
Understanding and Improving Representational
Robustness of Machine Learning Models

by

Ching-Yun Ko
B.S., Wuhan University (2017)

M.Phil., University of Hong Kong (2019)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2024

© Ching-Yun Ko 2024. All rights reserved.
The author hereby grants to MIT a nonexclusive, worldwide, irrevocable,

royalty-free license to exercise any and all rights under copyright,
including to reproduce, preserve, distribute and publicly display copies of

the thesis, or release the thesis under an open-access license.

Authored by: Ching-Yun Ko
Department of Electrical Engineering and Computer Science
May 17, 2024

Certified by: Luca Daniel
Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by: Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students



2



Understanding and Improving Representational Robustness of

Machine Learning Models

by

Ching-Yun Ko

Submitted to the Department of Electrical Engineering and Computer Science
on May 17, 2024, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

The fragility of modern machine learning models has drawn a considerable amount of
attention from both academia and the public. In this thesis, we will do a systematic
study on the understanding and improvement of several machine learning models,
including smoothed models and generic representation networks. Specifically, we put
our focus on studying representational robustness, which we define as the “robustness”
(or generally trustworthy properties) in the induced hidden space of a given network.
For a generic representation network, this corresponds to the representation space
itself, while for a smoothed model, we will treat the logits of the network as the
target space. Representational robustness is fundamental to many trustworthy AI
areas, such as fairness and robustness. In the thesis, we discover that the certifiable
robustness of randomized smoothing is at the cost of class unfairness. We further
analyze ways to improve the training process of the base models and their limitations.
For generic non-smooth representation models, we find a link between self-supervised
contrastive learning and supervised neighborhood component analysis, which naturally
allows us to propose a general framework that achieves better accuracy and robust-
ness. Furthermore, we realize that the current evaluation practice of foundational
representation models involves extensive experiments across various real-world tasks,
which are computationally expensive and prone to test set leakage. As a solution, we
propose a more lightweight, privacy-preserving, and sound evaluation framework for
both vision and language models by utilizing synthetic data.

Thesis Supervisor: Luca Daniel
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Chapter 1

Introduction

1.1 Motivation

The vulnerability of deep neural networks to human-imperceptible adversarial pertur-

bations has attracted great attention within the machine learning community since

the seminal works [170, 7]. This has remained an important concern for various

machine learning fields, ranging for instance from computer vision [170] to speech

recognition [17]. In particular, for safety-critical applications, such as self-driving cars

and surveillance, there is almost zero tolerance for erroneous decisions. As a result,

the existence of adversarial examples in deep neural networks has motivated efforts

toward robustness quantification, as well as toward designing training algorithms that

can enhance such robustness [42, 47, 95]. In this thesis, we intend to understand and

improve the representational robustness of modern machine learning models.

1.1.1 The Representational robustness of machine learning

models

Representational robustness refers to the reliability of the induced hidden space

within a neural network model. This concept is particularly pertinent in machine

learning since the hidden layers of a network ought to capture intricate patterns from

the input data. In this thesis, we define representational robustness as the ability
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of these hidden representations to maintain desirable trustworthy properties across

different inputs or perturbations. The desirable trustworthy properties could include

accuracy, fairness, adversarial robustness, etc. For a generic representation network

𝑔(·), the natural choice of the induced hidden space is indeed the output space of the

representation network. These constructed spaces are specifically trained to encode

crucial information about the input data through representation learning, enabling

the network to perform various tasks like classification, regression, or generation

through a simple task-specific downstream network. On the other hand, in the context

of a smoothed model, the smoothing filter is applied to the entire base network

argmax𝑗 P[𝑗 = argmax𝑖 𝑔𝑖(𝑥)], 𝑥 ∼ 𝒩 (𝑥0, 𝜎
2ℐ). Thus, we will directly treat the logits

of the network P[𝑗 = argmax𝑖 𝑔𝑖(𝑥)] as the target space for assessing representational

robustness. In this case, we are particularly interested in the different behavior between

the base and the smoothed network.

Studying representational robustness is fundamental to advancing the field of

machine learning for several reasons. First of all, as will be discussed in the later

chapters of the thesis, having a deeper understanding of what each component (repre-

sentation network, smoothing operator, etc.) does helps us to be more cautious and

more conscious about the potential side effects of the operations. This understanding

will also build up the foundation for improving these network designs. Secondly,

robust representations become increasingly vital as the machine learning community

gradually shifts the focus to task-agnostic pretraining and task-specific finetuning.

In safety-critical applications, erroneous predictions due to brittle representations

can have severe consequences. From this perspective, representational robustness is

fundamental to many trustworthy AI areas, as the pretrained representation network

will contribute to the overall trustworthiness of any machine learning systems built on

it. By investigating and enhancing representational robustness, one can build more

resilient AI systems and prevent error propagation.
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1.1.2 The limit and cost of smoothed models

To date, there are two popular ways to approach the problem of robustness evaluation:

1) attack evaluation and 2) formal verification. From the attack perspective, the

adversary would like to develop strong adversarial attacks that can fool the network

classifier with the smallest adversarial distortions [14, 60, 122, 22]. Whereas the purpose

of formal verification methods is to guarantee that intrinsic robustness conditions will

always hold. For example, one key goal, within robustness verification, is to show that

no adversarial examples can ever exist within an 𝜇-neighborhood of the original test

sample. Furthermore, ideally, the formal verification algorithms should identify the

largest possible 𝜇. As a result of the shared concern of unverified models in real-life

deployment, the focus has shifted to seek trust-worthy and attack-agnostic robustness

verification [72, 194, 165, 218, 82].

However, due to the intrinsic hardness (NP-completeness) of the robustness ver-

ification problem, these certifiable verification methodologies do not scale to large

networks [114]. To cope with this, one emerging branch of studies, randomized

smoothing [31, 99, 103], proposes transforming the original network into a “smoothed“

counterpart. This new counterpart now returns the class with the highest probability

by querying isotropic Gaussian noise 𝑁(0, 𝜎2𝐼) corrupted data. This corresponds to

applying low-pass filters (cf. Gauss–Weierstrass transform, Gaussian blur, or Gaussian

filter in signal processing) to score functions. In the first part of the thesis, we will

study the representational robustness of smoothed models, where we treat the logits

of the smoothed network as representations. We will disclose the unwanted shrinking

effects of current randomized smoothing workflows, which might cause undesirable

group unfairness. Furthermore, as randomized smoothing is commonly accompanied

by noise augmentation during the training, we will also show the limit and caveat of

such procedures.
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1.1.3 Understanding and improving generic self-supervised

representation learning

Given the knowledge of the cost and limit of smoothed models, we shift our focus

to generic non-smooth machine learning models. Here, we will consider the seminal

tool in self-supervised representation learning, contrastive learning, which typically

constructs a higher-dimensional representation space. If the representation network

is good enough, then the downstream classifier can be as simple as a linear layer.

Contrastive learning essentially constructs optimization objectives that aim to leverage

pairs of positive and negative samples for representation learning, which relates to

exploiting neighborhood information in a feature space. From this perspective, we are

inspired to formally establish the connection between the supervised Neighborhood

Component Analysis (NCA) and the self-supervised contrastive learning, and propose

generalized contrastive loss (named NaCl) which outperforms the existing paradigm.

Even though contrastive learning (or representation learning in general) has drawn

much attention in the past years, this method still faces several challenges. For

example, the definition of positive and negative pairs heavily relies on the downstream

tasks, and the computation of positive and negative pairs grows quadratically with

the size of the dataset. Most importantly, over the past years, representation learning

has been evaluated mostly only by how they cluster or metrics such as the standard

downstream classification accuracy. However, as will be shown in the corresponding

chapter, there is a concerning insufficiency of those methods in addressing robustness.

Thus, we urge the necessity of establishing contrastive learning methods that score

high in not only the standard accuracy but also the adversarial accuracy. As such, we

will further propose an integrated framework (named IntNaCl) that accounts for both

standard accuracy and adversarial cases.
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1.1.4 Evaluating robustness-accuracy of large models using

synthetic data

Generally, over the past few years, the ML community has witnessed a paradigm shift

in deep learning from task-centric model design to task-agnostic representation learning

and task-specific fine-tuning. The pretrained representation networks developed from

contrastive learning and beyond, are being used more widely and evaluated extensively

across various real-world tasks. They are now often used as a foundation for different

downstream tasks, and hence also named foundation models. When gauging the

usefulness of a foundation, it is a convention to conduct evaluations on selected public

datasets. For example, ViT [40] reports accuracy on 25 tasks, CLIP [141] on 27

datasets, and PLEX [181] on over 40 datasets to systematically evaluate different

reliability dimensions on both vision and language domains. However, new concerns

about proper performance evaluation have been raised.

The first important concern is the inconclusiveness of this type of evaluations.

For instance, ViT-L/16 is reportedly performing better than ViT-B/16 on 23 out

of 27 vision tasks in [141], but worse than ViT-B/16 on FoodSeg103 and magnetic

resonance imaging according to [202, 182, 128]. That said, a poor probing result

might come from either (1) evaluation data bias, (2) true model deficiency, or both.

Secondly, the trending practice of pretraining and fine-tuning also signifies immediate

damage to all adapted applications if the foundation model has hidden risks [12],

such as lacking robustness to adversarial examples. Therefore, we propose to design

new benchmarks for both vision and language foundation models (named SynBench

and SynTextBench) that are based on synthetic data whose optimal performance can

be characterized and referenced. These two new evaluation paradigms will thereby

evaluate the representational robustness by considering the same synthetic tests in

the vision or language domain. By construction, our use of synthetic data will also

circumvent the real private user data leakage through API calls during evaluation.
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1.2 Thesis contributions and organization

Table 1.1: Thesis contributions and organization. Contents not covered in this thesis
are colored in gray. The analysis of vision non-smooth models applies to language
non-smooth models, but will not be discussed explicitly in this thesis.

Models Understanding Improving
training/inference evaluation

Vision Smoothed models Chapter 3 Chapter 3 Mohapatra et al.
Non-smooth models Chapter 4 Chapter 4 Chapter 5

Language Non-smooth models Chapter 4* Ko et al. Chapter 6

1.2.1 Contributions of this thesis

This thesis focuses on understanding and improving representational robustness of

machine learning models. The novel contributions include three parts.

In the first part, we point out the hidden risks of current randomized smoothing

workflows and study the improvement data augmentation can bring to mitigate those

risks.

• Contribution 1. In Chapter 3, we prove the hidden cost of randomized

smoothing is class-wise fairness, i.e., decision boundaries of smoothed classifiers

will shrink, resulting in disparity in class-wise accuracy. Specifically, we identify

sufficient conditions under which Gaussian smoothing leads to a decrease in

classification accuracy and characterize the theoretical lower bound of the

shrinking rate. We also show that data augmentation in the training process

does not necessarily resolve the shrinking issue due to the inconsistent learning

objectives. We analyze the effect of noise augmentation and show that it may

leads to low classification accuracy for large 𝜎 on both synthetic and real datasets.

The second part of the thesis tries to understand a seminal approach in self-

supervised representation learning, contrastive learning, from the perspective of

supervised neighborhood component analysis (NCA), and propose a generalized

training method to improve the accuracy and robustness.
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• Contribution 2. In Chapter 4, we establish the relationship between con-

trastive learning and NCA, and propose new contrastive loss dubbed NaCl

(Neighborhood analysis Contrastive loss). We provide theoretical analysis on

NaCl and show better generalization bounds over the baselines. Building on top

of NaCl, we propose a generic framework called Integrated contrastive learning

(IntCl and IntNaCl) that could simultaneously achieve good accuracy and ro-

bustness on downstream tasks. We show that the spectrum of recently-proposed

contrastive learning losses [29, 154, 75] can be included as special cases of our

framework.

The third part of the thesis identifies the drawbacks of current evaluation prac-

tices of representation networks and proposes improved evaluation benchmarks using

synthetic data.

• Contribution 3. In Chapter 5, to circumvent the need for real-world data

in evaluation, we explore the use of synthetic binary classification tasks with

Gaussian mixtures to probe pretrained models and compare the robustness-

accuracy performance on pretrained representations with an idealized reference.

Our approach offers a holistic evaluation, revealing intrinsic model capabilities

and reducing the dependency on real-life data for model evaluation. Evaluated

with various pretrained image models, the experimental results confirm that our

task-agnostic evaluation correlates with actual linear probing performance on

downstream tasks and can also guide parameter choice in robust linear probing

to achieve a better robustness-accuracy trade-off.

• Contribution 4. In Chapter 6, we propose a new evaluation workflow that

generates steerable synthetic language datasets and proxy tasks for benchmark-

ing the performance of pertrained LMs on sentence classification tasks. This

approach allows for better characterization of the joint analysis on the robustness

and accuracy of LMs without risking sensitive information leakage. It also pro-

vides a more controlled and private way to evaluate LMs that avoids overfitting

specific test sets. Verified on various pretrained LMs, the proposed approach
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demonstrates promising high correlation with real downstream performance.

1.2.2 Thesis outline

This thesis is organized as follows:

• In Chapter 2, we give an introduction to some background. We aim to make

this background chapter as brief as possible.

• Chapter 3 to Chapter 6 present the details of our four novel contributions,

including definitions and severity of the hidden cost of randomized smoothing,

how to interpret contrastive learning from NCA and propose extensions, and how

to evaluation those large pretrained vision/language models in a real-data-free

and task-agnostic way to avoid data leakage and lift the computational burden.

• Finally, Chapter 7 summarizes the results of this thesis and discusses some

future work in this field.
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Chapter 2

Backgrounds

2.1 Adversarial robustness

Despite neural networks’ supremacy in achieving impressive performance, they have

been proved vulnerable to human-imperceptible perturbations [61, 170, 124, 122]. In

the supervised learning setting, an adversarial perturbation 𝛿 is defined to render

inconsistent classification result of the input 𝑥: 𝑓(𝑥0 + 𝛿) ̸= 𝑓(𝑥), where 𝑓 is a

neural network classifier. A stronger adversarial attack means it can find 𝛿 with

higher success attack rate under the same 𝜖-budget (‖𝛿‖𝑝 ≤ 𝜖). One of the most

popular and classical attack algorithms is FGSM [61], where with a fixed perturbation

magnitude 𝜖, FGSM finds adversarial perturbation by 1-step gradient descent. Another

popular attack method we consider in this thesis is PGD [115], which assembles the

iterative-FGSM [96] but with different initializations and learning rate constraints.

2.1.1 Randomized smoothing with Gaussian filtering

Generally, the prediction of a model 𝑓 for input 𝑥0 is given by taking the highest

output of the score function (a neural network) 𝑔(𝑥0). Let 𝑒𝑖 denote the 𝑖𝑡ℎ basis

vector with all components 0 and the 𝑖𝑡ℎ component be 1. Then the base classifier can

be given as

𝑓(𝑥0) = 𝑒𝜉𝐴 ; 𝜉𝐴 = argmax
𝑗

𝑔𝑗(𝑥0). (2.1)
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Correspondingly, under randomized smoothing the prediction for a model 𝑔 is given

as the “most likely” standard prediction output by the model when noise is added

to the input. Conventionally, the resulting classifier is referred to as the smoothed

classifier and the type of noise added to the input is denoted as the smoothing measure.

When isotropic Gaussian distribution 𝒩 (0, 𝜎2ℐ) is used as the smoothing measure,

the smoothed function 𝑓𝜎 is given as

𝑓𝜎(𝑥0) = 𝑒𝜉𝐴 ;

𝜉𝐴 = argmax
𝑗

P[𝑗 = argmax
𝑖

𝑔𝑖(𝑥)], 𝑥 ∼ 𝒩 (𝑥0, 𝜎
2ℐ).

There has been a lot of research in developing robustness verification techniques for

the base classifier in Equation equation 2.1 [72, 194, 56, 144, 195, 199, 189, 106], i.e.

given 𝑔, 𝑥0, 𝜉𝐴 and 𝑝, find the maximum value of 𝑟 such that argmax𝑗 𝑔𝑗(𝑥0 + 𝛿) =

𝜉𝐴, ∀ ‖𝛿‖𝑝 ≤ 𝑟. However, due to the intrinsic hardness of the problem [85, 194, 178],

the above approaches can hardly scale to state-of-the-art deep neural networks such

as ResNet-50 and VGG-19 nets. On the other hand, it is also possible to perform

robustness verification on the smoothed classifier. To solve the problem of certification,

[99] first applied differential privacy techniques to derive a non-trivial lower bound of

𝑟 for 𝑝 = 1, 2. The bound was later improved by [103] via the tools in information

theory for 𝑝 = 2. Recently, [31] proved a tighter bound of 𝑟 for 𝑝 = 2 below:

𝑟 =
𝜎

2

[︀
Φ−1(𝑝𝐴)− Φ−1(𝑝𝐵)

]︀
, (2.2)

where 𝜎 is the smoothing factor in the Gaussian noise, Φ−1 is the inverse of standard

Gaussian CDF, and 𝑝𝐴 and 𝑝𝐵 are the lower/upper bound on the probability with class

𝜉𝐴 and 𝜉𝐵 (𝜉𝐴 is the top-1 class of the smoothed classifier and 𝜉𝐵 is the “runner-up”

class), respectively. In practice, [31] sets 𝑝𝐵 = 1 − 𝑝𝐴 and abstains when 𝑝𝐴 < 0.5,

implying that no radius can be certified in this case.
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2.1.2 Data augmentation with Gaussian corruptions

In the seminal work of randomized smoothing , [31] and [99] suggest to apply random-

ized smoothing during training (noise augmentation) for better classification accuracy.

We first recall that a standard learning problem takes the form of

ℛ = E𝑥∈𝒳 [𝑙(𝑓(𝑥), ℎ(𝑥))],

where 𝒳 , 𝒴, 𝑙, 𝑓 , and ℎ are the input space, the output space, the loss function, a

neural network, and the ground-truth classifier, respectively. Given some probability

distribution D𝑝 the noise smoothing risk takes the form of

ℛRS = E𝑥∈𝒳 [𝑙(𝑓𝜎(𝑥), ℎ(𝑥))]

= E𝑥∈𝒳 [𝑙(E𝑧∼D𝑝 [𝑓(𝑥+ 𝑧)], ℎ(𝑥))].

[31] motivate the use of corrupted samples during training by arguing that, when 𝑙 is

chosen to be the cross entropy and D𝑝 = 𝒩 (0, 𝜎2𝐼), the noise augmentation risk

ℛRS-train = E𝑥∈𝒳 [E𝑧∼𝒟𝑝 [𝑙(𝑓train,𝜎(𝑥+ 𝑧), ℎ(𝑥))]]

constitutes a lower bound of ℛRS. We distinguish 𝑓train,𝜎 from 𝑓 since they are learned

from different objectives. Throughout this thesis, we abbreviate Gaussian noise

augmentation (i.e. D𝑝 be the Gaussian centered at the origin) as data augmentation.

2.1.3 (Robust) Bayes optimal classifier for Gaussian models

Despite the difficulty of characterizing the optimal classifier with the minimum loss for

generic data, for data drawn from class-conditional Gaussian distribution, the explicit

optimal strategy is given by Fisher’s linear discriminant rule [81, 137]. Likewise, the

optimal classification strategy can also be given for such data in the presence of input

perturbations [4, 36].

Let 𝒩 (𝜇,Σ) denote Gaussian distribution with mean 𝜇 and variance Σ. Generally,
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for binary classification problems with data pair (𝑥, 𝑦) generated from a probability

distribution 𝑃𝜇,Σ :

𝑥|𝑦 = 1 ∼ 𝒩 (𝜇,Σ), 𝑥|𝑦 = −1 ∼ 𝒩 (−𝜇,Σ),

the classifier that minimizes the adversarial loss [2] max𝑥′:‖𝑥′−𝑥‖≤𝜖 1(𝑓(𝑥
′) ̸= 𝑦), the

robust Bayes optimal classifier [4, 36], is given by

sign(𝑤𝑇
0 𝑥),

where 𝑤0 = Σ−1 (𝜇− 𝑧Σ(𝜇)) and 𝑧Σ is the solution of the convex problem

argmin
‖𝑧‖2≤𝜖

(𝜇− 𝑧)𝑇Σ−1(𝜇− 𝑧). (2.3)

Putting 𝜖 to 0 naturally lead to the naive Bayes optimal classifier sign(𝜇𝑇Σ−1𝑥).

2.2 Sentence representations and sentiment lexicons

2.2.1 Sentence representations

To obtain performant language models, learning universal sentence representations

that capture rich information for various downstream NLP tasks without task-specific

fine-tuning is an active research field and has also been studied extensively in the

past years [91, 33, 53, 104, 169, 57, 54, 30]. While learning to extract ideal sentence

embeddings, [53, 104, 46] have pinpointed the anisotropic behavior in the sentence

embedding vector space as a reason behind sentence embeddings’ poor capture of se-

mantic information. To remedy the situation, Bert-flow [104] and Bert-whitening [169]

transformed the sentence embedding distribution into an isotropic Gaussian distribu-

tion through normalizing flow and whitening post-processing. Through contrastive

learning, SimCSE [54] and DiffCSE [30] also achieved new state-of-the-art sentence

embedding performance by promoting uniformity and alignment [190].
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2.2.2 Sentiment lexicons

SentiWordNet 3.0 [3] is a lexical resource that provides sentiment information for

each word in WordNet [119], a widely-used lexical database of English words and

their relationships. SentiWordNet 3.0 is an improved version of SentiWordNet 1.0 [44],

1.1 [45], 2.0 [43]. SentiWordNet automatically assigns synsets of WordNet according

to notions of “positivity”, “negativity”, and “neutrality”. The sentiment scores of a

synset are assigned on a scale from 0.0 to 1.0 and sum to 1, reflecting a fine-grained

opinion-related word-level labeling. SentiWordNet has been used in a variety of

natural language processing tasks, such as sentiment analysis [37, 127, 87], opinion

mining [78, 35], representation learning [86], and curriculum learning [148]. Besides

SentiWrodNet, other sentiment lexicons include Affective Norms for English Words

(ANEW) [13], Warriner lexicon [192], a new ANEW [126], and ANEW+ [160]. In

this thesis, we will demonstrate the use of sentiment lexicon with word-level labels

in constructing synthetic datasets using SentiWordNet 3.0; however, the framework

proposed in this thesis can take any lexicon with word-level labels. We also envision

our framework to benefit from a richer vocabulary and extend to other value lexicons

like moral lexicons [152].
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Chapter 3

The limit and cost of smoothed models

3.1 Introduction

Current mainstream methods to evaluate robustness of DNNs against adversarial

examples [170, 7] employ robustness verification. Such techniques can guarantee that

no adversarial examples can exist within a specified distance 𝑟 from a given input.

As computing the largest possible 𝑟 has been proven to be NP-complete [85], one

popular approach is to derive a certified lower bound of 𝑟 through convex/linear

relaxation [72, 194, 165, 218], which can be computed efficiently. Nevertheless, these

techniques can hardly scale to state-of-the-art DNNs on ImageNet, motivating the

idea of applying randomized smoothing [31, 99, 103, 80, 100] (i.e. a spatial low-pass

filter) to transform the original classifier into a “smoothed“ counterpart. This new

smoothed classifier now returns the class with the highest probability by querying

input data that has been purposely corrupted by isotropic Gaussian noise 𝑁(0, 𝜎2ℐ).

Although randomized smoothing allows non-trivial robustness verification for the

smoothed classifier on ImageNet, the side-effects of randomized smoothing have not

yet been rigorously studied, except for a case-study of one specific binary classifier

in [64] and some impossibility results on accuracy-certification trade-off [207, 10, 94].

The main motivation of this chapter is to take a deep dive into the hidden cost of

randomized smoothing for general multi-class classifiers.

The development of this chapter is as follows: in Section 3.2 we fully expose a major

39



Table 3.1: A look-up table of theoretical (T) and numerical (N) contributions in
Section 4.

region geometry shrinking vanishing rate 𝜎van shrinking rate certified radius

bounded T (Thm. 3) T - lower bnd. (Thm. 4) N - lower bnd. (Fig. 2) N - case study
semi-bounded T (Thm. 5) not applicable T - lower bnd. (Thm.7) N - case study

hidden cost of randomized smoothing – biased predictions, by providing evidences from

both real-life and synthetic datasets; in Section 3.3 we provide a comprehensive theory

exposing the root of the biased prediction – referred to as the shrinking phenomenon

in the remainder of the thesis; in Section 3.4 we hold a discussion on the effects of data

augmentation on the shrinking phenomenon and implications given by our theoretical

analysis. We give rigorous theoretical analysis and empirical evidences to facilitate a

thorough understanding of the problems of existing randomized smoothing methods.

3.1.1 Our contributions

• We provide theoretical characterization for the shrinking phenomenon incurred

by randomized smoothing. The classes with relatively small decision regions

(compact geometric distribution) shrink with enlarging 𝜎 and thus resulting in

highly-unfair class-wise accuracy

• We give theoretical characterization for the severity of the shrinking phenomenon

and show the rate of the shrinkage (cf. Table 3.1).

• We analyze the effect of Gaussian noise augmentation (cf. data augmentation in

[31]) and conclude that this can lead to a loss in mutual information. In terms

of the classification accuracy, applying Gaussian noise augmentation during

training may lead to low classification accuracy for large 𝜎 on both synthetic

and real datasets.

3.1.2 Related works

Randomized smoothing was initially introduced as a heuristic defense by [111] and

[204]. Later, [99] formulated it as a certification method using ideas from differential
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privacy, which was then improved by [103] using Renyi divergence. For gaussian-

smoothed classifiers, [31] made the certified bounds worst-case-optimal in the context

of certified ℓ2 norm radii by using the Neyman-Pearson Lemma, while authors of [156]

combined the certification method with adversarial training to further improve the

empirical results. Along another line of works, some extended existing certification

methods to get better ℓ𝑝 norm certified radii using different smoothing distributions,

e.g. a discrete distribution for ℓ0 certificates [100], the Laplace distribution for ℓ1

certificates [173, 186], and the generalized Gaussian distribution for ℓ∞ certificates

[215]. Recently, [207] proposed a general method for finding the optimal smoothing

distribution given any threat model, as well as a framework for calculating the certified

robustness for the smoothed classifier.

Recently, a number of works have shown that for ℓ𝑝 norm threat models with

large 𝑝, it is impossible to give a big certified radius
(︀
𝑂(𝑑

1
𝑝
− 1

2
)︀

where 𝑑 is the input

dimension) while retaining a high standard accuracy. In particular, the results on

ℓ∞ threat model given in [10, 94] and the results on ℓ𝑝 (for sufficiently large 𝑝)

threat models given in [207] establish a certification/accuracy trade-off, which also

exaggerates the need for an extended and generalized framework that breaks the

confined trade-off and impossibility results.

3.2 Two motivating examples

The major highlight of randomized smoothing techniques in the scope of adversarial

robustness is its ability to provide non-trivial robustness guarantees (certified radii) for

large networks. With this in mind, as pointed out in [31], for randomized smoothing

with parameter 𝜎, the maximum achievable certified radius is around 4𝜎, implying

larger smoothing factor 𝜎 is needed for a larger maximum achievable certified radius1.

This need is further justified in [31] by pointing out the trade-off between the sample

complexity and certified radii with a fixed smoothing factor. Therefore, one has to use

1One can also gain insights from that the certified radius 𝑟 is proportional to the smoothing factor
𝜎 (cf. equation 2.2).
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Table 3.2: The mean certified radii (with ± std.) of CIFAR10 classifiers learned
with data augmentation and inferred by the randomized smoothing prediction rule.
“certified radius (c)” denotes the correct certified radius.

training 𝜎 0.12 0.25 0.50 1.00 1.50 2.00 3.00
min & max (67.8± 1.9, (55.4± 4.8, (42.4± 4.8, (20.8± 1.3, (9.8± 1.3, (5.4± 0.9, (1.2± 0.8,
class-wise acc.(%) 93.4± 1.3) 89.2± 1.3) 81.9± 2.2) 72.8± 1.5) 61.2± 3.1) 53.2± 3.9) 41.0± 1.0)
certified radius 0.28± 0.01 0.42± 0.02 0.51± 0.03 0.50± 0.01 0.44± 0.01 0.38± 0.01 0.32± 0.01
certified radius (c) 0.34± 0.01 0.56± 0.01 0.80± 0.02 1.07± 0.01 1.25± 0.03 1.40± 0.03 1.80± 0.07

large 𝜎 to achieve the state-of-the-art robustness guarantees while avoiding impractical

sample complexity.

In Table 3.2, we validate this point by calculating the certified radii of CIFAR10

smoothed classifiers with base classifier trained with data augmentation2. In this

experiment, we vary the smoothing factor 𝜎 from 0.12 to 3.00, which is used simultane-

ously in data augmentation and randomized smoothing. When reporting their certified

radius, we consider two metrics: 1) certified radius - the mean of all certified radii in

the testing set, with the radius assigned to zero for wrongly-classified samples; and

2) correct certified radius - the mean of certified radii of correctly-classified samples

in the testing set. We then see that with the increasing smoothing factor 𝜎, the

average certified radius of correctly-classified samples keeps rising from only 0.34 to

1.80, obtaining indeed non-trivial robustness guarantees.

On the other hand, the average certified radius of all samples climbs to around

0.5 and then decreases to 0.32. This is because the classification accuracy also drops

as one uses larger 𝜎, pushing more samples to have zero certified radius. In order to

better understand the drop in accuracy and the affected examples, we provide a case

study over a synthetic dataset.

2Throughout the chapter, all the classification results and certified radii are obtained with the
open-source code provided by [156].
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3.2.1 Synthetic datasets

Consider the binary-classification problem on the dataset (𝒳 = 𝒳1 ∪ 𝒳2) given as

mixture of Gaussians:

𝒳1 = (
1

2
− 𝜖) · 𝒩 (−𝑎, 𝜎2

𝑜) + 𝜖 · 𝒩 (𝑘𝑎, 𝜎2
𝑜);

𝒳2 =
1

2
· 𝒩 (0, 𝜎2

𝑜);

where 𝑎, 𝑘, 𝜎𝑜 ∈ R+/{0}. Then we have

Theorem 1. Consider a classifier 𝑓train,𝜎𝑡 given as the naive-Bayes classifier obtained

by training on the dataset 𝒳 with data augmentation of variance 𝜎𝑡. Let the class-

wise accuracy of 𝑓train,𝜎𝑡 using the randomized smoothing prediction rule be given as

𝐴𝑐𝑐1(𝜎𝑡), 𝐴𝑐𝑐2(𝜎𝑡). Then we define the bias (Δ(𝜎𝑡)) to be the gap between class-wise

accuracies (Δ(𝜎𝑡) = |𝐴𝑐𝑐1(𝜎𝑡)− 𝐴𝑐𝑐2(𝜎𝑡)|). For 𝑘 > 1
2𝜖
− 1, class I decision region

grows in size at a rate of 𝑂(𝜎2
𝑡 ) and thus the bias is large for large 𝜎𝑡.

It is quite well-known that using higher 𝜎 leads to lowering of accuracy. In general,

previous works have stated the existence of a robustness-accuracy trade-off. Here, we

notice another interesting and quite important problem that is created by randomized

smoothing: randomized smoothing based models for high values of 𝜎𝑡 are biased in

their predictions. Some classes are favored a lot more than others, resulting in huge

difference in class-wise accuracies.

In order to better understand the extent of the bias possible, we also study the

limiting case of 𝜎𝑜 → 0. This allows us to effectively study large bias without having

𝜎𝑡 →∞. In particular, we consider the dataset(𝒳 ′) with probability mass function :

𝜌(0, 1) =
1

2
; 𝜌(−𝑎, 2) = 1

2
− 𝜖; 𝜌(𝑘𝑎, 2) = 𝜖,

with 𝑎, 𝑘 defined as before. For this new dataset, we see that

Theorem 2. Consider a classifier 𝑓train,𝜎𝑡 given as the naive-Bayes classifier obtained

by training on the dataset 𝒳 ′ with data augmentation of variance 𝜎𝑡. The bias of the
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Table 3.3: The class-wise accuracy (%) in percentile of classifiers and smoothing
factors used in [31].

CIFAR10 ImageNet
percentile 1st 25th 50th 75th 100th 1st 25th 50th 75th 100th
𝜎 = 0.00 78 88 91 93 96 14 66 78 88 100

0.12 0 8 15 24 100 0 36 52 66 96
0.25 0 0 0 0 72 0 2 10 20 82
0.50 0 0 0 0 98 0 0 0 0 56

classifier 𝑓train,𝜎𝑡 using the randomized smoothing prediction rule is 1− 𝜖, if 𝑘 > 𝑒2

𝜖
− 1

and 𝜎𝑡 ≥ 𝑎

√︂
𝑘(𝑘+1)

2𝑙𝑛(2𝜖(𝑘+1))− 2𝑘
𝑘+2

.

To give intuitive understanding of the critical smoothing factor in Theorem 2,

we fix the scale of the dataset 𝑎(𝑘 + 1) to be [0, 1] as is common-practice in the

literature [31, 156]. Then, we observe the shrinking effects happen at 𝜎 ≈ 0.7 which is

well within the realm of smoothing factors used in practice ([31, 156] use smoothing

factors upto 1.0 for data augmentation and randomized smoothing). This idea can

be extended to several more general and interesting cases: a multi-class case giving

accuracy 1
𝑐
+ 𝜖 by having class 1 with the same distribution and the rest of the

classes with distributions similar to that of class 2’s; and a binary-class case where

adopting data augmentation does not change the optimal solution but the subsequent

randomized smoothing inference still gets low accuracy for a high enough smoothing

factor 𝜎.

3.2.2 Real-life datasets

In the existing literature, randomized smoothing remains a legitimate way of providing

adversarial robustness. However, the results on the synthetic datasets suggest random-

ized smoothing is biased towards some classes. In order to see if the bias is present

in real-life datasets we consider a new metric, namely the min and max class-wise

accuracy, where we calculate separately for each class their classification accuracy

and report the minimum and the maximum. In Table 3.2 we give the performance of

randomized smoothing based classifiers under the new metric. With this metric, one

can then readily see that despite the increasing trend in certified radii, the class-wise
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accuracies becomes more imbalanced at higher smoothing factor 𝜎. Specifically, when

the smoothing factor 𝜎 = 0.12, the smoothed network with base classifier being trained

by data augmentation with the same magnitude of Gaussian noise classifies “cat”

samples with 67% accuracy and “automobile” samples with 92% accuracy. However,

when 𝜎 = 1.00, this gap evolves to 22% accuracy (“cat”) versus 68% accuracy (“ship”).

This comes as an unpleasant surprise since it essentially means despite the current

success of randomized smoothing in adversarial robustness, the method can lead to

biased predictions, causing fairness issues.

As remarked earlier, a randomized smoothing model differs from other models in

two phases, data augmentation during training and smoothing during inference. As the

statistical guarantees given by randomized smoothing depend on the smoothing during

inference, we focus on its role in producing the bias. Before proceeding, we verify that

the bias problem still persists in the absence of augmentation during training. We

conduct the smoothing experiments on the pretrained models provided by Cohen et al.

(2019). In Table 3.3, we report the smoothing factors 𝜎 and corresponding class-wise

accuracies (sorted ascendingly) in percentile of [1st,25th,50th,75th,100th]. That is, the

1st and 100th in the percentile correspond to the lowest (min) and highest (max) class-

wise accuracy, respectively For CIFAR10, the [25th, 75th] percentile corresponds to the

[3rd, 8th] lowest per-class accuracy. One can then see that originally more than 3/4

of the classes in datasets have reasonable accuracy, which decreases as 𝜎 goes bigger.

Eventually, when 𝜎 = 0.5, more than 3/4 of the classes have 0 accuracy. Notably,

𝜎 = 0.5 is a reasonable number under the current randomized smoothing regime since

the largest sigma used by [31] and [156] is 1.0. Thus, we see that randomized smoothing

produces biased results even in the absence of data augmentation during training.

In the next section, we analyze how biased predictions are caused by randomized

smoothing depending on the geometry of the underlying data distribution.
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3.3 Theoretical characterization of the shrinking phe-

nomenon

A B
certified radius of 
point A
certified radius of 
point B

A

B

certified radius of 
point A
certified radius of 
point B e f g h

Figure 3-1: The 1st row shows examples of bounded decision regions for smoothed
classifiers. The 2nd row shows examples of semi-bounded decision regions. The
class 1 decision regions shrink as the smoothing factor 𝜎 increases from left to right.
In case (h) with larges 𝜎, the decision region has shrunk so much that class 1 data are
completely misclassified. We also plot the certified radius (equation 2.2) of point 𝐴
and 𝐵 and show that it may decrease as 𝜎 increases.

Before we start our theoretical characterization, we first give a visual inspection

of how randomized smoothing can change the decision regions. Specially, Figure 3-1

illustrates two toy examples, in which the decision regions of class 1 data (the dark

green region in the first row and the pink region in the second row) shrink with larger

smoothing factors 𝜎. As consequences of the shrinkage, the class-wise accuracy for

class 1 data drops drastically, leading to the biased prediction.

Indeed, in this section, we aim to take a close look at this shrinking phenomenon

of randomized smoothing, uncovering the fundamental problem of the technique.

Moreover, we conduct a rigorous study providing also the bounds of extreme values,

beyond which the shrinking phenomenon will happen. Our results are tight and prove

the prevalence of such phenomena. In order to facilitate this analysis we perform the

following reductions.

Problem Reductions. By the definition of randomized smoothing, the smoothed

function depends on the base classifier only through the indicator function 𝑓 . As the
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smoothed function 𝑓𝜎 only depends on the partitioning of the input space created

by the base classifier 𝑔, we shift our focus from the output of 𝑔 to how it partitions

the input space, i.e., we are interested in characterizing all possible partitions of the

input space that can lead to biased prediction as one applies randomized smoothing

with a high 𝜎. As it is hard to measure a decrease in accuracy directly from the

geometry of the classifier, we approximate the decrease in accuracy using the mismatch

in partitions of input space provided by 𝑓 and by 𝑓𝜎.

However, the problem of characterizing the partitions of the space into multiple

classes is intractable. So we instead focus on tracking the behaviour of the decision

boundary of a single class with respect to randomized smoothing. Without loss

of generality, we set the concerned class as class 1. In this case, we analyze the

misclassification rate for class 1 by the region size of the input space that is partitioned

as class 1 under 𝑓 but not under 𝑓𝜎. Considering that for any 𝑥 ∈ R𝑑, the necessary

condition for it to be classified as class 1 is to have 𝑓𝜎(𝑥)1 ≥ 1
𝑐
, so we do a worst-case

analysis by assuming the reformed class 1 partition is defined by exactly 𝑓𝜎(𝑥)1 ≥ 1
𝑐
.

If this overestimated reformed class 1 partition is still smaller than the original, then

for sure the actual misclassification rate will be higher than the analysis herein.

Problem Formulation. We formulate our problem as to characterize the “decision

regions” that will shrink or drift after applying randomized smoothing. Formally, the

decision region 𝒟 of class 1 data is determined by the classifier 𝑓 via 𝒟 = {𝑥 | 𝑓(𝑥)1 =

1}. By adopting randomized smoothing, we obtain 𝑓𝜎(𝑥) =
∫︀
𝑥′∈R𝑑 𝑓(𝑥

′)𝑝(𝑥′)𝑑𝑥′ with

the decision region denoted by 𝒟𝜎 = {𝑥 | (𝑓𝜎(𝑥))1 ≥ 1
𝑐
}. The scope of this section is to

investigate under what conditions (w.r.t. the classifier and smoothing factor 𝜎) will the

shrinking happen. On the whole, the shrinking effect depends highly on the geometry

of the data distribution. However, considering the intractable numbers of possible

decision region geometry, we will only discuss here two major classes of the geometries

(bounded in Section 3.3.1 and semi-bounded in Section 3.3.2) for multidimensional

data (i.e. 𝑑 > 1). We supplement 𝑑 = 1 discussions in the Appendix B.1.1. All the

supporting proofs are deferred to the appendix.
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3.3.1 Bounded decision region

In this section, we aim at proving the shrinking side-effects incurred by the smoothing

filter when the decision region is bounded. Formally, we say a decision region is

bounded and shrinks according to the following definition:

Definition 3.3.1 (Bounded Decision Regions). If the decision region (disconnected or

connected) of class 1 data is a bounded set in the Euclidean space (can be bounded by

a ball of finite radius), then we call these decision regions bounded decision regions.

We denote the smallest ball that contains the original decision region of 𝑓 by 𝑆𝒟

(𝒟 ⊆ 𝑆𝒟). Similarly, we let the smallest ball that contains the smoothed decision

region (the decision region of smoothed classifier) be 𝑆𝒟𝜎 (𝒟𝜎 ⊆ 𝑆𝒟𝜎).

Definition 3.3.2 (Shrinking of Bounded Decision Regions). A bounded decision

region is considered to have shurnk after applying smoothing filters if the radius 𝑅𝜎 of

𝑆𝒟𝜎 is strictly smaller than the radius 𝑅 of 𝑆𝒟, i.e. 𝑅𝜎 < 𝑅, where 𝑆𝒟 and 𝑆𝒟𝜎 are

the smallest balls containing the original decision region and the smoothed decision

region, respectively.

For randomized smoothing, we observe that

Corollary 1. The smallest ball 𝑆𝒟𝜎 containing the smoothed decision region is con-

tained within the smoothed version of 𝑆𝒟, i.e. 𝑆𝒟𝜎 ⊆ (𝑆𝒟)𝜎.

Proof. As we have 𝒟 ⊆ 𝑆𝒟, from Lemma A.2 we get 𝒟𝜎 ⊆ (𝑆𝒟)𝜎. Then by isotropy

we have that (𝑆𝒟)𝜎 is also a ball centered at the same point as 𝑆𝒟. As 𝑆𝒟𝜎 is the

smallest ball containing 𝒟𝜎, we have that 𝑆𝒟𝜎 ⊆ (𝑆𝒟)𝜎.

Theorem 3. A bounded decision region shrinks after applying Gaussian smoothing

filters with large 𝜎, i.e. if 𝜎 > 𝑅
√
𝑐√

2(𝑑−1)
, then 𝑅𝜎 < 𝑅, where 𝑅 and 𝑅𝜎 are the radii of

𝑆𝒟 and 𝑆𝒟𝜎 , the smallest balls bounding the original decision region and the smoothed

decision region, respectively.

Proof. Considering the ball 𝑆𝒟, we see that from Corollary 1, 𝒟𝜎 ⊆ (𝑆𝒟)𝜎. Thus, we

see that by the definition of radius 𝑅𝒟𝜎 ≤ 𝑅(𝑆𝒟)𝜎 . It is sufficient to show that for
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large 𝜎, 𝑅(𝑆𝒟)𝜎 < 𝑅𝑆𝒟 . Then we observe that due to the isotropic nature of Gaussian

smoothing, (𝑆𝒟)𝜎 is also a sphere concentric to 𝑆𝒟. So, it is sufficient to show that for

a point 𝑥 at distance 𝑅𝑆𝒟 from the center 𝑥0 of the sphere, 𝑓𝜎(𝑥)1 < 1
𝑐
.

Without loss of generality consider 𝒟 to be the origin-centered sphere of radius 𝑅 and

𝑥 = [0, . . . , 0, 𝑅]𝑇 . It is sufficient to show for large 𝜎 𝑓𝜎(𝑥)1 < 1
𝑐
. By definition A.1.2,

we have

𝑓𝜎(𝑥)1 =

∫︁
𝑥′∈R𝑑

𝑓(𝑥′)1𝑝(𝑥
′)𝑑𝑥′

=

∫︁
‖𝑥′‖2≤𝑅

(2𝜋)−
𝑑
2 |Σ|−

1
2 𝑒−

1
2
(𝑥′−𝑥)𝑇Σ−1(𝑥′−𝑥)𝑑𝑥′

=

∫︁
‖𝑥′‖2≤𝑅

(2𝜋𝜎2)−
𝑑
2 𝑒−

(𝑥′−𝑥)𝑇 (𝑥′−𝑥)

2𝜎2 𝑑𝑥′. (3.1)

Then substituting the value of 𝑥, we get the equation.

𝑓𝜎(𝑥)1 =

∫︁
‖𝑥′‖2≤𝑅

(2𝜋𝜎2)−
𝑑
2 𝑒

∑︀𝑑−1
𝑖=1

𝑥′2𝑖 +(𝑥′𝑑−𝑅)2

2𝜎2 𝑑𝑥′

=

∫︁ 𝑅

−𝑅

∫︁
∑︀𝑑−1

𝑘=1 𝑥
′
𝑘
2≤𝑅2−𝑥′

𝑑
2
(2𝜋𝜎2)−

𝑑
2 𝑒−

∑︀𝑑−1
𝑘=1

(𝑥′𝑘−𝑥𝑘)2

2𝜎2 𝑑𝑥′1 . . . 𝑑𝑥
′
𝑑−1𝑒

− (𝑥′𝑑−𝑥𝑑)
2

2𝜎2 𝑑𝑥′𝑑

<

∫︁ 𝑅

−𝑅

∫︁
∑︀𝑑−1

𝑘=1 𝑥
′
𝑘
2≤𝑅2

(2𝜋𝜎2)−
𝑑
2 𝑒−

∑︀𝑑−1
𝑘=1

(𝑥′𝑘−𝑥𝑘)2

2𝜎2 𝑑𝑥′1 . . . 𝑑𝑥
′
𝑑−1𝑒

− (𝑥′𝑑−𝑥𝑑)
2

2𝜎2 𝑑𝑥′𝑑

= (

∫︁ 𝑅

−𝑅

(2𝜋𝜎2)−
1
2 𝑒−

(𝑥′𝑑−𝑥𝑑)
2

2𝜎2 𝑑𝑥′𝑑)(

∫︁
∑︀𝑑−1

𝑘=1 𝑥
′
𝑘
2≤𝑅2

(2𝜋𝜎2)−
𝑑−1
2 𝑒−

∑︀𝑑−1
𝑘=1

(𝑥′𝑘−𝑥𝑘)2

2𝜎2 𝑑𝑥′1 . . . 𝑑𝑥
′
𝑑−1)

= (Φ(
2𝑅

𝜎
)− Φ(0)) ·𝑄(𝑑− 1

2
,
𝑅2

2𝜎2
)

<
1

2
·𝑄(𝑑− 1

2
,
𝑅2

2𝜎2
).

Using Lemma A.3 we get that for 𝑑 ≥ 3, if 𝑅2

2𝜎2 ≤ 𝑑−1
𝑐

, then we have 1
2
·𝑄(𝑑−1

2
, 𝑅2

2𝜎2 ) <
1
𝑐
.

Now, 𝑅2

2𝜎2 <
𝑑−1
𝑐

gives

𝜎 >
𝑅
√
𝑐√︀

2(𝑑− 1)
.

Analysis of bounded decision regions with randomized smoothing. As

we have proven that any bounded decision region shrinks after applying randomized

49



smoothing filters, we will investigate in this part of the chapter how fast the decision

region (quantified by 𝑅𝜎) shrinks/vanishes. From Corollary 1, we have that the smallest

ball 𝑆𝒟𝜎 containing the smoothed decision region is contained within the smoothed

version of 𝑆𝒟. Therefore we only consider the worst case when we have a ball-like

decision region. Without loss of generality, we consider a case when the decision region

of class 1 data characterized by the network function is exactly {𝑥 ∈ R𝑑 | ‖𝑥‖2 ≤ 𝑅}.

Theorem 4 (Vanishing Rate in the Ball-like Decision Region Case). The decision

region of class 1 data vanishes when smoothing factor 𝜎van >
𝑅
√
𝑐√
𝑑

.

Proof. Noticing that the surface area of a 𝑑-dimensional ball of radius 𝑟 is proportional

to 𝑟𝑑−1, we can therefore write out the probability of the point at the origin be classified

as class 1 as

𝑞(𝑅, 𝑑, 𝜎) =

∫︀ 𝑅

0
𝑟𝑑−1( 1

2𝜋𝜎2 )
𝑑
2 𝑒−

𝑟2

2𝜎2 𝑑𝑟∫︀∞
0
𝑟𝑑−1( 1

2𝜋𝜎2 )
𝑑
2 𝑒−

𝑟2

2𝜎2 𝑑𝑟

=

∫︀ 𝑅

0
𝑟𝑑−1𝑒−

𝑟2

2𝜎2 𝑑𝑟∫︀∞
0
𝑟𝑑−1𝑒−

𝑟2

2𝜎2 𝑑𝑟

𝑡= 𝑟2

2𝜎2
=====

∫︀ 𝑅2

2𝜎2

0 (2𝜎2𝑡)
𝑑−1
2 𝑒−𝑡𝜎2(2𝜎2𝑡)−

1
2𝑑𝑡∫︀∞

0
(2𝜎2𝑡)

𝑑−1
2 𝑒−𝑡𝜎2(2𝜎2𝑡)−

1
2𝑑𝑡

=

∫︀ 𝑅2

2𝜎2

0 𝑡
𝑑
2
−1𝑒−𝑡𝑑𝑡∫︀∞

0
𝑡
𝑑
2
−1𝑒−𝑡𝑑𝑡

= 𝑄(
𝑑

2
,
𝑅2

2𝜎2
).

Now let 𝜎 =
√︀

𝑐
𝑑
𝑅 yields 𝑞(𝑅, 𝑑,

√︀
𝑐
𝑑
𝑅) = 𝑄(𝑑

2
, 𝑑
2𝑐
). By Lemma A.3, we then have

𝑄(𝑑
2
, 𝑑
2𝑐
) < 1

𝑐
, implying the decision region of class 1 data has already vanished and

making 𝜎 =
√︀

𝑐
𝑑
𝑅 an upper bound of the vanishing smoothing factor.

We validate Theorem 4 for binary classification (𝑐 = 2) by substituting 𝑅 by 𝑅 = 1

and plot the shrinking rate (the derivatives of 𝑅𝜎 with respect to 𝜎) of the decision

region as a function of the smoothing factor 𝜎 for different input data dimensions

𝑑 = {3, 8, 20, 30, 40, 50} in Figure 3-2. Notably, the x-axis in Figure 3-2 is the varying

50



Figure 3-2: The shrinking rate of the decision region quantified by 𝑅𝜎 for different
input data dimension 𝑑.

smoothing factor 𝜎 and the y-axis is the rate of the shrinkage concerning class 1

decision region. We then see that overall the region vanishes at smaller smoothing

factor 𝜎van with the growing dimension. For example, the shrinking rate curve stops at

smoothing factor 𝜎van = 0.651 when 𝑑 = 3 but at smoothing factor 𝜎van = 0.141 when

𝑑 = 50. We collect these vanishing smoothing factors with different data dimensions

and compare with the theoretical lower bounds found in Theorem 4 in the appendix

to demonstrate the tightness of our theoretical lower bound. In a multi-class case,

the certifiability and prediction do not follow the same setting as in [31]. For the

certifiability, the effective number of classes is 2 as [31] treats it as a one vs all setting.

Therefore one would be unable to certify any radius with some smoothing factor

𝜎 < 𝜎van in the multi-class case. We further elaborate on this point about certifiability

in Section 3.3.3.

3.3.2 Semi-bounded decision region

In this section, we discuss the case when the decision region is semi-bounded and

is not a half-space. Formally, we say a decision region is semi-bounded and shrinks

according to the following definitions:

Definition 3.3.3 (Semi-bounded Decision Regions). If a decision region is not bounded

and there exists a half-space ℋ (decided by a hyperplane) that contains the unbounded
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decision region, then we call it semi-bounded decision region. We say a semi-bounded

decision region is bounded in 𝑣-direction if there ∃𝑘 ∈ R/∞ such that for ∀𝑥 ∈ 𝒟,

𝑣𝑇𝑥 < 𝑘.

An illustrative example of semi-bounded decision regions is shown as Figure 3-1,

where we have 3 clusters of data points denoting three different classes’ data and their

decision regions. Observing the change in the decision region of class 1, we define

“shrinking” as

Definition 3.3.4 (Shrinking of Semi-bounded Decision Regions). A semi-bounded

decision region bounded in 𝑣-direction is distinguished as shrinked along the direction

after applying smoothing filters if the upper bound of projections of the decision

region onto direction 𝑣 shrinks, i.e. ϒ𝑣
𝒟𝜎

< ϒ𝑣
𝒟, where ϒ𝑣

𝒟 = max𝑥∈𝒟 𝑣
𝑇𝑥,ϒ𝑣

𝒟𝜎
=

max𝑥∈𝒟𝜎 𝑣
𝑇𝑥.

