
Smoothness and Adaptivity in Nonlinear Optimization
for Machine Learning Applications

by

Haochuan Li
B.S., Peking University (2019)

M.S., Massachusetts Institute of Technology (2021)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2024

© 2024 Haochuan Li. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license
to exercise any and all rights under copyright, including to reproduce, preserve, distribute
and publicly display copies of the thesis, or release the thesis under an open-access license.

Authored by: Haochuan Li
Department of Electrical Engineering and Computer Science
May 17, 2024

Certified by: Ali Jadbabaie
Professor of Civil and Environmental Engineering
Thesis Supervisor

Certified by: Alexander Rakhlin
Professor of Brain and Cognitive Sciences
Thesis Supervisor

Accepted by: Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students



2



Smoothness and Adaptivity in Nonlinear Optimization for Machine
Learning Applications

by

Haochuan Li

Submitted to the Department of Electrical Engineering and Computer Science
on May 17, 2024 in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

ABSTRACT
Nonlinear optimization has become the workhorse of machine learning. However, our the-
oretical understanding of optimization in machine learning is still limited. For example,
classical optimization theory relies on assumptions like bounded Lipschitz smoothness of
the loss function which are rarely met in machine learning. Besides, existing theory cannot
well explain why adaptive methods outperform gradient descent in certain machine learning
tasks like training transformers. In this thesis, to bridge this gap, we propose more general
smoothness conditions that are closer to machine learning practice and study the convergence
of popular classical and adaptive methods under such conditions. Our convergence results
improve over existing ones and also provide new insights into understanding the role of
adaptivity in optimization for machine learning applications.

First, inspired by some recent works and insights from deep neural network training, we
propose a generalized non-uniform smoothness condition with the Hessian norm bounded
by a function of the gradient norm almost everywhere. We develop a simple, yet powerful
analysis technique that bounds the gradients along the trajectory, thereby leading to stronger
results for both convex and non-convex optimization problems. In particular, we obtain the
classical convergence rates for gradient descent (GD), stochastic gradient descent (SGD), and
Nesterov’s accelerated gradient method (NAG) in the convex or non-convex settings under
this general smoothness condition.

In addition, the new analysis technique also allows us to obtain an improved convergence
result for the Adaptive Moment Estimation (Adam) method. Despite the popularity and
efficiency of Adam in training deep neural networks, its theoretical properties are not yet
fully understood, and existing convergence proofs require unrealistically strong assumptions,
such as globally bounded gradients, to show the convergence to stationary points. In this
thesis, we show that Adam provably converges to stationary points under far more realistic
conditions. In particular, we do not require the strong assumptions made in previous works
and also consider the generalized smoothness condition.

However, the above results can not explain why adaptive methods like Adam significantly
outperform SGD in machine learning applications like training transformers, as the conver-
gence rate we have obtained for Adam is not faster than that of SGD. Previous research
has empirically observed that adaptive methods tend to exhibit much smaller directional
smoothness along the training trajectory compared to SGD. In this thesis, we formalize
this observation into a more rigorous theoretical explanation. Specifically, we propose a

3



directional smoothness condition, under which we prove faster convergence of memoryless
Adam and RMSProp in the deterministic setting. Notably, our convergence rate is faster than
the typical rate of gradient descent, providing new insights into the benefits of adaptivity in
training transformers.

Thesis supervisor: Ali Jadbabaie
Title: Professor of Civil and Environmental Engineering
Thesis supervisor: Alexander Rakhlin
Title: Professor of Brain and Cognitive Sciences

4



Acknowledgments

As I bring this chapter of my academic journey to a close, I am filled with a sense of
accomplishment and gratitude. I am thankful for the support, encouragement, and resources
I received from numerous people and organizations, which have enabled me to achieve my
goals and pursue my passions.

First of all, I would like to express my sincere gratitude to the following funding sources for
their generous support during my PhD studies: ONR N00014-23-1-2299, MIT-IBM Watson
AI Lab, and NSF DMS-1953181, which allowed me to focus on my research and pursue my
goals without financial burden.

I am deeply grateful to my advisors, Ali and Sasha, for their exceptional guidance, support,
and mentorship throughout my academic journey. Their expertise, feedback, and mentorship
have been invaluable, and I appreciate the time and effort they invested in helping me grow as
a mature researcher. They have always been available to meet and discuss my technical and
non-technical challenges, offering valuable insights and solutions. I also greatly appreciate
the freedom they have provided me to explore topics that ignite my passion, gain industry
experience through internships, and work remotely during the COVID-19 pandemic. Their
trust and flexibility have enabled me to thrive and reach my full potential.

I would like to extend my heartfelt gratitude to my thesis committee members, Suvrit
and Devavrat. Despite their busy schedules, they have offered constructive feedback and
insightful suggestions regarding my thesis and defense. I am particularly grateful to Suvrit
for introducing me to the field of optimization through his course, Optimization for Machine
Learning, where I gained a systematic understanding of the subject for the first time. Further-
more, I was fortunate to serve as his teaching assistant in the Nonlinear Optimization course,
which provided me the opportunity to reinforce my knowledge, improve my presentation
skills, and gain valuable teaching experience.

I would also like to thank my undergraduate advisor, Liwei, for teaching me the ropes
of research and sparking my interest in the field. I am also grateful for the guidance and
mentorship I received from Jason during my internship at USC. The invaluable research
experiences and references from both Liwei and Jason played a significant role in my acceptance
to MIT, laying a strong foundation for my future academic pursuits.

I would like to express my sincere appreciation to all my collaborators and friends who
have supported me throughout my PhD and undergraduate journey. In particular, I would
like to thank Yi, Jian, Jingzhao, Molin, Yuyang, Amir, Farzan, Xiyu, Simon, Kaiqing,
Kwangjun, Zeyu, Chen-Yu, Ayush, Dylan, Tiancheng, Haidong, Songtao, Subhro, Tianle,
Ruiqi, Mengxiao, and Xiaoyu. The contributions of my collaborators, whether through
brainstorming sessions, feedback on my work, or simply being a sounding board, have had a

5



profound impact on my research and overall experience. I am grateful for the opportunity to
have worked alongside such a talented and supportive group of individuals, and I cherish the
memories and experiences we have shared.

I am grateful to the mentors, managers, and friends I had during my internships at
Amazon and Two Sigma, who provided valuable industry insights and helped me apply my
research skills in real-world settings. In particular, I want to thank Lingxue, Jin, and Keyulu
at Two Sigma, and Sujay, Mutasem, Sriram, and Kiran at Amazon. They offered guidance
on how to navigate the industry, provided feedback on my work and presentation, and helped
me develop a deeper understanding of the practical applications of my research.

On a personal note, I would like to express my deepest and most heartfelt appreciation to
my family, who have supported me unconditionally throughout my academic journey. My
parents, parents-in-law, brother, and wife have been a constant source of encouragement,
providing unwavering love, support, and guidance throughout my life. I would like to dedicate
my most sincere and profound gratitude to my wife, Fuyang, who has been my rock, partner,
and best friend throughout this journey. Her unwavering belief in me has made me more
confident, outgoing, and a better version of myself. I am forever grateful for her presence in
my life and for the unconditional love and support she has provided, and I look forward to
continuing our journey together, exploring new horizons, and creating a bright future filled
with love, laughter, and happiness.

6



Contents

Title page 1

Abstract 3

Acknowledgments 5

List of Figures 11

List of Tables 13

1 Introduction 15
1.1 Overview of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3.1 Standard assumptions on the objective function . . . . . . . . . . . . 26

2 Generalized smoothness 27
2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Convergence of classical methods 33
3.1 Convex setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.1 Gradient descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.2 Nesterov’s accelerated gradient method . . . . . . . . . . . . . . . . . 36

3.2 Non-convex setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.1 Gradient descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.2 Stochastic gradient descent . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.3 Reconciliation with existing lower bounds . . . . . . . . . . . . . . . 41
3.2.4 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Convergence of Adam 43
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.1 Description of the Adam algorithm . . . . . . . . . . . . . . . . . . . 44
4.1.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Convergence results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7



4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.1 Bounding the gradients along the optimization trajectory . . . . . . . 50
4.3.2 Warm-up: analysis in the deterministic setting . . . . . . . . . . . . . 52
4.3.3 Extension to the stochastic setting . . . . . . . . . . . . . . . . . . . 55

4.4 Varaince-reduced Adam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.2 Convergence guarantees for VRAdam . . . . . . . . . . . . . . . . . . 58

5 Directional smoothness 61
5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Convergence results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.1 Memoryless Adam . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2.2 RMSProp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2.3 Potential extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Conclusion and future work 75
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A Proofs for Chapter 2 81
A.1 Justification of examples in Section 2.3 . . . . . . . . . . . . . . . . . . . . . 81
A.2 Proof of Proposition 2.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.3 Proofs of properties of generalized smoothness . . . . . . . . . . . . . . . . . 90

B Proofs for Chapter 3 93
B.1 Analysis of GD for convex functions . . . . . . . . . . . . . . . . . . . . . . . 93
B.2 Analysis of NAG for convex functions . . . . . . . . . . . . . . . . . . . . . . 97
B.3 Analysis of NAG for strongly convex functions . . . . . . . . . . . . . . . . . 105

B.3.1 Useful lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
B.3.2 Proof of Theorem B.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . 111

B.4 Analysis of GD for non-convex functions . . . . . . . . . . . . . . . . . . . . 116
B.5 Analysis of SGD for non-convex functions . . . . . . . . . . . . . . . . . . . 117
B.6 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

C Proofs for Chapter 4 127
C.1 Covergence Analysis of Adam . . . . . . . . . . . . . . . . . . . . . . . . . . 127

C.1.1 Useful lemmas for Adam . . . . . . . . . . . . . . . . . . . . . . . . . 128
C.1.2 Proof of Theorem 4.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 129
C.1.3 Proof of Lemma C.1.6 . . . . . . . . . . . . . . . . . . . . . . . . . . 132
C.1.4 Omitted proofs for Adam . . . . . . . . . . . . . . . . . . . . . . . . 135
C.1.5 Proof of Theorem 4.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 139

C.2 Convergence Anlaysis of VRAdam . . . . . . . . . . . . . . . . . . . . . . . . 141
C.2.1 Useful lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8



C.2.2 Proof of Theorem 4.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 143
C.2.3 Proofs of lemmas in Appendix C.2.1 . . . . . . . . . . . . . . . . . . 147

D Proofs for Chapter 5 149
D.1 Useful lemmas on directional smoothness . . . . . . . . . . . . . . . . . . . . 149
D.2 Convergence of memoryless Adam . . . . . . . . . . . . . . . . . . . . . . . . 151
D.3 Convergence of RMSProp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
D.4 Proofs related to the example defined in Section 5.3 . . . . . . . . . . . . . . 162

9



10



List of Figures

4.1 Test errors of different models trained on CIFAR-10 using the Adam optimizer
with β = 0.9, βsq = 0.999, η = 0.001 and different λs. From left to right:
(a) a shallow CNN with 6 layers; (b) ResNet-Small with 20 layers; and (c)
ResNet110 with 110 layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 Smoothness ratio rλ(x) for the loss of linear transformer on a random instance
of linear regression for different values of λ, where x is from the initialization
with different seeds or the trajectories generated by SGD or Adam. . . . . . 73

5.2 Smoothness ratio rλ(x) for the loss of nanoGPT on character-level Shakespeare
data for different values of λ, where x is from the initialization with different
seeds or the trajectories generated by SGD or AdamW. . . . . . . . . . . . . 73

11



12



List of Tables

1.1 Summary of the convergence results under ℓ-smoothness. ϵ denotes the sub-
optimality gap of the function value in convex settings, and the gradient norm
in non-convex settings. “∗” denotes optimal rates. . . . . . . . . . . . . . . . 19

2.1 Examples of univariate (ρ, L0, Lρ) smooth functions for different ρs. The
parameters a, b, p are real numbers (not necessarily integers) satisfying a, b > 1
and p < 1 or p ≥ 2. We use 1+ to denote any real number slightly larger than 1. 31

13



14



Chapter 1

Introduction

Over the past few decades, machine learning, particularly deep learning, has revolutionized

numerous application fields, including computer vision, natural language processing, and

sequential decision making. A crucial step in developing a successful machine learning model

is optimization, which is essential for achieving high performance. However, despite its

importance, our theoretical understanding of optimization in the context of machine learning

remains limited.

Classical optimization problems have been extensively studied, with well-established upper

and lower bounds on convergence rates. Nevertheless, these theoretical analyses rely on certain

assumptions, such as Lipschitz smoothness, that are rarely satisfied in machine learning

applications. Moreover, empirical optimization techniques like batch normalization, adaptive

stepsizes, and momentum significantly enhance optimization speed, yet these improvements

cannot be fully explained by existing theory.

This thesis makes a step towards bridging the gap between optimization theory and

machine learning practice by delving into the smoothness condition and adaptivity in non-

linear optimization for machine learning applications. In particular, we study the following

15



unconstrained optimization problem

minx∈Xf(x), (1.1)

where X ⊆ Rd is the domain of f .

Classical textbook analyses [Nemirovskij and Yudin, 1983, Nesterov, 2003] of (1.1) often

require the Lipschitz smoothness condition, which assumes ∥∇2f(x)∥ ≤ L almost everywhere

for some L ≥ 0 called the smoothness constant. This condition, however, is rather restrictive

and only satisfied by functions that are both upper and lower bounded by quadratic functions.

Recently, Zhang et al. [2019] proposed the more general (L0, L1)-smoothness condition,

which assumes ∥∇2f(x)∥ ≤ L0 + L1 ∥∇f(x)∥ for some constants L0, L1 ≥ 0, motivated by

their extensive language model experiments. This notion generalizes the standard Lipschitz

smoothness condition and also contains e.g. univariate polynomial and exponential functions.

For non-convex and (L0, L1)-smooth functions, they prove convergence of gradient descent

(GD) and stochastic gradient descent (SGD) with gradient clipping and also provide a

complexity lower bound for constant-stepsize GD/SGD without clipping. Based on these

results, they claim gradient clipping or other forms of adaptivity provably accelerate the

convergence for (L0, L1)-smooth functions. Perhaps due to the lower bound, all the follow-up

works under this condition that we are aware of limit their analyses to adaptive methods.

Most of these focus on non-convex functions.

In this thesis, we significantly generalize the (L0, L1)-smoothness condition to the ℓ-

smoothness condition which assumes ∥∇2f(x)∥ ≤ ℓ(∥∇f(x)∥) for some non-decreasing

continuous function ℓ. We develop a simple, yet powerful technique, which allows us to

obtain stronger results for both convex and non-convex optimization problems when ℓ is

sub-quadratic (i.e., limu→∞ ℓ(u)/u2 = 0) or even more general. The ℓ-smooth function

class with a sub-quadratic ℓ also contains e.g. univariate rational and double exponential

functions. In particular, we prove the convergence of classical non-adaptive methods including

16



constant-stepsize GD/SGD and Nesterov’s accelerated gradient method (NAG) in the convex

or non-convex settings. For each method and setting, we obtain the classical convergence

rate, under a certain requirement of ℓ. In addition, we relax the assumption of bounded noise

to the weaker one of bounded variance with the simple SGD method. See Table 1.1 for a

summary of our results and assumptions for each method and setting.

Our approach analyzes boundedness of gradients along the optimization trajectory. The

idea behind it can be informally illustrated by the following “circular” reasoning. On the one

hand, if gradients along the trajectory are bounded by a constant G, then the Hessian norms

are bounded by the constant ℓ(G). Informally speaking, we essentially have the standard

Lipschitz smoothness condition and can apply classical textbook analyses to prove convergence,

which implies that gradients converge to zero. On the other hand, if gradients converge, they

must be bounded, since any convergent sequence is bounded. In other words, the bounded

gradient condition implies convergence, and convergence also implies the condition back,

which forms a circular argument. If we can break this circularity of reasoning in a rigorous

way (induction or contradiction), both the bounded gradient condition and convergence are

proved.

The idea of bounding gradients along the trajectory also allows us to derive an improved

convergence result for the Adaptive Moment Estimation (Adam) method proposed in [Kingma

and Ba, 2014], which has become one of the most popular optimizers for solving (1.1) when

f is the loss for training deep neural networks. Owing to its efficiency and robustness to

hyper-parameters, it is widely applied or even sometimes the default choice in many machine

learning application domains. It is also well known that Adam significantly outperforms

stochastic gradient descent (SGD) for certain models like transformers [Zhang et al., 2020b,

Kunstner et al., 2023, Ahn et al., 2023].

Despite its success in practice, theoretical analyses of Adam are still limited. The original

proof of convergence in [Kingma and Ba, 2014] was later shown by Reddi et al. [2018] to

contain gaps. The authors in [Reddi et al., 2018] also showed that for a range of momentum

17



parameters chosen independently with the problem instance, Adam does not necessarily

converge even for convex objectives. However, in deep learning practice, the hyper-parameters

are in fact problem-dependent as they are usually tuned after given the problem and weight

initialization. Recently, there have been many works proving the convergence of Adam for non-

convex functions with various assumptions and problem-dependent hyper-parameter choices.

However, these results leave significant room for improvement. For example, [D’efossez et al.,

2020, Guo et al., 2021] prove the convergence to stationary points assuming the gradients are

bounded by a constant, either explicitly or implicitly. On the other hand, [Zhang et al., 2022,

Wang et al., 2022] consider weak assumptions, but their convergence results are still limited.

See Section 1.2 for more detailed discussions of related works.

In this thesis, we develop a new convergence analysis for Adam. Our analysis does not

assume the strong assumption of bounded gradients, but prove that gradients are bounded

along the trajectory of Adam with high probability. In addition, we consider the generalized

ℓ-smoothness with a sub-quadratic ℓ, and obtain the O(ϵ−4) gradient complexity in the

stochastic setting assuming noise is sub-Gaussian, as shown in Table 1.1. Besides, we also

propose a varaince-reduced version of Adam and obtain the accelerated O(ϵ−3) gradient

complexity.

However, although our convergence result of Adam improves over existing ones for this

method, it is still not better than that of SGD. Specifically, Adam achieves the same O(ϵ−4)

gradient complexity as SGD, but requires a stronger bounded noise condition. In fact, the rate

of SGD is already not improvable among first-order methods under the classical smoothness

or our ℓ-smoothness condition, as it matches the lower bound in [Arjevani et al., 2023].

Therefore, the above results can not explain why adaptive methods like Adam outperform

SGD in some deep learning tasks like training transformers. To bridge this gap, we provide

new insights into the benefits of adaptivity to optimization for machine learning applications

by delving into the concept of directional smoothness.

For a given vector u ∈ Rd and a point x ∈ X , the directional smoothness at x along u is

18



Table 1.1: Summary of the convergence results under ℓ-smoothness. ϵ denotes the sub-
optimality gap of the function value in convex settings, and the gradient norm in non-convex
settings. “∗” denotes optimal rates.

Method Convexity ℓ-smoothness Gradient complexity

GD

Strongly convex No requirement O(log(1/ϵ)) (Theorem 3.1.3)
Convex O(1/ϵ) (Theorem 3.1.2 )

Non-convex
Sub-quadratic ℓ O(1/ϵ2)∗ (Theorem 3.2.2)

Quadratic ℓ Ω(exp. in cond #) (Theorem 3.2.4 )
NAG Convex Sub-quadratic ℓ O(1/

√
ϵ)∗ (Theorem 3.1.4 )

SGD Non-convex Sub-quadratic ℓ O(1/ϵ4)∗ (Theorem 3.2.3)
Adam Non-convex Sub-quadratic ℓ Õ(1/ϵ4) (Theorem 4.2.1 and 4.2.2)

defined as ℓx(u) := u⊤∇2f(x)u/ ∥u∥2. Recently, [Pan and Li, 2023] empirically computed the

directional smoothness ℓxt(xt+1 − xt) along the trajectories of various optimizers including

SGD, Adam, etc. They found that adaptive methods usually have much better (smaller)

directional smoothness along the optimization trajectory for training transformers, which

they believe may explain why adaptive methods converge faster, as a smaller directional

smoothness allows a larger stepsize and potentially faster convergence. In this thesis, we

formalize the empirical observations in [Pan and Li, 2023] into a rigorous convergence theory

to gain new insights on why and when adaptivity accelerates optimization. In particular,

assuming that the directional smoothness around the update direction of memoryless Adam

is bounded by some constant Lλ, we can obtain a gradient complexity of O(Lλϵ
−2) for two

special cases of Adam, memoryless Adam and RMSProp, in the deterministic setting. If

Lλ ≪ L, which is supported by the empirical observations in [Pan and Li, 2023] and our

experiments, our convergence results show acceleration of these adaptive methods compared

to the typical O(Lϵ−2) gradient complexity of gradient descent, providing new insights into

the benefits of adaptivity in training transformers.

19



1.1 Overview of results

Before delving into the detailed problem formulations and convergence analyses, we first

provide an overview of our results and summarize the content of each chapter.

• First, we generalize the standard Lipschitz smoothness and also the (L0, L1)-smoothness

condition to the ℓ-smoothness condition. In Chapter 2, we will present its formal

definitions in more detail. Moreover, we will show some useful properties of ℓ-smooth

functions and briefly discuss how they can be applied in the convergence analysis.

Finally, we provide several interesting examples of ℓ-smooth functions corresponding to

different ℓs.

• We develop a new approach for analyzing convergence under this generalized ℓ-

smoothness condition by bounding the gradients along the optimization trajectory. In

Chapter 3, we apply this approach to prove the convergence of constant-stepsize GD,

SGD, and NAG in the convex or non-convex settings, and obtain the classical rates for

all of them, as summarized in Table 1.1. Our convergence results of constant-stepsize

methods challenge the folklore belief on the necessity of adaptive stepsize for generalized

smooth functions. Notably, we also relax the assumption of bounded noise to the weaker

one of bounded variance of noise in the stochastic setting with the simple SGD method.

• In Chapter 4, we further apply the new approach to show that Adam converges to

stationary points under relaxed assumptions compared to existing works. In particular,

we do not assume bounded gradients or Lipschitzness of the objective function. Fur-

thermore, we also consider the more general ℓ-smoothness condition. Under these more

realistic assumptions, we obtain dimension free gradient complexities of O(ϵ−4) if the

gradient noise is centered and bounded, or O(ϵ−4 log3.25(1/ϵ)) if the gradient noise is

centered and has sub-Gaussian norm. Finally, we propose a variance-reduced version of

Adam (VRAdam) with provable convergence guarantees. In particular, we obtain the

20



accelerated O(ϵ−3) gradient complexity.

• In Chapter 5, we propose a directional smoothness condition and analyze the convergence

of memoryless Adam and RMSProp under this condition in the deterministic setting.

In particular, assuming that the directional smoothness along the update direction of

memoryless Adam is bounded by some constant Lλ, we show that memoryless Adam

converges with a gradient complexity of O(Lλϵ
−2). We can also obtain essentially the

same convergence rate for RMSProp under stronger assumptions. Compared to the

typical O(Lϵ−2) complexity of gradient descent, our results clearly achieve a faster rate

when Lλ ≪ L, which is supported by the the empirical observations in [Pan and Li,

2023] and our experiments. We also provide an example for which Lλ ≪ L holds and

memoryless Adam or RMSProp does converge faster than gradient descent.

1.2 Related work

In this section, we discuss the relevant literature related to various aspects of this thesis.

Gradient-based optimization. The classical gradient-based optimization problems for

the standard Lipschitz smooth functions have been well studied for both convex [Nemirovskij

and Yudin, 1983, Nesterov, 2003, d’Aspremont et al., 2021] and non-convex functions. In the

convex setting, the goal is to reach an ϵ-sub-optimal point x satisfying f(x) − infx f(x) ≤ ϵ.

It is well known that GD achieves the O(1/ϵ) gradient complexity and NAG achieves the

accelerated O(1/
√
ϵ) complexity which is optimal among all gradient-based methods. For

strongly convex functions, GD and NAG achieve the O(κ log(1/ϵ)) and O(
√
κ log(1/ϵ))

complexity respectively, where κ is the condition number and the latter is again optimal. In

the non-convex setting, the goal is to find an ϵ-stationary point x satisfying ∥∇f(x)∥ ≤ ϵ,

since finding a global minimum is NP-hard in general. It is well known that GD achieves

the optimal O(1/ϵ2) complexity which matches the lower bound in [Carmon et al., 2017]. In

21



the stochastic setting for unbiased stochastic gradient with bounded variance, SGD achieves

the optimal O(1/ϵ4) complexity [Ghadimi and Lan, 2013], matching the lower bound in

[Arjevani et al., 2023]. In this thesis, we obtain the classical rates in terms of ϵ for all the

above-mentioned methods and settings, under a far more general smoothness condition.

Generalized smoothness. The (L0, L1)-smoothness condition proposed by Zhang et al.

[2019] was studied by many follow-up works. Under the same condition, [Zhang et al., 2020a]

considers momentum in the updates and improves the constant dependency of the convergence

rate for SGD with clipping derived in [Zhang et al., 2019]. [Qian et al., 2021] studies gradient

clipping in incremental gradient methods, [Zhao et al., 2021] studies stochastic normalized

gradient descent, and [Crawshaw et al., 2022] studies a generalized SignSGD method, under

the (L0, L1)-smoothness condition. [Reisizadeh et al., 2023] studies variance reduction

for (L0, L1)-smooth functions. [Chen et al., 2023] proposes a new notion of α-symmetric

generalized smoothness, which is roughly as general as (L0, L1)-smoothness. [Wang et al.,

2022] analyzes convergence of Adam and provides a lower bound which shows non-adaptive

SGD may diverge. In the stochastic setting, the above-mentioned works either consider

the strong assumption of bounded gradient noise or require a very large batch size that

depends on ϵ, which essentially reduces the analysis to the deterministic setting. [Faw et al.,

2023] proposes an AdaGrad-type algorithm in order to relax the bounded noise assumption.

Perhaps due to the lower bounds in [Zhang et al., 2019, Wang et al., 2022], all the above

works study methods with an adaptive stepsize. In this thesis, we further generalize the

smoothness condition and analyze various methods under this condition through bounding

the gradients along the trajectory.

Convergence of Adam. Adam was first proposed by Kingma and Ba [2014] with a

theoretical convergence guarantee for convex functions. However, Reddi et al. [2018] found a

gap in the proof of this convergence analysis, and also constructed counter-examples for a

range of hyper-parameters on which Adam does not converge. That being said, the counter-

22



examples depend on the hyper-parameters of Adam, i.e., they are constructed after picking

the hyper-parameters. Therefore, it does not rule out the possibility of obtaining convergence

guarantees for problem-dependent hyper-parameters, as also pointed out by [Shi et al., 2021,

Zhang et al., 2022].

Many recent works have developed convergence analyses of Adam with various assumptions

and hyper-parameter choices. Zhou et al. [2018b] show Adam with certain hyper-parameters

can work on the counter-examples of [Reddi et al., 2018]. De et al. [2018] prove convergence

for general non-convex functions assuming gradients are bounded and the signs of stochastic

gradients are the same along the trajectory. The analysis in [D’efossez et al., 2020] also

relies on the bounded gradient assumption. Guo et al. [2021] assume the adaptive stepsize is

upper and lower bounded by two constants, which is not necessarily satisfied unless assuming

bounded gradients or considering the AdaBound variant [Luo et al., 2019]. [Zhang et al.,

2022, Wang et al., 2022] consider very weak assumptions. However, they show either 1)

“convergence” only to some neighborhood of stationary points with a constant radius, unless

assuming the strong growth condition; or 2) convergence to stationary points but with a

slower rate. In a concurrent work [Wang et al., 2023], the authors show the convergence of

Adam without assuming strong conditions like bounded gradients. They also consider the

bounded varaince assumption on the gradient noise, weaker than our sub-Gaussian noise

condition. However, their convergence rate is dimendion-dependent and only considers the

standard smoothness condition.

Benefit of adaptivity. Some recent works attempt to provide explanations on why adaptive

methods outperform SGD for machine learning tasks like training transformers. For example,

[Zhang et al., 2019, Wang et al., 2022] study the (L0, L1)-smoothness condition motivated by

language model experiments, and claim this condition can theoretically explain the benefit

of adaptivity based on their convergence results. However, their claims are undermined by

our convergence results of GD/SGD in Chapter 3, which will be discussed in more detail

23



in Section 3.2.3. [Ahn et al., 2024] studies the framework called online learning of updates

and connects both SGD and Adam to well-known online learning methods to understand

why Adam is better than SGD. [Zhang et al., 2020b] provides both empirical and theoretical

evidence that heavy-tailed noise distribution may be one cause of the poor performance

of SGD, which they show can be improved with gradient clipping. [Kunstner et al., 2024]

empirically shows heavy-tailed class imbalance may lead to difficulty in optimization, which

they believe can be counteracted by the normalization used in Adam. [Jiang et al., 2023]

shows that adaptive methods bias their trajectories towards regions with a smaller condition

number defined in their paper. [Zhang et al., 2024] empirically observe block heterogeneity

in the Hessian spectrum of training transformers, and provide evidence showing this may

be the reason why SGD performs worse. Finally, [Pan and Li, 2023] empirically shows that

adaptive methods like Adam may have a smaller directional smoothness, which may lead to

faster convergence. It also motivates our work shown in Chapter 5.

Variants of Adam. After Reddi et al. [2018] pointed out the non-convergence issue with

Adam, various variants of Adam that can be proved to converge were proposed [Zou et al.,

2018, Gadat and Gavra, 2022, Chen et al., 2018, 2022, Luo et al., 2019, Zhou et al., 2018b].

For example, AMSGrad [Reddi et al., 2018] and AdaFom [Chen et al., 2018] modify the

second order momentum so that it is non-decreasing. AdaBound [Luo et al., 2019] explicitly

imposes upper and lower bounds on the second order momentum so that the stepsize is also

bounded. AdaShift [Zhou et al., 2018b] uses a new estimate of the second order momentum

to correct the bias. There are also some works [Zhou et al., 2018a, Gadat and Gavra, 2022,

Iiduka, 2023] that provide convergence guarantees of these variants. One closely related work

to ours is [Wang and Klabjan, 2022], which considers a variance-reduced version of Adam by

combining Adam and SVRG [Johnson and Zhang, 2013]. However, they assume bounded

gradients and can only get an asymptotic convergence in the non-convex setting.

24



Variance reduction methods. The technique of variance reduction was introduced to

accelerate convex optimization in the finite-sum setting [Roux et al., 2012, Johnson and Zhang,

2013, Shalev-Shwartz and Zhang, 2013, Mairal, 2013, Defazio et al., 2014]. Later, many

works studied variance-reduced methods in the non-convex setting and obtained improved

convergence rates for standard smooth functions. For example, SVRG and SCSG improve the

O(ϵ−4) gradient complexity of stochastic gradient descent (SGD) to O(ϵ−10/3) [Allen-Zhu and

Hazan, 2016, Reddi et al., 2016, Lei et al., 2017]. Many new variance reduction methods [Fang

et al., 2018, Tran-Dinh et al., 2019, Liu et al., 2020, Li et al., 2021, Cutkosky and Orabona,

2019, Liu et al., 2023] were later proposed to further improve the complexity to O(ϵ−3), which

is optimal and matches the lower bound in [Arjevani et al., 2023]. Recently, [Reisizadeh et al.,

2023, Chen et al., 2023] obtained the O(ϵ−3) complexity for the more general (L0, L1)-smooth

functions. Our variance-reduced Adam is motivated by the STORM algorithm proposed by

[Cutkosky and Orabona, 2019], where an additional term is added in the momentum update

to correct the bias and reduce the variance.

1.3 Preliminaries

Notation. For any given vector x, we use x[i] to denote its i-th coordinate and x2,
√
x,

|x| to denote its coordinate-wise square, square root, and absolute value respectively. For

any two vectors x and y, we use x⊙ y and x/y to denote their coordinate-wise product and

quotient respectively. We also write x ⪯ y or x ⪰ y to denote the coordinate-wise inequality

between x and y, which means x[i] ≤ y[i] or x[i] ≥ y[i] for each coordinate index i respectively.

Similarly, for any scalar a and vector x, the coordinate-wise inequality x ⪯ a or x ⪰ a means

x[i] ≤ a or x[i] ≥ a for each coordinate index i respectively.

For any real-valued function f , we use dom(f) to denote its domain. We also use B(x,R)

to denote the Euclidean ball with radius R ≥ 0 centered at point x. Let ∥·∥ denote the ℓ2

norm of a vector or spectral norm of a matrix. We also use ∥·∥1 and ∥·∥∞ to denote the ℓ1 and

25



ℓ∞ norms of a vector respectively. For any positive semi-definite matrix A and vector x, we

denote ∥x∥A :=
√
x⊤Ax as the weighted norm of x with respect to A. For two symmetric real

matrices A and B, we say A ⪯ B or A ⪰ B if B−A or A−B is positive semi-definite (PSD).

For any vector x, we use diag(x) to denote the diagonal matrix whose principle diagonal

entries are the coordinates of x. Given two real numbers a, b ∈ R, we denote a∧b := min{a, b}

for simplicity. Finally, we use O(·), Θ(·), and Ω(·) for the standard big-O, big-Theta, and

big-Omega notation, with Õ(·), Θ̃(·), and Ω̃(·) further hiding logarithmic factors.

1.3.1 Standard assumptions on the objective function

Next, we present the following two standard assumptions in the literature of unconstrained

optimization. These will be assumed throughout Chapters 3, 4 and 5.

Assumption 1.1. The objective function f is differentiable and closed within its open

domain X .

Assumption 1.2. The objective function f is bounded from below, i.e., f ∗ := infx∈X f(x) >

−∞.

A function f is said to be closed if its sub-level set {x ∈ dom(f) | f(x) ≤ a} is closed for

each a ∈ R. A continuous function f with an open domain is closed if and only f(x) tends

to positive infinity when x approaches the boundary of its domain [Boyd and Vandenberghe,

2004]. Assumption 1.1 is necessary for our analysis to ensure that the iterates of a method with

a reasonably small stepsize stays within the domain X . Note that for X = Rd considered in

most unconstrained optimization papers, the assumption is trivially satisfied as all continuous

functions over Rd are closed. We consider a more general domain which may not be the

whole space because that is the case for some interesting examples in our generalized function

class of interest (see Section 2.3). However, it actually brings us some additional technical

difficulties especially in the stochastic setting, as we need to make sure the iterates do not go

outside of the domain.

26



Chapter 2

Generalized smoothness

In this chapter, we formally define the generalized smoothness condition, presenting its

properties and examples. In Section 2.1, we introduce two equivalent definitions of the

generalized smoothness condition, termed ℓ-smoothness and (r, ℓ)-smoothness, respectively.

The (r, ℓ)-smoothness definition represents a local smoothness condition, which we will utilize

to derive useful properties for the convergence analysis under our generalized smoothness

conditions in Section 2.2. These properties will be extensively applied in our analyses of

classical methods and Adam in Chapters 3 and 4. Conversely, the ℓ-smoothness definition is

intuitive and mathematically straightforward. We will employ it to explore several interesting

examples in Section 2.3. For all lemmas and propositions in this chapter, we present only

their statements and defer the proofs to Appendix A.

2.1 Definitions

Definitions 1 and 2 below are two equivalent ways of stating the definition, where we use

B(x,R) to denote the Euclidean ball with radius R centered at x.

Definition 1 (ℓ-smoothness). A real-valued differentiable function f : X → R is ℓ-smooth for

some non-decreasing continuous function ℓ : [0,+∞) → (0,+∞) if ∥∇2f(x)∥ ≤ ℓ(∥∇f(x)∥)

27



almost everywhere (with respect to the Lebesgue measure) in X .

