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ABSTRACT

The problem of communication over multiple variants of the scalar Gaussian fading chan-
nel subject to a state-obfuscation constraint imposed in the form of near independence be-
tween the channel outputs and the channel coefficients has been studied. By defining the
operational capacity as the maximal achievable rate under the state obfuscation constraint,
an informational counterpart is been derived, which is then proved to coincide with the op-
erational capacity. Conditions for this capacity to be non-zero and closed-form solutions for
that capacity in the high signal-to-noise ratio (SNR) limit are derived.

Thesis supervisor: Gregory W. Wornell
Title: Sumitomo Professor of Engineering

3



4



Acknowledgments

First of all, I am deeply grateful to my advisor, Professor Gregory Wornell, for his invaluable
guidance, support, and mentorship during the past two years. Throughout my research jour-
ney at MIT, Greg has been a constant source of insight and guidance, providing thoughtful
suggestions and encouragement for me to explore the fundamentals of research problems.
Greg has always agreed to meet with me and always brought a sense of humor and encour-
agement to our meetings.

I would also like to express my sincere gratitude to Prof. Ligong Wang and Matthew Ho,
my collaborators, who have contributed to the success of this work. Your invaluable insights
contributed significantly to the success of this thesis.

I also thank the current and former labmates in the Signals, Information and Algorithms
(SIA) laboratory: Abhin Shah, Toros Arikan, Tejas Jayashankar, Gary Lee, Safa Medin,
Mumin Jin, Maohao Shen, Dr. Jongha Ryu, and Dr. Amir Weiss. I am fortunate to have
had the opportunity to collaborate with such a talented and supportive group of individuals.
I would like to further express my sincere gratitude to Dr. Amir Weiss, whose guidance
and friendship throughout my first semester at MIT alleviated the shock of arriving in a
new country, and to Prof. Yuval Kochman and Prof. Meir Feder for multiple encouraging
discussions on their occasional visits to our lab.

I wish to thank the faculty members at Tel-Aviv University: Prof. Ram Zamir and Prof.
Uri Erez, who taught me the basic Information Theory classes and for whom I owe my
admission into MIT’s graduate program, and Prof. Anatoly Khina, my former supervisor,
whose inspirational guidance was the number one reason for me to continue on my academic
journey.

I would also like to express heartfelt gratitude to my family for their unwavering support
and endless love.

Last but not least, I thank my life partner and my wife, Shiran, whose support and love
were the most vital ingredients to the success of this thesis. Looking at the way we went
together here, our relationship is my biggest achievement.

5



6



Contents

Title page 1

Abstract 3

Acknowledgments 5

1 Introduction 9
1.1 Notation: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Channel and System Model 11
2.1 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Communication Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Background 15
3.1 Communication Subject to State Masking . . . . . . . . . . . . . . . . . . . 15
3.2 Communication Subject to State Obfuscation . . . . . . . . . . . . . . . . . 16

3.2.1 State Obfuscation With CSI . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 State Obfuscation Without CSI . . . . . . . . . . . . . . . . . . . . . 17

3.3 Non-Coherent Communication over Gaussian Phase-Noise Channels . . . . . 18
3.3.1 Memoryless and Correlated Phase-Noise Channel . . . . . . . . . . . 18
3.3.2 Quasistatic Phase-Noise Channel . . . . . . . . . . . . . . . . . . . . 18

3.4 Independence in Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 The Obfuscated Capacity of the Scalar Gaussian Channel 21
4.1 Memoryless and Quasistatic Fading . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Obfuscated Capacity With CSI . . . . . . . . . . . . . . . . . . . . . 21
4.1.2 Memoryless Fading Without CSI . . . . . . . . . . . . . . . . . . . . 23
4.1.3 Quasistatic Fading Without CSI . . . . . . . . . . . . . . . . . . . . . 24
4.1.4 Obfuscated Capacity With Feedback . . . . . . . . . . . . . . . . . . 25

4.2 Correlated Fading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.1 Obfuscated Capacity With Correlated Fading . . . . . . . . . . . . . 27
4.2.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 The Obfuscated Capacity of the Discrete-Time ISI Gaussian Channel 33
5.1 Circulant Matrices and Discrete Fourier Transform . . . . . . . . . . . . . . 33
5.2 The Obfuscated Capacity of the Circular ISI Channel . . . . . . . . . . . . . 34

7



5.3 The Obfuscated Capacity of the Regular ISI Channel . . . . . . . . . . . . . 37
5.3.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Conclusion and Future Work 41

A Alternative Proof of Lem. 6 43

B Background on the Dirty-Paper Channel 45

References 47

8



Chapter 1

Introduction

The inherent hardware imperfections of chipsets become apparent in the transmitted sig-
nal, which, combined with the physical location of the transmitter, give rise to a distinct
radiometric fingerprint. This fingerprint can serve as a means of inferring the transmitter’s
location and enhancing security through additional authentication measures. Notably, re-
cent studies propose practical fingerprinting solutions that can be readily implemented in
commercial off-the-shelf devices [1], [2]. However, channel state information (CSI)-based lo-
calization and user identification have been demonstrated to be possible in multiple scenarios,
which could seriously threaten people’s privacy at home or workplace [3]. Moreover, since
these parameters can be intercepted by gaining remote access to the hardware (e.g., through
unsecured internet connections) or by employing low-cost sensing nodes, malicious applica-
tions can potentially infer users’ identities and locations remotely, exploiting their sensitive
information for nefarious purposes. Consequently, a growing number of applications aim to
design improved physical-layer waveforms that make such unauthorized eavesdropping tasks
more difficult [3]–[9].

This thesis investigates aspects of this issue from an information-theoretic perspective,
determining when we can reliably communicate with a positive rate over a channel that is
completely obfuscated. In this thesis, we seek to characterize the obfuscated capacity of multi-
ple variants of the scalar Gaussian fading channel, i.e., the capacity subject to an additional
obfuscation constraint in the form of near independence between the channel fading coeffi-
cients and the channel outputs. Our investigation builds upon the recent advancements in
communication subject to state obfuscation made by Wang and Wornell [10], which focused
on discrete memoryless state-dependent channels. In particular, our work aims to connect
state obfuscation to physical channels by looking at the various variants of the Gaussian
channel.

The rest of the thesis is organized as follows. In Chapter 2, we present the problem setup,
and in Chapter 3, we present background material on the problems of communication subject
to state masking, communication subject to state obfuscation, and non-coherent communi-
cation over Gaussian channels. We calculate the obfuscated capacity of the scalar Gaussian
channel, with and without Channel State Information (CSI), for the case of memoryless,
quasistatic, and correlated fading, with and without feedback, in Chapter 4. We calculate
the obfuscated capacity of the intersymbol interference (ISI) channel in chapter 5. Chapter
6 discusses several directions for future research.
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1.1 Notation:

We use bold upper- and lower-case letters for matrices and vectors, respectively. We denote
random variables using san-serif fonts (x, y) and their realizations using regular italic fonts
(x, y). We use Cm×n and Cm to denote the sets of m×n complex matrices and m×1 complex
vectors, respectively. The (i, j)-element of a matrix A is denoted by A[i, j]. A block-diagonal
matrix whose block-diagonal elements (which are themselves matrices) are {Ai}ki=1 is denoted

by diag (A1, . . . ,Ak). The Euclidean norm is denoted by ∥a∥ ≜
√∑k

i=1 |ai|
2. The transpose

of a matrix is denoted by (·)T and the Hermitian transpose by (·)†. For j ≥ i, we denote
xj
i ≜ (xi, . . . , xj)

T ; when i = 1, we simply write xj ≜ xj
1. When i is not in numerical order

but rather out of a set A, we denote {xi}i∈A. We usually denote sequences with infinite
length by {xℓ}. The joint probability density function (PDF) of (x, y) is denoted by Px,y(·, ·).
We denote the probability of an event A occurring to be P[A]. The phase of a complex
number x is denoted by ∠x. We denote [n] ≜ {1, . . . , n}. We use the notation o(x) when
lim
x→∞

o(x)
x

= 0. We denote mutual information by I (·; ·) and differential entropy by h(·).
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Chapter 2

Channel and System Model

This chapter introduces the channel models and the communication settings that will be
analyzed throughout this thesis.

2.1 Channel Model

We consider two-channel models with additive Gaussian noise. The first is the scalar fading
channel, described by

yn = hnxn + zn, n = 1, . . . , N (2.1)

where xn and yn are the transmitted and received signals at time n, respectively; the additive
noises {zn} are i.i.d. circularly symmetric complex Gaussian random variables with mean zero
and variance 1

SNR
; We assume zN ⊥⊥ hN , and since the transmitter does not know zN then

further xN ⊥⊥ zN . We further assume that the fading coefficients have a bounded variance,
namely E

[
|hn|2

]
< ∞,∀n ∈ [N ]. We will consider multiple different scenarios regarding the

distribution of the multiplicative gains {hn}: We will refer to the case where the sequence
{hn} is i.i.d. as the memoryless fading case; for the case where hn = h,∀n ∈ [N ] as the
quasi-static fading case; and for the general case where the channel coefficients are neither
constant nor i.i.d. as correlated fading. For any N , let tN ∼ Unif ({1, . . . , N}) and define the
random variables h̃tN . Then, we assume this sequence converges (as N → ∞) in distribution
to a random variable h. For the memoryless fading case, the distribution of h is the same as
the marginal distribution of every hn.1

The second model we consider is the discrete-time ISI channel (see [11], [12] and references
therein)

yn =
L∑

ℓ=1

hℓxn−ℓ+1 + zn, n = 1, . . . , N (2.2)

where xn, yn, and zn are the same as in the first model; and where {hℓ} : hℓ ∈ C,∀ℓ is
the (truncated) channel impulse response. For any N , we assume that L is constant s.t.

