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ABSTRACT

This thesis explores ensemble methods in machine learning, a technique that builds a
predictive model by jointly training simpler base models. It examines three types of ensemble
methods: additive models, tree ensembles, and mixtures of experts. Each ensemble method
is characterized by a specific structure: additive models can involve base learners with single
or pairwise covariates, tree ensembles use a decision tree as a base learner, and mixtures of
experts typically employ neural networks. The focus of this thesis is on considering various
sparsity and structural constraints within these methods and develop optimization based
approaches to enhance training efficiency, inference, and/or interpretability.

In the first part, we consider additive models with interactions under component selection
constraints and additional structural constraints e.g., hierarchical interactions. We consider
different optimization based formulations and propose efficient algorithms to learn a good
subset of components. We develop two toolkits that are scalable to large number of samples
and large set of pairwise interactions.

In the second part, we consider tree ensemble learning. In this setting, we consider
flexible and efficient formulation of differentiable tree ensemble learning. We study flexible
loss functions, multitask learning etc. We also consider end-to-end feature selection in tree
ensembles, i.e., we perform feature selection while training of tree ensembles. This is in
contrast to popular tree ensemble learning toolkits, which perform post-training feature
selection based on feature importances. Our toolkit provides substantial improvements in
predictive performance for a desired feature budget.

In the third part, we consider sparse gating in mixture of experts. Sparse Mixture of
Experts is a paradigm where a subset of experts (typically neural networks) are activated
for each input sample. This is used to scale training as well as inference of large-scale vision
and language models. We consider multiple approaches to improve sparse gating in mixture
of expert models. Our new approaches show improvements in large-scale experiments on
machine translation as well as distillation of pre-trained models on natural language processing
tasks.

Thesis supervisor: Rahul Mazumder
Title: Associate Professor of Operation Research and Statistics
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Chapter 1

Introduction

Ensemble methods are an important class of machine learning methods. The idea of ensemble

learning is to build a prediction model by combining the strengths of a collection of simpler

base models. Ensemble learning can be broken down into two tasks: developing a population

of base learners as well as combining them to form the composite predictor. Ensemble learning

appears in different forms in statistical literature. In this thesis, we study three different

classes of ensembling methods: (i) additive models [93, 94], (ii) trees [30, 46, 100, 139] and

(iii) mixture of experts [131, 233]. All these models fit a model of the following form:

f(x) =
∑
i∈[m]

wi(x)fi(x). (1.1)

For additive models, each of wi(x) = 1, and each of the base learner fi depends nonlinearly

on a single covariate. This can be extended to pairwise interactions, where each of the base

learner fi can depend at most on two covariates. For tree ensembles, wi(x) = 1/m and each

base learner fi is a decision tree. In mixture of experts, w(x) is input-dependent and lies on

a simplex, and each of the base learner fi can be a neural network.

In particular, we study ensemble methods under various types of sparsity and structural

constraints. First, in additive models with interactions, we consider component selection

and other structural constraints such as hierarchy. We discuss these in Chapters 2, 3, and
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4. Second, in tree ensembles, we consider structural constraints e.g., sharing information

across tasks in multi-task learning, global feature selection across all trees in the ensemble etc.

We discuss these in Chapters 5 and 6. Third, in mixture of experts, we consider per-input

sparsity constraints such that only a subset of base learners (or experts) can be activated

for each input. We discuss these in Chapters 7 and 8. In all three cases above, we consider

ensemble learning with the perspective of efficient training and inference. Additionally many

of these constraints can also aid interpretability, engendering trust and may provide tools to

identify hidden issues and biases in data. We provide a summary of each chapter next.

Chapter 2: Generalized Additive Models with Interactions under Sparsity and

Structural Constraints. Generalized Additive Models (GAMs) are a family of flexible

and interpretable models with old roots in statistics. GAMs are often used with pairwise

interactions to improve model accuracy while still retaining flexibility and interpretability

but lead to computational challenges as we are dealing with order of p2 terms. It is desirable

to restrict the number of components (i.e., encourage sparsity) for easier interpretability,

and better computational and statistical properties. Earlier approaches, considering sparse

pairwise interactions, have limited scalability, especially when imposing additional structural

interpretability constraints. We propose a flexible GRAND-SLAMIN framework that can learn

GAMs with interactions under sparsity and additional structural constraints in a differentiable

end-to-end fashion. We customize first-order gradient-based optimization to perform sparse

backpropagation to exploit sparsity in additive effects for any differentiable loss function

in a GPU-compatible manner. Numerical experiments on real-world datasets show that

our toolkit performs favorably in terms of performance, variable selection and scalability

when compared with popular toolkits to fit GAMs with interactions. Our work expands the

landscape of interpretable modeling while maintaining prediction accuracy competitive with

non-interpretable black-box models.
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Chapter 3: Additive Models and Structured Interactions: Alternative Optimiza-

tion Approaches. We consider nonparametric additive models with small number of main

and pairwise interaction effects using ℓ0-based penalization. From a methodological viewpoint,

we propose efficient algorithms to approximately solve the optimization problem. We also

discuss variants that incorporate strong hierarchical interactions. Our algorithms extend

the computational frontiers of existing algorithms for sparse additive models, to be able to

handle datasets relevant for the application we consider in the next chapter.

Chapter 4: Additive Models and Structured Interactions: A Large-Scale Case

Study for Census Survey Response Prediction. In this chapter, we consider a large-

scale case study for Census Survey Response Prediction. In particular, we consider the

problem of predicting survey response rates using a family of flexible and interpretable

nonparametric models we develop in previous chapter. The study is motivated by the US

Census Bureau’s well-known ROAM application which uses a linear regression model trained

on the US Census Planning Database data to identify hard-to-survey areas. A crowdsourcing

competition [68] organized around ten years ago revealed that machine learning methods

based on ensembles of regression trees led to the best performance in predicting survey

response rates; however, the corresponding models could not be adopted for the intended

application due to their black-box nature. We consider nonparametric additive models with

interaction through our methods. We discuss and interpret findings from our model on the US

Census Planning Database. In addition to being useful from an interpretability standpoint,

our models lead to predictions that appear to be better than popular black-box machine

learning methods based on gradient boosting and feedforward neural networks – suggesting

that it is possible to have models that have the best of both worlds: good model accuracy

and interpretability.

Chapter 5: Tree Ensembles: Flexible Modeling and Efficient Training. In this

chapter, we consider flexible and scalable tree ensemble learning. Decision tree ensembles
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are widely used and competitive learning models. Despite their success, popular toolkits

for learning tree ensembles have limited modeling capabilities. For instance, these toolkits

support a limited number of loss functions and are restricted to single task learning. We

propose a flexible framework for learning tree ensembles, which goes beyond existing toolkits

to support arbitrary loss functions, missing responses, and multi-task learning. Our framework

builds on differentiable (a.k.a. soft) tree ensembles, which can be trained using first-order

methods. However, unlike classical trees, differentiable trees are difficult to scale. We

therefore propose a novel tensor-based formulation of differentiable trees that allows for

efficient vectorization on GPUs. We introduce FASTEL: a new toolkit (based on Tensorflow 2)

for learning differentiable tree ensembles. We perform experiments on many real open-source

and proprietary datasets, which demonstrate that our framework can lead to 100x more

compact and 23% more expressive tree ensembles than those obtained by popular toolkits.

Chapter 6: Tree Ensembles: End-to-end Feature Selection Approach for Learning

Skinny Trees. In this chapter, we propose a new optimization-based approach for feature

selection in tree ensembles, an important problem in statistics and machine learning. Popular

tree ensemble toolkits e.g., Gradient Boosted Trees and Random Forests support feature

selection post-training based on feature importance scores, while very popular, they are

known to have drawbacks. We propose Skinny Trees: an end-to-end toolkit for feature

selection in tree ensembles where we train a tree ensemble while controlling the number

of selected features. Our optimization-based approach learns an ensemble of differentiable

trees, and simultaneously performs feature selection using a grouped ℓ0-regularizer. We use

first-order methods for optimization and present convergence guarantees for our approach.

We use a dense-to-sparse regularization scheduling scheme that can lead to more expressive

and sparser tree ensembles. On 15 synthetic and real-world datasets, Skinny Trees can

achieve 1.5×− 620× feature compression rates, leading up to 10× faster inference over dense

trees, without any loss in performance. Skinny Trees lead to superior feature selection than
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many existing toolkits e.g., in terms of AUC performance for a target feature budget.

Chapter 7: Sparse Mixture of Experts: A Cardinality Constrained Routing

Approach with Trees and Local Search. The sparse Mixture-of-Experts (Sparse-MoE)

framework efficiently scales up model capacity in various domains, such as natural language

processing and vision. Sparse-MoEs select a subset of the “experts” (thus, only a portion of

the overall network) for each input sample using a sparse, trainable gate. Existing sparse gates

are prone to convergence and performance issues when training with first-order optimization

methods. In this paper, we introduce two improvements to current MoE approaches. First,

we propose a new sparse gate: COMET, which relies on a novel tree-based mechanism.

COMET is differentiable, can exploit sparsity to speed up computation, and outperforms

state-of-the-art gates. Second, due to the challenging combinatorial nature of sparse expert

selection, first-order methods are typically prone to low-quality solutions. To deal with this

challenge, we propose a novel, permutation-based local search method that can complement

first-order methods in training any sparse gate, e.g., Hash routing, Top-k, DSelect-k, and

COMET. We show that local search can help networks escape bad initializations or solutions.

We performed large-scale experiments on various domains, including recommender systems,

vision, and natural language processing. On standard vision and recommender systems

benchmarks, COMET+ (COMET with local search) achieves up to 13% improvement in

ROC AUC over popular gates, e.g., Hash routing and Top-k, and up to 9% over prior

differentiable gates e.g., DSelect-k. When Top-k and Hash gates are combined with local

search, we see up to 100× reduction in the budget needed for hyperparameter tuning.

Moreover, for language modeling, our approach improves over the state-of-the-art MoEBERT

model for distilling BERT on 5/7 GLUE benchmarks as well as SQuAD dataset.

Chapter 8: Sparse Mixture of Experts: An Effective Sampling-based Routing

Approach. The Sparse Mixture-of-Experts (Sparse-MoE) framework, an efficient paradigm

for increasing model capacity, employs a network of experts and a gate. The gate selectively

27



activates a few experts for each data example. Top-k style gates, common in this framework,

activate a fixed number of experts per example but face performance challenges due to the

non-continuous nature of gate. Although differentiable gates, as the one proposed in previous

chapter, overcome these issues, they do not maintain k-sparsity during training, limiting

their utility for efficient training. We introduce MOESART, a new k-sparse gating method

effective in both training and inference stages. MOESART innovatively learns an effective

k-sparse approximation of the traditional softmax gate, using sampling and a carefully

designed expert reweighting technique. We compare MOESART with state-of-the-art MoE

gates on 16 datasets from various domains, including recommender systems, vision, and

natural language processing. MOESART achieves up to 16% (relative) reduction in out-of-

sample loss on standard image datasets, and up to 15% (relative) improvement in AUC on

standard recommender systems, over many k-sparse gates. For a 1 billion MoE-Transformer,

MOESART also improves performance over Top-k gate by 2.1 BLEU points in German →

English translation task.

Chapter 9: Pruning Large Vision and Language Models. In a departure from the

previous chapters on ensemble learning, I also advised two junior PhD students (Xiang Meng,

Gabriel I. Afriat) on post-training pruning of large vision and language models for improving

inference efficiency of these models. These settings bring up interesting structural constraints.

We propose optimization based approaches to address these problems.
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Chapter 2

Generalized Additive Models with

Interactions under Sparsity and

Structural Constraints

2.1 Introduction

Many state-of-the-art learners e.g., tree ensembles, neural networks, kernel support vector

machines, can be difficult to interpret. There have been various efforts to derive some

post-training explainability from these models —see [34] for a survey. Post-hoc explainability

attempts to explain black-box prediction with interpretable instance-specific approximations

e.g, LIME [223] and SHAP [174]. However, such approximations are known to be unstable

[81, 147], expensive [235] and inaccurate [167]. Hence, it is desirable to consider modeling

approaches that are inherently interpretable.

Amongst classical approaches, there are some models that have inherent interpretability

e.g., Linear models, CART [29] and Generalized Additive Models (GAMs)[93]. GAMs [94],

which have old roots in statistics, are considered a front-runner in the context of interpretable

modeling. They consider an additive model of the main effects of the form: g(E[y]) =
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∑
j∈[p] fj(xj), where xj denotes the jth feature in input x ∈ Rp, fj is a univariate shape

function and g denotes the link function that adapts the model to various settings such as

regression or classification. GAMs are considered easy to interpret as the impact of each

feature can be understood via visualizing the corresponding shape function e.g., plotting

fj(xj) vs xj . However, such models often suffer in prediction performance when compared to

black-box methods e.g., deep neural networks (DNNs). This can be attributed in part to the

fact that GAMs do not consider interactions among covariates.

There has been some exciting work that aims to reduce this performance gap by considering

GAMs with pairwise interactions [see, for example, 41, 63, 66, 172, 216, 276, and the references

therein]. GAMs with pairwise interactions consider a model of the following form:

g(E[y]) =
∑
j∈[p]

fj(xj) +
∑

(j,k)∈I
fj,k(xj, xk) (2.1)

where fj,k is a bivariate shape function and I ⊆ {(1, 2), (1, 3), ..., (p− 1, p)} denotes the set of

all pairwise interactions. Under this model, fj(xj) is the j-main effect and fj,k(xj, xk) is the

(j, k)-th interaction effect. Pairwise interactions are considered interpretable as each of the

bivariate shape function fj,k can be visualized as a heatmap on an xj, xk-plane. Despite their

appeal, GAMs with pairwise interactions pose several challenges: (i) Learning all pairwise

interaction effects of the order of p2 lead to computational and statistical challenges. (ii)

Performing component selection such that only a few of the components {fj} and {fj,k} are

nonzero in an end-to-end fashion (while training) is a hard combinatorial optimization problem.

We remind the reader that component selection is needed to aid interpretability. (iii) Imposing

structural constraints on the interaction effects, e.g., hierarchy [26, 49, 66, 85, 195, 207, 276]

makes the associated optimization task more complex.

In this chapter and the next, we introduce two different scalable optimization based

approaches that allow component selection in additive models with interactions in an end-to-

end fashion. In this chapter, we introduce a novel GRAND-SLAMIN framework that allows for a
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flexible way to do component selection in GAMs with interactions under additional structural

constraints in an end-to-end fashion. We consider neural/tree shape functions. In the next

chapter i.e., chapter 3, we introduce an alternative ELAAN framework that presents efficient

optimization based formulations and algorithms for regression setting. These formulations are

based on spline shape functions motivated from extensive prior statistical literature [see, e.g,

111, 185, 220, 283, 287, and references therein]. Chapter 3 also considers a large-scale practical

application of Census Survey Response Rate Prediction, which requires such interpretable

models to gather insights.

In this chapter, we introduce a novel formulation of GAMs with interactions with additional

binary variables. Next, we smooth these binary variables so that we can effectively learn these

components via first-order methods in smooth optimization (e.g, SGD). Our formulation

appears to have an edge over existing methods in terms of (i) model flexibility for enhanced

structural interpretability and (ii) computational efficiency. First, the binary variables allow

us to impose in the model (a) component selection constraints and (b) additional structural

constraints (e.g, hierarchy) via a unified optimization formulation. Both of constraints

(a), (b) can aid interpretability, model compression, and result in faster inference and better

statistical properties. Second, our smoothing procedure for the binary variables allows us to

have customized algorithms that exploit sparsity in the forward and backward pass of the

backpropagation algorithm.

For structural interpretability, we study two notions: weak and strong hierarchy [26, 49,

85, 195, 207].

Weak Hierarchy : fj,k ̸= 0 =⇒ fj ̸= 0 or fk ̸= 0 ∀(j, k) ∈ I, j ∈ [p], k ∈ [p].

(2.2)

Strong Hierarchy : fj,k ̸= 0 =⇒ fj ̸= 0 and fk ̸= 0 ∀(j, k) ∈ I, j ∈ [p], k ∈ [p].

(2.3)

Weak hierarchy allows an interaction effect fj,k to be selected if either main effect fj or fk is
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selected. Strong hierarchy allows for an interaction effect fj,k to be selected only if both main

effects fj and fk are selected. Such hierarchy constraints are popular in high-dimensional

statistics: (i) They lead to more interpretable models [26, 66, 183], (ii) They promote practical

sparsity, i.e., reduce the number of features that need to be measured when making new

predictions (see Sec. 2.5.2) — this can reduce future data collection costs [26, 279], (iii)

Additional constraints can also help regularize a model, sometimes resulting in improved

AUC (see Sec. 2.5.1). (iv) They can also reduce variance in estimation of main effects in

the presence of interaction effects (see Sec. 2.5.4), allowing the user to have more “trust” on

model interpretability explanations.

Contributions. To summarise, while it’s well acknowledged that GAMs with sparse

interactions are a useful flexible family of explainable models, learning them pose significant

computational challenges due to the combinatorial nature of the associated optimization

problem. Our technical contributions in this chapter be summarized as:

1. We propose a novel optimization formulation that makes use of indicator (binary) vari-

ables. The indicator variables allow us to impose both (a) component selection and (b)

structural constraints in an end-to-end fashion. We consider a smooth and continuous

parameterization of the binary variables so that the optimization objective is differentiable

(for a smooth training loss) and hence amenable to first order methods such as SGD.

2. We show the flexibility of our framework by considering two different notions of hierarchy.

While these constraints improve interpretability, they make the combinatorial problem

more challenging [26, 98]. We propose end-to-end algorithms to train these models, making

our approach quite different from existing neural-based toolkits [66, 276].

3. We exploit sparsity in the indicator variables during the course of the training for sparse

forward and backward passes in a customized backpropagation algorithm in a GPU-

compatible manner. This provides speedups on training times up to a factor of 10× over

standard backpropagation.
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4. We introduce a new open-source toolkit GRAND-SLAMIN and perform experiments on a

collection of 16 real-world datasets to demonstrate the effectiveness of our toolkit in terms

of prediction performance, variable selection and scalability. Our code is available at

https://github.com/mazumder-lab/grandslamin.

2.2 Related Work

GAMs. GAMs have a long history in statistics [93] and have been extensively studied.

They’re often studied with smooth spline shape functions [see, e.g, 111, 185, 220, 283, 287,

and references therein]. Some works have studied tree-based shape functions [171] and neural

basis functions [4, 273].

GAMs with all pairwise interactions. In this thread, [63] study low-rank decomposition

with neural network shape functions; [216] fit all pairwise interactions using shared neural

bases.

Sparse GAMs with interactions. [165] introduced COSSO, which penalizes the sum

of the Sobolev norms of the functional components, producing sparse models. In [114], we

propose ELAAN-I (see next chapter), which is an ℓ0-regularized formulation with smooth

cubic splines. We demonstrate the usefulness of the approach in a regression setting in

terms of compact component selection and efficiency on a large-scale Census survey response

prediction. [41, 172, 199] explore tree-based shape functions for fitting additive models with

Table 2.1: Relevant work on sparse GAMs with Interactions. Models in rows 1-2 have some
variable selection but no hierarchy; models in row 3-5 have screening-based approaches for
hierarchy.

Paper Selection Method Structural Constraints Reg. Classif. Shape
Functions

Statistical
Properties ScalableMain Interactions Weak Hier. Strong Hier. Bin. Multi

EBM [199] None Greedy ✗ ✗ ✓ ✓ ✓ trees ✗ ✓
NODE-GA2M [41] Entmax+Anneal ✗ ✗ ✓ ✓ ✓ trees ✗ ✓

GAMI-Net [276] Prune Screening Screening ✗ ✓ ✓ ✗ neural ✗ ✗
SIAN [66] None Screening ✗ Screening ✓ ✓ ✗ neural ✓ ✗

ELAAN(Chapter 3) Group L0 ✗ Screening+Convex Relax. ✓ ✗ ✗ splines ✓ ✓
GRAND-SLAMIN(Chapter 2) Binary Variables End-to-end End-to-end ✓ ✓ ✓ trees/neural ✓ ✓

Hier.=Hierarchy, Reg.=Regression, Classif.=Classification, Bin.=Binary, Relax.=Relaxation
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sparse interactions. [172] consider all main effects and a subset of pairwise interactions; the

subset of interactions are selected via greedy stage-wise interaction detection heuristics. [199]

provide an efficient implementation of the above approach as Explainable Boosting Machines

(EBMs). [41] propose NODE-GA2M: an end-to-end learning approach with differentiable

neural oblivious decision (NODE) trees [212]. Component selection in NODE-GAM is

achieved by constraining the number of trees, and each tree learns to use one or two features

via entmax transformation [210].

Structural Constraints. Structural interpretability constraints such as hierarchical in-

teractions, have been studied for both linear settings [26, 98, 164, 275] and nonparametric

settings [66, 114, 215, 276]. We briefly review prior work on nonparametric hierarchical

interactions as it relates to this paper. [276] proposed GAMI-Net, which is a multi-stage

neural-based approach that fits all main effects and a subset of Top-k interaction effects,

selected via a fast interaction screening method [172]. Amongst this screened set, interactions

that satisfy the weak hierarchy are later used to fit interaction effects. They also prune some

main and interaction effects after training based on a variation-based ranking measure. [66]

proposed SIAN, which uses Archipelago [247] to measure the strength of each main and

interaction effect from a trained DNN, and then screens (i.e., selects a subset of candidate

main and interaction effects) using Archipelago scores to identify main effects and interaction

effects that obey strong hierarchy. Then, it fits a GAM model with the screened main and

interaction effects. [276] and [66] only support screening of interactions obeying hierarchy

before the training for interaction effects is done. None of these approaches impose hierarchy

while training with interactions. [114] with their ELAAN-H framework (see next chapter) also

consider strong hierarchy in the presence of ℓ0-regularized formulation with splines for the

least squares loss (regression). ELAAN-H has a two-stage approach: It selects a candidate set of

interactions and then applies commercial mixed integer programming solvers to learn sparse

interactions under a hierarchy constraint. This approach would require customized algorithms
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to adapt to different loss objectives e.g., multiclass classification. To our knowledge, current

techniques for sparse hierarchical (nonparametric) interactions are not based on end-to-end

differentiable training: they can be limited in flexibility and scalability—a gap we intend to

fill in this work.

Note [63] and [66] also consider higher-order interactions (beyond two-way ones), which

can be hard to interpret. For convenience, Table 2.1 summarizes some relevant work on

Sparse GAMs with interactions and possible structural constraints.

2.3 Problem Formulation

We first present in Sec. 2.3.1 an alternative formulation of GAMs with interactions using

binary variables for imposing sparsity and structural constraints. Next, in Sec. 2.3.2, we

present a smooth reformulation of the objective that can be solved with first-order gradient-

based methods.

2.3.1 An optimization formulation with binary variables

We first present an alternative formulation of GAMs with interactions under sparsity with-

/without additional structured hierarchy constraints. Let us consider the parameterization:

f =
∑
j∈[p]

fj(xj)zj +
∑

(j,k)∈I
fj,k(xj, xk)q(zj, zk, zj,k), (2.4)

with main effects fj(·), interaction effects fj,k(·) and binary gates zj and q(zj, zk, zj,k). We

consider three different parameterizations for q(·), satisfying the following different constraints:

No structural constraint: q(zj, zk, zj,k)
def
= zj,k, (2.5)

Weak hierarchy: q(zj, zk, zj,k)
def
= (zj + zj − zjzk)zj,k, (2.6)

Strong hierarchy: q(zj, zk, zj,k)
def
= zjzkzj,k. (2.7)
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The binary gates zj and q(zj, zk, zj,k) play the role of selection. In particular, when zj = 0,

the corresponding j-th main effect fj(·) is excluded from our additive model (2.4). Similarly,

when q(zj, zk, zj,k) = 0, the corresponding (j, k)-th interaction effect fj,k(·) is excluded. Then,

we can formulate the regularized objective as:

min
{fj},{fj,k},

{zj}∈{0,1}p,{zj,k}∈{0,1}|I|

Ê[ℓ(y, f)] + λ
(∑
j∈[p]

zj + α
∑

(j,k)∈I
zj,k

)
, (2.8)

where the first term denotes empirical loss over the training data, the penalty term controls

model sparsity: λ ≥ 0 is the selection penalty, α ∈ [1,∞) controls the relative selection

strength of main and interaction effects. We refer to the framework in (2.8) under the

different constraints (2.5)-(2.7) as GRAND-SLAMIN1. We discuss extension of this framework

to third-order interactions in Appendix Sec. 2.7.2. However, we do not consider third-order

interactions in our experiments as third-order interactions are hard to interpret.

The formulation in (2.8) with binary variables zj, zj,k and functions fj, fj,k with any of

the constraint sets (2.5)-(2.7) is a challenging discrete optimization problem (with binary

variables) and is not amenable to differentiable training via SGD (for example). Sec. 2.3.2

explores approximate solutions to (2.8) using a smooth reformulation of the binary variables.

Intuitively, we rely on continuous relaxations of the binary variables z’s and parameterize

f ’s with smooth tree-based shape functions. The reformulation allows us to use first-order

methods.

2.3.2 A Smooth Reformulation

We discuss a smooth reformulation of the objective in (2.8). We describe an approach to

parameterize the continuous relaxation of the binary variables zj, zj,k with a Smooth-Step

function [100] and use smooth tree-based shape functions to model {fi}, {fj,k}.
1GRAND-SLAMIN stands for GeNeRAlizeD Sparse Learning of Additive Models with INteractions.
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2.3.2.1 Relaxing Binary Variables with Smooth Gates

We present an approach to smooth the binary gates z’s in (2.8) using a smooth-step function

[100], which we define next.

Smooth-Step Function. Smooth-step function is a continuously differentiable function,

similar in shape to the logistic function. However, unlike the logistic function, the smooth-step

function can output 0 and 1 exactly for sufficiently large magnitudes of the input. This

function, originally proposed by [100], has been used for smoothing binary representations

for conditional computation [100, 102, 117]. Let γ be a non-negative scalar parameter. The

smooth-step function takes the form:

S(t) =


0 if t ≤ −γ/2

− 2
γ3 t

3 + 3
2γ
t+ 1

2
if γ/2 ≤ t ≤ γ/2

1 if t ≥ γ/2

(2.9)

The smooth-step function is continuously differentiable, similar to the logistic function.

Additionally, it performs hard selection, i.e., outside [−γ/2, γ/2], the function produces exact

zeros and ones.

We parameterize each of the z’s in (2.8) as S(µ), where µ ∈ R is a learnable parameter

and S(·) denotes the Smooth-step function. We parameterize the additive function as: f =∑
j∈[p] fj(xj)S(µj) +

∑
(j,k)∈I fj,k(xj, xk)q(S(µj), S(µk), S(µj,k))) and optimize the following

objective:

min
{fj},{fj,k},

{µj}∈Rp,{µj,k}∈R|I|

Ê[ℓ(y, f)] + λ(
∑
j∈[p]

S(µj) + α
∑

(j,k)∈I
S(µj,k)). (2.10)

Note that S(µj) and S(µj,k) are continuously differentiable, so the formulation in (2.10) is

amenable to first-order gradient-based methods (e.g, SGD).
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Achieving binary gates. To encourage each of the S(µj)’s and S(µj,k)’s to achieve

binary state (and, not fractional) by the end of training, we add an entropy regularizer

τ(
∑

j∈[p] Ω(S(µj))+
∑

(j,k)∈I Ω(S(µj,k))) where Ω(S(µ)) = −(S(µ) logS(µ)+(1−S(µ)) log(1−

S(µ))) and τ ≥ 0 controls how quickly each of the gates S(µ) converges to a binary z.

Figure 2.1: Modeling main and interaction effects with soft trees. ϕ denotes the sigmoid
activation function. We omit biases in split nodes for brevity. For interaction effect, W j,k

i,1 ∈ R

and W j,k
i,2 ∈ R denote the weights in i-th node of the (j, k)-th tree.

2.3.2.2 Soft trees

We use soft trees [79, 120, 131, 244]—based on hyperplane splits (univariate or bivariate)

and constant leaf nodes — as shape functions to parameterize the main effects fj(·) and the

pairwise interaction effects fj,k(·). See Figure 2.1 for an illustration. Soft trees were introduced

as hierarchical mixture of experts by [131] and further developed by [79, 120, 244]. They

allow for end-to-end learning [100, 115, 139]. They also have efficient implementations when

learning tree ensembles [115]. A detailed definition of soft tress is given in Appendix 2.7.1.

We also consider neural shape functions in Appendix 2.7.4.4.

2.3.2.3 Statistical Theory

We study novel statistical properties of our model, and present non-asymptotic prediction

error bounds for our estimator without any hierarchy constraints in [116]. Different from

earlier work, our results apply to learning with tree-based shape functions (for both main

and interaction effects).
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2.4 Efficient Implementation

We discuss a fast implementation of our approach. The key elements are: (i) Tensor

parameterization of trees, (ii) Sparse backpropagation, and (iii) Complementary screening

heuristics.

Tensor Parameterization of Additive Effects. Typically, in neural-based additive model

implementations [4, 276], a separate network module is constructed for each shape function.

The outputs from each model are sequentially computed and combined additively. This can

create bottleneck in scaling these models. Some recent approaches e.g., [66] try to work around

this approach by constructing a large block-wise network to compute representations of all

shape functions simultaneously. However, this comes at a cost of large memory footprint. For

tree-based shape functions, drawing inspiration from [115], we can implement a tensor-based

formulation of all shape functions, leveraging the fact that each tree has the same depth. This

parameterization can exploit GPU-friendly parallelization in computing all shape functions

simultaneously without increasing memory footprints.

Sparse Backpropagation. We use first-order optimization methods (e.g., SGD and its

variants) to optimize GRAND-SLAMIN. Typically, a main computational bottleneck in optimizing

GAMs with all pairwise interactions via standard gradient-based backpropagation methods

is the computation of forward pass and gradient computations with respect to all additive

components (both main and interaction effects). This can hinder training large GAMs with

interactions. We exploit the sparsity in GRAND-SLAMIN via the sparsity in the smooth-step

function and its gradient during training.

Recall that S(µj)’s and S(µjk)’s play a role of selection in a smoothed fashion. In the

early stages of training, S(µj)’s and S(µjk)’s are all in the range (0, 1). As the optimization

proceeds, due to the entropic regularization and selection regularization, S(µj)’s and S(µjk)’s

progressively achieve binary state {0, 1} — the gradient with respect to µj and µjk also

39



reaches 0 because of the nature of smooth-step function S(·). All the additive components

corresponding to the selection variables that reached 0 can be removed from both the forward

and the backward computational graph. This sparse backpropagation approach can provide

large speedups on training times up to a factor of 10× over standard backpropagation.

Additionally, there is progressively a reduced memory footprint during the course of training

in comparison to standard backpropagation.

The approach outlined above (use of Smooth-Step function for selection) when specialized

to additive models allows us to implement GPU-friendly sparse backpropagation — this

makes our work different from [100], which does not support GPU training.

Screening. We describe how screening approaches prior to training, can complement our

sparse backpropagation approach when the number of all pairwise interactions is large e.g.,

of the order 100, 000. Fast screening methods based on shallow-tree like models are proposed

in [172] for identifying prominent pairwise interactions. These are used by various toolkits

e.g., EBM [199], GAMI-Net [276]. These screening approaches are complementary to our

selection approach with indicator variables. We used CART [29] for each pairwise interaction

and sorted the interaction effects based on AUC performance to select an initial screened set

of interaction effects. In particular, we can consider I to be a screened subset (e.g., 10, 000)

of all pairwise interaction effects of the order 100, 000. Then, we run our end-to-end learning

framework under the component selection constraints on the main and screened interaction

effects. We observe that such screening can be beneficial for multiple reasons: (i) The training

time can be reduced further by 3× – 5×. (ii) The memory footprint of the model reduces by

10×. (iii) There is no loss in accuracy—the accuracy can sometimes improve with screening

— see ablation study in Appendix Sec. 2.7.4.6. Note that even with screening, our approach

is different from GAMI-Net as they directly screen to a much smaller set of interactions e.g.,

500 and there is no component selection when training with these interactions.
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2.5 Experiments

We study the performance of GRAND-SLAMIN on 16 real-world datasets and compare against

relevant baselines for different cases. We make the following comparisons:

1. Performance comparison of GRAND-SLAMIN without/with structural constraints against

existing toolkits for sparse GAMs with interactions.

(a) Toolkits that support sparse interactions: EB2M [199] and NODE-GA2M [41]

(b) Toolkits that support hierarchy constraints: GAMI-Net [276] and SIAN [66]

2. Variable selection comparison against the competing toolkits.

3. Computational scalability of GRAND-SLAMIN toolkit with sparse backpropagation.

4. Variance reduction with structural constraints

Additional results are included in Appendix Sec. 2.7.4 that study (i) comparison with full

complexity models in 2.7.4.1, (ii) comparison with GAMs with all pairwise interactions in

2.7.4.2, (iii) comparison with Group Lasso selection approach in 2.7.4.3, (iv) choice of shape

functions in 2.7.4.4, (v) effect of entropy on performance and component selection in 2.7.4.5,

and (vi) effect of screening on training times, memory and performance in 2.7.4.6.

Datasets. We use a collection of 16 open-source classification datasets (8 binary, 6 multiclass

and 2 regression) from various domains. We consider datasets with a wide range of number

of all pairwise interactions 10− 200000. A summary of the datasets is in Table 2.7.1 in the

Appendix.

Tuning Details. For all the experiments, we tune the hyperparameters using Optuna [5]

with random search on a held-out validation set. We compute statistical averages across

multiple runs for the optimal hyperparameters for all models. In particular, we report median

test ROC AUC across 10 runs along with the mean absolute deviation (MAD). Additional

details are in the Appendix 2.7.3.
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2.5.1 Prediction Performance

Comparison with EB2M and NODE-GA2M. We first study the performance of our

model in comparison to two tree-based state-of-the-art toolkits which support sparse GAMs

with interactions without any structural constraints e.g., EB2M and NODE-GA2M. We

report the ROC AUC performance in Table 2.2. Our model outperforms EB2M in 10 out

of 14 datasets. Our model is also competitive with NODE-GA2M as it can outperform in

50% of the datasets. In summary, our results in Table 2.2 show that we are at par with

state-of-the-art methods for unstructured component selection. Our key advantage is to do

hierarchical interactions, which NODE-GA2M and EB2M can not support. Additionally, we

can achieve faster training times (Sec. 2.5.3) and improve on variable selection (Sec. 2.5.2)

than NODE-GA2M and EB2M.

Table 2.2: Test ROC AUC of GRAND-SLAMIN, EB2M and NODE-GA2M. We report median
along with mean absolute deviation across 10 runs.

Dataset EB2M NODE-GA2M GRAND-SLAMIN
Magic 93.12± 0.001 94.27± 0.13 93.86± 0.30
Adult 91.41± 0.0004 91.75± 0.14 91.54± 0.14
Churn 91.97± 0.005 89.62± 5.61 92.40± 0.41 (SH)
Satimage 97.65± 0.0007 98.70± 0.07 98.81± 0.04
Texture 99.81± 0.0004 100.00± 0.00 100.00± 0.00
MiniBooNE 97.86± 0.0001 98.44± 0.02 97.77± 0.05 (WH)
Covertype 90.08± 0.0003 95.39± 0.12 98.11± 0.08
Spambase 98.84± 0.01 98.78± 0.06 98.55± 0.07 (SH)
News 73.03± 0.002 73.53± 0.06 73.24± 0.04 (SH)
Optdigits 99.79± 0.0003 99.93± 0.02 99.98± 0.0
Bankruptcy 93.85± 0.01 92.02± 1.03 92.51± 0.54 (WH)
Madelon 88.04± 0.02 60.07± 0.82 89.25± 1.03 (WH)
Activity 74.96± 8.77 99.86± 0.04 99.24± 1.45
Multiple 99.96± 0.0002 99.94± 0.02 99.95± 0.02

Structural constraints: Weak and Strong Hierarchy. Next, we study our method

with structural constraints i.e., (2.6) for weak hierarchy or (2.7) for strong hierarchy. We

compare against two competing neural-based state-of-the-art methods for sparse GAMs with

hierarchical interactions: (i) GAMI-Net with support for weak hierarchy, and (ii) SIAN with
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Table 2.3: Test ROC AUC for GRAND-SLAMIN with structural constraints i.e., (2.6) or (2.7),
GAMI-Net and SIAN. We report median across 10 runs along with mean absolute deviation.

GAMI-Net
WH

SIAN
SH

GRAND-SLAMIN
Dataset\Model WH SH
Magic 91.72± 0.05 93.02± 0.06 93.16± 0.55 93.37± 0.16
Adult 91.01± 0.04 90.67± 0.05 91.34± 0.32 91.46± 0.15
Churn 90.05± 0.77 92.98± 0.20 92.28± 0.75 92.40± 0.41
Spambase 98.67± 0.04 98.28± 0.04 98.45± 0.15 98.55± 0.07
MiniBooNE 96.11± 0.41 95.90 97.77± 0.05 97.62± 0.30
News 72.54± 0.05 72.28 73.15± 0.08 73.24± 0.04
Bankruptcy 92.46± 0.12 90.71 92.51± 0.54 90.45± 1.87
Madelon 88.14± 0.94 83.18 89.25± 1.03 86.23± 1.89
WH=Weak Hierarchy, SH=Strong Hierarchy.
For SIAN, for some of the larger datasets (row 5-9),
we use the number for best trial as SIAN takes
∼ 24 hours on V100 Tesla GPU.

support for strong hierarchy. We omit multiclass datasets as both GAMI-Net and SIAN

do not support them. We report the ROC AUC performance in Table 2.3. Our models

outperform GAMI-Net and SIAN in 7/8 datasets.

Additionally, our models are much more compact in terms of overall number of parameters

— our tree-based shape functions have 100× and 10× smaller number of parameters than

the neural-based shape functions used by GAMI-Net and SIAN respectively. Moreover, our

toolkit is significantly faster than SIAN and GAMI-Net on larger datasets — see Sec. 2.5.3.

Additionally, we compare interpretable modeling toolkits with full complexity models e.g.,

deep neural network (DNN), in Appendix Sec. 2.7.4.1. We observed interpretable models

to outperform full complexity models on these datasets. We also compare our toolkit that

fits sparse components with toolkits that fit all pairwise interactions e.g., NA2M, NB2M and

SPAM in Appendix Sec. 2.7.4.2. GRAND-SLAMIN generally outperform these methods with

enhanced interpretability due to sparsity and structural constraints. We also study how our

toolkit performs when we replace soft tree shape functions with MLP shape functions in

Appendix Sec. 2.7.4.4. Interestingly, we observe that soft trees seem to have an edge when

the parameters are matched with MLP.
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Table 2.4: Number of features used by GRAND-SLAMIN without/with additional structural
constraints and competing approaches. Hyphen (-) indicates multiclass classification is not
supported by GAMI-Net and SIAN.

EB2M NODE
GA2M

GAMI
Net

SIAN GRAND-SLAMIN
Dataset\Model None WH SH
Magic 10± 0 10± 0 10± 0 10± 0 10± 0 9± 1 7± 0
Adult 14± 0 14± 0 14± 1 14± 0 13± 1 11± 1 11± 1
Churn 19± 0 19± 0 18± 2 19± 0 19± 0 11± 1 12± 2
Satimage 36± 0 36± 0 − − 36± 0 36± 0 22± 2
Texture 40± 0 40± 0 − − 40± 0 37± 2 17± 2
MiniBooNE 50± 0 50± 0 16± 12 34 50± 0 50± 0 28± 3
Covertype 54± 0 54± 0 − − 34± 1 54± 1 54± 0
Spambase 57± 0 57± 0 52± 2 55± 1 57± 0 56± 3 54± 2
News 58± 0 58± 0 47± 1 52 58± 0 58± 0 58± 0
Optdigits 64± 0 64± 0 − − 64± 0 64± 0 59± 1
Bankruptcy 95± 0 95± 0 60± 15 69 95± 0 60± 26 7± 16
Madelon 500± 0 500± 0 61± 56 490 26± 19 19± 15 24± 9
Activity 533± 0 346± 6 − − 182± 15 440± 22 159± 21
Multiple 649± 0 649± 0 − − 648± 1 629± 9 649± 0
WH=Weak Hierarchy, SH=Strong Hierarchy.

2.5.2 Variable Selection

We evaluate the performance of our models in terms of feature selection. We report the

number of features selected in Table 2.4 by each toolkit for sparse GAMs with interactions.

We see that GRAND-SLAMIN with structural constraints, in particular strong hierarchy, can

significantly reduce the number of features selected by the GAMs with interactions model. For

example, on Bankruptcy datasets, GRAND-SLAMIN achieves feature compression up to a factor

of 8× over state-of-the-art GAM toolkits. Having fewer features reinforces the usefulness of

additive models as being interpretable.

2.5.3 Computational Scalability

Next, we discuss the scalability of GRAND-SLAMIN.

Sparse backpropagation. We highlight the usefulness of our efficient approach with sparse

backpropagation in Figure 2.2 on Activity dataset. We show in Figure 2.2[a] that during the
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(a) Number of selected effects at each epoch. (b) Training time (seconds) for each epoch.

Figure 2.2: GRAND-SLAMIN with standard (dense) backpropagation vs sparse backpropagation
on Activity dataset. (a) shows the number of nonzero effects:

∑
j zj +

∑
(j,k)∈I q(zj, zk, zj,k)

and (b) shows the time for each epoch during the course of training.

course of training, the number of selected components (selected via binary variables z’s and

q(·)’s) becomes progressively smaller. This leads to much faster computations at each epoch

in Figure 2.2[b] due to sparse forward and backward passes. By exploiting sparsity during

training, we can get 10× faster training times than with standard backpropagation.

Comparison with other toolkits. Our toolkit is highly competitive in terms of training

times with all existing tree-based and neural-based toolkits for sparse GAMs with interactions.

For example, on Madelon dataset, we are 15× faster than NODE-GA2M, 20× faster than

EBM, 1300× faster than SIAN and 25× faster than GAMI-Net. See Appendix Sec. 2.7.4.7

for more detailed timing comparisons across multiple datasets. Note that, in addition, we

can also handle the case of structured interactions — extending the flexibility of existing

end-to-end training methods.

2.5.4 Variance Reduction with Structural Constraints

We provide a visualization study to further highlight an important contribution of our work.

In particular, our framework can support models with structural constraints. Hence, we

study the effect of these constraints on the stability of learning main effects (in the presence

of interactions) when these structural constraints are imposed or not. For this exercise, we
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Figure 2.3: Estimated main effects in the presence of interaction effects on bikesharing
dataset [Left] without hierarchy, [Middle] weak hierarchy and [Right] strong hierarchy. Strong
hierarchy has the smallest error bars.

consider bikesharing dataset. We visualize some of the main effects in the presence/absence

of hierarchy in Figure 2.3. Note that for visualization, we used the purification strategy

[41, 155] post-training that pushes interaction effects into main effects if possible. We can

observe in Figure 2.3 that when additional hierarchy constraints are imposed, the error bars

are much more compact across different runs. This can potentially increase the trust you can

have on the model for deriving interpretability insights. We show additional visualizations

on another dataset (American Community Survey from US Census Planning Database 2022

[253]) to show the same behavior in Appendix Section 2.7.5.

2.6 Conclusion

We introduce GRAND-SLAMIN: a novel and flexible framework for learning sparse GAMs with

interactions with additional structural constraints e.g., hierarchy. This is the first approach

to do end-to-end training of nonparameteric additive models with hierarchically structured

sparse interactions. Our formulation uses binary variables to encode combinatorial constraints.
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For computational reasons, we employ smoothing of the indicator variables for end-to-end

optimization with first-order methods (e.g., SGD). We propose sparse backpropagation, which

exploits sparsity in the nature of the smoothing function in a GPU-compatible manner

and results in 10× speedups over standard backpropagation. We present non-asymptotic

prediction bounds for our estimators with tree-based shape functions. Numerical experiments

on a collection of 16 real-world datasets demonstrate the effectiveness of our toolkit in terms

of prediction performance, variable selection and scalability.

2.7 Appendix

2.7.1 Definition of Soft Trees

Formally, an interaction soft tree with the set of (internal) nodes U and the set of leaves L is a

function such as f(·;W ,o) : R2 7→ R where W ∈ R|U|×2 and o ∈ R|L|. The output is then given

as f((xj, xk);W ,o) =
∑

l∈L P ({(xj, xk) → l})ol where P ({(xj, xk) → l}) is the proportion

of (xj, xk) that is routed to leaf l. Particularly, P ({(xj, xk)→ l}) =
∏

i∈A(l) ri,l(xj, xk) where

A(l) denotes the set of ancestors of l and ri,l(xj, xk) denotes the proportion of (xj, xk) is

routed to leaf l from node i. These values are given as ri,l(xj, xk) = ϕ(W T
i (xj, xk)) if l belongs

to the left subtree of i, and ri,l(xj, xk) = 1− ϕ(W T
i (xj, xk)) if l belongs to the right subtree

of i, where ϕ(·) is the sigmoid activation function. A soft tree f(·;W ,o) : R 7→ R for a main

effect is defined similarly.

2.7.2 Extension to third-order interactions

Our approach can be extended to model third-order interactions. In the case of third-order

interactions, the structural constraints for strong and weak hierarchy can be described as
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follows:

Strong Hierarchy : fj,k,l ̸= 0 =⇒ fj ̸= 0 and fk ̸= 0 and fl ̸= 0, (2.7.1)

Weak Hierarchy : fj,k,l ̸= 0 =⇒ fj ̸= 0 or fk ̸= 0 or fl ̸= 0. (2.7.2)

These constraints can be modeled with binary variables as follows:

Strong Hierarchy : q(zj, zk, zl, zj,k,l)
def
= zjzkzlzj,k,l (2.7.3)

Weak Hierarchy : q(zj, zk, zl, zj,k,l)
def
= (zj + zk + zl − zjzk − zjzl − zkzl + zjzkzl)zj,k,l

(2.7.4)

Hence, our sparse selection and hierarchy constraints can add value in terms of model

compactness and feature selection in the settings with third-order interactions as well.

However, for third-order interactions, the number of third-order interactions are O(p3).

Hence, for scalability, this would also require using a pre-training screening approach. Despite

the fact that our approach is generalizable to third-order interactions, we do not consider

such interactions because these are not considered to be easily interpretable.

2.7.3 Datasets, Computing Setup and Tuning

Datasets We use a collection of 16 open-source classification datasets (binary, multiclass

and regression) from various domains, e.g., physics, computing, healthcare, life sciences,

finance, and social networks. They are from Penn Machine Learning Benchmarks (PMLB)

[200] and UCI databases [62]. For datasets with available training, validation and test splits,

we used them in their original form. When no test set was available, we treated the original

validation set as the test set and split the training set into 80% training and 20% validation.

For remaining, we randomly split each of the dataset into 60% training, 20% validation and

20% testing sets. A summary of the 16 datasets considered is in Table 2.7.1.
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Table 2.7.1: Summary of Datasets

Dataset Domain N C p No. of interactions (|I|)
Magic Physics 19,020 2 10 55
Adult Socio-economic 48,842 2 14 91
Churn Business 5,000 2 19 190
Satimage Physics 6,435 6 36 640
Texture Image 5,500 11 40 780
MiniBooNE Physics 130,065 2 50 1,225
Covertype Life Science 581,012 7 54 1,431
Spambase Computing 4,601 2 57 1,596
News Social networks 39,797 2 61 1,830
Optdigits Image 5,620 10 64 2,016
Bankruptcy Finance 6,819 2 96 4,560
Madelon NIPS-2003 2,600 2 500 124,750
Activity Healthcare 4,480 4 533 141,778
Multiple Image 2,000 10 649 210,276
Bike Sharing Transportation 17,389 - 16 120
American Community Survey Demographic 83,059 - 39 741

Computing Setup. We used a cluster running Ubuntu 7.5.0 and equipped with Intel Xeon

Platinum 8260 CPUs and Nvidia Volta V100 GPUs. For all experiments of Sec. 2.5, each job

involving GRAND-SLAMIN, EBM, Node-GAM, SIAN, GAMI-Net and DNN were run on 8 core,

32GB RAM. Jobs involving larger datasets (p > 100) were run on Tesla V100 GPUs.

Tuning. The tuning was done in parallel over the competing models and datasets. We

tune the hyperparameter using Optuna [5] which optimizes the overall AUC on a validation

set. We report the results on a held-out test set. A list of all the tuning parameters and their

distributions is given for GRAND-SLAMIN below:

• Learning Rates: Discrete uniform in the set {0.05, 0.01, 0.005} for Adam with multi-step

decay rate of 0.9 every 25 epochs.

• Batch-size: Discrete uniform in the set {64, 256}.

• λ for selection: Discrete uniform in the set of 11 values {0, 1e− 6, · · · , 1e− 3}.

• γ for Smooth-step: Discrete uniform in the set {0.01, 0.1, 1}.

• τ for Entropy Regularization: Discrete uniform in the set {0.001, 0.01, 0.1}.
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• α for relative penalty on interactions: Discrete uniform in the set {1, 10}.

• Epochs: 1000 with early stopping (patience=50) based on validation loss.

• For Madelon, Activity and Multiple datasets, we used screening to reduce the initial

set of interactions to 5000.

For other toolkits, we considered the tuning protocols outlined in the respective papers

such that the parameter controlling the variable selection is tuned. For SIAN, we tuned

over the threshold parameter θ such that the screened set of interactions is upper bounded

by {250, 500, · · · , 1000}. We set τ = 1 such that the model satisfies strong hierarchy. For

GAMI-Net, we tuned over the number of interactions. For small datasets (|I| < 1000), we

tuned over the set: {0.2|I|, 0.4|I|, ·, |I|}. For large datasets (|I| < 1000), we tuned over the

set: {250, 500, · · · , 1000}. For EBM, we tuned over the set of interactions {16, 32, 64, 128} as

done by authors in [41]. For NODE-GA2M, we tuned the number of trees as this controls the

maximum number of interactions selected by the model.