Remark 2.1.1. Definition 1 reduces to the classical L-smoothness when ℓ ≡ L is a constant

function. It reduces to the (L0, L1)-smoothness proposed in [Zhang et al., 2019] when

ℓ(u) = L0 + L1u is an affine function.

Definition 2 ((r, ℓ)-smoothness). A real-valued differentiable function f : X → R is (r, ℓ)-

smooth for continuous functions r, ℓ : [0,+∞) → (0,+∞) where ℓ is non-decreasing and

r is non-increasing, if it satisfies 1) for any x ∈ X , B(x, r(∥∇f(x)∥)) ⊆ X , and 2) for any

x1, x2 ∈ B(x, r(∥∇f(x)∥)), ∥∇f(x1) − ∇f(x2)∥ ≤ ℓ(∥∇f(x)∥) · ∥x1 − x2∥.

The requirements that ℓ is non-decreasing and r is non-increasing do not cause much

loss in generality. If these conditions are not satisfied, one can replace ℓ and r with the

non-increasing function r̃(u) := inf0≤v≤u r(v) ≤ r(u) and non-decreasing function ℓ̃(u) :=

sup0≤v≤u ℓ(v) ≥ ℓ(u) in Definitions 1 and 2. Then the only requirement is r̃ > 0 and ℓ̃ < ∞.

Next, we prove that the above two definitions are equivalent in the following important

proposition, whose proof is involved and deferred to Appendix A.2.

Proposition 2.1.2. An (r, ℓ)-smooth function is ℓ-smooth; and a closed ℓ-smooth function

over an open domain is (r,m)-smooth where m(u) := ℓ(u+ a) and r(u) := a/m(u) for any

a > 0.

The condition in Definition 1 is simple and one can easily check whether it is satisfied for

a given example function. On the other hand, Definition 2 is a local Lipschitz condition on

the gradient that is harder to verify. However, it is useful for deriving several useful properties

in the next section.

2.2 Properties

First, we provide the following lemma which is very useful in our analyses of most methods

considered in this thesis. Its proof is deferred to Appendix A.3.

28



Lemma 2.2.1. If f is (r, ℓ)-smooth, for any x ∈ X satisfying ∥∇f(x)∥ ≤ G, we have 1)

B(x, r(G)) ⊆ X , and 2) for any x1, x2 ∈ B(x, r(G)),

∥∇f(x1)−∇f(x2)∥≤L ∥x1−x2∥ , f(x1)≤f(x2)+
〈
∇f(x2), x1−x2

〉
+L

2 ∥x1−x2∥2 , (2.1)

where L := ℓ(G) is the effective smoothness constant.

Remark 2.2.2. Since we have shown the equivalence between ℓ-smoothness and (r, ℓ)-

smoothness, Lemma 2.2.1 also applies to ℓ-smooth functions, for which we have L = ℓ(2G)

and r(G) = G/L if choosing a = G in Proposition 2.1.2.

Lemma 2.2.1 states that, if the gradient at x is bounded by some constant G, then

within its neighborhood with a constant radius, we can obtain (2.1), the same inequalities

that were derived in the textbook analysis [Nesterov, 2003] under the standard Lipschitz

smoothness condition. With (2.1), the analysis for generalized smoothness is not much harder

than that for standard smoothness. Since we mostly choose x = x2 = xt and x1 = xt+1 in

the analysis, in order to apply Lemma 2.2.1, we need two conditions: ∥∇f(xt)∥ ≤ G and

∥xt+1 − xt∥ ≤ r(G) for some constant G. The latter is usually directly implied by the former

for most deterministic methods with a small enough stepsize, and the former can be obtained

with our new approach that bounds the gradients along the trajectory.

With Lemma 2.2.1, we can derive the following useful lemma which is the reverse direction

of a generalized Polyak-Lojasiewicz (PL) inequality, whose proof is deferred to Appendix A.3.

Lemma 2.2.3. If f is ℓ-smooth satisfying Assumption 1.1, then ∥∇f(x)∥2 ≤ 2ℓ(2 ∥∇f(x)∥) ·

(f(x) − infx f(x)) for any x ∈ X .

Lemma 2.2.3 provides an inequality involving the gradient norm and the sub-optimality

gap. For example, when ℓ(u) = uρ for some 0 ≤ ρ < 2, this lemma suggests ∥∇f(x)∥ ≤

O
(
(f(x) − f ∗)1/(2−ρ)

)
, which means the gradient norm is bounded whenever the function

value is bounded. The following corollary provides a more formal statement for general

sub-quadratic ℓ (i.e., limu→∞ ℓ(u)/u2 = 0), and we defer its proof to Appendix A.3.

29



Corollary 2.2.4. Suppose f is ℓ-smooth satisfying Assumption 1.1 and 1.2 where ℓ is sub-

quadratic. If f(x) − infx f(x) ≤ F for some x ∈ X and F ≥ 0, denoting G := sup{u ≥ 0 |

u2 ≤ 2ℓ(2u) · F}, then they satisfy G2 = 2ℓ(2G) · F and we have ∥∇f(x)∥ ≤ G < ∞.

Therefore, in order to bound the gradients along the trajectory as we discussed below

Lemma 2.2.1, it suffices to bound the function values, which is usually easier.

2.3 Examples

The most important subset of ℓ-smooth (or (r, ℓ)-smooth) functions are those with a polyno-

mial ℓ, and can be characterized by the (ρ, L0, Lρ)-smooth function class defined below.

Definition 3 ((ρ, L0, Lρ)-smoothness). A real-valued differentiable function f is (ρ, L0, Lρ)-

smooth for constants ρ, L0, Lρ ≥ 0 if it is ℓ-smooth with ℓ(u) = L0 + Lρu
ρ.

Definition 3 reduces to the standard Lipschitz smoothness condition when ρ = 0 or Lρ = 0

and to the (L0, L1)-smoothness proposed in [Zhang et al., 2019] when ρ = 1. We list several

univariate examples of (ρ, L0, Lρ)-smooth functions for different ρs in Table 2.1 with their

rigorous justifications in Appendix A.1. Note that when x goes to infinity, polynomial and

exponential functions corresponding to ρ = 1 grow much faster than quadratic functions

corresponding to ρ = 0 . Rational and logarithmic functions for ρ > 1 grow even faster as

they can blow up to infinity near finite points. Note that the domains of such functions

are not Rd, which is why we consider a general open domain X instead of simply assuming

X = Rd.

Aside from logarithmic functions, the (2, L0, L2)-smooth function class also includes other

univariate self-concordant functions. This is an important function class in the analysis of

Interior Point Methods and coordinate-free analysis of the Newton method [Nesterov, 2003].

More specifically, a convex function h : R → R is self-concordant if |h′′′(x)| ≤ 2h′′(x)3/2 for all

x ∈ R. Formally, we have the following proposition whose proof is deferred to Appendix A.1.

30



Table 2.1: Examples of univariate (ρ, L0, Lρ) smooth functions for different ρs. The parameters
a, b, p are real numbers (not necessarily integers) satisfying a, b > 1 and p < 1 or p ≥ 2. We
use 1+ to denote any real number slightly larger than 1.

ρ 0 1 1 1+ 1.5 2 p−2
p−1

Examples Quadratic Polynomial ax a(bx) Rational Logarithmic xp

Proposition 2.3.1. If h : R → R is a self-concordant function satisfying h′′(x) > 0 over the

interval (a, b), then h restricted on (a, b) is (2, L0, 2)-smooth for some L0 > 0.

31



32



Chapter 3

Convergence of classical methods

In this chapter, we analyze the convergence of classical methods in both convex and non-

convex settings under the generalized ℓ-smoothness condition introduced in Chapter 2.

Section 3.1 details the analysis approach and convergence results of gradient descent (GD)

and Nesterov’s accelerated gradient method (NAG) in convex and strongly convex settings.

Then in Section 3.2, we present the results for gradient descent (GD) and stochastic gradient

descent (SGD) in the non-convex setting. All the results recover the classical convergence

rates under the standard Lipschitz smoothness condition up to constant factors, where NAG is

optimal in the convex setting, and GD or SGD achieves the optimal rate in the deterministic

or stochastic non-convex setting. We have no additional requirement on ℓ for GD in the

convex setting but require ℓ to be sub-quadratic in all other cases. For GD/SGD in the

non-convex setting, we are able to show such a requirement is necessary by providing an

exponential lower bound on the iteration complexity when ℓ is not sub-quadratic. However,

it is not clear whether it is also necessary for NAG in the convex setting. See Table 1.1 for a

summary of their convergence rates.

Notably, we are considering non-adaptive or constant-stepsize GD/SGD unlike in most

existing works on generalized smoothness. Our results challenge the folklore belief on the

necessity of adaptive stepsize for generalized smooth functions. In addition, we also relax the

33



assumption of bounded noise to the weaker one of bounded variance of noise in the stochastic

setting with the simple SGD method. See Section 1.2 for detailed discussions.

3.1 Convex setting

In this section, we present the convergence results of gradient descent (GD) and Nesterov’s

accelerated gradient method (NAG) in the convex setting. Formally, we define convexity as

follows.

Definition 4. A real-valued differentiable function f : X → R is µ-strongly-convex for µ ≥ 0

if X is a convex set and f(y) − f(x) ≥
〈
∇f(x), y − x

〉
+ µ

2 ∥y − x∥2 for any x, y ∈ X . A

function is convex if it is µ-strongly-convex with µ = 0.

We assume the existence of a global optimal point x∗ throughout this section, as in the

following assumption. However, we want to note that, for gradient descent, this assumption

is just for simplicity rather than necessary.

Assumption 3.1. There exists a point x∗ ∈ X such that f(x∗) = f ∗ = infx∈X f(x).

3.1.1 Gradient descent

The gradient descent method with a constant stepsize η is defined via the following update

rule

xt+1 = xt − η∇f(xt). (3.1)

As discussed below Lemma 2.2.1, the key in the convergence analysis is to show ∥∇f(xt)∥ ≤ G

for all t ≥ 0 and some constant G. We will prove it by induction relying on the following

lemma whose proof is deferred to Appendix B.1.

34



Lemma 3.1.1. For any x ∈ X satisfying ∥∇f(x)∥ ≤ G, define x+ := x − η∇f(x). If f

is convex and (r, ℓ)-smooth, and η ≤ min
{

2
ℓ(G) ,

r(G)
2G

}
, we have x+ ∈ X and ∥∇f(x+)∥ ≤

∥∇f(x)∥ ≤ G.

Lemma 3.1.1 suggests that for gradient descent (3.1) with a small enough stepsize, if

the gradient norm at xt is bounded by G, then we have ∥∇f(xt+1)∥ ≤ ∥∇f(xt)∥ ≤ G, i.e.,

the gradient norm is also bounded by G at t + 1. In other words, the gradient norm is

indeed a non-increasing potential function for gradient descent in the convex setting. With

a standard induction argument, we can show that ∥∇f(xt)∥ ≤ ∥∇f(x0)∥ for all t ≥ 0. As

discussed below Lemma 2.2.1, then we can basically apply the classical analysis to obtain

the convergence guarantee in the convex setting as in the following theorem, whose proof is

deferred to Appendix B.1.

Theorem 3.1.2. Suppose f is convex and (r, ℓ)-smooth satisfying Assump-

tions 1.1, 1.2, and 3.1. Denote G := ∥∇f(x0)∥ and L := ℓ(G), then the iterates

generated by (3.1) with η ≤ min
{

1
L
, r(G)

2G

}
satisfy ∥∇f(xt)∥ ≤ G for all t ≥ 0 and

f(xT ) − f ∗ ≤ ∥x0 − x∗∥2

2ηT .

Since η is a constant independent of ϵ or T , Theorem 3.1.2 achieves the classical O(1/T )

rate, or O(1/ϵ) gradient complexity to achieve an ϵ-sub-optimal point, under the generalized

smoothness condition. Since strongly convex functions are a subset of convex functions,

Lemma 3.1.1 still holds for them. Then we immediately obtain the following result in the

strongly convex setting, whose proof is deferred to Appendix B.1.

Theorem 3.1.3. Suppose f is µ-strongly-convex and (r, ℓ)-smooth satisfying Assump-

tions 1.1, 1.2, and 3.1. Denote G := ∥∇f(x0)∥ and L := ℓ(G), then the iterates generated by

(3.1) with η ≤ min
{

1
L
, r(G)

2G

}
satisfy ∥∇f(xt)∥ ≤ G for all t ≥ 0 and

f(xT ) − f ∗ ≤ µ(1 − ηµ)T

2(1 − (1 − ηµ)T ) ∥x0 − x∗∥2 .

35



Theorem 3.1.3 gives a linear convergence rate and the O((ηµ)−1 log(1/ϵ)) gradient com-

plexity to achieve an ϵ-sub-optimal point. Note that for ℓ-smooth functions, we have r(G)
G

= 1
L

(see Remark 2.2.2), which means we can choose η = 1
2L

. Then we obtain the O(κ log(1/ϵ))

rate, where κ := L/µ is the local condition number around the initial point x0. For standard

Lipschitz smooth functions, it reduces to the classical rate of gradient descent.

3.1.2 Nesterov’s accelerated gradient method

Algorithm 1 Nesterov’s accelerated gradient method (NAG)
1: Input: A convex and ℓ-smooth function f , stepsize η, initial point x0
2: Initialize z0 = x0, B0 = 0, and A0 = 1/η.
3: for t = 0, ... do
4: Bt+1 = Bt + 1

2

(
1 +

√
4Bt + 1

)
5: At+1 = Bt+1 + 1/η
6: yt = xt + (1 − At/At+1)(zt − xt)
7: xt+1 = yt − η∇f(yt)
8: zt+1 = zt − η(At+1 − At)∇f(yt)
9: end for

In the case of convex and standard Lipschitz smooth functions, it is well known that

Nesterov’s accelerated gradient method (NAG) achieves the optimal O(1/T 2) rate. In this

section, we show that under the ℓ-smoothness condition with a sub-quadratic ℓ, the optimal

O(1/T 2) rate can be achieved by a slightly modified version of NAG shown in Algorithm 1,

the only difference between which and the classical NAG is that the latter directly sets

At+1 = Bt+1 in Line 4. Formally, we have the following theorem, whose proof is deferred to

Appendix B.2.

Theorem 3.1.4. Suppose f is convex and ℓ-smooth satisfying Assumptions 1.1, 1.2, and 3.1

where ℓ is sub-quadratic. Then there always exists a constant G satisfying G ≥

max
{

8
√
ℓ(2G)((f(x0) − f ∗) + ∥x0 − x∗∥2), ∥∇f(x0)∥

}
. Denote L := ℓ(2G) and choose

36



η ≤ min
{

1
16L2 ,

1
2L

}
. The iterates generated by Algorithm 1 satisfy

f(xT ) − f ∗ ≤ 4(f(x0) − f ∗) + 4 ∥x0 − x∗∥2

ηT 2 + 4 .

It is easy to note that Theorem 3.1.4 achieves the accelerated O(1/T 2) convergence rate,

or equivalently the O(1/
√
ϵ) gradient complexity to find an ϵ-sub-optimal point, which is

optimal among gradient-based methods [Nesterov, 2003].

In order to prove Theorem 3.1.4, we also use induction to show the gradients along the

trajectory of Algorithm 1 are bounded by G. However, unlike gradient descent, the gradient

norm is no longer a potential function or monotonically non-increasing, which makes the

induction analysis more challenging. Suppose that we have shown ∥∇f(ys)∥ ≤ G for s < t.

To complete the induction, it suffices to prove ∥∇f(yt)∥ ≤ G. Since xt = yt−1 − η∇f(yt−1) is

a gradient descent step by Line 6 of Algorithm 1, Lemma 3.1.1 directly shows ∥∇f(xt)∥ ≤ G.

In order to also bound ∥∇f(yt)∥, we try to control ∥yt − xt∥, which is the most challenging

part of our proof. Since yt − xt can be expressed as a linear combination of past gradients

{∇f(ys)}s<t, it might grow linearly with t if we simply apply ∥∇f(ys)∥ ≤ G for s < t.

Fortunately, Lemma 2.2.3 allows us to control the gradient norm with the function value.

Thus if the function value is decreasing sufficiently fast, which can be shown by following

the standard Lyapunov analysis of NAG, we are able to obtain a good enough bound on

∥∇f(ys)∥ for s < t, which allows us to control ∥yt − xt∥. We defer the detailed proof to

Appendix B.2.

Note that Theorem 3.1.4 requires a smaller stepsize η = O(1/L2), compared to the

classical O(1/L) stepsize for standard Lipschitz smooth functions. The reason is we require a

small enough stepsize to get a good enough bound on ∥yt − xt∥. However, if the function

is further assumed to be ℓ-smooth with a sub-linear ℓ, the requirement of stepsize can be

relaxed to η = O(1/L), similar to the classical requirement. See Appendix B.2 for the details.

In the strongly convex setting, we can also prove convergence of NAG with different

37



{At}t≥0 parameters when f is ℓ-smooth with a sub-quadratic ℓ, or (ρ, L0, Lρ)-smooth with

ρ < 2. The rate can be further improved when ρ becomes smaller. However, since the

constants G and L are different for GD and NAG, it is not clear whether the rate of NAG is

faster than that of GD in the strongly convex setting. We will present the detailed result and

analysis in Appendix B.3.

3.2 Non-convex setting

In this section, we present convergence results of gradient descent (GD) and stochastic

gradient descent (SGD) in the non-convex setting.

3.2.1 Gradient descent

Similar to the convex setting, we still want to bound the gradients along the trajectory.

However, in the non-convex setting, the gradient norm is not necessarily non-increasing.

Fortunately, similar to the classical analyses, the function value is still non-increasing and

thus a potential function, as formally shown in the following lemma, whose proof is deferred

to Appendix B.4.

Lemma 3.2.1. Suppose f is ℓ-smooth satisfying Assumptions 1.1 and 1.2 where ℓ is sub-

quadratic. For any given F ≥ 0, let G := sup {u ≥ 0 | u2 ≤ 2ℓ(2u) · F} and L := ℓ(2G). For

any x ∈ X satisfying f(x) − f ∗ ≤ F , define x+ := x − η∇f(x) where η ≤ 2/L, we have

x+ ∈ X and f(x+) ≤ f(x).

Then using a standard induction argument, we can show f(xt) ≤ f(x0) for all t ≥ 0.

According to Corollary 2.2.4, it implies bounded gradients along the trajectory. Therefore, we

can show convergence of gradient descent as in the following theorem, whose proof is deferred

to Appendix B.4.

38



Theorem 3.2.2. Suppose f is ℓ-smooth satisfying Assumptions 1.1 and 1.2 where ℓ is sub-

quadratic. Let G := sup {u ≥ 0 | u2 ≤ 2ℓ(2u) · (f(x0) − f ∗)} and L := ℓ(2G). If η ≤ 1/L,

the iterates generated by (3.1) satisfy ∥∇f(xt)∥ ≤ G for all t ≥ 0 and

1
T

∑
t<T

∥∇f(xt)∥2 ≤ 2(f(x0) − f ∗)
ηT

.

It is clear that Theorem 3.2.2 gives the classical O(1/ϵ2) gradient complexity to achieve an

ϵ-stationary point, which is optimal as it matches the lower bound in [Carmon et al., 2017].

3.2.2 Stochastic gradient descent

In this part, we present the convergence result for stochastic gradient descent defined as

follows.

xt+1 = xt − η∇f(xt, ξt), (3.2)

where ∇f(xt, ξt) is an estimate of the gradient ∇f(xt) parametrized by the random variable ξt.

We consider the following standard assumption on the gradient noise ϵt := ∇f(xt, ξt)−∇f(xt).

Assumption 3.2. Et−1[ϵt] = 0 and Et−1
[
∥ϵt∥2

]
≤ σ2 for some σ ≥ 0, where Et−1 denotes

the expectation conditioned on {ξs}s<t.

Under Assumption 3.2, we can obtain the following theorem.

Theorem 3.2.3. Suppose f is ℓ-smooth satisfying Assumptions 1.1, 1.2, and 3.2 where

ℓ is sub-quadratic. For any 0 < δ < 1, we denote F := 8(f(x0) − f ∗ + σ)/δ and G :=

sup{u ≥ 0 | u2 ≤ 2ℓ(2u) · F} < ∞. Denote L := ℓ(2G) and choose η ≤ min
{

1
2L
, ϵ2

16G2F

}
and

F
ηϵ2 ≤ T ≤ 1

16G2η2 for any ϵ > 0. Then with probability at least 1 − δ, the iterates generated by

(3.2) satisfy ∥∇f(xt)∥ ≤ G for all t < T and

1
T

∑
t<T

∥∇f(xt)∥2 ≤ ϵ2.

39



As we choose η = O(1/
√
T ), Theorem 3.2.3 gives the classical O(1/ϵ4) gradient complexity,

where we ignore non-leading terms. This rate is optimal as it matches the lower bound

in [Arjevani et al., 2023]. The key to its proof is again to bound the gradients along the

trajectory. However, bounding gradients in the stochastic setting is much more challenging

than in the deterministic setting, especially with the heavy-tailed noise in Assumption 3.2.

We briefly discuss some of the challenges as well as our approach below and defer the detailed

proof of Theorem 3.2.3 to Appendix B.5.

First, due to the existence of heavy-tailed gradient noise as considered in Assumption 3.2,

neither the gradient nor the function values is non-increasing. The induction analyses we

have used in the deterministic setting hardly work. In addition, to apply Lemma 2.2.1, we

need to control the update at each step and make sure ∥xt+1 − xt∥ = η ∥∇f(xt, ξt)∥ ≤ G/L.

However, ∇f(xt, ξt) might be unbounded due to the potentially unbounded gradient noise.

To overcome these challenges, we define the following random variable τ .

τ1 := min{t | f(xt+1) − f ∗ > F} ∧ T,

τ2 := min
{
t

∣∣∣∣∣∥ϵt∥ >
G

5ηL

}
∧ T, (3.3)

τ := min{τ1, τ2},

where we use a ∧ b to denote min{a, b} for any a, b ∈ R. Then at least before time τ , we

know that the function value and gradient noise are bounded, where the former also implies

bounded gradients according to Corollary 2.2.4. Therefore, it suffices to show the probability

of τ < T is small, which means with a high probability, τ = T and thus gradients are always

bounded before T .

Since both the gradient and noise are bounded for t < τ , it is straightforward to bound the

update ∥xt+1 − xt∥, which allows us to use Lemma 2.2.1 and other useful properties. However,

it is still non-trivial to upper bound E[f(xτ ) − f ∗] as τ is a random variable instead of a

fixed time step. Fortunately, τ is a stopping time with nice properties. That is because both

40



f(xt+1) and ϵt = ∇f(xt, ξt) − ∇f(xt) only depend on {ξs}s≤t, i.e., the stochastic gradients

up to t. Therefore, for any fixed t, the events {τ > t} only depend on {ξs}s≤t, which show τ

is a stopping time. Then with a careful analysis, we are still able to obtain an upper bound

on E[f(xτ ) − f ∗] = O(1).

On the other hand, τ < T means either τ = τ1 < T or τ = τ2 < T . If τ = τ1 < T , by its

definition, we know f(xτ+1) − f ∗ > F . Roughly speaking, it also suggests f(xτ ) − f ∗ > F/2.

If we choose F such that it is much larger than the upper bound on E[f(xτ ) − f ∗] we just

obtained, by Markov’s inequality, we can show the probability of τ = τ1 < T is small. In

addition, by union bound and Chebyshev’s inequality, the probability of τ2 < T can also be

bounded by a small constant. Therefore, we have shown τ < T is unlikely. Then the rest of

the analysis is not too hard following the classical analysis.

3.2.3 Reconciliation with existing lower bounds

In this section, we reconcile our convergence results for constant-stepsize GD/SGD in the

non-convex setting with existing lower bounds in [Zhang et al., 2019] and [Wang et al., 2022],

based on which the authors claim that adaptive methods such as GD/SGD with clipping

and Adam are provably faster than non-adaptive GD/SGD. This may seem to contradict

our convergence results. In fact, we show that any gain in adaptive methods is at most by

constant factors, as GD and SGD already achieve the optimal rates in the non-convex setting.

[Zhang et al., 2019] provides both upper and lower complexity bounds for constant-stepsize

GD for (L0, L1)-smooth functions, and shows that its complexity is O(Mϵ−2), where

M := sup{∥∇f(x)∥ | f(x) ≤ f(x0)}

is the supremum gradient norm below the level set of the initial function value. If M is very

large, then the O(Mϵ−2) complexity can be viewed as a negative result, and as evidence that

constant-stepsize GD can be slower than GD with gradient clipping, since in the latter case,

41



they obtain the O(ϵ−2) complexity without M . However, based on our Corollary 2.2.4, their

M can be actually bounded by our G, which is a constant. Therefore, the gain in adaptive

methods is at most by constant factors.

[Wang et al., 2022] further provides a lower bound which shows non-adaptive GD may

diverge for some examples. However, their counter-example does not allow the stepsize

to depend on the initial sub-optimality gap. In contrast, our stepsize η depends on the

effective smoothness constant L, which depends on the initial sub-optimality gap through G.

Therefore, there is no contradiction here either. We should point out that in the practice

of training neural networks, the stepsize is usually tuned after fixing the loss function and

initialization, so it does depend on the problem instance and initialization.

3.2.4 Lower bound

For (ρ, L0, Lρ)-smooth functions with ρ < 2, it is easy to verify that the constant G in both

Theorem 3.2.2 and Theorem 3.2.3 is a polynomial function of problem-dependent parameters

like L0, Lρ, f(x0) − f ∗, σ, etc. In other words, GD and SGD are provably efficient methods

in the non-convex setting for ρ < 2. In this section, we show that the requirement of

ρ < 2 is necessary in the non-convex setting with the lower bound for GD in the following

Theorem 3.2.4, whose proof is deferred in Appendix B.6. Since SGD reduces to GD when

there is no gradient noise, it is also a lower bound for SGD.

Theorem 3.2.4. Given L0, L2, G0,∆0 > 0 satisfying L2∆0 ≥ 10, for any η ≥ 0, there exists

a (2, L0, L2)-smooth function f that satisfies Assumptions 1.1 and 1.2, and initial point x0

that satisfies ∥∇f(x0)∥ ≤ G0 and f(x0) − f ∗ ≤ ∆0, such that gradient descent with stepsize

η (3.1) either cannot reach a 1-stationary point or takes at least exp(L2∆0/8)/6 steps to

reach a 1-stationary point.

42



Chapter 4

Convergence of Adam

In this chapter, we analyze the convergence of Adam under our generalized smoothness

condition presented in Chapter 2 in the stochastic non-convex setting.

First, in Section 4.1, we introduce the Adam algorithm and present the key assumptions in

our analysis. In particular, we consider the (ρ, L0, Lρ)-smoothness condition with 0 ≤ ρ < 2

defined in Definition 3. It is essentially very similar to assuming ℓ-smoothness with a sub-

quadratic ℓ, but can better characterize the dependence on ρ in our results. We need to

impose a stronger assumption on the gradient noise for Adam compared to that for SGD

in Chapter 3 due to additional technical difficulties in the analysis of Adam. In particular,

we assume the gradient noise has sub-Gaussian norm, which is stronger than the bounded

variance assumption we considered for SGD.

Next, we present the convergence results of Adam in Section 4.2. We can obtain the

Õ(ϵ−4) gradient complexity as in existing analyses of Adam, under relaxed assumptions.

However, since we consider a stronger noise condition than that in the lower bound [Arjevani

et al., 2023], it is not clear whether the complexity is optimal or not. Also note that it is not

better than that of SGD as the latter is optimal, although Adam outperforms SGD in many

deep learning applications like training transformers. We will revisit this gap between theory

and practice in Chapter 5.

43



In Section 4.3, we briefly discuss our analysis approach, bounding gradients along the

optimization trajectory. As a warm-up, we show the analysis in detail in the simple deter-

ministic setting to better illustrate our approach. Then we also talk about how to extend the

analysis to the stochastic setting.

Finally, in Section 4.4, we proposed a variance-reduced version of Adam which we call

VRAdam, inspired by the STORM algorithm in [Cutkosky and Orabona, 2019]. Under

stronger assumptions, we are able to obtain an accelerated gradient complexity of O(ϵ−3).

We also present the formal convergence guarantee and discuss how we analyze its convergence

in this section.

4.1 Preliminaries

In what follows below, we provide necessary preliminaries for this chapter, including the

formal definition of the Adam algorithm and required assumptions for our convergence

analysis.

4.1.1 Description of the Adam algorithm

Algorithm 2 Adam
1: Input: β, βsq, η, λ, T, xinit
2: Initialize m0 = v0 = 0 and x1 = xinit
3: for t = 1, · · · , T do
4: Draw a new sample ξt and perform the following updates
5: mt = (1 − β)mt−1 + β∇f(xt, ξt)
6: vt = (1 − βsq)vt−1 + βsq(∇f(xt, ξt))2

7: m̂t = mt

1−(1−β)t

8: v̂t = vt

1−(1−βsq)t

9: xt+1 = xt − η√
v̂t+λ

⊙ m̂t

10: end for

The formal definition of Adam proposed in [Kingma and Ba, 2014] is shown in Algorithm 2.

Lines 5–9 describe the update rule of iterates {xt}1≤t≤T where all the operators are coordinate-

44



wise. Lines 5–6 are the updates for the first and second order momentum, mt and vt,

respectively. In Lines 7–8, they are re-scaled to m̂t and v̂t in order to correct the initialization

bias due to setting m0 = v0 = 0. Then the iterate is updated by xt+1 = xt − ht ⊙ m̂t where

ht = η/(
√
v̂t + λ) is the adaptive stepsize vector for some parameters η and λ. Note that the

algorithm starts at time t = 1 instead of t = 0 as in the classial methods in Chapter 3 for

convenience.

The bias correction steps in Lines 7–8 make Algorithm 2 a bit complicated for analysis.

In the following proposition, we provide an equivalent yet simpler update rule of Adam.

Proposition 4.1.1. Denote αt = β
1−(1−β)t and αsq

t = βsq
1−(1−βsq)t . Then the update rule in

Algorithm 2 is equivalent to

m̂t = (1 − αt)m̂t−1 + αt∇f(xt, ξt),

v̂t = (1 − αsq
t )v̂t−1 + αsq

t (∇f(xt, ξt))2, (4.1)

xt+1 = xt − η√
v̂t + λ

⊙ m̂t,

where initially we set m̂1 = ∇f(x1, ξ1) and v̂1 = (∇f(x1, ξ1))2. Note that since 1 − α1 =

1 − αsq
1 = 0, there is no need to define m̂0 and v̂0.

Proof of Proposition 4.1.1. Denote Zt = 1−(1−β)t. Then we know αt = β/Zt andmt = Ztm̂t.

By the momentum update rule in Algorithm 2, we have

Ztm̂t = (1 − β)Zt−1m̂t−1 + β∇f(xt, ξt).

Note that Zt satisfies the following property

(1 − β)Zt−1 = 1 − β − (1 − β)t = Zt − β.

45



Then we have

m̂t =Zt − β

Zt

· m̂t−1 + β

Zt

· ∇f(xt, ξt)

=(1 − αt)m̂t−1 + αt∇f(xt, ξt).

Next, we verify the initial condition. By Algorithm 2, since we set m0 = 0, we have

m1 = β∇f(x1, ξ1). Therefore we have m̂1 = m1/Z1 = ∇f(x1, ξ1) since Z1 = β. Then the

proof is completed by applying the same analysis on vt and v̂t.

4.1.2 Assumptions

Next, we state our main assumptions for the analysis of Adam. First, we still require

Assumptions 1.1 and 1.2, the two standard assumptions on the objective function. Besides

these, the only additional assumption we make regarding the objective function is the

ℓ-smoothness condition with a sub-quadratic ℓ. In particular, we consider the (ρ, L0, Lρ)-

smoothness condition in Definition 3 with 0 ≤ ρ < 2 to explicitly show the dependence on ρ

in the analysis. We state the assumption below for convenience.

Assumption 4.1. The objective function f is (ρ, L0, Lρ)-smooth with 0 ≤ ρ < 2.

In addition, we consider one of the following two assumptions on the stochastic gradient

∇f(xt, ξt) in our analysis of Adam.

Assumption 4.2. The gradient noise is centered and almost surely bounded. In particular,

for some σ ≥ 0 and all t ≥ 1,

Et−1[∇f(xt, ξt)] = ∇f(xt), ∥∇f(xt, ξt) − ∇f(xt)∥ ≤ σ, a.s.,

where Et−1[ · ] := E[ · |ξ1, . . . , ξt−1] is the conditional expectation given ξ1, . . . , ξt−1.

46



Assumption 4.3. The gradient noise is centered with sub-Gaussian norm. In particular, for

some R ≥ 0 and all t ≥ 1,

Et−1[∇f(xt, ξt)] = ∇f(xt), Pt−1 (∥∇f(xt, ξt) − ∇f(xt)∥ ≥ s) ≤ 2e− s2
2R2 , ∀s ∈ R,

where Et−1[ · ] := E[ · |ξ1, . . . , ξt−1] and Pt−1[ · ] := P[ · |ξ1, . . . , ξt−1] are the conditional expec-

tation and probability given ξ1, . . . , ξt−1.

Assumption 4.3 is strictly weaker than Assumption 4.2 since an almost surely bounded

random variable clearly has sub-Gaussian norm, but it results in a slightly worse convergece

rate up to poly-log factors (see Theorems 4.2.1 and 4.2.2). Both of them are stronger than

the most standard bounded variance assumption E[∥∇f(xt, ξt) − ∇f(xt)∥2] ≤ σ2 for some

σ ≥ 0, although Assumption 4.2 is actually a common assumption in existing analyses under

the (L0, L1)-smoothness condition (see e.g. [Zhang et al., 2019, 2020a]). The extension to the

bounded variance assumption is challenging and a very interesting future work as it is also

the assumption considered in the lower bound [Arjevani et al., 2023]. We suspect that such

an extension would be straightforward if we consider a mini-batch version of Algorithm 2

with a batch size of S = Ω(ϵ−2), since this results in a very small variance of O(ϵ2) and thus

essentially reduces the analysis to the deterministic setting. However, for practical Adam

with an O(1) batch size, the extension is challenging and we leave it as a future work.

4.2 Convergence results

In the section, we provide our convergence results for Adam under Assump-

tions 1.1, 1.2, 4.1, and 4.2 or 4.3. To keep the statements of the theorems concise, we

first define several problem-dependent constants. First, we let ∆1 := f(x1) − f ∗ < ∞ be the

initial sub-optimality gap. Next, given a large enough constant G > 0, with slight notation

47



abuse, we define

L := L0 + Lρ(2G)ρ, r := r(G) = G/L (4.2)

where L can be viewed as the effective smoothness constant along the trajectory if one can

show ∥∇f(xt)∥ ≤ G and ∥xt+1 − xt∥ ≤ r at each step (see Section 4.3 for more detailed

discussions). We will also use c1, c2 to denote some small enough numerical constants and

C1, C2 to denote some large enough ones. The formal convergence results under Assump-

tions 1.1, 1.2, 4.1, and 4.2 are presented in the following theorem, whose proof is deferred in

Appendix C.1.

Theorem 4.2.1. Suppose Assumptions 1.1, 1.2, 4.1, and 4.2 hold. Denote ι := log(1/δ) for

any 0 < δ < 1. Let G be a constant satisfying G ≥ max
{
2λ, 2σ,

√
C1∆1L0, (C1∆1Lρ)

1
2−ρ

}
.

