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Abstract

Semiconductor manufacturing processes have become increasingly complex with the
continued growth of chip manufacturing. Monitoring these processes for anomalies is
crucial for maintaining quality and yield. However, a notable challenge for monitoring
time series signals are the nonlinear variations in signal timing. These small, but
acceptable, temporal variations are typically caused by small run-to-run differences
that are inherent to the process. Dynamic time warping (DTW) can be used for
temporal alignment of signals, but is computationally expensive and prone to errors.

In this thesis, a new method is presented for preprocessing semiconductor fabri-
cation sensor signals that improves anomaly detection model performance. The new
method uses domain knowledge – specifically, process recipe step numbers – to cre-
ate constraints that better align signals along the time dimension, that addresses this
problem of nonlinear signal alignment. These constraints are tested on both synthetic
as well as industrial datasets. The new step-constrained DTW is also extended as a
distance measure for clustering time series.
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Chapter 1

Introduction

The increasing complexity of semiconductor fabrication processes has enabled con-

tinued growth in chip manufacturing. Careful monitoring of these processes allows

for improved quality and yield, which is crucial as the demand for semiconductors

continues to increase. However, the data collected during monitoring has also in-

creased in volume and complexity, and determining process conditions and quality

has become more difficult. Unusual equipment sensor signal shapes can often indicate

anomalous process conditions, which frequently lead to poor-quality products or even

scrapped wafers. Detection of these anomalous wafer runs is therefore important to

semiconductor manufacturers.

One notable challenge is that the timing of events in the signals can vary in

a non-linear manner while still producing good-quality products. These nonlinear

variations in signal timing make comparison of signals, and subsequently anomaly

detection, difficult. Many recipes have an acceptable level of variation in the time it
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Figure 1.1: Example of the time variation in the endpoint signals of two nominal
(acceptable) wafer runs.

takes to complete certain recipe steps. An example is displayed in Fig. 1.1. Process

engineers are trained to discern such nominal or acceptable versus anomalous delays

in processing, but it is not feasible for them to visually monitor all of the equipment

data generated during processing. Therefore, automated anomaly detection methods

need to be able to ignore acceptable amounts of time variation in equipment sensor

data in order to detect genuine anomalies.

One approach is to align signals in the time domain prior to training, and inference

with machine learning models. This is a flexible approach that can be used with many

different datasets and models. This thesis explores using dynamic time warping for

signal alignment preprocessing.
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1.1 Motivation

Dynamic time warping (DTW) is a well-known algorithm for aligning signals along

the time axis. While DTW can provide significant benefits, it can also be slow and

prone to errors, particularly on anomalous signals. Many research efforts have focused

on methods to minimize errors and speed up computation time [16, 27, 30, 36, 25].

However, none have addressed using additional semiconductor domain knowledge

for improvements. This work uses domain knowledge of semiconductor processing to

constrain the DTW algorithm in a manner that improves both speed and accuracy. By

making use of the recipe step number signal provided by most processing equipment,

we can introduce constraint boundaries and weighting that will encourage proper

alignment of the processing signals.

Time series anomaly detection can use many different methods, and in this work

the kernel density estimation (KDE) model [18] is used for testing the preprocessing

methods. This method takes in good historical data and builds probability distribu-

tions of how those sensors normally behave. New samples can then be compared to

these distributions to determine the likelihood that the sample came from the same

nominal distribution. This process is visualized in Fig. 1.2.

However, even a small amount of time variation in the nominal signals used to

train the model decreases the sensitivity of the model, as evidenced by how blurry

the KDE distribution is in Fig. 1.2. This is why we want to improve signal alignment

prior to training and inference.
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Figure 1.2: Construction of KDE empircal probability density estimates (right) based
on representative known good sensor signals (left). The time variation contributes to
wide (blurry) probability densities.

1.2 Thesis Structure

Chapter 2 introduces important background topics, including an overview of the

DTW algorithm and several of its applications. The new constraints are developed in

Chapter 3, followed by experimental setups and results in Chapter 4. Chapter 5 dis-

cusses additional uses for the new step-constrained DTW. Finally, Chapter 6 presents

conclusions and possible topics for future work.
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Chapter 2

Background and Related Work

In this chapter, necessary background knowledge is introduced. First is the definition

of time series data, which is the format typically used for working with equipment

sensor signals. Then the dynamic time warping (DTW) algorithm is reviewed, along

with several of its variants and extensions.

2.1 Time Series Sensor Data

Time series are a data format that represents sequences of values, typically adhering

to chronological ordering. Often generated by sampling real-world events, they are

used across a wide range of different domains. A time series can be represented asX ∈

RN×C , where C is the number of channels, each having length N . We will assume that

each channel begins and ends at the same time and has an approximately constant

sampling rate, ignoring any data loss that may occur in real-world applications.

When time series data are generated by similar events (e.g., a wafer processing
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event), comparison of two or more time series is often desired. However, what might

be considered the “naive approach,” Euclidean distance, has many shortcomings when

applied to time series. If one signal has even minor delays or distortions along the

time axis, this can completely distort the similarity comparison. Therefore, the DTW

algorithm, which performs a non-linear alignment of time series, is preferred for com-

puting the distance between two time series.

