
Parameterized Relaxations for Circuits and Graphs

by

Shyan Akmal
B.S. Harvey Mudd College (2019)

S.M. Massachusetts Institute of Technology (2021)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2024

© 2024 Shyan Akmal. This work is licensed under a CC BY-NC-ND 4.0 license.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by: Shyan Akmal
Department of Electrical Engineering and Computer Science
May 17, 2024

Certified by: Virginia Vassilevska Williams
Professor of Electrical Engineering and Computer Science, Thesis Supervisor

Certified by: Ryan Williams
Professor of Electrical Engineering and Computer Science, Thesis Supervisor

Accepted by: Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

https://creativecommons.org/licenses/by-nc-nd/4.0/

2

Parameterized Relaxations for Circuits and Graphs
by

Shyan Akmal

Submitted to the Department of Electrical Engineering and Computer Science
on May 17, 2024 in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

ABSTRACT

What makes some problems hard to solve, and others easy? In situations where complexity-
theoretic hypotheses rule out the possibility of fast algorithms for problems, are there
nonetheless instances for which we can evade intractability and still design efficient algo-
rithms? In this thesis, we investigate these questions from the perspective of parameterized
relaxations. We consider important computational problems on circuits and graphs, and
design fast algorithms for relaxed versions of these tasks, that highlight tractable instances
of problems which are provably hard in general.

On circuits, we tackle the Majority-SAT problem, a task related to counting solutions to
Boolean formulas in conjunctive normal form (i.e., CNF formulas), which has been extensively
studied in areas related to probabilistic planning and inference. It has been known since the
problem’s introduction in the 1970s that Majority-SAT is complete for the class PP(intuitively,
the complexity class of decision versions of counting tasks, believed to contain very difficult
problems), and so under standard conjectures in complexity theory, cannot be solved in
polynomial-time. We nonetheless show however, that Majority-SAT can be solved in optimal
linear time when its inputs are restricted to be k-CNF formulas (i.e., CNF formulas where
every clause width at most k), for any constant integer k ≥ 1. This is surprising, since most
circuit satisfiability problems remain hard even when restricted to 3-CNF formulas. Indeed,
prior to our work, it was widely conjectured that Majority-SAT should be PP-complete on
3-CNFs. Beyond overturning this conjecture, we also characterize the complexity of many
additional variants of Majority-SAT on bounded width formulas.

On graphs, we tackle the All-Pairs Connectivity and Disjoint Shortest Paths problems.
In the All-Pairs Connectivity (APC) problem, we are given an unweighted, directed graph

G on n vertices, and are tasked with computing the maximum flow between each pair of
vertices in G. Despite significant research on the problem, the fastest algorithm for APC in
dense directed graphs is the naive n4+o(1) time approach, which simply runs a fast maximum
flow algorithm separately for each pair of nodes. Moreover, the Strong Exponential Time
Hypothesis (SETH) implies that APC cannot be solved in truly subcubic time. We consider a
relaxation of APC, the k-Bounded All-Pairs Connectivity (k-APC), problem for integer k ≥ 1,
where for each pair of nodes (s, t) in G, we must compute the maximum flow from s to t
exactly if the maximum flow value is less than k, but if the maximum flow is at least k we
merely need to report that the flow value is “large” instead of computing its exact value. We
present an algorithm solving k-APC in Õ((kn)ω) time, where ω < 2.3716 is the exponent of
matrix multiplication. This is subcubic even for small k (evading the SETH lower bound

3

for the general APC problem), and runs in Õ(nω) time for all constant k, which is already
optimal for the 1-APC problem under conjectures in fine-grained complexity. Before our
work, no algorithm was even known for 3-APC that ran faster than an algorithm simply
solving the general APC problem directly.

In the Disjoint Shortest Paths (DSP) problem, we are given a graph G on n vertices, with
specified source nodes s1, . . . , sk and target nodes t1, . . . , tk, and are tasked with determining
if G contains internally vertex-disjoint si ⇝ ti shortest paths. This problem is NP-hard in
general, if k can grow with n. We study k-DSP, the DSP problem parameterized by the
number of terminal pairs, for small k. We show that 2-DSP can be solved in optimal linear
time over weighted undirected graphs and directed acyclic graphs. Prior to our work, the
fastest algorithm for 2-DSP over weighted undirected graphs took O(n7) time, and the fastest
algorithm over weighted, dense directed acyclic graphs took O(n3) time.

Thesis supervisor: Virginia Vassilevska Williams
Title: Professor of Electrical Engineering and Computer Science

Thesis supervisor: Ryan Williams
Title: Professor of Electrical Engineering and Computer Science

4

Acknowledgments

A Palleseen writer once described the world of superstition and unreason
they were bringing perfection to as ‘the Great Night’, contrasted with the
clarity of their rational sun. Which writer was subsequently excised from
the Pal canon because personification of an abstract is in itself irrational.
Nonetheless, the night persists.

Adrian Tchaikovsky, House of Open Wounds

In this Great Night, there are many lights I am grateful to.
Naturally, I’d like to begin by thanking Virginia Vassilevska Williams and Ryan Williams

for being phenomenal advisors. Each of them brings a poise, intellectual strength, and clarity
of thought I find admirable and inspiring. They have both provided me with excellent guid-
ance, engagement, and encouragement, and have helped me cultivate a deeper appreciation
for many topics in theoretical computer science. There have been many times I felt unsure
about whether I was cut out for research, but after a quick conversation with Virginia or
Ryan I felt refreshed, and eager to tackle any problem that came my way.

I also thank Ronitt Rubinfeld for agreeing to be the third member of my thesis committee.
Ronitt was one of the first faculty members I met at MIT, and since that time has consistently
remained one of the friendliest people I’ve talked with in grad school. I also appreciate the
many opportunities she gave me to practice lecturing while I was the teaching assistant in her
sublinear-time algorithms course, and the help she provided with postdoctoral applications.
Additionally, I thank Joanne Hanley, Ronitt’s admin, for being very helpful in facilitating
communication with Ronitt.

Rationally, I thank Ce Jin, Yinzhan Xu, Rahul Ilango, Nicole Wein, Surya Mathialagan,
Zixuan Xu, Andrea Lincoln, Jenny Kaufmann, Lijie Chen, Caleb Robelle, Yael Kirkpatrick,
Jiatu Li, and Ted Pyne for being excellent academic siblings. Despite some of their individ-
ually nonzero fraction parts, they have all been an integral part of my time at MIT.

Ce has been a phenomenal collaborator. I’ve greatly enjoyed the time I’ve spent thinking
about problems with him, and hope we find chances to continue working together in the
future. I also thank him for willing to join me for complicated board games. Yinzhan has
shown me many cool graph theory ideas, distracted me with silly math problems on at least
one long train ride, defeated me in Time Travel Chess and Beast many times in the past (and
hopefully in the future), cooked me nice food, and has overall been an excellent friend these
past five years. Rahul has been one of the friendliest faces in the theory group, and I thank
him for making the office a warmer place. I greatly appreciate his consistency in asking
people what the dependence of the parameter k is in their results. Nicole is one of the nicest

5

people I met at MIT. She was a major part of what made the theory group so welcoming
when I first joined. I’ve learned a lot from collaborating with her, and admire how effectively
and systematically she is able to extract meaningful structure from seemingly complicated
graph theoretic objects. Nicole also introduced me to the game Bean and Nothingness, which
I have had a lot of fun with—Bean Studies is no joke. Surya made the theory group a fun
and funnier place. I appreciate her infectious sense of humor and willingness to share lots
of cool art. I also thank her for being someone I could talk about Pokémon with. I thank
Zixuan for fun collaborations, and for sharing my interest in algebraic techniques.

For algebraic reasons, I thank Sandeep Silwal, Justin Chen, Anthimos-Vardis Kandiros,
Dhruv Rohatgi, and Noah Golowich. Sandeep is a person who acts as positive force in many
people’s lives. I thank him for always being willing to tell me about cool applications of
polynomials, joining me for board games, sleeping through board games, consistently telling
his audiences to not ask him any questions (and then clarifying that was supposed to be a
joke), and overall shaping the theory group to be fun and welcoming community. Justin is a
kind soul I feel lucky to have met in grad school. I thank him for many nice walks, pleasant
conversations, experimental movie nights, and memorable board game victories and losses.
I thank Vardis for joining me for lots of fun events throughout grad school, agreeing with
me about food preferences, and reimbursing me before he fled to California. I thank Dhruv
Rohatgi for showing me there exist MIT students with good taste in books. Getting to
corner Dhruv and talk with him about science fiction and fantasy was a frequent highlight
of theory group events for me. I thank Noah Golowich for nice conversations at MIT and,
together with Rahul Ilango, for gifting me a matrix multiplication meme that one time.

For reasons of prime importance, I thank Abrar Haque, Hamzah Ahmed, Adeeb Chowd-
hury, Areeb Alam, Farhan Habib, and Zain Hannan, for many fun times over the past two
decades. Abrar has been an incredibly supportive friend, who never fails to make me laugh.
Hamzah has been an incredibly supportive friend, who frequently fails to make me laugh.
Nonetheless, I appreciate the creative math memes and silly conversations he brings to the
table. I thank Adeeb for hosting Thanksgivings at his place in New York, giving me lots of
science fiction and film recommendations over the years, and making me laugh by calling
me a fish tank. Areeb was one of my first friends, and having him nearby at Harvard made
life in grad school much better. I thank Farhan for hosting a Thanksgiving at his home that
was one of the best vacations I have had in the past five years, and being someone I can talk
about cool fiction with. I thank Zain for being someone I can nerd out about board games
with, and for being the best dungeon master I could ask for. I greatly appreciate the impact
all these people have had on my life.

For transcendental reasons, I thank Karina Cho, Jordan Haack, Chi-Ning Chou, and
Amir Abboud. Karina has been a great friend, and I appreciate her well wishes over the
years in grad school. Much of my own values in mathematics and pedagogy have been
shaped by talking with her and seeing her work. I also thank her for gifting me some art
which cheers me up everyday. Jordan is someone I always appreciate getting to talk with
math about. I thank him for the many fun times and fond memories. I thank Chi-Ning for
being a welcoming presence when I stopped by the Harvard theory group. I thank Amir for
being an approachable researcher during my first year as a grad student, and a friendly face
in virtual conferences during the lockdown era. I feel fortunate to have talked with him so
early in my grad school career, and look forward to working with him in the near future.

6

I’d really like to thank the MIT libraries staff for buying me forty books while I was a
graduate student, and helping me procrastinate on research.

For complex reasons (but none purely imaginary), I thank Sakib Haque, Tejas Jayashankar,
and Uma Ilavarasan. Sakib has been a great friend over the years, who has checked up on
me when others would not think to. I appreciate his thoughtfulness and sense of humor, and
look forward to many more delightful conversations in the years to come. Tejas has been a
reliable source of joy in difficult times. One of the main downsides of leaving Massachusetts
is that I will not be able to see him as frequently. I thank him for fun outings, board games,
movies, meals, and advertising my fun fact about stop signs on π day that one time. Uma
has been a lively and positive presence in Massachusetts. I feel fortunate that, like Areeb, she
joined Harvard nearby MIT. I thank her for fun feline photos, dramatic games of Betrayal,
invigorating games of Spirit Island, and lots of good food.

For surreal reasons, I thank Dylan McKay for suggesting I watch Cowboy Bebop, Adam
Busis for doing his best to prevent me from learning how to integrate, Manasi Vyas for liking
my Goodreads updates, and Charles Leiserson for offering lots of meaningful work and life
advice that I will take with me into the future (and also being a graduate counselor who let
me do whatever I wanted).

For digital reasons, I thank Ce Jin for pointing out several mistakes in an earlier version of
this thesis; Laura Brandt for offering extensive comments which helped improve the writing
of this thesis; Ryan Williams for proofreading part of this thesis; and Sepehr Assadi and
Jason Li for help with LATEX.

For reasons of human flourishing, I thank Mohamed Omar, Jim Boerkoel, JJP Veerman,
Ran Libeskind-Hadas, and Francis Su for being inspiring mentors.

With high probability, I’d almost surely like to thank Abhijit Mudigonda, Allen Liu,
Lijie Chen, Laura Brandt, Kwangjun “KJ” Ahn, Nicholas Draper, Jingnan Shi, Vivaswat
Ojha, and Aviad Rubinstein. I thank Abhijit for visiting me at MIT several times, attending
my defense virtually, and for sharing fun computer science and puzzle links with me. I
also appreciate him humoring my many complaints over the years. I thank Lijie for some
nice meals and board games during grad school, and technical writing advice that I have
found very helpful. I thank Laura for introducing me to many cats, fun board games, cool
restaurants, interesting books, and begin a good friend. I thank KJ for nice conversations
and telling me about areas of computer science outside my specific area of research.

For satisfying reasons, I thank Quinten Tupker, Till Tantau, and Olaf Beyersdorff for a
nice discussion at Dagstuhl Seminar 23111, which gave rise to Theorem 4.19 in this work.

For reflective reasons, I thank James B. Wilson, Abhijit Mudigonda, Andrea Lincoln,
Nicole Wein, Ivan Mihajlin, Alexander S. Kulikov, and Ray Li for placing me in the acknowl-
edgements sections of their works [DW22, MW21, Lin20, Wei21, BGK+23, HL23, BW24].

For recursively enumerable reasons, I thank my extended family—grandparents, aunts,
uncles, cousins, and beyond—for cheering me on through my PhD years.

For p-adic reasons, I thank Tahsin Saffat. Tahsin is the stone in the pond whose ripples
brought me here. I only got interested in mathematics because I saw how fascinated Tahsin
was with it. He has been one of the most supportive and insightful people in my life,
and his intellectual curiosity continues to be an inspiration to me. My gratitude to him is
endless. Whether he is pontificating about the Langlands program, sharing a cool puzzle,
insisting that “child’s drawings” is an appropriate term for an embedding, moping because

7

https://www.dagstuhl.de/23111

he drew Elemental Boon and Powerstorm in the same turn of Spirit Island, pondering the
existential philosophy of Albert Camoose, expressing confusion, or earnestly explaining to
me how high-dimensional spaces really exist , I cherish every moment I have had with
him, and hope for many more. As we both venture into this Great Night, may we unveil
many beautiful mysteries.

For reasons of cardinal importance, I thank my brothers, Zayan Akmal and Ryaan Akmal,
who have been an immense source of support and entertainment over the past twenty-two
years. Zayan contains multitudes, and is a great joy to talk with. I appreciate how he sends
me wild math ideas he has, tells me about the nexus between physics and chemistry, conveys
postmodern comedy that I cannot begin to appreciate, and shares the aspects of life that
he enjoys. Ryaan contains, if not multitudes, then at least two tudes (which is more than
enough for anyone). Conversations with him over Zoom have helped keep me sane in grad
school. I appreciate his willingness to dive deep into themes across fiction, share what is
going on in his life, listen compassionately, and take initiative to make the lives of those
around him better. My life would be unrecognizable and impoverished without them, and I
thank them both for all they have done.

For transfinitely many reasons, I thank my mother, Nahid Farhana, and my father, Sayeed
Akmal. The biggest blessing in my life is having these two as parents. No matter how far I
am in the world, my home is where my mother is. Throughout undergrad and grad school,
my mom is the one who has most consistently called and messaged me, to check in on how
I am doing. I am proud of her for having completed her own graduate degree faster than I
completed mine, and thank her for helping me feel loved at all times. My dad has similarly
provided me with a gargantuan level of support. He has always believed more in my abilities
than I have, and I appreciate the confidence he has in me. In recent years, I have greatly
enjoyed bonding with him over science fiction books and movies. I thank him and my mom
for instilling me with positive values. The depth of my gratitude for all the moments we
have spent together, big and small, remembered and forgotten, is a well that cannot run dry.
I thank my parents for being the best role models I could ask for.

8

Contents

Title page 1

Abstract 3

Acknowledgments 5

1 Introduction 13
1.1 Overview of Results . 15

Circuits . 15
Graphs . 16

1.2 Organization . 19
Bibliographic Notes . 19

1.3 General Preliminaries . 19

I Circuits 21

2 Meeting Majority Satisfiability 23
2.1 Complexity Classes and Complete Problems 23

The Significance and Intractability of Majority-SAT 27
2.2 Formulas of Bounded Width . 30

Reducing Width for SAT and #SAT . 31
Barriers to Reducing Width for Majority-SAT 32

2.3 Helpful Facts . 33
2.4 Organization . 36

3 Algorithms for Threshold Satisfiability 37
3.1 Threshold 2SAT . 37
3.2 Threshold 3SAT . 40
3.3 Threshold kSAT . 51
3.4 Commentary on Algorithms . 66

Exact Parameterized Complexity . 66
Regularity . 67

4 Variants of Threshold Satisfiability 71
4.1 Strict Thresholds . 71
4.2 Limited Long Clauses . 77

9

4.3 Existential . 81
4.4 Inference . 85

5 Open Problems 91

II Graphs 97

6 Algebraic Framework 99
What’s this chapter useful for? . 100
Organization . 100

6.1 Preliminaries . 100
6.2 Enumerating Families of Walks . 101

Node-Based . 101
Edge-Based . 102

6.3 Formal Power Series . 102

7 Connectivity 107
7.1 Overview . 107
7.2 Edge Connectivity . 112

Exact . 113
Bounded . 122

7.3 Vertex Connectivity . 132
All-Pairs . 142
Global . 148

7.4 Open Problems . 154

8 Disjoint Shortest Paths 163
8.1 Overview . 163

Organization . 165
8.2 Preliminaries . 166
8.3 General Ideas . 168

Subpath Swapping . 172
8.4 Directed Acyclic Graphs . 176
8.5 Undirected Graphs . 179

Shortest Paths Structure . 179
Agreeing Paths . 181
Disagreeing Paths . 185

8.6 Additional Consequences . 196
Finding Disjoint Shortest Paths . 196
Edge-Disjoint Paths . 197

8.7 Open Problems . 199

9 Conclusion 205

References 207

10

List of Figures

1 The Suffix Swapping Argument for Determinants 117
2 Low-Rank Enumeration . 125
3 Unique Decoding of Monomials . 127

4 Count the Complement . 171
5 Swapping Subpaths . 173
6 Casework on the First Intersection . 176
7 Relaxing Global Disjointness to Local Distinctness 177
8 Reversing Paths in an Undirected Graph . 180
9 Swapping Subpaths in Undirected Graphs 188
10 Subpath Swaps Can Have Odd Orbit Size on Triples of Paths 201

11

12

Chapter 1

Introduction

. . . here I am . . . crammed with ideas, and visions, and so on, and can’t dislodge them,
for lack of the right rhythm. Now this is very profound, what rhythm is, and goes far
deeper than words. A sight, an emotion, creates this wave in the mind, . . . and then,
as it breaks and tumbles . . . it makes words to fit.

Virginia Woolf, The Letters of Virginia Woolf: Volume Three

The ground of our experience is dark, and all our
inventions start in that darkness. From it, some of
them leap forth in fire.

Urusula K. Le Guin, The Wave in the Mind

Let me plant a seed . . . and when you come back,
we’ll see what has grown.

Mark Lawrence, The Book That Wouldn’t Burn

Sometimes the problems we face feel impossible to solve. This is especially true in theoret-
ical computer science, where impossibility results present a major obstacle to designing faster
algorithms. Conjectures from complexity theory imply that, for many important computa-
tional tasks, existing (often slow or naive) algorithms are essentially optimal. Nonetheless,
these tasks still need to be solved in practice, and as datasets continue to grow in size, faster
algorithms become more and more necessary. In this thesis, we grapple with this intractabil-
ity by studying parameterized relaxations for foundational computational problems on
circuits and graphs. Studying relaxations of computational tasks is a way of going beyond
worst-case analysis and identifying tractable instances of difficult problems. Besides gaining
a better understanding of which problem instances admit efficient algorithms, this approach
also leads to a deeper structural understanding of the discrete mathematical objects—circuits
and graphs—our algorithms analyze.

13

What is a relaxation?

A relaxation of a computational problem is just an easier version of that task. For a relaxation
to be meaningful, it should still be a mathematically natural and interesting problem, and
solving it should provide useful information, relevant to the goals of the original task.

In this thesis, we explore two ways of relaxing a computational problem.
In the first approach, we relax the possible inputs to a problem, by restricting the space

of instances we are expected to handle. For example, instead of solving a circuit analysis task
on arbitrary formulas from a certain class of circuits, we can relax the problem by restricting
our attention to some interesting subclass of circuits.

In the second approach, we relax the quality of the information we are expected to output
when solving a problem. For example, instead of computing the exact value of a metric, we
may just return some information about the relative size of the metric.

What makes a relaxation parameterized?

A parameterized algorithm is one whose runtime depends on not just the input size n,
but also on an auxiliary parameter k, that bounds the complexity of the problem we are
considering in some way. In the context of relaxations, k can be viewed as a tuning parameter,
which interpolates between easier problem variants (for small k) and the general, possibly
intractable original problem (for large k). For example, k might correspond to a degree bound
on the instances we encounter in the input relaxation of a problem, or might correspond to
a threshold we need to compare the value of a metric to in an output relaxation.

In general, there is a rich, well-developed theory of parameterized complexity in theo-
retical computer science, which studies the runtime dependence of algorithms in both the
parameter k and input size n (see e.g., [CFK+16, FLSZ18]).

Why are parameterized relaxations interesting?

In this thesis, we explore parameterized relaxations for problems that are computationally
intractable under popular conjectures in complexity theory. We design fast algorithms for
these relaxations. In doing so, we identify parameters of interest k related to the prob-
lem structure, and show that the original (in general, intractable) problems can be solved
efficiently for small values of k.

Studying parameterized relaxations in this way lets us more precisely pinpoint the true
source of intractability in these tasks, by tying the difficulty of the tasks to the value of
k. This type of multivariate algorithm design provides a deeper mathematical insight into
which instances of these problems are easier or harder. This is interesting both from the
perspective of theory, where we care about understanding what properties of a structure, such
as a circuit or graph, make certain types of computation difficult or easy on that structure,
and the viewpoint of practice, where we want to know whether real-world instances of the
problems we encounter can be solved faster, potentially using instance-dependent structure.

Below, we present high-level descriptions of our results, and explain how they fit into the
paradigm of parameterized relaxations, discussed above in the abstract.

14

1.1 Overview of Results

We design algorithms for problems on circuits and graphs.

Circuits

Many central questions in computer science involve analyzing the solution spaces of cir-
cuits. Completeness results in theoretical computer science have made understanding the
complexity of circuit analysis problems a cornerstone problem in the field. For example, in
the Satisfiability (SAT) problem, we are given a CNF formula—intuitively, a Boolean formula
defined by a collection of constraints on the variables—and are tasked with determining if
the formula is satisfied—evaluates to true—under some assignment to its variables. SAT is
NP-complete, and so we can use reductions from SAT to show hardness for a plethora of
important combinatorial problems.

Majority-SAT is a variant of SAT, where we are again given a CNF formula, but are now
tasked with determining if at least half of all assignments to the variables of the formula
satisfy it. Majority-SAT is closely tied to the problem of counting satisfying assignments, and
is complete for the class PP, a complexity class which is believed to contain problems much
harder than NP-complete problems. The intractability of Majority-SAT is very important
in subareas of Artificial Intelligence related to logical inference and probabilistic planning,
because reductions from Majority-SAT are the primary way of showing hardness for a variety
of problem of interest which arise in these fields. Given an integer k ≥ 1, a k-CNF formula
is CNF formula where each constraint contains at most k variables—intuitively, the formula
is built out of small “local constraints.”

Due to the centrality of Majority-SAT as a source of hardness in the fields mentioned
above, understanding the complexity of Majority-SAT on k-CNFs for constant k is a research
question which drew significant attention from various communities in computer science,
since hardness for this task would enable researchers to show hardness for various “local”
and “bounded-degree” variants of tasks in inference and planning. In this context, a large
number of papers pointed out that determining the complexity of Majority-SAT on k-CNFs for
k ∈ {2, 3} was open, with many conjecturing that the problem should be PP-hard, or in some
cases erroneously asserting that the problem was known to be PP-hard: [Mun00a, Mun00b,
BDK01, KG05, BDK07, GHM08, KG09, TF10, PLMZ11, Kwi11, FGL12, KdC15a, KdC15b,
MDCC15, CDdB16, CM18, BDPR19, BDPR20]. We show, contrary to these conjectures,
that Majority-SAT can be solved in linear time on k-CNF formulas, for any constant k.

Theorem: Solving Threshold Satisfaction on k-CNFs

For any fixed positive integer k and constant p ∈ (0, 1), there is a linear time algorithm
which takes as input a k-CNF formula φ and determines if Pr[φ] ≥ p. In particular,
Majority-SAT can be solved on k-CNFs in linear time for any constant k.

The core idea behind our algorithm is a regularity lemma for bounded width formulas,
which shows that for any constant k, a k-CNF formula with a large fraction of satisfying
assignments can, after asserting a small number of constraints, be transformed into a formula

15

whose solution space is the disjoint union of the sets of satisfying assignments of 1-CNFs.
Beyond this result, we also consider various generalizations of Majority-SAT on bounded

width formulas, and show how the complexity of these tasks can drastically change even
under seemingly minor modifications to the problem definitions.

From the perspective of parameterized relaxations, we took the intractable problem
Majority-SAT, relaxed the class of inputs it was over to k-CNF formulas, and achieved a prob-
lem we could solve efficiently for any constant k. This result gives us a clearer understanding
of when and why the Majority-SAT problem is hard—the difficulty of the Majority-SAT prob-
lem comes from the presence of clauses of large width in its input formulas.

Graphs

We study problems related to detecting disjoint paths in graphs.

Connectivity

Finding maximum flows is a central problem in computer science, with applications through-
out graph algorithms, operations research, optimal transport, and combinatorial optimiza-
tion. In unweighted graphs (i.e., graphs where edges have unit capacity), the maximum flow
from s to t specializes to a classic measure known as the connectivity λ(s, t) from s to t,
defined to be the maximum number of edge-disjoint s⇝ t paths in G.

In the All-Pairs Connectivity (APC) problem, we are given an unweighted graph G, and are
tasked with computing the connectivity λ(s, t) for all pairs nodes (s, t) in G. Solving APC is
useful for the same reasons that finding maximum flow is useful. APC is relevant for example,
when we want to identify to what extent different parts of a network are well-connected.

In dense, directed graphs, the current fastest algorithm for APC is the completely naive
approach, which simply computes λ(s, t) separately for each pair of nodes (s, t) using a fast
maximum flow algorithm. If G has n nodes and m edges, this algorithms solves APC in
n2m1+o(1) time, since maximum flows can be found in almost-linear time [CKL+22]. More-
over, conjectures in fine-grained complexity imply that solving APC requires n3−o(1) time.

The lack of algorithmic progress for solving APC in general graphs has motivated re-
searchers to study bounded variants of the problem. In this context, for integer k ≥ 1, we
study the k-Bounded All-Pairs Connectivity (k-APC) problem, where we are given the same
input as in APC, but now must merely return the value of min(k, λ(s, t)) for each pair of
nodes (s, t) in G. Intuitively, k represents a cutoff distinguishing between low and high con-
nectivities in G. In k-APC we are expected to compute the values of all low connectivities,
but for pairs with high connectivity we just need to report that the connectivity value is
large instead of computing it exactly. This is relevant in applications where a network is
experiencing edge failures for example, and it is important to identify which pairs of nodes
are in danger of losing their connections because of low connectivity, while for well-connected
nodes knowing their precise connectivity value is not as important.

It has been known since the 1970s that 1-APC can be solved in O(nω) time [FM71], where
ω < 2.3716 is the exponent of matrix multiplication [WXXZ24]. Similarly, 2-APC can be
solved in Õ(nω) time [GGI+17]. However, already for k = 3, it was unknown whether k-APC

16

could be solved faster than the general APC problem! We show that indeed it can, by solving
k-APC for any k in Õ((kn)ω) time.

Theorem: Computing k-Bounded Connectivities

Given a positive integer k and a directed graph G on n vertices, we can compute
min(k, λ(s, t)) for all pairs of vertices (s, t) in G in Õ((kn)ω) time.

For k ≤ n0.2, for example, our k-APC algorithm runs in subcubic time, thereby avoiding
the n3−o(1) time lower bound for the general APC problem. For all constant k, our algorithms
run essentially as quickly as the fastest known algorithm for 1-APC, which is optimal under
certain hypotheses from fine-grained complexity.

Our algorithm is based off an algebraic framework, which enumerates families of edge-
disjoint paths in G using determinants of suitably defined matrices. Beyond the result
mentioned above, we illustrate the flexibility of our enumerative perspective, by showing
how it implies fast algorithms for other bounded variants of APC, such as an all-pairs vertex
connectivity and global minimum vertex-cut problem.

Disjoint Shortest Paths

For integers k ≥ 1, in the k-Disjoint Paths (k-DP) problem, we are given a graph G with
specified source nodes s1, . . . , sk and target nodes t1, . . . , tk, and are tasked with determining
if G contains vertex-disjoint si ⇝ ti paths. For general k, this problem is NP-hard, and thus
unlikely to admit a polynomial-time algorithm. However, for constant k, the k-DP problem
can be solved in almost-linear time [KPS24]. Research in algorithms for k-DP has been
very influential in graph theory because of the connections between this problem and results
around forbidden minors [RS95].

More recently, researchers have studied an optimization variant of k-DP, the k-Disjoint
Shortest Paths (k-DSP) problem, where we are given the same input as in k-DP, but are now
tasked with determining if G contains vertex-disjoint si ⇝ ti shortest paths. Like k-DP,
k-DSP is NP-hard for general k, and so to design polynomial-time algorithms for k-DSP,
researchers have focused on the case of constant k. Unlike k-DP however, where essentially
optimal algorithms are known for all constant k, the exact polynomial-time complexity of
k-DSP remains poorly understood. Suppose G has n vertices and m edges. For all k ≥ 3,
the current fastest algorithms for k-DSP on weighted, directed acyclic graphs (DAGs) run in
O(mnk−1) time [FHW80, BK17], and on unweighted, undirected graphs run in nO(k·k!) time
(with no known results for weighted, undirected graphs) [BNRZ21].

For k = 2, faster algorithms are known: 2-DSP can be solved over weighted undirected
graphs in O(n7) time [Akh20], and unweighted undirected graphs in O(mn) time [BNRZ21].
Nonetheless, these runtimes are still slower than what is known for 2-DP.

We close this gap, by showing that 2-DSP can be solved in optimal linear time over
weighted DAGs and undirected graphs.

17

Theorem: Detecting 2 Disjoint Shortest Paths

We can solve the 2-Disjoint Shortest Paths problem in weighted DAGs and weighted
undirected graphs in linear time.

As with our k-APC algorithm, our 2-DSP algorithms use algebraic techniques, and involve
constructing polynomials which enumerate pairs of vertex disjoint shortest paths in G. Our
arguments observe that the structure of such polynomials simplifies drastically when we work
over fields of characteristic two.

Unifying Themes

The main unifying theme behind our results is that of taking problems that are intractable
in some regime, and identifying parameterized relaxations of those tasks that can be solved
efficiently. Majority-SAT admits no polynomial-time algorithm under the widely-believed
hypothesis that P ̸= PP, but can be solved in optimal linear time on k-CNFs for constant k.
Similarly, k-DSP admits no polynomial-time algorithm assuming P ̸= NP, but can be solved
in optimal linear time for k = 2. APC admits no truly subcubic time algorithm under SETH,
but its output relaxation k-APC can be solved in subcubic time for small k.

Another way to view the results is that rather than trying to design a faster algorithm for
the original problem (which might not be possible under popular conjectures), we identify
a natural relaxation which we can solve optimally, and then design algorithms for problems
which interpolate between the easy and hard cases. For example, solving Majority-SAT on
1-CNFs is trivial, because we can count satisfying assignments for 1-CNFs in linear time. We
showed that in fact this linear-time complexity continues to hold for Majority-SAT on k-CNFs
for all constants k ≥ 1. It has been known for over fifty years that 1-APC can be solved in
O(nω) time, and that this is essentially optimal assuming plausible conjectures related to the
complexity of certain matrix multiplication problems. We showed that in fact this Õ(nω)
runtime can be recovered for k-APC for all constants k ≥ 1. For k-DSP, we did not show
an optimal algorithm for all constant k, but rather achieved the first optimal algorithm for
some nontrivial k, namely k = 2.

Finally, one more common theme of our algorithms is that they unveil deeper structural
insights on the structures they work over. Our Majority-SAT algorithm on k-CNFs yields a
regularity lemma for k-CNFs (as mentioned previously), but also implies that the possible
values of fractions of satisfying assignments of k-CNFs for constant k are highly constrained
compared to the fractions achieved by general CNF formulas. It had been known previously
that connectivities in graphs are encoded in the inverse of a certain edge-adjacency matrix
[CLL13]. Our k-APC algorithm shows that k-bounded connectivities can be encoded using a
low-rank variant of the edge-adjacency matrix, so that graphs with small connectivities admit
a sort of algebraic compression that is not known to hold for high connectivities. Finally,
our 2-DSP algorithms show that the enumerative structure of pairs of disjoint shortest paths
in weighted undirected graphs and DAGs simplifies greatly when viewed modulo two.

These are all structural insights about circuits and graphs that would not necessarily be
clear from attacking the original problems, but are natural byproducts of our algorithms for
parameterized relaxations.

18

1.2 Organization

In Part I we discuss our results for the Majority-SAT problem on k-CNFs, and in Part II we
present our algorithms for graph problems. Within Part II, in Chapter 6 we introduce a
standard framework for algebraic graph algorithms, and then in Chapters 7 and 8 use this
framework to design our algorithms for connectivity problems and disjoint shortest path
problems respectively.

Bibliographic Notes

The results of Part I are primarily based off work by Ryan Williams and myself in [AW22].
Some of our notation has been inspired by [Tan22a]. The results of Chapter 7 are primarily
based off [Akm24], and work by Ce Jin and myself in [AJ24]. In Section 7.3, we present
algorithms for the k-Bounded All-Pairs Vertex Connectivity and k-Vertex Connectivity problems
which appeared previously in [AJ24] and [CR94] respectively. We present alternate proofs of
correctness for these algorithms, using the framework of [Akm24]. The results of Chapter 8
are based off work by Virginia Vassilevska Williams, Nicole Wein, and myself in [AWW24].
Throughout, the proofs of our results have been streamlined and simplified from their original
expositions in [AW22, Akm24, AJ24, AWW24].

1.3 General Preliminaries

Basic Notation

Given a positive integer a, we let [a] = {1, . . . , a} denote the set of the first a consecutive
positive integers. We abbreviate the base 2 logarithm as log = log2. Given functions f and
g, we write f(n) = Õ(g(n)) if f(n) ≤ g(n) poly(log n).

Deterministic versus Randomized Algorithms

Throughout Part I, by default algorithms are deterministic, unless otherwise stated. Through-
out Part II, by default algorithms are randomized and correct with high probability.

19

20

Part I

Circuits

21

Chapter 2

Meeting Majority Satisfiability

In this chapter, we give a terse, informal introduction to the concepts needed to understand
the Majority-SAT problem and questions concerning its complexity. In Section 2.1, we review
basic complexity classes and satisfiability problems, including Majority-SAT. Then in Sec-
tion 2.2, we consider the complexity of satisfiability problems on formulas of bounded width,
and discuss why the complexity of Majority-SAT on formulas of constant width was an open
problem for so long. In Section 2.3, we collect useful facts about formulas and satisfaction
probabilities, for use in later chapters. We conclude in Section 2.4 with an overview of the
topics covered by the remaining chapters in Part I.

For formal details on the definitions of complexity classes and reductions, and a more
accessible primer on complexity in general, we refer the reader to [Wig19, Chapters 3 to 4],
and for more details on the classes #P and PP we refer the reader to [AB09, Chapter 17].

2.1 Complexity Classes and Complete Problems

What problems are easy to solve, and which are hard? Historically, computer science has
attempted to provide concrete answers to these questions, by grouping problems into equiv-
alence classes based on their difficulty, known as complexity classes. For example, the com-
plexity class P (Polynomial Time) consists of all decision problems (i.e., problems with YES
or NO answers) which can be solved in deterministic polynomial time. Intuitively, we think
of P as a class of “easy problems.”

A major goal of complexity theory is to separate P from the complexity class NP (Nonde-
terministic Polynomial Time). Intuitively, NP is the class of “problems with easily checkable
answers.” A decision problem is in NP if it can be solved by a deterministic polynomial-time
verifier. A verifier is an algorithm which takes as input both the problem instance and a
certificate, whose length is at most polynomial in the size of the problem instance, and then
returns YES or NO. The verifier correctly solves a problem if, on instances where the correct
answer is YES, there exists some certificate which makes the verifier return YES, and on
instances where the correct answer is NO, the verifier returns NO regardless of the certificate.

For example, consider the Hamiltonian Path problem, where we are given a graph G,
and are tasked with determining if G contains a simple path using all of its vertices. The
Hamiltonian Path problem is in NP, because this problem is solved by the linear-time verifier

23

which checks if the certificate is a simple path passing through all vertices of G. In contrast,
it is not known if Hamiltonian Path is in P, because even though verifying that a given
certificate path uses all vertices of G is easy, it is not clear how to find such a path without
using exponential time.

Complexity classes C can be analyzed by studying their complete problems—individual
problems whose polynomial-time complexity completely determines whether C is contained in
P or not. Many complexity classes of interest turn out to admit canonical complete problems
which involve the analyzing the solution spaces of circuits. To define these problems, it will
be helpful to first introduce a simple class of circuits, known as formulas in conjunctive
normal form (or CNF formulas).

Definition 2.1 (CNF Formulas). Fix a collection of variables x⃗ = (x1, . . . , xn). A literal ℓ
is a variable or its negation. In other words,

ℓ ∈ {x1, . . . , xn,¬x1, . . . ,¬xn} .

A clause C over the variables in x⃗ is a disjunction

C = (ℓ1 ∨ · · · ∨ ℓr)

of distinct literals ℓj, no two corresponding to the same variable. We identify C with the
set of literals {ℓ1, . . . , ℓr} it contains. The width of C is defined to be the number r = |C| of
literals it contains. A clause of width w is often referred to as a w-clause. A 1-clause is also
called a unit clause.

A formula φ in conjunctive normal form, or CNF formula (or just “CNF”), is a conjunction

φ = C1 ∧ · · · ∧ Cm

of distinct clauses. We identify φ with the set of clauses {C1, . . . , Cm} it contains. If every
clause in φ has width at most k, we say φ is a k-CNF formula (or just “k-CNF”). In this case,
we also say φ has width k. The size of a CNF formula is defined to be the sum

|φ| =
m∑
i=1

|Ci|

of the sizes of the clauses it contains. A CNF formula φ is naturally viewed as a function

φ : {0, 1}n ! {0, 1}

by setting φ(⃗a) = 1 if and only if for every clause C in φ, the assignment a⃗ ∈ {0, 1}n sets
some literal of C to be true (where we identify 1 with “true” and 0 with “false”).

We say a CNF φ is equivalent to a function f : {0, 1}n ! {0, 1} if φ(⃗a) = f (⃗a) for all
inputs a⃗ ∈ {0, 1}n. CNF formulas are expressive enough to model any Boolean function.

Proposition 2.2. For any function f : {0, 1}n ! {0, 1}, there is a CNF φ equivalent to f .

24

Proof. For every assignment a⃗ ∈ {0, 1}n such that f (⃗a) = 0, consider the clause Ca⃗ which
contains the literal ¬xi if ai = 1, and contains the literal xi if ai = 0, for each i ∈ [n]. By
construction, the clause Ca⃗ is satisfied precisely by the assignments from {0, 1}n \ {a⃗}.

Consequently, if we define the CNF formula

φ =
∧

a⃗∈{0,1}n
f(a⃗)=0

Ca⃗

we see that φ is satisfied by an assignment a⃗ if and only if f (⃗a) = 0, so φ is equivalent to f
as desired. ■

Note however, that given a Boolean function f , the smallest CNF φ equivalent to f might
have size exponential in n, so not all functions can be represented by small CNF formulas.
Intuitively, a CNF formula φ is a succinct description of a Boolean function in terms of
constraints. Each clause C is a constraint mandating that one of its literals be set to true,
and φ is true if and only if every constraint is satisfied.

We next introduce terminology for discussing the solution spaces of CNFs.

Definition 2.3 (Satisfaction Probability). Given a function f : {0, 1}n ! {0, 1}, we say
that an input a⃗ ∈ {0, 1}n is a solution or satisfying assignment of f , if f (⃗a) = 1. In this
case, we say the assignment a⃗ satisfies the function f . Given a function f : {0, 1}n ! {0, 1},
we define

Pr[f] =
|{x⃗ | f(x⃗) = 1}|

2n

to be the fraction of assignments which satisfy f . Equivalently, Pr[f] is the probability a
uniform random assignment satisfies f . We refer to the quantity Pr[f] both as the fraction
of satisfying assignments and the satisfaction probability of f .

Since CNFs can be viewed as functions, Definition 2.3 extends to defining the satisfaction
probability Pr[φ] for CNF formulas φ. Given a CNF φ, one of the most basic questions we
can ask about it is: does φ have a satisfying assignment? This is the Satisfiability (SAT)
problem, defined below in terms of satisfaction probabilities.

Satisfiability (SAT)

Given a CNF formula φ, determine if Pr[φ] > 0.

SAT is in NP, because it is solved by the linear-time verifier which checks if the input
certificate is a satisfying assignment for the input formula φ. Satisfiability is the cornerstone
problem of complexity theory because it is the canonical complete problem for the class NP,
meaning that not only is it in NP, it is in some sense universal for NP.

We next recall definitions related to completeness.

Definition 2.4 (Many-One Reductions). A reduction from a decision problem A to a deci-
sion problem H is an algorithm which, given an instance I of A produces an instance I ′ of
H, such that the answer to I ′ is YES if and only if the answer to I is YES.

25

A reduction from a problem A to a problem H presents a way of solving A if we have
a way of solving H. If the reduction runs in polynomial time, then we know that if H can
be solved in polynomial time, so can A, by chaining the polynomial-time reduction with the
polynomial-time algorithm for H.

Definition 2.5 (Complete Problems). A problem H is hard for a complexity class C, if
for every problem A ∈ C, there is a polynomial-time reduction from A to H. We say H is
complete for the class C if H ∈ C and H is C-hard.

Given a complexity class C and problem H that is C-complete, if H has a polynomial-
time algorithm, then because H is C-hard, every problem in C can be solved in polynomial
time. Conversely, if H is not solvable in polynomial time, then H is an example of a problem
in C that cannot be solved in polynomial time. So if a complexity class C has a complete
problem H, the problem of determining whether C ⊆ P (i.e., whether “all problems in C are
easy to solve”) corresponds precisely to determining whether the individual problem H has
a polynomial-time algorithm. This latter task seems more approachable, since it involves
working with one concrete problem, rather than an entire class of problems.

Proposition 2.6 (Cook-Levin Theorem). SAT is NP-complete.

See [Sip12, Theorem 7.30] for example, for a proof of Proposition 2.6.
One of the most important open problems in all of mathematics is the P versus NP

question—are the complexity classes P and NP equal, or not? It is widely conjectured that
in fact P ̸= NP, because if P = NP this would intuitively mean that finding a solution to a
problem is no harder than recognizing that a proposed solution is correct, and this would
defy our understanding of computation built over decades of research in algorithm design.

Given a problem H, if there is a polynomial-time reduction from SAT to H, then because
SAT is NP-hard, H would also be NP-hard.

Under the hypothesis that P ̸= NP, no NP-hard problem can be solved in polynomial
time. This enables us to use reductions from SAT to show conditional intractability for other
problems. Indeed, a plethora of important problems in computer science are now known to
be NP-complete via reductions from SAT (see e.g., [GJ79]), and assuming P ̸= NP, none of
these problems can be solved in polynomial time.

So SAT has been used as a source of hardness for many problems in NP.
Not all problems of interest however, belong to the class NP. To show hardness for

such problems, researchers have defined other complexity classes beyond NP, and identified
variants of SAT which are analogously complete for these classes. In this thesis, two such
classes will be important for us: #P (“Sharp P”) and PP (“Probabilistic Polynomial Time”).

Intuitively, #P is the class of “counting problems,” where we are trying to count objects
meeting certain conditions, and for any given object, we can “easily check” if it meets the
relevant conditions. A function problem P (i.e., a problem where the answer is an integer)
is in #P if there exists a deterministic polynomial-time verifier, such that for any instance of
P , the number of certificates that make the verifier return YES on that instance is equal to
the correct answer.

For example, consider the Satisfiability Counting (#SAT) problem, where we are given a
CNF formula φ, and are tasked with counting the number of satisfying assignments of φ.

