chip C7 and gates A and B of chip E9 clear the write
flip-flops after the transaction has completed and the gates producing the
write pulses have been disabled.

The gates in chip E11 are used to select one of the buffers both
during control register accesses and interrupt transactions. Gate A is
used during an interrupt transaction to assert SELO only if the

arbitration flip-flop has selected buffer zero. Gate B enables a global

PAGE 73

bus access tc buffer cero registers only if the bus address is in the
bottom thirty-two bytes of the IMOD address space. The next thirty-two

bytes of address space are reserved for buffer one.

4.7.7 - Interrupt Level Generator

Schematic D10 contains the generator for the interrupt level sent on
the high order address iines during an interrupt transaction. The levels
used for each interrupt buffer are set by switches S13-S18. An open
switch corresponds to a one in the corresponding bit of the level. The
output of the buffer arbitration flip-flop is used to select a level
through multiplexer C18. Driver B18 then places the level ou the global

bus address bits during an interrupt transaction.

4.7.8 - Terminating Resistors

Schematic D11 contains all the global bus signals connected to split
termination chips B12, B13, B15, and B15. These resistor chips are only
inserted in an IMOD if it is placed at one end of a global bus and are
identical to those on the Switch modules. Chip E13 contains resistors

used to tie inputs high throughout the IMOD.

PAGE 74

4.7.9 - Critical Timing

The logic delays in the IMOD are adjusted to meet the requirements of
the fast, synghronous glcbal bus transactions. Accesses to the interrupt
buffer registers require no more than the allotted two clock cycles and
interrupt transactions are also transmitted to the Switch modules within
this time limit.

During a normal global bus arbitration cycle, bus grant is sent within
17 nsec of the negative clock edge and the acknowledge must arrive 14 nsec
before the next negative edge. The six processors on the prototype bus
meet this requirement easily but the size cannot be expanded much without
changing the arbitration circuits.

During an interrupt transaction on the glcbal bus, the address
(interrupt level) is valid within 51 nsec of the first clock edge. The
data (vector number end selection mask) is valid on the bus before the
second negative clock edge and one of the INT lines is lowered within 35
nsec after that second negative edge. This allows the selected Switch
modules to strobe in a valid interrupt by the final clock edge of the

transaction.

PAGE 75

Chapter 5

Performance Measurement

5.1 - Introduction

The performance of the MMU was measured by two methods: a software
timing simulator and a trial run of test programs. These provide a
general method for measuring the performance of any MMU type machine. The
accuracy of both is ccnfirmed by a comparison of their results. An
analytical model is developed that is shown to provide a simple method for
marginal performance estimation. The important results are summarized

first, followed by details of the experiments.

5.2 - Measurement Results and Marginal Performance Model

For the purposes of this experiment, equivalent performance is
defined as the sum of the performance of each processor. These
performances are defined as the fraction of time which a processor is
running its program as opposed to waiting for a turn on a global access to
shared hgrdware. For example if six processors were running and each was
spending about one third of its time waiting for shared memory access, the
MMU would have an equivalent performance of four.

The performance of the MMU is a function of the number of global buses
in the system, the number of processors running, and both the frequency
and distribution of shared hardware accesses coming from each processor.

Each of these variables was adjusted across an interesting range to

PAGE 76

illustrate its effect on performance. The results are summarized in
graphs one and two of appendix E. Graph one represents an MMU
configuration with only one global shared memory bus while graph two
represents one with two interleaved global buses. In each graph the
horizontal axis indicates the number of processors in the system and
varies from one to ten. The vertical axis indicates the equivalent
performance measured in each configuration. The four curves graphed in
each case represent four of the different program types run on the
processcrs during the experiments. LO corresponds to a program that would
require possession of a global bus 1.5 percent of the time if running
alone. L1 to L4 correspond to global bus loadings of 11.4, 19.0, 29.8,
and 39.5 percent respectively.

One important factor in the decision of the number of processors
feasible for a given configuration and application is the point where the
extra performance gained by adding an additional processor is not worth
the cost. Of course minimum throughput requirements and how well the
application tasks car be partitioned among many processors are also
factors. Since the marginal performance is a function of the number of
processors, the load from those processors, and the load expected from the
additional processor, the number of variables in the system is unwieldy.

If the system seen by the marginal processor can be represented by a
black box characterized by one variable, the problem becomes more
manageable. The variable chosen in this thesis is the fraction of
available cycles in which the black box makes new bus requests that block

the marginal processor. This fraction is easy to measure and is also the

PAGE 77

probability that a random request from the marginal processor will be
blocked.

The model contains two key approximations that have been tested for
validity. The first is that a marginal precessor will have a negligible
effect on the performance and behavior of the rest of the system. Since
it has lowest priority, this is not completely unreasonable. The second
involves the distribution of bus requests from the system. By assuming
that the blockage probability is independent from cycle to cycle, the
performance degradation seen in a marginal processor running a given load
can be calculated. This approximation also assumes that requests derived
from many different processors running different programs are random in
nature. The fact that requests are delayed until the bus is free will
tend to cluster bus requests, but the total effect of this on marginal
performance turns out to be small in the situations measured.

The model proved to be a fairly accurate predictor of marginal
performance under many different circumstances. Graphs five and six
picture the request probability (black box variable) measured under all
the conditions of system operation measured in graphs one and two. Graphs
seven to eleven picture the performance degradation calculated for a
marginal processor running each of the five sample load programs (LO-L&)
when added to systems characterized by various request probabilities. In
all cases measured in graphs one and two, the approximation for marginal
performance of an additional processor was close to that observed.

Another variable related to the request probability is bus
utilization. Graphs three and four indicate how this measure of the

fraction of global bus cycles used varied over the same experiments.

PAGE 78

Because of the random nature of shared memory interference, marginal
performance starts to fall off before the global bus bandwidth is fully

utilized.
5.3 - Performance Measurement Tools
5.3.1 - MMU Test Programs

The test programs written for bringing up the MMU include two major
functions. First, they send test patterns of data to all the memory
modules and check for errors in retrieving them. Second, they record
their execution time to monitor their performance unéer different system
loads. This combination of memory testing with performance measurement
produces benefits for each function.

Performance measurement serves as an additional hardware diagnostic
check. Unexpected deviations between the results of the test routines and
performance estimations indicate hardware timing problems. One timing
bug in an MMU 1/0 device was actually found through the performance
measurement test alone.

The memory testing package helps to verify the wvalidity of the
performénce measurement. For example, if the data patterns are sent to
local instead of global memory, the results of the performance measurement
are severely affected. The memory testing guards against such a mistake,
while at the same time confirming the reliability of the path to the
glotal memory space where the system clock resides. The system clock is

used by the test programs to measure their execution time.

PAGE 79

The major difficulty encountered in combining these two functions is
distributing memory accesses in a random manner. Memory test routines
typically involve tight loops that step through memory and produce a very
regular pattern of accesses. This 1is inccmpatible with performance
measurement because these routines may synchronize when running
concurrently and reflect extreme deviations from the contention expected
under normal conditions. To avoid this problem, a subset of a special
68000 assembler was developed that can expand loops into longer ones with
varying numbers of null instructions inserted between the original
instructions. The random pattern of null instructions only repeats after
each block of 1000 original instructions. As reported in other
experiments (15), the distribution of memory accesses has little effect on
memory interference levels in multiprocessor systems as long as it is
fairly random. Therefore, the inserted null instructions are adequate to
simulate interference in application programs.

All simulations and MMU performance measurement programs make two
additional simplifying approximations when estimating performance. The
first assumption is that a very small portion of the global bus bandwidth
will be devoted to sending interrupts in most applications. Since the
68000 mjcroprocessor takes many clock cyc}es to jump to an interrupt
handler while only two global bus cycles are needed to send each
interrupt, the processors would not be capable of handling a significant
amount of interrupt traffic efficiently. For this reason the global bus
interrupt traffic is ignored. The second approximation has to do with the
length of bus transactions. While a standard memory access takes two

clock cycles of bus ownership, a read-modify-write access will take at

PAGE 80

least eight. These special read-modify-write instructions, though, are
envisioned to be used primarily for semaphore operatcrs and should only
occur upon entry into critical sections of code. As a result, they should
not make up a significant portion of shared memory accesses and all
transactions are assumed to be two cycles in length.

The random assembler generated the MMU test programs requiring global
bus bandwidth at each of the levels (LO-L4) described earlier. L3 and L4
had to be placed in shared memory to achieve their level of bus usage.
Also, these programs running at the highest possible level of bus loading
had to tolerate a large amount of regularity in compacting shared memory
requests. L& uses a series of block write instructions to approach forty
percent global bus usage and contains no null instructions. The 68000
only uses two of its five clock cycles in a write instruction to complete
its global bus transaction. LO, L1, and‘LZ, however, maintain a fairly
high degree of randomness. These programs, built from typical 68000
instructions but with accesses distributed randomly, should closely
reflect the distributions of requests found in typical application
programs.

An additional piece of hardware is provided in the MMU system for use
with the test programs. Since the test programs can not generate high
levels gf bus contention in a system with a small number of processors, an
alternative method must exist to generate this load. In this way the
performance of a test program on one processor can be measured over a wide
range of interference levels. Therefore, a dummy load board exists that
generates global bus requests in a random manner at an adjustable level.

Once in possession of the bus, the dummy load does nothing but block other

PAGE 81

users for two clock cycles. Request probabilities between successive
cycles are independent and adjustable in 1/16 increments up to 15/16. The
hardware design of the dummy load is described in appendix F.

Performance measurements were taken by running combinations of the
five different program types on the processors available at the time of
the experiments. The execution times of the programs were compared in all
cases to their stand-alone execution times and a level of performance
degradation was calculated. Measurements were also taken with one of the
programs running in competition with the dummy load hardware. In each
case the dummy load was adjusted through all sixteen of its possiktle
interference levels. The results obtained are compared to those of the

timing simulator and the analytic model as presented later.
5.3.2 - Timing Simulator

This section describes the software timing simulator used to estimate
the performance effects of global bus contention in the MMU system. Such
simulations are simple in microprocessor systems involving sequential
memory requests without separate request queues. As explained in chapter
three, a shared memory access requires at least five processor clock
cycles,.including one used for global bus arbitration and two used for the
global bus transaction. If the processor is unable to obtain the bus
during its arbitration cycle, it extends the length of the bus operation
and continues requesting the bus until it is available. Arbitration for
the next user of a global bus is overlapped with the second cycle of the

previous transaction.

PAGE 82

In simulating the bus arbitration, a distinction is made between
physical ownership and logical cwnership of the bus. A processor has
physical ownership during the cycles it enables data and address signals
onto the bus. Logical ownership starts in the cycle that the processor
gets selected as a bus master and ends before the cycle when the next
master is selected. The simulations and models of the MMU arbitration
deal with logical ownership for convenience. See figure seven for an
illustration of bus arbitration and ownership. The figure also
distinguishes between arbitration cycles, in which a new master can be
selected, and closed cycles, in which the bus is not ready for a new
master.

The input of the software simulator takes the form of a bit vector for
each processor running in the system during the simulation. Each bit
vector 1is derived from the instruction.stream that the corresponding
processor executes and it describes the pattern of its accesses to the
global bus address space. Each element in the bit vector indicates
whether the instruction stream will request a global bus during a given
cycle. A write into shared memory takes five clock cycles in the
stand-alone case, so a write instruction in the stream would contribute
five elements, one of which would be the actual bus request cycle. In the
case wﬂere more than one global bus is involved, the vectors must add
another dimension to specify each bus separately.