2.2 The Dynamic Time Warping Algorithm

The DTW algorithm originated in the speech recognition field [32, 28] and was later

introduced to the data mining community in 1994 by Berndt and Clifford [2]. DTW

aligns two signals by stretching and compressing them in localized areas until they

resemble each other as closely as possible. This alignment algorithm can also be used

to calculate the dissimilarity or distance between the two signals. The DTW distance

can be thought of as the “stretch-insensitive measure of the ‘inherent difference’ be-

tween two given time series” [10].

Suppose we have two time series that we want to compare: Q and C, of length n

and m, respectively, where

Q = q1, q2, ..., qi, ..., qn, (2.1)

and

C = c1, c2, ..., cj, ..., cm. (2.2)

17



Note that the two time series do not need to be of equal length to perform DTW. We

define a non-negative distance function f for any pair of elements qi and cj:

d(i, j) = f(qi, cj) ≥ 0. (2.3)

This distance function is used to calculate the distance between every point in Q with

every point in C. Typically the Euclidean distance is used for the distance function,

where d(i, j) = (qi− cj)
2. The calculated distances, or “costs,” are stored in a matrix

of size n×m, often referred to as the cost matrix. A heatmap visualization of a cost

matrix can be seen in Figure 2.1a. The only input to the DTW algorithm is this cost

matrix, where each matrix element (i, j) is the defined distance between the ith point

of Q and the jth point of C.

The warping path W traces the lowest-cost path through the cost matrix, starting

from the (1, 1) index and ending at (m,n). The path consists of a contiguous set of

matrix elements that defines a mapping between Q and C. A single mapping element

connects one point in Q to one point in C. Path W has length K, which must be at

least as long as the longest time series but shorter than the sum of the two.

W = w1, w2, ..., wk, ..., wK max(n,m) ≤ K < m+ n− 1. (2.4)

The warping path is typically subject to several conditions.

• Boundaries: w1 = (1, 1) and wk = (m,n). This requires that the warping path

must start at the beginning of both time series (bottom left of the cost matrix)

and finish at the end of both time series (top right of the cost matrix).

18



(a)

(b)

Figure 2.1: Example of the original DTW algorithm, applied to two plasma etch
endpoint signals. (a) The warp path (red line) is traced across the cost matrix.
(b) Alignment mappings between the signals. Graphs were generated using the dtw-
python package [10].
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• Continuity: Given that wk = (a, b), then wk−1 = (a′, b′) where a − a′ ≤ 1 and

b − b′ ≤ 1. This means that allowable steps in the warping path are restricted

to adjacent cells (including diagonally adjacent), and every index of each time

series must be used.

• Monotonicity: Given that wk = (a, b), then wk−1 = (a′, b′) where a−a′ ≥ 0 and

b− b′ ≥ 0. This means that points in the warping path must be monotonically

spaced in time, which ensures that the warping path does not overlap itself.

While there are many warping paths that satisfy these constraints, the optimal

warp path is the one that minimizes the warping cost [2]:

DTW (Q,C) = min
K∑
k=1

d(wk). (2.5)

This path can be found efficiently using dynamic programming in O(nm) time. A

visualization of the warp path and mappings can be seen in Figure 2.1. We see that

the warp path (plotted in dark blue) follows the low-cost ‘valley’ through the cost

matrix. Next to it in Figure 2.1b are the original signals, with the mappings between

them plotted in light gray.

The original implementation of DTW does not restrict the boundary of the warp-

ing path within the cost matrix – this is known as unconstrained DTW. A variation

is constrained DTW, which limits the possible paths that can be taken through the

cost matrix.
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2.3 DTW Constraints

Constrained DTW helps to avoid pathological mappings between two time series, also

known as singularities. This occurs when a single point in one of the time series is

mapped to far too many points in the other time series, resulting in poor alignment.

Many constraint methods have been proposed to reduce these singularities; these

methods can be loosely grouped into step pattern and windowing approaches. Step

patterns, also called local slope constraints, limit the direction of transitions between

matrix elements. This results in limiting the amount of time stretch and compression

that is allowed at any local area of the alignment. Common step pattern constraints

include those introduced by Myers in 1980 [23] and Rabiner and Juang in 1993 [26].

Window constraints define a window within the cost matrix where the warping

path is free to take any shape. Popular versions of window constraints include Sakoe-

Chiba bands [29] and Itakura parallelograms [12]. Sakoe-Chiba bands generally per-

form better than Itakura parallelograms, but there are still individual datasets where

Itakura can produce superior results [9]. This indicates that the proper constraint

method is highly dependent on the dataset. Additionally, the optimal size of the

constraint window is dependent on dataset properties such as dataset size and time

series shapes [6]. Constraints can also be adapted to reflect structural characteristics

of the dataset or time series [27, 3].
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2.4 Time Series Averaging

While the concept of “average” is easily defined for many data types, for time series

the task of finding the average of a group of series is more complex. A typical

inclination may be to use the Euclidean average at each time point, but this can

obscure temporal features that are characteristic of the series. A major improvement

for the averaging of time series came from Petitjean et al. and is known as DTW

barycenter averaging (DBA) [24]. DBA iteratively refines an average series using

a two-step expectation-maximization scheme. The process first computes the DTW

distance between the temporary average sequence and all the other sequences in order

to find the mappings between their coordinates. Then it updates each coordinate of

the average sequence to be the barycenter average of all the coordinates that were

associated to it in the first step. DBA preserves the shape of the time series, and can

be used as a representative of a group of time series. For this reason it is often used

as a template or references series, or for clustering time series.