26

This task is in #P, by considering the linear-time verifier which returns YES if and only
if the certificate is a satisfying assignment for φ (i.e., the same verifier which showed that
SAT is in NP). Since the satisfaction probability of a CNF formula φ on n variables is just
its number of satisfying assignment divided by 2n, #SAT can be equivalently defined as the
following problem:

Satisfiability Counting (#SAT)

Given a CNF formula φ, compute the value of Pr[φ].

Just like how SAT is NP-complete, #SAT is #P-complete (under a natural generalization
of the notion of reduction from Definition 2.4 to function problems). So under the hypothesis
that not all problems in #P can be solved in polynomial time (a weaker assumption than
P ̸= NP), we can use reductions from #SAT to show that various counting problems are
#P-hard, and thus unlikely to be solvable in polynomial time either.

One technical difference between NP and #P is that the former is a class of decision
problems, whereas the latter is a class of function problems. This makes directly comparing
NP and #P awkward, because the types of problems these classes contain are different.

This motivates the complexity class PP, which is intuitively the “decision version of #P.”
A decision problem P is in PP if there exists a deterministic polynomial-time verifier, and
polynomial-time computable function c(·) that assigns each instance I of P a positive integer
certificate size c(I) ≤ poly(|I|), with the following behavior: for any instance I of P , if the
correct answer to I is YES, then at least half of all certificates in {0, 1}c(I) make the verifier
return YES on that instance, and if the correct answer to I is NO, then at least half of all
certificates in {0, 1}c(I) make the verifier return NO on that instance.

For example, consider the Majority-SAT problem, where we are given a CNF φ, and are
tasked with determining if φ is satisfied by at least half of all possible assignments to its
variables. The same linear-time verifier which showed that SAT ∈ NP and #SAT ∈ #P implies
(if we set the certificate size c(φ) to be the number of variables in φ) that Majority-SAT ∈ PP.

Majority-SAT

Given a CNF formula φ, determine if Pr[φ] ≥ 1/2.

Just like how SAT is NP-complete and #SAT is #P-complete, Majority-SAT is PP-complete,
and this has been known since the problem’s conception nearly fifty years ago [Gil74, Sim75].
So under the hypothesis that not P ̸= PP (an assumption that turns out to be weaker than
P ̸= NP, as we discuss later), reductions from Majority-SAT can show hardness for exact
threshold variants of counting problems.

The Significance and Intractability of Majority-SAT

As the canonical complete problem for PP, Majority-SAT acts as a central source of hardness
for problems in PP. This is particularly relevant when studying problems related to proba-
bilistic planning, scheduling, and inference, because PP and larger classes derived from it, as
opposed to NP, appear to be the natural setting for analyzing the complexity of these tasks.

27

Knowing that a problem is PP-hard as opposed to just NP-hard can be viewed as stronger
evidence of its intractability, because of results in complexity theory that suggest PP contains
problems that are strictly harder to solve than problems in NP. To mention some of these
results, it will be helpful to have the concept of a Turing reduction.

Definition 2.7 (Turing Reductions). A Turing reduction from a problem A to a problem
H is an algorithm which, given an instance I of A produces several instances I ′1, . . . , I ′t of H,
and given the solutions to I ′1, . . . , I ′t, produces the solution to I.

Definition 2.8. A problem H is hard under Turing reductions for a complexity class C, if
for every problem A ∈ C, there is a polynomial-time Turing reduction from A to H.

If a problem H is hard for a complexity class C under Turing reductions, then just like
in the case of the reductions defined in Definition 2.4, any polynomial-time algorithm for H
can be used to solve all problems in C in polynomial time.

One result giving evidence that PP-complete problems might be inherently more difficult
than NP-complete problems is Toda’s theorem [Tod91], which implies that Majority-SAT is
hard under Turing reductions for a complexity class PH (“Polynomial Hierarchy”), a vast
strengthening of NP. It is conjectured that SAT is not hard under Turing reductions for PH
(often referred to as the hypothesis that “the polynomial hierarchy does not collapse”).

Distinguishing between the NP-completeness and the PP-completeness of problems is also
useful understanding how hard various logic problems related to model counting are to solve
in the real-world. This is because even though we do not have polynomial-time algorithms
which solve NP-hard problems in the worst-case, in practice many real-world instances of
NP-hard problems can be solved quickly in using heuristic SAT solver systems. In contrast,
solving PP-hard problems requires programs for “model counting,” which do not appear to be
as successful as SAT solvers in practice. In contexts like these, which show up in probabilistic
planning and scheduling for example, distinguishing between “easy” and “hard” problems is
more of an NP-complete versus PP-complete question, rather than a P versus NP-complete
question (e.g., see the discussion in the introduction of the talk [Dar21]).

Another related reason that PP-complete problems seem harder than NP-complete prob-
lems, is that the former can be used to solve counting problems. Given a CNF φ, solving
#SAT on φ gives us the value of Pr[φ], which we can then use to solve SAT and Majority-SAT
on φ as well. In the other direction, it is not clear if we can efficiently reduce #SAT to SAT.
However, we can efficiently reduce #SAT to solving a small number of instances of Majority-
SAT. This follows from the fact that an algorithm for Majority-SAT can be modified to let us
test if Pr[φ] ≥ p for any fixed threshold p ∈ (0, 1), not just p = 1/2.

Proposition 2.9. There is an algorithm that, given positive integers n and a with a < 2n,
constructs in poly(n) time a CNF formula ψ over the variables x1, . . . , xn with Pr[ψ] = a/2n.

Proof. We describe an algorithm Formn(a) with the desired behavior.
If n = 1, then a < 2n forces a = 1, and Form1(1) returns the formula ψ consisting of

the single unit-clause {x1}. We have Pr[ψ] = 1/2 = a/2n so this has the desired behavior.
Suppose instead n ≥ 2. We perform casework based off the value of a.
If a = 2n−1, then we return ψ = x1 which has Pr[ψ] = 1/2 = a/2n as desired.

28

If instead a > 2n−1, we can write a = 2n−1 + b for some positive integer b < 2n−1, since
by assumption we have a < 2n. Recursively call Formn−1(b) to output a formula ψ′ that
does not use the variable xn, such that Pr[ψ′] = b/2n−1.

Construct the formula
ψ = {C ∪ {xn} | C ∈ ψ′}

by adding xn to every clause of ψ′. We can construct ψ in linear time given ψ′. An assignment
satisfies Ψ precisely when it either sets xn to be true, or sets xn to be false and the assignment
to the remaining variables satisfies ψ′. Thus returning

ψ = Pr[xn] + Pr[xn ∧ ψ′] = (1/2) + (1/2) · (b/2n−1) = (2n−1 + b)/(2n) = a/2n

has the desired behavior.
Otherwise, a < 2n−1. In this case, recursively call Formn−1(a) to output a formula ψ′

that does not use the variable xn, such that Pr[ψ′] = a/2n−1. Then return the ψ = xn ∧ ψ′.
Since xn does not appear in ψ′, we have

Pr[ψ] = Pr[xn] · Pr[ψ′] = (1/2) · (a/2n−1) = a/2n

as desired.
Since we compute Formn(a) by calling Formn−1(b) on some integer b and spending at

most linear time additionally, an easy induction argument shows that computing Formn(a)
takes at most O(n2) time, which proves the claim. ■

Corollary 2.10 (Majority-SAT is Threshold Independent). For any real p ∈ (0, 1), the
problem of deciding if a CNF formula φ on n variables satisfies Pr[φ] ≥ p can be reduced in
polynomial-time to solving Majority-SAT on a formula with n+ 1 variables.

Proof. Since φ has n variables, 2n · Pr[φ] is a nonnegative integer less than or equal to 2n.
So without loss of generality, we may assume that p = b/2n for some positive integer b < 2n.

Apply Proposition 2.9 with a = (2n − b) to construct, in poly(n) time, a CNF ψ on the
same variable set as φ with Pr[ψ] = (2n − b)/2n.

Let y be a variable not in φ or ψ. Construct the CNF formulas

φ′ = {C ∪ {y} | C ∈ φ}

and
ψ′ = {C ∪ {¬y} | C ∈ ψ}

by adding y to each clause of φ and ¬y to each clause of ψ respectively.
Then construct the CNF formula

Φ = φ′ ∧ ψ′.

Given φ and ψ, we can construct Φ in linear time.
An assignment satisfies Φ precisely when either y is set true and the assignment to the

remaining variables satisfies ψ, or y is set false and the assignment to the remaining variables
satisfies φ. Thus

Pr[Φ] = Pr[y ∧ ψ] + Pr[¬y ∧ φ] = (1/2) · (Pr[ψ] + Pr[φ]) .

29

Since Pr[ψ] = (2n − b)/2n, this implies that

Pr[Φ] = (1/2) + (1/2) · (Pr[φ]− (b/2n)) .

The above equation implies that Pr[Φ] ≥ 1/2 if and only if

Pr[φ] ≥ b/2n = p.

Thus the map sending φ to Φ is a polynomial-time reduction proving the claim. ■

By Corollary 2.10, given a CNF φ on n variables and a real p ∈ (0, 1), we can use a single
call to an algorithm solving Majority-SAT on formulas with n + 1 variables and poly(n, |φ|)
size to check if Pr[φ] ≥ p. Since Pr[φ] = a/2n for some nonnegative integer a ≤ 2n, we
can combine the observation from the previous sentence with a binary search argument to
compute Pr[φ] exactly (i.e., solve #SAT) using n+1 calls to an algorithm solving Majority-SAT
and polynomial-time overhead.

This justifies our intuition that PP is somehow a “decision version of #P” and shows that
Majority-SAT is a flexible problem, with the specific choice of threshold 1/2 in the problem’s
defining inequality Pr[φ] ≥ 1/2 not mattering so much.

2.2 Formulas of Bounded Width

In Definition 2.1 we defined k-CNF formulas φ for any integer k ≥ 1 as formulas where every
clause has width at most k. Such bounded-width formulas arise naturally in applications
which use CNF formulas to model problems determined by sets of “local constraints.”

For each of our satisfiability variants SAT, #SAT, and Majority-SAT, one can ask whether
the problem remains hard when restricted to k-CNFs for constant k. All these problems are
easy when k = 1, because we can compute satisfaction probabilities of 1-CNFs in linear time.

Proposition 2.11 (1-CNF Satisfaction Probabilities). There is an algorithm which takes as
input a 1-CNF formula φ, and computes Pr[φ] in linear time. Moreover, Pr[φ] is either zero
or a power of two.

Proof. The algorithm scans through the clauses of φ, each of which has a single literal.
If φ contains both x and ¬x for some variable x, we return Pr[φ] = 0, since both of the

clauses cannot simultaneously be true.
Otherwise, φ contains clauses coming from different variables. Let v be the number of

distinct variables appearing in φ. In a uniform random assignment, each clause containing
a distinct variable of v is satisfied independently with probability 1/2. So in this case we
return Pr[φ] = (1/2)v.

Thus we can compute Pr[φ] in linear time, and the two cases above show that Pr[φ] is
either zero or a power of two as claimed. ■

So all the satisfiability problems we have mentioned, when restricted to k-CNFs for k = 1,
belong to P. The complexity of these problems becomes more interesting when k ≥ 2.

30

Reducing Width for SAT and #SAT

For any fixed integer k ≥ 1, let kSAT be the SAT problem restricted to k-CNF formulas.
Similarly, let #kSAT be the #SAT problem restricted to k-CNF formulas.

2SAT can be solved in linear time (e.g., by using the reduction from [Pap93, Section 9.2]
to relate 2SAT to a a graph theoretic problem, and then running a linear-time algorithm for
finding the strongly connected components of a graph), and this fact has been known in the
literature since at least the 1970s [APT79].

Proposition 2.12 (2-CNF Satisfaction). There is an algorithm that takes as input a 2-CNF
formula φ, and determines if Pr[φ] > 0 in linear time.

In contrast to 2SAT being easy, it turns out that #2SAT is already #P-hard.

Proposition 2.13. #2SAT is #P-hard under Turing reductions.

Proposition 2.13 was first proved in 1979, by [Val79a].
Once we jump up to k = 3, kSAT becomes as hard as the general SAT problem. This

fact has been known for essentially as long as the NP-completeness of SAT has been known.

Proposition 2.14. 3SAT is NP-complete.

Proof. 3SAT is in NP because it is a special case of SAT, which is in NP.
We exhibit a polynomial-time reduction from SAT to 3SAT. This will prove the desired

result, since SAT is NP-hard.
Take an arbitrary instance of SAT, consisting of a CNF formula φ.
The idea of the reduction is to introduce new variables, which can be used to split each

long clause of φ into smaller clauses of width 3.
For each clause C of width w > 3 in φ, we introduce (w − 1) new variables

yC,1, . . . , yC,w−1.

If C is of the form
C = (ℓ1 ∨ · · · ∨ ℓw)

for some literals ℓi, we let ψC be the 3-CNF with clauses (ℓ1 ∨ yC,1),

(¬yC,j ∨ ℓj+1 ∨ yC,j+1)

for each j ∈ [w − 2], and (¬yC,w−1 ∨ ℓw).
If instead C has width at most three in φ, we define ψC = C.
Now construct the 3-CNF formula

Φ =
∧
C∈φ

ψC .

Given φ, we can construct Φ in polynomial time.
We claim that Φ is satisfiable if and only if φ is satisfiable.

31

Indeed, suppose that φ is satisfied by some assignment a⃗. This assignment must satisfy
a literal in every clause C of φ. For each such clause C, consider the subformula ψC of Φ. If
C has width at most three, ψC = C is satisfied by the assignment.

Otherwise, C = (ℓ1 ∨ · · · ∨ ℓw) has width w > 3. Let i ∈ [w] be an index such that a⃗ sets
ℓi true. Then setting yC,j to be true for all j < i and false for all j ≥ i, together with a⃗,
satisfies ψC by construction. Setting the yC,j variables in this fashion for each clause C of
width greater than three in φ, we see that we can extend a⃗ to a satisfying assignment of Φ,
so Φ is satisfiable.

Conversely, suppose Φ is satisfied by some assignment a⃗. Then a⃗ satisfies every clause
C of width at most three in φ (since these clauses also appear in Φ). Take any clause
C = (ℓ1 ∨ · · · ∨ ℓw) in φ of width w > 3. Since a⃗ satisfies Φ, it satisfies ψC . If a⃗ sets yC,j to
be true for all j ∈ [w − 1], then since a⃗ satisfies the clause (¬yC,w−1 ∨ ℓw), this assignment
must set ℓw to be true. If instead a⃗ sets some yC,j variable to be false, let i ∈ [w− 1] be the
smallest index so that yC,i is set false by a⃗. Then ψC has a clause containing the literals yC,i

and ℓi, and the literal ¬yC,i−1 too if i ≥ 2. By our choice of i, we know that yC,i is false,
and ¬yC,i−1 is false if i ≥ 2. So in order for a⃗ to satisfy ψC , the assignment a⃗ must set ℓi to
be true. Since this holds for very clause C of width greater than three φ, we see that the
assignment a⃗ restricted to the variables of φ satisfies every clause of φ.

Thus Φ is satisfiable if and only if φ is satisfiable, which proves the desired result. ■

Barriers to Reducing Width for Majority-SAT

So far we have seen that #kSAT is #P-hard for k ≥ 2, and kSAT is NP-hard for k ≥ 3.
Beyond presenting a nice complexity classification for variants of SAT and #SAT on bounded
width formulas, these hardness results are important because they enable researchers to show
hardness for bounded degree variants of important computational tasks.

So what about Majority-SAT? What is the complexity of this problem when we restrict
to k-CNF formulas, for constant k? By analogy with the results for SAT and #SAT, it seems
plausible that Majority-SAT on k-CNFs should be as hard as the general Majority-SAT problem
for some small constant k, such as k ∈ {2, 3}.

As discussed in Section 1.1, determining the complexity of Majority-SAT on k-CNFs for
any constant k ≥ 3 was a major open problem, with it being widely conjectured that the
problem should be PP-complete. We show that, in contrast to the intuition suggested by
the behavior of SAT and #SAT on bounded width formulas, this conjecture is wrong, and in
fact Majority-SAT on k-CNFs is in P for any constant k ≥ 1. To state our result formally, we
introduce the kSAT-Prob≥p problem, which restricts Majority-SAT to k-CNF formulas, and
replaces the threshold of 1/2 with p ∈ (0, 1).

kSAT-Prob≥p

Given a k-CNF formula φ, determine if Pr[φ] ≥ p.

We prove that kSAT-Prob≥p can be solved in linear time for constant k ≥ 1 and p ∈ (0, 1):

32

Theorem 2.15: Threshold Satisfaction for k-CNFs

For any fixed positive integer k and constant p ∈ (0, 1), there is a linear time algorithm
solving kSAT-Prob≥p.

Why should Theorem 2.15 be possible? For example, why can we not adapt the reduction
from SAT to 3SAT in the proof of Proposition 2.14 to reduce 3SAT-Prob≥1/2 to Majority-SAT,
and thereby prove that 3SAT-Prob≥1/2 is PP-complete?

Well, one issue is that the reduction as written does not preserve the count of satisfying
assignments. Even if the reduction did take an arbitrary CNF formula φ, and in polynomial-
time construct a 3-CNF formula Φ such that φ and Φ have the same total number of satisfying
assignments, the general reduction technique we use increases the number of variables by a
large amount. Since the number of variables increases, the fraction of satisfying assignments
in Φ will be much smaller than the corresponding fraction for φ, even though they have
the same number of satisfying assignments. If Φ and φ have the same number of satisfying
assignments, but Φ has v more variables than φ, then Pr[Φ] = (1/2)v·Pr[φ] will be vanishingly
small, even for mildly superconstant v. So intuitively solving Majority-SAT on Φ should not
recover information about Pr[φ], because Pr[Φ] will be less than 1/2 even if we only added
two new variables in the reduction.

However, we saw in Corollary 2.10 that we can use an algorithm for Majority-SAT to
determine if Pr[φ] ≥ p for a given CNF φ and any p ∈ (0, 1). Can this help us in designing a
reduction from Majority-SAT to 3SAT-Prob≥1/2? It cannot, because Corollary 2.10 crucially
uses the assumption that Majority-SAT can be solved on formulas of unbounded width. In
particular, the proof of Corollary 2.10 uses Proposition 2.9 to construct a CNF formula ψ
with Pr[ψ] = a/2n for some integer a depending on p. However, for any constant k ≥ 1,
there exist integers a such that no k-CNF formula has satisfaction probability equal to a/2n.
In general, if φ is a k-CNF, then Pr[φ] ̸∈

(
(2k − 1)/2k, 1

)
. This is because if a k-CNF φ has

Pr[φ] < 1, it must contain a clause C of width at most k, so Pr[φ] ≤ Pr[C] ≤ 1 − (1/2)k.
So it is not clear that for fixed k, that having an algorithm for kSAT-Prob≥1/2 would help us
also solve kSAT-Prob≥p for p ̸= 1/2.

This is a very concrete way in which k-CNF formulas, for constant k, are less expressive
than general CNF formulas—the possible satisfaction probabilities they can achieve are more
constrained. This might give some intuition for why Theorem 2.15 should be true.

Idea 1 Although for arbitrary CNF formulas φ, Pr[φ] can be any value of the form a/2n

for integers a and n, if φ is restricted to be a k-CNF for constant k, then the possible values
Pr[φ] can take on are much more limited. In particular, there are intervals of constant
size in (0, 1) not containing satisfaction probabilities of any k-CNF formula. We should be
able to algorithmically exploit these gaps in satisfaction probablities of k-CNFs.

2.3 Helpful Facts

In this section, we collect additional helpful facts and constructions for working with CNF
formulas and bounding their fractions of satisfying assignments.

33

Given a CNF formula φ, a subformula ψ ⊆ φ is a CNF whose clauses are all clauses of φ.
By default we view the subformula ψ as having the same underlying variable set as φ.

Proposition 2.16 (Subformula Satisfaction Probabilities). Let φ be a CNF. Let ψ ⊆ φ be
a subformula of φ. Then Pr[φ] ≤ Pr[ψ].

Proof. Since ψ ⊆ φ, every satisfying assignment of φ is also a solution for ψ. Since φ and ψ
are viewed as having the same number of variables, we have Pr[φ] ≤ Pr[ψ] by definition. ■

We also have the notion of induced formulas, obtained by asserting that certain literals
must be true in a given CNF.

Definition 2.17 (Induced Formulas). Let φ be a CNF. Let S be a subset of variables of φ.
Given an assignment α : S ! {0, 1}, we define φα to be the induced formula obtained by
asserting values in φ according to α.

Formally, we construct φα by taking φ, and for each variable x ∈ S:

• if α(x) = 1, remove each clause containing x and delete ¬x from every clause of φ, and

• if α(x) = 0 , remove each clause containing ¬x and delete x from every clause of φ.

We then additionally add unit clauses with the literal x for each variable x with α(x) = 1,
and unit clauses with the literal ¬x for each variable ¬x with α(x) = 0.

We view φα as a formula over the same set of variables of φ. Given α and φ, the above
description makes it clear that φα can be constructed in linear time.

Proposition 2.18. Let φ be a CNF formula. Let S be a subset of variables of φ. For any
assignment α : S ! {0, 1}, the set of satisfying assignments of φα is precisely the set of
satisfying assignments of φ which agree with α on S.

Proof. Fix an assignment α : S ! {0, 1}.
Take any satisfying assignment of φα. Then this assignment must agree with α on S,

because of the unit clauses included in φα for each variable in S.
Each remaining clause of φα corresponds to a unique clause C in φ, such that C does

not contain any literal set to true by α. The clause in φα corresponding to a clause C in φ
is C with all literals set to false by α removed. So a satisfying assignment of φα must satisfy
every clause of φ which does not have a literal set to true by α. Of course the clauses set to
true by α are also satisfied by the assignment, since it agrees with α on S.

Thus a satisfying assignment of φα is a satisfing assignment for φ.
Conversely, any satisfying assignment of φ which agrees with α on S must satisfy φα as

well. Indeed, all the unit clauses of φα added for variables of S are satisfied because the
assignment agrees with α on S. Each remaining clause B of φα is of the form C \C ′, where
C is a clause in φα, and C ′ is the set of literals in C set to false by α. An assignment which
satisfies φ must satisfy some literal in C. If the assignment agrees with α on S, then this
literal must belong to (C \C ′) = B. Since this holds for all clauses B in φα, we get that the
assignment satisfies φα as claimed.

This shows the claimed equivalence, and proves the desired result. ■

34

Proposition 2.19. For any CNF formula φ and subset S of the variables of φ, we have

Pr[φ] =
∑

α : S!{0,1}

Pr[φα].

Proof. Fix an assignment α : S ! {0, 1}. By Proposition 2.18, the satisfying assignments of
φα are precisely the satisfying assignments of φ which agree with α on S.

Since every assignment for φ assigns some values to the variables in S, the sets of satis-
fying assignments of each φ|α partition the set of satisfying assignments for φ. Since each
φα is viewed as a formula over the variables of φ, Pr[φα] equals the number of satisfying
assignments in φα divided by 2n, where n is the number of variables in φ. So

Pr[φ] =
∑

α : S!{0,1}

Pr[φα]

as claimed. ■

Induced formulas arise from asserting that various literals are true in a CNF. It will also
be helpful more generally to talk about formulas which arise from asserting that a whole
clause must be true.

Proposition 2.20 (Asserting Clauses). There is an algorithm Assert, which takes as input
a CNF formula φ and a clause C, and in linear time returns a CNF formula Φ = Assert(φ,C)
equivalent to φ∧C, such that the size of Φ is at most the size of φ∧C, Φ contains the clause
C, and Φ contains no clause which is a proper superset of C.

Proof. We construct Φ = Assert(φ,C) as follows.
First scan through φ, and identify the subformula

φC = {B | B ⊇ C,B ∈ φ}

of φ containing all clauses, and the subformula

φ′ = {B | B ̸⊇ C,B ∈ φ}

of φ with the remaining clauses of φ. Now construct the formula

ψ = {B \ C | B ∈ φC} (1)

by removing C as a subset from every clause of φC . We then return

Φ = ψ ∧ φ′ ∧ C (2)

as the CNF formula Assert(φ,C).
The algorithm runs in constant time, since we can construct Φ just by scanning through

the clauses of φ a constant number of times.
From eq. (2), Φ contains the clause C. No clause in φ′ is a superset of C by construction,

and no clause in ψ is a superset of C by eq. (1), so no clause in Φ is a proper superset of
C by eq. (2). The formula Φ has size less than or equal to the size of φ ∧ C, because from
eq. (2) we can construct Φ by starting with φ ∧ C and deleting literals from some clauses.
Finally, the formulas ψ ∧ C and φC ∧ C are equivalent by eq. (1), so the formulas Φ and
φ ∧ C are equivalent by eq. (2).

Thus the algorithm has the desired behavior. ■

35

Given a literal ℓ, we write

Assert(φ, ℓ) = Assert(φ, {ℓ})

for convenience.
We only compute Φ = Assert(φ,C) in cases where the clause C is over the underlying

variable set of φ, and in these cases we view Φ as having the same variable set as φ.
The following result lets us compute satisfaction probabilities using casework:

Proposition 2.21. For any f, g : {0, 1}n ! {0, 1} on the same set of variables, we have

Pr[f] = Pr[f ∧ g] + Pr[f ∧ ¬g].

Proof. Every satisfying assignment of f either satisfies g or does not satisfy g. The number
of satisfying assignments of f is 2n Pr[f]. The number of these which satisfy g is 2n Pr[f ∧g],
and the number of these which do not satisfy g is 2n Pr[f ∧ ¬g]. So

2n Pr[f] = 2n Pr[f ∧ g] + 2n Pr[f ∧ ¬g]

which implies the desired result. ■

We often apply Proposition 2.21 on the special case where g is a single literal ℓ.

2.4 Organization

In Chapter 3 we prove Theorem 2.15. Rather than prove the theorem in one shot, for a more
accessible exposition we first prove easier versions of Theorem 2.15 when k ≤ 3, pointing
out the key ideas that go into developing our final algorithm. In Section 3.1 we show that
2SAT-Prob≥p can be solved in linear time for any constant p ∈ (0, 1), and in Section 3.2 show
that 3SAT-Prob≥p can be solved in linear time for any constant p ∈ (0, 1). In Section 3.3
we prove Theorem 2.15, showing that kSAT-Prob≥p can be solved in linear time for any
constants k ≥ 1 and p ∈ (0, 1). In Section 3.4 we provide some comments on this result, and
use the proof of Theorem 2.15 to establish a structural theorem (which can be interpreted
as a “regularity lemma”) for k-CNF formulas.

In Chapter 4 we explore additional variants of the Majority-SAT problem, showing the
surprisingly subtle nature of the complexity of threshold satisfaction problems. In Section 4.1
we design algorithms and prove hardness results for a variant of kSAT-Prob≥p, where instead
of checking if Pr[φ] is greater than or equal to p for a k-CNF φ, we are tasked with deter-
mining if Pr[φ] is strictly greater than p. In Section 4.2 we show that Majority-SAT remains
intractable even if we restrict the input formulas to contain at most a single long clause of
width greater than k, where k ≥ 3 is a constant. In Section 4.3 we consider a generalization
of Majority-SAT involving existential quantifiers, which naturally arise when showing hard-
ness results for probabilistic planning problems. In Section 4.4 we show hardness results for
a variant of Majority-SAT related to conditional probability.

In Chapter 5, we conclude by stating relevant open problems in this area.

36

Chapter 3

Algorithms for Threshold Satisfiability

In this chapter, we present our algorithm for kSAT-Prob≥p and prove Theorem 2.15. Rather
than launch directly into proving Theorem 2.15 however, we work our way up to this result
by proving special cases of it for small k first.

3.1 Threshold 2SAT

In this section, we present a simple algorithm solving 2SAT-Prob≥p for constant p ∈ (0, 1) in
linear time.

Theorem 3.1: Threshold Satisfaction for 2-CNFs

For any constant p ∈ (0, 1), there is a linear time algorithm solving 2SAT-Prob≥p.

Our goal is to solve 2SAT-Prob≥p How should we do it? A natural starting point is to try
and identify “easy cases” of the problem, where one can return YES or NO for simple reasons.
One such easy NO instance comes from considering clauses on disjoint sets of variables.

Definition 3.2 (Disjoint Sets). A set of clauses D is a disjoint set if no variable appears in
two different clauses of D.

Proposition 3.3 (Large Disjoint Set ⇒ Low Satisfaction Probability). Let φ be a k-CNF
with a disjoint set of size at least d. Then

Pr[φ] ≤
(
1− 1

2k

)d

.

Proof. Let D ⊆ φ be a disjoint set of size at least d in φ, viewed as a subformula of φ.
An assignment fails to satisfy a clause precisely when it sets each literal of the clause to

be false. This means that a clause C of width w is satisfied by a uniform random assignment
with probability Pr[C] = 1 − (1/2)w, Since φ is a k-CNF, every clause in D therefore has
satisfaction probability at most 1− (1/2)k.

SinceD is a disjoint set, each of its clauses being satisfied by a uniform random assignment
are independent events. So Pr[D] is equal to the product of the satisfaction probabilities of

37

each of its clauses. Then by Proposition 2.16 we have

Pr[φ] ≤ Pr[D] ≤
(
1− 1

2k

)d

as claimed. ■

The result of Proposition 3.3 motivates the following idea for solving 2SAT-Prob≥p.

Idea 2 Formulas with large disjoint sets have small satisfaction probability. So to solve
the kSAT-Prob≥p problem, it should be useful to look for look for large disjoint sets.

To implement Idea 2, we need an algorithm for finding disjoint sets.

Proposition 3.4 (Finding Maximal Disjoint Sets). There is an algorithm Disj which takes
as input a k-CNF formula φ, and returns a maximal disjoint set D = Disj(φ) on the k-clauses
of φ in linear time.

Proof. We construct the set D by greedily scanning through the clauses of φ. Throughout,
we will also maintain a set S of the variables occurring in clauses of D.

Initially, D ∅ consists of no clauses and S ∅ consists of no variables.
We go through the k-clauses of φ one at a time. When we encounter a clause C, we check

if C contains any variables in S. If C does contain a variable from S, we move on to the
next clause. Otherwise, if C contains no variables from S, then we add C to D and add the
variables of C to S.

An easy induction argument shows that right after we encounter a clause, D is a disjoint
set and S is precisely the set of variables contained in the clauses of D. After we have gone
through all k-clauses in φ, we return Disj(φ) = D.

We claim that this algorithm has the desired behavior.
By the above discussion, D must be a disjoint set on the k-clauses of φ.

▷ Claim 3.5. The set D = Disj(φ) is a maximal disjoint set on the k-clauses of φ.

Proof. Suppose to the contrary D is not maximal on the k-clauses of φ. Then there must
exist a k-clause C of φ not in D, such that D ∪ {C} is a disjoint set.

The algorithm scans through all k-clauses of φ. Since C was not included in the set D
returned by the algorithm, it means that at the time we encountered C, this clause shared
a variable with a clause already included in D. This contradicts the fact that D ∪ {C} is a
disjoint set, so D is maximal on the k-clauses of φ as claimed.

It remains to observe that the algorithm runs in linear time.

▷ Claim 3.6. Disj runs in linear time.

Proof. The algorithm goes through each k-clause C in φ, and checks if C includes a variable
from the currently used set of variables S. We can perform each such check in time linear
in the size of C (e.g., we can do this by recording S using an array indexed by variables of
φ, where the entry for a variable x is set to 1 if and only if x ∈ S and is zero otherwise), so
the overall algorithm takes time linear in the size of φ as claimed.

38

The desired results follows from Claims 3.5 and 3.6. ■

By combining Propositions 3.3 and 3.4, we should intuitively be able to find large disjoint
sets in a k-CNF formulas if they exist, and return NO when solving kSAT-Prob≥p accordingly.
What if the input formula has no large disjoint set? In this case, even though we cannot easily
return an answer of NO, the lack of a large disjoint set is still some interesting information
about the input formula which we can hope to leverage.

Idea 3 If a k-CNF φ avoids having a large disjoint set, its clauses should overlap on
a small set of variables. We should exploit this structure to help simplify φ.

The following result offers one way of formalizing the intuition from Idea 3.

Proposition 3.7 (Maximal Disjoint Set ⇒ Hitting Set). Let φ be a k-CNF. Let D be a
maximal disjoint set for the k-clauses of φ. Let H be the set of variables appearing in some
clause of D. Then every k-clause of φ contains a variable from H. In particular, for every
assignment α : H ! {0, 1}, the induced formula φα is a (k − 1)-CNF.

Proof. Suppose to the contrary that φ contains a k-clause C using no variables from H.
Then D ∪ {C} is a disjoint set, which contradicts maximality of D. So the variables in H
do indeed hit every k-clause in φ.

Now take an arbitrary assignment α : H ! {0, 1}. If C contains a literal that α sets to
true, then C is removed and does not appear in the induced formula φα. Otherwise, every
literal of C corresponding to a variable in H is set to false by α. Every such literal is deleted
from C to produce a clause included in φα The discussion from the previous paragraph shows
that C uses a variable in H, so at least one literal is deleted in this case.

So in going from φ to φα, each k-clause in φ is either removed or deletes at least one
literal. Thus φα is a (k − 1)-CNF, because no k-clause from φ survives in φα. ■

If our input k-CNF formula has no large disjoint set, then Proposition 3.7 says we can
find a small set of variables H such that for every α : H ! {0, 1}, the induced formula φα is
a (k − 1)-CNF. So assignments to H intuitively help “simplify” φ to smaller width formulas.
When k = 2, each φα is a 1-CNF. By Proposition 2.11, we can then compute satisfaction
probabilities for Pr[φα], and then compute Pr[φ] using Proposition 2.19.

Combining this discussion with the earlier arguments yields our approach for solving
2SAT-Prob≥p, written out in Algorithm 1. At a high-level, Algorithm 1 works by combining
Ideas 2 and 3 for 2-CNFs.

Lemma 3.8. Algorithm 1 solves 2SAT-Prob≥p.

Proof. To prove the result, we step through Algorithm 1, and verify that it outputs the
correct answer to the 2SAT-Prob≥p problem anywhere it returns YES or NO.

Let d = ⌈log4/3(1/p)⌉ as in step 1 of Algorithm 1. By Proposition 3.4, the set D computed
in step 2 of Algorithm 1 is a maximal disjoint set of 2-clauses in φ.

If |D| > d, then by Proposition 3.3 we have

Pr[φ] ≤ Pr[D] ≤ (3/4)d+1 < p

39

Algorithm 1. Threshold Satisfaction Algorithm for 2-CNFs

Inputs: A 2-CNF φ, and real p ∈ (0, 1).
Returns: YES if Pr[φ] ≥ p, NO if Pr[φ] < p.

1. Set d ⌈log4/3(1/p)⌉.

2. Compute D Disj(φ).

3. If |D| > d, return NO.

4. Otherwise |D| ≤ d. Let H be the set of variables appearing in D. Compute

Pr[φ] =
∑

α : H!{0,1}

Pr[φα]

and return YES if this sum is at least p, NO if this sum is less than p.

so the algorithm correctly returns NO in step 3 in this case.
Otherwise, by Proposition 2.19 the equation

Pr[φ] =
∑

α : H!{0,1}

Pr[φα]

from step 4 of Algorithm 1 holds, and the algorithm returns the correct answer in that step.
So in all cases, Algorithm 1 returns the correct answer to the 2SAT-Prob≥p problem. ■

Proof of Theorem 3.1. By Lemma 3.8, Algorithm 1 correctly solves 2SAT-Prob≥p. It remains
to show that Algorithm 1 can be implemented to run in linear time.

Step 1 of Algorithm 1 takes constant time. By Proposition 3.4, constructing D in step 2
in Algorithm 1 takes linear time. Step 3 of Algorithm 1 involves checking |D|, which takes
linear time since D ⊆ φ.

We only reach step 4 of Algorithm 1 if |D| ≤ d. In this case, since D consists of 2-clauses,
we have |H| ≤ 2d. For constant p we have d ≤ O(1), so constructing H takes constant time.
Step 4 of Algorithm 1 ends by summing Pr[φα] over all α : H ! {0, 1}. Since |H| ≤ 2d,
there are at most 22d ≤ O(1) choices of assignments α. For each such α, we can construct
φα in linear time. By Proposition 3.7, each of these induced formulas is a 1-CNF, so we
can compute each Pr[φα] in linear time by Proposition 2.11. So step 4 of Algorithm 1 takes
linear time. Thus, Algorithm 1 takes linear time overall, which proves the desired result. ■

3.2 Threshold 3SAT

In this section, we present a simple algorithm solving 3SAT-Prob≥p for constant p ∈ (0, 1) in
linear time. We design this algorithm by combining the simple ideas from Section 3.1 with
more sophisticated observations about satisfaction probabilities of k-CNF formulas.

40

Theorem 3.9: Threshold Satisfaction for 3-CNFs

For any constant p ∈ (0, 1), there is a linear time algorithm solving 3SAT-Prob≥p.

To solve 3SAT-Prob≥p, a natural starting point is to try and apply Ideas 2 and 3, which
were successful in solving 2SAT-Prob≥p.

Given a 3-CNF φ, we can still return NO in the 3SAT-Prob≥p problem if φ contains a
large disjoint set. If φ has no large disjoint set, then we can employ the idea from step 4 of
Algorithm 1 and apply Proposition 3.7 to reduce computing Pr[φ] to computing satisfaction
probabilities for a small number of 2-CNFs φα induced from φ.

Unfortunately, computing Pr[φ] for 2-CNFs is #P-hard in general, so it is not immediately
clear how to proceed from here. However, the idea of Algorithm 1 gives an example of a
type of 2-CNF whose satisfaction probability we can find in polynomial time – namely, if the
2-CNF φα has no large disjoint set, we can use step 4 of Algorithm 1 to compute Pr[φα].

So if every φα has no large disjoint set, we can compute Pr[φα] for a small collection of
assignments α, and use this to compute Pr[φ] exactly and solve 3SAT-Prob≥p.

The only case the above strategy cannot handle is the situation where φ has no large
disjoint set, yet some induced formula φα does have a large disjoint set. A simple way this
can occur is if the 3-CNF φ is of the form

φ = {ℓ ∪ C | C ∈ D} (3)

where ℓ is a fixed literal and D is a disjoint set on 2-clauses not containing ℓ or ¬ℓ in any
clauses. In this example, the maximum size of a disjoint set in φ is 1 (since all clauses share
the common literal ℓ), but the assignment α which sets ℓ to false induces a disjoint φα of
size |D|, which can be arbitrary large.

This structure, where a a large number of clauses overlap on a fixed set of literals but
are disjoint otherwise, is a classic combinatorial object known as a sunflower.

Definition 3.10 (Sunflowers). Given a CNF φ, we say a set ψ of clauses in φ is a sunflower
if there exists a clause C such that

• every clause in ψ is a superset of C, and

• the set {B \ C | B ∈ ψ} is a disjoint set.

We call C = core(ψ) the core of the sunflower ψ. The number of literals w = |C| in the core
is called the weight of the sunflower. We define the set of petals of ψ to be

petals(ψ) = {B \ core(ψ) | B ∈ ψ}

the disjoint set formed by removing the core from each clause of ψ. A sunflower of weight w
is referred to as a w-sunflower.

So a disjoint set is a 0-sunflower, and the 3-CNF from eq. (3) is a 1-sunflower.
We saw in the previous discussion that eq. (3) is an example of a 3-CNF for which our

strategy of computing Pr[φ] by repeatedly applying Proposition 3.7 does not work. The next
proposition shows that in some sense, having a large sunflower is the only obstruction
to finding Pr[φ] by computing Pr[φα] for various induced 1-CNF formulas φα.

41

Proposition 3.11. For each integer k ≥ 1, there is an algorithm Sunk which takes as input
a k-CNF formula φ and positive integer parameters s0, . . . , sk−2, and returns either

1. a j-sunflower of size greater than sj on w-clauses in φ for some w ≥ j + 2, or

2. a set H of at most fk(s0, s1, . . . , sk−2) variables in φ such that for every α : H ! {0, 1},
the induced formula φα is a 1-CNF, where fk(s0, s1, . . . , sk−2) is a constant depending
only on the sj and k.

Moreover, the algorithm Sunk runs in fk(s0, . . . , sk−2)|φ| time.

Proof. We prove the result by induction on k. Our argument is similar to the proof of the
classic sunflower lemma of [ER60].

For k = 1, the algorithm Sun1 simply returns the set of variables H = ∅, which satisfies
item 2 from the statement because the input φ in this case is already a 1-CNF.

For the inductive step, let k ≥ 2 be a fixed positive integer, and suppose we know there
exists an algorithm Sunk−1 satisfying the desired properties for the k − 1 case.

The algorithm Sunk works as follows.
First, we compute a maximal disjoint set D = Disj(φ) on the k-clauses of φ using the

linear-time algorithm from Proposition 3.4. If |D| > s0, we return D, which satisfies item 1
from the statement since a disjoint set is a 0-sunflower.

Otherwise, |D| ≤ s0. In this case, let H be the set of variables which appear in a clause of
D. Each clause in D contains k variables, so |H| ≤ ks0. Moreover, since D is maximal on the
k-clauses of φ, every k-clause in φ contains some variable of H. So for each α : H ! {0, 1},
the induced formula φα is a (k − 1)-CNF.

We go through every assignment α : H ! {0, 1}, and for each construct φα and compute

Sunk−1(φα, s
′
0, s

′
1, . . . , s

′
k−3) (4)

where

s′j =

(
max
r≥j

sr

)
·

(
k−2−j∑
i=0

(ks0)
i

)
(5)

for each j ≤ k − 3.
Note that the s′j are constants depending only on s0, . . . , sk−2.
We now perform casework based off what information the calls to Sunk−1 return.
Case 1: No Sunflowers
Suppose that for every assignment α : H ! {0, 1}, the call to Sunk−1 in eq. (4) satisfies

item 2 from the statement, returning a set Hα of variables in φα. We return

H̃ =
⋃

α : H!{0,1}

Hα.

We claim this output satisfies item 2 from the statement.
Indeed, since Sunk−1 satisfies item 2, we know that

|Hα| ≤ fk−1(s
′
0, . . . , s

′
k−3)

42

for each assignment α. As a consequence we have

|H̃| ≤ 2ks0fk−1(s
′
0, . . . , s

′
k−3).

Now, set
fk(s0, . . . , sk−2) = 2ks0 · fk−1(s

′
0, . . . , s

′
k−3). (6)

Since each s′i is a constant depending only on the sj, by the inductive hypothesis the right
hand side of the above expression is a constant depending only on the sj and k.

So returning H̃ satisfies item 2 from the statement as claimed.
Case 2: Some Sunflower
If case 1 does not occur, then for some assignment α the output eq. (4) satisfies item 1

from the statement. This means that we have found a j-sunflower ψ of size greater than s′j
in φα, for some j ≤ k − 3. Moreover, every clause in ψ has width w for some w ≥ j + 2.

Each w-clause in φα can be recovered uniquely by starting with a clause C of φ and
removing at most (k − w) literals from C. The only literals that are removed from clauses
when going from φ to φα are those literals set to false by α.

There are at most |H| ≤ ks0 such literals. So, there are at most

k−w∑
i=0

(ks0)
i ≤

(k−2)−j∑
i=0

(ks0)
i

tuples of literals which could have been removed to obtain a clause in ψ from a clause in φ.
Then by averaging, there exists a single set of literals S whose removal produces at least

s′j
1 + (ks0) + · · ·+ (ks0)k−2−j

= max
r≥j

sr (7)

clauses in ψ, where we used the definition of the s′j from eq. (5).
Let ψ′ ⊆ ψ be the corresponding subformula of size at least maxi≥j si, consisting of the

clauses in ψ formed by deleting exactly the literals in S from clauses in φ. We find ψ′ by
going through the possible sets of at most (k − w) literals set to false by α, and for each
seeing how many clauses in ψ are obtained by removing exactly those literals from a clause
in φ.

Since ψ is a j-sunflower, so is ψ′.
Let l = |S| be the number of literals in S. Note that

l ≤ k − w ≤ (k − 2)− j. (8)

Consider the k-CNF formula with clause set

φ′ = {C ∪ S | C ∈ ψ′} .

We return φ′. We claim this output satisfies item 1 from the statement.
Since every clause in ψ′ was obtained by deleting exactly the literals in S from a clause

in φ, we know that φ′ ⊆ φ consists of clauses in φ. Since ψ′ is a j-sunflower and no clause of
ψ′ contains a literal from S, φ′ is a (j+ l)-sunflower with core(φ′) = S∪ core(ψ′). By eq. (8),

43

the weight of this sunflower is at most j + l ≤ k − 2. Moreover, the formula φ′ consists
entirely of clauses of width at least (w + l) ≥ (j + l) + 2.