1We note that by the bounded second-moment assumption on the fading coefficients, we further have
E
[
|h|2

]
< ∞.
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L < N . However, we allow L to grow with N as long as its asymptotic behavior is L ∈ o(N).
Moreover, we assume that

∑∞
ℓ=1 E

[
|hℓ|2

]
< ∞. We can then define the frequency response

of the length-L channel by

HL(f) ≜
L∑

ℓ=1

hℓe
−j2π(ℓ−1)f , 0 ≤ f < 1

and we further define H(f) = lim
L→∞

HL(f). We assume that the function |H(f)| is continuous
over [0, 1) w.p. 1.

2.2 Communication Setting

We now define the communication setting.
Encoder. observes a message M ∈

[
2RN

]
and generates a codeword via a sequence of

random mappings from M to xn ∈ C, n = 1, . . . , N . We denote xN ≜ (x1, . . . , xN)
T . The

codeword xN is subject to an average input power constraint

1

N

N∑
n=1

E
[
|xn|2

]
≤ 1

where the expectation is taken over a uniformly drawn message and the random encoding
mappings. We will further analyze the case where we have Channel State Information (CSI)
at the encoder, namely, the case where the symbol xn is generated by a random mapping
from the message M and the realization of channel coefficients. We will refer to the case of
causal CSI as the case where xn = fn (M, hn−1) and to the noncausal CSI case as the case
where xn = fn

(
M, hN

)
.

Decoder. receives the channel outputs yN and tries to decode the message M. We denote
the decoded message by M̂.

Obfuscation Constraint. The channel outputs are subject to an obfuscation con-
straint of the form of near independence between the sequence yN and the channel fading
coefficients. For the memoryless and correlated fading channels, the constraint is

lim
N→∞

1

N
I
(
yN ; hN

)
= 0 (2.3)

where for the quasi-static case, the constraint is

lim
N→∞

I
(
yN ; h

)
= 0 (2.4)

For the ISI channel, the constraint is

lim
N→∞

I
(
yNL ; h

L
)
= 0. (2.5)

A rate R is said to be achievable if there exists a sequence of length-N codes such that the
obfuscation constraint—(2.3) for the memoryless and correlated fading channels, (2.4) for
the quasi-static fading channel and (2.5) for the ISI channel—is satisfied and the probability
of decoding error P

(
M̂ ̸= M

)
approaches zero as N → ∞. The obfuscated capacity is defined

as the supremum of all achievable rates and is denoted by Cob(SNR).
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Remark 1. The channel (2.2) is an approximation for the sampled output of a continuous
time convolution channel, with an impulse response that is truncated to length L. However,
as N → ∞, this approximation becomes accurate as long as lim

t→∞
h(t) = 0.
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Chapter 3

Background

This chapter surveys the background material used to solve our problem. We introduce the
communication problem subject to state masking, initially studied by Shamai and Merhav
[13], and its original motivation for the dirty paper channel. Then, the state obfuscation
problem, interpreted as an extreme case of state masking, is introduced, and its original
discrete-state results derived by Wang and Wornell [10] are surveyed. We then continue to
present results from the theory of non-coherent communication, which will be widely used
throughout this thesis to calculate the Gaussian channel’s obfuscated capacity. In particular,
we will review classical results about the phase noise channel [14], [15] with Gaussian noise,
showing the capacity expressions and their solutions for many scenarios of interest.

3.1 Communication Subject to State Masking

The problem of information transfer via state-dependent channels has been studied exten-
sively in Information Theory (see [16]–[20]). One interesting model is the one where the
channel states are available at the encoder, causally or noncausally. This framework has
been fully characterized for i.i.d. states [17], [18]. These models have gained much interest
in the communication society, driven by the enormous amount of applications associated
with the celebrated dirty-paper framework [19], [21]–[25] (see also App. B), correspond to
the Gaussian version of the Gelfand-Pinsker setting with states that impact the channel
additively, namely, y = x+ s+ z, for some interfering state sequence s where x is subject to
an input power constraint in the form of E

[
|x|2

]
≤ 1. While the source and channel states

are usually assumed independent in the theoretical models, this is not always the case. In
some applications, the channel–state process is not inherently channel–related (like in fad-
ing) but may rather be an information-bearing signal on its own. The MIMO broadcast
channel serves as a typical example, where a state sequence for one user is just the infor-
mation–carrying sequence for another, and all produced at the same encoder who addresses
both users simultaneously [26]. This has driven the motivation that, in addition to maximiz-
ing communication rates, one might be interested in the information the receiver can gain
about the unknown state sequence and design codes that try to simultaneously maximize
the communication rate and mask information about the state sequence. The problem of
state masking was studied initially by Merhav and Shamai [13], for a communication setting
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defined via N instances of a memoryless state-dependent channel defined via the probability
kernel Py|x,s and where the state sequence is assumed to be i.i.d. and known (causally and
noncausally) to the encoder, with an additional masking constraint of leakage of less than E
bits from the state sequence to the channel output, namely lim

N→∞
1
N
I
(
yN ; sN

)
≤ E. In that

case, the optimal trade-off between R and E was proved to be characterized by the solution
to the next problem (see [13, Thm. 2, Sec. V])

R ≤ sup {I (u; y)− I (u; s)}

where the supremum is over distributions of the form

Ps,u,x,y (s, u, x, y) = Ps(s)Pu(u)Px|u,s (x|u, s)W (y|x, s)

subject to

I (s; u, y) ≤ E, E [ϕ(x)] ≤ Γ

where ϕ(x) is an input constraint, imposed in the form of 1
N

∑N
n=1 ϕ(xn) ≤ Γ. Following

this single-letter characterization, closed-form solutions for the optimal (R,E) trade-off were
derived for the Gaussian case (i.e. the case where s and z are Gaussian variables). The prob-
lem of communication subject to state masking has been further extended to multiple other
communication settings, including state-dependent quantum channels [27], [28], integrated
communication and sensing scenarios [29], secure source coding [30] and binary energy har-
vesting channels [31], and have been extended further beyond the communication realm, to
characterize learning problems under fairness and privacy constraints [32], [33].

3.2 Communication Subject to State Obfuscation

The problem of communication subject to state obfuscation can be thought of as the extreme
case of state masking, where we require the masking level E to be strictly zero, requiring
a strict privacy criterion of leakage of (asymptotically) zero bits of information about the
channel state to the receiver. A motivation for such a model is a scenario where the trans-
mitter wishes to conceal its physical location, with the assumption that its location may
affect the channel’s statistics to the receiver; hence, it can be modeled as a channel state.
The problem of communication subject to state obfuscation has been studied recently by
Wang and Wornell [10] for the case where we communicate over a discrete memoryless chan-
nel (DMC) that is affected by a random state s ∈ S, distributed according to some Ps(s)
where both the input alphabet and the output alphabet of the DMC X and Y and the
state alphabet S are assumed to be finite. A set of probabilities thus characterizes the DMC
transitions {W (y|x, s)}x∈X,y∈Y,s∈S and the communication scenario is defined similarly to
that of Sec. 2.2, without the power constraint. In contrast to the state-masking problem,
and driven by the potential application of concealing physical locations, the problem of state
obfuscation is studied for multiple different options of the temporal structure of the state
sequence sN , including the case where the state remains constant during the entire trans-
mission, instead of the i.i.d. assumption that has been made in [13]. To that end, we review
the different results derived in [10]. We start by examining the case with CSI.
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3.2.1 State Obfuscation With CSI

In that case, the communication setting is defined similarly to that of Sec. 2.2 with CSI.
The obfuscation constraint is given by (2.3) for the case where the channel states are i.i.d.
and by (2.4) for the case where the channel state is assumed to be constant throughout the
entire duration of communication. We will refer to the later case as the (quasistatic) case.

Lemma 1 (Obfuscated Capacity With CSI [10]). When the encoder has either causal or
noncausal CSI, the obfuscated capacity for the case where the states are i.i.d. and for the
case where the state is quasistatic is given by

Cob = sup I (u; y)

where the supremum is over distributions of the form

Ps,u,x,y (s, u, x, y) = Ps(s)Pu(u)Px|u,s (x|u, s)W (y|x, s)

subject to

I (s; u, y) = 0

We note that the i.i.d. case with CSI can be easily proved by adapting the single letter
solution of the state masking problem and imposing the hard constraint of E = 0, yielding
independence between u and s.

3.2.2 State Obfuscation Without CSI

The case where the transmitter has no CSI has been treated differently between the cases
where we allow the encoder to be deterministic, namely, a deterministic function from the
message M to the input codeword xN and the stochastic case described in Sec. 2.2. Moreover,
different results were derived for the i.i.d. case and the quasistatic case. To that end, we give
the single-letter expressions derived for the i.i.d. case with a stochastic encoder and those
derived for the quasistatic case with a deterministic encoder.

