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SUMMARY

The purpose of this thesis is to expand the Coleman Theory
of Ground Resonance (ref, 1) to include the effect of coupling be-
tween translational and rotational motion of the helicopter body.
This coupling occurs if the elastic center of the tires does not
coincide with the rotor axis. The characteristic equation for a
helicopter with a three-bladed rotor is derived, A typical charac-
teristic equation for no damping is plotted. It shows that, for a
helicopter dynamically similar to the one investigated, the self-ex-
cited unstable range is definitely increased by this coupling, and
the number of shgft critical speeds is increased to three. A cri-
terion for dynamic similarity is established, based upon the charac-
teristic equation, Lack of time prevented carrying through the in-

vestigation to include the effect of blade and body damping.

The result of a series of runs by Mr. F. C. Loesch on a
model helicopter is also included. Apparently, the equipment was
not sensitive enough to determine accurately the effect of coupling
on the self-excited instability range. However, the results defin-
itely show that for a particular value of body damping coefficient,
coupling increased considerably the blade damping coefficient neces-
sary to eliminate entirely the self-excited unstable range., There-
fore, it is desirable to reduce any coupling between the translation-
al and rotational motion of the helicopter body to a minimum, As no
test runs were made at zero damping coefficient, it was not possible

to check the theoretical calculation.



I, INTRODUCTION

A rotary wing aircraft may, under certain conditions, be
sub jected to violent vibrations while warming up on the groumnd.

The term ground resonance is loosely applied to these vibrations,

which obtain their energy from the rotational energy of the rotor.
These vibrations are of two different types. The first type is

similar to the vibration of a rotating shaft with flexible mount-
ing. Any slight unbalance in the shaft will cause a violent vib-
ration when the rotational frequency is equal to the natural fre-
quency of the mounting, A similar situation occurs in a helicop-
ter when the rotational frequency of the rotor is approximately

equal to one of the natural frequencies of the body on the ground,

These are known as Shaft Critical or Even Frequency Vibrations.

The second type is due to a coupling between motions of the blades
in the rotational plane and motions of the body on its flexible
support (tires and shock absorbers). Rotor blades with lag hinges
(hinges which permit freedom of the blade in the rotational plane)
are especially susceptible to this type of vibration. Blades
fixed at the root but with excessive chordwise flexibility are
also susceptible., If, for any reason, a rotor blade starts to os-
cillate in the rotational plane, the resulting periodic inertia
forces and moments cause periodic shears and moments at the hub.
These are transmitted to the body of the helicopter. At certain
rotor speeds the frequency of these periodic forces may be in re-
sonance with one of the natural frequencies of the airplane on the
ground. This will cause the airplene body to begin to oscillate,

ceusing an increase in the amplitude of oscillation of the blades.
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The resulting instability is known as Self-Excited or Odd Frequency

Oscillation. Either of these types of instability may cause the

destruction of the helicopter before it even leaves the ground.

The basic theory of ground resonance has been developed by
Coleman and Feingold (refs, 1 and 2). They have treated the pheno-
menon from purely dynamic considerations. Since their theory is
able to predict, qualitatively at least, both types of instability,
this appears to be justified, Bemnett (ref. 3) has indicated, how=
ever, that if an«g hinge is used, it is probably necessary to in-
clude the aerodynamic effects. The Coleman and Feingold theory in-
dicates that these instabilities can be eliminated by introducing
sufficient damping at the lag hinges and at the body supports and/or
inereasing the natural frequency of the airplane on the ground to a
sufficiently high value. For most conventional helicopters today,
blade damping is necessary for the elimination of ground resonance.
Methods for conducting full scale tests to determine the minimum
demping required are described in references 4 and 5. Reference 6
gives a great deal of information relating to the natural frequen-

cies of the airplane on the ground.

The necessity for blade dampers is unfortunate, since they
re-introduce some of the chordwise bending moment which the lag
hinges were supposed to eliminate, These chordwise bending moments
are due to Coriolis forces caused by blade flapping in flight.
Thus, the present methods of eliminating ground resonance leave

room for a great deal of improvement.