Finally, φ′ has the same size as ψ′, which is at least sj+l by eq. (7), so returning φ′ satisfies
item 1 from the statement as claimed.

Thus in both case 1 and case 2, the output of Sunk meets the conditions from the propo-
sition statement. In either case, the runtime is dominated by the at most 2ks0 calls to Sunk−1

in eq. (4). By the inductive hypothesis, each such call takes at most fk−1(s
′
0, . . . , s

′
k−3)|φ|

time asymptotically. Thus by eq. (5), Sunk runs in

fk(s0, . . . , sk−2)|φ|

time asymptotically as desired.
This completes the induction and proves the claim. ■

From Proposition 3.11, we see that given a 3-CNF φ we can, intuitively, in polynomial time
either find a large 0-sunflower in φ (and therefore return NO to the 3SAT-Prob≥p problem),
compute Pr[φ] by computing Pr[φα] for a small number of induced 1-CNFs φα (and solve
the 3SAT-Prob≥p using the value of this satisfaction probability), or find a large 1-sunflower
in φ. What can we do in this last case?

Idea 3 suggests that if many clauses in φ overlap on a small set of literals, this structure
should let us simplify φ somehow. A 1-sunflower is a very strong example of such structure:
we have a set of clauses which all overlap on exactly one literal ℓ, and are disjoint otherwise.
Intuitively, the literal ℓ is very important for satisfying φ.

Idea 4 If a k-CNF has a large sunflower, then most of its satisfying assignments will also
satisfy the the core of that sunflower. So restricting our attention to solutions of
the original formula which satisfy the core of a large sunflower should still yield
a good approximation to the true fraction of satisfying assignments.

Idea 4 is captured by the following result.

Proposition 3.12 (Falsifying the Core of a Large Sunflower). Let φ be a k-CNF containing
a w-sunflower ψ of size at least s. Let C = core(ψ). Then

Pr[φ ∧ ¬C] ≤
(
1− 1

2k−w

)s

Proof. Let φ′ be the formula obtained by taking φ and removing C from every clause in φ
containing it as a subset. Then because any satisfying assignment to φ∧¬C must falsify C,
the formulas φ ∧ ¬C and φ′ ∧ ¬C are equivalent.

Since ψ ⊆ φ has core C, by construction petals(ψ) ⊆ φ′. Hence φ′ contains a disjoint set
of size at least s. So by Propositions 3.3 and 2.16 we have

Pr[φ′] ≤
(
1− 1

2k−w

)s

where we used the fact that petals(ψ) is a (k − w)-CNF.

44

Every solution to φ′ ∧ C is a satisfying assignment of φ′. Thus

Pr[φ ∧ ¬C] = Pr[φ′ ∧ ¬C] ≤ Pr[φ′] ≤
(
1− 1

2k−w

)s

which proves the claim. ■

We can apply Proposition 3.12 to 3SAT-Prob≥p as follows. If our 3-CNF φ has a large
1-sunflower with core {ℓ}, then since every solution to φ sets ℓ to true or false we have

Pr[φ] = Pr[φ ∧ ℓ] + Pr[φ ∧ ¬ℓ]. (9)

The formula φ ∧ ¬ℓ is equivalent to the induced formula φβ, where β is the assignment
which sets ℓ to false. Since ℓ is the core of a large 1-sunflower in φ, the formula φβ has
a large disjoint set, and thus Pr[φβ] is small. So by eq. (9), Pr[φ] should be very close to
Pr[φ ∧ ℓ]. The formula φ ∧ ℓ is equivalent to formula induced from φ by assigning ℓ to be
true, which erases the large 1-sunflower from φ, and so intuitively “simplifies” φ. Thanks to
this simplification, working with φ ∧ ℓ should be easier than working with φ directly.

If Pr[φ ∧ ℓ] ≥ p, then by eq. (9) we know that Pr[φ] ≥ p as well, and can return YES in
the 3SAT-Prob≥p problem.

What can we deduce if Pr[φ ∧ ℓ] < p instead? In this case, from eq. (9) alone it is not
necessarily clear how Pr[φ] compares to p. Even if Pr[φ ∧ ¬ℓ] < δ is very small, if somehow
we have Pr[φ ∧ ℓ] ∈ (p− δ, p), then it could still be the case that Pr[φ] ≥ p.

We will argue that for a small enough constant δ > 0, it is actually impossible for the
above situation to occur. This is suggested by Idea 1: the possible satisfaction probabilities
of k-CNFs seem highly constrained for constant k, so intuitively it should not be possible for
Pr[φ ∧ ℓ] to be both less than p and very close to p.

To make this intuition more concrete, suppose for simplicity that φ∧ ℓ contains no large
sunflower, so that by Proposition 3.11 the solution space of φ ∧ ℓ can be decomposed into a
small union of solution spaces of 1-CNFs. By Proposition 2.11, the satisfaction probability
for a 1-CNF is zero or a power of two. So in this case, Pr[φ∧ ℓ] is a sum of a small number of
powers of two. The following lemma shows that such a number cannot be arbitrarily close
to p and yet less than p, for any constant p ∈ (0, 1).

Lemma 3.13 (Binary Gaps). For any p ∈ (0, 1) and positive integer m, there exists a real
number δ = δm(p) > 0 such that no real in (p− δ, p) is the sum of at most m powers of two.

Proof. We use the following well-known fact: any real number p ∈ (0, 1) has a unique binary
representation of the form

p =
∞∑
i=1

2ai (10)

where (ai)i≥1 is a sequence of strictly decreasing integers. Define

δ = δm(p) =
∞∑

i=m+1

2ai (11)

45

to be number obtained by taking all but the first m terms in the summation representing p.
We claim that no number which can be written as the sum of at most m powers of two is in
the interval (p− δ, p).

To that end, take an arbitrary real q which can be written as the sum of at most m
powers of two. Let l ≤ m be the smallest positive integer such that q can be written as the
sum of l powers of two. Take such a representation

q =
l∑

i=1

2bi

for some integers b1 ≥ b2 ≥ · · · ≥ bl. We claim that (bi)i≥1 is a strictly decreasing sequence.
Indeed, if not, then there exists an index j for which bj = bj+1. But then since

2bj + 2bj+1 = 2 · 2bj = 2bj+1

we get that q can be written as the sum of l− 1 powers of two, which contradicts our choice
of l. So we must have b1 > b2 > · · · > bl as claimed.

We now compare the binary digits of q and δ compare.
Suppose first that bi = ai for all i ∈ [l]. Then since l ≤ m, we have

q =
l∑

i=1

2bi =
l∑

i=1

2ai ≤
m∑
i=1

2ai = p− δ.

Otherwise, bi ̸= ai for some i ∈ [l]. Let j ∈ [l] be the smallest index with bj ̸= aj.
If bj < aj, then

q =
l∑

i=1

2bi ≤

(
j−1∑
i=1

2ai

)
+ 2aj−1 +

∞∑
r=1

2aj−1−r =

j∑
i=1

2ai

where we have used the infinite geometric series formula and the fact that (ai)i≥1 is a strictly
decreasing sequence. Since j ≤ l ≤ m, we see that in this case

q ≤
j∑

i=1

2ai ≤
m∑
i=1

2ai = p− δ

as before.
The only remaining possibility is that bj > aj. In this case we have

q ≥
j∑

i=1

2bi ≥

(
j−1∑
i=1

2ai

)
+ 2aj+1 =

j∑
i=1

2ai +
∞∑
r=1

2aj−r ≥ p

where we have once again used the infinite geometric series formula and that the ai are
strictly decreasing, as well as eq. (10).

So in every case, we have q ̸∈ (p− δ, p) as claimed. ■

Incorporating Lemma 3.13 into the previous discussion on how to solve 3SAT-Prob≥p on
input φ, we have the following approach to tackle the problem:

46

1. If φ has a large disjoint set we return NO.

2. If Pr[φ] can be computed as a small sum of satisfaction probabilities of 1-CNFs, we can
also solve the problem.

3. If neither of these cases occur, then φ contains a large 1-sunflower ψ by Proposition 3.11.
If core(ψ) = {ℓ}, we have Pr[φ] = Pr[φ ∧ ℓ] + Pr[φ ∧ ¬ℓ]. Since ℓ is the core of a large
sunflower, Pr[φ ∧ ¬ℓ] < δ is very small.

4. If Pr[φ∧ℓ] can be computed as a small sum of satisfaction probabilities of 1-CNFs, then
by Lemma 3.13, Pr[φ] ≥ p if and only if Pr[φ ∧ ℓ] ≥ p, so we can solve the problem.

The application of Lemma 3.13 in step 4 above is a concrete way of realizing Idea 4: the
literal ℓ is so influential in φ, that for the purpose of checking if Pr[φ] ≥ p it suffices to work
with the “inferred formula” φ ∧ ℓ and check if Pr[φ ∧ ℓ] instead.

It remains to handle the case where in item 4 above, Pr[φ∧ ℓ] is not equal to a small sum
of satisfaction probabilities of 1-CNFs. In this case, by Proposition 3.11 the formula φ ∧ ℓ
has a large sunflower. Then we can repeat our strategy above: use this large sunflower to
either report that Pr[φ∧ ℓ] is very small (so we can return NO) or simplify φ∧ ℓ by asserting
the core of the sunflower is true.

We keep repeating this sort of simplification as needed, inferring simpler formulas each
time. Eventually, either we simplify to a formula whose satisfaction probability we can
compute exactly to solve the problem, or we have find so many different 1-sunflowers in the
original formula φ that we can argue that Pr[φ] < p.

Idea 5 If a CNF formula contains many large, non-overlapping sunflowers, its satisfaction
probability should be very small.

This strategy is implemented in Algorithm 2 to solve 3SAT-Prob≥p.
In Algorithm 2, d is the threshold for a disjoint set to be large, t is the number of large

1-sunflowers we need to see before we can deduce that φ has a small satisfaction probability
(following Idea 5), and each s(i) input is the size threshold for the ith 1-sunflower we find to
be considered large.

Lemma 3.14. For any p ∈ (0, 1), there exist positive integers s(i) for each i ∈ [⌈log(1/p)⌉]
whose values depend only on i and p, such that Algorithm 2 solves 3SAT-Prob≥p when given
the s(i) as input.

Proof. We first describe the values of the s(i), and then prove that this choice of parameters
enables Algorithm 2 to correctly solve 3SAT-Prob≥p.

As in Algorithm 2, we write t = ⌈log(2/p)⌉ and d = ⌈log8/7(2/p)⌉
In addition to the s(i), we define integers

mi = 2f3(d,s(i)) (12)

for each i ∈ [t], where f3 is the function fk from the statement of Proposition 3.11 for k = 3.
Since d depends only on p, each mi is determined by the value of p and s(i).

47

Algorithm 2. Threshold Satisfaction Algorithm for 3-CNFs

Inputs: A 3-CNF φ, real p ∈ (0, 1), and integers s(i) for each i ∈ [⌈log(1/p)⌉]
Returns: YES if Pr[φ] ≥ p, NO if Pr[φ] < p

1. Initialize Φ φ, t ⌈log(2/p)⌉, d ⌈log8/7(2/p)⌉.

2. For each i ∈ [t]:

3. Compute S Sun3(Φ, d, s(i))

4. If D S is a disjoint set of size greater than d, return NO.

5. If instead H S is a collection of variables, compute

Pr[Φ] =
∑

α : H!{0,1}

Pr[Φα]

and return YES if this sum is at least p, NO if this sum is less than p.

6. Otherwise ψ S is a 1-sunflower of size greater than s(i).
Set C core(ψ). Update Φ Assert(Φ, C).

7. Return NO.

We set
s(t) = ⌈log4/3(2t/p)⌉. (13)

Then for each index i with 2 ≤ i ≤ t, we set

s(i− 1) =

⌈
log4/3

(
i− 1

δmi
(p)

)⌉
(14)

where δm(p), for any integer m, is the constant from the statement of Lemma 3.13. Since
each mi is defined in terms of p and s(i), the above equation defines s(i− 1) in terms of s(i)
for each 2 ≤ i ≤ t− 1. So eqs. (12) to (14) define the s(i) values for all i ∈ [t].

We now show that for this setting of parameters, Algorithm 2 has the desired behavior.
Suppose that Algorithm 2 reaches some iteration i of the loop. Then for each j < i, the

call to Sun3 in iteration j of the loop must of have returned a 1-sunflower of size greater
than s(j) in Φ, since otherwise the algorithm would have halted. Let ℓj be the literal making
up the core of the 1-sunflower found in iteration j.

Since Φ = φ at the beginning of the algorithm, and in each iteration j we update Φ to
be equivalent to Φ∧ ℓj, an easy induction argument shows that at the end of iteration j, the
formula Φ is equivalent to

φ ∧

(
j∧

r=1

ℓr

)
.

48

So immediately after Algorithm 2 has completed i iterations of the loop, Φ is equivalent to

φ ∧

(
i−1∧
j=1

ℓj

)
. (15)

Then at this time, the satisfying assignments of Φ are precisely the solutions to φ which
set ℓj to be true for all j < i. This means that the assignments which satisfy φ but do not
satisfy Φ assign ℓj to be false for some index j. By considering the smallest index j which
satisfies this property for each assignment, we deduce that

Pr[φ]− Pr[Φ] =
i−1∑
j=1

Pr

[
φ ∧

(
j−1∧
r=1

ℓr

)
∧ ¬ℓj

]
. (16)

For each j < i, we know that Algorithm 2 found a sunflower of size greater than s(j) in
a formula equivalent to

φ ∧

(
j−1∧
r=1

ℓr

)
with core {ℓj}. So by Proposition 3.12,

Pr

[
φ ∧

(
j−1∧
r=1

ℓr

)
∧ ¬ℓj

]
< (3/4)s(j)

Substituting the above inequality for each j < i into eq. (16) we get that

Pr[φ]− Pr[Φ] < (i− 1)(3/4)s(i−1) (17)

where we used the fact that the s(j) are decreasing.
Having proved Pr[φ] and Pr[Φ] are close, we are ready to analyze what happens when

Algorithm 2 halts. We consider cases based off whether Algorithm 2 halts within its loop
(in steps 4 or 5), or outside of its loop (in step 7).

Case 1: Halting Within the Loop
Suppose Algorithm 2 halts on iteration i of the loop.
If we halt in step 4 of Algorithm 1, Φ has a disjoint set of size greater than d. Then by

Proposition 3.3 we have
Pr[Φ] < (7/8)d ≤ p/2

since d > log8/7(2/p).
By eq. (17) and the fact that the s(i) are decreasing we have

Pr[φ]− Pr[Φ] < t · (3/4)s(t) ≤ p/2

by our choice of s(t) in eq. (13).
Adding the two last equations together, we deduce that

Pr[φ] = Pr[Φ] + (Pr[φ]− Pr[Φ]) < p/2 + p/2 = p

49

so Algorithm 2 correctly returns NO in this case.
The other possibility is that we halt in step 5 of Algorithm 1. In this case, by Propo-

sition 3.11, we find a set H of at most f3(d, s(i)) variables in Φ with the property that for
every assignment α : H ! {0, 1}, the induced formula Φα is a 1-CNF.

By Proposition 2.19 we have

Pr[Φ] =
∑

α : H!{0,1}

Pr[Φα].

By Proposition 2.11, each summand in the right hand side above is zero or a power of two.
So the above equation shows that Pr[Φ] is a sum of at most

2|H| ≤ 2f3(d,s(i)) = mi

powers of two by our choice of mi in eq. (12).
If Pr[Φ] ≥ p, then since Φ is equivalent to the formula from eq. (15), we have

Pr[φ] ≥ Pr[Φ] ≥ p

so Algorithm 2 returns YES correctly in this case.
If Pr[Φ] < p, by Lemma 3.13 we have

Pr[Φ] ≤ p− δ

for δ = δmi
(p).

From eq. (17) and our choice of s(i) in eq. (14), we can bound

Pr[φ]− Pr[Φ] < (i− 1)(3/4)s(i−1) ≤ δ.

Adding the previous two inequalities yields

Pr[φ] = Pr[Φ] + (Pr[φ]− Pr[Φ]) < (p− δ) + δ = p

so Algorithm 2 returns NO correctly in this case.
Thus Algorithm 2 returns the correct answer whenever it halts within the loop.
Case 2: Halting Outside the Loop
In this case, Algorithm 2 halts in step 7.
This means the algorithm completed t iterations of the loop. So by eq. (17) we have

Pr[φ]− Pr[Φ] < t(3/4)s(t) ≤ p/2

by our choice of s(t) in eq. (13).
By eq. (15), we know that Φ is equivalent to

φ ∧

(
t∧

j=1

ℓj

)
.

50

Each ℓj was identified as the core of a large sunflower in a formula containing only one
instance of ℓr (as a unit clause) for all r < j. Thus D = {ℓ1, . . . , ℓt} is a disjoint set in the
above formula. Then by Proposition 2.16 we have

Pr[Φ] ≤ Pr[D] ≤ (1/2)t ≤ p/2

by our choice of t > log(2/p).
Combining the previous two inequalities, we get that

Pr[φ] = Pr[Φ] + (Pr[φ]− Pr[Φ]) < p/2 + p/2 = p

so Algorithm 2 returns NO correctly in this case.
So in both case 1 and case 2, Algorithm 2 solves 3SAT-Prob≥p correctly as claimed. ■

Proof of Theorem 3.9. By Lemma 3.14, for any constant p ∈ (0, 1), there exist constant
positive integers s(i) for each i ∈ [⌈log(2/p)⌉] such that Algorithm 2 solves 3SAT-Prob≥p

when given the s(i) as input. So to prove the theorem, it suffices to show that Algorithm 2
runs in linear time when given these input parameters.

Step 1 of Algorithm 2 takes linear time since we just read the input.
There are at most t = ⌈log(2/p)⌉ iterations of the loop in Algorithm 2. Since p is constant,

t is bounded above by a constant. So steps 3 through 6 of the algorithm each occur at most
a constant number of times.

By Proposition 3.11, the call to Sun3 in step 3 of Algorithm 2 takes linear time, since
the s(i) are constants and d = ⌈log8/7(2/p)⌉ is constant because p is constant.

Step 4 of Algorithm 2 takes linear time since we just need to read a disjoint set in Φ.
Step 5 of Algorithm 2 takes at most 2|H||φ| time asymptotically. By Proposition 3.11 the

number of variables in H is bounded above by a constant since d and s(i) are constants, so
this step takes linear time.

Step 6 of Algorithm 2 takes linear time by Proposition 2.20.
Step 7 of Algorithm 2 takes constant time since we just return NO.
So overall Algorithm 2 takes linear time, as claimed. ■

3.3 Threshold kSAT

In this section, we show how to solve kSAT-Prob≥p for fixed integers k ≥ 1 and constant
p ∈ (0, 1) in linear time, thereby proving Theorem 2.15. We do this by generalizing the ideas
from Sections 3.1 and 3.2 to k-CNF for k ≥ 4.

The general strategy of our kSAT-Prob≥p algorithm is the same as that of Algorithm 2. We
keep applying Proposition 3.11 to our formula. If the Sunk subroutine from Proposition 3.11
finds a large disjoint set or lets us compute the satisfaction probability of the formula exactly,
we can solve the problem. Otherwise, Sunk finds a large sunflower in the formula. In
this case, we update the formula by asserting that the core of its large sunflower is true.
Intuitively, as suggested in Idea 4, such an overwhelming amount of the satisfying assignments
to φ set this core to be true that asserting the core is true is a “safe inference” for the purpose
of solving kSAT-Prob≥p. We keep doing this until the above strategy returns an answer, or
we have found “too many” large sunflowers, at which point we can return NO.

51

The proof of correctness for our kSAT-Prob≥p algorithm when k ≥ 4 becomes more in-
volved than the arguments in Sections 3.1 and 3.2 for the k ≤ 3 case because the sunflowers
we find can how have cores with more than one literal. This means that quantifying pre-
cisely how “large” each sunflower should be becomes trickier to analyze (in particular, the
dependence between parameter values becomes more difficult to keep track of), and that
arguing that we can return NO if we find many sunflowers becomes harder because the cores
of different sunflowers can overlap.

When we find “many” large sunflowers, we saw in Section 3.2 that when solving 3SAT-
Prob≥p we can just return NO, intuitively because of Idea 5. For this intuition to work we
need to find sunflowers which do not overlap at many literals, so that we can argue the
formula has small satisfaction probability.

To circumvent this issue, we modify the algorithm as follows: any time Sunk finds a large
w-sunflower ψ with core C for some w ≥ 1, we try out each nonempty B ⊂ C and check if
B is the core of a v-sunflower larger than ψ in the formula, where v = |B| < w. If such a
set B exists, then we assert that B is true instead of asserting that C is true.

Why is this change helpful? Well, this check ensures that whenever we assert that the
core of a large sunflower is true, we know that none of its literals belong to cores of large
sunflowers with smaller weight. Intuitively, this means that the literals in the core we asserted
should not be able to overlap too much with the cores of large sunflowers we find later (since
if there were many large overlaps, we should have a sunflower with smaller core in the above
check and asserted that instead).

To perform this check it is not enough to rely on the Sunk routine from Proposition 3.11
as written, since we do not have control over the weight of the sunflower returned in Sunk.
For our kSAT-Prob≥p algorithm here, we will implement the check using an existing param-
eterized algorithm for a certain maximum disjoint set problem.

In the (k, s)-Set Packing problem, we are given a family F of sets, each of size exactly k,
and are tasked with returning a collection of s pairwise-disjoint sets in F , or reporting that
no such collection exists.

The following result is due to [JZC04], and we cite it here without proof:

Proposition 3.15 (Parameterized Set Packing Algorithm). The (k, s)-Set Packing problem
can be solved in linear time for constant positive integers k and s.

Using the algorithm from Proposition 3.15, we can run the check discussed previously.

Corollary 3.16. For each integer k ≥ 1, there is an algorithm MaxSunk which takes as
input a k-CNF Φ, an integer s ≥ 1, and a clause B, and either returns a sunflower ψ of size
greater than s, with core(ψ) = B, in Φ, or reports that no such sunflower exists (i.e., returns
NO). If k and s are constants, the algorithm runs in linear time.

Proof. The MaxSunk algorithm works by reducing to the (k, s)-Set Packing problem. We
will first describe the algorithm, and then explain why it works.

Given Φ, we first construct the subformula

φ = {C | C ∈ Φ, C ⊇ B}

52

of all clauses in Φ containing B as a subset. Then we construct the formula

φ′ = {C \B | C ∈ φ}

obtained by removing the literals of C from each clause in φ. We can construct φ′ in linear
time simply by scanning through the clauses of Φ.

We then construct a family F ′ of sets by taking the clauses of φ′, and for each variable x
in φ′ replacing all instances of ¬x with x in the clauses. So F ′ is the set family obtained by
identifying literals corresponding to the same variable as the same elements in the clauses.

Since Φ is a k-CNF, every set in F ′ contains at most k elements.
We construct the family of sets F by taking F ′ and for each set S ∈ F ′ containing fewer

than k elements, adding k− |S| new elements to that set, not included in any other set. We
can construct F in linear time by scanning through the clauses and variables of φ′. Note
that each set in F corresponds uniquely to a clause in φ′, and we record this correspondence
in linear time as well.

By construction, F is a set family where every set has size exactly k.
We now run the algorithm from Proposition 3.15 on F with parameters k and s+1. This

takes linear time since k and s are constants.
If the set packing algorithm says that F does not contain s+1 pairwise disjoint sets, we

report that Φ does not contain a sunflower of size greater than s with core B.
If instead the set packing algorithm returns a collection D of s+ 1 pairwise disjoint sets

in F , we find the set of clauses D in φ′ corresponding to D (using the correspondence we
kept track of) and then return

ψ = {C ∪B | C ∈ D}

as our sunflower with core B, of size greater than s.
The discussion above shows that the proposed algorithm runs in linear time. It remains

to explain why the algorithm is correct.
First, a collection of sets D in F are pairwise disjoint if and only if the corresponding

collection of sets in F ′ (before new elements were added to make all sets have size exactly
k) are pairwise disjoint. This is because the newly added elements in going from F ′ to F
were different for every set, and adding new elements to sets which intersect cannot turn the
sets disjoint. It then follows from the definition of a disjoint set of clauses in Definition 3.2
that a collection of sets D in F are pairwise disjoint if and only if the corresponding set of
clauses D in φ′ is variable disjoint. Moreover, D and D have the same size.

If Φ contains a sunflower ψ with core B, of size greater than s, then petals(ψ) form a
disjoint set of size greater than s in φ′. Similarly, if φ′ contains a disjoint set D of size greater
than s in φ′, we can pull back D to a get a sunflower

ψ = {C ∪B | C ∈ D}

of size greater than s, with core B, in Φ.
The discussions from the previous two paragraphs show that the proposed algorithm has

the desired behavior, which completes the proof. ■

To help argue that we can return NO once our algorithm has found enough large sun-
flowers, we use the following variant of the sunflower lemma from [ER60].

53

Proposition 3.17 (Asymmetric Sunflower Lemma). Let w be a positive integer. Then for
any positive integers s0, . . . , sw−1, every w-CNF formula with more than

w! · 2w
w−1∏
v=0

sv

clauses must contain a v-sunflower of size greater than sj for some j ∈ [w − 1].

Proof. We prove the result by induction on w.
For the base case of w = 1, we want to show that a 1-CNF φ with more than 2s0 clauses

contains a disjoint set of size greater than s0. A variable x can appear in φ only as a unit
clause {x} or a unit clause {¬x}. So each variables appears in at most twice in φ. Since
φ has more than 2s0 clauses, it must contain more than 2s0/2 = s0 variables. The clauses
containing these distinct variables form a disjoint set of size greater than s0 as desired.

For the inductive step, fix w ≥ 2, and suppose we know that the proposition statement
holds for (w − 1)-CNFs. We will show that any w-CNF φ with more than

w! · 2w
w−1∏
v=0

sv

clauses contains a v-sunflower of size greater than sv for some v < w.
Let D be a maximum size disjoint set in φ.
If |D| > s0 then the claim holds.
Otherwise, |D| ≤ s0. Let H be the set of variables appearing in D. Since φ is a w-CNF,

we have |H| ≤ ws0. Since D must also be a maximal disjoint set in φ, every clause in φ
use a variable from H. There are 2|H| ≤ 2ws0 literals corresponding to the variables in H.
By averaging, there must be a literal ℓ corresponding to a variable from H which appears in
more than

1

2ws0
· w! · 2w

w−1∏
v=0

sv = (w − 1)! · 2w−1

w−2∏
v=0

sv+1 (18)

clauses of φ. Let Φ be the subformula of φ with all clauses containing ℓ. Let

φ′ = {C \ {ℓ} | C ∈ Φ}

be the (w − 1)-CNF obtained by removing ℓ from each clause of ψ.
Since the number of clauses in φ′ is greater than the right hand side of eq. (18), by the

inductive hypothesis there exists v < w−1 such that φ′ contains a v-sunflower of size greater
than sv+1. Let ψ′ be such a sunflower. Then since no clause in ψ′ contains ℓ, the formula

ψ = {C ∪ {ℓ} | C ∈ ψ′}

is a (v + 1)-sunflower in φ of size greater than sv+1.
Note that v + 1 < w since v < w − 1, so the proposition statement holds for w.
This completes the induction and proves the desired result. ■

54

The last concept we introduce before presenting the kSAT-Prob≥p algorithm is that of
a parameter family. A parameter family consists of sequences of t⃗w and s⃗w of parameters
for each w ∈ [k − 2], indexed by tuples i⃗ = ⟨i1, . . . , ik−2⟩. Intuitively, in our algorithm iw
will record the number of large w-sunflowers found so far for each w ∈ [k − 2] Given these
counts, t⃗w (⃗i) will record the maximum number of additional large w-sunflowers we can find
before our algorithm halts and returns NO, and sw (⃗i) represents the current threshold for a
w-sunflower to be large.

Definition 3.18 (Parameter Family). Given an integer k ≥ 3 and real p ∈ (0, 1), we define a
(k, p)-parameter family P =

(
t⃗1, s⃗1, . . . , t⃗k−2, s⃗k−2

)
to be a collection of sequences of positive

integers with the following properties:

1. Sequence t⃗1 = ⟨t1(∅)⟩ consists of a single positive integer t1(∅).

2. For each w ≥ 2, t⃗w is a sequence of integers indexed by (w− 1)-tuples ⟨i1, . . . , iw−1⟩ of
integers satisfying 0 ≤ iv < tv(i1, . . . , iv−1) for each v ∈ [w − 1].

3. For each w ∈ [k − 2], s⃗w is a sequence of integers indexed by w-tuples ⟨i1, . . . , iw⟩ of
integers satisfying 0 ≤ iv < tv(i1, . . . , iv−1) for each v ∈ [w].

We say a (k − 2)-tuple i⃗ = ⟨i1, . . . , ik−2⟩ which satisfies

0 ≤ iw < tw(i1, . . . , iw−1) (19)

for all w ∈ [k − 2] is a valid index for the parameter family P. We let I(P) denote the set
of valid indices for P.

For each w ∈ [k − 2] and valid index i⃗ = ⟨i1, . . . , ik−2⟩ for P, we define

tw (⃗i) = tw(i1, . . . , iw−1) and sw (⃗i) = sw(i1, . . . , iw).

If i⃗ = ⟨i1, . . . , iw−1⟩ is outside the index set for t⃗w, we set t⃗w (⃗i) = 0 by convention.

To argue our algorithm runs in linear time, we will need to be able to bound the number
of valid indexes for a given (k, p)-parameter family. To do this, it is helpful to upper bound
the number of possible prefixes of a valid indices.

Definition 3.19 (Valid Index Prefixes). Let P =
(
t⃗1, s⃗1, . . . , t⃗k−2, s⃗k−2

)
be a (k, p)-parameter

family for some positive integer k ≥ 3 and p ∈ (0, 1). Then for any w ∈ [k − 2], we say a
tuple of integers j⃗ = ⟨j1, . . . , jw⟩ is a valid w-prefix for P if

0 ≤ jv < tv(j1, . . . , jv−1) (20)

for all v ∈ [w]. In particular, j⃗ is a valid (k − 2)-prefix precisely if it is a valid index of P.
We let Iw(P) denote the set of valid w-prefixes of P.

Lemma 3.20 (Bounding Valid Prefix Count). Let P =
(
t⃗1, s⃗1, . . . , t⃗k−2, s⃗k−2

)
be a (k, p)-

parameter family for some positive integer k ≥ 3 and p ∈ (0, 1). Then for any w ∈ [k − 2],
the number of valid w-prefixes of P is at most

Tw =
w∏

v=1

(
max

l⃗∈Iv−1(P)
tv (⃗l)

)
.

55

Proof. We prove the result by induction on w.
For the base case of w = 1, a valid w-prefix j⃗ = ⟨j1⟩ consists of a single nonnegative

integer with j1 < t1(∅). So there are at most t1(∅) valid 1-prefixes. Since I0(P) = {∅},
this proves the claim for w = 1.

For the inductive step, fix w ∈ [k − 2] with w ≥ 2, and suppose the claim holds for the
case of (w − 1). We will show that the claim holds in the case of w as well.

Let j⃗ = ⟨j1, . . . , jw⟩ be a valid w-prefix. Then j⃗ satisfies the inequalities from eq. (20) for
each v ∈ [w]. This implies that l⃗ = ⟨j1, . . . , jw−1⟩ is a valid (w − 1)-prefix. By the inductive
hypothesis, there are at most Tw−1 such l⃗. For each choice of l⃗, we must have

0 ≤ jw < tw (⃗l).

Since j⃗ is the concatenation of l⃗ and jw. So for a fixed value of l⃗, the number of possible j⃗
is tw (⃗l). Thus, the total number of valid w-prefixes is bounded above by

∑
l⃗∈Iw−1(P)

tw (⃗l) ≤ |Iw−1(P)| ·

(
max

l⃗∈Iw−1(P)
tw (⃗l)

)
≤ Tw−1 ·

(
max

l⃗∈Iw−1(P)
tw (⃗l)

)
= Tw

as claimed. This completes the induction, and proves the lemma. ■

To manage tuples of indices i⃗, it will be helpful to introduce some orders on these tuples.
Let a⃗ and b⃗ be tuples of integers, indexed by the same set I. Then a⃗ < b⃗ if a(i) < b(i)

for all i ∈ I. In this case, we say a⃗ is less than b⃗ componentwise.
If a⃗ and b⃗ are both indexed by [l] for some positive integer l, we write a⃗ ≺ b⃗ if there exists

an index i ∈ [l] such that ai < bi, and aj = bj for all j < i. In this case we say that a⃗ is
lexicographically smaller than b⃗.

Lemma 3.21. For any fixed integer k ≥ 1 and constant p ∈ (0, 1), there is a (k, p)-parameter
family P consisting of sequences of constant positive integers, such that Algorithm 3 solves
the kSAT-Prob≥p problem when given P as input.

Proof. We first describe the values of the parameters in P, and then prove that this choice
of parameters enables Algorithm 3 to correctly solve kSAT-Prob≥p.

We start by setting
t1(∅) = ⌈log(2/p)⌉. (21)

The remaining parameters will be defined recursively.
For each valid index i⃗ of P, we will define tw (⃗i) for 2 ≤ w ≤ k− 2 in terms of the values

of sv (⃗i) for all v < w. For each valid index j⃗ of P and w ∈ [k − 2], we will define sw (⃗j)
in terms of tw (⃗j), the values of tu(⃗l) for all u < w and valid indices l⃗, and the values of
sv (⃗j) for all v ∈ [k − 2] and valid indices i⃗ ≻ j⃗. These dependencies will ensure that the
parameters of P are well-defined. All these parameters will also depend on k and p, but by
assumption these are constants.

For w ≥ 2 and valid index i⃗, we set

tw (⃗i) = ⌈log2w/(2w−1)(2/p)⌉ ·

(
w! · 2w

w−1∏
v=0

sv (⃗i)

)
. (22)

56

Algorithm 3. Threshold Satisfaction Algorithm for k-CNFs

Inputs: A k-CNF φ, real p ∈ (0, 1), and (k, p)-parameter family P =
(
t⃗w, s⃗w

)
w∈[k−2]

Returns: YES if Pr[φ] ≥ p, NO if Pr[φ] < p

1. Initialize Φ φ, and d ⌈log2k/(2k−1)(2/p)⌉.
Initialize iw 0 for each w ∈ [k − 2].

Throughout the algorithm, we write i⃗ = ⟨i1, . . . , ik−2⟩ for convenience.

2. While i⃗ < ⟨t1(⃗i), t2(⃗i), . . . , tk−2(⃗i)⟩:

3. Compute S Sunk

(
Φ, d, s1(⃗i), . . . , sk−2(⃗i)

)
.

4. If D S is a disjoint set of size greater than d, return NO.

5. If instead H S is a set of variables, compute

Pr[Φ] =
∑

α : H!{0,1}

Pr[Φα]

and return YES if this sum is at least p, NO if this sum is less than p.

6. Otherwise, ψ S is a w-sunflower of size at least sw (⃗i) for some w ∈ [k−2].
Set C core(ψ). In this case:

7. If w ≥ 2, then for each nonempty B ⊂ C:

8. Compute ψB MaxSunk(Φ, s|B|(⃗i), B).

9. If for some B ⊂ C, the call to MaxSunk in step 8 returned a
sunflower, let B⋆ be the smallest such set, and run step 10:

10. Update ψ ψB⋆ .
Update C B⋆.
Update w |B⋆|.

11. Update Φ Assert(Φ, C).
Update iw (iw + 1).
Reset iy 0 for all w < y ≤ k − 2.

12. Return NO.

From this equation, tw (⃗i) depends only on p, w, and sv (⃗i) for v < w.
For each valid index j⃗ we also define the positive integer

m(⃗j) = 2fk(d,s1 (⃗j),...,sk−2 (⃗j)) (23)

57

in terms of sw (⃗j) for w ∈ [k − 2], where fk is the function from the statement of Proposi-
tion 3.11. Finally, we also set

δ(⃗j) = min
i⃗≻j⃗

δm(⃗i)(p) (24)

where δm(p), for any integer m, is the constant from the statement of Lemma 3.13, and the
minimum is taken over all valid indices i⃗ which occur lexicographically after j⃗. From this
equation, each δ(⃗j) depends only on p and the values of s⃗w (⃗i) over all w ∈ [k− 2] and valid
indices i⃗ ≻ j⃗.

For each w ∈ [k − 2] and valid index j⃗ of P, we define sw (⃗j) to be the smallest positive
integer satisfying

sw (⃗j) ≥ 2w ·
(

max
v∈[w−1]

sv (⃗j)

)
(25)

and (
1− 1

2k−w

)sw (⃗j)

≤ min(p/2, δ(⃗j))

(k − 2)Tw−1tw (⃗j)
(26)

where Tw is the parameter from Lemma 3.20. Note that Tw−1 depends only on the values
of tu(⃗l) for u < w and valid indices l⃗. thus, the above two equations define sw (⃗j) in terms
only of k, p, tw (⃗j), the values of tu(⃗l) for u < w and valid indices l⃗, and the values of sv (⃗i)
for v ∈ [k − 2] valid indices i⃗ ≻ j⃗.

Having defined the parameters of P, we now proceed with analyzing the algorithm.
When we first enter the loop of Algorithm 3, i⃗ = 0⃗ is the tuple consisting entirely of

zeros, and Φ = φ is the input formula.
The only way Algorithm 3 can execute an iteration of the loop without halting is if the

call to Sunk in step 3 of the algorithm returns a large sunflower. In this case, we run steps 6
through 11 of Algorithm 3. In step 11, we take the w-sunflower ψ of size greater than sw (⃗i)
we found in Φ and update

• Φ by replacing it with a formula equivalent to Φ ∧ C for C = core(ψ), and

• i⃗ by incrementing iw by 1, and setting iy = 0 for all y > w.

Since step 11 of Algorithm 3 is the only time in the algorithm the value of i⃗ changes, an
easy induction argument with the second update rule above implies that each time i⃗ changes
value in Algorithm 3, it strictly increases with respect to the lexicographic order.

▷ Claim 3.22 (Monoinvariant). The value of i⃗ is strictly increasing in the lexicographic order
over the iterations of the loop from Algorithm 3.

Similarly, an easy induction argument using both the previously stated update rules
proves the following claim about the behavior of Algorithm 3.

▷ Claim 3.23 (Loop Invariant). Whenever Algorithm 3 completes an iteration of its loop,

1. the formula Φ is equivalent to

φ ∧

(
r∧

l=1

Cl

)
where C1, . . . , Cr are the cores of the sunflowers asserted in step 11 from previous
iterations of the loop, and

58

2. for each w ∈ [k − 2], iw is equal to the number of w-sunflowers found in previous
iterations of the loop since the last time we found a v-sunflower for some v < w.

We can use these invariants to prove a more precise version of Claim 3.22, which will
help us show that cores of sunflowers asserted in different iterations have size bounds which
come from different parameters.

In what follows, if an execution of the loop in Algorithm 3 starts value with i⃗ = j⃗, we
refer to that iteration of the loop as iteration j⃗. Note that by the loop condition from step
2 of Algorithm 3, any such j⃗ must be a valid index.

▷ Claim 3.24 (Increasing Prefixes). Let w ∈ [k − 2]. Let C1 and C2 be cores of sunflowers
asserted in iterations j⃗1 and j⃗2 of the loop of Algorithm 3, for some j⃗1 ≺ j⃗2. If C1 was
asserted as the core of a w-sunflower, then

⟨(j1)1 , . . . , (j1)w⟩ ≺ ⟨(j2)1 , . . . , (j2)w⟩ .

Proof. Consider iteration j⃗1 of the loop. Let l⃗ denote the value of i⃗ at the time this iteration
ends. Since clause C1 is asserted in this iteration, we run step 11 of Algorithm 3 in this
iteration. Since C1 is a w-sunflower, this means that l⃗ satisfies

lv =

(j1)v if v < w

(j1)w + 1 if v = w

0 if v > w.

(27)

By Claim 3.22, the value of i⃗ in all iterations after iteration j⃗1 will be greater than or equal
to l⃗ in lexicographic order.

Take any iteration i⃗ occurring after iteration j⃗1. By assumption, l⃗ ⪯ i⃗.
If l⃗ = i⃗, then by eq. (27) we have

⟨(j1)1 , . . . , (j1)w⟩ ≺ ⟨i1, . . . , iw⟩ . (28)

If instead l⃗ ≺ i⃗, there exist a smallest positive integer r with lr < ir. By eq. (27), we
know that lv = 0 for all v > w, so we must have r ≤ w. Then by eq. (27), we deduce taht
Equation (28) holds in this case too.

So for any iteration i⃗ occurring after iteration j⃗, eq. (28) holds. Specializing eq. (28) to
the case of i⃗ = j⃗2 implies the desired result. ■

Suppose we just completed an iteration of the loop in Algorithm 2. Let C1, . . . , Cr be all
the cores of sunflowers we found and asserted in previous iterations of the loop, in the order
they were found. Then by item 1 of Claim 3.23, Φ is currently equivalent to

φ ∧

(
r∧

l=1

Cr

)
. (29)

For each l ∈ [r], let define the function

Ψl = φ ∧

(
l−1∧
a=1

Ca

)
∧ ¬Cl.

59

By definition, an assignment x⃗ satisfies Ψl precisely when x⃗ is a satisfying assignment of
φ with the property that l is the smallest positive integer such that Cl is not satisfied. In
comparison, since Φ is equivalent to the formula from eq. (29), the solutions to Φ are precisely
the satisfying assignments of φ which also satisfy Cl for all l ∈ [r]. Since any assignment
which does not satisfy all the Cl must have a unique earliest clause which is not satisfied,
we deduce that

Pr[φ]− Pr[Φ] =
r∑

l=1

Pr[Ψl]. (30)

For each l ∈ [r], let j⃗l be the valid index such that Cl was asserted in iteration j⃗l of the loop.
Let w(l) = |Cl|. Then Cl was the core of a w(l)-sunflower of size greater than sw (⃗jl) in a
formula equivalent to

φ ∧

(
l−1∧
a=1

Ca

)
by item 1 of Claim 3.23. So by Proposition 3.12 we have

Pr[Ψl] <

(
1− 1

2k−w(l)

)sw(l) (⃗jl)

for each l ∈ [r].
Substituting the above inequality into eq. (30) yields

Pr[φ]− Pr[Φ] ≤
r∑

l=1

(
1− 1

2k−w(l)

)sw(l) (⃗jl)

. (31)

Our goal is to upper bound the sum from the right hand side of the inequality above. To
do this, we define various collections of indices, to help group terms in this sum.

For each w ∈ [k − 2], let
Lw = {l ∈ [r] | w(l) = w}

be the set of indices l for which Cl is the core of a w-sunflower.
For each valid (w − 1)-prefix h⃗, let Lw (⃗h) ⊆ Lw be the set of indices l in Lw with

⟨(jl)1, . . . , (jl)w−1⟩ = h⃗.

By construction, the Lw (⃗h) partition [r] as w ranges over [k−2] and h⃗ ranges over Iw−1(P).
By splitting the sum in the right hand side of eq. (31) according to these parts, we have

Pr[φ]− Pr[Φ] ≤
k−2∑
w=1

∑
h⃗∈Iw−1(P)

∑
l∈Lw (⃗h)

(
1− 1

2k−w(l)

)sw(l) (⃗jl)

.

By eq. (26) and the above inequality, we get that

Pr[φ]− Pr[Φ] ≤
k−2∑
w=1

∑
h⃗∈Iw−1(P)

∑
l∈Lw (⃗h)

min(p/2, δ(⃗jl))

(k − 2)Tw−1tw (⃗jl)
(32)

60

By the definition of a parameter family in Definition 3.18, each integer tw (⃗j) depends only
on the first w − 1 entries of j⃗. For l ∈ Lw (⃗h) we have

⟨(jl)1, . . . , (jl)w−1⟩ = h⃗ (33)

so we have tw (⃗jl) = tw (⃗h) in this case. Making this substitution in eq. (32) gives

Pr[φ]− Pr[Φ] ≤
k−2∑
w=1

∑
h⃗∈Iw−1(P)

∑
l∈Lw (⃗h)

min(p/2, δ(⃗jl))

(k − 2)Tw−1tw (⃗h)
(34)

By Claim 3.24, we know that the w-tuples

⟨(jl)1, . . . , (jl)w⟩

are different for each l ∈ Lw. Then by eq. (33), the values of the (jl)w are pairwise distinct
for the different choices of l ∈ Lw (⃗h). Thus eq. (19) implies that for any h⃗ there are at most

|Lw (⃗h)| ≤ tw (⃗h)

choices for valid w-prefixes j⃗ which agree with h⃗ in the first w−1 coordinates. This discussion
implies that for any fixed choice of w ∈ [k − 1] and h⃗ ∈ Iw−1(P), we can bound

∑
l∈Lw (⃗h)

min(p/2, δ(⃗jl))

(k − 2)Tw−1tw (⃗h)
≤ max

l∈Lw (⃗h)

[
min(p/2, δ(⃗jl))

(k − 2)Tw−1

]

because there are at most t⃗w (⃗h) terms in the sum.
Since iteration j⃗l occurs before iteration i⃗ for every l ∈ [r], we have i⃗ ≻ j⃗l for all l ∈ [r] by

Claim 3.22. From eq. (24), we therefore have δ(⃗jl) ≤ δm(⃗i)(p) for every l ∈ [r]. Substituting
this bound into the above inequality implies that

∑
l∈Lw (⃗h)

min(p/2, δ(⃗jl))

(k − 2)Tw−1tw (⃗h)
≤

min
(
p/2, δm(⃗i)(p)

)
(k − 2)Tw−1

.