2.7.4 Additional Results

2.7.4.1 Comparison with full complexity models e.g., DNN

Here, we compare interpretable modeling toolkits based on pairwise interactions with full

complexity models. In particular, we consider a deep neural network (DNN). We considered

the same architecture for the DNN as used by the authors in [66] for similar comparisons. The

architecture is a 4-layered ReLU-activated neural network. We show the test AUC performance

of different models in Table 2.7.2. Across all datasets, we see that the full complexity DNN

model underperforms interpretable models including GRAND-SLAMIN. However, it is noted

that the choice of the architecture for DNN maybe contributing to the degradation in

performance. There maybe other architecture choices for DNN e.g., neural networks with

residual connections, that may perform better.
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Table 2.7.2: Test ROC AUC of GRAND-SLAMIN, EB2M and NODE-GA2M. We report median
across 10 runs along with the mean absolute deviation (MAD).

Interpretable Models Full Complexity Models
Dataset\Model EB2M NODE-GA2M GRAND-SLAMIN DNN
Magic 93.12± 0.001 94.27± 0.13 93.86± 0.30 93.69± 0.04
Adult 91.41± 0.0004 91.75± 0.14 91.54± 0.14 90.26± 0.04
Churn 91.97± 0.005 89.62± 5.61 92.40± 0.41 90.28± 0.34
Satimage 97.65± 0.001 98.70± 0.07 98.81± 0.04 98.67± 0.07
Texture 99.81± 0.0004 100.00± 0.00 100.00± 0.00 99.63± 0.09
MiniBooNE 97.86± 0.0001 98.44± 0.02 97.77± 0.05 97.08± 0.38
Covertype 90.08± 0.0003 95.39± 0.12 98.11± 0.08 93.83± 0.10
Spambase 98.84± 0.01 98.78± 0.06 98.01± 4.70 98.09± 0.07
News 73.03± 0.002 73.53± 0.06 73.24± 0.04 72.19± 0.08
Optdigits 99.79± 0.0003 99.93± 0.02 99.98± 0.00 99.77± 0.04
Bankruptcy 93.85± 0.01 92.02± 1.03 92.51± 0.54 88.38± 0.36
Madelon 88.04± 0.02 60.07± 0.82 89.25± 1.03 63.60± 0.47
Activity 74.96± 8.77 99.86± 0.04 99.24± 1.45 96.64± 1.93
Multiple 99.96± 0.0002 99.94± 0.02 99.92± 0.02 99.94± 0.01

2.7.4.2 GRAND-SLAMIN versus GAMs with all pairwise interactions

Next, we compare GRAND-SLAMIN i.e., GAMs with sparse pairwise interactions against GAMs

with all pairwise interactions toolkit:

1. NA2M, i.e., Neural Additive Model [4] with pairwise interactions,

2. NB2M, i.e., Neural Bases Model [216] with pairwise interactions,

3. SPAM, i.e., Scalable Polynomial Additive Model [63] with pairwise interactions.

For NA2M, NB2M, and SPAM, we tuned over learning rate in the set {0.1, 0.01, 0.001, 0.0001}

and number of epochs in the set {50, 100, 500}. We capped the time for each trial for NA2M

to 6 hrs.

We show results in Table 2.7.3. We outperform SPAM across many datasets. Notably,

GRAND-SLAMIN improves by 21% over SPAM on Madelon. We are also competitive with

NB2M and NA2M. For larger datasets e.g., Madelon, Activity and Multiple, NB2M and

NA2M ran out of memory on a compute node with 2 V100 Tesla GPUs. Recall also that the
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Table 2.7.3: Test ROC AUC for GRAND-SLAMIN and GAMs with all pairwise interaction
models, e.g., NA2M, NB2M and SPAM.

Dataset NA2M NB2M SPAM GRAND-SLAMIN
(Dense) (Dense) (Dense) (Sparse)

Magic 94.46± 0.16 94.11± 0.08 91.75± 0.004 93.86± 0.30
Adult 90.81± 0.10 91.06± 0.03 89.65± 0.001 91.54± 0.14
Churn 93.03± 0.49 92.16± 0.42 88.41± 0.05 92.40± 0.41
Satimage 98.81± 0.05 98.89± 0.03 97.94± 0.02 98.81± 0.04
Covertype out of time 98.36± 0.02 96.29± 0.02 98.11± 0.08
Spambase 98.38± 0.05 98.37± 0.06 97.78± 0.04 98.55± 0.07
News 71.94± 0.30 72.54± 0.07 72.43± 0.06 73.24± 0.04
Bankruptcy 87.83± 0.12 93.01± 1.85 89.35± 0.90 92.51± 0.54
Madelon out of memory out of memory 68.59± 0.80 89.25± 1.03
Activity out of memory out of memory 99.10± 0.04 99.24± 1.45
Multiple out of memory out of memory 99.98± 0.03 99.92± 0.02

goal of our work is to learn sparse components with/without structural constraints for easier

interpretability.

2.7.4.3 Comparison with Group Lasso

Group Lasso [95] is also a possible choice for sparse selection, which is popularly used in

high-dimensional statistics and machine learning. We compare against a version of Group

Lasso:

min
{fi}i∈[p],

{fi,j}i<j

Ê

l(y,∑
i∈[p]

fi(xi) +
∑
i<j

fi,j)

+ λ

∑
i∈[p]

∥fi∥2 +
∑
i<j

∥fi,j∥2

 , (2.7.5)

where Ê denotes the empirical loss on the training dataset and ∥fi∥2 denotes the regularization

imposed via the group regularization on the leaf weights of the effect i. We compare

performance between GRAND-SLAMIN and Group Lasso (with soft tree shape functions) in

terms of test AUC and variable selection on a few datasets. The numbers are reported in

Table 2.7.4. Overall, our approach significantly outperforms Group Lasso in terms of AUC

performance and variable selection.
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Table 2.7.4: Comparison of Test ROC AUC of GRAND-SLAMIN with Group Lasso.

Model Group Lasso GRAND-SLAMIN Group Lasso GRAND-SLAMIN
Dataset (AUC) (AUC) (#features) (#features)
Adult 91.19 91.54± 0.14 14 12
Spambase 98.32 98.81± 0.04 57 44
Madelon 65.22 90.13± 1.03 500 15

2.7.4.4 GRAND-SLAMIN with different shape functions (Soft Trees vs MLPs)

Next, we compare GRAND-SLAMIN with different shape functions. In particular, we study

the effect of using neural network shape functions instead of soft tree shape functions. We

consider multilayer perceptrons (MLPs) as the functional form for each of the shape functions.

We compare test AUC performance on 5 datasets in Table 2.7.5. Interestingly, it seems to

us that soft trees seem to have an edge over MLPs across some datasets, when MLPs are

matched in number of parameters to soft trees.

Table 2.7.5: Soft tree shape functions vs MLP shape functions.

Dataset\Model GRAND-SLAMIN with MLPs GRAND-SLAMIN with Soft Trees
Magic 93.13±0.12 93.86±0.30
Churn 92.33±0.56 92.40±0.41
MiniBooNE 97.41±0.21 97.77±0.05
Spambase 98.27±0.13 98.55±0.07
News 72.87±0.09 73.24±0.04

MLPs with varying complexity We further experimented with MLPs in our framework,

where we vary the complexity of the individual components. We show training time on News

dataset (p = 61, #Interaction = 1800, N = 40k) in Table 2.7.6. The results show that the

active set (learnt by learnable indicators) in the model is the primary contributing factor in

terms of timing. The functions (1 or 2)→ 64→ 64→ 1 have at least 22× more parameters

than (1 or 2) → 64 → 1. However, the time only increases by ∼ 1.5×. We also show the

AUC performance with MLPs with varying complexity in Table 2.7.7. Interestingly, we didn’t

observe any improvement in AUCs with more complex components. It seems to us that since
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Table 2.7.6: Training times for different choices of MLP shape functions.

% Components Selected MLPs with varying complexity Training times

25% effects

(1 or 2)→ 64→ 1 252.4± 0.4
(1 or 2)→ 64→ 64→ 1 247.6± 0.8
(1 or 2)→ 64→ 64→ 64→ 1 258.8± 10.7
(1 or 2)→ 128→ 128→ 1 268.5± 19.1
(1 or 2)→ 256→ 256→ 1 837.0± 43.6

75% effects

(1 or 2)→ 64→ 1 343.3± 5.3
(1 or 2)→ 64→ 64→ 1 422.7± 9.9
(1 or 2)→ 64→ 64→ 64→ 1 506.0± 34.4
(1 or 2)→ 128→ 128→ 1 552.4± 151.4
(1 or 2)→ 256→ 256→ 1 1193.8± 0.3

Table 2.7.7: AUC performance with MLP shape functions.

MLPs with varying complexity Test AUC
(1 or 2)→ 64→ 1 72.90± 0.09
(1 or 2)→ 64→ 64→ 1 72.48± 0.13
(1 or 2)→ 64→ 64→ 64→ 1 72.58± 0.17
(1 or 2)→ 128→ 128→ 1 72.34± 0.11
(1 or 2)→ 256→ 256→ 1 71.86± 0.37

our additive modeling framework is fitting low-dimensional components — 1-dimensional

functions for main effects and 2-dimensional functions for pairwise interactions effects — the

complexity of the function class doesn’t need to be too large to get good model accuracy.

2.7.4.5 Effect of entropy regularization

Next, we study the impact of entropy regularization on performance and variable selection.

It can be hypothesized that there might be a trade-off in the speed at which the binary state

of the gate variables should be reached. On the one hand, suppression of the uninformative

terms should happen fast as the early forward and backward passes of all p2 interaction trees

is computationally prohibitive. On the other hand, making this decision prematurely means

that the model might not have had enough time to fit terms before suppressing them. We

provide an ablation study for model performance as a function of entropy regularization in

Table 2.7.8. We observe that when the entropy regularization is too high, the model suffers
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Table 2.7.8: Effect of entropy regularization τ on test AUC and component selection on
Spambase. We report median and mean absolute deviation across 50 runs.

τ 0.00001 0.0001 0.001 0.005 0.01 0.05 0.1 1.0
AUC 98.58±0.02 98.58±0.02 98.54±0.02 98.37±0.09 98.40±0.12 98.40±0.15 98.43±0.11 98.30±0.08
#Effects
Selected 1653± 0 1235± 164 592± 173 558± 328 535± 352 507± 451 721± 528 1653± 26

in performance as some informative terms can also get suppressed too quickly. When the

entropy regularization is too small, the model can produce very dense solutions, which can

hurt interpretability as well as computational scalability. In a reasonable range of entropy

regularization, there is a good region where the model produces a sparse solution for high

AUC. Interestingly, we also observe that we didn’t see a huge sensitivity of variable selection

for a range of entropy values in the middle.

Figure 2.7.1: Performance of GRAND-SLAMIN with various pre-training screening levels on
Madelon.

2.7.4.6 Effect of screening on performance

Here, we highlight that screening can help improve performance of our model. We consider a

challenging Madelon dataset from the NIPS-2003 feature selection challenge, where only a

very small subset of features are informative. The number of total features in the dataset

are 500. The number of pairwise interactions in this dataset are ∼ 125k. This is a large

combinatorial space for variable selection in terms of interaction effects. A large portion
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of these interactions are non-informative. Pre-training screening rules similar to the ones

used by [172] can effectively reduce the combinatorial space. Recall that the actual number

of interactions selected by the model is much smaller than the screened set of interactions

through variable selection by our model while training. We can observe from Fig. 2.7.1

that for a range of pre-training screening levels, our model can achieve almost 90% AUC

performance — this performance is better than all existing approaches for sparse GAMs with

interactions. In particular, the state-of-the art toolkit NODE-GAM that performs end-to-end

variable seclection achieves 60% AUC.

Screening also plays a role in faster runtimes. For example, when the screened set is

10,000 interactions out of a total of 125k, the model can be 3× – 5× faster. Additionally

with screening, the overall memory footprint of the model can be much smaller. The overall

memory footprint of the model is dictated by the number of interaction effects. With screening,

the initial memory footprint of the model can be reduced without a loss in performance.

2.7.4.7 Timing comparison

Our toolkit is highly competitive in terms of training times with all existing tree-based

and neural-based toolkits for sparse GAMs with interactions. See Table 2.7.9 for timing

comparisons.

2.7.5 Additional visualizations for variance reduction in estimation

of main effects under structural constraints

Here we consider tract-level American Community Survey dataset from US Census Bureau

Planning Database 2022 [253]. Following [114], we consider a reduced dataset with ∼ 39

covariates (741 possible pairwise interactions) and consider the self-response as the regression

target. We fit GRAND-SLAMIN with different structural constraints. We visualize the estimated

main effects in the presence of interaction effects for these structural constraints for some

features in Figure 2.7.2. We can observe that when additional hierarchy constraints are
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Table 2.7.9: Training time in seconds of GRAND-SLAMIN, EB2M, NODE-GA2M, GAMI-Net
and SIAN. We report median across 10 runs. Hyphen (-) indicates either the toolkit does not
support multiclass e.g., GAMI-Net, SIAN or does not fit interaction effects for multiclass e.g.,
EB2M.

Dataset\Model EB2M NODE-GA2M GAMI-Net SIAN GRAND-SLAMIN
Magic 140 327 1567 608 430
Adult 284 612 3611 2396 1018
Churn 33 699 2340 298 35
Spambase 297 361 1979 2197 133
Miniboone 1181 1523 39334 64200 1662
Online 402 325 9030 3877 432
Bankruptcy 156 240 2630 3410 57
Madelon 403 899 5217 58500 46
Satimage — 133 — — 52
Texture — 128 — — 98
Optdigits — 320 — — 55
Covertype — 604 — — 3144
Activity — 291 — — 110
Multiple — 1417 — — 184

imposed, the error bars are much smaller across different runs.
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No Hierarchy Weak Hierarchy Strong Hierarchy

Figure 2.7.2: Estimated main effects in the presence of interaction effects on American
Community Survey dataset [Left] without hierarchy, [Middle] with weak hierarchy and [Right]
with strong hierarchy. Strong hierarchy has the smallest error bars. We show visualization
for 5 features: (a) Row 1: Average household income, (b) Row 2: Percentage of households
with internet access, (c) Row 3: Percentage of limited English speaking households, (d) Row
4: Percentage of people below poverty level, (e) Row 5: Percentage of single-family homes.
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Chapter 3

Additive Models and Structured

Interactions: Alternative Optimization

Approaches

3.1 Introduction

We propose estimators based on Additive Models [93, 94], or AMs, with smooth nonlinear

components that include nonlinear pairwise interactions between covariates. Given response

y ∈ R and feature-vector x := (x1, . . . , xp) ∈ Rp, we model the conditional mean function as

E(y|x) =
∑
j∈[p]

fj(xj) +
∑
j<k

fj,k(xj, xk), (3.1.1)

where fj and fj,k are unknown smooth univariate and bivariate functions, respectively.

Drawing inspiration from linear model settings [10], we propose new methodology to estimate

the unknown functional components via an optimization problem with structural constraints

arising from interpretability considerations. To obtain a sparse model with few predictors,

that is, with many of the components {fj} and {fj,k} estimated as exactly zero, we present a
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novel ℓ0-regularized approach1, penalizing the number of nonzero components in the model.

In addition, we explore a refined notion of interpretability in the context of interaction

modeling – namely, hierarchical sparsity – inspired by its usage in linear models [for example,

26, 98]. To our knowledge, we present a novel exploration of computational and statistical

perspectives of an ℓ0 regularized approach for fitting sparse additive models with pairwise

interactions.

Contributions. We propose a new family of estimators based on nonparametric additive

models with interactions under combinatorial constraints that promote parsimony and inter-

pretability. We present large-scale algorithms to compute these estimators – these algorithms

significantly expand the current computational landscape for nonparametric additive models

with pairwise interactions. Our approach addresses some of the key computational challenges

posed by the large-scale setting of the Census dataset (next chapter), with ≈ 105 nonparamet-

ric interaction components and ≈ 105 observations. The code implementing our algorithms is

available at https://github.com/mazumder-lab/elaan.

Related Work. There is an impressive body of methodological and theoretical work on

using convex ℓ1-based approaches to fit sparse nonparametric AMs without interactions [see,

for example, 111, 185, 220, 283, 287, and the references therein]. Even with main-effects alone,

these convex optimization-based methods face computational challenges for the problem-

scales we seek to address2. This possibly limits practitioners from realizing the full potential

of nonparametric AMs in large-scale settings arising in various practical applications. In

terms of statistical properties, the ℓ0-based estimators can offer improvements over their

ℓ1-counterparts, both on the prediction and the model selection fronts. To this end, we

refer the reader to recent work by [104] demonstrating the advantages of using the ℓ0-
1For examples of ℓ0-based approaches and illustrations of their advantages over the ℓ1-based counterparts

in the context of linear regression, see [25, 99, 181, 182] and the references therein.
2Based on our experience, currently available software (for example, R package SAM) encounters numerical

difficulties for instances where n is on the order of thousands, and p is on the order of hundreds.
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regularized framework for grouped variable selection (which includes nonparametric AMs)

without interactions.

In the presence of pairwise interactions, a setting we focus on, the problem of variable

selection in nonparametric AMs becomes considerably more challenging. The approaches

by Meier et al. [185] and Ravikumar et al. [220] consider additive models with main effects

but no pairwise interactions. Lin and Zhang [165] introduced COSSO, which is a well-known

method to fit model (3.1.1); however, the method appears to be suitable for low-dimensional

settings – for example, the authors consider instances with n ∼ 500, p ∼ 10, and ∼ 50

pairwise interactions3.

COSSO penalizes the sum of the Sobolev norms of the functional components in represen-

tation (3.1.1) and, thus, is capable of producing sparse models. However, the convex COSSO

penalty jointly controls sparsity and smoothness, potentially resulting in unwanted shrinkage

interfering with component selection. In contrast, our proposed approach uses separate penal-

ties for smoothness and sparsity, and encourages sparsity directly via an ℓ0-based penalty on

the number of components in the model.

More recently, some methods have been proposed that extend the scope of classical

nonparametric AMs [93]. In a series of works Lou et al. [172], Nori et al. [199], Yang et al.

[276] explore tree-based and neural-network-based approaches for fitting additive models with

sparse interactions. Lou et al. [172] propose a two-stage approach using shallow tree-like

models for the main and interaction effects. In the first stage, they use gradient boosting

to fit the main effects – the boosting procedure cycles through all features in a round-robin

fashion to fit all main effects. In the second stage, they use a scheme to select a small subset

of pairwise interactions–these interaction effects are fitted with shallow tree-like models via

gradient boosting. Nori et al. [199] provide an efficient implementation of the above approach

as Explainable Boosting Machines (EBM) in the well-known interpretml toolkit. The EBM

procedure is not based on optimizing a penalized estimation framework and, to our knowledge,
3There appears to be no open-source implementation for COSSO.
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no statistical guarantees for it are known.

In another line of work, Yang et al. [276] proposed GAMI-Net, which uses neural networks to

fit main and pairwise interaction effects. GAMI-Net uses a multi-stage approach: (i) fit all

main effects, where each main effect is modeled using a multi-layer perceptron (MLP); (ii)

select Top-k interactions based on an interaction detection method [172] on the residuals; (iii)

fit the Top-k interaction effects simultaneously, where each interaction effect is again modeled

as MLP; (iv) fine-tune all selected main effects and interaction effects toegther. GAMI-Net

also prunes some components in steps (i) and (iii) based on some ranking measure. GAMI-Net

uses screening methods prior to training to select a collection of main and interaction effects

and, as such, does not jointly optimize the sparsity pattern while training.

Zschech et al. [296] independently compared various existing interpretable models and

concluded that EBM [199] and GAMI-Net [276] appear to be the leading interpretable models.

However, both models have some practical limitations. For example, EBM includes all main

effects in the model (i.e., there is no feature selection). Neural-based approaches, such as

GAMI-Net, are quite computationally expensive. On the Census dataset that we consider in

the next chapter, GAMI-Net takes 3 days (using a 8-CPU machine) to compute one model if

we consider 1000 tuning parameters, we are looking at a steep 3000 days of computation cost.

To the best of our knowledge, our algorithmic framework for sparse nonparametric AMs

with interactions is novel.

Organization. Section 3.2 presents the statistical models pursued in this chapter. Sec-

tion 3.2.3 discusses how to obtain solutions to the corresponding large-scale discrete op-

timization problems. Section 3.3 develops an extension of our method that incorporates

strong hierarchy constraints. In Section 3.4, we present simulation studies comparing our

methods with COSSO, EBM and GAMI-Net. Additional technical details are provided in

the supplementary material.
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3.2 Statistical Models and Methodology

We now discuss the statistical models we pursue in this work. Section 3.2.1 gives an overview

of AMs with nonlinear main effects and pairwise interactions, along with optimization

formulations associated with the estimation procedures. Section 3.2.2 presents our new

models to incorporate sparsity in the main and interaction effects.

3.2.1 Smooth additive models with pairwise interactions

Given data {(yi,xi)}n1 , our key objective is to learn a multivariate conditional mean function

f(x) := E(y|x), where f : Rp 7→ R is an unknown smooth function [256]. It is well known

that such functions become difficult to estimate even for moderately high p due to the curse

of dimensionality – therefore we will focus on a smaller class of models corresponding to

additive structures [93, 241]. A popular approach considered in the literature estimates a

nonparametric additive model containing main-effects only, with f(x) =
∑p

j=1 fj(xj), where

each fj is an unknown univariate smooth function of the j-th coordinate in x, namely xj . In

various applications, however, nonparametric AMs based on main effects alone may not lead to

a sufficiently rich representation for predicting the outcome of interest: including interaction

terms can lead to better predictive models while remaining interpretable to a practitioner [93].

AMs with pairwise interactions are a useful tool in applied statistical modeling with various

applications in medical sciences and healthcare, e-commerce applications, recommender

system problems, and sentiment analysis, among others [95].

An additive model with nonlinear main effects and pairwise interactions extends the

traditional AM framework with main effects alone [94, 215], and is given by model (3.1.1),

where the unknown components {fj} and {fj,k} need to be estimated from the data. This

leads to two key challenges. The presence of O(p2)-many unknown nonparametric functions

results in statistical challenges even for a moderate value of p. Additional regularization (for

example, in the form of sparsity in the components) may be necessary to obtain a reliable
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statistical model with good generalization properties (cf Section 3.2.2). Furthermore, as we

mention in Section 3.1, estimating model (3.1.1) leads to severe computational challenges for

large problems (for example, those with n ≈ 105 and p2 ≈ 105, similar to the instances we

consider in our applications) – we discuss how we address these challenges in Section 3.2.3.

We assume that the components {fj} and {fj,k} are smooth (for example, twice continu-

ously differentiable). We let fj = (fj(x1j), . . . , fj(xnj)) and fj,k = (fj,k(x1j, x1k), . . . , fj,k(xnj, xnk))

denote the evaluations of the main effect component fj and the interaction component fj,k,

respectively, at the n data points. Writing y for the response vector and using squared

ℓ2-loss as the data fidelity term, the task of learning (3.1.1) can be expressed as the following

optimization problem:

min
fj∈C1,∀j

fj,k∈C2,∀j<k

1

n

∥∥y −∑
j∈[p]

fj −
∑
j<k

fj,k
∥∥2
2
+ λ1

[∑
j∈[p]

Ω(fj) +
∑
j<k

Ω(fj,k)
]
, (3.2.1)

where C1 and C2 denote the sets of smooth candidate functions, Ω is a roughness penalty4,

and λ1 is a non-negative regularization parameter controlling the smoothness of the fit. We

show in Section 3.2.3 that problem (3.2.1) can be written as a finite-dimensional quadratic

program by using cubic splines to model each of the main and interaction effects.

3.2.2 Parsimonious models via ℓ0-penalization

Here we study ℓ0-type estimators that limit the number of components in the additive models

introduced earlier.

3.2.2.1 Sparse pairwise interactions

While a significant body of work has been devoted to studying sparsity in the context of

linear models, sparsity in nonlinear models has received relatively less attention. Interestingly,
4For example, Ω(fj) =

∫
f ′′
j (xj)

2dxj and Ω(fij) =
∫
xjxk

(∂2fj,k/∂x
2
j)

2 + (∂2fj,k/∂xj∂xk)
2 +

(∂2fj,k/∂x
2
k)

2dxjdxk.
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we observe that the notion of parsimony is linked to the model being used and changes,

for example, depending on whether we use a linear interaction model of the form E(y|x) =∑
j xjβj +

∑
j<k xjxkβjk or model (3.1.1) that has nonlinear components.

To obtain an additive model with a small number of main and interaction effects, we

consider an ℓ0-penalized modification of optimization problem (3.2.1). We write

Ωgr(f) =
∑
j∈[p]

Ω(fj) +
∑
j<k

Ω(fj,k) and f =
∑
j∈[p]

fj +
∑
j<k

fj,k, (3.2.2)

to simplify the expressions, and propose an estimator that optimizes the following problem:

min
fj∈C1,∀j

fj,k∈C2,∀j<k

1

n

∥∥y − f
∥∥2
2
+ λ1Ωgr(f) + λ2

[∑
j∈[p]

1
[
fj ̸= 0

]
+ α

∑
j<k

1
[
fj,k ̸= 0

]]
, (3.2.3)

where 1[·] is an indicator function, λ2 ∈ [0,∞) controls the number of selected components,

and α ∈ [1,∞) controls the tradeoff between the number of main and interaction effects. We

note that the finite-dimensional version of Problem (3.2.3) can be formulated as a mixed

integer program (MIP) [264], and hence can be solved to optimality with modern commercial

solvers (for example, Gurobi, Mosek) for small/moderate scale problems. Recently, tailored

nonlinear branch-and-bound techniques [103] have been shown to be promising for solving

large-scale instances of ℓ0-sparse linear regression problems. Since we intend to compute

solutions to (3.2.3) for a family of tuning parameters (λ1, λ2) at scale, we consider high-quality

approximate solutions (cf Section 3.2.3). Once a good solution to (3.2.3) is available, we can

employ MIP techniques to improve the solution and/or certify the quality of the solution,

extending the local search techniques presented in [99] for ℓ0-sparse linear regression problems.

To our knowledge, our methodological investigation of estimator (3.2.3) is novel. We refer to

this model as ELAAN-I5.

While in this paper, we study a group ℓ0 penalty in (3.2.3), one can also consider other

non-convex penalty functions: for example, based on the (group) SCAD [70] and MCP
5ELAAN-I stands for End-to-end Learning Approach for Additive spliNes with Interactions.
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[284]. Exploring the statistical and computational aspects of using such penalties would be

interesting to pursue and is left as future work.

Related Work. In the special case of (3.2.3), when no interactions are present, several

convex relaxations of the group ℓ0-penalty have been studied [32, 185, 220, 287]6. [104]

consider ℓ0-formulations for the setting without interaction effects and demonstrate the merits

of using ℓ0-based formulations over convex relaxation-based approaches. Despite the appeal

of estimator (3.2.3), computational challenges appear to be a key limiting factor in exploring

this model in practice. In Section 3.2.3, we present a new algorithm for problem (3.2.3).

Statistical Theory. We establish statistical guarantees for the resulting estimators in

Ibrahim et al. [114]. In particular, we present general non-asymptotic oracle prediction error

bounds, comparing the performance of our estimator to that of sparse approximations to the

true regression function. Bounds of this type have been established for sparse nonparametric

AMs with main effects; however, we are not aware of similar existing bounds for nonparametric

models with pairwise interactions. The existing work has focused mainly on the Lasso-based

estimators, which encourage sparsity in the main-effects by penalizing the magnitudes of

the functional components [see 185, 243, and the references therein]. The use of ℓ1-based

relaxations, in lieu of ℓ0-penalization, to induce sparsity in the main-effects can lead to

unwanted shrinkage, which may interfere with variable selection. The approach in [104]

controls the number of main-effects directly, demonstrating the benefits of ℓ0-regularization

both theoretically and empirically. Our analysis accounts for the interaction effects and

focuses on the ℓ0-penalized formulation, which poses additional theoretical challenges relative

to the ℓ0-constrained formulation. To our knowledge, the error bounds established in Ibrahim

et al. [114] for sparse nonparametric AMs with pairwise interactions are novel. The established

error bounds also have implications for model selection and our proposed approach is model
6In terms of existing implementations, R package SAM presents specialized algorithms for a convex relaxation

of (3.2.3) without interactions. SAM however would not run on the dataset we consider here.
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selection consistent.

3.2.3 Efficient Computations at Scale

We present specialized algorithms for obtaining solutions to Problem (3.2.3). Our approach

scales to the problem-sizes with n ≈ 105 and p ≈ 500, which poses formidable computa-

tional challenges due to the presence of approximately 105 interaction effects7. To obtain

good solutions at scale, we use techniques inspired by first order methods in continuous

optimization [196] and a careful exploitation of the problem-structure. A high-level summary

is presented below, with the details relegated to the Appendix.

Prior approaches. To appreciate the computational challenges of sparse nonlinear AMs

with interactions, and nonparametric AMs in general, we provide a few examples of the

problem instances that can be handled by prior state-of-the-art algorithms with publicly

available implementations. Implementations based on R package SAM [287], the stepwise

GAM function in R package step.gam (which performs greedy variable selection), and

Python package pyGAM, take on the order of days to run and/or face numerical difficulties

for instances with n ≈ 105 to obtain a single solution without interactions. Furthermore,

pyGAM is unable to do automated variable selection. [266] present an interesting approach

for AMs that scales to large n settings (see R package mgcv) but doesn’t appear to perform

automated variable selection in the presence of a large number of features – Wood et al.

[266] report instances containing fewer than 20 pre-specified main and interaction effects.

EBM (199) is a state-of-the-art computational approach for AMs, but does not allow for

feature selection as all the main effects are included in the estimated model. Additionally, the

variant of EBM that selects interaction effects, results in many interaction effects, leading to

sub-optimal support recovery – see Sections 3.4 for an illustration. The GAMI-Net method

(276) is computationally expensive. Additionally, since it uses a multi-layered NN for every
7Note that, using 25 knots for every component, this leads to estimating around 2.5 million basis coefficients.
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interaction effect it requires 100× more parameters when compared with the approaches we

consider.

Algorithms for sparse nonlinear interactions: Problem (3.2.3). We represent the

main and interaction effects as linear combinations of cubic spline basis functions (see the

Appendix for the specific details). In particular, we let fj = Bjβj, where Bj ∈ Rn×Kj is

the model matrix and βj ∈ RKj is the vector of coefficients for each main effect component.

Similarly, we let fj,k = Bj,kθj,k, where Bj,k ∈ Rn×Kj,k is the model matrix and θj,k ∈ RKj,k

is the vector of coefficients for each interaction effect component. Writing β for the vector

obtained by stacking together the coefficients βj , j ∈ [p] for the main-effects, and defining the

vector θ for the interaction effects analogously, we express the objective function in (3.2.1)

as follows:

gλ1(β,θ)
def
=

1

n

∥∥∥y − [∑
j∈[p]

Bjβi +
∑
j<k

Bj,kθj,k

]∥∥∥2
2
+ λ1

[∑
j∈[p]

βT
j Sjβj +

∑
j<k

θT
j,kSj,kθj,k

]
.

Here, Sj = DT
j Dj and Sj,k = (DT

j Dj) ⊗ Ik + Ij ⊗ (DT
k Dk) are the smoothness penalty

matrices for the main effects and the interaction components, respectively (further details are

provided in the Appendix). For convenience, we use the same smoothness penalty λ1 for both

the main and the interaction effects, though in general they may be taken to be different.

The above representation leads to the following form of the optimization problem (3.2.3):

min
β,θ

G(β,θ)
def
= gλ1(β,θ) + λ2

[∑
j∈[p]

1
[
βj ̸= 0

]
+ α

∑
j<k

1
[
θj,k ̸= 0

]]
. (3.2.4)

We note that the indicator functions in the above equation are applied to vectors of basis

coefficients corresponding to particular main or interaction effects. Hence, for example, when

1
[
βj ≠ 0

]
equals zero, the entire main effect fj is also zero. As mentioned earlier, (3.2.4) can

be expressed as a MIP and solved for small-to-moderate scale problems using modern MIP

solvers. However, given the problem-sizes of interest and the fact that we seek to compute

solutions to (3.2.4) for a family of tuning parameters, we discuss faster alternatives. We
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note that the objective in Problem (3.2.4) is a sum of a smooth convex loss function and

a discontinuous regularizer separable across the components {βj} and {θi,k}. Motivated

by the strong empirical performance of cyclical coordinate descent (CD) methods [267] in

ℓ0-penalized linear regression [99], we explore block CD methods to obtain fast approximate

solutions for the nonparametric setting with interactions (3.2.4). For convergence guarantees

of this procedure, see [99] and references therein.

CD methods have old roots in optimization dating back to the foundations of the discipline:

see for example, the review paper [267]. CD methods have close links with the well known

Gauss-Seidel method (for solving linear/nonlinear systems of equations)—similar methods

have been extensively used in additive models [91], where they are referred to as backfitting.

CD schemes (including their block variants) arising from the optimization literature can be

efficiently applied to optimization problems involving sparsity constraints: such problems

arise in fitting additive models with sparsity-inducing penalties [95, 104, 220]. We note that

there are other successful additive model fitting approaches, for example, smooth backfitting

[179, 180], which have excellent theoretical properties. These works focus on the additive

model setup without sparsity—extending these approaches to our setting of large-scale sparse

additive models in a computationally efficient fashion is an interesting direction for future

research.

3.2.4 Block Coordinate Descent for solving (3.2.4)

In our block CD method, the blocks correspond to the basis coefficients for either the main ef-

fects {βj} or the interaction effects {θj,k}. Given an initialization (β
(0)
1 , · · · ,β(0)

p ,θ
(0)
1,2, · · · ,θ

(0)
p−1,p),

at every cycle, we sequentially sweep across the main effects and the interaction effects. If

we denote the solution after t cycles by (β
(t)
1 , · · · ,β(t)

p ,θ
(t)
1,2, · · · ,θ

(t)
p−1,p), then the block of

coefficients for j-th main effect β(t+1)
j at the cycle t+1 is obtained by optimizing (3.2.4) with
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respect to βj, with other variables held fixed:

β
(t+1)
j ∈ argmin

βj∈RKj

G(β
(t+1)
1 , · · · ,β(t+1)

j−1 ,βj,β
(t)
j+1, · · · ,β(t)

p , θ
(t)
1,2, · · · ,θ

(t)
p−1,p). (3.2.5)

Similarly, θ(t+1)
j,k , the coefficients for the (j, k)-th interaction effect at cycle t+ 1 are updated

as

θ
(t+1)
j,k ∈ argmin

θj,k∈RKj,k

G(β
(t+1)
1 , · · · ,β(t+1)

p , θ
(t+1)
1,2 , · · · ,θ(t+1)

(j,k)−1,θj,k,θ
(t)
(j,k)+1 · · · ,θ

(t)
p−1,p). (3.2.6)

The block minimization problem (3.2.5) reduces to:

β
(t+1)
j = argmin

βj∈RKj

ψj(r
(t);βj) :=

1

n

∥∥r(t) −Bjβj

∥∥2
2
+ λ1 βT

j Sjβj + λ21[βj ̸= 0], (3.2.7)

where r(t) = y− (
∑j−1

j′=1Bj′β
(t+1)
j′ +

∑p
j′=j+1 Bj′β

(t)
j′ +

∑
j′<k′ Bj′,k′θ

(t)
j′,k′) denotes the residual.

A solution to (3.2.7) can be computed in closed form via the following thresholding operator:

β
(t+1)
j =


0 if ψj(r

(t);0) ≤ minβj ̸=0 ψj(r
(t);βj)(

BT
j Bj + nλ1Sj

)−1
BT

j r
(t) otherwise.

(3.2.8)

Similarly, the sub-problem for the interaction effects is

θ
(t+1)
j,k = argmin

θj,k∈RKj,k

ψj,k(r
(t);θj,k) :=

1

n

∥∥r(t) −Bj,kθj,k

∥∥2
2
+ λ1 θT

j,kSj,kθj,k + αλ21[θj,k ̸= 0],

(3.2.9)
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where r(t) = y − (
∑p

j′=1 Bj′β
(t+1)
j′ +

∑(j,k)−1
(j′,k′)=1,2Bj′,k′θ

(t+1)
j′,k′ +

∑p−1,p
(j′,k′)=(j,k)+1Bj′,k′θ

(t)
j′,k′). A

solution to this problem is given by

θ
(t+1)
j,k =


0 if ψj,k(r

(t);0) ≤ minθj,k ̸=0 ψj,k(r
(t);θj,k)(

BT
j,kBj,k + nλ1Sj,k

)−1
BT

j,kr
(t) otherwise.

(3.2.10)

These block CD updates need to be paired with several computational devices in the form

of active set updates, cached matrix factorizations, and warm-starts, among others. We

draw inspiration from similar strategies used in CD-based procedures for sparse linear

regression [77, 99], and adapt them to our problem. These devices are discussed in detail in

the Appendix Section 3.2.5.

3.2.5 Scalability considerations for solving (3.2.4)

We draw inspiration from strategies used in CD-based procedures for sparse linear regres-

sion [77, 99], and adapt them to scale cyclic block coordinate descent in Section 3.2.3 to large

problem instances of (3.2.4) . These include active set updates, cached matrix factorizations

and warm-starts. They are explained in more detail below:

3.2.5.1 Active set updates

A main computational bottleneck in the block CD approach is the number of passes across

the O(p2) blocks. However, as we anticipate a solution that is sparse (with few nonzero main

and interaction effects), we use an active set strategy. We restrict our block CD procedure to

a small subset Q of the O(p2) variables, with all blocks outside the active set being set to

zero. Once the CD algorithm converges on the active set, we check if all blocks outside the

active set satisfy the coordinate-wise optimality conditions8. If there are any violations, we
8That is, we check if optimal solutions to (3.2.5) and (3.2.6) are zero for all blocks outside Q.
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select the corresponding blocks, append them to the current active set, and then rerun our

block CD procedure. As there are finitely many active sets, the algorithm is guaranteed to

converge – in practice, with warm-start continuation (discussed below), the number of active

set updates is quite small, and the algorithm is found to converge quite quickly.

3.2.5.2 Cached matrix factorizations

The updates (3.2.8) and (3.2.10) require computing a matrix inverse. In particular, if a

block is nonzero, we need to compute a linear system solution of the form: A−1
l bl where

Al = BT
l Bl + nλ1Sl. We note that matrix Al is fixed throughout the CD updates and is

independent of the choice of the sparsity regularization parameter λ2 – hence, we pre-compute

a matrix factorization for Al (for example, an LU decomposition) and use it to compute the

solution to the linear system. As the dimension of Al equals the number of basis coefficients,

which is small, this can be done quite efficiently.

3.2.5.3 Warm-starts

We use our CD procedure to compute a path of solutions to (3.2.4) for a 2D grid of

tuning parameters (λ1, λ2) ∈ {λ(l)1 }Ll=0 × {λ
(m)
2 }Mm=0, where λ1 corresponds to the smoothness

parameter and λ2 the sparsity parameter. Here, λ(l)1 > λ
(l+1)
1 for all l, and λ

(m)
2 > λ

(m+1)
2

for all m. When λ1 = λ
(0)
1 (most regularized), we compute a sequence of solutions across

the λ2-values (from large to small values): a solution obtained at (λ
(0)
1 , λ

(m)
2 ) is used to

initialize our CD procedure for the value (λ
(0)
1 , λ

(m+1)
2 ). As the number of nonzeros in a

solution to (3.2.4) generally increases with λ2-values, our CD procedure for (λ
(0)
1 , λ

(m+1)
2 )

uses an active set that is slightly larger than the active set9 corresponding to the solution

at (λ
(0)
1 , λ

(m)
2 ). Once we have traced a full path over λ2, we use warm-starts in the lateral

direction across the space of λ1. For all l ≥ 0, to obtain a solution to (3.2.4) at (λ
(l+1)
1 , λ

(m)
2 ),

we use the solution at (λ
(l)
1 , λ

(m)
2 ) as a warm-start.

9This is usually taken to be 1-10% larger than the current active set, and is chosen in a greedy fashion
from among the main and interaction effects lying outside the current active set.
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3.3 Incorporating strong hierarchy constraints

In this section, we discuss the model with sparse interactions under strong hierarchy.

Problem (3.2.4) limits the total number of main and interaction effects and works well

in our experiments in terms of obtaining a sparse model with good predictive performance.

In terms of variable selection properties, however, (3.2.4) can lead to the inclusion of an

interaction effect, say, {(j, k)} where at least one of the corresponding main-effects {j} or

{k} is excluded from the model. This may be somewhat problematic from an interpretation

viewpoint—it may be desirable to enforce additional constraints in (3.2.4), such as the

hierarchy constraints [26, 183].In this paper, we consider the strong hierarchy constraint,

where an interaction effect {(j, k)} is included in the model only if both the corresponding

main effects are also included. In addition to improved interpretation, strong hierarchy can

reduce the effective number of features in the model, subsequently reducing the operational

costs associated with data collection [26, 98].

To enforce strong hierarchy into model (3.2.4), we consider the following estimator:

min
β,θ

gλ1(β,θ) + λ2
(∑
j∈[p]

1[βj ̸= 0] + α
∑
j<k

1[θj,k ̸= 0]
)

(3.3.1a)

s.t. θj,k ̸= 0 =⇒ βj ̸= 0 & βk ̸= 0 ∀j < k, j ∈ [p], k ∈ [p]. (3.3.1b)

We note that (3.3.1) differs from (3.2.4) in the additional strong hierarchy constraint appearing

in (3.3.1b). By using binary variables to model sparsity in the main/interaction effects and

to encode the hierarchy constraint (3.3.1b), Problem (3.3.1) can be expressed as the following
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MIP:

min
β,θ,z

gλ1(β,θ) + λ2
(∑
j∈[p]

zj + α
∑
j<k

zj,k
)

(3.3.2a)

s.t. zj, zj,k ∈ {0, 1}, ∥βj∥22 ≤Mzj, ∥θj,k∥22 ≤Mzj,k ∀j < k, j, k ∈ [p], (3.3.2b)

zj,k ≤ zj, zj,k ≤ zk, ∀j < k, (3.3.2c)

where the BigM parameter M is a sufficiently large finite constant such that an optimal

solution to (3.3.2) satisfies maxj ∥βj∥22 ≤ M and maxj,k ∥θj,k∥22 ≤ M . Binary variable zj

(and zj,k) indicates whether the corresponding main effect βj (respectively, interaction effect

θj,k) is zero or not; the constraint appearing in (3.3.2c) enforces the hierarchy constraint

in (3.3.1b).

To our knowledge, ours is the first work to study estimator (3.3.2). The methodology

presented here is of independent interest in the context of structured nonparametric learning

with interactions. We refer to this model as ELAAN-H10. In Section 3.3.1 of the Appendix, we

propose algorithms to obtain good solutions to Problem (3.3.2).

Related Work. Methodology for strong hierarchy in linear models has been studied in

the statistics/machine learning literature [26, 98, 164, 275] – these works focus on the linear

model setting, a special case of the nonlinear setting we consider here. [215] consider hierarchy

constraints in the nonparametric setting via convex optimization schemes. To our knowledge,

current techniques are unable to scale to the functional learning instances we consider in our

paper.

As mentioned earlier, the EBM approach (199) does not support hierarchy constraints.

GAMI-Net [276] follows a two-stage approach to fit nonparametric additive models with sparse

(weak) hierarchical interactions. GAMI-Net performs a screening step after estimating the

main effects with neural-network blocks and only consider interaction effects that satisfy the
10ELAAN-H stands for End-to-end Learning Approach for Additive spliNes with Hierarchy.
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weak hierarchy principle amongst the screened main effect – an interaction effect can appear

in the model if one of the main effects is in the model. As mentioned earlier, GAMI-Net is not

based on a sparsity-inducing penalized optimization procedure; and can be computationally

much more expensive than our estimators.

3.3.1 Algorithms for ELAAN-H with sparse hierarchical interactions:

Problem (3.3.2)

Similar to the case of (3.2.4), and with the computational speed in mind, we present

approximate methods to obtain good solutions to (3.3.2). As mentioned earlier, these

approximate solutions can be used to initialize MIP-based approaches for (3.3.2) to improve

the solution, and/or to certify the quality of these approximate solutions following Bertsimas

et al. [25], Hazimeh and Mazumder [99].

Our first step is to reduce the number of main and interaction effects in (3.3.2) by making

use of the family of solutions available from (3.2.4). We consider the union of supports

available from the family of solutions obtained from (3.2.4), across the 2D grid of tuning

parameters λ1, λ2. LetM⊂ [p] and I ⊂ [p(p−1)/2] denote the sets of all nonzero main effects

and interactions effects, respectively11, encountered along the 2D path of solutions to (3.2.4).

We form a reduced version of problem (3.3.2) with zi = 0, i /∈M and zj,k = 0 for all (j, k) /∈ I.

Let us denote the reduced problem by P(M, I). We consider a convex relaxation of P(M, I),

denoted by PR(M, I), where all binary variables {zi}, {zj,k} in P(M, I) are relaxed to the

interval [0, 1]. As the sizes ofM and I are generally small, it is computationally feasible to

solve the relaxation PR(M, I) – we let {zRi } and {zRj,k} denote a solution to this relaxation.

Following [98], it can be shown that this solution satisfies the strong hierarchy constraint

(almost surely). To obtain a feasible solution to Problem (3.3.2), we apply a relax-and-round

procedure. For the rounding step, we consider a threshold τ ∈ (0, 1) and obtain z̃i = 1[zRi > τ ]

11If I includes an interaction (j, k) where main-effect j is not included inM, we expandM to include j.
This way, we make sure that all interaction effects have the corresponding main effects included inM.
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for all i ∈ M and z̃j,k = 1[zRj,k > τ ] for all (j, k) ∈ I. We set z̃i = 0, i /∈ M; and z̃j,k = 0

for all (j, k) /∈ I. It can be verified that this rounding procedure maintains strong hierarchy.

Finally, we perform a ‘polishing’ step where we solve (3.2.1) restricted to the support defined

by {z̃i}i and {z̃j,k}j,k.

Related Work. In contrast to Problem (3.2.4), the regularization penalty in problem (3.3.2)

is not separable across the blocks due to the overlapping groups created by the strong

hierarchy constraint. Hence, the CD-based procedures discussed for (3.2.4) do not apply

to the hierarchical setting. To the best of our knowledge, there are no prior specialized

algorithms for (3.3.2) that apply to the scale that we consider here. In fact, even in the linear

regression setting, current algorithms for problems with a hierarchy constraint are somewhat

limited in terms of the problem-scales they can address. The sole exceptions appear to be the

convex optimization based approaches of [98, 164], which can address sparse linear regression

problems with a large number of features and a small number of observations.

3.4 Simulations

In this section we study the empirical performance (estimation and prediction) of the

ELAAN-I and ELAAN-H estimators on synthetic datasets.

3.4.1 Sparse additive model with interactions

Motivated by [161], we consider a problem with p = 10 features where the true underlying

model is additive in a small number of main and interaction effects:

f ∗(x) = g1 (x1) + g2 (x2) + g3 (x3) + g4 (x4) (3.4.1)

+ g1 (x3x4) + g2

(
x1 + x3

2

)
+ g3 (x1x2) ,
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where functions g1(t) = t, g2(t) = (2t − 1)2, g3(t) = sin(2πt)
2−sin(2πt) , and g4(t) = 0.1sin(2πt) +

0.2cos(2πt) + 0.3sin2(2πt) + 0.4cos3(2πt) + 0.5sin3(2πt) are defined on [0, 1]. Note that the

covariates x5, · · · , x10 do not contribute to the response. Each of the covariates x1, . . . , x10

are independently drawn from the uniform distribution U(0, 1). We generate the responses as

y = f ∗(x) + ϵ, where the errors ϵ are drawn from a Gaussian distribution N (0, 0.25462).

We measure prediction accuracy using the integrated squared error, ISE = Ex[(f̂(x)−

f ∗(x))2], estimated by Monte Carlo integration using 10, 000 test observations from the same

distribution as the training ones, following the procedure in [161]. We vary the number of

training observations from 100 to 400 and use 100 replications for each simulation setting.

We compare our estimators to well-known benchmarks EBM [199], GAMI-Net [276], COSSO

[165], and MARS12 [78].

Table 3.4.1 presents the average test ISE and their standard errors (based on the replica-

tions). The tuning parameters for ELAAN-I, ELAAN-H, EBM and GAMI-Net are selected via

5-fold cross-validation. The results for MARS and COSSO are taken from Table 6 in [161].

Table 3.4.1 demonstrates that both of our estimators, ELAAN-I and ELAAN-H, outperform the

competitors across the entire range of training set sizes under consideration.

Next, we study the support recovery performances of ELAAN-I, ELAAN-H, EBM and GAMI-

Net. We evaluate models using discrepancy between the true and estimated support and

separately report the average F1-score (defined in Section 3.5.2.1 of the Appendix) for the

main and the interaction effects. The support recovery metrics are shown in Table 3.4.2. We

observe that, overall, both ELAAN-I and ELAAN-H appear to outperform EBM and GAMI-Net

in terms of the F1-score. Moreover, ELAAN-H is seen to be the best-performing method across

all the simulation settings. In summary, our approaches work quite well in terms of variable

selection.

Table 3.4.3 presents additional variable selection details of the two best-performing

approaches: ELAAN-I and ELAAN-H. For each true main and interaction effect, we report the
12MARS is a stepwise forward–backward procedure for building functional ANOVA models.
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Table 3.4.1: Integrated Squared Errors for ELAAN-I, ELAAN-H, MARS, COSSO, EBM and
GAMI-Net.

Ntrain

Model 100 200 400

MARS 0.239± 0.008 0.109± 0.003 0.084± 0.001
COSSO 0.378± 0.005 0.094± 0.004 0.043± 0.001
EBM 0.274± 0.004 0.170± 0.002 0.100± 0.001
GAMI-Net 0.281± 0.007 0.114± 0.004 0.063± 0.003
ELAAN-I 0.220± 0.013 0.077± 0.002 0.035± 0.001
ELAAN-H 0.180± 0.008 0.081± 0.004 0.038± 0.001

Table 3.4.2: Support recovery metric (F1-score) for the main effects and the interaction
effects.

