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ABSTRACT

Recent developments in computer vision have often relied on access to big data, powerful
compute, or both. City-based systems, such as self-driving cars and airport checkpoints, have
benefited greatly from these advances, so much so that automated cars and security checks
are beginning see true deployment in modern society. In contrast, robots and autonomous
systems in data- and compute-constrained environments, like remote wilderness regions or
off-Earth, are still relying on pre-deep learning era computer vision algorithms. Robots in
the most challenging of environments — and, correspondingly, the environments
that require the highest level of autonomy for robots — have been left behind by
modern computer vision.

In this dissertation, I discuss several human-inspired methods that I have developed
during my time at MIT, with the goal of closing the gap between the capabilities of
modern computer vision and what is currently possible on robots operating in
data- and compute- constrained environments. I explore methods for collecting good
— but small — datasets, improving visual estimates by upsampling the feature embeddings
used to generate them, and identifying which image samples (and sample regions) a learned
model is ‘uncertain’ about. Finally, I share sketches of several human-inspired paradigms
for using these new methods to make vision models more efficient and generalisable, which I
hope can serve as a starting point for future efforts to close the gap and bring modern vision
to deployment in data- and compute- constrained environments.

Thesis supervisor: Nicholas Roy
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

The past decade in computer vision has been an exciting one. Since the advent of AlexNet
in 2012 [1], deep learning in general and computer vision in particular have experienced
amazing performance leaps, as first convolutional neural networks (CNNs), then generative
adversarial networks (GANs) and implicit models, and now transformers have rocked the
scene [2]. We now have transformer-based models that can accomplish tasks like semantic
segmentation (e.g., the Segment Anything Model (SAM) [3]) and depth estimation (e.g., the
Dense Prediction Transformer (DPT) [4]) with mean-Intersection over Union (mIoU) values
approaching 80% for the former, and pixel-accuracy nearing 85% for the latter. Qualitatively,
the results that come from these models would have it appear to the human eye that these
vision challenges have in fact been solved for machines (Figure 1.1).

However, the training processes for these models rely on access to a massive amount of
high-resolution data and compute. SAM, for example, is based on a Vision Transformer (ViT)
architecture [5] which in itself has around 300M parameters, and must be trained using “11M
diverse, high-resolution. . . images. . . [labelled with] 1.1B high-quality segmentation masks”
(Figure 1.2). And while it is true that many of these images are labelled automatically using
a special data engine [3], humans still have to painstakingly label at least 300K images with
10.2M masks. And those images must be high-resolution in the first place [3]. Similarly, the
DPT depth estimator is also ViT-based and uses around 300M parameters, and trains on
1.4M images from a composite dataset compiled for the task — MIX6, the largest monocular
depth dataset to-date [4].

Unfortunately, we do not always have access to large amounts of cleanly labelled and
high-resolution imagery, and the computation available on real platforms is often limited by
size and power constraints. In robotics we often find that modern computer vision models
either (a) cannot run on our platforms at all, or (b) cannot be trained on datasets of sufficient
quality to yield results of the caliber of Figure 1.1. As a result, roboticists often rely instead
on sparse depth estimates from LiDAR scans (Figure 1.3) or stereo vision algorithms (Figure
1.4), and semantic perception is often limited to bounding box object detection (Figure 1.5).
The advances of modern computer vision have so far passed robotics by.
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Figure 1.1: Qualitative results from large, modern, computer vision models. Top: The
Segment Anything Model (SAM)’s zero-shot transfer capabilities [3], which seem able to
handle just about any data on Earth one might throw at them. Bottom: The Dense Prediction
Transformer (DPT) successfully estimates accurate and consistent depth, even on translucent
surfaces, large surfaces, and fine structures [4].

The work I present in this dissertation is therefore, in general, some combination of:

1. Compute-constrained algorithms. Specifically, I have aimed to develop algorithms
for computer vision that either:

(a) use on the order of 50-75M parameters. (This range is what can currently be
deployed on remote and mobile systems like those pictured in Figure 1.6, and is unlikely
to grow substantially in the near future. High-end GPUs require 150-300W to power
[6], compared to the max-120W GPUs being used by mobile robots now [7].)

(b) contribute significantly to reducing the amount of compute used by existing,
high-performance computer vision algorithms.

2. Data-constrained algorithms. The data available is sparse (e.g., point clouds)
and/or not bountifully available during training.

Additionally, my work often derives either its goal or its approach from knowledge and
hypotheses about how human vision works or what it functionally does, because humans
are our favourite example of mobile agents capable of perceiving and navigating the world
in a data- and compute-constrained manner. Thus the title of this doctoral work and
dissertation: Human-inspired Methods for Extending Advances in Computer vision to Data-
and Compute-Constrained Environments.
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Figure 1.2: Example images with overlaid masks from the SA-1B dataset used to train SAM.
SA-1B contains 11M diverse and high-resolution images, and 1.1B high-quality segmentation
masks [3].

Figure 1.3: Examples of the low-resolution imagery (right) and occupancy grids (left) actually
in use in real-world robots [7].
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Figure 1.4: Examples of point clouds (top) as collected by the Intel RealSense stereo cameras
commonly used in robotics, and the depth map computed by their stereo depth algorithm
(bottom-left) [8].

Figure 1.5: Examples of object detection and labels as produced by YOLOv3 Tiny [9], an
approximately 63M-parameter [10] object detection model commonly used on mobile robotic
platforms for its efficiency [7].
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Figure 1.6: Mobile systems like the Husky [7] and Spot [11] often have limited compute due
to payload and power supply constraints.

My master’s thesis in Prof. Bill Freeman’s group [12] tackled the challenge of teaching
machines how to perceive shape from surface contour markings. Such markings are commonly
used in striped clothing, data visualisations, and other person-made constructs to give the
impression (or illusion) of shape. Humans have an apparently natural ability to interpret
them, but machines and computer vision algorithms do not. We approached this problem by
synthesising a new dataset of surface grid- and line-marked 3D surfaces (SurfaceGrid, Figure
1.7) and training a deep neural network to estimate their shape (Figure 1.8). Our algorithm
successfully reconstructed shape from synthetic 3D surfaces rendered with a variety of grid-
and line-contour markings with less than 0.5% mean-squared relative error, and generalised
reasonably well to 3D mesh models and real-world wireframe objects (Figure 1.9).

Figure 1.7: SurfaceGrid is a dataset of contour-marked surfaces generated by summing
N ≤ 10 randomly-generated 2D Gaussians to generate functions G(x, y), which were then
visualised, and their depth maps computed, from a variety of viewpoints [13].
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Figure 1.8: We trained a Pix2Pix generative adversarial model (GAN) [14] to take as input
contour-marked surfaces from SurfaceGrid, and output estimates of their corresponding depth
maps. The model required only 1.2k image pairs to train [13], far fewer than the 1.4M of [4]
and 11M of [3].

Figure 1.9: The Pix2Pix model trained in Figure 1.8 [13] generalised surprisingly well to
data that was nothing like what it had seen before (Figures 1.7, 1.8), including real-world
wireframe data [12]. (It is worth noting, however, that the numerical scaling of the estimates
were calibrated to that of the training set, rather than to those of the various test samples,
which is not surprising.)

For more detail, I refer the reader to my master’s thesis [12], and note that it is not
the focus of this dissertation, which is distinct. But it was the starting point! From my
master’s work, I learned two interesting (and, in my view, important) things: First, that even
relatively small neural networks, like the approximately 55M-parameter Pix2Pix network
[14][15], are surprisingly powerful when trained with the ‘right data’. We believed that the
good generalisation of Figure 1.9 was due to our intentional choice of mixtures of Gaussians
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as a ‘basis set’ for approximating the space of all 3D shapes — though, similar to the results
shown in Figure 1.7, we approximated with only at most 10 terms at a time, which would
limit the power of the expansion [12]. Second, I learned that one way of picking the ‘right
data’ was to construct a good ‘basis set’ of training examples. From these two realisations, I
gained two new questions that have lain at the core of my research:

1. How do we choose the ‘right data’ in the real world? (We usually cannot just synthesise
what we want, as I did for my master’s research [12][13].)

2. How can we get good visual estimates out of compute-constrained systems for more
complex and ‘interesting’ real-world data?

These were the questions that motivated my doctoral work, and I look forward to sharing
this research with you in the following chapters.

I follow this introduction with an exposition of two sizable projects I undertook with
my collaborators, aiming to answer these two questions. FeatUp (Chapter 2, [16]) is a
fast, lightweight, and guided method for upsampling features extracted from any backbone
architecture. It can be used to improve the performance of linear probes trained for any
vision task that takes as input a feature embedding, by upsampling the embedding as a
preprocessing step. This opens the door to the future development of multi-task computer
vision systems consisting of several linear probes operating on a single upsampled feature
embedding from a single shared backbone, thereby drastically reducing the number of entirely
separate vision models that must be trained and stored if one wishes to accomplish several
vision tasks.

DiffUnc (Chapter 3, [17]) is a diffusion-based method for estimating a model’s uncertainty
regarding a sample image, which is due to how similar that sample is to the images seen by
the model during training. In other terms, we seek to estimate the portion of the ‘epistemic’
uncertainty due to the degree to which an image is ‘out-of-distribution’ (OOD) relative to the
distribution of the images present in the training set. Our assumption, common in uncertainty
estimation for neural networks [18], is that ‘OODness’ is a primary influencer of a learned
model’s epistemic uncertainty.

DiffUnc, localises uncertainty within sample images, where preceding diffusion-based
models only estimated an image-level metric. In localising the uncertainty, we make the
uncertainty human-interpretable, in that a human looking at an “uncertain” image can tell
where (and make an informed hypothesis as to why) it is uncertain. This is important
in, for example, situations where a remote supervisor is trying to understand why an
autonomous robot has failed, based on a low-resolution image that the robot has beamed
back through low-bandwidth communications. Improving our ability to estimate which
data are out-of-distribution (and why) also allows us to select the ‘right data’ for training
a maximally-generalisable yet minimally data-guzzling vision algorithm, by intentionally
crafting the diversity of our training (or finetuning) dataset, rather than taking the currently
prevalent approach of simply gathering as much data as possible.

Finally, having described these two projects in detail, and how they each tie into the two
core questions of my research, I will discuss what I view to be the next question: How to
use the ‘right data’ for improved vision model performance? Although I give several partial
answers throughout this dissertation, I never answer it extensively or with dedicated focus,
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and I hope with Chapter 4 to encourage others to pursue it for themselves, and to do so with
a human-inspired lens.

Concisely: I discuss our peripheral vision-inspired FeatUp method for feature upsampling
in Chapter 2. In Chapter 3, I share our uncertainty estimation work, DiffUnc, which was
inspired by the human ability to estimate and use uncertainty to identify and learn from
mistakes. Then, in Chapter 4, I sketch out several ideas for how these contributions can be
used to improve vision models in data- and compute- constrained environments. I conclude in
Chapter 5 by making a final case for other researchers to develop vision models for robotics
through a human-inspired lens.

Welcome to my dissertation. Let’s get started!
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Chapter 2

FeatUp: A Model-Agnostic Framework
for Features at Any Resolution

This work was published at ICLR 2024 under the same title — FeatUp: A Model-Agnostic
Framework for Features at Any Resolution — along with Stephanie Fu and Mark Hamilton
(joint first authors), Axel Feldmann, Dr. Zhang Zhoutong, and Prof. Bill Freeman [16].

How can we process images to get good visual estimates — e.g., of shape, distance, or
semantic content — on compute-constrained systems? I tackled this question with my master’s
thesis, but the world is generally far more complex and ‘interesting’ than those contour-marked
surfaces (Figures 1.8 and 1.9). Computationally-efficient yet high-quality visual navigation
should be possible; humans, after all, are simultaneously compute-constrained relative to
the vast number of simultaneous computations and processes they undertake and effective
navigators of the real world.

When it comes to human vision, the first and foremost method our bodies and brain
employ to reduce our computational needs is actually a fundamental limitation of our visual
sensor — the eye [19]. Most of our visual field is measured by the ‘peripheral’ retina, which
has a drastically reduced concentration of cone-type photoreceptors compared our ‘fovea’,
which aligns with the optic axis (that is, the direct line of gaze or fixation, Figure 2.1) [20].

Figure 2.1: Density of colour-sensitive photoreceptors in the human retina as a function of
eccentricity [20]. Most cone cells in the retina lie within ±2◦ of the optic axis.
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Figure 2.2: A visualised comparison between foveal (top) and peripheral (bottom) vision,
according to the Texture Tiling Model (TTM) of [21]. The peripheral visualisations are
designed such that they are approximately indistinguishable from the original image, if viewed
in the human periphery. Test it out for yourself by sitting with eyes approximately 2ft from
the page. Fixate on the midpoint of the line between subway maps (c), while bringing your
cognitive attention to the two boat pictures (b). Do they look roughly the same? (The proper
distance from the page will differ between people; if your answer is ‘no’, try changing your
distance.)

Given this physiological difference, vision scientists have put a lot of effort into under-
standing how peripheral and foveal vision differ from one another. Figure 2.2 visualises the
difference between the two as far as what data is believed to be both collected by the eyes
and available for cognitive use by the brain.

A consequence of the degradation of the majority of visual data available to our visual
systems is that human often generate initial visual estimates at a fairly low resolution,
and only refine those estimates as needed. We are capable of refining both cognitively (by
redirecting our cognitive attention and undertaking abstracted processing in the ‘higher’
levels of visual cortex) and physically (by redirecting our gaze to capture higher-resolution
data with our fovea) [19]. For example, a human performing visual search for a salamander
may at first catch sight of something ‘salamander-y’ from the corner of their eye, which
they process at low-resolution before deciding to redirect their gaze in order to refine their
visual estimate (Figure 2.3). I and my collaborators wondered if we replicate this ability
for computer vision models, in a manner that would allow the majority of estimates and
computations to be undertaken at low resolution (thus reducing memory and computational
needs), without forcing us to compromise on overall model performance.
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Figure 2.3: Humans often create initial estimates at low- (e.g., peripheral) resolution, and
only refine them if needed [19]. We wondered if we could replicate this in machines.

Latent network features are a cornerstone of computer vision research, capturing image
semantics and abstractions and enabling the community to solve downstream tasks even
in the zero- or few-shot regime. However, these features often lack the spatial resolution
to directly perform dense estimation tasks like segmentation and depth estimation because
models aggressively pool information over large areas. In this chapter, I will discuss FeatUp,
a task- and model-agnostic framework to restore lost spatial information in deep features
(Figure 2.4). Further, I will explain the two variants of FeatUp: one that guides features
using a high-resolution signal in a single forward pass, and one that fits an implicit model to
a single image to reconstruct features at any resolution. Both approaches use a multi-view
consistency loss with deep analogies to the loss used in training neural radiance fields (NeRFs)
[22].

Our upsampled features retain their original semantics and can be swapped into existing
applications to yield resolution and performance gains even without re-training. We show
that FeatUp significantly outperforms other feature upsampling and image super-resolution
approaches in class activation map generation, transfer learning for segmentation and depth
estimation, and end-to-end training for semantic segmentation.

2.1 Introduction

Recently, considerable effort has been made to develop methods to extract features from
data modalities such as vision [23]–[27], text [28]–[30], and audio [31][32]. These features
often form the backbone of different methods, including classification [33], weakly-supervised
learning [34][35], semantic segmentation [36], optical flow [37][38], neural rendering [39],
and more recently, image generation [40]. Despite their immense success, deep neural
networks are usually forced to sacrifice spatial resolution for semantic quality. This is because
semantic quality is generally proportional to feature vector length C, and if one were to
encode a H × W × 3 image to a H × W × C ≫ 3 latent feature map, the memory and
computational requirements of the neural network would explode. So it is standard to
downsample spatially. For example, ResNet-50 [41] produces 7 × 7 deep features from a
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Figure 2.4: FeatUp upsamples image features from any model backbone, adding spatial
resolution to existing semantics. High-resolution features can be learned either as a per-image
implicit network or a general-purpose upsampling operation; the latter is an independent
module to improve downstream dense estimation tasks.

224 × 224 pixel input (a 32× reduction in spatial resolution). Even Vision Transformers
(ViTs) [5] incur a significant resolution reduction, making it challenging to perform dense
prediction tasks such as segmentation or depth estimation using these features alone.

To mitigate these issues, we propose FeatUp: a new framework for improving the resolution
of any vision model’s features without changing their original ‘meaning’ or orientation.
Our primary insight, inspired by 3D reconstruction frameworks like neural radiance fields
(NeRF) [22], is that enforced multiview consistency of low-resolution signals can supervise
the reconstruction of high-resolution signals. More specifically, we learn to produce high-
resolution information by aggregating low-resolution views from a model’s outputs across
multiple ‘jittered’ (e.g., flipped, padded, cropped) images. We aggregate this information
by learning an upsampling network with a multiview consistency loss. Our work explores
two architectures for upsampling: a single guided upsampling feedforward network that
generalises across images, and an implicit representation overfit to a single image.