An excellent experimental investigation of the ground reson-
ance theory was conducted by Mr. F. C. Loesch for his Master's The-
sis (ref, 7). Mr. Loesch conducted tests on a model helicopter to
determine the effect of variation of the blade and body damping co-
efficients on the instability. Mr. Loesch discovered sizeable dis-
crepancy between the theory and his experimental results. Upon
checking his equipment, he discovered he had inadvertently intro-
duced coupling between the translational and rotational motions of
the model frame. This was caused by the non-coincidence of the elas-
tic center of the supports and the center of gravity of the model
frame, Therefore, an investigation of the effect of this coupling

on the ground resonance phenomenon seemed in order,
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II. THEORETICAL CONSIDERATIONS

The procedure followed in the derivation of the characteris-
tic equation is similar to Coleman's, Familiarity with his report
will be assumed throughout this report., All aerodynemic effects
will be neglected but real cobrdinates will be used. The frame
damping and spring constants in the X and Y directions will be as-
sumed equal. The equations of kinetic energy, potential energy,
and energy dissipation will be set up, Then, the differential equa-
tions of motion will be obtained from the Lagrangian equation. All
terms in the Lagrangian equation consist of partial derivatives of
the above threeequations with respect to the generalized codrdinate
or its time derivative. Since the derivation will be based on small
oscillations, only linear terme need be retained in the differential
equations., Therefore, all terms above the second degree in the en-
ergy or dissipation equations can be neglected. Also, all sine
terms can be replaced by the first term of their series expansion
and all cosine terms by the first two terms of their series expan-

sion.
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III. SYMBOLS

element of the characteristic determinant (column m, row n)

distance from rotor centerline to lag hinge

distence from blade c.g. to lag hinge

. damping force (moment) per unit linear (anguler) veloeity

n{fab
n(rz + b?)

mQFab

m(r< + b

uncoupled natural blade fregquency

factors in the characteristic equation

distance from frame c.g. to elastic center of frame support
dissipation function

moment of inertia of frame about c.g.

I+ 3ulr® + (a + b)?]

spring force (moment) per unit linear (angular) displacement
mass of frame

mass of one blade

origin of cobrdinate system

generalized codrdinate

o
M+ 3m

distence from c.g. of deflected blade to rotor ¢_

redius of gyration of entire ship about c,g. =

radius of gyration of one blade about its own c.g.

time
kinetic energy

translational kinetic energy of all three blades (due to
velocities of all three c.g.'s

TgT(51 +Be)® + (Py +Ps)?]

potential energy

BEL(By + Be)® + (By + Bs)"]



X, ¥ displacements of frame c.g. from origin

X', v displacements of c.,g. of three blades from frame c.g. in
fixed cobrdinates

z! somplex displacement (x' + iy')
a sum of the three blade deflections
Bs angular deflection of blade no, 1

By + Pz sangular deflection of blade no., 2

By +Pa engular deflection of blade no. 3

= displacements of c¢.g. of three blades from freme c.g. in
» o g
rotating codrdinates
$ non-dimensional damping coefficient
Br
e 2[(H + 3m) Kfjil‘f
_Be
S 2[(e7K, + K,) II/%
Be
% 2co(mr5£+ mb® )
angular deflection of frame (positive clockwise)
3[r® 4+ bla + b)]
A r® + b2
_m
y mass ratio i+ 5m
5 n[r® + bla + b)]
I
t
A 201+ fpR)
/\2. 2(1 & ra/be T a/b)
Bg
/\5 mb~w,
Ad 2(1 + r®/b® + a/b)
ab
Ns ™ 1 58
e(M + 3m)
I
t

O N

rotational speed of rotor (radians per second)(divided by
W, in application)

D

= constent = non-dimensional rotor speed at which &z end
co are calculated = 2



i (e® + Egzﬁf)(M + 3m)

t
G} A
n M + 3m
W non-dimensional system frequency = o din:‘e)nsional
n
£ complex displacement ( L+ if)
Subscripts:
&

frame (body) of helicopter — translational motion
3 blade

&) frame (body) of helicopter — angular motion
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IV. MATHEMATICAL DEVELOPMENT

A schematic diagram of the helicopter is showm in Fig. 1.