Lemma 2 (Obfuscated Capacity Without CSI [10]). Without CSI, the obfuscated capacity
for the case where the state is i.i.d. and we use a stochastic encoder is given by an argument
similar to Lem. 1, with Px|u,s(x|u, s) replaced by Px|u(x|u). When we use a deterministic
encoder, the obfuscated capacity with i.i.d. states and with quasistatic states is given by

Cob = sup I (x; y)

where the supremum is over distributions of the form

Ps,x,y (s, x, y) = Ps(s)Px (x)W (y|x, s)

subject to

I (s; x, y) = 0

17



Interestingly, in that case, a single-letter expression for the obfuscated capacity for the
quasistatic case with a stochastic encoder remains an open problem. However, by the problem
definition, it is known to be upper bounded by the expression derived for the quasistatic case
with CSI and lower bounded by the expression derived for the deterministic encoder case.
Later in the thesis, we will show that, for the Gaussian case, a single-letter upper bound,
which is tight asymptotically, can be derived.

3.3 Non-Coherent Communication over Gaussian Phase-
Noise Channels

In this section, we review some classical results on the non-coherent capacity of phase-noise
channels with additive Gaussian noise. The term phase-noise channel refers to channels as
the channel (2.1), and where the multiplicative gains {hn} are assumed to have a constant
magnitude. The results we present here follow from the classical results of Lapidoth [14] and
Nuriyev et al.[34]. Throughout this section, we denote by o(1) terms that tend to zero as
the SNR → ∞.

3.3.1 Memoryless and Correlated Phase-Noise Channel

The memoryless phase-noise channel is the channel (2.1) with i.i.d. sequence {hn} and where
|hn| is constant with probability (w.p.) 1. Its non-coherent capacity, denoted by Cnc(SNR), is
the maximal achievable rate R in the same setting as we described in Sec. 2.2, but without the
obfuscation constraint. (The terminology “non-coherent” refers to the fact that the decoder
is oblivious to the values of the sequence hN .) In a similar sense, the correlated phase-noise
channel is defined in a similar way, where now we assume that the channel coefficients have
constant magnitude and that h ({∠hi}) > −∞. The asymptotic (as SNR → ∞) non-coherent
capacity for those channels was derived by Lapidoth [14].

Lemma 3 ([14]). Consider the channel (2.1) and assume that |hn| = h̃,∀n ∈ [N ] w.p. 1
for some positive constant h̃, and that h ({∠hn}) > −∞, where ∠hi denotes the phase of hi.
Then,

Cnc(SNR) =
1

2
log (SNR) · (1 + o(1))

We note that the memoryless fading case is a private case of Lem. 3. In that case, the
requirements translates to |h| = h̃ w.p. 1 and h(∠h) > −∞. Moreover, for the memoryless
case, it can be proved that the capacity is the solution for the next optimization problem

Cnc(SNR) = sup
Px: E[|x|2]≤1

I (x; y).

3.3.2 Quasistatic Phase-Noise Channel

The quasi-static phase-noise channel is the channel (2.1) where hn = h,∀n ∈ [N ] and when
|h| is constant w.p. 1. Its non-coherent capacity is defined similarly to that in the memoryless
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case and was analyzed in [34]. We now state the results from [34] in a more convenient way,
which will prove useful in this thesis

Lemma 4 ([34]). Consider the channel (2.1) where hn = h,∀n ∈ [N ] and assume that |h| = h̃
w.p. 1 for some positive constant h̃. Then,

Cnc(SNR) = sup
Px: E[|x|2]≤1

I (x; y). (3.1)

If further h (∠h) > −∞ then,

Cnc(SNR) = log (SNR) · (1 + o(1)) (3.2)

Proof. The single letter form (3.1) and the lower bound of (3.2) were derived in [34]. The
upper bound of (3.1) follows trivially by the classical results on the capacity of the (coherent)
Gaussian channel.

3.4 Independence in Addition

Throughout the analysis, we will use the next lemma to characterize independence between
random variables connected via a channel with additive independent noise.

Lemma 5. Let h, x, z ∈ C be random variables s.t. z ⊥⊥ (hx, h) and let y = hx + z. Then
y ⊥⊥ h if and only if hx ⊥⊥ h.

Proof. Using characteristic function to test independence between random variables [35,
Ch. 7], y ⊥⊥ h implies

ϕy,h (v1, v2) = ϕy(v1)ϕh(v2) (3.3)

where ϕw(v) ≜ E [ejwv] is the characteristic function of w. Using the independence between
h, x and z we get

ϕy,h (v1, v2) = ϕz(v1)ϕhx,h(v1, v2), (3.4)
ϕy(v) = ϕhx(v)ϕz(v)

where ϕw1,w2(v1, v2) ≜ E
[
ej(w1v1+w2v2)

]
. Combining (3.3) and (3.4) yields the necessary and

sufficient condition:

ϕhx,h(v1, v2) = ϕhx(v1)ϕh(v2)

which implies that hx ⊥⊥ h.

The next lemma, which is a consequence of Lem. 5 will allow us to characterize the
capacity of Gaussian channels subject to state obfuscation constraint

Lemma 6. Let h, x, z ∈ C be random variables s.t. z ⊥⊥ (hx, h) and x ⊥⊥ h and let y = hx+ z.
Then y ⊥⊥ h implies that |h| is constant w.p. 1 or E

[
|x|2

]
= 0.

Proof. By Lem. 5, y ⊥⊥ h if and only if hx ⊥⊥ h. In particular, this requires that E
[
|hx|2

∣∣h = h̃
]
=∣∣∣h̃∣∣∣2 E [

|x|2
]

must not depend on h, which can be true only if either |h| is constant or

E
[
|x|2

]
= 0.

19



20



Chapter 4

The Obfuscated Capacity of the Scalar
Gaussian Channel

In this chapter, we will derive the obfuscated capacity for multiple variants of the scalar
Gaussian channel defined in (2.1). Starting with the cases of memoryless and quasistatic
fading, we will adapt the results of Lem. 1 and Lem. 2 for our Gaussian setting for the case
where the transmitter has CSI and for the case where the transmitter does not have CSI. For
the case without CSI, we will prove a single-letter upper bound on the obfuscated capacity
with quasistatic fading, which will be asymptotically tight, as opposed to the discrete case,
which currently lacks a single-letter expression. We will further analyze the case where we
have feedback, and we will prove that, asymptotically, feedback can not increase the obfus-
cated capacity of the Gaussian channel (both in the memoryless and the quasistatic case).
We will then further analyze the case of correlated fading. We will give a conjecture and
an informal reasoning for the conditions for which the obfuscated capacity is non-negative,
and under some additional technical assumptions we will derive a single-letter upper bound
on that capacity, for which we will then solve to derive the capacity in an asymptotic closed
form.

4.1 Memoryless and Quasistatic Fading

4.1.1 Obfuscated Capacity With CSI

We will start with the case where we have CSI, for which the results of [10] can be directly
extended to the scalar Gaussian channel.

Lemma 7. The obfuscated capacity of the memoryless fading and the quasi-static fading
channels with causal or non-causal CSI, denoted by CCSI

ob (SNR), is greater than zero only if
E
[

1
|h|2

]
< ∞.

Proof. Repeating the proof of [10, Thm. 1, Thm. 5] and adding the power constraint, we
get that the obfuscated capacity for the cases of memoryless and quasi-static fading, with
causal or non-causal CSI, is given by

CCSI
ob = sup I (u; y)
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where the supremum is over distributions of the form

Ph,u,x,y (h, u, x, y) = Ph(h)Pu(u)Px|u,h (x|u, h)Py|x,h(y|x, h)

subject to

I (h; u, y) = 0, E
[
|x|2

]
≤ 1.

We note that I (h; u, y) = 0 implies I (h; y) = 0, which further by Lem. 5 implies hx ⊥⊥
h. Thus, we have that c ≜ E

[
|hx|2

∣∣∣h = h̃
]
=

∣∣∣h̃∣∣∣2 E [
|x|2

∣∣∣h = h̃
]

is independent of h̃. In
particular, we note that

E
[

c

|h|2

]
= c · E

[
1

|h|2

]
= E

[
E
[
|x|2

∣∣∣h = h̃
]]

= E
[
|x|2

]
≤ 1

Thus, whenever E
[

1
|h|2

]
= ∞, we must have c = 0 which implies that hx = 0 almost always,

leading to y ⊥⊥ x and thus a capacity of 0.

We now use Lem. 7 to characterize the capacity of the memoryless fading and the quasi-
static fading channels with CSI.