Ntrain Model F1 (main) F1 (Interactions)
EBM 57.14± 0.00 51.47± 1.89

GAMI-Net 61.77± 0.79 22.31± 1.27
ELAAN-I 85.35± 1.24 40.30± 2.78100
ELAAN-H 93.46± 1.14 66.61± 2.45

EBM 57.14± 0.00 70.43± 2.07
GAMI-Net 59.23± 0.41 33.01± 1.51
ELAAN-I 90.55± 1.02 74.83± 1.58200
ELAAN-H 98.52± 0.43 82.43± 1.38

EBM 57.14± 0.00 83.47± 1.86
GAMI-Net 58.11± 0.30 39.24± 2.16
ELAAN-I 97.43± 0.62 87.34± 1.17400
ELAAN-H 99.31± 0.41 90.17± 1.23

Table 3.4.3: Relative frequency of the true main and interaction effects appearing in the
ELAAN-I and ELAAN-H models.

Ntrain 100 200 400 1000
Components ELAAN-I ELAAN-H ELAAN-I ELAAN-H ELAAN-I ELAAN-H ELAAN-I ELAAN-H
x(1) 87% 97% 79% 100% 89% 100% 90% 100%
x(2) 67% 93% 88% 100% 99% 100% 100% 100%
x(3) 100% 95% 100% 98% 100% 100% 100% 100%
x(4) 99% 99% 100% 99% 100% 99% 100% 100%
[x(1), x(2)] 69% 100% 100% 100% 100% 100% 100% 100%
[x(1), x(3)] 18% 100% 74% 94% 97% 99% 100% 100%
[x(3), x(4)] 0% 96% 14% 33% 42% 59% 99% 96%

relative frequency of their appearance in the estimated support across all replications. The

results in Tables 3.4.2 and 3.4.3 suggest that ELAAN-H outperforms ELAAN-I in terms of the

variable selection when the true model is hierarchical. In practice, when we do not know

if the underlying truth obeys strong hierarchy, ELAAN-H tends to result in more compact

models, as we demonstrate in the Census application in Section 4.3.
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3.4.2 Large-scale setting with correlated features

Next, we evaluate our proposed methods on large-scale synthetic data with p = 500 correlated

features. We draw (x1, ..., xp) from a multivariate normal distribution N (0,Σ), where

Σij = σ|i−j| with σ ∈ [0, 1]. We generate the responses as y = f ∗(x) + ϵ, where ϵ ∼ N (0, 0.25)

and

f ∗(x) = h1 (x26) + h2 (x76) + h3 (x126) + h4 (x176) + h5 (x226) + h6 (x276)

+ h1 (x326) + h2 (x376) + h3 (x426) + h4 (x476)

+ h1 (x26)h2 (x76) + h1 (x26)h3 (x126) + h4 (0.5(x126 + x176)) + h4 (x176)h5 (x226)

+ h4 (x176)h6 (x276) + h5 (x326x376) + h6 (x426x476) + h4 (x276x476) ,

with h1(t) = 0.5t, h2(t) = 1.25sin(t), h3(t) = 0.3exp(t), h4(t) = 0.5t2, h5(t) = 0.9cos(t), and

h6(t) = 1/(1 + exp(−t)).

Table 3.4.4: Integrated Squared Errors and support recovery metrics for EBM, GAMI-Net,
ELAAN-I and ELAAN-H on large-scale synthetic data with different correlation strengths (σ).

Prediction Error Support Recovery
σ Model ISE (×10−2) F1 (features) F1 (main) F1 (Interactions)

0.1

EBM 379.1± 5.3 3.92± 0.00 3.92± 0.00 26.41± 3.26
GAMI-Net 81.8± 7.3 56.57± 4.10 92.25± 2.44 11.65± 1.78
ELAAN-I 8.9± 0.9 98.95± 0.69 67.75± 4.77 95.17± 1.17
ELAAN-H 7.4± 0.8 98.72± 0.59 98.72± 0.59 93.78± 1.65

0.3

EBM 381.4± 4.24 3.92± 0.00 3.92± 0.00 28.26± 3.07
GAMI-Net 83.2± 7.2 55.20± 4.52 94.20± 2.04 12.00± 2.29
ELAAN-I 11.4± 1.6 99.24± 0.35 65.90± 5.07 95.10± 1.08
ELAAN-H 10.0± 1.6 98.16± 1.80 98.16± 1.80 93.48± 2.41

0.5

EBM 386.4± 5.9 3.92± 0.00 3.92± 0.00 26.00± 3.40
GAMI-Net 77.9± 6.2 58.06± 4.15 93.92± 2.11 13.24± 2.04
ELAAN-I 12.4± 1.7 100.00± 0.00 60.04± 5.75 95.25± 1.00
ELAAN-H 10.6± 1.8 98.87± 0.54 98.87± 0.54 94.32± 1.05

0.7

EBM 375.7± 3.3 3.92± 0.00 3.92± 0.00 17.20± 2.06
GAMI-Net 78.4± 7.0 62.42± 4.18 94.80± 1.97 14.87± 2.67
ELAAN-I 9.3± 0.8 99.43± 0.31 77.38± 4.71 97.12± 0.98
ELAAN-H 10.6± 1.8 97.57± 0.68 97.57± 0.68 91.31± 1.52

We produce 10,000 training observations and evaluate the prediction performance as

before, using ISE on a test set of size 10,000. We compare our estimators to EBM [199] and
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GAMI-Net [276]. Table 3.4.4 presents the average prediction errors and support recovery

metrics over 25 simulation replications, along with the corresponding standard errors. The

tuning procedure for ELAAN-I, ELAAN-H, EBM and GAMI-Net is described in the Appendix.

Table 3.4.4 demonstrates that our proposed models consistently and significantly outperform

the competitors, exhibiting a 7-11 fold reduction in the prediction error.

3.4.3 Conclusion

We propose a framework to obtain models with good predictive accuracy while simultaneously

delivering parsimonious and interpretable statistical models. In the next chapter, we consider

a large-scale practical Census Survey Response Prediction with our ELAAN-I/ELAAN-H models.

3.5 Appendix

3.5.1 Computational details

3.5.1.1 Univariate and bivariate smooth function estimation with splines

We discuss how the univariate and bivariate smooth functions are used to model main effects

and interaction effects in Section 3.2.1. The computational details for estimating these

building blocks via quadratic optimization are outlined below.

One dimensional nonparametric function estimation. Suppose that we have observa-

tions {(yi, ui)}n1 corresponding to a univariate response yi and a univariate predictor ui ∈ [0, 1].

If the underlying relationship between y and u can be modeled via a twice continuously

differentiable (i.e., smooth) function m(u), we can estimate m(u) as a function that minimizes

the following objective:
∑n

i=1(yi −m(ui))
2 + λ

∫
(m′′(u))2du. This functional optimization

problem can be reduced to a finite dimensional quadratic program by using a suitable basis

representation for m(u). For example, if all of the ui’s are distinct and b1(u), . . . , bn(u) are
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the basis functions [for example, cubic splines with knots at the observations ui, 95, 256],

then we can write m(u) =
∑n

i=1 γibi(u). In this case,
∫
(m′′(u))2du = γ⊤Dγ, where D is a

positive semidefinite matrix with the (i, l)-th entry given by
∫
b
′′
i (u)b

′′

l (u)du.

Instead of using an n-dimensional basis representation for m(u), which is computationally

expensive and perhaps statistically redundant, one can choose a smaller number of basis

functions, such as K = O(n1/5); this leads to a low-rank representation of D [84, 162] and

hence an improved computational performance. Reducing the number of basis elements from

n to K leads to fewer parameters at the expense of a marginal increase in bias [256], which is

often negligible in practice.

The evaluations of the function m(u) at the n data points can be stacked together in

the form of a vector Bβ, where B is an n × K matrix of basis functions evaluated at

the observations, and β ∈ RK contains the corresponding basis coefficients that need to be

estimated from the data. The univariate function fitting problem then reduces to a regularized

least squares problem given by minβ∈RK{∥y −Bβ∥22 + λβTAβ}.

While many choices of spline bases are available [94, 265], we use penalized B-splines

for their appealing statistical and computational properties. Following [64], a second-order

finite difference penalty on the coefficients of adjacent B-splines serves as a good discrete

approximation to the integral of the squared second-order derivative penalty Ω discussed

above. The regularized least squares problem takes the form

min
β

∥y −Bβ∥22 + λ
K−2∑
l=1

(∆2βl)
2, (3.5.1)

where K is the number of the B-spline basis functions and ∆2βl = βl − 2βl+1 + βl+2 is the

second-order finite difference of the coefficients of adjacent B-splines with equidistant knots.

We note that the regularization term can be represented in matrix form as λ ∥Dβ∥22, where

D ∈ R(K−2)×K is a banded matrix with nonzero entries given by dl,l = 1, dl,l+1 = −2 and

dl,l+2 = 1 for l ∈ [K − 2].
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Two dimensional nonparametric function estimation. To model the response as a

function of two covariates one can again use reduced rank parameterizations, in the form of

multivariate splines [256], thin-plate splines [132], or tensor products of B-splines [65, 265],

for example. We use tensor products of B-splines to model the two-dimensional smooth

functions of the form m(u, v), with (u, v) ∈ [0, 1]2 for concreteness. We start from a low-rank

B-spline basis representation for the marginal smooth functions as m1(u) =
∑K

k=1 βkbk(u)

and m2(v) =
∑L

l=1 δlcl(v), where {bk} and {cl} are B-spline basis functions, and {βk}, {δl}

are unknown basis coefficients. We convert the marginal smooth function m1 into a smooth

function of covariates u and v by allowing the coefficients βk to vary in a smooth fashion

with respect to v. Given that we have an available basis for representing smooth functions

of v, we can write βk(v) =
∑L

l=1 δk,lcl(v) and then arrive at the tensor smooth given by

m(u, v) =
∑K

k=1

∑L
l=1 δk,lbk(u)cl(v). We note that the evaluations of the function m(u, v) at

the n data points can be stacked together in a vector written as Rγ. We denote the vectors

evaluating the two marginal functional bases, {bk(·)} and {cl(·)}, at the i-th data point as

Bi ∈ RK and Ci ∈ RL, respectively. In matrix notation, the model matrix R ∈ Rn×KL

can be expressed as R = (B ⊗ 1L) ⊙ (1K ⊗ C), where operations ⊗ and ⊙ denote

Kronecker product and element-wise multiplication respectively. The basis coefficients δk,l are

appropriately ordered into the vector γ ∈ RKL via the vectorization operation γ = vec(δ) =

[δ1,1, · · · , δK,1, δ1,2, · · · , δK,2, · · · , δ1,L, · · · , δK,L]
⊤, where δ = [δk,l]k∈[K],l∈[L] stores the basis

coefficients in matrix form.

The smooth 2D estimate can be obtained by making use of tensor products and a

discretized version of the smoothness penalty [65], given by:

min
γ
∥y −Rγ∥22 + λb

K∑
k=1

L−2∑
l=1

(∆2
(1)δk,l)

2 + λc

L∑
l=1

K−2∑
k=1

(∆2
(2)δk,l)

2, (3.5.2)

where ∆2
(1)δk,l = δk,l − 2δk,l+1 + δk,l+2 and ∆2

(2)δk,l = δk,l − 2δk+1,l + δk+2,l. The regularization
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terms above can be compactly represented as quadratic forms in γ as follows:

min
γ
∥y −Rγ∥22 + λbγ

TPbγ + λcγ
TPcγ, (3.5.3)

where Pb = (DTD)⊗IL and Pc = IK⊗ (DTD). The regularizer ensures that the coefficients

in the same row (or column) of δ vary regularly, leading to a smooth 2D surface.

3.5.1.2 A finite dimensional quadratic program

Problem (3.2.1) can be written as a finite-dimensional quadratic program. Using splines to

model each of the main-effects and the interaction-effects, one can write the main-effects

and interaction-effects as a linear combination of suitable bases elements. More specifically,

fj = Bjβj, where Bj ∈ Rn×Kj is the model matrix and βj ∈ RKj is the vector of coefficients

for each main effect component. Similarly, fj,k = Bj,kθj,k, where Bj,k ∈ Rn×Kj,k is the model

matrix and θj,k ∈ RKj,k is the vector of coefficients for each interaction effect component.

Here, Kj and Kj,k denote the corresponding dimensions of the bases – in our implementation,

all the values Kj are taken to be the same and all the Kj,k are taken to be the same as well.

We use a penalty function to control the smoothness (i.e., integral of the squared second

derivative) of the 1D and 2D components. Writing β for the vector obtained by stacking

together the coefficients βj, j ∈ [p] for the main-effects, and defining the vector θ for the

interaction effects analogously, we express the optimization problem (3.2.1) as follows:

min
β,θ

1

n

∥∥∥y − [∑
j∈[p]

Bjβi +
∑
j<k

Bj,kθj,k

]∥∥∥2
2
+ λ1

[∑
j∈[p]

βT
j Sjβj +

∑
j<k

θT
j,kSj,kθj,k

]
.

Here, Sj = DT
j Dj and Sj,k = (DT

j Dj) ⊗ Ik + Ij ⊗ (DT
k Dk) are the smoothness penalty

matrices for the main effects and the interaction components, respectively. For convenience,

we use the same smoothness penalty λ1 for both the main and the interaction effects, though

in general they may be taken to be different.
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3.5.2 Additional Details for Simulations

3.5.2.1 Definition of F1-score

F1-score is a harmonic mean of precision and recall:

F1-score = 2 ∗ Precision× Recall
Precision + Recall

, (3.5.4)

where

Precision =
# of True Positives

# of True Positives +# of False Positives
,

Recall =
# of True Positives

# of True Positives +# of False Negatives

For example, if we have 10 main effects and the true support is given by {1, 1, 1, 1, 0, 0, 0, 0, 0, 0}

and the recovered support is {1, 1, 1, 0, 0, 1, 1, 0, 0, 0}, the F1-score is 66.67%.

Table 3.5.1: Average integrated squared error for different configurations of basis elements.
“No” in Smoothing column indicates λ1 = 0. “Yes” in Smoothing column indicates λ1 is tuned
via cross-validation. Note that for all cases λ2 is tuned via cross-validation.

Ntrain

Model α Smoothing Ki Kij
100 200 400 1000

Yes 20 8x8 0.269 (0.014) 0.100 (0.004) 0.0444 (0.0016) 0.0161 (0.0005)
Yes 10 5x5 0.193 (0.012) 0.075 (0.002) 0.0412 (0.0016) 0.0135 (0.0004)
Yes 5 3x3 0.162 (0.005) 0.088 (0.002) 0.0579 (0.0007) 0.0445 (0.0003)1.0

No 5 3x3 0.177 (0.005) 0.100 (0.003) 0.0609 (0.0008) 0.0463 (0.0004)
Yes 20 8x8 0.270 (0.013) 0.116 (0.006) 0.0405 (0.0013) 0.0157 (0.0004)
Yes 10 5x5 0.220 (0.013) 0.077 (0.002) 0.0353 (0.0011) 0.0135 (0.0004)
Yes 5 3x3 0.174 (0.006) 0.087 (0.002) 0.0577 (0.0005) 0.0448 (0.0003)

ELAAN-I

1.5

No 5 3x3 0.188 (0.007) 0.095 (0.002) 0.0603 (0.0007) 0.0455 (0.0003)

3.5.2.2 Effect of number of basis functions

We study the effect of number of basis functions on the model performance. We consider 3

different configurations: {(Ki = 5, Kij = 3×3), (Ki = 10, Kij = 5×5), (Ki = 20, Kij = 8×8)}.

The results are reported in Table 3.5.1. As expected, we observe that the performance
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generally degrades when the number of basis elements is too small (underfitting) or too large

(overfitting). When the number of bases elements is large, it is important to use smoothing

for regularization.

3.5.2.3 Tuning Details

Tuning Details for the Simulation in Section 3.4.1. We use 100 replications for each

simulation setting, i.e., settings with different training set sizes, error distributions etc. For

each replication, we select the best hyperparameters via 5-fold cross-validation on the training

set. We use mean squared error as the tuning criterion. Next, we run the model on the full

training set with the best hyperparameters to compute ISE performance on the test set.

For EBM and GAMI-Net, we tune the number of interactions in the range [1, 45] for 50

trials. For GAMI-Net, we used 32 batch-size, 0.0001 learning rate, 500 epochs (for each stage)

and 0.0 loss threshold.

For ELAAN-I and ELAAN-H, we used 10 knots for the main effects and 5 knots in each

coordinate for the interaction effects (leading to 5× 5 = 25 knots). For ELAAN-I, we tuned

λ1 ∈ {10−6, · · · , 10−2} and λ2 ∈ {10−5, · · · , 10−1} with warm-starts. For ELAAN-H, we tuned

λ1 ∈ {10−6, · · · , 10−2} and λ2 ∈ {10−4, · · · , 1}, τ ∈ {0.01, · · · , 1} with warm-starts.

Tuning Details for the Simulation in Section 3.4.2. We use 25 replications for each

simulation setting. For each replication, we select the best hyperparameters via validation

tuning, using a validation set of size 2,000 with the mean squared error as the tuning criterion.

Next, we run the model on the full training set with the best hyperparameters to compute

ISE performance on the test set.

For EBM, we tune the number of interactions in the range [1, 100]. For GAMI-Net, we

tuned the model with number of interactions in the set {5, 50}. For GAMI-Net, we used 200

batch-size, 0.0001 learning rate, 500 epochs (for each stage) and 0.0 loss threshold.

For ELAAN-I and ELAAN-H, we used 10 knots for the main effects and 6 knots in each
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coordinate for the interaction effects (leading to 6× 6 = 36 knots). For ELAAN-I, we tuned

λ1 ∈ {10−7, · · · , 10−3} and λ2 ∈ {10−4, · · · , 100} with warm-starts. The ℓ0 regularization path

was terminated when the number of interactions reached 50. For ELAAN-H, we fix the smoothing

parameter λ1 to the optimal value available from ELAAN-I and tuned λ2 ∈ {10−2, · · · , 102}

and τ ∈ {0.01, · · · , 1} with warm-starts. For ELAAN-I and ELAAN-H, we also considered three

choices for α in the set {1.0, 1.5, 2.0}.

For ELAAN-H, our algorithm, outlined in 3.3.1, approximately solves the problem under

hierarchy with ℓ0 by solving the convex relaxation for computational reasons. From variable

section perspective, especially in the correlated setting considered in this simulation, the

solution to the convex relaxation can overestimate the number of effects in the model e.g.,

the number of interactions. Hence, it can be beneficial to consider a solution along the

regularization path with smaller number of selected components, but lies within a standard

error of the best solution. The numbers reported for prediction error and support recovery

for ELAAN-H in the Table 3.4.4 correspond to this choice of solution. This practice is common

when using convex relaxations such as lasso in linear models.
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Chapter 4

Additive Models and Structured

Interactions: A Large-Scale Case Study

for Census Survey Response Prediction

4.1 Introduction

Sample surveys and censuses are primary data sources in social science studies. However,

low and often unpredictable response rates in surveys remain a continual source of con-

cern [68, 236, 246] – see Figure 4.1.1 for an illustration on the American Community Survey.

[246] discuss a multitude of factors that make parts of the population hard-to-survey – such

factors are often used to improve sampling strategies, questionnaire designs, recruitment

methods, and the language in which the interview is conducted, among others. [68] em-

phasize the usefulness of having an indicator for hard-to-survey areas to guide targeted

surveying (including oversampling), staff recruitment strategies, and targeted follow-ups

for non-responders. For major campaigns such as the decennial US Census, this approach

can help guide resource allocation for advertisements and building community partnership

activities. Eliciting responses from non-self-responding households through follow-up opera-
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Figure 4.1.1: The 2013-2017 American Community Survey self-response rates for all tracts
in the continental United States. The North in general, and the Upper Midwest and the
Northeast in particular, have higher self-response rates than the rest of the country. Tracts
with lower self-response rates are visible in many states – in particular, in the South and in
the Mountain region.

.

tions can be very costly and time consuming. The Census Bureau estimates that a single

percentage increase in the self-response rate amounts to roughly 85 million dollars saved in

personal follow-up costs [12, 248]. Apart from the cost, the quality of proxy enumerations

and imputations is typically significantly lower than that of self-responses [192].

Both the UK Office for National Statistics and the US Census Bureau have created

measures that help quantify the difficulty in gathering data across different geographic

areas. A report by [31] from the US Census Bureau introduced a hard-to-count (HTC)

score for identifying difficult to enumerate segments of the population. The HTC score,

which is based on 12 carefully chosen covariates (for example, housing variables and socio-

demographic/economic indicators) has found its use in the planning for the 2010 Census and

many other national surveys. The HTC score, however, has some limitations and was later

improved to the low-response-score, or LRS [68]. The LRS plays a key role in the US Census

Bureau’s Response Outreach Area Mapper (ROAM) application1 to identify hard-to-survey
1https://www.census.gov/library/visualizations/2017/geo/roam.html
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areas. The LRS appears to have been partly motivated by the 2012 nationwide competition,

organized by the Census Bureau in partnership with Kaggle, on predicting the mail-return

rates. This competition aimed to solicit models highly predictive of the decennial census

response rates, easily replicable, inherently interpretable, and consistent for use in the field at

various levels of geography. Even though the winning models from the competition had good

predictive performance, they lacked reproducibility and interpretability. Some of the winning

models included covariates that are not publicly available; in particular, they were not chosen

from within the US Census Bureau Planning Database. Additionally, the winning models

included covariates that were good predictors but not actionable2. Interpretability suffered

due to a multitude of factors. First, the winning models were based on complex ensemble

methods (for example, random forests and gradient boosting). Second, these methods

employed a large number of covariates (the best model had nearly 340), which hurt the

model parsimony. After careful analysis, [68] proposed a linear model based on 25 covariates

– LRS is the prediction from this model. While this model suffered in terms of predictive

accuracy compared to the black-box machine learning methods, it was highly interpretable

and led to useful actionable insights. For example, Erdman and Bates highlight three different

block-groups (Columbia Heights, Trinidad, Anacostia) in the District of Columbia that have

similar LRS predictions but their characteristics vary, indicating a need for different actions

to increase self-response. Columbia Heights has a large Hispanic population, suggesting they

could benefit from forms and advertising in Spanish. Anacostia has a stable population

(low relocation to the region) and could benefit from community partnerships. On the

other hand, Trinidad is characterized as a region in transition with high mobility of the

young population. This area could potentially benefit from web-based advertisements for

internet-based responses from the tech-savvy younger population.

We aim to predict self-response rates across all Census tracts in the US using operational,

socio-economic, and demographic characteristics from the US Census Planning Database. Our
2These include covariates such as the nearest neighboring block group return rates and margins of error

for various estimates. Models that incorporate such features are not actionable.
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goal is to consider interpretable statistical models that deliver strong predictive performance

and, thus, can be used to complement the currently used LRS metric. Our hope is that

these models lend operational insights into factors influencing survey self-response rates to

facilitate the downstream goal of having a cost-effective census with improved coverage.

Applied contributions. Our empirical analysis on the US Census Bureau Planning

Database demonstrates the promise of our proposed estimators ELAAN-I/ELAAN-H (in Chapter

3) as potential tools to predict self-response rates in the US Census Bureau application.

Our models lead to improved prediction of the self-response rates when compared to the

linear regression methods discussed in the US Census Bureau report. The improvements

are due to both the departure from linearity and the presence of nonlinear interactions.

Importantly, the prediction accuracy of our flexible models appears to be at par with (or

slightly better than) black-box machine learning methods such as neural networks and gradient

boosted decision trees, which topped the nationwide Kaggle competition organized by the

Census Bureau.

Our framework results in simple models and allows for automated variable selection. Our

models are substantially more compact than many competing benchmarks – we use 8-20

times fewer interaction effects than the corresponding linear models, and about half as many

covariates as off-the-shelf machine learning methods (e.g, gradient boosting, feedforward neural

networks, or explainable boosting machines) or the sparse linear models with interaction

effects. Our models also use a fewer number of covariates (by about 30%) compared to sparse

nonparametric additive models (without interactions). We use our models to gather useful

operational insights into the factors that influence response rates in surveys across different

segments of the population. In particular, our models automatically identify interactions

between many of the key factors that have been used in prior publications from the Census

Bureau [12] to derive meaningful clustering of the population. These interaction effects

appear to result in improved predictions of survey response rates and help complement the
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Figure 4.2.1: Panels [Left]-[Right] illustrate marginal nonparametric fits for the self-response
rate output variable versus three covariates. Each marginal fit, displayed on a scatter plot
with a solid blue line, clearly suggests a nonlinear relationship of the output vs the individual
covariate (we note that the covariates are standardized.) The x-axis corresponds to: [Left]
“Persons of Hispanic origin in the ACS”; [Middle] “Number of households that have only a
smartphone and no other computing device”; [Right] “Persons 25 years and over with college
degree or higher in the ACS”.

existing studies by the Census Bureau [12, 142] on understanding different segments of the

population. In summary, our work appears to address many of the challenges of the US

Census application by delivering parsimonious models with good predictive performance.

4.2 Additional Motivation for Additive Models with In-

teractions

Before we dive into the large-scale study in the next section, we briefly summarize some

insights from data that motivate the relevance of additive models with interactions with

smooth non-parametric function under sparsity constraints.

Motivation for smooth functions. We first consider marginal behavior of various

covariates from US Census Planning Database Tract on the self-response rate. For illus-

tration, Figure 4.2.1 shows that the marginal fits for the self-response rate appear to be

well-approximated by smooth nonlinear functions. This motivates potential for considering

additive models with smooth coordinate functions.
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The need for interactions. Exploratory analysis on US Census Planning Database Tract

dataset suggests that interaction effects across features can lead to improved predictions of

the survey self-response rate. For example, there is interaction between the percentages of

“People who do not speak English well” and “Renters” in the area. In areas with a relatively

high concentration of poor English speakers (e.g, ≥ 5.4%), the self-response rate decreases on

an average by 0.33% for a unit increase in the percentage of renters. On the other hand, when

the concentration of poor English speakers is relatively low (e.g, ≤ 1.6%), the self-response

rate decreases at the rate of 0.21%. Similarly, there is a strong interaction effect between

covariates “Single-unit households” and “Household moved in 2010 or later” in terms of

predicting the low self-response rate. Indeed, Erdman and Bates [68] note the importance of

incorporating interaction effects when predicting the self-response rate, although their paper

does not pursue statistical modeling involving interactions.

4.2.0.1 Sparse pairwise interactions

For motivation, we consider Figure 4.2.2, which presents our findings on a 2019 US Census

Bureau Planning Database dataset with 40 covariates3. These features include covariates used

for the low-response-score [67], important covariates highlighted in Appendix C of the 2019

US Census Bureau Planning Database Documentation [251], plus some additional covariates

capturing internet penetration and urbanization. Specifically, we observe that:

• ELAAN-I with nonlinear main-effects and interactions4 results in a substantially more

compact model than a linear model with interactions.

• ELAAN-I leads to better test predictions compared to its linear model counterpart.

• The best (based on validation tuning with prediction error) model with linear main

and interaction effects contains 37 main and 555 interaction effects. On the other hand,
3These covariates were selected based on discussions with researchers at the US Census Bureau.
4This corresponds to an estimate available from (3.2.3). We present the model leading to the best

prediction performance on the validation set – see Section 4.3 for details.

92



Figure 4.2.2: Sparsity pattern of the main and interaction effects presented in a p×p matrix: a
black square on the diagonal indicates the presence of a main effect, and an off-diagonal black
square indicates the presence of an interaction effect in the joint model. [Left] Panel illustrates
the sparsity pattern of a Lasso model with main and interaction effects. There are 37 main
and 555 interaction effects in the optimal model. [Right] Panel illustrates the sparsity pattern
of a nonlinear AM with main and interaction effects, i.e., model (3.2.3). There are 8 main
and 92 interaction effects in the optimal model. Model (3.2.3) has prediction performance
similar to the Lasso model, with only 3 main and 33 interaction effects. Nonlinear models
lead to much more compact and hence, easier to interpret models compared to linear models.
Both models were trained on a 2019 US Census Bureau Planning Database dataset (predicting
the tract-level self-response rate) with p = 40 covariates and 74, 000 observations.

ELAAN-I selects a total of 36 nonlinear main and interaction effects to obtain a similar

test prediction performance. ELAAN-I also uses fewer covariates compared to the linear

model counterpart.

The above observations suggest that the nonlinear model with sparse interactions has

advantages over its linear model counterpart for predicting survey self-response rates. As

discussed in Section 4.3, the above findings generally carry over to the expanded dataset with

a larger number of features.

Our approach scales to the problem-size of the Census application, with n ≈ 105 and p ≈

300, which poses formidable computational challenges due to the presence of approximately
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50, 000 interaction effects5.

4.3 Predicting the Census Survey Self-Response Rate

We now present our findings on the large-scale Census application. As mentioned in Section 4.1,

obtaining interpretable models with good predictive capabilities is important in this application

– such models can inform the planning of outreach campaigns and guide stakeholders in deciding

the allocation of spending for different communications channels (for example, TV, radio,

digital), advertising messages with appropriately tailored content, and the timing of spending

during the campaigns [142]. Due to their opaque nature, predictive models that topped the

nationwide competition were not actionable for this application. On the other hand, the

linear models that drive the LRS have limited predictive power. We explore how our proposed

approach balances simplicity and good prediction performance.

The data we use for this study is publicly available in the US Census Planning Database,

which provides a range of demographic, socioeconomic, housing, and Census operational data

[251]. The data in the Planning Database includes covariates from the 2010 Census and the

2013-2017 American Community Survey (ACS), aggregated at both the Census tract level

and the block level. We use tract-level data, with approximately 74, 000 observations and 500

covariates. The response is the ACS self-response rate. We exclude the following covariates

from our model: spatial covariates (“State”, “County”, “Tract”, “Flag”, “AIAN Land”) and

variables that serve as a proxy to the response (for example, “Low response score”, “Number

of housing units that returned first forms”, “Replacement forms” or “Bilingual forms” in

Census 2010). We also remove the margin of error variables corresponding to the ACS. After

excluding these variables, we are left with p = 295 covariates6.
5Note that, using 25 knots for every component, this leads to estimating around 1.25 million basis

coefficients.
6To clarify, the results presented in this section are based on these 295 features, though our approach

scales to p = 500 features.
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4.3.1 Experimental setup

We randomly split the data into 58K for training, 7.2K for validation (used for selecting

tuning parameters), and 7.2K observations for testing. We repeat this procedure 20 times

with different random splits of the data and report the average numbers on the test sets.

The features were standardized to have zero mean and unit variances. We use the squared ℓ2

loss for training and evaluate the performance of the models in terms of root mean square

(RMSE). We also study the variables selected by our algorithm: for example, the number of

features retained and the associated interpretations they offer.

As noted in [68], the current approach for predicting the self-response rates–i.e., the

LRS–is based on a linear regression model with around 25 hand-selected features. Erdman

and Bates also use tailored variable transformations on some features to incorporate nonlinear

effects. When the number of features, both main and pairwise interaction effects, increase,

it is desirable to have an automated procedure such as the one we propose. As we use

nonparametric models, which seek to learn nonlinearities in the main and interaction effects,

manual feature engineering may not be necessary.

Benchmark Methods. We evaluate and compare our models against existing linear

and nonparametric approaches. We consider the following linear models with main effects

only (i.e., without interactions): (i) Ridge regression; (ii) Lasso regression [95]; (iii) ℓ0-

penalized regression with additional ridge regularization (denoted as ℓ0 − ℓ2), implemented

via L0Learn [99]. In addition, we consider the following linear models with interaction effects:

(iv) Lasso with main effects and all pairwise linear interactions, (v) hierScale: a convex

optimization framework for learning sparse main-effects and interactions under a strong

hierarchy constraint [98]. For (i), (ii), and (iv), we use Python’s scikit-learn library [206].

In addition to the competing methods discussed above based on linear models, we consider

nonparametric additive models with/without interactions. For AMs with main effects only, we

compare with (vi) Additive Models with Lasso-based selection, which we fit using Python’s
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scikit-learn library [206]. For additive models with interactions, we consider (vii) EBM:

A boosting approach that uses trees for main and interaction effects [199]. (viii) GAMI-Net:

a neural network-based additive model with structured interactions [276]. For EBM, we

tune the learning rate in the range [10−4, 10−1] and the number of interactions in the range

[10, 500] for 1000 trials. For GAMI-Net, we run the model once with a 200 batch-size, 0.0001

learning rate, 500 interaction effects, 500 epochs (for each stage) and 0.0001 loss threshold.

We note that GAMI-Net took 3 days to complete using a machine wth 8-CPUs and 128GB

RAM.

In addition to the linear and additive model benchmarks mentioned above, we also com-

pare with state-of-the-art black-box machine learning methods such as (ix) Gradient boosted

decision trees (GBDT) from XGBoost [45]; and (x) Neural networks: multilayer perceptron

(MLP). The tuning parameters in both the models (ix) and (x) are selected using the Python

hyperparameter optimization package hyperopt [20]. GBDT is tuned with respect to the

maximum depth [1− 10], number of estimators [10− 200], learning rate [10−4, 1]. Neural net-

works are tuned with respect to the number of dense layers {2, 3, 4, 5, 6, 7}, number of hidden

units {64, 128, 256, 512}, dropout rate {0.1, 0.2, 0.3}, learning rates {0.1, 0.01, 0.001, 0.0001}

for Adam optimizer [137], batch sizes {64, 128} and epochs {25, 50, 75, 100}. The number of

tuning parameters for all the nonparametric models is capped at 1000.

Proposed Models. Among our proposed estimators, we consider: (a) ELAAN: ℓ0-penalized

AMs with nonlinear main effects. We also consider the following AMs containing both

main and pairwise interaction effects: (b) ELAAN-I: ℓ0-penalized AMs with both main and

interaction effects, i.e., estimator (3.2.4); and (c) ELAAN-H: sparse hierarchical interactions,

i.e., estimator (3.3.2).

All our algorithms for estimators (a)–(c) are implemented in Python. We use cubic

B-splines with 10 knots for the main effects. For the interaction effects, we use tensor spline

bases of degree 3 with 5 knots in each coordinate, leading to a total of 5 × 5 = 25 knots7.
7We study the effect of number of knots on out-of-sample generalization on synthetic data (see Section
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Table 4.3.1: Comparisons of our methods with several benchmark models as discussed in the
text. We display the average test RMSE for the different models, along with the corresponding
number of covariates, and number of effects (main and interactions). Best metrics are
highlighted in bold. Numbers after ± provide the standard errors. Asterisk(*) indicates
statistical significance (p-value<0.05) over the best existing model, using a one-sided paired
t-test. Models (ix), (x) are black-box models using higher order interactions, hence #Main
and #Interactions are left as ‘-’ (dash).

Type Model RMSE #Covariates #Main #Interactions

Linear Models (LM)
(i) Ridge 6.750± 0.013 295± 0 295± 0 -
(ii) Lasso 6.741± 0.013 226± 7 226± 7 -
(iii) L0Learn (ℓ0 − ℓ2) 6.752± 0.012 145± 3 145± 3 -

Linear Models
with Interactions (LMI)

(iv) LMI with Lasso 6.514± 0.019 262± 2 75± 2 1592± 79
(v) LMI with Strong Hierarchy (hierScale) 6.528± 0.018 276± 2 276± 3 4107± 179

Additive Models (AM)
(vi) AM with Lasso 6.548± 0.015 285± 1 285± 1 -
(a) ELAAN 6.566± 0.014 184± 11 184± 11 -

Additive Models
with Interactions (AMI)

(vii) EBM 6.475± 0.014 295± 0 295± 0 492± 1
(viii) GAMI-Net 6.573± 0.015 246± 5 224± 4 150± 26
(b) ELAAN-I ∗6.442± 0.019 154± 8 33± 5 201± 19
(c) ELAAN-H ∗6.425± 0.019 133± 6 133± 6 255± 13

Nonparametric
(Non-interpretable)

(ix) GBDT 6.481± 0.016 278± 0 - -
(x) Neural Networks (MLP) 6.505± 0.016 295± 0 - -

Because the problem at hand has 295 covariates and 43, 365 possible pairwise interactions,

we need to be careful with implementation aspects while generating spline-transformed

representations for all the interaction effects, which can be memory intensive.

For ELAAN and ELAAN-I we perform a tuning procedure with warm-starts over a 2D grid of

parameters (λ1, λ2) – for details, see Section 3.2.5.3 of the Appendix. For both ELAAN-I and

ELAAN-H, we set α = 1 so that the main and the interaction effects have the same ℓ0-penalty

parameter. For ELAAN-H, we fix the smoothing parameter λ1 to the optimal value available

from ELAAN-I. Parameter λ2 (as well as parameter τ defined in Section 3.3.1 of the Appendix)

is chosen based on validation tuning. For all our methods (ELAAN, ELAAN-I, ELAAN-H), we

cap the number of tuning-parameter values at 1000.

4.3.2 Comparing methods: prediction, sparsity and model structure

We discuss the performance of different estimators in terms of prediction error and model

parsimony.

3.5.2.2 of the Appendix).
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Additive models vs black-box ML methods. Table 4.3.1 reports the prediction errors

(RMSE) on the test-set along with the number of nonzero features in the model. Importantly,

we observe that the test performances of AMs with sparse interactions (both with and without

the hierarchy constraints) are better than that of the best black box predictive ML models

(ix), (x) that are based on GBDT, Neural Networks. Our model ELAAN-H delivers the best

RMSE value and is closely followed by ELAAN-I.

ELAAN-I/ELAAN-H vs state-of-the-art for AMs with sparse interactions. Among

the methods we compared, EBM and GAMI-Net were the only methods that could compute

AMs with sparse interactions for the Census dataset. Interestingly, the test performance of

both ELAAN-I and ELAAN-H is better than that of EBM and GAMI-Net. Interpretability (i.e.,

model sparsity and/or hierarchy) is another key factor differentiating the leading prediction

methods. Our models select a smaller number of additive components than EBM and GAMI-

Net. For example, ELAAN-I selects a total of 234 additive components. In contrast, EBM

and GAMI-Net select 787 and 374 additive components, respectively. We also observe that

our models are almost twice as compact in terms of the number of selected covariates.

While Table 4.3.1 presents a summary of the best models chosen based on the validation

set prediction performance, a practitioner may also find it useful to study a family of models

prioritizing models with fewer features (perhaps at the cost of a marginal deterioration in

predictive performance) – see Section 4.3.3 for further discussion.

We briefly discuss computation times for different methods. EBM takes around one hour

to fit a model with 500 pairwise interactions (for a single tuning parameter). Computing

a GAMI-Net solution (for one tuning parameter corresponding to 500 interaction effects)

takes around 3 days using 8 CPUs and 10 hours using a single V100 Tesla GPU. In contrast,

our approaches are much faster: ELAAN-I takes on average 1.8 mins to compute a solution

for a fixed tuning parameter8. When ELAAN-H is run on a reduced subset of 800 pairwise
8We use warm-start continuation across λ2-values for a fixed λ1: it takes approximately 3 hours to compute

100 solutions where the λ2 regularization path is cut off when number of pairwise interactions reach 500.
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interactions, it takes 1.5 hours to compute a path of 100 solutions. These numbers are

reported on an 8-CPU 128GB RAM device.

Nonlinear models vs linear models. Table 4.3.1 suggests that nonlinear/nonparametric

models have better predictive performance than their linear counterparts. Also, linear models

with sparse main and interaction-effects appear to have an edge over sparse linear models

without interactions. Another appealing aspect of sparse nonparametric AMs compared

to linear models, is in model parsimony – we alluded to this aspect in Figure 4.2.2 while

using a reduced number of features. The number of nonzero effects is significantly lower for

the nonlinear AMs. For example, ℓ0-sparse nonparametric AMs with no interactions (i.e.,

ELAAN) can achieve the same level of predictive performance as its linear model counterpart

(i.e., Model (iii)) with significantly fewer covariates: 40 versus 145. Similarly, if we compare

hierScale (i.e., linear main and interaction effects with strong hierarchical restrictions) to

its nonparametric counterpart i.e., ELAAN-H, the number of main effects (and also, covariates)

reduces from 276 to 133, and the number of interaction effects reduces from 4107 to 255.

Interestingly, all the covariates selected by the nonparametric AMs with interaction models

(with/without strong hierarchy) are contained in the set of covariates selected by the sparse

linear models with both main and interaction effects.

Additive nonlinear models: interactions vs no interactions. Table 4.3.1 shows

that ELAAN (AMs with no interactions) has more covariates than AMs with interactions,

both ELAAN-I and ELAAN-H. By including interactions that obey the hierarchy principle, we

select a smaller number of covariates: ELAAN-I has 154 covariates vs ELAAN-H has 133. The

difference between ELAAN vs ELAAN-I is possibly because many nonlinear main effects attempt

to explain the nonlinear interaction effects. This reduction points to the redundancy of some

of the covariates when interaction effects are directly included in the model. The prediction

performance of nonlinear AMs seems to improve significantly when pairwise interactions are

included in the model.
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Hierarchy vs no hierarchy. We observe that ELAAN-H, i.e., additive model with hierarchi-

cal interactions, achieves the best out-of-sample RMSE – this improves over ELAAN-I (interac-

tions with no hierarchy). The improvement is statistically significant based on a paired t-test.

We observe that ELAAN-I selects fewer effects (33 Main + 201 Interactions) when compared

to ELAAN-H (133 Main + 255 Interactions). On the other hand, ELAAN-H obeys the hierarchy

constraint and selects fewer covariates than ELAAN-I– this can aid in interpretability and be

easier to operationalize from a practical standpoint.

Insights from visualizations. As illustrated by Figure 4.2.1, which displays some marginal

nonlinear fits, an appealing aspect of nonlinear AMs is that they naturally allow the practi-

tioner to gather insights into the associations between the response and a feature of interest,

for example, by exploring the map xj 7→ fj(xj). Similarly, the map (xj, xk) 7→ fj,k(xj, xk)

would shed light into how the interaction of (xj, xk) influences the output. Such interpreta-

tions are a by-product of our additive model framework; and may not be readily available

via black-box ML methods such as Neural Networks and GBDT—see also [172] for related

discussions advocating for the interpretability of AMs. These association plots, for example,

can help stakeholders identify promising factors influencing self-response scores potentially

informing policy decisions (e.g, targeted investments and optimizing operational costs).

To obtain a finer understanding of the performance of our models, we use visualization

tools inspired by earlier works from the US Census Bureau [142, 250]. Figure 4.3.1 illustrates

the tract self-response rates predicted by ELAAN-I i.e., model (3.2.4) on a map of the United

States. Different from Figure 4.1.1, which shows actual data with missing values for some

of the tracts9, Figure 4.3.1 provides predicted self-response rates for all tracts based on our

proposed model. Predictive models in general and our models in particular, allow us to

forecast the response rates for tracts where gathered data is incomplete. It is worth noting

that our regression-based models may be preferable over commonly used nearest neighbor
9Some responses are deliberately suppressed by the US Census Bureau for privacy considerations, to

limit the disclosure of information about individual respondents and to reduce the number of estimates with
unacceptable levels of statistical reliability [249]
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Figure 4.3.1: Predicted ACS self-response rates for all tracts in the United States.
.

Figure 4.3.2: ACS self-response rates for all tracts in the District of Columbia. a) Actual ACS
self-response rates. b) Predicted ACS self-response rates for AMs with interactions (3.2.4). c)
Difference between the actual and predicted self-response rate: difference = actual - predicted.

type methods: the latter models do not generally offer insights into factors associated with

high/low response rates. Nearest neighbor based methods may also be ill-posed for isolated

regions such as Alaska, Hawaii and Puerto Rico, each having at least 10% of their tracts

censored.

Figure 4.3.2 displays, side by side, the actual and the predicted self-response rates for the

tracts in Washington DC, as well as the corresponding differences. Both the actual and the
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Figure 4.3.3: Comparison of quintile groups based on Lasso (linear model) [142, 250] and our
proposed ELAAN-I.

.

predicted rates are higher than average in most parts of the Northwest and a portion of the

Northeast DC, and lower in the Southeast and most of the Northeast DC.

Figure 4.3.3 shows how the sorting of the Census tracts into quintiles [142, 250] of the

actual self-response rates compares with the corresponding sorting of the predictions made

by: the Lasso (we use an ℓ1-penalized linear model with main effects and no interactions),

and ELAAN-I. For example, the top panel in Figure 4.3.3 shows that among the tracts in the

first quintile of the actual self-response rates, 85.1% are correctly predicted by ELAAN-I to

fall in the first quintile. The corresponding proportion for Lasso is 84.4%. The same panel

102



shows that among the tracts in the first quintile of the actual self-response rates, 14.1% are

incorrectly predicted to fall in the second quintile; this proportion is smaller than the one

for the Lasso (14.7%). Similarly, in the second quintile of the actual self-response rates, a

higher proportion (58.4%) is correctly identified by ELAAN-I to be in the second quintile; this

is again an improvement over the 56.6% for the Lasso regression model. For all 5 quintiles

of the actual self-response rates, ELAAN-I identifies a higher proportion to be in the correct

quintile than Lasso, suggesting that our approach has an edge over the Lasso.

4.3.3 Interpreting important features

We now illustrate how our methodology can guide the practitioner in obtaining a set of

features and deriving associated actionable insights into the factors contributing towards low

response-rates in surveys. An important aspect of our regularized learning framework is that it

provides an automated scheme to identify a collection of models, balancing out the complexity

of the model and data-fidelity. To see this, Figure 4.3.4[left panel] plots the number of main

and interaction effects against the associated prediction error for model (3.2.4). The plot

illustrates that by trading off a little in the predictive performance (in terms of RMSE, which

is shown by the red dashed line), we can limit the number of effects at any level, as desired

by the practitioner who intends to obtain a more parsimonious representation of the factors

impacting survey response rates. Specifically, if we would like to limit the number of main

effects to under 20, Figure 4.3.4(b) shows the top 19 main effects in the order they enter

the model along the regularization path. The definitions of the variables in Figure 4.3.4(b)

are provided in the Appendix. Our investigation reveals that most (though not all) of these

variables also appear in the models reported in prior studies by the Census Bureau – see

for example [68] and [142]. Interestingly, some of the features discovered by our framework

can be interpreted in the context of clusters defined in [12] or mindset solutions in [142], as

discussed below.

Using cluster analysis on the 12 covariates from the HTC score, [12] categorize the tracts
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Figure 4.3.4: Estimates available from our model ELAAN-I i.e., model (3.2.4): ℓ0-sparse AMs
with main effects and interactions. [Left] number of nonzero effects vs the corresponding RMSE.
[Right] Variables corresponding to main effects selected by the model along the regularization
path. For visualization purposes, we focus on the top 19 main effects.

into eight distinct clusters: All Around Average I and II, Economically Disadvantaged I

and II, Ethnic Enclave I and II, Single Unattached Mobiles, and Advantaged Homeowners.

From the cluster analysis in [12], we see that the reported clusters have a wide variation

in response rate (the response rate is not used to identify the clusters). Each cluster has

some key characteristics (pertaining to a subset of variables) that seem to drive the response

rate. From the description of these clusters in [12], we see that the covariates automatically

discovered by our framework, as listed in Figure 4.3.4[right panel], broadly cover the important

characteristics upon which the clusters are based. For example, there is high variability

across clusters with respect to the occupancy rate and home ownership status, which are

captured by covariates “Owner occupied housing units” and “Total occupied units”. Racial

diversity also appears to play a role in cluster formation – in particular, the covariates

related to ethnic groups characterize the Ethnic Enclave clusters. Similarly, covariates related

to poverty, for example, “Persons below poverty line”, lack of education (“No high school

diploma”), and lack of health insurance (“No health insurance”), determine the Economically

Disadvantaged clusters. Covariates related to high mobility, for example, “Different housing
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unit in prior year”, high education (“College or higher degree holders”), marital status (“Single

person households”), and nonspousal occupants (“Unmarried couples”), characterize the Single

Unattached Mobiles cluster.

The above discussion suggests that there may be important interaction effects within the

variable groups that characterize each cluster. We observe that our AMs with interactions

model (3.2.4) automatically selects many of these effects. For instance, our model recovers

several interaction effects between important covariates characterizing the Economically

Disadvantaged I cluster. [12] notes that this cluster has high percentages of people in poverty,

people receiving public assistance, and adults without a high school education. Our model

identifies an interaction effect between “No high school graduation” and “No health insurance”.

The same cluster also has a large African American population and above average number

of children under 18. Our model potentially captures this characteristic by selecting an

interaction effect between “Non-Hispanic blacks” and “Population with ages 5-17”. We also

recover an interaction effect between “Non-Hispanic blacks” and “No high school graduation”,

which seems to be reflective of this cluster. Consider also the Advantaged Homeowners cluster

characterized by stable homeowners who are predominantly white and live in single-unit

spousal-households. Our model automatically selects a closely related interaction effect

between “Non-Hispanic whites” and “Single units”. Another example is the Single Unattached

Mobiles cluster, which is characterized by young, highly educated population living in multi-

units structures with high mobility [12]; the tracts are almost exclusively urban and have an

above-average Asian population relative to the national average. Our model selects multiple

interaction effects within this group of variables, for example: i) “Moved in 2010 or later” and

“Multi-unit structures”; ii) “College or higher degree holders” and “Single person households”;

iii) "People speaking Asian languages" and “Multi-unit structures”; iv) “People speaking

Asian languages” and “Urban clusters”.

Some of the covariates in Figure 4.3.4[right] can also be interpreted in terms of the mindset

solutions in [142]. In a mindset solution, survey respondents are categorized using factor
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analysis into six mindsets based on their predicted self-response patterns and demographic

characteristics. These mindsets are determined by the demographic characteristics such as

age, race, income, home-ownership, presence of children in the household, marital status,

internet use, English proficiency, and country of birth. The six mindsets are: Eager Engagers,

Fence Sitters, Individuals with a Confidentiality, Head Nodders, Wary Skeptics and Discon-

nected Doubters. The covariates can be also interpreted in terms of eight segmented tracts:

Responsive Suburbia, Main Street Middle, Country Roads, Downtown Dynamic, Student

and Military Communities, Sparse Spaces, Multicultural Mosaic, and Rural Delta and Urban

Enclaves – see [142] for additional details.

