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SUMMARY

The purpose of this thesis is to expand the Coleman Theory

of Ground Resonance (ref. 1) to include the effect of coupling be-

tween translational and rotational motion of the helicopter body.

This coupling occurs if the elastic center of the tires does not

coincide with ths rotor axis. The characteristic equation for a

helicopter with a three-bladed rotor is derived. A typical charac=-

teristic equation for no damping is plotted. It shows that, for a

helicopter dynamically similar to the one investigated, the self-ex-

cited unstable range is definitely increased by this coupling, and

the number of shaft critical speeds is increased to three. A cri-

terion for dynamic similarity is established, based upon the charac-

teristic equation, Lack of time prevented carrying through the in-

vestigation to include the effect of blade and body damping.

The result of a series of runs by Mr. F. C. Loesch on a

model helicopter is also included. Apparently, the equipment was

not sensitive enough to determine accurately the effect of coupling

on the self-excited instability range. However, the results defin-

itely show that for a particular value of body damping coefficient,

coupling increased considerably the blade damping coefficient neces-

sary to eliminate entirely the self-excited umstable range. There-

fore, it is desirable to reduce any coupling between the translation-

al and rotational motion of the helicopter body to a minimum. As no

test runs were made at zero damping coefficient, it was not possible

to check the theoretical calculation.



I. INTRODUCTION

A rotary wing aircraft may, under certain conditions, be

subjected to violent vibrations while warming up on the ground.

The term ground resonance is loosely applied to these vibrations,

which obtain their energy from the rotational energy of the rotor

These vibrations are of two different types. The first type is

similar to the vibration of a rotating shaft with flexible mount-

ing. Any slight unbalance in the shaft will cause a violent vib-

ration when the rotational frequency is equal to the natural fre-

quency of the mounting. A similar situation occurs in a helicop-

ter when the rotational frequency of the rotor is approximately

equal to one of the natural frequencies of the body on the ground,

These are known as Shaft Critical or Even Frequency Vibrations,

The second type is due to a coupling between motions of the blades

in the rotational plane and motions of the body on its flexible

support (tires and shock absorbers). Rotor blades with lag hinges

(hinges which permit freedom of the blade in the rotational plane)

are especially susceptible to this type of vibration. Blades

fixed at the root but with excessive chordwise flexibility are

also susceptible. If, for any reason, a rotor blade starts to os-

cillate in the rotational plane, the resulting periodic inertia

forces and moments cause periodic shears and moments at the hub.

These are transmitted to the body of the helicopter. At certain

rotor speeds the frequency of these periodic forces may be in re-

sonance with one of the natural frequencies of the airplane on the

ground. This will cause the airplane body to begin to oscillate,

causing an increase in the amplitude of oscillation of the blades.



The resulting instability is known as Self-Excited or Odd Frequency

Oscillation. Either of these types of instability may cause the

destruction of the helicopter before it even leaves the ground.

The basic theory of ground resonance has been developed by

Coleman and Feingold (refs. 1 and 2). They have treated the pheno-

menon from purely dynamic considerations. Since their theory is

able to predict, qualitatively at least, both types of instability,

this appears to be justified, Bemnett (ref. 3) has indicated, how-

sever, that if ana hinge is used, it is probably necessary to in-

clude the aerodynamic effects. The Coleman and Feingold theory in-

dicates that these instabilities can be eliminated by introducing

sufficient damping at the lag hinges and at the body supports and/or

increasing the natural frequency of the airplane on the ground to a

sufficiently high value. For most conventional helicopters today,

blade damping is necessary for the elimination of ground resonance

Methods for conducting full scale tests to determine the minimum

demping required are described in references 4 end 5. Reference 6

gives a great deal of information relating to the natural frequen-

cies of the airplane on the ground.

The necessity for blade dampers is unfortunate, since they

re-introduce some of the chordwise bending moment which the lag

hinges were supposed to eliminate, These chordwise bending moments

are due to Coriolis forces caused by blade flapping in flight,

Thus, the present methods of eliminating ground resonance leave

room for a great deal of improvement.