Choose

0 ≤ βsq ≤ 1, β ≤ min
{

1, c1λϵ
2

σ2G
√
ι

}
, η ≤ c2 min

{
rλ

G
,
σλβ

LG
√
ι
,

λ3/2β

L
√
G

}
.

Let T = max
{

1
β2 ,

C2∆1G
ηϵ2

}
. Then with probability at least 1 − δ, we have ∥∇f(xt)∥ ≤ G for

every 1 ≤ t ≤ T , and 1
T

∑T
t=1 ∥∇f(xt)∥2 ≤ ϵ2.

Note that G, the upper bound of gradients along the trajectory, is a constant that depends

on λ, σ, L0, Lρ, and the initial sub-optimality gap ∆1, but not on ϵ. There is no requirement

on the second order momentum parameter βsq, although many existing works like [D’efossez

et al., 2020, Zhang et al., 2022, Wang et al., 2022] need certain restrictions on it. We

choose very small β and η, both of which are O(ϵ2). Therefore, from the choice of T , it is

clear that we obtain a gradient complexity of O(ϵ−4), where we only consider the leading

term. We are not clear whether the dependence on ϵ is optimal or not, as the Ω(ϵ−4) lower

bound in [Arjevani et al., 2023] assumes the weaker bounded variance assumption than our

Assumpion 4.2. However, it matches the state-of-the-art complexity among existing analyses

48



of Adam.

One limitation of the dependence of our complexity on λ is O(λ−2), which might be

large since λ is usually small in practice, e.g., the default choice is λ = 10−8 in the PyTorch

implementation. There are some existing analyses on Adam [D’efossez et al., 2020, Zhang

et al., 2022, Wang et al., 2022] whose rates do not depend explicitly on λ or only depend

on log(1/λ). However, all of them depend on poly(d), whereas our rate is dimension free.

The dimension d is also very large, especially when training transformers, for which Adam is

widely used. We believe that independence on d is better than that on λ, because d is fixed

given the architecture of the neural network but λ is a hyper-parameter which we have the

freedom to tune. In fact, based on our preliminary experimental results on CIFAR-10 shown

in Figure 4.1, the performance of Adam is not very sensitive to the choice of λ. Although the

default choice of λ is 10−8, increasing it up to 0.01 only makes minor differences.

0 100 200 300 400
Epoch

0

20

40

60

80

Te
st

 E
rr

or
 (%

)

λ=1e-8
λ=1e-4
λ=1e-3
λ=0.01
λ=0.1
λ=1

(a) CNN

0 100 200 300 400
Epoch

0

20

40

60

80

Te
st

 E
rr

or
 (%

)

λ=1e-8
λ=1e-4
λ=1e-3
λ=0.01
λ=0.1
λ=1

(b) ResNet-Small

0 100 200 300 400
Epoch

0

20

40

60

80

Te
st

 E
rr

or
 (%

)
λ=1e-8
λ=1e-4
λ=1e-3
λ=0.01
λ=0.1
λ=1

(c) ResNet110

Figure 4.1: Test errors of different models trained on CIFAR-10 using the Adam optimizer
with β = 0.9, βsq = 0.999, η = 0.001 and different λs. From left to right: (a) a shallow CNN
with 6 layers; (b) ResNet-Small with 20 layers; and (c) ResNet110 with 110 layers.

As discussed in Section 4.1.2, we can generalize the bounded gradient noise condition in

Assumption 4.2 to the weaker sub-Gaussian noise condition in Assumption 4.3. The following

theorem formally shows the convergence result under Assumptions 1.1, 1.2, 4.1, and 4.3,

whose proof is deferred in Appendix C.1.5.

Theorem 4.2.2. Suppose Assumptions 1.1, 1.2, 4.1, and 4.3 hold. Denote ι := log(2/δ)

and σ := R
√

2 log(4T/δ) for any 0 < δ < 1. Let G be a constant satisfying G ≥

49



max
{
2λ, 2σ,

√
C1∆1L0, (C1∆1Lρ)

1
2−ρ

}
. Choose

0 ≤ βsq ≤ 1, β ≤ min
{

1, c1λϵ
2

σ2G
√
ι

}
, η ≤ c2 min

{
rλ

G
,
σλβ

LG
√
ι
,

λ3/2β

L
√
G

}
.

Let T = max
{

1
β2 ,

C2∆1G
ηϵ2

}
. Then with probability at least 1 − δ, we have ∥∇f(xt)∥ ≤ G for

every 1 ≤ t ≤ T , and 1
T

∑T
t=1 ∥∇f(xt)∥2 ≤ ϵ2.

Note that the main difference of Theorem 4.2.2 from Theorem 4.2.1 is that σ is

now O(
√

log T ) instead of a constant. With some standard calculations, one can show

that the gradient complexity in Theorem 4.2.2 is bounded by O(ϵ−4 logp(1/ϵ)), where

p = max
{
3, 9+2ρ

4

}
< 3.25.

4.3 Analysis

4.3.1 Bounding the gradients along the optimization trajectory

We want to bound the gradients along the optimization trajectory mainly for two reasons.

First, as discussed in Section 1.2, many existing analyses of Adam rely on the assumption

of bounded gradients, because unbounded gradient norm leads to unbounded second order

momentum v̂t which implies very small stepsize, and slow convergence. On the other hand,

once the gradients are bounded, it is straightforward to control v̂t as well as the stepsize, and

therefore the analysis essentially reduces to the easier one for AdaBound. Second, informally

speaking, under Assumption 4.1, bounded gradients also imply bounded Hessians, which

essentially reduces the (ρ, L0, Lρ)-smoothness to the standard smoothness. See Section 2.2

for more formal discussions.

In this thesis, instead of imposing the strong assumption of globally bounded gradients,

we develop a new analysis to show that with high probability, the gradients are always

bounded along the trajectory of Adam until convergence. The essential idea can be informally

illustrated by the following “circular" reasoning that we will make precise later. On the one

50



hand, if ∥∇f(xt)∥ ≤ G for every t ≥ 1, it is not hard to show the gradient converges to zero

based on our discussions above. On the other hand, we know that a converging sequence

must be upper bounded. Therefore there exists some G′ such that ∥∇f(xt)∥ ≤ G′ for every

t ≥ 1. In other words, the bounded gradient condition implies the convergence result and the

convergence result also implies the boundedness condition, forming a circular argument. This

circular argument is of course flawed. However, we can break the circularity of reasoning and

rigorously prove both the bounded gradient condition and the convergence result using a

contradiction argument which we will briefly introduce below.

Define the function ζ(u) := u2

2ℓ(2u) over u ≥ 0 where ℓ(u) = L0 + Lρu
ρ. It is easy to verify

that if ρ < 2, ζ is increasing and its range is [0,∞). Therefore, ζ is invertible and ζ−1 is also

increasing. Then, for any constant G > 0, denoting F = ζ(G) = G2

2(L0+Lρ(2G)ρ) , Corollary 2.2.4

suggests that if f(x) − f ∗ ≤ F , we have ∥∇f(x)∥ ≤ G. In other words, if ρ < 2, the gradient

is bounded within any sub-level set, even though the sub-level set could be unbounded. Then,

let τ be the first time the sub-optimality gap is strictly greater than F , truncated at T + 1,

or formally,

τ := min{t | f(xt) − f ∗ > F} ∧ (T + 1). (4.3)

Then at least when t < τ , we have f(xt) − f ∗ ≤ F and thus ∥∇f(xt)∥ ≤ G. Based on our

discussions above, it is not hard to analyze the updates before time τ , and one can contruct

some Lyapunov function to obtain an upper bound on f(xτ ) − f ∗. On the other hand, if

τ ≤ T , we immediately obtain a lower bound on f(xτ ), that is f(xτ ) − f ∗ > F , by the

definition of τ in (4.3). If the lower bound is greater than the upper bound, it leads to a

contradiction, which shows τ = T + 1, i.e., the sub-optimality gap and the gradient norm are

always bounded by F and G respectively before the algorithm terminates.

Before concluding this part, we want to note that our analysis relies on the inequalities in

Lemma 2.2.1 for (ρ, L0, Lρ)-smooth functions. Since Lemma 2.2.1 is a local condition, we

51



need to make sure the udpate ∥xt+1 − xt∥ is small enough before applying it. Fortunately, at

least before time τ , such a requirement is easy to satisfy for a small enough η, according to

the following lemma whose proof is deferred in Appendix C.1.4.

Lemma 4.3.1. Under Assumption 4.1 and 4.2, if t < τ and choosing G ≥ σ, we have

∥xt+1 − xt∥ ≤ ηD where D := 2G/λ.

Then as long as η ≤ r(G)/D, we have ∥xt+1 − xt∥ ≤ r(G) which satisfies the requirement

in Lemma 2.2.1. Then we can apply the inequalities in it in the same way as the standard

smoothness condition. In other words, most classical inequalities derived for standard smooth

functions also apply to (ρ, L0, Lρ)-smooth functions.

4.3.2 Warm-up: analysis in the deterministic setting

In this section, we consider the simpler deterministic setting where the stochastic gradient

∇f(xt, ξt) in Algorithm 2 is replaced with the exact gradient ∇f(xt). As discussed in

Section 4.3.1, the key in our contradiction argument is to obtain both upper and lower

bounds on f(xτ ) − f ∗. In the following derivations, we focus on illustrating the main idea

of our analysis technique and ignore minor proof details. In addition, all of them are under

Assumptions 1.1, 1.2, 4.1, and 4.2.

In order to obtain the upper bound, we need the following two lemmas. First, denoting

ϵt := m̂t − ∇f(xt), we can obtain the following informal descent lemma for deterministic

Adam.

Lemma 4.3.2 (Descent lemma, informal). For any t < τ , choosing G ≥ λ and a small

enough η,

f(xt+1) − f(xt) ⪅ − η

4G ∥∇f(xt)∥2 + η

2λ ∥ϵt∥2 , (4.4)

where “⪅” omits less important terms.

52



Proof Sketch of Lemma 4.3.2. By the definition of τ , for all t < τ , we have f(xt) − f ∗ ≤ F

which implies ∥∇f(xt)∥ ≤ G. Then from the update rule (4.1) in Proposition 4.1.1, it is easy

to verify v̂t ⪯ G2 since v̂t is a convex combination of {(∇f(xs))2}s≤t. Let ht := η/(
√
v̂t + λ)

be the stepsize vector and denote Ht := diag(ht). We know

η

2GI ⪯ η

G+ λ
I ⪯ Ht ⪯ η

λ
I. (4.5)

As discussed in Section 4.3.1, when η is small enough, we can apply Lemma 2.2.1 to obtain

f(xt+1) − f(xt) ⪅
〈
∇f(xt), xt+1 − xt

〉
= − ∥∇f(xt)∥2

Ht
− ∇f(xt)⊤Htϵt

≤ − 1
2 ∥∇f(xt)∥2

Ht
+ 1

2 ∥ϵt∥2
Ht

≤ − η

4G ∥∇f(xt)∥2 + η

2λ ∥ϵt∥2 ,

where in the first (approximate) inequality we ignore the second order term 1
2L ∥xt+1 − xt∥2 ∝

η2 in Lemma 2.2.1 for small enough η; the equality applies the update rule xt+1 − xt =

−Htm̂t = −Ht(∇f(xt) + ϵt); in the second inequality we use 2a⊤Ab ≤ ∥a∥2
A + ∥b∥2

A for any

PSD matrix A and vectors a and b; and the last inequality is due to (4.5).

Compared with the standard descent lemma for gradient descent, there is an additional

term of ∥ϵt∥2 in Lemma 4.3.2. In the next lemma, we bound this term recursively.

Lemma 4.3.3 (Informal). Choosing β = Θ(ηGρ+1/2), if t < τ , we have

∥ϵt+1∥2 ≤ (1 − β/4) ∥ϵt∥2 + λβ

16G ∥∇f(xt)∥2 . (4.6)

Proof Sketch of Lemma 4.3.3. By the update rule (4.1) in Proposition 4.1.1, we have

ϵt+1 = (1 − αt+1) (ϵt + ∇f(xt) − ∇f(xt+1)) . (4.7)

53



For small enough η, we can apply Lemma 2.2.1 to get

∥∇f(xt+1) − ∇f(xt)∥2 ≤L2 ∥xt+1−xt∥2 ≤ O(η2G2ρ) ∥m̂t∥2

≤O(η2G2ρ)(∥∇f(xt)∥2 + ∥ϵt∥2), (4.8)

where the second inequality is due to L = O(Gρ) and ∥xt+1 − xt∥ = O(η) ∥m̂t∥; and the

last inequality uses m̂t = ∇f(xt) + ϵt and Young’s inequality ∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2.

Therefore,

∥ϵt+1∥2 ≤(1 − αt+1)(1 + αt+1/2) ∥ϵt∥2 + (1 + 2/αt+1) ∥∇f(xt+1) − ∇f(xt)∥2

≤(1 − αt+1/2) ∥ϵt∥2 + O(η2G2ρ/αt+1)
(
∥∇f(xt)∥2 + ∥ϵt∥2

)
≤(1 − β/4) ∥ϵt∥2 + λβ

16G ∥∇f(xt)∥2 ,

where the first inequality uses (4.7) and Young’s inequality ∥a+ b∥2 ≤ (1 + u) ∥a∥2 + (1 +

1/u) ∥b∥2 for any u > 0; the second inequality uses (1 − αt+1)(1 + αt+1/2) ≤ 1 − αt+1/2 and

(4.8); and in the last inequality we use β ≤ αt+1 and choose β = Θ(ηGρ+1/2) which implies

O(η2G2ρ/αt+1) ≤ λβ
16G

≤ β/4.

Now we can combine the above two lemmas to get the upper bound on f(xτ ) − f ∗. Define

the function Φt := f(xt) − f ∗ + 2η
λβ

∥ϵt∥2. Note that for any t < τ , (4.4)+ 2η
λβ

×(4.6) gives

Φt+1 − Φt ≤ − η

8G ∥∇f(xt)∥2 . (4.9)

The above inequality shows Φt is non-increasing and thus a Lyapunov function. Therefore,

we have

f(xτ ) − f ∗ ≤ Φτ ≤ Φ1 = ∆1,

where in the last inequality we use Φ1 = f(x1) − f ∗ = ∆1 since ϵ1 = m̂1 − ∇f(x1) = 0 in the

54



deterministic setting.

As discussed in Section 4.3.1, if τ ≤ T , we have F < f(xτ ) − f ∗ ≤ ∆1. Note that we

are able to choose a large enough constant G so that F = G2

2(L0+Lρ(2G)ρ) is greater than ∆1,

which leads to a contradiction and shows τ = T + 1. Therefore, (4.9) holds for all 1 ≤ t ≤ T .

Taking a summation over 1 ≤ t ≤ T and re-arranging terms, we get

1
T

T∑
t=1

∥∇f(xt)∥2 ≤ 8G(Φ1 − ΦT +1)
ηT

≤ 8G∆1

ηT
≤ ϵ2,

if choosing T ≥ 8G∆1
ηϵ2 , i.e., it shows convergence with a gradient complexity of O(ϵ−2) since

both G and η are constants independent of ϵ in the deterministic setting.

4.3.3 Extension to the stochastic setting

In this part, we briefly discuss how to extend the analysis to the more challenging stochastic

setting. It becomes harder to obtain an upper bound on f(xτ ) − f ∗ because Φt is no longer

non-increasing due to the existence of noise. In addition, τ defined in (4.3) is now a random

variable. Note that all the derivations, such as Lemmas 4.3.2 and 4.3.3, are conditioned on

the random event t < τ . Therefore, one can not simply take a total expectation of them to

show E[Φt] is non-increasing.

Fortunately, τ is in fact a stopping time with nice properties. If the noise is almost

surely bounded as in Assumption 4.2, by a more careful analysis, we can obtain a high

probability upper bound on f(xτ ) − f ∗ using concentration inequalities. Then we can still

obtain a contradiction and convergence under this high probability event. If the noise has

sub-Gaussian norm as in Assumption 4.3, one can change the definition of τ to

τ := min{t | f(xt) − f ∗ > F} ∧ min{t | ∥∇f(xt) − ∇f(xt, ξt)∥ > σ} ∧ (T + 1)

for appropriately chosen F and σ. Then at least when t < τ , the noise is bounded by σ.

Hence we can get the same upper bound on f(xτ ) − f ∗ as if Assumption 4.2 still holds.

55



However, when t ≤ T , the lower bound f(xτ ) − f ∗ > F does not necessarily holds, which

requires some more careful analyses. The details of the proofs are involved and we defer them

in Appendix C.1.

4.4 Varaince-reduced Adam

In this section, we propose a variance-reduced version of Adam (VRAdam). This new

algorithm is depicted in Algorithm 3. Its main difference from the original Adam is that in

the momentum update rule (Line 6), an additional term of (1 − β) (∇f(xt, ξt) − ∇f(xt−1, ξt))

is added, inspired by the STORM algorithm [Cutkosky and Orabona, 2019]. This term

corrects the bias of mt so that it is an unbiased estimate of ∇f(xt) in the sense of total

expectation, i.e., E[mt] = ∇f(xt). We will also show that it reduces the variance and

accelerates the convergence.

Aside from the adaptive stepsize, one major difference between Algorithm 3 and STORM

is that our hyper-parameters η and β are fixed constants whereas theirs are decreasing as a

function of t. Choosing constant hyper-parameters requires a more accurate estimate at the

initialization. That is why we use a mega-batch S1 to evaluate the gradient at the initial

point to initialize m1 and v1 (Lines 2–3). In practice, one can also do a full-batch gradient

evaluation at initialization. Note that there is no initialization bias for the momentum,

so we do not re-scale mt and only re-scale vt. We also want to point out that although

the initial mega-batch gradient evaluation makes the algorithm a bit harder to implement,

constant hyper-parameters are usually easier to tune and more common in training deep

neural networks. It should be not hard to extend our analysis to time-decreasing η and β

and we leave it as an interesting future work.

In addition to Assumption 1.1 and 1.2, we need to impose the following assumptions

which can be viewed as stronger versions of Assumptions 4.1 and 4.2, respectively.

Assumption 4.4. The objective function f and the component function f(·, ξ) for each

56



Algorithm 3 Variance-Reduced Adam (VRAdam)
1: Input: β, βsq, η, λ, T, S1, xinit
2: Draw a batch of samples S1 with size S1 and use them to evaluate the gradient

∇f(xinit,S1).
3: Initialize m1 = ∇f(xinit,S1), v1 = βsqm

2
1, and x2 = xinit − ηm1

|m1|+λ
.

4: for t = 2, · · · , T do
5: Draw a new sample ξt and perform the following updates:
6: mt = (1 − β)mt−1 + β∇f(xt, ξt)+(1 − β) (∇f(xt, ξt) − ∇f(xt−1, ξt))
7: vt = (1 − βsq)vt−1 + βsq(∇f(xt, ξt))2

8: v̂t = vt

1−(1−βsq)t

9: xt+1 = xt − η√
v̂t+λ

⊙mt

10: end for

fixed ξ are (ρ, L0, Lρ)-smooth with 0 ≤ ρ < 2.

Assumption 4.5. The random variables {ξt}1≤t≤T are sampled i.i.d. from some distribution

P such that for any x ∈ X ,

Eξ∼P [∇f(x, ξ)] = ∇f(x), ∥∇f(x, ξ) − ∇f(x)∥ ≤ σ, a.s.

Remark 4.4.1. Assumption 4.5 is stronger than Assumption 4.2. Assumption 4.2 applies only

to the iterates generated by the algorithm, while Assumption 4.5 is a pointwise assumption

over all x ∈ X and further assumes an i.i.d. nature of the random variables {ξt}1≤t≤T . Also

note that, similar to Adam, it is straightforward to generalize the assumption to noise with

sub-Gaussian norm as in Assumption 4.3.

4.4.1 Analysis

In this part, we briefly discuss challenges in the analysis of VRAdam. The detailed analysis

is deferred in Appendix C.2. Note that Lemma 2.2.1 requires bounded update ∥xt+1 − xt∥ ≤

r(G) at each step. For Adam, it is easy to satisfy for a small enough η according to

Lemma 4.3.1. However, for VRAdam, obtaining a good enough almost sure bound on the

update is challenging even though the gradient noise is bounded. To bypass this difficulty, we

57



directly impose a bound on ∥∇f(xt) −mt∥ by changing the definition of the stopping time

τ , similar to how we deal with the sub-Gaussian noise condition for Adam. In particular, we

define

τ := min{t | ∥∇f(xt)∥ > G} ∧ min{t | ∥∇f(xt) −mt∥ > G} ∧ (T + 1).

Then by definition, both ∥∇f(xt)∥ and ∥∇f(xt) −mt∥ are bounded by G before time τ ,

which directly implies bounded update ∥xt+1 − xt∥. Of course, the new definition brings new

challenges to lower bounding f(xτ ) − f ∗, which requires more careful analyses specific to the

VRAdam algorithm. Please see Appendix C.2 for the details.

4.4.2 Convergence guarantees for VRAdam

In the section, we provide our main results for convergence of VRAdam under Assump-

tions 1.1, 1.2, 4.4, and 4.5. We consider the same definitions of problem-dependent constants

∆1, r, L as those in Section 4.2 to make the statements of theorems concise. Let c be a

small enough numerical constant and C be a large enough numerical constant. The formal

convergence result is shown in the following theorem.

Theorem 4.4.2. Suppose Assumptions 1.1, 1.2, 4.4, and 4.5 hold. For any 0 < δ < 1,

let G > 0 be a constant satisfying G ≥ max
{
2λ, 2σ,

√
C∆1L0/δ, (C∆1Lρ/δ)

1
2−ρ

}
. Choose

0 ≤ βsq ≤ 1 and β = a2η2, where a = 40L
√
Gλ−3/2. Choose

η ≤ c · min
{
rλ

G
,

λ

L
,

λ2δ

∆1L2 ,
λ2

√
δϵ

σGL

}
, T = 64G∆1

ηδϵ2 , S1 ≥ 1
2β2T

.

Then with probability at least 1 − δ, we have ∥∇f(xt)∥ ≤ G for every 1 ≤ t ≤ T , and
1
T

∑T
t=1 ∥∇f(xt)∥2 ≤ ϵ2.

Note that the choice of G, the upper bound of gradients along the trajectory of VRAdam,

is very similar to that in Theorem 4.2.1 for Adam. The only difference is that now it also

58



depends on the failure probability δ. Similar to Theorem 4.2.1, there is no requirement

on βsq and we choose a very small β = O(ϵ2). However, the variance reduction technique

allows us to take a larger stepsize η = O(ϵ) (compared with O(ϵ2) for Adam) and obtain an

accelerated gradient complexity of O(ϵ−3), where we only consider the leading term. We are

not sure whether it is optimal as the Ω(ϵ−3) lower bound in [Arjevani et al., 2023] assumes

the weaker bounded variance condition. However, our result significantly improves upon

[Wang and Klabjan, 2022], which considers a variance-reduced version of Adam by combining

Adam and SVRG [Johnson and Zhang, 2013] and only obtains asymptotic convergence in the

non-convex setting. Similar to Adam, our gradient complexity for VRAdam is dimension free

but its dependence on λ is O(λ−2). Another limitation is that, the dependence on the failure

probability δ is polynomial, worse than the poly-log dependence in Theorem 4.2.1 for Adam.

59



60



Chapter 5

Directional smoothness

In this chapter, we propose a directional smoothness condition and analyze the convergence of

two special cases of Adam, memoryless Adam (Adam with β = βsq = 1 in Algorithm 2) and

RMSProp (Adam with β = 1 in Algorithm 2), to better understand why adaptive methods

outperform (stochastic) gradient descent for machine learning tasks like training transformers.

First, in Section 5.1, we present our main assumption, which essentially assumes that the

directional smoothness along the update direction of memoryless Adam is bounded by a

constant Lλ, motivated by the empirical observations in [Pan and Li, 2023]. Then we show

the convergence of memoryless Adam under this assumption in the deterministic setting in

Section 5.2. In particular, we obtain the O(Lλϵ
−2) gradient complexity for memoryless Adam

to converge to ϵ-stationarity points, which is better than the typical gradient complexity

of O(Lϵ−2) of gradient descent when Lλ ≪ L. Under a stronger directional smoothness

condition, we are also able to generalize the convergence results to RMSProp and obtain

essentially the same gradient complexity. Next, in Section 5.3, we show an example for which

Lλ ≪ L holds and memoryless Adam or RMSProp converges faster than gradient descent

if all of them use the stepsizes suggested by theory. Finally, we present some experimental

results in Section 5.4 to support our theory.

61



5.1 Preliminaries

In this section, we provide the formal definition of directional smoothness as well as the

assumptions on the objective function f considered in this chapter. First, we consider the

following assumption on f .

Assumption 5.1. The objective function f : Rd → R is twice differentiable and bounded

from below, i.e., f ∗ := infx∈Rd f(x) > −∞.

Note that Assumption 5.1 is a stronger version of Assumptions 1.1 and 1.2 considered

in previous chapters, as here we further assume that f is twice differentiable and that its

domain is the entire space Rd. Next, we formally define directional smoothness below.

Definition 5 (Directional smoothness). Given a twice differentiable function f : Rd → R

and any non-zero vector u ∈ Rd, the directional smoothness of f along the direction of u at

any point x ∈ Rd is defined as

ℓf
x(u) := u⊤∇2f(x)u

∥u∥2 ,

where we usually drop the superscript f when it is clear from the context. We also define

ℓf
x(0) := ∥∇2f(x)∥ for convenience.

[Pan and Li, 2023] empirically computed ℓxt(xt+1 − xt), the directional smoothness along

the trajectories of training transformers with various optimizers such as SGD, SignSGD, Adam,

etc. They found that adaptive methods tend to have much better (smaller) ℓxt(xt+1 − xt)

compared to SGD, which they believe may intuitively explain why adaptive methods converge

faster. In this thesis, we will develop a more rigorous theory based on this observation. In

what follows, we first briefly explain why a smaller ℓxt(xt+1 − xt) is preferred.

For ease of exposition, we denote αt = ∥xt+1 − xt∥ and vt = xt+1−xt

∥xt+1−xt∥ as the length and

direction of the update respectively. Then we can write xt+1 − xt = αt · vt and apply Taylor’s

62



theorem to get the following informal inequality.

f(xt+1) − f(xt) ≤
〈
∇f(xt), xt+1−xt

〉
+ ℓxt(xt+1−xt)

2 ∥xt+1−xt∥2 + O
(
∥xt+1−xt∥3

)
(5.1)

≈αt

〈
∇f(xt), vt

〉
+ ℓxt(xt+1−xt)

2 α2
t ,

where we have ignored the term O
(
∥xt+1−xt∥3

)
whose detailed expression can be found in

Lemma D.1.1. Minimizing the RHS over αt ≥ 0, assuming
〈
∇f(xt), vt

〉
≤ 0 without loss of

generality, we obtain

f(xt+1) − f(xt) ⪅ − 1
2ℓxt(xt+1−xt)︸ ︷︷ ︸

effective stepsize

·
〈
∇f(xt), vt

〉2

︸ ︷︷ ︸
gradient correlation

. (5.2)

The above inequality can be viewed as a descent lemma which bounds the decreased function

value at each step. Therefore, to achieve fast convergence, we want to choose a good direction

of update vt so that the RHS is as small as possible. In other words, we want both the terms

of effective stepsize and gradient correlation to be large.

If we plug in the expression of ℓxt(xt+1−xt) and minimize the RHS over vt, then we should

choose vt = (∇2f(xt))−1∇f(xt), which gives us Newton’s method. However, this requires to

compute the Hessian ∇2f(xt), which is usually very expensive for training neural networks.

Therefore, we will focus on first-order methods for which vt only depends on the current and

past gradients. For first-order methods, we will see that there is actually a trade-off between

the effective stepsize and gradient correlation when choosing vt.

For example, gradient descent takes the so-called “steepest descent” direction vt =

− ∇f(xt)
∥∇f(xt)∥ which maximizes the gradient correlation term with

〈
∇f(xt), vt

〉2
= ∥∇f(xt)∥2.

However, it may have a very large ℓxt(xt+1−xt) compared to adaptive methods as suggested

by the empirical findings in [Pan and Li, 2023]. As a result, it may have a small effective

stepsize which leads to slow convergence. On the other hand, the update direction of SignGD

is vt = − sign(∇f(xt))√
d

, which may have a smaller ℓxt(xt+1−xt) and thus a large effective stepsize.

63



However, it has a much worse gradient correlation term
〈
∇f(xt), vt

〉2
= 1

d
∥∇f(xt)∥2

1. As

a result, the convergence rate will depend on the dimension d, which is usually very large

for practical transformers. Therefore, it is also hard to obtain a fast convergence rate for

SignGD.

To achieve the best of both worlds, we consider an interpolation between the directions

of the gradient ∇f(x) and its coordinate-wise sign sign(∇f(x)). Specifically, we define the

following soft sign of the gradient

uλ(x) := ∇f(x)
|∇f(x)| + λ

, (5.3)

where the operators of absolute value and division are coordinate-wise and λ > 0 is a small

constant. It is an interpolation between the gradient and its sign because one can easily

verify that limλ→∞
uλ(x)

∥uλ(x)∥ = ∇f(x)
∥∇f(x)∥ and limλ→0 uλ(x) = sign(∇f(x)). Therefore, informally

speaking, for a very small λ, uλ(x) is close to sign(∇f(x)), and thus we call it a soft sign.

For this reason, we also define u0(x) := sign(∇f(x)) when λ = 0 just for convenience. That

being said, a non-zero λ is quite essential in our analysis to achieve the best of both worlds

and obtain a dimension-free convergence rate. As we will see in Section 5.2, λ could be as

small as the level of stationarity ϵ in our analysis.

If viewing −ηtuλ(xt) as the update of an algorithm at time t, where ηt is the stepsize, we

obtain

xt+1 = xt − ηt · ∇f(xt)
|∇f(xt)| + λ

,

which is essentially the Adam algorithm without memory or momentums, i.e., Algorithm 2

with β = βsq = 1, in the deterministic setting. Informally speaking, this means memoryless

Adam can be viewed as a generalization of SignGD or a good interpolation between GD

and SignGD. Note that the update of memoryless Adam is a function of the gradient at the

current time and does not depend on the history of the algorithm, which allows us to obtain

64



a condition on the objective function itself, as stated below.

Assumption 5.2. Lλ := supx∈Rd ℓx(uλ(x)) < ∞.

We are mostly interested in the scenario where the directional smoothness along uλ(x) is

much smaller than that along ∇f(x) or the standard Lipschitz smoothness constant L, or

more formally,

Lλ ≪ Lg ≤ L ≤ ∞, (5.4)

where we also define

Lg := sup
x∈Rd

ℓx(∇f(x)), L := sup
x∈Rd

∥∥∥∇2f(x)
∥∥∥ .

We will present our empirical results in Section 5.4 to show that (5.4) can characterize certain

properties of the loss landscape of training transformers. Note that we only assume Lλ is

finite as in Assumption 5.2, whereas Lg and L could be potentially very large or even infinite.

In addition to Assumption 5.2, we also need the following condition which essentially

bounds the third-order derivative of the objective function.

Assumption 5.3. ∥∇2f(x) − ∇2f(y)∥ ≤ M ∥x− y∥ for all x, y ∈ Rd.

With Assumption 5.3, we are able to derive the formal expression of the Taylor’s expansion

in (5.1), as will be shown in Lemma D.1.1.

5.2 Convergence results

In this section, we formally show the convergence results of memoryless Adam and RMSProp

under the assumptions in Section 5.1. We will compare the obtained rates with that of

gradient descent to show the benefit of adaptivity. As the analysis is challenging, we only

consider the deterministic setting and leave the extension to the stochastic setting as an

65



interesting future direction. Finally, we also briefly discuss some possible extensions of our

results.

5.2.1 Memoryless Adam

We first analyze the convergence of memoryless Adam formally defined by the following

update rule. Note that here we assume the iteration starts at t = 1 instead of t = 0 as in

Chapter 3 for convenience.

xt+1 = xt − ηtuλ(xt) = xt − ηt · ∇f(xt)
|∇f(xt)| + λ

, ∀t ≥ 1. (5.5)

In the following theorem, we present the convergence result of the above method with a

constant stepsize ηt ≡ η under our directional smoothness assumptions. Its detailed proof is

deferred to Appendix D.2.

Theorem 5.2.1. Suppose Assumptions 5.1, 5.2, and 5.3 hold. Denote ∆1 := f(x1) − f ∗. For

any ϵ > 0, choose ηt ≡ η = λ

2 max
{

Lλ,M2/3∆1/3
1

} and

T ≥ 2∆1(ϵ+ λ)
ηϵ2 = 4 max

{
Lλ∆1,M

2/3∆4/3
1

}
· (ϵ+ λ)

λϵ2 .

Then the iterates generated by (5.5) satisfy 1
T

∑T
t=1 ∥∇f(xt)∥ ≤ ϵ.

Theorem 5.2.1 shows that constant-stepsize memoryless Adam always converges to an

ϵ-stationary point for any ϵ > 0. If choosing λ ≥ ϵ, the gradient or iteration complexity is

O
(
max

{
Lλ∆1,M

2/3∆4/3
1

}
ϵ−2

)
, which has the same ϵ dependency as gradient descent. For

the dependency on problem-dependent constants, when M or ∆1 is very large, M2/3∆4/3
1 will

dominate Lλ∆1, and hence it can not show the benefit of a small Lλ in this case. Fortunately,

we will show in the following theorem that the iteration complexity can be further improved

if allowing ηt to depend on the gradient ∇f(xt). We also defer its proof to Appendix D.2.

66



Theorem 5.2.2. Suppose Assumptions 5.1, 5.2, and 5.3 hold. Denote ∆1 := f(x1) − f ∗. For

any ϵ > 0, choose ηt = min
{

λ
2Lλ

,
√

λLλ

M∥∇f(xt)∥Ht

}
, where Ht = diag

(
1

|∇f(xt)|+λ

)
, and

T ≥ 4Lλ∆1(ϵ+ λ)
λϵ2 + M2∆1

L3
λ

.

Then the iterates generated by (5.5) satisfy mint≤T ∥∇f(xt)∥ ≤ ϵ.

For any λ ≥ ϵ, Theorem 5.2.2 gives an iteration complexity of O
(

Lλ∆1
ϵ2 + M2∆1

L3
λ

)
. When

ϵ ≤ L2
λ

M
is small enough, one can ignore the non-leading constant term and the complexity

becomes O (Lλ∆1ϵ
−2). Recall that the typical gradient complexity of gradient descent is

O (L∆1ϵ
−2) which could be potentially improved to O (Lg∆1ϵ

−2). We can see that memoryless

Adam has a faster convergence rate if Lλ ≪ Lg ≤ L. To support this statement, we will

present an example function in Section 5.3, for which Lλ ≪ Lg ≤ L does hold and memoryless

Adam can achieve a faster rate.

5.2.2 RMSProp

In this section, we will generalize the convergence result to RMSProp (Adam with β = 1 as in

Algorithm 2). For completeness, we present the definition of RMSProp in the deterministic

setting below in Algorithm 4. Note that here we slightly abuse the notation and use β to

denote the 1 − βsq in Algorithm 2 for simplicity.

Algorithm 4 RMSProp
1: Input: β, λ, T, xinit, {ηt}1≤t≤T

2: Initialize v0 = 0 and x1 = xinit
3: for t = 1, · · · , T do
4: vt = βvt−1 + (1 − β)(∇f(xt))2

5: v̂t = vt

1−βt

6: xt+1 = xt − ηt · ∇f(xt)√
v̂t+λ

7: end for

The key idea in the extension to RMSProp is to show that
√
v̂t is close to |∇f(xt)|, which

67



means that the updates of RMSProp and memoryless Adam are close, i.e., ût ≈ ut where we

define ût := ∇f(xt)√
v̂t+λ

and ut := ∇f(xt)
|∇f(xt)|+λ

. However, Assumption 5.2 is a very weak condition,

which bounds the directional smoothness only along a single direction at each point. As a

result, we are not able to bound the directional smoothness along ût no matter how close it

is to ut unless they exactly align. Therefore we need the following stronger condition which

essentially bounds the directional smoothness along all directions near ut.