4.3.4 Conclusion

We study the usefulness of some of our estimators in a large-scale Census Survey Response

Prediction. Our estimators e.g., ELAAN-I and ELAAN-H can give good predictive accuracy

while simultaneously delivering parsimonious and interpretable statistical models. We hope

that our models will help practitioners identify some key factors that influence survey response

rates. Insights gathered from our models may be used for targeted follow-up surveys and

allocation of resources for advertisements. We hope that our models will help inform the goal

of achieving improved census coverage in a timely fashion, while optimizing the operational

risks and costs. Our framework can complement and potentially offer an alternative to the

LRS metric that is currently used in the US Census Bureau ROAM application.
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4.4 Appendix

4.4.1 Definition of important Census/American Community Survey

variables

4.4.1.1 Definition of the variables in Figure 4.2.2

• Tot_Population_ACS_13_17: U.S. resident population includes everyone who meets

the ACS residence rules in the tract at the time of the ACS interview.

• pct_Prs_Blw_Pov_Lev_ACS_13_17: Percentage of the ACS eligible population that are

classified as below the poverty level given their total family or household income within

the last year.

• pct_College_ACS_13_17: The percentage of the ACS population aged 25 years and

over that have a college degree or higher.

• pct_Not_HS_Grad_ACS_13_17: The percentage of the ACS population aged 25 years

and over that are not high school graduates and have not received a diploma or the

equivalent.

• pct_Pop_5_17_ACS_13_17: The percentage of the ACS population that is between 5

and 17 years old.

• pct_Pop_18_24_ACS_13_17: The percentage of the ACS population that is between 18

and 24 years old.

• pct_Pop_25_44_ACS_13_17: The percentage of the ACS population that is between 25

and 44 years old.

• pct_Pop_45_64_ACS_13_17: The percentage of the ACS population that is between 45

and 64 years old.
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• pct_Pop_65plus_ACS_13_17: The percentage of the ACS population that is 65 years

old or over.

• pct_Hispanic_ACS_13_17: The percentage of the ACS population that identify as

“Mexican", “Puerto Rican", “Cuban", or “another Hispanic, Latino, or Spanish origin".

• pct_NH_White_alone_ACS_13_17: The percentage of the ACS population that indicate

no Hispanic origin and their only race as “White" or report entries such as Irish, German,

Italian, Lebanese, Arab, Moroccan, or Caucasian.

• pct_NH_Blk_alone_ACS_13_17: The percentage of the ACS population that indicate

no Hispanic origin and their only race “Black, African American, or Negro" or report

entries such as African American, Kenyan, Nigerian, or Haitian.

• pct_ENG_VW_ACS_13_17: The percentage of all ACS occupied housing units where no

one ages 14 years and over speaks English only or speaks English “very well".

• pct_Othr_Lang_ACS_13_17: The percentage of the ACS population aged 5 years and

over that speaks a language other than English at home.

• pct_Diff_HU_1yr_Ago_ACS_13_17: The percentage of the ACS population aged 1 year

and over that moved from another residence in the U.S. or Puerto Rico within the last

year.

• avg_Tot_Prns_in_HHD_ACS_13_17: The average number of persons per ACS occupied

housing unit. This was calculated by dividing the total household population in the

ACS by the total number of occupied housing units in the ACS.

• pct_Sngl_Prns_HHD_ACS_13_17: The percentage of all ACS occupied housing units

where a householder lives alone.

• pct_Female_No_HB_ACS_13_17: The percentage of all ACS occupied housing units

with a female householder and no spouse of householder present.
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• pct_Rel_Under_6_ACS_13_17: The percentage of 2010 ACS family-occupied housing

units with a related child under 6 years old; same-sex couple households with no relatives

of the householder present are not included in the denominator.

• pct_Vacant_Units_ACS_13_17: The percentage of all ACS housing units where no

one is living regularly at the time of interview; units occupied at the time of interview

entirely by persons who are staying two months or less and who have a more permanent

residence elsewhere are classified as vacant.

• pct_Renter_Occp_HU_ACS_13_17: The percentage of ACS occupied housing units that

are not owner occupied, whether they are rented or occupied without payment of rent.

• pct_Owner_Occp_HU_ACS_13_17: The percentage of ACS occupied housing units with

an owner or co-owner living in it.

• pct_Single_Unit_ACS_13_17: The percentage of all ACS housing units that are in a

structure that contains only that single unit.

• Med_HHD_Inc_ACS_13_17: Median ACS household income for the tract.

• Med_House_Value_ACS_13_17: Median of ACS respondents’ house value estimates for

the tract.

• pct_HHD_Moved_in_ACS_13_17: The percentage of all ACS occupied housing units

where the householder moved into the current unit in the year 2010 or later.

• pct_NO_PH_SRVC_ACS_13_17: The percentage of ACS occupied housing units that do

not have a working telephone and available service.

• pct_HHD_No_Internet_ACS_13_17: Percentage of ACS households that have no Inter-

net access.

• pct_HHD_w_Broadband_ACS_13_17: Percentage of ACS households that have broad-

band Internet access.
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• pct_Pop_w_BroadComp_ACS_13_17: Percentage of people that live in households that

have both broadband Internet access and a computing device of any kind in the ACS.

• pct_URBANIZED_AREA_POP_CEN_2010: The percentage of the 2010 Census total popu-

lation that lives in a densely settled area containing 50,000 or more people.

• pct_MrdCple_HHD_ACS_13_17: The percentage of all ACS occupied housing units where

the householder and his or her spouse are listed as members of the same household;

does include same sex married couples.

• pct_NonFamily_HHD_ACS_13_17: The percentage of all ACS occupied housing units

where a householder lives alone or with non relatives only; includes unmarried same-sex

couples where no relatives of the householder are present.

• pct_MLT_U2_9_STRC_ACS_13_17: The percentage of all ACS housing units that are in

a structure that contains two to nine housing units.

• pct_MLT_U10p_ACS_13_17: The percentage of all ACS housing units that are in a

structure that contains 10 or more housing units.

• Civ_labor_16plus_ACS_13_17: Number of civilians ages 16 years and over at the time

of the interview that are in the labor force in the ACS.

• pct_Civ_emp_16plus_ACS_13_17: The percentage of ACS civilians ages 16 years and

over in the labor force that are employed.

• pct_One_Health_Ins_ACS_13_17: The percentage of the ACS population that have

one type of health insurance coverage, including public or private.

• pct_TwoPHealthIns_ACS_13_17: The percentage of the ACS population that have two

or more types of health insurance.

• pct_No_Health_Ins_ACS_13_17: The percentage of the ACS population that have no

health insurance, public or private.
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4.4.1.2 Definition of the variables in Figure 4.3.4(b)

• pct_Prs_Blw_Pov_Lev_ACS_13 _17: The percentage of the ACS eligible population

that are classified as below the poverty level given their total family or household

income within the last year, family size, and family composition.

• Age5p_German_ACS_13_17: Number of people ages 5 years and over who speak English

less than "very well" and speak German at home in the ACS. Examples include

Luxembourgian.

• pct_NH_White_alone_ACS_13_ 17: The percentage of the ACS population that indi-

cate no Hispanic origin and their only race as “White" or report entries such as Irish,

German, Italian, Lebanese, Arab, Moroccan, or Caucasian.

• pct_Owner_Occp_HU_ACS_13 _17: The percentage of ACS occupied housing units

with an owner or co-owner living in it.

• pct_Diff_HU_1yr_Ago_ACS_1 3_17: The percentage of the ACS population aged 1

year and over that moved from another residence in the U.S. or Puerto Rico within the

last year.

• pct_Vacant_Units_CEN_2010: The percentage of all 2010 Census housing units that

have no regular occupants on Census Day; housing units with its usual occupants

temporarily away (such as on vacation, a business trip, or in the hospital) are not

considered vacant, but housing units temporarily occupied on Census Day by people

who have a usual residence elsewhere are considered vacant.

• pct_College_ACS_13_17: The percentage of the ACS population aged 25 years and

over that have a college degree or higher.

• pct_Single_Unit_ACS_13_17: The percentage of all ACS housing units that are in a

structure that contains only that single unit.
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• pct_Sngl_Prns_HHD_Cen_2010: The percentage of all 2010 Census occupied housing

units where a householder lives alone.

• pct_NH_Blk_alone_CEN_2010: The percentage of the 2010 Census total population

that indicate no Hispanic origin and their only race as “Black, African American, or

Negro" or report entries such as African American, Kenyan, Nigerian, or Haitian.

• pct_Tot_Occp_Units_ACS_13_17: The percentage of all ACS housing units that are

classified as the usual place of residence of the individual or group living in it.

• pct_Not_HS_Grad_ACS_13_17: The percentage of the ACS population aged 25 years

and over that are not high school graduates and have not received a diploma or the

equivalent.

• pct_NoHealthIns1964_ACS_13_17: Percentage of people age 19 to 64 with no health

insurance in the ACS.

• pct_US_Cit_Nat_ACS_13_17: The percentage of the ACS population who are citizens

of the United States through naturalization.

• pct_NH_Asian_alone_Cen_2010: The percentage of the 2010 Census total population

that indicate no Hispanic origin and their only race as “Asian Indian", “Chinese",

“Filipino", “Korean", “Japanese", “Vietnamese", or “Other Asian".

• pct_Pop_25yrs_Over_ACS_13_17: The percentage of the ACS population who are ages

25 years and over at time of interview.

• pct_Not_MrdCple_HHD_Cen_2010: The percentage of all 2010 Census occupied housing

units where no spousal relationship is present.

• Not_HS_Grad_ACS_13_17: The percentage of the ACS population aged 25 years and over

that are not high school graduates and have not received a diploma or the equivalent.

112



• NH_White_alone_CEN_2010: Number of people who indicate no Hispanic origin and

their only race as “White” or report entries such as Irish, German, Italian, Lebanese,

Arab, Moroccan, or Caucasian in the 2010 Census population.
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Chapter 5

Tree Ensembles: Flexible Modeling and

Efficient Training

5.1 Introduction

Decision tree ensembles are popular models that have proven successful in various machine

learning applications and competitions [46, 68]. Besides their competitive performance,

decision trees are appealing in practice because of their interpretability, robustness to outliers,

and ease of tuning [92]. Training a decision tree naturally requires solving a combinatorial

optimization problem, which can be challenging to scale to large instances. In practice,

greedy heuristics are commonly used to get feasible solutions to the combinatorial problem;

for example CART [29], C5.0 [214], and OC1 [193]. By building on these heuristics, highly

scalable toolkits for learning tree ensembles have been developed, e.g., XGBoost [46] and

LightGBM [134]. These toolkits are considered a defacto standard for training tree ensembles

and have demonstrated success in various domains.

Despite their success, popular toolkits for learning tree ensembles lack modeling flexibility.

For example, these toolkits support a limited set of loss functions, which may not be suitable for

the application at hand. Moreover, these toolkits are limited to single task learning. In many
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modern applications, it is desirable to solve multiple, related machine learning tasks. In such

applications, multi-task learning, i.e., learning tasks simultaneously, may be a more appropri-

ate choice than single task learning [42, 51, 86, 143]. If the tasks are sufficiently related, multi-

task learning can boost predictive performance by leveraging task relationships during training.

In this chapter, we propose a flexible modeling framework for training tree ensembles that

addresses the aforementioned limitations. Specifically, our framework allows for training tree

ensembles with any differentiable loss function, enabling the user to seamlessly experiment

with different loss functions and select what is suitable for the application. Moreover, our

framework equips tree ensembles with the ability to perform multi-task learning. To achieve

this flexibility, we build up on differentiable trees [100, 139], which can be trained with

first-order (stochastic) gradient methods.

Previously, soft tree ensembles have been predominantly explored for classification tasks

with cross-entropy loss. In such tasks, they were found to be more expressive and compact than

traditional tree ensembles [100]. However, state-of-the-art toolkits, e.g., TEL [100], are slow as

they only support CPU training and are difficult to customize. Our proposed framework goes

beyond the latter work on soft trees by supporting a diverse collection of loss functions for

classification, regression, Poisson regression, zero-inflated models, overdispersed distributions,

and multi-task learning. The framework also offers seamless support for arbitrary loss

functions: the user can modify the loss function with a single line. We empirically observe

that the ability to customize the loss can lead to a significant reduction in ensemble sizes

(up to 20x). We separately investigate end-to-end feature selection in tree ensembles (next

chapter). We also propose a custom tensor-based formulation of differentiable tree ensembles,

leading to more efficient training on CPUs (10×) and GPUs (20×).

Contributions. Our contributions can be summarized as follows.

1. We propose a flexible framework for training differentiable tree ensembles with seamless

support for new loss functions.
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2. We introduce a novel, tensor-based formulation for differentiable tree ensembles that

allows for efficient training on GPUs. Existing toolkits e.g., TEL [100], only support

CPU training.

3. We extend differentiable tree ensembles to multi-task learning settings by introducing a

new regularizer that allows for soft parameter sharing across tasks — current popular

multi-task tree ensemble toolkits e.g., RF [30], GRF [9] do not allow for soft information

sharing.

4. We introduce FASTEL1 — a new toolkit (based on Tensorflow 2.0) for learning differ-

entiable tree ensembles — and perform experiments on a collection of 28 open-source

and real-world datasets, demonstrating that our toolkit can lead to 100x more compact

ensembles and up to 23% improvement in out-of-sample performance, compared to tree

ensembles learnt by popular toolkits such as XGBoost [46].

Organization. We summarize related work in Section 5.2. We then briefly review differen-

tiable trees in Section 5.3.1. In Section 5.3.2, we present a careful tensor-based formulation

of the tree ensemble, which allows for efficient training on both CPUs and GPUs. In Section

5.4, we discuss important examples of loss functions supported by our framework. In Section

5.5 , we propose a multitask learning formulation based on differentiable tree ensembles. In

Section 5.6, we present an empirical study on a collection of real-world datasets.

5.2 Related Work

Learning binary trees has been traditionally done in three broad ways. The first approach

relies on greedy construction and/or optimization via methods such as CART [29], C5.0

[214], OC1 [193], TAO [37]. These methods optimize a criterion at the split nodes based

on the samples routed to each of the nodes. The second approach considers probabilistic
1https://github.com/ShibalIbrahim/FASTEL
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relaxations/decisions at the split nodes and performs end-to-end learning with first order

methods [79, 120, 150]. The third approach considers optimal trees with mixed integer

formulations and jointly optimizes over all discrete/continuous parameters with MIP solvers

[18, 19, 22, 292]. Each of the three approaches have their pros and cons. The first approach

is highly scalable because of greedy heuristics. In many cases, the tree construction uses

a splitting criterion different from the optimization objective [29] (e.g., gini criterion when

performing classification) possibly resulting in sub-optimal performance. The second approach

is also scalable but principled pruning in probabilistic trees remains an open research problem.

The third approach scales to small datasets: some of the largest instances reported in prior

work include number of samples N ∼ 104, features p ∼ 10 and tree depths d ∼ 4.

Jointly optimizing over an ensemble of classical decision trees is a hard combinatorial

optimization problem [112]. Historically, tree ensembles have been trained with two meth-

ods. One approach uses greedy heuristics for individual trees with ensembling done via

bagging/boosting. For example, individual trees are trained with CART on bootstrapped

samples of the data e.g., random forests (RF) [30] and its variants [9, 80]; or sequentially

trained with gradient boosting: Gradient Boosting Decision Trees [92] and efficient vari-

ants [46, 134, 213, 231]. Despite the success of ensemble methods, interesting challenges

remain: (i) RF tend to under-perform gradient boosting methods such as XGBoost [46]. (ii)

The tree ensembles are typically very large, making them complex and difficult to interpret.

Recent work by [37, 289] improve RF with local optimization methods such as alternating

minimization. However, their implementation is not open-source. (iii) Open-source toolkits

for gradient boosting are limited in terms of flexibility. They lack support for multi-task

learning, missing responses or customized loss functions. Modifying these toolkits for custom

applications often require significant effort, technical expertise and research investment.

The alternative approach for tree ensemble learning extends probabilistic/differentiable

trees and performs end-to-end learning [100, 139]. These works build upon the idea of

hierarchical mixture of experts introduced by [131] and further developed by [79, 120, 244] for
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greedy construction of trees. Some of these works [100, 139] propose using differentiable trees

as an output layer in a cascaded neural network for combining feature representation learning

along with tree ensemble learning for classification. In this chapter, we focus on learning

tree (ensembles) with hyperplane splits and constant leaf nodes–this allows us to expand

the scope of trees to flexible loss functions, and develop specialized implementations that

can be more efficient. One might argue that probabilistic trees are harder to interpret and

suffer from slower inference as a sample must follow each root-leaf path, lacking conditional

computation present in classical decision trees. However, [100] proposed a principled way to

get conditional inference in probabilistic trees by introducing a new activation function: this

allows for routing samples through small parts of the tree similar to classical decision trees.

We refer the reader to Section 5.6.1 for a study on a single tree and highlight that a soft

tree with hyperplane splits and conditional inference has similar interpretability as that of a

classical tree with hyperplane splits — see Figure 5.6.1. Additionally, a soft tree can lead to

smaller optimal depths—see Appendix Section 5.8.1.

End-to-end learning with differentiable tree ensembles appears to have several advantages.

(i) Training is easy to set up in public deep learning frameworks, e.g., Tensorflow [1] and

PyTorch [204]. Differentiable tree ensembles allow for flexibility in loss functions without the

need for specialized algorithms. For example, mixture likelihoods can be easily implemented in

Tensorflow Probability [55], which allows for handling zero-inflated data. Similarly, multi-task

loss objectives can also be handled. (ii) With a careful implementation, the tree ensemble

can be trained efficiently on GPUs — this is not possible with earlier toolkits such as TEL

[100]. (iii) Differentiable trees can lead to more expressive and compact ensembles [100]. This

can have important implications for interpretability, latency and storage requirements during

inference.
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5.3 Optimizing Tree Ensembles

In this section, we first introduce background on soft trees. Later, in Section 5.3.2, we discuss

the tensor-based formulation to perform efficient training on both CPUs and GPUs. Finally,

in Section 5.3.3, we briefly discuss our FASTEL toolkit.

We assume a supervised multi-task learning setting, with input space X ⊆ Rp and output

space Y ⊆ Rk. We learn a mapping f : Rp → Rk, from input space X to output space Y,

where we parameterize function f with a differentiable tree ensemble. We consider a general

optimization framework where the learning objective is to minimize any differentiable loss

function g : Rp × Rk → R. The framework can accommodate different loss functions arising

in different applications and perform end-to-end learning with tree ensembles.

Notation. For an integer n ≥ 1, let [n] := {1, 2, ...., n}. We let 1m denote the vector in

Rm with all coordinates being 1. For a matrix B = ((Bij)) ∈ Rm×n, let the j-th column be

denoted by Bj := [B1j, B2j, ..., Bmj]
T ∈ Rm for j ∈ [n]. A dot product between two vectors

u,v ∈ Rm is denoted as u · v. A dot product between a matrix U ∈ Rm,n and a vector

v ∈ Rm is denoted as U · v = UTv ∈ Rn. A dot product between a tensor U ∈ Rp,m,n and a

vector v ∈ Rm is denoted as U · v = UTv ∈ Rp,n where the transpose operation of a tensor

UT ∈ Rp,n,m permutes the last two dimensions of the tensor.

5.3.1 Preliminaries and Setup

We learn an ensemble of m differentiable trees. Let f j be the jth tree in the ensemble. For

easier exposition, we consider a single-task regression or classification setting—see Section 5.5

for an extension to the multi-task setting. In a regression setting k = 1, while in multi-class

classification setting k = C, where C is the number of classes. For an input feature-vector

x ∈ Rp, we learn an additive model with the output being an average of the outputs of all
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the trees:

f(x) =
1

m

m∑
j=1

f j(x). (5.3.1)

The output, f(x), is a vector in Rk containing raw predictions. For multiclass classification,

mapping from raw predictions to Y is done by applying a softmax function on the vector f(x)

and returning the class with the highest probability. Next, we introduce the key building

block of the approach: differentiable decision tree.

Differentiable decision trees for modelling f j. Classical decision trees perform hard

sample routing, i.e., a sample is routed to exactly one child at every splitting node. Hard

sample routing introduces discontinuities in the loss function, making trees unamenable to

continuous optimization. Therefore, trees are usually built in a greedy fashion. In this section,

we first introduce a single soft tree proposed by [131], which is utilized in [27, 79, 120] and

extended to soft tree ensembles in [100, 109, 139]. A soft tree is a variant of a decision

tree that performs soft routing, where every internal node can route the sample to the left

and right simultaneously, with different proportions. This routing mechanism makes soft

trees differentiable, so learning can be done using gradient-based methods. Notably, [100]

introduced a new activation function for soft trees that allowed for conditional computation

while preserving differentiability.

Let us fix some j ∈ [m] and consider a single tree f j in the additive model (5.3.1). Recall

that f j takes an input sample and returns an output vector (logit), i.e., f j : X ∈ Rp → Rk.

Moreover, we assume that f j is a perfect binary tree with depth d. We use the sets Ij and

Lj to denote the internal (split) nodes and the leaves of the tree, respectively. For any node

i ∈ Ij ∪ Lj, we define Aj(i) as its set of ancestors and use the notation x→ i for the event

that a sample x ∈ Rp reaches i.
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Routing. Internal (split) nodes in a differentiable tree perform soft routing, where a sample

is routed left and right with different proportions. This soft routing can be viewed as a

probabilistic model. Although the sample routing is formulated with a probabilistic model,

the final prediction of the tree f is a deterministic function as it assumes an expectation

over the leaf predictions. Classical decision trees are modeled with either axis-aligned splits

[29, 214] or hyperplane (a.k.a. oblique) splits [193]. Soft trees are based on hyperplane splits,

where the routing decisions rely on a linear combination of the features. Particularly, each

internal node i ∈ Ij is associated with a trainable weight vector wj
i ∈ Rp that defines the

node’s hyperplane split. Given a sample x ∈ Rp, the probability that internal node i routes

x to the left is defined by S(wj
i · x), where S : R→ [0, 1] is an activation function. Now we

discuss how to model the probability that x reaches a certain leaf l. Let [l
�
i] (resp. [i � l])

denote the event that leaf l belongs to the left (resp. right) subtree of node i ∈ Ij . Assuming

that the routing decision made at each internal node in the tree is independent of the other

nodes, the probability that x reaches l is given by:

P j({x→ l}) =
∏

i∈Aj(l)

rji,l(x), (5.3.2)

where rji,l(x) is the probability of node i routing x towards the subtree containing leaf l, i.e.,

rji,l(x) := S(wj
i · x)1[l

�
i]⊙ (1− S(wj

i · x))1[i � l]. Popular choices for S include logistic

function [79, 109, 131, 139, 244] and smooth-step function (for conditional computation as in

classical trees with oblique splits) [100]. Next, we define how the root-to-leaf probabilities in

(5.3.2) can be used to make the final prediction of the tree.

Prediction. As with classical decision trees, we assume that each leaf stores a weight vector

oj
l ∈ Rk (learned during training). Note that, during the forward pass, oj

l is a constant vector,

meaning that it is not a function of the input sample(s). For a sample x ∈ Rp, we define the
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prediction of the tree as the expected value of the leaf outputs, i.e.,

f j(x) =
∑
l∈L

P j({x→ l})oj
l . (5.3.3)

Figure 5.3.1: Timing comparison of classical formulation against our tensor-based formulation
of a tree ensemble. Classical formulation models trees in the ensemble individually as pointed
out in Section 5.3.2. Tensor-based formulation with CPU training is up to 10× faster than
classical formulation. Tensor-based formulation with GPU training leads to an additional
40% improvement, leading to an effective 20× gain over classical formulation.

5.3.2 Efficient Tensor Formulation

Current differentiable tree ensemble proposals and toolkits, for example deep neural decision

forests2 [139] and TEL [100] model trees individually. This leads to slow CPU-training

times and makes these implementations hard to vectorize for fast GPU training. In fact,

TEL [100] does not support GPU training. We propose a tensor-based formulation of a

tree ensemble that parallelizes routing decisions in nodes across the trees in the ensemble.
2https://keras.io/examples/structured_data/deep_neural_decision_forests/
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This can lead to 10x faster CPU training times if the ensemble sizes are large e.g., 100.

Additionally, the tensor-based formulation is GPU-friendly, which provides an additional 40%

faster training times. See Figure 5.3.1 for a timing comparison on CPU training without/with

tensor formulation. Next, we outline the tensor-based formulation.

We propose to model the internal nodes in the trees across the ensemble jointly as a

“supernodes”. In particular, an internal node i ∈ Ij at depth d in all trees can be condensed

together into a supernode i ∈ I. We define a learnable weight matrix Wi ∈ Rp,m, where each

j-th column of the weight matrix contains the learnable weight vector wj
i of the original j-th

tree in the ensemble. Similarly, the leaf nodes are defined to store a learnable weight matrix

Ol ∈ Rm,k, where each j-th row contains the learnable weight vector oj
l in the original j-th

tree in the ensemble. The prediction of the tree with supernodes can be written as

f(x) =

(∑
l∈L

Ol ⊙
∏

i∈A(l)

Ri,l

)
· 1
m
1m (5.3.4)

where ⊙ denotes the element-wise product, Ri,l = S(Wi · x)1[l
�
i]⊙ (1− S(Wi · x))1[i �

l] ∈ Rm,1 and the activation function S is applied element-wise. This formulation of tree

ensembles via supernodes allows for sharing of information across tasks via tensor formulation

in multi-task learning — see Section 5.5 for more details.

5.3.3 Toolkit

Our FASTEL toolkit is built in Tensorflow (TF) 2.0 and integrates with Tensorflow-Probability.

The toolkit allows the user to write a custom loss function, and TF provides automatic

differentiation. Popular packages, such as XGBoost, require users to provide first/second

order derivatives. In addition to writing a custom loss, the user can select from a wide range

of predefined loss and likelihood functions from Tensorflow-Probability. By relying on TF in

the backend, our toolkit can easily exploit distributed computing. It can also run on multiple

CPUs or GPUs, and on different platforms, including mobile platforms.
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5.4 Flexible loss functions

Our framework can handle any differentiable loss function. Such flexibility is important as

various applications require flexibility in loss functions beyond what is provided by current tree

ensemble learning toolkits. Our framework is built on Tensorflow, which allows for scalable

gradient-based optimization. This coupled with our efficient differentiable tree ensemble formu-

lation gives a powerful toolkit to seamlessly experiment with different loss functions and select

what is suitable for the intended application. A few examples of flexible distributions that our

toolkit supports — due to compatibility with Tensorflow-Probability — are normal, Poisson,

gamma, exponential, mixture distributions e.g., zero-inflation models [153], and compound

distributions e.g., negative binomial [277]. Other loss functions such as those robust to outliers

[11] can also be handled. To demonstrate the flexibility of our framework, we deeply investigate

two specific examples: zero-inflated Poisson and negative binomial regression. These cannot be

handled by the popular gradient boosting toolkits such as XGBoost [46] and LightGBM [134].

Zero-inflated Poisson Regression. Zero-inflation occurs in many applications, e.g.,

understanding alcohol and drug abuse in young adults [124], characterizing undercoverage

and overcoverage to gauge the on-going quality of the census frames [278], studying popularity

of news items on different social media platforms [191], financial services applications [153] etc.

Despite the prevalence of these applications, there has been limited work on building decision

tree-based approaches for zero-inflated data perhaps due to a lack of support in public toolkits.

Therefore, practitioners either resort to Poisson regression with trees or simpler linear models

to handle zero-inflated responses. A Poisson model can lead to sub-optimal performance

due to the limiting equidispersion constraint (mean equals the variance). Others take a

two-stage approach [36], where a classification model distinguishes the zero and non-zero and

a second model is used to model the non-zero responses. This can be sup-optimal as errors

in the first model can deteriorate the performance of the second model. We employ a more
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well-grounded approach by formulating the joint mixture model, where one part of the model

tries to learn the mixture proportions (zero vs non-zero) and the other part models the actual

non-zero responses. Such a mixture model permits a differentiable loss function when both

components of the model are parameterized with differentiable tree ensembles and can be

optimized with gradient descent method in an end-to-end fashion without the need for a

custom solver. We provide an extensive study with our framework on small to large-scale real

world zero-inflated datasets and demonstrate that such flexibility in distribution modeling can

lead to significantly more compact and expressive tree ensembles. This has large implications

for faster inference, storage requirements and interpretability.

We briefly review Poisson regression and then dive into zero-inflated Poisson models.

Poisson regression stems from the generalized linear model (GLM) framework for modeling

a response variable in the exponential family of distributions. In general, GLM uses a link

function to provide the relationship between the linear predictors, x and the conditional

mean of the density function: g[E(y|x)] = β · x, where β are parameters and g(·) is the link

function. When responses yn (for n ∈ [N ]), are independent and identically distributed (i.i.d.)

and follow the Poisson distribution conditional on xn’s, we use log(·) as the link function and

call the model a Poisson regression model: log(µn|xn) = β · xn. We consider more general

parameterizations with tree ensembles as given by

log(µn|xn) = f(xn;W ,O). (5.4.1)

where f is parameterized with a tree ensemble as in (5.3.1) and W ,O are the learnable

parameters in the supernodes and the leaves of the tree ensemble. When a count data has

excess zeros, the equi-dispersion assumption of the Poisson is violated. The Poisson model is

not an appropriate model for this situation anymore. [148] proposed zero-inflated-Poisson

(ZIP) models that address the mixture of excess zeros and Poisson count process. The mixture

is indicated by the latent binary variable dn using a logit model and the density for the
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Poisson count given by the log-linear model. Thus, yn = y∗n ⊙ 1[dn ̸= 0], where the latent

indicator dn ∼ Bernoulli(πn) with πn = P (dn = 1) and y∗n ∼ Poisson(µn). The mixture

yields the marginal probability mass function of the observed yn given as:

ZIP (yn|µn, πn) =


(1− πn) + πne

−µn , if yn = 0

πne
−µnµyn

n /yn!, if yn = 1, 2, · · ·
(5.4.2)

where µn and πn are modeled by

log

(
πn

1− πn
|xn

)
= f(xn;Z,U) (5.4.3)

log(µn|xn) = f(xn;W ,O). (5.4.4)

where Z,U are the learnable parameters in the splitting internal supernodes and the leaves

of the tree ensemble for the logit model for πn and W ,O are the learnable parameters in

the supernodes and the leaves of the tree ensemble for the log-tree model for µn respectively.

The likelihood function for this ZIP model is given by

L(yn, f(xn)) =
∏
yn=0

(1− πn) + πne
−µn

∏
yn>0

πne
−µnµyn

n /yn! (5.4.5)

where µn = ef(xn;W,O) and πn = ef(xn,Z;U)/(1 + ef(xn;Z,U)). Such a model can be overpa-

rameterized and we observed that sharing the learnable parameters Z = W in the splitting

internal supernodes across the log-mean and logit models can lead to better test performance

— see Section 5.6 for a thorough evaluation on real-world datasets.

Negative Binomial Regression. An alternative distribution to zero-inflation modeling

that can cater to over-dispersion in the responses is Negative Binomial (NB) distribution. A

negative binomial distribution for a random variable y with a non-negative mean µ ∈ R+ and
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dispersion parameters ϕ ∈ R+ is given by:

NB(y|µ, ϕ) =
(

y + ϕ− 1

y

)(
µ

µ+ ϕ

)y(
ϕ

µ+ ϕ

)ϕ

(5.4.6)

The mean and variance of a random variable y ∼ NB(y|µ, ϕ) are E[y] = µ and Var[y] =

µ+ µ2/ϕ. Recall that Poisson(µ) has variance µ, so µ2/ϕ > 0 is the additional variance of

the negative binomial above that of the Poisson with mean µ. So the inverse of parameter ϕ

controls the overdispersion, scaled by the square of the mean, µ2.

When the responses yn (for n ∈ [N ]) are i.i.d, and follow NB distribution conditioned on

xn’s, we can use the log(.) as a link function to parameterize the log-mean and log-dispersion

as linear functions of the covariates xn. In our parameterization with Tree Ensembles, we

model them as given by:

log(µn|xn) = f(xn;W ,O) (5.4.7)

log (ϕn|xn) = f(xn;Z,U). (5.4.8)

where Z,U are the learnable parameters in the supernodes and the leaves of the tree ensemble

for the log-mean and W ,O are the learnable parameters in the supernodes and the leaves

of the tree ensemble for the log-dispersion model for ϕn respectively. Such a model can be

overparameterized and we observed that sharing the learnable parameters Z = W in the

splitting internal supernodes across the log-mean and log-dispersion models can lead to better

out-of-sample performance. See Section 5.6.4 for empirical validation on a large-scale dataset.

5.5 Multi-task Learning with Tree Ensembles

Multi-task Learning (MTL) aims to learn multiple tasks simultaneously by using a shared

model. Unlike single task learning, MTL can achieve better generalization performance

through exploiting task relationships [38, 42]. One key problem in MTL is how to share model
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parameters between tasks [226]. For instance, sharing parameters between unrelated tasks

can potentially degrade performance. MTL approaches for classical decision trees approaches

e.g., RF [166], GRF [9] have shared weights at the splitting nodes across the tasks. Only the

leaf weights are task specific. However this can be limiting in terms of performance, despite

easier interpretability associated with the same split nodes across tasks.

To perform flexible multi-task learning, we extend our formulation in Section 5.3.2 by

using task-specific nodes in the tree ensemble. We consider T tasks. For easier exposition,

we consider tasks of the same kind: multilabel classification or multi-task regression. For

multilabel classification, each task is assumed to have same number of classes (with k = C)

for easier exposition — our framework can handle multilabel settings with different number of

classes per task. Similarly, for regression settings, k = 1. For multi-task zero-inflated Poisson

or negative binomial regression, when two model components need to be estimated, we set

k = 2 to predict log-mean and logit components for zero-inflated Poisson and log-mean and

log-dispersion components for negative binomial.

We define a trainable weight tensor W i ∈ RT,p,m for supernode i ∈ I, where each t-th

slice of the tensor W i[t, :, :] denotes the trainable weight matrix associated with task t. The

prediction in this case is given by

f(x) =

(∑
l∈L

Ol ⊙
∏

i∈A(l)

Ri,l

)
· 1
m
1m (5.5.1)

where Ol ∈ RT,m,k denotes the trainable leaf tensor in leaf l, Ri,l = S(W i · x)1[l
�

i]⊙ (1− S(W i · x))1[i � l] ∈ RT,m,1.

In order to share information across the tasks, our framework imposes a closeness penalty

on the hyperplanes W i in the supernodes across the tasks. This results in the optimization

formulation:

min
W,O

∑
t∈T

∑
x,yt

gt(yt, ft(x)) + λ
∑

s<t,t∈T

∥W :,s,:,: −W :,t,:,:∥2 , (5.5.2)
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where W ∈ RI,T,m,p denotes all the weights in all the supernodes, O ∈ RL,m,k denotes all the

weights in the leaves, and λ ∈ [0,∞) is a non-negative regularization penalty that controls

how close the weights across the tasks are. For λ = 0, the model behaves similar to a

single-task learning setting. When λ → ∞, the model shares complete information in the

splitting nodes and the weights across the tasks in each of the internal supernodes become

the same — this is similar to hard parameter sharing. The latter case can be separately

handled more efficiently by using the function definition in (5.3.4) for f(x) without any

closeness regularization in (5.5.2). Our model can control the level of sharing across the tasks

by controlling λ. In practice, we tune over λ ∈ [1e− 5, 10] and select the optimal value based

on a validation set. This penalty assumes that the hyperplanes across the tasks should be

equally close as we go down the depth of the trees. However this assumption maybe less

accurate as we go down the tree. Empirically, we found that decaying λ exponentially as

λ/2d with depth d of the supernodes in the ensemble can achieve better test performance.

5.6 Experiments

We study the performance of differentiable tree ensembles in various settings and compare

against the relevant state-of-the-art baselines for each setting. The different settings can be

summarized as follows: (i) Comparison of a single soft tree with state-of-the-art classical tree

method in terms of test performance and depth. We include both axis-aligned and oblique

classical tree in our comparisons. (ii) Flexible zero-inflation models with tree ensembles.

We compare against Poisson regression with tree ensembles and gradient boosting decision

trees (GBDT). We consider test Poisson deviance and tree ensemble compactness for model

evaluation (iii) We evaluate our proposed multi-task tree ensembles and compare them against

multioutput RF, multioutput GRF and single-task GBDT. We consider both fully observed

and partially observed responses across tasks. (iv) We also validate our tree ensemble methods

with flexible loss functions (zero-inflated Poisson and negative binomial regression) on a

130



large-scale multi-task proprietary dataset.

Model Implementation. Differentiable tree ensembles in our toolkit are implemented in

TensorFlow 2.0 using Keras interface.

Datasets. We use 27 open-source regression datasets from various domains (e.g., social

media platforms, human behavior, finance). 9 are from Mulan [272], 2 are from UCI data

repository [61], 12 are from Delve database [6] and the 5 remaining are SARCOS [255], Youth

Risk Behavior Survey [124], Block-Group level Census data [252], and a financial services

loss dataset from Kaggle3. We also validate our framework on a proprietary multi-task data

with millions of samples from a multi-national financial services company.

5.6.1 Studying a Single Tree

In this section, we compare performance and model compactness of a single tree on 12 regres-

sion datasets from Delve database: abalone, pumadyn-family, comp-activ (cpu, cpuSmall)

and concrete.

Competing Methods and Implementation. We focus on two baselines from classical

tree literature: CART [29] and Tree Alternating Optimization (TAO) method proposed by

[37]. The authors in [289] performed an extensive comparison of various single tree learners

and demonstrated TAO to be the best performer. Hence, we include both axis-aligned and

oblique decision tree versions of TAO in our comparisons. Given that the authors in [37, 289]

do not provide an open-source implementation for TAO, we implemented our own version of

TAO. For a fair comparison, we use binary decision trees for both axis-aligned and oblique

versions of TAO. For more details about our implementation, see Appendix Section 5.8.1.
3https://bit.ly/3swGnTo
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Table 5.6.1: Test mean squared error of single axis-aligned and oblique decision trees on
various regression datasets.

Axis-Aligned Oblique
Data CART TAO TAO Soft Tree
abalone 7.901E-03 8.014E-03 7.205E-03 6.092E-03
pumadyn-32nh 9.776E-03 9.510E-03 1.146E-02 8.645E-03
pumadyn-32nm 2.932E-03 2.741E-03 4.942E-03 1.280E-03
pumadyn-32fh 1.324E-02 1.307E-02 1.370E-02 1.166E-02
pumadyn-32fm 2.246E-03 2.177E-03 3.566E-03 1.602E-03
pumadyn-8nh 1.995E-02 1.983E-02 2.027E-02 1.670E-02
pumadyn-8nm 4.878E-03 4.584E-03 4.206E-03 2.352E-03
pumadyn-8fh 2.182E-02 2.200E-02 2.159E-02 2.048E-02
pumadyn-8fm 4.398E-03 4.347E-03 4.074E-03 3.543E-03
cpu 9.655E-04 1.475E-03 1.312E-03 9.159E-04
cpuSmall 1.450E-03 2.319E-03 1.171E-03 9.159E-04
concrete 7.834E-03 6.619E-03 1.166E-02 4.139E-03

Results. We present the out-of-sample mean-squared-error performance and optimal depths

in Tables 5.6.1 and 5.8.1 (in Appendix Section 5.8.1) respectively. Notably, in all 12 cases,

soft tree outperforms all 3 baseline methods in terms of test performance. The soft tree finds

a smaller optimal depth in majority cases in comparison with its classical counterpart i.e.,

oblique TAO tree — See Table 5.8.1 in Appendix Section 5.8.1. This may be due to the

end-to-end learning in a soft tree, unlike TAO that performs local search.

5.6.2 Zero-inflation

We consider a collection of real-world applications with zero-inflated data. The datasets

include (i) yrbs: nationwide drug use behaviors of high school students as a function of

demographics, e-cigarettes/mariyuana use etc.; (ii) news: popularity of news items on social

media platforms [191] e.g., Facebook, Google+ as a function of topic and sentiments; (iii)

census: number of people with zero, one, or two health insurances across all Census blocks

in the ACS population as a function of housing and socio-economic demographics; (iv)

fin-services-loss: financial services losses as a function of geodemographics, information on

crime rate, weather.

132



Figure 5.6.1: Classifier boundaries for CART [Left], TAO (oblique) [Middle] and Soft tree
[Right] on a synthetic dataset with Ntrain = Nval = Ntest = 2500 from sklearn [33]. We tune
for 50 trials over depths in the range [2− 4] for TAO (oblique) and soft trees and [2− 10] for
CART. Optimal depths for CART, TAO, Soft tree are 5, 4 and 2 respectively. Test AUCs are
0.950, 0.957, and 0.994 respectively.

Table 5.6.2: Test poisson deviance across models on various datasets. Flexible modeling via
zero-inflated Poisson for Soft Tree Ensembles leads to better poisson deviance.

GBDT Soft Trees
Data N p Poisson ZIP
yrbs-cocaine 12172 55 3.14E-02 3.00E-02 2.82E-02
yrbs-heroine 12711 55 1.81E-02 1.60E-02 1.54E-02
yrbs-meth 12690 55 2.38E-02 2.21E-02 2.09E-02
yrbs-lsd 9564 55 3.51E-02 3.59E-02 3.43E-02
news-facebook 81637 3 4.70E-03 4.68E-03 4.68E-03
news-google+ 87495 3 5.97E-03 5.93E-03 5.93E-03
census-health0 220333 64 1.51E-04 1.28E-04 1.32E-04
census-health1 220333 64 4.63E-04 5.11E-04 4.66E-04
census-health2+ 220333 64 2.73E-03 3.06E-03 2.72E-03
fin-services-losses 452061 300 2.20E-03 2.28E-03 2.20E-03
#wins - - 2 3 8

Competing methods. We consider Poisson regression with GBDT and differentiable tree

ensembles. We also consider zero-inflation modeling with differentiable tree ensembles. We

use GBDT from sklearn [33]. For additional details about the tuning experiments, please see

Appendix Section 5.8.2.

Results. We present the out-of-sample Poisson deviance performance in Table 5.6.2. No-

tably, tree ensembles with zero-inflated loss function leads the chart. We also present the
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Table 5.6.3: Tree ensemble compactness (# trees and depth) for GBDT and Soft Tree
Ensembles for different datasets. Flexible modeling via zero-inflated Poisson for Soft Tree
Ensembles can lead to more compact tree ensembles, which can improve interpretability

#Trees Depth
GBDT Soft Trees GBDT Soft Trees

Data Poisson ZIP Poisson ZIP
yrbs-cocaine 575 77 13 4 2 3
yrbs-heroine 1425 83 4 4 4 2
yrbs-meth 1475 16 4 4 2 3
yrbs-lsd 1225 17 45 4 3 2
news-facebook 200 65 85 4 4 4
news-google+ 750 81 74 4 4 4
census-health0 1275 10 10 4 3 2
census-health1 1275 17 17 4 2 2
census-health2+ 1375 73 56 8 4 3
fin-services-losses 1225 32 4 4 3 2
#wins 0 4 7 - 5 8

optimal selection of tree ensemble sizes and depths in Table 5.6.3. We can observe that

zero-inflation modeling can lead to significant benefits in terms of model compression. Both

tree ensemble sizes and depths can potentially be made smaller, which have implications for

faster inferences, memory footprint and interpretability.

5.6.3 Multi-task Regression

We compare performance and model compactness of our proposed regularized multi-task tree

ensembles on 11 multi-task regression datasets from Mulan (atp1d, atp7d, sf1, sf2, jura, enb,

slump, scm1d, scm20d), and UCI data repository (bike) and SARCOS dataset.

Competing Methods. We focus on 4 tree ensemble baselines from literature: single-task

soft tree ensembles, sklearn GBDT, sklearn multioutput RF [33] and r-grf package for GRF

[9]. We consider two multi-task settings: (i) All Fully observed responses for all tasks, (ii)

Partially observed responses across tasks. In the former case, we compare against RF and

GRF. In the latter case, we compare against single-task soft tree ensembles and GBDT.

Note the open-source implementations for RF and GRF do not support partially observed

134



Table 5.6.4: Test MSE of RF, GRF and multi-task Differentiable Tree Ensembles on 11
multi-task regression datasets with fully observed responses across tasks.

Multi-task
Data Task RF GRF Soft Trees

1 2.242E-02 1.847E-02 5.383E-03
2 2.498E-02 1.894E-02 7.217E-03
3 1.127E-02 9.625E-03 1.128E-02
4 1.574E-02 1.504E-02 1.403E-02
5 2.040E-02 1.905E-02 1.182E-02

atp1d

6 1.571E-02 1.333E-02 1.527E-02
1 3.244E-03 2.691E-03 8.965E-03
2 3.914E-03 3.931E-03 4.456E-03
3 1.231E-02 1.078E-02 1.059E-02
4 5.459E-03 6.542E-03 6.001E-03
5 1.842E-03 1.922E-03 3.358E-03

atp7d

6 4.042E-03 5.303E-03 5.033E-03
1 4.384E-02 3.151E-02 3.345E-02
2 1.077E-02 4.638E-03 3.828E-03sf1
3 4.252E-02 2.863E-02 2.993E-02
1 7.883E-03 8.807E-03 7.789E-03
2 3.247E-03 2.583E-03 2.206E-03sf2
3 1.262E-03 3.744E-03 3.595E-03
1 3.027E-02 3.008E-02 2.233E-02
2 1.483E-02 1.405E-02 1.015E-02jura
3 7.896E-03 7.586E-03 6.036E-03
1 2.473E-04 1.865E-04 2.063E-04enb 2 2.830E-03 3.305E-03 1.054E-03
1 1.732E-01 1.396E-01 1.001E-01
2 1.224E-01 9.827E-02 7.368E-02slump
3 3.878E-02 2.944E-02 5.149E-03
1 3.040E-03 2.530E-03 1.794E-03
2 3.397E-03 3.003E-03 2.226E-03
3 4.178E-03 3.611E-03 2.940E-03scm1d

4 3.991E-03 3.376E-03 2.150E-03
1 4.457E-03 3.650E-03 2.198E-03
2 4.766E-03 3.632E-03 2.410E-03
3 4.892E-03 3.506E-03 2.620E-03scm20d

4 5.573E-03 4.072E-03 2.632E-03
1 3.466E-03 2.558E-03 1.730E-03
2 4.636E-03 4.039E-03 3.728E-03bike
3 5.123E-03 4.303E-03 3.822E-03

# wins - 5 6 26
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Table 5.6.5: Tree ensemble sizes for soft trees, RF, and GRF.

atp1d atp7d sf1 sf2 jura enb slump scm1d scm20d bike
RF 100 125 500 225 150 100 825 175 100 100

GRF 1050 950 350 100 150 100 350 50 100 250
Ours 10 15 12 44 17 13 54 49 25 93

responses for multi-task settings and GBDT does not have support for multi-task setting.

We refer the reader to Appendix Section 5.8.3 for tuning experiments details.

Results. We present results for fully observed response settings in Table 5.6.4 and partially

observed response settings in Table 5.6.6. In both cases, regularized multi-task soft trees lead

the charts over the corresponding baselines in terms of out-of-sample mean squared error

performance. For the fully observed response setting, we also show tree ensemble sizes in

Table 5.6.5. We see a large reduction in the number of trees with out proposed multi-task

tree ensembles.

5.6.4 Large-scale multi-task data from a multinational financial

services company

We study the performance of our differentiable tree ensembles in a real-word, large-scale

multi-task setting from a multinational financial services company. The system encompasses

costs and fees for millions of users for different products and services. The dataset has the

following characteristics: (i) It is a multi-task regression dataset with 3 tasks. (ii) Each task

has high degree of over-dispersion. (iii) All tasks are not fully observed as each user signs up

for a subset of products/services. The degree of missing responses on average across tasks is

∼ 50%. (iv) Number of features is also large (∼ 600).

We validate the flexibility of our end-to-end tree-ensemble learning framework with soft

trees on a dataset of 1.3 million samples. We study the following flexible aspects of our

framework: (i) Flexible loss handling with zero-inflation Poisson regression and negative

binomial regression for single-task learning. (ii) Multi-task learning with our proposed
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Table 5.6.6: Test MSE of GBDT, single-task and multi-task Soft Tree Ensembles on 11
multi-task regression datasets, with 50% missing responses per task.

Single-Task Multi-Task
Data Task GBDT Soft Trees

1 1.469E-02 3.091E-02 1.295E-02
2 7.698E-03 2.598E-02 1.137E-02
3 2.172E-02 2.915E-02 1.807E-02
4 5.905E-03 1.417E-02 9.434E-03
5 2.421E-02 5.631E-02 2.105E-02

atp1d

6 5.646E-03 5.880E-02 2.724E-02
1 5.562E-02 6.261E-02 3.601E-02
2 4.033E-02 2.216E-02 1.067E-02
3 2.140E-02 4.989E-02 1.680E-02
4 1.107E-02 2.089E-02 9.926E-03
5 4.254E-02 6.476E-02 3.053E-02

atp7d

6 4.195E-03 2.416E-02 , 2.199E-02
1 2.674E-02 2.763E-02 2.732E-02
2 5.825E-03 1.680E-02 5.435E-03sf1
3 3.030E-02 3.704E-02 2.964E-02
1 1.003E-02 1.179E-02 1.009E-02
2 1.123E-02 6.843E-03 2.809E-03sf2
3 9.271E-03 1.039E-02 8.064E-03
1 1.779E-02 1.934E-02 1.503E-02
2 1.117E-02 1.665E-02 9.304E-03jura
3 1.311E-02 1.514E-02 1.262E-02
1 1.509E-04 2.738E-04 4.167E-04enb 2 1.071E-03 1.227E-03 1.160E-03
1 1.622E-01 7.611E-02 9.485E-02
2 8.823E-02 1.050E-01 4.734E-02slump
3 8.423E-03 1.737E-03 7.744E-03
1 1.598E-03 1.903E-03 2.058E-03
2 1.952E-03 2.703E-03 2.490E-03
3 3.029E-03 3.194E-03 2.919E-03scm1d

4 2.666E-03 3.656E-03 3.272E-03
1 2.541E-03 2.672E-03 2.533E-03
2 3.640E-03 3.174E-03 3.146E-03
3 3.658E-03 4.015E-03 3.201E-03scm20d

4 3.756E-03 4.115E-03 3.670E-03
1 2.122E-03 2.558E-03 2.300E-03
2 3.680E-03 4.038E-03 3.846E-03bike
3 3.731E-03 4.303E-03 3.910E-03
1 2.582E-04 1.317E-04 1.518E-04
2 1.643E-04 8.310E-05 8.307E-05sarcos
3 3.325E-04 1.788E-04 1.933E-04

# wins - 14 5 23

regularized multi-task soft tree ensembles in the presence of missing responses across tasks.