An excellent experimental investigation of the ground reson-

ance theory was conducted by Mr. F. C. Loesch for his Master's The-

sis (ref, 7). Mr. Loesch conducted tests on a model helicopter to

determine the effect of variation of the blade and body damping co-

efficients on the instability. Mr, Loesch discovered sizeable dis-

crepancy between the theory and his experimental results. Upon

checking his equipment, he discovered he had inadvertently intro-

duced coupling between the translational and rotational motions of

the model frame. This was caused by the non-coincidence of the elas-

tic center of the supports and the center of gravity of the model

frame. Therefore, an investigation of the effect of this coupling

on the ground resonance phenomenon seemed in order.



II. THEORETICAL CONSIDERATIONS

The procedure followed in the derivation of the characteris-

tic equation is similar to Coleman's, Familiarity with his report

will be assumed throughout this report. All aerodynamic effects

will be neglected but real codrdinates will be used, The frame

damping and spring constants " the X andYdirections will be as-

sumed equal. The equations of kinetic energy, potential energy,

and energy dissipation will be set up. Then, the differential equa-

tions of motion will be obtained from the Lagrangian equation. All

terms in the Lagrangian equation consist of partial derivatives of

the above three qquations with respect to the generalized codrdinate

or its time derivative. Since the derivation will be based on small

oscillations, only linear terms need be retained in the differential

equations, Therefore, all terms above the second degree in the en-

ergy or disslpation equations can be neglected. Also, all sine

terms can be replaced by the first term of their series expansion

and all cosine terms by the first two terms of their series expan-

Bion.



ITI. SYMBOLS

A
mn

Cy

 —

~

a)

n

slement of the characteristic determinant (column m, row n)

distance from rotor centerline to lag hinge

distance from blade c.g. to lag hinge

damping force (moment) per unit linear (angular) velocity

Ea uncoupled natural blade frequency

- mQ¥ab

m(r®+b%)
factors in the characleristic equation

distance from frame c.g. to elastic center of frame support

dissipation function

moment of inertia of freme about c.g

I + 3m[r® + (a + b)?]

spring force (moment) per unit linear (angular) displacement

mass of frame

mass of one blade

origin of cobrdinate system

generalized cole dinate

radius of —— of entire ship about c.g. = gi

distance from c.g. of deflected blade to rotor ¢

radius of gyretion of one blade about its own c.g.

time

kinetic energy

J un,
translational kinetic energy of all three blades (due to

velocities of all three c.g. 's

(8, + Ba)? + (By + PB3)?]

potential energy

BE (5, +B2)® + (By + Ba)?]



displacements of frame c.g. from origin

2

x pe

L

4

By + Pe

By + Pa

»

J

(1

i

displacements of c.g. of three blades from frame e.g. in
fixed codrdinates

gomplex displacement (x' + iy')

sum of the three blade deflections

angular deflection of blade no, 1

angular deflection of blade no. 2

angular deflection of blade no. 3

lisplacements of c.g. of three blades from frame c.g. in

rotating codrdinates

non-dimensional damping coefficient

B

2[(M + 3m) KJ77%
" Be

2[(e"K,, + Ko) I.]%7°
Bo

Dco(mrs + mb” )

angular deflection

3 [r® + bla + b)]
r* +b

_sm
mass ratio ¥ + 3m

n[r® +b(a + b)]

I
2(1 + r®/bR)

2(1 + r®/b® « a/b)

Ba
mb,

2(1 + r®/v® + a/b)

ab

r® + be

e(M + 3m)

Ly
rotational speed of rotor (radians per second)(divided by

Ww, in application)

= constant = non-dimensional rotor speed at which ds and

co are calenlated = 2



Oh

3.
&amp;

op

AJ)

J

~

(e® + Ko/Ka)(M + 3m)
1
t

am+M

non-dimensional system frequency = wdimensionalSuensionsl
v

complex displacement (IL+ ir)

Subscripts:

frame (body) of helicerter—translationalmotion

bladeye

9 frame (body) of helicopter — engular motion
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IV. NATHEMATICAL DEVELOPMENT

A schematic diagram of the helicopter is shown in Fig. 1.

There are six degrees of freedom -- two translational and one rota-

tional for the frame and one for each of the three blades, All ele-

ments of the helicopter are assumed to lie in one horizontal plane.

The rotor speed will be assumed constant. Some necessary geometric

relations will be derived first.