Theorem 1. Let yN be the output of the channel (2.1) with causal or non-causal CSI, and
assume that E

[
1

|h|2

]
< ∞. Then

CCSI
ob = log(SNR) · (1 + o(1))

Proof. We first prove the converse. Using Cauchy-Schwarz inequality, we note that S ≜
E
[
|hx|2

]
< ∞ 1. Then, since (u, h)—hx—y forms a Markov chain, we can upper bound the

capacity by that of a coherent Gaussian channel

y⋆ = x⋆ + z

where x⋆ ≜ hx, with the power constraint E
[
|x⋆|2

]
≤ S. This further tells us that

CCSI
ob ≤ log(S · SNR) · (1 + o(1)) = log(SNR) · (1 + o(1))

where the log(S) term was included inside the o(1) terms.
Now, we prove the lower bound by providing a construction that achieves the same

asymptotic behavior. Let h̄n ≜ 1

hn

√
E[1/|h|2]

and let the input sequence xN be given by

xn = h̄nx̃n where x̃n are i.i.d symmetric complex Gaussian random variables with zero mean
and unit variance. We first note that E

[
|xn|2

]
= E

[∣∣h̄n∣∣2]E [
|x̃n|2

]
= 1, and thus it satisfies

the power constraint. Furthermore, since yn = 1√
E[1/|h|2]

x̃n + zn, we conclude that yn ⊥⊥ hN

and thus we further have yN ⊥⊥ hN and the obfuscation constraint is satisfied. Using the
1Recall that we assumed that the channel has bounded second moment
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classical arguments about the Gaussian channel [36, Ch. 3], we note that the maximum rate
for which we can reliably transmit information with this scheme is given by the capacity of
the Gaussian channel, which asymptotically is given by log(SNR)(1 + o(1)). Lastly, since
the proof is the same for the causal and the non-causal cases, we conclude that the same
capacity is attained in both scenarios.

Remark 2. We note that the capacity is attained by a coding scheme that uses a deterministic
encoder, similar to the constructions for the discrete case that was presented in [10].

4.1.2 Memoryless Fading Without CSI

We will now proceed to analyze the case where we do not have CSI, and the fading process
is assumed to be i.i.d.. In that case, we will first adopt the results from the discrete-state
case to prove a single-letter converse, from which we will derive the conditions for a non-zero
obfuscated capacity. We will then calculate the obfuscated capacity in a closed form

Lemma 8. The obfuscated capacity of the memoryless fading channel is upper-bounded as

Cob(SNR) ≤ sup
Px: E[|x|2]≤1

I (x; y). (4.1)

Furthermore, Cob(SNR) > 0 only if |h| is constant w.p. 1.

Proof. Repeating the proof of [10, Thm. 3] and adding the power constraint we get that

Cob = sup I (u; y)

where the supremum is over distributions of the form

Ph,u,x,y (h, u, x, y) = Ph(h)Pu(u)Px|u (x|u)Py|x,h(y|x, h)

subject to

I (h; u, y) = 0, E
[
|x|2

]
≤ 1.

For an upper bound on Cob, we first relax the condition I (h; u, y) = 0 to I (h; y) = 0. By
Lem. 6 this requires that |h| is constant or E

[
|x|2

]
= 0. Since E

[
|x|2

]
= 0 clearly does not

allow communication, we conclude that Cob is nonzero only if |h| is constant w.p. 1. Further
note that, since u—x—y forms a Markov chain, we have I (u; y) ≤ I (x; y). This completes
the proof.

We now use Lem. 8 to analyze the obfuscated capacity in the regime where SNR → ∞.

Theorem 2. Let yN be the output of the channel (2.1) with |h| = h̃ > 0 w.p. 1. Then

Cob ≥ 1

2
log (SNR) · (1 + o(1)) .

If furthermore h (∠h) > −∞, then

Cob =
1

2
log (SNR) · (1 + o(1)) . (4.2)
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Proof. To prove the converse, we note that whenever |h| is constant, the right-hand side of
(4.10) is the non-coherent capacity of the memoryless scalar phase-noise Gaussian channel,
which by Lem. 3 is given by 1

2
log (SNR) · (1 + o(1)) when h (∠h) > −∞.

We prove the lower bound by presenting a coding scheme. For the channel (2.1), let the
input sequence xN be given by xn = ejφn x̃n, where {φn} are i.i.d. and Unif ([0, 2π)), and
x̃n =

√
2Sn where {Sn} are i.i.d. with PDF PS(S) =

√
Se−S∫∞

0

√
te−tdt

. Since E [2Sn] = 1 [14], this
input sequence satisfies the power constraint. Furthermore,

yn = hne
jφn x̃n + zn ≜ h̃nx̃n + zn

where, by [37, Ch. 4], {∠h̃n} is i.i.d. Unif ([0, 2π)) and ∠h̃n ⊥⊥ ∠hn. Since
∣∣∣h̃n∣∣∣ = h̃ w.p. 1,

this further implies that h̃n ⊥⊥ hn and furthermore h̃nx̃n ⊥⊥ hn. Thus, by Lem. 5 we have
yn ⊥⊥ hn, ∀n ∈ [N ]. Since {hn, yn} is i.i.d. in n, we have I

(
yN ; hN

)
= 0 so the obfuscation

constraint is satisfied. Moreover, by considering the channel with input x̃N and output
yN , we obtain a classic phase-noise channel, and by standard achievability arguments for
memoryless channels, we can reliably communicate at rate I (x̃; y) where x̃ and y are random
variables whose distributions are the same as those of x̃n and yn for every n. By [14, Sec. IV],
as SNR → ∞, our choice for x̃n yields I (x̃; y) = 1

2
log (SNR) (1+o(1)). This proves the lower

bound.

Remark 3 (Multiplexing Gain). When h (∠h) = −∞, (4.2) may not hold. To see this,
consider the case where h ∈ {±1}. Obfuscation can be achieved by multiplying the input
symbols by a sequence an that is i.i.d. uniformly over {±1}. Roughly speaking, we can
transmit two real symbols per channel use (the real and the imaginary parts of the input
symbol), resulting in a multiplexing gain of 2 as opposed to 1 in (4.2).

.

4.1.3 Quasistatic Fading Without CSI

We now continue to calculate the obfuscated capacity of the Gaussian channel (2.1) with
quasi-static fading, namely, the case where h1 = . . . = hN = h. The proof follows the same
lines for memoryless fading, where we first show that the |h| must be constant for a non-zero
capacity. Then, we will use the capacity results of the block-noncoherent channel to derive
the capacity.

Theorem 3. The obfuscated capacity of the Gaussian channel with quasi-static fading is
greater than zero only if |h| is constant w.p. 1 and is given by

Cob = log (SNR) · (1 + o(1)) .

Proof. The obfuscation constraint tells us that, for any N , I (yi; h) ≤ ϵN , ∀i ∈ [N ]. By using
Fano’s inequality we get that R − ϵ̃N ≤ 1

N

∑N
n=1 I (ui; yi) where ui ≜ (M, yi−1). Thus, using

the same arguments as of [10, Thm. 6] we get the next single-letter upper bound on the
capacity

Cob ≤ sup I (u; y)
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where the supremum is over distributions of the form

Ph,u,x,y (h, u, x, y) = Ph(h)Pu(u)Px|u,h (x|u, h)Py|x,h(y|x, h)

subject to

I (h; y) = 0, E
[
|x|2

]
≤ 1.

Thus, by the same reasonings as the previous proof, we conclude that |h| must be constant
w.p. 1. To find the exact expression for the upper bound, we note that the obfuscated
capacity in the quasi-static case and with constant |h| = h̃ is upper bounded by the (coherent)

capacity of a Gaussian channel whose SNR is
∣∣∣h̃∣∣∣2 · SNR. Then, the upper bound follows

by the capacity of the classical Gaussian channel [36, Ch. 3]. We prove the lower bound
by presenting a coding scheme. Let the input sequence xN be given by xn = ejφx̃n, where
φ ∼ Unif ([0, 2π)), and x̃n = Sn where {Sn} are i.i.d. complex Gaussian variables with zero
mean and unit variance. This input sequence satisfies the power constraint, and similarly
to the proof of Th. 2, it also satisfies the obfuscation constraint. Moreover, by considering
the channel with input x̃N and output yN , we obtain a block non-coherent channel, which by
using the sequence x̃N and as N → ∞ we can communicate reliably at rate log(SNR)(1+o(1))
[34, Sec. IV.C]. This proves the lower bound.

Remark 4. We note that in contrast to the discrete state case of [10], utilizing the Gaussianity
of the underlying channel, we are able to derive the obfuscated capacity in (asymptotically)
closed form for the “constant state" case. Moreover, following [34], that capacity can be
approached by a coding scheme employing a differential phase encoding, where we further
multiply the phases by a constant initial random phase factor.
Remark 5 (Deterministic Encoder). The analysis of Th. 2 and Th. 3 considered the stochas-
tic encoder case, whereas the analysis in [10] separates between the case where one uses
a stochastic encoder and the case where one uses a deterministic encoder. However, we
note that the obfuscation constraint of the deterministic encoder case, given by (see [10])
I (h; x, y) = 0 can not be satisfied in a Gaussian channel with deterministic encoder. To see
this, note that I (h; x, y) = 0 implies I (h; y|x) = 0, which is impossible to hold under the
additive channel model unless x = 0. As pointed out earlier, this is not true for the case
where we have CSI at the encoder, for which the capacity is achieved by a coding scheme
employing a deterministic encoder.

4.1.4 Obfuscated Capacity With Feedback

We now continue to analyze the obfuscated capacity where we have feedback.

Memoryless Fading With Feedback

We now show that feedback does not increase the obfuscated capacity of the memoryless
fading channel.