By summing over all choices of w and h⃗ in the above inequality and combining with eq. (34),
we get that

Pr[φ]− Pr[Φ] ≤
k−2∑
w=1

∑
h⃗∈Iw−1(P)

(
1

(k − 2)Tw−1

·min
(
p/2, δm(⃗i)(p)

))
.

By Lemma 3.20, the set Iw−1(P) contains at most Tw−1 elements. So for each w ∈ [k−2],
the inner summation on the right hand side of the above inequality involves at most Tw−1

summands. Thus we have

Pr[φ]− Pr[Φ] ≤
k−2∑
w=1

(
1

k − 2
·min

(
p/2, δm(⃗i)(p)

))
≤ min

(
p/2, δm(⃗i)(p)

)
. (35)

61

Having upper bounded the difference between the satisfaction probability of Φ and the
input formula, we can now show correctness of Algorithm 3. We consider cases based off
whether Algorithm 3 halts within its loop (at steps 4 or 5) or outside of its loop (at step 12).

Case 1: Halting Within the Loop
Suppose Algorithm 3 halts on iteration i⃗ of the loop.
If we halt in step 4 of Algorithm 3, Φ has a disjoint set of size greater than d. Then by

Proposition 3.3 we have

Pr[Φ] <

(
1− 1

2k

)d

≤ p/2

since d > log2k/(2k−1)(2/p).
By eq. (35) we have

Pr[φ]− Pr[Φ] ≤ p/2.

Adding these two inequalities together, we get that

Pr[φ] = Pr[Φ] + (Pr[φ]− Pr[Φ]) < p/2 + p/2 = p

so Algorithm 3 correctly returns NO in this case.
The other possibility is that we halt in step 5 of Algorithm 3. In this case, by Proposi-

tion 3.11, we find a set H of at most fk(d, s1(⃗i), . . . , sk−2(⃗i)) variables in Φ with the property
that for every assignment α : H ! {0, 1}, the induced formula Φα is a 1-CNF.

By Proposition 2.19 we have

Pr[Φ] =
∑

α : H!{0,1}

Pr[Φα].

By Proposition 2.11, each summand in the right hand side above is zero or a power of two.
So the above equation shows that Pr[Φ] is a sum of at most

2|H| ≤ 2fk(d,s1 (⃗i),...,sk−2 (⃗i)) = m(⃗i)

powers of two by eq. (23).
If Pr[Φ] ≥ p, then since Φ is equivalent to the formula from eq. (29), we have

Pr[φ] ≥ Pr[Φ] ≥ p

so Algorithm 2 returns YES correctly in this case.
If Pr[Φ] < p, by Lemma 3.13 we have

Pr[Φ] ≤ p− δ

for δ = δm(⃗i)(p).
By eq. (35) we have

Pr[φ]− Pr[Φ] < δ.

Adding the previous two inequalities together yields

Pr[φ] = Pr[Φ] + (Pr[φ]− Pr[Φ]) < (p− δ) + δ = p

62

so Algorithm 3 returns NO correctly in this case.
Thus Algorithm 3 returns the correct answer whenever it halts within the loop.
Case 2: Halting Outside the Loop
In this case, Algorithm 3 reaches step 12. By the loop condition in step 2 of Algorithm 3,

this is only possible if there exists an index w ∈ [k − 2] such that

iw > tw(i1, . . . , iw−1) (36)

when the algorithm halts.
By item 2 of Claim 3.23, iw is equal to the number of w-clauses which have been asserted

in Φ since the last time a clause of width less than v has been asserted in Φ. So there exists
a collection B of iw cores of w-sunflowers which were asserted in Φ, with the property that
for all v < w, any core of a v-clause asserted in Φ must have been asserted in the iterations
before any core in B was asserted. Let

Ψ =
∧
C∈B

C

be the conjunction of all clauses in B. The following claim about Ψ will help us reason about
the satisfaction probability of Φ at the time the algorithm halts.

▷ Claim 3.25 (Avoiding Large Sunflowers). The formula Ψ does not contain a v-sunflower of
size greater than sv (⃗i) for any v ∈ [w − 1].

Proof. The result vacuously holds for w = 1, so we may assume that w ≥ 2.
Suppose to the contrary there exists v ∈ [w − 1] so that Ψ contains a v-sunflower ψ of

size sv (⃗i) + 1. Among all clauses in ψ, let B be the last one which was asserted in Φ. Let j⃗
be the iteration of the algorithm where B was asserted. At the beginning of iteration j⃗, Φ
must have contained a w-sunflower ψ(B) of size greater than sw (⃗j).

We claim that at the beginning of iteration j⃗, Φ must have contained ψ \ {B} as a
subformula. Indeed, by the definition of B, every clause in ψ \ {B} was asserted in Φ before
iteration j⃗. When a clause C is asserted in Φ, it is added as a clause. Moreover, by the
property of B, no clauses of width less than w can have been asserted in Φ after the clauses
of ψ \ {B} were asserted. This means that none of the clauses in ψ \ {B} could have been
removed from Φ by other assertions (since when a clause C of width at least w is asserted,
it only removes clauses containing C as a proper subset because w ≥ 2, and in particular
cannot remove any w-clauses).

Now, since B ∈ B, we know that no clause of width less than w can have been asserted
in Φ after iteration j⃗, so by Claim 3.23 it must be the case that

⟨i1, . . . , iw−1⟩ = ⟨j1, . . . , jw−1⟩ . (37)

Since ψ consists of w-clauses, the clauses of ψ\B contain at most wsv (⃗i) distinct variables.
By eq. (25) and eq. (37), we also know that petals(ψ(B)) has greater than

sw (⃗j) > 2w · sv (⃗j) = 2w · sv (⃗i)

63

clauses. Since petals(ψ(B)) is a disjoint set, and every literal corresponds to at most two
variables, we deduce that petals(ψ(B)) must contain some clause C which shares no variables
in common with any clause of ψ \ {B}.

Then B ∪ C is a clause of ψ(B). The discussion in the previous paragraph implies that

ψ′ = (ψ ∪ {C ∪B}) \ {B}

is a v-sunflower of size |ψ| = sv (⃗i) + 1 with the same core as ψ. We already showed that
every clause in ψ except B belong to Φ at the beginning of iteration j⃗. Since Φ contains
ψ(B) at the beginning of this iteration, it also has B ∪C as a clause. So ψ′ is a v-sunflower
of size greater than sv (⃗i) in Φ at the beginning of iteration j. By eq. (33) and the fact that
sv (⃗i) = sv(⟨i1, . . . , iv⟩), we have sv (⃗i) = sv (⃗j), so that Φ in fact contains a v-sunflower ψ′ of
size greater than sv (⃗j) at the beginning of iteration j⃗.

Moreover, core(ψ′) = core(ψ) ⊆ B since B is a clause of ψ.
We are ready to establish our contradiction. By definition of j⃗, in iteration j⃗ of the loop,

we must set assert B in Φ. Either this happens because we find B as the core of a sunflower
in step 6, or because we find B as the core of a sunflower in steps 7 and 8 of Algorithm 3.

If we find B as the core of a sunflower in step 6, then because |B| = w ≥ 2, we will run
steps 7 and 8 and, by the previous discussion, find, for some v < w, a v-sunflower of size
greater than sv (⃗j) in Φ whose core is a subset of B. Then in steps 9 through 11 we will
assert the core of this v-sunflower instead of B, which contradicts our choice of j⃗.

If instead we find B as the core of a sunflower in steps 7 and 8, in these same steps the
algorithm will also looked for v-sunflowers of size greater than sv (⃗j) for each subset of B
of size v, for all v < w. By the previous discussion, such a v-sunflower exists in Φ in this
iteration, and will be found. The condition in step 9 ensures we assert the core of a sunflower
of minimum weight among all those we found in steps 7 and 8, so in this case too B would
not be asserted, which again yields a contradiction.

In each case we get a contradiction, so our initial assumption was false, and Ψ does not
contain a v-sunflower of size greater than sv (⃗i) for any v ∈ [w − 1].

Using Claim 3.25, we deduce the following.

▷ Claim 3.26. We have Pr[Ψ] < p/2.

Proof. From eqs. (22) and (36) we know that Ψ is a w-CNF with more than

⌈log2w/(2w−1)(2/p)⌉ ·

(
w! · 2w

w−1∏
v=0

sv (⃗i)

)
clauses.

Then by Proposition 3.17, Ψ either contains a disjoint set of size greater than

⌈log2w/(2w−1)(2/p)⌉

or contains a v-sunflower of size greater than sv (⃗i) for some v ∈ [w− 1]. By Claim 3.25 this
latter case cannot occur, so Ψ has a disjoint set of size more than

d = ⌈log2w/(2w−1)(2/p)⌉.

64

Consequently, Proposition 3.3 implies that

Pr[Ψ] <

(
1− 1

2w

)d

≤ p/2

as claimed.

At the time Algorithm 3 halts, we have Ψ ⊆ Φ, so by Claim 3.26 we have

Pr[Φ] ≤ Pr[Ψ] < p/2.

By Equation (35) we have
Pr[φ]− Pr[Φ] < p/2.

Adding these two inequalities together yields

Pr[φ] = Pr[Φ] + (Pr[φ]− Pr[Φ]) < p

so Algorithm 3 correctly returns NO in this case.
So in both case 1 and case 2, Algorithm 3 solves kSAT-Prob≥p correctly as claimed. ■

Proof of Theorem 2.15. By Lemma 3.21, for any fixed integer k ≥ 1 and choice of constant
p ∈ (0, 1), there exists a (k, p)-parameter family P = (⃗ti, s⃗i)i∈[k−2] consisting of constant
positive integers such that Algorithm 3 correctly solves kSAT-Prob≥p when given the param-
eters in P as input. So to prove the theorem, it suffices to show that Algorithm 3 runs in
linear time when given these constant parameters.

Step 1 of Algorithm 3 runs in linear time since we just read the input.
The condition in the while loop of Algorithm 3 ensures that the algorithm only executes

the loop when i⃗ is a valid index for P. Moreover, by Claim 3.22 every iteration of the loop
in Algorithm 3 begins with a different value of i⃗. Any valid index is a valid (k − 2)-prefix,
so by Lemma 3.20 the number of valid indices for P (and thus the number of iterations
of the loop in Algorithm 3) is at most Tk−2, which is constant since the parameters in P
are constants. So steps 3 through 11 of Algorithm 3 are each executed at most a constant
number of times.

Step 3 of Algorithm 3 takes linear time by Proposition 3.11 because the sw (⃗i) are con-
stants and d = ⌈log2k/(2k−1)(2/p)⌉ is also a constant for constant k and p.

Step 4 of Algorithm 3 takes linear time since we just need to read a disjoint set for Φ.
Step 5 of Algorithm 3 takes at most 2|H |φ| time asymptotically. By Proposition 3.11

the number of variables in H is bounded above by a constant since k, d, and the sw (⃗i) are
constants for all w ∈ [k − 2], so this step takes linear time.

Step 6 of Algorithm 3 takes linear time since we just need to read a sunflower for Φ.
Steps 7 and 8 of Algorithm 3 involve making at most 2k calls to MaxSunk with size

parameters of the form sw (⃗i). Since the sw (⃗i) are constants, by Corollary 3.16 each call to
MaxSunk runs in linear time. Since k is a constant, these steps overall run in linear time.

Steps 9 and 10 of Algorithm 3 involve reading the at most 2k sunflowers returned in steps
8 and 10, which takes linear time since k is constant.

Step 11 of Algorithm 3 takes linear time by Proposition 2.20.
Step 12 of Algorithm 3 takes constant time since we just return NO.
So overall Algorithm 3 takes linear time, as claimed. ■

65

3.4 Commentary on Algorithms

Exact Parameterized Complexity

How does the runtime of our kSAT-Prob≥p algorithm depend on the parameters k and p?
Investigating the exact time complexity of algorithms for this problem is important if we
care about solving kSAT-Prob≥p in practice.

For k = 2, the proof of Theorem 3.1 shows that given a 2-CNF φ and real p ∈ (0, 1), we
can determine if Pr[φ] ≥ p in

22⌊log4/3(1/p)⌋|φ| = poly(1/p)|φ|

time asymptotically. This poly(1/p) dependence in the runtime seems reasonable, since we
can solve #2SAT by by solving 2SAT-Prob≥p for n+1 different values of p in a binary search
argument (as sketched in the discussion after the proof of Corollary 2.10). since #2SAT
is #P-hard, we do not expect this problem to be solvable in polynomial time, so it makes
sense that 2SAT-Prob≥p should also not be polynomial-time solvable in the regime where
(1/p) ≥ 2Ω(n) for example.

For k ≥ 3, the runtime dependence on p in our algorithm for kSAT-Prob≥p is much more
chaotic. Because our algorithms in this case involve parameters based off the binary gap
value δm(p) from Lemma 3.13, their runtime is based not just on the magnitude of p, but in
general depend on the binary representation of p.

Nonetheless, to get some sense of the parameterized complexity of our algorithms in this
regime, we analyze the time complexity of our kSAT-Prob≥p algorithm for the special case
where k = 3 and p = (1/2)a for some positive integer a.

Corollary 3.27. Let m be a positive integer. If p = (1/2)a for some positive integer a, then
we can take δm(p) = (1/2)a+m in Lemma 3.13.

Proof. By the formula for an infinite geometric series, we can write

p =
1

2a
=

∞∑
i=1

1

2a+i
.

By eq. (11) from the proof of Lemma 3.13, we can take

δm(p) =
∞∑

i=m+1

1

2a+i
=

1

2a+m

using the formula for an infinite geometric series again, as claimed. ■

To solve 3SAT-Prob≥p in linear time for constant p, we set the input parameters s(i) in
Algorithm 2 according to eqs. (13) and (14) from the proof of Lemma 3.14 via

s(t) = ⌈log4/3(2t/p)⌉ (38)

and recursively setting

s(i) =

⌈
log4/3

(
i

δmi+1(p)

)⌉
(39)

66

for each i ∈ [t− 1], where mi+1(p) is defined in eq. (12) as

mi+1 = 2f3(d,s(i+1)). (40)

We now derive concrete bounds for these parameters in the special case of p = (1/2)a,
to get a sense of how quickly (or perhaps more accurately, how slowly) Algorithm 2 runs in
terms of p.

In our special case of p = (1/2)a, by Corollary 3.27 and eq. (39) we can write

s(i) =

⌈
log4/3

(
i

δmi+1(p)

)⌉
=
⌈
log4/3

(
2mi+1+p · i

)⌉
= Θ(mi+1 + p+ log i) . (41)

From eqs. (5) and (6) in the proof of Proposition 3.11, we have

f3(d, s(i+ 1)) ≤ 23d · f2((1 + 3d) · s(i+ 1)) = 23d+2(1+3d)·s(i+1) = 2Θ(d·s(i+1)).

Combining the above inequality with eq. (40) yields

mi+1 = 22
Θ(d·s(i+1))

.

Substituting the above bound into eq. (41) yields

s(i) = 22
Θ(d·s(i+1))

+Θ(p+ log i) = 2(2/p)
Θ(s(i+1)

+Θ(p+ log i).

where we used the fact that d = ⌈log8/7(2/p)⌉ in Algorithm 2.
Starting with the value of s(t) from eq. (38) and applying the recurrence from the above

bound repeatedly, we deduce we can bound s(1) above by an exponential tower of height
O(t), where each term in tower is at most O(1/p). The asymptotic runtime of Algorithm 2
is bounded above by the call to Sun3 in step 3 of the algorithm, with parameters d and s(1),
which runs in time exponential in s(1). So overall, the asymptotic runtime of 3SAT-Prob≥p

grows like an exponential tower of O(1/p) terms, of height O(log(1/p)).

Regularity

As explored in the Exact Parameterized Complexity subsection of Section 3.4, the runtime
of our kSAT-Prob≥p algorithms can increase at a dramatic pace as p gets smaller, even in
the special case where k = 3 and p is constrained to be a power of two, In particular, the
runtime can have a tower-of-exponents dependence on 1/p.

In retrospect however, this atrocious runtime dependence on p is perhaps not too sur-
prising, given the similarities between our approach to solving kSAT-Prob≥p and various
regularity lemma arguments in the mathematics and computer science literature.

At a high level, given a class C of combinatorial objects, a regularity lemma for that
class is a structural theorem which states that, given any object A ∈ C and constant p > 0
(think of p as as some sort of robustness or error parameter), after a small number of edits,
A admits some sort of structured representation of “small size.” What makes a regularity
lemma interesting is that the “small number” of edits and “small size” bound on the structured

67

representation both depend only on p. In particular, the size bounds in a regularity lemma
do not depend on the size of C.

The most famous example of this phenomenon is Szemerédi’s classic graph regularity
lemma [Sze75], which takes C to be the class of undirected graphs. In standard proofs of
Szemerédi’s regularity lemma, the size of the structured representation obtained for a graph
grows like an exponential tower of twos whose height is polynomial in 1/p, where p > 0 is
an error parameter. Moreover, there are lower bounds showing that this exponential tower
dependence is necessary in the graph regularity lemma [Gow97, MS14].

Our results for kSAT-Prob≥p can also be viewed as proving a regularity lemma, for the
class C of all k-CNF formulas for some fixed integer k. In particular, the proof of Lemma 3.21
shows that for any p ∈ (0, 1), there exists a family of constant parameters P depending only
on p such that Algorithm 3 solves kSAT-Prob≥p when given P as input, and the proof of
Theorem 2.15 shows that in this case, the loop of Algorithm 3 executes at most a constant
depending on p number of times before halting. Following the steps of Algorithm 3, this
implies that, given a fixed integer k ≥ 1, for any k-CNF formula φ and p ∈ (0, 1), either

• we have Pr[φ] < p (intuitively, the formula φ is random-like),

• or instead Pr[φ] ≥ p (intuitively, the formula φ is highly-structured), and we can
repeatedly assert cores of sunflowers in φ to produce a new formula Φ which also
has Pr[Φ] ≥ p, and whose solution space can be written as the disjoint union of the
satisfying assignments for some induced 1-CNF formulas Φα. The number of cores we
assert (the “small number of edits”) and the number of induced 1-CNFs in the final
decomposition (the “small-sized” structured representation) both depend only on p.

We formally record this regularity lemma below. To help state this result, we say that a
formula Φ is obtained by asserting t clauses in a CNF formula φ, if there exists a sequence
of formulas φ0, . . . , φt and clauses C1, . . . , Ct such that φ = φ0, we have

φi = Assert(φi−1, Ci)

for each i ∈ [t], and Φ = φt.

Theorem 3.28: Threshold Satisfaction Regularity for k-CNFs

For every integer k ≥ 1 and real p ∈ (0, 1), there are integers h, t ≥ 1 such that for all
k-CNF formulas φ with Pr[φ] ≥ p, there exists a k-CNF formula Φ and subset H of at
most h variables of Φ, such that

1. we have Pr[Φ] ≥ p,

2. the formula Φ is obtained by taking φ and asserting at most t clauses, and

3. for all assignments α : H ! {0, 1}, the induced formula Φα is a 1-CNF.

Proof. Take an arbitrary k-CNF formula φ satisfying Pr[φ] ≥ p. By the proof of Lemma 3.21,
there is a (k, p)-parameter family P =

(
t⃗1, s⃗1, . . . , t⃗k−2, s⃗k−2

)
whose parameters depend only

on k and p, such that Algorithm 3 solves kSAT-Prob≥p when given P as input.

68

Run Algorithm 3 on φ with the parameters in P. Since Pr[φ] ≥ p, this call to Algorithm 3
returns YES. The only place that Algorithm 3 can return YES in is step 5. Let i⃗ denote
the value of ⟨i1, . . . , ik−2⟩ at the time Algorithm 3 halts. Let Φ denote the formula from
Algorithm 3 at the time the algorithm halts. Since the algorithm returns YES, we must
have Pr[Φ] ≥ p, so condition 1 from the theorem holds.

Step 5 of Algorithm 3 can only be reached if the identified a set of variables H in Φ in
the call to Sunk in step 3 of Algorithm 3. By definition, H is the output of

Sunk

(
Φ, d, s1(⃗i), . . . , sk−2(⃗i)

)
in step 3 of Algorithm 3, where d = ⌈log2k/(2k−1)(2/p)⌉. Then by condition 2 of Proposi-
tion 3.11 we know that for every α : H ! {0, 1}, the induced formula Φα is a 1-CNF, so
condition 3 from the theorem holds.

By assumption, the parameters sw (⃗i) for w ∈ [k − 2] from P are bounded above by a
function of p and k. By condition 2 of Proposition 3.11 again, we know that

|H| ≤ fk(d, s1(⃗i), . . . , sk−2(⃗i)) (42)

for some function fk. Now, since Algorithm 3 halts in step 5 within the loop, i⃗ must satisfy
the inequality from step 2 of Algorithm 3. In particular, i⃗ is a valid prefix for P. Define

h = h(k, p) = max
j⃗∈I(P)

fk(d, s1(⃗j), . . . , sk−2(⃗j)).

Since the parameters in P depend only on k and p, h is indeed a function of k and p.
Since i⃗ is a valid index for P, by eq. (42) we have |H| ≤ h.

By Claim 3.23, Φ is obtained by taking φ and asserting clauses found in step 11 of
each iteration of the loop in Algorithm 3 before halting. By the inequality in step 2 of
Algorithm 3, the tuple ⟨i1, . . . , ik−2⟩ is a valid index for P at the beginning of iteration of
loop. By Claim 3.22, these tuples distinct in each iteration of the loop. Let

t = t(k, p) = Tk−2

be the upper bound on the number of valid (k− 2)-prefixes, or equivalently valid indices, for
P defined in Lemma 3.20. By Lemma 3.20, the value of Tk−2 depends only on the values
of parameters in P. Since the parameters of P depend only on k and p, the integer t is
indeed a function of k and p. By the previous discussion, our call to Algorithm 3 executes
at most t iterations of the loop. Thus Φ is obtained by asserting at most t clauses in φ, so
condition 2 from the theorem holds.

Since we have shown that conditions 1 through 3 from the theorem statement are satisfied
by our choices of h and t, the desired result holds. ■

69

70

Chapter 4

Variants of Threshold Satisfiability

In this chapter, we explore generalizations and variations of the kSAT-Prob≥p problem, prob-
ing the limits of tractability for threshold satisfaction. In some cases, we will find that our
kSAT-Prob≥p algorithms can be generalized to solve interesting related tasks. In other situa-
tions, we will see that the tractability of kSAT-Prob≥p is surprisingly brittle, and even minor
modifications to the problem definition can produce seemingly hard problems.

4.1 Strict Thresholds

In Chapter 3 we saw algorithms for determining if the satisfaction probability of a k-CNF
formula is at least p for some constant p ∈ (0, 1). What if instead we want to determine if
a formula has satisfaction probability strictly greater than p? To explore this question, we
introduce GtMajority-SAT, a strict threshold variant of Majority-SAT.

GtMajority-SAT

Given a CNF formula φ, determine if Pr[φ] > 1/2.

Analogously, we introduce kSAT-Prob>p, a strict threshold variant of kSAT-Prob≥p.

kSAT-Prob>p

Given a k-CNF formula φ, determine if Pr[φ] > p.

It is known that GtMajority-SAT is PP-complete, just like the Majority-SAT problem.

Proposition 4.1. GtMajority-SAT is PP-complete.

Proof. We prove the result by showing that GtMajority-SAT is in PP, and is PP-hard.

▷ Claim 4.2. GtMajority-SAT is in PP.

Proof. We give a polynomial-time reduction from GtMajority-SAT to Majority-SAT. This will
prove the claim, since Majority-SAT ∈ PP.

71

Take an arbitrary instance of GtMajority-SAT, consisting of a CNF formula φ on n vari-
ables. Introduce variables y1, . . . , yn not in φ. Construct the CNF formula

Φ = φ ∧ (y1 ∨ · · · ∨ yn)

on 2n variables. We can construct Φ in linear time given φ.
Since the yi variables do not appear in φ, we have

Pr[Φ] = Pr[y1 ∨ · · · ∨ yn] · Pr[φ] = (1− (1/2)n) Pr[φ]. (43)

If Pr[φ] ≤ 1/2, then by eq. (43) we have

Pr[Φ] ≤ (1− (1/2)n) · (1/2) < 1/2.

If instead Pr[φ] > 1/2, because φ has n variables, we have Pr[φ] ≥ (1/2) + (1/2)n.
Combining this inequality with eq. (43) implies that

Pr[Φ] ≥ (1− (1/2)n) ((1/2) + (1/2)n) = 1/2 + (1/2)n+1 − (1/2)2n ≥ 1/2.

Thus Pr[φ] > 1/2 if and only if Pr[Φ] ≥ 1/2, so the transformation from φ to Φ is a correct
reduction from GtMajority-SAT to Majority-SAT. By the discussion in the first paragraph of
this proof, this shows the claim.

▷ Claim 4.3. GtMajority-SAT is PP-hard.

Proof. We give a polynomial-time reduction from Majority-SAT to GtMajority-SAT. This will
prove the claim, since Majority-SAT is PP-hard.

Take an arbitrary instance of Majority-SAT, consisting of a CNF formula φ over the n
variables x1, . . . , xn. Let ψ be the CNF formula

ψ = x1 ∧

(
n∧

i=2

(¬x1 ∨ xi)

)
.

Note that an assignment satisfies ψ if and only if x1 is set true, or x1 is false and xi is set to
true for all i ≥ 2. Thus

Pr[ψ] = (1/2) + (1/2)n. (44)

Introduce a new variable y. Construct the CNF formula

Φ = (y ∨ φ) ∧ (¬y ∨ ψ)

on n+ 1 variables. We can construct Φ in linear time given φ.
Every assignment must set y to be either or true or false, so we have

Pr[Φ] = Pr[Φ ∧ y] + Pr[Φ ∧ ¬y].

The formula (Φ∧y) is equivalent to (ψ∧y). Similarly, the formula (Φ∧¬y) is equivalent
to (φ ∧ ¬y). Since the variable y does not appear in φ or ψ, we have

Pr[φ ∧ ¬y] = (1/2) · Pr[φ]

72

and
Pr[ψ ∧ y] = (1/2) · Pr[ψ]

so
Pr[Φ] = (1/2) · (Pr[φ] + Pr[ψ]) = (1/2) · (Pr[φ] + (1/2) + (1/2)n) (45)

where we used the value of Pr[ψ] from eq. (44).
If Pr[φ] ≥ 1/2, then by eq. (45) we have

Pr[Φ] ≥ (1/2) · ((1/2) + (1/2) + (1/2)n) > 1/2.

If instead Pr[φ] < 1/2, then in fact Pr[φ] ≤ (1/2)− (1/2)n because φ has n variables.
So by eq. (45) we have

Pr[Φ] ≤ (1/2) · ((1/2) + (1/2)n + (1/2)− (1/2)n) = 1/2.

Thus Pr[φ] ≥ 1/2 if and only if Pr[Φ] > 1/2, so the transformation from φ to Φ is a correct
reduction from Majority-SAT to GtMajority-SAT. By the discussion in the first paragraph of
this proof, this shows the claim.

Combining Claims 4.2 and 4.3 proves the desired result. ■

So the complexity of GtMajority-SAT and Majority-SAT are the same. However, the re-
duction from GtMajority-SAT from Majority-SAT presented in the proof of Claim 4.2 involves
using a clause of width n, and so we cannot use this argument to reduce kSAT-Prob>1/2 to
kSAT-Prob≥1/2 for constant k. So how difficult is kSAT-Prob>p for constant k? Does this
problem have the same complexity as kSAT-Prob≥p, or does kSAT-Prob>p remain as hard as
the GtMajority-SAT problem?

Perhaps surprisingly, neither of these possibilities is the correct answer.

Theorem 4.4: Strict k-CNF Thresholds at 1/2

For positive integers k ≤ O(1), the kSAT-Prob>1/2 problem is

• polynomial-time solvable for k ≤ 3, and

• NP-complete for k ≥ 4.

Theorem 4.4 is interesting because for constants k ≥ 4, it shows that the kSAT-Prob>p

problem is much harder than the closely related kSAT-Prob≥p problem, yet much easier than
the general Majority-SAT problem, even though this problem on general CNF formulas is
equivalent to the corresponding GtMajority-SAT problem by Proposition 4.1.

We prove each of the parts of Theorem 4.4 separately in individual lemmas below. We
begin with the hardness result. The basic construction used in this hardness reduction (and
other reductions later on) is that, given a formula φ and a variable x it does not contain,
the formula

Φ = {C ∪ {x} | C ∈ φ}
obtained by adding x to each clause of φ is always satisfied by assignments that set x true,
and has additional solutions if and only if φ is satisfiable.

73

Idea 6 Adding new variables to every clause of a CNF formula shifts its fraction of
satisfying assignments and increases its clause widths in a predictable way.

Lemma 4.5. For any fixed integer k ≥ 4, kSAT-Prob>1/2 is NP-hard.

Proof. Let j = k − 1. Since k ≥ 4, the jSAT problem is NP-hard. So to prove the result, it
suffices to show a polynomial-time reduction from jSAT to kSAT-Prob>1/2.

Let φ be an arbitrary j-CNF. Let v be a variable not in φ. Let Φ be the formula

Φ = {C ∪ {v} | C ∈ φ}

obtained by adding v to every clause in φ. Given φ, we can construct Φ in linear time.
Since every satisfying assignment of Φ sets v to be either true or false, we have

Pr[Φ] = Pr[Φ ∧ v] + Pr[Φ ∧ ¬v]. (46)

Since every clause of Φ contains v, we have

Pr[Φ ∧ v] = Pr[v] = 1/2.

If we delete v from each clause of Φ we recover φ, so

Pr[Φ ∧ ¬v] = (1/2) · Pr[φ]

where we are viewing Φ as a formula on one more variable than φ.
Substituting these equations back into eq. (46) yields

Pr[Φ] = (1/2) · (1 + Pr[φ]) .

The above equation shows that Pr[Φ] > 1/2 if and only if φ is satisfiable.
Thus the map from φ to Φ is a valid reduction from jSAT to kSAT-Prob>1/2.
By the first paragraph of this proof, this proves the lemma. ■

Next, we show how to place kSAT-Prob>1/2 in the class NP, for constant k. That is, given
a k-CNF φ for constant k, if Pr[φ] > 1/2 there is always short certificate which can convince
us of this fact in polynomial time.

Why should this be possible? Well, Theorem 2.15 already shows that in linear time we
can determine if Pr[φ] ≥ p, without the need for any certificate. If this inequality does not
hold, then certainly Pr[φ] > p does not hold either. So we can focus on the case where we
already know, from using our algorithm for kSAT-Prob≥p, that Pr[φ] ≥ p.

Idea 7 If we know that Pr[φ] ≥ p, then a certificate for the existence of one more
satisfying assignment beyond the p-fraction of assignments which we already know
are satisfying should help us determine if Pr[φ] > p.

Algorithm 3 solves kSAT-Prob≥p by inferring a formula Φ whose solutions are all satisfy-
ing assignments of φ, with the property that Pr[φ] ≥ p if and only if Pr[Φ] ≥ p. Given this
information, we can implement Idea 7 (and determine if Pr[φ] > p) using an assignment that
satisfies φ but does not satisfy Φ as a certificate, assuming that such an assignment exists.

74

Lemma 4.6. For any fixed integer k ≥ 1, kSAT-Prob>1/2 is in NP.

Proof. Fix an integer k ≥ 1. We describe a linear time verifier which takes as input a k-CNF
φ and a certificate c, and has the following behavior:

• if Pr[φ] > 1/2, then there exists a certificate c for which the verifier return YES;

• if Pr[φ] ≤ 1/2, then for every certificate c the verifier returns NO.

This will then imply that kSAT-Prob>1/2 is in NP.
Let φ be an arbitrary k-CNF, and let c be an input certificate.
By Lemma 3.21, we know that there exists a parameter family P of constants such that

Algorithm 3 solves kSAT-Prob≥1/2 given P. Run Algorithm 3 with input parameters P on
the formula φ. By Theorem 2.15, this takes linear time.

If the algorithm returns NO, then Pr[φ] < 1/2, so we can return NO.
Otherwise, the algorithm returned YES. The only place the algorithm could have returned

YES is in step 5 of Algorithm 3. In this case, the algorithm constructed a formula Φ obtained
from taking φ and asserting some clauses, computed the exact value of Pr[Φ], and saw that
Pr[Φ] ≥ 1/2. Since Φ is equivalent to φ and the conjunction of some clauses, any solution
to Φ is a satisfying assignment of φ. So Pr[φ] ≥ Pr[Φ] in this case.

If Algorithm 3 computed that Pr[Φ] > 1/2, then Pr[φ] > 1/2 as well, so we return YES.
Otherwise, Algorithm 3 computed that Pr[Φ] = 1/2. In this case, Pr[φ] > 1/2 if and

only if there exists an assignment x⃗ which satisfies φ but does not satisfy Φ. At this point,
we check if the certificate c is an assignment x⃗ which satisfies φ, but does not satisfy Φ. If
so, we return YES. If not, we return NO. Performing this check for x⃗ takes linear time, since
we just go through the clauses to make sure the assignment satisfies each of them.

This works because if Pr[φ] > 1/2, such an assignment x⃗ exists, so some certificate does
let us return YES, and if Pr[φ] = 1/2 no such assignment can exist (and thus we return NO
for every certificate) because Pr[φ] = Pr[Φ] so the set of satisfying assignments for φ and Φ
are the same.

All the steps above run in linear time, so kSAT-Prob>1/2 is in NP as claimed. ■

Finally, we show that for the special case of k = 3, we do not need a certificate to verify
YES instances of kSAT-Prob>1/2, and instead can solve the problem directly in linear time.
Intuitively, this is because we can implement Idea 7 by looking for a satisfying assignment
for a 2-CNF, which takes linear time by Proposition 2.12.

Lemma 4.7. For any positive integer k ≤ 3, kSAT-Prob>1/2 can be solved in linear time.

Proof. We describe a linear time algorithm which takes as input a 3-CNF φ and determines
if Pr[φ] > 1/2.

Let φ be the input 3-CNF formula.
By Lemma 3.14, there exist a set of constant parameters such that Algorithm 2 solves

3SAT-Prob>1/2 when given these parameters. Run Algorithm 2 with these parameters on φ.
By Theorem 3.9, this takes linear time. If the algorithm returns NO, then Pr[φ] < 1/2, so
we return NO.

Otherwise, the algorithm returns YES. The only place the algorithm to returns YES is
step 5 of Algorithm 2. Let i ≥ 1 denote the value of the variable i in Algorithm 2 at the time

75

the algorithm halted. In this case, by eq. (15) from the proof of Lemma 3.14, the algorithm
found a formula Φ equivalent to

φ ∧

(
i−1∧
j=1

ℓj

)
where the ℓj are distinct literals, computed the value of Pr[Φ], and found that Pr[Φ] ≥ 1/2.
Since Φ is equivalent to a formula containing φ as a subformula, we necessarily have

Pr[φ] ≥ Pr[Φ] ≥ 1/2.

If Pr[Φ] > 1/2, then Pr[φ] > 1/2 as well, so in this case we return YES.
Otherwise, Pr[Φ] = 1/2.
If i = 1, then Φ is equivalent to φ, so we have Pr[φ] = Pr[Φ] = 1/2 and return NO.
So suppose i ≥ 2. We claim that in fact i = 2.
Indeed, if i ̸= 2 we would have i ≥ 3, but in this case

Pr[Φ] ≤ Pr[ℓ1 ∧ ℓ2] ≤ 1/4

which contradicts the assumption that Pr[Φ] = 1/2.
Since i = 2, Φ is equivalent to φ ∧ ℓ1. For convenience, write ℓ = ℓ1.

▷ Claim 4.8. The literal ℓ appears in every clause of φ.

Proof. Suppose to the contrary that φ has a clause C not containing ℓ. Then there exists
an assignment which sets ℓ to be true, yet does not satisfy C. Since half of all assignments
to the variables of φ set ℓ to be true, and every solution to C ∩ ℓ must set ℓ true, we have

Pr[C ∧ ℓ] < 1/2.

Then by Proposition 2.16 we have

Pr[Φ] = Pr[φ ∧ ℓ] ≤ Pr[C ∧ ℓ] < 1/2.

This contradicts the assumption that Pr[Φ] = 1/2.
So our initial assumption was false, and every clause of φ contains ℓ as claimed.

Since any satisfying assignment of φ sets ℓ to be either true or false, we have

Pr[φ] = Pr[φ ∧ ℓ] + Pr[φ ∧ ¬ℓ]

Since Φ is equivalent to φ∧ ℓ and we already computed Pr[Φ] = 1/2, the above equation
implies that

Pr[φ] = (1/2) + Pr[φ ∧ ¬ℓ].

So Pr[φ] > 1/2 if and only if (φ ∧ ¬ℓ) is satisfiable.
By Claim 4.8, every clause of φ contains ℓ. Let

φ′ = {C \ {ℓ} | C ∈ φ}

76

be the formula obtained by removing ℓ from every clause in φ.
Since φ is a 3-CNF, φ′ must be a 2-CNF.
Since ℓ appears in every clause of φ, the 3-CNF φ∧¬ℓ is equivalent to the 2-CNF φ′∧¬ℓ.

So Pr[φ] > 1/2 if and only if Pr[φ′ ∧ ¬ℓ] > 0. By Proposition 2.12 we can determine if

Pr[φ′ ∧ ¬ℓ] > 0

in linear time. If Pr[φ′ ∧ ¬ℓ] > 0 we return YES, otherwise we return NO.
This solves 3SAT-Prob>1/2 in all cases, and proves the desired result. ■

Proof of Theorem 4.4. The result follows immediately by combining Lemmas 4.5 to 4.7. ■

4.2 Limited Long Clauses

The Majority-SAT problem is PP-complete in general, but becomes polynomial-time solvable
when restricted to k-CNF formulas for constant k, by Theorem 2.15. What about the case
when the input formulas are not necessarily k-CNFs, but are “almost k-CNFs,” in the sense
that all but a smaller number of clauses in the formula have width at most k? Can we solve
Majority-SAT on such formulas in polynomial-time as well?

It turns out the answer is no we cannot, at least for k ≥ 3.

Theorem 4.9: Threshold Satisfaction for 3-CNFs with One Long Clause

For positive integers k, the Majority-SAT problem restricted to formulas of the form
ψ ∧ L, where ψ is a k-CNF and L is an arbitrary clause, is

• polynomial-time solvable for k ≤ 2,

• NP-hard under Turing reductions for k = 3, and

• PP-complete for k ≥ 4.

Theorem 4.9 is interesting it shows that the tractability of kSAT-Prob≥1/2 for fixed k is
quite brittle. Majority-SAT is easy on k-CNFs for constant k, but adding just one clause of
unbounded width to the input formula can make the problem hard again.

We prove Theorem 4.9 across a series of lemmas.
We begin first by showing the hardness results in Theorem 4.9.
To show the PP-hardness result, we reduce from the following PP-complete problem.

Proposition 4.10. Given a 3-CNF formula φ on n variables and an integer a ∈ [n], the
problem of determining whether Pr[φ] ≥ (1/2)a is PP-complete.

The problem from the statement of Proposition 4.10 is in PP because it is a special case
of Majority-SAT. The problem is PP-hard by [BDK07, Proposition 1], which shows that the
problem is PP-hard even if we restrict to the special case where the input integer is of the
form a = n(1− 1/t), where n is the number of variables in the input formula φ and t ∈ [n].

Proposition 4.10 then holds because, by the discussion from the previous paragraph, the
problem from its statement is PP-hard and in PP.

77

Note the difference between kSAT-Prob≥p and the problem from Proposition 4.10: the
latter requires us to check if the satisfaction probability of a 3-CNF is at least 1/2t where t is
given as part of the input, and so can equal any positive integer. In particular, the threshold
we test at in the problem can depend on n, and thus does not have to be a constant. For
example, solving the problem for t = n corresponds to solving 3SAT, which is NP-hard.

To prove hardness for solving Majority-SAT on k-CNF ψ formulas adjoined to a single
“long clause” L, we use the intuition from Idea 6 and show the following general reduction.

Lemma 4.11. For any integer k ≥ 2, there is an algorithm which given a (k − 1)-CNF φ
and integer a ≥ 1, in O(|φ|+ a) time outputs a k-CNF ψ and clause L such that

Pr[φ] ≥ (1/2)a ⇐⇒ Pr[ψ ∧ L] ≥ 1/2.

Proof. Let φ be an arbitrary (k − 1)-CNF. Let a ≥ 1 be an integer.
Let x, y1, . . . , ya be distinct variables not appearing in φ. Construct the k-CNF formula

ψ = {C ∪ {x} | C ∈ φ}

by adding x to each clause of φ. Furthermore, define

L = (¬x) ∨

(
a∨

i=1

yi

)
to be a clause on a+ 1 variables.

Given φ and a, we can construct ψ and L in O(|φ|+ a) time.
Since every assignment sets x to be either true or false, we have

Pr[ψ ∧ L] = Pr[ψ ∧ L ∧ x] + Pr[ψ ∧ L ∧ ¬x]. (47)

Since x appears in every clause of ψ, we have

Pr[ψ ∧ L ∧ x] = Pr[L ∧ x] = Pr[(y1 ∨ · · · ∨ ya) ∧ x] = (1/2) · (1− (1/2)a) . (48)

Since L contains ¬x, we have

Pr[ψ ∧ L ∧ ¬x] = Pr[ψ ∧ ¬x] = Pr[φ ∧ ¬x] = (1/2) · Pr[φ]. (49)

Combining eqs. (47) to (49) we get that

Pr[ψ ∧ L] = (1/2) · (1 + (Pr[φ]− (1/2)a)) .

This means that Pr[ψ ∧ L] ≥ 1/2 if and only if Pr[φ] ≥ (1/2)a, as desired. ■

Corollary 4.12. The Majority-SAT problem on formulas of the form ψ ∧ L, where ψ is a
4-CNF and L is an arbitrary clause, is PP-complete.

Proof. By Lemma 4.11, there is a polynomial-time reduction from the problem of deciding
if 3-CNF φ on n variables has Pr[φ] ≥ (1/2)a for some integer a ∈ [n] to the problem of
deciding if Pr[ψ ∧ L] ≥ 1/2 for some 4-CNF ψ and clause L.

By Proposition 4.10, the first problem from the previous paragraph is PP-hard. Thus the
second problem from the previous paragraph must also be PP-hard. The second problem is
a special case of Majority-SAT, and thus is in PP. So the second problem is PP-complete,
which proves the desired result. ■

78

Lemma 4.13. The Majority-SAT problem on formulas of the form ψ∧L, where ψ is a 3-CNF
and L is an arbitrary clause, is NP-hard under Turing reductions.

Proof. By [Zuc96, Theorem 4.1], the following problem is NP-hard: given a 2-CNF φ, find
a real p̂ ∈ [0, 1] such that p̂ ≤ Pr[φ] ≤ 2p̂. In other word approximating the fraction of
satisfying assignments of a 2-CNF to a factor of two is NP-hard. To prove the result, it
suffices to present a Turing reduction from this problem to the problem in lemma statement.

Take an arbitrary 2-CNF formula φ on n variables. Fix an integer a ∈ [n]. Then by
Lemma 4.11, we can in polynomial time construct a 3-CNF ψa and a clause La with the
property that Pr[φ] ≥ (1/2)a if and only if Pr[ψa ∧ La] ≥ 1/2. Using a subroutine which
solves the problem from the lemma statement, we can determine for each a ∈ [n] whether

Pr[ψa ∧ La] ≥ 1/2

holds.
If the above inequality does not hold for any a ∈ [n], then Pr[φ] < (1/2)n. Since φ has

n variables, this means that Pr[φ] = 0, so we can return p̂ = 0 in this case.
Otherwise, the above inequality holds for some a ∈ [n]. Then we can find the largest

positive integer b such that Pr[ψb ∧ Lb] ≥ 1/2. Then by the equivalence from the previous
paragraph, we have

(1/2)b ≤ Pr[φ] < 2 · (1/2)b

so we can take p̂ = (1/2)b.
This completes the polynomial-time Turing reduction, and proves the desired result. ■

It remains to show how to solve Majority-SAT in polynomial time over CNF formulas
where all but one clause has width at most two. We in fact show a more general result
below, where we can test at thresholds p ̸= 1/2, and allow the formula to have O(log n) long
clauses.