Another method for time series averaging uses Fréchet means, which rely on differ-

entiation to find global minimums. One shortcoming of DTW is that it is not differen-

tiable with respect to its inputs due to the min operator being non-differentiable. This

is addressed by the soft-DTW formulation of DTW, which achieves differentiability

by replacing the min with a soft-min operator [4]. Soft-DTW is defined as

dtwγ(x, y) := minγ{⟨A,∆(x, y)⟩, A ∈ An,m}, (2.6)
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where the generalized min operator is

minγ{a1, ..., an} :=


mini≤n ai, γ = 0,

−γlog
∑n

i=1 e
−ai/γ, γ > 0.

(2.7)

This formulation shows that soft-DTW depends on a hyperparameter γ that controls

how much smoothing occurs in the resulting metric. The original DTW distance can

be calculated by setting γ to 0.

Since soft-DTW is differentiable, a barycenter average of time series can be cal-

culated by directly applying Fréchet means with respect to the soft-DTW algorithm.

The use of the soft-min operator smoothes out local minima, which provides a better

optimization landscape compared to DBA, which can sometimes suffer from getting

stuck in local minima. The average time series found using soft-DTW are typically

smoother than using DBA.

2.5 DTW for Clustering

Clustering is a method of unsupervised pattern recognition, with the goal of group-

ing similar data samples into clusters. This is done by defining a distance measure

between pairs of points in the data sample, and then minimizing the within-cluster

distance and maximizing the between-cluster distance. The more distinct the clusters

are, the better the clustering quality is considered to be. DTW can be used as the

distance measure for clustering time series, because the output of the algorithm gives

a measure of the dissimilarity between two sequences. While the DTW-distance is
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not a formal metric distance due to its inability to satisfy the triangle inequality and

the identity of indiscernibles [31, 13], it can still be used effectively as a distance

measure.

Much work has been done on using dynamic time warping and clustering for

time series classification, and the general consensus that has emerged is that the k-

nearest-neighbor algorithm (kNN) is the most accurate classifier, even across different

domains [25, 35]. However, kNN is a supervised method which requires labelled data,

so for applications that require unsupervised learning other algorithms such as k-

means are also frequently used [15, 21].

An insightful paper by Petitjean et al. [25] highlights the usefulness of DBA for

clustering. They demonstrate that using DBA to condense the training dataset can

bring improvements in both accuracy and speed, which is especially beneficial for

resource-constrained applications. DBA has also been used in the domain of plasma

etching for building reference signals for clustering [11] and for augmenting sensor

readings with soft labelling [19].

2.6 DTW for Anomaly Detection

Anomaly detection is an important task in semiconductor manufacturing. With the

increasing complexity of processes and devices, being able to monitor and detect

faults quickly is critical to maintain profitability. Anomaly detection problems in

time series are frequently formulated to compare differences between a new, unla-

belled sample and established normal behavior. Detection methods typically rely
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(a) Euclidean alignment (b) DTW alignment

Figure 2.2: The DTW distance measure is able to handle distortions in the time axis,
unlike the Euclidean distance measure.

on measuring distances between time series. However, standard distance measures

such as the Euclidean distance fall apart quickly when applied to time series. Even

minor distortions in the time axis can cause the distance measure to dramatically

increase. A simple example using a shifted step signal is visualized in Fig. 2.2. The

DTW alignment is able to map the shifted signal correctly and has a distance of zero.

The Euclidean distance, on the other hand, is only able to use a one-to-one mapping

which cannot handle the time shift, and thus has an increased distance of 45 for this

particular example. Therefore, elastic similarity measures, such as DTW, are much

preferred when working with time series [20].

Three main types of anomalies occur in time series data:

• Point: individual data points that are unusual when compared to other values

in the time series. These can be global or local outliers.

• Subsequence: a section of the time series that is unusual within the context of
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the larger pattern.

• Collective: an entire time series that is unusual when compared to normal

behavior in other time series.

A detection method is usually most sensitive to one type of anomaly, although some

can be used to detect all types.

DTW has been applied to time series anomaly detection in several ways. A fre-

quent method is to use DTW as the distance function for other algorithms, as in [22,

14, 34]. Another method is to align the time series prior to calculating individual

point distances [7, 33]. Anomalous signals can also be detected from the information

obtained while creating the warping path [17].
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Chapter 3

Methods

In this chapter new DTW constraints are developed that incorporate knowledge of

the processing recipe step transitions. The first section discusses shortcomings of

existing DTW methods. The next three sections detail how DTW constraints can be

designed to incorporate the recipe steps, from the generation of reference signals, to

the specific constraints design, and finally the application to signal alignment.

3.1 Shortcomings of DTW

While the original DTW algorithm is popular and effective in many scenarios, it still

has shortcomings. As discussed in Section 2.3, one of the more common problems is

known as a singularity, where an unintuitive one-to-many mapping occurs, resulting

in poor alignment. Different constraint methods have been proposed to limit the

occurrence of singularities, such as the popular Sakoe-Chiba method.