Refer to Fig. 1. Taking moments gbout the undeflected po-

sition of blade number 1:

3mn = mb sinfl + mb sin [60 - (By, + Ba)] - sinf[60 + (PB, +B)

2

Expand, assuming cos J = 1 = 5 ; 8in B= 3 (retaining only

Pirst and second order terms)

(11) n = 2B. + Bal iV

0?" "r=entiating:

1b) n 2B. + Bs] +

Similarly, by taking moments about an axis normal to the

undeflected position of blade number 1:

(22)

(2b)

= 225, -B,] + u

T “BoE, 5, + u

Solving simultaneously:

5a. b) Ba =2[Ez_ (n=) Bs -- 228 (7-v)]
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also:

a =30, +Pe + Bs

(ba, )iu By = E+ En =v);

Notice that both u and

3 2% 20 =v)
iB, 5 + 50"

id

ww

arse vi the second degree.

Refer to Fig. 3.

(5a)

(5b)

»!' Tcos (At-6)=Asin(Nt-©)

Isin (Qt = 6) + /7cos (Ut = ©)or!

Differenti-~ing.

(6a)

(6b)

(7a)

(71)

(7¢)

(74)

x! = (IL =0n) cos (Mt = 0) = (Nh +17) sin (Qt = ©)

¥' = (I =n) sin (Ot = 0) + (U1+n) cos (1 = ©)

#' = [[- 2029-021] cos (At = 0) - [§ + 201-021] sin (t - 6)

 oa [I= 207-027] sin (1 - 0) + [7 + 200-02] cos (It - 68)

y,-il0t-o)

ia)
~

Now refer to Fig. 2

p Byl + b cos 2B |
(a + b) "2 (a +b)" 12

2

(8e) = (a + 1 -3 ma ) (neglecting terms above second

degree)

Similarly, for the other blades

(6b)
2

RS, = (a + 01 - 2 —

— b + 3 2

(8c) RS, = (a + »2 -pleff



1.

Refer again to Fig. 1. From the basic definition of kinetic

2nergy,

T.. = ok + (6 = N)(a + 01 -IRE sin {oe - 0+ a

» bf, sin os -0 + el |°

2x + (6-0)a + D1 = grrr +B)? stn {0 - 04+ ET

+ Teagy(Ba + Be) - b(B, * Bz) sin ne -0 + EA +Be} |”

23+ 6 -n)a + Df - pregasBoe]stn[0-0+£5

&gt; roy + pa) - b(B, * Bs) in| ft - 0+ 2 Ba +Baf

zl; = (6 - 1)(a + {1 -see) cos at - 06+ ys|

+ by cos ne -0 + Bal |

2ly - (6 - N)(a + b){1 - a {as - o +8

+ roy +e) + b(B, + Be) cos (lt - 0 + £4ps +a}

2; - (0 -N)e + b){1 - mpi +Bl cos fo -0 +Ey

b rye, +pa)| + b(By +B) cos las - 0+aw, By + al’

The foregoing expression can be expanded, using the follow-

ine standard trigonometric and series formulae:

sin (x +y) =sinx cos y + cos x sin y

tos (x + y) =cos xcos vy - sin x sin y

sin x = X +

cos Xx = 1 =

s8in®x + cos®x = 1

"

cosx+cos(x+£7)+cos(x+30 =0

20) 4 sin (x + 20) = 0



"a

Expanding, simplifying, and substituting previously derived

expressions for § and 7

Poa Fy = 2 + 32) + 26 0)(a + 1° - Fob 5a0

* 2 (52) + 8, + 32) + 30202 = 12bFy7

+ 61% + 1878 = 2(6 - N)(a + b)(3bB, = 67 + 6V)

+ sin (Nt -0)|-6nin - 54 - 61x+6y1

sos(Ot=061304651 602 + 657
’

The remaining kinetic energy of the system is:

/ 0) T a

. 3 1 : 4 2

Ts - 3(x® + ¥°) + S168 + zur?[5(01 - 6 + Bq)

Lo 930-6 + By) + L124 372)

The potential energy is given by

(11) U =
1 1 1

SK oy? + K(x +0) + 5K.62

The energy dissipation equation is:

(12a) or &gt; + v2) + B02 + B,[3° + (8, + Ba)e + (cx + Bg)2]

(12b) 2F = B(x® + y2) + B,0® + Bg [38,2 - 226,04 S.(L2 + 372)

shere 2F = rate of energy dissipation by damping.