Theorem 4. Feedback does not increase the obfuscated capacity of the memoryless fading
channel
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Proof. We note that when we add feedback, the next Markov relationship holds(
yi−1,M

)
—xi—yi, ∀i ∈ 1, . . . , N, (4.3)

M—yN—M̂

Thus, by defining the auxiliary variable ui ≜ (M, yi−1) the same analysis of [10, Thm. 3] and
Lem. 8 still holds and we get the same capacity expressions. The lower bound is thus by
using the same coding schemes from Th. 2 and Th. 3, respectively.

Remark 6. We note that this analysis does not use the fact that the underlying channel
is Gaussian and holds for any memoryless channel. Thus, feedback does not increase the
obfuscated capacity of memoryless channels.

Quasistatic Fading With Feedback

The next scenario we analyze is the case of quasistatic fading with feedback. The underlying
Gaussian channel structure allows us to evaluate the capacity in an asymptotically closed
form.

Theorem 5. The obfuscated capacity of the Gaussian channel with quasistatic fading is
greater than zero only if |h| is constant w.p. 1 and is given by

Cob = log (SNR) · (1 + o(1)) .

Proof. Similarly to Th. 4, the same Markov relations (4.3) holds in the quasistatic case.
Thus, by defining the auxiliary variable ui ≜ (M, yi−1) the same converse of Th. 3 still holds,
and thus we conclude that |h| must be constant w.p. 1 to get a non-zero capacity. Then,
the upper bound follows since feedback does not increase the capacity of the memoryless
Gaussian channel (without obfuscation constraint), for which its asymptotic capacity is given
by log(SNR) · (1 + o(1)) and which serves as an upper bound on the obfuscated capacity.
The lower bound follows by the same coding scheme presented in Th. 3

Remark 7. We note that the analysis of the memoryless case does not use the fact that the
underlying channel is Gaussian and holds for any memoryless channel. Thus, feedback does
not increase the obfuscated capacity of memoryless channels. However, for the quasistatic
case, the converse bound of Th. 3 holds only as an upper bound, which becomes tight
asymptotically in the Gaussian case. A single-letter capacity result for the quasistatic case
is yet to be developed.

4.2 Correlated Fading

We now proceed to the more involved case, where the fading process is not assumed to be
i.i.d. nor constant but instead can have any temporal structure. As opposed to the previous
chapters, the analysis in this section is more preliminary and still lacks the full derivation of
the conditions for which the obfuscated capacity is non-zero and its closed-form solution in
the most general case. However, we conjecture that under mild technical assumptions, the
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obfuscated capacity is non-zero only if |h| is constant w.p. 1 and that we can achieve at most
one degree of freedom for communication in this setting. We only consider cases where we
do not have access to CSI.

4.2.1 Obfuscated Capacity With Correlated Fading

The correlated fading case is defined similarly to the previous cases based on the scalar
fading channel (2.1) with the constraint (2.3). Unless otherwise specified, we assume that
for any channel coefficient hi, we have the property that, given hi−1, hi has the same support
as h1 w.p. 1. Concretely, we define the support of Cn-valued random variable a as

Supp {a} ≜ {x ∈ Cn : P (a ∈ Br(x)) > 0, ∀r > 0}

where Br(x) is the ball with radius r centered at x where we are using the Euclidean distance
metric, and we similarly define the conditional support Supp {a|b} where we now instead of
P (a ∈ Br(x)) use the conditional probability P (a ∈ Br(x)|b). In other words, by denoting
H ≜ supp(h1), we are assuming that for any i ∈ [N ],

Supp
{
hi|hi−1

}
= H w.p. 1 (4.4)

Beyond (4.4), we do not restrict the inter-dependence of the sequence of fading coefficients
{hi}.

For this section, we denote by Wy|x,h a Gaussian distribution with variance 1
SNR

and mean
hx that is evaluated on the point y. We start with our first conjecture, claiming that the
obfuscated capacity is greater than zero only if |h| (as defined in Sec. 2.1) is constant w.p.
1.

Conjecture 1. The obfuscated capacity of the Gaussian channel with correlated fading is
greater than zero only if |h| is constant w.p. 1.

We now justify this conjecture by providing informal proof. We then point out the missing
point to make it fully proof.

Informal Reasoning 1. We note that the absence of CSI and the obfuscation constraint
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tells us that for every N ,

Nϵ̂N ≥ I
(
hN ;M, yN

)
=

N∑
i=1

I
(
hi;M, yN

∣∣hi−1
)

≥
N∑
i=1

I
(
hi;M, yi

∣∣hi−1
)

=
N∑
i=1

(
I
(
hi; yi

∣∣M, yi−1, hi−1
)
+ I

(
hi;M, yi−1

∣∣hi−1
))

(4.5)

≥
N∑
i=1

I
(
hi; yi

∣∣M, yi−1, hi−1
)

(4.6)

= NI (ht; yt|ut, t) (4.7)

≜ NI (h; y|u) (4.8)

where ϵN goes to 0 as N → ∞, (4.5) is by the chain rule, (4.6) is since the MI is non-negative,
and (4.7) is by defining ui ≜ (M, yi−1, hi−1) and defining the variable t ∼ Unif ({1, . . . , N})
and (4.8) is by defining the variables y ≜ yt, u ≜ (ut, t) and h ≜ ht and using the chain rule
2. To upper bound the capacity, we use Fano’s inequality to get

R− ϵN ≤ 1

N
I
(
M; yN

)
=

1

N

N∑
i=1

I
(
M; yi

∣∣yi−1
)

≤ 1

N

N∑
i=1

I
(
M, hi; yi

∣∣yi−1
)

=
1

N

N∑
i=1

I
(
hi; yi

∣∣yi−1
)
+ I

(
M; yi

∣∣yi−1, hi
)

≤ 1

N
I
(
hN ; yN

)
+

1

N

N∑
i=1

I (ui; yi|hi)

=
1

N
I
(
hN ; yN

)
+ I (ut; yt|ht, t)

≤ ϵ̃N + I (u; y|h)

where all the steps are by the chain rule and by the obfuscation constraint. Taking N →
∞ and using the continuity of mutual information (see, for example, [10, Thm. 2]) and

2By the chain rule, I (x; y|w, z) = I (x,w; y|z)−I (w; y|z). Thus, the chain rule further implies the inequality
I (x; y|w, z) ≤ I (x,w; y|z)
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incorporating the power constraint, we note that this implies the next converse

Cob (SNR) ≤ sup
Pu|hPx|u: E[|x|2]≤1

I (u; y|h)

where the joint distribution is out of the form PhPu|hPx|uWy|x,h subject to

I (h; y|u) = 0 (4.9)

where u is defined over some support U (which we further optimize over) and where we note
that by (4.4) we have

Supp {h|u} = H w.p. 1

and where we used Wy|x,h since given ht and xt, yt is distributed according to Wy|x,h(·|·, ·). By
the obfuscation constraint, we note that (y|u = u) ⊥⊥ (h|u = u) w.p. 1. Since the channel
Wy|x,h is defined by a Gaussian channel law and since x is generated from u and since the
support of h|u = u is H w.p. 1, we have that for any u ∈ U such that (y|u = u) ⊥⊥ (h|u = u)
we must also have that (hx|u = u) ⊥⊥ (h|u = u) by applying Lem. 5, and then applying Lem. 13
we obtain that (|h| |u = u) is constant w.p. 1. Then because Supp {h|u = u} = H w.p. 1, we
can conclude that w.p. 1 we have that both (|h| |u = u) is constant and Supp {h|u = u} = H,
implying that H is a subset of a circle and that |h| is constant w.p. 1.

The open points are that, under this formulation, we do not have cardinality nor di-
mensionality bound on U. Moreover, the major open point is in the requirement for
E
[
|h · x(u)|2

∣∣h, u] being constant w.p. 1, where this requirement is vague when the alphabet
of u is not specified. However, since this type of auxiliaries is common in many classical
information theory problems (see, for example, [13, Thm. 2]), we believe that this conjecture
is true.

We now proceed by assuming that the previous conjecture is true, namely, that |h| is
constant w.p. 1, and prove a single-letter formula for the obfuscated capacity. We refer to
the distribution of the h as the distribution of the angle of h, namely, Ph(h) refers to the
PMF of the angle of h in the case of discrete phases and to the PDF of the angle in the
continuous case.

Lemma 9. Assuming that Conj. 1 is true, the obfuscated capacity of the Gaussian channel
with correlated fading is greater than zero only if |h| is constant w.p. 1 and is upper-bounded
as

Cob(SNR) ≤ sup
Px: E[|x|2]≤1

I (x; y). (4.10)

where y is defined via the channel y = hx+ z with z ∼ N
(
0, 1

SNR

)
.

Proof. Following the informal reasoning of Conj. 1, we have the next converse on the obfus-
cated capacity

Cob (SNR) ≤ sup
Pu|hPx|u: E[|x|2]≤1

I (u; y|h)
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where the joint distribution is out of the form PhPu|hPx|uWy|x,h subject to

I (h; y|u) = 0 (4.11)

and where u is defined over some support U, and where furthermore we know that this term
is greater than zero only if |h| is constant w.p. 1. We will now simplify this bound. We first
write (4.11) explicitly, namely,

I (h; y|u) = Eu

[
Ey,h|u

[
log

(
dPy,h|u

d(Py|uPh|u)

)]]
= Eu

[
D

(
Py|h,uPh|u

∥∥Py|uPh|u
)]

where dP
dQ

denotes the Radon-Nikodym derivative for the ratio of distributions, and the last
equality is by the definition of the KL-divergence and by the definition of the conditional
distribution, where the support condition tells us that the joint distributions are defined over
C×H. Since the KL-divergence is non-negative, (4.9) implies that

Py|h,u(y|h, u) = Py|u(y|u) (4.13)

for almost all y ∈ C, h ∈ H, u ∈ U where “almost all” is taken with respect to the distribu-
tions of y, u, h respectively.