Assumption 5.4. There exist numerical constants r, R > 1 such that for any vector v

satisfying 1
r
v ⪯ uλ(x) ⪯ rv, we have ℓx(v) ≤ RLλ.

Under Assumption 5.4, we can prove the convergence of RMSProp as formally shown in

the following theorem, whose proof is deferred to Appendix D.3. Note that here we only

consider the convergence result for RMSProp with time-varying stepsizes, although one can

also show the convergence of it with a constant stepsize, similar to that of memoryless Adam.

Theorem 5.2.3. Suppose Assumptions 5.1, 5.3, and 5.4 hold. Denote ∆1 := f(x1) − f ∗. For

any ϵ > 0, choose β ≤ 1
4(1 − 1/r)2, ηt = min

{
λ

2RLλ
, R

√
λLλ√

rM∥gt∥Ht

, (1−1/r)λ2

3r2RLλ∥gt∥2
Ht

}
, and

T ≥ 4rRLλ∆1(ϵ+ λ)
λϵ2 + 6r4RLλ∆1

(r − 1)λ2 + r2M2∆1

R3L3
λ

.

Then the iterates generated by Algorithm 4 satisfy mint≤T ∥∇f(xt)∥ ≤ ϵ.

Ignoring the dependency on numerical constants r and R, we can see that Theorem 5.2.3

gives an iteration complexity of O
(

Lλ∆1
ϵ2 + M2∆1

L3
λ

)
when λ ≥ ϵ, which is the same as that of

memoryless Adam. Therefore, for a small engouh ϵ, it is also better than the typical O(Lgϵ
−2)

complexity of gradient when Lλ ≤ Lg.

The key idea in our analysis is to bound the following quantity at each time t.

Et :=
∥∥∥∥∥ ût

ut

∥∥∥∥∥
∞

=
∥∥∥∥∥ |gt| + λ√

v̂t + λ

∥∥∥∥∥
∞
.

68



If we can show 1/r ≤ Et ≤ r for all t ≥ 1, then we can apply Assumption 5.4 to bound the

directional smoothness along ût, and essentially reduce the analysis to that of memoryless

Adam. However, bounding Et is challenging and requires very careful analyses, as we need

a very tight and dimension-independent bound on each coordinate of v̂t − g2
t . Please see

Lemma D.3.2 and its proof for the detailed analysis.

5.2.3 Potential extensions

In this part, we briefly discuss some potential extensions of our convergence results. First, we

want to note that uλ(x) defined in (5.3) is not the only way of interpolation between ∇f(x)

and sign(∇f(x)). For example, if we define the coordinate-wise gradient clipping as

vλ(x) := sign(∇f(x)) min{|∇f(x)| , λ}

where the operators are all coordinate-wise, then it is straightforward to verify that

1
2uλ(x) ⪯ 1

λ
vλ(x) ⪯ 2uλ(x).

Therefore, uλ and vλ are essentially equivalent up to a constant factor, meaning that mem-

oryless Adam and gradient descent with coordinate-wise clipping are also equivalent. In

fact, [Pan and Li, 2023] uses coordinate-wise gradient clipping as a universal technique to

improve the directional smoothness of various algorithms. Then, if assuming ℓx(vλ(x)) is

globally bounded by some constant L̄λ, following our analysis for memoryless Adam, one

can show that gradient descent with coordinate-wise clipping also converges with a gradient

complexity of O(L̄λϵ
−2), which is also better than that of gradient descent without clipping

when L̄λ ≪ Lg ≤ L. Actually, if Assumption 5.4 holds with r ≥ 2, it directly implies

L̄λ ≤ RLλ.

69



Also note that for any λ1 ≥ λ2 > 0, we have

λ2

λ1
uλ1(x) ⪯ uλ2(x) ⪯ λ1

λ2
uλ1(x),

which means uλ1 and uλ2 are also essentially equivalent. Therefore, the parameter λ in the

algorithm could be different than that in our assumption. Specifically, if λ1
λ2

≤ r, then one

can use one of them in Assumption 5.4 and the other in memoryless Adam or RMSProp.

We did not show the convergence of Adam defined in Algorithm 2 in this chapter. It is

possible to extend our result to Adam by combining our analyses in both this chapter and

Chapter 4. However, the analysis will be very messy and we leave it as an interesting future

work. It would also be interesting to extend our analysis to the stochastic setting. The main

challenge is to bound |∇f(xt)|+λ
|∇f(xt,ξt)|+λ

or something similar in order to apply Assumption 5.4,

where ∇f(xt, ξt) is the stochastic gradient. One possible way to overcome this challenge is

to apply the stopping time analysis as in Chapter 3 or 4. We also leave it as an interesting

future direction.

5.3 Example

In this section, we provide a simple example objective function satisfying all of Assump-

tions 5.1, 5.2, 5.3, and 5.4. We will also show that for this example, Lλ ≪ Lg ≤ L, and that

memoryless Adam or RMSProp converges faster than gradient descent.

Before presenting the example, we first define the auxiliary function ϕ : R → R as follows.

ϕ(z) :=


ez if z ≤ 0,

1
2z

2 + z + 1 if z > 0.

It is easy to verify that ϕ is twice continuously differentiable. Then the example objective

70



function f : Rd → R with d ≥ 2 is defined as

f(x) := 1
α
ϕ(α · w(x)), where α > 0 and w(x) := x[1] + 1

d−1
(
x[2] + · · · + x[d]

)
. (5.6)

First, in the following lemma, we show that the example satisfies all of our assumptions and

also bound the constants L,Lg,M,Lλ, r, R for it. The proof is deferred to Appendix D.4.

Lemma 5.3.1. For any λ ≤ 1
d−1 , the function defined in (5.6) satisfies Assump-

tions 5.1, 5.2, 5.3, and 5.4 with the following constants.

1. L = Lg = αd
d−1 .

2. M ≤ 3α2.

3. Lλ ≤ 8αmax
{
λ

√
d− 1, 2

d

}
.

4. Any R, r > 1 satifying R ≥ r4.

Next, we will show in the following theorem that, with appropriate choices of λ, α, d, the

example satisfies Lλ ≪ Lg ≤ L and memoryless Adam converges faster than gradient descent.

Theorem 5.3.2. For any given constants C ≥ c > 0, there exist some λ, α, d such that the

function defined in (5.6) satisfies L = Lg = C and Lλ ≤ c. Let Tgd and Tma be the minimum

number of iterations required for gradient descent with ηt = 1
L

and memoryless Adam with

ηt = λ
Lλ

to achieve an ϵ-sub-optimal point respectively. Then for any small enough ϵ > 0 and

initial point x1 satifying w(x1) ≤ 0, we always have Tgd/Tma = Ω(C/c).

The proof of the above theorem is deferred to Appendix D.4. Since Theorem 5.3.2 holds for

arbitrary C and c, if we choose c ≪ C, then it shows that memoryless Adam can convergence

much faster than gradient descent on this example and that the ratio between their required

numbers of iterations is exactly lower bounded by Ω(C/c) = Ω(L/Lλ).

One limitation of the above theorem is that it only works for fixed stepsize choices for

both methods. For gradient descent, 1
L

= 1
Lg

is the stepsize suggested by classical analyses of

71



gradient descent. For memoryless Adam, λ
Lλ

is the constant term of the stepsize choice in

our Theorem 5.2.2. Note that for this simple example, there is no need to use the complex

stepsize choice in our theorem. However, one can actually easily show that the stepsize choice

in Theorem 5.2.2 results in essentially the same bound on Tma following a similar analysis as

in the proof of Theorem 5.3.2 in Appendix D.4. In fact, it is also straightforward to show that

RMSProp with the parameter choices in Theorem 5.2.3 also converges faster than gradient

descent with Tgd/Trmsprop = Ω(C/c).

It is challenging to show a complexity lower bound for gradient descent with arbitrary

stepsizes. Therefore, rigorously speaking, Theorem 5.3.2 does not totally rule out the

possibility that gradient descent may converge much faster than its typical rate for functions

with a small Lλ. We leave it as an interesting future work to derive a more rigorous lower

bound for gradient descent.

5.4 Experimental results

In this section, we provide some empirical results from our experiments on simple transformers

to support our theory. To show that (5.4) may characterize certain properties of the loss

landscape of training transformers, we will empirically compare ℓx(uλ(x)) with ℓx(∇f(x)). In

particular, as we are not able to enumerate all x ∈ Rd, we will compute the smoothness ratio

rλ(x) := ℓx(uλ(x))/ℓx(∇f(x)) where x is either from the initialization or the optimization

trajectories of certain algorithms. Note that the algorithms are just used to generate a sequence

of points to evaluate ℓλ at. The smoothness ratio function rλ is algorithm-independent and

only depends on the objective function itself.

We mainly consider two optimization problems in this section. The first problem is the

training of linear transformers on random instances of linear regression, a recently proposed

model for understanding in-context learning. For this problem, we follow the setting and

parameter choices in [Ahn et al., 2023]. The second problem we consider is nanoGPT on

72



character-level Shakespeare data1.

0 50 100 150 200 250 300
Trial

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Sm
oo

th
ne

ss
 R

at
io

= 1
=1e-2
=1e-4
= 0

(a) Initialization

0 50 100 150 200 250 300
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Sm
oo

th
ne

ss
 R

at
io

= 1
=1e-2
=1e-4
= 0

(b) SGD trajectory

0 50 100 150 200 250 300
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Sm
oo

th
ne

ss
 R

at
io

= 1
=1e-2
=1e-4
= 0

(c) Adam trajectory

Figure 5.1: Smoothness ratio rλ(x) for the loss of linear transformer on a random instance
of linear regression for different values of λ, where x is from the initialization with different
seeds or the trajectories generated by SGD or Adam.

0 1000 2000 3000 4000 5000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Sm
oo

th
ne

ss
 R

at
io

= 1
=1e-2
=1e-4
= 0

(a) Initialization

0 1000 2000 3000 4000 5000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Sm
oo

th
ne

ss
 R

at
io

= 1
=1e-2
=1e-4
= 0

(b) SGD trajectory

0 1000 2000 3000 4000 5000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Sm
oo

th
ne

ss
 R

at
io

= 1
=1e-2
=1e-4
= 0

(c) AdamW trajectory

Figure 5.2: Smoothness ratio rλ(x) for the loss of nanoGPT on character-level Shakespeare
data for different values of λ, where x is from the initialization with different seeds or the
trajectories generated by SGD or AdamW.

Our results on the smoothness ratio rλ with different values of λ for both problems are

shown in Figures 5.1 and 5.2. Recall that we defined u0(x) := sign(∇f(x)). We can see that

when λ decreases to zero, the smoothness ratio also decreases, and ℓx(uλ(x)) essentially goes

to ℓx(sign(∇f(x))), consistent with our intuition that uλ(x) is close to sign(∇f(x)) for a

small λ. When λ is small, ℓx((∇f(x))) is a couple of times larger than ℓx(uλ(x)) for all the

random initialized points and most points from the trajectories of both SGD and Adam(W),

which supports our conjecture that Lλ ≪ Lg.

1https://github.com/karpathy/nanoGPT

73



74



Chapter 6

Conclusion and future work

6.1 Summary

We will conclude this thesis by first summarizing what we have discussed. We investigated the

smoothness condition and adaptivity in nonlinear optimization to gain a better understanding

of the training behaviors in machine learning applications that can not be well explained by

classical optimization theory. In particular, the classical Lipschitz smoothness condition is not

only far from being satisfied by the loss function in machine learning applications, but also

can not explain why adaptive methods like Adam outperform stochastic gradient descent in

tasks like training transformers. To bridge this gap, we proposed a generalized ℓ-smoothness

condition and a more fine-grained directional smoothness condition, both motivated by

language model experiments, and analyzed the convergence of classical and adaptive methods

under such conditions.

First, in Chapter 2, we proposed a generalized ℓ-smoothness condition based on existing

works and empirical observations from language model experiments. We provided two

equivalent definitions of it for the convenience of both verification and application. To

show how general this condition is compared to the standard smoothness condition and

the recently proposed (L0, L1)-smoothness condition, we provided various examples and

75



theoretical justifications. We also showed some useful properties for ℓ-smooth functions and

discussed how they are helpful in the convergence analyses.

Then we developed a new approach for the convergence analysis under our generalized

ℓ-smoothness condition. The key idea of our approach is to bound the gradient along the

optimization trajectory, which also bounds the Hessian based on the ℓ-smoothness condition

and thus essentially reduces the analysis to that under standard smoothness. In Chapter 3,

we applied this approach to classical methods including gradient descent, stochastic gradient

descent, and Nesterov’s accelerated gradient method in convex and/or non-convex settings.

For all of them, we achieve the classical convergence rates under the generalized smoothness

condition. In Chapter 4, we also applied this approach to Adam and obtained improved results

compared to previous works. In particular, we did not assume globally bounded gradients

as in some previous works, but use our approach to show gradients are bounded along the

trajectory with high probability. In addition, we considered the more general ℓ-smoothness

condition for Adam. With this new approach, we also proposed a variance-reduce version of

Adam and showed an accelerated convergence rate.

Although the generalized ℓ-smoothness condition is closer to the machine learning practice,

we are not able to explain why adaptive methods outperform SGD for certain tasks like

training transformers based on this condition. In Chapter 5, to better understand why and

when adaptivity accelerates training, we proposed a more fine-grained directional smoothness

condition. Instead of assuming the Lipschitzness of the gradient, we only assume directional

smoothness around the direction of a soft sign of the gradient, motivated by empirical results

from both our experiments and those in previous works. Under this condition, we are able to

show the convergence of memoryless Adam and RMSProp in the deterministic setting and

obtain convergence rates better than the typical rate of gradient descent. We also provide an

example and experimental results to support our theory.

We hope the theoretical and empirical results in this thesis could provide researchers

with new ideas and inspire them to gain a better understanding of the training behaviors

76



in real-world machine learning problems and to design more efficient and robust optimizers.

However, we know that this work is not perfect, and will discuss some future directions in

the next section.

6.2 Future works

In this section, we briefly discuss some possible next steps and directions for future research.

Improving the results for NAG in Chapter 3. First, in Theorem 3.2.4, we provided

a lower bound to justify the necessity of requiring a sub-quadratic ℓ for the convergence of

constant-stepsize GD on ℓ-smoothness functions. However, it is not clear if such a requirement

is also necessary for NAG in the convex setting. It would be interesting if one could either

develop a lower bound for NAG or relax this requirement. In addition, we have mentioned

below Theorem 3.1.4 that the stepsize we choose for NAG might be too small due to technical

difficulties, which may result in a worse dependency on problem-dependent constants. We

also leave possible improvement as an interesting future work.

Relaxing the noise condition for Adam in Chapter 4. In Assumption 4.2 or 4.3,

we assumed the gradient noise is bounded or sub-Gaussian for our convergence analysis of

Adam. However, these conditions are stronger than the bounded variance assumption for

SGD in Assumption 3.2, where the latter is also the assumption considered in the lower

bound [Arjevani et al., 2023]. As a result, it is not clear whether the O(ϵ−4) complexity

we have obtained is optimal or not. It would be interesting to see if one can relax the

noise condition. Note that the concurrent work [Wang et al., 2023] obtained the O(ϵ−4)

complexity under the bounded variance assumption. But their rate is dimension dependent

and they consider the standard smoothness condition. That being said, their analysis may

be potentially helpful in improving our results.

77



Potential applications of our technique for bounding gradients along the trajec-

tory. Another interesting future direction is to see if the technique developed in this thesis

for bounding gradients in the optimization trajectory can be generalized to improve the

convergence results for other optimization problems and algorithms. We believe that with

this technique, one can generalize most existing optimization works that assume standard

smoothness to those with our generalized ℓ-smoothness functions. In fact, we believe it is

also possible to apply this technique to even more general problems to obtain improved

convergence results, so long as the function class is well-behaved and the algorithm is efficient

enough so that f(xτ ) − f ∗ can be well bounded for some appropriately defined stopping time

τ .

Limitations of our results in Chapter 5. There are some limitations in our results on

directional smoothness in Chapter 5. First, we only analyzed the convergence of memoryless

Adam and RMSProp, both of which are simplified versions of Adam in Algorithm 2. It would

be very interesting if one can generalize our results to Adam, by e.g. combining our analysis

in both Chapters 4 and 5. In addition, we only considered the deterministic setting, as the

coordinate-wise condition in Assumption 5.4 is much harder to be satisfied by the algorithm

updates when there is noise. One possible way to tackle this challenge is to apply our stopping

time analysis developed in Chapters 3 and 4. Finally, we are only able to obtain a lower bound

on the ratio between the gradient complexities of gradient descent with the theoretically

suggested stepsize and memoryless Adam in Theorem 5.3.2. It would be interesting to see if

we can also get a stepsize-independent lower bound to make the comparison more rigorous.

Other explanations on why adaptivity helps. In Chapter 5, we provided an explanation

on why adaptive methods outperform SGD for training transformers, motivated by the

empirical observations in [Pan and Li, 2023]. However, there are definitely other potential

explanations for researchers to explore. For example, we have discussed some of them in

Section 1.2, such as heavy-tailed noise distribution or class imbalance, condition number along

78



the trajectory, and heterogeneity of the Hessian spectrum. In fact, the last one may be related

to directional smoothness, as the Hessian of the example we considered in Section 5.3 is

indeed highly heterogeneous. It would interesting if one could find other interesting empirical

observations, or develop more rigorous theoretical understandings based on existing or their

own empirical observations.

79



80



Appendix A

Proofs for Chapter 2

In this chapter, we provide the proofs of propositions and lemmas related to the generalized

ℓ-smoothness condition presented in Chapter 2. First, in Appendix A.1, we justify the

examples we presented in Section 2.3. Next, we provide the detailed proof of Proposition 2.1.2

in Appendix A.2. Finally, we provide the proofs of the useful properties of generalized

smoothness in Appendix A.3, including Lemma 2.2.1, Lemma 2.2.3, and Corollary 2.2.4

stated in Section 2.2.

A.1 Justification of examples in Section 2.3

In this section, we justify the univariate examples of (ρ, L0, Lρ)-smooth functions listed in

Table 2.1 and also provide the proof of Propositions 2.3.1.

First, it is well known that all quadratic functions have bounded Hessian and are Lipschitz

smooth, corresponding to ρ = 0. Next, [Zhang et al., 2019, Lemma 2] shows that any

univariate polynomial is (L0, L1)-smooth, corresponding to ρ = 1. Then, regarding the

exponential function f(x) = ax where a > 1, we have f ′(x) = log(a)ax and f ′′(x) =

log(a)2ax = log(a)f ′(x), which implies f is (1, 0, log(a))-smooth. Similarly, by standard

calculations, it is straight forward to verify that logarithmic functions and xp, p ̸= 1 are

also (ρ, L0, Lρ)-smooth with ρ = 2 and ρ = p−2
p−1 respectively. So far we have justified all the

81



examples in Table 2.1 except double exponential functions a(bx) and rational functions, which

will be justified rigorously by the two propositions below.

First, for double exponential functions in the form of f(x) = a(bx) where a, b > 1, we have

the following proposition, which shows f is (ρ, L0, Lρ)-smooth for any ρ > 1.

Proposition A.1.1. For any ρ > 1, the double exponential function f(x) = a(bx), where

a, b > 1, is (ρ, L0, Lρ)-smooth for some L0, Lρ ≥ 0. However, it is not necessarily (L0, L1)-

smooth for any L0, L1 ≥ 0.

Proof of Proposition A.1.1. By standard calculations, we can obtain

f ′(x) = log(a) log(b) bxa(bx), f ′′(x) = log(b)(log(a)bx + 1) · f ′(x). (A.1)

Note that if ρ > 1,

lim
x→+∞

|f ′(x)|ρ

|f ′′(x)| = lim
x→+∞

|f ′(x)|ρ−1

log(b)(log(a)bx + 1) = lim
y→+∞

(log(a) log(b)y)ρ−1 a(ρ−1)y

log(b)(log(a)y + 1) = ∞,

where the first equality is a direct calculation based on (A.1); the second equality uses change

of variable y = bx; and the last equality is because exponential functions grow faster than

affine functions. Therefore, for any Lρ > 0, there exists x0 ∈ R such that |f ′′(x)| ≤ Lρ |f ′(x)|ρ

if x > x0. Next, note that limx→−∞ f ′′(x) = 0. Then for any λ1 > 0, there exists x1 ∈ R such

that |f ′′(x)| ≤ λ1 if x < x1. Also, since f ′′ is continuous, by Weierstrass’s Theorem, we have

|f ′′(x)| ≤ λ2 if x1 ≤ x ≤ x0 for some λ2 > 0. Then denoting L0 = max{λ1, λ2}, we know f is

(ρ, L0, Lρ)-smooth.

Next, to show f is not necessarily (L0, L1)-smooth, consider the specific double exponential

function f(x) = e(ex). Then we have

f ′(x) = exe(ex), f ′′(x) = (ex + 1) · f ′(x).

82



For any x ≥ max {log(L0 + 1), log(L1 + 1)}, we can show that

|f ′′(x)| > (L1 + 1)f ′(x) > L0 + L1 |f ′(x)| ,

which shows f is not (L0, L1) smooth for any L0, L1 ≥ 0.

In the next proposition, we show that any univariate rational function f(x) = P (x)/Q(x),

where P and Q are two polynomials, is (ρ, L0, Lρ)-smooth with ρ = 1.5.

Proposition A.1.2. The rational function f(x) = P (x)/Q(x), where P and Q are two

polynomials, is (1.5, L0, L1.5)-smooth for some L0, L1.5 ≥ 0. However, it is not necessarily

(ρ, L0, Lρ)-smooth for any ρ < 1.5 and L0, Lρ ≥ 0.

Proof of Proposition A.1.2. Let f(x) = P (x)/Q(x) where P and Q are two polynomials.

Then the partial fractional decomposition of f(x) is given by

f(x) = w(x) +
m∑

i=1

ji∑
r=1

Air

(x− ai)r
+

n∑
i=1

ki∑
r=1

Birx+ Cir

(x2 + bix+ ci)r
,

where w(x) is a polynomial, Air, Bir, Cir, ai, bi, ci are all real constants satisfying b2
i − 4ci < 0

for each 1 ≤ i ≤ n which implies x2 + bix+ ci > 0 for all x ∈ R. Assume ji ≥ 1 and Aiji
̸= 0

without loss of generality. Then we know f has only finite singular points {ai}1≤i≤m and has

continuous first and second order derivatives at all other points. To simplify notation, denote

pir(x) := Air

(x− ai)r
, qir(x) := Birx+ Cir

(x2 + bix+ ci)r
.

Then we have f(x) = w(x) +∑m
i=1

∑ji
r=1 pir(x) +∑n

i=1
∑ki

r=1 qir(x). We know that r+2
r+1 ≤ 1.5

for any r ≥ 1. Then we can show that

lim
x→ai

|f ′(x)|1.5

|f ′′(x)| = lim
x→ai

∣∣∣p′
iji

(x)
∣∣∣1.5∣∣∣p′′

iji
(x)
∣∣∣ ≥ 1

ji + 1 , (A.2)

83



where the first equality is because one can easily verify that the first and second order

derivatives of piji
dominate those of all other terms when x goes to ai, and the second equality

is by standard calculations noting that ji+2
ji+1 ≤ 1.5. Note that (A.2) implies that, for any

Lρ > ji + 1, there exists δi > 0 such that

|f ′′(x)| ≤ Lρ |f ′(x)|1.5
, if |x− ai| < δi. (A.3)

Similarly, one can show limx→∞
|f ′(x)|1.5

|f ′′(x)| = ∞, which implies there exists x0 > 0 such that

|f ′′(x)| ≤ Lρ |f ′(x)|1.5
, if |x| > x0. (A.4)

Define

B := {x ∈ R | |x| ≤ x0 and |x− ai| ≥ δi,∀i} .

We know B is a compact set and therefore the continuous function f ′′ is bounded within B,

i.e., there exists some constant L0 > 0 such that

|f ′′(x)| ≤ L0, if x ∈ B. (A.5)

Combining (A.3), (A.4), and (A.5), we have shown

|f ′′(x)| ≤ L0 + Lρ |f ′(x)|1.5
, ∀x ∈ dom(f),

which completes the proof of the first part.

For the second part, consider the ration function f(x) = 1/x. Then we know that

f ′(x) = −1/x2 and f ′′(x) = 2/x3. Note that for any ρ < 1.5 and 0 < x ≤ min{(L0 +

84



1)−1/3, (Lρ + 1)−1/(3−2ρ)}, we have

|f ′′(x)| = 1
x3 + 1

x3−2ρ
· |f ′(x)|ρ > L0 + Lρ |f ′(x)|ρ ,

which shows f is not (ρ, L0, Lρ) smooth for any ρ < 1.5 and L0, Lρ ≥ 0.

Finally, we complete this section with the proof of Proposition 2.3.1, which shows self-

concordant functions are (2, L0, L2)-smooth for some L0, Lρ ≥ 0.

Proof of Proposition 2.3.1. Let h : R → R be a self-concordant function. We have h′′′(x) ≤

2h′′(x)3/2. Then, for x ∈ (a, b), we can obtain

1
2h

′′(x)−1/2h′′′(x) ≤ h′′(x).

Integrating both sides from x0 to y for x0, y ∈ (a, b), we have

h′′(y)1/2 − h′′(x0)1/2 ≤ h′(y) − h′(x0).

Therefore,

h′′(y) ≤ (h′′(x0)1/2 − h′(x0) + h′(y))2 ≤ 2(h′′(x0)1/2 − h′(x0))2 + 2h′(y)2.

Since h′′(y) > 0, we have |h′′(y)| = h′′(y). Therefore, the above inequality shows that h is

(2, L0, L2)-smooth with L0 = 2(h′′(x0)1/2 − h′(x0))2 and L2 = 2.

A.2 Proof of Proposition 2.1.2

In order to prove Proposition 2.1.2, we need the following several lemmas. First, the lemma

below partially generalizes Grönwall’s inequality.

85



Lemma A.2.1. Let α : [a, b] → [0,∞) and β : [0,∞) → (0,∞) be two continuous functions.

Suppose α′(t) ≤ β(α(t)) almost everywhere over (a, b). Denote function ϕ(u) :=
∫ 1

β(u) du.

We have for all t ∈ [a, b],

ϕ(α(t)) ≤ ϕ(α(a)) − a+ t.

Proof of Lemma A.2.1. First, by definition, we know that ϕ is increasing since ϕ′ = 1
β
> 0.

Let function γ : [a, b] → R be the solution of the following differential equation

γ′(t) = β(γ(t)) ∀t ∈ (a, b), γ(a) = α(a). (A.6)

Then we have

dϕ(γ(t)) = dγ(t)
β(γ(t)) = dt.

Integrating both sides, noting that γ(a) = α(a) by (A.6), we obtain

ϕ(γ(t)) − ϕ(α(a)) = t− a.

Then it suffices to show ϕ(α(t)) ≤ ϕ(γ(t)), ∀t ∈ [a, b]. Note that the following inequality

holds almost everywhere.

(ϕ(α(t)) − ϕ(γ(t)))′ = ϕ′(α(t))α′(t) − ϕ′(γ(t))γ′(t) = α′(t)
β(α(t)) − γ′(t)

β(γ(t)) ≤ 0,

where the inequality is because α′(t) ≤ β(α(t)) by the assumption of this lemma and γ′(t) =

β(γ(t)) by (A.6). Since ϕ(α(a)) − ϕ(γ(a)) = 0, we know for all t ∈ [a, b], ϕ(α(t)) ≤ ϕ(γ(t)),

which completes the proof.

With Lemma A.2.1, one can bound the gradient norm within a small enough neighborhood

of a given point as in the following lemma.

86



Lemma A.2.2. If the objective function f is ℓ-smooth, for any two points x, y ∈ Rd such

that the closed line segment between x and y is contained in X , if ∥y − x∥ ≤ a
ℓ(∥∇f(x)∥+a) for

any a > 0, we have

∥∇f(y)∥ ≤ ∥∇f(x)∥ + a.

Proof of Lemma A.2.2. Denote z(t) := (1 − t)x+ ty for 0 ≤ t ≤ 1. Then we know z(t) ∈ X

for all 0 ≤ t ≤ 1 by the assumption made in this lemma. Then we can also define α(t) :=

∥∇f(z(t))∥ for 0 ≤ t ≤ 1. Note that for any 0 ≤ t ≤ s ≤ 1, by triangle inequality,

α(s) − α(t) ≤ ∥∇f(z(s)) − ∇f(z(t))∥ . (A.7)

We know that α(t) = ∥∇f(z(t))∥ is differentiable almost everywhere since f is second order

differentiable almost everywhere (Here we assume α(t) ̸= 0 for 0 < t < 1 without loss of

generality. Otherwise, one can define tm = sup{0 < t < 1 | α(t) = 0} and consider the

interval [tm, 1] instead). Then the following equality holds almost everywhere

α′(t) = lim
s↓t

α(s) − α(t)
s− t

≤ lim
s↓t

∥∇f(z(s)) − ∇f(z(t))∥
s− t

=
∥∥∥∥∥lims↓t

∇f(z(s)) − ∇f(z(t))
s− t

∥∥∥∥∥
=
∥∥∥∇2f(z(t))(y − x)

∥∥∥ ≤
∥∥∥∇2f(z(t))

∥∥∥ ∥y − x∥ ≤ ℓ(α(t)) ∥y − x∥ ,

where the first inequality is due to (A.7) and the last inequality is by Definition 1. Let

β(u) := ℓ(u) · ∥y − x∥ and ϕ(u) :=
∫ u

0
1

β(v)dv. By Lemma A.2.1, we know that

ϕ (∥∇f(y)∥) = ϕ(u(1)) ≤ ϕ(u(0)) + 1 = ϕ (∥∇f(x)∥) + 1.

87



Denote ψ(u) :=
∫ u

0
1

ℓ(v)dv = ϕ(u) · ∥y − x∥. We have

ψ (∥∇f(y)∥) ≤ψ (∥∇f(x)∥) + ∥y − x∥

≤ψ (∥∇f(x)∥) + a

ℓ(∥∇f(x)∥ + a)

≤
∫ ∥∇f(x)∥

0

1
ℓ(v) dv +

∫ ∥∇f(x)∥+a

∥∇f(x)∥

1
ℓ(v) dv

=ψ(∥∇f(x)∥ + a).

Since ψ is increasing, we have ∥∇f(y)∥ ≤ ∥∇f(x)∥ + a.

With Lemma A.2.2, we are ready to prove Proposition 2.1.2.

Proof of Proposition 2.1.2. We prove the two directions in this proposition separately.

1. An (r, ℓ)-smooth function is ℓ-smooth.

For each fixed x ∈ X where ∇2f(x) exists and any unit-norm vector w, by Definition 2,

we know that for any t ≤ r(∥∇f(x)∥),

∥∇f(x+ tw) − ∇f(x)∥ ≤ t · ℓ(∥∇f(x)∥).

Then we know that

∥∥∥∇2f(x)w
∥∥∥ =

∥∥∥∥lim
t↓0

1
t
(∇f(x+ tw) − ∇f(x))

∥∥∥∥
= lim

t↓0

1
t

∥(∇f(x+ tw) − ∇f(x))∥ ≤ ℓ(∥∇f(x)∥),

which implies ∥∇2f(x)∥ ≤ ℓ(∥∇f(x)∥) for any point x if ∇2f(x) exists.

Then it suffices to show that ∇2f(x) exists almost everywhere. Note that for each

x ∈ X , Definition 2 states that the gradient function is ℓ(∥∇f(x)∥) Lipschitz within the

ball B(x, r(∥∇f(x)∥)). Then by Rademacher’s Theorem, f is twice differentiable almost

everywhere within this ball. Then we can show it is also twice differentiable almost everywhere

88



within the entire domain X as long as we can cover X with countably many such balls.

Define Sn := {x ∈ X | n ≤ ∥∇f(x)∥ ≤ n + 1} for integer n ≥ 0. We have X = ∪n≥0Sn.

One can easily find an internal covering of Sn with balls of size r(n + 1)1, i.e., there exist

{xn,i}i≥0, where xn,i ∈ Sn, such that Sn ⊆ ∪i≥0B(xn,i, r(n+ 1)) ⊆ ∪i≥0B(xn,i, r(∥∇f(xn,i)∥)).

Therefore we have X ⊆ ∪n,i≥0B(xn,i, r(∥∇f(xn,i)∥)) which completes the proof.

2. An ℓ-smooth function satisfying Assumption 1.1 is (r,m)-smooth where

m(u) := ℓ(u+ a) and r(u) := a/m(u) for any a > 0.

For any y ∈ Rd satisfying ∥y − x∥ ≤ r(∥∇f(x)∥) = a
ℓ(∥∇f(x)∥+a) , denote z(t) := (1−t)x+ty

for 0 ≤ t ≤ 1. We first show y ∈ X by contradiction. Suppose y /∈ X , let us define

tb := inf{0 ≤ t ≤ 1 | z(t) /∈ X } and zb := z(tb). Then we know zb is a boundary point of X .

Since f is a closed function with an open domain, we have

lim
t↑tb

f(z(t)) = ∞. (A.8)

On the other hand, by the definition of tb, we know z(t) ∈ X for every 0 ≤ t < tb. Then

by Lemma A.2.2, for all 0 ≤ t < tb, we have ∥∇f(z(t))∥ ≤ ∥∇f(x)∥ + a. Therefore for all

0 ≤ t < tb,

f(z(t)) ≤f(x) +
∫ t

0

〈
∇f(z(s)), y − x

〉
ds

≤f(x) + (∥∇f(x)∥ + a) · ∥y − x∥

<∞,

which contradicts (A.8). Therefore we have shown y ∈ X . Since y is chosen arbitrarily

with the ball B(x, r(∥∇f(x)∥)), we have B(x, r(∥∇f(x)∥)) ⊆ X . Then for any x1, x2 ∈

B(x, r(∥∇f(x)∥)), we denote w(t) := tx1 + (1 − t)x2. Then we know w(t) ∈ B(x, r(∥∇f(x)∥))
1We can find an internal covering in the following way. We first cover Sn with countably many hyper-cubes

of length r(n + 1)/
√

d, which is obviously doable. Then for each hyper-cube that intersects with Sn, we pick
one point from the intersection. Then the ball centered at the picked point with radius r(n + 1) covers this
hyper-cube. Therefore, the union of all such balls can cover Sn.

89



for all 0 ≤ t ≤ 1 and can obtain

∥∇f(x1) − ∇f(x2)∥ =
∥∥∥∥∫ 1

0
∇2f(w(t)) · (x1 − x2) dt

∥∥∥∥
≤ ∥x1 − x2∥ ·

∫ 1

0
ℓ(∥∇f(x)∥ + a) dt

=m(∥∇f(x)∥) · ∥x1 − x2∥ ,

where the last inequality is due to Lemma A.2.2.

A.3 Proofs of properties of generalized smoothness

In this part, we provide the proofs of the useful properties stated in Section 2.2, including

Lemma 2.2.1, Lemma 2.2.3, and Corollary 2.2.4.