There are six degrees of freedom -~ two translational and one rota-

[}

tional for the frame and one for each of the three blades, All ele
ments of the helicopter are assumed to lie in one horizontal plane,
The rotor speed will be assumed constant. Some necessary geometric

relations will be derived first.

Refer to Fig. 1. Taking momente gbout the undeflected po-

sition of blade number 1l:

3mn = mb sinfl + mb{sin[60 - (B, + \33)] - sin[60 + (B1 +i33)]}

2
Expand, assuming cos [ = 1 - g— ; 8in B = [ (retaining only

first and second order terms)

(1a) i g[ﬁa +Bs] + v
Differentiating:
(1v) 7= - glBe 4 Bal + v

Similarly, by taking moments about an axis normal to the

undeflected position of blade number 1l:

(22) I -2, -p,] +u
(2b) T =%P|63-L.33] + 1

Solving simultaneously:

(e, ®)  Ba = 2EaY - (n-v)] 5 Be = - 252 4 (1= v)]
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also:

a =33 +Pg + B3

(ho, )3 By =G+ B-v) s B =S Ei-)

Notice that both u and v are of the second degree.

Refer to Fig. 3.

(5a) x' = [cos (It - 8) = /fsin (Ot - )
(5b) y' = [sin (Ot = 8) + rqcos (Ut = O)
Differentiating,

(6a) x' = ([ =) cos (Mt - 8) = (N +17) sin (Ut = 6)

(6b) ¥' = (I -0n) sin (@ - 0) + (Qr+17) cos (At - ©)

(7a) %' = [[ - 209-021] cos (Ut - 0) - [§ + 201 -0237] sin (& - 6)
(7p) 7' = [I-200-02C] ein (% -0) + [{ + 20E-02] cos (2t - &)
(Te) & =zl

=1 /(e -9)

(Td) o.o g = Z'C
Now refer to Fig. 2.

RSy

L}

a cos [ﬁs [31] + b cos I}(a_‘:—ﬁjﬁl]

2
(a + ﬁ{} - % :b+ B) ] (neglecting terms above second

Similarly, for the other blades

(8b) RS = (a + b)[} & %%&Eii%%gi]
(8¢) RS; = (a + b)[l 3 M]

(8e)

degree)
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Refer again to Fig, 1. From the basic definition of kinetic

energy,

Tbt. - %[x + (8 - 0)a + b){l - E(a—ag—b)-gﬂ,_g} sin {Qt - O+ ﬁjﬁli
- bB,_ gin {D.t -0+ [31}]2
> %‘[x + (0-0)(a + b){l - Sty (B + ) | sin 0 - 6 + -
+ﬁj(ﬁl +f_’>9)} - b(By +Pg) sin {ﬂt -0 +—'— +By +P }]
-;-l[x + (6 - N)(a + b){l - W(Bl+ﬁa)3§ sin {.Qt -0+ %l-]
+m(31 +i33)\& - b(By + Ba) Einfnt -0+3" Pa +[33}]
v28li - @ -0+ 0t - gt ces {0 - 04 mﬁlg
¥ bé;l cos {D.t. -0 + ‘31”3

+§[ﬁ}- (é-ﬂ)(a +b){ -%ﬁgcos {ﬂt-@ +§”

Ty + Bl + 5By + Be) cosfle - 0+ E 4Dy o e[

+§!}-(9-ﬂ)(8+h)€1'%%+_b%aﬁl cos {Qt 6 + ;H‘

+ Ta_zﬁ(@1 +Pa)} + b(By +f) cos {ﬂt Bl g 4“ +Py + 63}]

The foregoing expression can be expanded, using the follow-

ing standard trigonometric and series formulae:

sin (x +y) =sinx cos y + cos x sin y

cos (x +y) =cos xcosy - sinxsiny

8in = = X 4+ 4 4 o
cos X =1—§8+..