This feedforward upsampler is a parameterised generalisation of a Joint Bilateral Up-
sampling (JBU) filter [42] powered by a CUDA kernel that is orders of magnitude faster
and less memory-intensive than existing implementations. This upsampler can produce
high quality features aligned to object edges at a computational cost comparable to only
a few convolutions. Meanwhile, our implicit upsampler draws a direct parallel to NeRFs
and overfits a deep implicit network to a signal. This model can be queried for features of
arbitrary resolution, with low storage costs. Both architectures maintain correct semantic
meaning, and can therefore be used to upsample features for use in pre-trained downstream
applications. We show that the resulting upsampled features can significantly improve a
variety of downstream tasks including semantic segmentation and depth estimation. Addi-
tionally, we show that model explanation methods such as class activation mapping (CAM)
can be made higher-resolution using our upsampled features. In particular, one can study
a model’s behavior with much greater detail without the need for complex methods based
on relevance and information propagation [43][44]. In summary, we include a short video
describing FeatUp at https://aka.ms/featup and make the following contributions:

• FeatUp: a new method to significantly improve the spatial resolution of any model’s
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features, parameterised as either a fast feedforward upsampling network or an implicit
network.

• A fast CUDA implementation of Joint Bilateral Upsampling that is orders of magnitude more
efficient than a standard PyTorch implementation, and which allows guided upsampling in
large-scale models.

• We show that FeatUp features can be used as drop-in replacements for ordinary features
to improve performance on dense estimation tasks and model explainability.

2.2 Related Work

Image-adaptive filtering. Adaptive filters are commonly used to enhance images while
preserving their underlying structure and content. For example, bilateral filters [45]–[47]
apply a spatial filter to a low-resolution signal and an intensity filter to a high-resolution
guidance to blend information from the two. Joint Bilateral Upsampling (JBU) [42] uses
this technique to upsample a low-resolution signal with a high-resolution guidance. JBU
has been used successfully for efficient image enhancement and other applications, but is
not equipped to enhance high-dimensional signals like latent neural features, and existing
implementations have prohibitive computational requirements. Recently, some works embed
bilateral filtering approaches [48] and nonlocal means [49] into convolutional networks [50]–[53]
and vision transformers [54][55]. Shape Recipes [56] learn the local relationship between
signals to create upsampled target signals. Pixel-adaptive convolutional (PAC) networks
[57] adapt a convolution operation to input data and has been used to advance performance
in segmentation [58][59] and monocular depth estimation [60]–[62]. The Spatially-Adaptive
Convolution (SAC) in [63] factors the adaptive filter into an attention map and convolution
kernel. [64] extends bilateral filtering to superpixels and embeds this operation inside of
a deep network to improve semantic segmentation. This class of methods, effective across
a variety of applications, directly incorporates spatial information into the task while still
allowing for flexibility in learning a network.

Image super-resolution. One of the earliest deep unsupervised super-resolution methods
was Zero-Shot Super-resolution (ZSSR) [65], which learns a single-image network at test time.
Local implicit models [66] use locally-adaptive models to interpolate information, and have
been shown to improve the performance of super-resolution networks. Deep Image Priors
[67] show that CNNs provide inductive biases for inverse problems such as zero-shot image
denoising and super-resolution. While there is extensive literature on image super-resolution,
these methods are not well-adapted to handle ultra-low resolution, yet high-dimensional deep
features as we show in Section 2.6.2.

General-purpose feature upsampling. A widely-used approach for upsampling deep
feature maps is bilinear interpolation. Though efficient, this method blurs information and is
insensitive to the semantic content and high-resolution structure in the original image. Nearest
neighbor and bicubic interpolation [68] have similar drawbacks. Encoding a higher resolution
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input image yields correspondingly high-resolution features, but at a steep computational
cost. Furthermore, this often degrades model performance and semantics due to the decreased
relative receptive field size. Finally, for deep convolutional networks, one popular technique
is to set final convolution strides to 1 [69][44]. However, this approach yields blurry features,
as the model’s receptive field is still large. Recent works using vision transformers (ViTs)
[70][71] perform a similar modification on input patch strides, and interpolate positional
encodings. Though simple and reasonably effective, this approach incurs a steep increase
in computational footprint for every doubling in resolution, making it impossible to use in
practice for larger upsampling factors. This approach can also distort features because of the
previously mentioned fixed receptive field of the patches.

Image-adaptive feature upsampling. Many different operations exist in the literature
to create features at higher resolutions. Deconvolutions [72]–[75] and transposed convolutions
[76] use a learned kernel to transform features into a new space with a larger resolution.
The resize-convolution [77] appends a learned convolution to a deterministic upsampling
procedure, which reduces the checkerboard artifacts that plague deconvolutions [77]–[79].
The resize-convolution is now a common component of image decoders such as the U-Net
[80] and has been applied to semantic segmentation [81]–[83] and super-resolution [84]–[86].
Other methods such as IndexNet [87] and Affinity-Aware Upsampling (A2U) [88] are effective
on image matting but fall short on other dense estimation tasks [89]. Methods such as
Pixel-Adaptive Convolutions [57], CARAFE [90], SAPA [91], and DGF [92] use learned
input-adaptive operators to transform features. Though PAC is flexible, it does not upsample
existing feature maps faithfully and instead is used to transform features for downstream
tasks. DGF approximates the JBU operation with learned pointwise convolutions and linear
maps, but does not fully implement JBU because it is computationally intractable. This
is precisely the problem we solve, without approximation, with our new efficient CUDA
kernel. FADE [89] introduces a new semi-shift operator and uses decoder features to produce
a joint feature upsampling module. Implicit feature alignment (IFA) [93] takes a different
tack, focusing on a nearest-neighbors approach to align feature maps in encoder-decoder
architectures. While IFA performs well on the specific semantic segmentation benchmarks, it
does not take advantage of image guidance and fails to learn high quality representations
outside of the encode-decoder framework, as we show in Figure 2.12.

2.3 Problem statement

Given an 8-bit, 3-channel RGB image x of shape H ×W × 3 and a pre-trained ‘backbone’
feature encoder f(·) that maps from the H×W ×3 image space to the spatially-downsampled
H↓ ×W↓ ×C latent space, where C is the length of the feature vectors f(x)ij , one can obtain
a feature map f(x). We aim to train a guided upsampler σ↑(f(x), x) that is capable of
upsampling the spatial dimensions of a low-resolution f(x) from H↓ ×W↓ back to H ×W ,
potentially using information from x a spatial ‘guidance’ signal, while also retaining the
semantics encoded in the C-dimensional feature vectors f(x)ij, for all i ∈ [0, H↓) and
j ∈ [0,W↓). We label the upsampled H ×W × C feature map Fhr ≡ σ↑(f(x), x).
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Figure 2.5: The FeatUp training architecture. FeatUp learns to upsample features through
a consistency loss on low resolution ‘views’ of a model’s features that arise from small
perturbations of the input image.

2.4 Methods

The core intuition behind FeatUp is that one can compute high-resolution features by
observing multiple different ‘views’ of low-resolution features. We draw a comparison with 3D
scene reconstruction models such as NeRF [22]; in the same way that NeRF builds an implicit
representation [94][95] of a 3D scene by enforcing consistency across many 2D projections of
the scene, FeatUp builds an upsampler by enforcing consistency across many low-resolution
feature maps. As in the broader NeRF literature, a variety of methods can arise from this
basic idea. In this work, we introduce a lightweight, forward-pass upsampler based on Joint
Bilateral Upsampling [42] as well as an implicit network-based upsampler. The latter is
learned per-image and query-able at arbitrary resolution. We provide an overview of the
general FeatUp architecture in Figure 2.5.

The first step in our pipeline is to generate low-resolution feature views to refine into
a single high-resolution output. To this end, we perturb the input image with small pads,
scales, and horizontal flips, and apply a ‘backbone’ encoder model to each transformed image,
in addition to the original image, to extract a collection of low-resolution feature maps. These
small image jitters allow us to observe tiny differences in the output features and provide
sub-feature information to train the upsampler.

Next, we construct a consistent high-resolution feature map from these views. We postulate
that we can learn a latent high-resolution feature map that, when downsampled, reproduces
our low-resolution jittered features (see Figure 2.5). FeatUp’s downsampling is a direct analog
to ray-marching; just as 3D data is projected down to 2D in this NeRF step, our downsampler
projects high-resolution features to low-resolution features. Unlike NeRF, we do not need to
estimate the parameters that generate each view. Instead, we track the parameters used to
‘jitter’ each image and apply the same transformation to our learned high-resolution features
prior to downsampling. We then compare downsampled features to the true model outputs
using a Gaussian likelihood loss [96]. A good high-resolution feature map should reconstruct
the observed features across all the different views.
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More formally, let t ∈ T be from a collection of image perturbation transforms such as
pads, zooms, crops, horizontal flips, and their compositions. Let x be an input image, f(·) be
our model backbone (such that f(x) is our low-resolution feature map), σ↑(·, ·) be a learned
upsampler that yields the high-resolution feature map Fhr ≡ σ↑(f(x), x) when applied to
f(x) and x, and σ↓(·) be a learned downsampler that maps H ×W ×C → H↓ ×W↓ ×C. We
note that this parameterisation allows σ↑ to be a guided upsampler (which depends on both
f(x) and x), an unguided upsampler (which depends on only f(x)), or an implicit network
(which depends on only x).

Our goal is to minimise, across all of the t ∈ T , the difference between the low-resolution
feature map f(t(x)) that results from perturbing the input image x by t(·), and the down-
sampled feature map that σ↓(·) produces from a perturbed high-resolution feature map t(Fhr)
(this is the same perturbation transform t(·)), i.e., σ↓(t(Fhr)). The expectation is that these
two perturbed, low-resolution feature maps — one obtained by directly encoding, the other
from downsampling — are equivalent to one another, and should ideally be the same. We
therefore construct our main multi-view reconstruction loss term as follows:

Lrec =
1

|T |
∑
t∈T

1

2s2
∥f (t (x))− σ↓ (t (Fhr))∥22 + log(s) (2.1)

averaging over all t ∈ T , where ∥·∥2 is the standard L2 norm and s = M(f (t (x))) is a
spatially-varying normalisation term parameterised by a small linear network M [96]. The
normalisation s turns the mean-squared error (MSE) loss into a proper likelihood. This extra
flexibility allows the network to learn when certain outlier features fundamentally cannot be
upsampled. In Figure 2.18, we visualise this adaptive normalisation. In Figure 2.13, we show
its effectiveness in an ablation study.

2.4.1 Choosing a Downsampler

Given the loss function described above, we need to choose the architecture of our learned
downsampler σ↓. We introduce two options: a fast and simple learned blur kernel, and a more
flexible attention-based downsampler. Both proposed modules do not change the ‘space’ or
‘semantics’ of the features with nontrivial transformations, but rather only interpolate features
within a small neighborhood. We diagram both choices in Figure 2.6 and demonstrate the
effectiveness of the attention downsampler in Figure 2.13.

Figure 2.6: We introduce two learned downsamplers. The simple downsampler (Left) is a
fast, learned blur kernel. The attention downsampler (right) combines a predicted salience
map with spatially invariant weight and bias kernels. The attention downsampler adapts
better to networks with nonlinear and dynamic receptive fields.
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Our simple downsampler blurs the features with a learned blur kernel and can be im-
plemented as a convolution applied independently to each channel. The learned kernel is
normalised to be non-negative and to sum to 1 to ensure the features remain in the same
space.

Though this blur-based downsampler is efficient, it cannot capture dynamic receptive
fields, object salience, or other nonlinear effects. To this end, we also introduce a more
flexible attention downsampler that spatially adapts the downsampling kernel. In short, this
component uses a 1x1 convolution to predict a saliency map from the high-dimensional, high-
resolution features. Then, it combines this saliency map with learned but spatially-invariant
weight and bias kernels and normalises the result to create a spatially-varying blur kernel
that interpolates the features. More formally:

σ↓(Fhr)ij = softmax(w ⊙ Conv(Fhr[Ωij]) + b) · Fhr[Ωij] (2.2)

where σ↓(Fhr)ij is the ijth component of the resulting feature map and Fhr[Ωij] refers to
a patch of high resolution features corresponding to the ij location in the downsampled
features. Conv(·) is the 1x1 convolution. ⊙ and · refer to the elementwise and inner products
respectively, and w and b are learned weight and bias kernels shared across all patches.
Our main hyperparameter for both downsamplers is the kernel size, which should be larger
for models with larger receptive fields such as convolutional nets. We defer discussion of
model-specific hyperparameters to Section 2.6.14.

2.4.2 Choosing an Upsampler

A central choice in our architecture is the parameterisation of σ↑, and we introduce two
variants. First, ‘JBU’ FeatUp parameterises σ↑ with a guided upsampler based on a stack
of Joint Bilateral Upsamplers (JBU) [42]. This architecture learns an upsampling strategy
that generalises across a corpus of images. The second method, ‘Implicit’ FeatUp, uses an
implicit network to parameterise σ↑ and can yield remarkably crisp features, but is overfit to
a single image. Both methods are trained using the same broader architecture and multiview
consistency loss. We illustrate both strategies in Figure 2.7.

Figure 2.7: Our Implicit version of FeatUp learns an implicit network to upsample a single
image’s features. Our JBU FeatUp learns a stack of JBUs that learns to quickly upsample
features from a large image corpus.
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Joint Bilateral Upsampler. Our feedforward upsampler uses a stack of parameterised
joint bilateral upsamplers (JBU) [42] to obtain the high resolution feature map Fhr:

Fhr ≡ σ↑(f(x), x) = JBU(·, x) ◦ JBU(·, x) ◦ . . . ◦ JBU(f(x), x) (2.3)

where ◦ is function composition, f(x) is the low-resolution feature map, and x is the original
image. This architecture is fast, directly incorporates high-frequency details from the input
image into the upsampling process, and is independent of the architecture of f .

In joint bilateral upsampling a high-resolution signal, G, is used as guidance for the
low-resolution features Flr. In FeatUp, G is the input imageWe let Ω be a neighborhood of
each pixel in the guidance. In practice, we use a 3 × 3 square centered at each pixel. Let
k(·, ·) be a similarity kernel that measures how ‘close’ two vectors are. We can then form our
joint bilateral filter:

F̂hr[i, j] =
1

Z

∑
(a,b)∈Ω

(
Flr[a, b] · krange(G[i, j], G[a, b]) · kspatial([i, j], [a, b])

)
(2.4)

where Z is a normalisation factor to ensure that the kernel sums to 1. Here, kspatial is a
learnable Gaussian kernel on the Euclidean distance between coordinate vectors of width
σspatial:

kspatial(x, y) = exp

(
−∥x− y∥22
2σ2

spatial

)
(2.5)

Furthermore, krange is a temperature-weighted softmax [96] applied to the inner products
from a multi-layer perceptron (MLP) that operates on the guidance signal G:

krange(x, y) = softmax(a,b)∈Ω

(
1

σ2
range

MLP(G[i, j]) ·MLP(G[a, b])

)
(2.6)

where σ2
range acts as the temperature. We note that the original JBU used a fixed Gaussian

kernel on the guidance signal, G. Our formulation generalises the original JBU [42] implemen-
tation to high-dimensional signals and makes this operation learnable. In our experiments,
we use a two-layer GeLU [97] MLP with 30-dimensional hidden and output vectors. To
evaluate Flr[a, b] we follow the original JBU formulation and use bilinear-interpolated features
if the guidance pixel does not directly align with a low-resolution feature. For resolution
independence, we use coordinate distances normalized to [−1, 1] in the spatial kernel.

One challenge we faced was the poor speed and memory performance of existing JBU
implementations, which could explain why this simple and apparently effective approach is not
used more widely. To address this challenge, we contribute an efficient CUDA implementation
of the spatially adaptive kernel used in the JBU. Compared to a naive PyTorch implementation
with the torch.nn.Unfold operator, our operation uses up to two orders of magnitude less
memory and speeds inference by up to 10×. We demonstrate its significant performance
improvements in Section Table 2.6.
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Implicit Our second upsampler architecture draws a direct analogy with NeRF by parame-
terising the high-resolution features of a single image with an implicit function Fhr = MLP(z).
Several existing upsampling solutions also take this inference-time training approach, includ-
ing DIP [67] and LIIF [66]. We use a small MLP to map image coordinates and intensities
to a high-dimensional feature for the given location. We follow the guidance of prior works
[22][94][98] and use Fourier features to improve the spatial resolution of our implicit representa-
tions. In addition to standard Fourier positional features, we show that adding Fourier colour
features allows the network to use high-frequency colour information from the original image.
This significantly speeds convergence and enables elegant usage of high-resolution image
information without requiring the complication of additional techniques like Conditional
Random Fields (CRFs, [99]). We illustrate the profound effect of Fourier colour features in
Section 2.6.3.