Proof of Lemma 2.2.1. First, note that since ℓ is non-decreasing and r is non-increasing, we

have ℓ(∥∇f(x)∥) ≤ ℓ(G) = L and r(G) ≤ r(∥∇f(x)∥). Then by Definition 2, we directly

have that B(x, r(G)) ⊆ B(x, r(∥∇f(x)∥)) ⊆ X , and that for any x1, x2 ∈ B(x, r(G)), we have

∥∇f(x1) − ∇f(x2)∥ ≤ ℓ(∥∇f(x)∥) ∥x1 − x2∥ ≤ L ∥x1 − x2∥ .

Next, for the second inequality in (2.1), define z(t) := (1 − t)x2 + tx1 for 0 ≤ t ≤ 1. We

know z(t) ∈ B(x, r(G)). Note that we have shown

∥∇f(z(t)) − ∇f(x2)∥ ≤ L ∥z(t) − x2∥ = tL ∥x1 − x2∥ . (A.9)

90



Then we have

f(x1) − f(x2) =
∫ 1

0

〈
∇f(z(t), x1 − x2

〉
dt

=
∫ 1

0

〈
∇f(x2), x1 − x2

〉
+
〈
∇f(z(t)) − ∇f(x2), x1 − x2

〉
dt

≤
〈
∇f(x2), x1 − x2

〉
+ L ∥x1 − x2∥2

∫ 1

0
t dt

=
〈
∇f(x2), x1 − x2

〉
+ L

2 ∥x1 − x2∥2 ,

where the inequality is due to (A.9).

Proof of Lemma 2.2.3. If f is ℓ-smooth satisfying Assumption 1.1, by Proposition 2.1.2,

f is also (r,m)-smooth where m(u) = ℓ(2u) and r(u) = u/ℓ(2u). Then by Lemma 2.2.1

where we choose G = ∥∇f(x)∥, we have that B
(
x, ∥∇f(x)∥

ℓ(2∥∇f(x)∥)

)
⊆ X , and that for any

x1, x2 ∈ B
(
x, ∥∇f(x)∥

ℓ(2∥∇f(x)∥)

)
, we have

f(x1) ≤ f(x2) +
〈
∇f(x2), x1 − x2

〉
+ ℓ(2 ∥∇f(x)∥)

2 ∥x1 − x2∥ .

Choosing x2 = x and x1 = x− ∇f(x)
ℓ(2∥∇f(x)∥) , it is easy to verify that x1, x2 ∈ B

(
x, ∥∇f(x)∥

ℓ(2∥∇f(x)∥)

)
.

Therefore, we have

f ∗ ≤ f

(
x− ∇f(x)

ℓ(2 ∥∇f(x)∥)

)
≤ f(x) − ∥∇f(x)∥2

2ℓ(2 ∥∇f(x)∥) ,

which completes the proof.

Proof of Corollary 2.2.4. We first show G < ∞. Note that since ℓ is sub-quadratic, we

know limu→∞ 2ℓ(2u)/u2 = 0. Therefore, for any F > 0, there exists some M > 0 such that

2ℓ(2u)/u2 < 1/F for every u > M . In other words, for any u satisfying u2 ≤ 2ℓ(2u) · F , we

must have u ≤ M . Therefore, by definition of G, we have G ≤ M < ∞ if F > 0. If F = 0, we

trivially get G = 0 < ∞. Also, since the set {u ≥ 0 | u2 ≤ 2ℓ(2u) · F} is closed and bounded,

we know its supremum G is in this set and it is also straightforward to show G2 = 2ℓ(2G) ·F .

91



Next, by Lemma 2.2.3, we know

∥∇f(x)∥2 ≤ 2ℓ(2 ∥∇f(x)∥) · (f(x) − f ∗) ≤ 2ℓ(2 ∥∇f(x)∥) · F.

Then based on the definition of G, we have ∥∇f(x)∥ ≤ G.

92



Appendix B

Proofs for Chapter 3

B.1 Analysis of GD for convex functions

In this section, we provide the detailed convergence analysis of gradient descent in the convex

setting, including the proofs of Lemma 3.1.1 and Theorem 3.1.2, for which the following

lemma will be helpful.

Lemma B.1.1 (Co-coercivity). If f is convex and (r, ℓ)-smooth, for any x ∈ X and y ∈

B(x, r(∥∇f(x)∥)/2), we have y ∈ X and

⟨∇f(x) − ∇f(y), x− y⟩ ≥ 1
L

∥∇f(x) − ∇f(y)∥2 ,

where L = ℓ(∥∇f(x)∥).

Proof of Lemma B.1.1. Define the Bregman divergences ϕx(w) := f(w) − ⟨∇f(x), w⟩ and

ϕy(w) := f(w) − ⟨∇f(y), w⟩, which are both convex functions. Since ∇ϕx(w) = ∇f(w) −

∇f(x), we have ∇ϕx(x) = 0 which implies minw ϕx(w) = ϕx(x) as ϕx is convex. Similarly we

have minw ϕy(w) = ϕy(y).

Denote rx := r(∥∇f(x)∥). Since f is (r, ℓ)-smooth, we know its gradient ∇f is L-Lipschitz

locally in B(x, rx). Since ∇ϕx(w) − ∇f(w) = ∇f(x) is a constant, we know ∇ϕx is also

93



L-Lipschitz locally in B(x, rx). Then similar to the proof of Lemma 2.2.1, one can easily show

that for any x1, x2 ∈ B(x, rx), we have

ϕx(x1) ≤ ϕx(x2) +
〈
∇ϕx(x2), x1 − x2

〉
+ L

2 ∥x1 − x2∥2 . (B.1)

Note that for any y ∈ B(x, r(∥∇f(x)∥)/2) as in the lemma statement,

∥∥∥∥y − 1
L

∇ϕx(y) − x
∥∥∥∥ ≤ ∥y − x∥ + 1

L
∥∇f(y) − ∇f(x)∥ ≤ 2 ∥y − x∥ ≤ rx,

where the first inequality uses triangle inequality and ∇ϕx(y) = ∇f(y) − ∇f(x); and the

second inequality uses Definition 2. It implies that y − 1
L

∇ϕx(y) ∈ B(x, rx). Then we can

obtain

ϕx(x) = min
w
ϕx(w) ≤ ϕx

(
y − 1

L
∇ϕx(y)

)
≤ ϕx(y) − 1

2L ∥∇ϕx(y)∥2 ,

where the last inequality uses (B.1) where we choose x1 = y − 1
L

∇ϕx(y) and x2 = y. By the

definition of ϕx, the above inequality is equivalent to

1
2L ∥∇f(y) − ∇f(x)∥2 ≤ f(y) − f(x) − ⟨∇f(x), x− y⟩.

Similar argument can be made for ϕy(·) to obtain

1
2L ∥∇f(y) − ∇f(x)∥2 ≤ f(x) − f(y) − ⟨∇f(y), y − x⟩.

Summing up the two inequalities, we can obtain the desired result.

With Lemma B.1.1, we prove Lemma 3.1.1 as follows.

94



Proof of Lemma 3.1.1. Let L = ℓ(G). We first verify that x+ ∈ B(x, r(G)/2). Note that

∥∥∥x+ − x
∥∥∥ = ∥η∇f(x)∥ ≤ ηG ≤ r(G)/2,

where we choose η ≤ r(G)/(2G). Thus by Lemma B.1.1, we have

∥∥∥∇f(x+)
∥∥∥2

= ∥∇f(x)∥2 + 2⟨∇f(x+) − ∇f(x),∇f(x)⟩ +
∥∥∥∇f(x+) − ∇f(x)

∥∥∥2

= ∥∇f(x)∥2 − 2
η

⟨∇f(x+) − ∇f(x), x+ − x⟩ +
∥∥∥∇f(x+) − ∇f(x)

∥∥∥2

≤ ∥∇f(x)∥2 +
(

1 − 2
ηL

)∥∥∥∇f(x+) − ∇f(x)
∥∥∥2

≤ ∥∇f(x)∥2 ,

where the first inequality uses Lemma B.1.1 and the last inequality chooses η ≤ 2/L.

With Lemma 3.1.1, we are ready to prove both Theorem 3.1.2 and Theorem 3.1.3.

Proof of Theorem 3.1.2. Denote G := ∥∇f(x0)∥. Then we trivially have ∥∇f(x0)∥ ≤ G.

Lemma 3.1.1 states that if ∥∇f(xt)∥ ≤ G for any t ≥ 0, then we also have ∥∇f(xt+1)∥ ≤

∥∇f(xt)∥ ≤ G. By induction, we can show that ∥∇f(xt)∥ ≤ G for all t ≥ 0. Then the rest

of the proof basically follows the standard textbook analysis. We still provide the detailed

proof below for completeness.

Note that ∥xt+1 − xt∥ = η ∥∇f(xt)∥ ≤ ηG ≤ r(G), where we choose η ≤ r(G)/(2G).

Thus we can apply Lemma 2.2.1 to obtain

0 ≥ f(xt+1) − f(xt) − ⟨∇f(xt), xt+1 − xt⟩ − L

2 ∥xt+1 − xt∥2

≥ f(xt+1) − f(xt) − ⟨∇f(xt), xt+1 − xt⟩ − 1
2η ∥xt+1 − xt∥2 , (B.2)

where the last inequality chooses η ≤ 1/L. Meanwhile, by convexity between xt and x∗, we

95



have

0 ≥ f(xt) − f ∗ + ⟨∇f(xt), x∗ − xt⟩. (B.3)

Note that (t+ 1)×(B.2)+(B.3) gives

0 ≥ f(xt) − f ∗ + ⟨∇f(xt), x∗ − xt⟩

+ (1 + t)
(
f(xt+1) − f(xt) − ⟨∇f(xt), xt+1 − xt⟩ − 1

2η ∥xt+1 − xt∥2
)
.

Then reorganizing the terms of the above inequality, noting that

∥xt+1 − x∗∥2 − ∥xt − x∗∥2 = ∥xt+1 − xt∥2 + 2⟨xt+1 − xt, xt − x∗⟩

= ∥xt+1 − xt∥2 + 2η⟨∇f(xt), x∗ − xt⟩,

we can obtain

(t+ 1)(f(xt+1) − f ∗) + 1
2η ∥xt+1 − x∗∥2 ≤ t(f(xt) − f ∗) + 1

2η ∥xt − x∗∥2 .

The above inequality implies t(f(xt) − f ∗) + 1
2η

∥xt − x∗∥2 is a non-increasing potential

function, which directly implies the desired result.

Proof of Theorem 3.1.3. Since strongly convex functions are also convex, by the same argu-

ment as in the proof of Theorem 3.1.2, we have ∥∇f(xt)∥ ≤ G := ∥∇f(x0)∥ for all t ≥ 0.

Moreover, (B.2) still holds. For µ-strongly-convex function, we can obtain a tighter version

of (B.3) as follows.

0 ≥ f(xt) − f ∗ + ⟨∇f(xt), x∗ − xt⟩ + µ

2 ∥x∗ − xt∥2 . (B.4)

96



Let A0 = 0 and At+1 = (1 + At)/(1 − ηµ) for all t ≥ 0. Combining (B.2) and (B.4), we have

0 ≥ (At+1 − At)(f(xt) − f ∗ + ⟨∇f(xt), x∗ − xt⟩)

+ At+1

(
f(xt+1) − f(xt) − ⟨∇f(xt), xt+1 − xt⟩ − 1

2η ∥xt+1 − xt∥2
)
.

Then reorganizing the terms of the above inequality, noting that

∥xt+1 − x∗∥2 − ∥xt − x∗∥2 = ∥xt+1 − xt∥2 + 2⟨xt+1 − xt, xt − x∗⟩

= ∥xt+1 − xt∥2 + 2η⟨∇f(xt), x∗ − xt⟩,

we can obtain

At+1(f(xt+1) − f ∗) + 1 + ηµAt+1

2η ∥xt+1 − x∗∥2 ≤ At(f(xt) − f ∗) + 1 + ηµAt

2η ∥xt − x∗∥2 .

The above inequality means At(f(xt) − f ∗) + 1+ηµAt

2η
∥xt − x∗∥2 is a non-increasing potential

function. Thus by telescoping we have

f(xT ) − f ∗ ≤ µ(1 − ηµ)T

2(1 − (1 − ηµ)T ) ∥x0 − x∗∥2 .

B.2 Analysis of NAG for convex functions

In this section, we provide the detailed analysis of Nesterov’s accelerated gradient method in

the convex setting. As we discussed in Section 3.1.2, the stepsize size choice in Theorem 3.1.4

is smaller than the classical one. Therefore, we provide a more fine-grained version of the

theorem, which allows the stepsize to depend on the degree of ℓ.

Theorem B.2.1. Suppose f is convex and ℓ-smooth satisfying Assumptions 1.1, 1.2, and 3.1.

97



For α ∈ (0, 2], if ℓ(u) = o(uα), i.e., limu→∞ ℓ(u)/uα = 0, then there must exist a constant G

such that for L := ℓ(2G), we have

G ≥ max
{

8 max{L1/α−1/2, 1}
√
L((f(x0) − f ∗) + ∥x0 − x∗∥2), ∥∇f(x0)∥

}
. (B.5)

Choose η ≤ min
{

1
16L3−2/α ,

1
2L

}
. Then the iterates of Algorithm 1 satisfy

f(xT ) − f ∗ ≤ 4(f(x0 − f ∗) + 4 ∥x0 − x∗∥2

ηT 2 + 4 .

Note that when α = 2, i.e., ℓ is sub-quadratic, Theorem B.2.1 reduces to Theorem 3.1.4

which chooses η ≤ min{ 1
16L2 ,

1
2L

}. When α = 1, i.e., ℓ is sub-linear, the above theorem

chooses η ≤ 1
16L

as in the classical textbook analysis up to a numerical constant factor.

Throughout this section, we will assume f is convex and ℓ-smooth, and consider the

parameter choices in Theorem B.2.1, unless explicitly stated. Note that since f is ℓ-smooth,

it is also (r,m)-smooth with m(u) = ℓ(u + G) and r(u) = G
ℓ(u+G) by Proposition 2.1.2.

Note that m(G) = ℓ(2G) = L and r(G) = G/L. Then the stepsize satisfies η ≤ 1/(2L) ≤

min{ 2
m(G) ,

r(G)
2G

}.

Before proving Theorem B.2.1, we first present several additional useful lemmas. To start

with, we provide two lemmas regarding the weights {At}t≥0 and {Bt}t≥0 used in Algorithm 1.

The lemma below states that Bt = Θ(t2).

Lemma B.2.2. The weights {Bt}t≥0 in Algorithm 1 satisfy 1
4t

2 ≤ Bt ≤ t2 for all t ≥ 0.

Proof of Lemma B.2.2. We prove this lemma by induction. First note that the inequality

obviously holds for B0 = 0. Suppose its holds up to t. Then we have

Bt+1 = Bt + 1
2(1 +

√
4Bt + 1) ≥ 1

4t
2 + 1

2(1 +
√
t2 + 1) ≥ 1

4(t+ 1)2.

98



Similarly, we have

Bt+1 = Bt + 1
2(1 +

√
4Bt + 1) ≤ t2 + 1

2(1 +
√

4t2 + 1) ≤ (t+ 1)2.

Lemma B.2.2 implies the following useful lemma.

Lemma B.2.3. The weights {At}t≥0 in Algorithm 1 satisfy that

(1 − At

At+1
) 1
At

t−1∑
s=0

√
As+1(As+1 − As − 1) ≤ 4.

Proof of Lemma B.2.3. First, note that it is easy to verify that As+1−As−1 = Bs+1−Bs−1 ≥

0, which implies each term in the LHS of the above inequality is non-negative. Then we have

(1 − At

At+1
) 1
At

t−1∑
s=0

√
As+1(As+1 − As − 1)

≤ 1
At+1

√
At

(At+1 − At)
t−1∑
s=0

(As+1 − As − 1) (At ≥ As+1)

= 1
At+1

√
At

(Bt+1 −Bt)
t−1∑
s=0

(Bs+1 −Bs − 1) (As = Bs + 1/η)

= 1
At+1

√
At

· 1
2(1 +

√
4Bt + 1)

t−1∑
s=0

(
−1 + 1

2(1 +
√

4Bs + 1)
)

(by definition of Bs)

≤ 8 1
(t+ 1)2t

· (t+ 1)t
2

2 (by At ≥ Bt and Lemma B.2.2)

≤ 4.

The following lemma summarizes the results in the classical potential function analysis of

NAG in [d’Aspremont et al., 2021]. In order to not deal with the generalized smoothness

condition for now, we directly assume the inequality (B.6) holds in the lemma, which will be

proved later under the generalized smoothness condition.

99



Lemma B.2.4. For any t ≥ 0, if the following inequality holds,

f(yt) + ⟨∇f(yt), xt+1 − yt⟩ + 1
2η ∥xt+1 − yt∥2 ≥ f(xt+1), (B.6)

then we can obtain

At+1(f(xt+1) − f ∗) + 1
2η ∥zt+1 − x∗∥2 ≤ At(f(xt) − f ∗) + 1

2η ∥zt − x∗∥2 . (B.7)

Proof of Lemma B.2.4. These derivations below can be found in [d’Aspremont et al., 2021].

We present them here for completeness.

First, since f is convex, the convexity between x∗ and yt gives

f ∗ ≥ f(yt) + ⟨∇f(yt), x∗ − yt⟩.

Similarly the convexity between xt and yt gives

f(xt) ≥ f(yt) + ⟨∇f(yt), xt − yt⟩.

Combining the above two inequalities as well as (B.6) assumed in this lemma, we have

0 ≥ (At+1 − At)(f(yt) − f ∗ + ⟨∇f(yt), x∗ − yt⟩)

+ At(f(yt) − f(xt) + ⟨∇f(yt), xt − yt⟩)

+ At+1

(
f(xt+1) − f(yt) − ⟨∇f(yt), xt+1 − yt⟩ − 1

2η ∥xt+1 − yt∥2
)
. (B.8)

100



Furthermore, note that

1
2η
(
∥zt+1 − x∗∥2 − ∥zt − x∗∥2

)
= 1

2η
(
∥zt+1 − zt∥2 + 2⟨zt+1 − zt, zt − x∗⟩

)
= 1

2η
(
η2(At+1 − At)2 ∥∇f(yt)∥2 − 2η(At+1 − At)⟨∇f(yt), zt − x∗⟩

)
= η

2(At+1 − At)2 ∥∇f(yt)∥2 − (At+1 − At)⟨∇f(yt), zt − x∗⟩. (B.9)

Meanwhile, we have

At+1xt+1 = At+1yt − ηAt+1∇f(yt) = At+1xt + (At+1 − At)(zt − xt) − ηAt+1∇f(yt).

Thus we have

(At+1 − At)zt = At+1xt+1 − Atxt + ηAt+1∇f(yt).

Plugging back in (B.9), we obtain

1
2η
(
∥zt+1 − x∗∥2 − ∥zt − x∗∥2

)
= η

2(At+1 − At)2 ∥∇f(yt)∥2 + (At+1 − At)⟨∇f(yt), x∗⟩

+ ⟨−At+1xt+1 + Atxt − ηAt+1∇f(yt),∇f(yt)⟩.

Thus

(At+1 − At)⟨∇f(yt), x∗⟩ + ⟨Atxt − At+1xt+1,∇f(yt)⟩

= 1
2η
(
∥zt+1 − x∗∥2 − ∥zt − x∗∥2

)
+ η(At+1 − 1

2(At+1 − At)2) ∥∇f(yt)∥2 .

101



So we can reorganize (B.8) to obtain

0 ≥ At+1(f(xt+1) − f ∗) − At(f(xt) − f ∗)

+ (At+1 − At)⟨∇f(yt), x∗⟩ + ⟨Atxt − At+1xt+1,∇f(yt)⟩

− 1
2ηAt+1 ∥xt+1 − yt∥2

= At+1(f(xt+1) − f ∗) − At(f(xt) − f ∗)

+ 1
2η
(
∥zt+1 − x∗∥2 − ∥zt − x∗∥2

)
+ η

2(At+1 − (At+1 − At)2) ∥∇f(yt)∥2 .

Then we complete the proof noting that it is easy to verify

At+1 − (At+1 − At)2 = Bt+1 + 1
η

− (Bt+1 −Bt)2 = 1
η

≥ 0.

In the next lemma, we show that if ∥∇f(yt)∥ ≤ G, then the condition (B.6) assumed in

Lemma B.2.4 is satisfied at time t.

Lemma B.2.5. For any t ≥ 0, if ∥∇f(yt)∥ ≤ G, then we have ∥∇f(xt+1)∥ ≤ G, and

furthermore,

f(yt) + ⟨∇f(yt), xt+1 − yt⟩ + 1
2η ∥xt+1 − yt∥2 ≥ f(xt+1).

Proof of Lemma B.2.5. As disccued below Theorem B.2.1, the stepsize satisfies η ≤ 1/(2L) ≤

min{ 2
m(G) ,

r(G)
2G

}. Therefore we can apply Lemma 3.1.1 to show ∥∇f(xt+1)∥ ≤ ∥∇f(yt)∥ ≤ G.

For the second part, note that ∥xt+1 − yt∥ = η ∥∇f(yt)∥ ≤ G
2L

≤ r(G), we can apply

Lemma 2.2.1 to show

f(xt+1) ≤ f(yt) + ⟨∇f(yt), xt+1 − yt⟩ + L

2 ∥xt+1 − yt∥2

≤ f(yt) + ⟨∇f(yt), xt+1 − yt⟩ + 1
2η ∥xt+1 − yt∥2 .

102



With Lemma B.2.4 and Lemma B.2.5, we can show that ∥∇f(yt)∥ ≤ G for all t ≥ 0, as

in the lemma below.

Lemma B.2.6. For all t ≥ 0, ∥∇f(yt)∥ ≤ G.

Proof of Lemma B.2.6. We will prove this lemma by induction. First, by Lemma 2.2.3 and

the choice of G, it is easy to verify that ∥∇f(x0)∥ ≤ G. Then for any fixed t ≥ 0, suppose

that ∥∇f(xs)∥ ≤ G for all s < t. Then by Lemma B.2.4 and Lemma B.2.5, we know that

∥∇f(xs)∥ ≤ G for all 0 ≤ s ≤ t, and that for all s < t,

As+1(f(xs+1) − f ∗) + 1
2η ∥zs+1 − x∗∥2 ≤ As(f(xs) − f ∗) + 1

2η ∥zs − x∗∥2 . (B.10)

By telescoping (B.10), we have for all 0 ≤ s < t,

f(xs+1) − f ∗ ≤ 1
ηAs+1

((f(x0) − f ∗) + ∥z0 − x∗∥2). (B.11)

For 0 ≤ s ≤ t, since ∥∇f(xs)∥ ≤ G, then Lemma 2.2.3 implies

∥∇f(xs)∥2 ≤ 2L(f(xs) − f ∗). (B.12)

Note that by Algorithm 1, we have

zt − xt = At−1

At

(zt−1 − xt−1) − η(At − At−1)∇f(yt−1) + η∇f(yt−1).

Thus we can obtain

zt − xt = − 1
At

t−1∑
s=1

ηAs+1(As+1 − As − 1)∇f(ys).

103



Therefore

yt − xt = −(1 − At

At+1
) 1
At

t−1∑
s=1

ηAs+1(As+1 − As − 1)∇f(ys).

Thus we have

∥yt − xt∥ ≤ (1 − At

At+1
) 1
At

t−1∑
s=1

ηAs+1(As+1 − As − 1) ∥∇f(ys)∥ =: I.

Since ∥∇f(ys)∥ ≤ G and ∥xs+1 − ys∥ = ∥η∇f(ys)∥ ≤ r(G) for s < t, by Lemma 2.2.1, we

have

I ≤ (1 − At

At+1
) 1
At

t−1∑
s=1

ηAs+1(As+1 − As − 1)(∥∇f(xs+1)∥ + ηL ∥∇f(ys)∥)

≤ ηLI + (1 − At

At+1
) 1
At

t−1∑
s=1

ηAs+1(As+1 − As − 1) ∥∇f(xs+1)∥ .

Thus

∥yt − xt∥

≤I ≤ 1
1 − ηL

(1 − At

At+1
) 1
At

t−1∑
s=1

ηAs+1(As+1 − As − 1) ∥∇f(xs+1)∥

≤ 1
1 − ηL

(1 − At

At+1
) 1
At

t−1∑
s=1

ηAs+1(As+1 − As − 1)
√

2L(f(xs+1) − f ∗) (by (B.12))

≤ 1
1 − ηL

(1 − At

At+1
) 1
At

t−1∑
s=1

ηAs+1(As+1 − As − 1)
√

2L
As+1

· 1
η

((f(x0) − f ∗) + ∥z0 − x∗∥2)

(by (B.11))

= 2
√
ηL

1 − ηL
(1 − At

At+1
) 1
At

t−1∑
s=1

√
As+1(As+1 − As − 1)

√
(f(x0) − f ∗) + ∥z0 − x∗∥2

≤
8√

η

1 − ηL

√
L((f(x0) − f ∗) + ∥z0 − x∗∥2) (by Lemma B.2.3)

≤ 1
2L3/2−1/α

· L1/2−1/αG = G

2L ≤ r(G). (by the choices of η and G)

104



Since ∥∇f(xt)∥ ≤ G and we just showed ∥xt − yt∥ ≤ r(G), by Lemma 2.2.1, we have

∥∇f(yt)∥ ≤ ∥∇f(xt)∥ + L ∥yt − xt∥

≤
√

2L
ηAt

((f(x0) − f ∗) + ∥z0 − x∗∥2) + L · G2L (by (B.12) and (B.11))

≤ G
(1

4 + 1
2

)
≤ G. (by At ≥ 1/η and choice of G)

Then we complete the induction as well as the proof.

With the three lemmas above, it is straight forward to prove Theorem B.2.1.

Proof of Theorem B.2.1. Combining Lemmas B.2.4, B.2.5, and B.2.6, we know the following

inequality holds for all t ≥ 0.

At+1(f(xt+1) − f ∗) + 1
2η ∥zt+1 − x∗∥2 ≤ At(f(xt) − f ∗) + 1

2η ∥zt − x∗∥2 .

Then by telescoping, we directly complete the proof.

B.3 Analysis of NAG for strongly convex functions

In this section, we provide the convergence analysis of the modified version of Nesterov’s

accelerated gradient method for µ-strongly-convex functions defined in Algorithm 5.

The convergence results is formally presented in the following theorem.

Theorem B.3.1. Suppose f is µ-strongly-convex and ℓ-smooth satisfying Assump-

tions 1.1, 1.2,

and 3.1. For α ∈ (0, 2], if ℓ(u) = o(uα), i.e., limu→∞ ℓ(u)/uα = 0, then there must exist

a constant G such that for L := ℓ(2G), we have

G ≥ 8 max{L1/α−1/2, 1}
√
L((f(x0) − f ∗) + µ ∥z0 − x∗∥2)/min{µ, 1}. (B.13)

105



Algorithm 5 NAG for µ-strongly-convex functions
1: Input A µ-strongly-convex and ℓ-smooth function f , stepsize η, initial point x0
2: Initialize z0 = x0, B0 = 0, and A0 = 1/(ηµ).
3: for t = 0, ... do
4: Bt+1 = 2Bt+1+

√
4Bt+4ηµB2

t +1
2(1−ηµ)

5: At+1 = Bt+1 + 1
ηµ

6: τt = (At+1−At)(1+ηµAt)
At+1+2ηµAtAt+1−ηµA2

t
and δt = At+1−At

1+ηµAt+1

7: yt = xt + τt(zt − xt)
8: xt+1 = yt − η∇f(yt)
9: zt+1 = (1 − ηµδt)zt + ηµδtyt − ηδt∇f(yt)

10: end for

If we choose

η ≤ min

 1
144L3−2/α log4

(
e+ 144L3−2/α

µ

) , 1
2L

 . (B.14)

The iterates generated by Algorithm 5 satisfy

f(xT ) − f ∗ ≤
(1 − √

ηµ)T −1(f(x0 − f ∗) + µ ∥z0 − x∗∥2)
ηµ+ (1 − √

ηµ)T −1 .

The above theorem gives a gradient complexity of O
(

1√
ηµ

log(1/ϵ)
)
. Note that Theo-

rem 3.1.2 shows the complexity of GD is O
(

1
ηµ

log(1/ϵ)
)
. It seems NAG gives a better rate

at first glance. However, note that the choices of G,L, η in these two theorems are different,

it is less clear whether NAG accelerates the optimization in this setting. Below, we informally

show that, if ℓ(u) = o(
√
u), the rate we obtain for NAG is faster than that for GD.

For simplicity, we informally assume ℓ(u) ≍ xρ with ρ ∈ (0, 1). Let G0 = ∥∇f(x0)∥. Then

for GD, by Theorem 3.1.2, we have ηgdµ ≍ µ/ℓ(G0) ≍ µ/Gρ
0. For NAG, since ℓ is sub-linear we

can choose α = 1 in the theorem statement. Since f is µ-strongly-convex, by standard results,

we can show that f(x0) − f ∗ ≤ 1
µ
G2

0 and ∥z0 − x∗∥ ≤ 1
µ
G0. Thus the requirement of G in

(B.13) can be simplified as G ≳ ℓ(G) ·G0/µ, which is satisfied if choosing G ≍ (G0/µ)1/(1−ρ).

Then we also have ηnag ≍ 1
ℓ(G) ≍ (µ/G0)ρ/(1−ρ). Thus √

ηnagµ ≍ (µ/Gρ
0)1/(2−2ρ). This means

106



whenever 1/(2 − 2ρ) < 1, i.e., 0 ≤ ρ < 1/2, we have √
ηnagµ ≳ ηgdµ, which implies the rate

we obtain for NAG is faster than that for GD.

In what follows, we will provide the proof of Theorem B.3.1. We will always use the

parameter choices in the theorem throughout this section.

B.3.1 Useful lemmas

In this part, we provide several useful lemmas for proving Theorem B.3.1. To start with, the

following two lemmas provide two useful inequalities.

Lemma B.3.2. For any 0 ≤ u ≤ 1, we have log(1 + u) ≥ 1
2u.

Lemma B.3.3. For all 0 < p ≤ 1 and t ≥ 0, we have

t ≤ 2
√
p

log(e+ 1
p

)(p(1 + √
p)t + 1).

Proof of Lemma B.3.3. Let

f(t) = 2
√
p

log(e+ 1
p

)(p(1 + √
p)t + 1) − t.

It is obvious that f(t) ≥ 0 for t ≤ 2√
p

log(e+ 1
p
). For t > 2√

p
log(e+ 1

p
), we have

f ′(t) = 2√
p log(e+ 1

p
) log(1 + √

p)(1 + √
p)t − 1

≥ p(1 + √
p)t − 1 (by Lemma B.3.2)

= p exp(t log(1 + √
p)) − 1

≥ p exp(t√p/2) − 1 (by Lemma B.3.2)

≥ p(e+ 1/p) − 1 ≥ 0. (since t > 2√
p

log(e+ 1
p
))

107



Thus f is non-decreasing and

f(t) ≥ f

(
2

√
p

log(e+ 1
p

)
)

≥ 0.

In the next four lemmas, we provide several useful inequalities regarding the weights

{At}t≥0 and {Bt}t≥0 used in Algorithm 5.

Lemma B.3.4. For all s ≤ t, we have

Bt+1 −Bt

Bt+1
· Bs+1 −Bs

1 + ηµBs+1
≤ 1,

which implies τt · δs ≤ 1.

Proof of Lemma B.3.4. By Algorithm 5, it is easy to verify

(Bs+1 −Bs)2 = Bs+1(1 + ηµBs+1).

This implies

Bs = Bs+1 −
√
Bs+1(1 + ηµBs+1).

Thus

Bt

Bt+1
= 1 −

√
ηµ+ 1

Bt+1
≥ 1 −

√
ηµ+ 1

Bs+1
= Bs

Bs+1
,

where in the inequality, we use the fact that Bs is non-decreasing with s. Therefore

Bt+1 −Bt

Bt+1
· Bs+1 −Bs

1 + ηµBs+1
≤ Bs+1 −Bs

Bs+1
· Bs+1 −Bs

1 + ηµBs+1
= 1.

108



Thus we have

τt · δs = (At+1 − At)(1 + ηµAt)
At+1 + 2ηµAtAt+1 − ηµA2

t

· As+1 − As

1 + ηµAs+1

≤ At+1 − At

At+1
· As+1 − As

1 + ηµAs+1
(by At+1 ≥ At)

= Bt+1 −Bt

At+1
· Bs+1 −Bs

1 + ηµAs+1
(by As+1 − As = Bs+1 −Bs)

≤ Bt+1 −Bt

Bt+1
· Bs+1 −Bs

1 + ηµBs+1
≤ 1. (by As+1 ≥ Bs+1)

Lemma B.3.5. If 0 < ηµ < 1, then for any t ≥ 1, we have

Bt

1 − √
ηµ

≤ Bt+1 ≤ 3Bt

1 − ηµ
.

Thus

Bt ≥ 1
(1 − √

ηµ)t−1 ≥ (1 + √
ηµ)t−1.

Proof of Lemma B.3.5. For t ≥ 1, we have Bt ≥ 1 thus

Bt+1 =
2Bt + 1 +

√
4Bt + 4ηµB2

t + 1
2(1 − ηµ) ≤ 2Bt + 1

1 − ηµ
≤ 3Bt

1 − µη
.

On the other hand, we have

Bt+1 =
2Bt + 1 +

√
4Bt + 4ηµB2

t + 1
2(1 − ηµ)

≥
2Bt +

√
(2Bt

√
ηµ)2

2(1 − ηµ)

= Bt

1 − √
ηµ
.

109



Thus

Bt ≥
(

1
1 − √

ηµ

)t−1

B1 ≥
(

1
1 − √

ηµ

)t−1

≥ (1 + √
ηµ)t−1.

Lemma B.3.6. For 0 < ηµ < 1 and t ≥ 1, we have

t∑
s=0

√
Bs ≤ (1 − ηµ)Bt+1 ≤ 3Bt.

Proof of Lemma B.3.6.

Bt+1 =
2Bt + 1 +

√
4Bt + 4ηµB2

t + 1
2(1 − ηµ)

≥ Bt +
√
Bt

1 − ηµ

≥ · · ·

≥
t∑

s=0

√
Bs

1 − ηµ
.

Combined with Lemma B.3.5, we have the desired result.

Lemma B.3.7. For t ≥ 1, we have

t−1∑
s=0

√
As+1

At

≤ 3 + 4 log(e+ 1
ηµ

).

Proof of Lemma B.3.7. By Lemma B.3.5, we have

At = Bt + 1
ηµ

≥ (1 + √
ηµ)t−1 + 1

ηµ
. (B.15)

110



Thus, we have

t−1∑
s=0

√
As+1

At

=
t−1∑
s=0

√
Bs+1 + 1/(ηµ)

At

≤
t−1∑
s=0

√
Bs+1

At

+ t
√
ηµAt

≤ 3 + 1
√
ηµAt

· 2
√
ηµ

log(e+ 1
ηµ

)(ηµ(1 + √
ηµ)t + 1)

(by Lemma B.3.6 and Lemma B.3.3)

≤ 3 + 4 log(e+ 1
ηµ

). (by Inequality (B.15))

B.3.2 Proof of Theorem B.3.1

With all the useful lemmas in the previous section, we proceed to prove Theorem B.3.1, for

which we need several additional lemmas. First, similar to Lemma B.2.4, the following lemma

summarizes the results in the classical potential function analysis of NAG for strongly convex

functions in [d’Aspremont et al., 2021].