The energy and dissipation equations are in terms of the six

generalized codrdinates x, y, 8, I, 4, A. The six differential equa-

tions of motion are obtained from the Lagrangian equation.



y

doy _ OT OF OU_a5l5g) “3g * 35 tq = ©

[f q = x, using equation (6a)

13a) (M + 3m)x + 3mx' + BR "4 ro
a’  Xx +c)=J

[f q = vy, using equation (6b)

'13b) (M + 3m)y + 3my! + B.v + Fy =O

If 7 - B,, using equations (4a, b)

(13¢) n(r® + b2)&amp; - 3mlr? + bla + b)l6 + Bx + mabe = 0

If ~ +O, using equations (4a, b)

154) iT + 3n[r® + (a + vl - m[r® + bla + b)]&amp; + B,6

+ K.e(x + 60) + K,06 = ©

If q = 7, using equation (4b)and com ning with equation (13c)

( (337)
eo 2

my cos (At - 6) = m¥ sin (At = 8) + 2mA1 + Te)

2Bs :_m0fp+SE

If¢

(13 £9 my sin (At = 0) + mx cos (fit = 9) + oml(1 + 5)

2B,L _» 2moRZI+S242

Equations (13e', £') will now be converted to fixed codrdin-

ates, Multiplying (13f') by i and adding to (13e'),

mys &gt; oe-9) mite 240) + 2im(1 + re ¥ Bat, 2Fo)E + 21858 4 2400228=©



5

Using the relation§ = Frente) results in:

ry + imx + 2im( 1 Bb=) + 2103Zz! - fzz']

58 T= s AS

212[3 + inz'] + 2imP&gt;7 = 0

Setting both real and imeginary parts equal to zero,

-s 2 we . 2

(158) my + 2m(1 + +2) &gt; Ley - 2m0f(1 + To Sy!

2

- i001 + Lo)xt - Zoe! = 0

2 oe ¢ 2

wi + 2m(1l + 35 )%' + 2Bps1 - 2m (1 + 3p = =)x!
b b b b

2

+ 4m + To)! + 22 0y! = 0

In general, let q = g0e’", The charnrc’ etic equation is

obtained by setting the determinant of the coefficients of equations

(13e~f) equal to zero.

3
~

t
a

y

 2)
PY

Ayg

0

a

Agg
o Ags

° 0

Adc JP

pr)

Ass

Aig

To

J

Re

bog

0

0

So

Aca

9)

Aca

A oq

0

Yhere

Ary = App = ~F + 2i0Qd, + WP

Ag = pO.B

Aig = Agg = =f

Agy = Agp = ~uw?

Aas = =Ag = -2A0i0 - 2A0W,

Mag = Agr = =FA, + 2iA0W, = AB



Ly
-

Ags = =f + 21d 000 + 05m

Ag, = Pw?

Apqy = OP

Ags = wh

Ay = =f

Expansion of the determinant gives:

—R_2

(14) [Agatoa - Asses) [A11Asc + (Agq1da, = AjgAg, 2)
—_ 2

+ Ay Aq AR, [-A,, (Ros + Age) + Ay, Agqha = 0

for the case wich e@

A. o&gt; Arg

-
 AS

Therefore the equation factors into two parts. The first

part gives the uncoupled equation for the 6-c motion. The second

part can be simplified to give Coleman's Equation 32 (ref. 1).

The simplified case of no demping will now be considered.

Equation (14) can be manipulated to give a bi-cubic in the varia-

ble 2. The result iss

JOR
15) A2®AsCy (3) + [-Ae2C, - 2AAASCy~uh2Ag030;](5)*

[A12Ac04 + 2MNACe ~ uMAgCaC4 + 275040 + BAL C72] @)?

[&lt;A2Co + uAqC4Cy = 42CC42] = 0

hers

1m OF -0f + gt

Co = £2 - (1 - AV)? + op2=
- 1

Cs = 2(0,2 =~ 0B) + -.
Wc = 1

Ca = 20,2 - (1 AV YR] + ge
ay = 1



| £, -»

Cs = N° = (1 = AVP

Ce = H.2 -w®

0, = 47 Fa 1

The quantities { and © are now non-dimensional. «J, is the

reference frequency.