8in®x + cos®x =1

cos x + cos (x +§-T)+cos (x +E)=0

3

sin x + sin (x +@)+sin(x +4—T-T =0

> >
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Expanding, simplifying, and substituting previously derived

/

expressions for § and 7 @

() Ty = B )+ 3P6 00+ ) - Peb 50
v 2,80 4§ v 5] + 0ot - b
+ 6% + 188 - 2(6 - N)(a + b)(3bB, - 67 + 6V)
+ sin (Nt -e)[-snjq - 6xn - 61x8+ 5;;;‘]
+ cos (it =0 )[6;§n+ 6%1 = 60k + 6;}@”
The remaining kinetic energy of the system is:
(10) Tar, --g(iz +§9°) +-2]-‘-Ié9 +%m2[3(ﬂ-é+él)e
S - 0- 6 4+ By) + Sl® 4+ 3)]
The potential energy is given by
(11) .- %Kfv” + %Kf(x +eO)® 4 %K‘,éz

The energy dissipation equation is:

(12a) 2F = Bf(ilc2 +y2) + Beés + Bg[ﬁie + (61 * 62)2 i (éﬁ + és)gl
or,
(12b) 2F = By(x® + y°) + Boé’a + Bg Béﬁ - %é.rh %g(ﬁa + 57'2)]

where 2F = rate of energy dissipation by damping.

The energy and dissipation equations are in terms of the six
generalized cobrdinates x, y, 6, I, 1, 4. The six differential equa-

tions of motion are obtained from the Lagrangisn equation.
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(13b)

(13¢)

(134)

(13¢)

(1519
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d (oT oF A oF JU _
Telog) “5q *35 *8q = ©

If g = x, using equation (6a)
(M + 3m)x + 3mx' + Bfi + Kf(x +¢0) = 0
If q = y, using equation (6b)
(M + 3m)y + 3my' + ij + Ky =0
If g = 3;, using equations (4a, b)
m(r® + b2)& - 3m[r® + b(a + b)]0 + B + mPeba = O
If g = 6, using equations (4a, b)

{I +3m[r® + (a + b)’a]Sé' - m[r® + b(e + b)]& + B,6

+ Kfe(x + 80) + K,8 =0
If g =7, using equation(4b)and combining with equation (13c)
v 2
my cos (bt = 6) = mX sin (it = 8) + 2m7A1 + %2)
+ ZmD."'g‘- + 2B 7 0
St
1fg=3,
“ 2
my sin (At -0 ) + mx cos (0t - 8) + 2mI(1 “'%s)
28,1
+ 2m&3%_|'. + —,65— =0

Equations (13e', £') will now be converted to fixed cobrdin-

Multiplying (13f') by i and adding to (13e'),

Py w it 2= = -
my e’ @ ), mxie’(mf #) + 2im(1 + %e)i + 21%% + 2imﬂ-3%§ = 0
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1 (2E-0)

Using the relation§ = z results in:

2 . =
wy + imk + 2im(1 + ) [z' + 2108" - a22']

+ 25.;%[%' +107'] + 2imB2z = 0
Setting both real and imaginary parts equal to zero,

& B . 2
(13¢)  my +2m(1 + )7 + eyt - 2P (1 + L - By

2
- 401 + 5%t - Zgaxt = 0
2 ... ; 2
(13¢) mk + 2m(1 + Lo )%* + 3%51' - on(1 + 5 - &)t

+ 4mf)(1 +-E-:)i' + Z%FQW' =0

In general, let g = goeiwt. The characteristic equation ise

obtained by setting the determinant of the coefficients of equations

(13a~f) equal to zero.

Xo Yo Xo! yo! To 6o
a.) A11 (4] 131 (0] 0 A“l |
b) 0 Ago 0 Ags 0 0
a) 3, . ® 0 0 R el
e) Y Ags Asg Agg 0 0
f) Ao 0 Agg Age 0 0
Where

Ayy = Mgy = ~f + 2iwad, + 2
Ayg = pF

Mg = Agg = =

Agy = Agp = ~uws®

=Ay = -2A 00w - 2A30W,

Aas = ~FAy + 21Aq0u, = AgcE

o

©

&
n
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; 2 ab
Agg = =® + 2idgc0@ + 0 = + %)

= Yw?
A,y = COF
Ags = i
Agy = =F + 218000 + P W

Ase

Expansion of the determinant gives:

=2 .
(14) [1531c4 = AMAG:S] Ayghgg + (Ayqha = AgAgy) ]

—2 3
+ A:Ld:AGlAES['All(ASE + Kyq) + A Agahg ] =0
For the case withe = 0
Ayg =Agy =0

Therefore the equation factors into two parts., The first
part gives the uncoupled equation for the 8-a motion, The second

part can be simplified to give Coleman's Equation 32 (ref. 1).