With this definition of shrinking of semi-bounded decision regions, we demon-

strate in the following that any “narrow” semi-bounded decision region bounded in

𝑣-dimension will shrink along the direction (cf. Figure 3-1(e-h)). We quantify the size

of a decision region as follows:

Definition 3.3.5 (𝜃, 𝑣-Bounding Cone for a Decision Region). A 𝜃, 𝑣 cone is defined

as a right circular cone 𝒞 with axis along −𝑣 and aperture 2𝜃. Then we define the

𝜃, 𝑣-bounding cone 𝒞𝒟𝜃,𝑣 for 𝒟 as the 𝜃, 𝑣 cone that has the smallest projection on 𝑣

and contains 𝒟, i.e., 𝒞𝒟𝜃,𝑣 = argmin𝒟⊆𝒞𝜃,𝑣 ϒ
𝑣
𝒞𝜃,𝑣 .

Theorem 5. A semi-bounded decision region that has a narrow bounding cone shrinks

along 𝑣-direction after applying Gaussian smoothing filters with high 𝜎, i.e. if the

region admits a bounding cone 𝒞𝒟𝜃,𝑣 with tan(𝜃) <
√︁

(𝑑−1)
2𝑐 log(𝑐−1)

, then for 𝜎 > (ϒ𝑣
𝒞𝒟
𝜃,𝑣
−

ϒ𝑣
𝒟) tan(𝜃)

√︀
𝑐

𝑑−1
· 2(𝑑−1)
(𝑑−1)−2 tan2(𝜃)𝑐 log(𝑐−1)

, ϒ𝑣
𝒟𝜎

< ϒ𝑣
𝒟.

Proof. In this derivation we assume without loss of generality, 𝑣 = [0, . . . , 0, 1]𝑇 ∈ R𝑑 (It

is always possible to orient the axis to make this happen). From Corollary A.1, we can

see that 𝒟𝜎 ⊆ (𝒞𝒟𝜃,𝑣)𝜎 which gives us ϒ𝑣
𝒟𝜎

= max𝑥∈𝒟𝜎 𝑣
𝑇𝑥 ≤ max𝑥∈(𝒞𝒟

𝜃,𝑣)𝜎
𝑣𝑇𝑥 = ϒ𝑣

(𝒞𝒟
𝜃,𝑣)𝜎

.

Then to show that ϒ𝑣
𝒟𝜎

< ϒ𝑣
𝒟 it is sufficient to show that ϒ𝑣

(𝒞𝒟
𝜃,𝑣)𝜎

< ϒ𝑣
𝒟.
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We observe that we only need to check the point 𝑥 on the axis of the cone at distance

ϒ𝑣
𝒞𝒟
𝜃,𝑣
−ϒ𝑣

𝒟 from the tip 𝑥0 of the cone, i.e., 𝑥 = 𝑥0−(ϒ𝑣
𝒞𝒟
𝜃,𝑣
−ϒ𝑣

𝒟)𝑣. If 𝑥 is not classified

as Class 1 then by Lemma A.5, we have that

ϒ𝑣
(𝒞𝒟

𝜃,𝑣)𝜎
< 𝑣𝑇𝑥 = 𝑣𝑇 (𝑥0 − (ϒ𝑣

𝒞𝒟
𝜃,𝑣
−ϒ𝑣

𝒟)𝑣)

= 𝑣𝑇𝑥0 − (ϒ𝑣
𝒞𝒟
𝜃,𝑣
−ϒ𝑣

𝒟)𝑣
𝑇𝑣

= ϒ𝑣
𝒞𝒟
𝜃,𝑣
− (ϒ𝑣

𝒞𝒟
𝜃,𝑣
−ϒ𝑣

𝒟) = ϒ𝑣
𝒟

From the above argument and the definition of the decision boundary we see that if

𝑓𝜎(𝑥)1 <
1
𝑐
, then ϒ𝑣

𝒟𝜎
< ϒ𝑣

𝒟. Without loss of generality we let 𝑥0 be the origin. By

definition A.1.2, we have

𝑓𝜎(𝑥)1 =

∫︁
𝑥′∈R𝑑

𝑓(𝑥′)1𝑝(𝑥
′)𝑑𝑥′

=

∫︁
𝑥′
𝑑+‖𝑥′‖𝑐𝑜𝑠(𝜃)≤0

(2𝜋𝜎2)−
𝑑
2 𝑒−

(𝑥′−𝑥)𝑇 (𝑥′−𝑥)

2𝜎2 𝑑𝑥′

= (2𝜋𝜎2)−
𝑑
2

∫︁ 0

−∞

∫︁
Σ𝑑−1

𝑘=1𝑥
′
𝑘
2≤𝑡𝑎𝑛2(𝜃)𝑥′

𝑑
2
𝑒−

∑︀𝑑−1
𝑘=1

(𝑥′𝑘−𝑥𝑘)2

2𝜎2 𝑑𝑥′1 . . . 𝑑𝑥
′
𝑑−1𝑒

− (𝑥′𝑑−𝑥𝑑)
2

2𝜎2 𝑑𝑥′𝑑

= (2𝜋𝜎2)−
𝑑
2

∫︁ 0

−∞

∫︁
Σ𝑑−1

𝑘=1𝑥
′
𝑘
2≤𝑡𝑎𝑛2(𝜃)𝑥′

𝑑
2
𝑒−

∑︀𝑑−1
𝑘=1

𝑥′𝑘
2

2𝜎2 𝑑𝑥′1 . . . 𝑑𝑥
′
𝑑−1𝑒

− (𝑥′𝑑−𝑥𝑑)
2

2𝜎2 𝑑𝑥′𝑑

= (2𝜋𝜎2)−
1
2

∫︁ 0

−∞
𝑞(|𝑥′𝑑 tan(𝜃)|, 𝑑− 1, 𝜎)𝑒−

(𝑥′𝑑−𝑥𝑑)
2

2𝜎2 𝑑𝑥′𝑑

= (2𝜋𝜎2)−
1
2

∫︁ 0

−∞
𝑄(
𝑑− 1

2
,
𝑡𝑎𝑛2(𝜃)𝑥′𝑑

2

2𝜎2
)𝑒−

(𝑥′𝑑−𝑥𝑑)
2

2𝜎2 𝑑𝑥′𝑑

Substitute 𝑋𝑑 =
𝑥𝑑

𝜎
, 𝑋 ′

𝑑 =
𝑥′
𝑑

𝜎
,

𝑓𝜎(𝑥)1 = (2𝜋)−
1
2

∫︁ 0

−∞
𝑄(
𝑑− 1

2
,
𝑡𝑎𝑛2(𝜃)𝑋 ′

𝑑
2

2
)𝑒−

(𝑋′
𝑑−𝑋𝑑)

2

2 𝑑𝑋 ′
𝑑
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Let 𝑀 ≤
√︁

𝑑−1
𝑐 tan2(𝜃)

, 𝑘 = 𝑀
𝑋𝑑

,

𝑓𝜎(𝑥)1 = (2𝜋)−
1
2

∫︁ 0

𝑀

𝑄(
𝑑− 1

2
,
𝑡𝑎𝑛2(𝜃)𝑋 ′

𝑑
2

2
)𝑒−

(𝑋′
𝑑−𝑋𝑑)

2

2 𝑑𝑋 ′
𝑑

+ (2𝜋)−
1
2

∫︁ 𝑀

−∞
𝑄(
𝑑− 1

2
,
𝑡𝑎𝑛2(𝜃)𝑋 ′

𝑑
2

2
)𝑒−

(𝑋′
𝑑−𝑋𝑑)

2

2 𝑑𝑋 ′
𝑑

< (Φ(−𝑋𝑑)− Φ(𝑀 −𝑋𝑑))𝑄(
𝑑− 1

2
,
tan2(𝜃)𝑀2

2
) + Φ(𝑀 −𝑋𝑑)

<
Φ(−𝑋𝑑)− Φ(𝑀 −𝑋𝑑)

𝑐
+ Φ(𝑀 −𝑋𝑑)

=
1

𝑐
+

(𝑐− 1)Φ((𝑘 − 1)𝑋𝑑)− Φ(𝑋𝑑)

𝑐
.

Then we see that using Lemma A.6, we see that we see that if 𝑒
𝑋2

𝑑((𝑘−1)2−1)

2 ≥ 𝑐 − 1

then (𝑐− 1)Φ((𝑘 − 1)𝑋𝑑) ≤ Φ(𝑋𝑑). So, we need to satisfy the inequalities for some 𝑘:

√︃
2 log(𝑐− 1)

(𝑘 − 1)2 − 1
≤ −𝑋𝑑 ≤

√︃
𝑑− 1

𝑘2𝑐 tan2(𝜃)
.

This is only possible if for some 𝑘, we have
√︁

2 log(𝑐−1)
(𝑘−1)2−1

≤
√︁

𝑑−1
𝑘2𝑐 tan2(𝜃)

or tan(𝜃) ≤√︁
𝑑−1

2𝑐 log(𝑐−1)
.
√︁

1− 2
𝑘
. So, we need that

tan(𝜃) <

√︃
𝑑− 1

2𝑐 log(𝑐− 1)
.

Then we see that giving the cone is narrow enough, we have the required shrinking if

we have 𝑋𝑑 satisfies the inequalities for some k. So, we see that if we have −𝑋𝑑 =√︁
𝑑−1

𝑘2𝑐 tan2(𝜃)
for some 𝑘 such that tan(𝜃) ≤

√︁
𝑑−1

2𝑐 log(𝑐−1)
.
√︁

1− 2
𝑘

is satisfied. So, we need

that −𝑥𝑑

𝜎
=
√︁

𝑑−1
𝑘2𝑐 tan2(𝜃)

for some suitable 𝑘. Thus we need 𝜎 = −𝑥𝑑 tan(𝜃)
√︀

𝑐
𝑑−1

𝑘 for

some suitable 𝑘. Including the constraint on 𝑘 and substituting the value for 𝑥𝑑, we

get that shrinking always happens for

𝜎 ≥ (ϒ𝑣
𝒞𝒟
𝜃,𝑣
−ϒ𝑣

𝒟) tan(𝜃)

√︂
𝑐

𝑑− 1
· 2(𝑑− 1)

(𝑑− 1)− 2 tan2(𝜃)𝑐 log(𝑐− 1)
.
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Concretely, the narrowness condition (the larger the easier to fulfill) of the cone

for MNIST dataset [98] relaxes to 0.43𝜋 = 76.7∘, meaning that if any single class’s

decision region can be bounded by a 𝜃, 𝑣 cone with 𝜃 being less than 76.7∘, then

shrinking effect happens. Correspondingly, this narrowness condition for CIFAR10

dataset [98] is 0.46𝜋 = 83.2∘ and 0.42𝜋 = 75.2∘ for ImageNet dataset [155]. Notably,

for binary classification tasks (𝑐 = 2), according to Theorem 5, the condition for

shrinking reduces to tan(𝜃) <∞ that implies 𝜃 < 𝜋/2. In other words, when there are

only two classes, as long as the semi-decision region is not a half-space, it will shrink.

Analysis of the semi-bounded case with randomized smoothing. As in

Section 3.3.1, we conduct the analysis using the worst-case ball-like bounded decision

region, here we correspondingly consider a solid right circular cone along the 𝑣 direction.

The shrinkage in this case serves as a non-trivial lower bound. Without loss of generality,

we consider a 𝜃, 𝑣 solid right circular cone {𝑥 ∈ R𝑑 | 𝑣𝑇𝑥− ‖𝑣‖‖𝑥‖𝑐𝑜𝑠(𝜃) ≤ 0} as the

decision region 𝒟 of class 1 data, where −𝑣 = [0, . . . , 0, 1]𝑇 ∈ R𝑑. Since the semi-

bounded decision region is unbounded and will shrink but will not vanish, we emphasize

in this section only on giving the shrinking rate with respect to the smoothing factor

𝜎, the number of classes 𝑐, the angle 𝜃, and the data dimension 𝑑 with randomized

smoothing. Two major theorems regarding the shrinking rate in the solid cone-like

decision region are:

Theorem 6. The shrinkage of class 1 decision region is proportional to the smoothing

factor, i.e. ϒ𝑣
𝒟 −ϒ𝑣

𝒟𝜎
∝ 𝜎.

Proof. In this case we assume a cone-like decision region which can be represented

as 𝒟 = {𝑥 ∈ R𝑑 | 𝑣𝑇𝑥 + ‖𝑣‖‖𝑥‖𝑐𝑜𝑠(𝜃) ≤ 0} with 𝑣 = [0, . . . , 0, 1]𝑇 without loss of

generality. By Lemma A.5, we see that in order to get bounds on ϒ𝑣
𝒟𝜎

, we only need

to analyze the value of 𝑓𝜎(𝑥)1 for points 𝑥 along the axis of the cone. Then we see

that for a general point 𝑥 = 𝑎𝑣 along the axis of the cone, using the same ideas as in

proof of Theorem 5, we have
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𝑓𝜎(𝑥)1 =

∫︁
𝑥′∈R𝑑

𝑓(𝑥′)1𝑝(𝑥
′)𝑑𝑥′

= (2𝜋𝜎2)−
𝑑
2

∫︁ 0

−∞

∫︁
Σ𝑑−1

𝑘=1𝑥
′
𝑘
2≤𝑡𝑎𝑛2(𝜃)𝑥′

𝑑
2
𝑒−

∑︀𝑑−1
𝑘=1

𝑥′𝑘
2

2𝜎2 𝑑𝑥′1 . . . 𝑑𝑥
′
𝑑−1𝑒

− (𝑥′𝑑−𝑎)2

2𝜎2 𝑑𝑥′𝑑

= (2𝜋𝜎2)−
1
2

∫︁ 0

−∞
𝑄(
𝑑− 1

2
,
𝑡𝑎𝑛2(𝜃)𝑥′𝑑

2

2𝜎2
)𝑒−

(𝑥′𝑑−𝑎)2

2𝜎2 𝑑𝑥′𝑑

Substitute 𝐴 =
𝑎

𝜎
, 𝑥′𝑑 =

𝑥′𝑑
𝜎

= (2𝜋)−
1
2

∫︁ 0

−∞
𝑄(
𝑑− 1

2
,
𝑡𝑎𝑛2(𝜃)𝑥′𝑑

2

2
)𝑒−

(𝑥′𝑑−𝐴)2

2 𝑑𝑥′𝑑

= 𝑓1(𝐴𝑣)1 = 𝑓1(
1

𝜎
𝑥)1.

Using the equation above we see that for smoothing by a general 𝜎,

ϒ𝒟𝜎 = sup
𝑥|𝑓𝜎(𝑥)≥ 1

𝑐

𝑣𝑇𝑥 = sup
𝑥|𝑓1( 1

𝜎
𝑥)≥ 1

𝑐

𝑣𝑇𝑥 = sup
𝑥′|𝑓1(𝑥′)≥ 1

𝑐

𝑣𝑇 (𝜎𝑥′)

= 𝜎 sup
𝑥′|𝑓1(𝑥′)≥ 1

𝑐

𝑣𝑇𝑥′ = 𝜎ϒ𝒟1 .

In this case we have ϒ𝒟 = 0 by construction, so ϒ𝒟−ϒ𝒟𝜎 = 0−𝜎ϒ𝒟1 = 𝜎 · (−ϒ𝒟1) ∝

𝜎.

With the above Theorem 6, we can fix the smoothing factor to 𝜎 = 1 and further

obtain a lower bound of the shrinking rate w.r.t 𝑐, 𝜃, and 𝑑:

Theorem 7. The shrinking rate of class 1 decision region is at least
√︁

𝑑−1
𝑐 tan2(𝜃)

·
(𝑑−1)−2 tan2(𝜃)𝑐 log(𝑐−1)

2(𝑑−1)
, i.e.

ϒ𝑣
𝒟𝜎

−ϒ𝑣
𝒟𝜎+𝛿

𝛿
>
√︁

𝑑−1
𝑐 tan2(𝜃)

· (𝑑−1)−2 tan2(𝜃)𝑐 log(𝑐−1)
2(𝑑−1)

.

Proof. As in Theorem 6, we assume a cone at origin along 𝑣 = [0, . . . , 0, 1]𝑇 given by

𝒟 = {𝑥 ∈ R𝑑 | 𝑣𝑇𝑥+ ‖𝑣‖‖𝑥‖𝑐𝑜𝑠(𝜃) ≤ 0}. Following the same proof idea as Theorem

6, we see that the rate is given by the value −ϒ𝒟1 . So, we try to get a bound on

the value of −ϒ𝒟1 . To establish a lower bound we show that for the point 𝑥 = 𝑎𝑣,

𝑓1(𝑥)1 <
1
𝑐
. Then by Lemma A.5 we have ϒ𝒟1 < 𝑎 or −ϒ𝒟1 > −𝑎.

Using the same procedure as in the proof of Theorem 5, we get that if 𝑥 satisfies the
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Figure 3-3: (a) The certified radius 𝑟 of the point at the origin for different input data
dimension 𝑑; (b) The scaled certified radius 𝑟

sin(𝜃)
of a point on the axis 𝑣 for cones

with different apertures (2𝜃).

two inequalities √︃
2 log(𝑐− 1)

(𝑘 − 1)2 − 1
≤ −𝑣𝑇𝑥 ≤

√︃
𝑑− 1

𝑘2𝑐 tan2(𝜃)

for suitable real 𝑘, then we have 𝑓1(𝑥)1 < 1
𝑐
. So, we need 𝑣𝑇𝑥 = −

√︁
𝑑−1

𝑘2𝑐 tan2(𝜃)
for some

𝑘 such that
√︁

2 log(𝑐−1)
(𝑘−1)2−1

≤ 𝑥 ≤
√︁

𝑑−1
𝑘2𝑐 tan2(𝜃)

. The constraint on 𝑘 can be re-written as

𝑘 ≥ 2(𝑑−1)
(𝑑−1)−2 tan2(𝜃)𝑐 log(𝑐−1)

. Taking 𝑘 to be lower bound, we get that for

−𝑎 = −𝑣𝑇𝑥 =

√︃
𝑑− 1

𝑐 tan2(𝜃)
· (𝑑− 1)− 2 tan2(𝜃)𝑐 log(𝑐− 1)

2(𝑑− 1)

𝑓1(𝑥)1 ≤ 1
𝑐
. So, we get that the rate is −ϒ𝒟1 ≥ −𝑎 ≥

√︁
𝑑−1

𝑐 tan2(𝜃)
· (𝑑−1)−2 tan2(𝜃)𝑐 log(𝑐−1)

2(𝑑−1)
.

3.3.3 Remarks on certified radii

In the case of bounded decision region, the point at the origin has the highest

probability to be classified as class 1 (see Lemma A.4). Therefore when it has less than

0.5 probability to be classified as class 1, the decision region vanishes and no point can

be certified (certified radius 𝑟 = 0). Specifically, Figure 3-3(a) describes the certified

radius 𝑟 of the point at the origin using equation 2.2 as a function of the smoothing
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Table 3.4: The minimum and maximum class-wise accuracy (%) of CIFAR10 classifiers
learned with data augmentation and inferred by the randomized smoothing prediction
rule. The smaller the gap between the maximum and the minimum class-wise accuracies
is, the better.

#Augmentation Points 1 (standard) 10 25 50
class-wise acc. min max min max min max min max

𝜎 = 0.12 67 94 76 96 78 96 68 97
0.25 55 90 68 92 65 93 48 84
0.50 46 84 51 84 52 81 0 87
1.00 22 73 28 74 27 72 3 64

factor 𝜎 and shows that the maximum certified radius (the peak) decreases with

the increasing dimension. We include complete certified radius behavioral plots for

different dimensions in the Appendix B.1.2. As training samples are normally scaled in

practice, they lie within a ball of radius 𝑅 ≤
√
𝑑/2. According to Theorem 4, for this

ball, the upper bound of 𝜎van is 1/
√
2 ≈ 0.707. So in practice, if the decision region of

any class lies within the volume spanned by the training samples, its certifiable region

vanishes for 𝜎 ≥ 0.708, regardless of the input-space dimension 𝑑.

In the case of semi-bounded decision region, the point on the axis has the highest

probability to be classified as class 1, thus we study the certified radius of a point 𝑥0 =

[0, . . . , 0, 1] as a function of cone narrowness 𝜃 and smoothing factor 𝜎. Acknowledging

that the minimum distance from 𝑥0 to 𝜃, 𝑣 cones is sin(𝜃), we show in Figure 3-3(b)

the scaled certified radius 𝑟/ sin(𝜃) when 𝑑 = 25. One can then readily verify that

overall the peak scaled certified radius decreases with 𝜃, e.g. the scaled certified radius

at 𝑥0 can be as large as 0.84 when 𝜃 = 80∘, while it is at most 0.49 when 𝜃 = 10∘.

Moreover, we point out that certified radii drop to zero when we keep increasing the

smoothing factor 𝜎 - the “narrower” (smaller 𝜃) the decision region is, the faster they

drop to zero. We discuss the effect of input data dimension 𝑑 on the certified radius

in the Appendix B.1.3.

Interestingly, the certified radii increase with the growing smoothing factor 𝜎 but

begin to decrease at certain point - larger certified radius can normally be obtained by

larger smoothing factor 𝜎 according to equation 2.2 but the dominance is taken over

by the vanishing decision region when the 𝜎 is enough-close to 𝜎van. This also explains
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the eventual decrease in the average certified radius seen in Table 3.2. For small values

of 𝜎 the average certified radius keeps increasing to a point (𝜎𝑡ℎ𝑟𝑒𝑠 ∈ [0.50, 1.00]) after

which the effect of the vanishing decision region reduces the average certified radius.

3.4 Efficacy of data augmentation

As Section 3.3 proves that the biased prediction comes from the shrinking phenomenon

of randomized smoothing, we want to hold a discussion herein investigating whether

the state-of-the-art workflow for boosting randomized smoothing accuracy can solve

this issue.

3.4.1 Counteracting shrinking effect of smoothing

Through the above arguments, we see that to counter-effect the shrinkage induced by

randomized smoothing, one will want to obtain larger decision regions for geometrically

compact classes. Assuming a well-balanced distribution of classes, compact classes

have a larger number of points near the margin compared to more spread-out classes.

As a result, data augmentation expands the compact classes a lot more compared

to other classes, partially alleviating the shrinking issue caused by smoothing. As a

result, we see that the experiments in Table 3.3 (without data augmentation) have

a much bigger bias in prediction compared to the experiments in Table 3.4 column

“1-standard”, e.g. when 𝜎 = 0.12, Table 3.3 reads 0 versus 100 and Table 3.4 reads 67

versus 94.

However, it is important to note that the two effects do not exactly cancel each

other out. Especially for high values of 𝜎, the expansion caused by data augmentation

can cause some of the more compact classes to dominate over all other classes, resulting

in a highly biased classifier. Table 3.4 shows that the bias of the classifier consistently

increases with increasing values of 𝜎 regardless of the number of augmenting points

used. This signals two important observations: the need to limit the use of high values

of smoothing factor 𝜎 and the need for a data geometry dependent augmentation

scheme to properly counteract the shrinking effect caused by smoothing.
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3.4.2 Heavy data augmentation

Besides showing the minimum and maximum class-wise accuracies of multiple CIFAR10

classifiers trained with standard data augmentation, we also give in Table 3.4 the

corresponding accuracies for an enhanced version of data augmentation. Essentially,

different from the standard data augmentation implementation, where only one point

is used to estimate the expectation E𝑧∼𝒟𝑝 [𝑙(𝑓train,𝜎(𝑥+ 𝑧), ℎ(𝑥))] inside ℛRS-train, we

evaluate the expectation using {10, 25, 50} points, reducing the estimation bias.

We denote this scheme as heavy data augmentation. Using a larger number of

augmentation allows us to approximate the augmented distribution more closely and

remove any unnecessary bias that is caused by using a bad approximation of the data

augmentation. The results in Table 3.4 show that the bias is slightly reduced by

using a larger number {10, 25} of augmentation points but the problem still remains.

Particularly, we see the relative improvement from increasing augmentation points

becomes smaller with a larger smoothing factor 𝜎. It is also worth noting that the gap

in accuracies blows when we use up to 50 heavy data augmentation points, performing

even worse than using the standard data augmentation. These observations signal it

to be a more fundamental problem relating to the way we do data augmentation.

3.5 Conclusion

In this chapter, we provide a theoretical characterization showing that randomized

smoothing during inference can lead to a drastic gap among class-wise accuracies, even

when it is included in the training phase. In addition, we observe that the smoothing

during inference is very sensitive to the distribution of the data and can have wildly-

different effects on different classes depending on the data geometry. A similar analysis

could be extended to other smoothing functions in addition to Gaussian smoothing.

Crucially, our results point out the need for limiting the use of large values of 𝜎, as

well as the need for data-geometry dependent noise augmentation schemes.
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Chapter 4

Understanding and improving generic

self-supervised representation learning

4.1 Introduction

Contrastive learning has drawn much attention and has become one of the most

effective representation learning techniques recently. The contrastive paradigm [130,

203, 69, 23, 29, 62] constructs an objective for embeddings based on an assumed

semantic similarity between positive pairs and dissimilarity between negative pairs,

which stems from instance-level classification [41, 11, 203]. Specifically, the contrastive

loss ℒCL [130, 23] is defined as E 𝑥∼𝒟,

𝑥+∼𝒟+
𝑥 ,

𝑥−
𝑖 ∼𝒟−

𝑥

⎡⎣− log 𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)+

𝑁∑︀
𝑖=1

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥−

𝑖
)

⎤⎦ where, for an

input data sample 𝑥, (𝑥, 𝑥+) denotes a positive pair and (𝑥, 𝑥−) denotes a negative

pair. The function 𝑓 is an encoder parameterized by a neural network and the number

of negative pairs 𝑁 is typically treated as a hyperparameter. Note that the contrastive

loss can encode the inputs and keys by different encoders if one considers the use of

memory bank or momentum contrast [203, 69, 26]. In this work, we will focus on the

paradigm proposed in [191, 209, 23] which has demonstrated competitive results in

representation learning.

When constructing loss ℒCL, ideally, one draws 𝑥+ from the data distribution 𝒟+
𝑥

that characterizes the semantically-similar (i.e., positive) samples to 𝑥; similarly, one
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Figure 4-1: The performance of existing methods and our proposal (IntNaCl & IntCl)
in terms of their standard accuracy (x-axis) and robust accuracy under FGSM attacks
𝜖 = 0.002 (y-axis). The transfer performance refers to fine-tuning a linear layer for
CIFAR10 with representation networks trained on CIFAR100.

wants to draw 𝑥− from 𝒟−
𝑥 that characterizes the semantically-dissimilar (negative)

samples. However, the definition of semantically-similar and semantically-dissimilar

is heavily contingent on downstream tasks: an image of a cat can be considered

semantically similar to that of a dog if the downstream task is to distinguish between

animal and non-animal classes. Without the knowledge of downstream tasks, 𝒟+
𝑥

and 𝒟−
𝑥 are hard to define. To provide a surrogate of measuring similarity, current

mainstream contrastive learning algorithms [69, 23, 26, 62] typically build up 𝒟+
𝑥 by

considering data augmentation 𝒟aug
𝑥 of a data sample 𝑥. In the meantime, 𝒟−

𝑥 is

approximated by the joint distribution 𝒟 or 𝒟aug
∖𝑥 := ∪𝑥′∈𝒟∖{𝑥}𝒟aug

𝑥′ , and the resulting

contrastive loss is known as ℒSimCLR which was proposed in [23]:

(SimCLR loss ℒSimCLR)

E 𝑥∼𝒟,
𝑥+∼𝒟aug

𝑥 ,

𝑥−
𝑖 ∼𝒟aug

∖𝑥

⎡⎢⎢⎣− log
𝑒𝑓(𝑥)

𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥+) +
𝑁∑︀
𝑖=1

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥−

𝑖 )

⎤⎥⎥⎦ . (4.1)

Although this formulation seems to put no assumptions on the downstream task classes,

we find that there are in fact implicit assumptions on the class probability prior of

the downstream tasks. Specifically, we formally establish the connection between the

Neighborhood Component Analysis (NCA) and the unsupervised contrastive learning

62



in this chapter for the first time (to our best knowledge). Inspired by this interesting

relationship to NCA, we further propose two new contrastive losses (named NaCl) which

outperform the existing paradigm. Furthermore, by inspecting the robust accuracy of

several existing methods (e.g., Figure 4-1’s y-axis, the classification accuracy when

inputs are corrupted by crafted perturbations), one can see the insufficiency of existing

methods in addressing robustness. Thus, we propose a new integrated contrastive

framework (named IntNacl and IntCl) that accounts for both the standard accuracy

and adversarial cases: our proposed method’s performance remains in the desired

upper-right region (circled) as shown in Figure 4-1.

4.1.1 Our contributions

• We establish the relationship between contrastive learning and NCA, and propose

two new contrastive losses dubbed NaCl (Neighborhood analysis Contrastive

loss). We provide theoretical analysis on NaCl and show better generalization

bounds over the baselines;

• Building on top of NaCl, we propose a generic framework called Integrated

contrastive learning (IntCl and IntNaCl) where we show that the spectrum

of recently-proposed contrastive learning losses [29, 154, 75] can be included as

special cases of our framework;

• We provide extensive experiments that demonstrate the effectiveness of IntNaCl

in improving standard accuracy and robust accuracy. Specifically, IntNaCl

improves upon literature [23, 29, 154, 75] by 3-6% and 4-16% in CIFAR100

standard and robust accuracy, and 2-3% and 3-17% in CIFAR10 standard and

robust accuracy, respectively.

4.1.2 Related works

Contrastive learning. In the early work of [41], authors treat every individual

image in a dataset as belonging to its own class and do multi-class classification tasks
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under the setting. However, this regime will soon become intractable as the size of

the dataset increases. To cope with this, [203] designs a memory bank for storing

seen representations (keys) and utilize noise contrastive estimation [63, 121, 83, 130]

for representation comparisons. [69] and [26] further improve upon [203] by storing

keys inferred from a momentum encoder other than the representation encoder for 𝑥.

To further reduce the computational cost, besides the practical tricks introduced in

SimCLR [23] (e.g. stronger data augmentation scheme and projector heads), authors

of SimCLR get rid of the memory bank and instead makes use of other samples from

the same batch to form contrastive pairs.

In the rest of this chapter, we will focus on the setups of SimCLR and the related

follow up work [29, 154, 75] due to computational efficiency. A temperature scaling

hyperparameter 𝑡 is normally used in contrastive learning to tune the radius of

the hypersphere that representations lie in. For better readability, without loss of

generality, we let 𝑡 = 1 in all equations. We let 𝑔0(𝑥, {𝑥−𝑖 }𝑁 ) denote the negative term

1

𝑁

𝑁∑︁
𝑖=1

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥−

𝑖 ),

where the subscript 𝑖 identifies the summation index and the superscript 𝑁 identifies the

summation limits. We omit the subscript 𝑖 when the sample index is one dimensional

(e.g. 𝑥−𝑖 has 1-D index, 𝑥−𝑖𝑗 has 2-D index). Then ℒSimCLR in equation 4.1 can be

re-written as

(Re-written SimCLR loss ℒSimCLR)

E 𝑥∼𝒟,
𝑥+∼𝒟aug

𝑥 ,

𝑥−
𝑖 ∼𝒟aug

∖𝑥

[︃
− log

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥+) +𝑁𝑔0(𝑥, {𝑥−𝑖 }𝑁)

]︃
. (4.2)

Designing negative pairs in contrastive learning. Several works [158, 29] have

come to the awareness of the sampling bias of negative pairs in equation 4.2. Specifically,

if the negative samples are sampled from 𝒟, we will receive with 1/𝐾 probability a

positive sample in a 𝐾-class classification task with balanced classes, hence biasing
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the contrastive loss. To overcome this issue, [29] proposes a de-biased contrastive loss

to mitigate the sampling bias by explicitly including the class probability prior on

the downstream tasks (e.g., with probability 0.1, 𝑥−𝑖 contains a positive example in

CIFAR10), and tune the prior 𝜏+ as a hyperparameter. We denote the loss from [29]

as ℒDebiased and the full equation is shown below:

(Debiased loss ℒDebiased)

E 𝑥∼𝒟,
𝑥+∼𝒟aug

𝑥 ,
𝑣𝑗∼𝒟aug

𝑥 ,
𝑢𝑖∼𝒟aug

∖𝑥

[︃
− log

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥+) +𝑁𝑔1(𝑥, {𝑢𝑖}𝑛, {𝑣𝑗}𝑚)

]︃
, (4.3)

where the estimator 𝑔1(𝑥, {𝑢𝑖}𝑛, {𝑣𝑗}𝑚) is defined by

max{
∑︀𝑛

𝑖=1 𝑒
𝑓(𝑥)𝑇 𝑓(𝑢𝑖)

(1− 𝜏+)𝑛
−
𝜏+
∑︀𝑚

𝑗=1 𝑒
𝑓(𝑥)𝑇 𝑓(𝑣𝑗)

(1− 𝜏+)𝑚
, 𝑒−1/𝑡}

and 𝑛 and 𝑚 represents the numbers of sampled points in 𝒟aug
∖𝑥 and 𝒟aug

𝑥 for the

re-weighted negative term, 𝜏+ is the class probability prior, and 𝑡 is the temperature

hyperparameter. Recently, [154] proposes to weigh sample pairs through the cosine

distance in the estimator 𝑔1(𝑥, {𝑢𝑖}𝑛, {𝑣𝑗}𝑚) based on ℒDebiased, and we denote their

approach as ℒDebiased+HardNeg,

(Debiased+HardNeg loss ℒDebiased+HardNeg)

E 𝑥∼𝒟,
𝑥+∼𝒟aug

𝑥 ,
𝑣𝑗∼𝒟aug

𝑥 ,
𝑢𝑖∼𝒟aug

∖𝑥

[︃
− log

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥+) +𝑁𝑔2(𝑥, {𝑢𝑖}𝑛, {𝑣𝑗}𝑚)

]︃
, (4.4)

where the estimator 𝑔2(𝑥, {𝑢𝑖}𝑛, {𝑣𝑗}𝑚) is defined by

max{
∑︀𝑛

𝑖=1 𝜅
𝛽+1
𝑖

(1− 𝜏+)
∑︀𝑛

𝑖=1 𝜅
𝛽
𝑖

−
𝜏+
∑︀𝑚

𝑗=1 𝑒
𝑓(𝑥)𝑇 𝑓(𝑣𝑗)

(1− 𝜏+)𝑚
, 𝑒−1/𝑡}

and 𝜅𝑖 = 𝑒𝑓(𝑥)
𝑇 𝑓(𝑢𝑖). A typical choice of 𝑛 and 𝑚 are 𝑛 = 𝑁 and 𝑚 = 1, and the

hyperparameter 𝜏+ in 𝑔2 is exactly the same as that in 𝑔1 whereas the hyperpa-
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rameter 𝛽 controls the weighting mechanism. Specifically, when 𝜏+ = 0, we denote

ℒDebiased+HardNeg as ℒHardNeg; when 𝛽 = 0, equation 4.4 degenerates to equation 4.3

which is ℒDebiased.

Designing positive pairs in contrastive learning. Instead of modifying the

negative pairs, another direction is to design the positive pairs [75, 89]. Specifically,

authors of [75] define the concept of adversarial examples in the regime of representation

learning as the positive sample 𝑥adv that maximizes ℒSimCLR in equation 4.2 within

a pre-specified perturbation magnitude 𝜖. The resulting loss function is denoted as

ℒAdv:

(Adversarial loss ℒAdv)

E 𝑥∼𝒟,
𝑥+∼𝒟aug

𝑥 ,

𝑥−
𝑖1
∼𝒟aug

∖𝑥 ,

𝑥−
𝑖2
∼𝒟adv

∖𝑥

[︃
− log

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥+) +𝑁𝑔0(𝑥, {𝑥−𝑖1}𝑁)

−𝛼 log
𝑒𝑓(𝑥)

𝑇 𝑓(𝑥adv)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥adv) +𝑁𝑔0(𝑥, {𝑥−𝑖2}𝑁)

]︃
, (4.5)

where the 𝒟adv
∖𝑥 is defined by ∪𝑥′∈𝒟∖{𝑥}𝑥

′∪𝑥′,adv. Notably, one can adjust the importance

of the adversarial term by tuning 𝛼 in equation 4.5.

4.2 Two new NCA-inspired contrastive losses and an

integrated framework

In this section, we first derive a connection between Neighborhood Component Analysis

(NCA) [59] and the unsupervised contrastive learning loss in Section 4.2.1. Inspired

by our result in Section 4.2.1, we propose two new NCA-inspired contrastive losses in

Section 4.2.2, which we refer to as Neighborhood analysis Contrastive loss (NaCl). To

address a lack of robustness in existing contrastive losses, in Section 4.2.3, we propose

a useful framework IntNaCl that integrates NaCl and a robustness-promoting loss.

A summary of definitions is given as Table 4.1.
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Table 4.1: A summary of definitions.

ℒNCA(𝐺
1,𝑀) E𝑥∼𝒟,𝑥+

𝑗 ∼𝒟aug
𝑥 ,𝑥−

𝑖 ∼𝒟aug
∖𝑥

[− log

𝑀∑︀
𝑗=1

𝑒
𝑓(𝑥)𝑇 𝑓(𝑥+

𝑗
)

𝑀∑︀
𝑗=1

𝑒
𝑓(𝑥)𝑇 𝑓(𝑥+

𝑗
)
+𝑁𝐺1(𝑥,{𝑥−

𝑖 }𝑁 )

]

E𝑥∼𝒟,𝑥+∼𝒟aug
𝑥 ,𝑥−

𝑖1
,𝑥−

𝑖2𝑗
,𝑥−

𝑗 ∼𝒟aug
∖𝑥

[− log 𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)+𝑁𝐺1(𝑥,{𝑥−

𝑖1
}𝑁 )

ℒMIXNCA(𝐺
1,𝑀, 𝜆)

− 𝜆
𝑀−1

𝑀−1∑︀
𝑗=1

log 𝑒
𝑓(𝑥)𝑇 𝑓(𝜆𝑥++(1−𝜆)𝑥−

𝑗
)

𝑒
𝑓(𝑥)𝑇 𝑓(𝜆𝑥++(1−𝜆)𝑥−

𝑗
)
+𝑁𝐺1(𝑥,{𝑥−

𝑖2𝑗
}𝑁𝑖2 )

− 1−𝜆
𝑀−1

𝑀−1∑︀
𝑗=1

log

(︃
1− 𝑒

𝑓(𝑥)𝑇 𝑓(𝜆𝑥++(1−𝜆)𝑥−
𝑗

)

𝑒
𝑓(𝑥)𝑇 𝑓(𝜆𝑥++(1−𝜆)𝑥−

𝑗
)
+𝑁𝐺1(𝑥,{𝑥−

𝑖2𝑗
}𝑁𝑖2 )

)︃
]

𝑔0(𝑥, {𝑥−𝑖 }𝑁𝑖 ) 1
𝑁

∑︀𝑁
𝑖=1 𝑒

𝑓(𝑥)𝑇 𝑓(𝑥−
𝑖 )

𝑔1(𝑥, {𝑢𝑖}𝑛, {𝑣𝑗}𝑚) max{ 1
1−𝜏+

( 1
𝑛

∑︀𝑛
𝑖=1 𝑒

𝑓(𝑥)𝑇 𝑓(𝑢𝑖) − 𝜏+ 1
𝑚

∑︀𝑚
𝑗=1 𝑒

𝑓(𝑥)𝑇 𝑓(𝑣𝑗)), 𝑒−1/𝑡}

𝑔2(𝑥, {𝑢𝑖}𝑛, {𝑣𝑗}𝑚) max{ 1
1−𝜏+

(
∑︀𝑛

𝑖=1 𝑒
(𝛽+1)𝑓(𝑥)𝑇 𝑓(𝑢𝑖)∑︀𝑛

𝑖=1 𝑒
𝛽𝑓(𝑥)𝑇 𝑓(𝑢𝑖)

− 𝜏+ 1
𝑚

∑︀𝑚
𝑗=1 𝑒

𝑓(𝑥)𝑇 𝑓(𝑣𝑗)), 𝑒−1/𝑡}

�̂�(𝑥) − log 𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)+𝑁𝐺(𝑥,·)

4.2.1 Bridging from supervised NCA to unsupervised con-

trastive learning: a new finding

NCA is a supervised learning algorithm concerned with learning a quadratic distance

metric with the matrix 𝐴 such that the performance of nearest neighbor classification

is maximized. Notice that the set of neighbors for a data point is a function of

transformation 𝐴. However, it can remain unchanged as 𝐴 changes within a certain

range. Therefore the leave-one-out classification performance can be a piecewise-

constant function of 𝐴 and hence non-differentiable. To overcome this, the optimization

problem is generally given using the concept of stochastic nearest neighbors. In the

stochastic nearest neighbor setting, nearest neighbor selection is regarded as a random

event, where the probability that point 𝑥𝑗 is selected as the nearest neighbor for 𝑥𝑖 is

given as 𝑝(𝑥𝑗 | 𝑥𝑖) with

𝑝𝑖𝑗 := 𝑝(𝑥𝑗 | 𝑥𝑖) =
𝑒−‖𝐴𝑥𝑖−𝐴𝑥𝑗‖2∑︀
𝑘 ̸=𝑖 𝑒

−‖𝐴𝑥𝑖−𝐴𝑥𝑘‖2
, 𝑗 ̸= 𝑖. (4.6)

Let 𝑐𝑖 denote the label of 𝑥𝑖, in the leave-one-out classification loss, the probability

a point is classified correctly is given as 𝑝𝑖 =
∑︀

𝑗|𝑐𝑗=𝑐𝑖
𝑝𝑖𝑗, where {𝑗 | 𝑐𝑗 = 𝑐𝑖} defines

an index set in which all points 𝑥𝑗 belong to the same class as point 𝑥𝑖. We use 𝑀 to
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denote the cardinality of this set. By the definition of 𝑐𝑖, the probability 𝑥𝑖’s label is

𝑐𝑖 is given as 𝑞𝑖, which is exactly 11. Thus the optimization problem can be written

as min𝐴

∑︀𝑛
𝑖=1 ℓ(𝑞𝑖,

∑︀
𝑗|𝑐𝑗=𝑐𝑖

𝑝𝑖𝑗). This learning objective then naturally maximizes the

expected accuracy of a 1-nearest neighbor classifier. Two popular choices for ℓ(·) are

the total variation distance and the KL divergence. In the seminal paper of [59],

the authors showed both losses give similar results, thus we will focus on the KL

divergence loss in this work. For ℓ(·) = KL, the relative entropy from 𝑝 to 𝑞 is

𝐷KL(𝑞‖𝑝) =
∑︀

𝑖−𝑞𝑖 log
𝑝𝑖
𝑞𝑖
=
∑︀

𝑖− log 𝑝𝑖 when 𝑞𝑖 = 1. By plugging in the definition of

𝑝𝑖 =
∑︀

𝑗|𝑐𝑗=𝑐𝑖
𝑝𝑖𝑗 and equation 4.6, the NCA problem becomes

min
𝐴

𝑛∑︁
𝑖=1

− log

⎛⎝ ∑︁
𝑗|𝑐𝑗=𝑐𝑖

𝑒−‖𝐴𝑥𝑖−𝐴𝑥𝑗‖2∑︀
𝑘 ̸=𝑖 𝑒

−‖𝐴𝑥𝑖−𝐴𝑥𝑘‖2

⎞⎠ . (4.7)

With the above formulation, we now show how to establish the connection of NCA to

the contrastive learning loss. First, by assuming (a) positive pairs belong to the same

class and (b) the transformation 𝐴𝑥 is instead parametrized by a general function
𝑓(𝑥)√

2
:= ℎ(𝑥)√

2‖ℎ(𝑥)‖ , where ℎ is a neural network, equation 4.7 becomes equation 4.8:

min
𝑓

𝑛∑︁
𝑖=1

− log

(︃
𝑀∑︁
𝑗=1

𝑒−
1
2‖𝑓(𝑥𝑖)−𝑓(𝑥+

𝑖𝑗)‖2∑︀
𝑘 ̸=𝑖 𝑒

− 1
2
‖𝑓(𝑥𝑖)−𝑓(𝑥𝑘)‖2

)︃
. (4.8)

1For every data point, 𝑝 and 𝑞 are defined differently with their supports being the class index. For
every sample 𝑥, 𝑞𝑖 is the ground truth probability of class labels and 𝑝𝑖 is the prediction probability.
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Then we can prove

argmin
𝑓

𝑛∑︁
𝑖=1

− log

(︃
𝑀∑︁
𝑗=1

𝑒−
1
2‖𝑓(𝑥𝑖)−𝑓(𝑥+

𝑖𝑗)‖2∑︀
𝑘 ̸=𝑖 𝑒

− 1
2
‖𝑓(𝑥𝑖)−𝑓(𝑥𝑘)‖2

)︃

=argmin
𝑓

𝑛∑︁
𝑖=1

− log

(︃
𝑀∑︁
𝑗=1

𝑒𝑓(𝑥𝑖)
𝑇 𝑓(𝑥+

𝑖𝑗)−
1
2
‖𝑓(𝑥𝑖)‖2− 1

2‖𝑓(𝑥+
𝑖𝑗)‖2∑︀

𝑘 ̸=𝑖 𝑒
𝑓(𝑥𝑖)𝑇 𝑓(𝑥𝑘)− 1

2
‖𝑓(𝑥𝑖)‖2− 1

2
‖𝑓(𝑥𝑘)‖2

)︃
(4.9)

=argmin
𝑓

𝑛∑︁
𝑖=1

− log

(︃
𝑀∑︁
𝑗=1

𝑒𝑓(𝑥𝑖)
𝑇 𝑓(𝑥+

𝑖𝑗)−1∑︀
𝑘 ̸=𝑖 𝑒

𝑓(𝑥𝑖)𝑇 𝑓(𝑥𝑘)−1

)︃
(4.10)

=argmin
𝑓

𝑛∑︁
𝑖=1

− log

⎛⎜⎜⎜⎝
𝑀∑︀
𝑗=1

𝑒𝑓(𝑥𝑖)
𝑇 𝑓(𝑥+

𝑖𝑗)∑︀
𝑘 ̸=𝑖 𝑒

𝑓(𝑥𝑖)𝑇 𝑓(𝑥𝑘)

⎞⎟⎟⎟⎠

=argmin
𝑓

𝑛∑︁
𝑖=1

− log

⎛⎜⎜⎜⎝
𝑀∑︀
𝑗=1

𝑒𝑓(𝑥𝑖)
𝑇 𝑓(𝑥+

𝑖𝑗)∑︀
𝑘 ̸=𝑖,𝑥𝑘∈{𝑥+

𝑖𝑗}
𝑒𝑓(𝑥𝑖)𝑇 𝑓(𝑥𝑘) +

∑︀
𝑘 ̸=𝑖,𝑥𝑘 /∈{𝑥+

𝑖𝑗}
𝑒𝑓(𝑥𝑖)𝑇 𝑓(𝑥𝑘)

⎞⎟⎟⎟⎠ (4.11)

=argmin
𝑓

E𝑥∼𝒟

⎡⎢⎢⎢⎣− log

⎛⎜⎜⎜⎝
𝑀∑︀
𝑗=1

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+

𝑗 )

𝑀∑︀
𝑗=1

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+

𝑗 ) +
𝑁∑︀
𝑖=1

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥−

𝑖 )

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ (4.12)

=argmin
𝑓

E𝑥∼𝒟

⎡⎢⎢⎢⎣− log

⎛⎜⎜⎜⎝
𝑀∑︀
𝑗=1

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+

𝑗 )

𝑀∑︀
𝑗=1

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+

𝑗 ) +𝑁𝑔0(𝑥, {𝑥−𝑖 }𝑁)

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ , (4.13)

where we go from equation 4.9 to equation 4.10 based on the fact that ‖𝑓(𝑥)‖ = 1,

and from equation 4.11 to equation 4.12 assuming that set {𝑥𝑘 : 𝑘 ̸= 𝑖} = {𝑥+𝑗 : 1 ≤

𝑗 ≤𝑀} ∪ {𝑥−𝑖 : 1 ≤ 𝑖 ≤ 𝑁}.

Notice that equation 4.13 is a more general contrastive loss where the contrastive

loss ℒSimCLR in [23] is a special case with 𝑀 = 1, 𝑥+ ∼ 𝒟aug
𝑥 :

min
𝑓

E 𝑥∼𝒟,
𝑥+∼𝒟aug

𝑥 ,

𝑥−
𝑖 ∼𝒟aug

∖𝑥

[︃
− log

(︃
𝑒𝑓(𝑥)

𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥+) +𝑁𝑔0(𝑥, {𝑥−𝑖 }𝑁)

)︃]︃
.

With the above analysis, two new contrastive losses are proposed based on equation 4.13
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in the next Section 4.2.2. As a side note, as the computation of the loss grows

quadratically with the size of the dataset, the current method [23] uses mini batches

to construct positive/negative pairs in a data batch of size 𝑁 to estimate the loss.

4.2.2 Neighborhood analysis contrastive loss (NaCl)

Based on the connection we have built in Section 4.2.1, we discover that the reduction

from the NCA formulation to ℒSimCLR assumes

1. the expected relative density of positives in the underlying data distribution is

1/𝑁 ;

2. the probability 𝑞𝑖 induced by encoder network 𝑓 is 1.

By relaxing the assumptions individually, in this section, we propose two new con-

trastive losses. Note that the two neighborhood analysis contrastive losses are designed

from orthogonal perspectives, hence they are complementary to each other. We use

ℒNaCl to denote these two variant losses: ℒNCA and ℒMIXNCA.

(I) Relaxing assumption 1: ℒNCA. When relating unsupervised SimCLR to

supervised NCA, we view two samples in a positive pair as same-class samples. Since

in SimCLR, the number of positive pairs 𝑀 = 1, which means that {𝑗 | 𝑐𝑗 = 𝑐𝑖} only

contains one element. This implies the relative density of positives in the underlying

data distribution is 𝑀/𝑁 = 1/𝑁 , where 𝑁 is the data batch size. However, as the

expected relative density is task-dependent, it’s more reasonable to treat the 𝑀/𝑁

ratio as a hyperparameter similar to the class probabilities 𝜏+ introduced by [29].

Therefore, we propose the more general contrastive loss ℒNCA which could include

more than one element or equivalently 𝑀 ̸= 1:

(NCA loss ℒNCA(𝐺 = 𝑔0,𝑀))

E 𝑥∼𝒟,

𝑥+
𝑗 ∼𝒟aug

𝑥 ,

𝑥−
𝑖 ∼𝒟aug

∖𝑥

⎡⎢⎢⎢⎣− log

𝑀∑︀
𝑗=1

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+

𝑗 )

𝑀∑︀
𝑗=1

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+

𝑗 ) +𝑁𝑔0(𝑥, {𝑥−𝑖 }𝑁)

⎤⎥⎥⎥⎦ .

70



We further provide the generalization results as follows: if we let ℱ be a function

class, 𝐾 be the number of classes, ℒSup be the cross entropy loss of any downstream

K-class classification task, ̂︀ℒNCA(𝑔0,𝑀) be the empirical NCA loss, 𝑇 be the size of

the dataset, and ℛ𝒮(ℱ) be the empirical Rademacher complexity of ℱ w.r.t. data

sample 𝒮, then

Theorem 8. With probability at least 1− 𝛿, for any 𝑓 ∈ ℱ and 𝑁 ≥ 𝐾 − 1,

ℒSup(𝑓) ≤ ℒNCA(𝑔0,𝑀)(𝑓)

+𝒪

⎛⎝√︂ 1

𝑁
+
𝜆ℛ𝒮(ℱ)

𝑇
+𝐵

√︃
log 1

𝛿

𝑇

⎞⎠ ,

where 𝑓 = argmin𝑓∈ℱ
̂︀ℒNCA(𝑔0,𝑀)(𝑓), 𝜆 = 1

𝑀
, and 𝐵 = log𝑁 .