The warp paths for both the original unconstrained DTW and the Sakoe-Chiba
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constrained method are shown in Figure 3.1. Extreme singularities can be seen in the

unconstrained DTW warp path, as evidenced by the straight horizontal and vertical

lines indicating unintuitive mappings. The singularities are smaller but still present

in the algorithm constrained with Sakoe-Chiba bands. These singularities can distort

the resulting warped signals, causing poor alignment with the reference signal. The

alignment is also inconsistent across many samples, particularly when anomalies are

present. This confirms the need for an improved alignment method.

3.2 Generation of Reference Signals

The DTW algorithm optimally aligns two signals at a time; however, our goal is to

align a group of signals. Therefore, we establish a reference signal for each sensor that

other signals can be compared to. If “golden” reference signals are available they are

ideal to use, but that is not common. To solve this, we generate reference signals

from known-good data that was previously collected from the same tool and recipe.

DTW barycenter averaging (DBA) is used, which iteratively creates an “average”

time series using a two-step expectation-maximization scheme [24]. DBA preserves

the shape of the time series and can be used as a representative of a group of time

series, which makes it useful for generating template or reference series. It has been

shown to perform better on plasma etch signals than comparison methods such as

soft-DTW [11].
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(a) Unconstrained DTW warp path (b) Unconstrained DTW alignment

(c) Sakoe-Chiba constrained DTW warp
path

(d) Sakoe-Chiba constrained DTW align-
ment

Figure 3.1: DTW warp paths and signal alignments for unconstrained DTW and
Sakoe-Chiba constrained DTW. Both methods still suffer from singularity problems,
indicated by the abrupt path changes and unintuitive mappings.
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3.3 Constraints

We propose using semiconductor processing recipe step numbers to develop con-

straints for the DTW algorithm. Characteristic features in the signals typically occur

when a recipe transitions from one step to the next, so we want to encourage align-

ment between signals at recipe step transition points. Signal features, however, do

not necessarily align precisely with step increments. For example, the endpoint signal

is commonly used to detect the endpoint of certain reactions, which then indicates

it is time to proceed to the next recipe step. A signal feature might therefore occur

several time points before the step transition point. Certain other recipe steps call

for tool adjustments that induce changes in the process environment, resulting in

distinct features in the measured signals. These kinds of adjustments would cause

signal features to appear after the step transition point.

For these reasons, the time point at which the recipe step transition occurs only

gives an approximate time location for possible signal features. While additional

subject matter expertise could be used to identify specific features for alignment, this

would require significant human effort for each process and recipe, which is infeasible

in most fabs. Therefore, using the approximate time location for features is preferred,

as this method can be applied in an unsupervised manner.

The step transition points are used to develop adaptive constraints that reflect the

high-level recipe structure inherent in these types of signals. To be able to align the

incoming sensor signals in an unsupervised fashion, a reference signal is generated for

each sensor from known-good data using the DBA method discussed in Section 3.2.

The reference signal will be used as a guide, and the new data will be warped to align
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with the reference.

To create the constraints, the step transition points are first extracted from the

step signal. These time points are plotted on the cost matrix, and a virtual line is

drawn between the points. An envelope is then built around this virtual line which

will be the allowed region of the constrained matrix. The boundary of the envelope is

a distance w from the virtual line. This constraint width is set as a hyperparameter,

and controls how much time stretch is allowed by the constraints. A visual example

of building the constraints can be seen in Figure 3.2a. Once the constrained area

is defined, it is applied to the cost matrix to set boundaries on the warp path, as

shown in Figure 3.2b. By restricting the allowed paths through the cost matrix, we

can reduce the singularities that cause poor alignment.

3.4 Signal Alignment for Preprocessing

DTW can be a useful preprocessing step for time series data prior to use in machine

learning models. There is increasing interest in applying this concept to monitoring

semiconductor processes [1, 5, 8], since aligning signals that might have variation

in the time axis can improve performance of the models. Using DTW to find the

optimal alignment between a reference signal and query signal allows one to apply

those alignment mappings to create the warped query signal. Given the warp path

W that describes the alignment mappings, the warped signal for either the reference

or query signal can be found by selecting the corresponding sensor value for each

element in W . To create the warped query signal, one iterates through the alignment
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(a) Constraints are built using the recipe
step transition points (red points). A vir-
tual line (black) connects the points, and
then an envelope (blue) of width w is
built around the line, which will be the
allowed area of the constraint. The grey
area is out-of-bounds.

(b) Constraints derived from the recipe steps
are imposed on the DTW cost matrix. The
warp path (red line) traces the path of optimal
alignment between the two signals within the
constrained area.

Figure 3.2: Building and using constraints on the DTW cost matrix.
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elements to locate the query index in the mapping w(a, b). The query index then

provides the original query signal value, which is appended to the warped query.

Aligning all the samples in a dataset to the same reference signal reduces the time-

variability of characteristic features. DTW was specifically mentioned as a possible

preprocessing extension for the kernel density estimation (KDE) method [18], and this

is the primary anomaly detection model for which the DTW preprocessing approach

will be tested in this work.
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Chapter 4

Experiments and Datasets

This chapter demonstrates the effectiveness of the new step-constrained DTWmethod

for signal alignment preprocessing. The proposed method is compared to five other

alignment methods on two different datasets, with additional exploration into the

differences between methods.