The simplified case of no demping will now be considered.
Equation (14) cen be manipulated to give a bi-cubic in the varia-

ble (%). The result iss:

(15) A2*AsCy (%)G + ["Aagce = 2AA A0 = wA2ASC acr] (%)4
+ [A12A501 + 2MALCe =~ uMAgCa07  +uN50,0; + uBALC, c,2] (‘-8)9

+ ['A:.zce + M C,Co '/"305072] =0

where

Ca = 2(01,2 - wB) +03§-?-:_e-'—1-

0, = 2[02 - (1 =W )R] 4 P2
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The quantities {A and w are now non-dimensional. «, is the

reference frequency.
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V. METHODS OF APPLYING THEORY

The A expressions in equation (15), page 15, depend upon a,
b, and r. They are therefore constant for a particular machine.
The C expressions depend upon e, 2, b, I, Ke/Kp M, m, I, and w.
For a particular design, these are all constant except w. Thus,
it is possible to plot the relationship between f) and w3, The pro-
cedure consists of assuming values for « and solving the bi-cubic
for {l, The procedure is quite tedious. The method for solving the
bi-cubic used by the author depends upon the fact that for most val-
ues of W, there is at least one value of (%)2 less than 1. A good
approximation to this root can be obtained by neglecting the (%)‘
term and solving the resulting bi-quadratic equation. Horner's
method is then used to determine this root accurately., Once it is
determined, it can be factored out of the bi-cubic. The resulting

bi-quadratic is then solved by formula,

The numerical calculations of this thesis will be made for

Mr., Loesch's model helicopter. Its characteristics are as follows:

a = .242' M+ 3m = 1,15 slugs
b = ,600' I = 1,429 slug-ft®
- I
o %; = 931 £t?
= 0683
e = -,208' (Negative sign in-
m = ,0262 slugs dicates E.C, AFT of rotor ¢ ., This

is unimportant since only e* ap-
pears in the equation, )

The completely uncoupled form of equation (15) can be ob-
tained by setting s« = e = 0, The result is the dashed lines of Fig.

4, The line at W = 1 'repreaents uncoupled X and Y motion. The line
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at w = {1, = ,860 represents uncoupled & motion. The lines

R/ Q,._[l-./l'\"]== . ,
- [1_ s.l 1.75 andm_ ——————El_AEJ .70 represent the X' and Y

motion. The line % = 771‘- = 2,33 represents uncoupled « motion.
5

Notice that all the dashed curves depend only on Ag and Q..

If the actual value of u is used but e is still equal to ze-
ro, the result is the solid curves of Fig. 4. Three of the branches
are identical with Coleman's curves in Fig. 2 of his report. The
biggest change is the breakaway at points 3 and 4. The unstable
range is indicated as the region where two values of w are complex
conjugates., Since one of these roots must have a negative imaginary
part, this implies a self-excited oscillation, The other two branch-
es of Fig. 4 represent the ¢-@ motion which, for e equal to zero, is
uncoupled, Notice that, theoretically, there are two shaft critical

speeds (points 1 and 2, where w = ).