We can see from the term 𝜆 that ℒNCA(𝐺 = 𝑔0,𝑀) improves upon ℒSimCLR by

using a 𝑀 ̸= 1.

(II) Relaxing assumption 2: ℒMIXNCA. To reduce the reliance on the downstream

prior, a practical relaxation can be made by allowing neighborhood samples to agree

with each other with probability. This translates into relaxing the specification of

𝑞𝑖 = 1 and consider a synthetic data point 𝑥′ = 𝜆𝑥𝑖+(1−𝜆)𝑦, 𝑦 ∼ 𝒟 that belongs to a

synthetic class 𝑐𝜆,𝑖. Assume the probability 𝑥𝑖’s label is 𝑐𝜆,𝑖 is 𝑞𝜆,𝑖 = 𝜆+(1−𝜆)[𝑐𝑦 = 𝑐𝑖],

then 𝑞𝜆,𝑖 should match the probability 𝑝𝜆,𝑖 =
∑︀

𝑗|𝑐𝑗=𝑐𝜆,𝑖
𝑝𝑖𝑗, where {𝑗 | 𝑐𝑗 = 𝑐𝜆,𝑖} is a

singleton containing only the index of 𝑥′, which yields

(MIXNCA loss ℒMIXNCA(𝐺 = 𝑔0,𝑀, 𝜆))

E 𝑥∼𝒟,
𝑥+∼𝒟aug

𝑥 ,

𝑥−
𝑖1
,𝑥−

𝑖2𝑗
,𝑥−

𝑗 ∼𝒟aug
∖𝑥

[︃
− log

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥+) +𝑁𝑔0(𝑥, {𝑥−𝑖1}𝑁)

− 𝜆

𝑀 − 1

𝑀−1∑︁
𝑗=1

log Ω𝑗 −
1− 𝜆
𝑀 − 1

𝑀−1∑︁
𝑗=1

log(1− Ω𝑗)

]︃
,
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Table 4.2: The relationship between IntNaCl framework and the literature: existing
works are special cases of ℒIntNaCl

ℒIntNaCl
ℒNaCl(𝐺

1,𝑀, 𝜆)
𝛼

ℒRobust(𝐺
2, 𝑤))

ℒNaCl 𝐺1 𝑀 𝜆 𝐺2 𝑤
ℒSimCLR [23] ℒNCA/ℒMIXNCA 𝑔0 1 - 0 - -

Existing ℒDebiased [29] ℒNCA/ℒMIXNCA 𝑔1 1 - 0 - -
Work ℒDebiased+HardNeg [154] ℒNCA/ℒMIXNCA 𝑔2 1 - 0 - -

ℒAdv [75] ℒNCA/ℒMIXNCA 𝑔0 1 - 1 𝑔0 1
ℒIntCl in Fig. 4-1 ℒNCA/ℒMIXNCA 𝑔2 1 - 1 𝑔2 �̂�(𝑥)
ℒIntNaCl in Fig. 4-1 ℒMIXNCA 𝑔2 5 0.5 1 𝑔2 �̂�(𝑥)

Our ℒIntNaCl in Tab. 4.3 ℒNCA/ℒMIXNCA 𝑔0/𝑔2 1-5 0.5/0.9 0 - -
Method ℒIntNaCl in Tab. 4.4 ℒNCA/ℒMIXNCA 𝑔2 1-5 0.5/0.7/0.9 1 𝑔2 �̂�(𝑥)

ℒIntNaCl in Fig. 4-2 ℒMIXNCA 𝑔0/𝑔2 1-5 0.5-0.9 0 - -
ℒIntNaCl in Tab. 4.5 ℒNCA/ℒMIXNCA 𝑔0/𝑔2 1/2/5 0.5/0.9 0/1 -/𝑔2 -/�̂�(𝑥)/1

where Ω𝑗 =
𝑒
𝑓(𝑥)𝑇 𝑓(𝜆𝑥++(1−𝜆)𝑥−

𝑗
)

𝑒
𝑓(𝑥)𝑇 𝑓(𝜆𝑥++(1−𝜆)𝑥−

𝑗
)
+𝑁𝑔0(𝑥,{𝑥−

𝑖2𝑗
}𝑁𝑖2 )

. Interestingly, the construction of 𝑥′ herein

assembles the mixup [217] philosophy in supervised learning. Recent work [101, 184]

have also considered augment the dataset by including synthetic data point and build

domain-agnostic contrastive learning strategies, however, their loss is different from

this work because they apply mixup on the data points 𝑥 while we use mixup to

produce diverse positive pairs.

4.2.3 Integrated contrastive learning framework

Building on top of NaCl, we can propose a useful framework IntNaCl that not

only generalizes existing methods but also achieves good accuracy and robustness

simultaneously. Before we introduce IntNaCl, we give an intermediate integrated loss as

IntCl, which consists of two components – a standard loss and a robustness-promoting

loss.

Motivated by ℒAdv [75], we consider a robust-promoting loss defined by

ℒRobust(𝐺,𝑤):=E

[︃
− log

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥adv)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥adv) +𝑁𝐺(𝑥, ·)
𝑤(𝑥)

]︃
,

where 𝐺 can be chose from {𝑔0, 𝑔1, 𝑔2}, and 𝑤(𝑥) facilitates goal-specific weighting

schemes. Note that 𝑤(𝑥) can be a general function and ℒAdv [75] is a special case

when 𝑤(𝑥) = 1.
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Adversarial weighting. Weighting sample loss based on their margins has been

proven to be effective in the adversarial training under supervised settings [213].

Specifically, it is argued that training points that are closer to the decision boundaries

should be given more weight in the supervised loss. While the margin of a sample

is underdefined in unsupervised settings, we can give our weighting function as the

value of the contrastive loss �̂�(𝑥) := − log 𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)+𝑁𝐺(𝑥,·)

. Using this, we see that

samples that are originally hard to be distinguished from other samples (i.e. small

probability) are now assigned with bigger weights. Below, we propose a new integrated

framework to involve the robustness term ℒRobust(𝐺,𝑤) which can greatly help on

promoting robustness in contrastive learning. In particular, we show that many

existing contrastive learning losses are special cases of our proposed framework.

IntCl. For IntCl, the standard loss can be existing contrastive learning losses [23,

29, 154], which correspond to a form of

(IntCL loss ℒIntCL)

E

[︃
− log

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥+)

𝑒𝑓(𝑥)𝑇 𝑓(𝑥+) +𝑁𝐺1(𝑥, ·)

]︃
+ 𝛼ℒRobust(𝐺

2, 𝑤),

with 𝐺1 and 𝐺2 being 𝑔0, 𝑔1, and 𝑔2. Unless otherwise specified, we use the adversarial

weighting scheme introduced above throughout our experiments. Notice that ℒIntCL

reduces to ℒAdv when 𝐺1 = 𝐺2 = 𝑔0 and 𝑤(𝑥) ≡ 1.

IntNaCl. To design a generic loss that accounts for robust accuracy while keeping

clean accuracy, we utilize ℒNaCl developed in Section 4.2.2 to strength the standard

loss in ℒIntCL. We call this ultimate framework Integrated Neighborhood analysis

Contrastive loss (IntNaCl), which is given by

ℒIntNaCl := ℒNaCl(𝐺
1,𝑀, 𝜆) + 𝛼ℒRobust(𝐺

2, 𝑤), (4.14)
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where ℒNaCl(𝐺
1,𝑀, 𝜆) can be chose from {ℒNCA(𝐺

1,𝑀), ℒMIXNCA(𝐺
1,𝑀, 𝜆)}. We

remark that as ℒNCA and ℒMIXNCA all reduce to one same form when 𝑀 = 1, the

ℒIntNaCl under 𝑀 = 1 is exactly ℒIntCl. This general framework includes many of the

existing works as special cases and we summarize these relationships in Table 4.2.

4.3 Experimental results

Implementation details. All the proposed methods are implemented based on

open source repositories provided in the literature [23, 75, 154]. Five benchmarking

contrastive losses are considered as baselines that include: ℒSimCLR [23], ℒDebiased [29],

ℒDebiased+HardNeg [154], ℒAdv [75] (i.e. equation 4.2, equation 4.3, equation 4.4, equa-

tion 4.5). We train representations on resnet18 and include MLP projection heads [23].

A batch size of 256 is used for all CIFAR [93] experiments and a batch size of 128 is

used for all tinyImagenet experiments. Unless otherwise specified, the representation

network is trained for 100 epochs. We run five independent trials for each of the

experiments and report the mean and standard deviation in the entries. We implement

the proposed framework using PyTorch to enable the use of an NVIDIA GeForce RTX

2080 Super GPU and four NVIDIA Tesla V100 GPUs.

Evaluation protocol. We follow the standard evaluation protocal to report three

major properties of representation learning methods: standard discriminative power,

transferability, and adversarial robustness. To evaluate the standard discriminative

power, we train representation networks on CIFAR100/tinyImagenet, freeze the

network, and fine-tune a fully-connected layer that maps representations to outputs

on CIFAR100/tinyImagenet, which is consistent with the standard linear evaluation

protocol in the literature [23, 29, 62, 75, 88, 177, 154, 158, 89, 66]. To evaluate the

transferability, we use the representation networks trained on CIFAR100, and only

fine-tune a fully-connected layer that maps representations to outputs on CIFAR10.

All the adversarial robustness evaluations are based on the implementation provided

by [200].
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Table 4.3: Performance comparisons of ℒNaCl (𝑀 ̸= 1) and i) Left : SimCLR [29]
(𝑀 = 1, 𝐺1 = 𝑔0) and ii) Right : Debised+HardNeg [154] (𝑀 = 1, 𝐺1 = 𝑔2) when
𝛼 = 0. The best accuracy (%) within each loss type is in boldface (larger is better).
𝑀

𝛼 = 0, ℒNaCl(𝐺
1,𝑀, 𝜆) = ℒNCA(𝑔0,𝑀) 𝛼 = 0, ℒNaCl(𝐺

1,𝑀, 𝜆) = ℒNCA(𝑔2,𝑀)
CIFAR100 CIFAR100 Adv. CIFAR10 CIFAR10 Adv. CIFAR100 CIFAR100 Adv. CIFAR10 CIFAR10 Adv.

1 53.69±0.25 25.17±0.55 76.34±0.28 43.50±0.41 56.83±0.20 31.03±0.41 77.24±0.29 48.38±0.70
2 55.72±0.15 27.04±0.45 77.40±0.14 44.58±0.41 57.87±0.15 32.50±0.48 77.43±0.11 48.14±0.31
3 56.67±0.12 28.41±0.24 77.53±0.24 45.21±0.89 58.42±0.23 33.19±0.60 77.41±0.17 48.09±0.93
4 57.09±0.26 28.20±0.81 77.75±0.22 45.13±0.44 58.86±0.18 32.65±1.07 77.46±0.29 48.43±0.94
5 57.32±0.17 28.33±0.59 77.93±0.40 44.46±0.53 58.81±0.21 32.86±0.47 77.58±0.23 48.30±0.39

𝛼 = 0, ℒNaCl(𝐺
1,𝑀, 𝜆) = ℒMIXNCA(𝑔0,𝑀, 0.9) 𝛼 = 0, ℒNaCl(𝐺

1,𝑀, 𝜆) = ℒMIXNCA(𝑔2,𝑀, 0.5)
1 53.69±0.25 25.17±0.55 76.34±0.28 43.50±0.41 56.83±0.20 31.03±0.41 77.24±0.29 48.38±0.70
2 56.20±0.33 30.95±0.36 76.96±0.15 48.85±0.75 59.41±0.19 32.22±0.35 79.36±0.65 48.86±0.34
3 56.41±0.13 30.98±0.90 77.10±0.21 48.76±0.63 59.81±0.25 32.04±0.67 79.41±0.17 48.91±0.81
4 56.00±0.42 29.90±0.63 77.11±0.40 48.16±0.40 59.75±0.33 32.03±0.34 79.42±0.18 49.05±0.71
5 56.63±0.31 30.58±0.52 77.04±0.19 47.96±0.46 59.85±0.30 32.06±0.72 79.45±0.20 48.32±0.70

Table 4.4: Performance comparisons of ℒIntNaCl (𝑀 ≠ 1) and ℒIntCL (𝑀 = 1) when
𝛼 = 1, 𝐺1 = 𝐺2 = 𝑔2, 𝑤 = �̂�(𝑥). The best accuracy (%) within each loss type is in
boldface (larger is better).
𝑀

𝛼 ̸= 0, ℒNaCl(𝐺
1,𝑀, 𝜆) = ℒNCA(𝑔2,𝑀) 𝛼 ̸= 0, ℒNaCl(𝐺

1,𝑀, 𝜆) = ℒMIXNCA(𝑔2,𝑀, 0.5)
CIFAR100 CIFAR100 Adv. CIFAR10 CIFAR10 Adv. CIFAR100 CIFAR100 Adv. CIFAR10 CIFAR10 Adv.

1 56.22±0.15 40.05±0.67 76.39±0.10 59.33±0.94 56.22±0.15 40.05±0.67 76.39±0.10 59.33±0.94
2 56.71±0.11 39.80±0.57 76.55±0.27 58.44±0.31 58.97±0.19 40.25±0.52 78.61±0.20 58.41±0.59
3 57.13±0.26 40.53±0.29 76.67±0.22 58.47±0.31 59.26±0.18 40.96±0.58 78.83±0.22 59.20±1.25
4 57.06±0.19 40.85±0.31 76.34±0.22 58.91±0.62 59.32±0.21 40.82±0.54 78.83±0.27 59.03±0.52
5 57.46±0.04 41.00±0.86 76.60±0.37 57.98±0.47 59.43±0.23 41.01±0.34 78.80±0.21 59.51±0.93

𝛼 ̸= 0, ℒNaCl(𝐺
1,𝑀, 𝜆) = ℒMIXNCA(𝑔2,𝑀, 0.7) 𝛼 ̸= 0, ℒNaCl(𝐺

1,𝑀, 𝜆) = ℒMIXNCA(𝑔2,𝑀, 0.9)
1 56.22±0.15 40.05±0.67 76.39±0.10 59.33±0.94 56.22±0.15 40.05±0.67 76.39±0.10 59.33±0.94
2 58.00±0.18 40.35±0.34 77.73±0.24 59.40±1.27 56.54±0.33 40.85±0.13 76.81±0.22 60.40±0.46
3 58.23±0.18 40.94±0.75 77.91±0.25 59.57±0.81 56.69±0.11 41.23±0.66 76.98±0.22 60.13±0.56
4 58.20±0.25 40.95±0.45 77.89±0.20 59.49±0.49 56.43±0.26 41.56±0.56 76.97±0.20 61.21±0.49
5 58.37±0.14 41.15±0.48 78.27±0.26 59.17±0.94 56.86±0.11 41.09±0.31 76.91±0.21 60.09±0.39

Experiment outline. Since the performance of the integrated method ℒIntNaCl

is attributed to multiple components in the formulation (equation 4.14), we do

ablation studies in the following sections to study their effectiveness individually. In

Section 4.3.1, we evaluate the effect of ℒNaCl; in Section 4.3.2, we evaluate the effect

of ℒRobust; in Section 4.3.3, we evaluate the effect of 𝑀 , 𝜆, and 𝑤.

4.3.1 The effect of ℒNaCl

By evaluating the effect of ℒNaCl, we want to evaluate the performance difference of

our framework ℒIntNaCl when 𝑀 ≥ 1 and 𝑀 = 1. In order to see that, we consider 2

cases: (1) set 𝛼 = 0 in equation 4.14 and compare ℒNaCl(𝐺
1,𝑀 ̸= 1, 𝜆) with existing

work ℒNaCl(𝐺
1,𝑀 = 1, 𝜆), or (2) set 𝛼 = 1 and compare ℒIntNaCl and ℒIntCl.

Case (1) 𝛼 = 0. In Table 4.3, after setting 𝛼 = 0, we experiment with 𝐺1 = 𝑔0, 𝑔2.
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Table 4.5: Performance comparisons of ℒNaCl and ℒIntNaCl with baselines on TinyIma-
genet. The best accuracy (%) within each loss type is in boldface (larger is better).

𝛼 = 0 ℒNaCl(𝐺
1,𝑀, 𝜆) = ℒNCA(𝑔0,𝑀) ℒNaCl(𝐺

1,𝑀, 𝜆) = ℒNCA(𝑔2,𝑀)
𝑀 TinyImagenet TinyImagenet Adv. TinyImagenet TinyImagenet Adv.
1 39.66±0.15 24.80±0.07 41.26±0.14 27.34±0.77
2 40.71±0.26 26.29±0.51 41.99±0.23 28.14±0.13

ℒNaCl(𝐺
1,𝑀, 𝜆) = ℒMIXNCA(𝑔0,𝑀, 0.9) ℒNaCl(𝐺

1,𝑀, 𝜆) = ℒMIXNCA(𝑔2,𝑀, 0.5)
1 39.66±0.15 24.80±0.07 41.26±0.14 27.34±0.77
2 40.23±0.37 26.47±0.24 43.91±0.20 28.29±0.33

𝛼 = 1 ℒNaCl(𝐺
1,𝑀, 𝜆) = ℒMIXNCA(𝑔2,𝑀, 0.5) ℒNaCl(𝐺

1,𝑀, 𝜆) = ℒMIXNCA(𝑔2,𝑀, 0.5)
ℒRobust(𝐺

2, 𝑤)) = ℒRobust(𝑔2, �̂�(𝑥))) ℒRobust(𝐺
2, 𝑤)) = ℒRobust(𝑔2, 1))

1 42.56±0.13 31.18±0.51 42.24±0.14 31.55±0.38
2 44.69±0.20 32.65±0.52 44.37±0.08 32.20±0.23
5 45.31±0.22 32.43±0.33 44.77±0.11 32.47±0.42

Table 4.6: Combining ℒNCA(𝑔2, 5) and ℒMIXNCA(𝑔2, 5, 0.5).
Accuracy (%) CIFAR100 CIFAR100 Adv. CIFAR10 CIFAR10 Adv.
ℒNCA 58.81±0.21 32.86±0.47 77.58±0.23 48.30±0.39
ℒMIXNCA 59.85±0.30 32.06±0.72 79.45±0.20 48.32±0.70
Combined 59.66±0.14 33.64±0.31 78.94±0.07 51.19±0.44

By referring to Table 4.2, our baseline becomes exactly SimCLR [23] when 𝐺1 = 𝑔0,

and becomes Debiased+HardNeg [154] when 𝐺1 = 𝑔2. From Table 4.3, one can see

that when 𝑀 ̸= 1, ℒNCA and ℒMIXNCA can both improve upon the baselines(𝑀 = 1) in

all metrics (standard/robust/transfer accuracy). When 𝐺1 = 𝑔0, ℒNCA’s improvement

over SimCLR also exemplifies our Theorem 8. Due to page limits, we only select one 𝜆

when ℒNaCl = ℒMIXNCA and report results together with the results of ℒNaCl = ℒNCA.

Full tables can be found in the Appendix B.2. We further verify the performance

on TinyImagent and give results in Table 4.5. Notice that now when 𝐺1 = 𝑔0, we

are using a batch size of 𝑁 = 128 for 200-class TinyImagent task. Therefore, the

requirement of 𝑁 ≥ 𝐾 − 1 in Theorem 8 is not fulfilled. However, we can still see

improvements when going from 𝑀 = 1 to 𝑀 = 2. Additionally, we combine ℒNCA and

ℒMIXNCA in training and give their results in Table 4.6. We see that the robustness

performance can be further boosted by 1-3% with the combined loss while keeping

similar standard accuracy to ℒMIXNCA.

Case (2) 𝛼 = 1. In Table 4.4, after setting 𝛼 = 1, we experiment with 𝐺1 = 𝐺2 =

𝑔2 since 𝑔2 generally yields better performance in Table 4.3. When ℒNaCl(𝐺
1,𝑀, 𝜆) =

ℒMIXNCA(𝑔2,𝑀, 𝜆), we give the results for 𝜆 = 0.5, 0.7, 0.9 to show an interesting effect:
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while ℒMIXNCA(𝑔2,𝑀, 𝜆 = 0.5) benefits a lot going from 𝑀 = 1 to 𝑀 = 5 (standard

accuracy increases from 56.22% to 59.43%), the improvement is comparatively smaller

with ℒMIXNCA(𝑔2,𝑀, 0.9) (standard accuracy increases from 56.22% to 56.86%). In

Figure 4-1, we plot the robust accuracy defined under FGSM attacks [61] along the

y-axis. Ideally, one desires a representation network that pushes the performance

to the upper-right corner in the 2D accuracy grid (standard-robust accuracy plot).

We highlight the results of ℒIntNaCl and ℒIntCL in circles, through which we see

that while ℒIntCL can already train representations that are decently robust without

sacrificing the standard accuracy on CIFAR100, the standard accuracy on CIFAR10 is

inferior to some baselines (HardNeg and Debiased+HardNeg). Comparatively, ℒIntNaCl

demonstrates high transfer standard accuracy and wins over the baselines by a large

margin on both datasets, proving the ability of learning representation networks that

also transfer robustness property. For TinyImagent, we only show the results when

ℒNaCl(𝐺
1,𝑀, 𝜆) = ℒMIXNCA(𝑔2,𝑀, 0.5) since 𝑔2 generally achieves higher accuracy

and combines well with ℒMIXNCA. Importantly, with the help of ℒNaCl module, the

performance can be boosted from 42.56% to 45.31% while maintaining good robust

accuracy 32.43%.

4.3.2 The effect of ℒRobust

By evaluating the effect of ℒRobust, we want to see the performance difference of our

framework ℒIntNaCl when 𝛼 ̸= 0 and 𝛼 = 0. Therefore, we consider 2 cases: (1) set

𝑀 = 1 in equation 4.14 and compare ℒIntCl with existing work ℒNaCl(𝐺
1,𝑀 = 1, 𝜆),

or (2) set 𝑀 ̸= 1 and compare ℒIntNaCl and ℒNaCl(𝐺
1,𝑀 ̸= 1, 𝜆).

Case (1) 𝑀 = 1. Notice that ℒIntCL differs from standard contrastive losses by

including the term ℒRobust. Therefore, one can easily evaluate the effect of ℒRobust by

inspecting the performance difference between ℒIntCl and the baselines in Figure 4-

1. Specifically, we let 𝐺1 = 𝑔2 for ℒIntCl in Figure 4-1, hence a direct baseline is

Debiased+HardNeg. By adding a robustness-promoting term, the robust accuracy

can be boosted from 31.03% to 40.05% and transfer robust accuracy from 48.38% to

59.33%, which is a significant improvement.
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Case (2) 𝑀 ̸= 1. The effect of ℒRobust is also demonstrated through the robust

accuracy “jump” from Table 4.3 to Table 4.4. For example, we point out that in Ta-

ble 4.3, ℒNaCl(𝐺
1,𝑀, 𝜆) = ℒNCA(𝑔2, 3) gives the maximum robust accuracy of 33.19%,

while the robust accuracy obtained with the same ℒNaCl(𝐺
1,𝑀, 𝜆) = ℒNCA(𝑔2, 3)

and additional ℒRobust increases to 40.53% in Table 4.4. The robust accuracy boost

on TinyImagent with the help of ℒRobust is also visible: when ℒNaCl(𝐺
1,𝑀, 𝜆) =

ℒMIXNCA(𝑔2, 2, 0.5), the robust accuracy increases from 28.29% to 32.65%.

4.3.3 The effect of 𝑀 , 𝜆, and 𝑤(𝑥)

To evaluate the effect of 𝑀 , we can see from Table 4.3 and Table 4.4 that the

performance is generally increasing as 𝑀 increases. However, this effect seems to

be less visible for robust accuracy and transfer robust accuracy. In practice, 𝑀 = 5

does not require exactly 5 times training time since the number of training parameter

remains the same. In our experiment, we observe that 𝑀 = 5 requires roughly 3 times

training time compared with the baseline 𝑀 = 1. To evaluate the effect of 𝜆, we

include in Figure 4-2 the standard and robust accuracy on CIFAR100 and CIFAR10

as functions of 𝜆. Intriguingly, we see that the accuracy curves mainly show trends

of increasing in Figure 4-2(a). Comparatively, the standard accuracy on CIFAR100

and CIFAR10 shows trends of decreasing in Figure 4-2(b). One possible explanation

is by the original baselines’ room for improvement. Since Debiased+HardNeg is a

much stronger baseline than SimCLR, it is closer to the robustness-accuracy trade-off.

However, we note that the overall performance of NaCl on Debiased+HardNeg is still

better than NaCl on SimCLR regardless of the robustness-accuracy trade-off. In the

last row of Table 4.5, we list the results when ℒNaCl(𝐺
1,𝑀, 𝜆) = ℒMIXNCA(𝑔2,𝑀, 0.5)

but different ℒRobust(𝐺
2, 𝑤)). Specifically, on the left we show the case when 𝑤 = �̂�(𝑥)

and on the right we show the case when 𝑤 = 1. One can then see that by using a

goal-specific weighting scheme, the performance can be further boosted.
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(a) NaCl on SimCLR [23], i.e. 𝛼 = 0,ℒNaCl = ℒMIXNCA, 𝐺
1 = 𝑔0 in equation 4.14

(b) NaCl on Debiased+HardNeg [154], i.e. 𝛼 = 0,ℒNaCl = ℒMIXNCA, 𝐺
1 = 𝑔2

in equation 4.14

Figure 4-2: The standard and robust accuracy (%) on CIFAR100 and CIFAR10 as
functions of 𝜆 in Eq. equation 4.14 when 𝛼 = 0,ℒNaCl = ℒMIXNCA.
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#epoch 100 200 400 600 800 1000 1200 1400 1600 1800 2000
ℒSimCLR 53.69 57.45 60.06 60.96 61.27 61.90 61.94 62.53 62.44 62.10 62.06
ℒNCA(𝑔0, 2) 55.72 59.31 61.19 61.66 62.49 61.95 62.06 62.39 62.39 62.52 62.54

ℒMIXNCA(𝑔0, 2, 0.9) 56.20 58.98 61.81 62.43 62.46 63.48 63.48 64.13 64.14 64.21 64.31
ℒDebiased+HardNeg 56.83 59.35 61.77 62.74 62.68 63.12 63.22 63.08 62.86 62.90 63.38
ℒNCA(𝑔2, 2) 57.87 60.06 62.36 62.58 62.86 63.07 63.29 63.65 63.13 63.73 63.20

ℒMIXNCA(𝑔2, 2, 0.5) 59.41 62.14 64.06 65.59 65.53 66.29 66.64 67.14 66.94 67.53 67.85

Table 4.7: The CIFAR100 linear evaluation results (%) after different numbers of
training epochs.

4.3.4 Extended runtime

As training the representation with more epochs can also expose the data to more

augmentations, we carry out an additional experiments to compare the efficiency and

ultimate accuracy of ℒNaCl, ℒSimCLR, and ℒDebiased+HardNeg. In Table 4.7, we give the

standard accuracy of NaCl on SimCLR and NaCl on Debiased+HardNeg at different

epochs. Same as before, we only select one 𝜆 when ℒNaCl = ℒMIXNCA and report its

results together with those of ℒNaCl = ℒNCA. In Figure 4-3, we plot the best standard

accuracy achieved as a function of training epochs. Specially, [66] has reported a

ℒSimCLR CIFAR100 accuracy of 54.74% after 200 epochs, compared to ℒNCA(𝑔0, 2)’s

55.72% after 100 epochs. In our reproduction of the ℒSimCLR 200-epoch result2, we

have witnessed an accuracy of 57.45% however at the cost of 1.34X training time (cf.

200 epochs with ℒSimCLR takes 211 mins vs. 100 epochs with ℒNCA(𝑔0, 2) takes 158

mins). Overall, we see that NaCl methods demonstrate better efficiency when applying

on SimCLR and better ultimate accuracy when applying on Debiased+HardNeg.

4.4 Conclusion

In this chapter, we discover the relationship between contrastive loss and Neighborhood

Component Analysis (NCA), which motivates us to generalize the existing contrastive

loss to a set of Neighborhood analysis Contrastive losses (NaCl). We further propose

a generic and integrated contrastive learning framework (IntNaCl) based on NaCl,

2We let the dataloader shuffle the whole dataset to form new batches after every epoch, so by
doubling the training epoch, one will effectively expose the network to more diverse negative pairs.
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(a) NaCl on SimCLR [23]

(b) NaCl on Debiased+HardNeg [154]

Figure 4-3: The standard accuracy (%) on CIFAR100 with extended runtime.

which learns representations that score high in both standard accuracy and adversarial

accuracy in downstream tasks. With the integrated framework, we can boost the

standard accuracy by 6% and the robust accuracy by 17%.
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Chapter 5

Evaluating robustness-accuracy of

large vision models using synthetic

data

5.1 Introduction

In recent years, the use of large pretrained neural networks for efficient fine-tuning

on downstream tasks has prevailed in many domains such as vision, language, and

speech. Instead of designing task-dependent neural network architectures for different

downstream tasks, the current methodology focuses on the principle of task-agnostic

pretraining and task-specific finetuning. This methodology uses a neural network

pretrained on a large-scale broad dataset to extract generic representations of the

input data, which we call pretrained representations for simplicity. The pretrained

representations are then used as a foundation [12] to solve downstream tasks. Prevalent

ways include training a linear head (i.e., linear probing) on the representations with

the labels provided by a downstream dataset, or simply employing zero-shot inference.

When gauging the usefulness of a pretrained model, it is a convention to conduct

evaluations on selected public datasets. For example, ViT [40] reports accuracy on 25

tasks, CLIP [141] on 27 datasets, and PLEX [181] on over 40 datasets to systematically
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evaluate different reliability dimensions on both vision and language domains. However,

this convention has several drawbacks. For example, the evaluation process evidently

poses significant computational overhead on the model trainer and raises data privacy

concerns, setting a high bar for new model designs and large-scale AI governance. More

importantly, the evaluation result is dependent on specific evaluation datasets. Thus

the nominal evaluation score can be inconclusive if the evaluation data are biased or

under-representative. For instance, ViT-L/16 is reportedly performing better than ViT-

B/16 on 23 out of 27 linear probing tasks according to [141, Table 10], but worse than

ViT-B/16 on FoodSeg103 [202, Table 8], X-ray images [128, Table 4-8], and magnetic

resonance imaging [182, Table 2-3] tasks. Fundamentally, a poor probing result might

come from either (1) evaluation data bias, (2) true model deficiency, or both. In

this chapter, we attempt to disentangle the effect of the two and focus on designing

well-posed sanity checks for the latter. We utilize synthetic data generated from class-

conditional data prior, whose optimal classification strategy is known, and compare the

optimal strategy with representations’ linear separability. For example, Fisher’s linear

discriminant rule [81, 137] decides the optimal strategy for Gaussian distribution. If

the data can be separated with 90% accuracy in the raw input space and 60% in the

representation space, then the pretrained model has an intrinsic deficiency. Building

on that, the trending practice of pretraining and fine-tuning also signifies immediate

damage to all adapted applications if the foundation model has hidden risks [12],

such as lacking robustness to adversarial examples1. Luckily, similar to Fisher’s linear

discriminant rule for the optimal standard accuracy, [36] has characterized the optimal

classification strategy in the presence of input perturbations. Our sanity check can

thereby evaluate the robustness of pretrained models by considering the same synthetic

conditional Gaussian data prior.

Besides being great candidates for establishing well-posed problems, the idea of

probing foundation models with synthetic conditional Gaussians is also motivated

by the longstanding practice of Gaussian modeling in signal processing [68], data

1These types of risks may not be informed by the standard accuracy as they do not correlate
well [168]

84



Figure 5-1: Overview of SynBench. Step 1: generate class-conditional Gaussian and
form the inputs to the pretrained model; Step 2: gather rendered representations;
Step 3: measure the expected robustness bound under a range of threshold accuracy
for both input synthetic data and their representations according to eqn. (5.3) and
obtain the expected bound-threshold accuracy plot; Step 4: calculate SynBench score
by the relative area under the curve of the representations (area B) to the inputs
(area A + area B) in the expected bound-threshold accuracy plot. The closer the
ratio is to 1, the better the quality of pretrained representations is, in terms of the
robustness-accuracy characterization.

mining [71], machine learning [90, 183, 221], and other engineering fields. For example,

Gaussian mixtures have found applications in modeling noise, magnetic field inho-

mogeneities, biological variations of tissues in magnetic resonance imaging [145], and

computerized tomography [157]. The facts that Gaussian mixture models often lead

to mathematically tractable problems [118, 150, 113] and the abundance of analytical

tools available for Gaussian models [84, 138, 81, 36] also inspire our study on how

Gaussian mixtures can be leveraged for evaluating pretrained image models. Further

discussions regarding our choice of Gaussian models can be found in the Section 5.4.2.

An ideal pretrained model should entail both good accuracy and robustness, and

the level of goodness is desired to be measurable in a task/data-agnostic manner. In

this chapter, we propose SynBench to precisely address this requirement. Specifically,

SynBench establishes a theoretical reference characterizing the robustness-accuracy

trade-off of the synthetic data based on the Bayes optimal linear classifiers. Then,

SynBench obtains the representations of the same synthetic data from the pretrained

model and compares them to the reference. Finally, we define the ratio of area-under-

the-curves in robustness-accuracy plots, SynBench-Score, as a quantifiable metric of

the pretrained representation quality. The entire procedure of SynBench is illustrated
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in Figure 5-1. We list possible use case of SynBench in the Section 5.4.1.

SynBench features the following key advantages:

1. Soundness : We formalize the fundamental trade-off in robustness and accuracy

of the considered conditional Gaussian model and use this characterization as a

reference to analyze the quality of pretrained representations in a completely

real-data-free scenario.

2. Task-independence : Since the pretraining of large models is independent of the

downstream datasets and tasks (e.g., through self-supervised or unsupervised

training on broad data at scale), the use of synthetic data in SynBench provides

a task-agnostic approach to evaluating pretrained representations without the

knowledge of downstream tasks and datasets.

3. Completeness and privacy : The flexibility of generating synthetic data (e.g., by

adopting a different data sampling procedure) offers a good proxy towards a

more comprehensive evaluation of pretrained representations before fine-tuning

on downstream datasets, especially in the scenario when the available datasets

are not representative of the entire downstream datasets. Moreover, the use of

synthetic data enables complete control and simulation over data size and distri-

bution, protects data privacy, and facilitated model auditing and governance.

5.1.1 Our contributions

• We propose SynBench, a novel evaluation framework for pretrained image

models that uses data synthesized from a data prior. The evaluation process is

independent of the downstream image classification datasets/tasks.

• Evaluated with several pretrained image models for image classification, our

experimental results show that SynBench-Score matches well the model perfor-

mance when finetuned on several downstream datasets. For example, SynBench-

Score suggests that the Imagenet21k pretrained network (ViT-B/16-in21k )

improves with finetuning on Imagenet1k (ViT-B/16 ), echoing with the higher
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linear probing accuracy of ViT-B/16 on real-life datasets. The Pearson cor-

relation coefficient between SynBench-Score and the average downstream task

accuracy suggests strong correlation (above 0.9).

• We show that SynBench can be used to guide hyperparameter selection in robust

linear probing to mitigate the robustness-accuracy trade-off when fine-tuned on

downstream datasets. For example, conducting 𝜖-robust linear probing with 𝜖

selected by SynBench-Score gives ViT-B/16 0.1% and 2.7% increase on CIFAR10

standard and robust accuracy, and 0.7% and 2.5% increase on TinyImagenet

standard and robust accuracy.

5.1.2 Related works

In the past few years, much focus in the machine learning community has been shifted

to training representation networks capable of extracting features for a variety of

downstream tasks with minimal fine-tuning. Nowadays, many common vision tasks are

achieved with the assistance of good backbones, e.g. classifications [211, 201, 51, 206,

40, 21], object detection [149, 110], segmentation [20, 205], etc. Among the popular

backbones, vision transformers (ViT) [40] and convolutional models (e.g. ResNet [70])

have attracted enormous interest. We will exemplify the use of SynBench using several

pretrained ViTs and ResNets.

Since pretrained models are used as a foundation for different downstream tasks, it

is central to transfer learning [123, 139], and also tightly related to model generaliza-

tion [140, 18]. To benchmark the performance of a pretrained model, it is a convention

to apply the pretrained model for a number of popular tasks and conduct linear prob-

ing on the representations [23, 40, 21, 25]. Besides accuracy-based probing methods,

evaluation methods have been proposed based on information theory and minimum

description length [8, 185], surplus description length [196], maximum evidence [210],

Fisher discriminant analysis [162], among others. These metrics are reliant on the

label information of the downstream tasks and are hence task-specific.

Lately, more fundamental questions related to pretrained models are brought up
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[12, 181, 219, 164]. [12] raised practical concerns about the homogenization incentivized

by the scale of the pretraining. Although homogenization might help in achieving

competitive performance for some downstream tasks, the defects are also inherited by

all these downstreams. On that account, a more careful study of the fundamentals

of pretrained models is of paramount importance. [181] explored the reliability of

pretrained models by devising 10 types of tasks on 40 datasets. It is further pointed out

by [219] in 9 benchmarks that pretrained models may not be robust to subpopulation

or group shift. The adversarial robustness is benchmarked by [161, 134].

To enable quantifying representation quality in the pretraining stage, SynBench

differs from the above frameworks as it does not need knowledge of any real-world

downstream data. Moreover, SynBench has full control of the evaluation set via

synthetic data generation. With the assumed synthetic data distribution, we can

theoretically characterize the reference robustness-accuracy trade-off. Therefore,

SynBench provides a standardized quality metric with theoretical groundings and

evaluates for representations induced by pretrained models at a low cost.

5.2 SynBench: methodology and evaluation

Without the knowledge of the downstream tasks and data, we aim to develop a

task-agnostic framework to evaluate some fundamental behaviors of the representation

network. In this chapter, we inspect and quantify how representation networks preserve

the robustness and accuracy enjoyed by the original synthesized data. On the whole,

we measure the idealized robustness-accuracy trade-off using synthetic data. By

propagating the Gaussian realizations through different representation networks, we

can also compare the robustness-accuracy trade-off for representations. We start this

section by giving the preliminaries on the synthetic data of interest.

5.2.1 Synthetic data

We consider binary classification problems with data pair (𝑥, 𝑦) generated from the

mixture of two Gaussian distributions 𝑃𝜇1,𝜇2,Σ, such that 𝑥|𝑦 = 1 ∼ 𝒩 (𝜇1,Σ), 𝑥|𝑦 =
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−1 ∼ 𝒩 (𝜇2,Σ), or equivalently,

𝑥− 𝜇1 + 𝜇2

2
|𝑦 ∼ 𝒩 (𝑦�̃�,Σ), (5.1)

where 𝑦 ∈ 𝒞 = {+1,−1}, 𝑃 (𝑦 = +1) = 𝜏 , 𝑃 (𝑦 = −1) = 1−𝜏 , and �̃� = 𝜇1−𝜇2

2
. We focus

on the class-balanced case (𝜏 = 1
2
) and defer the imbalanced case to Appendix A.3.2.

When sampling from this idealized distribution, we eliminate the factor of data bias

and can test the accuracy and robustness degradation in an ideal setting.

Let ‖ · ‖𝑝 denote the ℓ𝑝 norm of a vector for any 𝑝 ≥ 1. For a given classifier

𝑓 and input 𝑥 with 𝑓(𝑥) = 𝑦, where 𝑦 is the predicted label, it is not rational for

the classifier to respond differently to 𝑥+ 𝛿 than to 𝑥 for a small perturbation level

measured by ‖𝛿‖𝑝, i.e. inconsistent top-1 prediction [171, 61]. Therefore, the level of

(adversarial) robustness for a classifier can be measured by the minimum magnitude

of perturbation that causes misclassification, i.e. ‖Δ‖𝑝 := min𝛿:𝑓(𝑥+𝛿)̸=𝑓(𝑥) ‖𝛿‖𝑝. For a

generic function 𝑓 , solving the optimization problem exactly is hard [85, 166]. Luckily,

one can readily solve for the optimization if 𝑓 is affine [122].

5.2.2 Main theorem

In what follows, we will leverage this point and focus on the linear classifier that

minimizes robust classification error. An ideal candidate classifier for the class

conditional Gaussian (equation 5.1) is specified by the robust Bayes optimal classifier [4,

39]. Specifically, it is stated that the optimal robust classifier (with a robust margin

𝜖) for data generated from equation 5.1 is a linear classifier. We derive the following

result as a direct application of the fact. To simplify the exposition, we focus on the

ℓ2 norm in the remainder of this chapter. We refer the readers to Appendix A.3.1

for general ℓ𝑝-norm results. We use “bound” to denote the minimal perturbation of

a sample. We first formally state our theorem that serves as the foundation of our

SynBench framework.

Theorem 9. For any sample 𝑥, the optimal robust classifier 𝑓𝜖 for 𝑃𝜇1,𝜇2,Σ gives

(i) the bound (decision margin) ‖Δ‖2 =
|(𝑥−𝜇1+𝜇2

2
)𝑇Σ−1(�̃�−𝑧Σ(�̃�))|

‖Σ−1(�̃�−𝑧Σ(�̃�))‖2
,
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(ii) the scaled bound ‖Δ̄‖2 =
|(𝑥−𝜇1+𝜇2

2
)𝑇Σ−1(�̃�−𝑧Σ(�̃�))|

|�̃�𝑇Σ−1(�̃�−𝑧Σ(�̃�))|
.

For a sample 𝑥 ∼ 𝑃𝜇1,𝜇2,Σ, it further gives

(iii) the standard accuracy 𝑎 = Φ( �̃�𝑇Σ−1(�̃�−𝑧Σ(�̃�))
‖Σ−1(�̃�−𝑧Σ(�̃�))‖Σ

),

(iv) the expected scaled bound of correct samples

E
[︀
‖Δ̄‖2 | 𝑓𝜖(𝑥) = 𝑦

]︀
= 1√

2𝜋
1

𝑎Φ−1(𝑎)
𝑒−

1
2(Φ−1(𝑎))

2

+ 1,

where 𝑧Σ is the solution of the convex problem argmin‖𝑧‖2≤𝜖(�̃�− 𝑧)𝑇Σ−1(�̃�− 𝑧) and Φ

denotes the CDF of the standard normal distribution.

Proof. (i) Following [4, 36], the Bayes optimal robust classifier for the general non-

symmetric conditional Gaussians 𝑃𝜇1,𝜇2,Σ specified in equation 5.1 is

𝑓𝜖(𝑥) = 𝑠𝑖𝑔𝑛

{︃(︂
𝑥− 𝜇1 + 𝜇2

2

)︂𝑇

Σ−1 (�̃�− 𝑧Σ(�̃�))

}︃
, (5.2)

where 𝑠𝑖𝑔𝑛(·) is the typical sign function and 𝑧Σ is the solution of the convex prob-

lem argmin‖𝑧‖2≤𝜖(�̃� − 𝑧)𝑇Σ−1(�̃� − 𝑧). The corresponding decision boundary is at(︀
(𝑥+ 𝛿)− 𝜇1+𝜇2

2

)︀𝑇
Σ−1 (�̃�− 𝑧Σ(�̃�)) = 0,

=⇒ Δ = argmin ‖𝛿‖2 s.t. 𝛿𝑇Σ−1 (�̃�− 𝑧Σ(�̃�)) = −
(︂
𝑥− 𝜇1 + 𝜇2

2

)︂𝑇

Σ−1 (�̃�− 𝑧Σ(�̃�))

=⇒ ‖Δ‖2 =
|(𝑥− 𝜇1+𝜇2

2 )𝑇Σ−1(�̃�− 𝑧Σ(�̃�))|
‖Σ−1(�̃�− 𝑧Σ(�̃�))‖2

.

(ii) Since the bound ‖Δ‖2 is subject to the positions of two Gaussians, we scale

the bound by the distance from Gaussian centers to the classifier, |�̃�𝑇Σ−1(�̃�−𝑧Σ(�̃�))|
‖Σ−1(�̃�−𝑧Σ(�̃�))‖2

and

obtain

‖Δ̄‖2 =
|(𝑥− 𝜇1+𝜇2

2
)𝑇Σ−1(�̃�− 𝑧Σ(�̃�))|

‖Σ−1(�̃�− 𝑧Σ(�̃�))‖2
‖Σ−1(�̃�− 𝑧Σ(�̃�))‖2
|�̃�𝑇Σ−1(�̃�− 𝑧Σ(�̃�))|

=
|(𝑥− 𝜇1+𝜇2

2
)𝑇Σ−1(�̃�− 𝑧Σ(�̃�))|

|�̃�𝑇Σ−1(�̃�− 𝑧Σ(�̃�))|
.

(iii) For sample 𝑥 ∼ 𝑃𝜇1,𝜇2,Σ, consider the Bayes optimal robust classifier in equa-
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tion 5.2, we can calculate the analytical standard accuracy by

P(𝑦 = 1)P [𝑓𝜖(𝑥) = 1 | 𝑦 = 1] + P(𝑦 = −1)P [𝑓𝜖(𝑥) = −1 | 𝑦 = −1]

=P [𝑓𝜖(𝑥) = 1 | 𝑦 = 1]

=P

[︂
(𝑥− 𝜇1 + 𝜇2

2
)𝑇Σ−1(�̃�− 𝑧Σ(�̃�)) > 0 | 𝑦 = 1

]︂
=P
[︀
(�̃�+ 𝑤)𝑇Σ−1(�̃�− 𝑧Σ(�̃�)) > 0

]︀
, 𝑤 ∼ 𝒩 (0,Σ)

=P
[︀
𝑤𝑇Σ−1(�̃�− 𝑧Σ(�̃�)) > −�̃�𝑇Σ−1(�̃�− 𝑧Σ(�̃�))

]︀
, 𝑤 ∼ 𝒩 (0,Σ)

=P

[︂
𝑤𝑇Σ−1(�̃�− 𝑧Σ(�̃�))
‖Σ−1(�̃�− 𝑧Σ(�̃�))‖Σ

> − �̃�𝑇Σ−1(�̃�− 𝑧Σ(�̃�))
‖Σ−1(�̃�− 𝑧Σ(�̃�))‖Σ

]︂
,

𝑤𝑇Σ−1(�̃�− 𝑧Σ(�̃�))
‖Σ−1(�̃�− 𝑧Σ(�̃�))‖Σ

∼ 𝒩 (0, 1)

=Φ(
�̃�𝑇Σ−1(�̃�− 𝑧Σ(�̃�))
‖Σ−1(�̃�− 𝑧Σ(�̃�))‖Σ

).

(iv) For sample 𝑥 ∼ 𝑃𝜇1,𝜇2,Σ, let 𝑎 denote the accuracy, 𝑡 denote 𝑥 − 𝜇1+𝜇2

2
,

and 𝑤 denote Σ−1(�̃� − 𝑧Σ(�̃�)). From (iii), we have that the standard accuracy of

conditional Gaussian samples with the Bayes optimal (robust) classifier is Φ( �̃�𝑇𝑤
‖𝑤‖Σ

), so
�̃�𝑇𝑤
‖𝑤‖Σ

= Φ−1(𝑎). Since for binary classification, we only care about accuracy from 0.5

to 1, so we should have �̃�𝑇𝑤 > 0.

Now consider the classifier in equation 5.2 and the corresponding scaled bound

from (ii),

‖Δ̄‖2 =
|(𝑥− 𝜇1+𝜇2

2
)𝑇Σ−1(�̃�− 𝑧Σ(�̃�))|

|�̃�𝑇Σ−1(�̃�− 𝑧Σ(�̃�))|
=
|𝑡𝑇𝑤|
|�̃�𝑇𝑤|

=
|𝑡𝑇𝑤|
�̃�𝑇𝑤

.

Since 𝑡|𝑦 ∼ 𝒩 (𝑦�̃�,Σ), we have 𝑡𝑇𝑤|𝑦 ∼ 𝒩 (𝑦�̃�𝑇𝑤,𝑤𝑇Σ𝑇𝑤). When we only want to

get the expected scaled bound of the correctly-classified samples, we have that

E
[︀
‖Δ̄‖2 | 𝑓𝜖(𝑥) = 𝑦

]︀
=

1

�̃�𝑇𝑤
E
[︀
|𝑡𝑇𝑤| | 𝑓𝜖(𝑥) = 𝑦

]︀
=

1

2�̃�𝑇𝑤
E
[︀
|𝑡𝑇𝑤| | 𝑓𝜖(𝑥) = 𝑦 = 1

]︀
+

1

2�̃�𝑇𝑤
E
[︀
|𝑡𝑇𝑤| | 𝑓𝜖(𝑥) = 𝑦 = −1

]︀
=

1

2�̃�𝑇𝑤
E
[︀
𝑡𝑇𝑤 | 𝑦 = 1, 𝑡𝑇𝑤 ≥ 0

]︀
+

1

2�̃�𝑇𝑤
E
[︀
−𝑡𝑇𝑤 | 𝑦 = −1, 𝑡𝑇𝑤 < 0

]︀
.

Recall that 𝑡𝑇𝑤|𝑦 ∼ 𝒩 (𝑦�̃�𝑇𝑤,𝑤𝑇Σ𝑇𝑤), then by the mean of truncated normal
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distribution, it is true that

E
[︀
𝑡𝑇𝑤 | 𝑦 = 1, 𝑡𝑇𝑤 ≥ 0

]︀
= �̃�𝑇𝑤 +

√
𝑤𝑇Σ𝑇𝑤

𝜑( 0−�̃�𝑇𝑤√
𝑤𝑇Σ𝑇𝑤

)

1− Φ( 0−�̃�𝑇𝑤√
𝑤𝑇Σ𝑇𝑤

)

= �̃�𝑇𝑤 +
√
𝑤𝑇Σ𝑇𝑤

𝜑(− �̃�𝑇𝑤√
𝑤𝑇Σ𝑇𝑤

)

1− Φ(− �̃�𝑇𝑤√
𝑤𝑇Σ𝑇𝑤

)

= �̃�𝑇𝑤 +
√
𝑤𝑇Σ𝑇𝑤

1
√
2𝜋Φ( �̃�𝑇𝑤√

𝑤𝑇Σ𝑇𝑤
)
𝑒
− 1

2

(︂
�̃�𝑇 𝑤√
𝑤𝑇Σ𝑇 𝑤

)︂2

E
[︀
−𝑡𝑇𝑤 | 𝑦 = −1, 𝑡𝑇𝑤 < 0

]︀
= −E

[︀
𝑡𝑇𝑤 | 𝑦 = −1, 𝑡𝑇𝑤 < 0

]︀
= −

(︃
−�̃�𝑇𝑤 −

√
𝑤𝑇Σ𝑇𝑤

𝜑( 0+�̃�𝑇𝑤√
𝑤𝑇Σ𝑇𝑤

)

Φ( 0+�̃�𝑇𝑤√
𝑤𝑇Σ𝑇𝑤

)

)︃

= �̃�𝑇𝑤 +
√
𝑤𝑇Σ𝑇𝑤

1
√
2𝜋Φ( �̃�𝑇𝑤√

𝑤𝑇Σ𝑇𝑤
)
𝑒
− 1

2

(︂
�̃�𝑇 𝑤√
𝑤𝑇Σ𝑇 𝑤

)︂2

.

Therefore

E
[︀
‖Δ̄‖2 | 𝑓𝜖(𝑥) = 𝑦

]︀
=

1

�̃�𝑇𝑤

(︃
�̃�𝑇𝑤 +

√
𝑤𝑇Σ𝑇𝑤

1
√
2𝜋Φ( �̃�𝑇𝑤√

𝑤𝑇Σ𝑇𝑤
)
𝑒
− 1

2

(︂
�̃�𝑇 𝑤√
𝑤𝑇Σ𝑇 𝑤

)︂2)︃

= 1 +

√
𝑤𝑇Σ𝑇𝑤

�̃�𝑇𝑤

1
√
2𝜋Φ( �̃�𝑇𝑤√

𝑤𝑇Σ𝑇𝑤
)
𝑒
− 1

2

(︂
�̃�𝑇 𝑤√
𝑤𝑇Σ𝑇 𝑤

)︂2

.