In running the simulation, the simulator steps through clock cycles
one after another and delays all instruction streams by one cycle if they
must wait at a given point. After one instruction stream is completely

executed, the simulator stops and compares the total delay of each stream

PAGE 83

with the total execution time. In this way a percentage of performance
degradation can be calculated for each processor. The simulator also
keeps track of bus utilization and frequency of requests during the
execution period.

Input streams for the simulator can be produced which closely
represent the request distributions characteristic of all five bus loads
that have been produced by the random assembler. These only differ from
the actual test programs by the small overhead of locop control and timing
computation that exists only in the test programs. The random number
generator was run independently for each version of the programs. Input
streams can not be produced which reflect the request pattern of the dummy
bus load because the dummy load can not queue requests until the bus is
free. If the dummy load makes a request which is ignored, there is no
greater chance that it will make a reques£ on the next cycle. Therefore,

direct software simulations of the dummy load were not made.
5.3.3 - Comparison of Measurement Tools

The results of both the performance measurement programs and the
software, simulator were compared to verify that both were working
correctiy. Two MMU processors and two global buses were available so that
all the basic functions of the system could be tested.

The five memory test and performance measurement programs were run in
all possible combinations on both MMU processors with only one global bus.
As expected, there Jas a high degree of synchronization when the high bus

loading programs were used, but the rest produced results in which the

PAGE 84

degradation was generally a monotonically increasing function of bus
loading.

All of these experiments which were run on the MMU were also run on
the software simulator. Agreement was very close in most casas and well
within the range of random fluctuations. As a result it appears likely
that both operate very close to correctly. Graphs twelve to fifteen
illustrate both sets of data for comparison. Processor zero refers to the
highest priority 68000 while processor one refers to the next one down the
priority chain. In all cases the performance degradation on cne processor
due to competition from the other is measured. LO-L4 refer to the five
different programs used with L4 being the greatest global bus user. The
six curves pictured in graphs twelve and fourteen represent three
different programs (LO-L2) vun on both the simulator and the MMU. The
curves in graphs thirteen and fifteen repfesent three different levels of
loading (LO-L2) for the competing program. In all cases the MMU and
simulator results remain in pairs, illustrating the agreement between the
results of both. Tﬂe non-linearity of the «curves represents

synchronization effects in some program combinations.
5.4 - Marginal Performance Model Development
5.4.1 - Analytic Model of Marginal Processor Performance

Many analytic models have been developed for multi-processor systems

such as C.mmp (16,17). None of these, however, seem to be useful for -

PAGE 85

systems such as the MMU with microprocessor memory <ycles and local memory
for instructions.

The analytic model developed for the MMU deals with the simple case of
one processor contending with the variable dummy load. This has the
potential for being able to estimate the performance of a processor in
conflict with a wide range of interference levels, without unnecessary
complication. The dummy load represents the approximate behavior of the
black box system seen by a marginal processor. The request probability of
the dummy load is taken to match that of the black box it is representing,
as indicated in figure eight.

This section calculates the degradation of performance which should
be seen in a processor running a program charact.erized by a request
frequency of L, when it is placed below a dummy load with an independent
conflicting request probability of » for each arbitration cycle. This is
exactly the situation which exists when a program is run on an MMU
processor in conflict with the dummy load hardware. First, the reciprocal
of L indicates the number of cycles per processor request and each request
is extended by an average amount of E wait cycles. The degradation D is
then E/(1/L) or EL. The problem then becomes one of finding the expected
wait time E.

The‘ expected value of time in which the bus is free for the processor
after one transaction is over is OP+1P(1-P)+2P((1-P)*2)+ . . . or
(1-P)/P. Since the chance the bus will be blocked is two cycles per
transaction divided by those two cycles added to the expected time which
the bus is free, the chance that the bus is in use is 2P/(14P). The chance

that the bus is free is then 1-(2P/(1+P)) or (1-P)/(1+P). Since the bus

PAGE 86

spends equal time in both halves of a transaction, this means that there
is a chance of P/{1+P) that a request will hit either half. As a result,
the expected wait time for the processor can be computed as
(0(1-P)/(3+P2)+(2/ (P+1)) {({1(1-P)+3(1-P)P+5(1-P) P2+ . . D+
(2(1-P)+4(1-P)P+6(1-P)P*2+ . . .) or (P/(1+P))(3+4P/(1-P)). By
substitution into the equation derived in the 1last paragraph, the
processor running in conflict with the dummy load will experience
performance degradation of (LP/(1+P))(3+4P/(1-P)).

The analytic model was compared to measurements taken on the MMU with
the dvmmy load hardware. The dummy load can be adjusted to have a request
probability P which ranges from 0 to 15/16 in increments of 1/16. The
dummy load was placed above processor zero in priority and all five
measurement programs were run on processor zero using one global bus.
This was repeated with the dummy load set at each possible request level.

The results for each measurement program are illustrated in graph
sixteen and graphs seven to eleven show a comparison of each curve with
data points calculated from the analytic model. It is clear that the
match was almost perfect, increasing one's confidence in both the dummy
load hardware and the calculations used in the model. If system global
bus requests can be approximated by a dummy load with a given request
probabiiity, the additicaal performance obtained from an additional

processor in the system can be calculated if its instruction mix is known.

PAGE 87

5.4.2 - Testing of Dummy Load Approximation

This section describes the testing of the two approximations made when
using the dummy 1load (black box) model for <calculating marginel
performance.

The first of these approximations comes from the fact that the
addition of a processor to the system will subtract some total performance
from the higher priority processors. This effect can only be ignored if
the extra performance obtained from the additional processor is always
much greater than that lost over all of the rest.

The second approximation concerns the expected value of wait time used
in the calculations of the last section. Even if all the processors in
the load are generating requests with a random distribution, the fact that
they can queue requests will meke the request probability P dependent on
the history of bus utilization. In the calculations of E, though, it was
assumed that P was independent from cycle to cycle. Therefore the actual
expected value in some cases could vary significantly from that used in
the calculations.

Across the entire range of data, the first approximation was tested by
calculating the ratio of performance lost in original system processors
upon addition of another processor, to the performance added in the
additional processor. All of the points obtained are chown in graph
seventeen and since most of the fractions are insignificant, the very
worst being only about 30 percent, the first approximation appears
reasonable. If an additional processor was estimated to add the

equivalent of half a processor to the system (100 percent degradation),

PAGE 88

even the extreme case of a thirty percent error would mean that the
processor might only add the equivalent of a third of a processor due to
degradation of performance in the original processors. Since the average
error is only a few percent, the one case of thirty percent is also likely
to be the result of statistical variations in the simulation programs.

Graphs eighteen to twenty-one show a comparison of the performance
degradation seen in each additional processor of different loads with the
calculated estimate. The request probabilities used were taken from the
data in graph five. The fact that all of these graphs show close results
indicates that the second apprcximation appears to be reasonable.

At least over the simulated ranges of MMU operation, the performance
which can be obtained by an additional processor can be reasonably
estimated by using graphs five and six and the equations derived in the
last section. Graphs eleven and twelve are interesting in that they
clearly show a rough number of processors which saturate the global bus
bandwidth under different program loads. Beyond a certain point extra
processors do not increase performance at all. This point occurs roughly
at the point where the total global bus bandwidth equals the sum of the
bandwidth requirements of all the system processors. Under certain
combinations of program lcads, it is even conceivable that overall

performance could be decreased beyond this point.

PAGE 89

Chapter 6

Conclusions
6.1 - Summary of Experimant and Results

The experiment described in this thesis involved the designing and
building of a general multi-microprocessor machine (MMU) tailored for a
particular high-throughput application. Performance of the machine was
measured in different configurations and a simple method for estimating
the performance of this type of machine was verified.

The MMU machine utilizes the flexibility and bandwidth obtained from a
crossbar switch in the accessing of global resourées. Simplicity and
expandability are obtained by creating the switch from a grid of
microprocessor buses. Features such as using an interrupt module to
distribute interrupts on the global buses and allowing variations between
local and global bus protocols proved simple to implement and very
powerful.

The processing power of the machine is apparently scalable up to the
point where the combined memory traffic of all the processors comes close
to saturating the bandwidth of all the globa; buses. High performance is
dependaﬁt on the ability of software to keep the use of global resources,
as opposed to local ones, to a minimum.

When estimating the increase in system performance obtained from the
addition of one more processor, a simple probabilistic model serves well.

At least in the case of static priority schemes and fairly random memory

PAGE 90

accesses across the entire system, the model predicted well the simulated
performance changes observed in a wide range of situations.

For special purpose high-throughput applications,
multi-microprocessor machines such as the MMU provide a feasible
alternative to the conventional high-speed uni-processor approach. The
trade-off not investigated here is the relative penalties in the

difficulty of software development.
6.2 - Future Research

The work in this thesis brings to light additional interesting
questions that warrant further investigation. As well. as looking into the
appropriateness of other applications to the MMU, and exploring other
multi-microprocessor architectures, more work is possible on the MMU
design itself.

One important question involves adding the capability of reliable
operation to the MMU. In the present system, there are many failure modes
of a single processor which can bring down the whole machine. Many
possible techniques for minimizing this problem and allowing dynamic
reconfiguration of the system need to be investigated and evaluated.

Anot‘her important question deals with the method of arbitration used
on the global buses. A shift from static priority would affect both
performance and the performance model.

Also of possible interest would be the addition of other kinds of

global bus traffic to the proposed interference model. In some

PAGE 91

applications, interrupt, DMA, and semaphore traffic might become
significant and require incorporation in the performance estimates.
Another important experiment for the MMU is the writing of a complete
software system for a given application. Such software development might
uncover desirable additions to the hardware architecture. Measuring the
performance of the MMU in an actual application run containing variable
loads would provide an interesting test of the proposed performance
estimates. Such an experiment would also measure the difficulty of

software development for a special purpose multi-microprocessor machine.

92

" ARCHITECTURE

OVERALL MMV

CONTROLLER

ADDRESS —< TP >_
ALLELELS STRoEE/ —"! —
A DATA —< VALID OoUT S>—
Write DATA STROBE/ _—"_‘ l__
DATA ACKNow|EDGE/ l l
R/W - 1

ADDRESS — VALID ouT

ABLRESS STRopE/ l
DATA STROBE/ [) hj'_

T

DATA ACKNOWLEDSE/ L____f_—
R /W
AOLRESS (_EvEL) — JALID ouT >
TNTERFUF® Akt oL/ _‘L i_——
Luterrupt ADORESS STROBE/ |
Ackrowless| DATA STRoBE/] |
PATA (VECTOR) @
DATA ACENCWLECGE/ L1
R/W

INTERR UPT/ —

| OCAL BUS TRANSALTIONS

inavrg a

73

\\’r . ¥Q

Rend

rr.icv .o‘,“'

DMA

| eveee 1| cveee 2

L [

ADDKRESS —_— VALIG ¢ T b

[

STReBES/

R /w

DATA

PATA (A Cncn

P—————-—
VELToR AMp MASK

INTEPRUPT QTRORE/

ABDRESS (cPu ib)

SLAVE REGuUesT/

04

—< VALID OuT >—

[
_<JALIO ovuT -
]

GLCBAL BUS TRANSACTIONS

FAjurc 3

/ N .
~ VALIE ovT >__

PATA — X VALID OuT) ——

™

+5v +5v
$ 30 800
L3 DEVICE INTERFACE S }
(£ (gVvs
)] “ TERMINATION

<
§ 270 * 70

B8t]

e e

21|

Y4 26sto Yy 26510

130N // 2700 = |00 line .mr,,dencc

(270"1/{70.,"10270.::)5"1 ~ 3.3v TTL h.:t.
Tov on bvr for 2€SI0 = 100pmq > s%o_n_