With e set equal to -.208', the result is shown in Fig. 5.
Notice that there are three shaft critical speeds (points 1, 2 and 3)
and that the instability range has been extended at both ends. Also
notice & small stable region near the center of the unstable region.
By comparing with Fig. 4, it can be seen that the increase in the
unstable range is caused by the breaking away of the curves at the

intersections (points 5, 6 and 7 of Fig. 4).
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V1. EFFECT OF SETTING AV EQUAL TO ZERO

On Mr. Loesch's model helicopter, the motor was mounted on
the fleor rather than in the machine. The rotor drive shaft was
independent of the helicopter frame. Thus, no torques could be
transmitted from the rotor to the frame or vice-versa, Thus there
was no coupling between the @ and O motions. This is equivalent
to settingAV= 0, An investigation of the effect of setting AV= 0
was felt necessary to determine whether the experimental results
were valid. Setting AV= 0 simplifies the characteristic equation
(14), page 15, since it sets Ageh,s = O. This permits factoring
out Ags. This means that the & motion is no longer coupled with
the other motions, For the case of no demping, the characteristic

equation can be solved for %. The result is as follows:
2
(16) (%)4 + [25_& ,4;‘ ](ﬂ)s L%E #.._12 +,7\ Cc,.:‘z] =0

Equation (16) is plotted in Fig, 6. Notice that for this
particular machine, setting AWW= 0 had only a small effect on the
instability range for zero damping. The major difference between

Fig. 5 and Fig. 6 is at points 1 and 2 of Fig. &.
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VII, DISCUSSION OF EXPERIMENTAL RESULTS

Mr. Loesch conducted a series of experiments on his model
helicopter in which he systematically variede, & ¢ and ds. Appar-
ently, the test equipment was not sensitive enough to determine
accurately the effect of coupling on the instability range. The
experimental error was of the same order of magnitude as the effect
of coupling. (See Fig. 8), However, an important result of the
tests is shown in PFig, 7. It shows that, for a particular value
of éf, coupling definitely increases the value of & necessary com-
pletely to eliminate the instability. The varietion in Kg/Kf is
considered small enough to be neglected. As no runs were made by
Mr. Loesch for zero damping, there is no check on the theoretical

work at this time.
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VIII. DISCUSSION OF THEORETICAL RESULTS

Examination of Figs. 4, 5 and 6 indicates that for a heli-
copter dynamically similar to the one considered, coupling between
the translational and rotational motion of the helicopter increases
the range of self-excited instability., Neglecting the coupling be-
tween @ and O motion hae a negligible effect on the instability range.
However, the coupling effects may very possibly depend upon the points
of intersection of the uncoupled curves of Fig. 4. Since these un-
coupled curves depend only on the values off},and A, it is very pos-
sible that the importance of the two aforementioned couplings depends
a great deal upon the particular values of {l,and Ag;. Offhand, it
seems probable that as high as possible a value of@_,, is desirable to
prevent extension of the instebility range at the lower end. However,
this should be verified by further investigations. The effect of in-

creasing Ag should be very interesting since, when Ay = ,250, %ﬁ:— =
5

1w ihe 5
1 -Az . That is, two of the uncoupled curves will approach each oth-

er and finally coincide, Variations in the values of Qnand Ag may al-
ter the magnitude of the effects of the two couplings. In eny cases,
however, it seems desirable to keep the translation-rotatiom coupling

of the helicopter body down to a minimum,

If these suggested investigations reveal that 2\_1_9 can be set e-
qual to zero, this theory can be extended to include the effects of damp-
ing, using the simplified form of the characteristic equation (14),
(AgeA¢s = 0). This statement is based on the assumption that if AV can
be neglected for the case of no damping, it can also be safely neglected

for the case with demping. It would probably be a good idea to make
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a few spot checks to test the validity of this last statement., An
investigation of the effects of dampling can be carried out using
Coleman's method. If it is necessary to use the exact characteris-

tic equation, the investigation will probably be quite tedious.

The existence of a small stable range in the midst of the
unstable range of Figs. 5 and 6 is quite interesting. 8Since the
lower unstable raenge is rather small, it would probably be possible
to skip over it entirely in an experimental investigation. This
may have happened in Mr. Loesch's work, as a number of test points
were rather far off, Thus, checking the theoretical work at only
two points (the limits of instability) seems a bit unrelisble. A
suggested method for checking the entire characteristic equation
would be as follows: Mount a vibrator on the frame of the model
helicopter; set the rotor rpm; vary the vibrator frequency and re-
cord those vibrator frequencies at which the helicopter exhibited
large oscillations; repeat for a complete range of rotor rpm; a
plot of the vibrator frequencies versus the rotor frequencies should
give a reliable check on the theoretically derived characteristic

curve. Of course, no data can be obtained in the instability range.