By replacing �̃�𝑇𝑤√
𝑤𝑇Σ𝑇𝑤

by Φ−1(𝑎), we got

E
[︀
‖Δ̄‖2 | 𝑓𝜖(𝑥) = 𝑦

]︀
=

1√
2𝜋

1

𝑎Φ−1(𝑎)
𝑒−

1
2(Φ−1(𝑎))

2

+ 1.

We note that for samples drawn from 𝑃𝜇1,𝜇2,Σ, Σ = 𝜎2𝐼𝑑, all 𝜖-robust Bayes optimal

classifier overlap with each other. For a general covariance Σ, the 𝜖 of an 𝜖-robust

Bayes classifier specifies the desired size of margin and demonstrates the robustness

accuracy trade-off. We give an illustrative 2D class-conditional Gaussian example in

Figure 5-2(a), where different 𝜖-robust Bayes classifiers give different overall margins

at the cost of accuracy. As 𝜖 increases, the robust Bayes optimal classifier rotates
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(a) 2D Gaussian case (b) Rob.-Acc. trade-off

Figure 5-2: Illustration of robustness-accuracy trade-off suggested by 𝜖-robust Bayes
optimal classifiers. Figure (a) depicts a class-conditional 2D Gaussian case with
decision boundaries drawn by 𝜖-robust Bayes optimal classifiers of varying 𝜖 values.
Figure (b) draws the theoretically characterized robustness-accuracy trade-off given in
Theorem 9(iv).

counterclockwise, leading to increased misclassifications, but also overall enlarged

margins.

5.2.3 Objective

For a given representation network parameterized by 𝜃, we are interested in evaluating

the expected bounds on synthetic data and their representations, under a thresholding

accuracy 𝑎𝑡. That is, E𝜇∼P𝜇,Σ∼PΣ,𝑥−�̄�|𝑦∼𝒩 (𝑦𝜇,Σ)

[︀
‖Δ̄‖2 | 𝑓𝜖(𝑥) = 𝑦, 𝑎 > 𝑎𝑡

]︀
for Δ̄ = Δ̄𝑥

and Δ̄𝑧, where P𝜇 and PΣ characterize the probability density function of the synthetic

data manifold of interest, �̄� is a translation vector allowing non-symmetric class

conditional Gaussian, and Δ̄𝑥 and Δ̄𝑧 denote the bounds on synthetic data and

representations respectively. Here, without the prior of applications, we assume

𝜇 = 𝑠 · 1𝑑/
√
𝑑, where 𝑠 denotes a random variable that follows uniform distribution

and 1𝑑/
√
𝑑 is the normalized all-ones vector. For simplicity, we let Σ = 𝐼𝑑. Formally,
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we define the accuracy-constrained expected bound 𝐸𝜃,𝜖(𝑎𝑡) as

𝐸𝜃,𝜖(𝑎𝑡) =E𝑠∼𝒰 ,𝑥−�̄�|𝑦∼𝒩 (𝜇,Σ)

[︁
‖Δ̄‖2 | 𝑓𝜖(𝑥) = 𝑦, 𝑎 > 𝑎𝑡, 𝜇 = 𝑠 · 1𝑑/

√
𝑑,Σ = 𝐼𝑑

]︁
=E𝑠,𝑥

[︀
‖Δ̄‖2 | 𝑓𝜖(𝑥) = 𝑦, 𝑎(𝑠, 𝜖) > 𝑎𝑡

]︀
=
∑︁
𝑖

E𝑥

[︀
‖Δ̄‖2 | 𝑓𝜖(𝑥) = 𝑦, 𝑎(𝑠𝑖, 𝜖) > 𝑎𝑡

]︀
P(𝑠 = 𝑠𝑖)

=
1

𝑛

∑︁
𝑖

E𝑥

[︀
‖Δ̄‖2 | 𝑓𝜖(𝑥) = 𝑦, 𝑎(𝑠𝑖, 𝜖) > 𝑎𝑡

]︀
=
1

𝑛

∑︁
𝑖

E𝑥

[︀
‖Δ̄‖2 | 𝑓𝜖(𝑥) = 𝑦

]︀
1a(si,𝜖)>at . (5.3)

where 1a(si,𝜖)>at is the indicator function specifying the 𝑠𝑖, 𝜖-dependent accuracy 𝑎 that

surpasses the threshold accuracy 𝑎𝑡.

In the following sections, we will illustrate how to calculate the inner expectation

term E𝑥

[︀
‖Δ̄‖2 | 𝑓𝜖(𝑥) = 𝑦

]︀
for both the raw data (synthetic data) and representations.

Raw data. For raw data synthesized from 𝑃𝜇1,𝜇2,Σ according to equation 5.1, the in-

ner expectation term is given by Theorem 9(iv) E
[︀
‖Δ̄𝑥‖2 | 𝑓𝜖(𝑥) = 𝑦

]︀
= 1√

2𝜋
1

𝑎Φ−1(𝑎)
𝑒−

1
2(Φ−1(𝑎))

2

+

1, where 𝑎 denotes the standard accuracy. The subscript 𝑥 in the expected scaled

bound E
[︀
‖Δ̄𝑥‖2 | 𝑓𝜖(𝑥) = 𝑦

]︀
indicates the raw data space, to distinguish from the

scaled bound to be derived for representations. We highlight that Theorem 9(iv)

directly shows a robustness-accuracy trade-off. We plot the expected scaled bound as

a function of accuracy in Figure 5-2(b), which holds true when the data follow equa-

tion 5.1 exactly. In SynBench, we treat this theoretically-derived robustness-accuracy

trade-off as the reference, enabling a fair comparison among representations induced

by different pretrained models.

Representations. Given a pretrained network, we gather the representations of

the Gaussian realizations and quantify the bound induced by robust Bayes optimal

classifier in the representation space. When deriving the robust Bayes optimal

classifier, we model the representations by a general conditional Gaussian 𝑧|𝑦 = 1 ∼

𝒩 (𝜇1,Σ), 𝑧|𝑦 = −1 ∼ 𝒩 (𝜇2,Σ). By Theorem 9(ii), we consider the optimal robust

classifier for the modeled conditional Gaussian in the representation space to calculate
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Figure 5-3: An example of the robustness-accuracy quantification of representations
for ViT-B/16. (Left) The expected bound-threshold accuracy plot for the input raw
data (𝐸(𝑎𝑡)) and representations (𝐸𝜃,𝜖(𝑎𝑡)) with 𝜖 = 0 ∼ 0.8. (Right) To calculate
the SynBench-Score for 𝜖 = 0 (top) and 𝜖 = 0.6 (bottom), we use the definition
SynBench-Score(𝜃, 𝜖, 𝑎𝑡) = area B

area A+area B (refer to equation 5.4), which gives SynBench-
Score(𝜃ViT-B/16, 0, 0.7) = 0.33 and SynBench-Score(𝜃ViT-B/16, 0.6, 0.7) = 0.20.

the scaled bound ‖Δ̄𝑧‖2 =
|(𝑧−𝜇1+𝜇2

2
)𝑇Σ−1(�̃�−𝑧Σ(�̃�))|

|�̃�𝑇Σ−1(�̃�−𝑧Σ(�̃�))|
for correctly-classified samples and

the inner expectation is estimated empirically. It should be noted that now the Bayes

optimal classifier does not necessarily coincide with the robust Bayes optimal classifier

even when we synthesized the dataset with an identity matrix covariance in the input

space.

5.2.4 Robustness-accuracy quantification

Recall that we aim to calculate

𝐸𝜃,𝜖(𝑎𝑡) =
∑︁
𝑖

E𝑥|𝑦∼𝒩 (𝑦𝑠𝑖·1𝑑/
√
𝑑,𝐼𝑑)

[︀
‖Δ̄‖2 | 𝑓𝜖(𝑥) = 𝑦

]︀
1a(si,𝜖)>at𝑝(𝑠𝑖)

for both raw data and the representations (i.e. ‖Δ̄𝑥‖ and ‖Δ̄𝑧‖). We treat the

expected bounds of the raw data under a threshold accuracy as the reference. Given
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Algorithm 1 Evaluating Pretrained Image Representations using Synthetic Data
(SynBench)
Input A representation network 𝑔𝜃 : R𝑑 → R𝑑′ , threshold accuracy 𝑎𝑇 , (optional) the
probability density function of the synthetic data manifold P𝜇 and PΣ.
Output : SynBench-score that quantifies the robustness-accuracy performance.

1: if P𝜇 and PΣ are specified then
2: 𝜇 ∼ P𝜇,Σ ∼ PΣ.
3: else
4: 𝜇 = 𝑠 · 1𝑑/

√
𝑑, 𝑠 ∼ 𝒰{0.1, 5}, and Σ = 𝐼𝑑.

5: end if
6: Draw 𝑛 synthetic data hyper-parameters {(𝜇𝑘,Σ𝑘)}𝑛𝑘=1.
7: for 𝑘 ← 1 to 𝑛 do
8: Generate class-conditional Gaussian data (𝑥𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛) and test set (𝑥𝑡𝑒𝑠𝑡, 𝑦𝑡𝑒𝑠𝑡)

following 𝑥− �̄�|𝑦 ∼ 𝒩 (𝑦𝜇𝑘,Σ𝑘) and �̄� = 0.5 · 1𝑑/
√
𝑑.

9: Calculate 𝑎input
𝑘 , the theoretical accuracy for input data, following Thm 9(iii).

10: Calculate 𝑏input
𝑘 (denotes E

[︀
‖Δ̄𝑥‖2 | 𝑓𝜖(𝑥) = 𝑦

]︀
), the expected scaled bound of

correct samples for input data, following Thm 9(iv).
11: Gather representations for class 1 training samples 𝑧𝑡𝑟𝑎𝑖𝑛,𝑖1 = 𝑔𝜃(𝑥

𝑡𝑟𝑎𝑖𝑛,𝑖) if
𝑦𝑡𝑟𝑎𝑖𝑛,𝑖 = 1, representations for class 2 training samples 𝑧𝑡𝑟𝑎𝑖𝑛,𝑗2 = 𝑔𝜃(𝑥

𝑡𝑟𝑎𝑖𝑛,𝑗)
if 𝑦𝑡𝑟𝑎𝑖𝑛,𝑗 = −1, and 𝑧𝑡𝑒𝑠𝑡 = 𝑔𝜃(𝑥

𝑡𝑒𝑠𝑡).
12: Estimate class-conditional Gaussian in the repre-

sentation space by 𝜇′
1 =

∑︀𝑛1
𝑖=1 𝑧

𝑡𝑟𝑎𝑖𝑛,𝑖
1

𝑛1
, 𝜇′

2 =
∑︀𝑛2

𝑗=1 𝑧
𝑡𝑟𝑎𝑖𝑛,𝑗
2

𝑛2
,

Σ′ =
∑︀𝑛1

𝑖=1(𝑧
𝑡𝑟𝑎𝑖𝑛,𝑖
1 −𝜇′

1)(𝑧
𝑡𝑟𝑎𝑖𝑛,𝑖
1 −𝜇′

1)
𝑇+

∑︀𝑛2
𝑗=1(𝑧

𝑡𝑟𝑎𝑖𝑛,𝑗
2 −𝜇′

2)(𝑧
𝑡𝑟𝑎𝑖𝑛,𝑗
2 −𝜇′

2)
𝑇

𝑛1+𝑛2−1
.

13: Derive Bayes optimal classifier 𝑓 ′
𝜖 for class-conditional Gaussian distribution

𝑧|𝑦 = 1 ∼ 𝒩 (𝜇′
1,Σ

′), 𝑧|𝑦 = −1 ∼ 𝒩 (𝜇′
2,Σ

′).
14: Calculate 𝑎repre

𝑘 , the accuracy of 𝑓 ′
𝜖 for representations 𝑧𝑡𝑒𝑠𝑡, empirically.

15: Calculate the scaled bound of correct samples for representations following

Thm 9(ii), ‖Δ̄𝑧‖2 =
|(𝑧𝑡𝑒𝑠𝑡−𝜇′1+𝜇′

2
2

)𝑇Σ′−1(�̃�−𝑧Σ′ (�̃�))|
|�̃�𝑇Σ′−1(�̃�−𝑧Σ′ (�̃�))| where �̃� =

𝜇′
1−𝜇′

2

2
.

16: Estimate 𝑏repre
𝑘 , the expected scaled bound of correct samples for representations

empirically, by the arithmetic mean.
17: end for
18: Calculate 𝐸(𝑎𝑡) for input data with {𝑎input

𝑘 , 𝑏input
𝑘 }𝑛𝑘=1 according to equation 5.3.

19: Calculate 𝐸𝜃,𝜖(𝑎𝑡) for representations with {𝑎repre
𝑘 , 𝑏repre

𝑘 }𝑛𝑘=1 according to equa-
tion 5.3.

20: Calculate SynBench-Score(𝜃, 𝜖, 𝑎𝑇 ) =
∫︀ 1
𝑎𝑇

𝐸𝜃,𝜖(𝑎𝑡)𝑑𝑎𝑡∫︀ 1
𝑎𝑇

𝐸(𝑎𝑡)𝑑𝑎𝑡
.

a representation network, we compare the expected bounds of the representations

rendered by representation networks with the reference.

In our implementation, we take 𝑠 ∼ 𝒰{0.1, 5} under the guidance of Theorem 9(iii).
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Specifically, as Theorem 9(iii) gives an analytical expected accuracy for class conditional

Gaussian, we can obtain the desired range of 𝑠 by giving the accuracy. Since we

are interested in having the reference as a class conditional Gaussian that yields

accuracy from 55% to almost 100%, we set the starting and ending 𝑠 by the fact that

Φ(0.1) ≈ 0.55 and Φ(5) ≈ 1.0. We reiterate that with more accurate modeling of the

data manifold of interest, SynBench can give a more precise capture of the pretrained

representation performance. We will demonstrate this point in Section 5.3.4.

When the data is perfect Gaussian (e.g. input synthetic data), we calculate 𝐸𝜃,𝜖(𝑎𝑡)

as detailed in Section 5.2.3. We note that Δ̄𝑥 is independent of pretrained network

parameters 𝜃, and all the 𝜖-robust classifiers 𝑓𝜖 in the input space overlap with each

other when Σ = 𝐼𝑑. We hereby denote the desired metric on the input synthetic data by

𝐸(𝑎𝑡), to distinguish from that on the representations 𝐸𝜃,𝜖(𝑎𝑡). For representations, we

calculate 𝐸𝜃,𝜖(𝑎𝑡) following Section 5.2.3 and the expectation is estimated empirically.

We show an example of the probing results in Figure 5-3.

To integrate over all the desired threshold accuracy, we use the area under the

curve (AUC) and give the ratio to the reference by

SynBench-Score(𝜃, 𝜖, 𝑎𝑇 ) =

∫︀ 1

𝑎𝑇
𝐸𝜃,𝜖(𝑎𝑡)𝑑𝑎𝑡∫︀ 1

𝑎𝑇
𝐸(𝑎𝑡)𝑑𝑎𝑡

, (5.4)

which correspond to the relative area area B
area A + area B in Figure 5-3. Values of SynBench-

Score closer to 1 imply better probing performance on pretrained representations. To

summarize, SynBench framework generates a sequence of proxy tasks with different

difficulty levels (monitored by 𝑠). With each proxy task, we can obtain an accuracy

and an expected bound (Section 5.2.3). With gathered pairs of accuracy and expected

bound, we filter ones whose accuracy is below a threshold accuracy (x-axis), and

calculate the accuracy-constrained expected bound to reflect the robustness level (y-

axis). With this, the AUC will counter for the discriminative power of the foundation

model given an idealized distribution, as well as the robustness level. We refer readers

to Algorithm 1 for the pseudo-code.
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5.3 Experimental results

In Section 5.3.1, we give the setup of our experiments. We exemplify the use of

SynBench in making efficient comparisons of pretrained representations in Section 5.3.2.

We compare SynBench with baseline methods and demonstrate the supremacy of

SynBench-Score in giving consistent model suggestions and high correlation with

performance on possible downstream tasks. In Section 5.3.3, we study how SynBench

can be used to select robust linear probing hyper-parameters. In Section 5.3.4, we

show how to model the covariance matrix Σ used for synthesizing Gaussian samples

given prior knowledge of the downstream data distribution.

5.3.1 Experiment setups

In the following sections, we will calculate SynBench-Scores for pretrained models and

make pair-wise comparisons. For example, ViT-B/16 is a fine-tuned pretrained model

from ViT-B/16-in21k. By checking their SynBench-Scores, we could understand how

the fine-tuning procedure helps or worsens the performance.

Setups. In order to systematically understand how each network attribute affects

the robustness-accuracy performance, it is desirable to control the variates. We list

and compare 10 pretrained vision transformers (ViTs) [40, 25, 19] and ResNets [24] in

Table 5.1.

Baselines. Although to the best of our knowledge, there is no real-data-free evalu-

ation method for pretrained representations, we refer to recent work [196, 210, 162]

and report the validation accuracy (Val loss), minimum description length (MDL),

surplus description length (SDL), logarithm of maximum evidence (LogME) and

self-challenging Fisher discriminant analysis (SFDA), following the official implemen-

tation from the literature on our synthetic proxy task as baselines [196, 162]. In

essence, we expect these real-data-free evaluations for pretrained models can give

meaningful performance assessments of possible downstream tasks. For this purpose,

we take an average of the accuracy in 27 downstream tasks (cf. [141], Table 10) as
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Table 5.1: Model descriptions. The performance of models might be nuanced by
scheduler, curriculum, and training episodes, which are not captured in the table.

Model Arch. pretraining fine-tuning patch # parameters (M)
ViT-Ti/16 ViT-Tiny Imgn21k Imgn1k 16 5.7
ViT-B/16 ViT-Base Imgn21k Imgn1k 16 86.6

ViT-B/16-in21k ViT-Base Imgn21k No 16 86.6
ViT-L/16 ViT-Large Imgn21k Imgn1k 16 304.3

ViT-S/16-DINO ViT-Small self-Imgn1k No 16 21.7
ViT-S/8-DINO ViT-Small self-Imgn1k No 8 21.7
ViT-B/16-DINO ViT-Base self-Imgn1k No 16 85.8
ViT-B/8-DINO ViT-Base self-Imgn1k No 8 85.8

Resnet50-SimCLRv2 Resnet50 self-Imgn1k No - 144.4
Resnet101-SimCLRv2 Resnet101 self-Imgn1k No - 261.2

Variation:
Model size ViT-{Ti,B,L}/16, ViT-{S,B}/16-DINO, ViT-{S,B}/8-DINO,

Resnet{50,101}-SimCLRv2
Finetuning ViT-B/16{,-in21k}

ViT patch size ViT-S/{16,8}-DINO, ViT-B/{16,8}-DINO

in the literature [40, 141, 107, 50, 211] to give a sense of the general performance

on possible downstream tasks, and report the Pearson correlation coefficients with

SynBench-Scores. Building on top of these, we also show the consistency of SynBench

suggestions given different numbers of synthetic realizations compared to the baselines.

Besides the SynBench-Score, we will also report the standard accuracy (SA)

and robust accuracy against adversarial perturbations (RA) for studying robustness-

accuracy performance.

Runtime analysis. The runtime of SynBench depends on the number of outcomes

of the discrete uniform distribution 𝒰{0.1, 5} and the data inference time through

the pretrained model. For one outcome (one robustness-accuracy relationship), it

costs 59 seconds to generate 2048 Gaussian samples, 37 and 81 seconds to obtain the

SynBench-Score for ViT-B/16 and ViT-L/16 on one GeForce RTX 2080 super.

Correspondingly, to obtain one robustness-accuracy relationship with task-specific

methods requires us to perform adversarial attacks on multiple possible datasets.

Here, we ignore the time to train the linear probing layer. For one single dataset, e.g.

CIFAR10, AutoAttack uses 72320 and 332288 seconds to evaluate 2048 samples on

ViT-B/16 and ViT-L/16 on one GeForce RTX 2080 super; PGD attack uses 1280 and

4608 seconds to evaluate 2048 samples on ViT-B/16 and ViT-L/16 on one GeForce
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Table 5.2: The SynBench-Score of pretrained representations and the standard/robust
accuracy (SA/RA) (%) of their linear probing classifier on class-conditional Gaussian
data.

Models SynBench-Score (𝜖 = 0) SA RA
ViT-Ti/16 0.01 76.0 50.8
ViT-B/16 0.33 96.4 52.9

ViT-B/16-in21k 0.20 92.1 51.3
ViT-L/16 0.26 96.1 52.9

ViT-S/16-DINO 0.48 97.9 55.5
ViT-B/16-DINO 0.55 99.3 50.4
ViT-S/8-DINO 0.40 95.8 51.1
ViT-B/8-DINO 0.50 98.8 49.6

Res50-SimCLRv2 0.66 99.8 50.1
Res101-SimCLRv2 0.60 99.4 51.6

RTX 2080 super.

For other task-agnostic metrics (MDL, SDL, 𝜖SC), obtaining them for ViT-B/16

costs 6807 seconds and ViT-L/16 costs 7373 seconds on one Tesla V100. However, it

should be noted that these metrics do not indicate robustness performance.

To provide a comprehensive evaluation, we give SynBench-Score(𝜃, 𝜖, 𝑎𝑡) with 𝑎𝑡

ranging from 0.7 to 0.9, and 𝜖 from 0 to 0.8. 𝑎𝑡 ̸= 0.7 and some 𝜖 results are deferred

to the appendix.

5.3.2 SynBench analysis of pretrained representations

Comparing model attributes. We list the SynBench-Score of the 10 pretrained

representations with their standard and robust accuracy on the class-conditional

Gaussian proxy task in Table 5.2. The robust accuracy is obtained by ℓ2 PGD

attack [115] with attack strength 0.2.

By referring to rows “ViT-B/16” and “ViT-B/16-in21k”, we see that SynBench will

suggest ViT-B/16 over ViT-B/16-in21k, implying that the fine-tuning is beneficial

on ViT-B/16-in21k - both networks are pretrained on Imagenet 21k with supervision,

whereas ViT-B/16 is further finetuned on Imagenet 1k. We can also use SynBench

to evaluate the effect of model sizes. Specifically, we refer to rows “ViT-Ti/16”,

“ViT-B/16”, “ViT-L/16”, and see that ViT-B/16 and ViT-L/16 score much higher

than ViT-Ti/16, suggesting larger models have better capacities for robustness and

accuracy. It is noticeable that ViT-B/16 is generally on par with ViT-L/16 when
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Figure 5-4: Pearson correlation between task-agnostic metrics (Val loss, MDL, Syn-
Bench, LogME, SFDA) and task-specific metrics (the average accuracy on 27 real-life
tasks) as functions of the dataset size. Two dashed lines characterize the correlation
by transfer datasets’ accuracy.

we vary 𝜖 (cf. Appendix Table B.4). Similar conclusions can also be drawn by

referring to self-supervised pretrained representations, rows “ViT-S/-DINO” and “ViT-

B/-DINO”. Moreover, if we check rows “ViT-B/16” and “ViT-B/16-DINO”, we compare

two pretrained models of the same architecture but trained under different regimes,

either supervised or self-supervised. Between these two models, SynBench favors self-

supervised trained “ViT-B/16-DINO”, echoing with the inductive bias of self-supervised

contrastive learning discovered in recent literature [65].

SynBench shows better correlation with real-data probing accuracy and

robustness. We run baseline evaluations as described in Section 5.3.1 for the synthetic

classification task on pretrained models with dataset size 𝑛 being 2048, 8192, 32768

and list their results in Appendix Table B.5. Throughout our experiments, we use

2048 test samples in the synthetic dataset. For Val loss, MDL, and SDL, 𝜖SC, the

smaller the better; for LogME, SFDA, SynBench, the bigger the better. In Figure 5-4,

we illustrate how the correlation between task-agnostic evaluation metrics and real-life

data tasks varies with the dataset size 𝑛. Specifically, we calculate the Pearson
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Figure 5-5: Comparison of model selections using task-agnostic benchmarks. We
denote the model predicted to have better performance by “selected”. Only SynBench
gives consistent selections across varying data sample sizes. Refer to Appendix
Table B.6 for more details.

correlation coefficients between the average accuracy in downstream tasks to scores

given by Val loss, MDL, SDL, 𝜖SC, LogME, SFDA, and SynBench (SDL and 𝜖SC are

excluded from the figure since they fail to give concrete numbers for small dataset

sizes). With 2k synthetic samples, SynBench gives 0.79, whereas Val loss, MDL,

LogME, and SFDA range between 0.46 and 0.55; with 8k synthetic samples, SynBench

gives 0.89, whereas Val loss, MDL, LogME, and SFDA range between 0.65 and

0.81, surpassing the correlation by vanilla out-of-distribution accuracy (ImageNet-c’s

0.64 and ImageNet-a’s 0.57); with over 30k synthetic samples, Val loss, MDL, and

SynBench all indicate very strong correlation (> 0.9) with real-life data accuracy,

confirming the feasibility of probing pretrained representations in a task-agnostic yet

effective way. To validate the capability of SynBench in informing model robustness,

we further conduct CW attack [14], on CIFAR10 test set and calculate its correlation

with SynBench. With 2k, 8k, and 30k synthetic samples, SynBench is also able to

demonstrate moderate correlation with coefficient ranging from 0.74 to 0.84.

SynBench gives more consistent suggestions than baselines. We run a

102



Table 5.3: TinyImagenet standard and robust accuracy (%) changes (𝛿SA and 𝛿RA)
using 𝜖-robust linear probing (𝜖-robust prob.). We see that 𝜖-robust prob. with
𝜖 = argmax𝜖SynBench-Score gives the best robust accuracy.

Models TinyImagenet
𝜖 = 0 𝜖 = 0.1 𝜖 = 0.2 𝜖 = 0.3

ViT-Ti/16
SynBench-Score(𝜖) 0.01 0.01 0 0
𝜖-robust prob. 𝛿SA 0 +0.3 -1.5 -1.9
𝜖-robust prob. 𝛿RA 0 +1.1 +0.4 +2.2

ViT-B/16
SynBench-Score(𝜖) 0.33 0.36 0.37 0.35
𝜖-robust prob. 𝛿SA 0 0 +0.7 +0.6
𝜖-robust prob. 𝛿RA 0 -1.0 +2.5 +2.4

ViT-B/16-in21k
SynBench-Score(𝜖) 0.20 0.22 0.23 0.21
𝜖-robust prob. 𝛿SA 0 +0.3 +0.3 +0.2
𝜖-robust prob. 𝛿RA 0 +1.3 +2.0 +2.0

ViT-L/16
SynBench-Score(𝜖) 0.26 0.30 0.33 0.32
𝜖-robust prob. 𝛿SA 0 -0.1 -0.2 -0.3
𝜖-robust prob. 𝛿RA 0 +4.2 +6.6 +0.7

finer grid on the dataset size 𝑛 ∈ {2048, 4096, 8192, 16384, 32768} and compare the

consistency of each metrics. Since LogME and SFDA showed worse correlation in

the previous experiment, we exclude the two and only report the results on Val loss,

MDL, and SynBench. We also include SDL to highlight its struggle with small sample

size. In Figure 5-5, we give an example of the model selections between ViT-B/16 and

ViT-B/16-in21k. Detailed numbers are reported in Appendix Table B.6. It is worth

noting that SynBench consistently recommends ViT-B/16 over ViT-B/16-in21k, while

other methods change with 𝑛. Besides better correlation and consistency, the runtime

analysis also confirms 50× speedup over baselines using SynBench.

5.3.3 SynBench-guided 𝜖-robust linear probing

When performing linear probing on downstream datasets, one can implement 𝜖-

robust linear probing [49] for better robustness. Concretely, let 𝜃 be the pretrained

representation network and 𝜃𝑐 be the probing layer parameters, 𝜖-robust linear probing

solves min𝜃𝑐 max𝛿:‖𝛿‖2≤𝜖 E(𝑥,𝑦)∈𝒟ℓCross-entropy(𝑓𝜃𝑐 ∘ 𝑓𝜃(𝑥+ 𝛿), 𝑦). Here, we will show that

the SynBench-guided 𝜖-robust linear probing provides better insight into robustness-

accuracy trade-off.

In Table 5.2, we only give SynBench-Scores with 𝜖 = 0. We refer readers to Ap-

pendix Table B.4 for the full table with different 𝜖. We cite 4 pretrained representations’
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Table 5.4: Task-specific linear probing standard accuracy and robust accuracy (%).

Models CIFAR10 SVHN TinyImageNet
SA RA SA RA SA RA

ViT-Ti/16 81.9 1.1 48.0 0.7 42.93 3.36
ViT-B/16 95.0 32.1 65.4 5.2 74.65 33.67
ViT-L/16 98.0 57.0 68.9 8.4 86.58 55.0

Table 5.5: Distances from synthetic data to CIFAR10, SVHN, and TinyImageNet.
Dataset Distance Gaussian-I Gaussian-H

CIFAR10 FID 438 399
MD 86142 67508

SVHN FID 406 370
MD 71527 57604

TinyImageNet FID 403 361
MD 76706 59979

SynBench-Score in Table 5.3 and observe that, for each model, SynBench-score is not

necessarily monotonic in 𝜖 (peaks are boldfaced). For example, the SynBench-Score

for ViT-B/16 peaks at 𝜖 = 0.2, which indicates standard linear probing (i.e., 𝜖 = 0)

may not be the most effective way to probe pretrained representations in terms of

robustness-accuracy performance. This interesting indication is consistent with recent

findings [49].

We hereby implement 𝜖-robust linear probing and verify that 𝜖 = argmax𝜖SynBench-

Score can indeed find the best robustness-accuracy trade-off according to Table 5.3.

For instance, SynBench-Score peaks at 𝜖 = 0.2 for ViT-B/16 and correspondingly 0.2-

robust linear probing on ViT-B/16 representations improves TinyImagenet standard

and robust accuracy by the most (+0.7% and +2.5%). We defer CIFAR10 results to

the Appendix Table B.8. The robust accuracy herein is obtained by AutoAttack [34].

5.3.4 The effect of data prior

In Section 5.2.4, it is stated that a more precise capture of the pretrained representation

performance can be given if one has some prior knowledge of the downstream data

distribution. In this section, we show this point by studying three specific downstream

tasks, CIFAR10, SVHN, and TinyImageNet classifications, and give an example of the

devised covariance matrix for SynBench synthetic Gaussians. In Table 5.4, we give
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Table 5.6: SynBench-Scores on synthetic data with heptadiagonal covariance (Gaussian-
H).

Models 𝜖 = 0 𝜖 = 0.2 𝜖 = 0.4 𝜖 = 0.6 𝜖 = 0.8
ViT-Ti/16 0 0 0 0 0
ViT-B/16 0.18 0.24 0.20 0.10 0.01
ViT-L/16 0.18 0.28 0.28 0.23 0.12

the standard and robust accuracy on CIFAR10, SVHN, and TinyImageNet (robust

accuracy obtained by AutoAttack). Comparing the rows “ViT-B/16” and “ViT-L/16”,

it is observed that ViT-L/16 is in fact performing better than ViT-B/16 on these three

downstream tasks, whereas SynBench-Score with identity covariance suggests the

opposite (cf. Table 5.2). To uncover the reason behind the inconsistency, we calculate

the distance between the synthetic Gaussian used throughout the experiments till now

(dubbed Gaussian-I) and these datasets in Table 5.5. Recall that Gaussian-I, 𝑃𝜇1,𝜇2,Σ,

has 𝜇1 = −𝜇2 = 𝑠𝑖 · 1𝑑/
√
𝑑 and Σ = 𝐼𝑑. An easy modification on the covariance

matrix Σ leads us to Gaussian-H, 𝑃𝜇1,𝜇2,Σ with 𝜇1 = −𝜇2 = 𝑠𝑖 · 1𝑑/
√
𝑑 and Σ be a

channel-wise band matrix covariance. Gaussian-H captures the case when the R,G,B

channel entries are externally independent (hence overall a block-diagonal covariance

matrix with each of the 3 blocks being 2242× 2242), and internally correlated based on

locality (each block is a heptadiagonal matrix where only the main diagonal, and the

first three diagonals above and below it have nonzero entries). Note that Gaussian-H is

closer to the three datasets compared to Gaussian-I with respect to Fréchet inception

distance (FID) [73] and Mahalanobis distance (MD) [116] according to Table 5.5.

Based on Gaussian-H, SynBench now recommends ViT-L/16 over ViT-B/16 according

to Table 5.6. We defer more results with Gaussian-H covariate synthetic data to

Appendix Table B.9-B.11. This result shows that SynBench can incorporate complex

data structures and downstream data characteristics into the process of synthetic data

generation.
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5.3.5 Synthetic data generation and separability

The synthetic data can be generated pixel by pixel if the covariance matrix is a

diagonal matrix. In the case when the covariance is not a diagonal, we need to draw

the whole image at once from the multivariate normal with generic covariance matrix.

(a) Synthetic data samples

(b) Projections of samples on 𝜇1 − 𝜇2

Figure 5-6: 18 synthetic data samples and their projections on the direction 𝜇1 − 𝜇2.

We include 18 synthetic data samples in Figure 5-6(a), showing 9 samples for each

of the two classes. These examples are drawn from class-conditional Gaussians with

scale 𝑠 = 25 (cf. Section 5.2.3) and of size 32× 32. Class-1 samples are on the left,

and Class-2 samples are on the right. We can see that Class-1 samples are generally

brighter than Class-2 samples. This is because Class-1 samples are drawn from the

Gaussian with larger mean in the magnitude.

Furthermore, we demonstrate the separability of two class samples by projecting

samples down along the direction of two Gaussian mean difference, in order to showcase

their hidden discriminate patterns. That is, for vectorized sample 𝑥, Gaussian mean

𝜇1 and 𝜇2, we do the calculation 𝑥𝑇 (𝜇1− 𝜇2) and plot them on a line in Figure 5-6(b).

From the plot, one can see that the samples from the two classes can be separated

106



easily.

5.3.6 Correlation breakdowns and robustness to out-of-distribution

and challenging tasks

In this analysis, we calculate how SynBench score correlates with downstream perfor-

mance per data set in the following Table 5.7.

Table 5.7: The correlation between SynBench-score and individual downstream task,
and the Frechet Inception Distance (FID) scores from ImageNet21k to individual
downstream task.

Datasets Food101 CIFAR10 CIFAR100 birdsnap SUN397 StanfordCars Aircraft
FID to ImageNet21k 100.81 115.47 96.22 102.39 54.78 154.81 206.47

SynBench 0.01 -0.30 -0.50 -0.33 -0.32 0.90 0.87
Val loss -0.31 0.07 0.24 0.03 0.03 -0.82 -0.70
MDL -0.18 0.19 0.37 0.17 0.16 -0.84 -0.77

LogME -0.48 -0.70 -0.83 -0.74 -0.74 0.85 0.95
SFDA -0.41 -0.66 -0.77 -0.67 -0.69 0.88 0.95

Datasets VOC2007 DTD Pets Caltech101 Flowers MNIST FER2013
FID to ImageNet21k 52.30 98.37 104.15 53.51 112.64 301.28 175.75

SynBench 0.64 0.86 0.40 0.09 -0.64 0.56 0.81
Val loss -0.80 -0.66 -0.63 0.02 0.37 -0.33 -0.85
MDL -0.76 -0.75 -0.54 -0.01 0.49 -0.41 -0.82

LogME 0.22 0.98 -0.13 -0.01 -0.92 0.85 0.55
SFDA 0.24 0.96 -0.07 -0.07 -0.87 0.84 0.60

Datasets STL10 EuroSAT RESISC45 GTSRB KITTI Country211 PCAM
FID to ImageNet21k 71.19 142.62 104.80 156.81 163.92 36.72 235.63

SynBench -0.40 0.77 0.91 0.59 0.40 0.96 0.90
Val loss 0.11 -0.54 -0.76 -0.34 -0.14 -0.96 -0.99
MDL 0.23 -0.64 -0.82 -0.43 -0.25 -0.97 -0.96

LogME -0.80 0.97 0.96 0.85 0.81 0.69 0.59
SFDA -0.75 0.93 0.96 0.82 0.77 0.70 0.64

Datasets UCF101 Kinetics700 CLEVR HatefulMemes SST ImageNet AVG acc.
FID to ImageNet21k 79.40 time out 194.64 86.64 368.13 17.78

SynBench 0.81 0.64 0.72 -0.59 0.35 0.30 0.92
Val loss -0.93 -0.82 -0.48 0.34 -0.22 -0.56 -0.92
MDL -0.87 -0.74 -0.59 0.47 -0.32 -0.45 -0.91

LogME 0.45 0.17 0.97 -0.88 0.41 -0.22 0.72
SFDA 0.51 0.24 0.94 -0.83 0.34 -0.15 0.77

Subset of OOD tasks We analyze SynBench score’s correlation to the subset of

OOD tasks. In the following Table 5.7, we computed the Frechet Inception Distance

(FID) scores from ImageNet21k to the downstream tasks, and used them as the

indicator of how OOD are the tasks. We then computed SynBench-score correlation

with tasks that have FID scores larger than a threshold {50,100,150,200}. We do want

to note that not all models in our analysis are pretrained with ImageNet21k; however,
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Table 5.8: The correlation between SynBench-score and the average accuracy of
FID-thresholded downstream tasks.

FID > 0 (all tasks) > 50 >100 >150 > 200
SynBench Correlation 0.92 0.93 0.93 0.82 0.92

since ImageNet21k has become a go-to pretraining dataset, we assume samples therein

are in-distribution.

From Table 5.8, we see that if we don’t apply filter on FID (or equivelantly let threshold

be 0), the initial correlation was 0.92. As we gradually increase the threshold to 50,

100, 150, and even 200, the correlation stays above 0.8, indeed suggesting SynBench’s

robustness to OOD tasks.

Subset of more challenging tasks We futher analyze SynBench score’s correlation

to the subset of more challenging tasks. When we check how SynBench can serve

as a performance metric of pretrained models, we used the average accuracy of 27

downstream tasks as the proxy of the general performance. Among the 27 tasks, there

are indeed datasets that are large and complex, inclduing ImageNet. In the following

Table 5.9, we highlight 3 subsets of tasks that represent more challenging datsets in

different dimensions (number of classes, data types, task types).

1. For datasets that have more than 100 classes (Food101, Birdsnap, SUN397,

StanfordCars, Aircraft, Caltech101, Flowers, Country211, UCF101, Kinetics700,

ImageNet), SynBench-score correlates with their average performance with

correlation of 0.56, compared with the best baseline (SFDA) of 0.19.

2. For video datasets (UCF101 and Kinetics 700), SynBench-score correlates with

their average performance with correlation of 0.72, compared with the best

baseline (SFDA) of 0.36.

3. For the visual reasoning and question-answering dataset, CLEVR„ SynBench-

score correlates with its performance with correlation of 0.72, while LogME and

SFDA demonstrate even stronger correlation (> 0.9).

Overall, SynBench shows robust performance across these break-down groups.
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Table 5.9: The correlation between SynBench-score and subsets of downstream tasks.
Large/complex datasets w/ video datasets visual reasoning/QA dataset

datasets #classes>100 (UCF101 and Kinetics 700) dataset average
SynBench 0.56 0.72 0.72 0.80
Val loss -0.75 -0.88 -0.48 -0.91
MDL -0.66 -0.81 -0.59 -0.85

LogME 0.11 0.30 0.97 0.45
SFDA 0.19 0.36 0.94 0.51

Table 5.10: The average ranking of correlations with downstream tasks SynBench and
other baselines.

Correlation ranking
SynBench 2.11± 0.976
Val loss 3.68± 1.166
MDL 3.57± 1.613

LogME 3.00± 1.488
SFDA 2.64± 1.076

Correlation ranking Now, some might wonder, why SynBench negatively-correlated

with parts of datasets in Table 5.7. To answer this, we hint that if there exist a metric

that highly correlates with the linear probing performance on every single downstream

task, it would imply that the linear probing performance on every single downstream

task also correlates highly with each other— which is not the case in reality. Therefore,

we are seeking a metric that can inform on the potential overall performance. In

Table 5.10, we provide the average ranking of correlations with downstream tasks by

SynBench and other baselines as a more robust and intuitive measure. It is clear that

SynBench is able to give the overall best correlation with each individual downstream.

5.4 Discussions

5.4.1 Usage

We view SynBench as a “necessary” and “minimum” model test in the sense that, with

perfect data sampled from an ideal distribution, any undesirable deteriorated behavior

(such as weakened robustness) reveals the weaknesses of the representation model

that could possibly lead to vulnerabilities in real-life downstream tasks. Therefore,

in designing this minimum test, it is important that the task has a theoretical ideal
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(and optimal) solution (i.e. the trade-off preserved by class conditional Gaussians,

Theorem 9 iv).

Here are some possible scenarios to use our developed tool:

• model auditing: use SynBench to generate diverse psuedo tasks (e.g., with

diffrent difficulty levels) and compare them with theoretically optimial results,

for a comprehensive evaluation on the capability of a pre-trained model

• hyperparameter tuning: as shown in Sec. 5.3.3, SynBench can be used for

hyperparameter selection in robust linear probing, which leads to improved

performance in the considered downstream tasks.

• model selection (without using downstream data): without the knowledge of

downstream applications, one can use SynBench to rank the quality of pre-

trained representations (e.g., the example shown in Figure 5-4). It is also

possible to incorporate some known statistics of the downstream dataset into

guided synthetic data generaltion and evaluation in SynBench, as discussed in

Sec. 5.3.4.

• model training: while updating a model in the pre-training state, one can use

SynBench to ensure the model performance (in terms of SynBench-Score) is

aligned.

5.4.2 Gaussian models

Besides the fact that Gaussian models make great well-posed problems for pretrained

models, the idea of evaluating foundation models on synthetic Gaussian datasets

also stems from two observations previously made in the literature. (1) [223] showed

that simple Gaussian Mixture Models (GMMs) learned from pixels of natural image

patches can successfully be used to model the statistics of natural images, which

include contrast, textures at different scales and orientations, and boundaries of

objects in the reference. Specifically, since our target is pretrained vision models, the

capabilities of perceiving contrasts and edges etc are centric. Besides image patches,
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there are some discussions in the literature about how images patches connects to whole

images [222, 79]. (2) Nevertheless, general GMMs do not yield themselves for analytic

derivation of accuracy-robustness trade-offs. Luckily, some recent works on Gaussian

universality [135, Theorem C.1, Fig 6] have showed that for the overparameterized

setting general linear models for GMMs and Gaussians both show similar training

and generalization errors even when the underlying labels are strongly correlated with

the data structure. Moreover, Gaussian models can be readily used to analytically

derive expression for efficiently measuring accuracy-robustness trade-offs. Although

the models used in real life came from richer model classes, foundation models do lie

strongly in the overparameterized regime. We design our testing framework using

similar Gaussian models and test their effectiveness empirically in understanding

performance of foundation models on downstream tasks.

5.4.3 Pretrain data versus synthetic data

Conducting evaluation with pre-train data can be infeasible/inappropriate due to three

reasons. First of all, with the increasing use of self-supervision during the pretraining,

the pre-train data can be unlabeled. Secondly, even in the case when the application

scenerio is model training and the pre-train data is labeled, the evaluation scores

based on the pre-train data can be inconclusive if the evaluation data are biased or

under-representative (e.g. pretrained models tend to overfit to the pre-train data).

Lastly, from the perspective of the model auditing, the data used for model pretraining

can simply be private or inaccessible (e.g., Web-scale raw data).

In these scenarios, one can use SynBench to generate diverse pseudo tasks and non-

private synthetic data for conducting comprehensive evaluation of a pre-trained model.

By comparing to an idealized data distribution and the corresponding theoretically-

optimial reference, SynBench-Score (as illustrated in Figure 5-1) can quantify the

quality of representations, in the sense that the area under the curve (AUC) ratio

closer to 1 means better representations.
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5.4.4 Limitations

Linear probing. SynBench analysis focuses on linear probing performance, which is

a popular, low-complexity evaluation protocol widely used in the community [23, 69],

especially for large neural networks (foundation models). Other assessment tools of

pretrained models, such as LogME [210], is also evaluated by the correlation coefficient

between their metric and linear probing accuracy. For tasks other than classification,

we do observe in some literature that SynBench-Score might still be informative,

e.g. ViT-L/16 is reportedly performing worse than ViT-B/16 with MLA decoder

in a food segmentation task from [202], DINO ViT-B performs better than DINO

ViT-S in DAVIS 2017 Video object segmentation, and DINO ViT-S/16 performs

better than DINO ViT-S/8 according to Jaccard similarity on PASCAL VOC12

dataset from [19]. For fine-tuned pretrain representations, ViT-L/16 loses to ViT-B/16

on finetuned medical tasks with, e.g., X-ray images [128, Table 4-8], and magnetic

resonance imaging [182, Table 2-3]. Although we are unable to fully justify the

relationship between SynBench-Score and non-classification tasks, we believe that

if non-classification tasks such as object detection/regression can be translated into

classification tasks, SynBench can be extended to those tasks.

Gaussian models. “Can we trust the data representations from a pretrained image

model, if it fails to have reasonable performance on simple synthetic datasets?” This

is the motivation for our work. When designing the task-agnostic and data-free

framework, we narrow our scope for a more “well-posed” problem, by using an idealized

data distribution with tractable separability, lifting the need for real-life data. This

enables interesting application scenerio such as model auditing, selection, training, and

alignment. Therefore, ideologically, SynBench allows any idealized data distribution,

provided that the optimal performance (e.g. accuracy-robustness as in our case) can

be characterized. At the current stage, the practicality of SynBench owes to the

idealized Gaussian distribution, whose optimal robust Bayes classifier is known.
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Synthetic tests. Since SynBench is a task-agnostic and data-free framework, it relies

on synthetic data drawn from idealized data distribution with optimal performance.

Albeit these synthetic data may inevitably miss intricate details of downstream tasks

and data, this framework still provides an easy first check in representation quality.

5.5 Conclusion

In this chapter, we explored how to extend the well-studied Gaussian data modeling

techniques to systematically study the representation quality of pretrained image

models, by proposing a task-agnostic and data-free framework, SynBench. With our

synthetic Gaussian analysis, the robustness-accuracy relationship becomes tractable

and naturally yields a theoretically-derived robustness-accuracy trade-off, which serves

as the reference for pretrained representations. We validated the usefulness of SynBench

on several pretrained image models in giving insightful comparisons of model attributes.

We demonstrated its high correlation with real-life tasks and showed its consistent

model selections. We envision the SynBench framework to be further extended to

other trustworthiness dimensions (e.g., privacy and fairness) and other domains, to

shed light on task-agnostic benchmarking designs that are simple and synthetic.
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Chapter 6

Evaluating robustness-accuracy of

large language models using synthetic

data

6.1 Introduction

In recent years, language models (LMs) have emerged, showcasing remarkable capabil-

ities across a wide range of natural language processing (NLP) applications [136, 38,

208, 143, 142, 176, 76]. While new opportunities present themselves with foundation

models, they also bring forth potential risks and challenges [12, 9, 174, 6]. For example,

despite the unprecedented publicity of LMs and beliefs in their emergent abilities [193],

some also argued the emergent abilities of LMs are a mirage [159] and a change

in metric choice can lead to a different conclusion. Recently, researchers have also

expressed concerns about the potential for LMs to be trained on test sets [108, 58, 131].

Even worse, private or held-out unpublished test sets may as well be vulnerable to

data leakage through querying the LMs via APIs for evaluation purposes. Extraction

attacks [15, 16], membership inference attacks [74, 175, 120], and generative embedding

inversion attack [105], caused by unintended memorization [15, 163] further deepened

our concerns about test set contamination.
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Figure 6-1: Overview of SynTextBench. SynTextBench generates a set of synthetic
datasets from any given lexicon with word-level labels. We test the given LM on
sentence-level tasks with these datasets and obtain robustness-accuracy character-
ization under a range of steerable task difficulties. For each LM, we can plot the
robustness-accuracy trade-off curve and make model comparisons.

To address the caveat of test set contamination, in this chapter, we aim to propose a

new testbed for evaluating LMs with synthetic data. We link the design of the synthetic

test set to two fundamental skills infants must master during language acquisition:

identifying words and understanding linguistic structures [52]. One intuitive approach

is to generate labeled synthetic sentences using an existing generative LM and then

evaluate LMs with the constructed test sets. By this, the generated sentences would

harness language structural heuristics learned by the LM, and a decent probing result

also requires the ability to distinguish words and their associated meanings, such as

semantics. However, this workflow does not permit the active manipulation of synthetic

task difficulties due to the limited level of interpretability [216] and intrinsic bias of

specific LMs [1]. Motivated by the limitation, we explore an alternative route by entirely

eliminating the reliance on LMs for test set generation. Specifically, we leverage existing

sentiment lexicons, such as SentiWordNet 3.0 [3], to generate working word lists based

on the word (or synset) level labels. We build positive, negative, and neutral word

lists from the lexicon, and construct sentences following the nesting parentheses [132],

which mimics the recursion structural hypothesis about the narrow language faculty

in humans [67] and the dependency tree structure in natural language [28]. By

maneuvering the mixing percentage of binary words (positive/negative words) and
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neutral words, we create a configurable testbed for evaluating the performance of LMs

on different levels of difficulty and complexity. Finally, we benchmark and quantify

the ability of each LM on sentence classification tasks by comparing their performance

on a set of our synthetic datasets with varying difficulty levels.

We dub our evaluation framework using synthetic data by SynTextBench and

present the workflow in Figure 6-1, where we focus on benchmarking LM sentence

embeddings in terms of their accuracy and robustness. By accuracy, we are interested

in analyzing the linear separability of sentence representations rendered by different

pretrained LMs. We note that in learning sentence embeddings, the go-to metrics

are cosine distance or linear probing accuracy, both of which imply separability.

By robustness, we refer to the decision margin on these sentence embeddings with

respect to the optimal classification strategy. We derive both measures using only the

constructed synthetic datasets, which allow for contamination-free benchmarking of

LMs. SynTextBench is designed as an extendable framework for the evaluation of

language sentence representations that covers a range of controllable task difficulties.

6.1.1 Our contributions

• We introduce SynTextBench, a novel theoretically-grounded framework to gener-

ate steerable synthetic datasets towards a holistic evaluation of LMs. The use of

synthetic datasets alleviates the risk of test-data leakage and offers new tools

for LM testing and auditing.

• SynTextBench provides a configurable lightweight testbed and a quantifiable

metric for evaluating the robustness and accuracy of LMs on different levels of

difficulty and complexity for sentence classification tasks, with no restrictions

on the model architecture.

• We conduct experiments with several state-of-the-art LMs on our testbed and

report their performance and behavior. SynTextBench, as a real-data-free

evaluation method, shows high correlation with robustness-accuracy performance

evaluated on real data. Further study demonstrates its capability of making
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quick attribution comparisons such as analyzing fine-tuning effects for LMs.

6.1.2 Related works

In evaluating the performance of LMs, the current de facto evaluation paradigm is

to utilize widely-used NLP benchmarks such as the General Language Understand-

ing Evaluation (GLUE [188]/SuperGLUE [187]) benchmark, the Stanford Question

Answering Dataset (SQuAD v1.1 [147]/v2.0 [146]), the Situations With Adversarial

Generations (SWAG [212]) dataset, the ReAding Comprehension from Examinations

(RACE [97]) dataset, the Evaluation Toolkit for Universal Sentence Representations

(SentEval [32]), BIG-Bench [167], etc. In many cases, these NLP benchmarks are

supersets of datasets, e.g., GLUE is a collection of 9 datasets for evaluating natural

language understanding systems, and SentEval is a collection of 7 Semantic Textual

Similarity (STS) tasks and 7 transfer datasets that have partial overlap with GLUE.