4.1 Datasets

4.1.1 Synthetic Dataset

To demonstrate the proposed method, a synthetic dataset is generated that mimics

the sensor signals that occur on semiconductor processing equipment. A visualization

of this dataset is shown in Figure 4.1. Each “run” contains four sensor signals as well

as a step signal, all with three recipe steps. The length of each step is normally

distributed and equal across all sensors, causing changes in the signals exactly at the
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transitions of steps. Thus, the total length of the sensors may vary from one run to

the next, but the overall shape remains the same and would be considered a nominal

or acceptable process run. Anomalies are injected by randomly scaling sections of

runs.

Figure 4.1: Synthetic dataset with four sensor signals that mimic a generic plasma
etch. An example training set of nominal data is shown in grey, with three anomalous
runs displayed in color. Some runs (e.g., green signals) are subtle anomalies in just
one of the four sensor signals for that run; others (e.g., blue signals) are relatively
large or “easy to detect” anomalies spanning all four signals for that run.

4.1.2 Industrial Dataset

A historical plasma etch dataset from Analog Devices, Inc. is used that includes both

nominal data and anomalous data from a process fault. There are 2004 nominal

runs and 342 anomalous runs, for a total of 2,346 labelled wafer runs. The dataset

contains 31 different sensor signals, of which five have been selected for testing due to

their relevance: RF power, gas flow, chuck temperature, OES endpoint, and chamber

pressure. A normalized sample of this dataset is displayed in Figure 4.2, along with

the recipe step signals.
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Figure 4.2: Plasma etch dataset with six recorded sensor signals. An example training
set of nominal data is shown in grey, with five anomalous runs displayed in color.
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Dataset Sub-sampling

The proposed methods are tested on two labelled datasets: one synthetically gen-

erated and one real plasma etch dataset. In order to understand how the methods

generalize between similar datasets drawn from the same underlying distribution, we

have sub-sampled from these two primary datasets to create smaller training sets

from each primary dataset. To create the testing subset, 100 nominal runs and 100

anomalous runs are set aside and used for every evaluation. From the remaining nom-

inal data, runs are sampled to create the training subset. This sampling is repeated

to create different training sets, and the methods are tested on all and averaged in

order to understand the robustness of the methods.

4.2 DBA vs. Soft-DTW

To build the reference signals needed for DTW, two popular time series averaging

methods are selected for comparison. These methods are applied to the training

datasets, which contain only known-good data. The reference time series obtained

will thus be representative of known-good runs. Since there are typically multiple

sensors, multivariate DTW will need to be used, with a reference signal created for

each sensor.

Both methods – DBA and soft-DTW barycenters – are tested on a plasma etch

dataset. An experiment is performed to determine which method creates a better

average of a group of time series. First, 19 sensors are selected from the known-

good plasma etch dataset. The data is z-score normalized to account for the different
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Figure 4.3: The best time series averaging method for minimizing DTW distance is
DBA. Error bars represent one standard error of the mean.

sensor value scales. Next, a randomized dataset (of a determined sample size) is se-

lected for each sensor, and both averaging methods are used to find the average time

series for that sensor, creating a reference sequence for each method. The gamma

hyperparameter for soft-DTW is set to γ = 0.1, based on a similar prior experiment

that suggests it has little impact on the mean DTW distance [11]. Then the DTW

distance is measured between each sample in the dataset and the newly created ref-

erence sequence. For each determined sample size, this process is repeated 15 times

and the DTW distance results are averaged. A plot of the overall results can be seen

in Figure 4.3. For all sample sizes, DBA achieves a lower average DTW distance,

thus outperforming the soft-DTW method. This agrees with the previous work by

He [11].
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Figure 4.4: DBA requires significantly less computation time than soft-DTW. Error
bars represent one standard error of the mean.

Another consideration for choosing a barycenter averaging method is the com-

putation time. As shown in Figure 4.4, the computation time for soft-DTW grows

exponentially with the size of the dataset. Therefore, it would be preferable to use

DBA if computation resources are limited or the target dataset is large.

Additionally, since the reference signal will be used to align new data (that was

not used to create the average), we are interested in how well it generalizes as a

representative of unseen data. For this experiment, both DBA and soft-DTW create

reference signals by averaging a small set of samples. Then the DTW distance is

measured between these generated reference signals and 1000 randomized, known-

good signals. This is repeated 15 times for each chosen sample size and averaged, and

the results can be seen in Figure 4.5.

Soft-DTW generalizes better than DBA when starting with a small dataset. How-

ever, for datasets larger than approximately 20 samples, DBA performs better. The
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Figure 4.5: Soft-DTW does a better job of representing small datasets, while DBA
performs better with larger datasets. Error bars represent one standard error of the
mean.
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results from these larger sample sizes indicate that DBA might be overfitting to a par-

ticular group of samples when smaller sample sizes are involved. Soft-DTW smoothes

the optimization landscape, whereas DBA does not perform this smoothing and so

adopts some of the idiosyncrasies of those particular samples. This effect would be

heightened for smaller sample sizes. Therefore, if working with small datasets of fewer

than approximately 20 samples, soft-DTW would be an appropriate method to use.