BUS ELECTRICAL SCHEMATIC

F a'3v ve 4

75

76

nu_U\U JU.aO ‘L+X0 %0 Ka...*.“‘ UJ.... k& w001 4m _.4:3 10\‘—01 240
nso.JOCa..S.... 44 anu:.._ rrHieP Y+ v..n.vva PAIIAD jou 3vep /3973 TMONNIY VIV ST

——
¥ QIHILYT VLVa

! M /Y
_ /39031MonN YoV Y Lvq

Viva
/7S33041S vivQ

| /5330815 SSIYAIV

D $sIwaqy

¢s| s ss|ns|es]es s]es| %109

*LLGL

gt = - - - -4
——

| M/

/I ImoNADY Viyd

[/5390815 Vivd

’

V Vivd

| /380315 $5140QY

| e— S$ 3NV
es [Tas |Lesfos |Lss [rs g5 Jzs Lus o5] *108

fL%L%E

|

Hi4M

LOCAL BUS TIMING

5

Fiﬁvrt

7

BCLK) D D O
Achitrabion BUS REQUEST/ | |
for any BUS GRANT [N/ | | {
transachon BUS ACKNOWLEDBGE/ I l
;
! !] , ! { i)
ADDRESS 4 D
DAT {
Write ATA N\ >-—‘
STROGES/ | |
R/wW
bt a———
- R T I R T B
ADDRESS — D
STROBES/ | f
Read R/wW L '
DATA LATCHED 4
1 I | | t | (
VECTOR AND MASK —< >—
In“efrv?"'
INTERRJPT STRCBE/ |]
I \ |) ! | |
ADDKESS (CPV 10 ——<—____/—\
DMA (cbv 10)
SLAYE REQVEST/ l

GLOBAL BUS TIMING

Fiﬂ&)re (4

cleek
cyele
/-_/L——\
ARV clock -J L
‘Reqyc‘fj Physical Own‘rj ! Reqgwes ¥ lPh;t-c.‘ Owrer

Processor O — =t — - — /"= e e e e e e e et m e - e S

j Logical Owner

lL’,-ul Onear |

-— e e wr @ Ta e e - ———e - -

- e - - e

- e e e e W™ = e

- rRQA.vI(s" i Reqvast ! Plnrs;c-\ Ountr_l

T e - e e et e - e = - =

Procesgor 1 - = — - — = = = — . e - e e —m— e — o — - ——

- - . W e - - - - ® -

T
Y

l!'°,'z""‘ Owmner | _

L NB Lo L N L J

arb.

cycle

[(4 ~
closed T‘-a'*- Cloted T art.

Shard 1

Terk_ 'r‘c\r¥. T C‘OuJ’I
C,¢|C C’d(c,c\e C’c\c c,clq. C’clt cyele

GLOBAL BUS ARBITRATION

F;sure 7

Global Buyses

Hem«cry

-1 = = - - - - - - - - 1= "7
z !
v | cpv cPv cpu | 1 | cbU
‘ ? 1 ¢ o000 N : N{-'
: '
e e e e e e e e e . — e - — e ———— d

Black Box (P)

MARGINAL PERFORMANCE MODEL
Fijvre g

92

ACDR

DATA

68000

STRO¥ES

CAL- CPU

INT

RESET

CNTRYL

ADLRESS
DRIVERS
GENERAL COUNTERS
REGISTERS
L 1 N DATA
. \ & 5 Y e >
DRIVERS
A
Y Y h
ADDRESS PARITY
PTH GENERATOR
DECODE CHECKER
CONTROL
EBE—
DRIVERS
INTERRUPT ¢
CIRCUITS [«
< M RESET LOGIC fe—>r
< e

BVS CoNTROL LOGIC|

——————

LoCcAL BUS

100

A

q16E1<[241 3EICI 241
HDATISZ < -
MBERR/ & : MDATIH/ © -
MRALT, & p MEATIZZ O— "
nerEQ/ & MDATI2/ &
NBACK/ O— 2 MATIV, & z
MDTACK/ O 2 MDATIO/ © :
NRESET/ O : MOATY © :
31.1Y2 o p MOATS/ @ -
MADR 2O/ O MOATZ, O
MADRIT/ < ': HOAT6, O— L
MADRIS/ O— —~ MDATS7 -
MADRIZ/ & ~ HDATY/ O o
MADRIE/ <& = MOAT3/ & -
MADRIS/ Q— BY NoATZ/ & B3
3ICENKI 261 © 316EN6I126)
NADRIH/ < ! MDATI/ < 2
MADRII/ & : noATO/ O :T
NADRIZ/ ©O— a HOATPHW O "
MADRI/ & NOATPL, O—
NADRIO/ O- 5 MAS/ Pos 4
MADRY/ oO— § HUDS, O E
nAtRS/ @ Z MLDSZ, & "
MADRZ/ & ~ NIACK/ O
NADR¢/s & -
NABR S/ & =
MADRH/ O—
MAORS/ & 12
MADR2/ O ::
HADRI/ O— glo 82
bl 4.3RN Els 2K
{ - o - = -y
NINT 7/ O— z' M- : SV +5v—-—:——w-—-§-';—-o PUPL
MINTC/ < 3‘% : : '—'\A/"—r;'—O puPR
MINTS/ < TR AN | : —wv—-hu—o pveld
MINTH/ & rr — ' ._M_..x_s_o PUPH
HINTYI, <& L VVA—t | : m PUPS
NINT2/ O S—M— | . . Puré
MINTY/, O e AN : ’ —— - -)

(1]]

A3 > o
o 8A®3
BEACK O —sy BASL
T O BASI
t
1 2¢Stlo
3 13 £ As U3)
Alo 13 83 O MADR20/
my P2 '; 1 o O MADRIY,
s B — W L4 O MADRIS/
arr P Jo sofd O MABRIY/
12 26Sio
034 a7 |,
:]
Al Y Bl s —> MADRIG/
as B LN PORrYY & —O MADRIS/
P b : noom : —O MADRIY/
A3 - o o O PADAIZ/
63000
Fe 12 26Sto
e ' 13 £ A3 113
Al - 11 23 3 $ MADRIZ/
PYTI & ! LN § ¢ SV O MADRIIZ
33 s 7
Alo ; It 8! —< MABRIO/
ACY 27 Jo Bo 2 <> NABRI/
\a 26510
—aE A9
36 13 5
. per = : I3 83 O MADRS/
Ao? = . iz s O NABRY,
AG6 M 2 I8 : Q> MADR¢/
q
pes 2 10 g0 O MADRS/ .
12 26510
32 13 € A'o s
AGH 1 el O MABPRY/
3
AG3 |- i £ R P O NADRY/
Ao = Hn s 2 Q MADRZY
o
Ao P2 10 gofl O MABRI/

loe

AHY

vaa B2 : O BYMA/
e 22 O 8E
68000
Fe

bis j: ~> DATA|S
biy = O DATAIY
I3 p <Q DATAI3
b2 p —Q DATAIR
b po 0 DATAM
dio s —Q DATAIO
0y » QO DATAY
(11 " < DATAS
b7 - OATA?
b }&3 O DATAC
bs & - DATAS
Y ! O DATAY
by = ~O DATA3
b2 : < DATAR
D1 < DATAI
po = < DATAO®

AS

X3 26S1o0
JE A2 '

103

MbATIS/
MDATIY/

MOATIZ/

MDATI2/
MOATIV/

MOAT I/

MDATY/

3484543483890

MDATS/

O NDATRH/

bovts O
' 'y teg
; i3 B3
]
s 12 %2
n mp
L] e
Io g°
2 2(si0
[SEe K5 hg
13 15
I3 33
11 5
T2 82
i PO
Jo [{=]
[k 26310
-dE A
s 7
PAROVTH Q- * " vy R
PAROVIL O— ¢ Jo B
[l7
DATALS O — Ilery 2m
Y 15
DATAIY & L | ‘r 5 2Y3 A2 "
]
PATAIR O — - 2 e -
PATAIL & - P YL 2at '? +
] 1
PATAN & + — Ll sl '
: L] H '
PATAIO O- y S Bl Ms;:
P !
PATAY? O —t ‘s Y2 1Az
PATAE O . |'7 ANTYRL
—] 26 5
\
=} | B
KILT
1% ¥
PARINY O 1Y2 (A2
PARINL & Rlio e
' BY
DIN/ Ad16
© s240

< MDATPL/

104

3 ' 43240
RST/ Qe RestT _ ,
BWR/ Qe WRITE Fd E
4
sviA/, ————d Cs@ :
%
BADY Q———l Cs\ pye
BAGS O————i k32 =
1
BAG? Qe s - }
BAGI O———olRsH Tra p- O PTHINT/
D7 OC ps D4 D3 D2 D) O
wl 9] 20 u[zﬂ;u 24) 25
to
{
i2 263510
£ AN |
1
Birs es
1" b}
52 B2 .
It 8¢
To 8e =
. 12] 24850
povT/ O~ dE AS
|3 15
T3 83
1 9
—I2 e
5 Iy g 7
9 2
To RO
DATA? O=— LA P RPYL] R O MbAT?/
5
BATAC © 213 am3 = O MDATH/
]
DATAS ©— L8 POPREY] o MDATS/
DATAY O LA PRTRIPYNY AL s O MDATY/
DATAS & 2l A4 : O MBAT3/
DATA2 O il PRYSY , O HDAT2/
4
PATAL O lva a2 > -0 HOAT3/
baTAe O ':' 1Al O MDATE/
[—-czs "
]
} 6,
DIN/ & 416 ¢, 4o

jos

A7

RDV/ <
BAST
," © 81y clo
WhiZ O -
s) “Ls244
P—CCL -l-—-q 1
[}
D —dz
DATAIS & LB PPN AL LA PN 3
Y 2w
17 73 15 s
DATAIY O~ ™ 7 p A 2Ny
bATAIZ O & QR Bha
3 n I .
DATAI2 < 5p sa WA m "
] 1
DATAL & 4o 4qQ 2 2 iy
7 6 14
DATAIE O R =4
DATAY & 4 20 2Q] A2 Y2
1
DATAS Qe \d 1Q z 2 m 3
wLl/ 'A RIS Ccit
L_tye, t527 Lt e 529
:‘ p L 3
PATA7 O o saf ':_ w
[}
DATAE O— LLA PREN "’ U PPRP -
1
DATAS O Heo 6 Z Bl on
t]
DATAY O— 310 sa LI YRR
4 3 12
OATA3 &~ ® i 4a " p 1A vy -
vATAZ O 1w 3a ; e [LINRAE
PATAI O o . 2a PRI L
vama < 3o 1Pt 3 RN KL

Rd2/ & A?
H i3 Q couTH
wH3/ O- “Q L0 Co D~
—a6 A2
3 ™ Q@ 2 i 159
9 ®f¢ &—‘-’-c L
PATAIS O 10 %3 b—d e .
DATAIY O 1 B :: U
DATAYY & - B QA " - w26 2
bATAI2 O A,L””< = m ’
Y
s e 2
1AY Yy
] 13 '3 tH
410 o p— 1A3 iz ”
q
14 ¢ A3 > Al Y2 ”
J oN & L4 m o om
9 ¢
DATAIL O " 0 Qe 2
PATAIF O : c Qp 3
8 Qa
DATA? < - - .
PATAS & A “sin
! o O court
wie/ & f] Ld b <
a6 AlY
5 7 -~
CN Qp -) (" L;?‘:f
Z |
PATA? & " 0 Qc n Ly, ;
PATAS & N oy 2vy p—
Lle Qn Is 5
DATAS & i$ 1y 203 273
DATAY O A ‘Lsin " - ';
i W
% 1t
M vy i
n 13 < 0]
-qd cop—d 1A3 vy -
a4 6 A'S 2har vz
Slow ap|= 2hiar v PO
<
DATAY & o] Qe 2
DATA2 & 1< Q "
o— 8 QQ
D:T:\‘; Zia <m < CLkL
BAT © ‘Lsiat
f —_J_- LS