(iii) Flexible loss handling with zero-inflation Poisson/negative binomial regression in the
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Table 5.6.7: Out-of-sample performance of single-task and multi-task tree ensembles with
flexible loss functions for zero-inflation/overdispersion. We evaluate performance with weighted
Poisson deviance and AUC across tasks.

GBDT Soft Trees
Single-task Single-task Multi-task

Metric Task Poisson Poisson ZIP NB Poisson ZIP NB

Poisson
Deviance

1 2.643E-04 2.624E-04 2.623E-04 2.623E-04 2.607E-04 2.605E-04 2.608E-04
2 8.029E-04 8.050E-04 8.029E-04 8.044E-04 8.022E-04 8.014E-04 8.014E-04
3 1.044E-03 1.045E-03 1.043E-03 1.042E-03 1.041E-03 1.040E-03 1.041E-03

AUC
1 0.710 0.721 0.722 0.721 0.730 0.734 0.727
2 0.690 0.689 0.690 0.688 0.691 0.691 0.692
3 0.684 0.683 0.686 0.685 0.687 0.689 0.689

context of multi-task learning.

We present our results in Table 5.6.7. We can see that we achieve the lowest Poisson

deviance and highest AUC with multi-task regression via zero-inflated Poisson/negative

binomial regression.

5.7 Conclusion

We propose a flexible and scalable framework for learning differentiable tree ensembles. Our

framework supports a diverse set of loss functions and allows for easily adding new loss

functions. It also has novel support for multi-task learning. For scalability, we propose a new

tensor-based formulation of tree ensembles, which allows for 10x faster training on CPUs

and also adds support for GPU training. We perform experiments on a collection of 28

open-source and real-world datasets, demonstrating that our new FASTEL toolkit can lead to

100x more compact ensembles and up to 23% improvement in out-of-sample performance,

compared to tree ensembles learnt by popular toolkits such as XGBoost.

5.8 Appendix

Datasets. We use a collection of 27 open-source regression datasets from various domains

(e.g., social media platforms, human behavior, financial risk data). 9 of these are from
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Mulan: A Java library for multi-label learning (Mulan) [272], 2 of them are from University

of California Irvine data repository (UCI) [61], 12 of them are from Delve database [6] and

the 5 remaining are SARCOS 4 [255], Youth Risk Behavior Survey5 [124], Block-Group level

data from US Census Planning Database6[252], and financial services loss data from Kaggle7.

For scm1d and scm20d from Mulan[272], we consider the first 4 tasks (out of the 16 tasks in

the original dataset). For SARCOS, we consider 3 torques for prediction (torque-3, torque-4

and torque-7; we ignore the other torques as those seem to have poor correlations with these.)

For all datasets, we split the datasets into 64%/16%/20% training/validation/test splits.

We train the models on the training set, perform hyperparameter tuning on the validation

set and report out-of-sample performance on the test set.

5.8.1 Tuning parameters and optimal depths comparison for a single

tree in Section 5.6.1

TAO Implementation. We wrote our own implementation of the TAO algorithm proposed

in [37]. We considered binary trees with TAO for both axis-aligned and oblique trees. In the

case of axis-aligned splits, we initialize the tree with CART solution and run TAO iterations

until there is no improvement in training objective. In the case of oblique trees, we initialize

with a complete binary tree with random parameters for the hyperplanes in the split nodes

and use logistic regression to solve the decision node optimization. We run the algorithm

until either a maximum number of iterations are reached or the training objective fails to

improve.

Tuning parameters. For CART and axis-aligned TAO, we tune the depth in the range

[2− 20]. We also optimize over the maximum number of iterations in the interval [20− 100].
4The original test set has significant data leakage as noted by https://www.datarobot.com/blog/

running-code-and-failing-models/. Following their guidance we discard the original test set and use the
original train set to generate train/validation/test splits.

5https://www.cdc.gov/healthyyouth/data/yrbs/data.htm
6https://www.census.gov/topics/research/guidance/planning-databases.html
7https://bit.ly/3swGnTo
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For oblique TAO and soft tree, we tune the depth between 2−10 and the number of iterations

between 20−100. Additionally, for soft tree, we also tune over the learning rates [1e−5, 1e−2]

with Adam optimizer and batch sizes {64, 128, 256, 512}. For a fair comparison, we run all 4

methods for 100 trials.

Optimal depths. We make a comparison of optimal depths between CART, TAO (both

axis-aligned and oblique) and soft tree. The soft tree finds a smaller optimal depth in majority

cases in comparison with its classical counterpart i.e., oblique TAO tree — See Table 5.8.1.

This is hypothesized to be due to the end-to-end optimization done by soft tree as opposed

to a local search performed by the TAO algorithm.

Table 5.8.1: Optimal depth of a single axis aligned and oblique decision tree on various
regression datasets.

Axis-Aligned Oblique
Data CART TAO TAO Soft Tree
abalone 5 5 4 2
pumadyn-32nh 6 6 4 3
pumadyn-32nm 8 8 5 4
pumadyn-32fh 3 3 3 5
pumadyn-32fm 6 6 5 4
pumadyn-8nh 6 6 5 3
pumadyn-8nm 9 8 7 5
pumadyn-8fh 5 5 4 2
pumadyn-8fm 7 7 6 3
cpu 10 8 5 5
cpuSmall 8 8 5 5
concrete 15 8 5 9

5.8.2 Tuning parameters for Sections 5.6.2

We use HistGBDT from sklearn [33] (GBDT in sklearn does not support Poisson regression).

We tune over depths in the range [2−20], number of trees between 50−1500 and learning rates

on the log-uniform scale in the interval [1e−5, 1e−1]. For differentiable tree ensembles, we tune

number of trees in the range [2, 100], depths in the set [2− 4], batch sizes {64, 128, 256, 512},

learning rates [1e−5, 1e−1] with Adam optimizer and perform early stopping with a patience
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of 25 based on the validation set. For all models, we perform a random search with 1000

hyperparameter tuning trials.

5.8.3 Tuning parameters for Sections 5.6.3

We tune number of trees in the interval [50 − 1500] for RF, GRF and GBDT. For RF

and GBDT, we also tune over depths between 2− 20. For GBDT, we tune learning rates

between [1e − 5, 1e − 1]. For GRF, we also tune over min_node_size in the set [2 − 20]

and α ∈ [1e− 3, 1e− 1]. For single-task and multi-task trees, we tune over depths [2− 4],

number of trees [5− 100], batch sizes {64, 128, 256, 512}, epochs [20− 500], Adam learning

rates [1e − 5, 1e − 2]. We also optimize over the regularization penalty for multi-task soft

decision trees [1e− 5, 1e1]. All single-task models (soft tree ensembles, GBDT) are tuned for

1000 trials per task. All multi-task models (RF, GRF, multi-task soft trees) are tuned for

1000 trials in total.

5.8.4 Tuning parameters for Sections 5.6.4

We use GBDT from XGBoost [46], where we tune number of trees in the interval [50− 1500],

depths between 2−20 and learning rates between [1e−4, 1e−0]. For single-task and multi-task

trees, we tune over depths [2− 4], number of trees [5− 100], batch sizes {64, 128, 256, 512},

epochs [20−200], Adam learning rates [1e−5, 1e−2]. We also optimize over the regularization

penalty for multi-task soft decision trees [1e − 5, 1e1]. All single-task models (soft tree

ensembles, GBDT) with Poisson, Zero-Inflated-Poisson, Negative Binomial are tuned for 1000

trials per task. All multi-task soft-trees are tuned for 1000 trials in total.
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5.8.5 Exploration of different loss and training strategies for tree

ensemble learning

In this section, we explore some additional ensemble learning techniques. There can be

different loss objectives as well as training strategies to improve the learning of an ensemble

of trees. These training strategies are motivated from literature on deep ensembles of neural

networks [126, 286, 297]. We study these techniques in the context of soft decision tree

ensembles and provide some empirical results.

Before we dive into these objectives, we first briefly summarize some notations. The input

feature-vector is denoted by x ∈ Rp. The output is denoted by y ∈ Rk. We have an ensemble

of m differentiable trees. Let f j be the jth tree in the ensemble. For classification tasks,

f j can either be the logits or the probability over the classes. We denote the average of

predictions in the tree ensemble as

f̄(x) =
1

m

m∑
j=1

f j(x). (5.8.1)

We explore five different techniques for learning a tree ensemble:

1. Independent. Train each of the base learner f j independently. This can be thought

of as training with the sum of individual objectives:

1

m

∑
j∈[m]

L(y,f j(x)) (5.8.2)

At evaluation, the probability predictions are combined in an additive fashion.

2. Joint. Train all base learners jointly with the objective:

L(y, f̄(x)) (5.8.3)
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Here, we combine the predictions at the logit level as done in [100] as well as in chapter

6.

3. Multi-Objective. Following Jeffares et al. [126], the two above objectives are combined

in a multi-objective strategy as follows:

(1− α1)

 1

m

∑
j∈[m]

L(y,f j)

+ α1L(y, f̄) (5.8.4)

where α1 ∈ [0, 1] is a tuning parameter.

4. Diversity Penalization. Zhang et al. [286] proposes to explicitly penalize diversity as

follows:

1

m

∑
j∈[m]

(
L(y,f j) + α2KL(f̄ ||f j)

)
(5.8.5)

This encourages the base learners’ predictions to shrink towards an average, allowing

to use any of the base learner at prediction time. This can have implications for faster

inference times as well as interpretability.

5. THOR. Zuo et al. [297] suggest to randomly sample two base learners (per mini-batch

of samples) during training:

L(y,f j) + L(y,fk) + α3KLsym(f
j||fk) (5.8.6)

where j and k denote two randomly chosen base learners for a mini-batch of samples

during backpropagation. This sparse backpropagation allows to reduce the training

costs. At inference time, a single base learner can be selected.

Experiments. We compare the 5 training strategies described above. We consider a

collection of 9 classification datasets from the Penn Machine Learning Benchmarks (PMLB)
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Table 5.8.2: Test AUC on 9 classification tasks for different ensemble learning techniques.

Dataset\Method Independent Joint Multi-Objective Diversity-Penalization THOR
pima 79.52 79.65 81.88 82.88 79.14
yeast 85.45 84.56 84.77 84.53 85.04

heart-c 87.52 87.75 89.69 90.10 89.82
diabetes 82.79 81.76 82.77 81.91 82.69

solar 87.63 87.09 88.56 88.24 88.53
vehicle 95.76 95.33 95.71 95.88 93.07

crx 93.56 91.45 93.83 92.93 93.54
flare 76.65 73.77 75.51 74.60 73.23
churn 92.76 91.45 92.66 92.86 92.58

Rank(avg) 3 5 1 2 4
Rank(rank) 2 5 1 3 4

repository [200].

We set the number of trees to 10 and depth of soft trees to 4. We consider 10 different

seeds for splitting of data into training-validation-test splits. For each split, we perform 200

tuning trials to tune over the hyperparameters based on performance on the validation set.

We tune over learning rates for Adam η ∈ {1e − 5, 1e − 4, 1e − 3, 1e − 2, 1e − 1}, epochs

∈ {25, 50, 75, ..., 200}, α1 ∈ {0.001, 0.005, 0.01, ..., 50}, α2 ∈ {0.001, 0.005, 0.01, ..., 50} and

α3 ∈ {0.001, 0.005, 0.01, ..., 50}. We report the test accuracy across the 10 seeds in Table

5.8.2.

We rank the methods in two ways: (i) Compute average AUC across the datasets and

then compute the rank, (ii) Compute the rank per dataset and then rank the methods based

on the average rank. It appears that the multi-objective tends to lead the chart. Diversity

Penalization and Independent learning approaches also appear promising. This suggests

that we can further improve the end-to-end learning of soft tree ensembles by considering

alternative training strategies.
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Chapter 6

Tree Ensembles: End-to-end Feature

Selection Approach for Learning Skinny

Trees

6.1 Introduction

In the chapter, we consider feature selection in tree ensembles. While there have been various

toolkits for learning tree ensembles [30, 46, 134, 213], which are excellent for building tree

ensembles, they do not allow for feature selection during the training process.

Feature selection is a fundamental problem in machine learning and statistics and has

widespread usage across various real-world tasks [35, 160, 269]. Popular tree ensemble

toolkits only allow selecting informative features post-training based on feature importance

scores, which are known to have drawbacks1 in the context of feature selection [28, 242, 291].

Recently, there has been some work on optimization-based approaches for feature selection in

trees. For example, [289] consider oblique decision trees (hyperplane splits at every node),

and use ℓ1-penalization to encourage coefficient sparsity at every node of the tree. This
1They are found to hurt performance in (a) settings where number of samples are smaller than features

and (b) settings with correlated features (see Sec. 6.5).
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achieves node-level feature selection and does not appear to be well-suited for tree-level or

ensemble-level feature selection (See Sec. 6.6.1). Liu et al. [168] proposed ControlBurn that

considers a lasso based regularizer for feature selection on a pre-trained forest. This can be

viewed as a two-stage procedure (unlike an end-to-end training procedure we propose here),

where one performs feature selection after training a tree ensemble with all original features,

While these methods serve as promising candidates for feature selection, these works highlight

that identifying relevant features while learning compact trees remains an open challenge—an

avenue we address in this work.

In many real world problems there are costs associated with features reflecting time,

money, and other costs related to the procurement of data [188, 285]. In this context, one

would like to collect a compact set of features to reduce experimental costs. Additionally,

selecting a compact set of relevant features can lead to enhanced interpretability [223], faster

inference, decreased memory footprint, and even improved model generalization on unseen

data [40].

In this chapter, we propose an end-to-end optimization framework for feature selection in

tree ensembles where we jointly learn the trees and the relevant features in one shot. Our

framework is based on differentiable (a.k.a. soft) tree ensembles [96, 115, 131, 139] where

tree ensembles are learnt based on differentiable programming. These works, however, do

not address feature selection in trees which is our focus. We use a sparsity-inducing penalty

(based on the group ℓ0 − ℓ2-penalty) to encourage feature selection. While group ℓ0 − ℓ2

penalty has been found to be useful in recent work on high-dimensional linear models [104]

and additive models [104, 113], their adaptation to tree ensemble presents unique challenges.

To obtain high-quality models with good generalization-and-sparsity tradeoffs, we need to

pay special attention to dense-to-sparse training, which differs from sparse-to-dense training

employed in linear/additive models above. We demonstrate that our end-to-end learning

approach leads to better accuracy and feature sparsity tradeoffs.
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Contributions. We propose a novel end-to-end optimization-based framework for feature

selection in tree ensembles. We summarize our contributions in the chapter as follows:

• We propose a joint optimization approach, where we simultaneously perform feature

selection and tree ensemble learning. Our joint training approach is different from post-

training feature selection in trees. Our approach learns (differentiable) tree ensembles with

a budget on feature sparsity where the latter is achieved via a group ℓ0-based regularizer.

• Our algorithmic workhorse is based on proximal mini-batch gradient descent (GD). We

also discuss the convergence properties of our approach in the context of a nonconvex and

nonsmooth objective. When our first-order optimization methods are used with dense-

to-sparse scheduling of regularization parameter, we obtain tree ensembles with better

accuracy and feature-sparsity tradeoffs.

• We introduce a new toolkit: Skinny Trees. We consider 15 synthetic and real-world

datasets, showing that Skinny Treescan lead to superior feature selection and test AUC

compared to popular toolkits. In particular, for 25% feature budget, Skinny Trees outper-

forms LightGBM by 10.2% (up to 37.7%), XGBoost by 3.1% (up to 17.4%), and Random

Forests by 3% (up to 12.5%) in test AUC.

6.2 Related Work

We review some prior work on feature selection as they relate to our work. We group them

into three major categories:

1. Filter methods attempt to remove irrelevant features before model training. These

methods perform feature screening based on statistical measures that quantify feature-

specific relevance scores [13, 43, 69, 208, 238, 239]. These scores consider the marginal

effect of a feature over the joint effect of feature interactions.

2. Wrapper methods [7, 138, 190, 201, 221, 225, 240, 293] use the outcome of a model to

determine the relevance of each feature. Some of these methods require recomputing
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the model for a subset of features and can be computationally expensive. This category

also includes feature selection using feature importance scores of a pre-trained model.

Many tree ensemble toolkits [30, 46, 134, 213] produce feature-importance scores from a

pre-trained ensemble. Lundberg and Lee [174] propose SHAP values as a unified measure

of feature importance. Sharma et al. [232] uses SHAP values to select a subset of features

that can be useful for secondary model performance characteristics e.g., fairness, robustness

etc. Liu et al. [168] propose ControlBurn, which formulates an optimization problem with

a Lasso-type regularizer to perform feature selection on a pre-trained forest.

3. Embedded methods simultaneously learn the model and the relevant subset of relevant

features. Notable among these methods include ℓ0-based procedures [97, 104, 113, 116] and

their variants based on lasso [220, 245, 287] in the linear and additive model settings. Some

distributed and stochastic greedy methods have also been explored for subset selection [see,

for example, 135, and references therein]. Embedded nonlinear feature selection methods

have been explored for neural networks. For example, Chen et al. [47] use an active-set

style algorithm for cardinality-constrained feature selection. Other approaches include the

use of (group) lasso type methods [56, 73, 154, 230], or reparameterizations of ℓ0-penalty

with stochastic gates [173, 274].

We propose an embedded approach that simultaneously performs feature selection and

tree ensemble learning. This joint training approach can be useful for compression, efficient

inference, and/or generalization.

Organization. The rest of the chapter is organized as follows. Section 6.3 presents a

formulation for feature selection in soft tree ensembles. Section 6.4 discusses our optimization

algorithm and its convergence properties. Later, we discuss a scheduling approach that

can result in better accuracy and feature sparsity tradeoffs. Sections 6.5 and 6.6 perform

experiments on a combination of 15 synthetic and real-world datasets to highlight the

usefulness of our proposals.
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6.3 Problem Formulation

Feature selection plays a ubiquitous role in modern statistical regression, especially when the

number of predictors is large relative to the number of observations. We describe the problem

of global feature selection. We assume a data-generating model p(x;y) over a p-dimensional

space, where x ∈ Rp is the covariate and y is the response. The goal is to find the best

function f(x) for predicting y by minimizing:

minf∈F ,Q E[L(y,f(xQ))] (6.3.1)

where Q ⊆ {1, 2, · · · , p} is an unknown (learnable) subset of features of size at most K, f

is a learnable non-parametric function from the function class F , and L : Rp × Rc → R is a

loss function. Recall, in a regression setting c = 1, while in multi-class classification setting

c = C, where C is the number of classes. The principal difficulty in solving (6.3.1) lies in

the joint optimization of (f,Q)—the number of subsets Q grows exponentially with p. In

addition, the family of functions F needs to be sufficiently flexible (here, F is the class of

soft tree ensembles with fixed ensemble size m and depth d).

In the context of tree ensembles, our goal for global feature selection is to select a small

subset of features across all the trees in the ensemble. More specifically, we consider the

framework with response y and prediction f(x;W ,O), where the function f is parameterized

by learnable hyperplane parameters W ∈ Rp,m,|I| across all the split nodes and learnable leaf

parameters O across all trees. Note that m is the number of trees in the ensemble and |I|

represents the number of (split) nodes in each tree. This parameterization of soft trees points

to a group structure in W , where the whole slice Wk,:,: in the tensor formulation has to

be zero to maintain feature sparsity both across all split nodes in each tree and across the

trees in the ensemble — see Fig. 6.3.1. This is a natural feature-wise non-overlapping group

structure and allows adaptation of the grouped selection problem in linear models [24, 104]
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to soft tree ensembles.

Mixed Integer Problem (MIP) Formulation. Let us consider the tensor W . Using

binary variables to model feature selection we obtain a regularized loss function:

min
W,O,z

Ê[L(y,f(x;W ,O)] + λ0
∑
k∈[p]

zk, (6.3.2)

s.t. ||Wk,:,:||(1− zk) = 0, zk ∈ {0, 1} k ∈ [p],

where, the binary variable zk controls whether the k-th feature is on or off via the constraint

||Wk,:,:||(1 − zk) = 0. Ê[L(y,f(x;W ,O))] := (1/N)
∑

n∈[N ] L(yn,f(xn;W ,O)) is the

empirical loss; and λ0 is regularization strength. Note MIP formulations [21] can also be

Figure 6.3.1: Illustration of Skinny Trees. Each horizontal slice Wk,:,: depicts a single
feature. White slices indicate features filtered out by the ensemble while training. Each
vertical slice (along the depth of the page), W :,:,j = Wj corresponds to parameters in j-th
(splitting) supernode (blue circles) in the ensemble, eventually producing the routing decisions.
The red squares depict leaf nodes. S(·) denotes an activation function, which can be Sigmoid
[131] or Smooth-Step [96].
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setup with classical trees under feature selection, but they would be difficult to scale beyond

small problems.

Unconstrained formulation of Problem (6.3.2). For computation we consider a

penalized version of (6.3.2) involving variables (W ,O) with the grouped ℓ0 (pseudo) norm

encouraging feature sparsity. We perform end-to-end training via first-order methods (see

Sec. 6.4 for details). It has been observed in the linear model setting that a vanilla (group)

ℓ0 penalty may result in overfitting [104]. A possible way to ameliorate this problem is to

include an additional ridge regularization for shrinkage [104, 113, 182]. We consider the

following group ℓ0 − ℓ2 regularized problem:

minW,O Ê[L(y,f(x;W ,O))] (6.3.3)

+ λ0
∑

k∈[p]
1[Wk,:,: ̸= 0] + (λ2/m|I|)||W ||22

where 1[·] is the indicator function, λ0 ≥ 0 controls the number of features selected, and

λ2 ≥ 0 controls the amount of shrinkage of each group. We normalize λ2 by the product

m|I| for convenience in hyperparameter tuning.

6.4 End-to-end Optimization Approach

We propose a fast approximate algorithm to obtain high-quality solutions to Problem (6.3.3).

We use a proximal (mini-batch) gradient-based algorithm [149] that involves two operations.

A vanilla mini-batch GD step is applied to all model parameters followed by a proximal

operator applied to the hyperplane parameters W . This sequence of operations on top of

backpropagation makes the procedure simple to implement in popular ML frameworks e.g.

Tensorflow [1], and contributes to overall efficiency.
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6.4.1 Proximal mini-batch gradient descent

We first present the proximal mini-batch GD algorithm for solving Problem (6.3.3) in

Algorithm 1. We also discuss computation of the Prox operator in line 7 of Algorithm 1.

Prox finds the global minimum of the optimization problem:

W (t) = argminW (1/2η)||W −Z(t)||22

+ λ0
∑

k∈[p]
1[Wk,:,: ̸= 0] (6.4.1)

where Z(t) = W (t−1) − η∇Wh. Problem 6.4.1 decomposes across features and a solution for

the k-th feature can be found by a hard-thresholding operator given by:

Hηλ0(Z
(t)
k,:,:) = Z(t)

k,:,: ⊙ 1
[
||Z(t)

k,:,:|| ≥
√

2ηλ0

]
. (6.4.2)

We use feature-wise separability for faster computation. The cost of Prox is of the order

O(v), where v is the total number of hyperplane parameters being updated (i.e. v = pm|I|).

This cost is negligible compared to the computation of the gradients with respect to the same

parameters. We implement the optimizer in standard deep learning APIs.

To our knowledge, our proposed approach (and algorithm) for group ℓ0-based nonlinear

Algorithm 1 Proximal Mini-batch Gradient Descent for Optimizing (6.3.3).
Input: Data: X, Y ;
Input: Hyperparameters: λ0, λ2, epochs, batch-size, learning rate (η);
1: Initialize ensemble with m trees of depth d (|I| = 2d − 1): W ,O
2: for epoch = 1, 2, . . . , epochs do
3: for batch = 1, . . . , N/batch-size do
4: Randomly sample a batch: Xbatch,Ybatch

5: Compute gradient of loss h w.r.t. O, W.
6: Update leaves: O ← O − η∇Oh
7: Update hyperplanes: W ← Prox(W − η∇Wh, η, λ0))
8: end for
9: end for

where h = Ê[L(Ybatch,Fbatch] + (λ2/m|I|)||W ||22
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feature selection in soft tree ensembles is novel. Note that Chen et al. [47] considers group ℓ0

based cardinality constrained formulation for feature selection in neural networks. However,

their active-set style approach is very different from our iterative-hard-thresholding based

approach. Their toolkit also appears to be up to 900× slower than our toolkit. In the context

of neural network pruning, modifications of iterative-hard-thresholding based approaches

[129, 209] have appeared for individual weight pruning in neural networks which is different

from feature-selection.

6.4.2 Convergence Analysis of Algorithm 1

We analyze the convergence properties of Algorithm 1 in [118]. For simplicity, we assume

that the outcomes are scalar, i.e. c = 1 and consider the least squares loss. We also analyze

the full-batch algorithm, i.e., we assume batch-size = N . Theorem 1 in Ibrahim et al. [118]

shows that Algorithm 1 is a convergent (descent) method for a suitably selected learning rate.

Here, we note that Problem (6.3.3) is non-convex and non-smooth. Moreover, the activation

function and therefore Ê[L(y,f(x;W ,O))] are not twice differentiable everywhere. These

lead to technical challenges in proof, given in Appendix in Ibrahim et al. [118].

6.4.3 Dense-to-Sparse Learning (DSL)

Prior work in feature selection [154] recommend an interesting multi-stage approach: Train

a dense model completely and then learn a progessively sparser model. At each sparsity

level, the model is trained till convergence. This approach appears to effectively leverage

favorable generalization properties of the dense solution and preserves them after drifting

into sparse local minima [154]—in particular, this seems to perform better than sparsely

training from scratch. However, this approach can be expensive as it requires learning a

dense model completely before starting the sparse-training process—the training runtime is

likely to increase for higher sparsity settings (i.e., fewer number of features).

To reduce the computational cost of the above approach, we propose single-stage approach
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Lung Madelon

Figure 6.4.1: Trajectory of validation loss and feature sparsity during training with dense-to-
sparse learning.

based on dense-to-sparse learning (DSL). To this end, we anneal the sparsity-inducing penalty

λ0 from small to large values (0→ γ) during the course of training. We use an exponential

annealing scheduler of the form: λ0 = γ(1 − exp(−s ∗ t)), where γ is the largest value of

regularization penalty (corresponds to a fully sparse soft tree), s controls the rate of increase

of the regularization penalty and t denotes the iteration step.

We show the trajectory of the validation loss and the number of features selected during

training with dense-to-sparse learning in Figure 6.4.1. We empirically observed this scheduler

to result in better out-of-sample accuracy and feature-sparsity tradeoffs (see Figure 6.6.1 in

Sec. 6.6.5).

6.5 Synthetic Experiments

We first evaluate our proposed method using data with correlated features. In real-world,

high-dimensional datasets, features are often correlated. Such correlations pose challenges

for feature selection. Existing tree ensemble toolkits, e.g., XGBoost and Random Forests,

based on feature importance scores, may produce misleading results [291]—any of the
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Random Forests XGBoost Skinny Trees (ours)
N=100 N=100 N=100

N=200 N=200 N=200

N=1000 N=1000 N=1000

Figure 6.5.1: Features selected by Random Forests, XGBoost and Skinny Trees for different
sample sizes

Table 6.5.1: Test MSE, feature sparsity and support recovery metrics (F1-score) for a linear
setting with correlated design matrix. Skinny Trees outperforms feature-importance-based
methods across all metrics.

σ p N Model Test MSE #features F1-score

0.7 512

100
RF 6.49 ± 0.19 79 ± 17 0.21 ± 0.02
XGBoost 8.65 ± 0.27 32 ± 9 0.18 ± 0.03
Skinny Trees 0.65 ± 0.12 12 ± 1 0.86 ± 0.04

200
RF 4.90 ± 0.15 40 ± 8 0.35 ± 0.03
XGBoost 5.97 ± 0.12 110 ± 21 0.18 ± 0.02
Skinny Trees 0.34 ± 0.00 11 ± 1 0.89 ± 0.03

1000
RF 2.97 ± 0.03 11 ± 1 0.84 ± 0.02
XGBoost 1.81 ± 0.02 24 ± 1 0.50 ± 0.02
Skinny Trees 0.26 ± 0.00 8 ± 0 1.00 ± 0.00

0.5 256

100
RF 6.24 ± 0.13 42 ± 11 0.35 ± 0.03
XGBoost 7.93 ± 0.27 35 ± 10 0.25 ± 0.02
Skinny Trees 0.45 ± 0.06 10 ± 1 0.89 ± 0.03

200
RF 4.40 ± 0.13 18 ± 3 0.61 ± 0.04
XGBoost 5.61 ± 0.13 67 ± 12 0.26 ± 0.02
Skinny Trees 0.31 ± 0.00 12 ± 1 0.87 ± 0.04

1000
RF 2.90 ± 0.02 9 ± 0 0.94 ± 0.01
XGBoost 1.45 ± 0.01 10 ± 0 0.91 ± 0.01
Skinny Trees 0.26 ± 0.00 8 ± 0 1.00 ± 0.00

correlated features can work as a splitting variable, and the feature importance scores can get

distributed (and hence deflated) among the correlated features. Below, we consider a setting

with correlated features and demonstrate the strong performance of Skinny Trees in terms

of true support recovery on synthetic data.
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We evaluate our approach in a setting where the underlying data comes from a sparse linear

model. We generate the data matrix, X ∈ RN×p with samples drawn from a multivariate

normal distribution N (0,Σ) where entries of the covariance matrix Σ are given by Σij = σ|i−j|.

We construct the response variable y = Xβ∗ + ϵ where ϵi, i ∈ [N ] are drawn independently

from N (0, 0.5). The locations of nonzero entries of β∗ are equi-spaced in [p], with each

nonzero entry one, and ∥β∗∥0 = 8. We experiment with a range of training set sizes

N ∈ {100, 200, 1000}, correlation strengths σ ∈ {0.5, 0.7}, and number of total features

p ∈ {256, 512}. We evaluate the final performance averaged across 25 runs in terms of (i) test

MSE, (ii) number of features selected and (iii) support recovery (computed via the F1-score

between the true and recovered support). More details are in Appendix Sec. 6.8.1.

Skinny Trees significantly outperforms both Random Forests and XGBoost in all three

measures across various settings. With Skinny Trees, we observe a 5-15 fold improvement

in MSE performance and 9%− 65% improvement in the support recovery metric (F1-score).

Table 6.5.1 shows that even if the features are correlated, Skinny Trees successfully recovers

the true support with high probability. We also visualize this in Figure 6.5.1. Indices

corresponding to those in the true support are depicted in red. This confirms the usefulness

of our end-to-end feature selection approach.

6.6 Real Data Experiments

We study the performance of Skinny Trees on real-world datasets and compare against

popular competing methods. We make the following comparisons: (i) Single Skinny Tree vs

other single tree baseline approaches with a limit on number of features, (ii) Skinny Trees vs

dense soft trees, (iii) Skinny Trees vs wrapper-based feature selection tree toolkits, (iv)

Skinny Trees vs neural network based embedded feature selection toolkits, (v) Ablation

study for dense-to-sparse learning for feature selection.
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Implementation. Skinny Trees are implemented in TensorFlow Keras. Our code for

Skinny Trees is available at https://github.com/mazumder-lab/SkinnyTrees.

Datasets. We use 14 open-source classification datasets (binary and multiclass) from

various domains with a range of number of features: 20 − 100000. Dataset details are in

Table 6.8.2 in Appendix.

Tuning, Toolkits, and Details. For all the experiments, we tune the hyperparameters

using Optuna [5] with random search. The number of selected features affects the AUC.

Therefore, to treat all the methods in a fair manner, we tune the hyperparameter that controls

the sparsity level using Optuna which optimizes the AUC across different K’s (budget on

number of selected features) e.g., 0.25p or 0.50p on a held-out validation set. Details are in

the Appendix.

6.6.1 Studying a single tree

We first study feature selection for a single tree on 4 classification tasks. We study the

performance of Skinny Tree (a single soft tree with group ℓ0 − ℓ2 regularization).

Competing Methods. We compare against:

1. Decision tree with hyperplane splits (TAO [37]) using ℓ1 regularization for node-level

feature selection.

2. Soft Tree with a Group Lasso [230, 282] regularization given by λ1√
m|I|

∑
k∈[p] ∥Wk,:,:∥2.

Results. The numbers for classical-tree based TAO with ℓ1 regularization and soft tree

with Group Lasso regularization are shown in Table 6.6.1 for 50% sparsity budget. Results

for Skinny Tree are also shown. We see a huge gain in test AUC performance across all 4

datasets with Skinny Tree in comparison with TAO and group lasso variant of a soft tree.
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Table 6.6.1: Test AUC for TAO with ℓ1 regularization, single soft tree with Group Lasso and
Skinny Tree (a single soft tree with Group ℓ0 − ℓ2).

Classical Tree Soft Tree w/ Skinny Tree
TAO Group Lasso

Churn 58.36 76.23 89.35±0.15
Satimage 58.53 83.89 88.66±0.05
Texture 58.90 93.83 98.42±0.01
Mice-protein 57.13 87.88 99.19±0.00

This confirms that in the context of feature selection at the ensemble level, a node-level ℓ1

penalty is sub-optimal. Similarly, it also suggests that joint selection and shrinkage using

Group Lasso can be less useful than Group ℓ0 − ℓ2.

6.6.2 Skinny Trees vs Dense Soft Trees

In this section, we compare our sparse trees with dense soft trees. For dense soft trees, we

use FASTEL [115] (an efficient state-of-the-art toolkit for training soft tree ensembles). We

present test AUC performances in Table 6.6.2. Skinny Trees matches or outperforms dense

soft trees in 10 datasets. Notably, we observe a 30% gain in test AUC on Madelon dataset

with Skinny Trees. We also observe 11% improvements in test AUC on Cll and Gli datasets.

Additionally, sparse trees achieve 1.3×−620× feature compression on 10 datasets. Note that

Table 6.6.2: Test AUC for Skinny Trees vs dense Soft Trees. We also report feature
compression.

Dense Trees Skinny Trees Compression
Churn 91.15±0.09 93.20±0.08 1.8×
Gisette 99.81±0.003 99.81±0.002 1.5×
Arcene 89.57±0.11 90.80±0.30 2×
Dorothea 90.67±0.03 92.15±0.25 2.7×
Madelon 65.32±0.15 95.44±0.05 26×
Smk 84.10±0.16 79.29±0.22 253×
Cll 81.70±0.82 92.86±0.31 189×
Gli 88.65±0.90 99.80±0.07 619×
Lung 99.40±0.09 99.80±0.03 253×
Tox 99.19±0.04 99.74±0.02 189×
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Table 6.6.3: Test AUC (%) performance of Skinny Trees and feature-importance-based
toolkits for trees for 25% feature budget (K = 0.25p). Bold and italics indicates best and
runner-up models respectively.

Case Dataset Random Forests XGBoost LightGBM CatBoost Skinny Trees

N < p

Lung 93.80±0.28 86.38±0.48 80.83±1.87 94.72±0.56 99.80±0.03
Tox 94.52±0.14 97.10±0.09 95.94±0.54 95.95±0.14 99.74±0.02
Arcene 74.80±0.36 76.36±0.16 76.92±0.36 76.64±0.22 80.80±0.30
Cll 94.08±0.27 94.21±0.18 55.17±1.14 94.41±0.26 92.86±0.31
Smk 77.78±0.20 76.88±0.40 67.29±0.91 78.44±0.41 79.29±0.22
Gli 87.35±1.08 82.37±1.47 71.28±2.05 91.31±0.73 99.80±0.07
Dorothea 89.71±0.12 89.09±0.09 88.14±0.18 88.50±0.27 90.87±0.02

N > p

Churn 83.79±0.24 88.68±0.06 86.33±0.08 83.73±0.06 91.38±0.08
Satimage 97.62±0.005 98.23±0.01 94.00±0.05 95.11±0.05 98.05±0.01
Texture 99.60±0.003 99.94±0.001 96.14±0.03 94.90±0.07 99.97±0.002
Mice-protein 99.30±0.01 99.77±0.01 89.59±0.22 95.03±0.07 99.59±0.02
Isolet 99.17±0.002 99.86±0.002 97.62±0.003 99.89±0.001 99.94±0.01
Madelon 94.11±0.02 94.65±0.01 86.46±0.08 96.41±0.01 94.14±0.09
Gisette 98.99±0.004 99.64±0.004 98.09±0.50 99.57±0.01 99.81±0.002
Average 91.75 91.65 84.56 91.76 94.72

in soft trees, feature compression has a direct impact on model compression—this has reduced

storage requirements and results in faster inference. We observed up to 10× faster inference

times for Skinny Trees compared to dense soft trees for compression rates of 1.5×−620×.

6.6.3 Skinny Trees vs Classical Trees

We compare Skinny Trees against wrapper methods for feature selection as available from

ensembles of classical trees (e.g., Random Forests, XGBoost, LightGBM, and CatBoost)

on real-world datasets. For Skinny Trees, we use the combined dense-to-sparse scheduler.

The tuning protocol and hyperparameters for all methods are reported in the Appendix Sec.

6.8.2.3. The results are in Table 6.6.3. Skinny Trees leads on 10 datasets. In contrast, other

methods lead on 2 datasets. In terms of test AUC, Skinny Trees outperforms LightGBM by

10.2% (up to 37.7%), XGBoost by 3.1% (upto 17.4%), Random Forests by 3% (up to 12.5%)

and CatBoost by 3% (up to 8.5%). Overall, Skinny Trees provides a strong alternative to

existing wrapper-based methods.

Additional comparison with ControlBurn [168] is included in Appendix Sec. 6.8.2.6.
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Table 6.6.4: Test AUC (%) performance of Skinny Trees and embedded feature selection
methods from neural networks (LassoNet, AlgNet, DFS) for 25% feature budget.

Case Dataset LassoNet AlgNet DFS Skinny Trees

N < p

Lung 99.56±0.02 56.72±1.34 98.05±0.36 99.80±0.03
Tox 99.63±0.03 51.01±0.70 99.13±0.24 99.74±0.02
Arcene 66.26±0.29 51.00±1.77 69.37±0.59 80.80±0.30
Cll 95.04±0.24 64.96±2.54 92.85±0.32 92.86±0.31
Smk 85.56±0.31 53.92±2.16 79.62±0.29 79.29±0.22
Gli 97.78±0.56 61.37±4.27 92.25±0.64 99.80±0.07
Dorothea out of mem. 81.74±0.91 85.18* 90.87±0.02

N > p

Churn 67.34±1.58 70.10±0.91 85.70±0.52 91.38±0.08
Satimage 94.73±0.19 95.30±0.20 97.39±0.04 98.05±0.01
Texture 98.02±0.40 76.24±1.94 99.63±0.04 99.97±0.002
Mice-protein 94.90±0.26 89.07±0.59 99.04±0.03 99.59±0.02
Isolet 99.64±0.01 70.21±2.92 99.92±0.00 99.94±0.01
Madelon 81.15±2.53 68.55±1.42 92.73±0.45 94.14±0.09
Gisette 99.81±0.002 73.49±1.54 99.72∗ 99.81±0.002
Average 90.43** 68.83 92.18 94.72

∗DFS is very time-consuming to run, we report the test AUC for best trial (based on
validation AUC) during tuning on Gisette and Dorothea.
∗∗Adjusted Average: 90.72

(94.72∗14−90.87)/13
∗ 94.72 = 90.43.

Skinny Trees also outperforms ControlBurn, achieving 2% (up to 6%) improvement in AUC.

6.6.4 Skinny Trees vs Neural Networks

In this chapter, we pursue embedded feature selection methods for tree ensembles. However,

for completeness, we compare Skinny Trees against some state-of-the-art embedded feature

selection methods from neural networks, namely LassoNet [154], AlgNet [56] and DFS [47].

Details are in Appendix Sec. 6.8.2.4.

Results. We report AUC performance for 25% feature budget in Table 6.6.4. Skinny

Trees leads across many datasets. In terms of test AUC, Skinny Trees outperforms LassoNet

by 4.3% (up to 24%), AlgNet by 25.9% (up to 49%), and DFS by 2.6% (up to 11.4%).
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6.6.5 Dense-to-Sparse Learning

We perform an ablation study in which we compare the predictive performance achieved

with dense-to-sparse learning (DSL) over a range of feature selection budgets. Tuning details

are in the Appendix Sec. 6.8.2.5. The results are reported in Figure 6.6.1. Interestingly, we

improve in test AUC across a range of feature selection budgets with dense-to-sparse learning

over fixed regularization tuning.

6.6.6 Discussion on training times.

Skinny Trees is very competitive in terms of training times in comparison to existing toolkits.

We compared timings on a single Tesla V100 GPU. For example, on dorothea dataset, Skinny

Trees trained in under 3 minutes for optimal hyperparameter setting. XGBoost took 10

minutes. In contrast, DFS took 45 hours.

6.7 Conclusion

We introduce an end-to-end optimization approach for joint feature selection and tree ensemble

learning. Our approach is based on differentiable trees with group ℓ0 − ℓ2 regularization.

We use a simple but effective proximal mini-batch gradient descent algorithm and present

Smk Dorothea

Figure 6.6.1: Performance without/with Dense-to-sparse learning for different feature selection
budgets.
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convergence guarantees. We propose a dense-to-sparse regularization scheduling approach that

can lead to better feature-sparsity-vs-accuracy tradeoffs. We demonstrate on various datasets

that our toolkit Skinny Trees can improve feature selection over several state-of-the-art

wrapper-based feature selection methods in trees and embedded feature selection methods in

neural networks.

6.8 Appendix

Notation. Table 6.8.1 lists the notation used throughout the chapter.
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Table 6.8.1: List of notation used.

Notation Space or Type Explanation
[n] Set The set of integers {1, 2, ...., n}.
1m Rm Vector with all coordinates equal to 1.
U Rm,n Matrix with elements ((Uij))

u · v R A dot product between two vectors u,v.
U · v Rn A dot product between a matrix U ∈ Rm,n and a vector v ∈ Rm is

denoted as U · v = UTv ∈ Rn.
X Rp Input feature space.
Y Rc Output (label) space.
m Z>0 Number of trees in Skinny Trees.

f(x) Function The output of Skinny Trees, a function that takes an input sample
and returns a logit which corresponds to the average of the output of
all the trees in the ensemble. Formally, f : X → Rc.

f j(x) Function A single perfect binary tree which takes an input sample and returns
a logit, i.e., f j : X → Rc.

d Z>0 The depth of tree f j.
Ij Set The set of internal (split) nodes in f j.
I Set The set of internal (split) supernodes in f .
Lj Set The set of leaf nodes in f j.
A(i) Set The set of ancestors of node i.
{x→ i} Event The event that sample x ∈ Rp reaches node i.

wi Rp Weight vector of internal node i (trainable). Defines the hyperplane
split used in sample routing.

Wi Rp,m Matrix of all weights in the internal supernode i of the ensemble in the
tensor-formulation.

W Rp,m,|I| Tensor of all weights across all internal supernodes in the ensemble.
Wk,:,: Rm,|I| Matrix of all weights for k-th feature/covariate across all internal

supernodes in the ensemble.
S Function Activation function R→ [0, 1]

S(wi · x) [0, 1] Probability (proportion) that internal node i routes x to the left.
S ′(v) Function The derivative of S(v)
[l↙ i] Event The event that leaf l belongs to the left subtree of node i ∈ I.
[l↘ i] Event The event that leaf l belongs to the right subtree of node i ∈ I.
ol Rc Leaf l’s weight vector (trainable).
Ol Rm,c Matrix of weights in superleaf l.
O Rm,c,|L| Tensor of weights across the superleaves in the ensemble.
L Function Loss function for training (e.g., cross-entropy).
Q Set Unknown (learnable) subset of features of size at most K.
zk {0, 1} Binary variable controls whether k-th feature is on or off in Problem

(2).
z {0, 1}p Binary vector controlling which features are on or off in Problem (2).
λ0 R≥0 Non-negative ℓ0 regularization parameter controlling the number of

features selected in Problem (3)
λ2 R≥0 Non-negative ℓ2 regularization parameter controlling the shrinkage in

Problem (3)
λ1 R≥0 Non-negative ℓ0 regularization parameter controlling the number of

features selected and shrinkage in Problem (6.8.1)
γ R≥0 Non-negative scaling parameter for the exponential ramp-up of ℓ0-

penalty in dense-to-sparse learning.
s R≥0 Non-negative temperature parameter for controlling the ramping rate

of the ℓ0-penalty in dense-to-sparse learning.
η R≥0 Learning rate parameter for proximal mini-batch gradient descent.
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6.8.1 Experimental Details for section 6.5

Data Design. We generate the data matrix, X ∈ RN×p with samples randomly drawn

from a multivariate normal distribution N (0,Σ) with a correlated design matrix Σ whose

values are defined by Σij = σ|i−j|. We construct the response variable y = Xβ∗ + ϵ where

the values of the noise ϵi, i = [N ] are drawn independently from N (0, 0.5). We use a known

sparsity β∗ with equi-spaced nonzeros, where ∥β∗∥0 = 8.

Simulation Procedure. We experiment with a range of training set sizesN ∈ {100, 200, 1000},

correlation strengths σ ∈ {0.5, 0.7}, and number of total features p ∈ {256, 512}. For each

setting, we run 25 simulations with randomly generated samples. We evaluate on 10, 000

test samples drawn from the data generating model described above. Out of N samples, we

allocate 80% for training and 20% for validation for model selection. For each simulation, we

perform 500 tuning trials (hyperparameters are given below) and select the model with the

smallest validation mean squared error (MSE). We evaluate the final performance in terms of

(i) test MSE, (ii) number of features selected and (iii) support recovery via f1-score between

the true support and the recovered feature set. We compute averages and standard errors

across the 25 simulations to report final results.

Skinny Trees with DSL.

• Number of trees: Discrete uniform with range [1, 50],

• Depths: Discrete uniform with range [1, 5],

• Batch sizes: 16b with b uniform over the range {1, 2, . . . , 8},

• Number of Epochs: Discrete uniform with range [5, 500],

• λ0: exponentially ramped up 0→ 100 with temperature distributed as Log uniform in the

range [10−4, 0.1] for group ℓ0 − ℓ2 with DSL,

• λ2: Log uniform over the range [10−2, 102] for group ℓ0 − ℓ2,

• Learning rates, lr: Log uniform over the range [10−3, 10−1].
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XGBoost, Random Forests.

• Number of trees: Discrete uniform with range [1, 100] for XGBoost and Random Forests,

• Depths: Discrete uniform with range [1, 10] for XGBoost and Random Forests,

• Learning rates: Discrete uniform with range [10−4, 1.0] for XGBoost,

• Feature importance threshold: Log uniform over the range [10−7, 10−1] for XGBoost and

Random Forests.

• Subsample: Uniform over the range [0.5, 1.0].

6.8.2 Experimental Details for section 6.6

6.8.2.1 Datasets, Computing Setup and Tuning Setup

Table 6.8.2: Classification datasets

Dataset N p C
Churn 5,000 20 2
Satimage 6,435 36 6
Texture 5,500 40 11
Mice-protein 1,080 77 8
Isolet 7,797 617 26
Madelon 2,600 500 2
Lung 203 3,312 5
Gisette 7,000 5,000 2
Tox 171 5,748 4
Arcene 200 10,000 2
CLL 111 11,340 3
SMK 187 19,993 2
GLI 85 22,283 2
Dorothea 1,150 100,000 2

Datasets. We consider 5 classification datasets from the Penn Machine Learning Bench-

marks (PMLB) repository [200]. These are Churn, Satimage, Mice-protein, Isolet and

Texture; Mice-protein and Isolet were used in prior feature selection literature [154]. We

used fetch_openml in Sklearn to download the full datasets. We used 4 datasets from
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NIPS2003 feature selection challenge [83]. These are Arcene, Madelon, Gisette, Dorothea.

We used 5 datasets (Smk, Cll, Gli, Lung, Tox) from the feature selection datasets given in

this repo2. The datasets contain continuous, categorical and binary features. The metadata

was used to identify the type of features and categorical features were one-hot encoded. For

first non-NIPS2003 datasets, we randomly split each of the dataset into 64% training, 16%

validation and 20% testing sets. For the datasets from NIPS2003, we split the training set

into 80% training and 20% validation and treated the original validation set as the test set.

The labels for original test set were unavailable, hence we discarded the original test set.

The continuous features in all datasets were z-normalized based on training set statistics. A

summary of the 14 datasets considered is in Table 6.8.2.

Computing Setup. We used a cluster running Ubuntu 7.5.0 and equipped with Intel Xeon

Platinum 8260 CPUs and Nvidia Volta V100 GPUs. For all experiments of Sec. 6.5 and

6.6, each job involving Skinny Trees, Random Forests, XGBoost, LightGBM, CatBoost

and neural networks were restricted to 4 cores and 64GB of RAM. Jobs involving Skinny

Trees and neural networks on larger datasets (Gisette, Dorothea) were run on Tesla V100

GPUs.

Tuning. The tuning was done in parallel over the competing models and datasets. The

number of selected features affects the AUC. Therefore, to treat all the methods in a fair

manner, we tune the hyperparameter that controls the sparsity level using Optuna [5] which

optimizes the overall AUC across different Ks. A list of all the tuning parameters and their

distributions is given for every experiment below.