The heavy reliance on real-world tasks can be exemplified by broad literature. For

example, Bert [38] was evaluated on GLUE, SQuAD v1.1/2.0, SWAG; Roberta [112]

was evaluated on GLUE, SQuAD v1.1/2.0, RACE; and T5 [143] was evaluated on

GLUE/SuperGLUE, SQuAD, CNN/Daily Mail abstractive summarization and WMT

translation. HELM [109] proposes a holistic evaluation framework for LMs that mea-

sures 7 metrics on 42 scenarios. However, when confronting the challenge of test-data

leakage, to the best of our knowledge, there is no real-data-free evaluation method for

NLP pretrained representations. In Chapter 5, we reported the validation loss (Val

loss), minimum description length (MDL) [8, 185], surplus description length (SDL)

and 𝜖-sample complexity (𝜖SC) [196] on class-conditional Gaussian distribution data

as an effort to build task-agnostic evaluation baselines for pretrained representations

in computer vision. This chapter differs from the previous chapter in that we focus on

the domain of natural language processing and we do not assume the data inputs are

sampled from an idealized distribution. Instead, we create synthetic sentences and

proxy tasks based on a lexical resource for LM evaluation.
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6.2 Methodology

6.2.1 Why using synthetic datasets for LM evaluation?

To reduce the reliance on real-world data, we propose to build synthetic NLP tasks by

generating synthetic sentences as model inputs at test time. This way, we no longer

need to exchange sensitive private data or label-annotated data as test sets with LM

APIs. In making a steerable and transparent evaluation framework for LMs, we first

detail the desiderata of proxy tasks and the evaluation metric.

• Task substance: Tasks should test a pretrained LM’s ability to encode sentence

representations that preserve class separability when evaluated by a linear

classifier.

• Task difficulty: Tasks’ difficulty should be configurable to allow for comprehensive

analysis, i.e., one can generate tasks of various levels of difficulty.

• Task feasibility: Tasks should be feasible to solve, i.e., the sentences should

be distinguishable to a certain degree by an algorithm that works on the raw

sentences input.

• Task independence: Tasks should be independent of the LM to be evaluated,

in order to avoid biased evaluation, i.e., neither sentences nor labels should be

given by an LM.

• Task equity: Tasks should be able to be generated by anyone and affordable

for anyone without requiring any private data or favoring any party with more

resources.

• Metric informativeness: The designed framework should give a quantifiable

metric that has a clear implication (e.g., the larger the better) and correlates

well with the real performance.

With these in mind, it is straightforward to see why we should not opt for synthetic

datasets generated by any LM: (1) task difficulty would not be configurable (see more
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b. Synthetic sentence generation with nesting parenthesis

SentiWordNet
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c. Running example

Figure 6-2: Overview of the sentence generation procedure. In block a, we generate
word lists from SentiWordNet 3.0. In block b, we generate each sentence token
following nesting parentheses and mixing distribution 𝐷. In block c, we show a
running example of sequentially generating 𝑡6, 𝑡7, 𝑡8.

evidence in Section 6.4.1), (2) the evaluation might be biased and favor the LM that

generates the synthetic sentences or labels due to the intrinsic bias of each LM, and

(3) any auditor without access to proprietary LMs or datasets cannot run independent

evaluation.

In the following, we explain how we leverage sentiment lexicons, such as Senti-

WordNet 3.0, to create building blocks for our framework. Then, we put together

building blocks and generate synthetic inputs to LMs by observing a nesting structure.

We adjust the mixing ratio of ingredients in the recipe to simulate tasks of different

difficulties. We depict this procedure in Figure 6-2. Finally, we will introduce our

evaluation workflow and how we arrive at a quantifiable metric.

6.2.2 Constructing synthetic datasets and tasks

Word List. Building a synthetic task requires us to define the synthetic inputs to be

used. Here, we utilize sentiment lexicons with word-level labeling. SentiWordNet labels

the synsets of WORDNET [119] according to the notions of “positivity”, “negativity”,
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Table 6.1: Examples of synsets in SentiWordNet 3.0.
SynsetTerms PosScore NegScore SynsetTerms PosScore NegScore

able#1 0.125 0 unable#1 0 0.75
acroscopic#1 0 0 unquestioning#2 0.5 0.5

living#3 0.5 0.125 concrete#1 0.625 0.25
accurate#1 0.5 0 straight#5 0 0
unfaithful#4 0 0.5 active#5 0.5 0.125

and “neutrality”. Each of the entries in SentiWordNet has PosScore and NegScore

denoting the positivity and negativity score, and ObjScore is calculated by 1 - (PosScore

+ NegScore), denoting the neutrality score. When categorizing these words, we remove

the sense number associated with the words and group words into individual word list

based on the following criteria: for a word 𝑤,

∙ if PosScore > NegScore, we categorize 𝑤 into the positive word list;

∙ if PosScore < NegScore, we categorize 𝑤 into the negative word list;

∙ if PosScore = NegScore = 0, we categorize 𝑤 into the neutral word list.

We give running examples in the following for better understanding: We drop columns

POS, ID, GLOSS in the examples for easier illustration. By performing the procedure

on synsets in Table 6.1, we obtain a positive word list {able, living, accurate, concrete,

active}, a negative word list {unfaithful, unable}, a neutral word list {acroscopic,

straight}.

In practice, we perform the procedure on SentiWordNet 3.0 and gather a positive

word list with 23147 words, a negative word list with 26440 words, and a neutral

word list with 154993 words. The same procedures can be applied to any sentiment

lexicons with word-level labeling, which will result in different word lists. To this end,

we created the word lists from SentiWordNet 3.0 as depicted in Figure 6-2(a).

Sentence structure. A recent literature [132] explored the power of music and

Java code in training models that transfer to NLP tasks. It further stated that, not

only music and Jave code, non-linguistic artificial parentheses languages can also train

LMs that yield substantial gains compared to random data when testing on natural

language [27, 153, 133]. Motivated by this, we follow one of the abstract structures,

nesting parentheses, when generating the synthetic sentences in our proxy tasks. The
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inclusion of the parenthesis is to guarantee we test for the linguistic structures, whose

importance is repeatedly advocated in literature from both machine learning and

cognitive science [52, 198, 117]. Specifically, the nesting parenthesis involves paired

tokens and a recursive structure. For example, by referring to Figure 6-2(b), one sees

that 𝑡1 and 𝑡4 are paired words, while 𝑡2 and 𝑡3 are another paired words. In our

example, the words are hierarchically nested, meaning the token to be paired with

𝑡2, which is 𝑡3 in our case, should appear before the pairing token with 𝑡1. In other

words, it observes a “last in first out” data structure, and the arcs in Figure 6-2(b) do

not cross.

Sentence generation and difficulty level. With the created word list from

above, we will now explain how to do sentence generation following the structure

introduced. Let us revisit the case in Figure 6-2(b). Assume we want to generate a

positive sentence (label 𝑦 = 1), and we already generated the first five tokens 𝑡1 : 𝑡5 in

the sentence with colors denoting the picked word. Now, to decide the next token, we

sample 𝑡6 from a mixing distribution 𝐷, where

𝐷 = 𝑝𝑒 · ‘<eos>’ + 𝑝𝑛(1− 𝑝𝑒) · last_unpaired_word + (1− 𝑝𝑛)(1− 𝑝𝑒) ·𝐷new. (6.1)

To interpret distribution 𝐷, we realize that there are essentially 3 possible outcomes

for the incoming 𝑡6 token: (1) it can be the end of sentence indicator ‘<eos>’, (2) it

can be the popped token from the stack that stores the unpaired words, i.e., the last

unpaired word, (3) it can be a new word. If it is to pick a new word, this word will

be sampled from the distribution of new words 𝐷new, which directly depends on the

label 𝑦 of the sentence to be generated and the desired task difficulty. For a positive

sentence (𝑦 = 1), 𝐷new|𝑦=1 is described by the probability density function (PDF)

𝑝 · 𝑓NEU(𝑥) + (1− 𝑝) · 𝑓POS(𝑥), where 𝑝 specifies the percentage of neutral words in a

synthetic sentence, 𝑓NEU gives the PDF of neutral words, and 𝑓POS gives the PDF of

positive words. Similarly, if we are to generate a negative sentence (𝑦 = −1), we have

𝐷new|𝑦=−1 described by 𝑝 · 𝑓NEU(𝑥) + (1− 𝑝) · 𝑓NEG(𝑥), where 𝑓NEG gives the PDF of

negative words.
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Figure 6-3: The reference accuracy given by SentiWordNet sentiment analysis. With
an increasing mixing ratio 𝑝, the task becomes harder and the reference accuracy also
shows a decreasing trend.

In Figure 6-2(c), we show a running example of the sentence generation process,

where we flip a coin with 3 outcomes each time to decide on a new token. When

the realization is “new words” (like in 𝑡6 and 𝑡7), this word will also be pushed to

the stack “Unpaired_words” that stores unpaired words. When we are deciding 𝑡8,

we draw “unpaired words” and hence 𝑡8 is determined by Unpaired_words.pop(). In

essence, with the generated sentence, its label is determined by construction, which

guarantees the task independence since the label is not given by an LM. It also

allows configurable task difficulty by adjusting the percentage 𝑝 of neutral words in a

synthetic sentence. That is, it is easier to predict the sentiment of sentences consisting

of 90% positive words and 10% neutral words than that of sentences constructed all by

neutral words. On the whole, by fixing a mixing ratio 𝑝, together with the fixed 𝑝𝑒 and

𝑝𝑛 given in the above, one synthetic dataset will be constructed as well as a resulting

proxy sentiment classification task. By varying the mixing ratio 𝑝, a set of tasks

with diverse difficulties can be created. In Figure 6-3, we prove the task feasibility

by demonstrating the separability of generated synthetic datasets by SentiWordNet

sentiment analysis algorithm [37]. With an increasing mixing ratio 𝑝, while the task

becomes harder, we show there at least exists an algorithm that can separate the data
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Figure 6-4: The histograms of sentence lengths in the English Wikipedia corpus (stop
words removed) and the constructed synthetic corpus (positive/negative sentences).

to a certain degree, showcasing a lower bound on the optimal classification strategy.

By our workflow of constructing synthetic datasets and tasks, we also guarantee task

equity since the generation process requires no access to any LM or private data, and

can be readily replicated by anyone with limited resources. Furthermore, we note that

the construction of synthetic datasets and tasks described herein is also extendable to

other lexicons and tasks by swapping the lexicon used for extracting word lists.

Lastly, we note that during the construction of synthetic sentences, the probability

𝑝𝑒 associated with the special token ‘<eos>’ is determined by its frequency in the

English Wikipedia corpus. For the remaining mass 1− 𝑝𝑒, 𝑝𝑛 portion is assigned to

new words, with its value picked following [132], which is 𝑝𝑛 = 0.5. Additionally, when

there are no unpaired words in the stack (e.g., when drawing the starting token of

the sentence, or when all the unpaired words are popped), we assign its probability

𝑝𝑛(1−𝑝𝑒) to new words. We show the length profile of our synthetic data in Figure 6-4.

Discussions. The inclusion of parentheses in our sentence structure guarantees

we test for the linguistic structures but at the same time makes non-grammatical

test sets. While grammar might be crucial in some NLP tasks that requires more

advanced reasoning. For sentiment analysis, we believe it should not have a strong
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dependency on grammar (we exclude the scenario of negation which can be detected

by a rule-based method). For example, the reviews “love love fantastic”, “love fantastic

love” and their word permutations should all be predicted as positive, regardless

of their grammar. We support this intuition by additional experiment where we

noticed that 86% of the labels given by Huggingface sentiment analysis pipeline on

product reviews classification [77] remain the same after removing 284 stop words (cf.

Appendix B.4.3) from the sentences and hence making them non-grammatical. We

leave more details and sentence examples to the discussions in Section 6.4.2.

6.2.3 Robustness-accuracy evaluation

Given an LM 𝑔, let 𝑥, 𝑦 be the input sentence and its label, 𝑧 be the sentence

embeddings 𝑧 = 𝑔(𝑥) ∈ R𝑛, we are interested in evaluating the accuracy of the sentence

embedding classifiers 𝑓 , and the average distance Δ from sentence embeddings to the

linear classifiers (i.e., decision margins). We let 𝑧1 be {𝑧 : 𝑧 = 𝑔(𝑥), 𝑦 = 1} and 𝑧−1 be

{𝑧 : 𝑧 = 𝑔(𝑥), 𝑦 = −1}.

Preparing sentence embeddings. Recall that Bert-flow [104] and Bert-whitening [169]

transformed the sentence embeddings into an isotropic Gaussian distribution to rem-

edy the anisotropic behavior in the sentence embedding vector space. We thereby

also perform whitening on sentence representations before we draw the decision

rule on the embeddings. Transforming a set of sentence embeddings of a class

into an isotropic Gaussian involves two steps: (1) model the mean 𝑏𝑦 and covari-

ance Σ𝑦 of original embeddings 𝑧𝑦, (2) apply a transformation to the embeddings

𝐹 𝑇𝑆−1/2𝑧𝑦, where 𝐹𝑆𝐹 𝑇 = Σ𝑦 is the singular value decomposition of Σ𝑦. Neverthe-

less, since Σ𝑦 can be ill-conditioned, directly applying 𝑆−1/2 on embeddings 𝑧𝑦 might

amplify noisy signals due to numerical instability. Thus, we propose to reduce the

dimension according to energy-preservation [102] (also called variance-based methods

by [48]). We select to keep 𝐾 dimensions according to argmin𝑘

∑︀𝑘
𝑖=1 𝑠𝑖∑︀𝑛
𝑖=1 𝑠𝑖

≥ 0.99, where

𝑠𝑖 = diag(𝑆)[𝑖] is the 𝑖-th largest singular value of 𝑆. Till now, we see that the

sentence embeddings are transformed to an R𝐾 vector space via 𝐹 𝑇
:,1:𝑘𝑆

−1/2
1:𝑘,1:𝑘𝑧𝑦. We

perform these operations for both classes (𝑦 = 1 and 𝑦 = −1) separately. Since
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we want the transformed embeddings to observe the original relative distance be-

tween two classes, we further scale the distance between two whitened Gaussians

by 𝑑Inter-class/𝑑Intra-class, where the numerator 𝑑Inter-class = ‖𝑏1 − 𝑏−1‖ calculates the

inter-class distance (the distance between two class centers 𝑏1 and 𝑏−1), and the

denominator 𝑑Intra-class =
1

𝑚1+𝑚2
(
∑︀𝑚1

𝑖=1 ‖𝑧𝑖1 − 𝑏1‖ +
∑︀𝑚2

𝑗=1

⃦⃦
𝑧𝑗−1 − 𝑏−1

⃦⃦
) calculates the

intra-class distance (the average distance from class data to class mean) with 𝑚1 and

𝑚2 being the number of positive sentences and negative sentences, respectively. We let

𝑇𝑦 denote the overall transformation operations and obtain transformed embeddings

𝑧1 = 𝑇1(𝑧1) and ^𝑧−1 = 𝑇−1(𝑧−1).

Decision margins induced by robust Bayes optimal classifiers. Recall that

robust Bayes optimal classifiers explicitly give the optimal classification strategy for

class-conditional Gaussian distribution in the presence of data perturbations [4, 36].

Here, we see that (𝑧, 𝑦) are modeled as 𝑃𝜇1,𝜇2,𝐼𝐾 : 𝑧|𝑦 = 1 ∼ 𝒩 (𝜇1, 𝐼𝐾), 𝑧|𝑦 = −1 ∼

𝒩 (𝜇2, 𝐼𝐾), and 𝑦 ∈ 𝒞 = {+1,−1}. While finding the robust Bayes optimal classifier

generally involves solving the optimization problem argmin‖𝑧‖2≤𝜖(𝜇−𝑧)𝑇Σ−1(𝜇−𝑧) (cf.

Section 2.1.3), we can prove that, when the covariance is an identity matrix, the class

priors P(𝑦 = 1) = 𝜏 , P(𝑦 = −1) = 1− 𝜏 , the perturbation radius 𝜖, then the optimal

classifier is given as simply 𝑓 : sign(𝑤𝑇 (𝑧 − 𝜇1+𝜇2

2
)− 𝑞/2), where 𝑞 = log{(1− 𝜏)/𝜏},

𝑤 = �̃�(1− 𝜖/‖�̃�‖2), and �̃� = 𝜇1−𝜇2

2
. Furthermore, when the classes are balanced (i.e.,

𝜏 = 1/2), the robust Bayes optimal classifier overlaps with the Bayes optimal classifier.

That is, the (robust) Bayes optimal classifier is plainly sign(�̃�𝑇 (𝑧 − 𝜇1+𝜇2

2
)), which is

independent of 𝜖. We then use this given classifier to calculate the accuracy on the

synthetic datasets. In fact, we prove in Appendix A.4 that, as long as �̃� lies completely

within a degenerate subspace of the eigenspace of the covariance matrix (i.e., with

eigenpairs {(𝜆𝑘, 𝑣𝑘), 𝑘 ∈ [𝑛]}, for ∀ 𝑖, 𝑗 ∈{𝑘 : 𝜆𝑘 ̸= 0, �̃�𝑇𝑣𝑘 ̸= 0}, 𝜆𝑖 = 𝜆𝑗 = 𝜆), the

𝜖-robust Bayes optimal classifiers overlap for all 𝜖. In the case of an identity covariance

matrix, the degenerated subspace of the eigenspace expands the whole R𝐾 , hence �̃�

lies in the space naturally.

Now that we have specified the optimal robust classification rule on the transformed

sentence embeddings, we write out the decision margin induced by the classifiers using
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Algorithm 2 Benchmarking LMs using synthetic datasets (SynTextBench)
Input : Sentiment lexicons 𝑆, a range of difficulty levels 𝑃 , an LM 𝑔, threshold
accuracy 𝑎𝑇 .
Output : SynTextBench score that quantifies the robustness-accuracy performance.

1: Construct positive/negative/neutral word lists from sentiment lexicon 𝑆.
2: for 𝑝 in 𝑃 do
3: Generate a synthetic binary classification task and obtain training set

(𝑥𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛) and test set (𝑥𝑡𝑒𝑠𝑡, 𝑦𝑡𝑒𝑠𝑡).
4: Calculate transformation 𝑇1 and 𝑇−1 from

𝑧𝑡𝑟𝑎𝑖𝑛1 = {𝑔(𝑥) | (𝑥, 𝑦) ∈ (𝑥𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛), 𝑦 = 1} and
𝑧𝑡𝑟𝑎𝑖𝑛−1 = {𝑔(𝑥) | (𝑥, 𝑦) ∈ (𝑥𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛), 𝑦 = −1}.

5: Transform training set and test set 𝑧1𝑡𝑟𝑎𝑖𝑛 = 𝑇1(𝑧
𝑡𝑟𝑎𝑖𝑛
1 ), ^𝑧−1

𝑡𝑟𝑎𝑖𝑛 = 𝑇−1(𝑧
𝑡𝑟𝑎𝑖𝑛
−1 )

and 𝑧1𝑡𝑒𝑠𝑡 = 𝑇1(𝑧
𝑡𝑒𝑠𝑡
1 ), ^𝑧−1

𝑡𝑒𝑠𝑡 = 𝑇−1(𝑧
𝑡𝑒𝑠𝑡
−1 ).

6: Derive the Bayes optimal classifier 𝑓 according to sign(�̃�𝑇 (𝑧 − 𝜇1+𝜇2

2
)) based on

𝑧1
𝑡𝑟𝑎𝑖𝑛 and ^𝑧−1

𝑡𝑟𝑎𝑖𝑛, i.e. 𝜇1 = mean(𝑧1𝑡𝑟𝑎𝑖𝑛), 𝜇2 = mean( ^𝑧−1
𝑡𝑟𝑎𝑖𝑛).

7: Read out the accuracy 𝑎 of 𝑓 on 𝑧1
𝑡𝑒𝑠𝑡 and ^𝑧−1

𝑡𝑒𝑠𝑡, and calculate the average
scale margin 𝛿 := 𝑎𝑣𝑔(‖Δ̄𝑧‖2) according to ‖Δ̄𝑧‖2 =

|(𝑧−𝜇1+𝜇2
2

)𝑇 �̃�|
‖�̃�‖22

for correctly-
classified sentence embeddings.

8: Denote the accuracy and average margin pair on the task by (𝑎𝑝, 𝛿𝑝).
9: end for

10: Define a goodness function 𝑠(𝑎) = 1
|𝑃 |
∑︀

{𝑝∈𝑃,𝑎𝑝>𝑎} 𝛿𝑝, for 𝑎 ∈ R[0, 1].
11: SynTextBench score =

∫︀ 1

𝑎𝑇
𝑠(𝑎)𝑑𝑎.

an informal but more intuitive statement: For any sample 𝑧, the Bayes optimal

classifier 𝑓 of class-balanced class-conditional Gaussian distribution 𝑃𝜇1,𝜇2,𝐼𝐾 , yields a

decision margin of ‖Δ‖2 =
|(𝑧−𝜇1+𝜇2

2
)𝑇 �̃�|

‖�̃�‖2 , and if we scale the margin by the distance

between two Gaussian centers, we obtain a scaled margin of ‖Δ̄𝑧‖2 =
|(𝑧−𝜇1+𝜇2

2
)𝑇 �̃�|

‖�̃�‖22
.

We give the formal results for the generic class prior in Appendix Theorem A.4. To

this end, we have prepared sentence embeddings and specified the way of calculating

decision margins induced by a robust Bayes optimal classifier. In the following, we

will state the complete algorithm for characterizing robustness-accuracy performance

of LMs using synthetic datasets.
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6.2.4 SynTextBench score and algorithm

With Section 6.2.2 and Section 6.2.3, we now can simulate synthetic tasks of a config-

ured level of difficulty and evaluate their accuracy and margin. In our benchmarking

process, we essentially build on this foundation to generate a sequence of tasks with

different difficulty levels and inspect how the magnitude of decision margins changes

with the classifier accuracy. In terms of robustness-accuracy characterization, it is

desirable for an LM to consistently yield high classification accuracy, while maintaining

a big decision margin (that is, less sensitive to perturbations in the embedding space).

The pseudocode of the proposed framework, SynTextBench, is given in Algorithm 2.

In practice, we let 𝑃 = {0, 0.05, . . . , 0.9, 0.95}, and subsequently generate 20

synthetic datasets with 𝑝 = 0 being the easiest and 𝑝 = 0.95 being the hardest (cf.

Section 6.2.2). Then, we perform analysis on the sentence embeddings of various

synthetic datasets, and threshold the accuracy at 𝑎𝑇 based on utility. The threshold

serves as a penalty for poor sentence embeddings that lead to an undesirable accuracy

under this threshold, matching our task substance of testing LM’s ability to preserve

linear separability. By referring to Figure 6-1, Line 2 in Algorithm 2 determines the

word lists from a given lexicon. From Line 2 to Line 9, the for-loop generates one

synthetic dataset at one time, on which we compute an (accuracy, average margin)

pair (𝑎𝑝, 𝛿𝑝) and draw one point on the margin-accuracy 2D plot as in Figure 6-1. We

apply Algorithm 2 on various models and obtain a margin-accuracy curve for each

model. Since we not only care about the curvature of the curve but also how the

(accuracy, average margin) pairs span on the curve, we define a goodness function

𝑠(𝑎) = 1
|𝑃 |
∑︀

{𝑝∈𝑃,𝑎𝑝>𝑎} 𝛿𝑝 on R[0, 1] in Line 10 to account for the span. By our definition,

𝑠(𝑎) will be a monotonically decreasing function (e.g., Figure 6-5) and calculate the

expected margin conditioned on the accuracy level. The final SynTextBench score is

defined by the integration over the desirable range of threshold accuracy in Line 11,

i.e. SynTextBench score =
∫︀ 1

𝑎𝑇
𝑠(𝑎)𝑑𝑎. We use SynTextBench as a quantifiable score

to inform the accuracy-robustness aspect of a pretrained LM. In the later section,

we will demonstrate the metric informativeness by measuring the correlation
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Figure 6-5: The goodness function 𝑠(𝑎) of nine pretrained LMs. The SynTextBench
score is calculated by the area under the curve.

between SynTextBench scores and the average real-world sentence classification task

performance.

6.3 Experiments

6.3.1 Setups

LMs. In the experiment, we will analyze the pretrained LMs predominantly considered

by the sentence embedding literature [54, 169, 30], and also larger models such as

LLaMA and OPT [179, 180, 220].. Specifically, we consider encoder models such as

BERTbase, BERTlarge [38], RoBERTabase [112], DiffCSE-B, DiffCSE-R [30]; encoder-

decoder models such as T5base, T5large [143], ST5 [125]; and decoder models such as

DialogRPT [55]), LLaMA-7B, LLaMA-13B, LLaMA-30B [179], LLaMA-2-7B, LLaMA-

2-13B [180], OPT-13B, OPT-30B [220]. For models that have an encoder component

(encoder-only or encoder-decoder), we use the average output from the first and the

last layer as sentence embeddings. For the decoder-only model, we use the embedding

of the last token as sentence embeddings.

Baselines. We followed the open-source implementation of the literature [196]
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and fed the pretrained LMs with synthetic texts generated according to Section 6.2.2

and reported the validation accuracy (Val loss), minimum description length (MDL),

surplus description length (SDL), and 𝜖-sample complexity (𝜖SC) as baselines [8, 185,

196]. Since these methods take one dataset as inputs, we choose a relatively easy

synthetic proxy task generated by 𝑝 = 0.2 as the input dataset.

Objectives. Through the experiments, our main aim is to verify the feasibility

of making performance assessments of possible downstream tasks by real-data-free

evaluation methods. To achieve this, we will compare the Pearson correlation co-

efficients of assessments given by different real-data-free evaluation methods with

the performance on real-world tasks. Since SynTextBench is intended to inform the

robustness-accuracy performance, we will report both the accuracy and robustness

on real-world tasks for studying correlation. We use PWWS attack [151] through

TextAttack, a Python framework for adversarial attacks in NLP, to generate attacks.

Essentially, the attacker will perturb the inputs gradually by changing more and more

words until the perturbation leads to a wrong classification result. Therefore, we

report the average number of perturbed words in a successful attack as an indicator

of the level of model robustness. We will also demonstrate how SynTextBench can

be used to do attribute comparisons. Finally, as more attentions have been drawn to

large LMs lately, we will also conduct an extended study on large LMs and include

discussions on in-context learning performance on SynTextBench synthetic data. We

give more experimental details of our prompts in Appendix B.4.2.

6.3.2 Performance evaluation and discussion

We evaluate encoder models listed in Section 6.3.1 by SynTextBench framework as

well as on real-world sentence embedding tasks. Specifically, we simulated 20 synthetic

datasets as described in Section 6.2.4 and obtained one goodness function 𝑠(𝑎) for each

LM. We plot these functions together in Figure 6-5, from which the final SynTextBench

score can be determined by definition. We refer readers to Appendix Table B.14

for the exact numbers due to the page limit. To gauge the performance of these

pretrained LMs on downstream real-world tasks, we evaluate the given models on
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Table 6.2: Correlation between real-data-free evaluation metric and real-data accuracy
at different synthetic dataset sizes.

n 4096 8192 16384 32768
Val loss 0.29±0.50 0.65±0.00 0.61±0.01 0.27±0.02
MDL 0.57±0.11 0.52±0.04 0.51±0.03 0.48±0.03
SDL, 𝜀=1 0.57±0.11 0.51±0.04 0.43±0.02 0.31±0.01
𝜀SC, 𝜀=1 - - - -0.04±0.00
SynTextBench 0.94±0.01 0.97±0.01 0.96±0.00 0.93±0.00

SentEval (the Evaluation Toolkit for Universal Sentence Representations [32]) and

show the detailed numbers in Appendix Table B.15 and Figure B-8. SentEval tasks

include seven semantic textual similarity tasks (denoted by “STS tasks”), where results

are given by the Spearman’s correlation with output range [−1, 1], and seven transfer

learning tasks (denoted by “Transfer task”), where results are given by the standard

accuracy with range [0, 1]. We scale the former to the same range as the latter, [0, 1],

and take an average as the final accuracy indicator.

Correlation with real-world tasks. To demonstrate the informativeness of

SynTextBench score, we list the Pearson correlation coefficients between real-data-free

evaluation methods and the accuracy of SentEval tasks in Table 6.2. Five real-data-free

metrics are considered that includes Val loss, MDL, SDL, 𝜀SC, and the proposed

SynTextBench. Since the smaller the baseline metrics are, the better, we add a

negative sign in front of them when calculating the Pearson correlation coefficient.

As we have the flexibility of generating synthetic datasets with various sizes (number

of sentences), we compare four configurations 𝑛 = {4096, 8192, 16384, 32768}. From

Table 6.2, we observe that SynTextBench consistently gives scores highly correlated

with real-world task accuracy, with correlation coefficients that are above 0.9. For the

four baselines, the highest correlation ever achieved is when 𝑛 = 8192 and evaluated

by Val loss, 0.65. It is noteworthy that SynTextBench is also a stabler metric as

substantiated by the smaller standard deviation.

Ablation on the nesting structure. To showcase the effect of the nesting

structure, we see that no nesting structure is a special case of our proposed framework

when 𝑝𝑛 = 0 (cf. equation 6.1). In Table 6.2, we have SynTextBench(𝑝𝑛 = 0.5) = 0.97.

In comparison, we run the analysis for 𝑝𝑛 = 0 and obtain SynTextBench(𝑝𝑛 = 0) = 0.92.
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Table 6.3: Aggregated correlation with real-data-free evaluation metric and the
robustness-accuracy performance, and its breakdown.

Correlation. w/ Rob.-Acc. Rob.-STS Rob.-Transfer
Val loss -0.06±0.15 0.08±0.13 -0.13±0.24
MDL 0.64±0.06 0.55±0.08 0.62±0.03
SDL, 𝜀=1 0.60±0.02 0.51±0.04 0.58±0.03
𝜀SC, 𝜀=1 - - -
SynTextBench 0.76±0.04 0.76±0.03 0.69±0.05

In conclusion, SynTextBench, with both parameters, outperform the baselines by

large margins. Between the two, SynTextBench with the imposed structure further

improves the correlation.

Robustness implications. To understand how real-data-free evaluation methods

correlate with real-world task robustness-accuracy performance, we further analyze

the correlation with the robustness indicator, the average number of perturbed words,

on Transfer tasks when 𝑛 = 8192. We focus on these tasks as they are classification

tasks where adversarial attacks are well-defined. To combine robustness correlation

with accuracy correlation, we add up two ranking vectors by robustness and accuracy

measures, and calculate its Pearson correlation with the ranking by one of the real-

data-free evaluation metrics (Val loss, MDL, SDL, 𝜖SC, SynTextBench). This way, we

effectively obtain the aggregated Spearman correlation coefficient between real-data-

free evaluation metrics and joint robustness-accuracy performance. We refer readers to

Appendix B.4.4 for more experimental details. We list the results in Table 6.3. From

the “Rob.-Acc.” column, we see SynTextBench has an overall higher correlation with

robustness-accuracy performance compared to other baselines. To be more precise,

SynTextBench shows a coefficient of 0.76, whereas MDL and SDL are 0.64 and 0.60.

Recall that accuracy results were aggregated from STS tasks and Transfer tasks. In

Table 6.3, we also show how each component contributes to the correlation. In the

“Rob.-STS” and “Rob.-Transfer” columns, we use only STS or Transfer task results

as the accuracy measure when ranking the models, and the remaining steps follow.

From the two columns, we see that SynTextBench still shows a stronger correlation

compared to baselines, while having a slightly better correlation with Robustness-STS

accuracy performance than Robustness-Transfer accuracy performance.
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Table 6.4: Correlation between real-data-free evaluation metric and real-data accuracy
on larger LMs.

Name Pearson correlation
Val loss 0.80
MDL -0.47

SDL, 𝜀 = 1 -0.55
𝜀SC, 𝜀 = 1 -

SynTextBench 0.87

Case study on model comparisons. Besides having high correlation with

real-world task performance, we show how SynTextBench can be used to make model

comparisons. From Table B.14, one sees that, the SynTextBench score of ST5 is

significantly higher than that of T5 across all dataset sizes 𝑛, e.g., ST5’s 0.223 vs. T5’s

0.130 when 𝑛 = 8192. This indicates contrastive fine-tuning is beneficial for improving

sentence embeddings. This conclusion is in sync with the observations from real-world

tasks, where we see ST5 yields both higher accuracy and robustness according to

Table B.14 and Table B.20. Specifically, ST5 has an average accuracy of 90.17 and

robustness 13.23, whereas T5 has an average accuracy of 82.78 and robustness 12.21.

6.3.3 Extended study on large LMs

Since SynTextBench focuses on the sentence embeddings of LMs, of which larger

decoder models generally do not have better performance than smaller encoder mod-

els [46], we have given most of our analysis on encoder models in [54]. Here, to

demonstrate the generality of SynTextBench to various LM types, we analyze more

large decoder LMs such as LLaMA and OPT [179, 180, 220].

Similar to Table 6.2, we calculated the Pearson correlation coefficients between

real-data-free evaluation methods and the accuracy of SentEval tasks in Table 6.4.

According to the table, SynTextBench also gives scores highly correlated with real-

world task accuracy on decoder models, with a correlation coefficient of 0.87. We

refer readers to Appendix Table B.17 for the complete results. Besides evaluating

linear probing performance on our SynTextBench synthetic tasks, we also evaluate the

few-shot in-context learning (ICL) performance on SynTextBench tasks. We calculate
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the correlation between the ICL accuracy on SynTextBench tasks and that on SentEval

tasks, and see again a strong correlation of 0.81 between them. We refer readers to

Appendix B.4.2 for more details.

6.4 Discussions

6.4.1 Generating synthetic datasets with a language model

To generate synthetic sentences with configurable difficulties with an LM, we reuse

the word lists constructed in Section 6.2.2 and constrain the LM vocabulary to be

within the word lists. Concretely, let 𝑉 be the original tokenizer vocabulary, POS

be the set of positive words, NEU be the set of neutral words, NEG be the set of

negative words, and STOP be the set of stop words (see B.4.3), then we constrain

the LM vocabulary to be 𝑉 = 𝑉 ∪ STOP, where 𝑉 composes of 𝑝× 100% NEU ∩ 𝑉

elements and (1 − 𝑝) × 100% POS ∩ 𝑉 elements for positive sentence generations

((1 − 𝑝) × 100% NEG ∩ 𝑉 elements for negative sentence generations). Similar to

the use of the mixing ratio 𝑝 in Section 6.2.2, we intend to create a set of tasks with

diverse difficulties herein via varying 𝑝. We generate synthetic sentences by completing

any of the starting tokens {"There", "I", "You", "She", "He", "It", "They", "The"}.

We print some generated sentence examples below:

POSITIVE

• “She’s a sweet and kind girl.”

• “The one thing that you have to do is look for other people.”

• “There are also a number of new content that have been rolled out in recent

times.”

• “I had a lot of fun with this design.”

• “She was one of several of several hundred people in the group to speak out

against the police and their use of force.”
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Figure 6-6: The average percentage of positive/negative words in the generated labeled
positive/negative synthetic sentences.

• “You are very close to the truth.... if you are one of the first to see what is being

done, that is very much a sign of an error.... you have to be very clear that it is

a good thing that you are doing what you have to do......”

NEGATIVE

• “They were the worst of the worst.”

• “She has no other option.”

• “There’s no question that the new and aggressive international community is

headed for a bad start with its future in mind.”

• “They do not want to see you there.”

• “There’s some real bad blood out there.”

• “I just want to make sure that we are talking about our state government.”

Discussions. Using LM-generated synthetic test sets, the rest of robustness-accuracy

evaluation follows Section 6.2.3 and 6.2.4. We calculate the SynTextBench scores from

LM-generated synthetic sentences and find that the Pearson correlation coefficient
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between these scores and the actual downstream task performance is 0.633±0.011.

This is in contrast to the higher correlation coefficient of above 0.9 observed from

the LM-free synthetic sentences discussed in Section 6.2.2, as shown in Table B.5.

In Figure 6-6, we plot the average percentage of positive and negative words in the

generated labeled synthetic sentences. With an increasing mixing ratio 𝑝, we aim at

configuring the task to be harder (data to be more mixed). While the percentage

of positive/negative words does decrease in both LM-free synthetic sentences and

LM-generated synthetic sentences, we have more control over LM-free generations in

generating tasks at various difficulty levels (various y-axis values).

6.4.2 Synthetic sentence examples

POSITIVE

• “perfectibility lotus-eater shine shine health_care health_care pleasant-tasting”

• “convincingly gruesomely gruesomely convincingly deserve feeder exhaust exhaust

debonaire stuffily stuffily anne_sexton wholeness wholeness rarefy conformable

pretension pretension”

• “smarmily smarmily fairness covetously infuse soothing subtly subtly soothing”

• “precious grace the_right_way the_right_way absoluteness absoluteness”

• “personal_relation pleasurable sleekness cryptographically cryptographically

correct delineate sink_in authenticated”

• “perfectibility lotus-eater shine shine health_care health_care pleasant-tasting”

NEGATIVE

• “unpleasant unpleasant mortal sympathetic dead dead choker nubbly fallout”

• “counterrevolutionary apprehensive thunderclap unskilled unskilled thunderclap

apprehensive cheat shanny shanny cheat counterrevolutionary smooth smooth de-

cayed decayed imagine imagine loser unpicturesque unnaturalized unnaturalized

unrelieved unrelieved unhewn”

136



• “unpleasant unpleasant mortal sympathetic dead dead choker nubbly fallout”

• ‘jostling weka offend engorged fouled fouled engorged intermittence space im-

paction impaction space intermittence dishonesty disgustingly”

• “blindly blindly”

• “second_class criminal_possession lousiness nonextensile linanthus_dianthiflorus

nonarbitrary regular foolishness stabbing”

As we mentioned earlier in the chapter, the inclusion of the parenthesis is to guar-

antee we test for the linguistic structures, whose importance is repeatedly advocated

in literatures from both machine learning and cognitive science. Therefore, when

building synthetic test for the linguistic structures, we also follow the parenthesis and

thus have non-grammatical test sets.

We would like to motivate their use based on the following example of sentiment

analysis in food reviews. Upon seeing the review “love love fantastic!” in a food review,

a reasonable language model should recognize the entailed positive sentiment, even

though the sentence is non-grammatical. In our framework, to test the other basic skill

for language acquisition in a systematic and scalable manner, we put words associated

with binary labels (positive and negative) in the synthetic sentence and test sentence

embeddings of LMs in identifying the words for sentence classification. Related to

our setups herein, [92] also studies a range of summarization tasks from nonsense

documents, in which a task is also designed to classify whether there are keywords

indicating positive or negative sentiments ([92], Figure 1). Additional evidence of the

usage of non-grammatical sentences can be found in [5], where authors also exploit

non-grammartical synthetic sentence ([5], Appendix A) for constructing Gaussian

logistic regression problems in improving reasoning ability in LMs, which manifests

the value of non-grammatical language in learning/testing basic skills. Our high

correlation with real-world tasks further suggests that better understanding of the

synthetic sentences indeed implies better performance on real tasks. By construction,

our framework is not limited to sentiment analysis as one can readily change the base
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lexicon to test how LMs identify words describing other notions. For example, if we

use the moral foundation lexicon, one can test how each LM identifies words that

describe care, fairness, loyalty, authority, and sanctity.

6.5 Conclusion

In this chapter, we have proposed SynTextBench, a novel framework for evaluating the

accuracy and robustness of LM sentence embeddings. SynTextBench is a configurable

real-date-free lightweight testbed that generates steerable synthetic language datasets

and proxy tasks, avoiding the risk of test-data leakage. SynTextBench is the pioneering

effort in developing synthetic benchmarking methodologies for NLP, with a primary

focus on sentence classification tasks and does not cover other NLP tasks such as

question answering, machine translation, or summarization. By concentrating on this

specific aspect, we have provided a solid foundation upon which future research can

build. We believe that our work is a major step towards ensuring independent and

sustainable auditing of LMs.
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Chapter 7

Conclusions and Future Work

7.1 Summary of results

In this thesis, we have presented our progress towards understanding and improving

the representational robustness of machine learning models. We summarize our

results and contributions in Table 1.1. We discovered the potential side-effect of

converting networks to their robust and smoothed counterparts, proved the occurrence

of disparity in class-wise accuracy that could cause fairness concerns. Building on

our understanding, we tried to improve the training of the base model by employing

heavy augmentations. For generic non-smooth models, we provided an alternative

way of interpreting contrastive learning, and proposed a new framework of training

representation networks that simultaneously promote robustness. Eventually, we

identified the drawbacks of current evaluations of representation networks, and gave a

solution for assessing the robustness-accuracy quality of vision and language model

representations in a task-agnostic way. We designed synthetic tests whose ground-truth

is independent of the model to be evaluated and the test covers necessarily wide input

domain.

Our main results of this thesis are summarized below.

Chapter 3 has pointed out the side effects of current randomized smoothing

workflows and the limitations. We proved the hidden cost of randomized smoothing

is class-wise fairness, i.e., decision boundaries of smoothed classifiers will shrink,
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resulting in disparity in class-wise accuracy. We further identified sufficient conditions

under which Gaussian smoothing leads to a decrease in classification accuracy and

characterized the theoretical lower bound of the shrinking rate. We also shown that

noise augmentation in the training process (data augmentation) does not necessarily

resolve the shrinking issue due to the inconsistent learning objectives. Finally, we

analyzed the effect of noise augmentation and showed that it may leads to low

classification accuracy for large 𝜎 on both synthetic and real datasets.

Chapter 4 has developed a generic framework called Integrated contrastive learning

(IntCl and IntNaCl) that could simultaneously achieve good accuracy and robustness

on downstream tasks. IntNaCl built on a link we established between contrastive

learning and supervised neighborhood component analysis. We provided theoretical

analysis on NaCl and show better generalization bounds over the baselines. The

proposed integrated contrastive learning (IntCl and IntNaCl) could simultaneously

achieve good accuracy and robustness on downstream tasks.

Chapter 5 has proposed synthetic data benchmarks for evaluating vision and

language large representation networks (foundation models) called SynBench. To

circumvent the need for real-world data in evaluation, we explored the use of synthetic

binary classification tasks with Gaussian mixtures to probe pretrained models and

compare the robustness-accuracy performance on pretrained representations with an

idealized reference. SynBench offers a holistic evaluation, revealing intrinsic model

capabilities and reducing the dependency on real-life data for model evaluation.

Evaluated with various pretrained image models, the experimental results confirm

that our task-agnostic evaluation correlates with actual linear probing performance

on downstream tasks and can also guide parameter choice in robust linear probing to

achieve a better robustness-accuracy trade-off.

Chapter 6 has extended SynBench to the language domain and proposed a new

evaluation workflow that generates steerable synthetic language datasets and proxy

tasks for benchmarking the performance of pertrained LMs on sentence classification

tasks, named SynTextBench. SynTextBench utilizes a labeled lexicon and the

nesting parenthesis structure to generate synthetic datasets. It allows for better

140



characterization of the joint analysis on the robustness and accuracy of LMs without

risking sensitive information leakage through the API. It also provides a more controlled

and private way to evaluate LMs that avoids overfitting specific test sets. Verified

on various pretrained LMs, the proposed approach demonstrates promising high

correlation with real downstream performance.

7.2 Future work

There exist a lot of topics worth further investigation. Below we summarize a few of

them.

Geometry-aware randomized smoothing. As can be concluded from our analysis

on smoothing methods using isotropic distribution, the smoothed classifier could suffer

from worsened class-wise accuracy and therefore harm the fairness. This inspires us

to think about how can one potentially choose smoothing distributions that are more

robust to different data geometries. Without a proper smoothing distribution, one

should stop using large smoothing factor in randomized smoothing. Furthermore,

from the perspective of data augmentation, we see that applying data augmentation

before performing randomized smoothing results in mismatched learning objectives.

A preferred way may be augmenting the dataset by taking randomized smoothing risk

into account and doing data-dependent randomized smoothing.

Representation learning. As discussed in Chapter 4, the current contrastive

learning regime still falls under 𝑘 = 1 for k-nearest neighbor in NCA. Thus, future

work along the line includes addressing the current limitation of assuming 𝑘 = 1 to

𝑘 > 1 (kNCA [172]), by doing which we expect to extend the current framework to

an even more general form. Additionally, we also want to point out the possibility

of formulating contrastive learning as a multi-label classification problem and adopt
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binary cross-entropy loss. That said, one can form the contrastive loss as follows:

E𝑥∼𝒟,𝑥+
𝑗 ∼𝒟+

𝑥 ,

𝑥−
𝑖 ∼𝒟−

𝑥

[︃
− 1

𝑀

𝑀∑︁
𝑗=1

log 𝜎(𝑓(𝑥)𝑇𝑓(𝑥+𝑗 ))−
1

𝑁

𝑁∑︁
𝑖=1

log
(︀
1− 𝜎(𝑓(𝑥)𝑇𝑓(𝑥−𝑖 ))

)︀]︃
.

Task-agnostic foundation model evaluation. As the popularization of pretrained

representations in various domains (e.g. vision, language, speech), we foresee SynBench

and SynTextBench to be generalized to more domains and shed light on task-agnostic

benchmarking designs that are simple and synthetic. Moreover, while Chapter 5 and

6 delve into the robustness-accuracy characterization of pretrained representations, we

envision these frameworks to be further extended to other trustworthiness dimensions

such as privacy, fairness, and other aspects. This extension is more intuitive in the

language domain since one can easily swap the lexicon used to generate SynTextBench

sentences to lexicons labeled with other trustworthiness dimensions. Lastly, while

SynTextBench has a primary focus on sentence classification tasks, future work includes

extensions to other NLP tasks such as question answering, machine translation, or

summarization. We believe that our work is a major step towards ensuring independent

and sustainable auditing of foundation models in general.
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Appendix A

Proofs

A.1 Supporting proofs for Chapter 3

Definition A.1.1 (Smoothed). If we use 𝑓 to denote an original neural network

function with outputs in the simplex Δ𝑐 = {𝑧 ∈ R𝑐 |
∑︀𝑐

𝑖=1 𝑧𝑖 = 1, 0 ≤ 𝑧𝑖 ≤ 1, ∀𝑖},

then its smoothed counterpart defined on 𝑑-dimensional inputs 𝑥 ∈ R𝑑 is defined by

𝑓smooth(𝑥) =

∫︁
𝑥′∈R𝑑

𝑓(𝑥′)𝑝(𝑥′)𝑑𝑥′,

where 𝑝(𝑥′) is the probability density function of the filter.

Definition A.1.2 (Gaussian smoothing). If 𝑝(𝑥′) is the probability density function

of a normally-distributed random variable with an expected value 𝑥 and standard

deviation 𝜎, then we call 𝑓𝑠𝑚𝑜𝑜𝑡ℎ a Gaussian-smoothed function and denote it by 𝑓𝜎.

Definition A.1.3 (Regularized Gamma Function). The lower regularized gamma

functions 𝑄(𝑠, 𝑥) is defined by

𝑄(𝑠, 𝑥) =

∫︀ 𝑥

0
𝑡𝑠−1𝑒−𝑡𝑑𝑡∫︀∞

0
𝑡𝑠−1𝑒−𝑡𝑑𝑡

.

Lemma A.1. Φ[𝑥] + Φ[ 1
𝑥
] ≥ 1.5 with equality holds iff 𝑥 ∈ {0,∞}.

Proof. Let 𝑓(𝑥) = Φ[𝑥] + Φ[ 1
𝑥
]. We observe that 𝑓(𝑥) = 𝑓(1/𝑥) by definition. So, it is
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sufficient to show that for 𝑥 in the interval (1,∞), 𝑓(𝑥) ≥ 1.5 with equality at 𝑥→∞.

We prove this by showing that in the interval (1,∞), 𝑓(𝑥) is strictly decreasing and

lim𝑥→∞ 𝑓(𝑥) = lim𝑥→∞ Φ(𝑥) + Φ(1/𝑥) = Φ(∞) + Φ(0) = 1 + 0.5 = 1.5. To show f(x)

is strictly decreasing we proceed by taking the derivative wrt x,

𝑑

𝑑𝑥
𝑓(𝑥) =

𝑒−
𝑥2

2

√
2𝜋
− 𝑒−

1
2𝑥2

𝑥2
√
2𝜋

we show that for the interval (1,∞) this derivative is less than 0. So, we need to show

that

𝑒−
𝑥2

2

√
2𝜋
− 𝑒−

1
2𝑥2

𝑥2
√
2𝜋

< 0

⇔ 𝑥2𝑒−
𝑥2

2 < 𝑒−
1

2𝑥2

⇔ log
(︀
𝑥2
)︀
+

1

2𝑥2
< 𝑥2

Let 𝑡 = log
(︀
𝑥2
)︀
, 𝑥 > 1→ 𝑡 > 0

⇔ 2𝑡 < 𝑒𝑡 − 𝑒−𝑡

This holds for 𝑡 > 0 as we have that at 𝑡 = 0. 2 · 0 = 0 = 𝑒0 − 𝑒−0 and 2𝑡 increases

at a rate of 2 while 𝑒𝑡 − 𝑒−𝑡 increases at a rate of 𝑒𝑡 + 𝑒−𝑡 > 2 ·
√
𝑒𝑡 · 𝑒−𝑡 = 2 as

𝑡 > 1→ 𝑒𝑡 ̸= 𝑒−𝑡. Finally for 𝑥 = 1, we calculate 𝑓(𝑥) ≈ 1.6829 > 1.5.

Theorem 1. Consider a classifier 𝑓train,𝜎𝑡 given as the naive-Bayes classifier obtained

by training on the dataset 𝒳 with data augmentation of variance 𝜎𝑡. Let the class-

wise accuracy of 𝑓train,𝜎𝑡 using the randomized smoothing prediction rule be given as

𝐴𝑐𝑐1(𝜎𝑡), 𝐴𝑐𝑐2(𝜎𝑡). Then we define the bias (Δ(𝜎𝑡)) to be the gap between class-wise

accuracies (Δ(𝜎𝑡) = |𝐴𝑐𝑐1(𝜎𝑡)− 𝐴𝑐𝑐2(𝜎𝑡)|). For 𝑘 > 1
2𝜖
− 1, class I decision region

grows in size at a rate of 𝑂(𝜎2
𝑡 ) and thus the bias is large for large 𝜎𝑡.

Proof. In order to determine the accuracies we start by looking at the decision regions

given by the two classifiers. We show that the decision region of class 1 increases with

increasing 𝜎 effectively increasing the bias by increasing the class 1 accuracy while

decreasing the class 2 accuracy.
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From the structure of the dataset it is easy to show that the naive Bayes classifier

yield decision regions:

class 1 : [−(𝑎
2
+ 𝑐0(𝜎)),

𝑘𝑎
2
+ 𝑑0(𝜎)]

class 2 : [−∞,−(𝑎
2
+ 𝑐0(𝜎))] ∪ [𝑘𝑎

2
+ 𝑑0(𝜎),+∞]

The likelihood ratio function 𝑟𝜎(𝑥) = 𝑝(𝑥∈ class 2)
𝑝(𝑥∈ class 1)

= (1− 2𝜖)𝑒
−𝑎(2𝑥+𝑎)

2𝜎2 +2𝜖𝑒
(2𝑥−𝑘𝑎)𝑘𝑎

2𝜎2 . This

is a convex function is 𝑥 resulting in the previous form of decision regions. Thus, we

get the following decision regions after smoothing, class 1 [−(𝑎
2
+ 𝑐1(𝜎)),

𝑘𝑎
2
+ 𝑑1(𝜎)]

and the rest being class 2.

In this case we show that for 𝑐0(𝜎) grows at Θ(𝜎2) with increasing 𝜎 by establishing

a lower bound and upper bound which both grow at the rate of 𝑂(𝜎2).

For the lower bound consider the function 𝑟𝑢𝜎(𝑥) = (1−2𝜖)𝑒
𝑎𝑥
𝜎2 +2𝜖𝑒

−𝑘𝑎𝑥

𝜎2 > 𝑟𝜎(−(𝑎2+𝑥)).