4.3 Tuning Width Parameter

The width parameter w reflects how much stretch is allowed in the time alignment

of the warped signals. Too small, and it restricts the allowed area, possibly blocking

the optimal alignment path; too large, and the allowed region is overly wide, which

can lead to excessive singularities and worse alignment. Therefore, it is important

to establish an acceptable range for w. The optimal value can vary from dataset to

dataset, which was confirmed by Dau et al. [6]. The experiment below serves as a

guide for finding a useful range for a particular dataset, as well as an exploration of

how non-ideal width values impact alignment.

Smaller datasets are built using the sampling method described in Section 4.1.2 to

create ten subsets from the plasma etch dataset. The width value w is varied between

the following values: 1, 5, 10, 20, 30, 50, and 100. A value of one restricts the allowed

path to a straight line between step transition points, while larger values allow for a

wider allowed area, and thus more options for warp paths.

We use the area Under the ROC (receiver operating characteristic) curve (AUC-
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(a)

(b)

Figure 4.6: (a) Average anomaly detection AUCs using the step constrained DTW
preprocessing method while varying the width hyperparameter. (b) AUC scores for
individual data subsets using the step constrained DTW preprocessing method while
varying the width hyperparameter. There is large variation across datasets in the
response to varying the constraint width.
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ROC) metric, which measures the performance of classifier models. A perfect score

of 1 indicates that the model is able to correctly classify every sample. The AUC

score is observed for the KDE method across values of w, and the results are shown

in Figure 4.6. The highest performance is achieved using w = 20, which has the

highest average AUC value across all data subsets, and corresponds to about 3-4% of

the total length of a time series in the plasma etch dataset. However, it is important

to note that there is large variation between datasets in the response to varying the

constraint width. In particular, several subsets show a significant drop in performance

when the width is decreased below 20. Therefore, if tuning is not completed for a

future application, it would be better to err on the higher side rather than risk the

decreased performance seen with a tight constraint on some subsets.

4.4 DTW Constraints

We compare the performance of six different methods for use in signal alignment

preprocessing, when coupled to KDE anomaly detection. The first method, which we

call “no preprocessing,” does not alter the signal at all, and assumes that the data

points are equally spaced in time, with the first point starting at time zero and the last

point occurring at time equal to one. The new constraints, as described above, are

another method. However, the warped signals end up being longer than the original

signal, which increases computation time during model training and evaluation. To

account for this, we also test resizing the warped signals down to the original size

using linear interpolation. Another DTW constraint method, the Sakoe-Chiba band,
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is also tested in both the full and resized versions. Finally, a naive linear time scaling

method that makes use of the recipe step transition points is also compared. It

linearly rescales each step in time to match the length of the reference signal step.

The main hyperparameter for the KDE method [18], ∆t, is tested across three

different values: 0.005, 0.01, and 0.02. The preprocessing methods may perform

optimally under different hyperparameter conditions, so for a fair comparison we

choose the best-performing conditions for each method and average those results. We

again use the AUC-ROC score, as well as the true positive rate (TPR) of the classifier,

given an acceptable false positive rate (FPR) of 1%. This is an important metric for

manufacturing because it means that, statistically, 1% of the nominal runs will cause

a false alarm that engineers will have to review. Decreasing this further would require

a tradeoff with the sensitivity of the model, possibly decreasing the number of true

anomalies that the model is able to detect.

The results for the synthetic dataset are shown in Figure 4.7. The best method

in this experiment is the naive linear rescale, with our step constraints a close second

and much better than the rest. This result makes sense for this dataset, because we

know the exact time that the recipe step changes and that it occurs at the exact

same time that the signal features change. Therefore, the naive linear rescaling is

able to perfectly align the signals. This demonstrates that if we can achieve perfect

alignment, the KDE method is able to correctly discriminate between the nominal

and anomalous signals for this synthetic dataset. However, in real-world data, the

step transition points and signal features do not have this perfect alignment. This is

why our step constraint method is better than linear rescale, as shown in the next
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(a) (b)

Figure 4.7: (a) Average anomaly detection AUCs for the different preprocessing meth-
ods on the synthetic dataset. (b) Average true positive rates at a false positive rate of
1% for anomaly detection with the different preprocessing methods on the synthetic
dataset. Error bars show one standard deviation.

result.

The plasma etch dataset provides an opportunity to apply these methods to a

real-world scenario. Two optical endpoint signals from this dataset were displayed

previously in Figure 2.1b, which shows the more subtle variation in recipe step lengths.

The results for AUC and the true positive rates at a false positive rate of 1% are

given in Figure 4.8. Note that the naive linear rescaling performs much worse on this

dataset. This is because real-world data is inherently messy, and we do not know the

exact moment that step transitions and signal features occur. By forcing the signals

to align at points that may be non-ideal, it actually performs worse than the more
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AUC TPR at FPR=0.01
Preprocessing Method Mean Std Dev Mean Std Dev

Step Constraints 0.9998 0.0002 0.9875 0.0089
Step Constraints - Resized 0.9980 0.0010 0.9600 0.0233

Sakoe-Chiba 0.9951 0.0032 0.7913 0.1131
Sakoe-Chiba - Resized 0.9819 0.0031 0.4963 0.1583

Naive Linear 1.000 0.00 1.000 0.00
No Preprocessing 0.9939 0.0018 0.8900 0.0441

Table 4.1: Average anomaly detection AUCs and TPRs for the different preprocessing
methods on the synthetic dataset. Best performance is bolded and second-best is
underlined.