Lemma 4.14. For any real p ∈ (0, 1), and integer r ≥ 1, given a CNF formula of the form
ψ ∧ Φ, where ψ is a 2-CNF and Φ has at most r clauses, we can determine if Pr[ψ ∧ Φ] ≥ p
in 2r poly(1/p) (|ψ|+ |Φ|) time.

Proof. We begin by running Algorithm 1 on ψ. By Lemma 3.8 and the proof of Theorem 3.1,
this takes 2O(log(1/p))|ψ| time and determines if Pr[ψ] ≥ p.

If Algorithm 1 returns NO, then Pr[ψ] < p, so

Pr[ψ ∧ Φ] ≤ Pr[ψ] < p

by Proposition 2.16.
Otherwise, Algorithm 1 returns YES. In this case, we must have found a set H of at most

O(log(1/p)) variables of ψ in step 4 of Algorithm 1, with the useful property that for every
assignment α : H ! {0, 1}, the induced formula ψα is a 1-CNF.

By Proposition 2.18, for any fixed α : H ! {0, 1}, the satisfying assignments of ψα ∧ Φ
are precisely the satisfying assignments of ψ ∧ Φ which agree with α on H. Since every
assignment to the variables of ψ restricts to some unique assignment on H, we have

Pr[ψ ∧Ψ] =
∑

α : H!{0,1}

Pr[ψα ∧Ψ]. (50)

79

Now, let

Φ =
r∧

i=1

Ci.

By the principle of inclusion-exclusion applied to the event that each Ci is satisfied by
an assignment, we have

Pr[ψα ∧ Φ] =
∑
S⊆[r]

(−1)|S| Pr

[
ψα ∧

(∧
i∈S

(¬Ci)

)]
(51)

for any α : H ! {0, 1}.
A clause

C = (ℓ1 ∨ · · · ∨ ℓw)

is satisfied precisely when at least one of its literals ℓi is satisfied. This means that its
negation, ¬C, is satisfied precisely when all literals ℓi are false.

So ¬C is equivalent to the 1-CNF formula

w∧
i=1

(¬ℓi).

This means that for each S ⊆ [r], the formula∧
i∈S

(¬Ci)

is equivalent to a 1-CNF. We also know that for each α : H ! {0, 1}, the induced formula ψα

is a 1-CNF. So by Proposition 2.11, we can compute the satisfaction probability appearing
in each summand in the right-hand side of eq. (51) in linear time.

Thus by eq. (51) we can compute

Pr[ψα ∧ Φ]

for any fixed α : H ! {0, 1} in 2r(|ψ| + |Φ|) time asymptotically. Doing this for all assign-
ments α to the variables in H then lets us compute Pr[ψ ∧Ψ] using eq. (50) in

2O(log(1/p))2r(|ψ|+ |Φ|)

time. We can then return YES if Pr[ψ ∧Ψ] ≥ p, and return NO otherwise.
Since 2O(log(1/p)) ≤ poly(1/p), we get that the total runtime of the algorithm is at most

2r poly(1/p) (|ψ|+ |Φ|)

as claimed. ■

Proof of Theorem 4.9. The theorem follows by combining Corollary 4.12, Lemma 4.13, and
Lemma 4.14 for the special case of p = 1/2 and r = 1. ■

80

4.3 Existential

An interesting generalization of Majority-SAT is the Existential Majority-SAT problem, where
we are given a formula on two disjoint sets of variables x⃗ and y⃗, and are tasked with de-
termining if it is possible to set the values of the variables in y⃗ to obtain a formula on the
remaining y⃗ variables, whose fraction of satisfying assignments is at least p.

Existential Majority-SAT

Given a CNF formula φ(x⃗, y⃗) on n = n1 + n2 variables

x⃗ = (x1, . . . , xn1) and y⃗ = (y1, . . . , yn2),

determine if there exists a⃗ ∈ {0, 1}n1 such that the formula φ(⃗a, y⃗) on n2 variables has

Pr[φ(⃗a, y⃗)] ≥ 1/2.

Existential Majority-SAT is an important problem for showing hardness of tasks in planning
and scheduling problems (see e.g., [PD04, Dar09]). Intuitively, Existential Majority-SAT is
relevant in these contexts because the problem is an abstraction of the setting where an
agent wants to make some choices (i.e., assign values to variables in x⃗) to maximize the
probability they are successful in some goal (i.e., satisfy φ(x⃗, y⃗)) over the randomness of the
environment (i.e., a random assignment of values to the variables in y⃗).

Existential Majority-SAT is complete for the class NPPP [LGM98], which is intuitively the
class of decision problems which can be solved by a deterministic polynomial-time verifier,
which has oracle access to an algorithm solving Majority-SAT.

Analogous to how we went from Majority-SAT to kSAT-Prob≥p, we can go from Existential
Majority-SAT to kSAT-∃Prob≥p, by restricting the problem k-CNF formulas, and allowing
thresholds p ∈ (0, 1) beyond just 1/2.

kSAT-∃Prob≥p

Given a real p ∈ (0, 1) and a k-CNF formula φ(x⃗, y⃗) on n = n1 + n2 variables

x⃗ = (x1, . . . , xn1) and y⃗ = (y1, . . . , yn2),

determine if there exists a⃗ ∈ {0, 1}n1 such that the formula φ(⃗a, y⃗) on n2 variables has

Pr[φ(⃗a, y⃗)] ≥ p.

What is the complexity of kSAT-∃Prob≥p for constant k and p? Well, since Majority-SAT
is PP-complete, but kSAT-Prob≥p is in P for constant k and p, by analogy we might expect
that Existential Majority-SAT, which is NPPP-complete over general CNF formulas, might
decrease in complexity down to NP or even P when relaxed to kSAT-∃Prob≥p for constant k
and p. This is indeed what happens.

81

Theorem 4.15: Existential Majority-SAT is Hard for 3-CNFs

For any fixed integer k ≥ 3 and constant p ∈ (0, 1), kSAT-∃Prob≥p is NP-complete.

Proof. The problem is in NP, because given a certificate a⃗ ∈ {0, 1}n1 , by Theorem 2.15 we
can check in polynomial time whether Pr[φ(⃗a, y⃗)] ≥ p holds.

The problem is NP-hard by reduction from kSAT (which is NP-hard for k ≥ 3).
Take an arbitrary k-CNF formula φ(x⃗) on n1 variables.
Set p = 1/2, n2 = 1, and let y be a variable not in the variable set x⃗.
Define the k-CNF formula Φ(x⃗, y) = φ(x⃗) whose value does not depend on y.
If φ is satisfiable, then there exists an assignment a⃗ ∈ {0, 1}n1 , such that Φ(⃗a, y) is

a tautology, and so has satisfaction probability 1. If φ is not satisfiable, then for every
assignment a⃗ ∈ {0, 1}n1 , the formula Φ(⃗a, y) is unsatisfiable as well, and thus has satisfaction
probability 0. So the answer to kSAT-∃Prob≥p on Φ is YES if and only if φ is satisfiable (for
any choice of p ∈ (0, 1)). This gives a reduction from kSAT to kSAT-∃Prob≥p and proves the
desired result. ■

The hardness for kSAT-∃Prob≥p in Theorem 4.15 for k ≥ 3 is just coming from the fact
that kSAT-∃Prob≥p has existential quantification, and kSAT is NP-hard for k ≥ 3.

Since 2SAT is in P, we might then expect that 2SAT-∃Prob≥p for constant p can be solved
in polynomial-time as well. This turns out to indeed be true. The high-level idea is to apply
the 2SAT-Prob≥p algorithm over the y⃗ variables in concert with the the 2SAT algorithm over
the x⃗ variables.

Theorem 4.16: Existential Majority-SAT is Easy for 2-CNFs

We can solve 2SAT-∃Prob≥p in nO(log(1/p))|φ| time.

Proof. Let φ(x⃗, y⃗) be an arbitrary 2-CNF formula. For convenience, we refer to the x⃗ variables
as outer variables, and the y⃗ as inner variables. To solve 2SAT-∃Prob≥p, we need to determine
if there exists some assignment a⃗ to the outer variables such that the resulting formula φ(⃗a, y⃗)
over the inner variables has satisfaction probability at least p.

We can write
φ(x⃗, y⃗) = φout(x⃗) ∧ φmix(x⃗, y⃗) ∧ φin(y⃗)

where φin(y⃗) consists of all clauses in φ which use only inner variables, φout(y⃗) consists of all
clauses in φ which use only outer variables, and φmix(x⃗, y⃗) consists of the remaining clauses,
which contain exactly one literal from x⃗ and one literal from y⃗.

Run Algorithm 1 to solve 2SAT-Prob≥p on φin. From the proof of Theorem 3.1, we can
run this algorithm in poly(1/p)|φ| time.

If Algorithm 1 returns NO, then Pr[φin] < p, so by Proposition 2.16 we have

Pr[φ(⃗a, y⃗)] ≤ Pr[φin(y⃗)] < p

for all a⃗ ∈ {0, 1}n1 , so we can return NO in the 2SAT-∃Prob≥p problem.
Otherwise, Algorithm 1 returns YES. In this case, step 4 of Algorithm 1 finds a set Hin

of at most O(log(1/p)) variables in y⃗, such that for every assignment β : Hin ! {0, 1}, the

82

induced formula (φin)β is a 1-CNF. We can use Hin to help compute satisfaction probabilities
of Pr[φ(⃗a, y⃗)] for various assignments a⃗, thanks to the following claim.

▷ Claim 4.17. For any assignment a⃗ to the outer variables which satisfies φout, we have

Pr[φ(⃗a, y⃗)] =
∑

β : Hin!{0,1}

Pr[φmix(⃗a, y⃗) ∧ (φin(y⃗))β]

Proof. If a⃗ satisfies φout, then φ(⃗a, y⃗) is equivalent to

φmix(y⃗, a⃗) ∧ φin(y⃗).

Now, by Proposition 2.18, we know that for any β : Hin ! {0, 1}, the satisfying assignments
of φmix(⃗a, y⃗)∧ (φin(y⃗))β are precisely the satisfying assignments of φmix(⃗a, y⃗)∧ (φin(y⃗)) which
agree with β on Hin. Since every assignment over the inner variables restricts to a unique
assignment on Hin we have

Pr[φmix(⃗a, y⃗) ∧ (φin(y⃗))] =
∑

β : Hin!{0,1}

Pr[φmix(⃗a, y⃗) ∧ (φin(y⃗))β].

By the first paragraph of this proof, this shows the claim.

Now, for any assignment a⃗ ∈ {0, 1}n1 to the outer variables, define L(⃗a) to be the set
of literals ℓy over y⃗ such that φmix contains a clause of the form (ℓx ∨ ℓy) for some literal
ℓx that a⃗ sets false. Equivalently, L(⃗a) is the set of literals which appear in unit clauses of
φmix(⃗a, y⃗). By Proposition 2.16 we have

Pr[φ(⃗a, y⃗)] ≤ Pr[φmix(⃗a, y⃗)] < (1/2)|L(a⃗)|.

From the above equation, we deduce that

Pr[(⃗a, y⃗)] ≥ p =⇒ |L(⃗a)| ≤ ⌊log(1/p)⌋. (52)

From eq. (52), we see that to solve 2SAT-∃Prob≥p on φ, we may restrict our attention to
assignments a⃗ to the outer variables for which L(⃗a) at most ⌊log(1/p)⌋ literals. This suggest
a general algorithm strategy: try out all possible sets L of at most ⌊log(1/p)⌋ literals, and
for each search for an assignment a⃗ with L = L(⃗a) such that Pr[φ(⃗a, y⃗)] ≥ p.

To help describe this procedure, we introduce some additional notation. Let Lmix denote
the set of literals ℓy over y⃗ which appear in clauses of φmix. For each literal ℓy ∈ Lmix, we
let X(ℓy) denote the set of literals ℓx over x⃗ such that (ℓx ∨ ℓy) is a clause in φmix. More
generally, given L ⊆ Lmix we define

X(L) =
⋃
ℓy∈L

X(ℓy)

to be the set of outer variables appearing in some clause of φmix with a literal in L.
To help find assignments a⃗ with L(⃗a) = L for a given L, we prove the following claim.

83

Algorithm 4. Existential Threshold Satisfaction Algorithm for 2-CNFs

Inputs: A 2-CNF φ(x⃗, y⃗), and real p ∈ (0, 1).
Returns: YES if there exists a⃗ ∈ {0, 1}n1 with Pr[φ(⃗a, y⃗)] ≥ p, NO otherwise.

1. For each L ⊆ Lmix with |L| ≤ ⌊log(1/p)⌋:

2. For each map f : L! X(L) satisfying f(ℓy) ∈ X(ℓy) for every ℓy ∈ L:

3. Determine if there exists a⃗ ∈ {0, 1}n which sets all literals inX(Lmix\L)
to be true, sets f(ℓy) to be false for every ℓy ∈ L, and satisfies φout.

4. If we find a⃗ satisfying the conditions from step 3, then compute

Pr[φ(⃗a, y⃗)] =
∑

β : Hin!{0,1}

Pr[φmix(⃗a, y⃗) ∧ (φin(y⃗))β]

and return YES if this if the sum is at least p.

5. Return NO.

▷ Claim 4.18. Let L ⊆ Lmix be a set of literals over y⃗. An assignment a⃗ to the outer
variables has L(⃗a) = L if and only if

1. for every ℓy ∈ L, a⃗ sets some literal in X(ℓy) to be false, and

2. a⃗ sets every literal in X(Lmix \ L) to be true.

Proof. For any literal ℓy in Lmix, ℓy appears in a unit clause of φmix(⃗a, y⃗) if and only if a⃗ sets
some literal in X(ℓy) to be false. Since L(⃗a) is defined to be the set of literals over y⃗ which
appear in unit clauses of φmix(⃗a, y⃗), the desired result follows.

We present the remainder of the algorithm for solving 2SAT-Prob≥p in Algorithm 4. We
first prove that the algorithm is correct, and then analyze its runtime.

Proof of Correctness

Suppose there exists an assignment a⃗ to the outer variables such that Pr[φ(⃗a, y⃗)] ≥ p. Then
by eq. (52) we must have |L(⃗a)| ≤ ⌊log(1/p)⌋. Moreover, L(⃗a) ⊆ Lmix by definition. So some
iteration of the loop in step 1 of Algorithm 4 sets L = L(⃗a). Consider this iteration.

By Claim 4.18, a⃗ must set some literal in X(ℓy) to be false for each ℓy ∈ L. Consider a
choice of f in step 2 of Algorithm 4 for which f(ℓy) is set to false by a⃗ for each ℓy ∈ L.

By Claim 4.18, a⃗ must set every literal in X(Lmix \ L) to be true. Also, the assignment
a⃗ must satisfy φout, since if φout is not satisfied by a⃗, Pr[φ(⃗a, y⃗)] = 0. Thus, a⃗ satisfies all
conditions in step 3 of Algorithm 4.

Then in step 4 of Algorithm 4, we correctly compute Pr[φ(⃗a, y⃗)] by Claim 4.17, and so
return YES in this case.

84

Conversely, suppose Algorithm 4 returns YES. Then it must do so in step 4. This can
only happen if we found an assignment a⃗ satisfying the conditions of step 3 of Algorithm 4.
This means that a⃗ satisfies φout, so by Claim 4.17, step 4 computes that Pr[φ(⃗a, y⃗)] ≥ p, so
φ is indeed a YES instance for the 2SAT-∃Prob≥p problem.

Thus the algorithm correctly solves 2SAT-∃Prob≥p as claimed.

Runtime Analysis

The initial step of running Algorithm 1 on φin took poly(1/p)|φ| time.
There are at most (2n)⌊log(1/p)⌋ choices of L in step 1 of Algorithm 4. For each such choice

of L, there are at most (2n)|L| ≤ (2n)⌊log(1/p)⌋ choices of function f in step 2 of Algorithm 4.
Fix a choice of L and f from the first two steps of Algorithm 4.
Step 3 of Algorithm 4 can be implemented in linear time. We first assign each literal

in X(Lmix \ L) to be true and assign f(ℓy) to be false for each ℓy ∈ L. If this leads to an
inconsistency (i.e., requires some variable to be set to both true and false simultaneously),
then no such assignment exists. Otherwise, we get a partial assignment α to a subset of outer
variables from the procedure so far. We then construct the induced 2-CNF (φout)α, and check
if it is satisfiable in linear time by Proposition 2.12. This formula is satisfiable if and only if
some assignment extending α satisfies φout, so an assignment a⃗ satisfying the conditions of
step 3 from Algorithm 4 exists if and only if this procedure finds such an assignment.

By definition of φmix, the formula φmix(⃗a, y⃗) is a 1-CNF.
By the definition of Hin, the formula (φin(y⃗))β is a 1-CNF for each β : Hin ! {0, 1}.
Thus, we can compute the value of each summand in the right-hand of the equation in

step 4 of Algorithm 4 in linear time by Proposition 2.11. So step 4 of Algorithm 4 takes
2|Hin||φ| ≤ poly(1/p)|φ| time.

Step 5 of Algorithm 4 takes O(1) time.
So overall, Algorithm 4 takes at most

(2n)⌊log(1/p)⌋ · (2n)⌊log(1/p)⌋ · poly(1/p)|φ| ≤ nO(log(1/p))|φ|

time as claimed. ■

4.4 Inference

In the Bayesian Inference problem, we are given CNF formulas φ and ψ over a common set
of variables and a real p ∈ (0, 1), and are tasked with determining if

Pr[φ ∧ ψ] ≥ p · Pr[ψ].

In the special case where ψ is satisfied by every assignment (for example, if ψ is the empty
formula) and p = 1/2, Bayesian Inference recovers the Majority-SAT problem, and so in
general is PP-hard. The name of this problem comes from the fact that if Pr[ψ] ̸= 0, the
above inequality is equivalent to the condition that

Pr[φ | ψ] ≥ p

85

and so the problem is intuitively asking us to infer how likely a uniform random assignment
is to satisfy φ, given that we know the assignment satisfies ψ.

In light of our algorithms for kSAT-Prob≥p for constant k and p, it is natural to ask if
the Bayesian Inference problem can be solved in polynomial time when p is a constant, and
the formulas φ and ψ have constant width.

We show that even if we limit φ to be a single unit clause, the Bayesian Inference problem
becomes PP-hard for 3-CNFs ψ. Previously, it was only known that this problem is NP-hard
under Turing reductions [AW22, Section V].

The idea of the proof is to use a 3-CNF ψ to check correctness of the tableau for an
arbitrary circuit, and φ check that the circuit is satisfied (i.e., returns 1 at its output gate).
The proof is due to Olaf Beyersdorff, Till Tantau, and Quinten Tupker, from a discussion at
Dagstuhl Seminar 23111.

Theorem 4.19: Bayesian Inference for 1-CNFs Conditioned on 3-CNFs is Hard

The Bayesian Inference problem with threshold p = 1/2 restricted to inputs where φ is
1-CNF with one clause and ψ is a 3-CNF is PP-hard.

To prove Theorem 4.19, we will reduce from a variant of Majority-SAT, defined over
general circuits instead of CNF formulas.

Definition 4.20 (Boolean Circuit). A Boolean circuit C over variables x⃗ = (x1, . . . , xn) of
size s ≥ n is defined by a sequence of gates G1, . . . , Gs with the following data:

• for i ∈ [n], we have Gi = xi (the variable gates),

• for i ≥ n+ 1, each Gi is labeled as an and (∧) gate, or (∨) gate, or not (¬) gate,

• each and gate Gi, comes with indices j, l < i such that Gi = Gj ∧Gl,

• each or gate Gi, comes with indices j, l < i such that Gi = Gj ∨Gl,

• each not gate Gi, comes with an index j < i such that Gi = ¬Gj, and

• Gs is additionally labeled as the output gate.

Each gate Gi naturally computes a function over the variables x⃗, by setting Gi = xi for
i ∈ [n] to be the function that outputs the ith coordinate of the input, and inductively
defining the functions Gi for i > n based off the (∧), (∨), and (¬) cases in terms of the
functions computed by the Gj gates j < i in the natural way. We say the function computed
by the output gate Gs is the function computed by the circuit C.

Majority-Circuit SAT

Given a Boolean circuit C of size s on n variables, determine if Pr[C] ≥ 1/2.

Proposition 4.21. Majority-Circuit SAT is PP-complete.

86

https://www.dagstuhl.de/23111

Proof. We first show that Majority-Circuit SAT is in PP. Consider the verifier which, given
the input circuit C, returns YES if and only if the certificate is a satisfying assignment
a⃗ ∈ {0, 1}n of C. The verifier runs in polynomial time, because we can compute C (⃗a) by
inductively computing the value Gi(⃗a) at each gate on the assignment, for i ∈ [s] in increasing
order. Computing Gi(⃗a) for each i ∈ [n] takes Õ(1) time since we just need to read the ith
coordinate of a⃗. Computing Gi(⃗a) for i > n takes Õ(1) time, since we just to compute a
logical operation on the values of Gj (⃗a) for at most two indices j < i, which we will have
already computed by the time we reach gate Gi. So we can compute Gs(⃗a) = C (⃗a), in
polynomial time. By construction, at least half of the certificates in {0, 1}n make the verifier
return YES if and only if Pr[C] ≥ 1/2, so Majority-Circuit SAT is in PP as claimed.

It remains to show that Majority-Circuit SAT is PP-hard. We prove this by reduction from
the Majority-SAT problem.

To reduce Majority-SAT to Majority-Circuit SAT, we use simple binary tree-based construc-
tions which let us model CNF formulas as circuits of fan in-two.

▷ Claim 4.22. Given an integer w ≥ 1, there is an Õ(w) time algorithm which constructs a
Boolean circuit C of size O(w) computing the conjunction of w given inputs.

Proof. If w = 1, we return the circuit of size one which returns the input.
If w = 2, we return the circuit of size three with G3 = G2 ∧G1.
If instead w ≥ 3, partition the input variables into sets X and Y of size |X| = ⌊w/2⌋ and

|Y | = ⌈w/2⌉, recursively compute circuits CX and CY computing the conjunctions of the
variables in X and Y , and then return the circuit C which computes CX ∧ CY , by ordering
all non-variable gates of CX before all non-variable gates of CY , and adding a new final gate
G which computes the logical and of the output gates from CX and CY .

An easy induction argument shows that this procedure runs in Õ(w) time and outputs a
circuit C with the desired property of size O(w).

▷ Claim 4.23. Given an integer w ≥ 1, there is an Õ(w) time algorithm which constructs a
Boolean circuit C of size O(w) computing the disjunction of w given inputs.

Proof. Follows from symmetric reasoning to the proof of Claim 4.22.

Take an arbitrary instance of Majority-SAT, consisting of a CNF φ over n variables.
We construct a Boolean circuit C equivalent to φ, as follows.
Let x1, . . . , xn be the variables of φ. The circuit C has this same variable set, and so we

set Gi = xi for i ∈ [n] as its initial variable gates. For each i ∈ [n], we set Gn+i = ¬Gi to be
a not gate computing the literal ¬xi.

Now, for each clause B in φ, we use Claim 4.23 to construct a circuit GB equivalent to B
(the inputs to GB are the variable and literal gates we already computed for C, corresponding
to the literals appearing in B). We order these GB gates arbitrarily after all the variable
and literal gates of C. We then use Claim 4.22 to compute a circuit C ′ which computes the
conjunction of the output gates of all the GB circuits. We order the gates of C ′ after the
gates of all the GB circuits.

This completes the description of circuit C. The size and runtime bounds from Claims 4.22
and 4.23 show that we can compute C in polynomial time, and C has size at most polynomial
in n and |φ|. Circuit C is equivalent to φ, because an assignment satisfies C if and only if

87

the output gate of every GB circuit returns 1, which is equivalent to every clause of φ being
satisfied. Since C and φ have the same number of variables, we then have Pr[C] ≥ 1/2 if
and only if Pr[φ] ≥ 1/2, which proves the desired result. ■

Proof of Theorem 4.19. We will prove the result by reduction from Majority-Circuit SAT. By
Proposition 4.21, Majority-Circuit SAT is PP-hard, so this will show the desired result.

Take an arbitrary instance of Majority-Circuit SAT, consisting of a Boolean circuit C of
size s on n variables. Let G1, . . . , Gs be the gates of C, ordered as in Definition 4.20. For each
i ∈ [s], introduce a variable gi. We construct CNF formulas φ and ψ over the gi variables.

The formula φ is a 1-CNF consisting only of the unit clause {gs}.
Next, we describe how to construct the 3-CNF formula ψ.
Given any variables x, y, z, we define the 3-CNF formula

ψ∧(x, y, z) = (x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y) ∧ (¬x ∨ z) .

By inspection, ψ∧(x, y, z) is equivalent to the condition that Jx = y ∧ zK (i.e., an assignment
satisfies ψ∧(x, y, z) precisely when x is assigned the conjunction of the values assigned to y
and z). We similarly define the 3-CNF formula

ψ∨(x, y, z) = (¬x ∨ y ∨ z) ∧ (x ∨ ¬y) ∧ (x ∨ ¬z)

which, by inspection, is equivalent to the condition that Jx = y ∨ zK.
Given variables x and y, we also define the 2-CNF formula

ψ¬(x, y) = (x ∨ ¬y) ∧ (¬x ∨ y).

By inspection, ψ¬(x, y) is equivalent to the condition that Jx = ¬yK.
Now, for each i ∈ [s] with i > n,

• if Gi is an and gate with Gi = Gj ∧Gl, we define the formula

ψi = ψ∧(gi, gj, gk),

• if Gi is an or gate with Gi = Gj ∨Gl, we define the formula

ψi = ψ∨(gi, gj, gk),

• and if instead Gi is a not gate with Gi = ¬Gj, we define the formula

ψi = ψ¬(gi, gj).

We then define

ψ =
s∧

i=n+1

ψi.

Given C, we can construct the 3-CNF ψ in polynomial time.
We claim that an assignment a⃗ (where variable gi is assigned value ai) satisfies ψ if and

only if on input (a1, . . . , an), gate Gi of circuit C computes the value ai for all i ∈ [s]. This

88

equivalence follows immediately from the construction of ψ and an easy induction argument
over the gates of circuit C.

Then, any assignment (a1, . . . , an) to the variables gi for i ∈ [n] extends to a unique
satisfying assignment of ψ. Consequently, we have

Pr[ψ] = (1/2)s−n. (53)

Recall that Gs is the output gate of C. By the above discussion, an assignment

a⃗ = (a1, . . . , as)

satisfies φ∧ ψ if and only if on input (a1, . . . , an), gate Gi computes ai for every i ∈ [s], and
the circuit C outputs 1. The number of such assignments is just the number of satisfying
assignments of C. Since C is a function over n variables, while φ ∧ ψ is a formula over s
variables, we have

Pr[φ ∧ ψ] = (2n · Pr[C]) /(2s) = (1/2)s−n · Pr[C]. (54)

By comparing eqs. (53) and (54), we see that

Pr[φ ∧ ψ] ≥ (1/2) · Pr[ψ]

if and only if
Pr[C] ≥ 1/2.

So we have a correct polynomial-time reduction from Majority-Circuit SAT to the problem
from the statement of Theorem 4.19, which proves the desired result. ■

89

90

Chapter 5

Open Problems

Exact Parameterized Complexity

Although our algorithm for kSAT-Prob≥p runs in polynomial time for constant k and p,
as discussed in the Exact Parameterized Complexity subsection of Section 3.4 this runtime
grows rapidly as a function of p for k ≥ 3. We can however solve 2SAT-Prob≥p on 2-CNFs φ
in poly(1/p)|φ| time, which has reasonable dependence on p. Is a similar dependence on p
possible for the general kSAT-Prob≥p problem, or can we prove that a such a dependence is
unlikely to exist?

Open Problem 1. Can kSAT-Prob≥p be solved in poly(1/p)|φ| for some fixed k ≥ 3?
What about achieving a 2poly(1/p)|φ| runtime?

One potential strategy to attack Open Problem 1 is to apply more effective versions of
the sunflower lemma. The reasoning used in the proof of correctness for our algorithms uses
techniques from the proof of the classic sunflower lemma of [ER60], and the effective bounds
from this lemma are reflected in the parameterized time complexity of our kSAT-Prob≥p

algorithms. In recent years, better bounds have been proven for the sunflower lemma (for
example, see the discussion and references in [Rao22]). Can these more effective results help
design faster parameterized algorithms for threshold satisfaction?

Open Problem 2. Can the ideas from improved sunflower theorems be used to design
algorithms for kSAT-Prob≥p, whose runtimes have better dependence on k and p?

In Section 4.3, we discussed Existential Majority-SAT, a generalization of Majority-SAT that
involves existential quantification over certain variables in the input formula. We showed
in Theorem 4.16 that 2SAT-∃Prob≥p, the variant of Existential Majority-SAT restricted to
2-CNFs that tests at a threshold of p, can be solved for formulas φ in nO(log(1/p))|φ| time.
For any constant p this runtime is poly(n), but this polynomial runtime becomes slower as
p becomes smaller. Is there an algorithm solving 2SAT-∃Prob≥p faster in terms of p, which
has a fixed polynomial runtime for all constant p?

91

Open Problem 3. Can 2SAT-∃Prob≥p be solved in f(1/p)|φ| time for some computable
function f? Or is this impossible under a plausible hardness hypothesis?

Spectral Gaps

In Idea 1 (from the end of Section 2.2), we mentioned that the possible values of k-CNF
satisfaction probabilities are constrained compared to the probabilities achieved by general
CNF formulas. Using the arguments from the proof of Theorem 2.15, one can show a precise
sense in which k-CNF fractions of satisfying assignments are limited—below every p ∈ (0, 1),
there is a gap, whose size depends only on p, where no satisfaction probability of any k-CNF
is present. This was proven formally in [Tan22b, Corollary 1.3]:

Proposition 5.1 (Spectral Gaps). For each positive integer k and real p ∈ (0, 1), there
exists a real δ = gapk(p) > 0 such that no k-CNF φ has the property that Pr[φ] ∈ (p− δ, p).

The constant gapk(p) is called the spectral gap for k-CNFs at p. The parameterized
runtimes of the current fastest algorithms for kSAT-Prob≥p seem to be proportional to the
value of gapk(p). This suggests that understanding the value of gapk(p), by obtaining better
upper and lower bounds for it, in terms of k and p, is an interesting research question. For
example, [Tan22b, Theorem 2.15] lower bounds gapk(p) in terms of some inverse exponential
tower that depends on the binary expansion of p, and seems qualitatitively similar to the
bounds derived in Section 3.4.

Open Problem 4. Can we get precise upper and lower bounds on the size of gapk(p)
in terms of k and p?

More generally, understanding the behavior of gapk(p) and the possible fractions of sat-
isfying assignments that can be achieved by k-CNF formulas for small constant k seems like
an interesting research project, from a purely mathematical perspective.

Open Problem 5. For small constants k ≥ 2, are there simple descriptions for the set

{Pr[φ] | φ is a k-CNF}

of possible satisfaction probabilities for k-CNF formulas?

Nested Majorities

In Section 4.3, we discussed the Existential Majority-SAT problem, a “higher-order” variant
of Majority-SAT which introduces existentially quantified variables. Maj-Maj-SAT is another
higher-order variant of Majority-SAT, relevant in the literature of probabilistic planning and
inference (see e.g., [PD04, Dar21]). This problem is defined over CNFs over disjoint sets of
variables x⃗ and y⃗, and asks if at least half of the assignments to the x⃗ variables produce
formulas over y⃗ with satisfaction probability at least 1/2.

92

Maj-Maj-SAT

Given a CNF formula φ(x⃗, y⃗) on n = n1 + n2 variables

x⃗ = (x1, . . . , xn1) and y⃗ = (y1, . . . , yn2),

determine if
Pr
a⃗

[
Pr
b⃗
[φ(⃗a, b⃗)] ≥ 1/2

]
≥ 1/2.

Just as Majority-SAT is PP-complete, Maj-Maj-SAT is complete for the class PPPP [Wag86,
Theorem 7], a complexity class believed to contain problems much harder than those in PP.
Intuitively, PPPP is the class obtained by taking the definition of PP from Section 2.1 (be-
tween the definitions of #SAT and Majority-SAT), and granting the polynomial-time verifier
in that definition query access to an oracle that solves Majority-SAT in constant time.

For any integer k ≥ 1 and reals p, q ∈ (0, 1), we can also consider the kSAT-Prob≥p,≥q

problem, obtained by restricting Maj-Maj-SAT to k-CNFs, and replacing 1/2 with thresholds
values p and q.

kSAT-Prob≥p,≥q

Given a k-CNF formula φ(x⃗, y⃗) on n = n1 + n2 variables

x⃗ = (x1, . . . , xn) and y⃗ = (y1, . . . , yn),

determine if
Pr
a⃗

[
Pr
b⃗
[φ(⃗a, b⃗)] ≥ q

]
≥ p.

Since kSAT-Prob≥p is polynomial-time solvable for constant k and p, it is natural to
suspect that kSAT-Prob≥p,≥q for constants k, p, and q. This indeed turns out to be true, and
[Tan22b, Theorem 3.15] gives an efficient reduction from kSAT-Prob≥p,≥q to lSAT-Prob≥p,
where l is a positive integer depending only on k and q. By inspecting the proofs in [Tan22b,
Section 3.1], we find that the current reduction sets l to be the smallest positive integer with

l ≥
(
2 + 2 log2k/(2k−1) (1/ gapk(q))

)k
k · k! (55)

where gapk(q) is the spectral gap for k-CNFs at q.
Although for constant k and q the parameter l is still constant, in general l can be

very large in terms of k and q, because gapk(q) can be very small in terms of k and q. In
order to design algorithms for kSAT-Prob≥p,≥q with better dependence on k, p, q, it would
be interesting to see if the reduction to lSAT-Prob≥p could be improved, by decreasing the
blow-up in parameter size from k to l.

Open Problem 6. Can we efficiently reduce kSAT-Prob≥p,≥q to lSAT-Prob≥p for some
positive integer l that is significantly smaller than the right hand side of eq. (55)?

93

Since 2SAT-Prob≥p can be solved in poly(1/p)|φ| time on 2-CNFs φ, it would be interesting
to see if 2SAT-Prob≥p,≥q can be solved similarly quickly, with only polynomial dependence
on (1/p) and (1/q) in the runtime. The current fastest algorithm for 2SAT-Prob≥p,≥q reduces
to lSAT-Prob≥p where l ≥ 3 is a growing function of q, and so has terrible dependence on p
and q, as suggested by the discussion in Section 3.4.

Open Problem 7. Can we design algorithms for 2SAT-Prob≥p,≥q with better runtime
dependence on p and q? For example, can the 2SAT-Prob≥p,≥q problem be solved in
poly(1/p, 1/q)|φ| time on 2-CNFs φ? Or is this runtime ruled out under some plausible
hardness hypothesis?

Complexity Classification

In Lemma 4.13, we showed that solving Majority-SAT on CNF formulas where all but possibly
one clause has width at most three is NP-hard (under Turing reductions). However, we did
not place this problem in NP. So, it is conceivable that this problem could even be PP-hard.

Open Problem 8. Is Majority-SAT restricted to formulas of the form ψ ∧L, where ψ is
a 3-CNF and L is an arbitrary clause, NP-complete? Or is this problem PP-complete?

In the proof of Lemma 4.13, we showed NP-hardness for the above problem by reducing
from the task of approximating the fraction of satisfying assignments of a 2-CNF to a factor
of two. A potential strategy to strengthen this result and show PP-hardness for the above
problem (and thus resolve Open Problem 8) is to show that approximately counting satisfying
assignments of 2-CNFs to a factor of two is not just NP-hard, but in fact PP-hard. This
motivates the following problem.

Open Problem 9. Given a 2-CNF formula φ and an integer a, is the problem of deciding
whether Pr[φ] ≥ (1/2)a in NP? Or is this problem PP-complete?

See also Proposition 4.10 for additional context on the task described in Open Problem 9.
In Lemma 4.14, we showed that given a CNF φ with at most r clauses of width greater

than two, we can determine if Pr[φ] ≥ p in 2r poly(1/p)|φ| time. In particular, this problem
can be solved in polynomial time provided r ≤ O(log n). Is a polynomial time algorithm
also possible when r is super-logarithmic in n, or does this problem become hard?

Open Problem 10. Given constant p ∈ (0, 1), for what values of r is the problem of
determining if Pr[φ] ≥ p, for CNF formulas φ where all but r clauses have width at most
two, in P? Can this problem be solved in polynomial time for some r ≥ ω(log n)?

In Section 4.4 we showed that the Bayesian Inference problem is already PP-hard over
input formulas φ and ψ when φ is a 1-CNF and ψ is a 3-CNF. If φ and ψ are both 1-CNFs,
then Bayesian Inference can be solved in linear time, since we can compute the satisfaction
probabilities Pr[φ ∧ ψ] and Pr[ψ] in linear time by Proposition 2.11. It remains unclear
however, if we can efficiently solve Bayesian Inference when ψ is a 2-CNF.

94

Open Problem 11. Can Bayesian Inference be solved in polynomial time when the input
formulas are 2-CNFs and the threshold p ∈ (0, 1) is constant? What about when φ is a
1-CNF but ψ can be a 2-CNF?

In general, showing hardness results for threshold problems on 2-CNF formulas seems
difficult. This is because most hardness results involving counting satisfying assignments on
2-CNFs involve polynomial interpolation arguments, or other reductions which greatly distort
the counts of satisfying assignments in strange ways [Val79a]. This disortion is necessary to
some extent, since 2SAT is polynomial-time solvable.

Lower Bounds

In Open Problem 1, we asked whether the time complexity for solving kSAT-Prob≥p can
be improved for fixed k, in terms of the parameter p. In the case that significantly faster
algorithms are not possible for this problem, it would be interesting to develop a theory of
lower bounds for threshold satisfaction problems. For example, there are many influential
hardness hypotheses concerning the intractability of problems where one seeks to approxi-
mate the maximum number of constraints that can be satisfied in a CNF formula, such as the
Gap Exponential Time Hypothesis (see e.g., [Din16, Hypothesis 2.5]) and the Parameterized
Intractability Hypothesis (see e.g., [GLR+23, Hypothesis 1.1]). Could one of these hardness
hypotheses be useful for showing hardness for kSAT-Prob≥p? Can we define new, plausible
hypotheses which imply conditional lower bounds for the time complexity of kSAT-Prob≥p?

Open Problem 12. Is there a plausible hardness hypothesis we can use to lower bound
the parameterized time complexity of kSAT-Prob≥p and its variants?

Open Problem 13. Can we prove that (assuming some plausible hardness hypothesis)
the runtime of any algorithm solving kSAT-Prob≥p must depend on gapk(p) in some way?

It is known that kSAT-Prob≥p admits efficient kernelization (also known as compression)
algorithms in the parameters k and p [Tan22a]. That is, for constant k and p, there is a
polynomial-time algorithm which takes as input a k-CNF formula φ and produces a k-CNF
formula ψ of constant size, such that Pr[φ] ≥ p if and only if Pr[ψ] ≥ p. However, the size
ψ depends on the value of gapk(p), and so is quite large in terms of k and p. So it would be
interesting to obtain more efficient compression for kSAT-Prob≥p.

Open Problem 14. Can we design better kernelization algorithms for kSAT-Prob≥p,
which give better compression in terms of k and p?

Alternatively, it would also be very interesting to show that significantly better com-
pression for kSAT-Prob≥p is impossible. Establishing lower bounds on the possibility of

95

compressing kSAT-Prob≥p instances in this case may be easier than trying to directly resolve
Open Problems 12 and 13, since there already exists a well-developed toolkit for proving
kernelization lower bounds of parameterized problems [FLSZ18, Part III].

Open Problem 15. Can we prove interesting kernelization lower bounds for the kSAT-
Prob≥p problem in terms of the parameters k and p, under some popular hypothesis in
complexity theory?

Regularity

In the Regularity subsection of Section 3.4, we proved Theorem 3.28, a “regularity lemma”
for k-CNFs. It would be interesting to see if this regularity lemma could be applied to design
faster algorithms for other problems involving k-CNFs.

Open Problem 16. Are there interesting applications of Theorem 3.28 for problems
on k-CNFs besides kSAT-Prob≥p?

96

Part II

Graphs

97

Chapter 6

Algebraic Framework

In Chapters 7 and 8, we present algorithms for problems related to detecting disjoint paths in
graphs. The approaches we use in these chapters fall into the general framework of algebraic
graph algorithms, a growing area of modern algorithm design that combines linear algebraic
techniques with arguments from classical and algebraic combinatorics to solve graph theoretic
problems faster.

This paradigm often applies to computational problems where we are tasked with detect-
ing a special type of pattern in a graph. Rather than identify this pattern by using some
search routine, or by building up the structure of the pattern iteratively, in an algebraic
algorithm we solve the problem by considering a related polynomial, whose monomials enu-
merate the instances of the pattern we are trying to detect. In particular, this enumerating
polynomial is designed to be nonzero if and only if an instance of the desired pattern exists
in the input graph. We can check if a polynomial is nonzero by randomly evaluating it at a
point, so if our enumerating polynomial can be evaluated efficiently, this gives a randomized
algorithm for the original problem.

Why is working with an auxiliary polynomial useful? The main reason is that working
with polynomials enables us to employ arguments related to counting patterns, and this
opens up a larger space of algorithmic techniques than one would have access to if they
restricted themselves to direct detection-based argument. For example, in Chapter 7 we use
enumerative properties of determinants to find maximum flow values in unweighted graphs,
and in Chapter 8 we enumerate disjoint pairs of paths by enumerating the complementary set
of intersecting pairs of paths, which turns out to be easier to work with. These are examples
of methods we can only employ because we are working with enumerating polynomials.

A more subtle reason that the algebraic method is useful is that the structure of certain
computational problems seems to simplify when reduced modulo two. For example, computing
the permanent of a matrix with {0, 1} entries is #P-complete [Val79b], but computing the
value of the permanent of a matrix with {0, 1} entries modulo two takes polynomial time,
since the permanent is the same as the determinant of a matrix modulo two, and efficient
algorithms exist for computing determinants. In Chapter 7, we use the fact that enumerating
polynomials for intersecting pairs of paths simplify modulo two to obtain our algorithms.

99

What’s this chapter useful for?

This chapter covers preliminaries used in the arguments of Chapters 7 and 8.
If you want to read Chapter 7, you should read this chapter first.
If you just want to read Chapter 8, you should first read Section 6.1, and the Node-Based

subsection of Section 6.2, but can skip Section 6.3.

Organization

In Section 6.1 we recall the definitions of walks and paths in graphs, and introduce some
notation and facts for working with polynomials and matrices over fields. In Section 6.2 we
describe the general framework for encoding families of walks in graphs using polynomials. In
Section 6.3 we discuss standard results for formal power series, which are used in Chapter 7.

6.1 Preliminaries

Graph Notation and Terminology

Throughout this chapter, as well as Chapters 7 and 8, we work with an input graph G on n
vertices and m edges. We let V and E denote the vertex and edge sets of G respectively.

Given an edge e = (u, v) ∈ E, we let tail(e) = u denote the node e exits, and head(e) = v
denote the node e enters.

A walk in G is a sequence of vertices W = ⟨v0, . . . , vr⟩ such that (vi, vi+1) ∈ E for each
nonnegative integer i ≤ r− 1. If v0 = s and vr = t, we say that walk W begins at s and ends
at t. We also write that W is an s ⇝ t walk. We can also naturally view W as a sequence
of edges W = ⟨e1, . . . , er⟩ where ei = (vi−1, vi) for each i ∈ [r]. We say that W begins at e1
and ends at eℓ. The length r of a walk is the number of edges it contains. The size (r + 1)
of a walk is the number of vertices it contains.

A path is a walk whose vertices are all distinct.
A path P is an s⇝ t shortest path if it is a path of minimum length in G from s to t.
Given walks P and Q such that the final vertex of P and the first vertex of Q are the

same, we define P ⋄Q to be the path obtained by concatenating P and Q.

Finite Field Computation

Throughout, we work over a finite field F = F2q of characteristic two, where q is a positive
integer whose value we set separately for each algorithm. In general, we will pick q large
enough so that our algorithms are correct with high probability. In every case however, we
will have q ≤ 24 log(m+ n)

We work in the Word-RAM model with words of size O(log(m+n)). This is the standard
model of computation, since m+n is the input size of the graph G. In this model, after some
initial sublinear amount of time spent preprocessing the field F, addition and multiplication
of elements in F take O(1) time, and division by nonzero elements in F takes Õ(1) time.
This follows from [JX24, Lemma 2.6], since we have field size |F| = 2q ≤ (m+ n)24.