106

“so% ‘sod 107

A? 3 4 2 Dy

. ‘LS . b7 07
'L>‘ O BEACK
All . 1532
i ﬂ.—_——o bout/
A23 53 9 ‘ ES
s| 8 Q FIREQ/
Lsoo
5 ' ES ‘Ls32 E¢
A22 A 3 s
2 H‘Dﬁ_————o 8BTACK/
¢2000 <
F2 7
16 ‘r
- B [l—— CovT/
Ls20 D9
SIACK/ O— 2
q
hBACK/ & f}L——v DINP/
RST/7 &
PUP Lo ' '
—
- 10 VAR~ : Gl
BAS/ & q 628
’, "——'———G" 524 ce
(RN 3
c
—LDJ—. 26t pem———0 RD/
]
A Y0 PO RDI/
Al 15139
[9
61
g N
8
. ! qd.GZ c7
BUbS/ O + } 3cc.m
c
LIl
¢
s
628
BLYS/, O ﬁ’z“ cs
0 2
3
gAds O 1 "
BAGLZ O “ Y P ey WL 2/
BAG o ! A, xop.'..’...___..__o Wi/
15138

o8

‘1502
\
- : - i M O PRESIN
PReSovT Ormmmmmme———— ¢ a) ;:i AJ—; o
q> Csid_ Tois T A z
——lcc»] CL ' 2z £ z(.es;o
13 5
- 83 O MRESET/
15175 DI 4502 Lsi7s bIM ek
5
13 B \‘i s b Q-L
1% o s} ¢4 J a ‘Lso2
‘i? b " - > B8 12 .
q o ar- PIs Plc tt n! P
oIS
; {
BCLK O—s —
]
PUPS & l_!d e]
213 83 p——0 nAD/
covtT/ O
-O> BwWR/
K} 12 26511
WRITE D ,_.._._'.;e]] 's
AS b= - I3 B0 MAS/
2 |72 B2 f———0 nuDS/
LOs b b I\ 21 r-;-——o nLps/
. 'r Io B0 p——————O MIACK/
< BLDS/
£ 000 < BVbS/
F?_ —> BAS/
N 528 Y7 Do < BIACK/
o
1 G2A L:]
[) _—' 2N ‘o
Fe2 3 _q c }: 3qd A CLEPH
(2 W KIS P] 15277 oy
‘537 ENn DY
feco |2 da e "
é '—Td 6 13 12
Gt c3 —q B }-—-l >0——O CLEPL
‘soy ‘S04
\ 9 [] § ¢ "
8c bt J>c— De o neck
b? 07
PUPR &
pUP1 &
DINP/Z <&

All

PUPE &
| {48
. R LT
=~ ’ —q:s e L
. LSe Zh ‘16t 2h Lsii
'l c\' 7 P E|3 7 P Elz
el ‘da —dc
1502
%
BAS/ O o ,,:! ¢ \ 1o
i to L“/
E7 ,
All 1502
QJ \" A }
PRESIN 1] C O PREsov
/| -0 RST/
oIs |
50}
ruPH < 3 . "
2] A q reser
7,
PTMACK O— v Lse2 ‘
2 LSO\Z | ad 2 vea
porec/ O—+—4 A 1 ! sV 3 g
: J/ : . £7 “Lzon
! L33
E? ! = 3 ¢j B Yo 1 7 wALT
't 97 ¢ /
MADK20/ & q [—4 Te 12 3 £800G
£e !
nas e LS Fe
, N
MBERR/ O—f e .
“Ail I i
PERRH O— ——— A &
f 22
PERRL O - s
g 5] es E® ™ b
BOTACK/ >3 A 3 qd SIACK
MOTCR/ Qe /oe ”
d BGACK
MBACK/ O 5
HBREQ/ - - B8R
TTLOM-2S
Zfas--l‘ 1537
‘Lsiy 6 2,
[l 2 1 29‘107:' —T A \"3 s CLoCKR
nawk/ o Dc N AT f— | L/
Al 10 a3 fmm Ce ‘37
Snse -’-i—" g
el «i B & BCLK
pPurl Lo 1 e .

109

o

Al '

. LS00
1
BAS/ <& u’\ N €
—q =/
S O ES
bil 4.3k
r=-"%
+Sv ?
92562 .
PARINR & cY — PARCUTH
DATALS & : ‘s74 na1s
2
PATA M é - s
& 3 12 > Q s 1)) Q ——-.—Q7 PERRM
CATAI13 m " Q
DATAI2 O— Y P 8 > 8
DATAIl O = T | ¢
1" —C PR }—da a
PATAIE O-
DATA? © ': Elo ET
DATRE &~ .
I |
CLRPH O !
Iy gesel rovT
PARINL © cs M
PATA? O———— ' ’s74 “s178
2
DATA Qe 6 - 2
¢ 3 b af o Qfp———0 PERRL
PATAS 0-———-_-'- 3 > g>)
:“:.f o————“ L da A A
' -
ATA3 Y —dn —dqa Q 2
PATA2 O
DATAL o——--'-z— Eto Eq
winp o
r
CLxpl O

BVTALK &

Al3

I——-:'-—?—:—:':mz
| $ % REET
e '
L h-'--:
31|
(o=
kX -~ ¢
Z:J ;
|. L~ ! »
breeael ot
o1z
PUPY O Y ase ‘;‘;
12 Leee A<B
EAS/ & -q b A 3
1t =
BlACKy O— 4 / s A3
E?7 13
BAG3 <O AL O PTHACK
BAGZ O- LS YR v
sAGY O i PY
g3
14
22
11
B
9
ge

PTHINTZ O
q L]
MIVIZ/ © dy 58 o
HINTG, O 1de mpi—qdrra
MINTS/ O~ ds aplidina
]
NINTY, O “d4 mprid 1re
13
MINT3z O q
HINT2/ O= Zd1 €3000
HINT2) O —d 1 Fe
— 0
g
< (4]
b3
P
>

LOCAL OR G&LOBAL BVS

Bl- MEMORY
ADDRESS
wiNdow
SELECT
y
ADDRESS
DECOBE X DATA
;ﬁ STORAGE
ARRAY
4 |
DATA
DRIVERS)
PARITY
. STORAGE
ADDRESS . ARRAY
DRIVERS >
TIMING

CIRCUITS

e

-

B a A8 LsIYq
XADRI/ O 3 @p’
AS Ly
s 3
XADR'3/ Q- C
AT T sy
XABRIZ/ Q- — P s
m R
XADRI/ O— 3
. 5132
2] A 2
XAoR19/ O ‘ Aijo
. s132
B 1
XADRY/ O— 2) AlO
9 5132
o] C !
XADRB/ - Atlo
/,
12 5'32
3| D b'.
XADRY/ O / aio
' /5132
| A 2
XABRE/ & All
. si132
s B t‘
XAORS/ & Al
/,
v s132
| N\ 9
wi C O~
XADRY/ O 1 /Al
12 5132
\t
uaf{ D
XADR3/ O~ Al
s . ‘s132
> 3
pvere 2] A
XAtR2/7 © Al2
‘s132
PUPL O g8 P&
XADRY/ © A2

AR
BADKI3
EADRI2

BADRIN

BADRID
BADRY
BADRS
BADRY
BADRG
BADRS
BADRY
BADR3
BADR2

BADRI

13

B3

Dovr/ &

DATAILS

DATAI

-1

DATAI3
DATAI2

LATAN
DATAIS

OOQO?T

DATAY

DATAS

DATA7

DATAE

DATAS
PATAY

<‘>???QO

DIN/ &

" 2¢s10
! E A3 15
i e
Nirz s fd
s 7
I (4
P 2
ic)
12 2¢€sio
—-E A4 '
13813 "
! I2 g2 LJ
7
Sy m
Y110 gofl
(X3 €Sto
—qE Zns s
13
‘ I3 g2
1 1
12 82
7
IV 81
2
Jo eo
3 Y A 2 = =’4
e | - 4
Ty A peeeid E o
7 ¢ P
3v 3A e ©
H 9 to s
+ 4y 4A } <O
: Visy sl : TS
[} H L] 1
. 3 Y &A . <
' V5 :
: —aez
4 Gt,
| LS26%
3
; Y IA <O
2y A -
: AT o
—9 4 2 o
! P
57 A ! o>
]
o cA L] o
[}
J G
‘o1, BS
LS

Yy

XDATIS/
XDATI4/
XDAT13/
XDATI2/
XDATHI/
XDATIB/

KDATY/
XOATS/
XOAT/
XDAT¢/
XDATS/
XDAT/

PUPY O
¢ 1‘-¢‘-!—
Lsiy ZOM:-—- 3 ‘
2 LN —< BC
KoLK/ O— 'bc LR RPN L 33_7_‘ Betk
AS qu-v—;—-
1
TTLON-25 | .D seins
'/
'so4 A9
3N\ 12 :
o/ & |F/A;) © BRD
B B — BoE/
'soM A9
nuess, o LNV O BUbS
A9
‘soy
i} 10
neosz & {>¢ o BLOS
A9
%sio
Dovr,/, & 'ZdE A6 ;
N H
noe3
—J12 .2
s oM 7
b I8 Bo ¢
1 2¢510
. - E p2 e
FAROLTH O + ' T 83
PAROUTL O : 4 2§
2
PATAZ & oA O XPATI/
DATAZ O : SEETY O XDAT2/
PATAY O . Iy 3A ” <> XDATI/
DATAG & 4Y 4A © XDATE/
PARINN O sy sald O XDATPH/
PARINL & Blev ol —O XDATPL/
fﬁaca
pIN/ O .CG"LSIBcS:

us

f1e

2l 3| 4| s 1’~ —_l_-
IR
: \st \sz \53 \sv \ss \s‘
]
| W SUNN SR R U DU “82
19 L} 3 2 1] 10
ns'.-- T T T
=T — +Sv
—A\p— |
I
— W .‘i 3K
1] A !
15 ‘sgs
A3
. A7
XADRIT/ O— ' ‘ 83
2im
1]
XADRIV O B2
12 Al
X ADRIC/ & e
o
21 a0
XADRIS/ & : 280
SN
]
AOR; \ - 3 3
x v o= l '3_4 A = - |:IN " < BSEL
2 / Y
XINKH/ O F—/B-, l———ms
PP O . 2 las
o ‘s132
8
9 c < BADRIS
A
‘soy
\) 1 26810
4 E A2 2 '
Al [——IO 8o <$ NOTACK/
BOTACK O— '
o ‘soo .