AUC TPR at FPR=0.01
Preprocessing Method Mean Std Dev Mean Std Dev

Step Constraints 0.9856 0.0072 0.8100 0.0283
Step Constraints - Resized 0.9645 0.0139 0.8188 0.0247

Sakoe-Chiba 0.9800 0.0096 0.7900 0.00
Sakoe-Chiba - Resized 0.9637 0.0127 0.8125 0.0271

Naive Linear 0.9357 0.0262 0.7925 0.0071
No Preprocessing 0.9567 0.0199 0.7914 0.0038

Table 4.2: Average anomaly detection AUCs and TPRs for the different preprocessing
methods on the plasma etch dataset. Best performance is bolded and second-best is
underlined.

flexible approaches.

The best-performing method is the new step constraints, with the Sakoe-Chiba

band a close second. The Sakoe-Chiba method appears to perform worse when the

time length variation in recipe steps is more extreme, as was the case with the syn-

thetic dataset. Since the Sakoe-Chiba band does not take into account the recipe

steps, it cannot align those sensor signals quite as well. Figure 4.9 explores how

the differences in warp path affect the Sakoe-Chiba band constraints, as opposed to

46



(a) (b)

Figure 4.8: (a) Average anomaly detection AUCs for the different preprocessing meth-
ods on the plasma etch dataset. (b) Average true positive rates at a false positive rate
of 1% for anomaly detection with the different preprocessing methods on the plasma
etch dataset. Error bars show one standard deviation.
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the step constrained DTW. The Sakoe-Chiba preprocessing misses a small number

of subtle anomalies, which appears to be due in part to singularities in the warp

path. However, it would still be a viable method to use if the step signal was unavail-

able for some reason. The resized methods do not perform as well as the full-length

warped signals, but they do still offer a small improvement over no preprocessing.

Additionally, both resized methods provide a higher TPR than the full-length signals

do, which could be of practical use for industry implementation. There may be a

length in between these sizes which maximizes the benefits of the different lengths

with minimal increase in computation time, which could be explored in future work.

The increase in performance in the KDE model is likely due to the improved

probability distributions that are able to be constructed. An example of one of the

sensor distributions is visualized in Figure 4.10. When no preprocessing is used, the

distribution is blurry, with wide allowances for signals. However, using the step-

constrained DTW as a preprocessing method aligns the signals in time much more

precisely, thus allowing the KDE model to build a more accurate distribution. The

visual in Figure 4.10b is therefore much sharper, with narrower regions of high prob-

ability. Therefore, the model is more sensitive when signals stray from these regions,

which improves anomaly detection.
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(a)

(b)

Figure 4.9: An example of the different cost matrices for an anomalous signal that
is detected using the step constrained DTW, but is missed using the Sakoe-Chiba
band DTW. A noticeable difference between the two warp paths is a singularity in
the bottom-left of the Sakoe-Chiba cost matrix.
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(a) No preprocessing

(b) With DTW alignment

Figure 4.10: The use of step-constrained DTW as a preprocessing alignment method
improves the quality of the calculated kernel density estimate probability distribu-
tions.
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4.5 Effect of Signal Lead/Lag

As discussed in previous sections, the time at which the step transition occurs can

potentially lead or lag any features that occur in the sensor signals. The amount of

this delay is inherent in the industrial dataset, but can be controlled in the synthetic

dataset. By injecting differing amounts of delay, we can explore how the different

methods respond as the signals increasingly behave like real-world data with small

amounts of delay.

An example of sensor signal timings for the plasma etch dataset is shown in

Figure 4.11. The temperature, endpoint, and pressure sensors are chosen to display

how different physical sensors respond as the recipe progresses. These sensor signals

are overlaid on top of the recipe step signals. The bottom plot shows a zoomed in view

of steps three through six, including the endpoint step, so that the delays are visible.

We can see that the measured temperature moves slowly during the etch process,

whereas the other parameters respond more quickly. When the main etch finishes

and the transition between step three and four (at an index value of approximately

468) occurs, we see that the endpoint signal begins decreasing rapidly before the

recipe step signal increments. This makes physical sense, as the rapid change in the

endpoint signal is the indicator that the material property on the wafer has changed

and the recipe should move to the next step. Then the chamber pressure begins to

increase not long after the recipe step signal increments. This is likely in response

to machine settings changing during the new step. The lead and lag nature of these

signals is significant, and is explored further using the synthetic dataset.

Each run in the synthetic dataset has three recipe steps, the lengths of which are
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(a)

(b)

Figure 4.11: Sensor and recipe step signals from one run in the plasma etch dataset.
Sensor signals can both lead and lag the recipe step signal. (a) Overview of the full
run. (b) Zoomed in view of steps 3-6.

52



Figure 4.12: The recipe step signal transitions in the synthetic dataset are made to
lead or lag features in the sensor signals.

normally distributed. For this experiment, a small amount of positive and negative

delay is added to each step to offset it from the recipe step signal. This lead and lag

signal delay is shown in Figure 4.12. All of the physical sensor signals still respond at

the same time, but the addition of delay offsets this response slightly from the time

at which the recipe step transitions.