100

Identity Testing

Our algorithms will rely on the fact that random evaluations of a low degree polynomial over
a large field are nonzero with high probability.

Proposition 6.1. Let P be a nonzero r-variate polynomial of degree at most d. Then a
uniform random evaluation of P over Fr is nonzero with probability at least 1− d/|F|.

See [MR95, Theorem 7.2] for a proof of Proposition 6.1.

Matrix Notation

Given a square matrix M, we let M−1 denote the inverse of M if it exists. We let I denote
the identity matrix, whose dimensions will be clear from context.

We let ω denote the exponent of matrix multiplication, the smallest positive real such that
two n× n matrices over F can be multiplied in nω+o(1) time. For convenience, we write the
time complexity of matrix-multiplication as O(nω) instead of nω+o(1). We have ω ≥ 2, since
just reading the entries of an n× n matrix takes Ω(n2) time. The current fastest algorithm
for matrix multiplication implies that ω < 2.371552 [WXXZ24].

6.2 Enumerating Families of Walks

We enumerate walks not by counting their number, but by assigning each walk a certain
monomial weight, which records information about the vertices or edges traversed in the
walk. Enumeration corresponds to summing the weights of all walks (or collections of walks)
in a family of interest.

Node-Based

For every edge (u, v) ∈ E, we introduce an indeterminate xuv. If G is directed, the xuv
variables are distinct for every edge (u, v). If G is undirected, then (u, v) ∈ E if and only if
(v, u) ∈ E, and we set xuv = xvu for every edge (u, v).

Given a walk W = ⟨v0, . . . , vr⟩ viewed as a sequence of vertices, we let the weight

ξ(W) =
r−1∏
j=0

xvjvj+1
(56)

of W be the monomial recording all pairs of consecutive vertices traversed by W . By con-
vention, the weight of a walk W of length zero (i.e., a single vertex) is ξ(W) = 1.

Given a family of walks P = ⟨W1, . . . ,Wr⟩, we assign it weight

ξ(P) =
r∏

j=1

ξ(Wj) (57)

equal to the product of the weights monomials of the individual walks it contains. For the
special case of pairs of paths P = ⟨P1, P2⟩ we also write

ξ(P1, P2) = ξ(P) = ξ(P1)ξ(P2) (58)

101

for convenience.
Given a collection F of walks or families of walks in G, we say that a “polynomial F

enumerates F ,” or equivalently “F is the enumerating polynomial for F ,” if

F =
∑
S∈F

ξ(S). (59)

Edge-Based

In Section 7.2 we will design connectivity algorithms by enumerating edge-disjoint families
of walks. For this task, it is more natural to view walks as sequences of edges rather than
vertices, and assign weights which record pairs of adjacent edges in the walk instead of
recording adjacent pairs of vertices. For this edge-based enumeration, we assume that G is
directed, since this is the only context in which we will apply this enumeration.

For every pair of edges (e, f) in G such that head(e) = tail(f) (i.e., edge e enters the
vertex that edge f exits), we introduce an indeterminate variable xef . Given a walk

W = ⟨e1, . . . , eℓ⟩,

viewed as a sequence of edges ej, we let the weight

ξ(W) =
ℓ−1∏
j=1

xejej+1
(60)

of W be the monomial ξ(W) recording all pairs of consecutive edges traversed by W . By
convention, we assign a walk W of length one (i.e., a single edge) the weight ξ(W) = 1.

Given a family of walks C = ⟨W1, . . . ,Wr⟩, we still define the weight of this family

ξ(C) =
r∏

i=1

ξ(Wi) (61)

to be the product of the weights of the individual walks, and given a collection of F of walks
or families of walks, we still define the enumerating polynomial for F to be the sum∑

S∈F

ξ(S)

of the weights of all members of F .

6.3 Formal Power Series

In Chapter 7, our algorithms for computing graph connectivities work by enumerating fami-
lies of disjoint walks. This enumeration involves handling infinite sums, which entails working
with formal power series. To that end, in this section we review the definition and properties
of power series. These results mostly involve observing that the basic facts which hold in
the finite setting of polynomials still hold in the infinite setting of formal series.

102

Definitions

Fix a finite set J , and let {xj} indexed by j ∈ J be the set of variables we work over. A
polynomial is a finite linear combination of products of the xj variables. A formal power
series is a generalization of polynomials which allows for infinite sums.

Let NJ be the set of all sequences of nonnegative integers indexed by J . Given d ∈ NJ ,
we let dj denote the jth element of d for each j ∈ J . Then a formal power series F is
identified by a sequence of coefficients ad in F, one for each d ∈ NJ , and we write

F =
∑
d∈NJ

ad
∏
j∈J

x
dj
j .

We let 0 denote the all-zeros sequence in NJ , and say a0 is the constant term of F . In
general, given d ∈ NJ , the monomial corresponding to d in F (if it appears with nonzero
coefficient ad ̸= 0) is said to have degree ∑

j∈J

dj.

Addition and Multiplication

Given formal series

F =
∑
d∈NJ

ad
∏
j∈J

x
dj
j and H =

∑
d∈NJ

bd
∏
j∈J

x
dj
j

we define their sum
F +H =

∑
d∈NJ

(ad + bd)
∏
j∈J

x
dj
j

and product

F ·H =
∑
d∈NJ

 ∑
d1,d2∈NJ

d1+d2=d

ad1bd2

∏
j∈J

x
dj
j (62)

in the natural way, generalizing arithmetic over polynomials (in the above equation, d1+d2 =
d means that (d1)j +(d2)j = dj for all j ∈ J). These operations make the set of polynomials
over F a subring of the ring of formal power series, where the additive and multiplicative
identities are the constant polynomials 0 and 1 respectively.

Inversion

Given a power series F , we say H is a multiplicative inverse of F if

F ·H = 1. (63)

In order for the above equation to hold, the product of the constant terms of F and H must
equal 1. In particular, F must have nonzero constant term to have a multiplicative inverse.
The following fact shows that this condition is all that is needed for multiplicative inverses
to exist, and that in fact multiplicative inverses are unique.

103

Proposition 6.2 (Power Series Inversion). Let F be a formal power series with nonzero
constant term. Then there is a unique formal series H such that F ·H = 1.

Proof. Suppose
F =

∑
d∈NJ

ad
∏
j∈J

x
dj
j .

We define the sequence bd of coefficients in F for all d ∈ NJ by taking

b0 = (a0)
−1

and then inductively setting

bd = −

(∑
d′<d

ad−d′bd′

)
(64)

where d′ < d means that d′ ∈ NJ is componentwise less than or equal to d, and d′ ̸= d (and
(d− d′) is the sequence with jth term (dj − d′j) for all j ∈ J).

By assumption a0 ̸= 0, so a0 is invertible in F, so b0 is well-defined.
Then if we set

H =
∑
d∈NJ

bd
∏
j∈J

x
dj
j

it follows from the definition of multiplication in eq. (62), the relationship from eq. (64), and
the fact that a0 · b0 = 1, that we have

F ·H = 1.

This inverse is unique, because for any formal series H ′ satisfying F ·H ′ = 1, we have

H ′ = H ′ · 1 = H ′ · (F ·H) = (H ′ · F) ·H = 1 ·H = H.

Thus H is the unique multiplicative inverse of F as claimed. ■

Given a formal series F with nonzero constant term, we write H = F−1 to denote the
multiplicative inverse of F . This definition makes sense by Proposition 6.2.

Matrices of Power Series

In Chapter 7 we will work with matrices of formal series, because such objects arise naturally
when computing inverses of polynomial matrices. The following formula will be useful for
us to reason about the enumerative properties of certain matrices.

Proposition 6.3 (Geometric Series Formula). Let X be a square matrix with polynomial
entries such that every entry of X has constant term zero. Then

(I−X)−1 =
∞∑
ℓ=0

Xℓ. (65)

104

Proof. Since every entry of X has constant term zero, for any integer ℓ ≥ 0, the nonzero
entries of Xℓ each have degree at least ℓ. Consequently, the infinite sum from the right-hand
side of eq. (65) is well-defined, because for any d ∈ NJ , only finitely many terms contribute
to the coefficient of ∏

j∈J

x
dj
j

in each entry of the sum.
To prove the claim, it suffices to show that the product

(I−X)

(
∞∑
ℓ=0

Xℓ

)
(66)

is equal to the identity matrix.
For each integer d ≥ 0, let Md be the matrix from eq. (66) with entries restricted to

terms of degree at most d. Then since nonzero entries of Xℓ have degree at least ℓ, we see
that Md is equal to the matrix obtained by taking

(I−X)

(
d∑

ℓ=0

Xℓ

)
=

d∑
ℓ=0

(
Xℓ −Xℓ+1

)
= I−Xd+1

and restricting to the terms with degree at most d. Since every nonzero entry of Xd+1 has
degree greater than d, we see that Md = I is the identity matrix. Since this equation holds
for every d ≥ 0, eq. (66) holds as well. ■

105

106

Chapter 7

Connectivity

7.1 Overview

Given a network, how can we measure how “connected” different parts of it are?
This question, which underlies many basic problems in graph theory, can be quantitatively

answered using the notion of connectivity in graphs. Given a graph G with specified nodes s
and t, the connectivity from s to t, denoted by λ(s, t), is defined to be the maximum number
of edge-disjoint s⇝ t paths in G. Connectivity is a well-studied concept, with many classical
theorems in mathematics focusing on properties of graphs where every pair of vertices has
high connectivity (e.g., see [Sch02, Chapter 15]). This concept is especially important in
computer science, because the connectivity λ(s, t) is equal to the maximum flow from s to
t in the unweighted graph G, where we view edges as having capacity 1. Maximum flow is
a foundational problem in combinatorial optimization, with numerous applications in graph
algorithms and optimal transport, which further motivates studying connectivity.

The presence of connectivity in various areas of pure mathematics and computer science
highlights the importance of designing fast algorithms for computing connectivities in graphs.

For fixed vertices s and t, the maximum flow from s to t can be computed in almost
linear time [CKL+22]. This means that computing a single connectivity λ(s, t) in a graph is
easy—essentially optimal algorithms are known for this task.

In certain applications however, knowing the value of a single connectivity might not be
so useful on its own. For example, if we have a large network where links between nodes can
fail, and want to identify which clusters of nodes are likely to remain connected by paths
in the network even in the presence of edge failures, it may more informative to know the
values of multiple connectivities in the graph.

This motivates the All-Pairs Connectivity (APC) problem, where we are tasked with com-
puting connectivities for all pairs of vertices in a given graph.

All-Pairs Connectivity (APC)

Given a graph G, compute λ(s, t) for all pairs of vertices (s, t) in G.

Suppose the input graph G has n vertices and m edges. Given such a graph, how quickly
can we solve the APC problem?

107

In undirected graphs, it is known that APC can be solved in Õ(n2) time [AKL+22]. This
runtime is near-optimal, since to solve APC we need to output connectivity values for each
pair of vertices, which necessarily takes Ω(n2) time.

What about in general directed graphs? Well, a naive approach is to solve APC by com-
puting λ(s, t) separately for each pair of vertices (s, t) using a fast maximum flow algorithm.
Each maximum flow call can be computed in m1+o(1) time by [CKL+22], so this approach
yields an n2m1+o(1) time algorithm for APC. Despite the simplicity of this strategy, this naive
algorithm is currently the fastest algorithm known for solving APC in dense directed graphs!
In sparse graphs however, [CLL13] presented a faster algorithm for APC:

Theorem 7.1: All-Pairs Connectivity Algorithm

There is an algorithm solving APC on m-edge graphs in Õ(mω) time.

In the Exact subsection of Section 7.2, we present a proof of Theorem 7.1, different from
the original analysis of [CLL13], using the framework of [Akm24].

Why is computing multiple connectivities harder in directed graphs?

The current best algorithms for solving APC in undirected graphs involve constructing an
object known as a Gomory-Hu tree, a data structure which succinctly represents all the
connectivity information of the input graph [AKL+22]. There are examples of directed
graphs which provably do not admit Gomory-Hu trees [Ben95]. Consequently, the main
technique we currently have for designing fast algorithms for APC in undirected graphs does
not generalize to the directed case, and this barrier arises from the fact that the structure
of connectivities in directed graphs is more complex than the corresponding structure in
undirected graphs.

Besides the limited applicability of current approaches, APC appears to be harder on
directed graphs than undirected graphs because of various conditional lower bounds. For
example, as we discuss in the Better Lower Bounds subsection of Section 7.4, various hard-
ness hypotheses from fine-grained complexity imply that APC requires n3−o(1) time to solve
over general directed graphs [KT18, AGI+18]. This gives additional evidence that APC is
inherently more difficult on directed graphs than on undirected graphs.

The Relaxation: Bounded Connectivity

The current lack of progress in obtaining faster algorithms for APC in general directed graphs
naturally motivates looking at easier versions of this problem.

One way of constructing easier variants of APC is to relax the amount of information we
are expected to return. Instead of computing λ(s, t) exactly for example, we can instead ask
that we merely return some useful information about λ(s, t).

For example, consider the task of determining, for each pair of vertices (s, t) in G, whether
λ(s, t) ≥ 1. From the definition of connectivity, this is equivalent to determining for each
pair of vertices (s, t), if G contains an s ⇝ t path. This is the Transitive Closure problem,
a classic computational problem in graph theory. Transitive Closure can be solved in O(nω)
time [FM71]. Moreover, if it was possible to solve Transitive Closure in O(nω−ε) time for

108

any constant ε > 0, then one could also solve the Boolean Matrix Multiplication problem (a
certain variant of multiplying two n×nmatrices with entries in {0, 1}) inO(nω−ε) time as well
[FM71, Theorem 3]. Currently, no algorithm for Boolean Matrix Multiplication is known that
runs polynomially faster than the integer matrix multiplication runtime of O(nω). Because
of this, it has been hypothesized that Boolean Matrix Multiplication requires nω−o(1) time to
solve. Under this hypothesis, the O(nω) time algorithm for Transitive Closure is optimal.

We can interpolate between the Transitive Closure problem and the general APC problem
by more generally checking for each pair of vertices (s, t) in G, how large λ(s, t) is compared
to a fixed threshold k. This is the task posed in the k-Bounded All-Pairs Connectivity problem:

k-Bounded All-Pairs Connectivity (k-APC)

Given a graph G, compute min(k, λ(s, t)) for all pairs of vertices (s, t) in G.

The k-APC problem is relevant in contexts where knowing the precise connectivity values
between “well-connected” nodes is not important, and instead we care more about distin-
guishing for each pair of vertices whether its connectivity is small or large (where k is our
cutoff for what counts as “small” and “large”). k-APC recovers the Transitive Closure problem
for k = 1, and recovers the general APC problem if we set k to be at least the maximum
connectivity value between any pair of node in G (for example, if G is a simple graph, then
λ(s, t) ≤ n−1 for all s, t ∈ V , so in this case k-APC recovers for APC for k = n−1). Because
of this k-APC should intuitively be easier for small k, and harder for large k.

How quickly, we we solve the k-APC problem?
When k = 1, we have already seen that k-APC can be solved in O(nω) time, and this

runtime is optimal under a plausible hardness hypothesis.
When k = 2, it is similarly known that k-APC can be solved in Õ(nω) time [GGI+17].
However, already for k = 3 it was an open problem whether k-APC admitted any non-

trivial algorithm! That is, it was not known how to solve 3-APC faster than solving the more
general APC problem. In [AJ24, Theorem 4], we resolved this open problem, by proving the
following result:

Theorem 7.2: k-Bounded All-Pairs Connectivity Algorithm

There is an algorithm solving k-APC on n-node graphs in Õ((kn)ω) time.

Theorem 7.2 shows that for any constant k, we can solve k-APC in Õ(nω) time, essentially
matching the hypothesized optimal O(nω) runtime of 1-APC. In the Bounded subsection of
Section 7.2, we prove Theorem 7.2, following [Akm24].

Vertex Connectivity

The connectivity λ(s, t) is defined in terms of edge-disjoint paths. A natural variant of this
measure, relevant in certain applications, arises if we work with vertex-disjoint paths instead.
The vertex connectivity from s to t, denoted by ν(s, t), is defined to be the maximum number
of internally vertex-disjoint paths from s to t in G. Here “internally vertex-disjoint” means

109

that the paths are allowed to overlap at the endpoints s and t, but must not have any other
common vertices.

Given this notion, we can define the k-Bounded All-Pairs Vertex Connectivity problem, the
vertex connectivity analogue of the k-APC problem.

k-Bounded All-Pairs Vertex Connectivity (k-APVC)

Given a graph G, compute min(k, ν(s, t)) for all pairs of vertices (s, t) in G.

Can k-APVC be solved as quickly as k-APC? In [AJ24, Theorem 5] we showed that the
answer to this question is yes, by proving the following result:

Theorem 7.3: k-Bounded All-Pairs Vertex Connectivity Algorithm

There is an algorithm solving k-APVC on n-node graphs in Õ(k2nω) time.

In the All-Pairs subsection of Section 7.3, we present a proof of Theorem 7.3, different
from the original analysis of [AJ24], using the framework of [Akm24].

Global Vertex Connectivity

Beyond the “all-pairs” problems we have seen so far, significant research has gone into “global”
variants of vertex connectivity computation in graphs. Given a graph G, we define its vertex
connectivity ν(G) to be

ν(G) = min
s,t∈V

ν(s, t).

Computing ν(G) is interesting because it provides a single number which quantifies the
robustness of connections in the network G. It is known that ν(G) is equal to the smallest
number of vertices which must be deleted to disconnect G (i.e., make it so that for some
pair of vertices (s, t), there is no s ⇝ t path in the modified graph) whenever G is not
a complete graph [Fra11, Theorem 2.5.26], so ν(G) is a natural statistic of G to study.
Beyond its connection to network reliability, many classical results in graph theory involving
understanding properties of graphs G which satisfy ν(G) ≥ k, for some fixed, small positive
integers k. For example,

These connections within computer science and mathematics highlight the importance
of algorithms for determining whether the vertex connectivity of a graph is smaller or large.
This motivates the k-Vertex Connectivity problem, where we are given an integer k ≥ 1, and
are tasked with determining if ν(G) ≥ k.

k-Vertex Connectivity

Given a graph G, determine if ν(G) ≥ k.

A long line of research has studied algorithms for k-Vertex Connectivity (e.g., see [CQ21,
Table 2]). By combining the almost-linear maximum flow algorithm of [CKL+22] with
[LNP+21, Theorem 1.2], it is now known that we can compute the exact value of ν(G)

110

in n2+o(1) time. Consequently, k-Vertex Connectivity can be solved for any k in n2+o(1) time,
which is essentially optimal in dense graphs. Before this almost-quadratic time algorithm
was achieved, the fastest algorithm for k-Vertex Connectivity in dense graphs, for small values
of k, came from the following result of [CR94, Section 5]:

Theorem 7.4: k-Bounded Vertex Connectivity Algorithm

We can solve k-Vertex Connectivity on n-node graphs in Õ(nω + nkω) time.

Even though the Õ(nω + nkω) runtime from Theorem 7.4 is slower than the n2+o(1)

runtime which we now have for k-Vertex Connectivity, the algorithm establishing Theorem 7.4
remains interesting because of the alternate techniques it employs. For example, we can prove
Theorem 7.4 without applying almost-linear maximum flow algorithms, or relying on the fast
data structures for “kernelization” used in [LNP+21].

The algorithm of [CR94] builds off a previous Õ(nω+knω) time algorithm of [LLW88] for
k-Vertex Connectivity on undirected graphs. The original proof in [LLW88] was motivated by
a physical interpretation of connectivity, and how it relates to an equilibrium configuration
of a certain convex embedding of the vertices of G. The proof in [CR94] similarly takes the
perspective of convex embeddings, to reduce computing connectivities to certain Laplacian
systems of equations.

In the Global subsection of Section 7.3, we present a simple proof of Theorem 7.4, different
from the original analysis of [CR94], using the framework of [Akm24].

Graph Preliminaries

We use the definitions from Section 6.1. In particular, G = (V,E) is the input graph,
with |V | = n nodes and |E| = m edges. We assume that G is weakly connected (i.e., the
underlying undirected graph of G is connected), so that m ≥ n − 1. This is without loss
of generality for each of the problems we consider, since for the “all-pairs” problems APC,
k-APC, and k-APVC, we can compute connectivites between pairs of vertices separately on
each weakly connected component; and for the k-Vertex Connectivity problem, any graph
that is not weakly connected has ν(G) = 0, so the problem is trivial in this case.

Given a vertex s, we define Eout(s) to be the set of edges exiting s, and Vout(s) to be the
set of out-neighbors of s. Similarly, given a vertex t, we define Ein(t) to be the set of edges
entering t, and Vin(t) to be the set of in-neighbors of t. We let

Vout[s] = Vout(s) ∪ {s} and Vin[t] = Vin[t] ∪ {t} (67)

be the closed out-neighborhood of s and closed in-neighborhood of t respectively. We write

degout(s) = |Ein(s)| and degin(t) = |Eout(t)|

to denote the indegree of s and outdegree of t respectively.

Matrix Preliminaries

We use bold font, such as M, to denote matrices. Given a matrix M, a row index i, and
column index j, we let M[i, j] denote the (i, j) entry of M. Given subsets I and J of row

111

and column indices respectively, we let M[I, J] be the submatrix of M restricted to rows in
I and columns in J . We also let M[I, ·] be the submatrix restricted to rows in I and all
columns, and M[·, J] be the submatrix on all rows and restricted to columns in J .

We let rankM denote the rank of M, defined to be largest nonnegative integer r such
that M contains an r× r submatrix with nonzero determinant. Equivalently, rankM is the
dimension of the image of M. This second definition shows that the rank of a matrix cannot
increase after multiplication with another matrix. When M is a square matrix, we let detM
denote the determinant of M, adj(M) denote the adjoint of M, and M−1 denote the inverse
of M (if it exists). A matrix M is invertible if and only if its determinant is nonzero.

Matrix Computation

We recall the following standard results concerning matrix computation.

Proposition 7.5 (Matrix Inversion). For any positive integer a, we can compute the inverse
of an a× a matrix over a field in O(aω) field operations.

See [BH74] for a sketch of the proof of Proposition 7.5. For a more modern proof of
Proposition 7.5, see the lecture notes [SCWW21].

Proposition 7.6 (Matrix Rank). For any positive integers a and b, we can compute the
rank of an a× b matrix over a field in O(abω−1) field operations.

See [IMH82] for a proof of Proposition 7.6. For a discussion of more recent advances in
algorithms for computing matrix rank, see [CKL13].

Rational Identity Testing

To prove correctness for our algorithms, we use the following extension of Proposition 6.1,
which shows that the random evaluation of a nonzero rational function, whose numerator
and denominator have low degree, over a large field is nonzero with high probability.

Corollary 7.7. Let P and Q be two nonzero r-variate polynomials, each of degree at most d.
Let R = P/Q. Then a uniform random evaluation of R over Fr is nonzero with probability
at least 1− 2d/|F|.

Proof. Under random evaluation over Fr, by Proposition 6.1 and the union bound, P and
Q are both nonzero with probability at least 1− 2d/|F|. So with this probability, R = P/Q
also has nonzero evaluation, as claimed. ■

7.2 Edge Connectivity

In this section, we present algorithms for the APC and k-APC problems. We follow the
strategy suggested by Chapter 6, and design our algorithms by obtaining polynomials which
enumerate various collections of edge-disjoint paths in G.

Throughout this section, degout(s) denotes the number of edges exiting a vertex s, and
degin(t) denotes the number of edges entering a vertex t.

112

Exact

In this subsection, we present an Õ(mω) time algorithm for APC and prove Theorem 7.1. This
result was originally proved in [CLL13, Theorem 1.4]. We present an alternate exposition for
this theorem, following [Akm24]. After establishing Theorem 7.1, in the next subsection we
will show how to build off the ideas employed in our APC algorithm to solve the parameterized
relaxation k-APC faster for small k.

Graph Assumptions (Exact Connectivity Case)

Throughout the current subsection (the Exact subsection of Section 7.2), we allow G to be
a multigraph. That is, G is allowed to have multiple parallel edges between the same pair of
vertices. We do assume however, that G does not have any self-loops. This is without loss of
generality, since self-loops do not affect the connectivity between distinct pairs of vertices.

Field Size

We recall the preliminaries from the Finite Field Computation subsection of Section 6.1. In
particular we work over a field F = F2q . For solving APC, we set q to be the smallest positive
integer with

2q ≥ 2m2n3. (68)

Note that since n− 1 ≤ m, we have q = Θ(logm).

Enumerating Walks

To solve APC, we need to compute connectivity values. Since connectivity is defined to be
the maximum number of edge-disjoint paths between two given vertices, we can compute
connectivities by enumerating families of edge-disjoint walks between vertices in the input
graph (following the general framework of Section 6.2). To enumerate such families of walks,
it will be helpful to first learn how to enumerate individual walks in the graph. We will do
this by working with a symbolic edge-adjacency matrix X for G.

For every pair of edges (e, f) with head(e) = tail(f) (i.e., edge e enters the vertex that
edge f exits), we introduce an indeterminate variable xef . We will use these variables
to enumerate families of walks in G, following the discussion from Edge-Based subsection
of Section 6.2. In particular, each walk W is assigned a monomial ξ(W) recording the
consecutive pairs of edges it traverses as in eq. (60), and each collection C = ⟨W1, . . . ,Wr⟩
of walks is assigned a monomial ξ(C) according to eq. (61).

Let X be the m×m matrix with rows and columns indexed by E such that for each pair
of edges (e, f) we have

X[e, f] =

{
xef if head(e) = tail(f)

0 otherwise.
(69)

Given edges e, f ∈ E and an integer ℓ ≥ 1, let Wℓ(e, f) denote the set of all walks
beginning at e and ending at f of length ℓ. Equation (69) shows that the (e, f) entry of X
enumerates all walks of length two from e to f in G, i.e, the walks in W2(e, f). The next
result observes that higher powers of X enumerate longer walks in G.

113

Proposition 7.8. For any edges e, f ∈ E and integer ℓ ≥ 0, we have

Xℓ[e, f] =
∑

W∈Wℓ+1(e,f)

ξ(W).

Proof. By expanding out the definition of matrix multiplication, we see that

Xℓ[e, f] =
∑

e0,...,eℓ∈E
e0=e
eℓ=f

ℓ−1∏
j=0

X[ej, ej+1].

By definition, X[ej, ej+1] = xejej+1
if we can step from ej to ej+1 in G, and is zero otherwise.

Thus, the product
ℓ−1∏
j=0

X[ej, ej+1]

is nonzero if and only if W = ⟨e0, . . . , eℓ⟩ is a walk of length (ℓ+ 1) in G. In this case,

ℓ−1∏
j=0

X[ej, ej+1] =
ℓ−1∏
j=0

xejej+1
= ξ(W)

so we have
Xℓ[e, f] =

∑
W∈Wℓ+1(e,f)

ξ(W)

as claimed. ■

Corollary 7.9 (Enumerating Walks). For any edges e, f ∈ E, we have

(I−X)−1[e, f] =
∞∑
ℓ=0

 ∑
W∈Wℓ+1(e,f)

ξ(W)

 .

Proof. By eq. (69), every entry of X has constant term zero. So the claim follows by com-
bining the geometric series formula from Proposition 6.3 with Proposition 7.8. ■

Enumerating Edge-Disjoint Families of Walks

Given subsets of edges S, T ⊆ E of equal size |S| = |T | = r ≥ 1 and an integer ℓ ≥ 1,
we define Fℓ(S, T) to be the family of collections of r walks of total length ℓ, beginning at
different edges of S and ending at different edges of T . If we fix some ordering e1, . . . , er of the
edges in S, then we can view each element of Fℓ(S, T) as a sequence of walks ⟨W1, . . . ,Wr⟩
satisfying the properties that each Wi begins at ei and ends at some edge of T , the Wi walks
all end at distinct edges of T , and the sum of the lengths of the Wi walks is ℓ. We also define
Dℓ(S, T) ⊆ Fℓ(S, T) to be the family of collections of r edge-disjoint walks from S to T of
total length ℓ.

114

Our goal is to design enumerating polynomials for the Dℓ(S, T) families. We will do this
using determinants. Determinants are a natural tool in this context because of their classical
enumerative properties. For example, the Lindström-Gessel-Viennot lemma [AZ18, Chapter
29] for counting paths in directed acyclic graphs and the “combinatorial algorithm” for the
determinant from [MV97] showcase how determinants can be used to enforce disjointness
conditions on paths and walks.

Idea 8 Use determinants to “sieve out” collections of intersecting walks and recover
edge-disjoint collections of walks.

Define Γ = (I − X)−1 for convenience. By Corollary 7.9, the entries of Γ enumerate
walks in G. We use this claim to prove that determinants of submatrices of Γ enumerate
collections of walks in G, beginning and ending at different edges. This observation follows
almost immediately from the definition of the determinant.

Lemma 7.10 (Arbitrary Walks). For any equal-size subsets of edges S, T ⊆ E, we have

detΓ[S, T] =
∞∑
ℓ=1

 ∑
C∈Fℓ(S,T)

ξ(C)

Proof. Let S(S, T) be the set of all bijections from S to T .

By the definition of the determinant, we have

detΓ[S, T] =
∑

π∈S(S,T)

∏
e∈S

Γ[e, π(e)]. (70)

Note that we do not include a factor for the sign of π in the above equation, because we
work over a field F of characteristic two.

By Corollary 7.9, for each e ∈ S we have

Γ[e, π(e)] =
∞∑
ℓ=0

 ∑
W∈Wℓ+1(e,π(e))

ξ(W)

 . (71)

Write S = {e1, . . . , er}, where r = |S| = |T |.
By multiplying eq. (71) over all choices of e ∈ S, we have

∏
e∈S

Γ[e, π(e)] =
r∏

i=1

 ∞∑
ℓ=0

 ∑
W∈Wℓ+1(ei,π(ei))

ξ(W)

 . (72)

Now, let L be the set of all r-tuples (ℓ1, . . . , ℓr) of positive integers summing to

ℓ1 + · · ·+ ℓr = ℓ.

115

If we expand out the product on the right-hand side of eq. (72) and group terms according
to the total length of the walks they come from, we obtain

r∏
i=1

 ∞∑
ℓ=0

 ∑
W∈Wℓ+1(ei,π(ei))

ξ(W)

 =
∞∑
ℓ=1

 ∑
(ℓ1,...,ℓr)∈L

Wi∈Wℓi
(ei,π(ei))

r∏
i=1

ξ(Wi)

 .

To clarify the expression above: in the right-hand side of the above equation, the inner
summation is over all choices of positive integers ℓ1, . . . , ℓr which sum to ℓ, and choices of
walks W1, . . . ,Wr where Wi is a walk of length ℓi from ei to π(ei). This is simply the result
of distributing the product over i ∈ [r] on the left-hand side of the equation over the sum of
walks of all possible lengths from ei to π(ei).

By chaining the above equation together with eqs. (70) to (72), and interchanging sum-
mation, we get that

detΓ[S, T] =
∞∑
ℓ=1

 ∑
π∈S(S,T)

∑
(ℓ1,...,ℓr)∈L

Wi∈Wℓi
(ei,π(ei))

r∏
i=1

ξ(Wi)

 . (73)

To simplify eq. (73), observe that for any choice of bijection π ∈ S(S, T), lengths
(ℓ1, . . . , ℓr) ∈ L, and walks Wi ∈ Wℓi(ei, π(ei)), the collection ⟨W1, . . . ,Wr⟩ is a sequence
of walks from S to T of total length ℓ. Conversely, any collection C ∈ Fℓ(S, T) has walks
whose lengths sum up to ℓ, and corresponds to a unique bijection π ∈ S(S, T), obtained by
checking which starting edges in S are connected to which ending edges in T by walks in C.

Thus, the inner nested summation above is equivalent to a single sum over all collections
of walks in Fℓ(S, T). Since the weight of a collection C = ⟨W1, . . . ,Wr⟩ is

ξ(C) =
r∏

i=1

ξ(Wi),

the discussion from the previous paragraph together with Equation (73) implies that

detΓ[S, T] =
∞∑
ℓ=1

 ∑
C∈Fℓ(S,T)

ξ(C)

which proves the desired result. ■

We now formalize the intuition from Idea 8 and argue that the determinant sieves out
collections of intersecting walks, so that only edge-disjoint families of walks are included in
its enumeration. Our reasoning is similar to the standard proof of the previously mentioned
Lindström-Gessel-Viennot lemma [AZ18, Chapter 29].

Lemma 7.11 (Intersecting Walks Cancel). For any equal-size subsets of edges S, T ⊆ E
and integer ℓ ≥ 1, we have ∑

C∈Fℓ(S,T)

ξ(C) =
∑

C∈Dℓ(S,T)

ξ(C).

116

e1
e2

g
e3

e4

f1 f2 f3
f4

e1
e2

g

f3
f4f1 f2

e3
e4

Figure 1: Given walks Wi = ⟨e1, e2, g, e3, e4⟩ and Wj = ⟨f1, f2, g, f3, f4⟩ overlapping at g, we
can swap their suffixes to produce walks W ′

i = ⟨e1, e2, g, f3, f4⟩ and W ′
j = ⟨f1, f2, g, e3, e4⟩ which

still overlap at g. The weights for both pairs ξ(Wi,Wj) = (xe1e2xe2gxge3xe3e4) · (xf1f2xf2gxgf3xf3f4)
and ξ(W ′

i ,W
′
j) = (xe1e2xe2gxgf3xf3f4) · (xf1f2xf2gxge3xe3e4) agree because each pair traverses the

same multiset of consecutive pairs of edges.

Proof. Fix S, T ⊆ E and integer ℓ ≥ 1. Let r = |S| = |T |.
For convenience, abbreviate F = Fℓ(S, T) and D = Dℓ(S, T). Let S = F \ D be the

family of all collections of r walks beginning at different edges of S and ending at different
edges of T , such that at least two walks in the collection intersect at an edge.

By the definition of S we have∑
C∈F

ξ(C) =
∑
C∈D

ξ(C) +
∑
C∈S

ξ(C).

So to prove the claim, it suffices to show that∑
C∈S

ξ(C)

is the zero polynomial. We prove this by pairing up collections C in S of equal weight ξ(C),
and observing that contributions from such collections vanish modulo two.

Fix an ordering e1, . . . , er of the edges in S. Take any C = ⟨W1, . . . ,Wr⟩ ∈ S, with the
walks ordered so that Wi begins at edge ei. By assumption, at least two walks in C overlap
at an edge. Let i ∈ [r] be the smallest index such that Wi intersects some other walk in C at
an edge. Let e be the first edge in Wi which is contained in another walk of C. Let j ∈ [r]
be the smallest index j > i such that Wj overlaps with Wi at edge e.

We can split the walk Wi uniquely

Wi = Ai ⋄Bi

as the concatenation of a prefix Ai not including edge e, and a suffix walk Bi which begins
with edge e. We can similarly split Wj uniquely

Wj = Aj ⋄Bj

as the concatenation of a prefix Aj not including e, and a suffix Bj beginning with e.
Now, define walks

W ′
i = Ai ⋄Bj and W ′

j = Aj ⋄Bi

by swapping the suffixes of Wi and Wj, as depicted in Figure 1. For all l ∈ [r] with l ̸∈ {i, j},
set W ′

l = Wl. Define a new collection of walks

C ′ = ⟨W ′
1, . . . ,W

′
r⟩

117

by replacing Wi and Wj in C with W ′
i and W ′

j respectively.
Since Wi and Wj end at different edges of T , we know that W ′

i ̸= Wi and W ′
j ̸= Wj.

This shows that C ′ ̸= C. Since the walks in C ′ still begin at different edges of S and end at
different edges of T , C ′ ∈ F . Also, W ′

i ,W
′
j overlap at an edge, so C ′ ̸∈ D. Thus C ′ ∈ S.

Additionally, we claim that if we apply the above suffix swapping procedure (which we
used to go from C to C ′) to the collection C ′, we recover C.

Indeed, for all l ∈ [r] with l < i, the walk W ′
l = Wl does not intersect any other walk in C

at an edge, by the definition of i. Since the multiset of edges traversed by walks in C \ {Wl}
and C \ {W ′

l } are the same, this means that W ′
l does not intersect any other walk in C ′ at

an edge either. So i is also the smallest index in [r] such that W ′
i intersects some other walk

in C at an edge. Since the prefixes of W ′
i and Wi before edge e are the same, we see that

e is also the first edge in W ′
i which is contained in another walk of C ′. Then because W ′

j

traverses edge e, and W ′
l = Wl for all l ̸∈ i, j, we see that j > i is the smallest index such

that W ′
j overlaps with W ′

i at edge e. Then when we swap the suffixes of W ′
i and W ′

j after
the first appearance of e on these walks, we recover Wi and Wj respectively, and so applying
the suffix swapping procedure to C ′ produces the original collection C as claimed.

So, the suffix swapping routine described above partitions S into distinct pairs.
Suppose C and C ′ are paired up by the suffix swapping argument. Then C and C ′ traverse

the same multiset of consecutive pairs of edges. Thus these collections

ξ(C) = ξ(C ′)

have the same weight. Since we work over a field of characteristic two, the above equation
implies that each pair (C, C ′) of collections mapped to each other by suffix swapping satisfies

ξ(C) + ξ(C ′) = 0.

Since S is partitioned into such pairs, we have∑
C∈S

ξ(C) = 0.

Together with the discussion from the beginning of the proof, this proves the claim. ■

Corollary 7.12 (Edge-Disjoint Walks). For equal-size subsets of edges S, T ⊆ E, we have

detΓ[S, T] =
∞∑
ℓ=1

 ∑
C∈Dℓ(S,T)

ξ(C)

 .

Proof. This follows by combining Lemmas 7.10 and 7.11. ■

From Corollary 7.12, we see that determinants of submatrices of Γ produce enumerating
polynomials for families consisting of collections of edge-disjoint walks. We want to use these
polynomials to compute connectivities λ(s, t) for various vertices s and t. However, λ(s, t)
is defined in terms of edge-disjoint paths, not walks. To next result will help us show that it
is fine to work with walks instead of paths.

118

Lemma 7.13 (Edge-Disjoint Walks ⇒ Edge-Disjoint Paths). Let S, T ⊆ E be subsets of
edges of size |S| = |T | = r. If the graph G contains r edge-disjoint walks from S to T , then
G also contains r edge-disjoint paths from S to T .

Proof. Let ⟨W1, . . . ,Wr⟩ be a collection of edge-disjoint walks from S to T in G. For each
index i ∈ [r], let ei and fi be the first and last edges of Wi respectively. Note that under
these definitions, we have S = {e1, . . . , er} and T = {f1, . . . , fr}.

For each i ∈ [r], let Gi be the subgraph of G including only the edges traversed by Wi.
Let Pi be a shortest path from ei to fi in Gi. These paths are edge-disjoint, since they live in
subgraphs on disjoint sets of edges. Thus ⟨P1, . . . , Pr⟩ is a collection of r edge-disjoint paths
from S to T in G, as desired. ■

Corollary 7.14. Let S, T ⊆ E be subsets of edges of size |S| = |T | = r. Then detΓ[S, T] is
a nonzero formal power series if and only if G contains r edge-disjoint paths from S to T .

Proof. Suppose C = ⟨P1, . . . , Pr⟩ is a collection of r edge-disjoint paths from S to T in G.
Then the term ξ(C) occurs in the expansion of

detΓ[S, T] (74)

given by Corollary 7.12. Moreover, any collection of paths C ′ ̸= C from S to T has weight
ξ(C ′) ̸= ξ(C), because C consists of edge-disjoint paths (so looking at the variables appear-
ing in ξ(C), we can recover C uniquely). Hence, no other term from the summation in
Corollary 7.12 produces the same monomial ξ(C). So ξ(C) appears in eq. (74) with nonzero
coefficient, which implies that the determinant from eq. (74) is a nonzero power series.

Suppose now that G does not contain r edge-disjoint paths from S to T . The contra-
positive of Lemma 7.13 implies that G does not contain r edge-disjoint walks from S to T .
Then Corollary 7.12 implies that eq. (74) is the zero polynomial. This proves the claim. ■

Random Evaluation

So far, we have constructed enumerating polynomials related to edge-disjoint walks using
determinants. Following the approach suggested in Chapter 6, we next want to evaluate these
polynomials at random points, in order to efficiently detect large collections of edge-disjoint
walks. This will help us compute connectivity values.

We assign each pair of edges (e, f) an independent, uniform random value aef in F.
Let A be the matrix obtained from X by evaluating each variable xef at aef . In other

words, A is the random m×m edge-adjacency matrix of G defined by taking

A =

{
aef if head(e) = tail(f)

0 otherwise.

Let M = (I−A)−1 be the evaluation of Γ under this same random assignment.

Lemma 7.15. Let S, T ⊆ E be subsets of edges of size |S| = |T | = r. If G contains r edge-
disjoint paths from S to T , then detM[S, T] is nonzero with probability at least 1 − 1/n3.
If instead G does not have r edge-disjoint paths from S to T , then detM[S, T] is zero.

119

Proof. By Corollary 7.14, the determinant

detΓ[S, T] (75)

is a nonzero power series if and only if G contains r edge-disjoint paths from S to T .
So if G does not contain r edge-disjoint paths from S to T , then eq. (75) is the zero

polynomial, so its random evaluation

detM[S, T]

must equal zero as claimed.
Otherwise, G contains r edge-disjoint paths from S to T , and eq. (75) is a nonzero power

series. By the formula for the inverse of a matrix, we have

Γ[S, T] =
(adj(I−X)) [S, T]

det (I−X)
. (76)

The matrix I−X has ones across its main diagonal, and every other entry of this matrix
has constant term zero Then by the formula for the determinant of a matrix, det (I − X)
is a polynomial with constant term 1, so by Proposition 6.2 the multiplicative inverse of
det (I − X) is a well-defined power series. As a consequence, eq. (76) can be viewed as an
equality between matrices of formal power series.

For convenience, write Q = det (I−X).
Since S and T are sets of size r, by linearity of the determinant we have

detΓ[S, T] =
det (adj(I−X))[S, T]

Qr
. (77)

By assumption, the left-hand side of eq. (77) is nonzero. Consequently, the numerator

det (adj(I−X))[S, T]

on the right-hand side of eq. (77) must be a nonzero polynomial. Since each entry of X
has degree at most 1, each entry of adj(I − X) has degree less than m, so the numerator
polynomial from the above equation has total degree less than rm. Similarly, in the previous
discussion we observed that Q is a polynomial with constant term 1, so the denominator

Qr = (det (I−X))r

of the right hand side of eq. (77) has constant term 1, and is thus a nonzero polynomial as
well. Since each entry of X has degree at most 1, this denominator has degree at most rm.

So the right hand side of eq. (77) is the ratio of two nonzero polynomials, each with degree
at most rm ≤ m2. Then by Corollary 7.7 and eq. (68), the random evaluation detM[S, T]
is nonzero over F with probability at least

1− 2m2/(2q) ≥ 1− 1/n3

as desired. ■

120

Algorithm 5. The All-Pairs Connectivity Algorithm

Inputs: A directed graph G.
Returns: The connectivity λ(s, t) for each pair of vertices (s, t) in G.

1. Compute M = (I−A)−1.

2. For each pair of vertices (s, t), return

rankM[Eout(s), Ein(t)]

as the value for λ(s, t).

Lemma 7.16 (Connectivity via Rank). With high probability, for all s, t ∈ V we have

λ(s, t) = rankM[Eout(s), Ein(t)].

Proof. Fix a pair of vertices (s, t). Abbreviate λ = λ(s, t). By Lemma 7.15 and the definition
of connectivity, with probability at least 1−1/n3, λ ≥ 0 is the largest integer such that there
exist subsets S ⊆ Eout(s) and T ⊆ Ein(t) of size λ with the property that detM[S, T] is
nonzero. By definition, this is the rank of M[Eout(s), Ein(t)], so

λ = rankM[Eout(s), Ein(t)]

with probability at least 1− 1/n3 for our fixed pair of vertices (s, t). So by the union bound
over n2 pairs of vertices, with probability at least 1− 1/n we have

λ(s, t) = rankM[Eout(s), Ein(t)]

for all pairs of vertices (s, t) in G, as desired. ■

Lemma 7.16 establishes a direct connection between ranks of submatrices of M and
connectivities in G. We leverage this connection to design Algorithm 5 solving APC.

Proof of Theorem 7.1. By Lemma 7.16, Algorithm 5 solves APC correctly. To prove the
theorem, it remains to show we can implement Algorithm 5 to run in Õ(mω) time.

Step 1 of Algorithm 5 takes Õ(mω) time by Proposition 7.5, because we just need to
invert the m×m matrix (I−A).