V. METHODS OF APPLYING THEORY

The /\ expressions in equation (15), page 15, depend upon a,

b, and ¥. They are therefore constant for a particular machine.

The C expressions depend upon 8, 8, b, r, Ko/Ks M, m, Ls ané w,

For a perticuler design, these are all constant except ww. Thus,

it is possible to plot the relationship betweenfland«3, The pro-

cedure consists of assuming values for w and solving the bi-cubic

for {, The procedure is quite tedious. The method for solving the

bi-cubic used by the author depends upon the fact that for most val-

ues of W, there is at least one value of yz less than 1, A good

approximation to this root can be obtained by neglecting the Eo)

term and solving the resulting bi-quadratic equation. Horner's

method is then used to determine this root accurately, Once it is

determined, it can be factored out of the bi-cubic. The resulting

bj-quadratic is then solved by formulas,

The numerical calculations of this thesis will be made for

Mr. Loesch's model helicopter, Its characteristics are as follows:

a = 242

b = 600!

r = 654!

mw = C733

m = ,0262 slugs

M + 3m = 1.15 slugs

= 1,429 slug-ft®

Ko ~ 2

Ks 931 £%

€e = =,208' (Negative sign in-

dicates E.C., AFT of rotor ¢,. This
is unimportant since only e* ap-

pears in the equation.)

The completely uncoupled form of equation (15) can be ob-

tained by setting « = e = 0. The result is the dashed lines of Fig.

4. The line at « = 1 represents uncoupled X and Y motion. The line







ND

T»

at @ = 1, = .860 represents uncoupled &amp; motion. The lines

Q _ 1 + /A5] _ a. [l=rEl. 7 renresent the X' and Y-2. [Rs 7s amd 1 = As J 7 ? i Sn

JT
motion. The line = ne 2.33 represents uncoupled a motion.

Notice that all the dashed curves depend only on A. and 2

If the actual value ofxu is used but e is still equal to ze-

ro, the result is the solid curves of Fig. 4, Three of the branches

sre identical with Coleman's curves in Fig. 2 of his report. The

biggest change is the breakaway at points 3 and 4. The unstable

range is indicated as the region where two values of w are complex

conjugates. Since one of these roots must have a negative imaginary

part, this implies a self-excited oscillation. The other two branch-

ss of Fig. 4 represent the ¢-9 motion which, for e equal to zero, is

uncoupled. Notice that, theoretically, there are two shaft critical

speeds (points 1 and 2, where w =f),

¥ith e set equal to -.,208', the result is shown in Fig. 5.

Notice that there are three shaft critical speeds (points 1, 2 and 3)

and that the instability range has been extended at both ends. Also

notice a small stable region near the center of the unstable region.

By comparing with Fig, 4, it can be seen that the increase in the

unstable rance is caused by the breaking away of the curves at the

intersections (points 5, 6 and 7 of Fig. 4)
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VI. EFFECT OF SETTING AV EQUAL TO ZERO

On Mr. Loesch's model helicopter, the motor was mounted on

the floor rather than in the machine. The rotor drive shaft was

independent of the helicopter frame. Thus, no torques could be

transmitted from the rotor to the frame or vice-versa, Thus there

was no coupling between the @ and O motions. This is equivalent

to settingAvV= 0, An investigation of the effect of setting AV= C

was felt necessary to determine whether the experimental results

were valid, Setting A¥V= 0 simplifies the characteristic equation

(14), page 15, since it sets AgAes = O. This permits factoring

put A... This means that the « motion is no longer courled with

the other motions. For the case of no damping, the characteristic

equation can be solved for 2 The result is as follows:

(15) &amp;e =a a2 aol AEse Ca |1 Sr . [ez
2

 --
Ie

C

2 = - ay00 =

Bquation (16) is plotted in Fig, 6. Notice that for this

particular machine, setting AV= 0 had only a small effect on the

instability range for zero damping. The major difference between

Pig. 5 and Fig. 6 is at points 1 and 2 of Fig. 6.
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VII, DISCUSSION OF EXPERIMENTAL RESULTS