We now note that

I (u; y|h) = Eh

[
Eu|h

[
D

(
Py|h,u

∥∥Py|h
)]]

(4.14)
= Eh

[
Eu|h

[
D

(
Py|u

∥∥Py|h
)]]

where the second equality is by (4.13). Furthermore, using the obfuscation constraint, we
get that

Py|h = Eu|h
[
Py|h,u

]
= Eu|h

[
Py|u

]
and by substituting it further into (4.14) we get

I (u; y|h) = Eh

[
Eu|h

[
D

(
Py|u

∥∥Eu|h
[
Py|u

])]]
≤ Eh

[
sup
Pu|h

Eu|h
[
D

(
Py|u

∥∥Eu|h
[
Py|u

])]]

≤ Eh

[
sup
Pu

Eu

[
D

(
Py|u

∥∥Eu

[
Py|u

])]]
(4.15a)

= sup
Pu

Eu

[
D

(
Py|u

∥∥Eu

[
Py|u

])]
(4.15b)

= sup
Pu

I (u; y)

where (4.15a) is since Pu|h is defined over U, and thus we can upper bound by maximizing
the MI over input distributions defined on the alphabet U, and (4.15b) is since the inner
maximization is independent of h.
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We conclude that we can further simplify the converse toward the next form

Cob (SNR) ≤ sup
PuPx|u: E[|x|2]≤1

I (u; y)

where the joint distribution is out of the form PhPuPx|uWy|x,h where u is defined over an
alphabet U and where H is a subset of a circle. Since u—x—y forms a Markov chain, we
have I (u; y) ≤ I (x; y) and this concludes the proof.

Remark 8. To demonstrate why (4.4) is necessary, we now give an example that violates
(4.4) and for which |h| does not have to be constant for a non-zero obfuscated capacity. Let
the channel coefficients defined by h2n = 1, h2n+1 = 2,∀n ∈ [N ]. In that case, it’s clear that
the support condition is violated. We note that P (h = 1) = P (h = 2) = 1

2
, H = {1, 2}, and

thus |h| is not constant w.p. 1. However, by normalizing the odd symbols by factor 1
2

we have
yn ⊥⊥ hn, ∀n ∈ [N ] and the obfuscation constraint is satisfied. Then, any code optimized for
a classical AWGN channel will achieve a positive rate, so the capacity is greater than zero.
We note that the former proof breaks since, in this case, the support of h given u is not H
anymore (since given u, h is deterministic).

Remark 9 (Strict Independence). If instead of (2.3) we require that I
(
yN ; hN

)
= 0,∀N ,

then this further implies that I (yi; hi) = 0, ∀i ∈ [N ] and similarly to the previous proofs we
further have that |hi| is constant w.p. 1 and the overall proof is simplified.

Building on Conj. 9, we now calculate the obfuscated capacity of the Gaussian channel
with correlated fading. However, since the capacity will depend on the exact distribution of
the variable h, we restrict our theorem to the case where |ht| = h̃,∀t ≥ 1. In that case, we
note that |h| = h̃.

Theorem 6. The obfuscated capacity of the scalar Gaussian fading channel s.t. |ht| =
h̃,∀t ≥ 1 is lower bounded by

Cob ≥ 1

2
log(SNR) · (1 + o(1))

If furthermore h (∠h) > −∞ then

Cob =
1

2
log(SNR) · (1 + o(1))

Proof. For the lower bound, we use the same coding scheme from Th. 2. By the same
reasoning as of Th. 2, it satisfies the obfuscation constraint and asymptotically attains the
desired rate. This proves the lower bound. For the upper bound, we note that all the steps
in the previous conjecture and lemma holds, where we do not need to assume about events
hold w.p. 1 with regard to u. Thus, since in this case |h| = h̃ w.p. 1, Lem. 9 tells us that
the obfuscated capacity is upper bounded by that of the memoryless phase noise channel.
Then, the upper bound follows using the results of [14, Sec. V].
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4.2.2 Discussion

In general, the alphabet of auxiliary variables in information theory problems that involve
continuous random variables is derived by taking limits of informational expressions over
sequences of successively refined partitions of the continuous supports (see, for example, [13,
Prop. 1]). Thus, we believe that Conj. 1 holds as a limit of a discretized setting (where
the auxiliary alphabet can be derived via classical techniques [36, App. C]). Moreover, we
note that our conjecture claims that |h| is constant w.p. 1, which is a weaker requirement
than the one we made in Th. 6 (as one can allow to a finite number of elements to have a
non-constant magnitude).
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Chapter 5

The Obfuscated Capacity of the
Discrete-Time ISI Gaussian Channel

In this chapter, we analyze the obfuscated capacity of the Gaussian ISI channel, defined
in (2.2). To that end, we first review background material on circulant matrices and the
discrete Fourier transform.

5.1 Circulant Matrices and Discrete Fourier Transform

This section reviews the concept of circulant matrices and the Discrete Fourier Transform
(DFT).

Definition 1 (Circulant Matrix [38]). A matrix H ∈ Cn×n is called circulant if H [k, j] =
h(j−k)n , (j, k) ∈ [n], for some sequence hn. Here (a)n ≜ a − n · ⌊a−1

n
⌋ denotes the modulo-n

operation on a. The sequence hn is called the generating sequence of H .

Definition 2. The length-N DFT of a sequence an where N ≥ n is denoted by AN and is
defined via

AN ≜ FN,na
n

where FN,n is defined as FN,n[l, k] =
1√
N
ej2π

(l−1)(k−1)
N , l ∈ [N ], k ∈ [n] and is called the DFT

matrix.1 When N = n, we write Fn instead of Fn,n.

Circulant matrices are known to be diagonalizable by DFT matrices, and their eigenvalues
are the DFT of their generating sequence [38, Sec. 3.1]. Namely, let H be a circulant matrix
generated by the sequence hn, then

H = F †
ndiag (H

n)Fn (5.1)

where Hn ≜ Fnh
n.

1Here we use capital letters for variables in the frequency domain and lower-case letters for those in the
time domain. To be consistent with the notation used throughout this paper, we start the indices from 1
and not 0.
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5.2 The Obfuscated Capacity of the Circular ISI Channel

The circular-ISI channel is defined as

yn =
L∑

ℓ=1

hℓx(n−ℓ+1)N + zn, n = 1, . . . N

where (x)N ≜ x−N ·⌊x−1
N

⌋. We analyze the following quantity, which we term informational
obfuscated capacity, without discussing its operational meaning:

C̄circ
ob (SNR, {hℓ}) ≜ lim

N→∞
C̄circ

ob (SNR, hL, N)

where

C̄circ
ob (SNR, hL, N) ≜ sup

P
xN

:
1
N

∑N
n=1 E[|xn|2]≤1

1

N
I
(
xN ; yN

)
, s.t. I

(
yN ; hL

)
= 0.

By viewing the outputs yN as a single vector, we have

yN = HxN + zN (5.2)

where H is a circulant matrix generated from the sequence h̃N ≜ (h1, 0, . . . , 0, hL, . . . , h2)
T

(recall Def. 1). Using (5.1) in (5.2) yield

yN = F †
Ndiag

(
HN

)
FNx

N + zN

≜ F †
Ndiag

(
HN

)
XN + zN (5.3)

where XN ≜ FNx
N . Thus, after taking the DFT of the vector yN this channel is transformed

to

YN = diag
(
HN

)
XN + ZN

where YN ≜ FNy
N and ZN ≜ FNz

N is a zero-mean i.i.d. Gaussian vector with covariance
1

SNR
IN . This operation transformed the circular ISI channel into a set of N parallel scalar

Gaussian channels.