In step 2 of Algorithm 5, for each pair of vertices (s, t), we need to compute the rank of
a matrix with dimensions degout(s)× degin(t) matrix. By Proposition 7.6, this takes∑

s,t∈V

degout(s)(degin(t))
ω−1 (78)

field operations asymptotically. For each pair of vertices (s, t), we have

degout(s)(degin(t))
ω−1 = (degin(t))

ω−2 · degout(s) degin(t) ≤ mω−2 · degout(s) degin(t).

121

By substituting this inequality into eq. (78), and observing that∑
s∈V

degout(s) =
∑
t∈V

degin(t) = m

we get that∑
s,t∈V

degout(s)(degin(t))
ω−1 ≤

∑
s,t∈V

mω−2 · degout(s) degin(t) = mω−2m2 = mω.

So step 2 of Algorithm 5 takes Õ(mω) time.
So we can solve APC in Õ(mω) time as claimed. ■

Bounded

In this subsection, we present an Õ((kn)ω) time algorithm for k-APC and prove Theorem 7.2.
We will do this by building off the ideas that went into designing Algorithm 5 for solving
the unparameterized APC problem in Õ(mω).

Graph Assumptions (Exact Connectivity Case)

Throughout the current subsection (the Bounded subsection of Section 7.2), we allow G to
be a multigraph. That is, G is allowed to have multiple parallel edges between the same pair
of vertices. We assume however, that for any distinct vertices s and t, there are at most k
edges from s to t. This is without loss of generality when solving the k-APC problem, since if
there were more than k parallel edges from s to t, we could delete some and bring the count
of parallel edges down to k without changing the value of min(k, λ(s, t)). We additionally
assume that G does not have any self-loops. This is also without loss of generality, since
self-loops do not affect the connectivity between distinct pairs of vertices. These assumptions
imply that m ≤ kn2.

Field Size

We recall the preliminaries from the Finite Field Computation subsection of Section 6.1. In
particular we work over a field F = F2q . For solving k-APC, we set q to be the smallest
positive integer with

2q ≥ 4k(m+ 2kn)n3. (79)

Note that since n− 1 ≤ m and k ≤ m, we have q = Θ(logm).

Adapting the All-Pairs Connectivity Algorithms

Algorithm 5 solves APC by

1. inverting an m×m matrix to produce a special matrix encoding connectivity informa-
tion, and then

122

2. computing ranks of submatrices of the special matrix, whose dimensions are based off
degrees of nodes in G, to compute connectivity values.

We want to adapt this strategy to solve k-APC in Õ((kn)ω) time. However, merely writing
down the matrices used in Algorithm 5 already takes Ω(m2) time. To design an algorithm
running in only Õ((kn)ω) time, we need to modify the steps of Algorithm 5 to work with
much smaller matrices, perhaps with at most O(kn) rows and columns.

Step 2 of Algorithm 5 (corresponding to item 2 above) is slow because vertices in G
can have large degrees, which means that Algorithm 5 needs to compute ranks of large
submatrices. To speed this up, we would ideally like to reduce degrees in G, while preserving
the values of small connectivities.

Idea 9 If we only need to compute λ(s, t) when this value is less than k, it should suffice
to compute this connectivity in a modified low-degree graph where both degout(s)
and degin(t) are at most k.

If we can reduce the degrees of vertices in G to at most k for example, then in item 2
above we would only need to compute ranks of k × k submatrices for each pair of verticces,
which we could do in the desired O((kn)ω) time bound.

Step 1 of Algorithm 5 (corresponding to item 1 above) seems to trickier to accelerate.
Beyond the fact that the special matrix used in Algorithm 5 has m2 entries, the construction
of enumerating polynomials for collections of edge-disjoint paths involved variables xef for
each pair of edges (e, f) with head(e) = tail(f). Even using the assumption that each pair of
vertices in G has at most k parallel edges between them, G can contain Ω(kmn) such pairs
of edges, which is a bottleneck for the time it takes to evaluate any enumerating polynomial
we construct on the xef variables.

To solve APC, we needed all the xef variables to be present in the enumerating polynomi-
als, so that the monomial ξ(C) for any collection of edge-disjoint paths C uniquely recorded
the multiset of pairs of edges traversed by each path in C. This unique encoding property
was essential to make sure that distinct collections of edge-disjoint paths C received distinct
monomials ξ(C), and we did not get any unwanted cancellations of terms.

When solving k-APC however, we only need to enumerate up to k edge-disjoint paths in
a solution. Each path in G contains at most n vertices, and so a collection of k edge-disjoint
paths in G uses fewer than kn edges. This suggests that for the purpose of enumerating up
to k edge-disjoint paths, we might be able to employ a less expressive enumeration which
involves fewer variables, yet still is enough to solve k-APC.

Idea 10 If we only need to detect up to k edge-disjoint paths, then since each path has
at most n vertices, we should be able to enumerate using fewer variables.

Idea 10 suggests a way to decrease the number of variables in our enumerating polyno-
mials, and thereby avoid the polynomial evaluation bottleneck. But how can we avoid the
matrix size bottleneck of Ω(m2) discussed before?

Why did we need M in Algorithm 5 to be an m×m matrix in the first place? Well, we
wanted ranks of submatrices of M to be correspond to connectivity values. Since connectiv-
ities can be as large as m, we need M to be at least m×m just so it could have submatrices

123

whose rank was m. When solving k-APC however, we only need to output connectivities
with value at most k. This suggests that for solving k-APC, we can impose more structure
on the matrix M which encodes connectivity values, and perhaps this structure will let us
avoid explicitly using an m×m matrix.

Idea 11 Since we only need to output small connectivity values in the k-APC problem,
we should be able to get away with encoding connectivities in a low-rank matrix.

In the next parts, we try and formalize the intuition from Ideas 9 to 11.

Reducing Degrees

Recall that G is the input graph on n nodes and m edges. Based off Idea 9, we modify G to
create a new graph Gnew, which preserves the k-bounded connectivity information of G, yet
will have the nice property that all relevant vertices have indegree and outdegree k.

For each vertex v ∈ V , we introduce two new nodes vin and vout. Then we replace each
edge (u, v) ∈ E with an edge (uout, vin). For each v ∈ V , we also include k parallel edges
from v to vout, and k parallel edges from vin to v. Let Gnew be the new graph constructed in
this way, and let Vnew and Enew be its vertex and edge sets respectively.

By construction, Gnew has nnew = |Vnew| = 3n nodes and mnew = |Enew| = m+2kn edges.
We refer to the nodes in V ⊆ Vnew which were originally in G as the original vertices.

For s, t ∈ V , we still let λ(s, t) denote the connectivity from s to t in the original graph G.
For s, t ∈ Vnew, we let λnew(s, t) denote the connectivity from s to t in Gnew.

For the rest of Section 7.2, we let Eout(s) and Ein(t) denote the sets of edges exiting s
and entering t in Gnew.

Lemma 7.17 (Preserving Small Connectivities). For any original vertices s, t ∈ V , we have

λnew(s, t) = min(k, λ(s, t)).

Proof. Fix s, t ∈ V . Given an s⇝ t path P ′ in Gnew, we recover a unique s⇝ t path P in G
by looking at the sequence of original vertices P ′ passes through. Using this construction, any
collection of r edge-disjoint paths from s to t in Gnew recovers a collection of r edge-disjoint
paths from s to t in G. This implies that λnew(s, t) ≤ λ(s, t).

Since s has outdegree k in Gnew, we also necessarily have λnew(s, t) ≤ k.
Thus the connectivity from s to t in Gnew is at most min(k, λ(s, t)).
Set λ = min(k, λ(s, t)). The discussion so far shows that

λnew(s, t) ≤ λ. (80)

By definition of λ, G contains edge-disjoint s⇝ t paths P1, . . . , Pλ.
For each i ∈ [λ], let P ′

i be the s⇝ t path in Gnew which passes through the same sequence
of original vertices as Pi, and includes, for each edge (u, v) in Pi, the ith parallel edge from
uout to vin (with respect to some fixed ordering among all the parallel edges). This is possible
since λ ≤ k. Since the Pi are edge-disjoint, the P ′

i are edge-disjoint as well.
So Gnew has λ edge-disjoint s⇝ t paths, implying that

λnew(s, t) ≥ λ. (81)

By eqs. (80) and (81), we have λnew(s, t) = min(k, λ(s, t)) as claimed. ■

124

e f

X[e, f] = xef

e f

(Y Z)[e, f] = ye1z1f + ye2z2f + ye3z3f

Figure 2: When we substitute xef = ye1z1f + · · ·+ yekzkf (pictured here for k = 3) into X, we
get the “simpler” matrix Y Z. While powers of X enumerate walks in G, powers of Y Z intuitively
enumerate walks in a modified graph where after traversing an edge e = (u, v), we have k different
versions of v we can choose to go to. The yej and zjf variables in this enumeration only keep track
of the individual edges traversed and versions of vertices we pick, instead of recording all pairs of
consecutive edges traversed like the xef variables. This simpler enumeration suffices to solve k-APC.

Low-Rank Enumeration

We redefine the matrix X from eq. (69) with respect to the new graph Gnew, so that now
rows and columns of X are indexed by edges in Enew.

We similarly redefine the matrix Γ = (I−X)−1 with respect to Gnew.
Motivated by Idea 10, we introduce some new variables.
For each pair (e, j) ∈ Enew × [k] we introduce an indeterminate yej.
Similarly, for each pair (j, f) ∈ [k]× Enew we introduce an indeterminate zjf .
We define the mnew × knnew matrix Y by setting

Y[e, (v, j)] =

{
yej if head(e) = v

0 otherwise.

Similarly, we define the knnew ×mnew matrix Z by setting

Z[(v, j), f] =

{
zjf if tail(f) = v

0 otherwise.

These matrices are defined so that under the variable substitution

xef =
k∑

j=1

yejzjf

the matrix X simplifies to the low-rank matrix YZ, as depicted in Figure 2.
Previously in Corollary 7.14, we characterized the existence of edge-disjoint paths in

G via nonzero determinants of submatrices of Γ. The following result shows that a similar
characterization holds when we replace X with YZ, provided we only care about enumerating
up to k edge-disjoint paths.

Replacing the xef variables with the yej and zjf variables is our way of implementing the
intuition of Idea 10, and replacing X with YZ is our way of implementing Idea 11.

Lemma 7.18. Let S, T ⊆ Enew be subsets of edges with size |S| = |T | = r ≤ k. Then

det (I−YZ)−1[S, T]

is a nonzero formal power series if and only if Gnew has r edge-disjoint paths from S to T .

125

Proof. Suppose G does not contain r edge-disjoint paths from S to T . Then by Corol-
lary 7.14, the determinant detΓ[S, T] is identically zero as a power series. Consequently,
detΓ[S, T] remains zero even if we make the variable substitution

xef =
k∑

j=1

yejzjf . (82)

Under this substitution, the matrix X simplifies to YZ. Since Γ = (I−X)−1, we get that

det (I−YZ)−1[S, T]

is the zero polynomial, as claimed.
Otherwise, G does contain r edge-disjoint paths from S to T .
In this case, Corollary 7.12 implies that

detΓ[S, T] =
∞∑
ℓ=1

 ∑
C∈Dℓ(S,T)

ξ(C)

 . (83)

For each collection of walks C, let ξ̃(C) be the monomial resulting from substituting eq. (82)
into the monomial ξ(C). This substitution turns X into YZ, so we have

det (I−YZ)−1[S, T] =
∞∑
ℓ=1

 ∑
C∈Dℓ(S,T)

ξ̃(C)

 . (84)

Let P = ⟨P1, . . . , Pr⟩ be a collection of edge-disjoint paths from S to T in G.
For each i ∈ [r], let Ei be the set of consecutive pairs of edges (e, f) traversed by Pi.
Then since

ξ(P) =
r∏

i=1

ξ(Pi) =
r∏

i=1

∏
(e,f)∈Ei

xef

by the definition of the weight of a collection of paths, we get that

ξ̃(P) =
r∏

i=1

∏
(e,f)∈Ei

(
k∑

j=1

yejzjf

)
.

If we expand the product on the right-hand side of the above equation, we see that one of
the monomials produced is of the form

r∏
i=1

∏
(e,f)∈Ei

yeizif . (85)

Note that in this step, we are using the fact that r ≤ k.
Because P is a collection of edge-disjoint paths, the variables appearing in the monomial

from eq. (85) allow us to uniquely recover P . Specifically, given the monomial from eq. (85),

126

e1 f1

e2 f2

e1

e2

f1

f2

Figure 3: Given edge-disjoint paths P1 = ⟨e1, f1⟩ and P2 = ⟨e2, f2⟩ in G, the determinant of
the matrix Γ[{e1, e2} , {f1, f2}] enumerates this pair via the monomial ω(P1, P2) = xe1f1 ·xe2f2 . The
variables in this monomial provide enough information to uniquely recover P1 and P2. In contrast,
for k = 2, the determinant of (I−YZ)−1[{e1, e2} , {f1, f2}] assigns this pair weight

ξ̃(P1, P2) = (ye11z1f1 + ye12z2f1)(ye21z1f2 + ye22z2f2).

One of the terms in the expansion of the above product is ye11z1f1 · ye22z2f2 . We can read this term
as saying “the first path P1 traverses e1 and f1, and the second path P2 traverses e2 and f2.” So
this monomial provides enough information to recover the pair of paths ⟨P1, P2⟩ as well.

for each i ∈ [r], the edges e for which the variable yei appears in the monomial are precisely
the edges in Pi. Since Pi is a simple path beginning at a node of S and ending at node
of T , given these edges we can recover their order Pi as well. So reading out the variables
appearing in eq. (85) lets us identify Pi for each i ∈ [r], and thus the collection P , as claimed.

See Figure 3 for an example of this unique recovery property in the case of k = 2.
Thus the monomial from eq. (85) appears with coefficient 1. Hence

det (I−YZ)−1[S, T]

is a nonzero formal power series as claimed. ■

Thanks to Lemma 7.18, we have polynomials which can help us detect up to k edge-
disjoint walks using determinants. However, the matrix (I −YZ) used in Lemma 7.18 has
dimensions mnew ×mnew, so working directly with it is not useful for obtaining a Õ((kn)ω)
time algorithm. The following lemma helps us get around this, by leveraging the fact that
YZ has low rank to relate the inverse of (I −YZ) to the inverse of a smaller matrix. This
is the main technical reason that Idea 11 is useful for solving k-APC.

Lemma 7.19 (Geometric Series Identity). We have

(I−YZ)−1 = I+Y(I− ZY)−1Z.

Proof. By definition, every entry of Y and Z has constant term zero. This means that all
the entries of YZ and ZY also have constant term zero.

Then by the geometric series formula of Proposition 6.3 we have

(I−YZ)−1 = I+ (YZ) + (YZ)2 + · · · = I+Y

(
∞∑
ℓ=0

(ZY)ℓ

)
Z. (86)

Applying Proposition 6.3 again, we have
∞∑
ℓ=0

(ZY)ℓ = (I− ZY)−1.

127

Substituting the above equation into the rightmost side of eq. (86) yields

(I−YZ)−1 = I+Y(I− ZY)−1Z

as desired. ■

Lemma 7.19 is useful because it reduces computing the inverse of (I−YZ), anmnew×mnew

matrix, to computing the inverse of (I− ZY), a knnew × knnew matrix.
Now, define subsets of edges

Eout =
⋃
s∈V

Eout(s) and Ein =
⋃
t∈V

Ein(t).

Set Ỹ = Y[Eout, ·] and Z̃[·, Ein]. Since every original vertex has outdegree and indegree
exactly k in Gnew, Ỹ is a kn× knnew matrix, and Z̃ is a knnew × kn matrix.

Random Evaluation

Following the approach suggested in Chapter 6, to detect edge-disjoint paths we now define
random evaluations of the matrices Y and Z we have constructed.

For all pairs (e, j) ∈ Enew× [k] and (j, f) ∈ [k]×Enew we introduce independent, uniform
random values bej and djf respectively over F.

Let B and C be the matrices obtained by setting

yej = bej and zjf = cjf (87)

in Y and Z respectively, for all (e, j) ∈ Enew × [k] and (j, f) ∈ [k]× Enew.
So B is the mnew × knnew matrix defined by setting

B[e, (v, f)] =

{
bej if head(e) = v

0 otherwise

and C is the knnew ×mnew matrix defined by setting

C[(v, j), f] =

{
cjf if tail(f) = v

0 otherwise.

Lemma 7.20. Let S, T ⊆ Enew be subsets of edges of size |S| = |T | = r ≤ k. If Gnew

contains r edge-disjoint paths from S to T , then

det (I−BC)−1[S, T]

is nonzero with probability at least 1 − 1/n3. If instead Gnew does not have r-edge disjoint
paths from S to T , then

det (I−BC)−1[S, T] = 0.

128

Proof. By Lemma 7.18, the formal power series

det (I−YZ)−1[S, T] (88)

is nonzero if and only if Gnew contains r edge-disjoint paths from S to T .
So if Gnew does not have r edge-disjoint paths from S to T , then eq. (88) is the zero

polynomial, so its random evaluation

det (I−BC)−1[S, T]

must equal zero as claimed.
Otherwise, Gnew contains r edge-disjoint paths from S to T , and eq. (88) is a nonzero

power series. By the formula for the inverse of a matrix, we have

(I−YZ)−1[S, T] =
(adj(I−YZ))[S, T]

det (I−YZ)
. (89)

The matrix (I − YZ) has ones along its main diagonal, and every other entry of this
matrix has constant term zero. Then by the formula for the determinant, det (I − YZ)
is a polynomial with constant term 1, so by Proposition 6.2 the multiplicative inverse of
det (I − YZ) is a well-defined power series. So eq. (89) can be viewed both as an equality
between matrices of rational functions, and as an equality between matrices of power series.

For convenience, write Q = det(I−YZ).
Since S and T are sets of size r, by linearity of the determinant we have

det (I−YZ)−1[S, T] =
det (adj(I−YZ))[S, T]

Qr
. (90)

By the previous discussion, the left hand side of eq. (90) is nonzero. Consequently, the
numerator

det (adj(I−YZ))[S, T]

on the right-hand side of eq. (90) must be a nonzero polynomial.
All entries of Y and Z have degree at most 1, so each entry of YZ has degree at most 2.

Consequently, each entry of adj(I−YZ) has degree less than 2mnew, which implies that the
numerator polynomial from the above equation has total degree less than 2rmnew.

Similarly, we observed earlier that Q is a polynomial with constant term 1, and is thus a
nonzero polynomial. Hence the denominator

Qr = (det (I−YZ))r

of the right hand side of eq. (90) is also a nonzero polynomial. As noted previously, every
entry of YZ has degree at most 2. Thus, Qr has degree at most 2rmnew.

So the right hand side of eq. (90) is the ratio of two nonzero polynomials, each with degree
at most 2rmnew ≤ 2k(m + 2kn). Then by Corollary 7.7 and the choice of q in eq. (79), the
random evaluation det (I−YZ)−1[S, T] is nonzero over F with probability at least

1− 4k(m+ 2kn)/(2q) ≥ 1− 1/n3

as desired. ■

129

Next, we will replace the matrix (I − BC)−1 from Lemma 7.20 with a smaller random
matrix which encodes the connectivities in G.

Let
B̃ = B[Eout, ·] and C̃ = C[·, Ein]

be the matrices obtained from Ỹ and Z̃ respectively by the variable assignment in eq. (87).
In particular, B̃ is a kn× knnew matrix, and C̃ is a knnew × kn matrix.

Define the kn× kn matrix

M = B̃ (I−CB)−1 C̃.

Note that the matrix M here is different from the matrix of the same name defined earlier
in the Exact subsection of Section 7.2.

Lemma 7.21 (Small Connectivities via Rank). With high probability, we have

rank M[Eout(s), Ein(t)] = min(k, λ(s, t))

for all original vertices s, t ∈ V .

Proof. Fix s, t ∈ V . Let λ = λnew(s, t). By Lemma 7.17, λ ≤ k. By Lemma 7.20 and the
definition of connectivity, with probability at least 1 − 1/n3, λ is the largest integer such
that there exist subsets S ⊆ Eout(s) and T ⊆ Ein(t) of size λ with

det (I−BC)−1[S, T] ̸= 0.

By the definition of matrix rank, this means that

λ = rank (I−BC)−1[Eout(s), Ein(t)]. (91)

Now, by Lemma 7.19, we know that

(I−YZ)−1 = I+Y(I− ZY)−1Z.

Since s and t are original vertices, Eout(s) ∩ Ein(t) = ∅, because all outgoing edges of s
go to sout, and all incoming edges of t come from tin.

This means that I[Eout(s), Ein(t)] is the all zeros matrix. So restricting the rows and
columns of both sides of the above equation to Eout(s) and Ein(t) respectively yields

(I−YZ)−1[Eout(s), Ein(t)] =
(
Y(I− ZY)−1Z

)
[Eout(s), Ein(t)].

Under the assignment eq. (87), the above equation simplifies to

(I−BC)−1[Eout(s), Ein(t)] = M[Eout(s), Ein(t)].

Combining the above equation with eq. (91), we see that with probability at least 1−1/n3,

rankM[Eout(s), Ein(t)] = λnew(s, t).

By Lemma 7.17, since s, t ∈ V we have λnew(s, t) = min(k, λ(s, t)), so

rankM[Eout(s), Ein(t)] = min(k, λ(s, t)).

This holds for any fixed choice of s, t ∈ V . Then by a union bound over the n2 pairs of
original vertices (s, t), we get that the above equation holds for all s, t ∈ V with probability
at least 1− 1/n, as desired. ■

130

Algorithm 6. The k-Bounded All-Pairs Connectivity Algorithm

Inputs: A directed graph G, and positive integer k.
Returns: The value of min(k, λ(s, t)) for each pair of vertices (s, t) in G.

1. Compute M = B̃(I−CB)−1C̃.

2. For each pair (s, t) of original vertices, return

rankM[Eout(s), Ein(t)]

as the value for min(k, λ(s, t)).

We present our algorithm for k-APC in Algorithm 6. By Lemma 7.21, this algorithm
correctly solves k-APC with high probability. To show that Algorithm 6 is efficient, the
following lemma will be helpful.

Lemma 7.22. We can compute the matrix CB in O(n2kω) time.

Proof. The rows and columns of B and C are indexed by pairs in Vnew × [k].
For any (u, i), (v, j) ∈ Vnew × [k], we have

CB[(u, i), (v, j)] =
∑

e∈Eout(u)∩Ein(v)

ciebej. (92)

By assumption, G has at most k parallel edges between each pair of nodes. Then by its
construction, Gnew also has at most k parallel edges between each pair of its nodes. So for
all pairs (u, v), we have |Eout(u) ∩Ein(v)| ≤ k, so that the sum in the right hand side of the
above equation has at most k terms. Computing this sum separately for each of the pairs
(u, v) and (i, j) yields a simple O(n2k3) time algorithm for computing CB. To compute CB
faster, we find its entries by multiplying various submatrices of C and B.

For each pair of nodes (u, v), let Cuv be the restriction of C to the rows indexed by
{u}× [k] and the columns indexed by Eout(u)∩Ein(v). Note that Cuv has k rows and at most
k columns. Similarly, let Buv be the restriction of B to the rows indexed by Eout(u)∩Ein(v)
and columns indexed by {v}× [k]. By construction, Buv has k columns and at most k rows.

By eq. (92), for each pair of nodes (u, v) we have

CB[(u, i), (v, j)] = CuvBuv[(u, i), (v, j)]

for all pairs of nodes (u, v) and indices (i, j) ∈ [k]2. So, we can find all entries of CB just by
computing the product CuvBuv for all pairs of nodes (u, v).

There are n2
new pairs of nodes (u, v) to consider. For each such pair of nodes (u, v), the

product CuvBuv can be computed in O(kω) time since the number of rows and columns of
each Cuv and Buv is at most k. So the overall time to compute CB is asymptotically at
most (nnew)

2kω ≤ O(n2kω) which proves the lemma. ■

131

We are now ready to prove that k-APC can be solved in Õ((kn)ω) time.

Proof of Theorem 7.2. By Lemma 7.21, Algorithm 6 correctly solves the k-APC problem. It
remains to prove that we can implement Algorithm 6 to run in Õ((kn)ω) time.

By Lemma 7.22, we can compute CB in O(n2kω) time. Having computed this matrix,
we can then compute (I−CB)−1 in Õ((knnew)

ω) ≤ Õ((kn)ω) time by Proposition 7.5.
Then we can calculate

M = B̃(I−CB)−1C̃

in O((kn)ω) additional time, because B̃ is kn× knnew, (I−CB)−1 is knnew × knnew, and C̃
is knnew × kn, where nnew = 3n.

So step 1 of Algorithm 6 can be implemented to run in Õ((kn)ω) time.
Step 2 of Algorithm 6 involves computing ranks of n2 separate k×k matrices, since for each

pair of original vertices (s, t), we have degout(s) = degin(t) = k in Gnew. By Proposition 7.6,
step 2 then takes Õ(k2nω) time.

So overall Algorithm 6 runs in Õ((kn)ω) time as claimed. ■

7.3 Vertex Connectivity

In this section, we present algorithms for the k-APVC and k-Vertex Connectivity problems.
Our approach is essentially identical to the strategy employed for solving APC in Section 7.2,
but instead of enumerating collections of edge-disjoint walks we work with internally vertex-
disjoint walks, because vertex connectivities are defined in terms of vertex-disjoint paths.

Graph Assumptions (Vertex Connectivity Case)

Throughout Section 7.3, we assume that G is a simple graph. This is without loss of gener-
ality, since for any fixed pair of vertices (s, t), parallel edges in G between from u to v do not
affect the value of ν(s, t) unless u = s and v = t. In the case where u = s and v = t, each
additional parallel edge from s to t simply increases the value of ν(s, t) by one. So if G did
have parallel edges, we could compute ν(s, t) by first computing the vertex connectivity from
s to t in the modified graph G′, obtained by taking G and deleting any extra parallel edges
between its nodes. After computing the s to t connectivity in G’, we could then increase this
value by the number of parallel edges from s to t which were deleted to go from G to G′ to
recover the value of ν(s, t). We also assume that G does not have any self-loops. This too
is without loss of generality, since self-loops do not affect the connectivity between distinct
pairs of vertices.

Since G has no parallel edges, ν(s, t) ≤ n−1 for all s, t ∈ V . So without loss of generality,
we assume that k ≤ n− 1 in this section.

Throughout this section, degout(s) denotes the number of vertices which s has edges to,
and degin(t) denotes the number of vertices which have edges to t.

Field Size

We recall the preliminaries from the Finite Field Computation subsection of Section 6.1. In
particular we work over a field F = F2q . Throughout Section 7.3, we set q to be the smallest

132

positive integer with
2q ≥ 2n5 (93)

Note that we have q = Θ(log n).

Enumerating Walks

To solve vertex-connectivity algorithms, we follow the strategy from the Section 7.2, but use
vertex-centered rather than edge-centered enumeration. Almost all the constructions and
proofs in this section are symmetric to the reasoning used in Section 7.2, so for intuition and
motivation for the arguments employed below, we refer the reader to Section 7.2.

For every edge (u, v) ∈ E, we introduce an indeterminate variable xuv. We use these
variables to enumerate families of walks in G, following the discussion from the Node-Based
subsection of Section 6.2. In particular, each walk W is assigned a monomial ξ(W) recording
the consecutive pairs of nodes it traverses as in eq. (56), and each collection C = ⟨W1, . . . ,Wr⟩
of walks is assigned a monomial ξ(C) according to eq. (57). Let X be the n× n matrix with
rows and columns indexed by V such that for each pair of vertices (u, v) we have

X[u, v] =

{
xuv if (u, v) ∈ E

0 otherwise.
(94)

Note that this differs from the matrix of the same name from Section 7.2. Throughout this
section, we will introduce matrices and other objects with the same names as, but different
definitions from, those employed in Section 7.2.

Given vertices u, v ∈ V and an integer ℓ ≥ 1, let Wℓ(u, v) be the set of all u ⇝ v walks
on exactly ℓ nodes. We can interpret eq. (94) as saying that the (u, v) entry of X enumerates
all walks on two nodes from u to v in G. These are precisely the walks in W2(u, v). The
next result observes that higher powers of X enumerate longer walks in G.

Proposition 7.23. For any edges e, f ∈ E and integer ℓ ≥ 0, we have

Xℓ[u, v] =
∑

W∈Wℓ+1(u,v)

ξ(W).

Proof. By expanding out the definition of matrix multiplication, we see that

Xℓ[u, v] =
∑

w1,...,wℓ∈V
w1=u
wℓ=v

ℓ−1∏
j=1

X[wj, wj+1].

By definition, X[wj, wj+1] = xwjwj+1
if (wj, wj+1) ∈ E, and is zero otherwise. Thus, the

product
ℓ−1∏
j=1

X[wj, wj+1]

133

is nonzero if and only if W = ⟨w1, . . . , wℓ⟩ is a walk on ℓ nodes in G. In this case,

ℓ−1∏
j=1

X[wj, wj+1] =
ℓ−1∏
j=1

xwjwj+1
= ξ(W)

so we have
Xℓ[u, v] =

∑
W∈Wℓ+1(u,v)

ξ(W)

as claimed. ■

Corollary 7.24 (Enumerating Walks by Nodes). For any vertices u, v ∈ V , we have

(I−X)−1[u, v] =
∞∑
ℓ=0

 ∑
W∈Wℓ+1(u,v)

ξ(W)

 .

Proof. By eq. (69), every entry of X has constant term zero. So the claim follows by com-
bining the geometric series formula from Proposition 6.3 with Proposition 7.23. ■

Enumerating Vertex-Disjoint Walks

Given subsets of vertices S, T ⊆ V of equal size |S| = |T | = r ≥ 1 and an integer ℓ ≥ 1, we
define Fℓ(S, T) to be the family of collections of r walks whose total size is ℓ, beginning at
different nodes of S and ending at different nodes of T . If we fix some ordering u1, . . . , ur of
the nodes in S, then we can view each element of Fℓ(S, T) as a sequence of walks ⟨W1, . . . ,Wr⟩
satisfying the properties that each Wi begins at ui and ends at some node of T , the Wi walks
all end at distinct nodes of T , and the sum of the sizes of the Wi walks is ℓ. We also define
Dℓ(S, T) ⊆ Fℓ(S, T) to be the family of collections of r vertex-disjoint walks from S to T of
total size ℓ.

We will design enumerating polynomials for the Dℓ(S, T) families using determinants.
See the discussion before Idea 8 for intuition on why determinants are useful for this task.

Define Γ = (I−X)−1. By Corollary 7.24, entries of Γ enumerate walks in G. We use this
claim to prove that determinants of submatrices of Γ enumerate collections of walks in G.

Lemma 7.25 (Walks by Nodes). For equal-size subsets of nodes S, T ⊆ V , we have

detΓ[S, T] =
∞∑
ℓ=1

 ∑
C∈Fℓ(S,T)

ξ(C)

Proof. Let S(S, T) be the set of all bijections from S to T .

By the definition of the determinant, we have

detΓ[S, T] =
∑

π∈S(S,T)

∏
u∈S

Γ[u, π(u)]. (95)

Note that we do not include a factor for the sign of π in the above equation, because we
work over a field F of characteristic two.

134

By Corollary 7.24, for each u ∈ S we have

Γ[u, π(u)] =
∞∑
ℓ=0

 ∑
W∈Wℓ+1(u,π(u))

ξ(W)

 . (96)

Write S = {u1, . . . , ur}, where r = |S| = |T |.
By multiplying eq. (96) over all choices of u ∈ S, we have

∏
u∈S

Γ[u, π(u)] =
r∏

i=1

 ∞∑
ℓ=0

 ∑
W∈Wℓ+1(ui,π(ui))

ξ(W)

 . (97)

Now, let L be the set of all r-tuples (ℓ1, . . . , ℓr) of positive integers summing to

ℓ1 + · · ·+ ℓr = ℓ.

If we expand out the product on the right-hand side of eq. (97) and group terms according
to the total length of the walks they come from, we obtain

r∏
i=1

 ∞∑
ℓ=0

 ∑
W∈Wℓ+1(ui,π(ui))

ξ(W)

 =
∞∑
ℓ=1

 ∑
(ℓ1,...,ℓr)∈L

Wi∈Wℓi
(ui,π(ui))

r∏
i=1

ξ(Wi)

 .

The expression on the right-hand side above arises from distributing the product on the
left-hand side of the equation over the sum of walks of all possible lengths from ui to π(ui)
for i ∈ [r], and considering the lengths ℓi this walk could have.

By chaining the above equation together with eqs. (95) to (97), and interchanging sum-
mation, we get that

detΓ[S, T] =
∞∑
ℓ=1

 ∑
π∈S(S,T)

∑
(ℓ1,...,ℓr)∈L

Wi∈Wℓi
(ei,π(ei))

r∏
i=1

ξ(Wi)

 . (98)

To simplify eq. (98), observe that for any choice of bijection π ∈ S(S, T), lengths
(ℓ1, . . . , ℓr) ∈ L, and walks Wi ∈ Wℓi(ui, π(ui)), the collection ⟨W1, . . . ,Wr⟩ is a sequence of
walks from S to T of total size ℓ. Conversely, any collection C ∈ Fℓ(S, T) has walks whose
sizes sum up to ℓ, and corresponds to a unique bijection π ∈ S(S, T), obtained by checking
which starting nodes in S are connected to which ending nodes in T by walks in C.

Thus, the inner nested summation above is equivalent to a single sum over all collections
of walks in Fℓ(S, T). Since the weight of a collection C = ⟨W1, . . . ,Wr⟩ is

ξ(C) =
r∏

i=1

ξ(Wi),

the discussion from the previous paragraph together with Equation (98) implies that

135

detΓ[S, T] =
∞∑
ℓ=1

 ∑
C∈Fℓ(S,T)

ξ(C)

which proves the desired result. ■

Lemma 7.26 (Intersecting Walks Vanish). For any equal-size subsets of nodes S, T ⊆ V
and integer ℓ ≥ 1, we have ∑

C∈Fℓ(S,T)

ξ(C) =
∑

C∈Dℓ(S,T)

ξ(C).

Proof. Fix S, T ⊆ V and integer ℓ ≥ 1. Let r = |S| = |T |.
For convenience, abbreviate F = Fℓ(S, T) and D = Dℓ(S, T). Let S = F \ D be the

family of all collections of r walks beginning at different nodes of S and ending at different
nodes of T , such that at least two walks in the collection intersect.

By the definition of S we have∑
C∈F

ξ(C) =
∑
C∈D

ξ(C) +
∑
C∈S

ξ(C).

So to prove the claim, it suffices to show that∑
C∈S

ξ(C)

is the zero polynomial. We prove this by pairing up collections C in S of equal weight ξ(C),
and observing that contributions from these collections vanish modulo two.

Fix an ordering u1, . . . , ur of the nodes in S. Take any C = ⟨W1, . . . ,Wr⟩ ∈ S, with the
walks ordered so that Wi begins at ui. By assumption, at least two walks in C intersect. Let
i ∈ [r] be the smallest index such that Wi intersects some other walk in C. Let u be the first
vertex on Wi which appears in another walk in C. Let j ∈ [r] be the smallest index j > i
such that Wj passes through node u.

We can split the walk Wi uniquely

Wi = Ai ⋄Bi

as the concatenation of a prefix Ai ending at u, and a suffix Bi which begins at u. We can
similarly split Wj uniquely

Wj = Aj ⋄Bj

as the concatenation of a prefix Aj ending at u, and a suffix Bj starting at u.
Now, define walks

W ′
i = Ai ⋄Bj and W ′

j = Aj ⋄Bi

by swapping the suffixes of Wi and Wj. Define a new collection C ′ of walks by replacing Wi

and Wj in C with W ′
i and W ′

j respectively.
Since Wi and Wj end at different nodes of T , we know that W ′

i ̸= Wi and W ′
j ̸= Wj. This

shows that C ′ ̸= C. Since the walks in C ′ begin at different nodes of S and end at different
nodes of T , C ′ ∈ F . Moreover, since W ′

i and W ′
j intersect, we have C ′ ̸∈ D. Thus C ′ ∈ S.

136

Additionally, we claim that if we apply the above suffix swapping procedure (which we
used to go from C to C ′) to the collection C ′, we recover C.

Indeed, for all l ∈ [r] with l < i, the walk W ′
l = Wl does not intersect any other walk in

C, by the definition of i. Since the set of vertices traversed by walks in C \{Wl} and C \{W ′
l }

are the same, this means that W ′
l does not intersect any other walk in C ′ either. So i is also

the smallest index in [r] such that W ′
i intersects some other walk in C. Since the ui ⇝ u

prefixes of W ′
i and Wi are the same, we see that u is also the first node in W ′

i which appears
in another walk of C ′. Then because W ′

j contains u, and W ′
l = Wl for all l ̸∈ i, j, we see that

j > i is the smallest index such that W ′
j contains u. Then when we swap the suffixes of W ′

i

and W ′
j after the first appearance of u on these walks, we recover Wi and Wj respectively,

and so applying the suffix swapping procedure to C ′ produces the original collection C as
claimed.

So, the suffix swapping routine described above partitions S into distinct pairs.
Suppose C and C ′ are paired up by the suffix swapping argument. Then C and C ′ traverse

the same multiset of consecutive pairs of nodes. Thus these collections

ξ(C) = ξ(C ′)

have the same weight. Since we work over a field of characteristic two, the above equation
implies that each pair (C, C ′) of collections mapped to each other by suffix swapping satisfies

ξ(C) + ξ(C ′) = 0.

Since S is partitioned into such pairs, we have∑
C∈S

ξ(C) = 0.

Together with the discussion from the beginning of the proof, this proves the claim. ■

Corollary 7.27 (Vertex-Disjoint Walks). For equal-size subsets of nodes S, T ⊆ E, we have

detΓ[S, T] =
∞∑
ℓ=1

 ∑
C∈Dℓ(S,T)

ξ(C)

 .

Proof. This follows by combining Lemmas 7.25 and 7.26. ■

Corollary 7.27 shows that determinants of submatrices of Γ produce enumerating poly-
nomials for families consisting of collections of vertex-disjoint walks. We want to use these
polynomials to compute vertex connectivity, which is defined in terms of vertex-disjoint
paths, not walks. To next result shows that it is fine to work with walks instead of paths.

Lemma 7.28 (Vertex-Disjoint Walks ⇒ Vertex-Disjoint Paths). Let S, T ⊆ V be subsets
of nodes of size |S| = |T | = r. If the graph G contains r node-disjoint walks from S to T ,
then G also contains r node-disjoint paths from S to T .

137

Proof. Let ⟨W1, . . . ,Wr⟩ be a collection of vertex-disjoint walks from S to T in G. For each
index i ∈ [r], suppose Wi is a ui ⇝ vi walk, where S = {u1, . . . , ur} and T = {v1, . . . , vr}.

For each i ∈ [r], let Gi be the subgraph of G induced on the vertices by Wi. Let Pi be a
shortest ui ⇝ vi path in Gi. These paths are vertex-disjoint, since they live in subgraphs on
disjoint sets of vertices.

Thus ⟨P1, . . . , Pr⟩ is a collection of r vertex-disjoint paths from S to T inG, as desired. ■

Corollary 7.29. Let S, T ⊆ V be subsets of nodes of size |S| = |T | = r. Then detΓ[S, T] is
a nonzero formal power series if and only if G contains r vertex-disjoint paths from S to T .

Proof. Suppose C = ⟨P1, . . . , Pr⟩ is a collection of r vertex-disjoint paths from S to T in G.
Then the term ξ(C) occurs in the expansion of

detΓ[S, T] (99)

given by Corollary 7.27. Moreover, any collection of paths C ′ ̸= C from S to T has weight
ξ(C ′) ̸= ξ(C), because C consists of vertex-disjoint paths (so looking at the variables ap-
pearing in ξ(C), we can recover C uniquely). Hence, no other term from the summation in
Corollary 7.27 produces the same monomial ξ(C). So ξ(C) appears in eq. (99) with nonzero
coefficient, which implies that the determinant from eq. (99) is a nonzero power series.

Suppose now that G does not contain r vertex-disjoint paths from S to T . The contra-
positive of Lemma 7.28 implies that G does not contain r edge-disjoint walks from S to T .
Then Corollary 7.27 implies that eq. (99) is the zero polynomial. This proves the claim. ■

Random Evaluation

Having constructed polynomials to help enumerate collections of vertex-disjoint walks, we
next want to evaluate these polynomials at random points, in order to efficiently detect
large collections of vertex-disjoint walks (using the strategy discussed Chapter 6) and thus
compute vertex connectivities.

We assign each edge (u, v) ∈ E an independent, uniform random value auv in F.
Let A be the matrix obtained from X by assing each variable xuv the value auv. In other

words, A is the random n× n edge-adjacency matrix of G defined by taking

A =

{
auv if (u, v) ∈ E

0 otherwise.

Let M = (I−A)−1 be the evaluation of Γ under this same random assignment.

Lemma 7.30. Let S, T ⊆ V be subsets of size |S| = |T | = r. If G contains r vertex-disjoint
paths from S to T , then detM[S, T] is nonzero with probability at least 1− 1/n3. If instead
G does not have r vertex-disjoint paths from S to T , then detM[S, T] is zero.

Proof. By Corollary 7.29, the determinant

detΓ[S, T] (100)

is a nonzero power series if and only if G contains r vertex-disjoint paths from S to T .

138

So if G does not contain r vertex-disjoint paths from S to T , then eq. (100) is the zero
polynomial, so its random evaluation detM[S, T] must equal zero as claimed.

Otherwise, G contains r vertex-disjoint paths from S to T , and eq. (100) is a nonzero
power series. By the formula for the inverse of a matrix, we have

Γ[S, T] =
(adj(I−X)) [S, T]

det (I−X)
. (101)

The matrix (I−X) has ones across its main diagonal, and every other entry of this matrix
has constant term zero Then by the formula for the determinant of a matrix, det (I − X)
is a polynomial with constant term 1, so by Proposition 6.2 the multiplicative inverse of
det (I−X) is a well-defined power series. As a consequence, eq. (101) can be viewed as an
equality between matrices of formal power series.

For convenience, write Q = det (I−X).
Since S and T are sets of size r, by linearity of the determinant we have

detΓ[S, T] =
det (adj(I−X))[S, T]

Qr
. (102)

By assumption, the left-hand side of eq. (77) is nonzero. Consequently, the numerator

det (adj(I−X))[S, T]

on the right-hand side of eq. (102) must be a nonzero polynomial. Since each entry of X
has degree at most 1, each entry of adj(I − X) has degree less than n, so the numerator
polynomial from the above equation has total degree less than rn. Similarly, in the previous
discussion we observed that Q is a polynomial with constant term 1, so the denominator

Qr = (det (I−X))r

of the right hand side of eq. (102) has constant term 1, and is thus a nonzero polynomial as
well. Since each entry of X has degree at most 1, this denominator has degree at most rn.

So the right hand side of eq. (102) is the ratio of two nonzero polynomials, each with de-
gree at most rn ≤ n2. Then by Corollary 7.7 and eq. (93), the random evaluation detM[S, T]
is nonzero over F with probability at least

1− 2n2/(2q) ≥ 1− 1/n3

as desired. ■

We are now ready to establish a connection between vertex connectivity and ranks of
submatrices of M. We note that this connection is somewhat more complicated than the
corresponding situation for connectivity in Lemma 7.16. This is because when (s, t) is an
edge, a maximum collection of internally vertex-disjoint s ⇝ t paths may include the path
⟨s, t⟩ of length one, with no internal vertices. Such a situation does not occur when we work
instead with edge-disjoint collections of paths. In the statement of the following lemma, recall
that Vout[s] and Vin[t] denote the closed out-neighborhood of s and closed in-neighborhood
of t, as defined in the discussion around eq. (67).

139

Lemma 7.31 (Vertex Connectivity as Rank). We have

rankM[Vout[s], Vin[t]] =

{
ν(s, t) + 1 if (s, t) ∈ E

ν(s, t) otherwise

for all vertices s, t ∈ V , with probability at least 1− 1/n.

Proof. Fix vertices s, t ∈ V . Abbreviate ν = ν(s, t). Let r ≥ 0 be the largest integer such
that there exist subsets S ⊆ Vout[s] and T ⊆ Vin[t] of size |S| = |T | = r with the property
that G contains r vertex-disjoint paths from S to T .

We will prove the lemma by bounding ν and r in terms of each other.

▷ Claim 7.32. We have r ≥ ν. If (s, t) ∈ E, we have the stronger bound r ≥ ν + 1.