6.8.2.2 Experimental Details for Sec. 6.6.1

Classical tree: TAO Implementation. Given that the authors of TAO do not open-

source their implementation, we have written our own implementation of the TAO algorithm
2https://jundongl.github.io/scikit-feature/datasets.html
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proposed by [37], following the procedure outlined in Sec. 3.1 of [288]. For TAO, we use

oblique (i.e. hyperplane splits) decision trees with constant leaves. We take as an initial tree

a complete binary tree with random parameters at each node. We perform TAO updates

until maximum number of iterations are reached (i.e. there is no other stopping criterion).

TAO uses an ℓ1-regularized logistic regression to solve the decision node optimization (using

LIBLINEAR [71]) where λ ≥ 0 parameter (controlling node-level sparsity of the tree) is used

as a regularization parameter (C = 1/λ). We tune depth in the range [1, 10], λ ∈ [10−5, 105]

and number of maximum iterations in the range [20, 100]. We perform 500 tuning trials. We

find the optimal trial that satisfies 50% sparsity budget.

Soft tree with group lasso. We compare group ℓ0-based method with a competitive

benchmark: the convex group lasso regulurizer, popularly used in high-dimensional statis-

tics literature [282]. We consider group-lasso regularization in the context of soft trees:

(λ1/
√
m|I|)

∑
k∈[p] ∥Wk,:,:∥2 . Although group lasso has not been used in soft trees, it has

been used for feature selection in neural networks [230]. However, their proposal to use GD

on a group ℓ1 regularized objective does not lead to feature selection as highlighted by [154].

For a fairer comparison, we implement our own proximal mini-batch GD method for group

lasso in the context of soft trees, which actually leads to feature selection.

We consider the following optimization problem with group-lasso regularization in the

context of soft trees:

minW,O Ê[L(y,f(x;W ,O)] + (λ1/
√
m|I|)

∑
k∈[p]
∥Wk,:,:∥2 . (6.8.1)

where λ1 is a non-negative regularization parameter that controls both shrinkage and sparsity.

We solve it with the algorithm presented in Alg. 2.
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Algorithm 2 Proximal Mini-batch Gradient Descent for Optimizing (6.8.1).
Input: Data: X, Y ; Hyperparameters: λ1, epochs, batch-size (b), learning rate (η);
1: Initialize ensemble with m trees of depth d (|I| = 2d − 1): W ,O
2: for epoch = 1, 2, . . . , epochs do
3: for batch = 1, . . . , N/b do
4: Randomly sample a batch: Xbatch,Ybatch

5: Compute gradient of loss g w.r.t. O, W, where g = Ê[L(Ybatch,Fbatch].
6: Update leaves: O ← O − η∇Og
7: Update hyperplanes: W ← S-Prox(W − η∇Wg, η, λ1))
8: end for
9: end for

S-Prox in Algorithm 2 finds the global minimum of an optimization problem of the form:

W (t) = argminW
1

2η

∥∥∥W −Z(t)
∥∥∥2
2
+

λ1√
m|I|

p∑
k=1

∥Wk,:,:∥2 (6.8.2)

where Z(t) = W (t−1) − η∇Wg and g = Ê[L(Ybatch,Fbatch]. This leads to a feature-wise

soft-thresholding operator given by:

S ηλ1√
m|I|

(Z(t)
k,:,:) =


Z(t)

k,:,: −
ηλ1√
m|I|

Z(t)
k,:,:∥∥∥Z(t)
k,:,:

∥∥∥ if
∥∥∥Z(t)

k,:,:

∥∥∥ ≥ ηλ1√
m|I|

0 otherwise
(6.8.3)

In these experiments, we used a single tree and mini-batch PGD without any dense-to-

sparse scheduler for both models i.e, (i) Soft tree with group lasso (ii) Skinny Tree. We

tune the key hyperparameters, which are given below.

• Batch sizes: 64 ∗ b with b uniform over the range {1, 2, . . . , 64},

• Learning rates for mini-batch PGD: Log uniform over the range [10−2, 10],

• Number of Epochs: Discrete uniform with range [5, 1000],

• λ0: Log uniform over the range [10−3, 10] for group ℓ0 − ℓ2 for Skinny Tree,

• λ2: Log uniform over the range [10−2, 102] for group ℓ0 − ℓ2 for Skinny Tree,

• λ1: Log uniform over the range [10−3, 10] for group lasso.
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6.8.2.3 Tuning Details for Sec. 6.6.2 and 6.6.3

We describe the tuning grid for these experiments below.

Skinny Trees.

• Number of trees: Discrete uniform with range [1, 100],

• Depths: Discrete uniform with range [1, 5],

• Batch sizes: Uniform over the set {16, 64, 256, 1024},

• Number of Epochs: Discrete uniform over the range [5, 1000] (Note tuning over epochs

is important to achieve some trials with desired sparsity for dense-to-sparse learning, we

do not use any validation loss early stopping as that is less robust during averages across

runs/seeds in terms of feature support.),

• λ0: exponentially ramped up 0→ 1 with temperature distributed as Log uniform in the

range [10−4, 1] for group ℓ0 − ℓ2 with DSL,

• λ2: Log uniform over the range [10−3, 1] for group ℓ0 − ℓ2,

• Learning rate (lr) for minibatch PGD: Log uniform over the range [10−2, 10].

XGBoost, LightGBM, CatBoost, Random Forests.

• Number of trees: Discrete uniform with range [1, 300] for XGBoost, LightGBM, CatBoost

and Random Forests,

• Depths: Discrete uniform with range [1, 10] for XGBoost, LightGBM, CatBoost and

Random Forests,

• Learning rates: Discrete uniform with range [10−4, 1.0] for XGBoost, LightGBM and

CatBoost,

• Feature importance threshold: Log uniform over the range [10−7, 10−1] for XGBoost,

LightGBM, CatBoost and Random Forests,

• Subsample: Uniform over the range [0.5, 0.9] for XGBoost, LightGBM, CatBoost and

Random Forests.
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• Bagging Frequency: Uniform over the set {1, · · · , 7} for LightGBM.

FASTEL (Dense soft trees).

• Number of trees: Discrete uniform with range [1, 100],

• Depths: Discrete uniform with range [1, 5],

• Batch sizes: Uniform over the set {16, 64, 256, 1024},

• Number of Epochs: Discrete uniform over the range [5, 1000],

• Learning rates (lr) for minibatch SGD: Log uniform over the range [10−2, 10].

6.8.2.4 Experimental Details for Sec. 6.6.4

In this chapter, we pursue embedded feature selection methods for tree ensembles. However,

for completeness, we also compare Skinny Trees against some state-of-the-art embedded

feature selection methods from neural networks.

Competing Methods. We compare against the following baselines.

1. LassoNet [154] is based on a ResNet-like [105] architecture with residual connections.

Feature selection is done using hierarchical group lasso.

2. AlgNet [56] is based on adaptive lasso and uses proximal full-batch gradient descent for

feature selection in a tanh-activated feedforward network.

3. DFS [47] solves cardinality constrained feature selection problem with an active-set

style method.

We describe the tuning details for these neural network models below. We perform 2000

tuning trials for each method. For DFS, we capped number of trials completed in total

200 GPU hours. DFS is really slow for even medium sized datasets (in terms of feature

dimensions).
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LassoNet [154].

• ResNet architecture with 2-layered relu-activated feedforward network with (linear) skip

connections.

• Number of hidden units: Discrete uniform in the set {p
3
, 2
3
p, p, 4

3
p},

• Batch sizes: Discrete uniform in the set {64, 128, 256, 512},

• λ: Log uniform over the range [1, 10000].

• Tuning protocol: 1000 for dense training stage and 1000 for each successive sparse training

stages with early stopping with a patience of 25. We consider 100 sequential stages (100

values for λ).

AlgNet [56].

• Tanh-activated 4-layered feedforward neural network with number of hidden units chosen

uniformly from a discrete set {p
3
, 2
3
p, p, 4

3
p},

• Learning rates (lr) for proximal GD: Log uniform over the range [0.01, 1].

• λ: Log uniform over the range [0.1, 1000].

• Number of Epochs: Discrete uniform with range [5, 2000],

DFS [47].

• ReLU-activated 4-layered feedforward neural network with number of hidden units chosen

uniformly from a discrete set {p
3
, 2
3
p, p, 4

3
p},

• Learning rates (lr) for Adam: Log uniform over the range [0.001, 0.1].

• Weight decay: 0.0025 for feature selection layer and 0.005 for remaining layers.

• k: Number of features selected in the range [1, 0.5p].

• Number of Epochs: 500 with early stopping.

6.8.2.5 Tuning Details for Sec. 6.6.5

We perform 2000 tuning trials for each method.
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Skinny Trees.

• Number of trees: Discrete uniform with range [1, 100],

• Depths: Discrete uniform with range [1, 5],

• Batch sizes: Uniform over the set {16, 64, 256, 1024},

• Number of Epochs: Discrete uniform with range [5, 1000],

• λ0 (without Dense-to-sparse learning): Log uniform in the range [1, 104] for group ℓ0 − ℓ2,

• λ0 (with Dense-to-sparse learning): exponentially ramped up 0→ 1 with temperature s

distributed as Log uniform in the range [10−4, 1] for group ℓ0 − ℓ2 with DSL,

• λ2: Log uniform over the range [10−3, 1] for group ℓ0 − ℓ2,

• Learning rates (lr): Log uniform over the range [10−2, 10].

Table 6.8.3: Comparison of test AUC (%) performance of Skinny Trees against ControlBurn
for 25% feature selection budget on binary classification tasks.

Dataset ControlBurn Skinny Trees
Churn 85.66±0.25 91.38±0.08
Madelon 94.23±0.08 94.14±0.09
Gisette 99.36±0.01 99.81±0.002
Arcene 77.89±0.32 80.80±0.30
Smk 79.94±0.32 79.29±0.22
Gli 98.62±0.16 99.80±0.07
Dorothea 84.85±0.28 90.87±0.02
Average 88.65 90.87

6.8.2.6 Comparison with ControlBurn

We also compare against ControlBurn [168] on binary classification tasks. ControlBurn does

not support multiclass classification. ControlBurn is another post-training feature selection

method, which formulates an optimization problem with group-lasso regularizer to perform

feature selection on a pre-trained forest. It relies on a commercial solver to optimize their

formulation. We report the results for 25% feature selection budget in Table 6.8.3. We can

observe that Skinny Trees outperforms ControlBurn across many datasets, achieving 2%

(up to 6%) improvement in AUC.
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We note the hyperparameter tuning for ControlBurn below:

• Method: bagboost,

• Depths: Discrete uniform with range [1, 10],

• α: Log uniform over the range [10−7, 1.0].

6.8.3 Measuring Statistical Significance

We follow the following procedure to test the significance of all models. For all models, we

tune over hyperparameters for 2000 trials. We select the optimal trial (within the desired

feature sparsity budget) based on validation set. Next, we train each model for 100 repetitions

with the optimal hyperparameters and report the mean results on test set along with the

standard errors.
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Chapter 7

Sparse Mixture of Experts: A Cardinality

Constrained Routing Approach with

Trees and Local Search

7.1 Introduction

The Sparse Mixture of Experts (Sparse-MoE) framework has led to state-of-the-art perfor-

mance in various applications such as natural language processing (NLP) [8, 60, 72, 233, 295],

vision [227, 268], time-series analysis [121], multi-task learning [101, 140, 176], and multimodal

learning [194]. Sparse-MoE consists of a set of trainable experts (neural networks) and a

trainable sparse gate. The sparse gate in Sparse-MoE selects an appropriate subset of experts

on a per-sample basis, which allows for faster computation [233] and enhances interpretability

[72, 121].

The literature on Sparse-MoE has traditionally focused on Top-k gating, which selects k

out of m experts using a Top-k operation [72, 233, 295]. Top-k gating is simple and efficient

because it allows sparse training. However, as highlighted by prior literature [72, 101, 295],

the non-continuous nature of Top-k makes it susceptible to stability and convergence issues.

175



Alternative gating strategies exist in the literature, based on reinforcement learning [16]

or post-processing via linear assignment [50, 158]. However, these strategies also face

challenges in terms of efficiency and interpretability; see related work in Section 7.2 for more

details. Random routing strategies [224, 297] alternatively bypass learning of the gating

function altogether. Although computationally efficient, these strategies lead to performance

degradation [50]. Recent work [101] demonstrates that differentiable gating in Sparse-MoE

can improve stability and performance compared to popular non-differentiable gates. However,

it suffers from expert collapse in some cases as we observed in our experiments.

In this chapter and the next, we propose three new approaches for improving routing in

Sparse-MoE. These methods are designed to improve conditional computation at inference

time and/or training time. First, we introduce a novel differentiable sparse gate COMET 1 that

improves over existing state-of-the-art sparse gates [72, 101, 224, 233, 295]. Second, we argue

that the combinatorial nature of expert selection in Sparse-MoE presents a serious challenge

for first-order methods. In particular, the performance of these methods is highly dependent

on initialization, and they can get stuck in low-quality routing solutions. Thus, we propose

a new permutation-based local search method for Sparse-MoEs, which can help first-order

methods escape low-quality initializations or solutions. Our local search approach is general

and can be applied to any sparse gate, including Top-k [233], Hash routing [224], DSelect-

k [101], and our proposed gate COMET. The above two methods allow sparse inference.

However, these methods can only partially support conditional training with customized

implementations. Hence, we consider an alternative sampling-based gate, discussed in detail

in the next chapter, that can lead to purely sparse training as well as sparse inference.

COMET. Our proposed COMET gate is the first decision-tree-based selection mechanism

for sparse expert selection — decision trees naturally perform per-sample routing (i.e., each

sample follows a root-to-leaf path). Our gate has several advantages: (i) it is differentiable

and can be optimized using first-order optimization methods e.g., stochastic gradient descent;
1COMET : This stands for Cardinality cOnstrained Mixture of Experts with Trees.
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(ii) it allows (partially) conditional training, i.e., dense-to-sparse training; (iii) it enforces a

cardinality constraint, i.e., selects (at most) k out of the n experts at inference time; (iv) it

has superior predictive performance over state-of-the-art gates such as Hash routing, Top-k,

and DSelect-k.

Local Search. The learning problem underlying Sparse-MoEs is of combinatorial nature,

which poses additional challenges compared to non-MoE machine learning models. Popularly

used optimization methods, such as SGD, may lead to low-quality solutions in Sparse-MoE,

as we demonstrate in our numerical experiments in Section 7.5. To this end, we propose

a permutation-based local search method, which can help first-order methods escape bad

initializations and lead to better sample routing for any sparse gate e.g., Top-k, Hash routing,

DSelect-k and even COMET. To the best of our knowledge, we are the first to explore local

search methods in the context of Sparse-MoE. We provide empirical evidence through ablation

studies and large-scale experiments to demonstrate that permutation-based local search (i)

pushes learning towards better gate/expert initializations in early optimization stages (see

Section 7.4.4); (ii) effectively reduces the budget needed for hyperparameter tuning by up to

100× for some popular gates e.g., Hash Routing and Top-k (see Section 7.5.1.3); (iii) leads to

SOTA performance in terms of prediction and expert selection when combined with COMET,

across various applications (see Section 7.5).

Contributions. As discussed earlier, it is well-known in the literature that popular sparse

gates are challenging to train and may suffer from stability and performance issues. In this

context, our contributions can be summarized as follows:

• We propose COMET, a novel tree-based sparse gate that simultaneously has the following

desirable properties: (a) differentiable, (b) allows (partially) conditional training i.e., dense-

to-sparse training, and sparse inference, (c) satisfies per-sample cardinality constraint

(selects at most k out of the m experts per-sample, where k is a user-specified parameter).

• Popular first-order methods used to optimize Sparse-MoEs are heavily influenced by expert
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and gate initializations, and may get stuck in low-quality solutions. Hence, we introduce a

novel permutation-based local search method that can complement first-order methods by

helping them escape bad initializations or solutions. Our local search method is general

and can be applied to any gate, e.g., Hash routing, Top-k, and COMET.

• We perform extensive experiments on recommender systems, vision and natural language

processing tasks to highlight that COMET and permutation-based local search can give

boosts in predictive performance and reduce hyperparameter tuning.

7.2 Related work

Sparse-Mixture-of-Expert. The MoE framework was introduced by [123], and since

then has been extensively studied — see e.g., [122, 128, 130]. More recently, [233] proposed a

Sparse-MoE framework, based on the Top-k gate, and showed good performance on natural

language processing tasks. It was further improved upon by [72, 290, 295]. However, Top-k

gate does not optimize the core expert selection problem as pointed out by [50]. Additionally,

as highlighted by prior literature [72, 101, 295], the non-continuous nature of Top-k makes it

vulnerable to training stability and convergence issues.

With BASE Layers, [50, 158] formulate Sparse-MoE as an assignment problem where

they post-process the gate output for balanced expert selection. [16] formulates the expert

selection as a reinforcement learning problem. Others [224, 297] proposed random routing

strategies that do not learn the gating function during training. These methods are also

promising as they have been shown to outperform models that learn routing through Top-k,

e.g., in Switch Transformers [72]. Lastly, [101] introduced DSelect-k, a differentiable gate

based on binary encodings, which improves over Top-k in terms of stability and statistical

performance.

Conditional Computation. In addition to the Sparse-MoE framework, there are other

related works that also study conditional computation, i.e., the setup where only some parts
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of neural network are activated based on the input — see e.g., [16, 17, 119, 258]. These works

rely on heuristics where the training and inference models are different. More recently, [100]

introduced conditional computation in differentiable (a.k.a. soft) trees [79, 100, 109, 115, 120,

123]. Their proposal allows routing samples through small parts of the tree; thus allowing for

conditional computation with customized algorithms. Our work builds upon this approach to

solve the cardinality-constrained expert selection problem in Sparse-MoE. Note that [100]

does not address sparse expert selection in Sparse-MoE.

Local Search and Permutation Learning. There is an extensive optimization literature

on local search, e.g., [14, 99]. However, such methods have not been used in Sparse-MoE.

Here, we survey permutation learning methods that are most relevant to our proposal. This

work uses differentiable relaxations of permutation via Sinkhorn operators [2, 186]. These

earlier works use these relaxations in other contexts e.g., ranking in [2] and sorting in [186].

We use permutation learning as a local search to complement first-order optimization methods

to improve sample routing in Sparse-MoE.

7.3 Learning Sparse Mixture of Experts with decision

trees

Problem Setup of Sparse-MoE. We first review the Sparse-MoE objective. We assume

that the task has an input space X ⊆ Rp and an output space Y ⊆ Ru. Denote the m-

dimensional simplex by ∆m = {w ∈ Rm :
∑

i∈[m]wi = 1, w ≥ 0}. In the MoE framework,

the prediction function has two components: (i) a set of m experts (parametrized by neural

networks) fi : X → Ru for any i ∈ [m] := {1, 2, . . . ,m}, and (ii) a gate g : X → ∆m that

outputs weights in the probability simplex. Given a sample x ∈ X , the corresponding output

of the MoE is a convex combination of the experts with weights g(x):
∑

i∈[m] fi(x)g(x)i.

The goal of Sparse-MoE paradigm is to develop a gate that selects a convex combination
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of at most k out of the m experts. The output of the gate can be thought of as a probability

vector g with at most k nonzero entries, where g(·)i is the weight assigned to the expert fi.

The underlying optimization problem (also in [101]) is:

min
f1,··· ,fm,g

1

N

∑
(x,y)∈D

ℓ

(
y,
∑

i∈[m]

fi(x)g(x)i

)
, (7.3.1a)

s.t. ∥g(x)∥0 ≤ k, g(x) ∈ ∆m, ∀x ∈ X . (7.3.1b)

∥g(·)∥0 denotes the number of nonzero entries in the vector g(·), ℓ(·, ·) is the associated loss

function such that ℓ : Y ×X → R, and N denotes the size of training samples D = {(xi, yi) ∈

X × Y}Ni=1.

The cardinality constraint in (7.3.1b) ensures that the gate selects at most k experts.

Some popular gates e.g., Top-k impose exact cardinality constraint instead of an inequality

constraint in (7.3.1b). However, the inequality constraint can allow for sparser expert selection

as observed in prior work [101] and in our experiments (Section 7.5). Problem (7.3.1) is a

combinatorial optimization problem that is not amenable to stochastic gradient descent due

to the cardinality constraint in (7.3.1b). In the next sections, we discuss our formulation

that ensures the cardinality constraint and the simplex constraints are satisfied despite

optimization with gradient-based methods.

The rest of this section is organized as follows. In Section 7.3.1, we discuss a high-level

overview of our novel tree-based framework, which equivalently sets up the cardinality-

constrained objective in problem (7.3.1) as a weighted sum of decision trees. Next in Section

7.3.2, we provide background on a single decision tree that selects a single expert per-sample

while (i) allowing for smooth optimization, and (ii) conditional computation support — routing

samples to a single leaf. Later in Section 7.3.3, we dive deeper into our novel tree-based

framework that combines such trees to satisfy the cardinality constraint for k ≥ 1 without

violating the simplex constraint. We additionally highlight important aspects regarding leaf

parameterization and regularization. Next, in Section 7.3.4, we discuss how our method
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handles settings where experts are non-powers of 2. We then discuss in Section 7.3.5 an

implementation of COMET for numerically stable training.

7.3.1 Sparse-MoE with k decision trees

The cardinality constrained MoE objective (7.3.1) can be formulated equivalently using a

set of decision trees. Classical decision trees are naturally suited to route each sample to a

single leaf with a chain of hierarchical decisions. In the case of k = 1, we propose a single

decision tree to route samples, where each leaf node is associated with an expert. In cases

where k > 1, we instantiate k different decision trees and combine their output in a way that

enforces the cardinality and simplex constraints in (7.3.1b).

Given that classical decision trees are not amenable to differentiable training with first-

order methods, we use a variant [100] of differentiable (a.k.a. soft) decision trees [100, 109,

115, 123, 139]. We build upon this work to solve the cardinality-constrained problem (7.3.1).

We first provide a summary of a single soft tree (with conditional computation support) in

Section 7.3.2. This serves as a building block for selecting a single expert per-sample.

7.3.2 Preliminaries: Differential Decision Tree with Conditional

Computation

In this section, we provide a brief summary of a variant [100] of a differentiable (a.k.a. soft)

tree [109, 120, 123, 130, 139], which we use to enable single-expert selection in Sparse-MoEs.

We extend it in the next section to solve the cardinality constrained problem for a general

case k ≥ 1.

Differentiable decision trees are similar to classical decision trees with hyperplane splits

[193]. However, they route each sample to left and right with different proportions, i.e., each

sample reaches all leaves. Traditionally, differentiable decision trees have been unamenable

to conditional computation as they cannot route a sample exclusively to the left or to the
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Figure 7.3.1: COMET for 8 experts. Note zq(wq · x) denotes the binary state {0, 1} for
h(wq · x) achieved due to Smooth-step activation function and entropic regularization.

right. Recent work [100] introduced a variant of the differentiable tree model that supports

conditional computation. Here, we discuss a brief summary of this variant.

We denote a single tree by v : X → ∆m, which maps an input sample x ∈ X to a

probability vector v over ∆m. Here, m corresponds to the number of root-to-leaf paths (also

equal to number of experts in the MoE paradigm). Let v be a binary tree with depth d —

note our framework can naturally support cases where number of experts is non-powers of

2, see Section 7.3.4 for more details. Let I and L denote sets of the internal (split) nodes

and the leaves of the tree, respectively. For any node q ∈ I ∪ L, we define T (q) as its set of

ancestors. Let {x→ q} denote that a sample x ∈ Rp reaches q.

Sample Routing. Following prior work [100, 109, 139], we will discuss sample routing

using a probabilistic model. While sample routing is discussed using probability, differentiable

trees are deterministic. Differentiable trees are based on hyperplane splits [193], where a

linear combination of the features is used in making routing decisions. In particular, we
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assign a trainable weight vector wq ∈ Rp with each internal node, which parameterizes the

node’s hyperplane split. Let h : R→ [0, 1] be an activation function. Given a sample x ∈ Rp,

the probability that internal node q routes x to the left is defined by h(wq · x).

Now we summarize how to model the probability that x reaches a certain leaf l [100]. Let

[l
�
q] (resp. [q � l]) denote the event that leaf l belongs to the left (resp. right) subtree

of node q ∈ I. The probability that x reaches l is given by: Pr({x → l}) =
∏

q∈T (l) rq,l(x),

where rq,l(x) is the probability of node q routing x towards the subtree containing leaf l, i.e.,

rq,l(x) := h(wq · x)1[l
�
q](1− h(wq · x))1[q

� l]. Note that the vector v(x) given by

v(x) = [Pr({x→ l1}), · · · ,Pr({x→ lm})] ∈ ∆m, (7.3.2)

defines a per-sample distribution over the m leaves (or experts).

Next, we discuss how the split probabilities {h(wq · x), 1− h(wq · x)} can achieve binary

state with a particular choice of activation function h — this is crucial for achieving sparse

expert selection (and conditional computation) in the Sparse-MoE paradigm.

Smooth-Step Activation Function. The common choice for activation function h in

soft tree literature is a logistic function[79, 109, 130, 139]. However, it can not perform hard

routing i.e., output exact zeros. This implies that any sample x will reach every node in

the tree with a positive probability, leading to a dense v. Thus, computing the output of

mixture of experts will require computation over every expert. [100] proposed a Smooth-step

activation function for a variant of soft trees. Despite being continuously differentiable,

Smooth-step activation function (also given in 2.9) can produce a sparse v (after an initial

warm-up period of soft routing) for hard routing. The Smooth-step activation function can

output exact zeros and ones per-sample, thus allowing for conditional computation. This is

crucial for a sparse expert selection per-sample in Sparse-MoE paradigm. Additionally, this

choice of activation function may allow for (partially) conditional training with customized

sparse backpropagation algorithms in soft trees (as shown in [100]), which is an important
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consideration for training large-scale Sparse-MoE models.

For cardinality-constrained Sparse-MoE learning with trees (not studied in [100]), the

goal for each tree is to perform hard routing for all samples. Therefore, we add additional

regularization on {h(wq · x), 1− h(wq · x)} to encourage convergence of v to a one-hot state

(discussed in more detail in Section 7.3.3).

7.3.3 Cardinality constraint with k trees

Next, we discuss how to achieve the cardinality constraint (k ≥ 1) in Sparse-MoE with

decision trees in the presence of simplex constraint. This key ideas are given as follows:

• We consider k decision trees, where each tree j selects a single expert via v(j)(·) as defined

in (7.3.2).

• With the experts selected as above, we need to decide the relative weights assigned to each

expert. We use auxiliary functions α(j)(·), where α(j)
i is a linear function β

(j)
i · x of the

input. α(j)
i reflects a linear weighting function (in the log space) for i-th expert (or leaf) in

j-th tree.

See Figure 7.3.1 as an example. Next, we define the prediction function for Sparse-MoE with

k decision trees to form COMET.

COMET Prediction with k Out of m Experts. The prediction function for Sparse-MoE

with k ≥ 1 is a weighted sum of the predictions of i-th expert (or leaf) across k trees. To this

end, we define the weight for i-th expert as follows

g(x;α, v)i =

∑
j∈[k]

exp(α
(j)
i (x))v

(j)
i (x)∑

j∈[k]

∑
i∈[m]

exp(α
(j)
i (x))v

(j)
i (x)

, (7.3.3)

where v(j)i (x) is the probability that a sample x will reach expert fi in the j-th tree. Using

(7.3.3), the prediction function for Sparse-MoE with k ≥ 1 is given by ŷ =
∑

i∈[m] fi(x)g(x;α, v)i.

We present the following proposition (proof in Appendix 7.7.1):
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Proposition 7.3.1. For any α, if v(j) outputs a binary vector for every j, the function

g(x;α, v) satisfies the cardinality and simplex constraints in (7.3.1b).

Accelerating Convergence of v(j) to One-Hot Encoding with Entropic Regu-

larization. In the Sparse-MoE setup, the goal is to achieve a one-hot vector state for

v(j) quickly — this ensures the cardinality constraint (i.e., to select at most k experts)

is respected by the k trees. To encourage faster convergence towards a one-hot vector,

we add a per-tree per-sample entropy regularizer, λΩ(v(j)(x)) to the loss objective, where

Ω(v(j)(x)) = −
∑

i∈[m] v
(j)
i (x) log(v

(j)
i (x)). Entropy regularizers are used in [101, 186] to get

binary representations.

Dense-to-Sparse Learning. COMET can support conditional training only partially with

customized implementations. At the start of training, it uses all the available experts as v(j)

is completely dense, so conditional training is not possible. As training proceeds, v(j) becomes

sparser due to Smooth-step function and entropic regularization, eventually achieving binary

state. From this stage onwards, the gate satisfies the cardinality constraint per-sample, i.e,

each sample gets routed to at most k experts. Hence, sparse training can proceed to refine

the solution quality. Empirically, we observe that a small number of epochs are sufficient for

the optimizer to reach the sparse training phase.

7.3.4 Non-powers of 2

Typically, in Sparse-MoE, each expert is assigned to a separate machine for efficiency [72, 295].

This may mean that the number of experts could be defined by the number of machines —

machines may not necessarily be available in powers of 2. Our gate naturally handles cases

where the number of experts are not chosen to be powers of 2. We propose merging child

nodes at the leaf level. In such instances, we have imperfect binary decision trees (Fig. 7.7.1

in Appendix) with m nodes, with 2d −m nodes in the (d− 1)-th level, and 2m− 2d nodes

in the d-th level. Additional details are in Appendix 7.7.2. In contrast to other differentiable
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gates (e.g., DSelect-k [101]), our proposed gate COMET does not require any additional

regularization to encourage the simplex constraint in (7.3.1b).

7.3.5 Stable numerical implementation

Next, we discuss a stable numerical implementation of COMET gate. COMET introduces

additional exponential functions in the expert weights (or leaf nodes of the decision trees)

— see (7.3.3). More exponential functions are known to cause instabilities in Sparse-MoE

models. For example, [295] introduced router z-loss in Switch Transformers to encourage

smaller logits. However, this may have a performance tradeoff. In our implementation of

COMET, we can mitigate instability issues arising from additional exponential functions

using the following approach: (i) convert root-to-leaf probabilities to the log-space, log v(j)i (x),

(ii) compute α(j)
i + log v

(j)
i (x), (iii) subtract the maximum, i.e., maxi,j(α

(j)
i + log v

(j)
i (x)) from

each element, (iv) apply a two-way softmax operation to get g(x).

7.4 Local search

Expert selection is a challenging combinatorial problem that is known to be NP-hard.

Although first-order heuristics can usually provide fast solutions, they rely heavily on ini-

tialization and are sometimes prone to arriving at low-quality solutions. To this end, we

propose a permutation-based local search method that complements first-order methods in

optimizing Sparse-MoEs. In both large-scale experiments and ablation studies, we see that

the incorporation of local search can improve the performance of any gating method and can

significantly reduce the number of tuning trials.

Our approach derives inspiration from the local search methods commonly used along

with the first-order methods to help escape local minima in sparse linear models[14, 99]. We

note that this is the first attempt in the literature to incorporate local search methods in

the context of Sparse-MoE. Moreover, unlike common local search methods in literature, our
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proposed search method is differentiable. We want to highlight that our local search method

is useful for any existing sparse gate, e.g., Hash routing, Top-k, and our proposed COMET.

We hypothesize that our permutation-based approach can help navigate the optimization

loss surface for various gates.

The rest of the section is organized as follows. In section 7.4.1, we formulate a refined

cardinality-constrained Sparse-MoE objective with additional binary variables to add support

for permutation-based local search. Then, in section 7.4.2, we provide background on permu-

tation and its differentiable relaxation. Next in section 7.4.3, we outline our differentiable

optimization approach for the refined Sparse-MoE objective and some additional practical

considerations for computational efficiency. Later, in Section 7.4.4, we provide an ablation

study to support our hypothesis that the local search can help escape bad initializations.

7.4.1 Permutation-based Local Search

In this section, we formulate a refined objective for the cardinality-constrained Sparse-MoE

objective that adds support for permutation-based local search.

Let us denote by Sm the set of all permutations of the set [m]. Given any permutation

σ ∈ Sm, we permute the m experts accordingly and assign i-th weight g(x)i to σ(i)-th expert

instead of i-th expert. With this permutation, the prediction for Sparse-MoE could be written

as: ŷ =
∑

i∈[m] fσ(i)(x)g(x)i. We note that due to symmetry between experts and weights,

permuting the experts is essentially same as permuting the weights. To see this, we can write∑
i∈[m] fσ(i)(x)g(x)i =

∑
j∈[m] fj(x)g(x)σ−1(j), where σ−1 is the inverse map of σ, which is also

a permutation.

For a permutation σ, we can define a corresponding permutation matrix P σ, by setting

P σ[i, j] = 1{σ(j) = i}, where 1{·} is an indicator function. Then it is easy to see that
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∑
j∈[m] fj(x)g(x)σ−1(j) =

∑
j∈[m] fj(x)(P

σg(x))j. The refined Sparse-MoE problem is

min
f1,··· ,fm,g,P

1

N

∑
(x,y)∈D

ℓ

(
y,
∑

i∈[m]

fi(x)(P g(x))i

)
, (7.4.1a)

s.t. ∥g(x)∥0 ≤ k, g(x) ∈ ∆m, ∀x ∈ X , (7.4.1b)

P ∈ P local
m , (7.4.1c)

where P local
m is a localized set of permutations in the full set of permutations, which we denote

by Pm. For example, one may only allow for P local
m = P2 , which only allows interchanging

(swapping) two columns similar to “swap” operations shown to be useful in the sparse regression

literature [99]. Besides optimizing the gates and experts, formulation (7.4.1) performs local

search by optimizing over the permutation matrix. Specifically, the goal of local search here

is to find a permutation P that leads to a better solution, i.e., one with a lower objective.

Intuitively, if SGD is stuck at a low-quality solution, the permutation may be able to escape

the solution by a better reordering of the experts. Standard local search, e.g., bruteforce

search may be computationally expensive. Therefore, we resort to a differentiable method

that can be optimized efficiently.

7.4.2 Preliminaries: Permutation and a differentiable relaxation

In this section, we briefly summarize how the permutation learning problem is parameterized

and later optimized. To parametrize the permutation matrix in the problem, a natural

consideration is through the linear assignment problem [141]. To illustrate this, consider m

people are to complete m tasks and a matrix U ∈ Rm×m
≥0 , the goal is to assign each task to

one person so as to maximize the utility given that the utility of assigning task j to person i

is Uij. This leads to the following optimization problem

M(U) = argmax
P∈Pm

⟨P ,U⟩F :=
∑

i∈[m]

∑
j∈[m]

PijUij. (7.4.2)
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The operator M here is called the Matching operator, which maps a nonnegative matrix U

to a permutation matrix P .

Problem (7.4.2) is a combinatorial optimization problem, which admits the following

linear relaxation [23]:

max
B∈Bm

⟨P ,U⟩F :=
∑

i∈[m]

∑
j∈[m]

PijUij, (7.4.3)

where Bm denotes the set of double stochastic matrices Bm = {B ∈ Rm×m :
∑

i∈[m]Bij =

1,
∑

j∈[m]Bij = 1, Bij ∈ [0, 1]}, which is a convex hull of the set of permutation matrices Pm.

However, this is still not a differentiable parametrization as problem (7.4.3) might end

up with multiple solutions. To this end, Mena et al. [186] proposes a smooth version2 of the

permutation learning objective in (7.4.3):

S(U/τ) = argmax
B∈Bm

⟨B,U⟩F − τ
∑

i,j∈[m]

Bij logBij, (7.4.4)

and solves it using Sinkhorn operator S(·) [2], defined by the following recursion:

S0(U) = exp(U), (7.4.5a)

Sr(U) = Tcol(Trow(Sr−1(U))), (7.4.5b)

S(U) = lim
r→∞

Sr(U), (7.4.5c)

where Trow(U ) = U ⊘ (U1m1
T
m), and Tcol(U ) = U ⊘ (1m1

T
mU ) are the row and column-wise

normalization operators of a matrix, with ⊘ denoting the element-wise division and 1m a

column vector of ones. The sinkhorn procedure in (7.4.5) allows differentiable training with

first-order methods, making it appealing as a local search method for Sparse-MoE.

As shown in [186], M(U ) can be obtained as limτ→0+ S(U/τ), and thus limτ→0+,r→∞ Sr(U/τ).

In practice, we set a max number of iterations R for normalization in (7.4.5b) as well as a
2Note that (7.4.4) is an entropy-regularized version of (7.4.3). Since the entropy term is strictly concave,

problem (7.4.4) has a unique minimizer and thus the parametrization is differentiable.
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small positive number τ > 0, and use SR(U/τ) to approximate the limit (7.4.5c). In this way,

we are able to parametrize the permutation matrix P in (7.4.1) as a differentiable function

SR(U/τ) of learnable matrix U . However, additional considerations are needed to ensure

that a hard permutation matrix can be achieved quickly in a few epochs — this is important

in Sparse-MoE paradigm for computational reasons and a well-defined measure of sparsity.

We discuss these in the next section.

7.4.3 Practical considerations for optimization

Next, we discuss some empirical considerations for the end-to-end learning approach that are

important for Sparse-MoE.

Need for a hard permutation matrix. We would like to have a hard permutation

matrix at inference time and ideally during the course of training, for exact sparsity and

computational efficiency considerations. First, the gate does not perform sparse inference if

the learnt permutation matrix is not a hard matrix. For example, even if g(·) is sparse, the

refined weights P · g(·) are not a sparse vector if P is not a binary matrix. This would result

in a dense mixture of experts. Second, some sparse gates perform dense-to sparse-training

(partially conditional training), e.g., DSelect-k, COMET, or variants of Top-k [198]. If the

learnt permutation matrix is not hard, then sparse training cannot proceed in the later stages

of optimization. To this end, we employ a two-stage optimization approach: (i) in the first

stage, we simultaneously train the network (experts and gates) and the permutation for

a small number of epochs. (ii) In the second phase, the permutation matrix is fixed and

only the remaining network (experts and gate) is trained. Therefore, local search is only

used in the early stages of training. Empirically, we observe that a small number of epochs

(1 − 10) is sufficient to learn a good permutation in the first stage and improve solution

quality. Since local search is restricted to the first stage, the computational efficiency of gates

that perform dense-to-sparse training is not affected by much — please refer to Appendex
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7.7.3.3 for additional discussion.

In the two-stage approach outlined above, there is a transition from a soft to a hard matrix

between the two stages. As we mentioned earlier, we use SR(U/τ) to approximate M(U)

as a limit of R → ∞, τ → 0+. In practice, the transition could be not continuous, as this

approximation does not always reach a hard permutation matrix given that R is finite and τ

is nonzero. Therefore, at the transition point, we propose to convert the “soft” permutation

matrix SR(U/τ) to a hard one via the linear assignment problem given in (7.4.2), by invoking

U as SR(U/τ). In addition, empirically, small R can lead to numerical instabilities for small

τ [186]. Therefore, to decrease deviance of SR(U/τ) from the closest hard permutation

matrix, we introduce two schedulers on R and τ that increase R for decreased τ : (i) Ramp

up (linearly) R from 20 to 150, (ii) Ramp down (linearly in log-scale) τ from 10−3 to 10−7.

Although the above schedulers decrease the deviance between soft and its closest hard

permutation matrix at the transition point, the method still appears to suffer from pseudo-

convergence. In particular, we observed, some row-columns can converge to fractional entries

i.e., a 2x2 sub-block having all entries with 0.5. Therefore, we introduce small separate

row-wise and column-wise entropic regularizations to mitigate such degenerate cases:

ζ
∑

i∈[m](Ω(SR(U/τ)i) + Ω(Trow(SR(U/τ))i)), where ζ ≥ 0.

Implicit localization. In the spirit of common local search approaches, a potential

optimization approach could alternate between optimization of network (experts and gates)

and permutation matrix. However, this is unnecessary because the differentiable relaxation

of permutation is also amenable to first-order methods. Therefore, our approach jointly

optimizes both the network and the permutation matrix. We noted earlier that the search

space for permutation is “localized” out of the full set of permutation matrices Pm. This

localization is implicitly imposed through the smooth optimization of the permutation matrix

via Sinkhorn. The permutation matrix learning relies on the initialization for U and at each

gradient step the U (t) is naturally expected to not deviate drastically from U (t−1). Since
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the permutation matrix is updated for a limited number of steps in first stage, intuitively it

cannot deviate significantly from the initial permutation matrix. This also defines an implicit

neighborhood.

7.4.4 Ablation study for local search

In this section, we provide an ablation study to provide evidence that the permutation-based

local search can complement first-order optimization methods for routing in Sparse-MoE.

The study highlights that local search can improve solution quality through escape out of bad

initializations in the first stages of optimization for different types of routing strategies: (a)

fixed gates, (b) trainable gates. We perform this study on a subsampled (200k) MovieLens

dataset and use the same MoE architecture with 16 experts as the one described in Appendix.

We trained models for only 10 epochs without/with local search, where in the latter case we

fixed the number of epochs for permutation learning to 5 epochs and ζ = 10−5. We used a

batch size of 512 and learning rate of 2.5× 10−5. We repeat the training with 100 different

random initializations and compute averages along with their standard errors.

Fixed Gates. In fixed gating strategies e.g., random hash routing (Hash-r), the samples

are pre-assigned to experts. For example, in natural language processing tasks, tokens or

words in vocabulary are clustered randomly [224] before training begins into groups and each

group of words are assigned to a random expert in the set of experts. In our experiments on

recommender systems, we randomly pre-assigned samples to experts based on user index for

Hash-r (and Hash-r+). It is possible that the same group of users could be better aligned

with another expert based on expert and user embedding initializations. Permutation-based

local search can potentially find better assignment of each group to a more suited expert.

We provide empirical evidence to demonstrate that local search indeed can find better loss.

We report the average out-of-sample loss achieved by both Hash-r and Hash-r+ in Table

7.4.1. Learning permutation appears to help map each pre-assigned cluster of users to a more
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Table 7.4.1: Test loss (×10−2) achieved for different gates without and with (marked with
+) local search in early stages of optimization. Asterisk(*) indicates statistical significance
(p-value<0.05) over the corresponding gate without permutation with a one-sided unpaired
t-test.

Strategy Smoothness Gate Test Loss ↓

Pre-assigned - Hash-r 57.434± 0.025
Hash-r+ ∗57.000± 0.037

Trainable
Non-differentiable Top-k 53.345± 0.033

Top-k+ ∗53.140± 0.031

Differentiable COMET 52.034± 0.007
COMET+ ∗52.017± 0.005

suitable expert based on expert initialization for second stage of optimization.

Trainable Gates. For trainable gates, we also study the effect of local search on non-

differentiable (Top-k) and differentiable gates (COMET ). We fixed k = 2 for both types of

gates and followed the same training protocol for 10 epochs. For COMET (and COMET+),

we fixed γ = 0.01 (for Smooth-step) and λ = 1 (for entropic regularization). For Top-k+and

COMET+, we fixed the number of epochs for permutation learning as 5. We repeated this

exercise for 100 different random initializations of the experts and gates. We report the

average out-of-sample objective achieved by both types of gates in Table 7.4.1. We can

observe that local search appears to complement first-order optimization methods by learning

better initializations in the first stage of Sparse-MoE optimization for later learning.

The practical significance of local search achieving a better test objective across many

initializations for various gates can be seen in terms of reducing hyperparameter tuning

overhead as discussed in Section 7.5.1.3.

7.5 Experiments

We study the performance of COMET and COMET+ in recommender systems and image

datasets in Section 7.5.1 and COMET-BERT in natural language processing tasks in 7.5.2.

We also study the effect of local search for various gates. We denote our methods in italics.
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Appendix contains more details.

7.5.1 Experiments on Recommender Systems and Image Datasets

We study the performance of COMET and COMET+ in recommender systems and image

datasets. We compare with state-of-the-art gates and baselines including Softmax, Top-k,

DSelect-k and Hash routing (Hash-r) on recommender systems (MovieLens [88], Jester[82],

Books [294]) and image datasets (Digits [53, 197], MultiMNIST [228], MultiFashionMNIST

[101], CelebA[170]). We also include an ablation study in Section 7.5.1.2 that shows that

COMET achieves good performance with much less trials than existing popular gates e.g.,

Hash routing and Top-k. Additionally, in Section 7.5.1.3, we show that Hash-r+,Top-k+, and

COMET+ with local search can potentially achieve good performance with much less trials

than Hash-r, Top-k and COMET respectively.

Implementation. We provide an open-source implementation of COMET and COMET+:

https://github.com/mazumder-lab/COMET.

Experimental Setup. Although our exposition in Section 7.3 was for a single-task setting,

the same gate can also be used in multi-task learning — multi-task requires multi-gate

MoE architecture [176], where each task has a separate trainable gate, but tasks have to

select from a common set of experts. We briefly summarize the key aspects for each dataset.

For MovieLens/Books/Jester we have two tasks: classification task predicts whether user

watches/read/rates a particular movie/book/joke, regression problem predicts user’s rating.

Loss is the convex combination of the two binary cross-entropy (for classification) and mean

squared error (for regression) with task weights: {α, 1− α}. We separately present results

for two different α’s: α ∈ {0.1, 0.9}. For MultiMNIST/MultiFashionMNIST, there are two

multi-class classification tasks, which are equally weighted. For CelebA, there are 10 binary

classification problems, which are equally weighted. Lastly, for Digits dataset, we have a
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Table 7.5.1: Tess Loss (×10−2) and actual no. of experts per sample (ka) at inference
for COMET, COMET+ and benchmark gates across various recommender system datasets.
Asterisk(*) indicates statistical significance (p-value<0.05) over the best existing gate, using
a one-sided unpaired t-test.

Dataset m Model Test Loss ↓ ka ↓

Books
(α = 0.1) 9

Softmax 244.47± 0.14 9.00± 0.00
Hash-r 247.43± 0.14 1.00± 0.00
Hash-r+ 247.33± 0.23 1.00± 0.00
Top-k 247.87± 0.17 4.00± 0.00
Top-k+ 247.88± 0.14 4.00± 0.00
DSelect-k 246.43± 0.36 1.09± 0.00
COMET ∗240.79± 0.14 2.81± 0.11
COMET+ 240.82± 0.19 3.03± 0.08

Books
(α = 0.9) 9

Softmax 73.88± 0.02 9.00± 0.00
Hash-r 75.02± 0.03 1.00± 0.00
Hash-r+ 75.06± 0.03 1.00± 0.00
Top-k 74.78± 0.03 4.00± 0.00
Top-k+ 74.86± 0.03 4.00± 0.00
DSelect-k 75.98± 0.13 1.07± 0.00
COMET 73.62± 0.03 2.94± 0.10
COMET+ ∗73.55± 0.02 3.15± 0.08

MovieLens
(α = 0.9) 16

Softmax 42.26± 0.01 16.00± 0.00
Hash-r 46.91± 0.02 1.00± 0.00
Hash-r+ 46.84± 0.03 1.00± 0.00
Top-k 41.83± 0.02 2.00± 0.00
Top-k+ 41.74± 0.02 2.00± 0.00
DSelect-k 40.82± 0.02 1.94± 0.06
COMET 40.76± 0.02 1.76± 0.06
COMET+ ∗40.69± 0.02 1.66± 0.06

MovieLens
(α = 0.1) 16

Softmax 75.52± 0.02 16.00± 0.00
Hash-r 79.41± 0.02 1.00± 0.00
Hash-r+ 78.92± 0.05 1.00± 0.00
Top-k 76.52± 0.04 2.00± 0.00
Top-k+ 75.12± 0.04 2.00± 0.00
DSelect-k 73.91± 0.05 1.94± 0.03
COMET 73.91± 0.04 1.94± 0.03
COMET+ ∗73.67± 0.04 1.98± 0.03

Jester
(α = 0.1) 16

Softmax 68.17± 0.03 16.00± 0.00
Hash-r 67.47± 0.01 1.00± 0.00
Top-k 68.38± 0.05 2.00± 0.00
Top-k+ 68.00± 0.07 2.00± 0.00
DSelect-k 67.06± 0.03 1.96± 0.02
COMET 67.12± 0.04 1.98± 0.02
COMET+ ∗66.91± 0.03 2.00± 0.00

Jester
(α = 0.9) 16

Softmax 21.936± 0.002 16.00± 0.00
Hash-r 22.083± 0.004 1.00± 0.00
Top-k 21.958± 0.007 2.00± 0.00
Top-k+ 21.961± 0.006 2.00± 0.00
DSelect-k 21.930± 0.005 2.00± 0.00
COMET 21.946± 0.005 2.00± 0.00
COMET+ ∗21.906± 0.005 2.00± 0.00

multi-class single-task classification cross-entropy objective. Full details about datasets and

MoE architectures are in Appendix.
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We used Adam for optimization, and we tuned the key hyperparameters using random

grid search. Note that for Hash-r+, COMET+ and Top-k+, we only allocate a very small

portion of the epochs (1-10) for permutation learning. Full details about the hyperparameter

tuning are given in Appendix.

7.5.1.1 Performance of COMET and COMET+

In Tables 7.5.1 and 7.5.2, we report the (average) test loss and the average number of selected

experts per sample across multiple recommender and vision datasets. The results indicate

that COMET and COMET+ lead on many datasets, outperforming popular state-of-the-art

gating methods e.g., Hash-r, Top-k and DSelect-k in test loss. Our proposed gate COMET can

outperform standard routing techniques (without local search). Even without local search,

Table 7.5.2: Tess Loss (×10−2) and actual no. of experts per sample (ka) at inference for
COMET, COMET+ and benchmark gates across various image datasets. Asterisk(*) indicates
statistical significance (p-value<0.05) over the best existing gate, using a one-sided unpaired
t-test.