Lemma B.3.8. For any t ≥ 0, if the following inequality holds

f(yt) + ⟨∇f(yt), xt+1 − yt⟩ + 1
2η ∥xt+1 − yt∥2 ≥ f(xt+1),

then we can obtain

At+1(f(xt+1) − f ∗) + 1 + ηµAt+1

2η ∥zt+1 − x∗∥2 ≤ At(f(xt) − f ∗) + 1 + ηµAt

2η ∥zt − x∗∥2 .

Proof of Lemma B.3.8. These derivations can be found in d’Aspremont et al. [2021]. We

present it here for completeness.

111



The strong convexity between x∗ and yt gives

f ∗ ≥ f(yt) + ⟨∇f(yt), x∗ − yt⟩ + µ

2 ∥x∗ − yt∥2 .

The convexity between xt and yt gives

f(xt) ≥ f(yt) + ⟨∇f(yt), xt − yt⟩.

Combining the above two inequalities and the one assumed in this lemma, we have

0 ≥ (At+1 − At)(f ∗ − f(yt) − ⟨∇f(yt), x∗ − yt⟩ − µ

2 ∥x∗ − yt∥2)

+ At(f(yt) − f(xt) − ⟨∇f(yt), xt − yt⟩)

+ At+1(f(xt+1) − f(yt) − ⟨∇f(yt), xt+1 − yt⟩ − 1
2η ∥xt+1 − yt∥2).

Reorganizing we can obtain

At+1(f(xt+1) − f ∗) + 1 + ηµAt+1

2η ∥zt+1 − x∗∥2

≤ At(f(xt) − f ∗) + 1 + ηµAt

2η ∥zt − x∗∥2

+ (At − At+1)2 − At+1 − ηµA2
t+1

1 + ηµAt+1

η

2 ∥∇f(yt)∥2

− A2
t

(At+1 − At)(1 + ηµAt)(1 + ηµAt+1)
(At+1 + 2ηµAtAt+1 − ηµA2

t )2
µ

2 ∥xt − zt∥2 .

112



Then we complete the proof noting that

(At − At+1)2 − At+1 − ηµA2
t+1

= (Bt −Bt+1)2 −Bt+1 + 1
ηµ

− ηµ(Bt+1 + 1/(ηµ))2

= ηµB2
t+1 + 1

ηµ
− ηµB2

t+1 − 2Bt+1 − 1
ηµ

= −2Bt+1 ≤ 0.

Next, note that Lemma B.2.5 still holds in the strongly convex setting. We repeat it

below for completeness.

Lemma B.3.9. For any t ≥ 0, if ∥∇f(yt)∥ ≤ G, then we have ∥∇f(xt+1)∥ ≤ G, and

furthermore,

f(yt) + ⟨∇f(yt), xt+1 − yt⟩ + 1
2η ∥xt+1 − yt∥2 ≥ f(xt+1).

With Lemma B.3.8 and Lemma B.3.9, we will show that ∥∇f(yt)∥ ≤ G for all t ≥ 0 by

induction in the following lemma.

Lemma B.3.10. For all t ≥ 0, we have ∥∇f(yt)∥ ≤ G.

Proof of Lemma B.3.10. We will prove this lemma by induction. First, by Lemma 2.2.3 and

the choice of G, it is easy to verify that ∥∇f(x0)∥ ≤ G. Then for any fixed t ≥ 0, suppose

that ∥∇f(xs)∥ ≤ G for all s < t. Then by Lemma B.3.8 and Lemma B.3.9, we know that

∥∇f(xs)∥ ≤ G for all 0 ≤ s ≤ t, and that for all s < t,

As+1(f(xs+1) − f ∗) + 1 + ηµAs+1

2η ∥zs+1 − x∗∥2 ≤ As(f(xs) − f ∗) + 1 + ηµAs

2η ∥zs − x∗∥2 .

(B.16)

113



By telescoping (B.16), we have for all 0 ≤ s < t,

f(xs+1) − f ∗ ≤ 1
As+1ηµ

(f(x0) − f ∗ + µ ∥z0 − x∗∥2). (B.17)

For 0 ≤ s ≤ t, since ∥∇f(xs)∥ ≤ G, then Lemma 2.2.3 implies

∥∇f(xs)∥2 ≤ 2L(f(xs) − f ∗). (B.18)

Note that by Algorithm 5, we have

zt − xt = (1 − ηµδt−1)(1 − τt−1)(zt−1 − xt−1) + η(1 − δt−1)∇f(yt−1).

Thus

zt − xt = η
t−1∑
s=0

(1 − δs)∇f(ys)
t−1∏

i=s+1
(1 − ηµδi)(1 − τi).

Therefore

yt − xt = ητt

t−1∑
s=0

(1 − δs)∇f(ys)
t−1∏

i=s+1
(1 − ηµδi)(1 − τi).

Moreover

1 − ηµδi = 1 − ηµ(Ai+1 − Ai)
1 + ηµAi+1

= 1 + ηµAi

1 + ηµAi+1

and

1 − τi = 1 − (Ai+1 − Ai)(1 + ηµAi)
Ai+1 + 2ηµAiAi+1 − ηµA2

i

= Ai(1 + ηµAi+1)
Ai+1 + 2ηµAiAi+1 − ηµA2

i

≤ Ai(1 + ηµAi+1)
Ai+1(1 + ηµAi)

.

114



Thus we have

∥yt − xt∥ ≤ ητt

t−1∑
s=0

(δs − 1)As+1

At

∥∇f(ys)∥ ≤ η
t−1∑
s=0

As+1

At

∥∇f(ys)∥ =: I,

where the second inequality follows from Lemma B.3.4. We further control term I by

I ≤ η
t−1∑
s=0

As+1

At

(∥∇f(xs+1)∥ + ηL ∥∇f(ys)∥)

≤ ηLI + η
t−1∑
s=0

As+1

At

∥∇f(xs+1)∥ .

Thus we have

∥yt − xt∥ ≤ η

1 − ηL

t−1∑
s=0

As+1

At

∥∇f(xs+1)∥

≤ η

1 − ηL

t−1∑
s=0

As+1

At

√
2L(f(xs+1) − f ∗) (by (B.18))

≤ η

1 − ηL

t−1∑
s=0

As+1

At

√
2L · 1

As+1ηµ
(f(x0) − f ∗ + µ ∥z0 − x∗∥2) (by (B.17))

=

√
2ηL(f(x0) − f ∗ + µ ∥z0 − x∗∥2)

(1 − ηL)√µ

t−1∑
s=0

√
As+1

At

≤

√
2ηL(f(x0) − f ∗ + µ ∥z0 − x∗∥2)

(1 − ηL)√µ

(
3 + 4 log(e+ 1

ηµ
)
)
. (by Lemma B.3.7)

≤
√
η

1 − ηL

(
3 + 4 log(e+ 1

ηµ
)
)

· G · L1/2−1/α

4 (by (B.13))

≤
3 + 4 log(e+ 1

ηµ
)

log2
(
e+ 144L3−2/α

µ

) · G

24L (by (B.14))

≤ G

2L ≤ r(G).

115



Since ∥∇f(xt)∥ ≤ G and we just showed ∥xt − yt∥ ≤ r(G), by Lemma 2.2.1, we have

∥∇f(yt)∥ ≤ ∥∇f(xt)∥ + L ∥yt − xt∥

≤
√

2L
ηµAt

((f(x0) − f ∗) + µ ∥z0 − x∗∥2) + L · G2L (by (B.17))

≤ G
(1

4 + 1
2

)
≤ G. (by At ≥ 1/(ηµ) and (B.13))

Then we complete the induction as well as the proof.

Proof of Theorem B.3.1. Combining Lemmas B.3.8, B.3.9, and B.3.10, we know the following

inequality holds for all t ≥ 0.

At+1(f(xt+1) − f ∗)+ 1 + ηµAt+1

2η ∥zt+1 − x∗∥2 ≤ At(f(xt) − f ∗)+ 1 + ηµAt

2η ∥zt − x∗∥2 .

Then by telescoping, we get

At(f(xt) − f ∗)+ 1 + ηµAt

2η ∥zt − x∗∥2 ≤ A0(f(x0) − f ∗)+ 1 + ηµA0

2η ∥z0 − x∗∥2 .

Finally, applying Lemma B.3.5, we have At = Bt + 1/(ηµ) ≥ 1/(1 − √
ηµ)t−1 + 1/(ηµ). Thus

completes the proof.

B.4 Analysis of GD for non-convex functions

In this section, we provide the proofs related to analysis of gradient descent for non-convex

function, including those of Lemma 3.2.1 and Theorem 3.2.2.

Proof of Lemma 3.2.1. First, based on Corollary 2.2.4, we know ∥∇f(x)∥ ≤ G < ∞. Also

note that

∥∥∥x+ − x
∥∥∥ = ∥η∇f(x)∥ ≤ ηG ≤ G/L.

116



Then by Lemma 2.2.1 and Remark 2.2.2, we have x+ ∈ X and

f(x+) ≤f(x) +
〈
∇f(x), x+ − x

〉
+ L

2
∥∥∥x+ − x

∥∥∥2

=f(x) − η(1 − ηL/2) ∥∇f(x)∥2

≤f(x).

Proof of Theorem 3.2.2. By Lemma 3.2.1, using induction, we directly obtain f(xt) ≤ f(x0)

for all t ≥ 0. Then by Corollary 2.2.4, we have ∥∇f(xt)∥ ≤ G for all t ≥ 0. Following the

proof of Lemma 3.2.1, we can similarly show

f(xt+1) − f(xt) ≤ η(1 − ηL/2) − η

2 ∥∇f(xt)∥2 ≤ −η

2 ∥∇f(xt)∥2 .

Taking a summation over t < T and rearanging terms, we have

1
T

∑
t<T

∥∇f(xt)∥2 ≤ 2(f(x0) − f(xT ))
ηT

≤ 2(f(x0) − f ∗)
ηT

.

B.5 Analysis of SGD for non-convex functions

In this section, we provide the detailed convergence analysis of stochastic gradient descent

for ℓ-smooth and non-convex functions where ℓ is sub-quadratic. We first state the Optional

Stopping Theorem below useful for our analysis.

Lemma B.5.1 (Optional Stopping Theorem). Let {Zt}t≥1 be a martingale with respect to a

filtration {Ft}t≥0. Let τ be a bounded stopping time with respect to the same filtration. Then

we have E[Zτ ] = E[Z0].

117



Next, we present some useful inequalities related to the parameter choices in Theorem 3.2.3.

Lemma B.5.2. The parameters choices in Theorem 3.2.3 are valid and the following in-

equalities hold.

ηG
√

2T ≤ 1/2, η2σLT ≤ 1/2, 100η2Tσ2L2 ≤ δG2.

Proof of Lemma B.5.2. The parameter choices are valide because we have F
ηϵ2 ≤ 1

16G2η2 by

the choice of η. Then, note that by Corollary 2.2.4, we know

G2 = 2LF = 16L(f(x0) − f ∗ + σ)/δ ≥ 16Lσ/δ,

i.e., σL ≤ G2δ/16. Note that η ≤ 1
4G

√
T

by the choice of T , we have

ηG
√

2T ≤
√

2/4 ≤ 1/2,

η2σLT ≤η2TG2δ/16 ≤ δ/256 ≤ 1/2,

100η2Tσ2L2 ≤100η2TG4δ2/256 ≤ δG2.

Next, we show the useful lemma which bounds E[f(xτ ) − f ∗] and E
[∑

t<τ ∥∇f(xt)∥2
]

simultaneously.

Lemma B.5.3. Under the parameters choices in Theorem 3.2.3, the following inequality

holds

E
[
f(xτ ) − f ∗ + η

2
∑
t<τ

∥∇f(xt)∥2
]

≤ f(x0) − f ∗ + σ.

Proof of Lemma B.5.3. If t < τ , by the definition of τ , we know f(xt) − f ∗ ≤ F and

∥ϵt∥ ≤ G
5ηL

, and the former also implies ∥∇f(xt)∥ ≤ G by Corollary 2.2.4. Then we can

118



bound

∥xt+1 − xt∥ = η ∥∇f(xt, ξt)∥ ≤ η(∥∇f(xt)∥ + ∥ϵt∥) ≤ ηG+ G

5L ≤ G

L
,

where we use the choice of η ≤ 1
2L

. Then based on Lemma 2.2.1 and Remark 2.2.2, for any

t < τ , we have

f(xt+1) − f(xt) ≤
〈
∇f(xt), xt+1 − xt

〉
+ L

2 ∥xt+1 − xt∥2

= − η
〈
∇f(xt),∇f(xt, ξt)

〉
+ η2L

2 ∥∇f(xt, ξt)∥2

≤ − η ∥∇f(xt)∥2 − η
〈
∇f(xt), ϵt

〉
+ η2L ∥∇f(xt)∥2 + η2L ∥ϵt∥2

≤ − η

2 ∥∇f(xt)∥2 − η
〈
∇f(xt), ϵt

〉
+ η2L ∥ϵt∥2 , (B.19)

where the equality is due to (3.2); the second inequality uses gt = ϵt + ∇f(xt) and Young’s

inequality ∥y + z∥2 ≤ 2 ∥y∥2 + 2 ∥z∥2 for any vectors y, z; and the last inequality chooses

η ≤ 1/(2L). Taking a summation over t < τ and rearanging terms, we have

f(xτ ) − f ∗ + η

2
∑
t<τ

∥∇f(xt)∥2 ≤ f(x0) − f ∗ − η
∑
t<τ

〈
∇f(xt), ϵt

〉
+ η2L

∑
t<τ

∥ϵt∥2 .

Now we bound the last two terms on th RHS. First, for the last term, we have

E
[∑

t<τ

∥ϵt∥2
]

≤ E
[∑

t<T

∥ϵt∥2
]

≤ σ2T,

where the first inequality uses τ ≤ T by its defnition; and in the last inequality we use

Assumption 3.2.

For the cross term, note that Et−1
[〈

∇f(xt), ϵt

〉]
= 0 by Assumption 3.2. So this term

is a sum of a martingale difference sequence. Since τ is a stopping time, we can apply the

119



Optional Stopping Theorem (Lemma B.5.1) to obtain

E

∑
t≤τ

〈
∇f(xt), ϵt

〉 = 0. (B.20)

Then we have

E
[
−
∑
t<τ

〈
∇f(xt), ϵt

〉]
=E

[〈
∇f(xτ ), ϵτ

〉]
≤ GE[∥ϵτ ∥] ≤ G

√
E[∥ϵτ ∥2]

≤ G

√√√√√E

∑
t≤T

∥ϵt∥2

 ≤ σG
√
T + 1 ≤ σG

√
2T ,

where the equality is due to (B.20); the first inequality uses ∥∇f(xτ )∥ ≤ G by the definition

of τ in (3.3) and Corollary 2.2.4; the fourth inequality uses E[X]2 ≤ E[X2] for any random

variable X; and the last inequality uses Assumption 3.2.

Combining all the bounds above, we get

E
[
f(xτ ) − f ∗ + η

2
∑
t<τ

∥∇f(xt)∥2
]

≤f(x0) − f ∗ + ησG
√

2T + η2σ2LT

≤f(x0) − f ∗ + σ,

where the last inequality is due to Lemma B.5.2.

With Lemma B.5.3, we are ready to prove Theorem 3.2.3.

Proof of Theorem 3.2.3. We want to show the probability of {τ < T} is small, as its comple-

ment {τ = T} means f(xt) − f ∗ ≤ F for all t ≤ T which implies ∥∇f(xt)∥ ≤ G for all t ≤ T .

Note that

{τ < T} = {τ2 < T} ∪ {τ1 < T, τ2 = T}.

Therefore we only need to bound the probability of each of these two events on the RHS.

120



We first bound P(τ2 < T ). Note that

P(τ2 < T ) =P
(⋃

t<T

{
∥ϵt∥ >

G

5ηL

})

≤
∑
t<T

P
(

∥ϵt∥ >
G

5ηL

)

≤25η2Tσ2L2

G2

≤δ/4,

where the first inequality uses union bound; the second inequality applies Chebyshev’s

inequality and E[∥ϵt∥2] = E[Et−1[∥ϵt∥2]] ≤ σ2 for each fixed t by Assumption 3.2; the last

inequality uses Lemma B.5.2.

Next, we will bound P(τ1 < T, τ2 = T ). Note that under the event {τ1 < T, τ2 = T}, we

know that 1) τ = τ1 < T which implies f(xτ+1) − f ∗ > F ; and 2) τ < T = τ2 which implies

∥ϵτ ∥ ≤ G
5ηL

by the definition in (3.3). Also note that we always have f(xτ ) − f ∗ ≤ F which

implies ∥∇f(xτ )∥ ≤ G by Corollary 2.2.4. Then we can show

∥xτ+1 − xτ ∥ = η ∥∇f(xτ , ξτ )∥ ≤ η(∥∇f(xτ )∥ + ∥ϵτ ∥) ≤ ηG+ G

5L ≤ G

L
,

where we choose η ≤ 1
2L

. Then based on Lemma 2.2.1 and Remark 2.2.2, we have

f(xτ+1) − f(xτ ) ≤ − η

2 ∥∇f(xτ )∥2 − η
〈
∇f(xτ ), ϵτ

〉
+ η2L ∥ϵτ ∥2

≤η ∥∇f(xτ )∥ · ∥ϵτ ∥ + η2L ∥ϵτ ∥2

≤G2

4L
=F2 ,

where the first inequality is obtained following the same derivation as in (B.19); the last

equality is due to Corollary 2.2.4. Therefore we can show that under the event {τ1 < T, τ2 =

121



T},

f(xτ ) − f ∗ = f(xτ ) − f(xτ+1) + f(xτ+1) − f ∗ > F/2.

Hence,

P(τ1 < T, τ2 = T ) ≤ P (f(xτ ) − f ∗ > F/2) ≤ E[f(xτ ) − f ∗]
F/2 ≤ 2(f(x0) − f ∗ + σ)

F
= δ/4,

where the second inequality uses Markov’s inequality; the third inequality uses Lemma B.5.3;

and in the last inequality we choose F = 8(f(x0) − f ∗ + σ)/δ.

Therefore we can show

P(τ < T ) ≤ P(τ2 < T ) + P(τ1 < T, τ2 = T ) ≤ δ/2.

Then we also know P(τ = T ) ≥ 1 − δ/2 ≥ 1/2. Therefore, by Lemma B.5.3,

2(f(x0) − f ∗ + σ)
η

≥E
[∑

t<τ

∥∇f(xt)∥2
]

≥P(τ = T )E
[∑

t<T

∥∇f(xt)∥2
∣∣∣∣∣ τ = T

]

≥1
2E

[∑
t<T

∥∇f(xt)∥2
∣∣∣∣∣ τ = T

]
.

Then we have

E
[

1
T

∑
t<T

∥∇f(xt)∥2
∣∣∣∣∣ τ = T

]
≤ 4(f(x0) − f ∗ + σ)

ηT
= δF

2ηT ≤ δ

2 · ϵ2,

where the last inequality uses the choice of T . Let E := { 1
T

∑
t<T ∥∇f(xt)∥2 > ϵ2} denote the

event of not converging to an ϵ-stationary point. By Markov’s inequality, we have P(E) ≤ δ/2.

Therefore we have P({τ < T} ∪ E) ≤ δ, which completes the proof.

122



B.6 Lower bound

In this section, we provide the proof of Theorem 3.2.4.

Proof of Theorem 3.2.4. Let c, η0 > 0 satisfy η0 ≤ c2/2. Consider

f(x) =



log(|x| − c), |x| ≥ y

2 log(y − c) − log(2y − |x| − c), c/2 ≤ |x| < y

kx2 + b, |x| < c/2,

where c > 0 is a constant and y = (c+
√
c2 + 2η0)/2 > 0 is the fixed point of the iteration

xt+1 =
∣∣∣∣xt − η0

xt − c

∣∣∣∣ ,
and k, b are chosen in such a way that f(x) and f ′(x) are continuous. Specifically, choose

k = c−1f ′(c/2) and b = f(c/2) − cf ′(c/2)/4. Since f(−x) = f(x), f(x) is symmetric about

the line x = 0. In a small neighborhood, f(x) is symmetric about (y, f(y)), so f ′(x) is

continuous at y.

Let us first consider the smoothness of f . By symmetry, it suffices to consider x > 0.

Then,

f ′(x) =



(x− c)−1, x ≥ y

(2y − x− c)−1, c/2 ≤ x < y

2kx, 0 < x < c/2.

123



Its Hessian is given by

f ′′(x) =



−(x− c)−2, x > y

(2y − x− c)−2, c/2 < x < y

2k, 0 < x < c/2.

Hence, f(x) is (2, 2k, 1)-smooth.

Note that f(x) has a stationary point 0. For stepsize ηf satisfying η0 ≤ ηf ≤ c2/4, there

exists z = (c+
√
c2 + 2ηf ) ≥ y such that −z = z−ηf (y− c)−1 and by symmetry, once xτ = z,

xt = ±z for all t ≥ τ , making the GD iterations stuck. Now we choose a proper x0 such that

f ′(x0) and f(x0) − f(0) are bounded.

We consider arriving at y from above. That is, x0 ≥ x1 ≥ . . . xτ = z > c > 0. Since in

each update where xt+1 = xt − ηf (xt − c)−1 > c,

xt − xt+1 = xt − (xt − ηf (xt − c)−1) = ηf (xt − c)−1 ≤ √
ηf .

Hence, we can choose τ in such a way that 3c/2 ≤ x0 < 3c/2 + √
ηf . Then,

log(c/2) ≤ f(x0) ≤ log(c/2 + √
ηf ), 2/(c+ 2√

ηf ) ≤ f ′(x0) ≤ 2/c.

By definition, y − c = η0(c+
√
c2 + 2η0)−1. Hence,

f(c/2) = 2 log(y − c) − log(2y − c/2 − c)

= 2 log(η0) − 2 log(c+
√
c2 + 2η0) − log(

√
c2 + 2η0 − c/2),

f ′(c/2) = 1√
c2 + 2η0 − c/2

124



Then,

f(x0) − f(0) = f(x0) − f(c/2) + cf ′(c/2)/4

≤ log(c/2 + √
ηf ) + 2 log(η−1

0 ) + 2 log(c+
√
c2 + 2η0)

+ log(
√
c2 + 2η0 − c/2) + c

4
1√

c2 + 2η0 − c/2

≤ log(c) + 2 log(η−1
0 ) + 2 log(2

√
2c2) + log(

√
2c2) + 1

2
= 4 log(c) + 2 log(η−1

0 ) + 7
2 log(2) + 1

2 .

For stepsize ηf < η0, reaching below 4c/3 takes at least

(x0 − 4c/3)/√ηf ≥ c/(6√
ηf ) > cη

−1/2
0 /6

steps to reach 4c/3, where f ′(4c/3) = log(c/3).

Now we set c and η0 and scale function f(x) to satisfy the parameter specifications

L0, L2, G0,∆0. Define g(x) = L−1
2 f(x). Then, g(x) is (2, 2kL−1

2 , L2)-smooth. Since the

gradient of g(x) is L−1
2 times f(x), the above analysis for f(x) applies to g(x) by replacing

η0 with η1 = L2η0 and ηf with η = L2ηf . To ensure that

2kL−1
2 = 2(cL2)−1f ′(c/2) = 2

cL2

1√
c2 + 2η1 − c/2

≤ 4
c2L2

≤ L0,

it suffices to take c ≥ 2/
√
L0L2. To ensure that

g′(x0) ≤ 2
L2c

≤ G0,

it suffices to take c ≥ 2/(L2G0). To ensure that

g(x0) − g(0) ≤ (4 log(c) + 2 log(η−1
1 ) + 3.5 log 2 + 0.5)L−1

2 ≤ ∆0,

125



it suffices to take

log(η−1
1 ) = L2∆0 − 3.5 log 2 − 0.5

2 − 2 log(c).

Since we require η1 ≤ c2/2, parameters L2 and ∆0 need to satisfy

log 2 − 2 log(c) ≤ L2∆0 − 3.5 log 2 − 0.5
2 − 2 log(c),

that is, L2∆0 ≥ 5.5 log 2 + 0.5, which holds because L2∆0 ≥ 10. Take c =

max{2/
√
L0L2, 2/(L2G0),

√
8/L0}. Then, as long as η ≤ 2/L0, the requirement that η ≤ c2/4

is satisfied. Therefore, on g(x) with initial point x0, gradient descent with a constant stepsize

either gets stuck, or takes at least

cη
−1/2
1 /6 = c

6 exp
(
L2∆0 − 3.5 log 2 − 0.5

4 − log(c)
)

= 1
6 exp(L2∆0 − 3.5 log 2 − 0.5

4 )

≥ 1
6 exp(L2∆0

8 )

steps to reach a 1-stationary point.

On the other hand, if η > 2/L0, consider the function f(x) = L0
2 x

2. For any xt ̸= 0, we

always have |xt+1| / |xt| = |1 − ηL0| > 1, which means the iterates diverge to infinity.

126



Appendix C

Proofs for Chapter 4

C.1 Covergence Analysis of Adam

In this section, we provide detailed convergence analysis of Adam. We will focus on proving

Theorem 4.2.1 under the bounded noise assumption (Assumption 4.2) in most parts of this

section except Appendix C.1.5 where we will show how to generalize the results to noise with

sub-Gaussian norm (Assumption 4.3) and provide the proof of Theorem 4.2.2.

For completeness, we repeat some important technical definitions here. First, we define

ϵt := m̂t − ∇f(xt) (C.1)

as the deviation of the re-scaled momentum from the actual gradient. Given a large enough

constant G defined in Theorem 4.2.1, denoting F = G2

2(L0+Lρ(2G)ρ) , we formally define the

stopping time τ as

τ := min{t | f(xt) − f ∗ > F} ∧ (T + 1),

i.e., τ is the first time when the sub-optimality gap is strictly greater than F , truncated at

T + 1 to make sure it is bounded in order to apply Lemma B.5.1. Based on Corollary 2.2.4

127



and the discussions in Section 4.3.1, we know that if t < τ , we have both f(xt) − f ∗ ≤ F and

∥∇f(xt)∥ ≤ G. It is clear to see that τ is a stopping time1 with respect to {ξt}t≥1 because

the event {τ ≥ t} is a function of {ξs}s<t and independent of {ξs}s≥t. Next, let

ht := η√
v̂t + λ

be the stepsize vector and Ht := diag(ht) be the diagonal stepsize matrix. Then the update

rule can be written as

xt+1 = xt − ht ⊙ m̂t = xt −Htm̂t.

Finally, as in Lemma 2.2.1 and Lemma 4.3.1, we define the following constants with slight

notation abuse.

L := L0 + Lρ(2G)ρ,

r := r(G) = G/L,

D := 2G/λ.

C.1.1 Useful lemmas for Adam

In this section, we list several useful lemmas for the convergence analysis. Their proofs are

all deferred in Appendix C.1.4.

First note that when t < τ , all the quantities in the algorithm are well bounded. In

particular, we have the following lemma.

1Indeed, τ − 1 is also a stopping time because ∇f(xt) only depends on {ξs}s<t, but that is unnecessary
for our analysis.

128



Lemma C.1.1. If t < τ , we have

∥∇f(xt)∥ ≤ G, ∥∇f(xt, ξt)∥ ≤ G+ σ, ∥m̂t∥ ≤ G+ σ,

v̂t ⪯ (G+ σ)2,
η

G+ σ + λ
⪯ ht ⪯ η

λ
.

Next, we provide a useful lemma regarding the time-dependent re-scaled momentum

parameters in (4.1).

Lemma C.1.2. Let αt = β
1−(1−β)t , then for all T ≥ 2, we have ∑T

t=2 α
2
t ≤ 3(1 + β2T ).

In the next lemma, we provide an almost sure bound on ϵt in order to apply Azuma-

Hoeffding inequality (Lemma C.1.10).

Lemma C.1.3. Denote γt−1 = (1−αt)(ϵt−1+∇f(xt−1)−∇f(xt)). Choosing η ≤ min
{

r
D
, σβ

DL

}
,

if t ≤ τ , we have ∥ϵt∥ ≤ 2σ and ∥γt−1∥ ≤ 2σ.

Finally, the following lemma hides messy calculations and will be useful in the contradiction

argument.

Lemma C.1.4. Denote

I1 :=8G
ηλ

(
∆1λ+ 8σ2

(
η

β
+ ηβT

)
+ 20σ2η

√
(1/β2 + T )ι

)
,

I2 :=8GF
η

= 4G3

ηL
.

Under the parameter choices in either Theorem 4.2.1 or Theorem 4.2.2, we have I1 ≤ I2 and

I1/T ≤ ϵ2.

C.1.2 Proof of Theorem 4.2.1

Before proving the main theorems, several important lemmas are needed. First, we provide a

descent lemma for Adam.

129



Lemma C.1.5. If t < τ , choosing G ≥ σ + λ and η ≤ min
{

r
D
, λ

6L

}
, we have

f(xt+1) − f(xt) ≤ − η

4G ∥∇f(xt)∥2 + η

λ
∥ϵt∥2 .

Proof of Lemma C.1.5. By Lemma C.1.1, we have if t < τ ,

ηI

2G ≤ ηI

G+ σ + λ
⪯ Ht ⪯ ηI

λ
. (C.2)

Since we choose η ≤ r
D

, by Lemma 4.3.1, we have ∥xt+1 − xt∥ ≤ r if t < τ . Then we can

apply Lemma 2.2.1 to show that for any t < τ ,

f(xt+1) − f(xt) ≤
〈
∇f(xt), xt+1 − xt

〉
+ L

2 ∥xt+1 − xt∥2

= − (∇f(xt))⊤Htm̂t + L

2 m̂
⊤
t H

2
t m̂t

≤ − ∥∇f(xt)∥2
Ht

− (∇f(xt))⊤Htϵt + ηL

2λ ∥m̂t∥2
Ht

≤ − 2
3 ∥∇f(xt)∥2

Ht
+ 3

4 ∥ϵt∥2
Ht

+ ηL

λ

(
∥∇f(xt)∥2

Ht
+ ∥ϵt∥2

Ht

)
≤ − 1

2 ∥∇f(xt)∥2
Ht

+ ∥ϵt∥2
Ht

≤ − η

4G ∥∇f(xt)∥2 + η

λ
∥ϵt∥2 ,

where the second inequality uses (C.1) and (C.2); the third inequality is due to Young’s

inequality a⊤Ab ≤ 1
3 ∥a∥2

A + 3
4 ∥b∥2

A and ∥a+ b∥2
A ≤ 2 ∥a∥2

A + 2 ∥b∥A for any PSD matrix A;

the second last inequality uses η ≤ λ
6L

; and the last inequality is due to (C.2).

The following lemma bounds the sum of the error term ∥ϵt∥2 before the stopping time τ .

Since its proof is complicated, we defer it in Appendix C.1.3.

Lemma C.1.6. If G ≥ 2σ and η ≤ min
{

r
D
, λ3/2β

6L
√

G
, σβ

DL

}
, with probability 1 − δ,

τ−1∑
t=1

∥ϵt∥2 − λ

8G ∥∇f(xt)∥2 ≤ 8σ2 (1/β + βT ) + 20σ2
√

(1/β2 + T ) log(1/δ).

130



Combining Lemma C.1.5 and Lemma C.1.6, we obtain the following useful lemma, which

simultaneously bounds f(xt) − f ∗ and ∑τ−1
t=1 ∥∇f(xt)∥2.

Lemma C.1.7. If G ≥ 2 max{λ, σ} and η ≤ min
{

r
D
, λ3/2β

6L
√

G
, σβ

DL

}
, then with probability at

least 1 − δ,

τ−1∑
t=1

∥∇f(xt)∥2 + 8G
η

(f(xτ ) − f ∗)

≤8G
ηλ

(
∆1λ+ 8σ2

(
η

β
+ ηβT

)
+ 20σ2η

√
(1/β2 + T ) log(1/δ)

)
.

Proof of Lemma C.1.7. By telescoping, Lemma C.1.5 implies

τ−1∑
t=1

2 ∥∇f(xt)∥2 − 8G
λ

∥ϵt∥2 ≤ 8G
η

(f(x1) − f(xτ )) ≤ 8∆1G

η
. (C.3)

Lemma C.1.6 could be written as

τ−1∑
t=1

8G
λ

∥ϵt∥2 − ∥∇f(xt)∥2 ≤ 8G
λ

(
8σ2 (1/β + βT ) + 20σ2

√
(1/β2 + T ) log(1/δ)

)
. (C.4)

(C.3) + (C.4) gives the desired result.

With Lemma C.1.7, we are ready to complete the contradiction argument and the

convergence analysis. Below we provide the proof of Theorem 4.2.1.

Proof of Theorem 4.2.1. According to Lemma C.1.7, there exists some event E with P(E) ≥

1 − δ, such that conditioned on E , we have

8G
η

(f(xτ ) − f ∗) ≤ 8G
ηλ

(
∆1λ+ 8σ2

(
η

β
+ ηβT

)
+ 20σ2η

√
(1/β2 + T ) log(1/δ)

)
=: I1.

(C.5)

131



By the definition of τ , if τ ≤ T , we have

8G
η

(f(xτ ) − f ∗) > 8GF
η

= 4G3

ηL
=: I2.

Based on Lemma C.1.4, we have I1 ≤ I2, which leads to a contradiction. Therefore, we must

have τ = T + 1 conditioned on E . Then, Lemma C.1.7 also implies that under E ,

1
T

T −1∑
t=1

∥∇f(xt)∥2 ≤I1

T
≤ ϵ2,

where the last inequality is due to Lemma C.1.4.

C.1.3 Proof of Lemma C.1.6

In order to prove Lemma C.1.6, we need the following several lemmas.

Lemma C.1.8. Denote γt−1 = (1 − αt)(ϵt−1 + ∇f(xt−1) − ∇f(xt)). If G ≥ 2σ and η ≤

min
{

r
D
, λ3/2β

6L
√

G

}
, we have for every 2 ≤ t ≤ τ ,

∥ϵt∥2 ≤
(

1 − αt

2

)
∥ϵt−1∥2 + λβ

16G ∥∇f(xt−1)∥2 + α2
tσ

2 + 2αt

〈
γt−1,∇f(xt, ξt) − ∇f(xt)

〉
.

Proof of Lemma C.1.8. According to the update rule (4.1), we have

ϵt =(1 − αt)(ϵt−1 + ∇f(xt−1) − ∇f(xt)) + αt(∇f(xt, ξt) − ∇f(xt))

=γt−1 + αt(∇f(xt, ξt) − ∇f(xt)). (C.6)

Since we choose η ≤ r
D

, by Lemma 4.3.1, we have ∥xt − xt−1∥ ≤ r if t ≤ τ . Therefore by

Lemma 2.2.1, for any 2 ≤ t ≤ τ ,

∥∇f(xt−1) − ∇f(xt)∥ ≤ L ∥xt − xt−1∥ ≤ ηL

λ
∥m̂t−1∥ ≤ ηL

λ
(∥∇f(xt−1)∥ + ∥ϵt−1∥) , (C.7)

132



Therefore

∥γt−1∥2 = ∥(1 − αt)ϵt−1 + (1 − αt)(∇f(xt−1) − ∇f(xt))∥2

≤(1 − αt)2 (1 + αt) ∥ϵt−1∥2 + (1 − αt)2
(

1 + 1
αt

)
∥∇f(xt−1) − ∇f(xt)∥2

≤(1 − αt) ∥ϵt−1∥2 + 1
αt

∥∇f(xt−1) − ∇f(xt)∥2

≤ (1 − αt) ∥ϵt−1∥2 + 2η2L2

λ2β

(
∥∇f(xt−1)∥2 + ∥ϵt−1∥2

)
≤
(

1 − αt

2

)
∥ϵt−1∥2 + λβ

16G ∥∇f(xt−1)∥2 ,

where the first inequality uses Young’s inequality ∥a+ b∥2 ≤ (1 + u) ∥a∥2 + (1 + 1/u) ∥b∥2 for

any u > 0; the second inequality is due to

(1 − αt)2 (1 + αt) = (1 − αt)(1 − α2
t ) ≤ (1 − αt),

(1 − αt)2
(

1 + 1
αt

)
= 1
αt

(1 − αt)2 (1 + αt) ≤ 1
αt

(1 − αt) ≤ 1
αt

;

the third inequality uses (C.7) and Young’s inequality; and in the last inequality we choose

η ≤ λ3/2β

6L
√

G
, which implies 2η2L2

λ2β
≤ λβ

16G
≤ β

2 ≤ αt

2 . Then by (C.6), we have

∥ϵt∥2 = ∥γt−1∥2 + 2αt

〈
γt−1,∇f(xt, ξt) − ∇f(xt)

〉
+ α2

t ∥∇f(xt, ξt) − ∇f(xt)∥2

≤
(

1 − αt

2

)
∥ϵt−1∥2 + λβ

16G ∥∇f(xt−1)∥2 + α2
tσ

2 + 2αt

〈
γt−1,∇f(xt, ξt) − ∇f(xt)

〉
.