If for any 𝑐𝑙(𝜎) we have 𝑟𝑢𝜎(𝑐𝑙(𝜎)) = 1, then 𝑟𝜎(−(𝑎2 + 𝑐𝑙(𝜎))) < 1. Thus, we see that

using the convexity argument from before 𝑐0(𝜎) > 𝑐𝑙(𝜎). But it is easy to see that if

𝑐𝑙(1) is a solution of the equation 𝑟𝑢1 (𝑥) = 1 at 𝜎 = 1, then 𝜎2𝑐𝑙(1) is a solution for

𝑟𝑢𝜎(𝑥) = 1.

As 𝑟𝑢1 is a continuous function with 𝑟𝑢1 (0) = 1 and lim𝑥→∞ 𝑟𝑢1 (𝑥)→∞, it is sufficient

to show that 𝑑
𝑑𝑥
𝑟𝑢1 (0) = 𝑎(1− 2𝜖(𝑘 + 1)) < 0 (follows from the case condition) to show

that 𝑟𝑢1 (𝑥) = 1 has a positive real solution and consequently 𝑐0(𝜎) > 𝜎2𝑐𝑙(1) = 𝑂(𝜎2).

From the likelihood function, we can also clearly see that 𝑟𝜎(−(𝑎2 + 𝑥)) > (1− 2𝜖)𝑒
𝑎𝑥
𝜎2 .

Using this we can establish that 𝑐0(𝜎) < 𝜎2−log(1−2𝜖)
𝑎

making 𝑐0(𝜎) = Θ(𝜎2).

As 𝑑0(𝜎) ≥ 0, we have that for all 𝜎 ∈ (0,∞) the size of the interval [−(𝑎
2
+

𝑐0(𝜎)),
𝑘𝑎
2
+ 𝑑0(𝜎)] is bigger that 𝐶𝜎2 + 𝐶 for some positive constant 𝐶. Thus, we

have that at 𝑥 = −(𝑎
2
+ 𝑐0(𝜎) − 1

𝐶
) the probability 𝑥 ∈ Class I after smoothing

is given as Φ(𝐶𝜎2

𝜎𝑡
) − Φ(−1/𝐶

𝜎𝑡
). By Lemma A.1, we get that Φ(𝐶𝜎2

𝜎𝑡
) − Φ( −1

𝐶𝜎𝑡
) >

Φ(𝜎𝑡𝐶)− Φ( −1
𝐶𝜎𝑡

) = Φ(𝜎𝑡𝐶)− (1− Φ( 1
𝐶𝜎𝑡

)) = Φ(𝜎𝑡𝐶) + Φ( 1
𝐶𝜎𝑡

)− 1 > 0.5. Thus, we

have 𝑐1(𝜎) > 𝑐0(𝜎)− 1
𝐶
. Combining this with the fact that clearly 𝑐0(𝜎) > 𝑐1(𝜎), we

have 𝑐1(𝜎) ∈ (𝑐0(𝜎)− 1
𝐶
, 𝑐0(𝜎)) and similarly, we also have 𝑑1(𝜎) ∈ (𝑑0(𝜎)− 1

𝐶
, 𝑑0(𝜎)).

This also gives us 𝑐1(𝜎) = Θ(𝜎2) = Θ(𝜎2
𝑡 ).

Consider the function 𝑓𝑥(𝜎) = 𝑟𝜎(𝑥). By differentiating this function wrt 𝜎 we see

that it has only one extremum point. Using the fact that lim𝜎→∞ 𝑓𝑥(𝜎) = 1 we have
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that if for any 𝑥, 𝑓𝑥(𝜎) = 1 then we see that there the extremum point lies between 𝜎

and ∞. If for any 𝜎′ > 𝜎, 𝑓𝑥(𝜎′) = 1, then there would be a two extremum points

one between 𝜎, 𝜎′ and another between 𝜎′,∞. Using this along with the continuity

of 𝑓𝑥 we get that either 𝑓𝑥(𝜎′) < 1∀𝜎′ > 𝜎 or 𝑓𝑥(𝜎′) > 1∀𝜎′ > 𝜎. We can further use

the fact that 𝑓𝑥(0)→∞ to see that 𝑓𝑥 is decreasing at 𝜎 making 𝑓𝑥(𝜎′) < 1∀𝜎′ > 𝜎.

Thus, we see that 𝑑0(𝜎), 𝑐0(𝜎) are increasing functions of 𝜎. Combining this with the

previous result shows that the decision region of class I after smoothing increases at

𝑂(𝜎2
𝑡 ).

For the bias we see that as 𝜎𝑡 →∞, class I at least occupies the region (−∞, 𝑘𝑎
2
]

while class II occupies at most the region (𝑘𝑎
2
,∞). As a result the bias is lower bounded

by (1− Φ(−𝑘𝑎
2𝜎𝑜

))− 𝜖(1− Φ(−𝑘𝑎
2𝜎𝑜

)) = (1− 𝜖)(1− Φ(−𝑘𝑎
2𝜎𝑜

)) which is very high.

Theorem 2. Consider a classifier 𝑓train,𝜎𝑡 given as the naive-Bayes classifier obtained

by training on the dataset 𝒳 ′ with data augmentation of variance 𝜎𝑡. The bias of the

classifier 𝑓train,𝜎𝑡 using the randomized smoothing prediction rule is 1− 𝜖, if 𝑘 > 𝑒2

𝜖
− 1

and 𝜎𝑡 ≥ 𝑎

√︂
𝑘(𝑘+1)

2𝑙𝑛(2𝜖(𝑘+1))− 2𝑘
𝑘+2

.

Proof. At 𝑥 = −𝑎, we see that if the decision region for class 1 is [−(𝑎+ 𝑐), 𝑘𝑎
2
+ 𝑑],

then the probability after smoothing is

𝑔(−𝑎, 1) =
∫︁
𝑥′∈R𝑑

𝑑(−𝑎, 𝑥′)𝜓(𝑥′, 1)𝑑𝑥′

=

∫︁ 𝑘𝑎
2
+𝑑

−(𝑎+𝑐)

𝑑(−𝑎, 𝑥′)𝑑𝑥′

=

∫︁ 𝑘𝑎
2
+𝑑

−∞
𝑑(−𝑎, 𝑥′)𝑑𝑥′ −

∫︁ −(𝑎+𝑐)

−∞
𝑑(−𝑎, 𝑥′)𝑑𝑥′

= Φ(
𝑘𝑎
2
+ 𝑑+ 𝑎

𝜎
)− Φ(

−𝑐
𝜎
)

≥ Φ(
𝑘+2
2
𝑎

𝜎
)− Φ(

−𝑐
𝜎
) (if 𝑑 ≥ 0)

≥ Φ(
𝑘+2
2
𝑎

𝜎
)− Φ(− 𝜎

𝑘+2
2
𝑎
) (if 𝑐 ≥ 2𝜎2

(𝑘 + 2)𝑎
)

> 0.5. (by Lemma A.1)
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That’s said, the bias will be at least 1− 𝜖 if 𝑑 ≥ 0 and 𝑐 ≥ 2𝜎2

(𝑘+2)𝑎
are true. We now

check for 𝑑 ≥ 0: for 𝑥 ∈ [0, 𝑘𝑎
2
],

𝜓(𝑥, 1) =

∫︁
𝑥′∈R𝑑

𝑑(𝑥, 𝑥′)𝜌(𝑥′, 1)𝑑𝑥′ = 𝑑(𝑥, 0)𝜌(0, 1)

=
1√
2𝜋𝜎2

[
1

2
𝑒−

𝑥2

2𝜎2 ] =
1√
2𝜋𝜎2

[(
1

2
− 𝜖)𝑒−

𝑥2

2𝜎2 + 𝜖𝑒−
𝑥2

2𝜎2 ]

>
1√
2𝜋𝜎2

[(
1

2
− 𝜖)𝑒−

(𝑥+𝑎)2

2𝜎2 + 𝜖𝑒−
(𝑘𝑎−𝑥)2

2𝜎2 ] = 𝑑(𝑥,−𝑎)𝜌(−𝑎, 2) + 𝑑(𝑥, 𝑘𝑎)𝜌(𝑘𝑎, 2)

=

∫︁
𝑥′∈R𝑑

𝑑(𝑥, 𝑥′)𝜌(𝑥′, 2)𝑑𝑥′ = 𝜓(𝑥, 2),

implying 𝑥 ∈ [0, 𝑘𝑎
2
] belongs to class 1 for the naive Bayes classifier. Therefore the

decision region for class 1 extends at least to 𝑘𝑎
2
+ 𝑑 with 𝑑 ≥ 0. Next, we check for

𝑐 ≥ 2𝜎2

(𝑘+2)𝑎
: at 𝑥 = −𝑎− 2𝜎2

(𝑘+2)𝑎
, the probability is

𝜓(−𝑎− 2𝜎2

(𝑘 + 2)𝑎
, 1) =

∫︁
𝑥′∈R𝑑

𝑑(− 2𝜎 + 𝑎

(𝑘 + 2) 𝑎
𝜎

, 𝑥′)𝜌(𝑥′, 1)𝑑𝑥′

=
1√
2𝜋𝜎2

[
1

2
𝑒−

𝑥2

2𝜎2 ]|
𝑥=−𝑎− 2𝜎2

(𝑘+2)𝑎

𝜓(−𝑎− 2𝜎2

(𝑘 + 2)𝑎
, 2) =

∫︁
𝑥′∈R𝑑

𝑑(− 2𝜎 + 𝑎

(𝑘 + 2) 𝑎
𝜎

, 𝑥′)𝜌(𝑥′, 2)𝑑𝑥′

=
1√
2𝜋𝜎2

[(
1

2
− 𝜖)𝑒−

(𝑥+𝑎)2

2𝜎2 + 𝜖𝑒−
(𝑘𝑎−𝑥)2

2𝜎2 ]|
𝑥=−𝑎− 2𝜎2

(𝑘+2)𝑎

.

147



Therefore we see that 𝜓(−𝑎− 2𝜎2

(𝑘+2)𝑎
, 1) > 𝜓(−𝑎− 2𝜎2

(𝑘+2)𝑎
, 2) if

(1− 2𝜖)𝑒(
𝑎
𝜎
)2 1

2
+ 2

𝑘+2 + 2𝜖𝑒−
𝑘(𝑘+2)

2
( 𝑎
𝜎
)2− 2𝑘

𝑘+2 < 1

⇔ (1− 2𝜖)[𝑒(
𝑎
𝜎
)2 1

2
+ 2

𝑘+2 − 1] < 2𝜖[1− 𝑒−
𝑘(𝑘+2)

2
( 𝑎
𝜎
)2− 2𝑘

𝑘+2 ]

⇔ 1

2𝜖
− 1 <

1− 𝑒−
𝑘(𝑘+2)

2
( 𝑎
𝜎
)2− 2𝑘

𝑘+2

𝑒(
𝑎
𝜎
)2 1

2
+ 2

𝑘+2 − 1

⇔ 1

2𝜖
<
𝑒(

𝑎
𝜎
)2 1

2
+ 2

𝑘+2 − 𝑒−
𝑘(𝑘+2)

2
( 𝑎
𝜎
)2− 2𝑘

𝑘+2

𝑒(
𝑎
𝜎
)2 1

2
+ 2

𝑘+2 − 1

⇔ 1

2𝜖
<
𝜏𝑙 − 𝜏−𝑘(𝑘+2)𝑙−𝑘

𝜏 𝑙 − 1
(let 𝜏 = 𝑒(

𝑎
𝜎
)2 1

2 , 𝑙 = 𝑒
2

𝑘+2 )

⇔ 1

2𝜖
< 𝜏−𝑘(𝑘+2)𝑙−𝑘 𝜏

(𝑘+1)2𝑙𝑘+1 − 1

𝜏 𝑙 − 1

⇔ 1

2𝜖
< 𝜏−𝑘(𝑘+2)𝑙−𝑘 𝜏

(𝑘+1)2𝑙𝑘+1 − 1

𝜏 𝑘+1𝑙 − 1

𝜏 𝑘+1𝑙 − 1

𝜏 𝑙 − 1

⇔ 1

2𝜖
< 𝜏−𝑘(𝑘+1)𝑙−𝑘(Σ𝑘

𝑖=0(𝜏
𝑘+1𝑙)𝑖)

𝜏 𝑘+1𝑙 − 1

𝜏 𝑙 − 1
𝜏−𝑘

⇔ 1

2𝜖
< (Σ𝑘

𝑖=0(𝜏
𝑘+1𝑙)−𝑖)

𝜏 𝑙 − 𝜏−𝑘

𝜏 𝑙 − 1

⇐ 1

2𝜖
≤ Σ𝑘

𝑖=0(𝜏
𝑘+1𝑙)−𝑖 ≤ (𝑘 + 1)(𝜏 𝑘+1𝑙)−𝑘

⇔ 0 < 𝑙𝑛(𝜏) ≤ 𝑙𝑛(2𝜖(𝑘 + 1))− 𝑘𝑙𝑛(𝑙)
𝑘(𝑘 + 1)

=
𝑙𝑛(2𝜖(𝑘 + 1))− 2𝑘

𝑘+2

𝑘(𝑘 + 1)

⇐ (
𝑎

𝜎
)2
1

2
≤
𝑙𝑛(2𝜖(𝑘 + 1))− 2𝑘

𝑘+2

𝑘(𝑘 + 1)
, 𝑘 >

𝑒2

𝜖
− 1

⇔ 𝜎 ≥ 𝑎

√︃
𝑘(𝑘 + 1)

2𝑙𝑛(2𝜖(𝑘 + 1))− 2𝑘
𝑘+2

, 𝑘 >
𝑒2

𝜖
− 1.

These conclude our proof.

Lemma A.2. For any two original decision regions 𝐴,𝐵, if we have that 𝐴 ⊂ 𝐵,

then we also have that 𝐴𝜎 ⊂ 𝐵𝜎, where 𝐴𝜎 and 𝐵𝜎 are the decision regions of the

Gaussian-smoothed functions.

Proof. Recalling that decision regions 𝐴𝜎 and 𝐵𝜎 satisfy 𝐷𝜎 = {𝑥 ∈ R𝑑|𝑓𝐷
𝜎 (𝑥)1 ≥ 1

𝑐
}
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for 𝐷 = 𝐴,𝐵. Therefore for ∀𝑥 ∈ 𝐴𝜎, we have 𝑓𝐴
𝜎 (𝑥) ≥ 1

𝑐
. And

𝑓𝐵
𝜎 (𝑥)1 =

∫︁
𝑥′∈R𝑑

𝑓𝐵(𝑥′)1𝑝(𝑥
′)𝑑𝑥′ =

∫︁
𝑥′∈R𝑑

1𝑥′∈𝐵𝑝(𝑥
′)𝑑𝑥′

=

∫︁
𝑥′∈𝐵

𝑝(𝑥′)𝑑𝑥′ >

∫︁
𝑥′∈𝐴

𝑝(𝑥′)𝑑𝑥′

=

∫︁
𝑥′∈R𝑑

1𝑥′∈𝐴𝑝(𝑥
′)𝑑𝑥′ =

∫︁
𝑥′∈R𝑑

𝑓𝐴(𝑥′)1𝑝(𝑥
′)𝑑𝑥′

= 𝑓𝐴
𝜎 (𝑥)1 ≥

1

𝑐
,

implying 𝑥 ∈ 𝐵𝜎. That said, we have that if 𝑥 ∈ 𝐴𝜎, then 𝑥 ∈ 𝐵𝜎, making 𝐴𝜎 ⊆

𝐵𝜎.

It is well-known that

𝑄

(︂
𝑑

2
,
𝑅2

2𝜎2

)︂
=

∫︁
𝑥′∈R𝑑,‖𝑥′‖2≤𝑅

(2𝜋𝜎2)−
𝑑
2 𝑒

𝑥′𝑇 𝑥′
2𝜎2 𝑑𝑥′.

For the dimension 𝑑, we summarize the lemma based on regularized Gamma functions

below.

Lemma A.3. For ∀𝑑, 𝑐 ∈ N+, 𝑄(𝑑
2
, 𝑑
2𝑐
) < 1

𝑐
holds.

Proof. To prove 𝑄(𝑑
2
, 𝑑
2𝑐
) < 1

𝑐
), by definition A.1.3, we aim at proving

∫︀∞
0
𝑡
𝑑
2
−1𝑒−𝑡𝑑𝑡 >

𝑐 ·
∫︀ 𝑑

2𝑐

0
𝑡
𝑑
2
−1𝑒−𝑡𝑑𝑡 (∀𝑑 ∈ N+). For c = 1, this is clearly true as 𝑡𝑥−1𝑒−𝑡 ≥ 0 is true for

𝑡 ≥ 0. Then we show it also holds for 𝑐 ≥ 2.

Let 𝑔(𝑡) = 𝑡𝑥−1𝑒−𝑡, we have 𝑔′(𝑡) = 𝑡𝑥−2𝑒−𝑡(𝑥− 1− 𝑡). Therefore 𝑔(𝑡) is increasing

when 𝑡 ≤ 𝑥− 1 and decreasing when 𝑡 > 𝑥− 1. Thus, giving us two equations

∫︁ 𝑥

𝑥
𝑐

𝑡𝑥−1𝑒−𝑡𝑑𝑡 > min{𝑥𝑥−1𝑒−𝑥, (
𝑥

𝑐
)
𝑥−1

𝑒−
𝑥
𝑐 }(𝑐− 1)𝑥

𝑐

𝑥

𝑐
(
𝑥

𝑐
)
𝑥−1

𝑒−
𝑥
𝑐 >

∫︁ 𝑥
𝑐

0

𝑡𝑥−1𝑒−𝑡𝑑𝑡

So, we see that for any 𝑥, 𝑐 if we have 𝑥𝑥−1𝑒−𝑥 ≥ (𝑥
𝑐
)𝑥−1𝑒−

𝑥
𝑐 then

∫︀ 𝑥
𝑥
𝑐
𝑡𝑥−1𝑒−𝑡𝑑𝑡 > (𝑐−1)·∫︀ 𝑥

𝑐

0
𝑡𝑥−1𝑒−𝑡𝑑𝑡⇔

∫︀ 𝑥

0
𝑡𝑥−1𝑒−𝑡𝑑𝑡 > 𝑐 ·

∫︀ 𝑥
𝑐

0
𝑡𝑥−1𝑒−𝑡𝑑𝑡. Using 𝑡𝑥−1𝑒−𝑡 ≥ 0, ∀𝑥

∫︀∞
0
𝑡𝑥−1𝑒−𝑡𝑑𝑡 ≥∫︀ 𝑥

0
𝑡𝑥−1𝑒−𝑡𝑑𝑡. So, we have

∫︀∞
0
𝑡𝑥−1𝑒−𝑡𝑑𝑡 > 𝑐 ·

∫︀ 𝑥
𝑐

0
𝑡𝑥−1𝑒−𝑡𝑑𝑡 as needed. So, for any 𝑥, 𝑐
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it is sufficient to show

𝑥𝑥−1𝑒−𝑥 ≥ (
𝑥

𝑐
)
𝑥−1

𝑒−
𝑥
𝑐

in order to prove
∫︀∞
0
𝑡𝑥−1𝑒−𝑡𝑑𝑡 > 𝑐 ·

∫︀ 𝑥
𝑐

0
𝑡𝑥−1𝑒−𝑡𝑑𝑡. The inequality can be re-written

as (𝑥− 1) log(𝑐) > 𝑐−1
𝑐
𝑥 or (1− 1

𝑥
) > (1− 1

𝑐
) 1
log(𝑐)

. We observe that (1− 1
𝑐
) 1
log(𝑐)

is a

decreasing function of 𝑐 for 𝑐 ≥ 1 and (1− 1
𝑥
) is an increasing function of 𝑥.

For 𝑥 ≥ 4, 𝑐 ≥ 2, we see (1− 1
𝑥
) ≥ 1− 1

4
= 0.75 > (1− 1

2
) 1
log(2)

≥ (1− 1
𝑐
) 1
log(𝑐)

.

For 𝑥 ≥ 3
2
, 𝑐 ≥ 20, we have (1− 1

𝑥
) ≥ 1− 2

3
> (1− 1

20
) 1
log(20)

≥ (1− 1
𝑐
) 1
log(𝑐)

.

For 3
2
≤ 𝑥 < 4 → 3 ≤ 𝑑 < 8 and 2 ≤ 𝑐 < 20, we numerically verify the values of

𝑄(𝑑
2
, 𝑑
2𝑐
) to see the inequality is satisfied.

Thus, for 𝑑 ≥ 3, 𝑐 ≥ 2 we have the inequality.

For 𝑑 = 2, we have𝑄(𝑑
2
, 𝑑
2𝑐
) = 𝑄(1, 1

𝑐
). This has a closed form solution 𝑄(1, 𝑥) = 1−𝑒−𝑥.

So, we need to show that for 𝑐 ≥ 2 1− 𝑒− 1
𝑐 < 1

𝑐
or 𝑒

1
𝑐 < 𝑐

𝑐−1
or 1

𝑐
< log

(︀
1 + 1

𝑐−1

)︀
. But

we know that for 𝑥 > −1, 𝑥 ̸= 0, log(1 + 𝑥) > 𝑥
𝑥+1

, so log
(︀
1 + 1

𝑐−1

)︀
>

1
𝑐−1

1+ 1
𝑐−1

= 1
𝑐

which

concludes the proof for 𝑑 = 2, 𝑐 ≥ 2.

Lemma A.4. Assume the decision region of class 1 data is {𝑥 ∈ R𝑑 | ‖𝑥‖2 ≤ 𝑅},

the point at the origin has the highest probability to be classified as class 1 by the

gaussian-smoothed classifier 𝑓𝜎, i.e. 𝑓𝜎(𝑥)1 ≤ 𝑓𝜎(0)1.

Proof. We do the proof by mathematical induction and begin by giving 𝑑 = 1 case.

For ∀𝑅 > 0 and 𝑑 = 1, equation 3.1 reduces to

𝑓𝜎(𝑥)1 =

∫︁ 𝑅

−𝑅

(2𝜋𝜎2)−
1
2 𝑒−

(𝑥′−𝑥)2

2𝜎2 𝑑𝑥′

𝑎=𝑥′−𝑥
======

∫︁ 𝑅−𝑥

−𝑅−𝑥

(2𝜋𝜎2)−
1
2 𝑒−

𝑎2

2𝜎2 𝑑𝑎

𝑓 ′
𝜎(𝑥)1 = −(2𝜋𝜎2)−

1
2 𝑒−

(𝑅−𝑥)2

2𝜎2 − (−1)(2𝜋𝜎2)−
1
2 𝑒−

(−𝑅−𝑥)2

2𝜎2

and 𝑓 ′
𝜎(𝑥)1 equals to zero only when 𝑥 = 0. Now suppose the conclusion holds for
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𝑑− 1 dimensional case, then when 𝑥 ∈ R𝑑 we scale 𝑓𝜎(𝑥)1 by (2𝜋𝜎2)
𝑑
2 and obtain

∫︁
‖𝑥′‖2≤𝑅

𝑒−
(𝑥′−𝑥)𝑇 (𝑥′−𝑥)

2𝜎2 𝑑𝑥′

=

∫︁
∑︀𝑑

𝑘=1 𝑥
′
𝑘
2≤𝑅2

𝑒−
∑︀𝑑

𝑘=1(𝑥
′
𝑘−𝑥𝑘)2

2𝜎2 𝑑𝑥′

=

∫︁ 𝑅

−𝑅

∫︁
∑︀𝑑−1

𝑘=1 𝑥
′
𝑘
2≤𝑅2−𝑥′

𝑑
2
𝑒−

∑︀𝑑−1
𝑘=1

(𝑥′𝑘−𝑥𝑘)2

2𝜎2 𝑑𝑥′1 . . . 𝑑𝑥
′
𝑑−1𝑒

− (𝑥′𝑑−𝑥𝑑)
2

2𝜎2 𝑑𝑥′𝑑

≤
∫︁ 𝑅

−𝑅

∫︁
∑︀𝑑−1

𝑘=1 𝑥
′
𝑘
2≤𝑅2−𝑥′

𝑑
2
𝑒−

∑︀𝑑−1
𝑘=1

𝑥′𝑘
2

2𝜎2 𝑑𝑥′1 . . . 𝑑𝑥
′
𝑑−1𝑒

− (𝑥′𝑑−𝑥𝑑)
2

2𝜎2 𝑑𝑥′𝑑

=

∫︁
∑︀𝑑

𝑘=1 𝑥
′
𝑘
2≤𝑅2

𝑒−
∑︀𝑑−1

𝑘=1
𝑥′𝑘

2

2𝜎2 𝑒−
(𝑥′𝑑−𝑥𝑑)

2

2𝜎2 𝑑𝑥′

=

∫︁
∑︀𝑑−1

𝑘=1 𝑥
′
𝑘
2≤𝑅2

∫︁
𝑥′
𝑑
2≤𝑅2−

∑︀𝑑−1
𝑘=1 𝑥

′
𝑘
2
𝑒−

(𝑥′𝑑−𝑥𝑑)
2

2𝜎2 𝑑𝑥′𝑑𝑒
−

∑︀𝑑−1
𝑘=1

𝑥′𝑘
2

2𝜎2 𝑑𝑥′1 . . . 𝑑𝑥
′
𝑑−1

≤
∫︁
∑︀𝑑−1

𝑘=1 𝑥
′
𝑘
2≤𝑅2

∫︁
𝑥′
𝑑
2≤𝑅2−

∑︀𝑑−1
𝑘=1 𝑥

′
𝑘
2
𝑒−

𝑥′𝑑
2

2𝜎2 𝑑𝑥′𝑑𝑒
−

∑︀𝑑−1
𝑘=1

𝑥′𝑘
2

2𝜎2 𝑑𝑥′1 . . . 𝑑𝑥
′
𝑑−1

=

∫︁
∑︀𝑑

𝑘=1 𝑥
′
𝑘
2≤𝑅2

𝑒−
∑︀𝑑

𝑘=1 𝑥′𝑘
2

2𝜎2 𝑑𝑥′,

where the first inequality comes from the assumption that the conclusion holds for

𝑑− 1 dimensional case with equality if and only if 𝑥1 = . . . 𝑥𝑑−1 = 0, and the second

inequality comes from an one dimensional observation with equality precisely when

𝑥𝑑 = 0. This concludes our proof.

Since the value of 𝑓𝜎(0)1 depends on the radius 𝑅 of the decision region, the dimen-

sion 𝑑, and the smoothing factor 𝜎, we denote 𝑓𝜎(0)1 by 𝑞(𝑅, 𝑑, 𝜎), i.e. 𝑞(𝑅, 𝑑, 𝜎) :=

𝑓𝜎(0)1.

Corollary A.1. As 𝒟 ⊆ 𝒞𝒟𝜃,𝑣, using Lemma A.2, we have that the smoothed decision

region is contained within the smoothed version of 𝒞𝒟𝜃,𝑣, i.e. 𝒟𝜎 ⊆ (𝒞𝒟𝜃,𝑣)𝜎.

Lemma A.5. If the decision region of class 1 data is 𝒟 = {𝑥 ∈ R𝑑 | 𝑣𝑇𝑥 +

‖𝑣‖‖𝑥‖𝑐𝑜𝑠(𝜃) ≤ 0}, where 𝑣 = [0, . . . , 0, 1]𝑇 ∈ R𝑑 and 2𝜃 ∈ (−𝜋, 𝜋), then after

smoothing among the set of points 𝑆𝑎 with the same projection on 𝑣 the point on the

axis has the highest probability of being in class 1. For 𝑆𝑎 = {𝑥 | 𝑣𝑇𝑥 = 𝑎}, we have

argsup𝑥∈𝑆𝑎
𝑓𝜎(𝑥)1 = 𝑎 · 𝑣. Moreover if 𝑎1 > 𝑎2, then 𝑓𝜎(𝑎1 · 𝑣)1 < 𝑓𝜎(𝑎2 · 𝑣)1.

151



Proof. For the first part of the proof consider the set of points 𝑆𝑎 = {𝑥 | 𝑣𝑇𝑥 = 𝑎}.

For any point 𝑥 is 𝑆𝑎, we see that

𝑓𝜎(𝑥)1 =

∫︁
𝑥′∈R𝑑

𝑓(𝑥′)1𝑝(𝑥
′)𝑑𝑥′

=

∫︁
𝑥′
𝑑+‖𝑥′‖𝑐𝑜𝑠(𝜃)≤0

(2𝜋𝜎2)−
𝑑
2 𝑒−

(𝑥′−𝑥)𝑇 (𝑥′−𝑥)

2𝜎2 𝑑𝑥′

= (2𝜋𝜎2)−
𝑑
2

∫︁ 0

−∞

∫︁
Σ𝑑−1

𝑘=1𝑥
′
𝑘
2≤𝑡𝑎𝑛2(𝜃)𝑥′

𝑑
2
𝑒−

∑︀𝑑−1
𝑘=1

(𝑥′𝑘−𝑥𝑘)2

2𝜎2 𝑑𝑥′1 . . . 𝑑𝑥
′
𝑑−1𝑒

− (𝑥′𝑑−𝑎)2

2𝜎2 𝑑𝑥′𝑑

≤ (2𝜋𝜎2)−
𝑑
2

∫︁ 0

−∞

∫︁
Σ𝑑−1

𝑘=1𝑥
′
𝑘
2≤𝑡𝑎𝑛2(𝜃)𝑥′

𝑑
2
𝑒−

∑︀𝑑−1
𝑘=1

𝑥′𝑘
2

2𝜎2 𝑑𝑥′1 . . . 𝑑𝑥
′
𝑑−1𝑒

− (𝑥′𝑑−𝑎)2

2𝜎2 𝑑𝑥′𝑑

= 𝑓𝜎(𝑎𝑣)1.

where the inequality comes from Lemma A.4 with equality iff 𝑥1 = . . . 𝑥𝑑−1 = 0, i.e.

𝑥 = [0, . . . , 0, 𝑎] ∈ 𝒱 . Now for the second part of the proof, let 𝑥1 = 𝑎1𝑣, 𝑥2 = 𝑎2𝑣

such that 𝑎1 > 𝑎2. Then

𝑓𝜎(𝑥1)1 = (2𝜋𝜎2)−
𝑑
2

∫︁ −𝑎1

−∞

∫︁
Σ𝑑−1

𝑘=1𝑥
′
𝑘
2≤𝑡𝑎𝑛2(𝜃)(𝑥′

𝑑+𝑎1)
2
𝑒−

∑︀𝑑−1
𝑘=1

𝑥′𝑘
2

2𝜎2 𝑑𝑥′1 . . . 𝑑𝑥
′
𝑑−1𝑒

− 𝑥′2𝑑
2𝜎2 𝑑𝑥′𝑑

As 𝑎1 + 𝑥′𝑑 ≤ 0, (𝑎1 + 𝑥′𝑑)
2 < (𝑎2 + 𝑥′𝑑)

2

< (2𝜋𝜎2)−
𝑑
2

∫︁ −𝑎1

−∞

∫︁
Σ𝑑−1

𝑘=1𝑥
′
𝑘
2≤𝑡𝑎𝑛2(𝜃)(𝑥′

𝑑+𝑎2)
2
𝑒−

∑︀𝑑−1
𝑘=1

𝑥′𝑘
2

2𝜎2 𝑑𝑥′1 . . . 𝑑𝑥
′
𝑑−1𝑒

− 𝑥′2𝑑
2𝜎2 𝑑𝑥′𝑑

< (2𝜋𝜎2)−
𝑑
2

∫︁ −𝑎2

−∞

∫︁
Σ𝑑−1

𝑘=1𝑥
′
𝑘
2≤𝑡𝑎𝑛2(𝜃)(𝑥′

𝑑+𝑎2)
2
𝑒−

∑︀𝑑−1
𝑘=1

𝑥′𝑘
2

2𝜎2 𝑑𝑥′1 . . . 𝑑𝑥
′
𝑑−1𝑒

− 𝑥′2𝑑
2𝜎2 𝑑𝑥′𝑑

= 𝑓𝜎(𝑥2)1.

Lemma A.6. ∀𝑎 > 0, 𝑘 ≥ 1, Φ(−𝑎)
Φ(−𝑘𝑎)

≥ 𝑒
(𝑘2−1)𝑎2

2 .

Proof. Consider the function ℎ(𝑥) =
√
2𝜋Φ(−𝑥)

𝑒−𝑥2/2
and we will show in the following that

it is strictly decreasing for 𝑥 > 0. Alternatively, we take the derivative w.r.t. 𝑥,

𝑑

𝑑𝑥
ℎ(𝑥) =

√
2𝜋𝑥Φ(−𝑥)
𝑒−𝑥2/2

− 1,
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and show that it is negative for 𝑥 > 0. Since 𝑒−𝑥2/2 > 0, it is sufficient to show that
√
2𝜋𝑥Φ(−𝑥)− 𝑒−𝑥2/2 < 0. Combining that 1)

√
2𝜋𝑥Φ(−𝑥)− 𝑒−𝑥2/2 is increasing as

𝑑

𝑑𝑥

(︂
𝑥Φ(−𝑥)− 𝑒−𝑥2/2

√
2𝜋

)︂
= Φ(−𝑥)− 𝑥𝑒−𝑥2/2

√
2𝜋
− −𝑥𝑒

−𝑥2/2

√
2𝜋

= Φ(−𝑥) > 0

and 2)
√
2𝜋𝑥Φ(−𝑥)−𝑒−𝑥2/2 → 0 when 𝑥→∞, we have that

√
2𝜋𝑥Φ(−𝑥)−𝑒−𝑥2/2 < 0.

As ℎ(𝑥) is strictly decreasing we have that for any 𝑎 > 0 and 𝑘 > 1, 𝑘𝑎 > 𝑎. Thus,

√
2𝜋Φ(−𝑎)
𝑒−𝑎2/2

>

√
2𝜋Φ(−𝑘𝑎)
𝑒−(𝑘𝑎)2/2

.

Rearranging the terms gives the inequality.
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A.2 Supporting proofs for Chapter 4

We extend the theorems from [29] to get results for ℒNCA. The results we have here

apply to 𝐺 = 𝑔0 and 𝑔1. The case when 𝐺 = 𝑔2, ℒMIXNCA, and ℒIntNaCl are left as

future work.

Bridging the empirical estimator and asymptotic objective. We introduce

an intermediate unbiased loss in order to extend our results. Let ℎ(𝑥, 𝑦) = 𝑒𝑓(𝑥)
⊤𝑓(𝑦),

then the unbiased loss with multiple positive pairs is given as

̃︀𝐿𝑀,𝑁
Unbiased(𝑓) = E 𝑥∼𝑝

𝑥+
𝑖 ∼𝑝+𝑥

[︃
log

∑︀𝑀
𝑖=1 ℎ(𝑥, 𝑥

+
𝑖 )∑︀𝑀

𝑖=1 ℎ(𝑥, 𝑥
+
𝑖 ) +𝑀 ·𝑁 · E𝑥−∼𝑝−𝑥

ℎ(𝑥, 𝑥−)

]︃

Then we can define a debiased loss by

𝐿𝑀,𝑁,𝑛,𝑚
Debiased (𝑓) = E 𝑥∼𝑝

𝑥+
𝑖 ∼𝑝+𝑥

𝑢𝑖∼𝑝;𝑣𝑖∼𝑝+𝑥

[︃
log

∑︀𝑀
𝑖=1 ℎ(𝑥, 𝑥

+
𝑖 )∑︀𝑀

𝑖=1 ℎ(𝑥, 𝑥
+
𝑖 ) +𝑀 ·𝑁 ·𝐺(𝑥, {𝑢𝑖}𝑛𝑖=1, {𝑣𝑖}𝑚𝑖=1)

]︃
.

Theorem A.1. For any embedding 𝑓 and finite 𝑁 and 𝑀 , we have

⃒⃒⃒̃︀𝐿𝑀,𝑁
Unbiased(𝑓)− 𝐿

𝑀,𝑁,𝑛,𝑚
Debiased (𝑓)

⃒⃒⃒
≤ 𝑒3/2

𝜏−

√︂
𝜋

2𝑛
+
𝑒3/2𝜏+

𝜏−

√︂
𝜋

2𝑚
.

The proof of A.1 is the same as the proof of Theorem 3 in [29] with the help of

the following slightly modified version of Lemma A.2 in [29]. Now if we let

Δ =

⃒⃒⃒⃒
− log

∑︀𝑀
𝑖=1 ℎ(𝑥, 𝑥

+
𝑖 )∑︀𝑀

𝑖=1 ℎ(𝑥, 𝑥
+
𝑖 ) +𝑀 ·𝑁 ·𝐺(𝑥, {𝑢𝑖}𝑛𝑖=1, {𝑣𝑖}𝑚𝑖=1)

+ log

∑︀𝑀
𝑖=1 ℎ(𝑥, 𝑥

+
𝑖 )∑︀𝑀

𝑖=1 ℎ(𝑥, 𝑥
+
𝑖 ) +𝑀 ·𝑁 · E𝑥−∼𝑝−𝑥

ℎ(𝑥, 𝑥−)

⃒⃒⃒⃒
,

where ℎ(𝑥, �̄�) = exp𝑓(𝑥)⊤𝑓(�̄�), then one has the following lemma:

Lemma A.7. Let 𝑥 and 𝑥+ in 𝒳 be fixed. Further, let {𝑢𝑖}𝑛𝑖=1 and {𝑣𝑖}𝑚𝑖=1 be collections
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of i.i.d. random variables sampled from 𝑝 and 𝑝+𝑥 respectively. Then for all 𝜀 > 0,

P(Δ ≥ 𝜀) ≤ 2 exp

(︂
−𝑛𝜀

2(𝜏−)2

2𝑒3

)︂
+ 2 exp

(︂
−𝑚𝜀

2(𝜏−/𝜏+)2

2𝑒3

)︂
.

Proof. We first decompose the probability as

P(

⃒⃒⃒⃒
− log

∑︀𝑀
𝑖=1 ℎ(𝑥, 𝑥

+
𝑖 )∑︀𝑀

𝑖=1 ℎ(𝑥, 𝑥
+
𝑖 ) +𝑀 ·𝑁 ·𝐺(𝑥, {𝑢𝑖}𝑛𝑖=1, {𝑣𝑖}𝑚𝑖=1)

+ log

∑︀𝑀
𝑖=1 ℎ(𝑥, 𝑥

+
𝑖 )∑︀𝑀

𝑖=1 ℎ(𝑥, 𝑥
+
𝑖 ) +𝑀 ·𝑁 · E𝑥−∼𝑝−𝑥

ℎ(𝑥, 𝑥−)

⃒⃒⃒⃒
≥ 𝜀)

= P(

⃒⃒⃒⃒
log
{︀ 𝑀∑︁

𝑖=1

ℎ(𝑥, 𝑥+𝑖 ) +𝑀 ·𝑁 ·𝐺(𝑥, {𝑢𝑖}𝑛𝑖=1, {𝑣𝑖}𝑚𝑖=1)
}︀

− log
{︀ 𝑀∑︁

𝑖=1

ℎ(𝑥, 𝑥+𝑖 ) +𝑀 ·𝑁 · E𝑥−∼𝑝−𝑥
ℎ(𝑥, 𝑥−)

}︀⃒⃒⃒⃒
≥ 𝜀)

= P(log
{︀ 𝑀∑︁

𝑖=1

ℎ(𝑥, 𝑥+𝑖 ) +𝑀 ·𝑁 ·𝐺(𝑥, {𝑢𝑖}𝑛𝑖=1, {𝑣𝑖}𝑚𝑖=1)
}︀

− log
{︀ 𝑀∑︁

𝑖=1

ℎ(𝑥, 𝑥+𝑖 ) +𝑀 ·𝑁 · E𝑥−∼𝑝−𝑥
ℎ(𝑥, 𝑥−)

}︀
≥ 𝜀)

+ P(− log
{︀ 𝑀∑︁

𝑖=1

ℎ(𝑥, 𝑥+𝑖 ) +𝑀 ·𝑁 ·𝐺(𝑥, {𝑢𝑖}𝑛𝑖=1, {𝑣𝑖}𝑚𝑖=1)
}︀

+ log
{︀ 𝑀∑︁

𝑖=1

ℎ(𝑥, 𝑥+𝑖 ) +𝑀 ·𝑁 · E𝑥−∼𝑝−𝑥
ℎ(𝑥, 𝑥−)

}︀
≥ 𝜀),

where the final equality holds simply because |𝑋| ≥ 𝜀 if and only if 𝑋 ≥ 𝜀 or −𝑋 ≥ 𝜀.
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The first term can be bounded as

P(log
{︀ 𝑀∑︁

𝑖=1

ℎ(𝑥, 𝑥+𝑖 ) +𝑀 ·𝑁 ·𝐺(𝑥, {𝑢𝑖}𝑛𝑖=1, {𝑣𝑖}𝑚𝑖=1)
}︀

− log
{︀ 𝑀∑︁

𝑖=1

ℎ(𝑥, 𝑥+𝑖 ) +𝑀 ·𝑁 · E𝑥−∼𝑝−𝑥
ℎ(𝑥, 𝑥−)

}︀
≥ 𝜀)

= P(log

∑︀𝑀
𝑖=1 ℎ(𝑥, 𝑥

+
𝑖 ) +𝑀 ·𝑁 ·𝐺(𝑥, {𝑢𝑖}𝑛𝑖=1, {𝑣𝑖}𝑚𝑖=1)∑︀𝑀

𝑖=1 ℎ(𝑥, 𝑥
+
𝑖 ) +𝑀 ·𝑁 · E𝑥−∼𝑝−𝑥

ℎ(𝑥, 𝑥−)
≥ 𝜀)

≤ P(
𝑀 ·𝑁 ·𝐺(𝑥, {𝑢𝑖}𝑛𝑖=1, {𝑣𝑖}𝑚𝑖=1)−𝑀 ·𝑁 · E𝑥−∼𝑝−𝑥

ℎ(𝑥, 𝑥−)∑︀𝑀
𝑖=1 ℎ(𝑥, 𝑥

+
𝑖 ) +𝑀 ·𝑁 · E𝑥−∼𝑝−𝑥

ℎ(𝑥, 𝑥−)
≥ 𝜀)

= P(𝐺(𝑥, {𝑢𝑖}𝑛𝑖=1, {𝑣𝑖}𝑚𝑖=1)− E𝑥−∼𝑝−𝑥
ℎ(𝑥, 𝑥−) ≥ 𝜀

{︂
1

𝑀𝑁

𝑀∑︁
𝑖=1

ℎ(𝑥, 𝑥+𝑖 ) + E𝑥−∼𝑝−𝑥
ℎ(𝑥, 𝑥−)

}︂
)

≤ P(𝐺(𝑥, {𝑢𝑖}𝑛𝑖=1, {𝑣𝑖}𝑚𝑖=1)− E𝑥−∼𝑝−𝑥
ℎ(𝑥, 𝑥−) ≥ 𝜀𝑒−1). (A.1)

The first inequality follows by applying the fact that log 𝑥 ≤ 𝑥− 1 for 𝑥 > 0. The
second inequality holds since 1

𝑀 ·𝑁 ·
∑︀𝑀

𝑖=1 ℎ(𝑥, 𝑥
+
𝑖 ) + E𝑥−∼𝑝−𝑥

ℎ(𝑥, 𝑥−) ≥ 𝑒−1. Next, we
move on to bounding the second term, which proceeds similarly, using the same two
bounds.

P

{︂
− log

(︀ 𝑀∑︁
𝑖=1

ℎ(𝑥, 𝑥+
𝑖 ) +𝑀 ·𝑁 ·𝐺(𝑥, {𝑢𝑖}𝑛𝑖=1, {𝑣𝑖}𝑚𝑖=1)

}︀
+ log

{︀ 𝑀∑︁
𝑖=1

ℎ(𝑥, 𝑥+
𝑖 ) +𝑀 ·𝑁 · E𝑥−∼𝑝−

𝑥
ℎ(𝑥, 𝑥−)

}︀
≥ 𝜀)

= P(log

∑︀𝑀
𝑖=1 ℎ(𝑥, 𝑥

+
𝑖 ) +𝑀 ·𝑁 · E𝑥−∼𝑝−

𝑥
ℎ(𝑥, 𝑥−)∑︀𝑀

𝑖=1 ℎ(𝑥, 𝑥
+
𝑖 ) +𝑀 ·𝑁 ·𝐺(𝑥, {𝑢𝑖}𝑛𝑖=1, {𝑣𝑖}𝑚𝑖=1)

≥ 𝜀)

≤ P(
𝑀 ·𝑁 · E𝑥−∼𝑝−

𝑥
ℎ(𝑥, 𝑥−)−𝑀 ·𝑁 ·𝐺(𝑥, {𝑢𝑖}𝑛𝑖=1, {𝑣𝑖}𝑚𝑖=1)∑︀𝑀

𝑖=1 ℎ(𝑥, 𝑥
+
𝑖 ) +𝑀 ·𝑁 ·𝐺(𝑥, {𝑢𝑖}𝑁𝑖=1, {𝑣𝑖}𝑀𝑖=1)

≥ 𝜀)

= P(E𝑥−∼𝑝−
𝑥
ℎ(𝑥, 𝑥−)−𝐺(𝑥, {𝑢𝑖}𝑛𝑖=1, {𝑣𝑖}𝑚𝑖=1) ≥ 𝜀

{︂
1

𝑀𝑁

𝑀∑︁
𝑖=1

ℎ(𝑥, 𝑥+
𝑖 ) +𝐺(𝑥, {𝑢𝑖}𝑛𝑖=1, {𝑣𝑖}𝑚𝑖=1)

}︂
)

≤ P(E𝑥−∼𝑝−
𝑥
ℎ(𝑥, 𝑥−)−𝐺(𝑥, {𝑢𝑖}𝑛𝑖=1, {𝑣𝑖}𝑚𝑖=1) ≥ 𝜀𝑒−1). (A.2)

Combining equation A.1 and equation A.2, we have

P(Δ ≥ 𝜀) ≤ P(
⃒⃒
𝐺(𝑥, {𝑢𝑖}𝑛𝑖=1, {𝑣𝑖}𝑚𝑖=1)− E𝑥−∼𝑝−𝑥

ℎ(𝑥, 𝑥−)
⃒⃒
≥ 𝜀𝑒−1).

Lastly, one needs to bound the right hand tail probability. This part of the proof
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remains exactly the same as in [29] and is therefore omitted.

Bridging the asymptotic objective and supervised loss.

Lemma A.8. For any embedding 𝑓 , whenever 𝑁 ≥ 𝐾 − 1 we have

𝐿Sup(𝑓) ≤ 𝐿𝜇
Sup(𝑓) ≤ ̃︀𝐿𝑀,𝑁

Unbiased(𝑓).

Proof. We first show that 𝑁 = 𝐾 − 1 gives the smallest loss:

̃︀𝐿𝑀,𝑁
Unbiased(𝑓) = E 𝑥∼𝑝

𝑥+
𝑖 ∼𝑝+𝑥

[︃
− log

∑︀𝑀
𝑖=1 𝑒

𝑓(𝑥)𝑇 𝑓(𝑥+
𝑖 )∑︀𝑀

𝑖=1 𝑒
𝑓(𝑥)𝑇 𝑓(𝑥+

𝑖 ) +𝑀 ·𝑁E𝑥−∼𝑝−𝑥
𝑒𝑓(𝑥)𝑇 𝑓(𝑥−)

]︃

≥ E 𝑥∼𝑝

𝑥+
𝑖 ∼𝑝+𝑥

[︃
− log

∑︀𝑀
𝑖=1 𝑒

𝑓(𝑥)𝑇 𝑓(𝑥+
𝑖 )∑︀𝑀

𝑖=1 𝑒
𝑓(𝑥)𝑇 𝑓(𝑥+

𝑖 ) +𝑀 · (𝐾 − 1)E𝑥−∼𝑝−𝑥
𝑒𝑓(𝑥)𝑇 𝑓(𝑥−)

]︃
= 𝐿𝑀,𝐾−1

Unbiased(𝑓)

To show that 𝐿𝑀,𝐾−1
Unbiased(𝑓) is an upper bound on the supervised loss 𝐿sup(𝑓), we addi-

tionally introduce a task specific class distribution 𝜌𝒯 which is a uniform distribution
over all the possible 𝐾-way classification tasks with classes in 𝒞. That is, we consider
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all the possible task with 𝐾 distinct classes {𝑐1, . . . , 𝑐𝐾} ⊆ 𝒞.

𝐿𝑀,𝐾−1
Unbiased(𝑓)

= E 𝑥∼𝑝

𝑥+
𝑖 ∼𝑝+𝑥

⎡⎣− log

∑︀𝑀
𝑖=1 𝑒

𝑓(𝑥)𝑇 𝑓(𝑥+
𝑖 )∑︀𝑀

𝑖=1 𝑒
𝑓(𝑥)𝑇 𝑓(𝑥+

𝑖 ) +𝑀 · (𝐾 − 1)E
𝑥−∼𝑝−𝑥

𝑒𝑓(𝑥)
𝑇 𝑓(𝑥−)

⎤⎦
= E𝒯 ∼𝒟E𝑐∼𝜌𝒯 ;𝑥∼𝑝(·|𝑐)

𝑥+
𝑖 ∼𝑝(·|𝑐)

⎡⎣− log

∑︀𝑀
𝑖=1 𝑒

𝑓(𝑥)𝑇 𝑓(𝑥+
𝑖 )∑︀𝑀

𝑖=1 𝑒
𝑓(𝑥)𝑇 𝑓(𝑥+

𝑖 ) +𝑀 · (𝐾 − 1)E𝒯 ∼𝒟E𝜌𝒯 (𝑐−∼|𝑐− ̸=ℎ(𝑥))E𝑥−∼𝑝(·|𝑐−)𝑒
𝑓(𝑥)𝑇 𝑓(𝑥−)

⎤⎦

≥ E𝒯 ∼𝒟E𝑐∼𝜌𝒯 ;𝑥∼𝑝(·|𝑐)

⎡⎢⎣− log

∑︀𝑀
𝑖=1 𝑒

𝑓(𝑥)𝑇 E
𝑥
+
𝑖

∼𝑝(·|𝑐)
𝑓(𝑥+

𝑖 )

∑︀𝑀
𝑖=1 𝑒

𝑓(𝑥)𝑇 E
𝑥
+
𝑖

∼𝑝(·|𝑐)
𝑓(𝑥+

𝑖 )
+𝑀 · (𝐾 − 1)E𝒯 ∼𝒟E𝜌𝒯 (𝑐−|𝑐− ̸=ℎ(𝑥))E𝑥−∼𝑝(·|𝑐−)𝑒

𝑓(𝑥)𝑇 𝑓(𝑥−)

⎤⎥⎦

≥ E𝒯 ∼𝒟E𝑐∼𝜌𝒯 ;𝑥∼𝑝(·|𝑐)

⎡⎢⎣− log

∑︀𝑀
𝑖=1 𝑒

𝑓(𝑥)𝑇 E
𝑥
+
𝑖

∼𝑝(·|𝑐)
𝑓(𝑥+

𝑖 )

∑︀𝑀
𝑖=1 𝑒

𝑓(𝑥)𝑇 E
𝑥
+
𝑖

∼𝑝(·|𝑐)
𝑓(𝑥+

𝑖 )
+𝑀 · (𝐾 − 1)E𝜌𝒯 (𝑐−|𝑐− ̸=ℎ(𝑥))E𝑥−∼𝑝(·|𝑐−)𝑒

𝑓(𝑥)𝑇 𝑓(𝑥−)

⎤⎥⎦
= E𝒯 ∼𝒟E𝑐∼𝜌𝒯 ;𝑥∼𝑝(·|𝑐)

⎡⎣− log
𝑀𝑒

𝑓(𝑥)𝑇 E
𝑥+∼𝑝(·|𝑐)𝑓(𝑥

+)

𝑀𝑒
𝑓(𝑥)𝑇 E

𝑥+∼𝑝(·|𝑐)𝑓(𝑥
+)

+𝑀 · (𝐾 − 1)E𝜌𝒯 (𝑐−|𝑐− ̸=ℎ(𝑥))E𝑥−∼𝑝(·|𝑐−)𝑒
𝑓(𝑥)𝑇 𝑓(𝑥−)

⎤⎦
≥ E𝒯 ∼𝒟E𝑐∼𝜌𝒯 ;𝑥∼𝑝(·|𝑐)

⎡⎣− log
𝑒
𝑓(𝑥)𝑇 E

𝑥+∼𝑝(·|𝑐)𝑓(𝑥
+)

𝑒
𝑓(𝑥)𝑇 E

𝑥+∼𝑝(·|𝑐)𝑓(𝑥
+)

+ (𝐾 − 1)E𝜌𝒯 (𝑐−|𝑐− ̸=ℎ(𝑥))𝑒
𝑓(𝑥)𝑇 E

𝑥−∼𝑝(·|𝑐−)
𝑓(𝑥−)

⎤⎦
= E𝒯 ∼𝒟E𝑐∼𝜌𝒯 ;𝑥∼𝑝(·|𝑐)

[︃
− log

exp
(︀
𝑓(𝑥)𝑇𝜇𝑐

)︀
exp(𝑓(𝑥)𝑇𝜇𝑐) +

∑︀
𝑐−∈𝒯 ,𝑐− ̸=𝑐 exp(𝑓(𝑥)

𝑇𝜇𝑐− )

]︃

= E𝒯 ∼𝒟𝐿𝜇
Sup(𝒯 , 𝑓)

= �̄�𝜇
Sup(𝑓),

where the three inequalities follow from Jensen’s inequality. The first and third

inequality shift the expectations E𝑥+∼𝑝+𝑥,𝒯
and E𝑥−∼𝑝(·|𝑐−), respectively, via the convexity

of the functions and the second moves the expectation E𝒯 ∼𝒟 out using concavity. Note

that �̄�Sup(𝑓) ≤ �̄�𝜇
Sup(𝑓) holds trivially.