Dataset m Model Test Loss ↓ ka ↓

MultiFashionMNIST 5

Softmax 34.21± 0.09 5.00± 0.00
Top-k 33.82± 0.09 2.00± 0.00
Top-k+ ∗33.62± 0.08 2.00± 0.00
DSelect-k 35.49± 0.10 1.00± 0.00
COMET 33.70± 0.09 1.49± 0.07
COMET+ ∗33.67± 0.09 1.54± 0.07

CelebA 6

Softmax 35.10± 0.32 6.00± 0.00
Top-k 34.48± 0.24 2.00± 0.00
Top-k+ 34.54± 0.23 2.00± 0.00
DSelect-k 35.39± 0.12 1.00± 0.00
COMET 33.96± 0.15 1.00± 0.08
COMET+ ∗33.93± 0.16 1.00± 0.08

Digits 8

Softmax 17.48± 0.07 8.00± 0.00
Top-k 17.46± 0.09 2.00± 0.00
Top-k+ 17.29± 0.08 2.00± 0.00
DSelect-k 17.18± 0.06 1.15± 0.06
COMET 17.19± 0.06 1.07± 0.04
COMET+ 17.08± 0.09 1.06± 0.04

MultiMNIST 16

Softmax 6.88± 0.06 16.00± 0.00
Top-k 6.84± 0.05 4.00± 0.00
Top-k+ 6.70± 0.08 4.00± 0.00
DSelect-k 6.64± 0.07 3.40± 0.09
COMET 6.48± 0.07 3.49± 0.09
COMET+ 6.49± 0.06 3.53± 0.08
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COMET is getting relatively good solutions. We hypothesize that the good performance of

COMET is due to a combination of factors including differentiability, and k-decision trees

formulation. With local search, COMET+ can sometimes further enhance solution quality.

We also provide task-specific metrics (AUC/Accuracy/MSE) in Tables 7.7.3 in Appendix

7.7.4. We observe COMET+ can improve AUC by up to 13% over Hash routing and Top-k,

and 9% over DSelect-k. We observe that Top-k gate does not uniformly outperform the

Softmax across multiple datasets. However, Top-k+ significantly improves the performance

of Top-k across multiple datasets. In fact with the permutation module, Top-k+ outperforms

Softmax in all cases, so sparsity in gating seems to be beneficial on all these datasets.

Inference Sparsity. We see that COMET and COMET+ can sometimes lead to a smaller

number of experts selected than that for Top-k. This leads to smaller number of FLOPs at

inference time (see Appendix 7.7.3.2). For some settings, DSelect-k appears to arrive at a

sparser selection than COMET+; however, in these cases, DSelect-k loses significantly in

terms of performance. We observed expert collapsing in DSelect-k in such cases.

Timing Discussion. For cost complexity of COMET, please see Appendix 7.7.3.1. Addi-

tionally, we discuss the computational aspects of the local search in Appendix 7.7.3.3.

7.5.1.2 Reducing Hyperparameter Search with COMET

Here, we study how our differentiable COMET gate (that performs dense-to-sparse training)

can be beneficial in terms of hyperparameter tuning over popular gates such as Hash routing

and Top-k. We perform a large set of tuning trials and perform a bootstrapping procedure

(discussed in Appendix 7.7.5) to see whether COMET helps in reducing the hyperparameter

tuning overload. COMET can achieve the same level of performance as popular gates with

much lesser number of hyperparameter trials. This indicates that COMET is not too heavily

dependent on a very restricted set of hyperparameter values. We visualize this for various

datasets in Fig. 7.5.1. We see tuning reduction by a factor of 5×−100× for COMET over
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popular gates.

7.5.1.3 Effect of Local Search on Hyperparameter Tuning

Here, we study how local search can be beneficial in terms of hyperparameter tuning. We

study this effect for Hash-r, Top-k and COMET. We visualize this in Fig. 7.5.2 for MovieLens

for both Hash-r+, Top-k+and COMET+. We observe that we can achieve comparable

performance with much smaller number of trials. We see tuning reduction by a factor of

3×−100× for Hash-r+, 20×−100× for Top-k+ and 2×−5× for COMET+. This suggests

that permutation-based local search helps escape out of bad initializations. Such favorable

Books Jester

Digits MovieLens

Figure 7.5.1: Sensitivity of COMET to hyperparameter tuning. COMET can achieve the
same level of performance as popular gates (e.g., Hash-r and Top-k) with significantly lesser
number of hyperparameter trials. We see tuning reduction by 5×−100× for COMET over
Top-k and Hash routing.
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properties of local search in terms of reducing the hyperparameter tuning load for existing

gates can be beneficial for Large Language Models.

MovieLens (α = 0.1) MovieLens (α = 0.9)

Figure 7.5.2: Effect of local search on hyperparameter tuning. Comparison of Hash-r+ vs
Hash-r, Top-k+ vs Top-k and COMET+ vs COMET on MovieLens with two different task
weight settings. Local search appears to achieve the same level of performance with much
lesser number of hyperparameter trials. We see tuning reduction by a factor of 3×−100× for
Hash-r+, 20×−100× for Top-k+ and 2×−5× for COMET+.
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7.5.2 Experiments on NLP Tasks

In this section, we consider a setting where a pretrained large model (non-MoE based)

needs to be distilled for a more efficient inference while preserving or improving the best

performance. Following [298], we study a distillation setting, where BERT [54] is distilled

into its Sparse-MoE based variant. Specifically, the FFN layers are replaced with MoE layers

— this can result in a ∼2× smaller number of (effective) parameters with per-sample sparse

routing (for k = 1), thus allowing for more efficient inference.

Following [298], we use an importance-weight guided distillation strategy: (i) Finetune

BERT on a downstream task. (ii) Compute importance weights in FFN layers to construct an

MoE-based variant of BERT. (iii) Distill BERT into MoE-based variant on the downstream

task with a layer-wise discrepancy loss. [298] used Hash routing in their MoEBERT model.

We propose COMET-BERT (MoE based BERT model with COMET/ COMET+ gating)

and evaluate the performance on the GLUE benchmarks [257] and SQuAD benchmark [219].

More details about the benchmarks are given in Appendix.

Implementation. We implemented COMET-BERT in HuggingFace [263] and adapted

the codebase of [298]. Unlike Hash routing, our gates can also cater to k ≥ 1. However,

for consistent comparison in terms of inference, we set k = 1. Tuning details are outlined

in Appendix. Code for COMET-BERT is available at https://github.com/mazumder-lab/

COMET-BERT.

Results. We report the performance metrics in Table 7.5.3 for 7 GLUE datasets and SQuAD

dataset. COMET-BERT outperforms MoEBERT in 5/7 benchmarks on GLUE datasets.

COMET-BERT also outperform MoEBERT significantly on SQuADv2.0. Notably, in 5 of

these datasets (CoLA, MRPC, QNLI and MNLI, SQuAD v2.0), COMET-BERT achieves

SOTA performance when distilling BERT, (when compared with all distillation methods in

literature with same number of effective parameters for inference).
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Table 7.5.3: Performance metrics on the GLUE and SQuAD development sets. Models
are trained without data augmentation. Both models have 66M (effective) parameters for
inference.

GLUE SQuAD
RTE
Acc

CoLA
Mcc

MRPC
F1

SST-2
Acc

QNLI
Acc

QQP
F1/Acc

MNLI
m/mm

v2.0
F1/EM

MOEBERT3 70.8 55.4 91.0 93.2 90.9 88.5/91.4 84.7 76.8/73.6
COMET-BERT 71.1 57.0 91.3 93.0 91.2 88.4/91.3 85.5 78.4/75.3

7.6 Conclusion

In summary, we propose two new approaches for improving routing in Sparse-MoE. First, we

introduce a new differentiable gate COMET, which relies on a novel tree-based sparse expert

selection mechanism. COMET allows optimization with first-order methods, offers explicit

control over the number of experts to select, allows (partially) conditional training and sparse

inference. Second, in this work, we argue that combinatorial nature of expert selection in

Sparse-MoE makes sparse routing optimization challenging with first-order methods. Thus,

we propose a new local search method that can help any gate including ours (COMET ) escape

“bad” initializations. Our large-scale experiments on recommender systems, vision and natural

language processing tasks show COMET and COMET+: (i) achieve statistically significant

improvements in prediction (up to 13% improvement in AUC) and expert selection over

popular sparse gates. (ii) reduce tuning up to a factor of 100× to achieve the same level of

performance as popular gates e.g., Top-k and Hash routing. (iii) help COMET-BERT achieve

state-of-the-art results for distilling BERT on GLUE and SQuAD benchmarks.
3Numbers are based on re-run of the official codebase (https://github.com/SimiaoZuo/MoEBERT) with

hash routing with the optimal hyperparameters reported in [290].
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7.7 Appendix

7.7.1 Proof for Proposition 7.3.1

Proof. First off, it is straightforward to see that g(x;α, v) satisfies the simplex constraint in

(7.3.1b):
m∑
i=1

g(x;α, v)i =
m∑
i=1

∑k
j=1 exp(α

(j)
i (x)) · v(j)i (x)∑k

j=1

∑m
i=1 exp(α

(j)
i (x))v

(j)
i (x)

= 1. (7.7.1)

It remains to show that ∥g(x;α, v)∥0 ≤ k under the given conditions. Recall the hierarchi-

cal binary encoding v(j) outputs a one-hot vector for each sample x as the routing decision.

Let us denote by îj the expert number selected by j-th tree. For now, let us assume that îj

are different for any j. Then, we have

g(x;α, v)îj = exp(α
(j)

îj
(x))

/ ∑
j∈[k]

exp(α
(j)

îj
(x)), (7.7.2)

i.e., the weights are restricted on the k experts selected by the k trees, and the weights form

a softmax activation of logits α(j)

îj
’s. Given that the j-th tree selects îj-th expert, we know

that if i /∈ {̂i1, î2, . . . , îk}, v(j)i = 0 for any j, and thus g(x;α, v)i = 0, and this means that

the support of g(x;α, v) is contained in the set {̂i1, î2, . . . , îk}, which has at most k elements.

Therefore, the cardinality constraint in (7.3.1b) holds.

7.7.2 COMET for non-powers of 2

COMET has a natural way to cater to settings where number of experts are non-powers

of 2. Recall we have m experts. Let d = ⌈log2m⌉, then 2d−1 < m ≤ 2d. Let T be a full

binary tree with depth d and 2d leaf nodes. We collapse 2(2d−m) leaf nodes to their parents

in the (d − 1)-th level. Each time we collapse two leaf nodes, we get a new node in the

(d− 1)-th level, and the total number of nodes reduce by one. Therefore, we get a tree with
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Figure 7.7.1: COMET for 5 (non-powers of 2) experts.

m nodes, with 2d−m nodes in the (d− 1)-th level, and 2m− 2d nodes in the d-th level. This

is visualized in Figure 7.7.1 for number of experts equal to 5.

7.7.3 Timing Discussion

7.7.3.1 Cost Complexity

We compare the cost of forward pass COMET vs Top-k. We consider a single-task, m experts

(ith expert is fi), p features, desired sparsity k ≪ m, and some shared layers.

Table 7.7.1: Time complexity of Top-k and COMET.

Cost breakdown Top-k COMET (training) COMET (inference)

Experts kO(fi) kaO(fi) kaO(fi)
Gate O(pm)+O(m+ k logm) O(kpm) O(kp logm)

Shared layers O(Shared Layers) O(Shared Layers) O(Shared Layers)

Cost for Top-k. Here the desired sparsity (k) is always equal to the actual sparsity

(ka) during training and inference, i.e. ka ≡ k. The cost of computing g(·) is given by
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O(pm) +O(k logm+m). If the cost of computing expert fi is O(fi), then the cost of the

full model is kO(fi) + O(pm) +O(k logm+m) +O(shared layers). Here the main cost is

from how many fi’s are evaluated per sample.

Cost for COMET. For COMET, the cost of the gate is O(kpm). The cost of the full

model is kaO(fi) + O(kpm) + O(shared layers). After a very few epochs (e.g., 4-5), when

COMET has reached the desired sparsity, we have ka ≤ k.

Note that during inference, COMET has smaller cost: All root-to-leaf paths in COMET do

not require evaluation, hence the gate cost reduces from O(kpm) to O(kp log(m)). Hence,

due to fewer expert evaluations and smaller gate cost, COMET is more efficient at inference

time than Top-k. Also see Table 7.7.2 for FLOP counts at inference time for different gating

methods.

7.7.3.2 FLOPs Comparison

We compare the FLOP counts of different gating methods (across different models/datasets)

to compare inference speed—see Table 7.7.2 below. Inference FLOPs per sample - number

of floating point operations that a model performs per sample - is a standard measure to

evaluate the inference speed for Sparse-MoE e.g., in [72] etc.

We show that gates that learn sparse routing decisions per sample, e.g., Top-k, DSelect-k,

COMET, significantly reduce the number of FLOPs (3×−6×) at inference time in comparison

to dense gates e.g., Softmax. Additionally, we see that in all 4 cases, COMET has smaller

number of FLOPs (1.1×−1.6×) than the highly popular Topk gate. We also outperform

DSelect-k in some cases in number of FLOPs. While in some cases, we have larger number of

FLOPs than DSelect-k, our AUC is higher (up to 9%) in these cases.
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Table 7.7.2: #FLOPs per-sample at inference time for COMET against benchmarks (Softmax,
Top-k, DSelect-k) across various datasets.

Dataset Model FLOPs

Books

Softmax 1195K
Top-k 402K
DSelect-k 214K
COMET 326K

MovieLens

Softmax 2255K
Top-k 413K
DSelect-k 399K
COMET 362K

MultiFashionMNIST

Softmax 7.49M
Top-k 3.03M
DSelect-k 1.58M
COMET 2.35M

CelebA

Softmax 22.02M
Top-k 8.82M
DSelect-k 5.64M
COMET 5.47M

7.7.3.3 Effect of local search on computation

Inference. Note that the permutation matrix is global and not sample specific. At inference

time, multiplying permutation matrix P with g(x) amounts to a reordering of the expert

indices – hence, additional cost for this permutation is negligible compared to evaluation of

f(x) and g(x).

Training. In the first stage of COMET training (a few epochs ∼ 5), the training is dense

(requiring all experts per sample). For COMET+, we also learn the permutation matrix

during this stage. There is a small additional computational cost: (a) permutation matrix

of size m ×m, where m is the number of experts, e.g., 16; (b) cost of Sinkhorn operator

which constitutes row/column sum normalizations. This cost is marginal compared to the

cost of evaluating the experts f ′
is, each of which is an MLP/CNN. In the second stage of

training, where the samples are being routed to a small k(= 2) subset of experts per-sample,

there is no additional cost for COMET vs COMET+. To show an example, for MovieLens

200k, where we learn permutation matrix in first 5 epochs, the total time for 50 epochs (on 4
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Table 7.7.3: Test AUC/Accuracy/MSE for COMET+ and benchmark gates on recommender
systems and image datasets.

Recommender Systems

Gate Task 1
(Test AUC)

Task 2
(Test MSE)

Books
(alpha=0.1)

Softmax 56.70±0.16 2.6470±0.0016
Hash-r 54.55±0.07 2.6791±0.0017
Top-k 55.28±0.07 2.6783±0.0026
DSelect-k 59.19±0.36 2.6667±0.0038
COMET+ 68.18±0.24 2.6063±0.0018

Books
(alpha=0.9)

Softmax 77.85±0.01 2.6195±0.0019
Hash-r 77.32±0.05 2.7152±0.0050
Top-k 77.46±0.03 2.6942±0.0016
DSelect-k 77.07±0.09 2.7581±0.0092
COMET+ 77.95±0.02 2.6158±0.0021

MovieLens
(alpha=0.9)

Softmax 90.92±0.01 0.7585±0.0005
Hash-r 88.95±0.02 0.8065±0.0004
Top-k 91.25±0.01 0.7635±0.0008
DSelect-k 91.65±0.02 0.7455±0.0006
COMET+ 91.70±0.01 0.7437±0.0006

MovieLens
(alpha=0.1)

Softmax 85.50±0.03 0.7867±0.0029
Hash-r 84.27±0.07 0.8279±0.0003
Top-k 87.12±0.04 0.8005±0.0004
DSelect-k 88.16±0.07 0.7734±0.0005
COMET+ 88.02±0.01 0.7707±0.0005

Jester
(alpha=0.9)

Softmax 97.350±0.004 0.7460±0.0003
Hash-r 97.323±0.003 0.7530±0.0003
Top-k 97.346±0.004 0.7456±0.0006
DSelect-k 97.361±0.004 0.7464±0.0005
COMET+ 97.362±0.004 0.7439±0.0006

Jester
(alpha=0.1)

Softmax 97.22±0.01 0.7380±0.0003
Hash-r 97.01±0.01 0.7301±0.0002
Top-k 97.38±0.01 0.7412±0.0005
DSelect-k 97.45±0.00 0.7273±0.0003
COMET+ 97.45±0.00 0.7257±0.0004

Image Datasets

Gate Test Accuracy
(Averaged across tasks)

MultiFashionMNIST

Softmax 87.99±0.04
Top-k 88.03±0.03
DSelect-k 87.42±0.04
COMET+ 88.12±0.04

CelebA

Softmax 83.84±0.15
Top-k 83.95±0.17
DSelect-k 83.53±0.06
COMET+ 84.27±0.08

Digits

Softmax 93.53±0.12
Top-k 95.34±0.04
DSelect-k 95.41±0.03
COMET+ 95.45±0.04

MultiMNIST

Softmax 98.01±0.03
Top-k 98.01±0.02
DSelect-k 98.03±0.02
COMET+ 98.07±0.02
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GPUs) is given by: 494s for COMET and 496s for COMET+. Note 50 epochs were sufficient

to achieve convergence for both gates.

7.7.4 Task-specific metrics corresponding to Tables 7.5.1 and 7.5.2

We provide task-specific metrics for all recommender systems and image datasets in Table

7.7.3. We observe COMET+ can give superior AUC performance by up to 13% over Hash

routing and Top-k, and 9% over DSelect-k.

7.7.5 Bootstrapping Procedure for studying hyperparameter tuning

We performed 500 tuning trials and performed a bootstrapping procedure as outlined below:

• Randomly sample s (s ∈ {1, 2, 5, 10, 15, · · · , 250}) trials from the bag of a larger set of 500

trials.

• Find the trial with the best validation loss.

• Compute the test loss for that trial.

• Repeat this exercise for 1000 times.

• Compute the average test loss across the best selected trials.

7.7.6 Additional Details for Section 5.1

7.7.6.1 Datasets

MovieLens. MovieLens [88] is a movie recommendation dataset containing records for

∼ 4, 000 movies and ∼ 6, 000 users. Following [259], for every user-movie pair, we construct

two tasks. Task 1 is a binary classification problem for predicting whether the user will

watch a particular movie. Task 2 is a regression problem to predict the user’s rating (in

{1, 2, · · · , 5}) for a given movie. We use 1.6 million samples for training and 200, 000 for

each of the validation and testing sets.
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Jester. Jester [82] is a joke recommendation dataset containing records for ∼ 74k users

and ∼ 100 jokes. This gives a dataset of 7.4 million records. Similar to MovieLens above,

for every user-joke pair, we construct two tasks. Task 1 is a binary classification problem

for predicting whether the user will rate a particular joke. Task 2 is a regression problem

to predict the user’s rating (in [−10, 10]) for a given joke. We use 5.1 million samples for

training and 1.1 million samples for each of the validation and testing sets.

Books. Books [294] is a book recommendation dataset containing records for ∼ 105k users

and ∼ 340k books. We filter users and books with each atleast 5 records. This gives a

subset of 18, 960 users and 31, 070 books. This gives a subset of 556,724 records. Similar

to MovieLens above, for every user-book pair, we construct two tasks. Task 1 is a binary

classification problem for predicting whether the user will read a particular book. Task 2 is a

regression problem to predict the user’s rating (in {1, 2, · · · , 10}) for a given book. We use

389,706 samples for training and 83,509 for each of the validation and testing sets.

Digits. We use a mixture of MNIST [53] and SVHN [197] datasets. MNIST is a database

of 70, 000 handwritten digits. SVHN is a much harder dataset of ∼ 600, 000 images obtained

from house numbers in Google Street View images. We divided the dataset into training,

validation and testing as follows: MNIST (#train: 50,000, #validation: 10,000, #test:

10,000) and SVHN (#train: 480,420, #validation: 75,000, #test: 75,000). We combined the

corresponding splits to get the train, validation and test sets for the mixture.

MultiMNIST/MultiFashionMNIST. We consider multi-task variants of MNIST/Multi-

FashionMNIST [53]. The datasets are constructed in a similar fashion as given in [101, 228]:

(i) uniformly sample two images from MNIST and overlay them on top of each other, and

(ii) shift one digit towards the top-left corner and the other digit towards the bottom-right

corner (by 4 pixels in each direction). This procedure leads to 36 × 36 images with some

overlap between the digits. We consider two classification tasks: Task 1 is to classify the

208



top-left item and Task 2 is to classify the bottom-right item. We use 100,000 samples for

training, and 20, 000 samples for each of the validation and testing sets.

CelebA. CelebA [170] is a large-scale face attributes dataset with more than 200, 000

celebrity images, each with 40 attribute annotations. The images in this dataset cover large

pose variations and background clutter. We consider 10 of the face attributes in a multi-task

learning setting. We use ∼ 160, 000 images for training, and ∼ 20, 000 for each of validation

and testing.

7.7.6.2 Architectures

MovieLens. We consider a multi-gate MoE architecture, where each task is associated with

a separate gate. The MoE architecture consists of a shared bottom subnetwork comprising

two embedding layers (for users and movies). The 128-dimensional embeddings from both

layers are concatenated and fed into an MoE Layer of 16 experts, where each expert is a

ReLU-activated dense layer with 256 units, followed by a dropout layer (with a dropout rate

of 0.5). For each of the two tasks, the corresponding convex combination of the experts is fed

into a task-specific subnetwork. The subnetwork is composed of a dense layer (ReLU-activated

with 256 units) followed by a single unit that generates the final output of the task.

Books/Jester. We consider a multi-gate MoE architecture, where each task is associated

with a separate gate. The MoE architecture consists of a shared bottom subnetwork comprising

two embedding layers (for users and books/jokes). The 64-dimensional embeddings from both

layers are concatenated and fed into an MoE Layer of 9/16 experts, where each expert is a

ReLU-activated dense layer with 128 units, followed by a dropout layer (with a dropout rate

of 0.5). For each of the two tasks, the corresponding convex combination of the experts is fed

into a task-specific subnetwork. The subnetwork is composed of a dense layer (ReLU-activated

with 256 units) followed by a single unit that generates the final output of the task.
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Digits. We use a single-gate MoE with 8 experts. Each of the experts is a CNN that is

composed (in order) of: (i) convolutional layer 1 (kernel size = 5, number of filters = 10,

ReLU-activated) followed by max pooling, (ii) convolutional layer 2 (kernel size = 5, number

of filters = 20, ReLU-activated) followed by max pooling, and (iii) a ReLU-activated dense

layer with 50 units. The subnetwork specific to the prediction task is composed of a stack of

3 dense layers: the first two have 50 ReLU-activated units and the third has 10 units followed

by a softmax.

MultiMNIST/MultiFashionMNIST. We use a multi-gate MoE with 16/5 experts. Each

of the experts is a CNN that is composed (in order) of: (i) convolutional layer 1 (kernel size =

5, #filters = 10, ReLU-activated) followed by max pooling, (ii) convolutional layer 2 (kernel

size=5, #filters = 20, ReLU-activated) followed by max pooling, and (iii) a sequence of 2

ReLU-activated dense layers with 50 units each. The subnetwork specific to each of the 2

tasks is composed of a stack of 3 dense layers: the first two have 50 ReLU-activated units

and the third has 10 units followed by a softmax.

CelebA. We use a multi-gate MoE with 6 experts. Each of the experts is a CNN that

is composed (in order) of: (i) convolutional layer 1 (kernel size = 3, #filters = 4, ReLU-

activated) followed by max pooling, (ii) convolutional layer 2 (kernel size=3, #filters = 4,

ReLU-activated) followed by max pooling, (iii) convolutional layer 3 (kernel size=3, #filters

= 4, ReLU-activated) followed by max pooling, and (iv) convolutional layer 4 (kernel size=3,

#filters = 1, ReLU-activated) followed by max pooling, and (v) flatten layer. The subnetwork

specific to each of the 2 tasks is composed of a dense layer followed by a sigmoid.

7.7.6.3 Hyperparameters and Tuning

We performed 500 tuning trials for each gate with a random search over the hyperparameter

space described below (for each dataset). For each gate, we selected Top 5% of the trials

based on validation loss. We report the (average) test loss for the Top 5% trials along with
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the standard errors in Tables 7.5.1 and 7.5.2.

MovieLens.

• Learning Rates: Uniform in the log range [5× 10−5, 5× 10−4] for Adam.

• Batch-size: 512.

• Epochs: 100 with early stopping (patience=25) based on validation set.

• γ: Discrete uniform in the set {0.01, 0.1, 1, 5, 10} for DSelect-k and COMET. γ is fixed

to 10 for COMET+.

• Entropy: Discrete uniform in the set {0.05, 0.1, 0.5, 1, 5, 10} for DSelect-k and COMET and

COMET+.

• Number of epochs for permutation learning: Discrete uniform in the set {1, · · · , 10} for

COMET+ and Top-k+.

• ζ (for permutation): 10−4

• m (number of experts): 16.

• k: 2 for all sparse (trainable) gates.

• For Hash-r (and Hash-r+), users are randomly pre-allocated to experts (similar to how

words in vocabulary are pre-allocated randomly in LLMs)

• Number of tuning trials per gate: 500

Books.

• Learning Rates: Uniform in the log range [5× 10−5, 5× 10−4] for Adam.

• Batch-size: 2048.

• Epochs: 100 with early stopping (patience=25) based on validation set.

• γ: Discrete uniform in the set {0.1, 0.5, 1, 5, 10} for DSelect-k and COMET. γ is fixed

to 0.5 for COMET+.

• Entropy: Discrete uniform in the set {1, 5, 10, 50, 100} for DSelect-k and COMET and

COMET+.

• Number of epochs for permutation learning: Discrete uniform in the set {1, · · · , 10} for
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COMET+ and Top-k+.

• ζ (for permutation): 10−4

• m (number of experts): 9.

• k: 4 for all sparse (trainable) gates.

• For Hash-r (and Hash-r+), users are randomly pre-allocated to experts (similar to how

words in vocabulary are pre-allocated randomly in LLMs)

• Number of tuning trials per gate: 500

Jester.

• Learning Rates: Uniform in the log range [5× 10−5, 5× 10−4] for Adam.

• Batch-size: 2048.

• Epochs: 100 with early stopping (patience=25) based on validation set.

• γ: Discrete uniform in the set {0.001, 0.02, 0.1, 1, 5, 10} for DSelect-k and COMET. γ is

fixed to 0.01 for COMET+.

• Entropy: Discrete uniform in the set {0.05, 0.1, 0.5, 1, 5, 10} for DSelect-k and COMET and

COMET+.

• Number of epochs for permutation learning: Discrete uniform in the set {1, · · · , 10} for

COMET+ and Top-k+.

• ζ (for permutation): 10−4

• m (number of experts): 16.

• k: 2 for all sparse (trainable) gates.

• For Hash-r (and Hash-r+), users are randomly pre-allocated to experts (similar to how

words in vocabulary are pre-allocated randomly in LLMs)

• Number of tuning trials per gate: 500

Digits.

• Learning Rates: Uniform in the log range [1× 10−5, 5× 10−4] for Adam.

• Batch-size: 512.
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• Epochs: 200 with early stopping (patience=25) based on validation set.

• γ: Discrete uniform in the set {0.001, 0.01, 0.1, 1} for DSelect-k and COMET. γ is fixed

to 0.001 for COMET+.

• Entropy: Discrete uniform in the set {0.001, 0.005, 0.01, 0.05, 0.1, 0.5} for DSelect-k and

COMET and COMET+.

• Number of epochs for permutation learning: Discrete uniform in the set {1, · · · , 10} for

COMET+ and Top-k+.

• ζ (for permutation): 10−4

• m (number of experts): 8.

• k: 2 for all sparse (trainable) gates.

• Number of tuning trials per gate: 500

MultiMNIST.

• Learning Rates: Uniform in the log range [1× 10−4, 1× 10−3] for Adam.

• Batch-size: 512.

• Epochs: 200 with early stopping (patience=25) based on validation set.

• γ: Discrete uniform in the set {0.001, 0.01, 0.1, 1, 5, 10} for DSelect-k and COMET. γ is

fixed to 0.01 for COMET+.

• Entropy: Discrete uniform in the set {0.0001, 0.001, 0.01, 0.1, 1, 5, 10} for DSelect-k and

COMET and COMET+.

• Number of epochs for permutation learning: Discrete uniform in the set {1, · · · , 10} for

COMET+ and Top-k+.

• ζ (for permutation): 10−4

• m (number of experts): 16.

• k: 4 for all sparse (trainable) gates.

• Number of tuning trials per gate: 500

MultiFashionMNIST.
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• Learning Rates: Uniform in the log range [1× 10−4, 1× 10−3] for Adam.

• Batch-size: 512.

• Epochs: 200 with early stopping (patience=25) based on validation set.

• γ: Discrete uniform in the set {0.001, 0.01, 0.1, 1, 5, } for DSelect-k and COMET. γ is

fixed to 0.01 for COMET+.

• Entropy: Discrete uniform in the set {0.001, 0.01, 0.1, 1, 5} for DSelect-k and COMET and

COMET+.

• Number of epochs for permutation learning: Discrete uniform in the set {1, · · · , 10} for

COMET+ and Top-k+.

• ζ (for permutation): 10−4

• m (number of experts): 6.

• k: 2 for all sparse (trainable) gates.

• Number of tuning trials per gate: 500

CelebA.

• Learning Rates: Uniform in the log range [1× 10−4, 1× 10−3] for Adam.

• Batch-size: 512.

• Epochs: 100 with early stopping (patience=25) based on validation set.

• γ: Discrete uniform in the set {0.001, 0.01, 0.1, 1, 5} for DSelect-k and COMET. γ is

fixed to 5 for COMET+.

• Entropy: Discrete uniform in the set {0.001, 0.01, 0.1, 1, 5} for DSelect-k and COMET and

COMET+.

• Number of epochs for permutation learning: Discrete uniform in the set {1, · · · , 10} for

COMET+ and Top-k+.

• Entropy for permutation: 10−4

• k: 2 for all sparse gates.

• Number of tuning trials per gate: 100
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7.7.7 Additional Details for Section 5.2

7.7.7.1 Datasets

GLUE. General Language Understanding Evaluation (GLUE) benchmark [257], is a collec-

tion of natural language understanding tasks. Following previous works on model distillation,

we consider SST-2 [237], CoLA [260], MRPC [57], STSB [39], QQP, and MNLI [262] and

exclude STS-B [39] and WNLI [157] in the experiments. The datasets are briefly summarized

below:

• SST-2 [237] is a binary single-sentence classification task that classifies movie reviews

to positive or negative;

• CoLA [260] is a linguistic acceptability task;

• MRPC [57] is a paraphrase detection task;

• QQP is a duplication detection task;

• MNLI [262], QNLI [218], and RTE [52] are natural language inference tasks.

Dataset details are summarized in Table 7.7.4.

Table 7.7.4: Summary of GLUE benchmark.

Corpus Task #Train #Dev #Test #Label Metrics
Single-Sentence Classification (GLUE)

CoLA Acceptability 8.5k 1k 1k 2 Matthews correlation
SST-2 Sentiment 67k 872 1.8k 2 Accuracy

Pairwise Text Classification (GLUE)
MNLI NLI 393k 20k 20k 3 Accuracy
RTE NLI 2.5k 276 3k 2 Accuracy
QQP Paraphrase 364k 40k 391k 2 Accuracy/F1
MRPC Paraphrase 3.7k 408 1.7k 2 Accuracy/F1
QNLI QA/NLI 108k 5.7k 5.7k 2 Accuracy

SQuAD. We evaluate our sparse routing approaches on question answering dataset: SQuAD

v2.0 [219]. This task is treated as a sequence labeling problem, where we predict the probability

of each token being the start and end of the answer span. Statistics of the question answering

dataset (SQuAD v2.0) are summarized in Table 7.7.5.
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Table 7.7.5: Summary of SQuAD benchmark.

Corpus Task #Train #Dev Metrics
SQuAD v1.1 Question Answering 87.6k 10.6k F1/EM
SQuAD v2.0 Question Answering 130k 11.9k F1/EM

7.7.7.2 Tuning Procedure for MoEBERT and COMET-BERT

Following [298], we followed the 3-step process as outlined in the MoEBERT codebase4:

• We finetuned BERT on each downstream task for a set of 50 random hyperparameter

trials over the following set:

– Learning Rate: Discrete uniform over the set {1×10−5, 2×10−5, 3×10−5, 5×10−5}

– Batch size: Discrete uniform over the set {8, 16, 32, 64}

– Weight Decay: Discrete uniform over the set {0, 0.01, 0.1}

– Epochs: 10

Note that this step matched the performance numbers reported for BERT-base in Table

1 of [298]. We used the best model (for each dataset) for the remaining steps below.

• Compute importance weights in FFN layers to construct an MoEBERT/COMET-BERT

model, where FFN layers are replaced with MoE layers with the weight assignment

strategy in [298].

• Distill BERT into MoEBERT or COMET-BERT on the downstream task with a layer-

wise discrepancy loss. For MoEBERT, we used the optimal hyperparameters reported

(based on ∼ 1000 trials per dataset) in Table 7 of Appendix in [298]. For COMET-BERT,

we performed 100 tuning trials via random search with each COMET and COMET+ and

picked the best results based on development datasets. The hyperparameters were

randomly selected from the following sets:
4https://github.com/SimiaoZuo/MoEBERT
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– Learning Rate: Discrete uniform over the set {1×10−5, 2×10−5, 3×10−5, 5×10−5}

– Batch size: Discrete uniform over the set {8, 16, 32, 64}

– Weight Decay: Discrete uniform over the set {0, 0.01, 0.1}

– Distillation Regularization (λdistill in [298]): Discrete uniform over the set {1, 2, 3, 5}.

– γ (for smooth-step for COMET ): Discrete uniform over the set {0.01, 0.1, 1.0}.

– λ (for entropy regularization for COMET ): Discrete uniform over the set {0.05, 0.1, 0.5, 1, 5, 10}.

– Epochs: 50 for small datasets (CoLA, RTE, MRPC) and 25 for large datasets (SST-

2, MNLI, QQP, QNLI, SQuADv2.0). Best model was recovered on development

set on best checkpoint.
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Chapter 8

Sparse Mixture of Experts: An Effective

Sampling-based Routing Approach

8.1 Introduction

The Sparse Mixture of Experts (Sparse MoE) [233] is a promising framework for scaling up

model training. Sparse-MoE consists of a set of trainable experts (neural networks) and a

trainable gate. The gate adaptively selects a subset of experts on a per-input basis during

model training. This adaptive selection makes it possible to train Sparse MoE models that are

orders of magnitude larger than densely activated models (i.e., models that use all parameters

to process each input) without significant increase in training costs [72, 156, 233]. In addition,

these sparsely activated models can learn faster than their compute-matched dense models.

For example, Switch Transformers [72], based on the Top-k gate, can learn 7× faster than

dense T5 model [217]—the number of FLOPs used per-input during training is the same for

both models. Such Sparse MoE models have shown state-of-the-art performance in many

learning tasks [8, 60, 72, 227, 233].

The choice of gate plays a central role in Sparse-MoEs. For efficient training, the literature

in Sparse-MoEs has been primarily based on Top-k gating [233], which selects k out of
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m experts using a top-k operation. Top-k gating is simple and efficient because it allows

conditional training: in backpropagation, for each input example, only the gradients of the

loss with respect to k experts need to be computed. With a customized implementation,

conditional training can lead to large computational savings. There have been various

follow-up works that have proposed variants of Top-k gating [48, 156, 227, 290, 295]. These

approaches fundamentally rely on a top-k operation to exploit conditional training. Prior

literature [72, 101, 227] has highlighted performance and stability issues with Top-k gating.

Some differentiable gating approaches [101, 117, 229] were proposed to mitigate these issues.

However, these approaches are more expensive per training step as they require gradients

with respect to more than k experts.

In this chapter, we focus on improving k-sparse gating in Sparse MoEs. Specifically, we

propose MOESART : a novel sampling-based approach for conditional training in Sparse

MoEs. We model the gating function as a learnable parameterized softmax distribution.

To achieve sparsity, we sample k times from the parameterized distribution, identifying the

selected experts per-input. We then assign weights to the selected experts; these weights

are adjusted to ensure that the resulting prediction is a good approximation of the standard

softmax gate. In expectation, the adjusted gate weights serve as a good sparse approximation

of the gate probabilities of the dense softmax.

Although Top-k is considered to be a k-sparse approximation of the classical (dense)

MoE models [50], we empirically show that our k-sparse approximation approach appears

to be superior than Top-k based approximations for learning gating. The greedy nature

of Top-k leads to a biased estimation strategy. Top-k gating can potentially suffer from

selection bias [203], where a suitable expert is ranked too low by the gate for an input

example to be sufficiently exposed to during training. This approach may ignore potentially

informative experts whose contribution is overshadowed by the top-k operation. Consequently,

it might not fully leverage the diversity and richness of the expert pool, while optimizing

the combinatorially challenging gating problem. In contrast, our approach can mitigate this
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selection bias as any expert can be selected because of sampling during the course of training.

Contributions. Our technical contributions are as follows:

• We propose MOESART : a novel sparse gating approach for Sparse Mixture of Experts.

Unlike existing gates, MOESART aims at learning a good k-sparse approximation of the

classical, softmax gate [123]. We achieve this through sampling and carefully designed

expert re-weighting strategies. We empirically show that our training approach learns a

better sparse approximation of the classical (dense) MoE models than Top-k style gates.

• MOESART maintains k-sparsity during both training and inference, hence allowing for

conditional training and inference. Conditional training allows sparse backpropagation,

where for each input example, only the gradients of the loss w.r.t. k experts need to be

computed. This is similar to Top-k gating [233].

• On standard recommender systems and vision datasets, MOESART achieves 15%-16%

improvement in performance of MoE models over SOTA k-sparse gates: Top-k [233],

V-MoE [227], Expert Choice [290], and X-MoE [48].

• We also present results for a 1 billion MoE-Transformer on two machine translation tasks:

German → English (IWSLT’14) and English → French (WMT’14). MOESART improves

by 2.1 BLEU points over Top-k gate on German → English translation task and performs

comparably on English → French translation task.

• In distillation of pre-trained BERT (non-MoE model) into MoEBERT variant for effi-

cient inference, MOESART consistently improves over Top-k on 7 GLUE and 2 SQuAD

benchmarks by 0.5% (up to 1.5%).

8.2 Related work

The MoE framework was introduced by Jacobs et al. [123]. Shazeer et al. [233] proposed

a Sparse-MoE framework which routes each input to a subset of experts and showed good

performance on NLP tasks. This sparked off a series of works on gating strategies in the
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Sparse-MoE paradigm. These can be categorized and summarized as follows:

• Sparse gates. Sparse gates exactly activate a user-specified number of experts in each

training step on a minibatch of inputs. Shazeer et al. [233] proposed Top-k gating, which

selects k experts per input. Fedus et al. [72], Lepikhin et al. [156], Ruiz et al. [227] proposed

variants of Top-k gate and showed better performance on various tasks. Chi et al. [48]

proposed to compute gating scores on a low-dimensional hypersphere. Zhou et al. [290]

proposed to let experts select top inputs.

• Gating as assignment. Lewis et al. [158] and Clark et al. [50], Liu et al. [169] formulate

selection as an assignment problem using linear programming and optimal transport for

balanced assignment. All these approaches are also sparse but more expensive than Top-k

style gates.

• Differentiable gates. Hazimeh et al. [101] and Ibrahim et al. [117] propose differentiable

gates, which improve over Top-k in terms of stability and statistical performance. Although

these gates allow conditional inference, they can only partially allow for conditional training

(during a later stage of training with customized implementations) and are thus more

expensive during training. Sander et al. [229] proposed a differentiable relaxation of the

Top-k operator. Their smoothing approach does not always guarantee exact k-sparsity. It

also requires solving an optimization subproblem per-input during inference, which can be

more costly.

The goal of our work is to propose a new k-sparse gating approach such that the per-minibatch

compute cost is the same as Top-k style gates. A related line of work focuses on stochastic

k-subset selection in non-MoE settings. Chen et al. [44], Paulus et al. [205], Xie and Ermon

[270] propose differentiable methods for sampling k-subsets from a categorical distribution,

based on generalizations of the Gumbel-softmax trick [125, 177]. If these methods were to be

applied to Sparse-MoE, they would perform dense training (i.e., the gradients of all experts,

even if not selected, will be computed during backpropagation), hence limiting their utility.

In contrast, MOESART exploits sparsity for conditional training.
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8.3 Routing in Mixture of Experts

We first review the classical MoE learning paradigm. We assume that the task has an

input space X ⊆ Rp and an output space Y ⊆ Ru. In the MoE framework, the prediction

function has two components: (i) a set of m experts (neural networks) fi : X → Ru for any

i ∈ [m] := {1, 2, . . . ,m}, and (ii) a gate g : X → ∆m that outputs weights in the probability

simplex ∆m = {g ∈ Rm :
∑

i gi = 1, g ≥ 0}. Given a sample x ∈ X , MoE combines the

expert outputs as follows:
∑m

i=1 fi(x)g(x)i. Recall that classical (dense) MoE minimizes the

following objective:

min
{fi},g

Ê

[
ℓ

(
y,
∑

i∈[m]

fi(x)g(x)i

)]
, (8.3.1)

where Ê denotes expectation over the training dataset D = {(x1, y1), · · · , (xN , yN)}, ℓ(·)

denotes the loss function used during training, and g(x) is a softmax gate, which is typically

expressed as g(x) = softmax(Ax + b), where A ∈ Rm×p and b ∈ Rm denote learnable gate

parameters.

Different from the classical MoE above, Sparse-MoEs use a gate that selects a convex

combination of k out of the m experts per-input, where typically k ≪ m. Next, we discuss

some state-of-the-art sparse gates for parameterizing g(·).

• Top-k: The Top-k gate [233] is defined as g(x) := softmax(Topk(Ax + b, k)), where for

any vector v, Topk(v, k)i := vi if vi is in the top k elements of v, and −∞ otherwise. This

is also used by state-of-the-art open-source model Mixtral-8x7B [127].

• V-MoE: Lepikhin et al. [156], Ruiz et al. [227] proposed to reorder the softmax(·) and Topk

operation in the Top-k gate. Ruiz et al. [227] parameterizes the gate as follows: g(x) :=

Topk(softmax(Ax+ b+ ϵ), k), where ϵ ∼ N (0, 1
m2 ) and for any vector v, Topk(v, k)i := vi

if vi is in the top k elements of v, and Topk(v, k)i := 0 otherwise. We denote this gate as

V-MoE.
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• S-MoE: Fedus et al. [72] parameterize the gate with multiplicative noise as follows:

g(x) := Topk(softmax(Axϵ+ b), k), where ϵ ∼ U(0.98, 1.02).

• Expert Choice: Zhou et al. [290] define their gate on a minibatch as: G(XB) :=

Topk(softmax(AXB + b)T , k′)T , where for any vector v, Topk(v, k′)i := vi if vi is in the top

k′ elements of v, and zero otherwise. Note that k′ = |B| ∗ k/m, where k is the (average)

sparsity level per-input such that each expert i ∈ [m] selects k′ samples in a batch of size

|B|.

• X-MoE: Chi et al. [48] estimate the gating scores on a low-dimensional hypersphere as

follows: g(x) := Topk(softmax(((APx)/(∥A∥L2
∥Px∥L2

))/τ), k), where P ∈ R
m
2
×p, A ∈

Rm×m
2 , τ ∈ R+ are learnable.

Both Top-k (or its variants above) and Softmax gates have their pros and cons. Top-k

style gates allow for conditional training, i.e., in the forward pass, for each minibatch of

size B, only kB (instead of mB) expert evaluations (i.e., fj(x)) are required, and hence

in backpropagation, only the gradients of the loss with respect to kB elements need to be

computed, allowing computational savings. However, the discontinuous nature and selection

bias in Top-k can lead to challenges during optimization. In contrast, the softmax gate is

smooth, hence can be easier to optimize. However, the softmax gate can be computationally

expensive during both training and inference: the gate score for each expert is non-zero;

hence, all experts fi(x) are used per-input x.

Motivation. Our approach tries to combine the benefits of the two approaches. We propose

to learn a sparse approximation of the softmax gate via sampling and reweighting such that

our gate has the following desirable properties: (i) Per-step training costs are similar to

Top-k, which is a central consideration in Sparse MoE models. (ii) As we demonstrate in

our experiments, sampling can reduce the selection bias prevalent in greedy Top-k based

selection approaches, especially in the early stages of optimization, reducing the likelihood of

bad solutions.
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Figure 8.3.1: Sparse-MoE with MOESART gate.

8.3.1 MOESART for Conditional Computing

We formulate a sparse approximation of the classical MoE objective in Problem (8.3.1). The

goal is to train a sampled version of the softmax gate to approximate the softmax gate during

the course of training. The high-level idea (visualized in Fig. 8.3.1) can be summarized as

follows. For each input x, we sample a subset of experts from a parameterized distribution

g(x), and use a modified version of g(x) on the sampled set as a sparse approximation for

conditional computation.

Let us denote the dense softmax gate by the function g(·). For each input x, we sample k

times from the discrete set {1, · · · ,m} with distribution g(x). We define a random vector

r(x) = (r1, · · · , rm) ∈ Zm
≥0, which denotes the number of times each expert is sampled. We

denote the unique subset of sampled experts by s(x), which can be derived from r(x) as

follows: s(x) := {i : r(x)i > 0}. The cardinality of set s(x) is given by |s(x)| ≤ k. For

instance, as shown in Fig. 8.3.1, s(x) = {3, 6} and r(x) = (0, 0, 1, 0, 0, 1, 0, 0) represents a

sample of size k = 2, where 3rd and 6th expert were sampled once. Similarly, s(x) = {1, 5}

and r(x) = (1, 0, 0, 0, 2, 0, 0, 0), depict the case where the first expert was sampled once, and
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fifth expert was sampled twice. Note that
∑m

i=1 r(x)i = k.

We seek to minimize the following objective:

min
{fi},g

Ê

[
Êr(x)

[
ℓ

(
y,
∑

i∈s(x)
fi(x)g̃(x)i

)]]
, (8.3.2)

where the outer expectation in Problem (8.3.2) is over the training set D and the inner

expectation is computed with respect to a subset of experts in the set s(x) for each input

x. g(x) = softmax(Ax + b) and g̃(x) is a modified version of g(x) on the set s(x) — more

details are given in Section 8.3.1.1. Additional regularization can be added to the objective,

which is discussed in Section 8.3.2.

Next, we empirically show how our MOESART objective, without any additional regu-

larization, learns a good k-sparse approximation to the dense softmax gate in terms of the

empirical loss, superior than that learnt by Top-k gate.

MOESART is a good k-sparse approximation. MOESART leads to a more effective

sparse approximation than that learnt by Top-k. We empirically show this on SVHN dataset

for an MoE architecture with 8 convolutional experts. The details of the architecture are

outlined in Appendix Section 8.6.2.9. We trained MoE models with 3 different gating

strategies: Classical MoE (softmax), Top-k (sparse) and MOESART (sparse). We optimized

with Adam [136] with cross-entropy loss for 250 epochs. We set k = 2 for Top-k and

MOESART.

We visualize the different loss distributions on held-out data in Figure 8.3.2. In particular,

we visualize the distributions, when each of the 3 gates are used to perform dense or sparse

inference post-training. We also show the discrepancy between different distributions using

Wasserstein Distance [133, 211]. We can see in Figure 8.3.2a that MOESART has a small

distribution discrepancy when the model performs sparse or dense inference. In comparison,

we can see a much bigger discrepancy when the model performs dense inference when the

model is trained with Top-k gating — see Figure 8.3.2c. We also see in Figure 8.3.2e that
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(a) MOESART: sparse vs dense inference (b) MOESART vs Softmax

(c) Top-k: sparse vs dense inference (d) Top-k vs Softmax

(e) Softmax: sparse vs dense inference (f) Out-of-sample loss during training

Figure 8.3.2: Comparison of empirical loss distributions on held-out samples from SVHN
dataset when MoE models are trained with three different objectives: Softmax (classical
MoE), Top-k and MOESART (no additional regularization). The y-axis in 8.3.2a-8.3.2d is
zoomed in to highlight differences between distributions. We evaluate with k-sparse and dense
approximations at inference time for all three models. Wasserstein Distance (WD) is shown
to quantify the distance between loss distributions. We can see that MOESART provides a
good k-sparse approximation to its dense counterpart (see 8.3.2a) as well as to the classical
MoE (see 8.3.2b). Note in 8.3.2f that classical MoE, MOESART, and Top-k achieve held-out
objective of 0.259, 0.251 (lowest) and 0.282 respectively.
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when the model is trained densely with classical MoE objective, a large discrepancy between

loss distributions occurs when the model performs sparse versus dense inference — note that

we used Top-k as a sparse approximation at inference time in this setting. We also compare in

Figure 8.3.2b and 8.3.2d distribution discrepancy of the loss distribution of MOESART and

Top-k with that of classical MoE. Interestingly, we see MOESART is closer to classical

MoE loss distribution than Top-k. Finally, in Figure 8.3.2, we show the out-of-sample loss

during the course of training. MOESART achieves a much smaller objective than Top-k;

interestingly, it even surpasses the densely-trained classical MoE.

8.3.1.1 Computing g̃ during training and inference

Here, we outline approaches to compute g̃ during training and inference. g̃ in (8.3.2) is a

modification of g on the sampled indices from g, which serves three purposes: (a) g̃ is sparse

as it’s only non-zero on the sampled indices, hence allowing conditional computation. (b)

g̃ allows gradient to backpropagate to g — recall that just sampling from parameterized

distribution g doesn’t allow gradient computation with respect to gate parameters in g. (c) g̃

aims to approximate g in expectation.