Lemma C.1.9. Denote γt−1 = (1 − αt)(ϵt−1 + ∇f(xt−1) − ∇f(xt)). If G ≥ 2σ and η ≤

min
{

r
D
, σβ

DL

}
, with probability 1 − δ,

τ∑
t=2

αt

〈
γt−1,∇f(xt, ξt) − ∇f(xt)

〉
≤ 5σ2

√
(1 + β2T ) log(1/δ).

In order to prove Lemma C.1.9, we need the Azuma-Hoeffding inequality stated below

133



without proofs.

Lemma C.1.10 (Azuma-Hoeffding inequality). Let {Zt}t≥1 be a martingale with respect to

a filtration {Ft}t≥0. Assume that |Zt − Zt−1| ≤ ct almost surely for all t ≥ 0. Then for any

fixed T , with probability at least 1 − δ,

ZT − Z0 ≤

√√√√2
T∑

t=1
c2

t log(1/δ).

Now we are ready to prove Lemma C.1.9.

Proof of Lemma C.1.9. First note that

τ∑
t=2

αt

〈
γt−1,∇f(xt, ξt) − ∇f(xt)

〉
=

T∑
t=2

αt

〈
γt−11τ≥t,∇f(xt, ξt) − ∇f(xt)

〉
.

Since τ is a stopping time, we know that 1τ≥t is a function of {ξs}s<t. Also, by definition, we

know γt−1 is a function of {ξs}s<t. Then, denoting

Xt = αt

〈
γt−11τ≥t,∇f(xt, ξt) − ∇f(xt)

〉
,

we know that Et−1[Xt] = 0, which implies {Xt}t≤T is a martingale difference sequence. Also,

by Assumption 4.2 and Lemma C.1.3, we can show that for all 2 ≤ t ≤ T ,

|Xt| ≤ αtσ ∥γt−11τ≥t∥ ≤ 2αtσ
2.

Then by the Azuma-Hoeffding inequality (Lemma C.1.10), we have with probability at least

1 − δ,

∣∣∣∣∣
T∑

t=2
Xt

∣∣∣∣∣ ≤ 2σ2

√√√√2
T∑

t=2
α2

t log(1/δ) ≤ 5σ2
√

(1 + β2T ) log(1/δ),

where in the last inequality we use Lemma C.1.2.

134



Then we are ready to prove Lemma C.1.6.

Proof of Lemma C.1.6. By Lemma C.1.8, we have for every 2 ≤ t ≤ τ ,

β

2 ∥ϵt−1∥2 ≤ αt

2 ∥ϵt−1∥2 ≤ ∥ϵt−1∥2 − ∥ϵt∥2 + λβ

16G ∥∇f(xt−1)∥2 + α2
tσ

2

+ 2αt

〈
γt−1,∇f(xt, ξt) − ∇f(xt)

〉
.

Taking a summation over t from 2 to τ , we have

τ∑
t=2

β

2 ∥ϵt−1∥2 − λβ

16G ∥∇f(xt−1)∥2 ≤ ∥ϵ1∥2 − ∥ϵτ ∥2 + σ2
τ∑

t=2
α2

t + 10σ2
√

(1 + β2T ) log(1/δ)

≤4σ2(1 + β2T ) + 10σ2
√

(1 + β2T ) log(1/δ),

where the first inequality uses Lemma C.1.9; and the second inequality uses Lemma C.1.2

and ∥ϵ1∥2 = ∥∇f(x1, ξ1) − ∇f(x1)∥2 ≤ σ2. Then we complete the proof by multiplying both

sides by 2/β.

C.1.4 Omitted proofs for Adam

In this section, we provide all the omitted proofs for Adam including those of Lemma 4.3.1

and all the lemmas in Appendix C.1.1.

Proof of Lemma 4.3.1. According to Lemma C.1.1, if t < τ ,

∥xt+1 − xt∥ ≤ η

λ
∥m̂t∥ ≤ η(G+ σ)

λ
≤ 2ηG

λ
.

Proof of Lemma C.1.1. By definition of τ , we have ∥∇f(xt)∥ ≤ G if t < τ . Then As-

sumption 4.2 directly implies ∥∇f(xt, ξt)∥ ≤ G + σ. ∥m̂t∥ can be bounded by a standard

induction argument as follows. First note that ∥m̂1∥ = ∥∇f(x1, ξ1)∥ ≤ G + σ. Supposing

135



∥m̂k−1∥ ≤ G+ σ for some k < τ , then we have

∥m̂k∥ ≤ (1 − αk) ∥m̂k−1∥ + αk ∥∇f(xk, ξk)∥ ≤ G+ σ.

Then we can show v̂t ⪯ (G+σ)2 in a similar way noting that (∇f(xt, ξt))2 ⪯ ∥∇f(xt, ξt)∥2 ≤

(G+ σ)2. Given the bound on v̂t, it is straight forward to bound the stepsize ht.

Proof of Lemma C.1.2. First, when t ≥ 1/β, we have (1 − β)t ≤ 1/e. Therefore,

∑
1/β≤t≤T

(1 − (1 − β)t)−2 ≤ (1 − 1/e)−2T ≤ 3T.

Next, note that when t < 1/β, we have (1 − β)t ≤ 1 − 1
2βt. Then we have

∑
2≤t<1/β

(1 − (1 − β)t)−2 ≤ 4
β2

∑
t≥2

t−m ≤ 3
β2 .

Therefore we have ∑T
t=2 α

2
t ≤ 3(1 + β2T ).

Proof of Lemma C.1.3. We prove ∥ϵt∥ ≤ 2σ for all t ≤ τ by induction. First, note that for

t = 1, we have

∥ϵ1∥ = ∥∇f(x1, ξ1) − ∇f(x1)∥ ≤ σ ≤ 2σ.

Now suppose ∥ϵt−1∥ ≤ 2σ for some 2 ≤ t ≤ τ . According to the update rule (4.1), we have

ϵt =(1 − αt)(ϵt−1 + ∇f(xt−1) − ∇f(xt)) + αt(∇f(xt, ξt) − ∇f(xt)),

which implies

∥ϵt∥ ≤ (2 − αt)σ + ∥∇f(xt−1) − ∇f(xt)∥ .

Since we choose η ≤ r
D

, by Lemma 4.3.1, we have ∥xt − xt−1∥ ≤ ηD ≤ r if t ≤ τ . Therefore

136



by Lemma 2.2.1, we have for any 2 ≤ t ≤ τ ,

∥∇f(xt) − ∇f(xt−1)∥ ≤ L ∥xt − xt−1∥ ≤ηDL ≤ σαt,

where the last inequality uses the choice of η and β ≤ αt. Therefore we have ∥ϵt∥ ≤ 2σ which

completes the induction. Then it is straight forward to show

∥γt−1∥ ≤ (1 − αt) (2σ + αtσ) ≤ 2σ.

Proof of Lemma C.1.4. We first list all the related parameter choices below for convenience.

G ≥ max
{

2λ, 2σ,
√
C1∆1L0, (C1∆1Lρ)

1
2−ρ

}
, β ≤ min

{
1, c1λϵ

2

σ2G
√
ι

}
,

η ≤ c2 min
{
rλ

G
,
σλβ

LG
√
ι
,
λ3/2β

L
√
G

}
, T = max

{
1
β2 ,

C2∆1G

ηϵ2

}
.

We will show I1/I2 ≤ 1 first. Note that if denoting W = 2L
λG2 , we have

I1/I2 = W∆1λ+ 8Wσ2
(
η

β
+ ηβT

)
+ 20Wσ2

√
(η2/β2 + η2T )ι,

Below are some facts that can be easily verified given the parameter choices.

(a) By the choice of G, we have G2 ≥ 4∆1(L0 + 4LρG
ρ) ≥ 4∆1L for large enough C1, which

implies W ≤ 1
2∆1λ

.

(b) By the choice of T , we have ηβT ≤ η
β

+ C2∆1Gβ
ϵ2 .

(c) By the choice of T , we have η2T = max
{(

η
β

)2
, C2η∆1G

ϵ2

}
≤
(

η
β

)2
+ C2∆1σβ

ϵ2 · η
β

≤
3
2

(
η
β

)2
+ 1

2

(
C2∆1σβ

ϵ2

)2
.

(d) By the choice of η, we have η/β ≤ c2σλ
LG

√
ι
, which implies Wσ2√ι · η

β
≤ 3c2σ3

G3 ≤ 1
200 for

small enough c2.

137



(e) By the choice of β and (a), we have W σ2∆1G
√

ιβ
ϵ2 ≤ σ2G

√
ιβ

2λϵ2 ≤ 1
100C2

for small enough c1.

Therefore,

I1/I2 ≤1
2 + 8Wσ2

(
2η
β

+ C2∆1Gβ

ϵ2

)
+ 20Wσ2√ι


√√√√5η2

2β2 + 1
2

(
C2∆1σβ

ϵ2

)2


≤1
2 + 48Wσ2√ι · η

β
+ 24C2Wσ2∆1G

√
ιβ

ϵ2

≤1,

where the first inequality is due to Facts (a-c); the second inequality uses σ ≤ G, ι ≥ 1, and
√
a+ b ≤

√
a+

√
b for a, b ≥ 0; and the last inequality is due to Facts (d-e).

Next, we will show I1/T ≤ ϵ2. We have

I1/T =8G∆1

ηT
+ 64σ2G

λβT
+ 64σ2Gβ

λ
+ 160σ2G

√
ι

λ

√
1

β2T 2 + 1
T

≤8ϵ2

C2
+ 224σ2G

√
ι

λβT
+ 64σ2Gβ

λ
+ 160σ2G

√
ι

λ
√
T

≤8ϵ2

C2
+ 450σ2G

√
ιβ

λ

=
( 8
C2

+ 450c1

)
ϵ2

≤ϵ2,

where in the first inequality we use T ≥ C2∆1G
ηϵ2 and

√
a+ b ≤

√
a +

√
b for a, b ≥ 0; the

second inequality uses T ≥ 1
β2 ; the second equality uses the parameter choice of β; and in

the last inequality we choose a large enough C2 and small enough c1.

138



C.1.5 Proof of Theorem 4.2.2

Proof of Theorem 4.2.2. We define stopping time τ as follows

τ1 := min{t | f(xt) − f ∗ > F} ∧ (T + 1),

τ2 := min{t | ∥∇f(xt) − ∇f(xt, ξt)∥ > σ} ∧ (T + 1),

τ := min{τ1, τ2}.

Then it is straightforward to verify that τ1, τ2, τ are all stopping times.

Since we want to show P(τ ≤ T ) is small, noting that {τ ≤ T} = {τ = τ1 ≤ T} ∪ {τ =

τ2 ≤ T}, it suffices to bound both P(τ = τ1 ≤ T ) and P(τ = τ2 ≤ T ).

First, we know that

P(τ = τ2 ≤ T ) ≤P(τ2 ≤ T )

=P

 ⋃
1≤t≤T

∥∇f(xt) − ∇f(xt, ξt)∥ > σ


≤

∑
1≤t≤T

P (∥∇f(xt) − ∇f(xt, ξt)∥ > σ)

≤
∑

1≤t≤T

E [Pt−1 (∥∇f(xt) − ∇f(xt, ξt)∥ > σ)]

≤
∑

1≤t≤T

E
[
2e− σ2

2R2

]

=2Te− σ2
2R2

≤δ/2,

where the fourth inequality uses Assumption 4.3; and the last inequality uses σ =

R
√

2 log(4T/δ).

139



Next, if τ = τ1 ≤ T , by definition, we have f(xτ ) − f ∗ > F , or equivalently,

8G
η

(f(xτ ) − f ∗) > 8GF
η

= 4G3

ηL
=: I2.

On the other hand, since for any t < τ , under the new definition of τ , we still have

f(xt) − f ∗ ≤ F, ∥f(xt)∥ ≤ G, ∥∇f(xt) − ∇f(xt, ξt)∥ ≤ σ.

Then we know that Lemma C.1.7 still holds because all of its requirements are still satisfied,

i.e., there exists some event E with P(E) ≤ δ/2, such that under its complement Ec,

τ−1∑
t=1

∥∇f(xt)∥2 + 8G
η

(f(xτ ) − f ∗) ≤ 8G
ηλ

(
∆1λ+ 8σ2

(
η

β
+ ηβT

)
+ 20σ2η

√
(1/β2 + T )ι

)

=: I1.

By Lemma C.1.4, we know I1 ≤ I2, which suggests that Ec ∩ {τ = τ1 ≤ T} = ∅, i.e.,

{τ = τ1 ≤ T} ⊂ E . Then we can show

P(E ∪ {τ ≤ T}) ≤ P(E) + P(τ = τ2 ≤ T ) ≤ δ.

Therefore,

P(Ec ∩ {τ = T + 1}) ≥ 1 − P(E ∪ {τ ≤ T}) ≥ 1 − δ,

and under the event Ec ∩ {τ = T + 1}, we have τ = T + 1 and

1
T

t∑
t=1

∥∇f(xt)∥2 ≤ I1/T ≤ ϵ2,

where the last inequality is due to Lemma C.1.4.

140



C.2 Convergence Anlaysis of VRAdam

In this section, we provide detailed convergence analysis of VRAdam and prove Theorem 4.4.2.

To do that, we first provide some technical definitions2. Denote

ϵt :=mt − ∇f(xt)

as the deviation of the momentum from the actual gradient. From the update rule in

Algorithm 3, we can write

ϵt = (1 − β)ϵt−1 +Wt, (C.8)

where we define

Wt :=∇f(xt, ξt) − ∇f(xt) − (1 − β) (∇f(xt−1, ξt) − ∇f(xt−1)) .

Let G be the constant defined in Theorem 4.4.2 and denote F := G2

2(L0+Lρ(2G)ρ) . We define the

following stopping times as discussed in Section 4.4.1.

τ1 := min{t | f(xt) − f ∗ > F} ∧ (T + 1),

τ2 := min{t | ∥ϵt∥ > G} ∧ (T + 1), (C.9)

τ := min{τ1, τ2}.

It is straight forward to verify that τ1, τ2, τ are all stopping times. Then if t < τ , we have

f(xt) − f ∗ ≤ F, ∥∇f(xt)∥ ≤ G, ∥ϵt∥ ≤ G.

2Note that the same symbol for Adam and VRAdam may have different meanings.

141



Then we can also bound the update ∥xt+1 − xt∥ ≤ ηD where D = 2G/λ if t < τ (see

Lemma C.2.3 for the details). Finally, we consider the same definition of r and L as those for

Adam. Specifically,

L := L0 + Lρ(2G)ρ, r := r(G) = G/L. (C.10)

C.2.1 Useful lemmas

We first list several useful lemmas in this section without proofs. Their proofs are deferred

later in Appendix C.2.3.

To start with, we provide a lemma on the local smoothness of each component function

f(·, ξ) when the gradient of the objective function f is bounded.

Lemma C.2.1. For any constant G ≥ σ and two points x ∈ X , y ∈ Rd such that ∥∇f(x)∥ ≤

G and ∥y − x∥ ≤ r/2, we have y ∈ X and

∥∇f(y) − ∇f(x)∥ ≤ L ∥y − x∥ ,

∥∇f(y, ξ) − ∇f(x, ξ)∥ ≤ 4L ∥y − x∥ , ∀ξ,

f(y) ≤ f(x) +
〈
∇f(x), y − x

〉
+ 1

2L ∥y − x∥2 ,

where r and L are defined in (C.10).

With the new definition of stopping time τ in (C.9), all the quantities in Algorithm 3 are

well bounded before τ . In particular, the following lemma holds.

Lemma C.2.2. If t < τ , we have

∥∇f(xt)∥ ≤ G, ∥∇f(xt, ξt)∥ ≤ G+ σ, ∥mt∥ ≤ 2G,

v̂t ⪯ (G+ σ)2,
η

G+ σ + λ
⪯ ht ⪯ η

λ
.

142



Next, we provide the following lemma which bounds the update at each step before time

τ .

Lemma C.2.3. if t < τ , ∥xt+1 − xt∥ ≤ ηD where D = 2G/λ.

The following lemma bounds ∥Wt∥ when t ≤ τ .

Lemma C.2.4. If t ≤ τ , G ≥ 2σ, and η ≤ r
2D

,

∥Wt∥ ≤ βσ + 5ηL
λ

(∥∇f(xt−1)∥ + ∥ϵt−1∥) .

Finally, we present some inequalities regarding the parameter choices, which will simplify

the calculations later.

Lemma C.2.5. Under the parameter choices in Theorem 4.4.2, we have

2∆1

F
≤ δ

4 ,
λ∆1β

ηG2 ≤ δ

4 , ηβT ≤ λ∆1

8σ2 , η ≤ λ3/2

40L

√
β

G
.

C.2.2 Proof of Theorem 4.4.2

Before proving the theorem, we will need to present several important lemmas. First, note

that the descent lemma still holds for VRAdam.

Lemma C.2.6. If t < τ , choosing G ≥ σ + λ and η ≤ min
{

r
2D
, λ

6L

}
, we have

f(xt+1) − f(xt) ≤ − η

4G ∥∇f(xt)∥2 + η

λ
∥ϵt∥2 .

Proof of Lemma C.2.6. The proof is essentially the same as that of Lemma C.1.5.

Lemma C.2.7. Choose G ≥ max {2σ, 2λ}, S1 ≥ 1
2β2T

, and η ≤ min
{

r
2D
, λ3/2

40L

√
β
G

}
. We have

E
[

τ−1∑
t=1

β

2 ∥ϵt∥2 − λβ

16G ∥∇f(xt)∥2
]

≤ 4σ2β2T − E[∥ϵτ ∥2].

143



Proof of Lemma C.2.7. By Lemma C.2.4, we have

∥Wt∥2 ≤2σ2β2 + 100η2L2

λ2

(
∥∇f(xt−1)∥2 + ∥ϵt−1∥2

)
≤2σ2β2 + λβ

16G
(
∥∇f(xt−1)∥2 + ∥ϵt−1∥2

)
,

where in the second inequality we choose η ≤ λ3/2

40L

√
β
G

. Therefore, noting that λβ
16G

≤ β/2, by

(C.8), we have

∥ϵt∥2 =(1 − β)2 ∥ϵt−1∥2 + ∥Wt∥2 + (1 − β)
〈
ϵt−1,Wt

〉

≤(1 − β/2) ∥ϵt−1∥2 + λβ

16G ∥∇f(xt−1)∥2 + 2σ2β2 + (1 − β)
〈
ϵt−1,Wt

〉
.

Taking a summation over 2 ≤ t ≤ τ and re-arranging the terms, we get

τ−1∑
t=1

β

2 ∥ϵt∥2 − λβ

16G ∥∇f(xt)∥2 ≤ ∥ϵ1∥2 − ∥ϵτ ∥2 + 2σ2β2(τ − 1) + (1 − β)
τ∑

t=2

〈
ϵt−1,Wt

〉
.

Taking expectations on both sides, noting that

E
[

τ∑
t=2

〈
ϵt−1,Wt

〉]
= 0

by the Optional Stopping Theorem (Lemma B.5.1), we have

E
[

τ−1∑
t=1

β

2 ∥ϵt∥2 − λβ

16G ∥∇f(xt)∥2
]

≤ 2σ2β2T + E[∥ϵ1∥2] − E[∥ϵτ ∥2] ≤ 4σ2β2T − E[∥ϵτ ∥2],

where in the second inequality we choose S1 ≥ 1
2β2T

which implies E[∥ϵ1∥2] ≤ σ2/S1 ≤

2σ2β2T .

Lemma C.2.8. Under the parameter choices in Theorem 4.4.2, we have

E
[

τ−1∑
t=1

∥∇f(xt)∥2
]

≤ 16G∆1

η
, E[f(xτ ) − f ∗] ≤ 2∆1, E[∥ϵτ ∥2] ≤ λ∆1β

η
.

144



Proof of Lemma C.2.8. First note that according to Lemma C.2.5, it is straight forward to

verify that the parameter choices in Theorem 4.4.2 satisfy the requirements in Lemma C.2.6

and Lemma C.2.7. Then by Lemma C.2.6, if t < τ ,

f(xt+1) − f(xt) ≤ − η

4G ∥∇f(xt)∥2 + η

λ
∥ϵt∥2 .

Taking a summation over 1 ≤ t < τ , re-arranging terms, multiplying both sides by 8G
η

, and

taking an expection, we get

E
[

τ−1∑
t=1

2 ∥∇f(xt)∥2 − 8G
λ

∥ϵt∥2
]

≤ 8G
η
E[f(x1) − f(xτ )] ≤ 8G

η
(∆1 − E[f(xτ ) − f ∗]) . (C.11)

By Lemma C.2.7, we have

E
[

τ−1∑
t=1

8G
λ

∥ϵt∥2 − ∥∇f(xt)∥2
]

≤ 64Gσ2βT

λ
− 16G

λβ
E[∥ϵτ ∥2] ≤ 8G∆1

η
− 16G

λβ
E[∥ϵτ ∥2],

(C.12)

where the last inequality is due to Lemma C.2.5. Then (C.11) + (C.12) gives

E
[

τ−1∑
t=1

∥∇f(xt)∥2
]

+ 8G
η
E[f(xτ ) − f ∗] + 16G

λβ
E[∥ϵτ ∥2] ≤ 16G∆1

η
,

which completes the proof.

With all the above lemmas, we are ready to prove the theorem.

Proof of Theorem 4.4.2. First note that according to Lemma C.2.5, it is straight forward to

verify that the parameter choices in Theorem 4.4.2 satisfy the requirements in all the lemmas

for VRAdam.

Then, first note that if τ = τ1 ≤ T , we know f(xτ ) − f ∗ > F by the definition of τ .

145



Therefore,

P(τ = τ1 ≤ T ) ≤ P(f(xτ ) − f ∗ > F ) ≤ E[f(xτ ) − f ∗]
F

≤ 2∆1

F
≤ δ

4 ,

where the second inequality uses Markov’s inequality; the third inequality is by Lemma C.2.8;

and the last inequality is due to Lemma C.2.5.

Similarly, if τ2 = τ ≤ T , we know ∥ϵτ ∥ > G. We have

P(τ2 = τ ≤ T ) ≤ P(∥ϵτ ∥ > G) = P(∥ϵτ ∥2 > G2) ≤ E[∥ϵτ ∥2]
G2 ≤ λ∆1β

ηG2 ≤ δ

4 ,

where the second inequality uses Markov’s inequliaty; the third inequality is by Lemma C.2.8;

and the last inequality is due to Lemma C.2.5. where the last inequality is due to Lemma C.2.5.

Therefore,

P(τ ≤ T ) ≤ P(τ1 = τ ≤ T ) + P(τ2 = τ ≤ T ) ≤ δ

2 .

Also, note that by Lemma C.2.8

16G∆1

η
≥E

[
τ−1∑
t=1

∥∇f(xt)∥2
]

≥P(τ = T + 1)E
[

T∑
t=1

∥∇f(xt)∥2
∣∣∣∣∣ τ = T + 1

]

≥1
2E

[
T∑

t=1
∥∇f(xt)∥2

∣∣∣∣∣ τ = T + 1
]
,

where the last inequality is due to P(τ = T + 1) = 1 − P(τ ≤ T ) ≥ 1 − δ/2 ≥ 1/2. Then we

can get

E
[

1
T

T∑
t=1

∥∇f(xt)∥2
∣∣∣∣∣ τ = T + 1

]
≤ 32G∆1

ηT
≤ δϵ2

2 .

Let F :=
{

1
T

∑T
t=1 ∥∇f(xt)∥2 > ϵ2

}
be the event of not converging to stationary points. By

146



Markov’s inequality, we have

P(F|τ = T + 1) ≤ δ

2 .

Therefore,

P(F ∪ {τ ≤ T}) ≤ P(τ ≤ T ) + P(F|τ = T + 1) ≤ δ,

i.e., with probability at least 1 − δ, we have both τ = T + 1 and 1
T

∑T
t=1 ∥∇f(xt)∥2 ≤ ϵ2.

C.2.3 Proofs of lemmas in Appendix C.2.1

Proof of Lemma C.2.1. This lemma is a direct corollary of Lemma 2.2.1. Note that by

Assumption 4.5, we have ∥∇f(x, ξ)∥ ≤ G+σ ≤ 2G. Hence, when computing the locality size

and smoothness constant for the component function f(·, ξ), we need to replace the constant

G in Lemma 2.2.1 with 2G, that is why we get a smaller locality size of r/2 and a larger

smoothness constant of 4L.

Proof of Lemma C.2.2. The bound on ∥mt∥ is by the definition of τ in (C.9). All other

quantities for VRAdam are defined in the same way as those in Adam (Algorithm 2), so they

have the same upper bounds as in Lemma C.1.1.

Proof of Lemma C.2.3.

∥xt+1 − xt∥ ≤ η ∥mt∥ /λ ≤ 2ηG/λ = ηD, (C.13)

where the first inequality uses the update rule in Algorithm 3 and ht ⪯ η/λ by Lemma C.2.2;

the second inequality is again due to Lemma C.2.2.

147



Proof of Lemma C.2.4. By the definition of Wt, it is easy to verify that

Wt = β(∇f(xt, ξt) − ∇f(xt)) + (1 − β)δt,

where

δt = ∇f(xt, ξt) − ∇f(xt−1, ξt) − ∇f(xt) + ∇f(xt−1).

Then we can bound

∥δt∥ ≤ ∥∇f(xt, ξt) − ∇f(xt−1, ξt)∥ + ∥∇f(xt) − ∇f(xt−1)∥

≤5L ∥xt − xt−1∥

≤5ηL
λ

(∥∇f(xt−1)∥ + ∥ϵt−1∥) ,

where the second inequality uses Lemma C.2.1; and the last inequality is due to ∥xt − xt−1∥ ≤

η ∥mt−1∥ /λ ≤ η (∥∇f(xt−1)∥ + ∥ϵt−1∥) /λ. Then, we have

∥Wt∥ ≤ βσ + 5ηL
λ

(∥∇f(xt−1)∥ + ∥ϵt−1∥) .

Proof of Lemma C.2.5. These inequalities can be obtained by direct calculations.

148



Appendix D

Proofs for Chapter 5

D.1 Useful lemmas on directional smoothness

In this section, we present two useful lemmas related to directional smoothness along with

their proofs. First, the following lemma essentially shows Taylor’s expansion in terms of

directional smoothness, which is very useful for obtaining descent lemmas in our convergence

analyses.

Lemma D.1.1. Under Assumptions 5.1 and 5.3, the following inequalities hold for all

x, y ∈ Rd.

〈
∇f(y) − ∇f(x), y − x

〉
≤ ℓx(y−x) ∥y − x∥2 + M

2 ∥y − x∥3 ,

f(y) − f(x) ≤
〈
∇f(x), y − x

〉
+ ℓx(y−x)

2 ∥y − x∥2 + M

6 ∥y − x∥3 .

149



Proof of Lemma D.1.1. Denote zα := (1 − α)x+ αy for 0 ≤ α ≤ 1. Then we have

〈
∇f(y) − ∇f(x), y − x

〉
=
∫ 1

0
(y − x)⊤∇2f(xα)(y − x) dα

=(y − x)⊤∇2f(x)(y − x) +
∫ 1

0
(y − x)⊤(∇2f(xα) − ∇2f(x))(y − x) dα (D.1)

≤ℓx(y−x) ∥y − x∥2 +
∫ 1

0
αM ∥y − x∥3 dα

≤ℓx(y−x) ∥y − x∥2 + M

2 ∥y − x∥3 ,

where the first inequality uses the definition of directional smoothness in Definition 5 and

Assumption 5.3. Therefore we can also obtain

f(y) − f(x) =
∫ 1

0

〈
∇f(xα), y − x

〉
dα

=
〈
∇f(x), y − x

〉
+
∫ 1

0

1
α

〈
∇f(xα) − f(x), xα − x

〉
dα

≤
〈
∇f(x), y − x

〉
+
∫ 1

0
αℓx(y−x) ∥y − x∥2 + α2M

2 ∥y − x∥3 dα

=
〈
∇f(x), y − x

〉
+ ℓx(y−x)

2 ∥y − x∥2 + M

6 ∥y − x∥3 ,

where the inequality uses (D.1).

The next lemma can be viewed as a generalized reversed Polyak-Lojasiewicz (PL) inequality

for functions satisfying our directional smoothness condition.

Lemma D.1.2. Suppose Assumptions 5.1, 5.2, and 5.3 hold. For any x ∈ Rd, denoting

Hλ(x) := diag
(

1
|∇f(x)|+λ

)
, we have

∥∇f(x)∥Hλ(x) ≤ 3√
λ

· max
{√

Lλ(f(x) − f ∗),M1/3(f(x) − f ∗)2/3
}
.

Proof of Lemma D.1.2. Note that by Lemma D.1.1, for any x ∈ Rd and α =

150



min
{

λ
Lλ
,
√

λ3/2

M∥∇f(x)∥Hλ(x)

}
, we have

f(x− αuλ(x)) − f(x) ≤ − α
〈
∇f(x), uλ(x)

〉
+ α2Lλ

2 ∥uλ(x)∥2 + α3M

6 ∥uλ(x)∥3

≤ − α ∥∇f(x)∥2
Hλ(x) + α2Lλ

2λ ∥∇f(x)∥2
Hλ(x) + α3M

6λ3/2 ∥∇f(x)∥3
Hλ(x)

≤ − α

3 ∥∇f(x)∥2
Hλ(x) ,

where in the second inequality we use
〈
∇f(x), uλ(x)

〉
= ∥∇f(x)∥2

Hλ(x) and ∥uλ(x)∥ ≤
1√
λ

∥∇f(x)∥Hλ(x) by the definition of uλ(x) and Hλ(x); and the last inequality is due to the

choice of α. Then noting that f(x) − f(x− αuλ(x)) ≤ f(x) − f ∗, we can show that

∥∇f(x)∥2
Hλ(x) ≤ 3(f(x) − f ∗)

α
= 3(f(x) − f ∗) max

Lλ

λ
,

√
M ∥∇f(x)∥Hλ(x)

λ3/2

 ,
which implies

∥∇f(x)∥Hλ(x) ≤ 3√
λ

· max
{√

Lλ(f(x) − f ∗),M1/3(f(x) − f ∗)2/3
}
.

D.2 Convergence of memoryless Adam

In this section, we provide the proof of Theorem 5.2.1 on the convergence of memoryless

Adam under directional smoothness assumptions. To simplify the notation, we denote

gt := ∇f(xt), ut := uλ(xt) = gt

|gt| + λ
, Ht := Hλ(xt) = diag

(
1

|gt| + λ

)
, (D.2)

where Hλ is defined in Lemma D.1.2. In what follows, we first present a descent lemma for

memoryless Adam.

Lemma D.2.1. Suppose Assumptions 5.1, 5.2, and 5.3 hold. Denote ∆1 := f(x1) − f ∗. For

151



any ϵ > 0, choose either ηt ≡ η = λ

2 max
{

Lλ,M2/3∆1/3
1

} or ηt = min
{

λ
2Lλ

,
√

λLλ

M∥gt∥Ht

}
. Then the

iterates generated by (5.5) satisfy

f(xt+1) − f(xt) ≤ − ηt

2 ∥gt∥2
Ht
, ∀t ≥ 1.

Proof of Lemma D.2.1. By Lemma D.1.1, for all t ≥ 1, we have

f(xt+1) − f(xt) ≤ − ηt

〈
gt, ut

〉
+ η2

tLλ

2 ∥ut∥2 + η3
tM

6 ∥ut∥3

≤ − ηt ∥gt∥2
Ht

+ η2
tLλ

2λ ∥gt∥2
Ht

+ η3
tM

6λ3/2 ∥gt∥3
Ht

(D.3)

≤ − ηt ∥gt∥2
Ht

(
3
4 − η2

tM

6λ3/2 ∥gt∥Ht

)
,

where the first inequality uses Lemma D.1.1; in the second inequality we use
〈
gt, ut

〉
= ∥gt∥2

Ht

and ∥ut∥ ≤ 1√
λ

∥gt∥Ht
by the definition of ut and Ht in (D.2); the third inequality is due to

ηt ≤ λ
2Lλ

based on either of our two choices of ηt. Next, we will bound η2
t M

6λ3/2 ∥gt∥Ht
for each

choice of ηt below.

• If ηt = min
{

λ
2Lλ

,
√

λLλ

M∥gt∥Ht

}
, then we know

η2
tM

6λ3/2 ∥gt∥Ht
≤ ηt · Lλ

6λ ≤ 1
12 ≤ 1

4 ,

which implies

f(xt+1) − f(xt) ≤ − ηt

2 ∥gt∥2
Ht
, ∀t ≥ 1.

152



• If ηt = η ≡ λ

2 max
{

Lλ,M2/3∆1/3
1

} , we have

η2
tM

6λ3/2 ∥gt∥Ht
≤

M
√
λ ∥gt∥Ht

24 max
{
L2

λ,M
4/3∆2/3

1

}
≤

max
{
M
√
Lλ(f(xt) − f ∗),M4/3(f(xt) − f ∗)2/3

}
8 max

{
L2

λ,M
4/3∆2/3

1

} , (D.4)

where the last inequality uses Lemma D.1.2. Then we will show f(xt) ≤ f(x1) for all

t ≥ 1 by induction. First note that f(x1) ≤ f(x1). Suppose f(xk) ≤ f(x1) for some

k ≥ 1. Also note that

M
√
Lλ∆1 ≤


L2

λ if Lλ ≥ M2/3∆1/3
1 ,

M4/3∆2/3
1 if Lλ ≤ M2/3∆1/3

1 .

In other words, M
√
Lλ∆1 ≤ max

{
L2

λ,M
4/3∆2/3

1

}
, and thus we have

max
{
M
√
Lλ(f(xk) − f ∗),M4/3(f(xk) − f ∗)2/3

}
≤ max

{
M
√
Lλ∆1,M

4/3∆2/3
1

}
≤ max{L2

λ,M
4/3∆2/3

1 }.

Therefore, we have

η2
tM

6λ3/2 ∥gk∥Hk
≤ 1

8 ≤ 1
4 ,

which implies

f(xk+1) − f(xk) ≤ − ηk

2 ∥gk∥2
Hk

≤ 0.

Then we know f(xk+1) ≤ f(x1) as well. By induction, the above inequality holds for

153



all k ≥ 1, which completes the proof.