Mr. Loesch conducted a series of experiments on his model

helicopter in which he systematically variede, d, and ds. Appar-

ently, the test equipment was not sensitive enough to determine

accurately the effect of coupling on the instability range. The

experimental error was of the same order of magnitude as the effect

of coupling. (See Fig. 8), However, an important result of the

tests 1s shown in Fig, 7. It shows that, for a particular value

of Sos coupling definitely increases the value of &amp; necessary com-

pletely to eliminate the instability. The variation in Ko/K, is

considered small enough to be neglected. As no runs were made by

Mr. Loesch for zero damping, there is no check on the theoretical

work at this time.
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VIII. DISCUSSION OF THEORETICAL RESULTS

Examination of Figs. 4, 5 and 6 indicates that for a heli-

copter dynamically similar to the one considered, coupling between

the translational and rotational motion of the helicopter increases

the range of self-excited instability, Neglecting the coupling be-

tween @ and 9 motion has a negligible effect on the instability range.

However, the coupling effects may very possibly depend upon the points

of intersection of the uncoupled curves of Fig. 4. Since these un-

coupled curves depend only on the values off}, and A, it is very pos-

sible that the importance of the two aforemertioned couplings depends

a great deal upon the particular values of {l,and Ag. Offhand, it

seems probable that as high as possible a value off), is desirable to

prevent extension of the instability range at the lower end. However,

this should be verified by further investigations. The effect of in-

creasing Ag should be very interesting since, when A; = ,250, x =

prs « That is, two of the uncoupled curves will approach each oth-

er and finally coincide, Variations in the values of Qnand Ag may al-

ter the magnitude of the effects of the two couplings. In any case,

however, it seems desirable to keep the translation-rotetiom coupling

of the helicopter body down to a minimum.

If these suggested investigations reveal that AV can be set e-

gual to zero, this theory can be extended to include the effects of damp-

ing, using the simplified form of the characteristic equation (14),

(Ageds= 0). This statement is based on the assumption that if AV can

be neglected for the case of no damping, it can also be safely neglected

for the case with damping. It would probably be a good idea to makes
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a few spot checks to test the validity of this last statement. An

investigation of the effects of damping can be carried out using

Coleman's method. If it is necessary to use the exact characteris-

tic equation, the investigation will probably be quite tedious.

The existence of a small stable range in the midst of the

unstable range of Figs. 5 and 6 is quite interesting. Since the

lower unstable range is rather small, it would probably be possible

to skip over it entirely in an experimental investigation, This

may have happened in Mr. Loesch's work, as a number of test points

were rather far off. Thus, checking the theoretical work at only

two points (the limits of instability) seems a bit unreliable. A

suggested method for checking the entire characteristic equation

would be as follows: Mount a vibrator on the frame of the model

helicopter; set the rotor rpm; vary the vibrator frequency and re-

cord those vibrator frequencies at which the helicopter exhibited

large oscillations; repeat for a complete range of rotor rpm; a

plot of the vibrator frequencies versus the rotor frequencies should

give a reliable check on the theoretically derived characteristic

curve. Of course. no data can be obtained in the instability range.

The criterion for dynamic similarity between two helicopters

#ith regard to ground resonance can be deduced from an examination

of equation (15), page 15, The coefficients should be the same for

both cases. Therefore, for dynamic similarity, the following dimen-

sionless ratios should be the same: 2 Be 5 alk, 3, and 4. Also,

of course, the non-dimensional damping coefficients, dss de and dos

should be the sane.
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IX, CONCLUSIONS

These concluding remarks apply to a helicopter dynamically

similar to the one investigated.

For the case of no damping, theory shows that coupling be-

tween the translational and rotational motions of a heli-

copter body extends the instability range at both ends

and increases the number of shaft critical speeds to three

For the case with damping, the effect of coupling is of the

seme order of magnitude as the experimental error.

5. For the case of no damping, theory shows that the character-

jstic equation can be simplified by setting AY=0 without

appreciably affecting the instability range.

For a particular value of frame damping, experimental re-

sults show that translation-rotation coupling of the heli-

copter body increases the value of blade damping necessary

to eliminate completely the unstable range.

2.

5 Two helicopters are dynamically similar with regard to their

ground resonance characteristics if the following non-di-

mensional factors are the same for both:

a r ¢ JX R2, 0,8, Halle Bu Gs God

~
 od 4 Reduction in the value of {lx and/or increase in the value of

As may appreciably change the above conclusions. An inves-

tigation of the effect of variation in 2, should prove to

be very practical.
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X. SUMMARY OF TEST RESULTS
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