Training. We first introduce some notation. Let {ai} ∈ Rp ∀i ∈ [m] and bi ∈ Rm be learnable

gate parameters and τ > 0 be a temperature hyperparameter. Let o(x) = (Ax + b)/τ be

gate logits, where A := (a1 · · · am)T . Equivalently, oi(x) := (aTi x + bi)/τ ∀i ∈ [m], and

g(x)i := exp(oi(x))/
∑m

j=1 exp(oj(x)). Next, we refer to õ(x) as adjusted logits after the

sampling process. g̃(x) is a softmax-transformed version of adjusted logits õ(x). Note that

g̃(x) will be sparse with cardinality ∥g̃(x)∥0 ≤ k. For notational convenience, we drop the

dependence on x, and write o(x) = o, õ(x) = õ, s(x) = s, g(x) = g, g̃(x) = g̃. We first outline

some natural choices for õ below and highlight their limitations.

(i) õi := {oi if i ∈ s } or {−∞ if i /∈ s}. This corresponds to g̃i = gi/
∑

j∈s gj ∀i ∈ s.

(ii) õi := {oi + log(ri) if i ∈ s } or {−∞ if i /∈ s}. This gives g̃i = giri/
∑

j∈s gjrj ∀i ∈ s.

(iii) õi := {oi + log(ri)− log(kgi) if i ∈ s} or {−∞ if i /∈ s}. This gives g̃i = 1/k ∀i ∈ s.
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The above approaches have limitations, which make them either less appealing or ill-posed.

If we first consider (i)-(ii), we get g̃i to be biased estimators of gi — see Appendix Section

8.6.2.1 for examples. If we consider (iii), the adjusted logit corrects the true logit oi by the

expected number of occurrences of an expert i. This correction makes g̃i an unbiased estimator

of gi — see proof in Appendix Section 8.6.1; however, the correction makes g̃i independent

of gi, causing gradients with respect to gate parameters A and b to be zero — hence gate

parameters can not be updated.

Therefore, we propose an alternative strategy, which tends to have a smaller bias than the

strategy in (i)-(ii), and has non-zero gradients with respect to gate parameters unlike (iii).

The idea is to follow a randomized adjustment strategy for the sampled logits oi ∀i ∈ s. We

randomly sample an index z uniformly in the subset s. We propose the following adjustment

strategy:

õi :=


oi + log(ri), i = z

oi + log(ri)− log((k − 1)gi), i ∈ s\{z}

−∞ i /∈ s

(8.3.3)

This strategy tends to have a similar bias in comparison with the strategies in (i)-(ii) for

uniform distribution g and have a much smaller bias than (i)-(ii) for non-uniform distributions

for g — see ablation study in Appendix Section 8.6.2.1. Note that gate probability g is

expected to have a range of distributions across inputs, which makes our proposed strategy less

biased during training. Additionally, this approach has non-zero gradients with respect to the

gate parameters A and b, allowing the gate to learn unlike the unbiased strategy in (iii) above.

We empirically observed that sampling without replacement performed significantly better

than sampling with replacement in the context of Sparse MoE training — see an ablation

study in Section 8.4.3. We also show that our proposed strategy in (8.3.3) significantly

outperforms (i-ii) in the context of Sparse MoE training on image datasets in Table 8.6.1 in
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Appendix Section 8.6.2.2.

Note that all the approaches in (i)-(iii) and the one we propose require k > 1; for k = 1,

these approaches have zero gradients with respect to the gate parameters, this issue arises in

Top-k gate as well as highlighted by Ruiz et al. [227]; Our motivation to consider k > 1 is

also based on earlier work [60, 127, 156, 227, 233, 290, 295]. They consider k > 1 for good

trade-off between predictive performance and the training/serving efficiency.

Inference. There are two important considerations in Sparse MoE models at inference

time: (a) Similar to conditional training, k-sparse inference is crucial for efficient serving of

large-scale MoE models. As highlighted by the Figure 8.3.2a, there is a small discrepancy

between the loss distributions when the models perform sparse or dense inference when trained

with MOESART objective. Hence using k-sparse solution works well at inference. (b) The

gating should be deterministic for better interpretability and reproducibility. Therefore, we

follow a k-sparse deterministic strategy at inference time. Instead of sampling from g(x), we

select the indices corresponding to the top k elements of g(x). We use the adjustment strategy

in (iii) above — note that this leads to an equally weighted average of the top k expert

predictions per input. This deterministic inference strategy led to a smaller out-of-sample

loss in comparison to using sampling at inference.

8.3.2 Additional Trimmed Lasso regularization

We can also add (per-input) Trimmed Lasso regularization [22] in the objective (8.3.2).

Trimmed Lasso regularization is defined as λ
∑

j>k T (g(x))j, where T (v) sorts the elements

of v in descending order, and λ ≥ 0 is a non-negative penalty. This regularization can

encourage g(x) to accumulate gate probability mass per-input in the top k elements, making

the sampling process more deterministic per-input by the end of training. Note that this

regularization doesn’t affect the k-sparse training characteristics of the MOESART objective

(8.3.2).
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8.3.3 MOESART versus S-MoE(S).

Fedus et al. [72] also considered a sampling version of S-MoE i.e., S-MoE(S) in their Appendix.

In one experiment, they showed that S-MoE(S) can degrade performance compared to Top-k

based S-MoE. Although both approaches i.e., MOESART and S-MoE(S) perform sampling,

there are key differences in parameterization and regularization:

(i) S-MoE(S) considers the following parameterization: g(x) = g(x)⊙1S where 1S denotes

a vector such that only k sampled indices are non-zero that are in the set S. This

does not obey the simplex constraint. In contrast, MOESART is based on weight

adjustment strategy in (8.3.3) and these adjusted weights always lie on the sparse

simplex. The bias of S-MoE(S) is higher than that for MOESART, which can degrade

performance of S-MoE(S).

(ii) S-MoE(S) is stochastic during training and inference. MOESART uses top-k indices at

inference.

(iii) There is no trimmed lasso regularization in S-MoE(S). Trimmed lasso regularization

can also boost performance on some tasks (Appendix Section 8.6.2.4).

MOESART consistently outperforms S-MoE(S) as shown in Appendix Section 8.6.2.8.

8.4 Experiments

We study the performance of MOESART on recommender systems and image datasets in

Section 8.4.1 and NLP tasks in 8.4.2. We include some ablation studies in Section 8.4.3. Our

experiments are run on academic-level compute resources.

8.4.1 Experiments on Recommender Systems and Images

We study the performance of MOESART in recommender systems and image datasets. We

compare with state-of-the-art k-sparse gates, including Top-k [233], V-MoE [227], S-MoE
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[72, 295], Expert Choice [290] and X-MoE [48]. Note that Expert Choice obeys the k-sparsity

on average across samples in a minibatch. We also include softmax gate as a baseline.

Datasets. We consider multitask versions of two recommendation system datasets: Movie-

Lens [88] and Books [294]. For MovieLens and Books, we have two tasks: classification task

predicts whether user watches/reads a particular movie/book, regression problem predicts

user’s rating. For image datasets, we consider two multitask datasets: Multi-MNIST [228]

and Multi-FashionMNIST. There are two multi-class classification tasks [101]. Full details

about each dataset are in Appendix Section 7.7.6.

Experimental setup. Athough our exposition in Section 8.3 was for a single-task setting,

the same gate can be used in multi-task learning — multi-task requires multi-gate MoE

architecture [176], where each task has a separate trainable gate, but tasks have to select

from a common set of experts. Total loss is the convex combination of loss for each task.

For recommender systems, we train the network with a convex combination of the task-

specific losses: binary cross-entropy (for classification) and mean squared error (for regression)

with task weights (TW): (α, 1 − α). We separately present results for two different task

weight settings. For Multi-MNIST and Multi-FashionMNIST, we train with an equally

weighted combination of cross-entropy losses. We used Adam optimizer, and we tuned the

key hyperparameters using random grid search. After tuning, we train each model for 50

repetitions (using random initialization) and report the averaged test loss and task-specific

metrics along with their standard errors. Full details about the respective MoE architectures

and hyperparameter tuning for all gates are given in Appendix Section 7.7.6.

Results. In Table 8.4.1, we report the test loss, task-specific metrics and the number

of experts for each input used during training across multiple recommender and image

datasets. The results indicate that MOESART lead on all datasets with statistical significance,

outperforming all state-of-the-art sparse gates e.g., Top-k, V-MoE, Expert Choice and X-

MoE. Notably, MOESART can achieve 16% reduction in test loss on Multi-MNIST over

all sparse gates. Similarly, we can observe that MOESART can achieve 15% (relative)
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Table 8.4.1: Test loss, task-specific metrics and number of experts activated per sample (k/s)
while training for MOESART and existing purely sparse gating methods: (1) Top-k [233], (2)
V-MoE [227], (3) S-MoE [72], (4) Expert Choice [290] and (5) X-MoE [48] across various
datasets. Bold indicates statistical significance (p-value<0.05) over the best existing sparse
gate, using a one-sided unpaired t-test.

Recommender Systems
Dataset Gate Test Loss (×10−2) ↓ Task-1 AUC ↑ Task-2 MSE ↓ k/s ↓

Books
(TW=(0.1,0.9))

Softmax 248.96± 0.11 55.31± 0.08 2.697± 0.001 9
Top-k 246.97± 0.11 56.64± 0.08 2.675± 0.001 4
V-MoE 253.21± 0.15 55.11± 0.06 2.744± 0.002 4
S-MoE 249.88± 0.13 56.68± 0.09 2.707± 0.001 4
Expert Choice 314.54± 0.49 56.22± 0.10 3.426± 0.005 4
X-MoE 264.16± 0.25 56.18± 0.10 2.866± 0.003 4
MOESART 242.47± 0.09 64.99± 0.13 2.626± 0.001 4

Books
(TW=(0.9,0.1))

Softmax 74.69± 0.04 77.48± 0.04 2.697± 0.002 9
Top-k 74.63± 0.03 77.42± 0.02 2.683± 0.002 4
V-MoE 75.96± 0.04 76.89± 0.05 2.768± 0.003 4
S-MoE 75.30± 0.05 77.13± 0.05 2.718± 0.002 4
Expert Choice 82.83± 0.06 76.75± 0.03 3.403± 0.009 4
X-MoE 78.25± 0.05 75.48± 0.05 2.890± 0.003 4
MOESART 73.68± 0.02 78.03± 0.03 2.641± 0.003 4

MovieLens
(TW=(0.1,0.9))

Softmax 73.96± 0.02 86.02± 0.03 0.7701± 0.0002 16
Top-k 77.72± 0.06 86.08± 0.06 0.8121± 0.0007 2
V-MoE 75.67± 0.04 86.79± 0.03 0.7904± 0.0005 2
S-MoE 79.47± 0.07 85.36± 0.06 0.8303± 0.0008 2
Expert Choice 81.14± 0.04 84.65± 0.05 0.8477± 0.0005 2
X-MoE 77.59± 0.12 86.86± 0.08 0.8119± 0.0013 2
MOESART 73.60± 0.02 87.33± 0.03 0.7684± 0.0002 2

MovieLens
(TW=(0.9,0.1))

Softmax 41.93± 0.02 91.06± 0.01 0.7569± 0.0002 16
Top-k 41.90± 0.02 91.17± 0.01 0.7616± 0.0004 2
V-MoE 42.11± 0.03 91.16± 0.01 0.7605± 0.0006 2
S-MoE 43.08± 0.06 90.86± 0.03 0.7917± 0.0009 2
Expert Choice 44.94± 0.04 89.88± 0.02 0.8216± 0.0006 2
X-MoE 44.66± 0.04 89.80± 0.02 0.7908± 0.0006 2
MOESART 40.89± 0.02 91.61± 0.01 0.7430± 0.0003 2

Image Tasks
Dataset Gate Test Loss (×10−2) ↓ Task-1 Accuracy ↑ Task-2 Accuracy ↑ k/s ↓

Multi-MNIST
(TW=(0.5,0.5))

Softmax 7.16± 0.05 98.16± 0.02 97.57± 0.02 8
Top-k 7.15± 0.05 98.12± 0.02 97.58± 0.02 4
V-MoE 6.98± 0.04 98.16± 0.02 97.68± 0.02 4
S-MoE 6.90± 0.05 98.18± 0.02 97.69± 0.02 4
Expert Choice 8.57± 0.06 97.80± 0.02 97.22± 0.02 4
X-MoE 7.02± 0.06 98.21± 0.02 97.63± 0.03 4
MOESART 5.86± 0.03 98.40± 0.02 97.92± 0.02 4

Multi-FMNIST
(TW=(0.5,0.5))

Softmax 35.01± 0.09 88.10± 0.05 87.46± 0.05 5
Top-k 34.96± 0.09 88.06± 0.05 87.45± 0.05 2
V-MoE 34.43± 0.09 88.04± 0.05 87.53± 0.05 2
S-MoE 34.68± 0.09 88.06± 0.04 87.52± 0.06 2
Expert Choice 36.41± 0.11 87.50± 0.08 87.03± 0.06 2
X-MoE 33.84± 0.10 88.05± 0.08 87.84± 0.08 2
MOESART 32.85± 0.11 88.56± 0.06 88.02± 0.07 2
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improvement in ROC AUC over existing sparse gates on Books dataset, when the models

are trained with (0.1, 0.9) task weights combination. We also include comparisons with some

differentiable gates in Appendix Section 8.6.2.7. MOESART appears to outperform even

differentiable gates across many tasks. Additionally, in Appendix Section 8.6.2.8, we show

MOESART consistently outperforms S-MoE(S).

8.4.2 Experiments on NLP Tasks

In this section, we study the performance of MOESART in the context of large language

models (LLMs) on natural language processing tasks. In Section 8.4.2.1, we consider a

distillation of a pre-trained BERT model into an MoE variant and present results on natural

language understanding and question answering tasks. In Section 8.4.2.2, we consider a 1

billion MoE-Transformer for machine translation tasks.

8.4.2.1 Distillation on Language Understanding and Question Answering Tasks

In this section, we consider a setting where a pretrained LLM (non-MoE based) is distilled

into an MoE based variant for more efficient inference while preserving or improving the

performance. Zuo et al. [298] distilled BERT [54] into its Sparse-MoE based variant termed

as MoEBERT. Specifically, the feedforward layers are replaced with MoE layers — this can

result in a smaller number of (effective) parameters with per-input gating, thus allowing for

more efficient inference. In the MoE layers of MoEBERT model, we consider Top-k gate

[233] and our proposed MOESART gate during distillation and evaluate the performance on

the GLUE [257] and SQuAD benchmarks [218]. We used k = 2 for both gates. More details

about the setup are summarized in Appendix Section 8.6.3.

Results. We report the performance metrics in Table 8.4.2 for 7 GLUE and 2 SQuAD bench-

marks. MOESART consistently outperforms Top-k on all GLUE and SQuAD benchmarks.

On average, MOESART improves over Top-k in prediction performance metrics by 0.5% (up

to 1.5%).
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Table 8.4.2: Performance metrics for distillation of BERT into MoEBERT with different
gates on the GLUE and SQuAD development sets.

GLUE SQuAD
RTE

(Acc ↑)
CoLA

(Mcc ↑)
MRPC
(F1 ↑)

SST-2
(Acc ↑)

QNLI
(Acc ↑)

QQP
(F1 ↑)

MNLI
(m/mm ↑)

v1.1
(F1 ↑)

v2.0
(F1 ↑)

Top-k 68.95 57.86 86.76 92.78 91.63 88.10 85.14 88.38 78.73
MOESART 70.40 58.20 88.24 93.12 91.95 88.27 85.21 88.43 79.02

8.4.2.2 Machine Translation Tasks

In this section, we consider two machine translation tasks: (i) Low-resource: German →

English (De → En) from IWSLT’14 with 160K training sentence pairs, 7.3K validation

sentence pairs, and 6.8K test sentence pairs. (ii) English → French (En → Fr) from WMT’14

with 35.8M training sentence pairs, 26.9K validation sentence pairs and 3K test sentence

pairs. We use Fairseq [202] to implement our models. We follow the pre-processing steps in

Ott et al. [202]. All experiments are run on 8 NVIDIA 40GB A100 GPUs.

We consider a 1 billion MoE-Transformer i.e., MoE variant of the Transformer architecture

[254]), which is trained from scratch. We use 6 encoder and 6 decoder layers. We use multi-

head attention layers with 16 heads. We set embedding dimension as 1024 and the intermediate

dimension in FFN as 4096. We replace every alternate FFN with an MoE layer with 16 FFN

experts. Dropout is set to 0.1. We set k = 2 for both Top-k and MOESART gates. We set

trimmed lasso penalty as 0.001 for MOESART.

Our models are trained such that BLEU scores are maximized on the validation set. We

use Adam [136] as the optimizer with β1 = 0.9, β2 = 0.98. For learning rate scheduler, we

use an inverse sqrt scheduler with 4000 warm-up steps with a peak learning rate of 0.001.

We set the batch size to 32K tokens, i.e., if we have eight GPUs, each GPU processes 4K

Table 8.4.3: Test BLEU scores for 1 billion MoE-Transformer with different gates on machine
translation tasks.

De → En (IWSLT’14) En → Fr (WMT’14)
Top-k 30.87 42.44
MOESART 32.96 42.65
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and accumulate gradients for two steps. We trained on En-De for 100 epochs (∼ 15, 000

steps) and on En-Fr for 4 epochs (∼ 100, 000 steps). For inference, we use a beam size 5 for

En-De and 10 for En-Fr, with a length penalty of 1.0. For final evaluation, we evaluate the

model in terms of BLEU score on test set. Given the model sizes and constraints on compute

resources, we did not perform any hyperparameter tuning on these tasks.

Results We report the performance numbers for the two gating approaches in Table 8.4.3.

We can observe MOESART improves over Top-k by 2.1 BLEU points on De → En and

performs comparably on En → Fr.

8.4.3 Ablation Studies for MOESART

We perform multiple ablation studies to show different elements of MOESART : (i) Effect of

sampling strategies during training on out-of-sample generalization on SVHN. (ii) Spatial

structure of learnt embeddings on MovieLens. Additional ablation studies studying (a-b)

bias and performance of different adjustment strategies, (c) effect of varying k, (d) effect

of trimmed lasso regularization on performance, and (e) performance under additional load

balancing requirements, and (f) sensitivity of MOESART to hyperparameters, are included

in Appendix Section 8.6.2.

Effect of sampling strategy. We first study the effect of different sampling strategies on

performance of Sparse MoE. We consider two options: (a) sampling with replacement (b)

sampling without replacement. For this ablation study, we consider MOESART with k = 2

on SVHN dataset. We show the evolution of out-of-sample loss during the course of training

in Figure 8.4.1. We can observe that sampling without replacement appears to be more stable

and achieves better out-of-sample loss. We hypothesize that the sub-optimal performance of

sampling with replacement can be attributed to two reasons: (a) The variance is smaller for

sampling without replacement, (b) For sampling with replacement, with k = 2, if the same

expert gets sampled twice for an input, this example is unable to contribute to the gradient

update of the gate parameters.
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Figure 8.4.1: Out-of-sample loss for MOESART for different sampling strategies on SVHN.

Spatial structure of learnt embeddings. We consider MovieLens dataset and the same

multi-task MoE-based architecture as detailed in Section 8.6.2.9 — however, we use 4 experts

for this exercise. The architecture has user and movie learnable embedding layers, which

are concatenated and fed into an MoE layer with 4 experts, followed by a task-specific head

for classification task and regression task. We set k = 2 for Top-k and MOESART . We

optimize with Adam with 5 × 10−5 learning rate with a 512 batch size. We visualize the

embeddings learnt by Top-k and MOESART gates in Figure 8.4.2. We use Uniform Manifold

Approximation and Projection (UMAP) [184] to project the concatenated embeddings of each

input to a two-dimensional space. Each data point represents an input to be routed. Each

color stands for the top expert that each input is assigned to. MOESART seems to provide

better specialization of experts, where the distinct distribution handled by each expert is

much clearer (8.4.2c,8.4.2d) in comparison to that for Top-k gate (8.4.2a,8.4.2b). The learnt

embeddings are more disentangled for MOESART in comparison to Top-k.
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(a) Top-k (Task-1) (b) Top-k (Task-2)

(c) MOESART (Task-1) (d) MOESART (Task-2)

Figure 8.4.2: UMAP projection of user/movie embeddings learnt by the different gates on
(multi-task) MovieLens. Each data point denotes an embedding input to be routed. Color
denotes expert index. MOESART seems to provide better specialization of experts, where the
distribution handled by each expert is much clearer (8.4.2c,8.4.2d) in comparison to that for
Top-k gate (8.4.2a,8.4.2b).

8.5 Conclusion

We proposed a sampling-based gating mechanism with MOESART. Our approach aims to

learn a sparse approximation of the softmax based classical MoE. We achieve this through

sampling and novel expert reweighting strategies. The sparse approximation learnt by our

approach appears to be substantially better than that learnt by Top-k gate and its variants.

MOESART allows conditional training as it is k-sparse during training similar to Top-k

style gating strategies. We performed large-scale experiments on 14 datasets from various

domains. On standard vision and recommender systems, MOESART achieves up to 16%

(relative) smaller out-of-sample loss and up to 15% (relative) improvement in ROC AUC over
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state-of-the-art k-sparse gates, e.g., Top-k, V-MoE, Expert Choice and X-MoE. Moreover,

MOESART gate can consistently outperform Top-k gate in natural language processing tasks.

8.6 Appendix

8.6.1 Proof for g̃i in (iii) being an unbiased estimator of gi

In this section, we study the biasness of adjustment strategy ((iii) in the main paper), as

given by

õi :=


oi + log(ri)− log(kgi) i ∈ s,

−∞ i /∈ s,
(8.6.1)

Recall that g̃i = exp(õi)/
∑

l∈[m] exp(õl). We present the following theorem:

Theorem 8.6.1. For each i ∈ [m], if sampling (with replacement) is performed from the

softmax probability, gi ∝ exp(oi), then g̃i (corresponding to õi defined in (8.6.1) is an unbiased

estimator of gi, i.e., E[g̃i] = gi.

Before, we can show the proof for Theorem 8.6.1, we present the following result:

Lemma 8.6.1. For õi defined as in (8.6.1), the following equality holds:

∑
j∈[m]

exp(õj) =
∑
l∈[m]

exp(ol). (8.6.2)
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Proof for Lemma 8.6.1:

∑
j∈[m]

exp(õj) =
∑
j∈s

exp(õj) +
∑
j /∈s

exp(õj) =
∑
j∈s

exp(õj) (8.6.3)

=
∑
j∈s

exp(oj − log(kgj) + log(rj)) =
∑
j∈s

rjexp(oj)
kgj

(8.6.4)

=
∑
j∈s

rjexp(oj)
k

∑m
l=1 exp(ol)
exp(oj)

(8.6.5)

=
1

k

(∑
j∈s

rj

)(
m∑
l=1

exp(ol)

)
=

1

k
(k)

(
m∑
l=1

exp(ol)

)
(8.6.6)

=
m∑
l=1

exp(ol). ■ (8.6.7)

Proof for Theorem 8.6.1:

Er [g̃j] = Er

[
exp(õi)∑

l∈[m] exp(õl)

]
(8.6.8)

= Er

[
exp(õi)∑m
l=1 exp(ol)

]
using Lemma 8.6.1 (8.6.9)

= Er

[
exp(oi − log(kgi) + log(ri))∑m

l=1 exp(ol)

]
(8.6.10)

=
1

k
Er

[
ri
gi

exp(oi)∑m
l=1 exp(ol)

]
(8.6.11)

=
1

k
Er[ri] =

1

k
(kgi) = gi. ■ (8.6.12)

8.6.2 Additional Ablation Studies

In this section, we show four ablation studies:

(a) Bias of different adjustment strategies in (i)-(ii) and proposed strategy in (8.3.3).

(b) Performance comparison of MOESART with different adjustment strategies in (i)-(ii)

and (8.3.3) for training of Sparse-MoE on Image datasets.

(c) Effect of varying k.
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(d) Effect of trimmed lasso regularization on performance of MOESART on Recommender

Systems.

(e) Performance of MOESART under additional load balancing requirements.

(f) Sensitivity of MOESART to hyperparameter tuning.

(g) Comparison with differentiable gates.

(h) Comparison with S-MoE(S) gate.

8.6.2.1 Bias of different adjustment strategies in (i)-(ii) and proposed strategy

in (8.3.3)

In this ablation study, we empirically study the bias of different adjustment strategies in

(i)-(ii) and the proposed strategy in (8.3.3). For this study, we consider different choices for g:

uniform, random, decaying. We measure the bias with the metric ∥E[g̃]− g∥2. To be precise,

this metric ∥E[g̃]− g∥2 is defined as:

∥(E[g̃1], · · · ,E[g̃m])− (g1, · · · , gm)∥2 (8.6.13)

We show the metric in Fig. 8.6.1 for different distribution shapes for g. For uniform setting,

we observe the bias to be very similar across different adjustment strategies. However, for

sufficiently non-uniform distributions, we can observe that there can be a significant gap in

the bias for proposed strategy in (8.3.3) and the adjustment strategies in (i)-(ii). In Sparse

MoE, the distribution g(x) can be very different across different inputs, hence our proposed

strategy is expected to have a lower bias overall across samples. A smaller bias can lead to

improved learning. We observe this to be the case in Sparse MoE, which we show in the next

ablation study.
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(a) Uniform g (b) Random g (c) Exponentially Decaying g

Figure 8.6.1: Comparison of bias of different adjustment strategies (i)-(iii) and the proposed
strategy in (8.3.3) for different g.

8.6.2.2 Performance comparison of our proposed adjustment in (8.3.3) versus

(i)-(ii) on Image datasets.

In this ablation study, we compare the performance of MOESART under different adjustment

strategies for computing g̃. In particular, we compare the proposed strategy in (8.3.3) without

replacement against the strategies in (i)-(ii) without replacement. Note that (i) and (ii) are

equivalent when sampling without replacement.

We show results for different adjustment strategies in Table 8.6.1 on multi-task image

datasets. We also include Top-k for comparison. We can see our proposed strategy in

(8.3.3) can be significantly better than the strategies in (i)-(ii). We can also observe that

both sampling-based strategies (i-ii) and (8.3.3) significantly outperform Top-k gating. This

potentially highlights that Top-k greedy gating has a large selection bias, which is reduced

by sampling based approaches.

Table 8.6.1: Comparison of test loss and task-specific metrics for MOESART with the proposed
adjustment strategy in (8.3.3) against other strategies in (i)-(ii). We also include Top-k for
reference.

Image Tasks
Dataset Model Test Loss (×10−2) ↓ Task-1 Accuracy ↑ Task-2 Accuracy ↑ Training k/s ↓

Multi-MNIST
(TW=(0.5,0.5))

Top-k 7.15± 0.05 98.12± 0.02 97.58± 0.02 4
MOESART with (i),(ii) 6.15± 0.05 98.33± 0.02 97.92± 0.02 4
MOESART with (8.3.3) 5.86± 0.03 98.40± 0.02 97.92± 0.02 4

Multi-FMNIST
(TW=(0.5,0.5))

Top-k 34.96± 0.09 88.06± 0.05 87.45± 0.05 2
MOESART with (i),(ii) 34.15± 0.09 88.19± 0.05 87.71± 0.05 2
MOESART with (8.3.3) 32.85± 0.11 88.56± 0.06 88.02± 0.07 2
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Figure 8.6.2: Out-of-sample loss achieved by MOESART and Top-k for different k on SVHN.

8.6.2.3 Effect of varying k

Here, we study the effect of k on MoE performance. Note that number of experts is fixed

to 8. We train Sparse MoE models for different values of k = {2, 4, 6} and visualize the

generalization performance in Figure 8.6.2. For comparison, we visualize the results for both

Top-k and MOESART. We also show the performance of softmax gate. We observe that

both sparse gates improve in performance as k is increased. Notably, we consistently see a

significant gap in performance between Top-k and MOESART for each k setting.

8.6.2.4 Effect of Trimmed Lasso regularization on performance on Recommender

Systems

In this section, we perform ablation study for the trimmed lasso regularization on recommender

systems datasets i.e., MovieLens and Books. We had performed a large set of 500 tuning

trials, which tuned over multiple hyperparameters including the trimmed lasso regularization

λ in the set {0, 0.0001, 0.001, 0.01, 0.1, 1.0, 10.0}. We identify the best tuning trial for both

cases λ = 0 and λ > 0 based on the validation set and report the test performance for the

two cases in Table 8.6.2. We can observe that for both datasets, trimmed lasso regularization
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can provide some performance gain over the case without trimmed lasso regularization.

Table 8.6.2: Comparison of test loss for best trial for MOESART without and with Trimmed
Lasso Regularization on Recommender system datasets.

Dataset Model Test Loss (×10−2) ↓

MovieLens MOESART without Trimmed Lasso 73.85
MOESART with Trimmed Lasso 73.40

Books MOESART without Trimmed Lasso 246.50
MOESART with Trimmed Lasso 243.02

Use of trimmed lasso for other strategies e.g., Top-k Top-k style gates are sparse

by construction and the use of trimmed lasso does not seem appropriate. For example, when

g(x) is parameterized as softmax(Topk(Ax + b, k)) for Top-k, the trimmed lasso operator

sorts the elements of g in descending order such that the trimmed lasso penalty penalizes the

smallest m− k elements of g per-input x. Given that the smallest m− k entries of the above

g(x) are 0, the trimmed lasso penalty has no effect. However, we may consider the following

formulation when adapting Trimmed Lasso regularization to Top-k:

(b) min
{fi},g

Ê

[
ℓ

(
y,
∑

i∈[m]

fi(x)g(x)i

)]
+ λ

∑
j>k

T (softmax(Ax+ b))j, (8.6.14)

where g(x) is parameterized as softmax(Topk(Ax+ b, k)). We ran experiments to test this

formulation on Books dataset. We did not observe any performance gain by imposing

the trimmed lasso regularization when considering Top-k gate. We show the results below:

Interestingly, we observe a decrease in performance. We hypothesize that in this formulation of

Table 8.6.3: Comparison of test loss for best trial for Top-k without/with Trimmed Lasso
Regularization on Books dataset.

Dataset Model Test Loss (×10−2) ↓

Books

Top-k without Trimmed Lasso 247.00
Top-k with Trimmed Lasso 250.48
MOESART without Trimmed Lasso 246.50
MOESART with Trimmed Lasso 243.02

Top-k with trimmed lasso, the impact of trimmed lasso can further accelerate the probability
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mass into the top-k elements that are being already selected by the router — this may reduce

the exploration capability of Top-k, affecting performance. These experiments further confirm

the novelty and usefulness of imposing Trimmed Lasso regularization for our sampling-based

approach.

8.6.2.5 Performance under Load balancing

Load balancing is also another important consideration for efficiency in Sparse MoE models.

Load balancing requires similar number of examples to be routed to each expert. Traditionally,

an auxiliary loss is added explicity to achieve load balancing. Shazeer et al. [233] and Fedus

et al. [72] proposed two different auxiliary losses to achieve load balancing. Many follow-up

works on Top-k based gating [48, 271, 295] impose one of these auxiliary losses. We add an

auxiliary loss as the one imposed by Fedus et al. [72] to Top-k gate and MOESART gate

and compare the performance of these methods when the load balancing regularization is

designed to achieve 99% load balancing. We also compare against the Expert Choice by

Zhou et al. [290], which is designed to achieve 100% load balancing across experts. We again

consider (multi-task) MovieLens dataset. MOESART with load balancing achieves the best

performance as shown in Table 8.6.4.

Table 8.6.4: Test loss with load balancing on MovieLens.

Model Test Loss (×10−2) ↓
Top-k 77.72± 0.03
Expert Choice 81.14± 0.04
MOESART 74.04± 0.03

8.6.2.6 Sensitivity of MOESART to hyperparameter tuning

Here, we study the sensitivity of MOESART to hyperparameter tuning and show that gate

can be beneficial in terms of hyperparameter tuning over Top-k style gates. We perform a large

set of tuning trials and perform a bootstrapping procedure to see whether MOESART helps

in reducing the hyperparameter tuning overload.
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We visualize the impact of number of trials on performance in Figure 8.6.3. MOE-

SART can achieve the same level of performance as Top-k gate with much lesser number of

hyperparameter trials. This indicates that MOESART is not too heavily dependent on a

very restricted set of hyperparameter values. We visualize this for various datasets in Fig.

8.6.3. We see tuning reduction by a factor of 100× for MOESART over Top-k. Alternatively,

even a small number of trials e.g., 2-10 can show a significant gain over Top-k gate.

Multi-MNIST Multi-FashionMNIST

Books MovieLens

Figure 8.6.3: Sensitivity of MOESART to hyperparameter tuning. MOESART can achieve
the same level of performance as Top-k with significantly lesser number of hyperparameter
trials. We see tuning reduction by 100× for MOESART over Top-k.

8.6.2.7 Comparison of MOESART with Differentiable Gates

In this section, we compare our gating approach with some state-of-the-art differentiable gates.

In particular, we compare with two differentiable gates: (i) DSelect-k [101], (ii) COMET [117].
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Table 8.6.5: Comparison of test loss and task-specific metrics for MOESART against differen-
tiable gating methods: (1) DSelect-k [101], (2) COMET [117], across various datasets. Note
that these differentiable gates can only support conditional training partially with customized
implementations, hence they are more expensive during training.

Recommender Systems
Dataset Model Test Loss (×10−2) ↓ Task-1 AUC ↑ Task-2 MSE ↓

Books
(TW=(0.1,0.9))

Softmax (Dense) 248.96± 0.11 55.31± 0.08 2.697± 0.001
DSelect-k 241.64± 0.14 59.05± 0.14 2.615± 0.002
COMET 241.13± 0.11 66.13± 0.09 2.612± 0.001
MOESART 242.47± 0.09 64.99± 0.13 2.626± 0.001

Books
(TW=(0.9,0.1))

Softmax (Dense) 74.69± 0.04 77.48± 0.04 2.697± 0.002
DSelect-k 74.22± 0.03 77.61± 0.02 2.632± 0.002
COMET 74.29± 0.03 77.30± 0.02 2.636± 0.002
MOESART 73.68± 0.02 78.03± 0.03 2.641± 0.003

MovieLens
(TW=(0.1,0.9))

Softmax (Dense) 73.96± 0.02 86.02± 0.03 0.7701± 0.0002
DSelect-k 73.81± 0.03 87.79± 0.03 0.7715± 0.0003
COMET 74.19± 0.03 87.67± 0.07 0.7756± 0.0004
MOESART 73.60± 0.02 87.33± 0.03 0.7684± 0.0002

MovieLens
(TW=(0.9,0.1))

Softmax (Dense) 41.93± 0.02 91.06± 0.01 0.7569± 0.0002
DSelect-k 41.40± 0.03 91.44± 0.01 0.7582± 0.0005
COMET 41.25± 0.04 91.45± 0.02 0.7563± 0.0008
MOESART 40.89± 0.02 91.61± 0.01 0.7430± 0.0003

Image Tasks
Dataset Model Test Loss (×10−2) ↓ Task-1 Accuracy ↑ Task-2 Accuracy ↑

Multi-MNIST
(TW=(0.5,0.5))

Softmax (Dense) 7.16± 0.05 98.16± 0.02 97.57± 0.02
DSelect-k 6.93± 0.06 98.14± 0.02 97.68± 0.03
COMET 6.83± 0.06 98.21± 0.02 97.63± 0.03
MOESART 5.86± 0.03 98.40± 0.02 97.92± 0.02

Multi-FMNIST
(TW=(0.5,0.5))

Softmax (Dense) 35.01± 0.09 88.10± 0.05 87.46± 0.05
DSelect-k 36.88± 0.21 87.37± 0.07 86.61± 0.09
COMET 34.88± 0.13 87.97± 0.06 87.42± 0.06
MOESART 32.85± 0.11 88.56± 0.06 88.02± 0.07

We would like to remind the reader that although these gates can allow conditional inference,

they are less appealing in terms of conditional training. These gates are dense-to-sparse

gates, and hence can only partially allow for conditional training (during a later stage of

training with customized implementations). Hence, these gates are more expensive as during

the dense phase of training they require computing gradients with respect to a larger set of

experts. In contrast, our proposed gating approach MOESART completely allows conditional

training and conditional inference.

We tuned these differentiable gates for their respective hyperparameters with random

search over 500 tuning trials and report the averages across 50 runs for their best hyperpa-

rameters. We compare across various datasets and report the performance metrics in Table
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8.6.5. MOESART appears to be quite competitive with differentiable gates. Surprisingly,

MOESART can even outperform differentiable gates across many tasks. We hypothesize

that this maybe due to the choice of parameterization. These gates rely on a particular

activation function (Smooth-Step function [100]) to achieve binary state for sparse inference.

The binary gates snap into place across samples reaching a permanent state of 0 or 1 as

training progresses. This is understandably a desired property of Smooth-Step activation for

conditional computation, however it means that the model cannot update decisions regarding

the choice of expert once this permanent state is reached. In contrast, our sampling-based

approach can allow for exploration throughout training, which can be beneficial.

8.6.2.8 Comparison of MOESART with S-MoE(S)

Fedus et al. [72] considered a sampling version of S-MoE in their Appendix for one single

experiment. In this experiment, they showed that the sampling variant of S-MoE can degrade

performance compared to Top-k based S-MoE. We have run new experiments to compare

against this variant of S-MoE (denoted by S-MoE(S)) and we provide the results in Table 8.6.6.

We observe a mixed trend, where S-MoE(S) sometimes outperforms S-MoE. In comparison,

MOESART consistently outperforms S-MoE and S-MoE(S)

Next we discuss differences in S-MoE(S) and MOESART. Although both approaches i.e.,

MOESART and S-MoE(S) perform sampling, there are key differences in parameterization,

weighting and regularization:

1. S-MoE(S) considers the following parameterization: g(x) = g(x)⊙ 1S where 1S denotes

a vector such that only k sampled indices are non-zero that are in the set S. This does

not obey the simplex constraint. In contrast, MOESART is based on weight adjustment

outlined in (8.3.3) and these adjusted weights always lie on the sparse simplex. The

bias of S-MoE(S) is higher than that for MOESART, which can degrade performance

of S-MoE(S).

2. S-MoE(S) is stochastic during training as well as inference. In contrast, MOESART uses
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Table 8.6.6: Comparison of test loss and task-specific metrics for MOESART against sampling-
base variant S-MoE(S) across various datasets.

Recommender Systems
Dataset Model Test Loss (×10−2) ↓ Task-1 AUC ↑ Task-2 MSE ↓

Books
(TW=(0.1,0.9))

S-MoE 249.88± 0.13 56.68± 0.09 2.707± 0.001
S-MoE(S) 251.69± 0.17 53.86± 0.07 2.727± 0.002
MOESART 242.47± 0.09 64.99± 0.13 2.626± 0.001

Books
(TW=(0.9,0.1))

S-MoE 75.30± 0.05 77.13± 0.05 2.718± 0.002
S-MoE(S) 75.88± 0.06 77.63± 0.06 2.824± 0.003
MOESART 73.68± 0.02 78.03± 0.03 2.641± 0.003

MovieLens
(TW=(0.1,0.9))

S-MoE 79.47± 0.07 85.36± 0.06 0.8303± 0.0008
S-MoE(S) 73.89± 0.02 85.89± 0.02 0.7691± 0.0002
MOESART 73.60± 0.02 87.33± 0.03 0.7684± 0.0002

MovieLens
(TW=(0.9,0.1))

S-MoE 43.08± 0.06 90.86± 0.03 0.7917± 0.0009
S-MoE(S) 41.17± 0.02 91.58± 0.01 0.7543± 0.0004
MOESART 40.89± 0.02 91.61± 0.01 0.7430± 0.0003

Image Tasks
Dataset Model Test Loss (×10−2) ↓ Task-1 Accuracy ↑ Task-2 Accuracy ↑

Multi-MNIST
(TW=(0.5,0.5))

S-MoE 6.90± 0.05 98.18± 0.02 97.69± 0.02
S-MoE(S) 7.19± 0.09 98.11± 0.04 97.45± 0.05
MOESART 5.86± 0.03 98.40± 0.02 97.92± 0.02

Multi-FMNIST
(TW=(0.5,0.5))

S-MoE 34.68± 0.09 88.06± 0.04 87.52± 0.06
S-MoE(S) 34.39± 0.10 88.06± 0.08 87.82± 0.08
MOESART 32.85± 0.11 88.56± 0.06 88.02± 0.07

top-k indices at inference.

3. There is no trimmed lasso regularization in S-MoE(S). Trimmed lasso regularization

can boost performance as we show in ablation study in Table 8.6.2 in Appendix Section

8.6.2.4.

8.6.2.9 Architectures

SVHN. We use an architecture with an MoE-layer followed by a stack of 3 dense layers:

the first two have 50 ReLU-activated units and the third has 10 units followed by a softmax.

The MoE layer consists of 8 experts, each of which is a CNN that is composed (in order) of:

(i) convolutional layer 1 (kernel size = 5, #filters = 10, ReLU-activated) followed by max

pooling, (ii) convolutional layer 2 (kernel size=5, #filters = 20, ReLU-activated) followed by

max pooling, and (iii) a sequence of 2 ReLU-activated dense layers with 50 units each.
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8.6.2.10 Hyperparameters and Tuning

We performed 500 tuning trials for each gate with a random search over the hyperparameter

space described below (for each dataset). For each gate, we tune the optimization and

gate-specific hyperparameters and use the validation loss as the tuning metric. After tuning,

we train each model for 50 repetitions (using random initializations) and report the averaged

results along with the standard errors in Table 8.4.1.

SVHN.

• Learning Rates: 1× 10−4 for Adam.

• Batch-size: 512.

• Epochs: 250 with early stopping (patience=50) based on validation set.

• Trimmed Lasso, λ: 0.0 for MOESART.

• m (number of experts): 8.

• k: 2 for all sparse (trainable) gates.

• Number of tuning trials per gate: 1

8.6.3 Additional Details for Section 8.4.2

8.6.3.1 Tuning Procedure for MoEBERT

Following Zuo et al. [298], we followed the 3-step process as outlined in the MoEBERT

codebase1:

• Finetune BERT on downstream task. We used finetuned BERT from HuggingFace on

each downstream task.

• Compute importance weights in FFN layers to construct an MoEBERT model, where

FFN layers are replaced with MoE layers with the weight assignment strategy in [298].
1https://github.com/SimiaoZuo/MoEBERT
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• Distill BERT into MoEBERT on the downstream task with a combination of cross-

entropy loss and layer-wise discrepancy loss. For MoEBERT with Top-k and MOESART,

we performed a tuning procedure and picked the best results based on development

datasets. We performed a grid search over the following sets of hyperparameters:

– Learning Rate: We used same learning rates as the optimal ones reported for each

dataset in Table 7 of Zuo et al. [298].

– Batch size: We used same batch sizes as the optimal ones reported for each dataset

in Table 7 of Zuo et al. [298].

– Weight Decay: Discrete uniform over the set {0, 0.01, 0.1}

– Distillation Regularization (λdistill in [298]): Discrete uniform over the set {1, 2, 3, 4, 5}.

– k: 2

– τ (for MOESART ): 1.0.

– λ (for Trimmed Lasso regularization for MOESART ): Discrete uniform over the

set {0.0001, 0.001, 0.01, 0.1, 1.0, 10.0}.

– Epochs: 10. Best model was recovered at best checkpoint based on development

set.
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Chapter 9

Pruning Large Vision and Language

Models

In a departure from the previous chapters on ensemble learning, I also advised two junior

PhD students (Xiang Meng, Gabriel I. Afriat) on post-training pruning of large vision and

language models for improving inference efficiency of these models. These settings bring up

interesting structural constraints. The next two sections provide a brief summary of these

works.

9.1 Structured Pruning in Vision and Language Models

with Combinatorial Optimization

Structured pruning [151, 261] reduces model size by removing entire subcomponents, e.g.,

channels in convolutional layers, neurons in dense layers and heads in multi-head attention.

Structured pruning offers a practical solution to improve inference latency on standard

hardware in contrast to unstructured pruning [87, 89, 152], which requires specialized hardware

and software.

Although there are direct computational benefits from structured pruning, there is a
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significant challenge. Models can be highly sensitive to structured pruning (with a large drop

in utility) and most existing methods [107, 159, 175, 189, 280] rely on gradual pruning or

iterative retraining, where the model is finetuned on the original loss after every pruning

stage to allow the model to recover accuracy. Such finetuning may not be desirable for

large datasets and models under resource constraints. For example, finetuning an LLM on a

standard GPU (A100) may not be possible beyond a few billion parameters [178]. In this

context, recent works [144, 146] have focused on the challenging task of post-training one-shot

structured pruning, in which a model must be compressed (without retraining) based on a

small amount of calibration data, without significant loss in accuracy.

Despite impressive advances, state-of-the-art methods appear to face challenges in terms

of increased computation time, memory usage, and balancing utility with structured sparsity.

To address these challenges, we propose a novel optimization-based framework for one-shot

structured pruning, which is highly scalable and can achieve good utility-sparsity tradeoffs.

We employ a layer-wise reconstruction objective and a careful structure-aware reformulation

of the optimization formulation to enable more scalability. To obtain good solutions to the

problem, we propose a local combinatorial optimization algorithm, which leverages problem

structure to perform efficient local search. By integrating these algorithmic components,

we demonstrate that our method is capable of handling large vision and language models,

up to 30 billion parameters using a single 32GB V100 GPU — an improvement over prior

approaches that can handle up to 340 million parameters. The full paper is given in Meng

et al. [187].

9.2 Multi-Objective Pruning with Non-Uniform Layer-

wise Sparsity Allocation in Vision Transformers

Contemporary vision models, have huge parameter counts [59, 106], incurring significant

computational costs during the inference phase. Pruning is a common strategy for compressing
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large neural networks, including vision transformers. The aim of pruning is to remove weights

(set them to zero) in the network.

Many pruning techniques have been proposed for vision models [110]. These versions

aim to maintain high accuracy (close to that of the dense model) while achieving maximum

compression. However, despite notable advancements, the compression process often proves

to be very time-consuming and costly: due to significant drops in model accuracy after

compression, expensive retraining becomes necessary. In this context, post-training one-shot

pruning can be of great interest [163]. Here, the goal is to prune a fully trained, dense model

using a limited calibration dataset in one pruning step. In this paper we focus on one-shot

pruning approaches: as they do not require retraining, they are computationally attractive

and are particularly relevant for real-world applications.

Popular one-shot methods decide on what to prune by using a single objective criterion.

There are two common objective functions that are used. One line of work, introduced

by [90, 152] through the Optimal Brain Surgeon (OBS) framework, uses a local quadratic

approximation of the original training loss. Various methods [15, 75, 145, 234, 281] have

demonstrated the efficacy of OBS in achieving state-of-the-art one-shot pruning, by strategi-

cally selecting weights for removal from a trained neural network. The second line of work,

based on a layer-wise OBS strategy, uses a data fidelity error based on the reconstruction

of layer outputs. Here pruning task is broken into layer-wise subproblems, and numerical

methods are used to compute a set of sparse weights for each layer [58, 76]. The former

i.e., OBS objective, uses global information from the pre-trained neural network for the

pruning problem. However, for scalability, block-level approximations are used for pruning

modern architectures. On the other hand, the second approach i.e., layer-wise reconstruction

loss uses more localized information, preventing large deviations in the embedding spaces;

this can prevent catastrophic forgetting with the full OBS objective when using a small

calibration dataset1. In our experiments, we observed that different objective functions can
1A large calibration set would lead to higher computation costs, which are undesirable for an efficient

post-training one-shot pruning algorithm.
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result in different accuracy-sparsity tradeoffs for different models: suggesting that usefulness

of both these objective functions for pruning purposes. Motivated by this observation, we

consider a novel multi-objective optimization problem, where both objectives are considered

simultaneously. Interestingly, by simultnaeously considering both these objectives (as a part

of our multi-objective optimization formulation), we observe that that we are able to obtain

significantly better accuracy-sparsity tradeoffs—one that outperforms earlier approaches that

choose an individual objective function.

Additionally, it has been observed previously [74, 76, 108] that allocating sparsity budgets

non-uniformly across layers can substantially improve the accuracy-sparsity tradeoff compared

to uniformly allocating sparsity budget across layers. This leads to the question: Can one

optimally allocate sparsity budgets across the layers? The optimal allocation of sparsity

across layers is itself a hard combinatorial problem with a large search space: e.g., with L

layers and K sparsity levels, there are O(KL) different configurations. In the context of

one-shot pruning, hand-crafted heuristics as well as reinforcement learning based approaches

that require finetuning [108] are not well-suited because of high tuning complexity. [74, 76]

propose an interesting approach: they consider a proxy objective (for the sparsity budget

allocation problem), constructed with only forward passes and then a dynamic program

is used to obtain the sparsity budgets. This approach is feasible for the problem sizes we

consider. However, the proxy objective considered by this method does not consider any

interactions between different layers. We propose an optimization approach to perform

sparsity budget allocation that considers interactions between different layers. To optimizie

our non-differentiable, discrete optimization problem, we propose a novel coordinate-descent

style algorithm. Our approach leads to high-quality sparsity budget allocations and accuracy-

sparsity tradeoffs, without compromising on computational efficiency compared to earlier

state-of-the-art approaches. The full paper is given in Afriat et al. [3].
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Chapter 10

Conclusion

This thesis presented large-scale optimization approaches for several ensemble learning

methods under structural constraints. In particular, in Chapters 2 and 3, we consider

additive models with interactions under component selection and other structural constraints

such as hierarchy. We discuss efficient algorithms based on sparse backpropagation and

partially greedy coordinate descent algorithms to handle different formulations. The structural

constraints aid global interpretability and allow insights into real-world applications. We

consider a large-scale case study of predicting Census Survey Response Prediction in Chapter

4. Next, in Chapters 5 and 6, we propose efficient tensor-based formulation for tree ensembles,

and consider flexible modeling for customized loss functions, multi-task learning and end-to-

end feature selection for tree ensembles. Our methods can improve over existing tree ensemble

toolkits. Finally, in Chapters 7 and 8, we consider multiple novel approaches for Sparse

Mixture of Experts, with per-input sparsity constraints. We optimize these formulations to

achieve efficient training and/or sparse inference. We show our methods can scale to large

language models and improve over existing sparse routing approaches in terms of statistical

performance.
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