More formally, let h(z, ω̂) represent the component-wise discrete Fourier transform of an
input signal z, with a vector of frequencies ω̂. Let ei and ej represent the two-dimensional
pixel coordinate fields ranging in the interval [−1, 1]. Let : represent concatenation along the
channel dimension. We can now express our high-resolution feature map as:

Fhr = MLP(h(ei : ej : x, ω̂)) (2.7)

Our MLP is a small 3-layer ReLU [100] network with dropout p = 0.1 [101] and layer
normalization [102]. We note that, at test time, we can query the pixel coordinate field to
yield features Fhr at any resolution. The number of parameters in our implicit representation
is over two orders of magnitude smaller than a (224× 224) explicit representation while being
more expressive, significantly reducing convergence time and storage size.

2.4.3 Additional Method Details

Accelerated Training with Feature Compression To reduce the memory footprint
and further speed up the training of FeatUp’s implicit network, we first compress the
spatially-varying features to their top k = 128 principal components. This operation is
approximately lossless as the top 128 components explain ∼ 96% of the variance across a
single image’s features. This compression improves training time by a factor of 60× for
ResNet-50, reduces the memory footprint, enables larger batches, and does not have any
observable effect on learned feature quality. When training the JBU upsampler, we sample
random projection matrices in each batch to avoid computing a principal component analysis
(PCA) in the inner loop. This sampling achieves the same effect as inner-loop PCA, thanks
to the Johnson–Lindenstrauss lemma [103].

Total Variation Prior To avoid spurious noise in the high resolution features, we add a
small (λtv = 0.05) total variation smoothness prior [104] on the implicit feature magnitudes:

Ltv =
∑
i,j

(
(||Fhr[i, j]||−||Fhr[i− 1, j]||)2 + (||Fhr[i, j]||−||Fhr[i, j − 1]||)2

)
(2.8)

This prior is faster than regularising full features and avoids overprescribing how the
individual components should organise. We do not use this in the JBU upsampler because the
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upsampler does not suffer from overfitting. We demonstrate the importance of this regulariser
in Section 2.6.3.

2.5 Key Experiments

We compare both our JBU and Implicit variants of FeatUp against several key upsampling
baselines from the literature, in particular: Bilinear upsampling, Resize-conv, Strided (i.e.,
reducing the stride of the backbone’s patch extractor), Large Image (i.e., using a larger input
image), CARAFE [90], SAPA [91], and FADE [89]. We upsample ViT [5] features sixteenfold
(to the resolution of the input image) with every method except the strided and large-image
baselines, which are computationally infeasible above eightfold upsampling. For additional
details on the strided implementation, please refer to Section 2.6.1.

2.5.1 Qualitative Comparisons

Visualising upsampling methods Figure 2.8 demonstrates the dramatic qualitative
improvement FeatUp achieves compared to several baselines. Our visualisations fit a 3-
dimensional PCA on each image’s low-resolution ViT features and use this PCA to map
upsampled features into the same RGB space. We also show that this high-fidelity upsampling
extends to higher PCA components in Figure 2.16, and that FeatUp can improve small object
retrieval in Figure 2.22.

Figure 2.8: Low-resolution ViT features (14× 14) from the COCO-Stuff validation set are
upsampled by 16×. FeatUp produces clean, high-resolution results when compared with
faster methods like bilinear, resize-conv, and SAPA. Other methods like strided and CARAFE
perform similarly well on many samples, but run substantially slower (Figure 2.24).
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Robustness across vision backbones Figure 2.9 demonstrates that FeatUp can upsample
a variety of modern vision backbones. In particular, we show the implicit FeatUp features
across a variety of backbones spanning transformers, convolutional nets, and both supervised
and self-supervised models. Even though backbones like ResNet-50 do not precisely localise
objects due to their large receptive fields, FeatUp can reasonably associate features to the
correct object.

Figure 2.9: FeatUp can upsample the features of any backbone, even convolutional networks
with aggressive nonlinear pooling. In all cases, the feature maps yielded are high-resolution,
object-aligned, and semantically meaningful.

2.5.2 Transfer Learning for Semantic Segmentation and Depth Esti-
mation

Next, we demonstrate that FeatUp can serve as a drop-in replacement for existing features
in downstream applications. To demonstrate this, we adopt the widely used experimental
procedure of using linear probe transfer learning to evaluate representation quality [105].
More specifically, we train linear probes on top of low-resolution features for both semantic
segmentation and depth estimation. We then freeze and apply these probes to upsampled
features to measure performance improvement. If the upsampled features are valid improve-
ments, existing probes should work well without adaptation. For all experiments, we use a
frozen pre-trained ViT-S/16 as the featuriser, upsample the features (14x14 → 224x224), and
extract maps by applying a linear layer on the features.

For semantic segmentation, we follow the experimental setting of [106][35] and train a
linear projection to predict the coarse classes of the COCO-Stuff (27 classes) training dataset
using a cross-entropy loss. We report mIoU and accuracy on the validation set in Table
2.1. For depth estimation we train on pseudo-labels from the MiDaS [107] depth estimation
network using their scale- and shift-invariant MSE. We report root mean-squared error
(RMSE) and the δ > 1.25 metric which is common in monocular depth estimation literature.
More specifically this metric is defined as the percentage of pixels with δ = max( y

y∗
, y

∗

y
) > 1.25

where y is the depth prediction and y∗ is the ground truth.
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CAM Score Semantic Seg. Depth Estimation
↓ A.D. ↑ A.I. ↑ Acc. ↑ mIoU ↓ RMSE ↑ δ > 1.25

Low-res 10.69 4.81 65.17 40.65 1.25 0.894
Bilinear 10.24 4.91 66.95 42.40 1.19 0.910

Resize-conv 11.02 4.95 67.72 42.95 1.14 0.917
DIP 10.57 5.16 63.78 39.86 1.19 0.907

Strided 11.48 4.97 64.44 40.54 2.62 0.900
Large image 13.66 3.95 58.98 36.44 2.33 0.896

CARAFE 10.24 4.96 67.1 42.39 1.09 0.920
SAPA 10.62 4.85 65.69 41.17 1.19 0.917

FeatUp (JBU) 9.83 5.24 68.77 43.41 1.09 0.938
FeatUp (Implicit) 8.84 5.60 71.58 47.37 1.04 0.927

Table 2.1: Comparison of feature upsamplers across metrics on CAM faithfulness, linear probe
semantic segmentation, and linear probe depth estimation. Both FeatUp variants consistently
outperform other approaches, including other forward-pass upsamplers (CARAFE, SAPA)
and features optimised at inference-time (DIP). Bold is best. Underlined is second-best.

Figure 2.10: A comparison of different upsampling methods across each of the tasks considered
in our analysis. FeatUp achieves significant improvements in resolution across each task.

We stress that these linear probe evaluations show that FeatUp features can improve
downstream tasks without re-training models. These analyses do not aim to create SOTA
segmentation or depth networks. Both FeatUp variants outperform all baselines across all
experiments, showing that either variant can be used as a drop-in replacement for existing
features. Qualitatively, Figure 2.10 and Figures 2.20 - 2.21 show cleaner, more object-aligned
predictions across all tasks.

2.5.3 Class Activation Map Quality

Attributing a model’s predictions to specific pixels is crucial for diagnosing failures and
understanding a model’s behavior. Unfortunately, common interpretation methods like Class
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Activation Maps (CAM) are limited by the low resolution of the deep feature maps and
cannot resolve small objects. We show that FeatUp features can be incorporated into existing
CAM analyses to yield stronger and more precise explanations. More specifically, we use
the literature’s established metrics, Average Drop (A.D.) and Average Increase (A.I.), that
measure CAM quality (refer to Section 2.6.9 for a detailed description of these metrics).
Intuitively, A.D. and A.I. capture how much an image’s most salient region changes the
classification output. A good CAM should highlight regions with the greatest effect on the
classifier’s predictions, so censoring these regions will have the largest impact on the model’s
predictions (lower A.D., higher A.I.). Upsamplers are trained on the ImageNet training set
for 2,000 steps, and we compute metrics across 2,000 random images from the validation set.
We use a frozen pre-trained ViT-S/16 as the featuriser, and extract CAMs by applying a
linear classifier after max-pooling. Upsampling is done (14x14 → 224x224) on the features
themselves, and CAMs are obtained from these high-resolution maps. We report results in
Table 2.1 and Figures 2.10 and 2.19.

2.5.4 End-to-end Semantic Segmentation

FeatUp not only improves the resolution of pre-trained features but can also improve models
learned end-to-end. We adopt the experimental setting of [91][89] to show that our JBU
upsampler improves end-to-end performance on ADE20K semantic segmentation using the
SegFormer [108] architecture. Specifically, we train SegFormer on ADE20k [109][110] (20,210
training and 2,000 validation images) for 160k steps. To validate that our setup matches
that of the existing literature despite numerical discrepancies, we also compute FLOPs for
SegFormer with various upsamplers in Table 2.2. These counts are comparable with those in
[111], confirming our architectural setup. We report mean intersection over union (mIoU),
mean class accuracy (mAcc), and all-pixel accuracy (aAcc) against several recent baselines in
Table 2.2 including IndexNet [87], A2U [112], CARAFE [90], SAPA [91], and FADE [89], in
addition to more standard bilinear and resize-conv operators. Figure 2.11 shows examples of
segmentation predictions across these methods. FeatUp consistently outperforms baselines
with fewer added parameters, showing that FeatUp can also improve a broader, jointly trained
architecture.

Figure 2.11: End-to-end training performance of different upsampling methods from our
SegFormer-based semantic segmentation experiments. These results do not use linear probes,
but instead train the architecture jointly.
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Metric Bilinear
Resize-
conv

IndexNet A2U CARAFE SAPA FADE
FeatUp
(JBU)

↑ mIoU 39.7 41.1 41.5 41.5 42.4 41.6 43.6 44.2
↑ mAcc 51.6 51.9 52.2 52.3 53.2 55.3 54.8 55.8
↑ aAcc 78.7 79.8 80.2 79.9 80.1 79.8 80.7 80.7

↓ Params (M) 13.7 +3.54 +12.6 +0.12 +0.78 +0.20 +0.29 +0.16
↓ GFLOPs 16.0 +34.40 +30.90 +0.51 +1.66 +1.15 +2.95 +1.70

Table 2.2: Semantic segmentation results with the SegFormer [108] architecture trained on
the ADE20k train set and evaluated on the val set. FeatUp (JBU) outperforms the standard
bilinear and resize-conv upsamplers in U-Net architectures, IndexNet [87], A2U [88], and
other task-agnostic upsamplers (CARAFE [90], SAPA [91], FADE [89]). Additionally, our
upsampler is competitive in parameter and floating-point operation (FLOP) count. Bold is
best. Underlined is second-best.

2.6 Additional Results

2.6.1 Strided baseline implementation

For the DINO and ViT backbones, we extract patches with a stride of 16

upsample factor to
produce a higher density of feature vectors and thus increase feature resolution. We point
out that the upsampling factor is limited with this method (as the stride is lower bounded by
one), so this approach can only upsample up to 16x for ViT-S/16. Practically however, these
maximum upsampling factors are impractical as they require far more memory than current
GPUs provide (see Figure 2.24).

2.6.2 Comparison to Image-Upsampling Methods

A variety of methods have been proposed for image super-resolution. Among the learning-
based approaches, deep image prior (DIP) [67] has been used succesfully for enhancing
images without additional training data. Figure 2.12 shows that DIP poorly upsamples
features, introducing artifacts and ‘blob’ patterns in the features and downstream outputs.
[65] introduced Zero-Shot Super-Resolution, a method that learns an image-specific CNN
at test time without additional training data. Additionally, images can be represented as
Local Implicit Image Functions (LIIF) [66] which can be queried at arbitrary resolution.
While similar to FeatUp’s implicit network, LIIF trained to continuously represent a feature
map does not produce sharp outputs like FeatUp (Figure 2.12) Despite these methods’
successes in the image super-resolution problem space, they are not equipped to upsample
high-dimensional features.
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Figure 2.12: Comparison of image super-resolution methods using Deep Image Prior, Zero-
Shot Super-Resolution (ZSSR), and Local Implicit Image Function (LIIF). We also include
a visualisation on Implicit Feature Alignment (IFA). As shown in the whole feature map
and zoomed-in section, these image upsampling methods do not effectively upsample the
low-resolution and high-dimensional feature maps by the large upsampling factors that FeatUp
is able to handle.

2.6.3 Ablation Studies

We show the effects of each design decision for FeatUp in Figure 2.13. Without the spatially
varying normalisation, our upsampler blurs ResNet features; possibly because it cannot ignore
certain nonlinear artifacts or resolve the large pooling window present in ResNet-50. The
magnitude regulariser provides smoothing and regularisation benefits. Our choice to include
Fourier colour features dramatically improves resolution and high-frequency details. Finally,
the attention downsampler helps the system avoid odd edge and halo effects by learning
kernels more focused on salient parts of the signal. Using an explicit buffer of features
instead of an implicit network yields significant artifacts, though we note that the artifacts
are significantly less dramatic if the simple downsampler is also used.

Figure 2.13: Qualitative ablation study across both DINO and Resnet50 Backbones. The
biggest improvements arise from the implicit featuriser, colour features, and the magnitude
TV regulariser. Including the spatially-dependent normalisation has little effect in the first
row, but appears to improve feature map alignment with objects and shadows in the second.
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We also provide an ablation study of FeatUp’s jitter hyperparameters in Figure 2.14, and
of the total variation and magnitude regularisers in Figure 2.15 and Table 2.3. Our regulariser
is fairly robust to different settings as shown by the 2x multiplication for both terms in the
3rd column. However, there still exists an optimal λ range that provide important smoothing
properties; larger values can interfere with the main reconstruction objective as shown in the
final column.

Figure 2.14: Ablation of FeatUp’s jitter hyperparameters. We are robust to a range of pad,
zoom, and flip values, though features degrade with large changes in max pad.

44



Figure 2.15: Qualitative ablation study of the TV and magnitude regularisers. FeatUp is
fairly robust to the settng of these parameters.

CAM Score Semantic Seg. Depth Estimation
Attn DS. O.D. TV Reg. ↓ A.D. ↑ A.I. ↑ Acc. ↑ mIoU ↓ RMSE ↑ δ >1.25

✓ ✓ ✓ 8.84 5.60 71.58 47.37 1.04 0.927
✗ ✓ ✓ 9.07 5.06 70.95 46.79 1.11 0.916
✓ ✗ ✓ 8.91 5.55 71.26 46.89 1.08 0.920
✓ ✓ ✗ 9.10 5.00 68.06 44.36 1.11 0.913

Table 2.3: Ablation study for implicit FeatUp features with varied downsampler (attention =
✓, simple = ✗), outlier detection, and λTV (0.05 = ✓, 0.0 = ✗). Bold is best.

To further justify our design decisions in the context of an end-to-end trained architecture,
we evaluate JBU FeatUp’s performance both in use for linear probe transfer to class activation
mapping (CAM), semantic segmentation, and depth estimation (Table 2.4), and in the
SegFormer [108] trained end-to-end for semantic segmentation (Table 2.5). We (1) remove the
MLP (see Equation 2.6) on the guidance signal, (2) remove the temperature-weighted softmax
and replacing it with Euclidean distance between the central feature and its neighborhood,
and (3) remove the softmax and replacing it with cosine distance. Each ablation degrades
segmentation performance, with the MLP exclusion being the most detrimental.
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CAM Score Semantic Seg. Depth Estimation

Ablation ↓ A.D. ↑ A.I. ↑ Acc. ↑ mIoU ↓ RMSE ↑ δ >1.25

Original 9.83 5.24 68.77 43.41 1.09 0.938

- MLP 10.04 5.10 68.12 42.99 1.14 0.917

- Softmax

+ Euclidean
9.98 5.19 68.68 43.16 1.10 0.928

- Softmax

+ Cosine
9.97 5.21 68.49 43.15 1.12 0.924

Table 2.4: FeatUp (JBU) performance with ablated architectural components: removing the
MLP, replacing softmax with a Gaussian kernel w.r.t. Euclidean or cosine distance. Across
all metrics, each ablation degrades performance. Bold is best.