Lemma 10. The informational obfuscated capacity of the length-N circular Gaussian ISI
channel, C̄circ

ob (SNR, hL, N), satisfies

C̄circ
ob (SNR, hL, N) ≥ |F |

2N
· log(SNR) · (1 + o(1)) (5.4)

where F ≜ {k : |Hk| = |Hk| > 0 constant w.p. 1}. Furthermore, (5.4) holds with equality if

h
(
{∠Hi}i∈F

)
> −∞. (5.5)
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Proof. Since the channel is a circular convolution channel and since the noise is Gaussian,
by using the data-processing inequality, we get

C̄circ
ob (SNR, hL, N)

= sup
P
xN

:
1
N

∑N
n=1 E[|xn|2]≤1

1

N
I
(
xN ; yN

)
s.t. I

(
hL; yN

)
= 0

= sup
P
XN

:
1
N

∑N
n=1 E[|Xn|2]≤1

1

N
I
(
XN ;YN

)
s.t. I

(
hL; yN

)
= 0 (5.6)

= sup
P
XN

:
1
N

∑N
n=1 E[|Xn|2]≤1

1

N
I
(
XN ;YN

)
s.t. I

(
HN ;YN

)
= 0 (5.7)

where (5.6) is by defining XN ≜ FNx
N and YN ≜ FNy

N and by using the Gaussianity of
the noise in the channel (5.3) and the fact that the average mutual information between two
sequences is invariant to any succession of reversible transformations of one or both of the
sequences [39, P. 30-31]; and (5.7) is by defining the transformed version of hL, HN = FN,Lh

L

and by using the invariance of the mutual information to reversible transformations; We first
prove the lower bound by evaluating (5.7) for a specific choice of the input distribution. To
that end, for all indices i ∈ [N ] s.t. |Hi| is constant w.p. 1 we suggest picking Xi =

√
PiX̃i

where X̃i are i.i.d. and distributed according to the input distribution as in the achievability
part of Th. 2 and where the Pi are s.t. 1

N

∑N
i=1 Pi ≤ 1. For all the other indices, we set

Xi = 0. Since the {Xi} are i.i.d. we have 1
N
I
(
XN ;YN

)
= 1

N

∑N
i=1 I (Xi;Yi), and by Th. 2

we further have I (Xi;Yi) = 1
2
log (Pi · SNR) · (1 + o(1)) and I

(
HN ;YN

)
= 0. Thus, the

obfuscation constraint is satisfied, and the mutual information 1
N
I
(
XN ;YN

)
attained with

this scheme is given by

1

N
I
(
XN ;YN

)
= sup∑N

k=1 Pk≤N
Pk≥0,∀k∈[N ]

∑
k∈F

1

2N
log (Pk · SNR) (1 + o(1))

=
|FN |
2N

· log (SNR) · (1 + o(1)) (5.8)

where FN is the subset of k ∈ [N ] s.t. |Hk| is constant w.p. 1 and non-zero.
To upper bound (5.7), we first note that I

(
HN ;YN

)
= 0 implies Hi ⊥⊥ Yi,∀i ∈ [N ]. Thus,
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we get

C̄circ
ob (SNR, hL, N) = sup

P
XN

:
1
N

∑N
n=1 E[|Xn|2]≤1

1

N
I
(
XN ;YN

)
s.t. I

(
HN ;YN

)
= 0

≤ sup
P
XN

:
1
N

∑N
k=1

E[|Xk|2]≤1

1

N
I
(
XN ;YN

)
s.t. I (Hk;Yk) = 0,∀k ∈ [N ]

≤ sup
P{Xi}i∈FN

:

1
N

∑
k∈FN

E[|Xk|2]≤1

1

N
I
(
{Xi}i∈FN

; {Yi}i∈FN

)
(5.9)

where the last step is by using Th. 2, which tells us that for any i /∈ FN we must set Xi = 0
to not violate the obfuscation constraint. We note that (5.9) is equivalent to the capacity of
the MIMO phase noise channel with transmitter phase-noise as defined in [40], and thus by
[40, Sec. I.B] its capacity is given by (5.8) whenever h

(
{∠Hi}i∈FN

)
> −∞.

We note that the proof of Lem. 10 is by reducing the length-N informational obfuscated
capacity of the circular ISI channel to a sum of |FN | arguments, which we can then evaluate
by Th. 2. This relation extends a classical result in communication, relating the (classical,
without obfuscation constraint) circular ISI channel to a set of parallel scalar Gaussian
channels [11]. However, the obfuscation constraint limits our communication to frequencies
over which the channel frequency response H(f) has a constant magnitude (w.p. 1). This is
in contrast to the classical ISI channel, where communication can be done at any frequency
for which |H(f)| > 0.

We now evaluate the informational obfuscated capacity of the circular ISI channel,
C̄circ

ob (SNR, {hℓ}), by calculating the limit lim
N→∞

C̄circ
ob (SNR, hL, N). To that end, we make

the next definitions

W ≜ {f ∈ [0, 1) : |H(f)| > 0 and constant w.p. 1}, W ≜
∫ 1

0

1 {f ∈ W} df (5.10)

and we assume that W is a measurable set.

Lemma 11. The informational obfuscated capacity of the circular ISI channel is lower
bounded by

C̄circ
ob (SNR, {hℓ}) ≥

W

2
· log(SNR) · (1 + o(1)) (5.11)

Furthermore, (5.11) holds with equality if

h ({∠H (fi)}mi=1) > −∞ (5.12)

for any m ≥ 1 and any sequence of frequencies {fi}mi=1 s.t. fi ∈ W,∀i ∈ [m].
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Proof. The proof is by evaluating the limit lim
N→∞

C̄circ
ob (SNR, hL, N) from Lem. 10. For any

finite N , we define the next set of frequencies
{
fk =

k
N

}N−1

k=0
and ∆N ≜ 1

N
. We note that

|FN |
N

=
1

N

N−1∑
k=0

1

{∣∣∣∣HL

(
f =

k

N

)∣∣∣∣ > 0 and constant w.p. 1

}
−→
N→∞

W

where the limit is since W is a measurable set and by using the Lesbegue integral. Thus,
we note that (5.8) converges to (5.11). Moreover, the converse result of Lem. 10 suggests
that this lower bound is tight (up to terms which are o(1) with the SNR), as long as
lim

N→∞
h
({

∠HL

(
f = i

N

)}
i∈FN

)
> −∞. As N → ∞, we note that this suggests that the dif-

ferential entropy of any finite-dimensional distribution of the phase process {∠H(f), f ∈ W}
is finite, similarly to our definition of (5.12).

5.3 The Obfuscated Capacity of the Regular ISI Channel

We now analyze the obfuscated capacity of the regular Gaussian ISI channel (2.2). We define
the informational obfuscated capacity as

C̄reg
ob (SNR, {hℓ}) ≜ lim

N→∞
C̄reg

ob (SNR, hL, N) (5.13)

where

C̄reg
ob (SNR, hL, N) ≜ sup

P
xN

:
1
N

∑N
n=1 E[|xn|2]≤1

1

N
I
(
xN ; yN

)
s.t. I

(
yNL ; h

L
)
= 0

We start by adapting a classical result of Gallager to connect (5.13) to the operational
obfuscated capacity. We then prove that C̄reg

ob (SNR, {hℓ}) = C̄circ
ob (SNR, {hℓ}).

Lemma 12. The obfuscated capacity of the regular ISI channel is given by Cob(SNR) =
C̄reg

ob (SNR, {hℓ}).

Proof Sketch. The proof follows by using [39, Sec. 4.6] and [39, Sec. 5.9], which, since x0−L+1 is
constant, claims that for any fixed input distribution PxN we can communicate with vanishing
probability of error as long as R < lim

N→∞
1
N
I
(
xN ; yN

)
, where otherwise reliable communication

is impossible2. For the achievability, the codewords are generated by sampling uniformly
2⌊NR⌋ vectors from PxN , denoted by

{
uN(M)

}⌊2NR⌋
M=1

. We denote by uN a variable whose
distribution is the same as that of every uN(M). The power constraint is satisfied as N → ∞
by the classical arguments. Moreover, by the obfuscation constraint and since the codebook

2Since the original proof requires that L will be finite for any N and that lim
N→∞

L
N = 0 this holds also for

the case where L = o(N)
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is generated without CSI, then PyNL ,uN |hL(y
N
L , uN |hL) = PyNL ,uN (y

N
L , uN). Thus,

PyNL ,hL

(
yNL , hL

)
= PhL

(
hL

)2⌊NR⌋∑
M=1

PyNL ,uN |hL
(
yNL , uN(M)|hL

)
= PhL

(
hL

)2⌊NR⌋∑
M=1

PyNL ,uN

(
yNL , uN(M)

)
= PhL

(
hL

)
PyNL

(
yNL

)
Thus, this choice satisfies the obfuscation constraint. The supremum of R over PxN under
the power constraint and the obfuscation constraint is given by C̄reg

ob (SNR, {hℓ}) and further
equals the obfuscated capacity.

Theorem 7. The obfuscated capacity of the regular ISI channel (2.2) satisfies

Cob(SNR) ≥
W

2
· log(SNR) · (1 + o(1)), (5.14)

where W is defined in (5.10). Furthermore, (5.14) holds with equality if (5.12) is satisfied.

Proof. The proof evaluates (5.13) by first looking at a finite N , and proving an upper and a
lower bound on C̄reg

ob (SNR, hL, N). Then, we show that as N → ∞ the bounds converge to
those of Lem. 10.