$ boviry —

] C b
8RD & {____/

SSEL O

B6

XAS/ o—

XADRIY/ O—

XADRIZ/ ¢~
XADRIZ/ &

XADRVW/ O~

XVUDS/ O

XLos/ ¢
BADRIS O

BADRH O

BADRIZ &

Y p— o
6 Y6 pre——o
sg &8 Ys o—w—-——«(}
“O il Y 5-‘-'—-————0
ile upltae—
8 Ypiteee———
Iia Xt 911-—--—-<>
3 o N o
138
.
Y7DZ-——————-Q
Gt A (3 oz———-—-——-<>
‘des yspte o
Jdcnn Yipte— o
2o uptaeme o
28 Y2 pe—o
LA p———o
Bo 't o
5128
v h—— 5
§ G1 Yo :rl-—————o
Yo tspl o
L4c Yap——u o
2 le Y3 oii—--—--ﬂb
e YipReee— o
A wpt—— o
'B” Yo p-'z—--_—o
15138
vpZ— o
o veplee—0
-_"-q GIA w5 :)L—————Q
fdes yipleee—— o
ile vuptememem—»
2 ¢ Y2 i3
—A Yaoil—————~—~o
LI SN
L31s

ENg/
ENt/
EN27/
ENY/
ENY/
ENSY
ENés
EN7?/

ENS/
ENY/
ENigs
ENIv
ENI2/
ENt3/
ENIY/
ENtSy

PHZ/
PHcs
Prss
PHY/
PH3I,
4,174
Pt/
PlHg/

PL7/
PLe/
PLS/
PLY/
PL3/
pL2/
LY/
PLO/

117

e

H L H L H L H L
ENg Et D13 t ENY E7 ! EVZ NS Fé Fto EN2 L fy | G0
ey T N R = - N : =
ENZ | EY | E7 | [iné | F3 [E'S | |[eNic | G | FI3 ENY | 57 | GI3
EN3 |E6 Elo EN? | Fy | F9 ENII | G3 | FiS eNn's [69 | GIS
ENX/ O B dce H113
RoEs O— 2040 H
BADRIS o 4.
1 7
BWEH/ O 2® el <Y / > DATAIS
1t 6
_s:n % - <> DATA1Y
——{ps 5 - $ PATAIR
]
- A7 by < DATAJ2
!
A6 D3 < bATAI
: As p2p- > DATAI®
10
p AY b O DATA9
Al be hJ < DATAT
, “iaz
' t 7 A‘
<
+ Fa
i
}
|| |
t X
]
i : Ly
i L B 2
] 20 L
' ‘(1 CE
i ‘ |)
: T —qt
' ' . LI | I ' el t
BWEL/ o e —=dwe b7 | —0 DATA?
nttis O- j ’ e Y - O DATAC
[t
BALRY - d " —t AS bS5 'Z —O DATAS
BADRE O— —t Linvz pv B & DATAY
i 3 12
BADRY Lo s AC 1 <> DPATA3
1]
BANRE O l : AS w2 Q DATA2
BADAS O —t — w 2 o DATAI
b 4
BALN O 7 ' . A3 bo ~> DATAY
BADRE O A AL
BAPR? O :u
BADRl & A

H L H L |
Fo co | o~ Yy ta | o 1
it - Pors i
Pe cii 03 €9 DU D7
P3 | ci2 | pH P7 | D12 | D2
© 2147
PHX/ O de H
BWEH/ O 2dw
2
Al
13
Alg
| r
p A
1]
A3
(€
A7
17
26
[S
AS
s
A
u‘
A1
3
A2
2
Al
1
f<3 !
! h |7
PARINR & " 154 bo | Q PAROUTH
1
' i
: i
H i H
! ‘
BN 214
PLX, O . ey ‘ ~de l_7
BWEL/ O {i e et ; 'zzw
: .] 1
BADRIZ O o I s , Al
BADRY O Y ; : i "; A
‘ i : i 4
BADRI® O — : ¢ A7
¥ N 5.
BAMRG O ot " At
gADRE & S A7
BADR7 & p Aé
BADRE O— . AS
BADRS O— —{ Ay
BADRY O~ - Ay
BADRY O~ l;Al
BALFL < l',-u
BADRL O Ag ;
PARINL O- Lier po o PAROUTL

B3

B7

s74
2 tSv —t
L} o s |
BELK/ O— i;. a 1
PUPY O der !
]
— 'da
c8
‘sS4
12
1} D
geLk O~ » 8
'gdPR 13
| DS P
Cce
\ ‘seo X
F'—zc) A 2
cé
g Soo
nvvsy O 6
s| B p
MLoss &
) cé lo ,
13 L3520
9 B L
[171 39 o — cs
80E/ O
t ‘Ls2o
5 N 6
A)
8LbsS o~ " cs
‘so0
13 5|'
w| B

120

PUP)

pube
PUP3
purY

—< RODTACLK

SwWEN/

<> BwEL/

—0 bIN/

LOCAL BUS

Cl-SWITCH

CONTROL CONTROL
BUF FERS S BUFFERS
Y]
LOCAL > GLOBAL
BuUS X Bus
CONIROL CONTRoOL
Y -

ADDRESS > SHIFT
DECOBE ADDRESS
AND T UFF
BUFFER B EfS
DATA "I DATA
BUFFZRS V)
£ LATCH BUFFERS
A
| >l TINTERRUPT |
BUFFER
ONE
—»1 INTERKUPT |&-
BUFFER

TWO

GLOBAL BUS

12)

\ee

:\sn \sa \ss \s% \sr .Jg \ \S, \”' | +Sy

Lo -2 o 0o 0 -~ e e e e o et - -
oy T - —
1064 !
?. '
n A 1
s: !
‘| WV— lDS
VW '4.3kn
]
3
+) ' ! :
! 1 2
T T At N
B 11 M/_' |
! : : i ’ { : e = .
s : ,: 2\‘\ \‘?73 3
) H ‘ ,;Lf/'_—=\N
NABRIY/ O : ; ~/ 53¢ oml?
' cs it

NADRIT/ O—— !

MACRIZ?Z O : ' .
i :
{ !
!
IS
d .
MADRIC/ Qi]
: ™\
') . .
] N] . q o O teesd RO =0OUT | PSCL
13
q
D 1" °
ﬂhbli/ ¢ T4 i e ’Ls's
LS00
3f 2 a] s
c> ! A ‘ __A,
C
tsoe
! 1o
< BMAQRIS
< BHADR)7
—< EMADBRIS

~> INTRLEV

C3

<> BCADRZ3
[< Bcadr22
| > ETACR 2
12| 2¢s10
CADR/ O —E “A3
cPfrb2 o "2 .
Dl g2 b—o0 cadR2Y
cPIB! O i
s 7
Ed Bl —C cAdRiY/
CPID® O e
ERY wi—o CADR2/
l i
INTRLEY O
BRADRIE O
MADR/ O |
26S10 9) 1S 12] cs«oi
s Ep— s 6P e A
12 i i
T3 13 i
T3 9 15
tACk20/ O—— B3 . : 13 B3 p——=< CADRINY
.)
T2 n2
9 é i T q
MADRY, O—1 B2 : r—1 28 2l B L——O CABRIY/
, T . = 2 i 2 =1 .7
N . N 1
MHALRIY O— 1! ' ‘A [E 6‘3‘ B} fr—-—OCAbma/
Te :) I::u "fjd; '-i::’ |
nALRi7, o—L8a ; +~— fm,nc,y;% ‘ e N
; ! N I
e ‘ | l | ‘
. " L
BHADRI? O~ . o X
BMADRIC O N J
. ; !
26510 T [l- 15 12| 2eSi0
As & L?} b-s ¢ 2 13 A‘S
. I3 4B MY 17
1 L] 5
WALF 67 O—2] B3 . ik Y 21 B3 |——O cADRIY/
] [{-]
. 12 p— 38 3y ? " 12
o
MABR IS/ O—B2 22 '5 iin d ST ¥ 9o camisy
np flie 2 2 5ig
MADRIY/ Q—-’—?l f4] 9 I; A ‘—“;!l B! —7—-4 CADRIiY/
Ie 18 1Y ul "4t¢
MADRIZ, Oo—idBp 242 2, S5 ’-——-’ zo B0 {Z— cadRIy,
i
i

—O BRALAIY *

CADR/ O~
gMARI3 O C L'i
INTRLEV O~
RADR/ O- _1
2isto PR i, 1 T . - S
L7 £ —_— st —IE ars
. I3 :: ek gy = ‘q I3
] 1
L L [: 4A . —& 821 o cabrizs
12 il £ S 1z
q
MADRIL, O——1B2 22 ': ! L“_ 3A '; 21 B2o—— CADRI/
¢ 7
I 2 o
7 6 s
MAORI®/ O——yBl ZI . 7_”.2“ 4 [: 21 8i 0 CADRIOY
Ig 18 1y - I
2 3 Z H
MADRY, O——{8p 24 i : 1A ,Lg';r 3ie Beli—o cabry,
i i
]
1¢ste 2) 12 e
A3 E p—1 s ¢ b= — £ 2;?7
13 ¥d 3
. I3 - | —fus 4y :q I3
MAGRE/ O——p3 3| —T] 21 83l cases/
- M [i 1"
b 4 .+ i ! Lea 3y 4 T2
] 1o) P o Yy
MADR?/ O—BL 22 : +— 34 22 Baj—0 CADRI/
I z I ‘ [—‘!zs 2y z te o
t &
7 6 T s . L& 7
MADRG/) 12 ' ‘ '
O—— & I » i :,Ze !q} ——-T]Zl 8 > CADRG/
c :] I — Ie
2] ! t 3
MALRS/ O——183 Fop : e, G170 i —_ es Lo cabrsy
, | l i L5057i ; f '
| H
. 26510 12 ' | DEJ 12 St
; Lol
)) 13 L"ug Y ‘2 I3
| ! o
nAbRY, o—]p3 23 2 il YN , ": 23 1o cavrus
, 12 P Ll Y “lra
HADRY/ O—alB2 22 ‘: 2]3A , “l3t m2l—ocAvRY,
I Le. 'L BT A n
7 [s [3 7
MALR2, & 8 2! 1 I_; 2A y £ 8! p—=<OQ CADRLY/
4 ' 3 o
Ie ‘ 18 (M I»
HADRL, O—3dia 2412 : ia, 18 3las sefi—o caDRY/
} LSis7
{
O BMADR 2
-- <> BMADR2

~O BHABRL ¢

124

C5

=
w 5‘ O ISEL/
o7 1z
Pe 13
s 1L]
3y
9]
cPIDR? O - c n)
celioy & - e P2 ;
ceIoe . A TR ”
—dG bof— 1
COAT/ o = oo ARERE
LOAT, O—
MOAT/ -
1
cl 7 rI$70)
i(l.SloE 12 ‘ {)] E Cae
3= ‘3|ao co —I13
t ! R 14 5
is L 12t 15, CLATI
MCATIS/ O——{ B3 23 - - G3N 4D . p 7} B3 f—o s/
n ‘ 3e L } a’ ll fo u q
! '° 1 22 gLf—0 coATIV
MELATIH/ O——iBl 11‘———‘——} LU Ry B
npe i > 12q teopdl n
g] . ' ‘4} 7 L ! b T
MDATIZ/ o.._"‘g. z;:r ' g .oh ic,t,*z zb; - . 3 2\ B! —< CLATI?
— L3 1Q ioi0 i I
2 B | i 10—t . e 2l w0 coatizs
i * :
nbATIZ/ O—diR® 70 | ! ; : 15375 T ;
! ' :
i 0]
! ! ! ce L 1 2¢s10
2¢sio 12} ; ‘ £
Az h; 11 { V3 B“
e 1a 5 I "y I3 15
15 L] ~ V2 Bl bATI
MOATI/ O—B3 23 ; €314 4D +- " 23 B C 4
2 L ! 1] o " I2 T
- 1}
j ° 21 B2 O CBATI8/
—-———‘ 3D
MOATI®/ O———d B2 22 .
T 2 4 5 29 11
¢ kJ ! £ z 9
MOATY, Oom—miBl 21 61,2 2 T3 om0 ceaty
18 4 31ia IY
! 1 1 2
2 3 ‘ COAT®
MDATR/ o—-le_v::l———- ’Lsnsw 29 pe}l——C COAT®/