FeatUp (JBU)

Original - MLP
- Softmax

+ Euclidean Dist.
- Softmax

+ Cosine Dist.

↑ mIoU 44.2 42.9 43.8 43.7
↑ mAcc 55.8 54.7 54.5 55.3
↑ aAcc 80.7 79.4 80.0 80.4

Table 2.5: Semantic segmentation performance with the SegFormer architecture trained
on the ADE20k training set and evaluated on their validation set. Ablated FeatUp (JBU)
replaces the original feature upsampling in the SegFormer decoder.

2.6.4 Visualising Additional PCA Components

Throughout this chapter, we share the principal component analysis (PCA) using only
the three most dominant components, which can be mapped to RGB channel values for
visualisation purposes. In Figure 2.16, we demonstrate that it is not only these top-3
components that are upsampled precisely; higher-order principal components also benefit
from FeatUp’s guided upsampling methodology.
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Figure 2.16: Visualising higher PCA components with FeatUp. FeatUp upsamples entire
feature maps, so their higher-order principal components also remain in the same space as
the original features and are upsampled precisely. Higher components tend to separate more
fine-grained object categories like the skater from the skateboard, and the trees from the
background, and the clouds from the sky. Note that each subobject’s features are upsampled
precisely to the object it represents.

2.6.5 Saliency Map Details

Downsampling in FeatUp is analogous to ray-marching in NeRF, which approximates the
physics of image formation. FeatUp’s downsampler approximates a network’s process of
pooling information into features. As shown in Figure 2.8, most networks preserve the rough
location of objects in their features (the objects just appear downsampled and blurred). This
observation leads us to use blur/pooling operators.

The simplest of these is average pooling, but we can do better by generalising this
operation to a learned blur/pooling kernel so the downsampler can better match a network’s
receptive field size. To continue the NeRF analogy, this is like adding learned camera lens
distortion parameters to the ray-marcher so NeRF can better fit the data.

As shown in Figure 2.9 and described in Section 2.4.1, even a learned blur/pooling
kernel cannot capture dynamic receptive fields or object salience. For example if a small
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amount of an important object is in a transformer’s patch, the whole feature changes. We
capture effects like this by making the learned pool/blur kernel dependent on image content
using a 1x1 convolution (we do not need anything bigger than this single layer). This
generalises the learned blur/pool and allows the downsampler to pool adaptively based on
image content. Figure 2.17 shows that the salience network focuses on certain attributes
(e.g., object boundaries, some important small objects). We also note that many common
pooling strategies such as average pooling or nearest/bilinear/bicubic resizing are special
cases of our learnable attention pooling strategy.

2.6.6 Visualising Downsampler Salience and Kernels

FeatUp’s downsampler makes use of a learned, spatially varying ‘salience’ kernel, in addition
to learned, spatially invariant weight and bias kernels. We visualise these in Figure 2.17. The
salience is particularly important for our downsampler’s performance, because it captures the
‘salience’ of each pixel to the backbone feature encoder.

Figure 2.17: Visualisation of downsampler salience, weight, and bias kernels for two images.
Note how fine-grained objects have higher salience and regions around important objects
(like the sky between the hands and the skateboard) have lower salience. This allows the
network to capture nonlinear behavior where embeddings from salient regions dominate the
embeddings of other regions.
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2.6.7 Visualising Predicted Uncertainty

[96] demonstrates a learned, spatially varying normalisation s that conditions the mean-
squared error into a likelihood (Equation 2.1). They label this normalisation s and ‘uncer-
tainty’, and in Figure 2.18 we share what that spatially varying uncertainty looks like over a
map of ViT-encoded features.

Figure 2.18: An example predicted uncertainty map for a set of ViT features. White areas
have higher uncertainty. In this figure, we can see that nonlinear artifacts like the spurious
pink tokens are marked with high uncertainty as they change location depending on the given
evaluation. These tokens might serve some other role in the network, such as class-token-like
information aggregation. We do not see these types of effects in DINO or convolutional
networks.

2.6.8 Linear Probe details

In both linear probe tasks, one probe was trained on low-resolution (14x14) features from
the COCO training set, and frozen for validation across all methods. FeatUp’s performance
improvements on this repurposed linear probe show that our methods increase resolution
without compromising the original feature space. We highlight that these results are not meant
to improve state-of-the-art (SOTA) performance on segmentation and depth estimation; they
are meant to showcase feature quality across upsamplers. Because estimation for both tasks is
done with a frozen backbone and a single trainable linear probe, the segmentation and depth
maps are not meant for direct application in systems capable of running SOTA estimators.
However, as previously mentioned, they show great promise for use in compute-constrained
systems!

2.6.9 Average Drop and Average Increase Details

Average Drop is expressed as
N∑
i=1

max(0,Y c
i −Oc

i )

Y c
i

· 100, where Y i
c is the classifier’s softmax output

(i.e., confidence) on sample i for class c, and Oc
i is the classifier’s softmax output on the

CAM-masked sample i for class c. We generate Oc
i by keeping the top 50% of CAM values

(and Gaussian blurring the remaining 50% of values with less explainability power). Though
we generally expect classifiers to drop in confidence because even masking out less-salient
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pixels can remove important image context, a high-quality CAM will target the explainable
regions of an image more precisely and thus maintain a higher confidence. In the reverse
direction, we measure the Average Increase to capture the instances where CAM-masked

inputs increase model confidence. Specifically, we define Average Increase as
N∑
i=1

1Y c
i
<Oc

i

N
· 100

where 1Y c
i <Oc

i
is an indicator function equal to 1 when Y c

i < Oc
i (i.e., when model confidence

increases upon classifying a CAM-masked image).
Similar to the RelevanceCAM evaluation in [43], we randomly select 2000 images from

the ImageNet validation set (limited to images where the label and model prediction match)
on which to measure A.D. and A.I.

2.6.10 Additional Linear Probe Results

We provide additional CAM visualisations with supervised ViT features on the ImageNet
validation set in Figure 2.19. As in Section 2.5.3, we upsample features from 14x14 to 224x224
output before extracting CAMs (except for the ‘Low-Res’ column, where the features are
kept as-is). Both FeatUp (JBU)’s edge-preserving bilateral filters and the FeatUp (Implicit)’s
feature representation allow resulting CAMs to highlight salient regions more accurately. Our
CAMs combine the semantic advantages of low-resolution features with the spatial advantages
of large images, producing refined versions of the original CAMs without the discontinuous
patches present in the other upsampling schemes.

Figure 2.19: CAMs on the ImageNet validation set from a supervised ViT backbone and linear
probe classifier. Both FeatUp variants produce features that are more precise with respect to
the input image, allowing downstream CAMs to better align with object boundaries.

See Figure 2.20 for examples of linear probe transfer learning for semantic segmentation
on the COCO-Stuff dataset. The 14x14 features output from a ViT backbone are upsampled
with the following methods to achieve 224x224 resolution. Then, a linear probe is trained on
the low-resolution features and frozen for evaluation on COCO-Stuff semantic class labels.
Our methods recover more cohesive labels of objects and backgrounds.
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Figure 2.20: Examples of linear probe transfer learning for semantic segmentation on the
COCO-Stuff dataset. Our methods more closely resemble ground-truth segmentation and
smooth many of the artifacts present in the low-resolution feature results. Additionally,
FeatUp (Implicit) recovers thin structures like the umbrella pole, which are not even present
in the ground truth despite being semantically correct.

Figure 2.21 provides additional examples of linear probe transfer learning for depth
estimation. The 14x14 features output from a ViT backbone are upsampled to achieve
224x224 resolution. Then, a linear probe is trained directly on the features to predict depth
while supervised by a small MiDaS network. Our results show that both FeatUp variants
result in high-quality features capable of transfer learning.

Figure 2.21: Examples of linear probe transfer learning for depth estimation. Our methods
produce sharper object boundaries and smoother interiors that more closely align with true
depth than other methods.

2.6.11 Improving Image Retrieval for Small Objects

FeatUp can be used to improve not only linear probe transfer-learning and end-to-end training
(Sections 2.5 and 2.6.10), but also other feature-based tasks like point-query object retrieval
(Figure 2.22). FeatUp’s improved object-alignment enables improved localisation of similar
objects in different image samples.
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Figure 2.22: FeatUp can be used to improve the retrieval of small objects in cluttered scenes.
A query image (left) is featurised with DINO and a query point is selected. In the two images
on the right, we compare the pixel similarity (the overlaid heatmap — red is similar, blue is
dissimilar) and object retrieval (the ×) produced by bilinear- vs. FeatUp-based algorithms.
Because the scene is cluttered, bilinear interpolation blurs object features together and the
resulting retrieval vector does not discriminate between ground and cones. FeatUp’s features
better align with objects, allowing only the traffic cones to be retrieved.

2.6.12 Performance Benchmarking

We evaluate how various factors like spatial dimension, upsampling factor, and feature dimen-
sion impact the performance of our adaptive convolution CUDA kernal used in FeatUp (JBU).
See Figure 2.23 for performance benchmarking for the full FeatUp algorithm compared with
baselines, and Table 2.6 for performance benchmarking of our custom CUDA implementation
compared with PyTorch- and TorchScript-based implementations

Figure 2.23: In varying the upsampling factor, feature dimension, and target spatial dimension,
FeatUp (JBU) remains competitive in GFLOP usage. For each experiment, the attributes
not studied are kept constant (upsampling factor = 2, feature dimension = 256, starting
spatial dimension = 8x8).

We analyse peak memory usage and inference time for various upsampling methods.
Specifically, we upsample ViT features from a (1× 3× 224× 224) image (i.e., low-resolution
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Shape (B, H, W, C, F) Method ↓ Forward (ms) ↓ Backward (ms) ↓ Peak Mem (Mb)

1× 14× 14× 2048× 5

Ours 0.15 1.05 6.24

TorchScript 2455 69367 12.8

Unfold 3.30 2.81 119.0

1× 512× 512× 3× 5

Ours 0.55 2.10 10.2

TorchScript 147.0 520.0 24.3

Unfold 3.47 4.85 231.0

16× 32× 32× 2048× 5
Ours 8.43 90.8 372.

Unfold 118.0 218.0 6628.0

32× 512× 512× 3× 5
Ours 17.7 114.0 326.

Unfold 36.0 104. 4901.0

64× 14× 14× 2048× 5
Ours 6.12 61.1 400.

Unfold 57.5 170.0 5174.0

64× 224× 224× 3× 5
Ours 6.27 36.1 128.

Unfold 16.7 27.4 1878.0

64× 64× 64× 16× 5
Ours 1.06 8.99 44.5

Unfold 7.18 14.5 822.0

64× 64× 64× 16× 7
Ours 2.00 8.36 52.6

Unfold 10.8 25.6 1596.0

Table 2.6: Comparing the performance of our CUDA JBU kernel with implementations based
on PyTorch’s Unfold operation and TorchScript. Our implementation dramatically reduces
memory overhead and increases inference speed. Code for this operation is available in the
provided link. Bold is best.

feature dimensions of (1× 384× 14× 14)) by factors of 2, 4, 8, and 16. Figure 2.24 shows
that FeatUp (JBU)’s peak memory closely follows resize-conv and SAPA baselines and
outperforms CARAFE. Additionally, FeatUp is as fast as yet outperforms baselines in all
of our quantitative evaluations. We note that strided and large image baselines become
computationally infeasible after 8× upsampling, even using a batch size of 1.
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Figure 2.24: Analysis of peak memory usage (left) and inference time (right) for various
forward-pass upsamplers. FeatUp (JBU) is competitive with SAPA and resize-conv across
upsampling factors and is more efficient than CARAFE for smaller factors. The large image
and strided approaches become infeasible at large upsampling factors, so we only show metrics
for these methods up to 8× upsampling.

2.6.13 Limitations

The two FeatUp variants exhibit different limitations. More specifically, we find that Implicit
FeatUp’s NeRF-like training paradigm allows it to compute fine detail with high fidelity,
sometime even exceeding the fidelity of the ‘truth’. However, it can suffer from ‘halo’ effects
near object boundaries that arise from the model not quite managing to enforce inter-sample
consistency. Meanwhile, JBU FeatUp does not capture detail as finely.

For both variants, FeatUp’s heavy usage of the input RGB image as guidance can lead to
textures that have nothing to do with semantic content being injected into the upsampled
features. Its reliance on the input also means that FeatUp simply cannot function in a system
without access to the original image data.

Figure 2.25: Left: Though FeatUp’s implicit network can capture fine detail such as the soccer
ball or window frame, it can still produce some halo effects (see soccer player). Additionally,
because the method relies on the input image’s spatial signal, certain patterns unrelated to
object semantics can be transferred to the feature map (see rug pattern), though this is a
rare occurrence. Right: FeatUp’s JBU network is not as sensitive to fine detail as the implicit
network, instead capturing broader contours.
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2.6.14 Implementation Details

All backbones (DINO, DINOv2, ViT, ResNet-50, CLIP, and DeepLabV3) used to train FeatUp
are frozen, pre-trained models obtained from the community. We outline the hyperparameters
used to train FeatUp in table 2.7.

Hyperparameter FeatUp (Implicit) FeatUp (JBU)

Num Images 1 4

Num Jitters Per Image 10 2

Downsampler Attention Attention

Optimiser NAdam NAdam

Learning Rate 0.001 0.001

Image Load Size 224 224

Projection Dim 128 30

Training Steps 2000 2000

Max Transform Padding 30px 30px

Max Transform Zoom 1.8× 2×

Kernel Size 29 16

Total Variation Weight 0.05 0.0

Implicit Net Layers 3 n/a

Implicit Net Dropout 0.1 n/a

Implicit Net Activation ReLU n/a

Table 2.7: Hyperparameters used in training FeatUp.
.

2.6.15 Website, Video, and Code

We provide additional details and a short video explaining FeatUp at https://aka.ms/featup.
Additionally, we provide our code at: https://tinyurl.com/28h3yppa.
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2.7 Conclusion

FeatUp is a fast, lightweight, and guided method for upsampling features extracted from any
backbone architecture. It can be used to improve the performance of linear probes trained
for any vision task that takes as input a feature embedding, by upsampling the embedding
as a preprocessing step.

Mobile systems like the Husky and Spot in Figure 1.6 are currently limited to low-
performing vision models like YOLOv3 Tiny [9], but our work with FeatUp demonstrates
that improved feature upsampling opens the door to the future development of multi-task
models based on a single backbone with several linear probes attached (one per task). These
would operate with a drastically reduced number of parameters compared with the several
entirely separate vision models that must currently be trained and stored if one wishes to
accomplish several vision tasks on a single platform (Figure 2.26).

More specifically, if M is the number of parameters in a backbone, k ≪ M is the number
of parameters in each linear probe (to simplify, we take them all to be the same size regardless
of task), and N is the number of tasks being undertaken, we can hypothetically expect to see
a reduction from O(NM) parameters to O(M + kN) → O(M) parameters.

Figure 2.26: FeatUp’s improved ability to upsample features opens the door for improved
transfer learning from a single M -parameter backbone to a multitude of tasks via k ≪ M -
parameter linear probes [16]. This could drastically reduce the number of parameters required
to simultaneously perform N visual tasks at once from O(NM) to O(M).

So it appears that FeatUp may be ‘the’ (or, at least, ‘a’) solution to the tricky challenge
of vision for robots in compute-constrained environments. But how do we select the ‘right
data’ with which to train these backbones and linear probes? We cannot always rely on
synthesis, as I did in my master’s thesis. And unlike with large models like SAM, we cannot
always expect bounteous access to data. We need a smarter way of selecting the ‘right data’
to train with, and it is this challenge to which we turn in the next chapter.
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Chapter 3

DiffUnc: Diffusion-based Uncertainty
Estimation for Anomaly Detection

This work is in-progress, aiming for a June 2024 submission, and was pursued in collaboration
with Sunshine Jiang, Dr. Siddharth Ancha, and Prof. Nicholas Roy [17]. Some background
material is also copied with permission from [113].

How do we choose the ‘right data’ for training and finetuning vision models? We could take
the approach of the Segment Anything Model (SAM) and train on millions of high-resolution
images and billions of high-quality masks [3]. But in data-constrained environments (e.g.,
marine, subterranean, nonterranean, and nighttime/low lighting) we are often limited by
having little data to work with; and what data we do have is often low quality — lacking,
for example, in resolution and/or contrast. Models like SAM can struggle to generalise
to such environments, both because of this degradation in image quality, and because the
environments themselves are often out-of-distribution, even relative to the massive dataset
used to train SAM [114][115].