Upper Bound: We look at an ISI channel with N + L channel outputs and define the
next set of input distributions

PU ≜

PxN+L : xN+L
N+1 = 0,

E
[∥∥xN+L

∥∥2
]

N + L
≤ 1


We note that PU contains all the possible input distributions for the length-N ISI channel.
Let

Rreg(xN , ykl ) ≜
1

k − l + 1
I
(
xN ; ykl

)
for the ISI channel and similarly define Rcirc(xN , ykl ) for the circular case. Then,

C̄reg
ob (SNR, hL, N) ≤ max

P
xN+L∈PU :

I(yNL ;hL)=0

N + L

N
·Rreg

(
xN+L, yN+L

)
(5.15)

= max
P
xN+L∈PU :

I(yNL ;hL)=0

N + L

N
·Rcirc

(
xN+L, yN+L

)
(5.16)

≤ max
P
xN+L

1
N+L

E[∥xN+L∥2]≤1

I(yNL ;hL)=0

N + L

N
·Rcirc

(
xN+L, yN+L

)
(5.17)
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where (5.15) is by the definition of C̄reg
ob (SNR, hL, N); (5.16) holds since the linear and circular

convolution yields the same output sequence yN+L for any input distribution in PU ; and
(5.17) holds since we are not limiting the input distribution to be in PU . We denote the
columns L-to-N of the matrix FN+L (defined in Def. 2) by FN+L,(L:N). Then,

yNL = F †
N+L,(L:N)diag

(
HN+L

)
XN+L + zNL

where HN+L ≜ FN+L,Lh
L. By the invariance of the MI to reversible transformations, we note

that I
(
yNL ; h

L
)
= 0 implies I

(
yNL ;H

N+L
)
= 0. However, as N → ∞, the matrix F †

N+L,(L:N)

is invertible, and by the invariance of the MI to reversible transformations and Lem. 5 we
get that as N → ∞ the constraint I

(
YN
L ;H

N+L
)
= 0 implies

diag
(
HN+L

)
XN+L ⊥⊥ HN+L (5.18)

Substituting (5.18) in (5.17) and taking N → ∞ yields

C̄reg
ob (SNR, {hℓ}) ≤ lim

N→∞
sup

P
xN+L :

1
N+L

∑N+L
n=1 E[|xn|2]≤1

N + L

N

1

N + L
I
(
xN+L; yN+L

)
(5.19)

s.t. I (HiXi;Hi) = 0,∀i ∈ [N + L]

= C̄circ
ob (SNR, {hℓ})

where the last equality is by the proof of Lem. 10.
Lower Bound: We look at an ISI channel of length N + L, for which we define the next

set of input distributions

PL ≜

PxN+L : xn = xn+N ,∀n ∈ [L],
E
[∥∥xN+L

∥∥2
]

N + L
≤ 1


Since PL is a subset of the possible input distributions PxN+L under the input power con-
straint we have:

C̄reg
ob (SNR, hL, N + L) ≥ max

P
xN+L∈PL:

I(yN+L
L

;hL)=0

Rreg
(
xN+L, yN+L

)
≥ max

P
xN+L∈PL:

I(yN+L
L

;hL)=0

Rreg
(
xN+L, yN+L

L

)
(5.20)

= max
P
xN+L
L+1

1
N

∑N+L
t=L+1

E[|xn|2]≤1

I(yN+L
L

;hL)=0

Rcirc
(
xN+L
L+1 , y

N+L
L

)
(5.21)

= max
P
xN

1
N

∑N
n=1 E[|xn|2]≤1

I(yN ;hL)=0

Rcirc
(
xN , yN

)
(5.22)

= C̄circ
ob (SNR, hL, N) (5.23)
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where (5.20) holds by the chain rule; (5.21) holds since the linear and circular convolution
yields the same output sequence yN+L

L for any input distribution in PL; (5.22) holds since the
mutual information is time-invariant; and (5.23) is by the definition of C̄circ

ob (SNR, hL, N).
Taking N → ∞ yields C̄reg

ob (SNR, {hℓ}) ≥ C̄circ
ob (SNR, {hℓ}). Combining (5.19) and (5.23)

yields C̄circ
ob (SNR, {hℓ}) = C̄reg

ob (SNR, {hℓ}). Then, the proof follows by combining Lem. 10
and Lem. 12.

Remark 10 (ISI Multiplexing-Gain). Denote Wp ≜
∫ 1

0
1 {f : |H(f)| > 0, w.p. 1} df . By

Th. 7, if (5.5) is true, then the multiplexing gain of the obfuscated capacity is reduced by a
factor of W/ (2WP ) relative to that of the classical ISI channel [11].

5.3.1 Discussion

The obfuscated capacity we calculated depends on W and W as defined in (5.10). Here, W
represents the overall frequency band where the frequency response magnitude is positive and
deterministic with probability 1. The obfuscated capacity becomes zero whenever W = 0.
However, since the channel frequency response is completely characterized by {hℓ}Lℓ=1 from
(2.2), it is unclear if we can simultaneously satisfy (5.12) while having W > 0. Consequently,
whether there exists a set of physical channel models for which Th. 7 precisely characterizes
the obfuscated capacity remains an open question.
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Chapter 6

Conclusion and Future Work

In this work, we analyzed the obfuscated capacity of multiple scalar fading Gaussian channel
variants and calculated their asymptotic value in a closed form. We further presented com-
munication strategies for each variant that asymptotically attain the capacity. We note that,
for the case of quasistatic fading, we derived a single-letter upper bound on the obfuscated
capacity and on the obfuscated capacity with feedback, which was proved to be asymptot-
ically tight. However, such a result does not hold for general channels, and finding such
a single-letter expression for the obfuscated capacity is an interesting direction for future
research. Moreover, for the correlated fading, we could evaluate the upper bound only under
specific assumptions on the channel coefficients. Evaluating this bound in the general case is
another possible venue for future research. Our analysis only considered the single-antenna
case. The multiple-antenna case is another interesting direction that is under investigation.
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Appendix A

Alternative Proof of Lem. 6

We now provide an alternative proof to Lem. 6. We note that this proof does not require
any assumptions on the second moments of h not x.

Lemma 13. Let a and d be nonnegative-valued random variables satisfying a ⊥⊥ d, da ⊥⊥ a,
and P (a > 0, d > 0) > 0. Then, we must have that a is almost surely constant.

Proof. Assume for the sake of contradiction that a is not almost surely constant, so we have
that there exists some a0 satisfying 0 < P (a ≤ a0) < 1. By right-continuity of CDFs, we
have that there exists some ε > 0 such that P (a ≤ a0 + 2ε) < 1. Then, choose d0 to satisfy
the property that

P

(
d ∈

(
a0 + ε

a0 + 2ε
d0,

a0 + ε

a0
d0

))
> 0

Using independence of a and d we obtain that

P (da ≤ (a0 + ε)d0|a ≤ a0) = P

(
d ≤ a0 + ε

a
d0

∣∣∣∣a ≤ a0

)
≥ P

(
d ≤ a0 + ε

a0
d0

)
and similarly

P (da ≤ (a0 + ε)d0|a > a0 + 2ε) ≤ P

(
a <

a0 + ε

a0 + 2ε
d0

)
.

By our choice of d0 we have that these two probabilities are not equal, and by our choice of
a0 we have that the events a ≤ a0 and a > a0 + 2ε happen with nonzero probability. Then
da ̸⊥⊥ d, which is a contradiction, so we conclude that a must be constant almost surely. The
proof of Lem. 6 follows by using a = |h| and d = |x|.
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Appendix B

Background on the Dirty-Paper Channel

We now provide background on the problem of dirty-paper (DP) channel and its connection
to state-masking.

The dirty-paper (DP) channel, first introduced by Costa [19], provides an information-
theoretic framework for the study of interference cancellation techniques for interference
known to the transmitter. The DP channel model has since been further studied and applied
to different communication scenarios such as ISI channels [21], the MIMO Gaussian broadcast
channel [26], the MIMO multiple-access channel [41], information embedding [42], [43], and
have been proved useful as a building block in a joint source-channel coding system [44]. In
the additive Gaussian case, the DP channel is

yt = xt + st + zt, t = 1, . . . , N

and is composed of an input signal xt, subject to a power constraint, corrupted by additive
white Gaussian noise (AWGN) zt and additive interference st which is known to the transmit-
ter but not to the receiver, causally (“causal DP”) xi = ϕ (M, si) or non-causally (“non-causal
DP”) xi = ϕ (M, sn) where M is the transmitted message, ϕ is a function satisfying the input
constraint and xi and si are the channel input and interference at time instance i, 1 ≤ i ≤ n,
respectively.

Costa [19] showed that, for an i.i.d. Gaussian interference with arbitrary power, the ca-
pacity in the non-causal scenario is equal to that of the interference-free AWGN channel.
This result was extended in [45] to the case of general ergodic interference and to arbitrary
interference in [22]. The capacity of the DP channel with causal knowledge of the inter-
ference, first considered by Willems [46], is not known but upper and lower bounds for the
case of arbitrary interference were found in [22], which coincide in the high SNR regime,
thus establishing the capacity for this case to be the same as for the interference-free AWGN
channel (or equivalently for the non-causal DP channel) up to a shaping loss. Thus, causal-
ity incurs a rate loss of 1

2
log

(
2πe
12

)
relative to the capacity of the interference-free AWGN

channel, in the high SNR regime. This result implies that in the limit of strong interference
and high SNR, the well-known Tomlinson-Harashima precoding (THP) technique [21] is op-
timal. For general SNRs, the lattice-based coding techniques of [22], [43] are an extension of
Tomlinson-Harashima precoding, sometimes referred to as MMSE (minimum mean-square
error) Tomlinson-Harashima precoding, where a scaling parameter is introduced at the trans-
mitter and receiver. Similar schemes have been proved useful in the case where the SNR is
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unknown [25]. The causal and non-causal DP channels are special cases of the problem of a
general state-dependent memoryless channel. This problem was first introduced by Shannon
in 1958 [17], who found the capacity for the case of a causally known state. Kuznetzov and
Tsybakov considered the non-causal scenario [47], the general capacity of which was found
by Gel’fand and Pinsker in 1980 [18].
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