1es

126

Co

<> BCOAT?
> BCDATG
" O RCDATS
. o =.CATY
O BLDAT3
coAT/7 & < BCDAT2
LOAT/ O~ O BCDATY
neAT/ & - BCODATY
2¢sio it} 82 1 265le
gl E P s "—’_d E g0
nl ~{2a n
MDATPH/ Oo—f B 1 |5 I v R z L $lar g [—o conTPH/
1o ———1a R S
H Eo. .
MDAT?L/ O—— &g z0:=) 10 b L. —2120 89— CDATPL/
. i {375 | i
24510 12 — c3 ‘ ‘ r 2¢s10
€ Py . ! .__d
A3 s '3 I. : H 12 E Au
I3 .,: — 42 s I3 .
5 LI 2! 5 ! 4 .
MOAT?/ o—— 83 23— —Tizgy | 2fs! 423 83— COAT?/
a2 b U I B
. P 1o 9 v . to 1
MDATE/ O—— b2 22 f—i— s 30 d——s o17¢ B0 coATe
T 2Q S
[4 H ~ .
MUATS) O—d1 24 oty | —ice 2o ‘ ‘Jzt 81 Z— CoATS/
- Lo . Y
12 ——t—ta g ! TS
2 3 ' ' ! [2
MDATYH/ O——i1® 2o by p L _ Lii, e w <> COATH/
D L5375 o
. Coh
1 N
| SRk
b B
‘ ;
%sio 12 cH 2 26510
AY € V3 13 ‘ '3 ¢ Az
15 Ia W 1t i 1} 3 L] Iz 15
MOATY/ O———iB3 21 G3H 4y . 23 33 p——< CDAT3/
12 |- “13a 12
L] [o
MOMZ, o— B2 72 '; s L ;_ 22 82 o coatas
I) —2a , T
o 7
MDATI, o—Timr 71 o ez 20 “lar g1 F—o coATIZ
v "
. 18} ia 12 .
NnOAT@/ Oo—4Bs 0 : 1 ' + 3lza o —< cDATO/
‘L$378

(114 &
| strs] is| ©)
—4° on | 2¢ yap MINT7/
i [}
BMDKZSO——:ZD ' . . e pyapl MINTG/
e da = —fes < e v pE MINTS/
BIALRI2 O Taip 1, L ~ =2 AN LY A S)
e R H ! t -
Loming! \,-——»;-\., I : LVT p——— MiINT 8y
.)
61,2 1 ” - %o MINT2/
A3 b9 MINTS/
BHADR O 2 a2
BhAR2 O i
to
AR O Mo
BAS O 2lom
5 = GVT
4585
£5 L : —O BCINTI/
LANS2 | -
- 5‘3) EH
Lsol WS\7§ (E3 2 R <
I Q O VIINT
A~ E& -
€s ap— 1% 1sios
m cL W A =|7
BIATK O A ' — C'/ « 9
; ; -
hRsT/ ~ O l
- > | ENVEC/
E LIO—_ ' ;
1 > np—
;k— - ‘m N ;’;2—3
’ - Vg ~16 H
BLLAT7 < ! > : b wg s : ~ VECouT?
BCLATC O ‘ Ijza ic : > VECouTE
20 b
BCLATS O , {2t 24 <Q YECOVT S
! e 3 !
BCOATH O . {0 2 + —O YECOVUTY
7 cL 1g
' DIS 5173
IseL/s o—a B 6
CINT\/ O—29 o] cnl |,
‘ts32 9 :c,z M, 2
961 ND
i <
BCOLAT] & ” 4 4a. — O VEcouT3
BCPATZ O '; 30 :a .4 ! —Q VECOVT2
BCOATI O~ » 10 29 —~ Q vitouT|
-, 3
ECDAT® O~ 10 lofg < Viloutg
BCiR, & Ll 4
73

PUPF O
18375
40 og MINT7?/
BCADR33 O] 30 MINT6/
2 G314 %F—;' L lg3 <2 MINTS/
k4 i 3 4
SCADRIL O Y % 2 > UL o) M 1N
BCAGRLI O— H it & i : MINTI/
q
6Ll 1Q go MINTZ/
15
a3 Do MINTI/
i3
BHADRY O Al
2
EMADRZ O ad Y
10
BHADR! & Ao
EAS < 3 =N
6
TouT
OL'/LSSS
£s -5 RCINTZ/
3[\(;4
18- W], E¥
‘LSo4
15175€3 wi_ PR 1o
J Q <{ V2INT
£s 8 sle, = Lofg e
S pa ct £)c_.:‘ 2 I e a M
o] s <
BLACK 0———-——?& \ I — A
/1500 kS
‘Slo ‘
HMRST/ &~
—O 2ENVEC/
[le} CIZ i
d o2 b
3 2
Gi N —————q
BCDAT7 O~ L BTNy o vecoury
i 22
BCDATC O iy 30 —& VECouTG
i3 “

BCOATS & e 2q — VECOUTS
BCPATY O i ta 3 ¢ VECOUTY
7 s

cL
9 bis 13173
TsEL/ 0"""-"6 c ?
CINT2/ O———"od 10 | GzClz '
- o
3
’ Ls32 Sdei N b2
BCOATI O— LI YN S VECOUT3
BDATZ O 21 zq s & VECoUTZ
BCOATL & Dlie 2apt —{> VecouTy
BCOATE & 1 id re] 2 Q) Vecouras
7
BCLR/ O— S
15173

c9

Vs
S0
DPTALKY, O — 1o
by
OTACE2, O - ‘_M SMBTALK
' Sce 9 S
LENVEC /7 O - D Il ES
2ENYEL/ O w2 [z2¢sio]
E7 13 83 15
VECOVT 7 O It 3 3 < MDAT?/
1
VECLOUTE O— 's 1T ep- O MPAT &/
VECOUTS O " n -1 . 2 WNDATS/
VECOUTY OO To Bo <O MDAT 4/
6510
2 de 2 E"f
13 s
VECOUT3 O— I3 B3 . -0 MOAT3/
n
VECOUT 2 &~ = 12 B2 <O NDAT2/
VECouTI & I $: < MOATI/
VecouTg O 1 110 go |2 < NOATE/
PUP O
TTLDL-25
. 537
zSnm-?— $37 'S
LSy 6 ' ¢
2ome o N 2 s —a)——-o [(A€ 3
[} 2) N
MRy {>¢; IN 15 mee fo -=2 2y A S
{0 n3ee ‘_‘l_./ s F o
B9 " ’ Flo
Snacc "'-""/ 0 Bcirx/
F9
BAS Lo - +5v
sSo
z
. o 2lp copl O dRop
qll C {-3
BRESET & ES 3 T
500 —q Lb
CTARE O~ 2 1 ?.>
BRD O— Ll A — gL Fi2
F? sies
Ls27 51
"
FI3 - ‘Lsog
. oo} "
seLy oO—4¢ 10 Ls27 d 13
—— \ 8 ? - 16 12 D
gOS/ Q_._'____q” c / K a
£13 P13
‘sz FN

129

ClO

SoM
CRLRR O— ! EZ;c ‘
) Fid y
s3e (3 ¢¢s o
i—dE gs
DROP & \ n 9
| VA 12 Bl fp———
SHUDTACK O— al ey b2
SNBACK O~ FiS ¢lq
ShBREQ O i
26Si0
2 13 <
nll'—;q E I3 wr—g-—-!h
nspgas O—— B T <
Jc ; —
hcAgn/o———-j_ B0 2o
12 ! M
9 10
MITACK/, O——{B2 22 <
niacks o— 0 lgy 23}
2 2¢sto
86 W—de " g5
13, 15
BCcgREQ O~ - I3 83-;——0
tetck O s 12 82 p—o0
o
I g s <2 PYS'Y ———47
=—
£E7 ' 508 q 2
2 A =~ 3 70
L
E7
LDAT & <
PIACK), @ <
Vo
12 26510
nsTes O——QqE g7 |, 26512
L LY tlee 10 ’ca BIG
teo qet
15 13 13
nuoss O— 83 13 , " 23 s
Y]
v 21 o 13 83 p————
Hioss O— 81 T2 :; —u 2
» 7t : : 12 82 p——
NAy, & s e 21 "
2‘ y; b4} e“___o
. soo
2| A H <

Fs

HMBERR/
NRESET/

SRESET
BMBACK
BMDIALK

BIACK

Bk

cerRe@s
CRACKs

COTA<k/

CRO/

BAS
8ibs
guos

Cvos/

CLOss

CAs/

pTACKL/

130

w

Ctl

/11s O—

/4004992 O y—— /NI1398D
hLs, 20S,
8 & wpy : v z
3
9 q " LE < /wvId
2 02¢ ||._||.IO A T4Y
] o - "/
034829 O +1° P P _,w_ —0 1154
TE) 8 = O sva
INVLD Qe - 53
NIVRIY O -
wavo hid g !
1 i {0 - G0Hd
NV O—— - V.L.:
/NMIvia & - -4 -0 /418
— bRl]
9 ‘ 0 dnd
Tils, _2 S, | h eils, Ho. T, HM 2o0s1,
T ¥d " W4
m. N
/J4von ") 9 P 3 v »A 3 Z1° A P
8 A <t v T. " A Y}
w}
ival Y v £ " 5 © "9 o £ é o 1 < "
- 5
$11 b hosT, A K | Au..i 213 !
A
hs ¢ ros,
- o]
1
/%99 O— o L T DN sa18
Qo0S, $3
- Sang
/4¥a) - q |+~
)
' 5 L <> /9%

132

<O /NI
092¢
NOVAWEY
h/((VY
P O WHVIQUS
hiq
. 0380US O~
- w1748
. _ — 4nd
ht, h TS, Mb. .
‘.w
/7043y =9 7) x1|1_: hts1,
T) LI em ..OAMIQ /043>
. " a ? s o s £ 1" 8
TRERE ol3 [m
WVBUS O—— - — /1588
O /9%>
/4w l_r L < /3OVIH
2’ 13494
. 005,
gos1, ’ quug
? -
74VaH O v [0 P 2 L —0 /DIY8H
¢) o v -Q 1zNIVHA
43 ol
hi3 w - -0 21H¥AVHE
oJ or%. i -0 £2vavud
<
vV = WV
\lC ’ \“ 585, @8 -0 ©a414d
513 9 m -0 1192
[4 19) - 414D
> £4 \
8Q

O and

COAT3/
TLAYL/
COAT s

COATD/
CDAT?/
CDATC”

ChATS/
COLATY/
CLATII/
COAT O/
<OATY,

cbmegs

ctAT I3/
COATIZ/

cubs/
CuLbss
CAS/
CRD/
CBACK/
CBREQ/
CoTACK,
csrQrs
CIN12/
CINT/
COAT =/
COATIY,
COATPH/
COATPL/

Cl3

3lEEl6[261

o 5
o o z
o .
¢ 12
—
&
o a Bi12
¢ 7

¢
‘: ;
o y
o— 3
& Py
C 1

316EI612¢4]

o I5
o i
< 2
- 12
; 11
c‘ lo
o] £:3
c 7
o :
<
o N
o -
° ;
log

CAtR 137

CADRZY

CAdR2l/
CBERR/

CADR20O/
CADRIY/
CADRIR/
CADRI7/
CADRIC/
CALRIS/
CAbRIY/
CADRIZ/

CADRI2/
CAURN/
CALFRIO/
chtey/
CACRE/
CADRY/
ZADRG/
CALRSY
CALRS/
CADR3/
CALRL/
CADRV/

3ICET61 24!
& 3
o 12
>]
I =
o e 817
& 7
o [3
o> s
]
&
3
2)
O]
3i6ElI6l 2610
13
¢ B
° y
- 1o
o
o 9 g2
o .
&
o 5
%]
c -
> 3
o :
¢]
=== _101
45v puP
: = Pur2
e o - am
D3