Humans — at least once they have crossed some threshold of competency — have
a remarkable ability to recognise their own uncertainty when faced with new items and
environments [116][pp. 112-130, 222-227 of [19]], and this is critical to our ability both to
learn entirely new concepts, and to transfer what we know about familiar topics to sights
unseen. More specifically, it helps us direct our cognitive attention appropriately toward
closer examination or consultation with others [pp. 203-221 of [19]] (Figure 3.1). In many
situations (e.g., unfamiliar beasts), it allows us to know when we should activate our flight
mechanism and run.

Visual anomaly detection is an increasingly important learning task that enables the
vision and robotics communities to predict, detect, and prevent model failure. However,
current methods for estimating uncertainty and predicting anomalous performance are often
uncalibrated and unlocalised. In this chapter, I discuss DiffUnc, a diffusion-based method
for estimating and localising meaningful uncertainty. I will also present two improvements
to existing guided diffusion methods: a new approximation for the energy term, and an
alternative penalty function. We make use of both improvements in our final results.
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Figure 3.1: Humans learn to recognise their own uncertainty about what they see, and use
it to choose which data to pay attention to and train on [19]. Can we leverage a similar
principle to help machines choose the ‘right data’ more intelligently?

Our method produces uncertainty estimates at the pixel- and mask-level, enabling anomaly
detection at both resolutions (Figure 3.2). We show that DiffUnc performs well on existing
benchmarks for anomaly detection, and that its uncertainty estimates are meaningful and
human-interpretable. Finally, we demonstrate that DiffUnc — especially in conjunction
with our SAM-based mask-level uncertainty extension — excels at picking out tiny and
camouflaged anomalies, which are often undetectable to the human eye.

Figure 3.2: DiffUnc estimates pixel- and mask- level uncertainty using the output of a guided
diffusion process. By taking the difference between the synthesised output and the original
image target, we can get a localised estimate of uncertainty. The challenge is two-fold — first,
the diffusion process must enforce the ‘right’ kind of consistency between output and target;
and second, we must take the ‘right’ kind of difference.
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3.1 Introduction

Autonomous robotic navigation has become increasingly pervasive in both data-rich (often
urban) environments [117]–[119] as well as data-constrained (often off-road) environments
like planetary exploration [120][121], search-and-rescue [122], mines [123] and forests [124].
Navigation systems rely on semantic segmentation of camera images [125]–[127] to detect
various semantic types and object classes. Robots operating in such real world environments
often face ‘out-of-distribution’ (OOD) obstacles that are not well-represented in the training
data. However, most deep-learning based semantic segmentation models not only make
unexpected errors on OOD examples, but they often have no notion of how incorrect their
estimates are.

In order to navigate safely and reliably in unfamiliar environments, autonomous robots
must detect anomalies and estimate uncertainty in the visual data they encounter, in
order to anticipate potential errors (Figure 3.3) [128]. Uncertainty in general arises from
two sources [129]: ‘aleatoric’ uncertainty is the inherent and irreducible uncertainty due
to sensor/label noise, partial observability, environmental dynamics, or similar; whereas
‘epistemic’ — or model — uncertainty is the hypothetically reducible [129] uncertainty in
the modelling algorithm. In neural network-based perception models, epistemic uncertainty
is often assumed to be due to unfamiliar inputs not being well-represented in the training
dataset [130]. However, this is an oversimplification — epistemic uncertainty can also stem
from incorrect assumptions, imprecise problem formulation, bad architectural choices, etc.

Figure 3.3: When a robot trained on pure forest data (Figure 3.13) and deployed to a
wooded region encounters a jeep, one predictor of potential mission failure is the answer
to the question ‘Were jeeps in the training set?’ If the answer is ‘No’, our robot’s vision
algorithms are quite likely to fail. If, however, we could accurately estimate the degree to
which this jeep image is ‘out-of-distribution’ (i.e., its epistemic uncertainty), then the robot
could recognise its own high probability of failure, and could appropriately notify a remote
operator or independently make more cautious plans, thus averting loss of mission.

Under this assumption, if one can obtain a measure of how ‘out-of-distribution’ a sample
is relative to the training data, one has obtained an estimate of the model — or ‘epistemic’ —
uncertainty. Measuring the ‘OODness’ of a sample also enables us to flag unusual samples as
anomalies for anomaly detection. Our goal in this work is therefore improved estimation of
epistemic uncertainty, with the application of anomaly/failure detection firmly in mind.
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Uncertainty estimation for deep neural networks is a field of active research and interest in
the robotics community [92][128][131]–[136]. Bayesian neural networks [18][137]–[140] provide
a principled framework to estimate both uncertainties for an input x by not just predicting a
single categorical distribution p= (p1, . . . , pC |

∑C
c=1 pc = 1) over C classes, but by predicting

a hierarchical ‘distribution over distributions’ p(p | x). However, conventional Bayesian
uncertainty estimators like variational inference [131][141][142], ensembles [134][143]–[146],
MC-Dropout [128], and test-time augmentation [147][148] require multiple forward passes
through a neural network and are prohibitively slow for real-time robotics applications. More
recently, ‘evidential’ uncertainty [132][133][149]–[152] estimators such as the natural posterior
network (NatPN) [113][153][154] have emerged as more efficient alternatives that model
uncertainty as a Dirichlet distribution [155] and directly predict its parameters.

These Bayesian and evidential approaches have been very successful, but generally produce
only image-level uncertainty estimates, sufficient to flag an entire image as anomalous, but
often insufficient for a robot’s remote supervisor to determine what should be done to
resolve the uncertainty (Figure 3.4). To be useful, uncertainty estimates should be localised.
Additionally, uncertainty estimates are rarely meaningful and reliable [129], an issue that
the community has tried to address via calibration measures and re-calibration methods
[156]–[158]. What we really need for anomaly detection, therefore, are meaningful and localised
estimates of epistemic uncertainty.

Figure 3.4: Flagging an entire image as anomalous or high uncertainty is often insufficient,
because a remote human supervisor cannot always tell without guidance which part of
an image is problematic. In this case, for example, the problematic element is the small
silver-white patch at the right edge of the input image (left). Without being shown the
localised uncertainty (right), the supervisor might not find the anomaly.

A variety of approaches for localising uncertainty and detecting anomalies have been
attempted (Figure 3.5) [159], including dimensionality reduction approaches like principal
component analysis (PCA) [160]–[162] and random projections [163]–[165], novelty functions
[166][167], and feature-space comparison of neural embeddings [168]–[171]. More recently,
the pixel-by-pixel evidential uncertainty estimation and anomaly detection-by-synthesis
approaches have shown particular promise.

The pixel-by-pixel evidential approach is simply to take an evidential method and apply it
to each input image pixel xij, individually, to estimate the likelihood p(yij |xij,D), which is
inversely related to the pixel’s epistemic uncertainty. Such a method is usually task-specific;
for example, the NatPN-based approach of [113] is specifically for semantic segmentation,
and yij indicates the ijth pixel’s class. This sort of approach yields results as shown on the
left of Figure 3.5, and often fails to detect the entirety of the anomalous object.
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Meanwhile, anomaly detection by synthesis has become a popular approach in which an
autoencoder-type architecture G(·) [172]–[176] is trained on anomaly-free data Did [177][178].
Anomaly detection can then be performed by calculating the difference Diff(x,x′) between
an inference-time input x and whatever output is reconstructed by x′ = G(x). This approach
assumes that the autoencoder will not be able to accurately reproduce anomalies because of
the priors learned from its anomaly-free training data, so that G(x) is effectively a projection
of x onto the training manifoled Did, and that computing such a difference will yield hotspots
in anomalous regions. Recently, generative adversarial network (GAN)- based approaches
have shown promise and become increasingly common [179]–[183]. However, these approaches
often have high computational requirements, in addition to high false-positive rates (as in,
e.g., the rightmost example in Figure 3.5) [159] stemming from the empirical fact that, in
practice, GANs often generalise well to anomalies and therefore reconstruct them sufficiently
well that detection capability is reduced [177].

Figure 3.5: Examples of prior attempts to localise uncertainty and detect anomalies, which
have included applying evidential methods pixel-by-pixel [113], using neural networks to
directly estimate bounding boxes or heatmaps [184][185], and using generative models to
project the potentially-anomalous image to its nearest anomaly-free neighbour and computing
their difference [179].

DiffUnc is an evidential anomaly-by-synthesis approach, which combines these two promis-
ing strategies (Figures 3.2). Specifically, we use a diffusion model [186] — which is essentially
a stochastic NatPN [154] — to model our in-distribution (ID) targets Did. By ‘guiding’ our
diffusion process [187], we can enforce consistency between generated images x′ ≡ G(x) and
input images x, effectively training the diffusion model to remove anomalies. We can then
take the epistemic pixel-level uncertainty to be the difference between input and reconstruc-
tion, u ≡ Diff(x,x′). Our premise is that diffusion models are an evidential and justifiable
method for modelling distributions and image-level uncertainties [186][188], and that guided
diffusion has been empirically shown to be an extremely good generative model [40][187].
Our hypothesis is that this makes guided diffusion a justifiably and empirically good choice
of generative model for the anomaly-by-synthesis approach.

Selecting a good Diff(·, ·) operator and guiding the diffusion model is non-trivial. To make
DiffUnc a success, we develop and share the following contributions:

1. A new energy function for guiding our diffusion process, ‘SoftRect’, that is forgiving of
small errors but punishes large ones harshly.

2. Empirical evidence and supporting analysis for our choice of the Diff(·, ·) operator to
be a cosine-difference between encoded DINO features [27], [189]. We compare this
metric with several other difference metrics, including straightforward image-space
comparisons and alternative perceptual metrics.
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3. FeatUp- and SAM-based extensions to our work, which yield the crisp uncertainty
localisation and anomaly detection results shown in Figure 3.2.

We find that including FeatUp [16] in our pipeline greatly improves both TPR and
FPR; i.e., our pixel-level uncertainty estimates more thoroughly highlight anomalies while
suppressing false positives. Including SAM [3] greatly improves our detection of very small
and camouflaged anomalies. We validate our uncertainty estimation approach on the off-
road Robot Unstructured Ground Driving (RUGD) , and on the urban Cityscapes dataset
[190][191]. We evaluate it on the Fishyscapes and Segment Me If You Can (SMIYC) anomaly
detection benchmarks [192][193].

DiffUnc additionally yields an image-level evidential uncertainty score that ‘falls out’ of
the diffusion process [188], and an image-level error estimate computable by averaging pixel-
level results, making DiffUnc a good choice for applications where hierarchical uncertainty
estimation or anomaly detection is desired.

3.1.1 Problem statement

Given an 8-bit, 3-channel RGB-image sample x of shape H ×W × 3 that is encountered by a
deployed mobile robot, and the dataset Did of in-distribution images previously encountered
by this robot’s vision systems during training, we want to estimate an uncertainty map
u(x|Did) of shape H ×W × 1. We aim with this map to estimate the degree to which each
sample pixel xij is out-of-distribution relative to Did, for all i ∈ [0, H) and j ∈ [0,W ). We
formulate the map as u(x) = Diff(x, G(x)), where G(x) ≡ x′ is a projection G(·) of the image
x onto the in-distribution manifold of Did, and Diff(·, ·) is some difference operator. Our
goal, therefore, is to identify a projection G(·) and difference Diff(·, ·) such that the resulting
uncertainty uij are minimal for xij ∼ Did, and maximal otherwise.

Additionally, given the image sample x and the dataset Did, we aim to estimate a set of
uncertainty-labelled object masks u(x|Did).

3.2 Methods

The premise behind DiffUnc is that diffusion models are a justifiable method for modelling
distributions and image-level uncertainties [186][188], and that it should therefore be a good
choice for our operator G(·) as part of our pipeline for extracting mask- and pixel- level
uncertainties. We provide an overview of our diffusion-based uncertainty estimation pipeline
in Figure 3.6.

The first step in our pipeline is to use a guided diffusion process as a pseudo-autoencoder,
by guiding its output x′ toward consistency with its “input” image x. This input x is the
RGB image collected by the vision model at inference time , and may or may not contain any
anomalies. Through a careful choice of the guidance signal (Section 3.2.1), we can effectively
train this pseudo-autoencoder to remove any present anomalies from x.

62



Figure 3.6: DiffUnc is an evidential anomaly-by-synthesis approach to localised uncertainty
estimation and anomaly detection. In our full pipeline, the guided diffusion models removes
anomalies from the input image, x, to yield x′. We then compute the pixel-wise uncertainty
map u to be the difference Diff(x,x′) between the two. This yields a heatmap, which can
then be converted to constant-uncertainty masks u by averaging u within SAM-segmented
masks x.

Next, we compute the cosine-difference between the upsampled DINOv2 feature embed-
dings [194] of the input x and anomaly-free x′. This difference yields a measure of ‘perceptual
difference’, which measures how similar two images are in a way that (a) takes into account
pixel interdependence (e.g., due to structure), and (b) coincides with human judgment [195].
This choice of difference metric results from extensive comparisons with a variety of alternative
image- and latent/perceptual- space difference metrics (Section 3.2.2). We select FeatUp
(Chapter 2) as our upsampling method.

The cosine-difference of the upsamples feature maps yields our pixel-level estimate of
epistemic uncertainty, u ≡ CosDiff(F (x), F (x′)), where F (·) ≡ FeatUp(DINOv2(·)). We use
the Segment Anything Model (SAM) [3] to segment the input images x, and get mask-level
uncertainties u by averaging the pixel-level uncertainties u within each segment. Finally, an
image-level uncertainty u = Avg(u) is obtained by taking the mean over pixel-level estimates.
We make use of this image-level uncertainty in the proof-of-concept Active Labeller discussed
in Section 4.1.

Altogether, DiffUnc produces a set of epistemic uncertainty estimates {u,u, u} for use in
anomaly detection and other downstream tasks.

3.2.1 Improving Guided Diffusion for Anomaly Removal

Diffusion models [186][187] are trained and operated in two stages. The ‘forward diffusion’
process iteratively ‘diffuses’ noise through a target image x by progressively adding noise
that is sampled from a Gaussian distribution (Figure 3.7). The generative ‘reverse diffusion’
process, which is often what the community refers to in short-hand as ‘diffusion’, is a learned
denoising process that at each denoising (or time) step t ∈ [0, T ] takes a step t → t− 1 via
gradient descent on the negative log-probability − log p(x′

t), where x′
t is the image generated

by step t. In other words, reverse diffusion aims to maximise the probability p(x′
t−1) based

on the information it has at the current step t.
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Figure 3.7: Diffusion models have a ‘forward’ and a ‘reverse’ diffusion process [186][187].
The forward process progressively adds Gaussian noise to an image. The reverse process
learns to iteratively denoise from total noise x′

T to a realistic, in-distribution image x′
0. If

a guidance energy r(x′
t) is included in the gradient descent, then consistency between the

denoised images x′
t and the original image x can be encouraged. See Figure 3.22 for the effect

of tuning the guidance strength α.

Like other learned generative models, diffusion processes model p(·) based on the distri-
bution of the dataset they are exposed to at training time — e.g., a diffusion model can
be overtrained to a single image, in which case the generative process will always produce
that same image; or the model can be trained on a dataset of bunny rabbits, in which case
the process will very likely produce an image recognisable as a bunny rabbit [186]. For each
denoising step t, the negative log-probability − log p(x′

t) can be thought of as an uncertainty
score [188].

In guided diffusion the reverse-process that steps from t + 1 → t aims to additionally
minimise the negative log-likelihood − log p(x′|x′

t) of the final output x′ given the current
denoised estimate x′

t. In practice, the gradient of this likelihood is unknown or difficult to
compute, and so we approximate the likelihood with an energy function r(x,x′

t) [187].
A common choice for the energy function r(·, ·) is the L2 error, but we instead define a

‘SoftRect’ function SR(x,x′) ≡ σ(β(x−x′)− ϵ)+σ(ϵ−β(x−x′)), where σ(·) is the sigmoidal
function. SoftRect is effectively a differentiable rectangle function, whose ‘boxiness’ and
width can be tuned by modifying β and ϵ, respectively (Figure 3.8). Our improved diffusion
process therefore aims to minimise − log p(x′

t)− log SR(x,x′
t).

Figure 3.8: The SoftRect energy function is a sum of sigmoids and has a tunable width and
boxiness. The boxier it is, the more forgiving it is of errors x− x′ < ϵ, and the harsher it is
toward errors > ϵ.
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3.2.2 Choosing the Difference Metric

Selecting the Diff(·) operator is non-trivial. One might imagine from comparing the input
and output images of our diffusion model, that taking a simple pixel-wise L2 difference
would be adequate to obtain a meaningful uncertainty map with hotspots highlighting any
anomalies and coolspots everywhere else. However, actually trying this approach yields a
noisy uncertainty map, with low-intensity hotspots distributed across the field of view (Figure
3.9, top).