For this experiment, the mean value of the delay is increased gradually, using the

values 1, 4, 7, and 10. A value of zero delay would correspo!pdfnd to the results

discussed previously in Section 4.4. The results for both AUC and true positive rate

(TPR) at a false positive rate of 1% are shown in Figure 4.13. The naive linear rescale
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method significantly degrades in both AUC and TPR as the delay increases. This

supports the hypothesis that the linear naive method performs much worse on the

plasma etch dataset due to the unavoidable delays in real processing data.
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(a)

(b)

Figure 4.13: The performance of the naive linear method significantly degrades as
the delay is increased. Error bars show one standard deviation.
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Chapter 5

Applications to Clustering

Step-constrained DTW can also be used for applications other than signal alignment.

This chapter explores clustering methods. The DTW algorithm is frequently used

as a distance measure for time series clustering methods, as discussed in Section 2.5.

Step-constrained DTW can also be applied in the same manner, and is demonstrated

on the plasma etch dataset described in Section 4.1.2.

5.1 Hierarchical Clustering

We first present a small example of hierarchical clustering with a total of ten wafer

runs, five nominal and five anomalous. An agglomerative, or “bottom-up,” clustering

method is applied. Each sample begins as a single cluster. The distance between these

clusters is defined using a linkage criterion, which depends on a distance function. For

our testing, we use single linkage and the distance function is fulfilled using the step-

constrained DTW distance measure. At each iteration, the two closest clusters are
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merged together, and the distances are recalculated. This process continues until all

the clusters have been merged, or an alternate stopping criterion is met.

The recipe step signals are employed for developing the constraints, and the same

five relevant sensors are used in the distance calculation. The endpoint signals are

displayed next to the dendrogram grouping in Figure 5.1. The dendrogram is a tree-

like diagram that displays the cluster arrangements at each iteration. The first split

correctly separates all of the anomalous runs from the nominal runs.

5.2 Density Clustering

Step-constrained DTW is also applied to density-based spatial clustering of applica-

tions with noise (DBSCAN). DBSCAN is a popular clustering method that is par-

ticularly effective for datasets with noisy or arbitrarily-shaped clusters. Unlike other

unsupervised clustering methods, it does not require the user to predetermine the

number of clusters.

As implied in the name, DBSCAN operates on the idea of density. Clusters are

defined as dense regions with many data points, separated by sparse areas with low

density. Each data point is classified as one of three types: a core point, a border

point, or a noise point. Core points are located at the center of the cluster, while

border points are found near the periphery. Noise points, also called outliers, are

located further from the cluster. DBSCAN has two hyperparameters, MinPts and

eps, that must be set. The distance eps is the maximum distance between two points

in order for them to be considered neighbors. Then MinPts refers to the minimum
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Figure 5.1: Hierarchical clustering of 10 plasma etch samples, containing 5 nominal
runs (blue) and 5 anomalous runs (red). Using the step-constrained DTW distance
measure results in accurate separation into two clusters (anomalous, nominal) at the
top level.
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number of points that must be within radius eps in order for a point to be considered

a core point.

In order to select the minPts parameter for the plasma etch application, the rule

of thumb of minPts ≥ D + 1 is used, where D is the number of dimensions in the

dataset. Since five recorded sensors are used for the distance calculations, minPts

is set to six. Then eps is set to 100 after trial and error. For this experiment, 50

good wafer runs and 50 anomalous wafer runs are randomly selected from the dataset.

The sensor signals are z-score normalized prior to the step-constrained DTW distance

calculations.

The DBSCAN clustering finds three main clusters in the testing set. These clusters

are visualized in Fig. 5.2 in both the temperature and optical endpoint signals. At first

consideration, two clusters, one each for nominal and anomalous, might make sense.

However, since there are different anomalous shapes in this dataset, a higher number

of clusters yields better results. All of the samples in Cluster 1 are nominal wafer

runs, while Clusters 2 and 3 contain only anomalous runs. The different anomalous

shapes are particularly evident when viewing the anomalous optical endpoint signals.

All of the purple runs belonging to Cluster 3 have strikingly high values during the

etch, whereas the orange signals of Cluster 2 have more typical values. However,

these Cluster 2 signals still have an anomalous shape in the temperature plot.

These examples demonstrate that step-constrained DTW can be used as a distance

measure for various clustering applications. This can be useful for classification and

monitoring of semiconductor processing sensor signals.
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Figure 5.2: Temperature (top) and optical endpoint (bottom) sensor signals colored
by the cluster label found using step-constrained DTW as the distance metric for the
DBSCAN algorithm.
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Chapter 6

Conclusions

In this thesis, a constraint method for the dynamic time warping algorithm is pro-

posed. This method utilizes knowledge of semiconductor processing recipe step tran-

sitions to improve the signal alignments. Reference signals are generated using DTW

barycenter averaging, which is established to be preferred over soft-DTW due to the

improved representation and faster computation time. Experimental results on both

synthetic and industrial datasets show that the step constraints outperform other

preprocessing alignment methods. Step-constrained DTW is also demonstrated to be

a useful distance measure for two popular clustering methods. These constraints are

flexible enough to be applied to other processing datasets that contain recipe step

signals.

In future work, further applications of step-constrained DTW may be explored.

Anomaly detection methods could utilize the DTW distance measure or signal map-

pings. Additional work could also move beyond anomaly detection to anomaly clas-
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sification, such as using k - nearest neighbor clustering with step-constrained DTW

as the distance metric.
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