4,3k

133

GLOBAL BVUS

DI - IMOD

“€——3>{ CONTROL

APDRESS
— WINDOW
bEcoODE

A DORESS

BUFFER

TIMING

B

PATA

BUFFERS

INTERRVPT

GENERATORS

e

VECTOR
AND
MASK
REGISTERS

EXTERNAL
DEVICE

3

138

—.--»—.-—--1

\s? \or \s0 ‘Yn\su \su.zc“

w— ! D|6
o 4.3k

CINH/ O 2

I S|
CADRIQ/ O— 5
(4 4 O~

O WEN

L1 P ‘sgs
i Alé

>
Al

CADRIY/ O — 83
A2

CADRI7/ Qe g2
At

CADRIC/ O Bt p
AG =ovT Q WSELO

CADRIS/ O ko

hmnd = Y04 15‘5

<w A("
>IN

Ay

CALRIY/ O B3
A2

CADRIZ/ O B2
Al

CADRIZ/ O B!
A® =ouT ¢ Q WSELI

CADRY /O g

‘.._.,+ \1_[T 1 D3
‘ Co
1 \9\ \sz\sa \ch cis
]]
l— _ _ 5 - . —_—— o —
\ 2 ? 4 l'l.
VAYAS g *Sv
12, .
13 , DX
Iill i ‘-{3\‘“
: '
WEN O L3 PO ‘sg§
PUP O T lam AlY
1 ?IN
| 53
' A3
CADRIG/ O— 83
13 A2
T
CADRI/ © 2 82
1
Al
CADRR/ O . [}
to
. A2 <SouT
CADRY/ O— ge
‘LsoM
- n £ 19
WSELS Qe ; Is“ 'L | -0 ICLKE
slo
1 s) ' i
wsELl O—m———— 1] 21 A 2 ICixov
‘——JBW . °
‘Lot E?
' 'A\sz ,L$"
:/, 13 12
Bl oA < WREN
CADR
¢ o= c9
’ 'Ls”
) LSH‘. c . ‘su
CAS/ O- b& — 8 :, c \ ¢
11}
gn - cq ___/
RO, O Bi7
‘LsiM
" 10
E
Bl P
purs Q M >t
1o
T,
- q (o dovvr/

09

\36

137

D L{ 2 2:‘51“11 f O BovTeHZ
povT/ & de o < bOUTPL/
COAT M/ © ST = - ——Q DINPH
COATPL/ ©O— ‘ tles 2l > DINPL

2 2;3"13 :? & bouris/
+—d4E 12 . < Dovriyy
In -0 bovTniy/
sl o Dovrias
CDATIS/ O 83 23 QO bINIS
COATIH/ © : B 22 f— O DINIY
COATIS/ < a T 3 Q DINIZ
CbATI2/ ©- 8o 2o ~Q DINI2
12 2:\2”13 ::' - douTil/
r—dgqgE 12 <Q DovTigys
n Q Dovry/
8 b :’ O douTg/
COATII/ O | SR & 1 - DINYI
CDATIo/ ©- 2 B2 22 2 < DINID
COATY, & L8 FYRRY ¢ O DINY
COATY/ & 2lgs 20l O DINB
\
\ 2€Sii 13
i2 AW I3 v < pouTy/
$——qgE T2 —< bouTers
I J Q DouTsr
5 Io :' -—Q bouTy/
CbAT?/ < 81 23 Q DIN?
CDATE/ < 2 B2 22 2 - bING
COATS/ © YRR 1] -0 DINS
CoATY/ © 2les 2o} O dINY
2651 13
2 | A 13 - < Dovily
L— de 2 - © bovra/
I © bovtiy
1o | o Poutas
15 L]
COATI/ € 83 21 O biNg
COAT2/ O LA PPy L O bIN2
COATI/ © z B < QO DIN |
COATB/ O the 22 O DING

SELX/
WLEN/
BADRY
BADR3
BADRZ
BADRI

PINPL

DINZ
DING
DINS
DINY

DINZ
DiN2
bINY
DING

D5

SELG |SEL)
LA O [y
L8 v <l
o 2], s LP e |Ele
Le
O 34w
13
O~ A3
o L A2
s
O~ A
& #o
Y 5
s pI1 o P —< DOUTPL/
? ‘S187
95 s
qw
ik WY
T
A2
'S
Al
R PP
! 12 n
& - + bIY Do D, —& bovtyy
! : 1]
o ' i ipI3 de3p —O Doutes
< -+ ' : pI2 DOL cz_ <O bovTrsy
< oIy Dot p- < bovTy/
2 ‘5139
9% LA
L 3.
13
A3
C]
Al
s
Al
'
Ao
2R i
o— —{o1t sep " <O bouts/
& p P13 De3 - <© bovt2/
7
< m P2 pozcs_ -Q bovTiy
o= on oy p- Q bovres

138

SELX/
WHEN/
BADRY
BADR3
BADRL
BADR}

DINPH

DINIS
DIty
DiNi3
OINI2

BiINI|
SINtg
DING
DINg

D6

SEL® | SELI
HA D12 ci2
Be D!, <1
& “ E17 1
10 5 5‘1:; HPpP EVS
o- 2w
O Blas
o a2
o L1
o i Py
I1
< Py bo) bg ~Q DOVTPH/
2 ‘5189
=4
ic W
13 1Az
L] A2
L2 Iy
!
2 Ao n
O— ‘ DTy Dc‘v!‘"“q <Q bovnis/
& ‘ —<Q DovT v/
<& : <Q bounsgy
& . —Q bovTiy
2 ’s159
T_—_.
3 HA
= w
13
2
- :z
T4
' Al
As
121 . n
< ' ory boy p QO Dovtiy
o
<& 7 b1z bo3 &z < DovTips
& 4 812 bee D—; -Q boJt¥/
O bI) 0O P O bovrsy

V39

4o

D7

q .
1 YA 4y - > BADRY
oy o fia 3y L : © BADRY
D - 1 |2 O BADRZ
1A 2y
— LN PP O BADRI
CABRY/ O :
ITRANA © —~ G s
1
¢ 1336 :
'.--—--l
INTV Ot . ,
. L] l
'Q] . 9
Gl
TIAY/ 0—1—{>c —
| 1) 61
! 15 ¢
s 6 ! - bco Qv .
TNy 0TS o asf
' 1 12 3 QT :
3 4 13 b2 o
IIA2/ O— @ﬁ i]
I - ! 2 N
1] A 2 ————-‘—c
ik Ot tdm
| 7 A%
: ! ’ LsiT3
SELV/ O
L 2 . < ICLRI
CLky O E
! ' sy
[| Ag 7 .-____
—_—
gLk oO— —
——d
2
N
SELS/ O “ah o ‘
|
DIN3 o= S S, .
biN2 e s m
17 o
NI Mlge o |2
DING O -
cL
9
G 15
IR®s O ") [}
_J"""" & L5173
€512
Tde2 2 Alo
ITRANAZ & 7 i
TTRANRZ O p . 9 o cany
I
12 CINT/
"l e o

D3

;?

<> ISELS
1S74
INT®
({7 4] o
ICLk® O—
o] S7y4 INT®/
P
Q
12 b Q
- D> 8 cLgs
a 1 4
13] D9 INT)
Pup O
It ¢ _
“Lsoo Q p———=>0 INTV/
9 ‘Lsog
[4 L] Cé6
D ELD - o
- c7
b7
BCLKk/ e (317
13
— 12
_E _Lq A
i El2
il 3 Sozl 9] ‘si7s
’, 9 7 2‘0 A Cio
sok4 —> B Qq b - DA R
CBACK/ Ot ¢ C|°5 r (1) Q O CBGRoUT/
‘S\7
AY o ‘Ls27 7
6
*d &
o Ei2 © ITRANA
o ‘sog -0 ITAANA/
cLi/
V7 4 'l .
[4 %
PUPI o— de Mo | = “ofdaT T oIl o trRaws
s ,502 3 > A 3 > c a n [+
INTE o - 4y {2 b Sy C’m 9 Ic\o EL—OITRAM/
INTI O b9 S\7§ SVI5
[}

DY

142

ISELg O 2 1 =
3
' A ! "
ITRANA O 2l D M- < SELO/
EN j J
sco
‘soo | 9 2 Eh .
CADRS, O R é 1 C <> SELY/
"
NA/ O——rmrmeny
ITRANA] EN EN
tup2 o !
| 300 "l) -
QY] T VP S— 3 2 PRRAN K iy
2] A ° Q 4
ciess O 2 \
) Q
cL CL
.T nT
" ‘Lsoc ‘Lso ‘Lsoy 7
. P 2 i 4
ay ¢ - A Jbo_ !
3 L Ls20
c7 E7 E9 >
- A ‘
, Z WHEN/
Loy .
q $ o
- Y
Ea . ‘Ls20
_ 1S 8
s {> o \ B WLE"/
13
‘Ltsoq4 Y E9 Eto
WREN O
vece Qe
t
TTLDL-25 @ Kk
,
7
, annv-a—-\ \ ‘s37 L 53
6
s LS""‘ ! Zom [s A - 4}-——0 peve
cLK/ c IN 150, 10 _: X 2 ’
> o
3t L Blo a
2 o,
’M“‘-—-

89

D10

H 4

Isas o

143

Qo CATR2YV/

6 s] t1
] IR]) R
] : |
t \%i3 \51t \S1S \ S \5.7 \S:3: C47
P\ i\ e s
vl L 3L ..
-
q 1] n w2l 3 U] |
LY YA ’sv
'S '
M !
J Aﬁ'
7 ! 7
q M ‘D!
- v\ I"'.3K-“-
3
X vW—"
2 ‘Lsis8
. 1A (L]
2A
LN P
3 4 4
1} iy D—_—S—‘IO go
é 28 2Y D.’———-—--‘j[‘. B
2 3 5Y DZ_'..__‘_I..‘:;. §2
'1ser
15 o ¥A € B18
° 15 2¢s10

)

TTRANAY, O

O CAtRIL/

O CALL3/

DH _ 144

31 E1cl2¢] 316 E161241
CRB/ & :’ CAbRZ20, O ::
CADRE/ & ‘ o —
CAs/ < i CADRY, & =
cromil/ O n CADRS/ © 2
caoRiz/ O i CADRYsr O— 2
CAORU/ O = CADRI®, & =
COAT3/ o ! CADRII/ & L
CbATQ!Y & L cAPrIZZ, & 7
COATI®/ & : CABRIZ/ O ¢
COATII/, o 3 CADRI4Z & 2
CoATiz/ & - CADRIS, O 2
COATIZ, O z CADRIEr & :
oAty O— cabmiyy O
coaTIs? O oo CADRIB/ O— — IS
316ELG1 260 3l6Et161261
5 d
CINKYZ <
CBACK, O . CALRS/ & -
CADRIV O 3 COTACK, O 2
2 CsrQrz O <
cintes o I CBREQ/ © .
CINTI/ o} 2 CoAlpLsr & d
coartes < ? CeATPH/, O :
CoATI, O ? CEERR/ O
CbATZ/ © s cvbss o 2
COATI/ o i CLOs/ 1% j
c,b,nq/. O - CADRI/ Lo :
COATS/ o ; CADR2/ < "
COATCr Lo CADR3s Lo
coarzs O— - B3 CADRM, & - Bw

[il

2
: PURL
- - i

En3
4.3k

148

El

SYOSS300Ud 40 ¥IBANN

-
o

S3S5NA@ VE0TO OML HUM 3ONVWHOINId WILSAS ¢

3ONVINN0J¥3d INITVAIND3

(12}

* S¥OSS300ud 40 ¥3ENNN
L] 9 ¥ [4

¥ T R T LJ L L T

-
-
[+]