Proof of Theorem 5.2.1. By Lemma D.2.1, we have for all t ≥ 1,

f(xt+1) − f(xt) ≤ − η

2 ∥gt∥2
Ht

≤ −η

2
∥gt∥2

∥gt∥ + λ
.

Define function α(z) := z2

z+λ
for z ≥ 0. By telescoping, we obtain

1
T

T∑
t=1

α(∥gt∥) ≤ 2(f(x1) − f(xT +1))
ηT

≤ 2∆1

ηT
≤ α(ϵ),

where the last inequality uses the choice of T . By standard calculations, we have

α′(z) = z2 + 2λz
(z + λ)2 ≥ 0, α′′(z) = − 2λ2

(z + λ)3 ≥ 0.

In other words, α is non-decreasing and convex. Since α is convex, by Jensen’s inequality, we

have

α

(
1
T

T∑
t=1

∥gt∥
)

≤ 1
T

T∑
t=1

α(∥gt∥) ≤ α(ϵ).

Since α is increasing, the above inequality implies

1
T

T∑
t=1

∥gt∥ = 1
T

T∑
t=1

∥∇f(xt)∥ ≤ ϵ.

Proof of Theorem 5.2.2. By Lemma D.2.1, we have for all t ≥ 1,

f(xt+1) − f(xt) ≤ − ηt

2 ∥gt∥2
Ht
.

154



Note that ηt = min
{

λ
2Lλ

,
√

λLλ

M∥gt∥Ht

}
.

• If ∥gt∥Ht
≥ L2

λ

M
√

λ
, then ηt =

√
λLλ

M∥gt∥Ht

. Therefore,

f(xt+1) − f(xt) ≤ −
√
λLλ

2M ∥gt∥Ht
≤ − L3

λ

M2 .

• Otherwise if ∥gt∥Ht
≤ L2

λ

M
√

λ
, then η = λ

2Lλ
. Then we know that

f(xt+1) − f(xt) ≤ − λ

4Lλ

∥gt∥2
Ht

≤ − λ

4Lλ

∥gt∥2

∥gt∥ + λ
=: − λ

4Lλ

α(∥gt∥),

where we denote α(z) := z2

z+λ
for z ≥ 0 as in the proof of Theorem 5.2.1.

Therefore we can show that for 1 ≤ t ≤ T

f(xt+1) − f(xt) ≤ − min
{
L3

λ

M2 ,
λ

4Lλ

α(∥gt∥)
}

≤ − min
{
L3

λ

M2 ,
λ

4Lλ

α
(

min
t≤T

∥gt∥
)}

,

where the last inequality uses the fact that the function α is increasing. By telescoping,

noting that f(x1) − f(xT ) ≤ ∆1, we have

∆1 ≥ T min
{
L3

λ

M2 ,
λ

4Lλ

α
(

min
t≤T

∥gt∥
)}

≥ min
{

∆1,
λT

4Lλ

α
(

min
t≤T

∥gt∥
)}

.

Therefore,

α
(

min
t≤T

∥gt∥
)

≤ 4Lλ

λT
≤ α(ϵ),

which implies mint≤T ∥gt∥ ≤ ϵ since α is increasing.

155



D.3 Convergence of RMSProp

In this section, we provide the rigorous proof of Theorem 5.2.3 on the convergence of RMSProp

under our directional smoothness assumptions. To simplify the notation, we denote the

following quantities in addition to (D.2).

ût := gt√
v̂t + λ

, Ĥt := diag
(

1√
v̂t + λ

)
. (D.5)

In order to apply Assumption 5.4 on the direction of update ût, we need to bound the

following quantity.

1
r

≤ Et :=
∥∥∥∥∥ ût

ut

∥∥∥∥∥
∞

=
∥∥∥∥∥ |gt| + λ√

v̂t + λ

∥∥∥∥∥
∞

≤ r.

Once Et is bounded as in the above inequality, we are able to obtain a desent lemma similar

to Lemma D.2.1 for memoryless Adam. Formally, we can show the following lemma.

Lemma D.3.1. If 1/r ≤ Et ≤ r for all t ≤ k and choose ηt = min
{

λ
2RLλ

, R
√

λLλ√
rM∥gt∥Ht

}
, we

have

f(xt+1) − f(xt) ≤ − ηt

2r ∥gt∥2
Ht
, ∀t ≤ k.

Proof of Lemma D.3.1. For any given t ≤ k, since 1/r ≤ Et ≤ r, we know that 1
r
ût ⪯ ut ⪯ rût

by definition, which implies ℓxt(xt+1−xt) = ℓxt(ût) ≤ RLλ based on Assumption 5.4. Then

156



similar to what we have done in the proof of Theorem 5.2.1, we can show that

f(xt+1) − f(xt) ≤ − ηt

〈
gt, ût

〉
+ η2

tRLλ

2 ∥ût∥2 + η3
tM

6 ∥ût∥3

≤ − ηt ∥gt∥2
Ĥt

+ η2
tRLλ

2λ ∥gt∥2
Ĥt

+ η3
tM

6λ3/2 ∥gt∥3
Ĥt

≤ − ηt ∥gt∥2
Ĥt

(
3
4 − η2

tM

6λ3/2 ∥gt∥Ĥt

)
(D.6)

≤ − ηt ∥gt∥2
Ĥt

(
3
4 − η2

t

√
rM

6λ3/2 ∥gt∥Ht

)

where the first inequality uses Lemma D.1.1; in the second inequality we use
〈
gt, ût

〉
= ∥gt∥2

Ĥt

and ∥ût∥ ≤ 1√
λ

∥gt∥Ĥt
by the definition of ût and Ĥt in (D.5); the third inequality is due to

η ≤ λ
2RLλ

; the fourth inequality uses 1√
r

∥gt∥Ht
≤ ∥gt∥Ĥt

≤
√
r ∥gt∥Ht

as 1/r ≤ Et ≤ r.

Then note that by the choice of ηt = min
{

λ
2RLλ

, R
√

λLλ√
rM∥gt∥Ht

}
, we have

η2
t

√
rM

6λ3/2 ∥gt∥Ht
≤ ηt · RLλ

6λ ≤ 1
12 ≤ 1

4 ,

which implies

f(xt+1) − f(xt) ≤ − ηt

2 ∥gt∥2
Ĥt

≤ − ηt

2r ∥gt∥2
Ht
,

where the last inequality again use 1√
r

∥gt∥Ht
≤ ∥gt∥Ĥt

≤
√
r ∥gt∥Ht

as 1/r ≤ Et ≤ r.

Next, we will bound Et in the following lemma, which is the most challenging part in our

analysis of the convergence RMSProp.

Lemma D.3.2. Choose β ≤ 1
4(1 − 1/r)2 and ηt = min

{
R

√
λLλ√

rM∥gt∥Ht

, (1−1/r)λ2

3r2RLλ∥gt∥2
Ht

}
, then we

have 1/r ≤ Et ≤ r for all t ≥ 1.

Proof of Lemma D.3.2. We will prove this lemma using induction. First note that v̂1 = g2
1

by the update rule in Algorithm 4, which implies 1/r ≤ E1 = 1 ≤ r. Suppose 1/r ≤ Et ≤ r

157



for t < k. Based on the update rule in Algorithm 4, we also know

v̂k = 1 − β

1 − βk

k−1∑
i=0

βig2
k−i.

Therefore we have

v̂k − g2
k = 1 − β

1 − βk

k−1∑
i=0

βi(g2
k−i − g2

k)

= 1 − β

1 − βk

k−1∑
i=0

βi
i−1∑
j=0

(g2
k−j−1 − g2

k−j)

= 1 − β

1 − βk

k−2∑
j=0

(g2
k−j−1 − g2

k−j)
k−1∑

i=j+1
βi

=
k−2∑
j=0

(g2
k−j−1 − g2

k−j) · βj+1 1 − βk−j−1

1 − βk
.

Then we can show

∣∣∣v̂k − g2
k

∣∣∣ ≤
k−2∑
i=0

βi+1
∣∣∣g2

k−i−1 − g2
k−i

∣∣∣ .
Therefore, to bound |v̂k − g2

k|, it suffices to bound
∣∣∣g2

t − g2
t+1

∣∣∣ for each t < k.

• If |gt| ≤ |gt+1|, then obviously
∣∣∣g2

t − g2
t+1

∣∣∣ ≤ g2
t+1.

• Otherwise if |gt| > |gt+1|, then we have

∣∣∣g2
t − g2

t+1

∣∣∣ ≤2 |(gt+1 − gt)gt|

=2 |(gt+1 − gt)ût|
(√

v̂t + λ
)

=2
η

|(gt+1 − gt)(xt+1 − xt)|
(√

v̂t + λ
)

≤2r
η

|(gt+1 − gt)(xt+1 − xt)| (|gt| + λ) ,

where the last inequality is due to 1/r ≤ Et ≤ r for all t < k. Note that by Lemma D.1.1,

158



as ℓ(xt−xt+1) ≤ RLλ, we have

2r
η

|(gt+1 − gt)(xt+1 − xt)| ≤2RrLλ

η
∥xt − xt+1∥2 + rM

η
∥xt − xt+1∥3

=2ηRrLλ ∥ût∥2 + η2rM ∥ût∥3

≤2ηrRLλ

λ
∥gt∥2

Ĥt
+ η2rM

λ3/2 ∥gt∥3
Ĥt

≤2ηr2RLλ

λ
∥gt∥2

Ht
+ η2r5/2M

λ3/2 ∥gt∥3
Ht

≤3ηr2RLλ

λ
∥gt∥2

Ht

≤(1 − 1/r)λ.

where the first inequality uses Lemma D.1.1; in the second inequality is due to ∥ût∥ ≤
1√
λ

∥gt∥Ĥt
by the definition of ût and Ĥt in (D.5); the third inequality uses 1√

r
∥gt∥Ht

≤

∥gt∥Ĥt
≤

√
r ∥gt∥Ht

as 1/r ≤ Et ≤ r; the fourth inequality is due to ηt ≤ R
√

λLλ√
rM∥gt∥Ht

;

and the last inequality is due to ηt ≤ (1−1/r)λ2

3r2RLλ∥gt∥2
Ht

. Therefore, we know that

∣∣∣g2
t − g2

t+1

∣∣∣ ≤ (1 − 1/r)(λ |gt| + λ2) ≤ 2λ2 + 1
4(1 − 1/r)2 |gt|2 .

So far, we have shown that

∣∣∣g2
t − g2

t+1

∣∣∣ ≤ max{g2
t+1, (1 − 1/r)2(λ2 +

∣∣∣g2
t

∣∣∣)} ≤ g2
t+1 + 2λ2 + 1

4(1 − 1/r)2 |gt|2 .

Note that

k−2∑
i=0

βi+1g2
t−(i+1) ≤

k−1∑
i=0

βig2
t−i = 1 − βk

1 − β
v̂k ≤ v̂k

1 − β
,

k−2∑
i=0

βi+1g2
t−i ≤ β

k−1∑
i=0

βig2
t−i ≤ βv̂k

1 − β
,

k−2∑
i=0

βi+1 ≤ β

1 − β
.

159



Then we have

∣∣∣v̂k − g2
k

∣∣∣ ≤ 1
1 − β

(
β(2λ2 + v̂k) + 1

4(1 − 1/r)2v̂k

)
≤(1 − 1/r)2(v̂k + λ2).

Therefore,

|Ek − 1| =

∣∣∣√v̂k − |gk|
∣∣∣

√
v̂k + λ

≤

√
|v̂k − g2

k|
√
v̂k + λ

≤ (1 − 1/r)
√
v̂k + λ2

√
v̂k + λ

≤ (1 − 1/r),

which implies

1
r

≤ Ek ≤ 2 − 1
r

≤ r.

Then we complete the proof by induction.

With the above two lemmas, we are ready to prove Theorem 5.2.3.

Proof of Theorem 5.2.3. Combining Lemma D.3.1 and Lemma D.3.2, we know that for all

t ≥ 1,

f(xt+1) − f(xt) ≤ − ηt

2r ∥gt∥2
Ht
.

Note that

ηt = min

 λ

2RLλ

,
R

√
λLλ√

rM ∥gt∥Ht

,
(1 − 1/r)λ2

3r2RLλ ∥gt∥2
Ht

 ≥ min

 λ

2RLλ

,
C

∥gt∥2
Ht

 ,
where we denote

C = min
{

2R3L3
λ

rM2 ,
(1 − 1/r)λ2

3r2RLλ

}
.

160



Then we have

• If ∥gt∥2
Ht

≥ C · 2RLλ

λ
, then ηt ≥ C

∥gt∥2
Ht

. Therefore,

f(xt+1) − f(xt) ≤ − C

2r .

• Otherwise if ∥gt∥2
Ht

≤ C · 2RLλ

λ
, then ηt ≥ λ

2RLλ
. Then we know that

f(xt+1) − f(xt) ≤ − λ

4rRLλ

∥gt∥2
Ht

≤ − λ

4rRLλ

∥gt∥2

∥gt∥ + λ
=: − λ

4rRLλ

α(∥gt∥),

where we denote α(z) := z2

z+λ
for z ≥ 0 as in the proof of Theorem 5.2.1.

Therefore we can show that for 0 ≤ t ≤ T

f(xt+1) − f(xt) ≤ − min
{
C

2r ,
λ

4rRLλ

α(∥gt∥)
}

≤ − min
{
C

2r ,
λ

4rRLλ

α
(

min
t≤T

∥gt∥
)}

,

where the last inequality uses the fact that the function α is increasing. By telescoping,

noting that f(x1) − f(xT ) ≤ ∆1, we have

∆1 ≥ T min
{
C

2r ,
λ

4rRLλ

α
(

min
t≤T

∥gt∥
)}

≥ min
{

∆1,
λT

4rRLλ

α
(

min
t≤T

∥gt∥
)}

.

Therefore,

α
(

min
t≤T

∥gt∥
)

≤ 4rRLλ

λT
≤ α(ϵ),

which implies mint≤T ∥gt∥ ≤ ϵ since α is increasing.

161



D.4 Proofs related to the example defined in Section 5.3

We first repeat the definition of the example below for completeness. Let

ϕ(z) :=


ez if z ≤ 0,

1
2z

2 + z + 1 if z > 0.

Then our example objective function f : Rd → R with d ≥ 2 is defined as

f(x) := 1
α
ϕ(α · w(x)), where α > 0 and w(x) := x[1] + 1

d− 1
(
x[2] + · · · + x[d]

)
. (D.7)

Denote a :=
(
1, 1

d−1 , . . . ,
1

d−1

)⊤
. By standard calculations, we have

∇f(x) = max{αf(x), αw(x) + 1} · a =


αf(x) · a if w(x) ≤ 0,

(αw(x) + 1) · a if w(x) > 0.
(D.8)

∇2f(x) = max{α2f(x), α} · aa⊤ =


α2f(x) · aa⊤ if w(x) ≤ 0,

α · aa⊤ if w(x) > 0.
(D.9)

Then we are ready to prove Lemma 5.3.1 below.

Proof of Lemma 5.3.1. First note that ∇f(x) ∝ a. Then by standard calculations, we can

show that for any x ∈ Rd,

ℓx(∇f(x)) = max{α2f(x), α} ∥a∥2 =
∥∥∥∇2f(x)

∥∥∥ .
Therefore, by the definition of L and Lg, it is easy to verify that

L = Lg = α ∥a∥2 = αd

d− 1 .

162



Next, it is also easy to see that the following choice of M satisfies Assumption 5.3.

M = α2 ∥a∥3 =
(

d

d− 1

)3/2

α2 ≤ 3α2.

Next, we prove the bound on Lλ. Note that based on (D.8), we can denote

(p, q, . . . , q)⊤ := uλ(x) = ∇f(x)
|∇f(x)| + λ

.

First, for any x ∈ Rd such that w(x) > 0, we have

∇f(x) ⪰ a ⪰ (λ, . . . , λ)⊤.

Then it is easy to see that 1
2 ≤ p, q ≤ 1. Note that ∇2f(x) = α · aa⊤ when w(x) > 0. We

have

ℓx(uλ(x)) = α(a⊤uλ(x))2

∥uλ(x)∥2 = α(p+ q)2

p2 + (d− 1)q2 ≤ 16α
d
.

Next, we will bound ℓx(uλ(x)) when w(x) ≤ 0. To simplify the notation, we denote y :=

αf(x)/λ. Then according to (D.8), it is easy to verify that

p = y

y + 1 , q =
y

d−1
y

d−1 + 1 = y

y + d− 1 .

Note that p ≥ q ≥ 0, we can show that

ℓx(uλ(x)) = α2f(x) · (a⊤uλ(x))2

∥uλ(x)∥2 = αλy(p+ q)2

p2 + (d− 1)q2 ≤ 4αλyp2

p2 + (d− 1)q2 .

Note that w(x) ≤ 0 corresponds to 0 < y ≤ 1/λ. We will bound ℓx(uλ(x)) in the following

three cases.

163



• If 0 < y ≤ 1, we have

ℓx(uλ(x)) ≤ 4αλy ≤ 4αλ.

• If 1 ≤ y ≤ d− 1, we know that 1
2 ≤ p ≤ 1 and q ≥ y

2(d−1) . Then we have

ℓx(uλ(x)) ≤ 16αλy
1 + y2

d−1

≤ sup
z≥0

16αλz
1 + z2

d−1
≤ 8αλ

√
d− 1.

• If d− 1 ≤ y ≤ 1/λ, we know that 1
2 ≤ p, q ≤ 1

ℓx(uλ(x)) ≤ 4αp2

dq2 ≤ 16α
d
.

Therefore, we have

Lλ = sup
x
ℓx(uλ(x)) ≤ 8αmax

{
λ

√
d− 1, 2

d

}
.

Finally, we will show that Assumption 5.4 holds for any r, R > 1 satifying R ≥ r4. For any

v ∈ Rd satisfying 1
r
v ⪯ uλ(x) ≤ rv, we have

ℓx(v) = max
{
α2f(x), α

} (a⊤v)2

∥v∥2

≤r4 max
{
α2f(x), α

} (a⊤uλ(x))2

∥uλ(x)∥2

=r4ℓx(uλ(x)) ≤ r4Lλ ≤ RLλ,

where the equality uses the fact that v ⪰ 1
r
uλ(x) ⪰ 0 and a ⪰ 0.

Now we are ready to prove Theorem 5.3.2.

164



Proof of Theorem 5.3.2. First, note that if we choose

d ≥ 8C2

c2 + 1, α = d− 1
d

· C, λ = 1
d− 1 ,

then based on Lemma 5.3.1, we have

L = Lg = C, Lλ ≤ c, M ≤ 3C2.

Now, we will bound the iteration complexities of gradient descent and memoryless Adam.

First, we formally define the minimum required number of iterations for an algorithm A to

achieve an ϵ-sub-optimal point as

TA := min
t≥1

{t | f(xt+1) − f ∗ ≤ ϵ} ,

where {xt}t≥1 are the iterates generated by A. To simplify the notation, we define the

following quantities for each time step t ≥ 1.

wt := w(xt) = a⊤xt, ft := f(xt) = 1
α
ϕ(αwt), δt := α · (wt − wt+1).

First, we will show a lower bound on Tgd for gradient descent defined by the following

update rule when wt ≤ 0.

xt+1 = xt − 1
L

∇f(xt) = xt − d− 1
d

ft · a.

Therefore, we have

δt = α · (wt − wt+1) = α a⊤(xt − xt+1) = αft ≥ 1. (D.10)

Then by induction, we know that if w1 ≤ 0, then wt ≤ wt−1 ≤ · · · ≤ w1 ≤ 0. Therefore, we

165



can also show that δt = αft ≤ 1 for all t ≥ 1, which implies

1 ≤ ft

ft+1
= eδt ≤ e < 4. (D.11)

Since ft = 1
α
ϕ(αwt) = 1

α
eαwt when wt ≤ 0, applying Taylor’s theorem on the function 1

α
eαw

as a function of w, we have

ft − ft+1 ≤eαwt+1 · (wt − wt+1) + αeαwt

2 (wt − wt+1)2

=ft+1δt + 1
2ftδ

2
t

≤α
(
ftft+1 + 1

2f
2
t

)
≤3αftft+1,

where the equality is by the definition of ft and δt; the second inequality uses (D.10) and the

fact that δt ≤ 1; and the last inequality is due to (D.11). Dividing both sides by ftft+1, we

have

1
ft+1

− 1
ft

≤ 3α,

which implies

1
fTgd+1

≤ 1
f1

+ 3αTgd.

Therefore, to achieve fTgd+1 ≤ ϵ, we must have

Tgd ≥ 1
3α

(
1
ϵ

− 1
f1

)
.

166



For a small enough ϵ ≤ f1/2, we have

Tgd ≥ 1
3αϵ.

Next, we will prove an upper bound on Tma for memoryless Adam defined by the following

update rule.

xt+1 = xt − ηuλ(xt),

where η = λ
Lλ

= 1
8α

√
d−1 ≤ 1

8α
. With standard calculations, we can obtain

δt = α · (wt − wt+1) = ηα2ft

αft + λ
+ ηα2ft

αft + (d− 1)λ ≥ ηα2ft

αft + λ
. (D.12)

It is easy to see that 0 ≤ δt ≤ 2ηα ≤ 1
4 . Then similar to our analysis for gradient descent,

we can easily show that both wt and ft are non-increasing with t by induction. Then, by

Taylor’s theorem on the function 1
α
eαw as a function of w, we have

ft − ft+1 ≥eαwt · (wt − wt+1) + αeαwt

2 (wt − wt+1)2

=ftδt − 1
2ftδ

2
t

≥1
2ftδt

≥ ηα2f 2
t

2(αft + λ) ,

where the equality is by the definition of ft and δt; the second inequality is due to δt ≤ 1/4;

and the last inequality is due to (D.12). Define

τ = min{t | ft < λ/α}.

167



Then when t < τ , we have ft ≥ λ/α and therefore

ft − ft+1 ≥ ηα

4 ft,

which implies

ft+1 ≤
(

1 − ηα

4

)
ft ≤ e−ηα/4ft ≤ · · · ≤ e−ηα(t+1)/4f1.

Also note that fτ−1 ≥ λ/α. We can show that

τ ≤ 1 + 4Lλ log(αf1/λ)
αλ

.

On that other hand, if t ≥ τ , we know that ft < λ/α and thus

ft − ft+1 ≥ ηα2f 2
t

4λ ≥ ηα2ftft+1

4λ .

Dividing both sides by ftft+1, we have

1
ft+1

− 1
ft

≥ ηα2

4λ .

Therefore we have

1
fTma

− 1
fτ

≥ ηα2

4λ (Tma − τ).

As fTma ≥ ϵ, we have

Tma ≤1 + τ + 4λ
ηα2

(
ϵ−1 − λ−1

)
≤2 + 32

√
d− 1 log(α(d− 1)f1) + 32

αϵ
√
d− 1

.

168



For a small enough ϵ satifying ϵ ≤ 1
α

√
d−1+α(d−1) log(α(d−1)f1) , we have

Tma ≤ 64
αϵ

√
d− 1

≤ 32
αϵ

· c
C
.

Therefore we have shown Tgd/Tma ≥ 96C/c which completes the proof.

169



170



Bibliography

Kwangjun Ahn, Xiang Cheng, Minhak Song, Chulhee Yun, Ali Jadbabaie, and Suvrit Sra.
Linear attention is (maybe) all you need (to understand transformer optimization). arXiv
preprint arXiv:2310.01082, 2023.

Kwangjun Ahn, Zhiyu Zhang, Yunbum Kook, and Yan Dai. Understanding adam optimizer
via online learning of updates: Adam is ftrl in disguise, 2024.

Zeyuan Allen-Zhu and Elad Hazan. Variance reduction for faster non-convex optimization.
In International conference on machine learning, pages 699–707. PMLR, 2016.

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Wood-
worth. Lower bounds for non-convex stochastic optimization. Mathematical Programming,
199(1-2):165–214, 2023.

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding
stationary points i. Mathematical Programming, pages 1–50, 2017.

Congliang Chen, Li Shen, Fangyu Zou, and Wei Liu. Towards practical adam: Non-convexity,
convergence theory, and mini-batch acceleration. The Journal of Machine Learning Research,
23(1):10411–10457, 2022.

Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of
adam-type algorithms for non-convex optimization. arXiv preprint arXiv:1808.02941, 2018.

Ziyi Chen, Yi Zhou, Yingbin Liang, and Zhaosong Lu. Generalized-smooth nonconvex opti-
mization is as efficient as smooth nonconvex optimization. arXiv preprint arXiv:2303.02854,
2023.

Michael Crawshaw, Mingrui Liu, Francesco Orabona, Wei Zhang, and Zhenxun Zhuang. Ro-
bustness to unbounded smoothness of generalized signsgd. Advances in Neural Information
Processing Systems, 35:9955–9968, 2022.

Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex
sgd. ArXiv, abs/1905.10018, 2019.

171



Soham De, Anirbit Mukherjee, and Enayat Ullah. Convergence guarantees for rmsprop and
adam in non-convex optimization and an empirical comparison to nesterov acceleration.
arXiv: Learning, 2018.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient
method with support for non-strongly convex composite objectives. Advances in neural
information processing systems, 27, 2014.

Alexandre D’efossez, Léon Bottou, Francis R. Bach, and Nicolas Usunier. A simple convergence
proof of adam and adagrad. arXiv: Machine Learning, 2020.

Alexandre d’Aspremont, Damien Scieur, and Adrien Taylor. Acceleration methods.
Foundations and Trends® in Optimization, 5(1-2):1–245, 2021. ISSN 2167-3888.
doi:10.1561/2400000036. URL http://dx.doi.org/10.1561/2400000036.

Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-
convex optimization via stochastic path-integrated differential estimator. Advances in
neural information processing systems, 31, 2018.

Matthew Faw, Litu Rout, Constantine Caramanis, and Sanjay Shakkottai. Beyond uniform
smoothness: A stopped analysis of adaptive sgd. ArXiv, abs/2302.06570, 2023.

Sébastien Gadat and Ioana Gavra. Asymptotic study of stochastic adaptive algorithms in
non-convex landscape. The Journal of Machine Learning Research, 23(1):10357–10410,
2022.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex
stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, and Tianbao Yang. A novel convergence analysis
for algorithms of the adam family. ArXiv, abs/2112.03459, 2021.

Hideaki Iiduka. Theoretical analysis of adam using hyperparameters close to one without
lipschitz smoothness. Numerical Algorithms, pages 1–39, 2023.

Kaiqi Jiang, Dhruv Malik, and Yuanzhi Li. How does adaptive optimization impact local
neural network geometry? In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=gIG8LvTLuc.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive
variance reduction. In NIPS, 2013.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

Frederik Kunstner, Jacques Chen, Jonathan Wilder Lavington, and Mark Schmidt. Noise
is not the main factor behind the gap between sgd and adam on transformers, but sign
descent might be. arXiv preprint arXiv:2304.13960, 2023.

172

https://doi.org/10.1561/2400000036
http://dx.doi.org/10.1561/2400000036
https://openreview.net/forum?id=gIG8LvTLuc


Frederik Kunstner, Robin Yadav, Alan Milligan, Mark Schmidt, and Alberto Bietti. Heavy-
tailed class imbalance and why adam outperforms gradient descent on language models,
2024.

Lihua Lei, Cheng Ju, Jianbo Chen, and Michael I Jordan. Non-convex finite-sum optimization
via scsg methods. Advances in Neural Information Processing Systems, 30, 2017.

Zhize Li, Hongyan Bao, Xiangliang Zhang, and Peter Richtárik. Page: A simple and optimal
probabilistic gradient estimator for nonconvex optimization. In International conference
on machine learning, pages 6286–6295. PMLR, 2021.

Deyi Liu, Lam M Nguyen, and Quoc Tran-Dinh. An optimal hybrid variance-reduced algorithm
for stochastic composite nonconvex optimization. arXiv preprint arXiv:2008.09055, 2020.

Zijian Liu, Perry Dong, Srikanth Jagabathula, and Zhengyuan Zhou. Near-optimal high-
probability convergence for non-convex stochastic optimization with variance reduction.
arXiv preprint arXiv:2302.06032, 2023.

Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with
dynamic bound of learning rate. ArXiv, abs/1902.09843, 2019.

Julien Mairal. Optimization with first-order surrogate functions. In International Conference
on Machine Learning, pages 783–791. PMLR, 2013.

Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. Wiley-Interscience, 1983.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2003.

Yan Pan and Yuanzhi Li. Toward understanding why adam converges faster than sgd for
transformers. arXiv preprint arXiv:2306.00204, 2023.

Jiang Qian, Yuren Wu, Bojin Zhuang, Shaojun Wang, and Jing Xiao. Understanding
gradient clipping in incremental gradient methods. In International Conference on Artificial
Intelligence and Statistics, 2021.

Sashank J. Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola. Stochastic
variance reduction for nonconvex optimization. In Maria Florina Balcan and Kilian Q.
Weinberger, editors, Proceedings of The 33rd International Conference on Machine Learning,
volume 48 of Proceedings of Machine Learning Research, pages 314–323, New York, New
York, USA, 20–22 Jun 2016. PMLR. URL https://proceedings.mlr.press/v48/reddi16.html.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond.
ArXiv, abs/1904.09237, 2018.

Amirhossein Reisizadeh, Haochuan Li, Subhro Das, and Ali Jadbabaie. Variance-reduced
clipping for non-convex optimization. arXiv preprint arXiv:2303.00883, 2023.

173

https://proceedings.mlr.press/v48/reddi16.html


Nicolas Roux, Mark Schmidt, and Francis Bach. A stochastic gradient method with an expo-
nential convergence _rate for finite training sets. In F. Pereira, C.J. Burges, L. Bottou, and
K.Q. Weinberger, editors, Advances in Neural Information Processing Systems, volume 25.
Curran Associates, Inc., 2012. URL https://proceedings.neurips.cc/paper_files/paper/
2012/file/905056c1ac1dad141560467e0a99e1cf-Paper.pdf.

Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for
regularized loss minimization. Journal of Machine Learning Research, 14(1), 2013.

Naichen Shi, Dawei Li, Mingyi Hong, and Ruoyu Sun. Rmsprop converges with proper
hyper-parameter. In International Conference on Learning Representations, 2021.

Quoc Tran-Dinh, Nhan H Pham, Dzung T Phan, and Lam M Nguyen. Hybrid stochas-
tic gradient descent algorithms for stochastic nonconvex optimization. arXiv preprint
arXiv:1905.05920, 2019.

Bohan Wang, Yushun Zhang, Huishuai Zhang, Qi Meng, Zhi-Ming Ma, Tie-Yan Liu, and
Wei Chen. Provable adaptivity in adam. arXiv preprint arXiv:2208.09900, 2022.

Bohan Wang, Jingwen Fu, Huishuai Zhang, Nanning Zheng, and Wei Chen. Closing the gap
between the upper bound and lower bound of adam’s iteration complexity. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?id=yDvb3mlogA.

Ruiqi Wang and Diego Klabjan. Divergence results and convergence of a variance reduced
version of adam. ArXiv, abs/2210.05607, 2022.

Bohang Zhang, Jikai Jin, Cong Fang, and Liwei Wang. Improved analysis of clipping
algorithms for non-convex optimization. Advances in Neural Information Processing
Systems, 33:15511–15521, 2020a.

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping acceler-
ates training: A theoretical justification for adaptivity. arXiv preprint arXiv:1905.11881,
2019.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi,
Sanjiv Kumar, and Suvrit Sra. Why are adaptive methods good for attention models?
Advances in Neural Information Processing Systems, 33:15383–15393, 2020b.

Yushun Zhang, Congliang Chen, Naichen Shi, Ruoyu Sun, and Zhimin Luo. Adam can
converge without any modification on update rules. ArXiv, abs/2208.09632, 2022.

Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li, Ruoyu Sun, and Zhi-Quan Luo. Why
transformers need adam: A hessian perspective, 2024.

Shen-Yi Zhao, Yin-Peng Xie, and Wu-Jun Li. On the convergence and improvement of
stochastic normalized gradient descent. Science China Information Sciences, 64, 2021.

174

https://proceedings.neurips.cc/paper_files/paper/2012/file/905056c1ac1dad141560467e0a99e1cf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/905056c1ac1dad141560467e0a99e1cf-Paper.pdf
https://openreview.net/forum?id=yDvb3mlogA
https://openreview.net/forum?id=yDvb3mlogA


Dongruo Zhou, Jinghui Chen, Yuan Cao, Yiqi Tang, Ziyan Yang, and Quanquan Gu. On
the convergence of adaptive gradient methods for nonconvex optimization. arXiv preprint
arXiv:1808.05671, 2018a.

Zhiming Zhou, Qingru Zhang, Guansong Lu, Hongwei Wang, Weinan Zhang, and Yong
Yu. Adashift: Decorrelation and convergence of adaptive learning rate methods. ArXiv,
abs/1810.00143, 2018b.

Fangyu Zou, Li Shen, Zequn Jie, Weizhong Zhang, and Wei Liu. A sufficient condition for
convergences of adam and rmsprop. 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 11119–11127, 2018.

175


	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Overview of results
	1.2 Related work
	1.3 Preliminaries
	1.3.1 Standard assumptions on the objective function


	2 Generalized smoothness
	2.1 Definitions
	2.2 Properties
	2.3 Examples

	3 Convergence of classical methods
	3.1 Convex setting
	3.1.1 Gradient descent
	3.1.2 Nesterov's accelerated gradient method

	3.2 Non-convex setting
	3.2.1 Gradient descent
	3.2.2 Stochastic gradient descent
	3.2.3 Reconciliation with existing lower bounds
	3.2.4 Lower bound


	4 Convergence of Adam
	4.1 Preliminaries
	4.1.1 Description of the Adam algorithm
	4.1.2 Assumptions

	4.2 Convergence results
	4.3 Analysis
	4.3.1 Bounding the gradients along the optimization trajectory
	4.3.2 Warm-up: analysis in the deterministic setting
	4.3.3 Extension to the stochastic setting

	4.4 Varaince-reduced Adam
	4.4.1 Analysis
	4.4.2 Convergence guarantees for VRAdam


	5 Directional smoothness
	5.1 Preliminaries
	5.2 Convergence results
	5.2.1 Memoryless Adam
	5.2.2 RMSProp
	5.2.3 Potential extensions

	5.3 Example
	5.4 Experimental results

	6 Conclusion and future work
	6.1 Summary
	6.2 Future works

	A Proofs for Chapter 2
	A.1 Justification of examples in Section 2.3
	A.2 Proof of Proposition 2.1.2
	A.3 Proofs of properties of generalized smoothness 

	B Proofs for Chapter 3
	B.1 Analysis of GD for convex functions
	B.2 Analysis of NAG for convex functions
	B.3 Analysis of NAG for strongly convex functions
	B.3.1 Useful lemmas
	B.3.2 Proof of Theorem B.3.1

	B.4 Analysis of GD for non-convex functions
	B.5 Analysis of SGD for non-convex functions
	B.6 Lower bound

	C Proofs for Chapter 4
	C.1 Covergence Analysis of Adam
	C.1.1 Useful lemmas for Adam
	C.1.2 Proof of Theorem 4.2.1
	C.1.3 Proof of Lemma C.1.6
	C.1.4 Omitted proofs for Adam
	C.1.5 Proof of Theorem 4.2.2

	C.2 Convergence Anlaysis of VRAdam
	C.2.1 Useful lemmas
	C.2.2 Proof of Theorem 4.4.2
	C.2.3 Proofs of lemmas in Appendix C.2.1


	D Proofs for Chapter 5
	D.1 Useful lemmas on directional smoothness
	D.2 Convergence of memoryless Adam
	D.3 Convergence of RMSProp
	D.4 Proofs related to the example defined in Section 5.3