Generalization bounds. We wish to derive a data dependent bound on the down-
stream supervised generalization error of the debiased contrastive objective. Recall
that a sample (𝑥, {𝑥+𝑖 }𝑀𝑖=1, {𝑢𝑖}𝑛𝑖=1, {𝑣𝑖}𝑚𝑖=1) yields loss

− log

{︃ ∑︀𝑀
𝑖=1 𝑒

𝑓(𝑥)⊤𝑓(𝑥+
𝑖 )∑︀𝑀

𝑖=1 𝑒
𝑓(𝑥)⊤𝑓(𝑥+

𝑖 ) +𝑀 ·𝑁 ·𝐺(𝑥, {𝑢𝑖}𝑛𝑖=1, {𝑣𝑖}𝑚𝑖=1)

}︃
= log

{︃
1 +𝑀 ·𝑁𝐺(𝑥, {𝑢𝑖}𝑛𝑖=1, {𝑣𝑖}𝑚𝑖=1)∑︀𝑀

𝑖=1 𝑒
𝑓(𝑥)⊤𝑓(𝑥+

𝑖 )

}︃
,
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which is equal to ℓ

(︃{︂
𝑒𝑓(𝑥)

⊤𝑓(𝑢𝑗)∑︀𝑀
𝑖=1 𝑒

𝑓(𝑥)⊤𝑓(𝑥+
𝑖

)

}︂𝑛

𝑗=1

,

{︂
𝑒𝑓(𝑥)

⊤𝑓(𝑣𝑗)∑︀𝑀
𝑖=1 𝑒

𝑓(𝑥)⊤𝑓(𝑥+
𝑖

)

}︂𝑚

𝑗=1

)︃
, where we define

ℓ({𝑎𝑖}𝑛𝑖=1, {𝑏𝑖}𝑚𝑖=1) := log

{︃
1 +𝑀 ·𝑁 max

(︃
1

𝜏−
1

𝑛

𝑛∑︁
𝑖=1

𝑎𝑖 −
𝜏+

𝜏−
1

𝑚

𝑚∑︁
𝑖=1

𝑏𝑖, 𝑒
−1

)︃}︃

̂︀𝐿𝑀,𝑁,𝑛,𝑚
Debiased (𝑓) :=

1

𝑇

𝑇∑︁
𝑡=1

ℓ

⎛⎝{︃ 𝑒𝑓(𝑥𝑡)⊤𝑓(𝑢𝑡𝑗)∑︀𝑀
𝑖=1 𝑒

𝑓(𝑥𝑡)⊤𝑓(𝑥+
𝑡𝑖)

}︃𝑛

𝑗=1

,

{︃
𝑒𝑓(𝑥𝑡)⊤𝑓(𝑣𝑡𝑗)∑︀𝑀
𝑖=1 𝑒

𝑓(𝑥𝑡)⊤𝑓(𝑥+
𝑡𝑖)

}︃𝑚

𝑗=1

⎞⎠
𝑓 := argmin

𝑓∈ℱ
̂︀𝐿𝑀,𝑁,𝑛,𝑚

Debiased (𝑓)

Theorem 8. With probability at least 1− 𝛿, for all 𝑓 ∈ ℱ and 𝑁 ≥ 𝐾 − 1,

𝐿Sup(𝑓) ≤ 𝐿𝑀,𝑁,𝑛,𝑚
Debiased (𝑓) +𝒪

⎛⎝ 1

𝜏−

√︂
1

𝑛
+
𝜏+

𝜏−

√︂
1

𝑚
+
𝜆ℛ𝒮(ℱ)

𝑇
+𝐵

√︃
log 1

𝛿

𝑇

⎞⎠ ,

where 𝜆 = 1
𝑀

√︁
1

𝜏−2 (
𝑚
𝑛
+ 1) + 𝜏+2( 𝑛

𝑚
+ 1) and 𝐵 = log𝑁

(︀
1
𝜏−

+ 𝜏+
)︀
.

Proof. Considering the samples to be
{︁(︁
𝑥𝑡,
{︀
𝑥+𝑡𝑖
}︀𝑀
𝑖=1

, {𝑢𝑡𝑖}𝑛𝑖=1 , {𝑣𝑡𝑖}
𝑚
𝑖=1

)︁}︁𝑇

𝑡=1
. Then,

we can use the standard bounds for empirical versus population means of any

𝐵−bounded function 𝑔 belonging to a function class 𝐺, we have that with prob-

ability at least 1− 𝛿
2
.

E[𝑔(𝑥)] ≤ 1

𝑇

𝑇∑︁
𝑡=1

𝑔(𝑥𝑖) +
2ℛ𝑆(𝐺)

𝑇
+ 3𝐵

√︃
log
(︀
4
𝛿

)︀
2𝑇

. (A.3)

In order to calculate ℛ𝑆(𝐺) we use the same trick as in [158]. We express it

as a composition of functions 𝑔 = ℓ
(︁
ℎ
(︁
𝑓
(︁
𝑥𝑡,
{︀
𝑥+𝑡𝑖
}︀𝑀
𝑖=1

, {𝑢𝑡𝑖}𝑛𝑖=1 , {𝑣𝑡𝑖}
𝑚
𝑖=1

)︁)︁)︁
, where

𝑓 ∈ ℱ just maps each sample to corresponding feature vector and ℎ maps the feature

vectors to the {𝑎}𝑛𝑖=1, {𝑏}𝑚𝑖=1. Then we use contraction inequality to bound ℛ𝑆(𝐺)

with ℛ𝑆(ℱ). In order to do this we need to compute the Lipschitz constant for the

intermediate function ℎ in the composition.
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For ℎ, we see that the Jacobian has the following form

𝜕𝑎𝑖
𝜕𝑓(𝑥)

= 𝑎𝑖

∑︀𝑀
𝑗=1(𝑓(𝑢𝑖)− 𝑓(𝑥𝑗))𝑒

𝑓(𝑥)⊤𝑓(𝑥+
𝑗 )∑︀𝑀

𝑗=1 𝑒
𝑓(𝑥)⊤𝑓(𝑥+

𝑗 )
;

𝜕𝑏𝑖
𝜕𝑓(𝑥)

= 𝑏𝑖

∑︀𝑀
𝑗=1(𝑓(𝑣𝑖)− 𝑓(𝑥𝑗))𝑒

𝑓(𝑥)⊤𝑓(𝑥+
𝑗 )∑︀𝑀

𝑗=1 𝑒
𝑓(𝑥)⊤𝑓(𝑥+

𝑗 )

𝜕𝑎𝑖

𝜕𝑓(𝑥+
𝑗 )

= −𝑎𝑖
𝑓(𝑥)𝑒𝑓(𝑥)

⊤𝑓(𝑥+
𝑗 )∑︀𝑀

𝑘=1 𝑒
𝑓(𝑥)⊤𝑓(𝑥+

𝑘 )
;

𝜕𝑏𝑖

𝜕𝑓(𝑥+
𝑗 )

= −𝑏𝑖
𝑓(𝑥)𝑒𝑓(𝑥)

⊤𝑓(𝑥+
𝑗 )∑︀𝑀

𝑘=1 𝑒
𝑓(𝑥)⊤𝑓(𝑥+

𝑘 )

𝜕𝑎𝑖
𝜕𝑓(𝑢𝑗)

= 𝑓(𝑥)𝑎𝑖𝛿(𝑖− 𝑗);
𝜕𝑏𝑖

𝜕𝑓(𝑣𝑗)
= 𝑓(𝑥)𝑏𝑖𝛿(𝑖− 𝑗).

Using the fact that ‖𝑓(·)‖2 = 1, we get 𝑒−2

𝑀
≤ 𝑎𝑖, 𝑏𝑖 ≤ 𝑒2

𝑀
and

‖𝐽‖22 ≤ ‖𝐽‖2𝐹 ≤
𝑛∑︁

𝑖=1

𝑎2𝑖

⎛⎜⎜⎜⎝
⃦⃦⃦⃦
⃦⃦
∑︀𝑀

𝑗=1(𝑓(𝑢𝑖)− 𝑓(𝑥𝑗))𝑒
𝑓(𝑥)⊤𝑓(𝑥+

𝑗 )

∑︀𝑀
𝑗=1 𝑒

𝑓(𝑥)⊤𝑓(𝑥+
𝑗 )

⃦⃦⃦⃦
⃦⃦
2

2

+ ‖𝑓(𝑥)‖22

∑︀𝑀
𝑗=1 𝑒

2𝑓(𝑥)⊤𝑓(𝑥+
𝑗 )(︂∑︀𝑀

𝑗=1 𝑒
𝑓(𝑥)⊤𝑓(𝑥+

𝑗 )
)︂2

+ ‖𝑓(𝑥)‖22

⎞⎟⎟⎟⎠

+
𝑚∑︁
𝑖=1

𝑏2𝑖

⎛⎜⎜⎜⎝
⃦⃦⃦⃦
⃦⃦
∑︀𝑀

𝑗=1(𝑓(𝑣𝑖)− 𝑓(𝑥𝑗))𝑒
𝑓(𝑥)⊤𝑓(𝑥+

𝑗 )

∑︀𝑀
𝑗=1 𝑒

𝑓(𝑥)⊤𝑓(𝑥+
𝑗 )

⃦⃦⃦⃦
⃦⃦
2

2

+ ‖𝑓(𝑥)‖22

∑︀𝑀
𝑗=1 𝑒

2𝑓(𝑥)⊤𝑓(𝑥+
𝑗 )(︂∑︀𝑀

𝑗=1 𝑒
𝑓(𝑥)⊤𝑓(𝑥+

𝑗 )
)︂2

+ ‖𝑓(𝑥)‖22

⎞⎟⎟⎟⎠
≤

𝑛∑︁
𝑖=1

𝑎2𝑖 (4 + 1 + 1) +

𝑚∑︁
𝑖=1

𝑏2𝑖 (4 + 1 + 1) ≤
6(𝑛+𝑚)𝑒4

𝑀2
.

Using this and the Lipschitz constant, 𝑂
(︂√︁

1
𝑛𝜏−2 +

𝜏+2

𝑚

)︂
of ℓ derived in [29], we

get ℛ𝑆(𝒢) = 𝜆ℛ𝑆(ℱ) where 𝜆 = 𝒪
(︁

1
𝑀

√︁
1

𝜏−2 (
𝑚
𝑛
+ 1) + 𝜏+2( 𝑛

𝑚
+ 1)

)︁
. From [29], we

also get 𝐵 = 𝑂
(︀
log𝑁

(︀
1
𝜏−

+ 𝜏+
)︀)︀

. Combining this with equation A.3 gives us that

with probability at least 1− 𝛿
2

𝐿𝑀,𝑁,𝑛,𝑚
Debiased (𝑓) ≤ ̂︀𝐿𝑀,𝑁,𝑛,𝑚

Debiased (𝑓) +𝒪

⎛⎝𝜆ℛ𝒮(ℱ)
𝑇

+𝐵

√︃
log 1

𝛿

𝑇

⎞⎠ .

Using Theorem A.7, we get that

𝐿𝑀,𝑁
Unbiased(𝑓) ≤ 𝐿𝑀,𝑁,𝑛,𝑚

Debiased (𝑓) +𝒪

(︃
1

𝜏−

√︂
1

𝑛
+
𝜏+

𝜏−

√︂
1

𝑚

)︃

≤ ̂︀𝐿𝑀,𝑁,𝑛,𝑚
Debiased (𝑓) +𝒪

⎛⎝ 1

𝜏−

√︂
1

𝑛
+
𝜏+

𝜏−

√︂
1

𝑚
+
𝜆ℛ𝒮(ℱ)

𝑇
+𝐵

√︃
log 1

𝛿

𝑇

⎞⎠ .
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Using Lemma A.8, we get

𝐿Sup(𝑓) ≤ 𝐿𝑀,𝑁
Unbiased(𝑓) ≤ ̂︀𝐿𝑀,𝑁,𝑛,𝑚

Debiased (𝑓) +𝒪

⎛⎝ 1

𝜏−

√︂
1

𝑛
+

𝜏+

𝜏−

√︂
1

𝑚
+

𝜆ℛ𝒮(ℱ)
𝑇

+𝐵

√︃
log 1

𝛿

𝑇

⎞⎠ .

Finally we see that for any 𝑓 , we can use M Hoeffding’s inequality to show that with

at least 1− 𝛿
2

probability

̂︀𝐿𝑀,𝑁,𝑛,𝑚
Debiased (𝑓) ≤ 𝐿𝑀,𝑁,𝑛,𝑚

Debiased (𝑓) + 3𝐵

√︃
log
(︀
2
𝛿

)︀
2𝑇

.

Combining all of the above results gives us that with probability at least 1− 𝛿,

𝐿Sup(𝑓) ≤ 𝐿𝑀,𝑁
Unbiased(𝑓) ≤ ̂︀𝐿𝑀,𝑁,𝑛,𝑚

Debiased (𝑓) +𝒪

⎛⎝ 1

𝜏−

√︂
1

𝑛
+

𝜏+

𝜏−

√︂
1

𝑚
+

𝜆ℛ𝒮(ℱ)
𝑇

+𝐵

√︃
log 1

𝛿

𝑇

⎞⎠
≤ ̂︀𝐿𝑀,𝑁,𝑛,𝑚

Debiased (𝑓) +𝒪

⎛⎝ 1

𝜏−

√︂
1

𝑛
+

𝜏+

𝜏−

√︂
1

𝑚
+

𝜆ℛ𝒮(ℱ)
𝑇

+𝐵

√︃
log 1

𝛿

𝑇

⎞⎠
≤ 𝐿𝑀,𝑁,𝑛,𝑚

Debiased (𝑓) +𝒪

⎛⎝ 1

𝜏−

√︂
1

𝑛
+

𝜏+

𝜏−

√︂
1

𝑚
+

𝜆ℛ𝒮(ℱ)
𝑇

+𝐵

√︃
log 1

𝛿

𝑇

⎞⎠+𝒪

⎛⎝𝐵

√︃
log
(︀
1
𝛿

)︀
𝑇

⎞⎠ .
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A.3 Supporting proofs for Chapter 5

A.3.1 General ℓ𝑝 results

We note that our ℓ2 results can be straightforwardly generalized to ℓ𝑝. Given an ℓ𝑝

adversarial budget 𝜖:

Theorem A.2. For any sample 𝑥, the optimal robust classifier 𝑓𝜖 for 𝑃𝜇1,𝜇2,Σ gives

(i) the bound (decision margin) ‖Δ‖𝑝 =
|(𝑥−𝜇1+𝜇2

2
)𝑇Σ−1(�̃�−𝑧Σ(�̃�))|

‖Σ−1(�̃�−𝑧Σ(�̃�))‖𝑞
,

(ii) the scaled bound ‖Δ̄‖𝑝 =
|(𝑥−𝜇1+𝜇2

2
)𝑇Σ−1(�̃�−𝑧Σ(�̃�))|

|�̃�𝑇Σ−1(�̃�−𝑧Σ(�̃�))|
.

For sample 𝑥 ∼ 𝑃𝜇1,𝜇2,Σ, it further gives

(iii) the standard accuracy 𝑎 = Φ( �̃�𝑇Σ−1(�̃�−𝑧Σ(�̃�))
‖Σ−1(�̃�−𝑧Σ(�̃�))‖Σ

),

(iv) the expected scaled bound of correct samples

E
[︀
‖Δ̄‖𝑝 | 𝑓𝜖(𝑥) = 𝑦

]︀
= 1√

2𝜋
1

𝑎Φ−1(𝑎)
𝑒−

1
2(Φ−1(𝑎))

2

+ 1,

where 𝑧Σ is the solution of the convex problem argmin‖𝑧‖𝑝≤𝜖(�̃�− 𝑧)𝑇Σ−1(�̃�− 𝑧) and Φ

denotes the CDF of the standard normal distribution.

Proof. We follow the proof of Theorem 9 and consider the classifier in equation 5.2.

By Hölder’s inequality, we now have the corresponding lower bound and scaled lower

bound as

‖Δ‖𝑝 =
|(𝑥− 𝜇1+𝜇2

2
)𝑇Σ−1(�̃�− 𝑧Σ(�̃�))|

‖Σ−1(�̃�− 𝑧Σ(�̃�))‖𝑞

‖Δ̄‖𝑝 =
|(𝑥− 𝜇1+𝜇2

2
)𝑇Σ−1(�̃�− 𝑧Σ(�̃�))|

‖Σ−1(�̃�− 𝑧Σ(�̃�))‖𝑞
‖Σ−1(�̃�− 𝑧Σ(�̃�))‖𝑞
|�̃�𝑇Σ−1(�̃�− 𝑧Σ(�̃�))|

=
|(𝑥− 𝜇1+𝜇2

2
)𝑇Σ−1(�̃�− 𝑧Σ(�̃�))|

|�̃�𝑇Σ−1(�̃�− 𝑧Σ(�̃�))|
,

where 1
𝑝
+ 1

𝑞
= 1. The remainder of the proof will then follow as in Theorem 9.

Remark. In general, in the case that Σ is singular, we can apply the economy-size

(thin) decomposition with nonzero eigenvalues Σ = 𝐹Λ𝐹 𝑇 . Then, with a general
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non-symmetric conditional Gaussians

𝑥|𝑦 = 1 ∼ 𝒩 (𝜇1,Σ), 𝑥|𝑦 = −1 ∼ 𝒩 (𝜇2,Σ),

we apply proper translation to symmetric conditional Gaussians

𝐹 𝑇𝑥|𝑦 = 1 ∼ 𝒩 (𝐹 𝑇𝜇1,Λ), 𝐹
𝑇𝑥|𝑦 = −1 ∼ 𝒩 (𝐹 𝑇𝜇2,Λ),

𝐹 𝑇𝑥− 𝐹 𝑇 𝜇1 + 𝜇2

2
|𝑦 = 1 ∼ 𝒩 (�̃�,Λ), 𝐹 𝑇𝑥− 𝐹 𝑇 𝜇1 + 𝜇2

2
|𝑦 = −1 ∼ 𝒩 (−�̃�,Λ),

where �̃� = 𝐹 𝑇 𝜇1−𝜇2

2
.

A.3.2 Class imbalance results

Given an ℓ2 adversarial budget 𝜖 ≤ ‖𝜇‖2, consider the conditional Gaussian in equa-

tion 5.1 with Σ = 𝐼𝑑 (𝑑 by 𝑑 identity matrix) and general class prior 𝜏 , then the

following theorem holds.

Theorem A.3. For any sample 𝑥, the optimal robust classifier 𝑓𝜖 for 𝑃𝜇1,𝜇2,𝐼𝑑 gives

(i) the bound (decision margin) ‖Δ‖2 =
|(𝑥−𝜇1+𝜇2

2
)𝑇 �̃�(1−𝜖/‖�̃�‖2)−𝑞/2|

‖�̃�(1−𝜖/‖�̃�‖2)‖2 ,

(ii) the scaled bound ‖Δ̄‖2 =
2|(𝑥−𝜇1+𝜇2

2
)𝑇 �̃�(1−𝜖/‖�̃�‖2)−𝑞/2|

|�̃�𝑇 �̃�(1−𝜖/‖�̃�‖2)−𝑞/2|+|�̃�𝑇 �̃�(1−𝜖/‖�̃�‖2)+𝑞/2| .

For a sample 𝑥 ∼ 𝑃𝜇1,𝜇2,𝐼𝑑, it further gives

(iii) the standard accuracy 𝑎 = 𝜏Φ( �̃�
𝑇𝑤−𝑞/2
‖𝑤‖2 ) + (1− 𝜏)Φ( �̃�

𝑇𝑤+𝑞/2
‖𝑤‖2 ),

(iv) the expected scaled bound of correct samples

E
[︀
‖Δ̄‖2 | 𝑓𝜖(𝑥) = 𝑦

]︀
=

2𝜏

|�̃�𝑇𝑤 − 𝑞/2|+ |�̃�𝑇𝑤 + 𝑞/2|

⎛⎝�̃�𝑇𝑤 − 𝑞/2 + ‖𝑤‖2
𝜑(−�̃�𝑇𝑤+𝑞/2

‖𝑤‖2 )

Φ( �̃�
𝑇𝑤−𝑞/2
‖𝑤‖2 )

⎞⎠
+

2(1− 𝜏)
|�̃�𝑇𝑤 − 𝑞/2|+ |�̃�𝑇𝑤 + 𝑞/2|

⎛⎝�̃�𝑇𝑤 + 𝑞/2 + ‖𝑤‖2
𝜑( �̃�

𝑇𝑤+𝑞/2
‖𝑤‖2 )

Φ( �̃�
𝑇𝑤+𝑞/2
‖𝑤‖2 )

⎞⎠ .

where 𝑞 = 𝑙𝑛{(1− 𝜏)/𝜏}, 𝑤 = �̃�(1− 𝜖/‖�̃�‖2), 𝜑 and Φ denotes the PDF and CDF of

the standard normal distribution.
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Proof. (i) Consider the Bayes optimal ℓ2 𝜖-robust classifier [39, Theorem 4.1]

𝑓𝜖(𝑥) = 𝑠𝑖𝑔𝑛

{︃(︂
𝑥− 𝜇1 + 𝜇2

2

)︂𝑇

�̃�(1− 𝜖/‖�̃�‖2)− 𝑞/2

}︃
, (A.4)

where 𝑞 = 𝑙𝑛{(1− 𝜏)/𝜏}. For any 𝑥,

‖Δ‖2 =
|(𝑥− 𝜇1+𝜇2

2
)𝑇 �̃�(1− 𝜖/‖�̃�‖2)− 𝑞/2|

‖�̃�(1− 𝜖/‖�̃�‖2)‖2
.

(ii) Since the bound ‖Δ‖2 is subject to the positions of two Gaussians, we scale the

bound by the distance from Gaussian centers to the classifier. We note that now the

distances from the two Gaussian centers to the classifier are different, |�̃�𝑇 �̃�(1−𝜖/‖�̃�‖2)−𝑞/2|
‖�̃�(1−𝜖/‖�̃�‖2)‖2

and |�̃�𝑇 �̃�(1−𝜖/‖�̃�‖2)+𝑞/2|
‖�̃�(1−𝜖/‖�̃�‖2)‖2 . We hereby take their average as the scaling factor and obtain

‖Δ̄‖2 =
|(𝑥− 𝜇1+𝜇2

2 )𝑇 �̃�(1− 𝜖/‖�̃�‖2)− 𝑞/2|
‖�̃�(1− 𝜖/‖�̃�‖2)‖2

2‖�̃�(1− 𝜖/‖�̃�‖2)‖2
|�̃�𝑇 �̃�(1− 𝜖/‖�̃�‖2)− 𝑞/2|+ |�̃�𝑇 �̃�(1− 𝜖/‖�̃�‖2) + 𝑞/2|

=
2|(𝑥− 𝜇1+𝜇2

2 )𝑇 �̃�(1− 𝜖/‖�̃�‖2)− 𝑞/2|
|�̃�𝑇 �̃�(1− 𝜖/‖�̃�‖2)− 𝑞/2|+ |�̃�𝑇 �̃�(1− 𝜖/‖�̃�‖2) + 𝑞/2|

.

(iii) For sample 𝑥 ∼ 𝑃𝜇1,𝜇2,𝐼𝑑 , consider the Bayes optimal robust classifier in equa-
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tion 5.2, we can calculate the analytical standard accuracy by

P(𝑦 = 1)P [𝑓𝜖(𝑥) = 1 | 𝑦 = 1] + P(𝑦 = −1)P [𝑓𝜖(𝑥) = −1 | 𝑦 = −1]

=𝜏P [𝑓𝜖(𝑥) = 1 | 𝑦 = 1] + (1− 𝜏) [𝑓𝜖(𝑥) = −1 | 𝑦 = −1]

=𝜏P

[︂
(𝑥− 𝜇1 + 𝜇2

2
)𝑇 �̃�(1− 𝜖/‖�̃�‖2)− 𝑞/2 > 0 | 𝑦 = 1

]︂
+(1− 𝜏)P

[︂
(𝑥− 𝜇1 + 𝜇2

2
)𝑇 �̃�(1− 𝜖/‖�̃�‖2)− 𝑞/2 < 0 | 𝑦 = −1

]︂
=𝜏P

[︀
(�̃�+ 𝑤)𝑇 �̃�(1− 𝜖/‖�̃�‖2)− 𝑞/2 > 0

]︀
,

+(1− 𝜏)P
[︀
(−�̃�+ 𝑤)𝑇 �̃�(1− 𝜖/‖�̃�‖2)− 𝑞/2 < 0

]︀
, 𝑤 ∼ 𝒩 (0, 𝐼𝑑)

=𝜏P
[︀
𝑤𝑇 �̃�(1− 𝜖/‖�̃�‖2) > 𝑞/2− �̃�𝑇 �̃�(1− 𝜖/‖�̃�‖2)

]︀
,

+(1− 𝜏)P
[︀
𝑤𝑇 �̃�(1− 𝜖/‖�̃�‖2) < 𝑞/2 + �̃�𝑇 �̃�(1− 𝜖/‖�̃�‖2)

]︀
, 𝑤 ∼ 𝒩 (0, 𝐼𝑑)

=𝜏P

[︂
𝑤𝑇 �̃�(1− 𝜖/‖�̃�‖2)
‖�̃�(1− 𝜖/‖�̃�‖2)‖2

>
𝑞/2− �̃�𝑇 �̃�(1− 𝜖/‖�̃�‖2)
‖�̃�(1− 𝜖/‖�̃�‖2)‖2

]︂
,

+(1− 𝜏)P
[︂
𝑤𝑇 �̃�(1− 𝜖/‖�̃�‖2)
‖�̃�(1− 𝜖/‖�̃�‖2)‖2

<
𝑞/2 + �̃�𝑇 �̃�(1− 𝜖/‖�̃�‖2)
‖�̃�(1− 𝜖/‖�̃�‖2)‖2

]︂
,

𝑤𝑇 �̃�(1− 𝜖/‖�̃�‖2)
‖�̃�(1− 𝜖/‖�̃�‖2)‖2

∼ 𝒩 (0, 1)

=𝜏Φ(
�̃�𝑇 �̃�(1− 𝜖/‖�̃�‖2)− 𝑞/2
‖�̃�(1− 𝜖/‖�̃�‖2)‖2

) + (1− 𝜏)Φ( �̃�
𝑇 �̃�(1− 𝜖/‖�̃�‖2) + 𝑞/2

‖�̃�(1− 𝜖/‖�̃�‖2)‖2
).

Let 𝑤 denote �̃�(1− 𝜖/‖�̃�‖2), the we got the accuracy

𝑎 = 𝜏Φ(
�̃�𝑇𝑤 − 𝑞/2
‖𝑤‖2

) + (1− 𝜏)Φ( �̃�
𝑇𝑤 + 𝑞/2

‖𝑤‖2
).

(iv) For sample 𝑥 ∼ 𝑃𝜇1,𝜇2,𝐼𝑑 , let 𝑡 denote 𝑥− 𝜇1+𝜇2

2
, and 𝑤 denote �̃�(1− 𝜖/‖�̃�‖2).

According to Theorem A.3(iii), when �̃�𝑇 �̃�(1− 𝜖/‖�̃�‖2)− 𝑞/2 > 0, the accuracy would

be higher than 0.5. Therefore we consider �̃�𝑇𝑤 − 𝑞/2 > 0.

Now consider the classifier in equation A.4 and the corresponding scaled bound

from (ii),

‖Δ̄‖2 =
2|(𝑥− 𝜇1+𝜇2

2 )𝑇 �̃�(1− 𝜖/‖�̃�‖2)− 𝑞/2|
|�̃�𝑇 �̃�(1− 𝜖/‖�̃�‖2)− 𝑞/2|+ |�̃�𝑇 �̃�(1− 𝜖/‖�̃�‖2) + 𝑞/2|

=
2|𝑡𝑇𝑤 − 𝑞/2|

|�̃�𝑇𝑤 − 𝑞/2|+ |�̃�𝑇𝑤 + 𝑞/2|
.

Since 𝑡|𝑦 ∼ 𝒩 (𝑦�̃�, 𝐼𝑑), we have 𝑡𝑇𝑤 − 𝑞/2|𝑦 ∼ 𝒩 (𝑦�̃�𝑇𝑤 − 𝑞/2, 𝑤𝑇𝑤). When we only
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want to get the expected scaled bound of the correctly-classified samples, we have that

E
[︀
‖Δ̄‖2 | 𝑓𝜖(𝑥) = 𝑦

]︀
=

2

|�̃�𝑇𝑤 − 𝑞/2|+ |�̃�𝑇𝑤 + 𝑞/2|
E
[︁
|𝑡𝑇𝑤 − 𝑞/2| | 𝑓𝜖(𝑥) = 𝑦

]︁

=
𝜏Φ(

�̃�𝑇𝑤−𝑞/2
‖𝑤‖2

)

𝜏Φ(
�̃�𝑇𝑤−𝑞/2

‖𝑤‖2
) + (1− 𝜏)Φ(

�̃�𝑇𝑤+𝑞/2
‖𝑤‖2

)

2

|�̃�𝑇𝑤 − 𝑞/2|+ |�̃�𝑇𝑤 + 𝑞/2|
E
[︁
|𝑡𝑇𝑤 − 𝑞/2| | 𝑓𝜖(𝑥) = 𝑦 = 1

]︁

+
(1− 𝜏)Φ(

�̃�𝑇𝑤+𝑞/2
‖𝑤‖2

)

𝜏Φ(
�̃�𝑇𝑤−𝑞/2

‖𝑤‖2
) + (1− 𝜏)Φ(

�̃�𝑇𝑤+𝑞/2
‖𝑤‖2

)

2

|�̃�𝑇𝑤 − 𝑞/2|+ |�̃�𝑇𝑤 + 𝑞/2|
E
[︁
|𝑡𝑇𝑤 − 𝑞/2| | 𝑓𝜖(𝑥) = 𝑦 = −1

]︁

=
𝜏Φ(

�̃�𝑇𝑤−𝑞/2
‖𝑤‖2

)

𝜏Φ(
�̃�𝑇𝑤−𝑞/2

‖𝑤‖2
) + (1− 𝜏)Φ(

�̃�𝑇𝑤+𝑞/2
‖𝑤‖2

)

2

|�̃�𝑇𝑤 − 𝑞/2|+ |�̃�𝑇𝑤 + 𝑞/2|
E
[︁
𝑡𝑇𝑤 − 𝑞/2 | 𝑦 = 1, 𝑡𝑇𝑤 − 𝑞/2 ≥ 0

]︁

+
(1− 𝜏)Φ(

�̃�𝑇𝑤+𝑞/2
‖𝑤‖2

)

𝜏Φ(
�̃�𝑇𝑤−𝑞/2

‖𝑤‖2
) + (1− 𝜏)Φ(

�̃�𝑇𝑤+𝑞/2
‖𝑤‖2

)

2

|�̃�𝑇𝑤 − 𝑞/2|+ |�̃�𝑇𝑤 + 𝑞/2|
E
[︁
−𝑡𝑇𝑤 + 𝑞/2 | 𝑦 = −1, 𝑡𝑇𝑤 − 𝑞/2 < 0

]︁
.

Recall that 𝑡𝑇𝑤 − 𝑞/2|𝑦 ∼ 𝒩 (𝑦�̃�𝑇𝑤 − 𝑞/2, 𝑤𝑇𝑤), then by the mean of truncated

normal distribution, it is true that

E
[︀
𝑡𝑇𝑤 − 𝑞/2 | 𝑦 = 1, 𝑡𝑇𝑤 − 𝑞/2 ≥ 0

]︀
= �̃�𝑇𝑤 − 𝑞/2 + ‖𝑤‖2

𝜑(0−�̃�𝑇𝑤+𝑞/2
‖𝑤‖2 )

1− Φ(0−�̃�𝑇𝑤+𝑞/2
‖𝑤‖2 )

= �̃�𝑇𝑤 − 𝑞/2 + ‖𝑤‖2
𝜑(−�̃�𝑇𝑤+𝑞/2

‖𝑤‖2 )

Φ( �̃�
𝑇𝑤−𝑞/2
‖𝑤‖2 )

E
[︀
−𝑡𝑇𝑤 + 𝑞/2 | 𝑦 = −1, 𝑡𝑇𝑤 − 𝑞/2 < 0

]︀
= −E

[︀
𝑡𝑇𝑤 − 𝑞/2 | 𝑦 = −1, 𝑡𝑇𝑤 − 𝑞/2 < 0

]︀
= −

⎛⎝−�̃�𝑇𝑤 − 𝑞/2− ‖𝑤‖2
𝜑(0+�̃�𝑇𝑤+𝑞/2

‖𝑤‖2 )

Φ(0+�̃�𝑇𝑤+𝑞/2
‖𝑤‖2 )

⎞⎠
= �̃�𝑇𝑤 + 𝑞/2 + ‖𝑤‖2

𝜑( �̃�
𝑇𝑤+𝑞/2
‖𝑤‖2 )

Φ( �̃�
𝑇𝑤+𝑞/2
‖𝑤‖2 )

.

Therefore

E
[︀
‖Δ̄‖2 | 𝑓𝜖(𝑥) = 𝑦

]︀
=

𝜏Φ(
�̃�𝑇𝑤−𝑞/2

‖𝑤‖2
)

𝜏Φ(
�̃�𝑇𝑤−𝑞/2

‖𝑤‖2
) + (1− 𝜏)Φ(

�̃�𝑇𝑤+𝑞/2
‖𝑤‖2

)

2

|�̃�𝑇𝑤 − 𝑞/2|+ |�̃�𝑇𝑤 + 𝑞/2|

⎛⎝�̃�𝑇𝑤 − 𝑞/2 + ‖𝑤‖2
𝜑(

−�̃�𝑇𝑤+𝑞/2
‖𝑤‖2

)

Φ(
�̃�𝑇𝑤−𝑞/2

‖𝑤‖2
)

⎞⎠
+

(1− 𝜏)Φ(
�̃�𝑇𝑤+𝑞/2

‖𝑤‖2
)

𝜏Φ(
�̃�𝑇𝑤−𝑞/2

‖𝑤‖2
) + (1− 𝜏)Φ(

�̃�𝑇𝑤+𝑞/2
‖𝑤‖2

)

2

|�̃�𝑇𝑤 − 𝑞/2|+ |�̃�𝑇𝑤 + 𝑞/2|

⎛⎝�̃�𝑇𝑤 + 𝑞/2 + ‖𝑤‖2
𝜑(

�̃�𝑇𝑤+𝑞/2
‖𝑤‖2

)

Φ(
�̃�𝑇𝑤+𝑞/2

‖𝑤‖2
)

⎞⎠
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A.4 Supporting proofs for Chapter 6

To motivate our findings, we first plot the Bayes optimal robust classifiers together

with the Bayes optimal classifier in three 2D cases in Figure A-1. From the plot, we

see that as long as the direction of 𝜇 is in parallel to one of the two eigenvectors, the

robust Bayes optimal classifiers would overlap with the Bayes optimal classifier.

(a) No alignment (b) 𝜇 ‖ 𝑣1 (c) 𝜇 ‖ 𝑣2

Figure A-1: Three 2D examples of the Bayes optimal classifier and robust Bayes
optimal classifiers with different magnitudes of expected perturbation 𝜖. Figure A-1(a)
- no alignment between the mean vector 𝜇 and the eigenvectors. Figure A-1(b) and
Figure A-1(c) - 𝜇 is parallel to the eigenvector corresponding to either of the two
eigenvalues.

To generalize the result, we prove the following theorem that specifies a sufficient

condition for all 𝜖-robust Bayes optimal classifiers to overlap with each other (including

𝜖 = 0, i.e. Bayes optimal classifier). Intuitively, if the 𝜖-robust Bayes optimal classifiers

overlap with the Bayes optimal classifiers, then there is no robustness-accuracy trade-

off.

Theorem A.4. The 𝜖-robust Bayes optimal classifiers overlap for all 𝜖 if the vector

difference 𝜇 between the centers of the two gaussians lies completely within a degenerate

subspace of the eigenspace of the covariance matrix, i.e. with eigenpairs {(𝜆𝑘, 𝑣𝑘), 𝑘 ∈

[𝑛]}, for ∀ 𝑖, 𝑗 ∈{𝑘 : 𝜆𝑘 ̸= 0, 𝜇𝑇𝑣𝑘 ̸= 0}, 𝜆𝑖 = 𝜆𝑗 = 𝜆.

Proof. Let 𝑣1, . . . , 𝑣𝑛 and 𝜆1, . . . , 𝜆𝑛 be the orthonormal eigenbasis and the corre-

sponding eigenvalues of the covariance matrix Σ, then we have Σ−1 =
∑︀𝑛

𝑖=1
1
𝜆𝑖
𝑣𝑖𝑣

𝑇
𝑖 .

Following [36], we see that the 𝜖-robust classifier is given as sign𝑤𝜖⊤𝑥, where 𝑤𝜖 =
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Σ−1 (𝜇− 𝑧𝜖Σ(𝜇)) and

𝑧𝜖Σ(𝜇) = argmin
‖𝑧‖≤𝜖

‖𝜇− 𝑧‖2Σ−1 .

Let 𝜇 =
∑︀𝑛

𝑖=1 𝑎𝑖𝑣𝑖 and we re-parameterize 𝑧 =
∑︀𝑛

𝑖=1 𝑏𝑖𝑣𝑖. Then,

𝑧𝜖Σ(𝜇) =
𝑛∑︁

𝑖=1

𝑏𝜖𝑖𝑣𝑖, where 𝑏𝜖 = ⟨𝑏𝜖𝑖⟩𝑛𝑖=1 = argmin∑︀𝑛
𝑖=1 𝑏

2
𝑖≤𝜖2

𝑛∑︁
𝑖=1

(𝑎𝑖 − 𝑏𝑖)2

𝜆𝑖

By using the Lagrange multiplier 𝛾𝜖 with first-order optimality condition, we see that

∀ 𝑖

𝑏𝜖𝑖 − 𝑎𝑖
𝜆𝑖

+ 𝛾𝜖𝑏
𝜖
𝑖 = 0 ⇐⇒ 𝑎𝑖 − 𝑏𝜖𝑖

𝜆𝑖
= 𝛾𝜖𝑏

𝜖
𝑖 ⇐⇒ 𝑏𝜖𝑖 =

𝑎𝑖
1 + 𝜆𝑖𝛾𝜖

(A.5)

and
∑︀𝑛

𝑖=1 (𝑏
𝜖
𝑖)

2 ≤ 𝜖2. In order for all the robust classifiers to overlap we need 𝑤𝜖/‖𝑤𝜖‖

to the independent of 𝜖. That is,

𝑤𝜖

‖𝑤𝜖‖
=

∑︀𝑛
𝑖=1 𝑣𝑖

𝑎𝑖−𝑏𝜖𝑖
𝜆𝑖√︂∑︀𝑛

𝑖=1

(︁
𝑎𝑖−𝑏𝜖𝑖
𝜆𝑖

)︁2 =

∑︀𝑛
𝑖=1 𝛾

𝜖𝑏𝜖𝑖𝑣𝑖√︁∑︀𝑛
𝑖=1 (𝛾

𝜖)2 (𝑏𝜖𝑖)
2
=

∑︀𝑛
𝑖=1 𝑏

𝜖
𝑖𝑣𝑖√︁∑︀𝑛

𝑖=1 (𝑏
𝜖
𝑖)

2
=

∑︀
𝑖∈𝑆 𝑏

𝜖
𝑖𝑣𝑖√︁∑︀𝑛

𝑖∈𝑆 (𝑏
𝜖
𝑖)

2
,

where the 𝑆 in the last equation denotes the set of indices for which 𝑎𝑖 ̸= 0. For ∀ 𝑖

with 𝑎𝑖 = 0, from equation A.5, we clearly have 𝑏𝜖𝑖 = 0.

The condition 𝜇 lies completely within a degenerate subspace of the eigenspace

of Σ is equivalent to saying 𝜆𝑖 = 𝜆𝑗 = 𝜆 for ∀ 𝑖, 𝑗 ∈ 𝑆. In this case, we see that for

∀ 𝑖 ∈ 𝑆,

𝜖2 ≥
𝑛∑︁

𝑖=1

(𝑏𝜖𝑖)
2 =

∑︁
𝑖∈𝑆

(𝑏𝜖𝑖)
2 =

(︂
1

1 + 𝜆𝛾𝜖

)︂2∑︁
𝑖∈𝑆

𝑎2𝑖 ,

so 1
1+𝜆𝛾𝜖

≤ 𝜖 1√∑︀
𝑖∈𝑆 𝑎2𝑖

, 𝑏𝜖𝑖 ≤ 𝜖√∑︀
𝑖∈𝑆 𝑎2𝑖

𝑎𝑖. So, we get 𝑏𝜖𝑖 = 𝑚𝜖 · 𝑎𝑖 where 𝑚𝜖 =
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min

(︂
1, 𝜖√∑︀

𝑖∈𝑆 𝑎2𝑖

)︂

𝑤𝜖

‖𝑤𝜖‖
=

∑︀
𝑖∈𝑆 𝑏

𝜖
𝑖𝑣𝑖√︁∑︀𝑛

𝑖∈𝑆 (𝑏
𝜖
𝑖)

2
=

∑︀
𝑖∈𝑆 𝑚𝜖𝑎𝑖𝑣𝑖

𝑚𝜖

√︀∑︀
𝑖∈𝑆 𝑎

2
𝑖

=
∑︁
𝑖∈𝑆

𝑎𝑖√︀∑︀
𝑖∈𝑆(𝑎𝑖)

2
𝑣𝑖,

which is independent of 𝜖.
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Appendix B

Analysis

B.1 Complete analysis in Chapter 3

B.1.1 Shrinking effect for unidimensional data

Bounded decision region. Without loss of generality, let the decision region be

interval 𝒟 = [−𝑅,𝑅]. By the symmetric nature of Gaussian smoothing, we see that

𝒟𝜎 is also an interval of the form [−𝑎, 𝑎]. We claim that for large 𝜎, 𝑎 < 𝑅 and for

even larger 𝜎, 𝒟𝜎 disappears. Formally, we do the analysis as follows.

For the shrinking, we check the value of 𝑓𝜎(𝑅)1. By definition A.1.2, we see that

𝑓𝜎(𝑅)1 = Φ(2𝑅
𝜎
)− Φ(0) and if

𝜎 >
2𝑅

Φ−1(1
2
+ 1

𝑐
)
,

𝑓𝜎(𝑅) <
1
𝑐

is true. Thus, the bounded decision region of unidimensional data shrinks

with smoothing factor 𝜎 > 2𝑅
Φ−1( 1

𝑐
+ 1

2
)
.

For the vanishing rate, we check the value of 𝑓𝜎(𝑥)1 at 𝑥 = 0. Now since 𝑓𝜎(0)1 =

Φ(𝑅
𝜎
)− Φ(−𝑅

𝜎
), we have that if

𝜎 >
𝑅

Φ−1(1
2
+ 1

2𝑐
)
,

𝑓𝜎(0)1 <
1
𝑐

is true, i.e., 𝒟𝜎 vanishes.
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Semi-bounded decision region. In a unidimensional case, our definition of semi-

bounded regions degenerates into an interval 𝐼 of the form [𝑎,∞). In this case,

Theorem 7 gives a trivial bound of 0 for the shrinkage of the decision region, suggesting

that no shrinking happens. However, we emphasize that in practice, shrinking might

still happens and more detailed analysis is left for future work.

B.1.2 Bounded decision region behaviors

Figure B-1: The vanishing smoothing factor 𝜎van with an increasing input-space
dimension in the exemplary adversarial ball.

The vanishing smoothing factors 𝜎van with different data dimensions implied by

Figure 2 of the main text together with the theoretical lower bound found in Theorem 4

is given as Figure B-1.

Figure B-2 shows the certified radius behavior as a function of the distance of

points from the origin (y-axis) and the smoothing factor 𝜎 (x-axis) for dimension

𝑑 = 30. The contour lines in Figure B-2 mark the certified radius of points under

Gaussian smoothing. It is notable that points closer to the origin generally have larger

certified radii and the certified radius of the point at the origin (y-axis 𝑦 = 0) drops to

zero at vanishing smoothing factor 𝜎van = 0.184 as specified in Figure B-1. Specifically,

one can readily verify that the certified radii of points closer to the origin increase

with the growing smoothing factor 𝜎 but begin to decrease at certain point, which

is coherent with our observations through Figure 3(a) of the main text. Conducting

similar experiments for different dimensions completes the maximum certified radius
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Figure B-2: The certified radius of smoothed classifiers with an increasing input-space
dimension when 𝑑 = 30.

Figure B-3: The maximum certified radius with an increasing input-space dimension
in the exemplary case.

vs. data dimension relationship as shown in Figure B-3.

B.1.3 Semi-bounded decision region certified radius behaviors

w.r.t data dimensions

In Figure B-4, we show the unscaled certified radius 𝑟 as a function of an increasing

smoothing factor 𝜎 for different input data dimension 𝑑 with fixed narrowness 𝜃 = 45∘.

One can then see similar trend as told in Figure 3(a) of the main text in the bounded

decision region case, the maximum certified radius (the peak) also decreases with the
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r

Figure B-4: The unscaled certified radius 𝑟 of a point on the axis 𝑣 for different input
data dimension 𝑑.

increasing dimension.
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B.2 Complete experimental details in Chapter 4

B.2.1 Full results of Section 4.3

Table B.1: The effectiveness evaluation of NaCl on SimCLR (i.e. 𝛼 = 0, 𝐺1 = 𝑔0).
The best performance within each loss type is in boldface.

𝑀
𝛼 = 0, ℒNaCl(𝐺

1,𝑀, 𝜆) = ℒNCA(𝑔0,𝑀)
CIFAR100 Acc. FGSM Acc. CIFAR10 Acc. FGSM Acc.

1 53.69±0.25 25.17±0.55 76.34±0.28 43.50±0.41
2 55.72±0.15 27.04±0.45 77.40±0.14 44.58±0.41
3 56.67±0.12 28.41±0.24 77.53±0.24 45.21±0.89
4 57.09±0.26 28.20±0.81 77.75±0.22 45.13±0.44
5 57.32±0.17 28.33±0.59 77.93±0.40 44.46±0.53

𝛼 = 0, ℒNaCl(𝐺
1,𝑀, 𝜆) = ℒMIXNCA(𝑔0,𝑀, 0.5)

1 53.69±0.25 25.17±0.55 76.34±0.28 43.50±0.41
2 54.76±0.29 23.66±0.27 76.78±0.26 40.76±0.66
3 55.21±0.17 24.46±0.44 77.45±0.18 41.78±0.80
4 55.68±0.27 24.19±0.46 77.40±0.24 41.33±0.34
5 55.85±0.16 24.01±0.91 77.50±0.16 40.77±0.66

𝛼 = 0, ℒNaCl(𝐺
1,𝑀, 𝜆) = ℒMIXNCA(𝑔0,𝑀, 0.6)

1 53.69±0.25 25.17±0.55 76.34±0.28 43.50±0.41
2 54.84±0.35 25.94±0.81 77.11±0.15 42.81±0.83
3 55.49±0.13 26.25±0.89 76.95±0.32 42.99±0.96
4 55.65±0.24 25.41±0.53 77.39±0.37 42.69±1.20
5 55.66±0.22 26.01±0.60 77.26±0.48 43.06±0.79

𝛼 = 0, ℒNaCl(𝐺
1,𝑀, 𝜆) = ℒMIXNCA(𝑔0,𝑀, 0.7)

1 53.69±0.25 25.17±0.55 76.34±0.28 43.50±0.41
2 55.57±0.32 27.67±0.60 77.09±0.27 44.68±0.71
3 55.83±0.25 27.72±0.59 77.23±0.28 43.68±0.72
4 56.29±0.25 27.92±0.60 77.33±0.29 44.69±0.82
5 56.37±0.32 27.78±0.54 77.40±0.20 45.07±0.98

𝛼 = 0, ℒNaCl(𝐺
1,𝑀, 𝜆) = ℒMIXNCA(𝑔0,𝑀, 0.8)

1 53.69±0.25 25.17±0.55 76.34±0.28 43.50±0.41
2 55.75±0.21 29.30±0.86 76.80±0.20 46.56±1.02
3 56.27±0.26 29.96±0.29 77.11±0.37 46.52±0.50
4 56.39±0.26 29.49±0.65 77.34±0.31 46.79±0.93
5 56.23±0.13 29.47±0.95 77.40±0.14 47.36±0.69

𝛼 = 0, ℒNaCl(𝐺
1,𝑀, 𝜆) = ℒMIXNCA(𝑔0,𝑀, 0.9)

1 53.69±0.25 25.17±0.55 76.34±0.28 43.50±0.41
2 56.20±0.33 30.95±0.36 76.96±0.15 48.85±0.75
3 56.41±0.13 30.98±0.90 77.10±0.21 48.76±0.63
4 56.00±0.42 29.90±0.63 77.11±0.40 48.16±0.40
5 56.63±0.31 30.58±0.52 77.04±0.19 47.96±0.46
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Table B.2: The effectiveness evaluation of NaCl on Debised+HardNeg (i.e. 𝛼 =
0, 𝐺1 = 𝑔2). The best performance within each loss type is in boldface.

𝑀
𝛼 = 0, ℒNaCl(𝐺

1,𝑀, 𝜆) = ℒNCA(𝑔2,𝑀)
CIFAR100 Acc. FGSM Acc. CIFAR10 Acc. FGSM Acc.