Figure 3.9: A qualitative comparison of the pixel-level uncertainty estimates yielded by
different choices of Diff(x,x′) operator. We display these results using bilinear rather than
FeatUp upsampling. At top-left we show the anomalous input x and anomaly-free output
x′. DINO does best at highlighting the jeep anomaly with a high peak signal-noise ratio
(PSNR), in comparison with other methods which have substantial false-positive hotspots
with a PSNR ≤ 1.

The reason that using image-space difference metrics does not work well for comparing
a diffusion model’s output x′ with its input x, is that even with our improved diffusion
guidance, there are many reasonable, small deltas in image intensity that are still considered
in-distribution by the diffusion process. Our insight in moving forward is that the difference
between x and x′ that we wish to capture with our uncertainty estimation and anomaly
detection, is a ‘perceptual’ difference — that is, a measure of difference that is computed in
the latent feature space of a neural encoder, which is ideally aligned with human estimates of
dissimilarity [195].

We therefore qualitatively compare several perceptual difference metrics. Specifically, we
compare a DINO-based metric with LPIPS [195] and DreamSim [196]. We also compare
with SSIM [197], which is a direct predecessor to perceptual similarity metrics, and share
the results in Figure 3.9 (bottom). For this experiment, we compute the DINO-based metric
using L2 rather than cosine-difference, for calibrated comparison with the other metrics,
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which all (except SSIM) use L2 somewhere in their pipeline. We also use bilinear rather
than FeatUp-based upsampling, in order to isolate the impact of the difference metric on the
information available for heatmap generation in the absence of FeatUp’s guidance. L2 and
SSIM are computed in image space, while DreamSim, LPIPS, and DINO are all computed in
latent/perceptual space.

We follow this qualitative comparison (Figure 3.9) with a quantitative comparison between
DINO16 [27]-, DINOv2 [194]-, ViT [5]-, CLIP [198]-, and MaskCLIP [199]- based perceptual
differences. More specifically, we evaluate each difference method via the binary classification
task of OOD pixel detection, using masks generated from known held-out data classes (Figure
3.14) as truth. We compare the performance of our anomaly detector using both L2 and cosine
distance, and with both FeatUp and bilinear upsampling. We share the ten top-performing
combinations in Table 3.1.

Using a perceptual difference computed with DINOv2 features, using cosine-distance
[189] and FeatUp upsampling, is the highest performer, and we select this model as our
Diff(·, ·) ≡ CosDiff(F (·), F (·)) operator, where F (·) ≡ FeatUp(DINOv2(·)). We qualitatively
show the impact of upgrading to DINOv2 in Figure 3.23.

Embedding Distance Upsampling ↑ AUCPR ↓ FPR95 ↑ PSNR

DINOv2 Cos FeatUp 0.747 0.514 5.53

DINOv2 L2 Bilinear 0.726 0.553 3.69

DINOv2 Cos Bilinear 0.726 0.553 3.69

MaskCLIP L2 Bilinear 0.710 0.619 1.94

MaskCLIP Cos Bilinear 0.694 0.646 1.73

DINO16 Cos FeatUp 0.663 0.555 4.4

DINO16 Cos Bilinear 0.639 0.640 2.67

DINO16 L2 Bilinear 0.614 1.00 2.54

ViT Cos FeatUp 0.558 0.598 3.41

MaskCLIP L2 FeatUp 0.557 0.531 3.81

Table 3.1: Comparison of perceptual difference metrics computed using different feature
embeddings, distance metrics, and upsampling methods, sorted in approximately decreasing
order of performance. Our DINOv2-based metric using cosine-distance and FeatUp is the
top performer on area-under-curve precision-recall (AUCPR), and false-positive rate at 95%
true-positive rate (FPR95), and peak signal-noise ratio (PSNR). We additionally share the
remaining top-ten performers. Underlined metrics are within a standard deviation of the
best value. Bold metrics are best performers.
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3.3 Key Experiments

3.3.1 Performance on RUGD Dataset

We evaluate DiffUnc on the RUGD [190] dataset and share qualitative results in Figure 3.10.
The diffusion model is trained on RUGD data without artificial constructs. At test-time, we
present DiffUnc with OOD images containing anomalies from held-out classes. See Section
3.4.1 for examples of training and anomalous data.

Figure 3.10: Qualitative results on anomalous examples from the RUGD dataset. Our
pixel-level uncertainty estimates do generally highlight anomalous regions, but our mask-level
estimates is where DiffUnc truly shines. The full DiffUnc pipeline does particularly well at
detecting small and camouflaged/human-imperceptible anomalies.

We show the outputs after each stage of our pipeline in Section 3.4.6, and share the impact
of each component on model DiffUnc via ablations in Section 3.4.7. We share performance
on other datasets in Section 3.4.8.

3.3.2 Validating our Improved Diffusion Guidance

We show that the SoftRect energy function improves our ability to remove anomalies via
guided diffusion from the CLEVR dataset [200] in Section 3.4.3 . In Section 3.4.4, we also
show what happens as we tune the guidance strength hyperparameter.
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3.4 Additional Results

3.4.1 Modelling the RUGD Dataset

The RUGD dataset (Figure 3.11, [190]) is an off-road dataset of video sequences captured
from a small, unmanned mobile robot traversing in unstructured environments. It contains
over 7,000 frames annotated with pixel-level segmentation over 24 semantic classes. The
annotated frames are spaced five frames apart.

The diffusion model spotlighted in Section 3.3 is trained on samples from the RUGD
dataset without humans and artificial constructs (Figure 3.13). The remaining image pairs
are ‘held out’ to supply us with examples of out-of-distribution and anomalous images (Figure
3.14). As can be seen from Figure 3.12, our trained diffusion model successfully generates
realistic images containing only in-distribution classes such as trees, grass, and the occasional
footpath.

Figure 3.11: Examples of video frames and annotations from the full RUGD dataset [190].

Figure 3.12: Examples of the random-seed in-distribution images generated by the RUGD
diffusion model trained on Figure 3.13.

68



Figure 3.13: Examples of the in-distribution images on which our RUGD diffusion model
was trained. In general, these images contain a mixture of forest, meadow, mulch, and paths,
without any humans or artificial constructions like buildings or vehicles.

Figure 3.14: Examples of the out-of-distribution RUGD images our forest-deployed robot
might encounter, and from which our diffusion model trained on Figure 3.13 must remove
anomalies.
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3.4.2 Modelling the Urban Datasets and Anomaly Benchmarks

Cityscapes (Figure 3.15, [191]) is a popular urban driving dataset that contains video sequences
taken from a car driving in 50 different cities. 5,000 frames are annotated at a ‘fine’ level
with semantic class information, and 20,000 frames are annotated coarsely.

We train a diffusion model on Cityscapes (Figure 3.17) and the generative capability shown
in Figure 3.16. Although these generated images display several infidelities to reality, we find
that the full DiffUnc is robust to these sorts of textural artifacts. Specifically, we demonstrate
this robustness using the Fishyscapes and SegmentMeIFYouCan (SMIYC) anomaly detection
datasets (Figures 3.18 and 3.19, [192][193]), and share the results in Section 3.4.8.

Figure 3.15: Examples of the coarse (bottom) and fine (top) semantic annotations of the
Cityscapes urban driving dataset [191].

Figure 3.16: Examples of the in-distribution images generated by the Cityscapes diffusion
model trained on Figure 3.17. These images display artifacts reminiscent of the earliest Stable
Diffusion [40] results, and could likely be improved using the same techniques that have since
been applied to Stable Diffusion. However, we find that our DINOv2-FeatUp-SAM pipeline
often makes up for these artifacts! (Figures 3.27 and 3.28.)
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Figure 3.17: Examples of the in-distribution images on which our Cityscapes diffusion model
was trained. In general, these images contain a mixture of forest, meadow, mulch, and paths,
without any humans or artificial constructions like buildings or vehicles.

Figure 3.18: Examples of the out-of-distribution Fishyscapes images our urban robot might
encounter, and from which our diffusion model trained on Figure 3.17 must remove anomalies.
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Figure 3.19: Examples of the out-of-distribution SMIYC images a semi-urban robot might
encounter, and from which our diffusion model trained on Figure 3.17 must remove non-urban
anomalies.

3.4.3 Validating the SoftRect Guidance Function

To validate our choice of SoftRect (Section 3.2.1) over L2 guidance, we train two diffusion
models — one for each guidance method — on examples from the CLEVR data [200]
containing no reds, yellows, or browns (Figure 3.21). We then present the trained model with
anomalous images containing those held out colours, and compare their ability to remove
anomalies without modifying non-anomalous parts of the image (Figure 3.20). We find that
SoftRect indeed outperforms L2 guidance when it comes to diffusion model-based anomaly
removal.

Figure 3.20: Comparing the performance of SoftRect- and L2- guided diffusion models shows
that SoftRect successfully guides the diffusion process toward fewer unecessary changes on
in-distribution objects. As a result, SoftRect-guided diffusion yields an uncertainty map with
few false-positive pixels.
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Figure 3.21: Examples of CLEVR images without reds, yellows, or browns, upon which our
tabletop diffusion models were trained.
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3.4.4 Tuning the Guidance Strength

The strength of the guidance term in our diffusion model can be tuned to enforce a variable
level of consistency between the image being generated x′ and the target image x. Figure
3.22 shows the impact of the guidance term on the image generated, for a sample anomalous
image x from the RUGD dataset.

Figure 3.22: The strength of our diffusion model’s guidance term can be tuned by a hyperpa-
rameter α. As α decreases, the guidance enforcing consistency between the target image and
the diffusion process’ output weakens, and an increasing number of changes are allowed.
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3.4.5 Qualitative DINO16 vs. DINOv2 + FeatUp

Early versions of DiffUnc used a perceptual difference metric that was based on DINO16
feature embeddings, which were upsampled back to input image dimensions using bilinear
upsampling. When FeatUp (Chapter 2) matured, we were able to upgrade our perceptual
difference to a FeatUp-sampled DINOv2-based metric, which led to a considerable leap in
performance (Figure 3.23).

Figure 3.23: Upgrading from DINO16 and bilinear upsampling to DINOv2 and FeatUp
upsampling yields a remarkable improvement in qualitative performance! Specifically, the
uncertainty map generated via DINOv2 + FeatUp shows far better object-alignment and
a much lower false-positive rate. These improvements are verified by our quantitative
experiments in Table 3.1.

3.4.6 Qualitative Pipeline Walkthrough

We share several ablations in Section 3.4.7, but the impact of each segment of our pipeline is
fairly clear from a glance at the qualitative results (Figure 3.24).

Figure 3.24: Qualitative results from each step of the DiffUnc pipeline (Figure 3.6). The SAM
segments are generated by applying SAM to the original input image. Combining DINOv2,
FeatUp, and SAM yields crisp, highly-salient anomaly detection.
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3.4.7 Ablations

In Figures 3.25 and 3.26 we show the impact of each component of DiffUnc on its performance.
The precision-recall curve also shows the impact of selecting cosine-distance over L2 within
the perceptual metric. Table 3.2 shows how AUCPR, FPR95, and PSNR trend with the
inclusion of SAM and FeatUp .

Figure 3.25: Impact of SAM and FeatUp on DiffUnc performance. Removing FeatUp lowers
the contrast between in- and out-of- distribution segments. Removing SAM particularly
degrades performance on small anomalies.

Figure 3.26: Impact of SAM, FeatUp, and cosine-distance (in the Diff(·, ·) operator) on
DiffUnc precision-recall. Models with SAM maintain a high precision over a larger recall
range, while models with FeatUp (and no SAM) have a higher precision at very high recalls.
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SAM? FeatUp? ↑ AUCPR ↓ FPR95 ↑ PSNR

Yes Yes 0.747 0.514 5.53

No 0.726 0.553 3.69

No Yes 0.693 0.282 6.54

No 0.58 0.362 4.68

Table 3.2: Quantitative impact of SAM and FeatUp on DiffUnc performance. SAM generally
improves the area-under-curve precision-recall (AUCPR), and degrades the false-positive rate
at 95% true-positive rate (FPR95). FeatUp generally improves the peak signal-noise ratio
(PSNR). Underlined metrics are within a standard deviation of the best value. Bold metrics
are best performers.

3.4.8 Performance on Anomaly Detection Benchmarks

We evaluate DiffUnc on the Fishyscapes [192] and SMIYC [193] benchmarks and share
qualitative results in Figures 3.27 and 3.28. The diffusion model is trained on urban
Cityscapes data (Figure 3.17). At test-time, we present DiffUnc with OOD images from
Fishyscapes and SMIYC (Figures 3.18 and 3.19), which not only contain distribution shifts
from Cityscapes, but additionally contain entirely new semantic classes.

Figure 3.27: Qualitative results on an anomalous example from the Fishyscapes dataset. We
are currently expanding these results.
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Figure 3.28: Qualitative results on an anomalous example from the SMIYC dataset. We are
currently expanding these results.

3.4.9 Limitations

DiffUnc’s performance appears to degrade on samples with a large number of objects (Figure
3.29). We believe this is due to under-segmentation by SAM, which is fed a sample-invariant
hyperparameter that dictates how many segments to make. Future work could aim to find
some criterion by which SAM can vary its segmentation resolution, without requiring human
intervention.

Figure 3.29: In images such as this one, where there are a high number of anomalies — in this
case, the vehicles and buildings are all anomalies — the performance of our model appears
to degrade. This is likely because SAM is under-segmenting an image with a high number
of objects. The number of masks SAM generates is a hyperparameter in our pipeline and
so could be adjusted, but the question of how to handle images with a varying number of
objects is a non-trivial one.
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3.5 Conclusion

DiffUnc is a method for obtaining epistemic uncertainty estimates at the pixel, mask, and
image level. It works in any domain for which a guided diffusion model can be trained to
remove anomalies, which — with our improvements to the guidance signal — includes at
least off-road and urban settings.

A challenge in deploying robotic systems to remote and data-constrained regions like
wilderness and underground environments is that there is insufficient data available during
training, and it is common to encounter visual data that is out-of-distribution and causes
the robot to fail [7]. However, with DiffUnc, such a robotic system can now recognise a
source of potentially many failures; and not only that, it can report to its remote supervisor
which part of its visual field is causing a problem. This reporting mechanism enables the
supervisor to react and address the issue, saving the robot from failure, and in the best case
even improving the robot’s vision model through active labelling [201] and finetuning [202].

My collaborator, Sid Ancha, has already taken a proof-of-concept step toward this
application of DiffUnc by implementing a modification of AnyLabelling, a GUI and tool that
makes it incredibly easy to segment and label images data by hand [203]. His modification
adds a DiffUnc mode that makes it very easy for a human labeller (e.g., the supervisor) to
prioritise labelling images in order of decreasing image-level uncertainty, as estimated by a
specified DiffUnc model (Figure 3.30).
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Figure 3.30: AnyLabelling (top) is a GUI and tool for segmenting and labelling image data by
hand [203]. Sid Ancha has modified it (bottom) to add a toggleable DiffUnc mode, controlled
by the bottom-most button on the toolbar at left. When on, a specified DiffUnc model is
loaded, and the images to be labelled are sorted in order of decreasing DiffUnc-estimated
uncertainty. He additionally displays the diffusion model’s output (upper-right) and the
uncertainty masks (lower-right) to help the human labeller interpret and detect anomalies
that should be labelled.

I believe that the next step in extending advances in computer vision to data-constrained
environments is a more intentional experimental characterisation of the impact of uncertainty-
informed active labelling and finetuning on vision model performance, and I discuss this
challenge further in Section 4.1.

80



Chapter 4

Open Questions

I presented the two following questions in Chapter 1:

1. How do we choose the ‘right data’ in the real world?

2. How can we get good visual estimates out of compute-constrained systems?

In this dissertation I presented two substantive projects that my collaborators and I undertook
that each addressed one of these core queries. FeatUp (Chapter 2) is a fast, guided, task-
agnostic feature upsampling method that refines low-resolution (and low-compute) results to
higher resolution without retraining. It outperforms competitors like CARAFE and Strided
Convolution in speed and memory requirements, and those like Bilinear Upsampling and
Resize-Convolution in quality. Meanwhile, DiffUnc (Chapter 3) is a diffusion-based method
for estimating hierarchical epistemic uncertainty at the pixel- and mask-level. In addition to
bringing this hierarchical capability to the table, it performs competitively well on anomaly
detection benchmarks like Fishyscapes and SegmentMeIfYouCan (SMIYC).