SNG V01D 3NO HUM 3ONVIWNON3d NWAISAS T

IJONVWYO 3D IN3TVANO3

146

SH0SS300¥d 40 YIBAHNN

0

0

1 &Y

90

$355N8 TVEO1D OML HUM ALNIBVBOYd 1S3N03 O
SY0SS300Ud 4O YIEBNNN

EC

o

90

NOlLVZiILN Sn8g

80

[}

S3SSNA TVB01D OML HUM NOILYZIULN SN8 T

ALIBVBO¥d 1S3ND3Y

SHOSS300¥d 40 M3IBNNN

90 "o To

80

o't

SN VEOTO 3NO HLM ALIIBVEOY¥d 1SIN03Y G

SY0SS300¥d 40 Y3IENNN
ol 8 9 4 z

90 o Zo

NOlLVZITiLNn Sn8

-}

n d
t + t . -

SN8 VE01O 3NO HUM NOlvZNIN sng €

ALNIBvEONd 1S3N03Y

147

QY07 ANRNG 4O ALITBVEOYd LOMTINGD
o0 90 vo zo 0

002 0G4
NOIYOY¥O30 3ONYNHO4M3d INIDNId

2 1 1
00y (5% Y

J
QvOl ANNNG HUM ONIL3dNOD NOUYaVY¥93a €1 O |

GvO71 ANNNG 4O ALIUBYBOYd LOININOD
90 90 ¥'0 o 0

E3

1
oy [+)

o9
NOILVOV030 3ONVNHOJH3d IN3D¥3d

A 1 i
4}

-

091

AVOT ANNNG HLM ONILIJMOD NOWVOVYO3a 11 R

001

ooz
NOLVOVYO30 3ONVAHOIN3d IN3DN3d .

OvO1 ANANG HUM SNIL3INOD NOILYaVE93ad 21 mV

Qv01 ANNNG 40 ALTIBYEOHd LOINOD
80 90 ¥o 0 0

0

Il
s

o1
NOLLYQVO3d JONVNNOJN3d INIJ¥3d

113

- -

ot

QYO ANNNG HUM ONUIAMNOD NOUVOYS030 01 /.

143

EH

avo1 AWANG 40 ALNIBYE0dd LOITINOD
8’0 90 ¥0 co

I 1 | 1 | 1

aQv01l ANANG HLIM ONILIdWNOD NOILVavy93a +1

002

NOILVAvHO3d 3ONVAN04Y3d IN3O¥3d

oov

008

147

ES

Qv01 WVOOY¥d LN3IN3IYNSVIN
24y 910 14X 20'0 ¥0°0

&

o0

L Y3BANN HOSS3IO0Ud NO NOILVAVYO3Q IONVNYHOL¥Id

QvO1 WvaO0dd IN3W3UNSYIN
0z’o 91°0 4X:) 800 ¥0'0

1 T v T LI \ 1 T 1 o o

o -

0 Y3IBANN HYOSSIO0¥d NO NOLYAVHO3A IONYWYNOIN3J

€
NOLLVAVHO3Qd 3ONVNYO04H¥3Id IN3J¥3d

Vo I o

S

s0

[N}
NOILVAVHI3Q 3ONVYNYOSH3d IN3IJ¥3d

()4 1

L X4

o

0 ¥3BANN YOSSIJ0Ud NO QVOT INILIINOD
(V4] (1Y) Lo 900 ¥0'0

 § 1

L H3IEANN ¥OSS3I00Ud NO NOLYAvHO3Q IONVANOIM3d

I YIBANN YOSSIO0Ud NO GVOT ONILIdNOD
oz'0 91°0 11X 800 0’0

I LS -V L L 1

) 7N

> - . -
]

- €

0

)

3
z

L4

0 ¥3ANNN J0SS3IO0Ud NO NOLYOVHO3T 3ONVWRO3d

T~ NOUVAVO3IA 3ONVINNOAN3d IN3DM3d

QU NOUYOVO3a 3ONVRNOJM3d IN3O¥3d

150

EG

ALII8YB0dd LOIN4NOD

8'0 90 ¥'0 ALY o
| D— 0o -o [o] !) ‘ - ovll\l..w.‘vl.lll‘,‘ﬂru.:.“:\‘.. |.|.Illrll.pu_ o
A
A -
A
!,
A
41 43
o
/N -
AN
F-N
10
o
£
[+
..A o
o

¥
ALNIBVEOYd LJIM4ANOD 40 NOILONNY V SV NOILVavyo3d 9|

NOILVAVYO3I0 IONVNNO4¥3d LN3Jd3d

15t

"E7

0t

SYO0SS3IO0Ud 40 dIGANNN
8 9 L4

o

T T ® T | !

* <o D¢

+
Qv01 NI 1SOT JONVAHO048Id WON4 ¥OHY3

Ll

1’'0—-

1’0
OlLvd

¢o

€0

\52

ES

ALNIBvEOYd 1S3N03Y
90 90 0 z0 0

0

002

009

£7 304 NOILYAYHO3A Q3LVINKNIS ONV Q3LVINOTYO

00y
I NOWIVYCYHO3A 3ONVNN04NId INIDN3d

— 008

ALINiBvBO¥d 1S3N03Y
90 9'0 ¥0 z0 0

0

oy

ozt o8
NOLVOVHEO3a 3ONVNNO0IE3d INION3d

09t

17 %04 NOILYOVNO3Q G3LVINAIS ONY QUVINOTVD |
[.

Iy

ALTIBYBOYd 1S3N03Y
80 90 ¥0 zo 0

oS

[+ + 1}

00z

05z 1)
NOLYOV4O3Q 3ONYNHO4HId IN3DM3d

21 404 NOILVOVNO3Q GILVINWIS ONY QIVINOYD O 2

ALNIgvaoYd 1S3ND3y
90 90 ¥0 T0 0

0

St

oL
NOLVOVO30 3ONVNN0JU3d INIJH3d

-

oz

e N .

01 404 NOUYOVHO3Q QILVINNIS GNY QINVINJTVY Q|

153

Fl e T, -

' 3 lwbis]ie
+Sv 2 A QA = ‘ 1
1 8 13 8¢
11 i it
ge¢ —
2 Ykn
5 .
' . r - I ‘L5388 o
34: c <5
13
> ®n 7 go
I
el
cy W
n B2
" 83
t
’ A‘
LSicy
. 13 a2
VA Ga 5 R
e B 15 A3
+Svy 2 ASBIN
3 i asem Ach
3 Az=gN
1o
Qe
Q‘CL @ t
:\.’ ¥ 12 ‘Ls86
Q‘]
-——)7. 3
ce
CBGRIN/ O Py ‘532 A3
2 I
12 o s 9 B A ’cs O CBGROVTY
13
—Q CL .
P g
, S37 \ llo PR 3 " .
\ - |8
2! A b Q 24
| SR , Q2 A'
A2 Be s
TTLDL2S
s
25 P
sty 6 "\ 2¢s10
2 “dr2 g CBACK/
LY -—.————.——Q
ceLk/) GRS VRS [N 3 "
o 14 i = I3 83 p————-—-O C8REG/
As 12,7 £
U I AS

PAGE 154

APPENDIX F2

Dummy Load Circuit Description

The Dummy Load circuit pictured on the previous page is placed on a
global bus to simulate various levels of bus traffic. The operation of
the circuit will be described here briefly.

Gate A of chip A6 receives the system clock from the global bus and
chip A4 synchronizes it with all other system modules. Gate A of chip A2
then distributes the clock throughout the dummy load beard.

Bus driver A5 asserts the global bus signals used in bus arbitration.
An internal bus request is latc_ed by flip-flop B2, which generates a bus
request signal sent to the driver. The A gates in chips Al and A3 control
the global bus daisy-chain, asserting control when a request is granted.

§hift registers C3 and C4 are used, along with gate A of chip C2, as a
fifteen bit pseudo-random number generator. Four arbitrary bits in the
register are used to create a four bit random number sent to the A input of
comparator C5. The pattern of four bit random numbers does not repeat
often enough to synchronize significantly with the test programs. The B
input to the comparator is generated by switches so that the probability
of the comparator output being asserted during a given clock cycle can be
varied from zero to 15/16 in increments of 1/16. This comparator output
is used to trigger independent random bus requests through the flip-flop

in chip B2.

10.

11.

12.

PAGE 155
References

Childs, R.E., "Multiple Microprocessor Systems: Goals, Limitations,
and Alternatives,” Exploding Technology, Responsible Growth-
Digest of Papers- COMPCON Spring 1979, San Francisco, Calif.,

Mar. 1979, pp.94-97.

Wulf, W. A. and C. G. Bell, "C.mmp- & Multi-mini- processor,"
AFIPS Conf. Proc., Vol. 41, 1972 FJcC, pp.765-777.

Hearst, F.E. et al., "A New Minicomputer/Multiprocessor

for the ARPA Network," AFIPS Conf. Proc., Vol. 42, 1973, pp.529-537.
Jensen, Douglas E., "A Distributed Function Computer for

Real-Time Control, "Conference Proc. 2nd Ann. Symp. Computer
Architecture, 1975, pp.176-182.

Baum, A. and D. Senzig, "Hardware Considerations in a Microcomputer
Multiprocessing System," Computer Technology to Reach the People-
Digest of Papers- COMPCON Spring 75, San Francisco, Calif.,

Feb. 1975, pp.27-30.

Widdoes, L.C., "The Minerva Multi-Microprocessor," Conference
Proc. 3rd Ann. Symp. Computer Architecture, Clearwater, Fla.,
Jan. 1976, pp.34-39.

Swan, R. J. et al., "Cm*- A Modular, Multi-microprocessor,"
AFIPS Conf. Proc., 1977, pp.637-655.

Pollard, L.H., "Multiprocessing with the TI9900," Conference
Record- 11th Asilomar Conf. circuits, Systems and Computers,
Pacific Grove, Calif., Nov. 1977, pp.461-465.

Maekawa, Mamoru et al., "Experimental Polyprocessor System
(EPOS)- Architecture," Conference Proc. 6th Ann. Symp. Computer
Architecture, 1979, pp.188-195.

Davidson, Edward S., "A Multiple Stream Microprocessor Prototype
System: AMP-1," Conference Proc. 7th Ann. Symp. Computer
Architecture, 1980, pp.9-16.

Tobias, Jeffrey M., "A Single User Multiprocessor Incorporating
Processor Manipulation Facilities," Conference Proc. 7th Ann. Symp.
Computer Architecture, 1980, pp.131-138.

"Introduction to the iAPX432 Architecture,” Intel Corp., 1981.

e i

13.

14.

15.

16.

17.

PAGE 156

"MC68000 Microprocessor Users Manual," Motorola Corp., 1980.

Bain, W. L. et al., "Performance Analysis of High-Speed Digital
Buses for Multiprocessing Systems," Conference Proc. 8th Ann. Symp.
Computer Architecture, 1981, pp.107-133.

Hoogendoorn, C. H., "Reduction of Memory Interference in
Multiprocessor Systems,” Conference Proc. 4th Ann. Symp.
Computer Architecture, 1977, pp.179-183.

Bhandarkar, D.P., "Analysis of Memorv Interference in
Multiprocessors," IEEE Trans. on Computers, C-24, 9, Sept.,
1975, pp.897-908.

Sastry, K. V. and Kain, R. Y., "On the Performance of
Certain Multiprocessor Computer Organizations," IEEE Trans.
on Computers, C-24, 11, November 1975, pp-1066-1074.