The criterion for dynamic similarity between two helicopters
with regard to ground resonance can be deduced from an examination
of equation (15), page 15. The coefficients should be the same for

both cases, Therefore, for dynamic similarity, the following dimen-

sionless ratios should be the same: %, %, %, 5 i %, and>é9 Also,

of course, the non-dimensional damping coefficients, é;, d. and SQ,

s

should be the same.
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IX, CONCLUSIONS

These concluding remarks apply to a helicopter dynamically

similar to the one investigated.

1.

For the case of no damping, theory shows that coupling be-
tween the translational and rotational motions of a heli-
copter body extends the instability range at both ends
and increases the number of shaft critical speeds to three,

For the case with damping, the effect of coupling is of the
same order of magnitude as the experimental error.

For the case of no demping, theory shows that the character-
istic equation cen be simplified by setting AV = 0 without
appreciably affecting the instability range.

For a particular value of frame damping, experimental re-
sults show that translation-rotation coupling of the heli-
copter body increases the value of blade damping necessary
to eliminate completely the unstable range.

Two helicopters are dynamically similar with regard to their
ground resonance characteristics if the following non-di-

mensional factors are the same for both:

ol
Ej

o &

B s e gt b G dp

Reduction in the value of {lx and/or increase in the value of
Ags may appreciably change the above conclusions. An inves-

tigation of the effect of variation in 2, should prove to

be very practical.
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X. SUMMARY OF TEST RESULTS
%= +.153 @b f = 1.69 % = -, 149 Mb £ = 1,64
Instability Range Instability Range
é? Q. lower £} upper ds cf%_ N lower () upper
0283 ) 1.52 1.92 .0283%  ,102 1,60 1.62
058 1,52 1.81 | .0 082 )
.082 1,50 1.79 . 058 ) No record
.102 1,65 1elD . 040 )
.0595 040 1,48 1,90 L0593 040 1.48 1.92
.058 1.56 1.81 .058 1.52 1.81
. 082 ) .082 1.67 175
g ) T 102 1,75 1,62
0773 .040 1.51 1.91 L0775 .040 1,51 1,88
- . 058 1,62 AT . 058 1.54 1.82
.070 none .070 1,75 1,70
.082 1,72 e
.105 .040 1.56 1.89
051 1,52 1.91 -102 none
.058 none .105 . 040 1.57 1,89
125 .oko  1.47 1,92 .08 1.62 1.85
.070 1.66 1,74
.051 1.57 1.69 082
. none
- 053 none
.139 .oho 1.51 1,02 .125 . 040 1.58 1.9}
.058 1.67 1.67
.051 1,60 1.69 070 e
.058 none * P
.139 .040 1.68 1.90
g?g ; No record
, 082 none
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T = -.348 —%: 1,60 €= -.549 %= 1.59
Instability Range Instability Range
c'(q Jr O lower [(lupper ds dt Nlower f(lupper
.0283 ,040 1.52 1,96 L0283  .040 1,56 2,12
.058 1,52 1,86 .058 .058 1,56 1,89
082 1.54 1.80 | 082 1,62 1.80
.102 1.71 1,69 .102 1.65 1,75
.0593 040 1,67 1,95 .0593 040 1552 1.96
+ 050 1,69 1.79 .058 1.52 1.86
. 082 No record .082 1,95 17D
.102 .102 1.65 1.75
.0775  .040 1,54 1,92 0773 .040 1.50 1.92
. 058 1,58 1.74 . 058 .75 1.86
.082 1,77 167 L82 1,86 i
. 102 none .102 Sl 1.71
« 105 . 040 1,62 1.91 <105 .040 1,55 1,95
055 1,67 e . 038 1.5 1.86
. 082 none .082 1.62 .75
. 1G2 none
+ 125 .04 1, 62 1,91
.058 none .125 . 040 1.56 1.98
051 1.0 1,80
i3 - 040 1,62 el .058 No record
043 175 1.75
.058 none .139 .040 1.53 1.99
.058 1.86 1.75

.067

none
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