FeatUp addresses Question 2 and DiffUnc tackles Question 1, but as my time at MIT
draws to a close, it becomes increasingly apparent that there is a so-far unasked Question 3
that should be articulated:

3. How should we use the ‘right data’, and the hierarchical uncertainty estimation we use
to find it, for improved vision model performance in data- and compute- constrained
environments?

Based on my work so far, there are several research directions that I believe are both promising
and exciting. All of which build on or leverage DiffUnc in some manner; some of which could
additionally benefit from using FeatUp.

4.1 Uncertainty-informed Active Labelling

As discussed in Section 3.5, active labelling can be used to finetune models that have already
been deployed; and I propose that a particularly good criterion for selecting images to label
is the image-level epistemic uncertainty of the test-time images, as estimated by DiffUnc. Sid
Ancha has already taken a proof-of-concept step by implementing a DiffUnc mode in the
AnyLabelling tool (Figure 3.30).
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However, simply labelling data is insufficient to demonstrate that uncertainty-informed
active labelling is beneficial and effective. One must use the labelled data for finetuning, and
the details of how to do so are non-trivial. I believe that at least a paper, and quite possibly
an entire doctoral thesis, could focus on this topic.

4.1.1 Implementation

The first step would be to implement a full pipeline for uncertainty-informed active labelling
and finetuning. This could look something like Figure 4.1.

Figure 4.1: A full pipeline for uncertainty-informed active labelling and finetuning. We have
already implemented DiffUnc (Chapter 3) and a preliminary version of the Active Labeller
(Figure 3.30). Future work could combine these with a semantic segmentation model, and
experiment with using data from the Active Labeller to finetune the Pre-trained Vision
Model.

4.1.2 Experiments

Prior work from the finetuning literature can be used as a starting point for implementing a
finetuning paradigm, but may not hold true for images selected via uncertainty estimate. As
a results, several experiments will likely be important to pursue, in order to characterise the
vision model’s response to the uncertainty-informed finetuning. Examples of parameters that
could be changed in the active labelling/finetuning process include:

1. The number of images B per active labelling/finetuning batch.

2. The number of batches N used to finetune the vision model.
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3. How frequently DiffUnc is retrained. (It will have to be retrained to account for
originally OOD data which is now in-distribution.)

4. The details of the uncertainty-informed sampling method — the straightforward choice
is to label the B most uncertain images encountered, but it is conceivable that another
sampling method would be better if, for example, those most uncertain images all
happened to depict the same anomalous object.

One could imagine generating characteristic plots wherein either N or B is held constant, the
other lies along the horizontal, and some performance metric — probably mean-Intersection
over Union (mIoU) for semantic segmentation — lies along the vertical. If you have a lot of
time, you could generate a full hyperparameter grid for which both N and B are varied at
once.

4.2 Perceptually Guided Diffusion

As we were developing DiffUnc (Chapter 3), we found ourselves having to alter the details
of the guided diffusion. Specifically, we changed the guidance’s penalty function from an
L2 to a ‘SoftRect’. Another idea we considered was that of switching from an image-space
penalty function (e.g., L2, SoftRect) to one computed in the latent — or perceptual — space.
Humans clearly learn in a more abstracted manner than direct comparison between image
intensities [19], so we wanted to try to do the same in machines. We conducted a preliminary
experiment using LPIPS [195] to guide the diffusion process, but it did not go well (Figure
4.2).

Since understanding guided diffusion was not our focus at the time (we were focused on
getting good DiffUnc results expeditiously), we moved on without looking into why this is
what happened. However, I believe it could be a very interesting project to try to determine
whether or not using perceptual similarity as a guidance signal for diffusion is a good or a
bad idea.

4.2.1 Implementation

Implementation-wise, such a project could use the DiffUnc codebase as a starting point. All
that would need be changed is the guidance method being used by the diffusion model.

4.2.2 Ideas

This experiment (and its failure) came up during my doctoral defense, because my committee
actually had the idea independently of me and asked if I had tried it. At the time, Phillip
Isola suggested that if one were to pursue this idea further, one might look into replacing
LPIPS with E-LPIPS as the guidance; E-LPIPS is a follow-on work that was designed to be
more robust in certain ways [204].
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Figure 4.2: We tried guiding the diffusion model using the LPIPS perceptual similarity
metric. This yielded the output at top-right, which clearly still had something ‘goose-y’ in
the foreground. We then computed the LPIPS, DINO-based, and CLIP-based differences
between input and output, and saw that the majority of perceptual changes had actually
occured in the background rather than on the foreground anomaly.

4.2.3 Risks

A risk of this project, from the point of view of a conference paper-aspiring graduate student,
is that the idea of guiding diffusion models with perceptual similarity might be a bust, and
it is unfortunately rather difficult to publish a paper consisting only of negative results in
conferences. A journal paper may be a possibility, if the theoretical exploration is sufficiently
interesting. Otherwise, this is an example of a project that, if it fails to improve guided
diffusion, could probably go into your thesis and self-published on the arXiv, but would not
in itself produce a peer-published paper.

In counterpoint, even if this specific idea is a bust, it could lead to another idea which isn’t,
and negative results can generally be published alongside the positive result that followed
them.

4.3 Uncertainty-derived Attention / Supervision

The topic I originally wanted to centre the latter half of my doctoral work around was not
uncertainty estimation itself, but rather using pixel-wise uncertainty to improve vision model
training and performance. One of the ideas I spent a fair amount of time considering was
that of using pixel-wise uncertainties as a supervisory signal. My thought was that since
humans use uncertainty to inform their learning processes, it could make sense to have vision
models make direct use of uncertainty, rather than relying only on some post-hoc active
labelling-based correction.
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Alas, I got distracted from this thread by the fact that pixel-level uncertainty estimation
was not yet mature enough of a technology. However, my hope is that with DiffUnc (Chapter
3), we have at least partially dealt with that problem, which means that now may be the
perfect time to return to this idea.

4.3.1 As attention

The DiffUnc work as I formulated it lends itself more naturally to using the pixel-wise
uncertainty as an attentional signal than a supervisory one. This is because DiffUnc operates
on the inputs x rather than on the outputs y of the vision model, so there is no natural
path for a supervisory signal to backpropagate along. However, one could envision using the
uncertainty u as some sort of attentional signal that informs the vision model (Figure 4.3).

Figure 4.3: The pixel-level uncertainty u that is produced by DiffUnc− (without the SAM
extension), or some function of it α(u), could be used as an attentional signal that informs
the training of the Vision Model.

Implementation

You could simply take DiffUnc and ignore the SAM extension, using the pixel-level rather
than mask-level uncertainties as your attentional signal. My unjustified intuition is that this
idea would hypothetically work better on a regression problem like depth estimation rather
than a classification problem like semantic segmentation; however there is generally more
and better semantic segmentation data available than depth data. So maybe give it a try
with semantic segmentation first.

4.3.2 As supervision

Using pixel-wise uncertainty as a supervisory signal for training vision models is the idea that
originally got me interested in pursuing DiffUnc. However, it is a bit tricky to implement,
because the best uncertainty estimation methods so far (including DiffUnc) operate on the
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inputs x rather than the outputs y of the vision model, and therefore do not produce a signal
that would pass through the vision model if backpropagated.

I think that in order to pursue this idea further, one would have to try creating a
variant of DiffUnc that operated on the vision model output y (Figure 4.4). One could then
backpropagate through the entire pipeline.

Figure 4.4: If one could train a variant of DiffUnc to operate on Vision Model outputs y
rather than inputs x, then one could backpropagate the uncertainty or an uncertainty-derived
loss through the Vision Model as a supervisory signal.

Implementation

You could start with DiffUnc− (without the SAM extension) and re-train the diffusion model
on, e.g., true semantic maps. I think you would need to pad out the semantic maps so that
each pixel was a one-hot vector where the one hot corresponded to the class label. That way,
you could feed the diffusion model logits vectors at its input.

Alternatively, you could try training DiffUnc on the logit outputs of a pre-trained semantic
segmentation model applied to in-distribution data, and then see if an uncertainty-derived
loss function could improve finetuning on an out-of-distribution dataset.

Experiments

I do not expect that our empirical results regarding which Diff(·) operator yields the best
uncertainty maps would hold, so you would probably want to redo those experiments. In
fact, since the diffusion model would be operating on, e.g., semantic logits, my expectation is
that something like an L2 or cosine-difference might work better than trying to somehow
re-encode a signal that is already encoded.

You could also experiment with where in the vision model you trained DiffUnc’ on. For
example, perhaps instead of training on the output y, you train on some intermediate layer
of the vision models. This might give the diffusion model a stronger signal to work with,
at the expense of the supervisory signal not being able to provide feedback to the model’s
post-DiffUnc layers.

4.4 Uncertainty-based Model Fusion

This is another research direction that I spent a fair amount of time pondering before realising
that I needed better uncertainty estimates. It was motivated by the idea that, at times,
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humans have several competing methods for accomplishing a visual task. Instead of selecting
one method over all the others, humans have a tendency to somehow combine their methods
and obtain better visual estimates as a result. For example, humans can perceive depth via
both binocular and monocular cues and generally make use of both at once — but when one
or the other becomes unavailable, are still capable of depth perception [19].

I wondered if there was a good way to fuse different vision algorithms together in machines,
based on uncertainty estimates. The idea of ‘mixture of expert’ or ‘ensembling’ methods is
not a new one [205], [206], but I was interested in it from a few slightly different angles:

1. I suspected that the method for combining methods should be learned rather than
deterministic.

2. In the context of semantic segmentation, I was interested in fusion to reduce domain
specificity in vision models, because lightweight semantic segmenters tend to be highly
domain-specific. When new data is encountered, one approach is to active label and
fine-tune as discussed in Section 4.1, but fine-tuning sometimes leads to ‘catastrophic
forgetting’ [207] of the model’s original domain/task. I wanted to, instead of fine-
tuning, train a new lightweight segmenter and fuse its results with that of the existing
segmenter(s).

One could image combining this with the FeatUp paradigm, and using fusion to
fuse the output of several linear probes, which would be very lightweight indeed.

3. In the context of depth estimation, I was interested in fusion to solve the somewhat
niche challenge of handling binocular camera occlusion. This is an issue that is not
generally a catastrophic failure case on Earth, but actually is a significant problem for
off-Earth semi-autonomous rovers, which often find one of their stereo cameras occluded
by their own bodies when trying to look at objects which are near them and on the
ground.

As a result, I was interested in developing a system that could fuse the outputs of
two depth estimation experts — one binocular, one monocular — based on a pixel-wise
estimate of the model’s uncertainty. My hope was that this would allow an autonomous
rover to rely on monocular cues in regions of visual field where one of these stereo
cameras was obstructed.

4.4.1 For semantic/panoptic segmentation

Implementation

Although I did implement and conduct preliminary experiments for this idea [208], that was
pre-DiffUnc and so follow-on work would probably be best served by starting from scratch.
The experimental setup could look something like Figure 4.5. It may look a bit complicated,
but implementation could start with DiffUnc (Chapter 3) and our AnyLabelling-based Active
Labeller (Section 4.1). What would be left to you to implement would be the choice of expert
vision model(s) along with the details of the learned fuser. In the few years since I considered
this problem, a few papers have come out that use learned fusers for panoptic segmentation,
so you may wish to take those as a starting point [209], [210].
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Figure 4.5: Using DiffUnc and an Active Labeller, you can accumulate modular datasets to
train new domain-expert vision models (e.g., a Vision Model 3) based on previously unseen
data. This would address the common issue in fine-tuning of catastrophic forgetting. One
could envision combining this concept with FeatUp (Chapter 2) so that one can work with
domain-expert linear probes rather than full models.

Experiments

Rather than using active labelling for fine-tuning as in Section 4.1, in this project you would
be using active labelling in order to create training set modules to train new domain expert
models with. Once sufficient data was accumulated, you could, e.g.,

1. Train the new domain expert.

2. Update the fuser.

3. Update DiffUnc.

How exactly you undertake these three steps would be where the research lies!

4.4.2 For depth estimation

The architecture for monocular/binocular fusion would be the same as for semantic segmen-
tation (Figure 4.5) except that there would be no need for an active labeller or the SAM
extension. Vision Models 1 and 2 would be Monocular and Binocular depth estimators. The
binocular estimator would take in a second image x2.

Experiments

I think that the tricky part of this project is finding the data that proves your point. Space
industry data is generally a controlled commodity, and the best way to get access to it is
to collaborate directly with, e.g., NASA or Blue Origin. If you cannot do that, then you
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could try simulating data. But I think that you will struggle to argue the importance of this
work to the research community without concrete and real examples, even though folks in
the space industry will know what’s up.

4.5 Conclusion

In this chapter, I have outlined four different research directions that I view as natural
follow-ons to the DiffUnc work (Chapter 3). I believe that each of them could likely produce
an entire doctoral thesis, if explored thoroughly.

There are two additional FeatUp-derived research directions about which I have thought
far less, and so will merely share briefly here:

1. The idea shared as the motivation for FeatUp (Chapter 2) itself; that is, designing
(relatively) light-compute vision systems based on transfer learning via FeatUp + linear
probes from a single backbone to several vision tasks.

2. Designing a new backbone into which FeatUp — or ideas from FeatUp — is directly
integrated, so thereby obsoleting the conventional trade-off between spatial resolution
and semantic/abstracted information.

This second idea came up in conversation with Phillip Isola, so if it piques your interest, a
chat with him might be a good place to start. It also calls to mind the vast number of reverse
connections known physiologically to be present in the (macaque monkey) brain, for which
the purpose is often unclear [211]. Using something like FeatUp directly (or cyclically) within
the backbone might lead to similar connections, thereby (perhaps) providing a hypothesis to
vision and neuroscientists for their utility.

In any case, may this chapter aid you in your pursuit of human-inspired methods for
extending advances in computer vision to data- and compute-constrained environments!
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Chapter 5

Why Human-inspired?

Real-world platforms rarely have access to large amounts of cleanly labelled and high-
resolution data, and the computational strength of real robots is often limited by size and
power constraints. As a result, roboticists are often limited to LiDAR, stereo vision algorithms,
or at best a bounding box detector like YOLOv3 Tiny. The modern vision algorithms and
foundational models that have the vision community fearing that ‘computer vision is solved’
[212] are not even applicable in the majority of robotics, the field of research that originally
birthed computer vision in the first place.

In this dissertation, I have sought to address the questions

1. How do we choose the ‘right data’ in the real, data-constrained world?

2. How can we get good visual estimates out of compute-constrained systems?

by using the human visual system as a model for how data- and compute-restricted systems
can still get the important jobs done. This lens has inspired my research throughout my
time at MIT, and led to the ideas behind FeatUp (Chapter 2), DiffUnc (Chapter 3), and the
approaches to future work outlined in Chapter 4. It is my hope that, with this dissertation, I
can provide a launchpad (or perhaps merely a trampoline) to give a boost to any researcher
hoping to carry on the torch of exploring human-inspired methods for extending advances in
computer vision to data- and compute- constrained environments.

· · ·

There is still plenty of inspiration to be drawn from human vision and perception, far
beyond what I have discussed in this dissertation. There are many, many visual tasks that
humans do with an ease that robots still cannot mimic! Closing this gap between human
and machine not only provides a point of view from which innovation in robot vision may be
inspired, but is also in itself both challenging and exciting for those wishing to understand
human vision in a more algorithmic manner than our current — primarily behavioural and
physiological — understanding.

It is my firm belief that there should be an interplay between human vision science,
computer vision science, and robotics. The desire to replicate the human capacity for vision
on robotic platforms is where computer vision was born, after all; and, as nearly any practised
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roboticist can tell you, there is still quite some ways to go before that desire is attained.
Besides, the transfer of knowledge need not be one-way! Our human-inspired models can be
used by vision scientists to generate hypotheses about the flow of information within and the
likely failings of human visual systems; these hypotheses can then be tested in behavioural and
physiological experiments with human subjects; which can in turn inform vision roboticists
toward our ambitious goal of designing general, artificial, embodied vision systems capable of
meeting or exceeding human expectations.

In this dissertation, I presented research that drew inspiration from the knowledge and
hypotheses that vision scientists have accumulated and developed regarding human peripheral
vision [20] and the impact of human attention and uncertainty on our ability to learn from our
mistakes [19]. But there are so, so many more topics in human vision science that are both
reasonably mature and highly relevant to tasks that robot vision struggles with, including but
not limited to: Low-light adaptation [213], Colour constancy [214], Visual search [215], Scene
gist perception [216], [217], and Motion perception [218]. You can explore all of these topics
at a high level in the excellent introductory text, Sensation & Perception, by Jeremy Wolfe
et al. [19]; and some pre-deep learning attempts at modelling many of these human visual
processes computationally can be found in the classic text, Vision, by David Marr [219].