1 56.83±0.20 31.03±0.41 77.24±0.29 48.38±0.70
2 57.87±0.15 32.50±0.48 77.43±0.11 48.14±0.31
3 58.42±0.23 33.19±0.60 77.41±0.17 48.09±0.93
4 58.86±0.18 32.65±1.07 77.46±0.29 48.43±0.94
5 58.81±0.21 32.86±0.47 77.58±0.23 48.30±0.39

𝛼 = 0, ℒNaCl(𝐺
1,𝑀, 𝜆) = ℒMIXNCA(𝑔2,𝑀, 0.5)

1 56.83±0.20 31.03±0.41 77.24±0.29 48.38±0.70
2 59.41±0.19 32.22±0.35 79.36±0.65 48.86±0.34
3 59.81±0.25 32.04±0.67 79.41±0.17 48.91±0.81
4 59.75±0.33 32.03±0.34 79.42±0.18 49.05±0.71
5 59.85±0.30 32.06±0.72 79.45±0.20 48.32±0.70

𝛼 = 0, ℒNaCl(𝐺
1,𝑀, 𝜆) = ℒMIXNCA(𝑔2,𝑀, 0.6)

1 56.83±0.20 31.03±0.41 77.24±0.29 48.38±0.70
2 58.94±0.29 32.65±0.36 78.67±0.15 49.86±0.59
3 59.43±0.35 32.91±0.40 78.94±0.19 48.84±1.09
4 59.54±0.28 33.02±0.62 78.92±0.29 49.64±0.74
5 59.52±0.28 33.10±0.50 79.29±0.21 49.39±1.02

𝛼 = 0, ℒNaCl(𝐺
1,𝑀, 𝜆) = ℒMIXNCA(𝑔2,𝑀, 0.7)

1 56.83±0.20 31.03±0.41 77.24±0.29 48.38±0.70
2 58.24±0.19 33.24±0.90 78.30±0.31 50.40±0.83
3 58.74±0.26 33.12±0.59 78.49±0.30 49.85±0.38
4 58.79±0.38 33.63±0.53 78.51±0.29 49.88±0.75
5 58.99±0.18 32.93±0.81 78.57±0.12 49.53±1.55

𝛼 = 0, ℒNaCl(𝐺
1,𝑀, 𝜆) = ℒMIXNCA(𝑔2,𝑀, 0.8)

1 56.83±0.20 31.03±0.41 77.24±0.29 48.38±0.70
2 57.60±0.15 34.14±0.22 77.96±0.07 51.82±0.68
3 58.04±0.28 33.93±0.45 77.55±0.18 50.30±0.81
4 58.05±0.16 34.16±0.54 77.90±0.21 50.40±0.43
5 58.43±0.27 33.87±0.62 77.90±0.17 50.78±0.95

𝛼 = 0, ℒNaCl(𝐺
1,𝑀, 𝜆) = ℒMIXNCA(𝑔2,𝑀, 0.9)

1 56.83±0.20 31.03±0.41 77.24±0.29 48.38±0.70
2 57.16±0.15 34.25±0.55 77.19±0.09 51.42±0.45
3 57.08±0.10 33.96±0.19 77.21±0.26 51.30±1.05
4 57.36±0.19 34.29±0.15 77.34±0.34 51.16±0.55
5 57.38±0.16 34.25±0.30 77.13±0.16 50.68±0.74
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Table B.3: The effectiveness evaluation of NaCl (𝑀 ̸= 1) on IntCl (𝑀 = 1) when
𝛼 = 1, 𝐺1 = 𝐺2 = 𝑔2. The best performance within each loss type is in boldface.

𝑀
𝛼 ̸= 0, ℒNaCl(𝐺

1,𝑀, 𝜆) = ℒNCA(𝑔2,𝑀)
CIFAR100 Acc. FGSM Acc. CIFAR10 Acc. FGSM Acc.

1 56.22±0.15 40.05±0.67 76.39±0.10 59.33±0.94
2 56.71±0.11 39.80±0.57 76.55±0.27 58.44±0.31
3 57.13±0.26 40.53±0.29 76.67±0.22 58.47±0.31
4 57.06±0.19 40.85±0.31 76.34±0.22 58.91±0.62
5 57.46±0.04 41.00±0.86 76.60±0.37 57.98±0.47

𝛼 ̸= 0, ℒNaCl(𝐺
1,𝑀, 𝜆) = ℒMIXNCA(𝑔2,𝑀, 0.5)

1 56.22±0.15 40.05±0.67 76.39±0.10 59.33±0.94
2 58.97±0.19 40.25±0.52 78.61±0.20 58.41±0.59
3 59.26±0.18 40.96±0.58 78.83±0.22 59.20±1.25
4 59.32±0.21 40.82±0.54 78.83±0.27 59.03±0.52
5 59.43±0.23 41.01±0.34 78.80±0.21 59.51±0.93

𝛼 ̸= 0, ℒNaCl(𝐺
1,𝑀, 𝜆) = ℒMIXNCA(𝑔2,𝑀, 0.6)

1 56.22±0.15 40.05±0.67 76.39±0.10 59.33±0.94
2 58.55±0.34 40.85±0.62 78.34±0.22 59.56±0.88
3 59.05±0.21 40.83±0.44 78.41±0.12 59.14±0.78
4 59.06±0.25 40.80±0.89 78.61±0.22 58.41±1.00
5 59.10±0.23 40.68±0.50 78.63±0.21 58.92±0.76

𝛼 ̸= 0, ℒNaCl(𝐺
1,𝑀, 𝜆) = ℒMIXNCA(𝑔2,𝑀, 0.7)

1 56.22±0.15 40.05±0.67 76.39±0.10 59.33±0.94
2 58.00±0.18 40.35±0.34 77.73±0.24 59.40±1.27
3 58.23±0.18 40.94±0.75 77.91±0.25 59.57±0.81
4 58.20±0.25 40.95±0.45 77.89±0.20 59.49±0.49
5 58.37±0.14 41.15±0.48 78.27±0.26 59.17±0.94

𝛼 ̸= 0, ℒNaCl(𝐺
1,𝑀, 𝜆) = ℒMIXNCA(𝑔2,𝑀, 0.8)

1 56.22±0.15 40.05±0.67 76.39±0.10 59.33±0.94
2 57.07±0.24 41.29±0.57 77.27±0.28 60.16±0.51
3 57.62±0.22 40.93±0.49 77.54±0.27 59.47±0.52
4 57.61±0.25 41.36±0.41 77.50±0.34 60.28±0.68
5 57.56±0.18 40.71±0.34 77.58±0.42 59.99±0.30

𝛼 ̸= 0, ℒNaCl(𝐺
1,𝑀, 𝜆) = ℒMIXNCA(𝑔2,𝑀, 0.9)

1 56.22±0.15 40.05±0.67 76.39±0.10 59.33±0.94
2 56.54±0.33 40.85±0.13 76.81±0.22 60.40±0.46
3 56.69±0.11 41.23±0.66 76.98±0.22 60.13±0.56
4 56.43±0.26 41.56±0.56 76.97±0.20 61.21±0.49
5 56.86±0.11 41.09±0.31 76.91±0.21 60.09±0.39
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B.2.2 Experimental details

Architecture. We follow [23, 154] to incorporate an MLP projection head during

the contrastive learning on resnet18.

Optimizer. Adam optimizer with a learning rate of 3𝑒− 4.

Training epochs. The representation network is trained for 100 epochs. For

CIFAR100 and CIFAR10, the downstream fully-connected layer is trained for 1000

epochs. For TinyImagenet, the fully-connected layer is trained for 200 epochs.

Methodological hyperparameters. Throughout out experiments, we use 𝜏+ =

0.01 and 𝛽 = 1.0 for ℒDebiased [29] and ℒDebiased+HardNeg [154], 𝛼 = 1 for ℒAdv [75]. The

same set of hyperparameters are used in our IntCl and IntNaCl.

Data augmentation. Our data augmentation includes random resized crop, random

horizontal flip, random grayscale, and color jitter. Specifically, we implement the color

jitter by calling 𝑡𝑜𝑟𝑐ℎ𝑣𝑖𝑠𝑖𝑜𝑛.𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑠.𝐶𝑜𝑙𝑜𝑟𝐽𝑖𝑡𝑡𝑒𝑟(0.8 * 𝑠, 0.8 * 𝑠, 0.8 * 𝑠, 0.2 * 𝑠)

and execute with probability 0.8. Random grayscale is performed with probability 0.2.

Adversarial hyperparameters. When evaluating the adversarial robustness using

the codebase provided in [200], we use a PGD step size of 1𝑒− 2, 10 iterations, and 2

random restarts.

Error bar. We run five independent trials for each of the experiments and report the

mean and standard deviation for all tables and figures. The error bars in Figure B-5

is omitted for better visual clarity.

Robust Accuracy. In Figure B-5, we show the robust accuracy as a function of

the FGSM attack strength 𝜖. Specifically, we range the attack strength from 0.002 to

0.032 and give the robust accuracy of our proposals (IntCl & IntNaCl) together with

baselines under all attacks. From Figure B-5, one can see that among all baselines, Adv
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demonstrates the best adversarial robustness, whereas our proposals still consistently

win over it by a noticeable margin.

Figure B-5: The robust accuracy under FGSM attacks of different strength on
CIFAR100.
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B.3 Complete experimental details in Chapter 5

B.3.1 Full results of Section 5.3.2

𝑎𝑡 Model 𝜖 = 0 𝜖 = 0.1 𝜖 = 0.2 𝜖 = 0.3 𝜖 = 0.4 𝜖 = 0.5 𝜖 = 0.6 𝜖 = 0.7 𝜖 = 0.8

0.7

ViT-Ti/16 0.01 0.01 0 0 0 0 0 0 0
ViT-B/16 0.33 0.36 0.37 0.35 0.32 0.27 0.20 0.13 0.07

ViT-B/16-in21k 0.20 0.22 0.23 0.21 0.17 0.13 0.07 0.03 0.01
ViT-L/16 0.26 0.30 0.33 0.32 0.30 0.27 0.22 0.17 0.11

ViT-S/16-DINO 0.48 0.48 0.47 0.45 0.42 0.37 0.32 0.25 0.17
ViT-B/16-DINO 0.55 0.58 0.58 0.56 0.53 0.50 0.46 0.41 0.35
ViT-S/8-DINO 0.40 0.42 0.42 0.41 0.39 0.37 0.34 0.30 0.26
ViT-B/8-DINO 0.50 0.55 0.56 0.54 0.50 0.45 0.40 0.35 0.30

Resnet50-SimCLRv2 0.66 0.53 0.50 0.49 0.50 0.49 0.48 0.48 0.48
Resnet101-SimCLRv2 0.60 0.74 0.64 0.58 0.56 0.52 0.51 0.50 0.48

0.75

ViT-Ti/16 0 0 0 0 0 0 0 0 0
ViT-B/16 0.26 0.29 0.30 0.28 0.25 0.18 0.11 0.05 0.01

ViT-B/16-in21k 0.12 0.15 0.16 0.14 0.10 0.06 0.02 0 0
ViT-L/16 0.19 0.24 0.27 0.27 0.24 0.21 0.16 0.10 0.04

ViT-S/16-DINO 0.42 0.42 0.41 0.39 0.36 0.32 0.26 0.19 0.11
ViT-B/16-DINO 0.50 0.54 0.54 0.51 0.48 0.44 0.39 0.34 0.27
ViT-S/8-DINO 0.33 0.34 0.34 0.33 0.31 0.29 0.25 0.21 0.16
ViT-B/8-DINO 0.44 0.50 0.51 0.48 0.43 0.37 0.31 0.25 0.19

Resnet50-SimCLRv2 0.33 0.44 0.40 0.39 0.39 0.39 0.39 0.39 0.39
Resnet101-SimCLRv2 0.54 0.69 0.57 0.49 0.45 0.43 0.40 0.38 0.36

0.8

ViT-Ti/16 0 0 0 0 0 0 0 0 0
ViT-B/16 0.19 0.22 0.23 0.21 0.17 0.11 0.04 0 0

ViT-B/16-in21k 0.06 0.08 0.09 0.07 0.04 0.01 0 0 0
ViT-L/16 0.12 0.17 0.21 0.20 0.18 0.14 0.09 0.04 0

ViT-S/16-DINO 0.34 0.35 0.34 0.32 0.29 0.25 0.19 0.13 0.05
ViT-B/16-DINO 0.45 0.49 0.49 0.46 0.42 0.37 0.32 0.26 0.17
ViT-S/8-DINO 0.25 0.26 0.26 0.25 0.23 0.20 0.16 0.12 0.08
ViT-B/8-DINO 0.38 0.45 0.46 0.42 0.36 0.29 0.22 0.16 0.10

Resnet50-SimCLRv2 0.09 0.34 0.31 0.31 0.30 0.30 0.30 0.30 0.30
Resnet101-SimCLRv2 0.46 0.62 0.50 0.39 0.35 0.32 0.29 0.26 0.24

0.85

ViT-Ti/16 0 0 0 0 0 0 0 0 0
ViT-B/16 0.10 0.14 0.15 0.13 0.09 0.04 0 0 0

ViT-B/16-in21k 0.01 0.03 0.02 0.02 0 0 0 0 0
ViT-L/16 0.05 0.09 0.13 0.12 0.10 0.07 0.03 0 0

ViT-S/16-DINO 0.25 0.26 0.25 0.24 0.21 0.17 0.12 0.06 0.01
ViT-B/16-DINO 0.38 0.43 0.43 0.40 0.35 0.29 0.23 0.15 0.08
ViT-S/8-DINO 0.16 0.17 0.17 0.15 0.13 0.10 0.07 0.04 0.02
ViT-B/8-DINO 0.30 0.38 0.38 0.34 0.27 0.19 0.13 0.06 0.03

Resnet50-SimCLRv2 0 0.22 0.20 0.20 0.19 0.19 0.19 0.20 0.19
Resnet101-SimCLRv2 0.37 0.55 0.41 0.28 0.23 0.19 0.16 0.13 0.11

0.9

ViT-Ti/16 0 0 0 0 0 0 0 0 0
ViT-B/16 0.02 0.04 0.05 0.04 0.01 0 0 0 0

ViT-B/16-in21k 0 0 0 0 0 0 0 0 0
ViT-L/16 0 0.01 0.04 0.04 0.03 0.01 0 0 0

ViT-S/16-DINO 0.13 0.14 0.14 0.13 0.10 0.07 0.04 0.01 0
ViT-B/16-DINO 0.28 0.34 0.34 0.30 0.23 0.16 0.10 0.05 0
ViT-S/8-DINO 0.05 0.06 0.06 0.05 0.04 0.02 0.01 0 0
ViT-B/8-DINO 0.20 0.29 0.28 0.23 0.15 0.07 0.03 0 0

Resnet50-SimCLRv2 0 0.08 0.06 0.06 0.06 0.06 0.06 0.06 0.06
Resnet101-SimCLRv2 0.23 0.42 0.28 0.15 0.08 0.06 0.04 0.02 0.01

Table B.4: Full table of Table 5.2.
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𝑛 Name ViT-B/16 ViT-L/16 ViT-B/32 Resnet50-SimCLRv2 Resnet101-SimCLRv2 Pearson correlation
Real-life Accuracy (%) 74.3 75.5 72.6 75.4 75.4 1.0

ImageNet-c acc. 66.4 72.2 61.4 47.4 50.1 0.64
Transfer ImageNet-r acc. 56.8 64.3 49.4 39.4 44.1 -0.03
dataset ImageNet-a acc. 43.1 55.3 22.3 27.1 38.2 0.57

CIFAR10-lc acc. 93.54 94.95 92.48 85.74 87.38 -0.36
Val loss 3.10 4.12 4.10 1.31 0.98 -0.55
MDL 6820.76 8094.06 8198.55 5881.34 2882.36 -0.50

SDL, 𝜀 = 1 > 4978 > 6251 > 6356 > 4038 1052.37 -
2048 𝜀SC, 𝜀 = 1 > 1843 > 1843 > 1843 > 1843 1843 -

LogME -0.726 -0.724 -0.729 2.791 1.503 0.54
SFDA 0.584 0.635 0.567 0.947 0.593 0.46

SynBench 0.33 0.26 0.02 0.66 0.60 0.79
Val loss 0.73 1.50 2.92 0.62 0.52 -0.81
MDL 9939.13 17672.6 23332.98 9646.09 5443.43 -0.68

SDL, 𝜀 = 1 3479.59 > 10301 > 15961 3700.73 776.38 -
8192 𝜀SC, 𝜀 = 1 7372 > 7372 > 7372 4045 669 -

LogME -0.710 -0.707 -0.727 -0.599 -0.622 0.65
SFDA 0.525 0.531 0.513 0.581 0.543 0.67

SynBench 0.52 0.49 0.01 0.69 0.84 0.89
Val loss 0.68 0.79 3.91 0.53 0.51 -0.92
MDL 30848.99 38718.04 107960.49 22022.08 17166.0 -0.91

32768 SDL, 𝜀 = 1 7043.32 12496.0 > 78469.49 4355.67 969.27 -
𝜀SC, 𝜀 = 1 14265 29491 > 29491.0 3338 1615 -

LogME -0.686 -0.687 -0.725 -0.580 -0.608 0.72
SFDA 0.517 0.518 0.505 0.545 0.534 0.77

SynBench 0.59 0.58 0.02 0.81 0.87 0.92

Table B.5: Pearson correlation between task agnostic metrics and the average accuracy
on 27 real-life tasks [141, Table 10] . We report the 5 pretrained models out of the
overall 10 due to the lack of reported results from the literature for the other pretrain
models.

For completeness, we report several baseline metrics for the synthetic conditional

Gaussian classification task. We follow the implementation of [196, 162] and set the

training set size 𝑛 to be 2048, 8192, 32768. In Table B.5, we report validation loss

(val loss), minimum description length (MDL) [185], surplus description length (SDL),

𝜖-sample complexity (𝜖-SC) [196], logarithm of maximum evidence (LogME) [210] and

self-challenging Fisher discriminant analysis (SFDA) [162] on our synthetic proxy task

as baselines. We aim at calculating the Pearson correlation between task-agnostic

metrics and possible downstream tasks. We take the average accuracy of 27 downstream

tasks in the literature [141] for each pretrained model and treat it as the real-life

performance measure. For an even more complete picture, we also consider some

synthetic distribution shifts that include image corruptions (ImageNet-c), style transfer

(ImageNet-r), and adversarial examples (ImageNet-a). To analyze how data with these

synthetic distribution shifts can inform general pretrained models’ performance, we

quoted the their accuracy from [197] and calculated their correlation with the average
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real-life accuracy in Table B.5. Furthermore, following [214], we perform “partially

corrupted labels” experiments on CIFAR10 dataset with the level of label corruptions

equals to 0.5. See line “CIFAR10-lc acc.” for the results. We note that the correlation

coefficients in these four cases suggest only moderate correlation to even negative

correlation.

We set the training set size 𝑛 to be 2048, 4096, 8192, 16384, 32768 and compare the

model selections between ViT-B/16 and ViT-B/16-in21k in Table B.6. In Table B.7,

we report these metrics on all 10 pretrained representations for 𝑛 = 8192.

n Name ViT-B/16 ViT-B/16-in21k
2048 Val loss 3.10 3.37

MDL 6820.76 7114.12
SDL, 𝜀=1 > 4977.76 > 5271.12
𝜀SC, 𝜀=1 > 1843.0 > 1843.0
SynBench 0.33 0.20

4096 Val loss 1.77 1.41
MDL 10813.95 9412.53
SDL, 𝜀=1 > 7127.95 > 5726.53
𝜀SC, 𝜀=1 > 3686.0 > 3686.0
SynBench 0.45 0.30

8192 Val loss 0.73 0.77
MDL 9939.13 9773.16
SDL, 𝜀=1 3479.59 3153.33
𝜀SC, 𝜀=1 7372 7372
SynBench 0.52 0.38

16384 Val loss 0.85 0.86
MDL 20936.18 20899.58
SDL, 𝜀=1 7266.8 7136.29
𝜀SC, 𝜀=1 14745 14745
SynBench 0.56 0.41

32768 Val loss 0.68 0.70
MDL 30848.99 32944.76
SDL, 𝜀=1 7043.32 8611.49
𝜀SC, 𝜀=1 14265 14265
SynBench 0.59 0.44

Table B.6: Baseline metrics evaluating the representation quality on the conditional
Gaussian synthetic data with 𝑛 = {2048, 4096, 8192, 16384, 32768}. For Val loss, MDL,
SDL, and 𝜖SC, the smaller the better; for SynBench, the bigger the better. Note that
the model ranking of SynBench is consistent across different values of 𝑛, while other
methods will change their rankings.

182



Name Val loss MDL SDL, 𝜀=1 𝜀SC, 𝜀=1

ViT-Ti/16 4.38 30071.64 > 22699.64 > 7372.0
ViT-B/16 0.73 9939.13 3479.59 7372
ViT-L/16 1.50 17672.6 > 10300.6 > 7372.0
ViT-B/16-in21k 0.77 9773.16 3153.33 7372
ViT-S/16-DINO 1.51 18536.93 > 11164.93 > 7372.0
ViT-S/8-DINO 0.70 8196.8 2056.69 4045
ViT-B/16-DINO 0.92 10535.11 3432.28 7372
ViT-B/8-DINO 0.64 6796.87 1185.31 2220
Resnet50-SimCLRv2 0.62 9646.09 3700.73 4045
Resnet101-SimCLRv2 0.52 5443.43 776.38 669

Table B.7: Baseline metrics evaluating the representation quality on the conditional
Gaussian synthetic data with 𝑛 = 8192.

B.3.2 Full results of Section 5.3.3

Models CIFAR10 TinyImagenet
𝜖 = 0 𝜖 = 0.1 𝜖 = 0.2 𝜖 = 0.3 𝜖 = 0 𝜖 = 0.1 𝜖 = 0.2 𝜖 = 0.3

ViT-Ti/16
SynBench-Score(𝜖) 0.01 0.01 0 0 0.01 0.01 0 0
𝜖-robust prob. 𝛿SA 0 -3.1 -5.9 -6.3 0 +0.3 -1.5 -1.9
𝜖-robust prob. 𝛿RA 0 +1.4 +1.9 +1.6 0 +1.1 +0.4 +2.2

ViT-B/16
SynBench-Score(𝜖) 0.33 0.36 0.37 0.35 0.33 0.36 0.37 0.35
𝜖-robust prob. 𝛿SA 0 +0.2 +0.1 +0.1 0 0 +0.7 +0.6
𝜖-robust prob. 𝛿RA 0 +0.3 +2.7 +2.3 0 -1.0 +2.5 +2.4

ViT-B/16-in21k
SynBench-Score(𝜖) 0.20 0.22 0.23 0.21 0.20 0.22 0.23 0.21
𝜖-robust prob. 𝛿SA 0 +0.9 +1.1 +1.1 0 +0.3 +0.3 +0.2
𝜖-robust prob. 𝛿RA 0 +1.2 +1.4 +0.6 0 +1.3 +2.0 +2.0

ViT-L/16
SynBench-Score(𝜖) 0.26 0.30 0.33 0.32 0.26 0.30 0.33 0.32
𝜖-robust prob. 𝛿SA 0 +0.2 +0.4 +0.4 0 -0.1 -0.2 -0.3
𝜖-robust prob. 𝛿RA 0 -0.2 +3.0 +1.9 0 +4.2 +6.6 +0.7

Table B.8: Full Table of Table 5.3.

B.3.3 Full results of Section 5.3.4

𝑎𝑡 = 0.7 𝜖 = 0 𝜖 = 0.1 𝜖 = 0.2 𝜖 = 0.3 𝜖 = 0.4 𝜖 = 0.5 𝜖 = 0.6 𝜖 = 0.7 𝜖 = 0.8
ViT-B/16 0.18 0.22 0.24 0.23 0.20 0.15 0.10 0.05 0.01

ViT-B/16-in21k 0.07 0.10 0.11 0.10 0.07 0.04 0.01 0 0

Table B.9: SynBench-Score comparisons on the finetuning procedure in pretraining on
synthetic data with heptadiagonal covariance.
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𝑎𝑡 = 0.7 𝜖 = 0 𝜖 = 0.1 𝜖 = 0.2 𝜖 = 0.3 𝜖 = 0.4 𝜖 = 0.5 𝜖 = 0.6 𝜖 = 0.7 𝜖 = 0.8
ViT-Ti/16 0 0 0 0 0 0 0 0 0
ViT-B/16 0.18 0.22 0.24 0.23 0.20 0.15 0.10 0.05 0.01
ViT-L/16 0.18 0.24 0.28 0.29 0.28 0.27 0.23 0.18 0.12

Table B.10: SynBench-Score comparisons on the model sizes on synthetic data with
heptadiagonal covariance.

𝑎𝑡 = 0.7 𝜖 = 0 𝜖 = 0.1 𝜖 = 0.2 𝜖 = 0.3 𝜖 = 0.4 𝜖 = 0.5 𝜖 = 0.6 𝜖 = 0.7 𝜖 = 0.8
ViT-S/16-DINO 0.47 0.47 0.46 0.44 0.39 0.31 0.23 0.13 0.03
ViT-B/16-DINO 0.42 0.50 0.52 0.52 0.51 0.48 0.45 0.40 0.35
ViT-S/8-DINO 0.36 0.38 0.38 0.38 0.36 0.33 0.30 0.26 0.20
ViT-B/8-DINO 0.42 0.52 0.55 0.53 0.50 0.45 0.40 0.33 0.28

Res50-SimCLRv2 0.24 0.53 0.47 0.38 0.36 0.34 0.33 0.32 0.31
Res101-SimCLRv2 0.30 0.47 0.37 0.34 0.32 0.31 0.30 0.29 0.29

Table B.11: SynBench-Scores of self-supervised pretrained representations on synthetic
data with heptadiagonal covariance.

B.3.4 Intuitions on how SynBench predict classification per-

formance across a broad range of tasks

Think of how representation learning research typically evaluate a model for transfer

learning - by running tests on a broad range of downstream tasks. And the reason

behind this is to see how the model behaves in different scenarios. To theorize things,

we believe the general behavior of a pretrained representation is measured by how it

perform on tasks of different difficulty levels. That is why we think a fundamental

part of our design is to simulate tasks of different difficulty levels. One difference

between SynBench and a traditional probing test is that, for example, we are using

the classification problem of two highly overlapped Gaussian, instead of classifying

ImageNet21k. We hope this clarification builds enough intuition to understand the

following:

1. We vary 𝑠 from 0.1 to 5 in increments of 0.1, which correspond to optimal

accuracy (ground-truth difficulty) ranging from 55% to 100% and 50 difficulty

levels. If we refer to Figure B-6, we see each of the red points correspond to one

of our simulated trials with difficulty levels (x-axis).

2. Baseline methods are task/data dependant, which means they are somewhat
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bound to tasks of that similar difficulty levels. If we refer to Figure B-6, it could

be the single purple point with fixed level of difficulty.

3. If we include certain knowledge of possible downstream data properties, say

locality of pixel dependencies, then the prediction will indeed be more accurate

(see our section 5.3.4).

Figure B-6: Illustrations of the difference between SynBench synthetic data difficulty
coverage and a specific real task/data.

B.3.5 Rejection mechanism

Dataset Gaussian-I Gaussian-H
CIFAR10 0.37 0.65
SVHN 0.58 0.83

TinyImageNet 0.31 0.51

Table B.12: The p-values in the hypothesis testing for Gaussian-I and Gaussian-H
distributions.

SynBench is a task-agnostic benchmark and it is designed to be used to test

pretrained models without the prior knowledge of the downstream task (e.g. model

auditing etc). In the case when we do know some knowledge of the tasks, e.g. pixel

dependencies, one can use the knowledge to fine-tune the GMM SynBench uses.

However, in the case when we know exactly which downstream task will we do and
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the downstream datasets are accessible and representative„ the best practice is to

directly to apply linear probing. If we are to come up with a rejection mechanism,

then one can potentially use goodness-of-fit tests to verify the null hypothesis that the

downstream data of interest are generated from a Normal distribution. If the data

follow Normal distribution, the Mahalanobis distances should follow a Chi-Squared

distribution with degrees of freedom equal to the number of features. Then since the

CDF for the appropriate degrees of freedom gives the probability of having obtained

a value less extreme than this point, subtracting the CDF value from 1 gives the

p-value. We conduct the experiment for CIFAR10, SVHN, and TinyImageNet, and

report the p-values in Table B.12. Because these p-values are high, we can’t reject this

hypothesis. But if the p-value is below a threshold, one can reject this hypothesis.

B.3.6 Pearson and confidence interval

Let 𝑟 be the Pearson correlation coefficient, 𝑝 be the number of models. We ran

the calculation for confidence intervals and see that the upper and lower confidence

interval limits in z-space are 0.5 ln
(︀
1+𝑟
1−𝑟

)︀
± 1.645

√︁
1

𝑝−3
= 1.589± 1.163 for 𝑟 = 0.92 and

𝑝 = 5 when the training set size 𝑛 = 32768. Translating to r-space by 𝑟 = 𝑒2𝑧−1
𝑒2𝑧+1

yields

the upper limit of 0.992 and the lower limit of 0.402, if the desired confidence level

is 90%. In the following Table B.13, we added four efficient nets’ SynBench-scores,

together with the average of their reported performance on 27 downstream tasks in

[141], Table 10. We ran the same calculation for the Pearson correlation coefficient

𝑟 = 0.88 and 𝑝 = 9 to obtain the confidence interval of [0.607, 0.967] which suggest at

least moderate correlation up to strong correlation.

In the following Figure B-7, we plot the Pearson correlation coefficients of each

methods with their confidence interval for a 90% confidence level when the training

set size n = 2048.
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n Name ViT-B/16 ViT-L/16 ViT-B/32 Resnet50- Resnet101- EfficientNet EfficientNet EfficientNet EfficientNet Pearson
SimCLRv2 SimCLRv2 b0 b1 b2 b3 correlation

Real-life Accuracy (%) 74.3 75.5 72.6 75.4 75.4 72.5 72.6 73.1 73.9 1.0
Val loss 3.10 4.12 4.10 1.31 0.98 4.66 3.56 6.82 3.88 -0.63
MDL 6820.76 8094.06 8198.55 5881.34 2882.36 8950.38 7654.88 15816.05 8138.87 -0.53

SDL, 𝜀 = 1 > 4978 > 6251 > 6356 > 4038 1052.37 >7107 >5812 >13973 >6296 -
2048 𝜀SC, 𝜀 = 1 > 1843 > 1843 > 1843 > 1843 1843 > 1843 > 1843 > 1843 > 1843 -

LogME -0.726 -0.724 -0.729 2.791 1.503 -0.721 -0.726 -0.725 -0.729 0.67
SFDA 0.584 0.635 0.567 0.947 0.593 0.534 0.515 0.751 0.823 0.44

SynBench 0.33 0.26 0.0 0.66 0.60 0.02 0.04 0 0 0.85
Val loss 0.73 1.50 2.92 0.62 0.52 4.27 2.03 4.33 2.56 -0.78
MDL 9939.13 17672.6 23332.98 9646.09 5443.43 32511.61 19479.78 43202.85 25964.38 -0.69

SDL, 𝜀 = 1 3479.59 > 10301 > 15961 3700.73 776.38 >25140 >12108 >35831 >18592 -
8192 𝜀SC, 𝜀 = 1 7372 > 7372 > 7372 4045 669 > 7372 > 7372 > 7372 > 7372 -

LogME -0.710 -0.707 -0.727 -0.599 -0.622 -0.714 -0.719 -0.721 -0.725 0.71
SFDA 0.525 0.531 0.513 0.581 0.543 0.510 0.505 0.524 0.525 0.78

SynBench 0.52 0.49 0.01 0.69 0.84 0.13 0.13 0.09 0.03 0.87
Val loss 0.68 0.79 3.91 0.53 0.51 1.11 0.79 2.60 1.11 -0.58
MDL 30848.99 38718.04 107960.49 22022.08 17166.0 56621.37 39158.90 109706.34 56621.37 -0.67

32768 SDL, 𝜀 = 1 7043.32 12496 > 78469 4356 969.27 >27130 12932 > 80215 >27130 -
𝜀SC, 𝜀 = 1 14265 29491 > 29491 3338 1615 > 29491 29491 > 29491 > 29491 -

LogME -0.686 -0.687 -0.725 -0.580 -0.608 -0.713 -0.719 -0.715 -0.718 0.79
SFDA 0.517 0.518 0.505 0.545 0.534 0.505 0.504 0.508 0.508 0.84

SynBench 0.59 0.58 0.02 0.81 0.87 0.19 0.19 0.17 0.09 0.88

Table B.13: The correlation between SynBench-score and the average accuracy on 27
real-life tasks.

Figure B-7: The Pearson r and 90% confidence intervals.
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B.4 Complete experimental details in Chapter 6

B.4.1 Full results of Section 6.3.2

Table B.14: Pearson correlation comparison between real-data-free evaluation methods
and the average linear probing accuracy on the real-world tasks included in Table B.15.
Since the smaller the Val loss, MDL, SDL and 𝜖SC, the better, we add a negative sign
in front of them when calculating the Pearson correlation coefficient.

n Name BERTbase DiffCSE-B BERTlarge T5base T5large RoBERTabase DiffCSE-R GPT ST5 Pearson
Real-life acc. 83.50 86.81 83.68 82.78 82.36 83.83 88.19 78.01 90.17 1.0

4096 Val loss 1.0e-06±1e-07 1.4e-06±3e-07 7.6e-07±5e-08 8.5e-08±1e-08 5.4e-08±9e-09 4.0e-06±3e-07 1.1e-06±8e-08 3.1e-03±8e-04 3.7e-03±5e-03 0.285±0.498
MDL 5002±318 4755±129 5422±357 7318±119 6724±228 5396±181 4773±296 5604±366 4433±360 0.571±0.109
SDL, 𝜀=1 3090±318 2843±129 3510±357 5406±119 4812±228 3484±181 2861±296 3687±366 2514±368 0.570±0.110
𝜀SC, 𝜀=1 3686±0 3686±0 3686±0 3686±0 3686±0 3686±0 3686±0 3686±0 3686±0 -
SynTextBench 0.137±0.001 0.148±0.001 0.135±0.000 0.111±0.002 0.103±0.002 0.119±0.001 0.193±0.001 0.090±0.003 0.214±0.000 0.939±0.008

8192 Val loss 3.3e-06±3e-07 6.3e-04±9e-04 6.6e-04±9e-04 3.3e-07±9e-08 5.9e-04±8e-04 1.3e-05±1e-06 4.1e-06±2e-07 3.1e-02±1e-03 1.2e-03±5e-05 0.649±0.004
MDL 8802±99 8687±260 10107±156 14664±464 14487±426 9801±489 8902±175 10001±291 7310±175 0.519±0.043
SDL, 𝜀=1 5262±99 5144±262 6564±155 11124±464 10944±426 6261±489 5362±175 6343±287 3766±175 0.509±0.043
𝜀SC, 𝜀=1 7372±0 7372±0 7372±0 7372±0 7372±0 7372±0 7372±0 7372±0 7372±0 -
SynTextBench 0.152±0.001 0.156±0.001 0.148±0.002 0.130±0.001 0.122±0.000 0.129±0.002 0.196±0.001 0.085±0.003 0.223±0.001 0.968±0.006

16384 Val loss 2.3e-03±2e-03 9.5e-04±7e-04 7.2e-04±1e-03 6.6e-04±9e-04 1.2e-03±9e-05 8.2e-04±1e-03 2.2e-03±2e-03 2.1e-01±3e-02 2.3e-02±9e-04 0.605±0.007
MDL 15840±436 15253±455 18039±778 26004±879 25606±767 16629±117 15465±349 16794±440 11895±89 0.506±0.032
SDL, 𝜀=1 9266±429 8689±458 11477±786 19443±887 19040±767 10066±118 8891±365 8525±383 5153±93 0.425±0.021
𝜀SC, 𝜀=1 14745±0 14745±0 14745±0 14745±0 14745±0 14745±0 14745±0 14745±0 14745±0 -
SynTextBench 0.161±0.000 0.164±0.001 0.161±0.001 0.145±0.000 0.141±0.001 0.137±0.000 0.198±0.001 0.087±0.001 0.227±0.001 0.958±0.002

32768 Val loss 6.4e-03±8e-04 4.2e-03±2e-03 4.1e-03±3e-04 3.1e-02±1e-02 3.0e-03±7e-04 1.4e-02±2e-03 1.1e-02±1e-02 4.7e-01±2e-02 2.9e-01±1e-02 0.267±0.018
MDL 27667±294 25793±898 29577±253 43955±1616 39692±1520 27151±33 27546±646 28930±471 21999±88 0.481±0.029
SDL, 𝜀=1 15417±282 13581±927 17367±252 31282±1860 27501±1518 14775±50 15214±489 9442±195 6076±106 0.311±0.008
𝜀SC, 𝜀=1 29491±0 29491±0 29491±0 29491±0 29491±0 29491±0 29491±0 12139±0 12139±0 -0.044±0.000
SynTextBench 0.170±0.001 0.169±0.000 0.173±0.001 0.158±0.001 0.156±0.000 0.140±0.001 0.202±0.000 0.092±0.001 0.230±0.000 0.934±0.002

Table B.15: The detailed SentEval linear probing performance. For STS tasks, we
report Spearman’s correlation (%), and for Transfer task, we report the standard
accuracy (%).

STS tasks Transfer tasks
Models STS12 STS13 STS14 STS15 STS16 STS-B SICK-R MR CR SUBJ MPQA SST TREC MRPC avg.

BERTbase 54.44 58.03 58.86 67.94 68.42 53.88 62.06 82.98 89.56 95.43 89.92 85.45 89.8 74.03 83.50
DiffCSE-B 68.88 76.21 73.88 79.76 78.84 75.51 67.70 82.2 88.11 95.44 91.03 84.46 88 75.71 86.81
BERTlarge 53.33 56.86 56.23 63.43 66.69 54.43 58.06 85.96 89.59 96.43 90.96 89.13 91.8 73.16 83.68

T5base 58.18 63.78 64.14 71.83 68.94 60.17 58.77 80.54 88.34 93.04 89.73 81.27 85.8 67.36 82.78
T5large 58.34 62.59 63.50 71.36 67.88 59.67 58.02 79.31 86.86 93.53 90.43 80.72 82.8 68.75 82.36

RoBERTabase 57.28 55.21 59.76 69.22 64.64 58.55 61.63 84.08 86.91 95.63 89.52 88.25 91.6 74.49 83.83
DiffCSE-R 69.77 78.70 76.08 81.75 80.86 81.17 70.34 84.75 90.99 95.2 89.75 87.92 89.4 77.28 88.19

GPT 44.16 23.99 34.73 40.78 55.11 41.05 43.65 81.08 88.53 92.81 87.87 86.6 93 70.49 78.01
ST5 74.32 82.83 81.50 86.14 85.95 86.04 79.76 85.88 91.81 94.4 91.09 90.88 95.8 74.26 90.17

B.4.2 Full results of Section 6.3.3

In-context learning. We evaluate the few-shot in-context learning (ICL) perfor-

mance on SentEval transfer tasks and SynTextBench synthetic task. We do not include

STS tasks since they are typically measured by cosine distance, whose ICL prompts

are less obvious to us. We also excluded TREC as we have not found proper prompts

that could lead to reasonable accuracy.
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Figure B-8: The accuracy and robustness (average number of perturbed words)
performance of pretrained models on SentEval tasks.

Table B.16: The detailed SentEval linear probing performance on decoder models. For
STS tasks, we report Spearman’s correlation (%), and for Transfer tasks, we report
the standard accuracy (%).

STS tasks Transfer tasks
Models STS12 STS13 STS14 STS15 STS16 STS-B SICK-R MR CR SUBJ MPQA SST TREC MRPC avg.

LLaMA-7B 10.51 9.68 5.85 2.60 5.87 15.58 15.01 71.20 75.87 87.59 81.94 77.59 62.80 64.12 64.55
LLaMA-13B 12.08 7.05 2.86 -0.84 7.38 3.50 10.93 70.88 77.06 88.04 81.53 76.77 64.00 63.19 63.78
LLaMA-30B 7.04 16.29 5.39 3.12 5.04 16.02 14.77 71.99 78.12 88.81 82.53 76.44 61.00 60.70 64.53
LLaMA-2-7B 11.95 22.85 10.85 16.31 44.42 20.13 47.17 91.07 91.95 97.30 89.22 94.78 96.80 67.88 76.13
LLaMA-2-13B 21.80 33.07 18.79 19.31 50.67 33.84 50.83 92.03 92.32 97.70 89.72 95.61 97.20 70.38 78.51

OPT-13B 24.20 40.78 24.91 25.75 56.70 39.44 51.32 91.23 92.45 97.13 89.28 95.00 96.80 72.58 79.72
OPT-30B 24.63 38.83 22.25 26.00 57.93 39.95 52.17 91.36 92.71 97.28 89.39 95.11 97.00 68.41 79.44

Table B.17: Pearson correlation comparison between real-data-free evaluation methods
and the average linear probing accuracy on the real-world tasks of decoder models.
Since the smaller the Val loss, MDL, SDL and 𝜖SC, the better, we add a negative sign
in front of them when calculating the Pearson correlation coefficient.

𝑛 Name LLaMA-7B LLaMA-13B LLaMA-30B LLaMA-2-7B LLaMA-2-13B OPT-13B OPT-30B Pearson
Real-life acc. 64.55 63.78 64.53 76.13 78.51 79.72 79.44 1.0

8192 Val loss 0.036141 0.149492 0.075583 0.000002 0.0 0.010351 0.00362 0.803
MDL 8114.26 7434.78 6920.22 10331.5 9331.91 7874.07 7589.82 -0.466

SDL, 𝜀 = 1 4435.77 3321.93 3090.58 6791.49 5791.91 4294.41 4035.95 -0.548
𝜀SC, 𝜀 = 1 7372 7372 7372 7372 7372 7372 7372 -

SynTextBench 0.062 0.027 0.048 0.097 0.075 0.089 0.093 0.871

The instructions we give include two demonstrations with one demonstration for

each class. For example, in CR (customer review), we use the instruction: “Answer

the sentiment of the following review, either Positive or Negative. \n\nQ: We tried it

out christmas night and it worked great .\nA: Positive\n\nQ: very bad quality .\nA:
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Negative\n\n”.

We give the ICL accuracy in Appendix Table B.18. In Table B.19, we calculate

the correlation between the ICL accuracy on SynTextBench synthetic tasks and the

average ICL accuracy on subset SentEval tasks. We can see that the ICL accuracy on

SynTextBench synthetic tasks shows strong correlation (above 0.8) with ICL accuracy

on SentEval tasks. Future research will also be dedicated to investigate whether the

success of SynTextBench can be explained by its ability to check the compositional

features (e.g.induction head [129]) of transformers.

Table B.18: The detailed subset SentEval in-context learning accuracy on decoder
models.

Transfer tasks
Models CR MR MPQA SUBJ SST2 MRPC avg.

LLaMA-7B 85.35 90.49 74.34 48.97 88.47 53.86 73.58
LLaMA-13B 91.07 62.78 70.07 50.02 69.74 66.20 68.31
LLaMA-30B 91.97 92.60 83.77 50.01 95.83 66.26 80.07
LLaMA-2-7B 90.83 53.25 47.06 81.60 71.00 66.49 68.37
LLaMA-2-13B 91.84 91.92 80.26 52.73 95.55 66.49 79.80

OPT-13B 90.01 69.66 69.92 49.85 76.99 66.49 70.49
OPT-30B 90.78 82.04 63.56 50.00 87.10 66.61 73.35

Table B.19: Pearson correlation comparison between the in-context learning accuracy
on SynTextBench synthetic tasks and the average in-context learning accuracy on the
real-world tasks of decoder models.

𝑛 Name LLaMA-7B LLaMA-13B LLaMA-30B LLaMA-2-7B LLaMA-2-13B OPT-13B OPT-30B Pearson
Real-life acc. 73.58 68.31 80.07 68.37 79.80 70.49 73.35 1.0

8192 SynTextBench 50.82 53.43 59.09 51.48 58.83 52.87 51.79 0.813

B.4.3 List of stop words

{‘must’, ‘meanwhile’, ‘among’, ‘same’, ‘you’, ‘formerly’, ‘already’, ‘take’, ‘he’, ‘there-

upon’, ‘done’, ‘anyhow’, ‘almost’, ‘ca’, ‘regarding’, ‘will’, ‘mostly’, ‘say’, ‘again’, ‘forty’,

‘seemed’, ‘still’, ‘they’, “re’, ‘seem’, ‘latter’, ‘why’, ‘hers’, ‘thereby’, ‘themselves’, ‘your’,

‘nine’, ‘become’, ‘may’, ‘beyond’, ‘it’, ‘back’, ‘our’, ‘himself’, “m’, ‘via’, ‘we’, ‘seems’,

‘throughout’, ‘yourself’, ‘bottom’, ‘only’, ‘whereby’, ‘move’, ‘else’, ‘front’, ‘within’, ‘af-

ter’, ‘every’, ‘quite’, ‘hereby’, ‘now’, ‘since’, ‘became’, ‘herself’, ‘behind’, ‘any’, ‘those’,

‘used’, ‘indeed’, ‘’ve’, ‘first’, ‘moreover’, ‘ourselves’, ‘she’, ‘should’, ‘her’, ‘various’,

‘few’, ‘hundred’, ‘whoever’, ‘give’, ‘latterly’, ‘between’, ‘in’, ‘most’, ‘make’, ‘sixty’,
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‘therefore’, "’s", ’hence’, ‘amount’, ‘otherwise’, ‘’m’, ‘’re’, ‘’s’, ‘are’, ‘could’, ‘along’,

‘ours’, ‘of’, ‘that’, ‘everywhere’, ‘during’, ‘his’, ‘then’, ‘fifty’, ‘namely’, ‘when’, ‘around’,

‘all’, ‘keep’, ‘these’, ‘’ll’, ‘third’, ‘being’, ‘thus’, ‘more’, “s’, ‘is’, ‘where’, ‘further’, ‘them’,

‘towards’, ‘next’, ‘and’, ‘a’, ‘does’, ‘here’, ‘ten’, ‘whom’, ‘except’, ‘myself’, ‘somehow’,

‘ever’, ‘enough’, ‘there’, ‘mine’, ‘other’, ‘so’, ‘hereupon’, ‘who’, ‘eight’, ‘one’, ‘hereafter’,

‘amongst’, ‘seeming’, ‘its’, ‘each’, ‘sometime’, ‘this’, ‘me’, “ll’, ‘until’, ‘him’, ‘because’,

‘many’, ‘anyway’, ‘part’, ‘from’, ‘have’, ‘over’, ‘to’, "’re", ’becomes’, ‘too’, ‘as’, ‘name’,

‘whence’, ‘whole’, ‘herein’, ‘everything’, ‘against’, ‘call’, ‘upon’, ‘both’, ‘i’, ‘whenever’,

‘across’, ‘anywhere’, ‘six’, ‘us’, ‘thereafter’, ‘also’, ‘former’, ‘whither’, ‘whose’, ‘such’,

‘really’, ‘was’, ‘’d’, ‘someone’, “ve’, ‘eleven’, ‘wherein’, ‘yours’, ‘by’, ‘their’, ‘beside’,

‘or’, ‘re’, ‘has’, ‘off’, ‘which’, ‘put’, ‘whether’, ‘per’, ‘four’, ‘whereafter’, ‘often’, ‘doing’,

‘had’, ‘out’, ‘some’, ‘fifteen’, ‘others’, ‘once’, ‘somewhere’, ‘either’, ‘besides’, ‘though’,

‘been’, ‘do’, ‘very’, ‘thru’, ‘go’, ‘please’, ‘sometimes’, "’ll", ’perhaps’, ‘whereupon’,

‘whatever’, ‘about’, ‘for’, ‘itself’, ‘thence’, ‘at’, ‘how’, ‘made’, ‘three’, ‘might’, ‘another’,

‘did’, ‘alone’, ‘elsewhere’, ‘toward’, ‘were’, ‘would’, ‘due’, ‘what’, ‘an’, ‘wherever’, ‘be’,

‘can’, ‘something’, ‘side’, "’d", ’with’, "’m", ’am’, ‘therein’, ‘into’, ‘through’, "’ve",

’everyone’, ‘on’, ‘my’, ‘even’, ‘own’, ‘see’, ‘several’, ‘two’, ‘afterwards’, ‘show’, “d’,

‘beforehand’, ‘nowhere’, ‘becoming’, ‘last’, ‘onto’, ‘the’, ‘yourselves’, ‘five’, ‘anyone’,

‘together’, ‘before’, ‘always’, ‘get’, ‘using’}

B.4.4 Experimental details

When we calculate the correlation between real-data-free evaluation methods and

real-world task robustness-accuracy performance, we need to aggregate two metrics -

accuracy and robustness. For this purpose, we can obtain a ranking of the models

according to the accuracy measure, 𝑅1, and a ranking of the models according to the

robustness measure, 𝑅2. We aggregate two rankings by the simple and commonly-used

mean aggregation1 which yields the overall ranking of models based on accuracy-

1Wald, R., Khoshgoftaar, T.M. and Dittman, D., 2012, December. Mean aggregation versus robust
rank aggregation for ensemble gene selection. In 2012 11th international conference on machine
learning and applications (Vol. 1, pp. 63-69). IEEE.
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robustness performance, 𝑅ref. On the other hand, we can obtain another ranking of

models based on one of the real-data-free evaluation methods (e.g. Val loss, MDL,

SDL, 𝜖SC, SynTextBench), 𝑅. Lastly, we calculate the Pearson correlation coefficient

between 𝑅 and 𝑅ref.

Moreover, when we calculate the robustness measures, we only perform attacks

on Transfer tasks as they are classification tasks where adversarial attacks are well-

defined. Since we use the average number of perturbed words by PWWS attacks [151]

as the robustness indicator, we also excluded MPQA and TREC due to their short

sentence lengths (MPQA and TREC average sentence lengths are 3.03 and 6.48,

respectively). PWWS attacks focus on the text adversarial example generation that

could guarantee little semantic shifting and therefore rarely cause ground truth label

change (also lexical and grammatical correctness). To meet the semantic constraint,

PWWS replaces words in the input texts with synonyms and replace named entities

(NEs) with similar NEs to generate adversarial samples. Synonyms for each word can

be found in WordNet, a large lexical database for the English language. NE refers to

an entity that has a specific meaning in the sample text, such as a person’s name, a

location, an organization, or a proper noun. Replacement of an NE with a similar NE

imposes a slight change in semantics but invokes no lexical or grammatical changes.

We list the robustness results in the following table:

Table B.20: The robustness (average number of perturbed words) of pretrained
representations on Transfer tasks.

Models MR CR SUBJ SST MRPC avg.
BERTbase 14.48 13.99 20.2 15.07 5.45 13.838
DiffCSE-B 14.46 14.7 18.64 15.19 6.39 13.876
BERTlarge 14.3 14.22 19.87 15.46 5.26 13.822

T5base 12.71 12.82 16.8 13.66 5.05 12.208
T5large 13.67 14.28 16.93 13.82 5.17 12.774

RoBERTabase 16.4 18.35 20.74 17.26 7.12 15.974
DiffCSE-R 15.72 16.07 18.53 16.82 5.68 14.564

GPT 12.53 13.11 15.75 13.52 5.17 12.016
ST5 13.6 13.08 18.36 14.22 6.9 13.232

We also list the ranking of models from different metrics in the following table.

For example, to calculate SynTextBench correlation with robustness-and-accuracy

performance, we calculate the Pearson correlation between (row “Overall accuracy” +
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Table B.21: Ranking of models from different metrics at 𝑛 = 8192.
Name BERTbase DiffCSE-B BERTlarge T5base T5large RoBERTabase DiffCSE-R GPT ST5
Overall accuracy 6 3 5 7 8 4 2 9 1
STS accuracy 7 3 8 4 5 6 2 9 1
Transfer accuracy 5 6 2 8 9 4 3 7 1
Robustness 4 3 5 8 7 1 2 9 6
Val loss 8 4 3 9 5 6 7 1 2
MDL 7 8 3 1 2 5 6 4 9
SDL, 𝜀=1 7 8 3 1 2 5 6 4 9
𝜀SC, 𝜀=1 5 5 5 5 5 5 5 5 5
SynTextBench 4 3 5 6 8 7 2 9 1

row “Robustness”) / 2 and “SynTextBench”. To calculate SynTextBench correlation

with robustness-and-STS accuracy performance, we calculate the Pearson correlation

between (row “STS accuracy” + row “Robustness”) / 2 and “SynTextBench”. To calcu-

late SynTextBench correlation with robustness-and-Transfer accuracy performance,

we calculate the Pearson correlation between (row “Transfer accuracy” + row “Robust-

ness”) / 2 and “SynTextBench”. We note that in all our results prior to Table B.21, we

always infer the correlation in individual runs before we take an average over all trials.

Different from that, the rankings from Val loss, MDL, SDL, 𝜖SC, and SynTextBench

in Table B.21, are inferred from the average metric results over 3 trails for an easier

illustration. Therefore, the ranking correlation suggested by the table might have

some deviation from what is shown in Table 6.3.
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