Whatever your background, I hope that this dissertation has piqued your interest in
robot vision, and perhaps even — the tiniest bit? — in human vision. If you are yourself a
roboticist, I hope that next time your robot does something embarrassing, especially if it
has anything to do with perceptual failure, you ask yourself ‘Why don’t humans do this?’
Or if they do do it (consider the toddling years. . . ), ‘How do they learn to stop doing this?’
Perhaps you can make a friend in your institution’s brain and cognitive science department
(I have several) who don’t mind it when you ask them seemingly aggressive questions about
what, exactly, a human behaviour translates to computationally.

As a final, closing, thought: Interdisciplinary collaboration requires, I think, a certain
level of comfort with feeling ‘out of your league’, ‘ignorant’, and flat-out ‘stupid’. You’re
not, but that’s how it will feel. If nothing else, I hope that my work can provide a bit of
motivation as to why enduring that discomfort is worth it.

Just remember that you, too, know more than everyone else about something. And
pursuing a PhD is about taking that difficult journey from knowing nothing to knowing ‘a
lot’ (whatever that is. . . ) about a teeny-tiny niche within your research field of interest. It’s
okay not to be an expert in the rest.

So go forth and conquer your dreams, of robots who know how to see!
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Photo Credits

The images listed below were reproduced or modified from the cited sources, with appreciation
for the original authors, and with their permission or under fair use. I hold or share the
copyright to the remaining images in this dissertation, unlisted below.

Chapter 1

Figure 1.1: Kirillov et al. [3] and Ranftl et al. [4].
Figure 1.2: Kirillov et al. [3].
Figure 1.3: Biggie et al. [7].
Figure 1.4: Intel RealSense website [8].
Figure 1.5: Biggie et al. [7].
Figure 1.6: Biggie et al. [7] and Erick Fuentes [11].

Chapter 2

Figure 2.1: Ruth Rosenholtz [20].
Figure 2.2: Ruth Rosenholtz [21].

Chapter 3

Figure 3.5: Ancha et al. [113], Chalapathy and Chawla [184], Zheng et al. [185], and Nakao
et al. [179].
Figure 3.7: Croitoru et al. [186].
Figure 3.11: Wigness et al. [190].
Figure 3.15: Cordts et al. [191].
Figure 3.30 (top): AI Curious [203].
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[165] T. Pevnỳ, “Loda: Lightweight on-line detector of anomalies,” Machine Learning,
vol. 102, pp. 275–304, 2016.

106



[166] M. A. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko, “A review of novelty
detection,” Signal Processing, vol. 99, pp. 215–249, 2014.

[167] C. A. Richter, “Autonomous navigation in unknown environments using machine
learning,” Ph.D. dissertation, Massachusetts Institute of Technology, 2017.

[168] S. M. Erfani, S. Rajasegarar, S. Karunasekera, and C. Leckie, “High-dimensional and
large-scale anomaly detection using a linear one-class svm with deep learning,” Pattern
Recognition, vol. 58, pp. 121–134, 2016.

[169] R. T. Ionescu, F. S. Khan, M.-I. Georgescu, and L. Shao, “Object-centric auto-encoders
and dummy anomalies for abnormal event detection in video,” in Proceedings of the
IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR), 2019,
pp. 7842–7851.

[170] D. Xu, J. Song, Y. Yan, E. Ricci, N. Sebe, et al., “Learning deep representations of
appearance and motion for anomalous event detection,” in Proceedings of the British
Machine Vision Conference (BMVC), 2015, pp. 1–12.

[171] W. Yu, W. Cheng, C. C. Aggarwal, K. Zhang, H. Chen, and W. Wang, “Netwalk: A
flexible deep embedding approach for anomaly detection in dynamic networks,” in
Proceedings of the ACM Special-Interest Group on Knowledge Discovery and Data
Mining (SIGKDD) International conference, 2018, pp. 2672–2681.

[172] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with
neural networks,” AAAS Science, vol. 313, no. 5786, pp. 504–507, 2006.

[173] X. Jiang, J. Gao, X. Hong, and Z. Cai, “Gaussian processes autoencoder for dimension-
ality reduction,” in Proceedings of the Pacific-Asia conference on Knowledge Discovery
and Data Mining (PAKDD), 2014, pp. 62–73.

[174] L. Theis, W. Shi, A. Cunningham, and F. Huszár, “Lossy image compression with
compressive autoencoders,” in Proceedings of the International Conference on Learning
Representations (ICLR), 2022.

[175] C. Doersch, “Tutorial on variational autoencoders,” arXiv, 2016.

[176] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, and L. Bottou, “Stacked
denoising autoencoders: Learning useful representations in a deep network with a local
denoising criterion.,” Journal of Machine Learning Research (JMLR), vol. 11, no. 12,
2010.

[177] V. Zavrtanik, M. Kristan, and D. Skočaj, “Reconstruction by inpainting for visual
anomaly detection,” Pattern Recognition, vol. 112, p. 107 706, 2021.

[178] X. Dan, E. Ricci, Y. Yan, J. Song, N. Sebe, et al., “Learning deep representations of
appearance and motion for anomalous event detection,” in Proceedings of the British
Machine Vision Conference (BMVC), 2015, pp. 8–1.

[179] T. Nakao, S. Hanaoka, Y. Nomura, M. Murata, T. Takenaga, S. Miki, T. Watadani,
T. Yoshikawa, N. Hayashi, and O. Abe, “Unsupervised deep anomaly detection in
chest radiographs,” Journal of Digital Imaging, vol. 34, pp. 418–427, 2021.

107



[180] T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, and G. Langs, “Un-
supervised anomaly detection with generative adversarial networks to guide marker
discovery,” in Proceedings of the International Conference on Information Processing
in Medical Imaging (IPMI), 2017, pp. 146–157.

[181] T. Schlegl, P. Seeböck, S. M. Waldstein, G. Langs, and U. Schmidt-Erfurth, “F-anogan:
Fast unsupervised anomaly detection with generative adversarial networks,” Medical
Image Analysis, vol. 54, pp. 30–44, 2019.

[182] S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon, “Ganomaly: Semi-supervised
anomaly detection via adversarial training,” in Proceedings of the Asian Conference
on Computer Vision (ACCV), 2019, pp. 622–637.

[183] S. Akçay, A. Atapour-Abarghouei, and T. P. Breckon, “Skip-ganomaly: Skip connected
and adversarially trained encoder-decoder anomaly detection,” in Proceedings of the
IEEE International Joint Conference on Neural Networks (IJCNN), 2019, pp. 1–8.

[184] R. Chalapathy and S. Chawla, “Deep learning for anomaly detection: A survey,” arXiv,
2019.

[185] Y. Zheng, X. Wang, R. Deng, T. Bao, R. Zhao, and L. Wu, “Focus your distribution:
Coarse-to-fine non-contrastive learning for anomaly detection and localization,” in
2022 IEEE International Conference on Multimedia and Expo (ICME), IEEE, 2022,
pp. 1–6.

[186] F.-A. Croitoru, V. Hondru, R. T. Ionescu, and M. Shah, “Diffusion models in vision: A
survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
2023.

[187] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised
learning using nonequilibrium thermodynamics,” in Proceedings of the International
Conference on Machine Learning (ICML), 2015, pp. 2256–2265.

[188] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-
based generative modeling through stochastic differential equations,” in Proceedings
of the International Conference on Learning Representations (ICLR), 2021.

[189] Wikipedia contributors, “Cosine Similarity: Wikipedia, the free encyclopedia,” 2024,
[Online; accessed 14-May-2024].

[190] M. Wigness, S. Eum, J. G. Rogers, D. Han, and H. Kwon, “A rugd dataset for
autonomous navigation and visual perception in unstructured outdoor environments,”
in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2019, pp. 5000–5007.

[191] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,
S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban scene understand-
ing,” in Proceedings of the IEEE/CVF conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 3213–3223.

[192] H. Blum, P.-E. Sarlin, J. Nieto, R. Siegwart, and C. Cadena, “Fishyscapes: A bench-
mark for safe semantic segmentation in autonomous driving,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, 2019.

108



[193] R. Chan, K. Lis, S. Uhlemeyer, H. Blum, S. Honari, R. Siegwart, P. Fua, M. Salzmann,
and M. Rottmann, “Segmentmeifyoucan: A benchmark for anomaly segmentation,” in
Proceedings of the international conference on Neural Information Processing Systems
(NIPS) Workshops, J. Vanschoren and S. Yeung, Eds., vol. 1, 2021.

[194] M. Oquab, T. Darcet, T. Moutakanni, H. V. Vo, M. Szafraniec, V. Khalidov, P.
Fernandez, D. HAZIZA, F. Massa, A. El-Nouby, et al., “Dinov2: Learning robust
visual features without supervision,” IEEE Transactions on Machine Learning Research
(TMLR), 2023.

[195] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable
effectiveness of deep features as a perceptual metric,” in Proceedings of the IEEE/CVF
conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 586–595.

[196] S. Fu, N. Tamir, S. Sundaram, L. Chai, R. Zhang, T. Dekel, and P. Isola, “Dreamsim:
Learning new dimensions of human visual similarity using synthetic data,” Proceedings
of the international conference on Neural Information Processing Systems (NIPS),
vol. 36, 2024.

[197] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment:
From error visibility to structural similarity,” IEEE Transactions on Image Processing
(TIP), vol. 13, no. 4, pp. 600–612, 2004.

[198] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A.
Askell, P. Mishkin, J. Clark, et al., “Learning transferable visual models from natural
language supervision,” in Proceedings of the International Conference on Machine
Learning (ICML), 2021, pp. 8748–8763.

[199] X. Dong, J. Bao, Y. Zheng, T. Zhang, D. Chen, H. Yang, M. Zeng, W. Zhang, L. Yuan,
D. Chen, et al., “Maskclip: Masked self-distillation advances contrastive language-image
pretraining,” in Proceedings of the IEEE/CVF conference on Computer Vision and
Pattern Recognition (CVPR), 2023, pp. 10 995–11 005.

[200] J. Johnson, B. Hariharan, L. Van Der Maaten, L. Fei-Fei, C. Lawrence Zitnick, and
R. Girshick, “Clevr: A diagnostic dataset for compositional language and elementary
visual reasoning,” in Proceedings of the IEEE/CVF conference on Computer Vision
and Pattern Recognition (CVPR), 2017, pp. 2901–2910.

[201] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, B. B. Gupta, X. Chen, and X. Wang,
“A survey of deep active learning,” ACM Computing Surveys (CSUR), vol. 54, no. 9,
pp. 1–40, 2021.

[202] K. W. Church, Z. Chen, and Y. Ma, “Emerging trends: A gentle introduction to
fine-tuning,” Natural Language Engineering, vol. 27, no. 6, pp. 763–778, 2021.

[203] AI Curious, “Anylabeling - effortless data labeling,” 2023, [Online; accessed 14-May-
2024].

[204] M. Kettunen, E. Härkönen, and J. Lehtinen, “E-lpips: Robust perceptual image
similarity via random transformation ensembles,” arXiv, 2019.

[205] S. Masoudnia and R. Ebrahimpour, “Mixture of experts: A literature survey,” Artificial
Intelligence Review, vol. 42, pp. 275–293, 2014.

109



[206] O. Sagi and L. Rokach, “Ensemble learning: A survey,” Wiley Interdisciplinary Reviews:
Data mining and knowledge discovery, vol. 8, no. 4, 2018.

[207] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K.
Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, et al., “Overcoming catastrophic
forgetting in neural networks,” Proceedings of the National Academy of Sciences,
vol. 114, no. 13, pp. 3521–3526, 2017.

[208] L. Brandt and N. Roy, “Fusion for reducing domain specificity in computer vision
models,” Bulletin of the American Physical Society, 2023.

[209] K. Sirohi, S. Marvi, D. Büscher, and W. Burgard, “Uncertainty-aware panoptic segmen-
tation,” IEEE/RAS Robotics and Automation Letters (RAL), vol. 8, no. 5, pp. 2629–
2636, 2023.

[210] J. Deery, C. W. Lee, and S. L. Waslander, “Propandl: A modular architecture for
uncertainty-aware panoptic segmentation,” in Proceedings of the IEEE Conference on
Robots and Vision (CRV), 2023, pp. 137–144.

[211] D. J. Felleman and D. C. Van Essen, “Distributed hierarchical processing in the
primate cerebral cortex,” Cerebral Cortex, vol. 1, no. 1, pp. 1–47, 1991.

[212] M. Awais, M. Naseer, S. Khan, R. M. Anwer, H. Cholakkal, M. Shah, M.-H. Yang, and
F. S. Khan, “Foundational models defining a new era in vision: A survey and outlook,”
arXiv, 2023.

[213] M. A. Webster, “Light adaptation, contrast adaptation, and human colour vision,”
Colour Perception: Mind and the physical world, pp. 67–110, 2003.

[214] R. W. Pridmore, “Complementary colors theory of color vision: Physiology, color
mixture, color constancy and color perception,” Color Research & Application, vol. 36,
no. 6, pp. 394–412, 2011.

[215] J. M. Wolfe, “Visual search: How do we find what we are looking for?” Annual Review
of Vision Science, vol. 6, pp. 539–562, 2020.

[216] M. S. Castelhano and J. M. Henderson, “The influence of color on the perception of
scene gist,” Journal of Experimental Psychology: Human perception and performance,
vol. 34, no. 3, p. 660, 2008.

[217] A. Oliva, “Gist of the scene,” in Neurobiology of Attention, 2005, pp. 251–256.

[218] Z.-L. Lu and G. Sperling, “The functional architecture of human visual motion
perception,” Vision Research, vol. 35, no. 19, pp. 2697–2722, 1995.

[219] D. Marr, Vision: A computational investigation into the human representation and
processing of visual information. MIT press, 2010.

110


	Title page
	Abstract
	Acknowledgements
	About the Author
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	2 FeatUp: A Model-Agnostic Framework for Features at Any Resolution
	2.1 Introduction
	2.2 Related Work
	2.3 Problem statement
	2.4 Methods
	2.4.1 Choosing a Downsampler
	2.4.2 Choosing an Upsampler
	2.4.3 Additional Method Details

	2.5 Key Experiments
	2.5.1 Qualitative Comparisons
	2.5.2 Transfer Learning for Semantic Segmentation and Depth Estimation
	2.5.3 Class Activation Map Quality
	2.5.4 End-to-end Semantic Segmentation

	2.6 Additional Results
	2.6.1 Strided baseline implementation
	2.6.2 Comparison to Image-Upsampling Methods
	2.6.3 Ablation Studies
	2.6.4 Visualising Additional PCA Components
	2.6.5 Saliency Map Details
	2.6.6 Visualising Downsampler Salience and Kernels
	2.6.7 Visualising Predicted Uncertainty
	2.6.8 Linear Probe details
	2.6.9 Average Drop and Average Increase Details
	2.6.10 Additional Linear Probe Results
	2.6.11 Improving Image Retrieval for Small Objects
	2.6.12 Performance Benchmarking
	2.6.13 Limitations
	2.6.14 Implementation Details
	2.6.15 Website, Video, and Code

	2.7 Conclusion

	3 DiffUnc: Diffusion-based Uncertainty Estimation for Anomaly Detection
	3.1 Introduction
	3.1.1 Problem statement

	3.2 Methods
	3.2.1 Improving Guided Diffusion for Anomaly Removal
	3.2.2 Choosing the Difference Metric

	3.3 Key Experiments
	3.3.1 Performance on RUGD Dataset
	3.3.2 Validating our Improved Diffusion Guidance

	3.4 Additional Results
	3.4.1 Modelling the RUGD Dataset
	3.4.2 Modelling the Urban Datasets and Anomaly Benchmarks
	3.4.3 Validating the SoftRect Guidance Function
	3.4.4 Tuning the Guidance Strength
	3.4.5 Qualitative DINO16 vs. DINOv2 + FeatUp
	3.4.6 Qualitative Pipeline Walkthrough
	3.4.7 Ablations
	3.4.8 Performance on Anomaly Detection Benchmarks
	3.4.9 Limitations

	3.5 Conclusion

	4 Open Questions
	4.1 Uncertainty-informed Active Labelling
	4.1.1 Implementation
	4.1.2 Experiments

	4.2 Perceptually Guided Diffusion
	4.2.1 Implementation
	4.2.2 Ideas
	4.2.3 Risks

	4.3 Uncertainty-derived Attention / Supervision
	4.3.1 As attention
	4.3.2 As supervision

	4.4 Uncertainty-based Model Fusion
	4.4.1 For semantic/panoptic segmentation
	4.4.2 For depth estimation

	4.5 Conclusion

	5 Why Human-inspired?
	A Photo Credits
	References