Proof. By definition, G contains ν distinct internally vertex-disjoint s ⇝ t paths P1, . . . Pν .
The second vertex of each Pi must be a distinct node ui ∈ Vout(s). Similarly, the penultimate
vertex of each Pi must be a distinct node vi ∈ Vin(t). Let

S = {ui | i ∈ [ν]} and T = {vi | i ∈ [ν]} .

As i ranges over [ν], the ui ⇝ vi subpaths of Pi form a collection of vertex-disjoint paths
from S to T . Thus r ≥ ν as claimed.

Now, suppose (s, t) ∈ E. Then we claim there exists i ∈ [ν] such that Pi = ⟨s, t⟩.
Indeed, suppose to the contrary that no such i exists. Then P1, . . . , Pν , ⟨s, t⟩ are a collec-

tion of more than ν internally vertex-disjoint s ⇝ t paths, which contradicts the definition
of ν. So our initial assumption was false, and some Pi is equal to ⟨s, t⟩, as claimed.

Without loss of generality, suppose P1 = ⟨s, t⟩. Then u1 = t and v1 = s. In particular,
we know that ui ̸= t and vi ̸= s for all i ≥ 2.

Since S consists of the second nodes on s ⇝ t paths, we know that s ̸∈ S. Similarly,
since T consists of the penultimate nodes on s⇝ t paths, we know that t ̸∈ T .

Define sets
S ′ = S ∪ {s} and T ′ = T ∪ {t} .

By the previous discussion, |S ′| = |T ′| = ν + 1.
Moreover, the sequence ⟨s⟩ , ⟨t⟩ , P2, . . . , Pν consists of (ν + 1) vertex-disjoint paths from

the nodes in S ′ to the nodes in T ′. Thus we have r ≥ ν + 1 when (s, t) ∈ E, as desired.

▷ Claim 7.33. We have r ≤ ν + 1. If (s, t) ̸∈ E, we have the stronger bound r ≤ ν.

Proof. By definition, there exist subsets S ⊆ Vout[s] and T ⊆ Vin[t] of size r such that the
graph G contains r vertex-disjoint paths from S to T .

Let P1, . . . , Pr be r vertex-disjoint paths from S to T of minimum total length.
Let ui and vi be vertices such that Pi is a ui ⇝ vi path for each i ∈ [r].
For all i ∈ [r], we claim that s cannot appear in Pi except as its first node, and t cannot

appear in Pi except as its final node. Indeed, suppose to the contrary s is in Pi, yet s ̸= ui
is not the first vertex of Pi. If s is the final node of Pi, then s ∈ T . Since s ̸= t, we then
have s ∈ Vin(t). Then replacing Pi with its single-node subpath ⟨s⟩ in the list P1, . . . , Pr

yields a collection of r vertex-disjoint paths from S to T of strictly smaller total length,

140

which contradicts the fact that the Pi were picked to minimize the total length among all
such collections of disjoint paths. If s ̸= vi is not the final node on Pi, let w be the vertex
appearing immediately after s on Pi. By definition, w ∈ Vout(s). Then replacing Pi with its
subpath Pi[w, vi] in the list P1, . . . , Pr yields a collection of r vertex-disjoint paths from S to
T of strictly smaller total length, which again contradicts the minimality of the Pi. In either
case we have a contradiction, so s cannot appear in Pi except as its first node, as claimed.
Symmetric reasoning proves that t cannot appear in Pi, except as its final node.

For each i ∈ [r], if ui ̸= s define Ai = ⟨s, ui⟩. If instead ui = s, set Ai = ⟨s⟩.
Similarly, if vi ̸= t define Bi = ⟨vi, t⟩, and if instead vi = t, set Bi = ⟨t⟩.
Now define the s⇝ t walks

Qi = Ai ⋄ Pi ⋄Bi.

Since s and t can only appear in a path Pi as its first node and final node respectively,
the Qi are simple s ⇝ t paths. Moreover, since the Pi are vertex-disjoint paths, the Qi are
internally vertex-disjoint s⇝ t paths.

We analyze what happens if the Qi paths are not all distinct.
Suppose that Qj = Ql for some distinct j, l ∈ [r].
We claim that in this case, Pj and Pl cannot both have length at least one. Suppose to

the contrary that both Pj and Pl and have length at least one. We perform casework on the
identities of the nodes uj and ul.

Suppose first that s ∈ {uj, ul}. Without of loss of generality, assume uj = s, so that we
have Aj = ⟨s⟩. Now, if vj = t, then Bj = ⟨t⟩, so Pj = Qj = Ql contains Pl as a subpath,
which violates the assumption that Pj and Pl are vertex-disjoint. Hence vj ̸= t. Since t can
only appear in Pj as its final node, this implies that Pj does not contain t. Let w be the
second node in Pj. Since uj = s and Pj does not contain t, we know that w ̸∈ {s, t}. Since
Pj and Pl are vertex-disjoint, Pl does not contain w. Then Ql does not contain w either,
because w ̸∈ {s, t}. Since Qj contains w, this contradicts the assumption that Qj = Ql.

So suppose instead that s ̸∈ {uj, ul}. Then the second nodes of Qj and Ql are uj and ul
respectively. Since Pj and Pl are vertex-disjoint, uj ̸= ul. This implies that Qj and Ql have
distinct second nodes, which again contradicts the assumption that Qj = Ql.

In either case we derive a contradiction, so Pj or Pl cannot both have length at least one,
as claimed. So if Qj = Ql, at least one of Pj and Pl consists of a single node.

Without loss of generality, let Pj consist of a single node. Then uj and vj are both equal
to the same vertex w, and this node satisfies w ∈ Vout[s] ∩ Vin[t].

If w ̸∈ {s, t}, then Qj = ⟨s, w, t⟩. This means that Ql = ⟨s, w, t⟩ as well. Since Pj = ⟨w⟩
and Pl are vertex-disjoint, it must be the case that Pl = ⟨s⟩ or Pl = ⟨t⟩. Either choice for Pl

forces Ql = ⟨s, t⟩, which contradicts the assumption that Qj = Ql.
Thus w ∈ {s, t} is forced. If w = s, then Pj = ⟨s⟩ and Qj = ⟨s, t⟩. Then Ql = ⟨s, t⟩ as

well. The only way Pl can be vertex-disjoint from Pj in this case is if Pl = ⟨t⟩. Symmetric
reasoning shows that if w = t, then we must have Pl = ⟨t⟩ and Pj = ⟨s⟩. Note that these
two cases can only occur if s, t ∈ Vout[s] ∩ Vin[t], which is equivalent to (s, t) ∈ E.

The above discussion shows that either all the Qi paths are distinct, or exactly two of
the Qi are equal. Moreover, the latter case can only occur if (s, t) ∈ E.

Since at most two of the Qi are equal, by removing at most one of the Qi paths, we
get a collection of (r − 1) internally vertex-disjoint s ⇝ t paths. The definition of vertex

141

connectivity then implies that ν ≥ r − 1, so r ≤ ν + 1 as claimed.
If (s, t) ̸∈ E, then the previous discussion shows that the Qi are all distinct, and so form

a collection of r internally vertex-disjoint s ⇝ t paths, which forces r ≤ ν by the definition
of vertex connectivity.

By Claims 7.32 and 7.33, we get that r = ν + 1 if (s, t) ∈ E, and r = ν if (s, t) ̸∈ E.
By the definition of r, there exist S ⊆ Vout[s] and T ⊆ Vin[t] of size r so that G contains r
vertex-disjoint paths from S to T . By Lemma 7.30, we have

detM[S, T] ̸= 0

with probability at least 1− 1/n3

Moreover, by Lemma 7.30 and the maximality of r, any (r + 1) × (r + 1) submatrix of
M[Vout[s], Vin[t]] has determinant zero. Thus,

r = rankM[Vout[s], Vin[t]]

with probability at least 1− 1/n3.
Combined with the previous discussion relating r and ν, we get that

rankM[Vout[s], Vin[t]] =

{
ν(s, t) + 1 if (s, t) ∈ E

ν(s, t) otherwise

with probability at least 1− 1/n3.
This result holds for any fixed choice of s, t ∈ V . By a union bound over all n2 choices

of pairs of vertices, we get that the above equation holds for all s, t ∈ V with probability at
least 1− 1/n, as desired. ■

All-Pairs

Our goal in this subsection is to prove Theorem 7.3, by presenting an Õ((kn)ω) time algorithm
for k-APVC. Given Lemma 7.31, a natural attempt at solving k-APVC is the following:

1. Compute M = (I−A)−1.

2. Compute rankM[Vout[s], Vin[t]] for every s, t ∈ V , and use this information together
with Lemma 7.31 to output the value of min(k, ν(s, t)) for all s, t ∈ V .

Step 1 above takes Õ(nω) time. Step 2 however takes at least degout(s) degin(t) time to
even read the M [Vout[s], Vin[t]] matrices it considers for each s, t ∈ V , and∑

s,t∈V

degout(s) degin(t) = m2

so this approach is too slow if we want to obtain a Õ(k2nω) time algorithm for k-APVC.
Step 2 above is inefficient because G can contain vertices of high degree. Since we only

need to compute vertex connectivity values less than or equal to k, one attempt to resolve

142

this issue (as suggested by Idea 9) is by modifying G in a way that reduces the outdegrees
and indegrees of most vertices to be at most k, yet preserves k-bounded vertex connectivities.

This degree reduction approach was used by [AGI+18, Section 5]. They transform G by
adding completely connected layers of k new vertices between a vertex and its out-neighbors
and in-neighbors (a vertex-based analogue of the construction from the Reducing Degrees
subsection of Section 7.2). Formally, they construct a new graph Gnew with vertex set Vnew

by taking V , and introducing new vertices ui,out and vi,in for all u, v ∈ V and i ∈ [k]. The
edge set of Gnew consists of edges from u to ui,out for all i ∈ [k], edges from vi,in to v for all
i ∈ [k], and edges from ui,out to vj,in for all (u, v) ∈ E and (i, j) ∈ [k]. Note that all s, t ∈ V
have outdegree and indegree k in Gnew.

The argument in [AGI+18, Section 5] runs the proposed algorithm from steps 1 and 2
above on Gnew to try and solve k-APVC. The transformation is useful in the sense that now
in step 2 we only need to compute the ranks of k × k matrices, so that this step can be
implemented in Õ(kωn2) time overall.

For our purposes, there are two issue with this degree reduction approach.
First, if (s, t) ∈ E, then the vertex connectivity from s to t in Gnew is always k, indepen-

dent of the value of ν(s, t). So the above approach does not compute min(k, ν(s, t)) for pairs
of vertices (s, t) which are edges in G.

Second, Gnew has O(kn) vertices, which means that although step 2 is greatly sped up,
step 1 now runs in Õ((kn)ω) time, which is slower than the Õ(k2nω) runtime we are aiming
for in Theorem 7.3 if ω > 2.

How can we resolve these issues, to prove Theorem 7.3?
The above transformation reduced outdegrees and indegrees to k by explicitly adding in

layers of k new nodes, blocking the original vertices from their neighbors. Instead of adding
in these layers explicitly, our goal will be to simulate them using matrix multiplications.

Idea 12 If we only need to detect up to k vertex-disjoint paths, then we can simulate de-
gree reduction by taking k random linear combinations of the vectors corresponding
to the incoming and outgoing paths in our enumeration.

Idea 12 turns out be a standard trick in the literature surrounding linear algebraic com-
putations, and is useful in the design of fast algorithms for computing matrix rank. It can
also be viewed as another interpretation of Idea 11.

To implement the intuition of Idea 12, we define some new matrices.
For each pair (i, u) ∈ [k + 1]× V , we introduce an indeterminate yiu.
Similarly, for each pair (v, j) ∈ V × [k + 1], we introduce an indeterminate zvj.
Let Y be the (k + 1)× n matrix defined by setting

Y[i, u] = yiu

for every i ∈ [k + 1] and u ∈ V .
Similarly, let Z be the n× (k + 1) matrix defined by setting

Z[v, j] = zvj

for every v ∈ V and j ∈ [k + 1].

143

Ultimately, we will solve k-APVC by multiplying M by random evaluations of Y and Z
to recover smaller matrices whose ranks help compute k-bounded vertex connectivities in
G. To show correctness of this approach, we prove some lemmas characterizing the effect of
multiplication by random matrices on rank.

Lemma 7.34 (Preconditioning). Let H be an a× b matrix. Let R be a (k + 1)× a matrix
with independent uniform random entries from F. Then

rankRH = min(k + 1, rankH)

with probability at least 1− (k + 1)/|F|.

Proof. Since RH has k+1 rows, we know that rankRH ≤ k+1. Since rank cannot increase
under matrix products, we have rankRH ≤ rankH. Thus

rankRH ≤ min(k + 1, rankH). (103)

To prove the claim, it remains to lower bound rankRH.
To that end, define h = min(k + 1, rankH).
By the definition of rank, there exist sets S, T of size h such that H[S, T] is invertible.
Now, define the (k + 1)× a polynomial matrix R̃ by setting

R̃[i, j] = rij

where each rij is an indeterminate variable. Note that assigning each rij an independent,
uniform random value from F would turn the polynomial matrix R̃ into R.

Let I be an arbitrary subset of h rows of R̃.

▷ Claim 7.35. The determinant det R̃[I, S]H[S, T] is a nonzero polynomial.

Proof. Consider the assignment of values from {0, 1} to the rij variables which turns the
matrix R̃[I, S] into the identity matrix I. Under this assignment, R̃[I, S]H[S, T] simplifies
to H[S, T]. This matrix is invertible, and thus has nonzero determinant. This shows that
there is some assignment to the rij variables under which det R̃[I, S]H[S, T] has nonzero
evaluation, which implies that this determinant is a nonzero polynomial as claimed.

Since each entry of R̃ has degree at most 1, the polynomial

detR[I, S]H[S, T]

has degree at most h. By combining Claim 7.35 with Proposition 6.1, and using the fact
that a random evaluation of the rij variables turns R̃ into R, we get that

detR[I, S]H[S, T] ̸= 0

with probability at least 1−h/|F|. Since h ≤ k+1, this probability is at least 1−(k+1)/|F|.
By the definition of rank, this means that

rankR[·, S]H[S, ·] ≥ r. (104)

144

To relate the above rank to the rank of RH, define the matrix L whose row set is the
same as that of H (and thus also equal to the column set of R) and whose columns are
indexed by S, with the property that L[i, s] = 1 if i = s, and L[i, s] = 0 otherwise. Then by
the definition of matrix multiplication, we have

R[·, S]H[S, ·] = RLL⊤H.

Since rank cannot increase under matrix multiplication, by the above equation we have

rankRH ≥ rankRLL⊤H = rankR[·, S]H[S, ·] ≥ r

where the last inequality follows from eq. (104).
Combining this inequality with eq. (103) proves the lemma. ■

Lemma 7.36 (Postconditioning). Let H be an a× b matrix. Let R be a b× (k+1) matrix
with independent uniform random entries from F. Then

rankHR = min(k + 1, rankH)

with probability at least 1− (k + 1)/|F|.

Proof. This follows from symmetric reasoning to the proof of Lemma 7.34. ■

Lemma 7.37 (Conditioning). Let S, T ⊆ V be subsets of vertices. Then

rankB[·, S]M[S, T]C[T, ·] = min(k + 1, rankM[S, T])

with probability at least 1− 1/n4.

Proof. By Lemma 7.34 applied to H = M[S, T] and R = B[·, S], we get that

rankB[·, S]M[S, T] = min(k + 1, rankM[S, T]) (105)

with probability at least 1− (k + 1)/|F|. Assume eq. (105) holds.
Then by Lemma 7.36 applied to H = B[·, S]M[S, T] and R = C[T, ·] we have

rankB[·, S]M[S, T]C[T, ·] = min(k + 1, rankB[·, S]M[S, T])

with probability at least 1− (k + 1)/|F|. By eq. (105), the above equation implies that

rankB[·, S]M[S, T]C[T, ·] = min(k + 1, rankM[S, T).

By union bound over the applications of Lemmas 7.34 and 7.36, the above equation holds
with probability at least 1−(2k+2)/|F|. Since k ≤ n−1, we have 2k+2 ≤ 2n. By our choice
of q in eq. (93), we see that |F| = 2q ≥ 2n5 so the above equation holds with probability at
least 1− 1/n4, as claimed. ■

For any pair of vertices (s, t), we define the (k + 1)× (k + 1) matrix

Mst = B[·, Vout[s]]M[Vout[s], Vin[t]]C[Vin[t], ·]. (106)

The following result is the basis for the k-APVC algorithm.

145

Lemma 7.38. We have

rankMst =

{
min(k + 1, ν(s, t) + 1) if (s, t) ∈ E

min(k + 1, ν(s, t)) otherwise

for all vertices s, t ∈ V , with probability at least 1− 2/n.

Proof. Fix vertices s and t. By Lemma 7.37 applied to S = Vout[s] and T = Vin[t] we have

rankMst = min (k + 1, rankM[Vout[s], Vin[t]]) (107)

with probability at least 1− 1/n4.
So by union bound over all pairs of vertices (s, t), eq. (107) holds for all s, t ∈ V with

probability at least 1− 1/n2. Assuming eq. (107) holds, by Lemma 7.31, we have

rankMst =

{
min(k + 1, ν(s, t) + 1) if (s, t) ∈ E

min(k + 1, ν(s, t)) otherwise

for all vertices s and t, with probability at least 1− 1/n. By taking a union bound over this
probability and the probability that eq. (107) hold for all s, t ∈ V , we see that the above
equatio holds with probability at least 1− 2/n as claimed. ■

By Lemma 7.38, we can compute k-bounded vertex connectivities by computing ranks of
the Mst matrices. However, computing all the Mst matrices separately using the definition
given in eq. (106) is too slow if we are aiming for an Õ(k2nω) time algorithm. Instead, to
compute the Mst efficiently, we will use the structure of G and the fact that the Mst matrices
have common entries across different pairs of vertices (s, t).

To perform this computation, we define some auxiliary matrices.
For each i ∈ [k+1], let Pi be the diagonal matrix with rows and columns indexed by V ,

with Pi[u, u] = B[i, u] for each u ∈ V . Similarly, for each j ∈ [k + 1], let Qj be the diagonal
matrix with rows and columns indexed by V , with Qj[v, v] = C[v, j] for each v ∈ V .

Also, let Ã be the unweighted adjacency matrix of G. In other words, matrix Ã is
obtained by setting xuv = 1 in X for every (u, v) ∈ E.

We can compute Mst using the above matrices with the following lemma.

Lemma 7.39. For any pair of vertices (s, t) and indices (i, j) ∈ [k + 1]2, we have

Mst[i, j] =
(
ÃPiMQjÃ

⊤
)
[s, t].

Proof. Since Pi and Qj are diagonal matrices, the definition of matrix multiplication yields(
ÃPiMQjÃ

⊤
)
[s, t] =

∑
u,v∈V

Ã[s, u]Pi[u, u]M[u, v]Qj[v, v]Ã
⊤[v, t]. (108)

Substituting in the definitions of Ã, Pi, and Qj, the right-hand side of eq. (108) equals∑
u∈Vout(s)
v∈Vin(t)

B[i, u]M[u, v]C[v, j] = (B[·, Vout(s)]MC[Vin(t), ·]) [i, j] = Mst[i, j]

which proves the desired result. ■

146

Algorithm 7. The k-Bounded All-Pairs Vertex Connectivity Algorithm

Inputs: A directed graph G, and a positive integer k.
Returns: The value of min(k, ν(s, t)) for each pair of vertices (s, t) in G.

1. Compute M = (I−A)−1.

2. For each pair (i, j) ∈ [k + 1]2, compute the matrix

Dij = ÃPiMQjÃ
⊤.

3. For each pair of vertices (s, t), compute the matrix Mst by setting

Mst[i, j] = Dij[s, t]

for all (i, j) ∈ [k + 1]2.

4. For each pair of vertices (s, t), return{
(rankMst)− 1 if (s, t) ∈ E

min(k, rankMst) otherwise

as the value for min(k, ν(s, t)).

We can now present our algorithm for solving k-APVC in Algorithm 7.

Lemma 7.40. Algorithm 7 solves k-APVC with high probability.

Proof. By Lemma 7.39, step 3 of Algorithm 7 correctly computes Mst for all s, t ∈ V .
By Lemma 7.38, with high probability we have

rankMst =

{
min(k + 1, ν(s, t) + 1) if (s, t) ∈ E

min(k + 1, ν(s, t)) otherwise

for all vertices s and t. Assume the above equation holds for all s, t ∈ V .
Then if (s, t) ∈ E, we have

(rankMst)− 1 = min(k + 1, ν(s, t) + 1)− 1 = min(k, ν(s, t)).

If instead (s, t) ̸∈ E, we have

min(k, rankMst) = min (k,min(k + 1, ν(s, t))) = min(k, ν(s, t))

So with high probability, Algorithm 7 returns the correct value of min(k, ν(s, t)) in step 4
for every pair of vertices (s, t), thus solving the k-APVC problem. ■

147

Proof of Theorem 7.3. By Lemma 7.40, Algorithm 7 solves k-APVC with high probability.
To prove the theorem, it then suffices to show that Algorithm 7 can be implemented to run
in Õ(k2nω) time.

Step 1 of Algorithm 7 takes Õ(nω) time by Proposition 7.5, since we compute M by
inverting an n× n matrix.

Step 2 of Algorithm 7 computes, for each (i, j) ∈ [k+ 1]2, the matrix Dij by multiplying
five n × n matrices. For each (i, j), this multiplication takes O(nω) time. Performing this
computation for every pair (i, j) ∈ [k + 1]2 then takes O(k2nω) time overall.

Step 3 of Algorithm 7 involves going through the entries of all the Dij matrices. This
takes O(k2n2) time, since there are (k + 1)2 such matrices, each of which are n× n.

Step 4 of Algorithm 7 involves computing the rank of Mst for all pairs of vertices (s, t).
There are n2 choices for (s, t), and each Mst is a (k+1)× (k+1) matrix. By Proposition 7.6,
each individual rank computation takes Õ(kω) time. So, this step takes Õ(kωn2) time overall.
Since k ≤ n− 1, this runtime is at most Õ(k2nω).

So Algorithm 7 runs in at most Õ(k2nω) time overall, as desired. ■

Global

In this subsection, we present our Õ(nω + nkω) time algorithm for k-Vertex Connectivity,
thereby proving Theorem 7.4.

Recall that in k-Vertex Connectivity, our goal is to determine if ν(G) ≥ k.
If ν(G) ≥ k, we sayG is a k-vertex connected graph. In designing the k-Vertex Connectivity

algorithm, it will be helpful to have a dual characterization of k vertex-connected graphs, in
terms of “vertex-cuts” instead of vertex-disjoint paths. We introduce this definition next.

We say a graph is disconnected if it contains distinct nodes s, t such that no s⇝ t path
exists in the graph. We say a subset of nodes C is a vertex-cut in G, if deleting the nodes
in C from G produces a graph which is disconnected. If C is a vertex-cut of G, we also say
that removing C disconnects G.

The following proposition asserts that k-vertex connected graphs are precisely those that
cannot be disconnected by deleting fewer than k vertices.

Proposition 7.41 (Vertex-Cut Characterization). If G is not a complete graph, then for
any fixed integer k ≤ n− 1, we have ν(G) ≥ k if and only if every vertex-cut of G contains
at least k vertices.

See [Fra11, Theorem 2.5.26] for a proof of Proposition 7.41.
We can of course solve k-Vertex Connectivity by solving the all-pairs problem k-APVC.

However, this algorithm is too slow to establish Theorem 7.4. To solve k-Vertex Connectivity
faster, we will employ Proposition 7.41

Suppose ν(G) < k. Since throughout Section 7.3 we assume that k ≤ n− 1, this implies
that G is not a complete graph. Then by Proposition 7.41, there exists a vertex-cut C of size
less than than k. This means that for any vertex w ̸∈ C, there exists a vertex v outside of C
such that either every w ⇝ v path passes through C, or every v ⇝ w path passes through
C. In particular, min(ν(w, v), ν(v, w)) < k. This observation suggests the following strategy
for solving k-Vertex Connectivity.

148

Idea 13 To check if ν(G) < k, instead of computing vertex connectivities for all pairs of
nodes in G, it suffices to find a node w outside of a minimum-size vertex-cut of G,
and then compute vertex connectivities to and from w to all other nodes. For small k,
random sampling should find w outside of a minimum vertex-cut with good probability.

We also recall Menger’s theorem, another dual characterization for maximums-size col-
lections of vertex-disjoint paths in graphs.

Proposition 7.42 (Menger’s Theorem: Vertex-Based). Let S, T ⊆ V be subsets of vertices.
The maximum size of a collection of vertex-disjoint paths beginning at S and ending at T
is equal to the minimum number of vertices which must be deleted from G produce a graph
which contains no S to T path.

See [Sch02, Theorem 9.1] for a proof of Proposition 7.42. We use Proposition 7.42 to
deduce the following nice property of k-vertex connected graphs.

Proposition 7.43. If ν(G) ≥ k, then for any subsets S, T ⊆ V of size |S| = |T | = k, the
graph G contains k vertex-disjoint paths from S to T .

Proof. We prove the contrapositive.
Suppose that S, T ⊆ V are subsets of k vertices, such that G does not contain k vertex-

disjoint paths from S to T . Then by Proposition 7.42, there exists a set C of fewer than k
vertices, such that deleting C from G results in a graph with no S to T path.

Since |C| < k = |S| = |T |, we can pick vertices s ∈ S \C and t ∈ T \C. By assumption,
deleting C from G produces a graph with no s⇝ t path. So every s⇝ t path in G contains
a vertex from C. This implies that

ν(s, t) ≤ |C| < k

so ν(G) < k, which proves the desired result. ■

To use Idea 13 to solve k-Vertex Connectivity, we need an efficient way of checking if all
the vertex connectivities to and from a given vertex w are at least k. We can do this using
the random matrix M from the previous subsection. However, computing exact or even
k-bounded connectivities to and from w using ranks of submatrices of M directly might
be too slow if the vertex w has large indegree or outdegree. To get an efficient algorithm,
we will make sure to only ever compute ranks of k × k submatrices of M. Intuitively, this
will be fine for solving k-Vertex Connectivity because of the property of k-vertex connected
graphs recorded in Proposition 7.43. The following subroutine forms the basis of the k-Vertex
Connectivity algorithm.

Lemma 7.44. There is an algorithm Rootk, which given a vertex w and M returns YES
or NO, and with probability at least 1− 1/n3, has the following behavior:

1. if Rootk(w,M) returns YES, then ν(s, w) ≥ k and ν(w, t) ≥ k for all nodes s, t ̸= w;

2. if Rootk(w,M) returns NO, then ν(G) < k.

Moreover Rootk runs in Õ(n · (min(k, n− k))ω) time.

149

Proof. We first describe the steps of Rootk, and then prove it has the desired behavior.
We first scan through the graph and check that every vertex v in G has degin(v) ≥ k and

degout(v) ≥ k. If there is some vertex with indegree or outdegree less than k, we immediately
return NO.

For the rest of the algorithm, we may then assume that the minimum indegree and
outdegree in G is at least k.

We select a subset S ⊆ Vout(w) of out-neighbors of w with |S| = k.
Similarly, we select a subset T ⊆ Vin(w) of in-neighbors of w with |T | = k.
Now, for every vertex s ̸= w, we construct a set S(s) as follows:

• if s ̸∈ T , then we fix a subset S(s) ⊆ Vout(s) with |S(s)| = k;

• if instead s ∈ T , then we fix a subset S(s) ⊆ Vout[s] with |S(s)| = k with the additional
properties that that s ∈ S(s) and w ̸∈ S(s).

Similarly, for every vertex t ̸= w, we construct a set T (t) as follows:

• if t ̸∈ S, then we fix a subset T (t) ⊆ Vin(t) with |T (t)| = k;

• if instead t ∈ S, then we fix a subset T (t) ⊆ Vin[t] with |T (t)| = k with the additional
properties that that t ∈ T (t) and w ̸∈ T (t).

Having constructed these sets, we go through all vertices s, t ̸= w, and check if we have

rankM[S(s) \ T, T \ S(s)] ≥ k − |S(s) ∩ T | (109)

and
rankM[S \ T (t), T (t) \ S] ≥ k − |S ∩ T (t)|. (110)

If eq. (109) holds for all s ̸= w and eq. (110) holds for all t ̸= w, we return YES.
Otherwise, if the above inequalities fail for any choice of s, t ̸= w, we return NO.

This completes the description of the algorithm. Next, we prove a series of claims that
will help show correctness for the algorithm.

▷ Claim 7.45. Let I, J ⊆ V be equal-size subsets of vertices. Let ∆ = |I ∩ J |. Then there
are k vertex-disjoint paths from I to J in G if and only if there are (k −∆) vertex-disjoint
paths from I \ J to J \ I in G.

Proof. Suppose there is a collection of (k−∆) vertex-disjoint paths from I \J to J \I. Then
for each vertex v ∈ I ∩ V , we can add the single-node path ⟨v⟩ to this collection, to get a
collection of k vertex-disjoint paths from I to J .

Conversely, suppose there is a collection k vertex-disjoint paths from I to J . Delete any
path from this collection which uses a node in I ∩ V . Since the paths are vertex-disjoint
and |I ∩ V |, the resulting collection has at least (k −∆) paths. Moreover, each path in the
collection cannot start at J or end at I, so we have a collection of (k − ∆) vertex-disjoint
paths from I \ J to J \ I.

This proves the claim.

▷ Claim 7.46. The algorithm satisfies condition 1 from the statement of Lemma 7.44.

150

Proof. Suppose Rootk(w,M) returns YES. This means that eqs. (109) and (110) hold for
all vertices s, t ̸= w. By applying Lemma 7.30 and Claim 7.45 to all pairs of sets of the form

(S(s) \ T, T \ S(s)) and (S \ T (t), T (t) \ S)

we deduce that there are k vertex-disjoint paths from S(s) to T and from S to T (t), for all
vertices s, t ̸= w.

Take a vertex s ̸= w. Let P1, . . . , Pk be k vertex-disjoint paths from S(s) to T , where for
each i ∈ [k], Pi is a ui ⇝ vi path. By definition of T , vi ∈ Vin(w). for all i.

If s ̸∈ T , then ui ∈ Vout(s) for all i. Thus as i ranges over [k], the paths

(s, ui) ⋄ Pi ⋄ (vi, w)

form a collection of k internally vertex-disjoint s⇝ w paths in G.
If instead s ∈ T , then ui ∈ Vout[s] \ {w} for all i, and ui = s for some index i. Without

loss of generality, let uk = s. Since the Pi are vertex disjoint, ui ̸= s for all i < k.
Then the length one path ⟨s, w⟩ together with

(s, ui) ⋄ Pi ⋄ (vi, w)

as i ranges over [k − 1] form a collection of (k − 1) internally vertex-disjoint s⇝ w paths.
Thus in either case, ν(s, w) ≥ k for all s ̸= w.
Symmetric reasoning shows that ν(w, t) ≥ k for all t ̸= w.
Thus condition 1 holds as claimed.

▷ Claim 7.47. The algorithm satisfies condition 2 from the statement of Lemma 7.44.

Proof. Suppose Rootk(w,M) returns NO. There are two ways this could happen.
The first possibility is that the algorithm returns no because some vertex v has indegree

or outdegree less than k. In this case ν(G) < k, since if degout(v) < k, v cannot have k vertex-
disjoint paths to any other vertex, and if degin(v) < k, then v cannot have k vertex-disjoint
paths coming in from any other vertex.

The second possibility is that eq. (109) does not hold for some s ̸= w, or eq. (110) does
not hold for some t ̸= w.

If eq. (109) does not hold for a vertex s ̸= w, then it means that

detM[S(s) \ T, T \ S(s)] = 0.

By Lemma 7.30, with probability at least 1− 1/n3, this means that G does not contain

k − |S(s) ∩ T |

vertex-disjoint paths from S(s) \ T to T \ S(s). By Claim 7.45, this means that G does not
contain k vertex-disjoint paths to from S(s) to T . Then by Proposition 7.43, ν(G) < k.

Symmetric reasoning shows that if eq. (110) does not hold for a vertex t ̸= w, that with
probability at least 1− 1/n3, we have ν(G) < k.

▷ Claim 7.48. Given access to M, the algorithm runs in Õ(n · (min(k, n− k))ω) time.

151

Proof. Scanning through the graph to check that every vertex has indegree and outdegree
at least k takes linear time. Constructing the sets S and T , as well as S(s) and T (t) for all
s, t ̸= w, takes O(m+ kn) time, since we just need to scan through the neighborhoods of all
vertices and select 2k nodes per vertex.

The only remaining step in the algorithm is to check whether eqs. (109) and (110) hold
for all s, t ̸= w.

By construction, for all vertices s, t ̸= w we have |S(v)| = |T (v)| = |S| = |T | = k.
Hence the sets S(s) \ T and T (t) \ S each have size at most k.
Since each S(s) is a subset of vertices, we also know that

|S(s) \ T | = |S(s)| − |S(s) ∩ T | ≥ n− k

for all s ̸= w. Similar reasoning proves that |T (t) \ S| ≥ n− k for all t ̸= w.
The above discussion shows that for all s, t ̸= w the sets S(s) \ T and T (t) \ S have size

at most min(k, n− k). Then by Proposition 7.6, for any fixed s, computing

rankM[S(s) \ T, T \ S(s)]

takes Õ((min(k, n− k))ω) time. Similarly, for any fixed t, computing

rankM[T (t) \ S, S \ T (t)]

takes Õ((min(k, n− k))ω) time.
The algorithm computes fewer than 2n such ranks.
Thus, the algorithm runs in at most Õ(n · (min(k, n− k))ω) time, as claimed.

By Claims 7.46 and 7.47 we get that Rootk has the claimed behavior. By Claim 7.48,
Rootk runs in Õ(n · (min(k, n− k))ω) time when given access to the entries of M.

This proves the desired result. ■

Lemma 7.49. Algorithm 8 solves the k-Vertex Connectivity problem with high probability.

Proof. Suppose ν(G) ≥ k. Then by the contrapositive of item 2 from the statement of
Lemma 7.44, every call to Rootk in step 5 of Algorithm 8 returns YES with probability
1− 1/n. Hence the algorithm reaches step 6 and correctly returns YES in this case.

Otherwise, ν(G) < k. In this case, by Proposition 7.41, there is a subset C ⊂ V on fewer
than k vertices, such that deleting the nodes in C disconnects G.

Consider the nodes sampled in step 3 of Algorithm 8.
By our choice of h = ⌈(log n)/(log(n/k))⌉ in Algorithm 8, with probability at least

1− (|C|/n)h > 1− (k/n)h ≥ 1− 1/n

there is an index j ∈ [h] such that the sampled node wj is not in C.
Write w = wj for convenience. Let G′ be the graph obtained by deleting all nodes of C

in G. By definition, G′ is disconnected.

▷ Claim 7.50. There is a vertex u ̸∈ C such that G′ does not both have an u⇝ w path and
a w ⇝ u path.

152

Algorithm 8. The k-Vertex Connectivity Algorithm

Inputs: A directed graph G, and a positive integer k.
Returns: YES if ν(G) ≥ k, NO if ν(G) < k.

1. Compute M = (I−A)−1.

2. Set h ⌈log n/(log(n/k))⌉.

3. Sample nodes w1, . . . , wh independently and uniformly at random from V .

4. For each i ∈ [h]:

5. If Rootk(wi,M) returns NO, return NO.

6. Return YES.

Proof. Suppose to the contrary that every vertex not in C contains paths to and from
w in G’. Then for any vertices s and t in G′, we can obtain an s ⇝ t path in G′ by
concatenating shortest s ⇝ w and w ⇝ t paths in G′. This contradicts the assumption
that G′ is disconnected, so our initial assumption was false and some node u satisfies the
properties from the claim.

Let u ̸∈ C be a vertex satisfying the property from the statement of Claim 7.50. Without
loss of generality, suppose that G′ does not contain a u⇝ w path. Then every u⇝ w path
in G uses a vertex in C. Consequently, ν(u,w) ≤ |C| < k. By the contrapositive of item 1
of Lemma 7.44, we get that Rootk(w,M) returns NO, with probability at least 1 − 1/n3.
So in step 5 of Algorithm 8, when i = j, Algorithm 8 correctly returns NO.

By a union bound over the h calls to Rootk, we see that Algorithm 8 solves k-Vertex
Connectivity with high probability, as claimed. ■

Proof of Theorem 7.4. By Lemma 7.49, Algorithm 8 solves k-Vertex Connectivity with high
probability. So to prove the theorem, it remains to show that Algorithm 8 can be imple-
mented to run in Õ(nω + nkω) time.

Step 1 of Algorithm 8 runs in Õ(nω) time by Proposition 7.5, since we compute M by
inverting an n× n matrix.

Step 2 of Algorithm 8 takes constant time.
Step 3 of Algorithm 8 takes h ≤ Õ(n) time.
In steps 4 and 5, we make h calls to Rootk using the matrix M we already computed.

By Lemma 7.44, each call Õ(n (min(k, n− k))ω) time. To bound the total runtime of these
steps, we consider two cases based off how large k is.

Case 1: k ≤ n/2
Suppose that k ≤ n/2. Then log(n/k) ≥ 1, so h = ⌈log n/(log(n/k))⌉ ≤ ⌈log n⌉. This

means that the h calls to the Rootk subroutine take at most Õ(nkω) time overall.
Case 2: k > n/2

153

Suppose instead that k > n/2.
For any real x ≥ 0, the Taylor series for the exponential function implies that

ex ≥ 1 + x.

By setting x = (n− k)/k and taking logarithms of both sides above, we get that

log(n/k) ≥ Ω((n− k)/k).

This means that

h = ⌈(log n)/(log(n/k))⌉ ≤ O(k(log n)/(n− k)).

Each call to the Rootk subroutine takes at most Õ(n(n− k)ω) time. Then by the above
bound, the h calls to the Rootk procedure take at most Õ(nk(n− k)ω−1) time overall.

Since k > n/2, we have n− k < k, and this time bound is at most Õ(nkω).
Thus in both case 1 and case 2, steps 4 and 5 of Algorithm 8 take Õ(nkω) time overall.
So Algorithm 8 takes Õ(nω + nkω) time overall, as claimed. ■

7.4 Open Problems

Improved Algorithms

The algorithms we presented in this chapter use the algebraic framework of Chapter 6, and
thus are randomized. It would be interesting to remove the need for randomness from these
algorithms, while still preserving the runtime.

Open Problem 17. Can k-APC be solved in deterministic Õ((kn)ω) time? Similarly,
can k-APVC be solved in deterministic Õ(k2nω) time?

In Proposition 7.42 we recalled Menger’s theorem, which related the existence of vertex-
disjoint paths in a graph to the presence of vertex-cuts. A standard variant of this theorem
provides an analogous characterization for edge-disjoint paths in graphs.

Proposition 7.51 (Menger’s Theorem (Edge-Based)). Let s and t be vertices in G. Then
the maximum number of edge-disjoint s⇝ t paths in G is equal to the minimum number of
edges which must be deleted from G to produce a graph with no s⇝ t path.

See [Sch02, Corollary 9.1b] for a proof of Proposition 7.51.
Given nodes s and t, a set of edges C in G is called an (s, t)-cut if deleting all the edges

in C from G results in a graph with no s ⇝ t path. Proposition 7.51 gives a simple way of
convincing someone that λ(s, t) ≤ k: just present them with an (s, t)-cut of size at most k.

When solving k-APC, it would be nice if instead of just computing k-bounded connec-
tivities for all pairs of nodes, we were also able to return small (s, t)-cuts that certified our
algorithm returned the correct answer for λ(s, t) in cases where this connectivity is reported
to be less than k. Having access to such small (s, t)-cuts would allow for independent veri-
fication that the k-bounded connectivities reported by a k-APC algorithm are correct. This
motivates the following question.

154

Open Problem 18 (Returning Small Edge-Cuts). Is there an Õ((kn)ω) time algorithm
that, given a graph, returns for each pair of vertices (s, t) with λ(s, t) < k a set of λ(s, t)
edges whose removal produces a graph with no s⇝ t path?

Open Problems 17 and 18 have been resolved for constant k in the special case of directed
acyclic graphs (DAGs) [AGI+19]. Specifically, over DAGs, there is a deterministic algorithm
that returns an (s, t)-cut of minimum size for each pair of nodes (s, t) in G with λ(s, t) ≤ k,
and runs in (k log n)4

k+o(k)nω time [AGI+18, Theorem 7.9]. The dependence on k in this
runtime is quite high. Although for constant k the algorithm runs in Õ(nω) time, already
for k ≥ Ω(log log n) the algorithm does not run in polynomial time. Rather than directly
resolving Open Problem 18, as a first step it may be easier to focus on the problem in DAGs,
and see if we can improve the runtime dependence on k in the aforementioned algorithm for
returning small (s, t)-cuts.

Open Problem 19. Given a directed acyclic graph and integer k = Θ(log log n), is there
an Õ(nω) time algorithm which returns, for each pair of vertices (s, t) with λ(s, t) < k,
an (s, t)-cut of size λ(s, t)? What about when k = Θ(log n)?

Theorem 7.2 shows that when k ≤ Õ(1), k-APC can be solved in Õ(nω) time. Can we
achieve this runtime for some k which is polynomially related to n?

Open Problem 20. Does there exist a constant δ > 0 such that k-APC can be solved
in Õ(nω) time for k = nδ?

It would be very interesting to get algorithms which solve k-APC and k-APVC faster.

Open Problem 21. Can we solve k-APC in faster than Õ((kn)ω) time, and k-APVC in
faster than Õ(k2nω) time?

It would also be nice to obtain faster algorithms for k-APC and its variants in the special
case of sparse graphs. Of course the Õ(mω) time algorithm for APC already implies a result
in this vein, but it still interesting to see if there are interesting ranges for the values of k
and m in terms of n for which k-APC can be solved faster.

Open Problem 22. Can we solve k-APC faster in sparse graphs?

The above question can also be posed for the k-Vertex Connectivity problem. As discussed
in Section 7.1, for any k ≥ 1 we can solve k-Vertex Connectivity in n2+o(1) time. This is almost-
optimal in dense graphs, but we can hope for faster algorithms in sparse graphs. Indeed, we
can solve k-Vertex Connectivity in Õ(min(mk2, nk3 + m1/2nk3/2)) time [FNY+20, Theorem
5.2], which is truly subquadratic in n for sufficiently small m and k.

155

Open Problem 23. Can we solve k-Vertex Connectivity faster in sparse graphs?

One could also hope to show faster algorithms for the original APC problem.

Open Problem 24. Can we solve APC in faster than Õ(min(mω, n2m1+o(1))) time?

Many of the questions raised above can also be asked for the vertex-connectivity variant
of APC. We did not formally define this problem in Section 7.1 (although we did discuss its
relaxation, the k-APVC problem), so we introduce it now:

All-Pairs Vertex Connectivity (APVC)

Given a graph G, compute ν(s, t) for all pairs of vertices (s, t) in G.

Over general directed graphs, the current best algorithms for APVC have similar runtimes
to the current fastest algorithms for APC. We mentioned in Section 7.1 that APC can be
solved over undirected graphs in Õ(n2). In contrast, no near-quadratic algorithm is known
for solving APVC in undirected graphs (in part because undirected graphs do not in general
admit Gomory-Hu trees for vertex connectivity [Ben95]). We do know how to solve APVC
over undirected graphs in m2+o(1) time however [Tra23, Theorem 1.2], which beats the Õ(mω)
time algorithm for APC in directed graphs if ω > 2.

Open Problem 25. Is there a constant δ > 0 such that we can solve APVC on undirected
graphs in O(m2−δ) time?

If one believes that faster algorithms for APC should exist, then instead of trying to
resolve Open Problem 24 directly, it may be easier to tackle the above question and try to
design faster algorithms for APVC instead.

Better Lower Bounds

As mentioned in Section 7.1 (in the paragraphs after Theorem 7.1), there are popular hard-
ness hypotheses in complexity theory that imply lower bounds on the time complexity for
solving APC. These hypotheses posit the intractability of certain circuit analysis and graph
theoretic problems.

Recall the kSAT problem, defined in the Reducing Width for SAT and #SAT subsection
of Section 2.2. The current fastest algorithms for kSAT run in 2n−Θ(n/k) time (e.g., see the
discussion in [VW21, Section 1]). For superconstant k, these algorithms run in 2n−o(n) time.
It is conjectured that this runtime is essentially optimal.

Definition 7.52 (SETH). The Strong Exponential Time Hypothesis (SETH) posits that for
any ε > 0, there exists an integer k ≥ 1 such that kSAT cannot be solved in 2(1−ε)n time.

156

SETH is a stronger assumption than P ̸= NP, and is applied extensively as a hardness
hypothesis throughout computer science. Assuming SETH, we can use reductions from SAT
to get lower bounds for the exact time complexity of computational problems of interest.
It is known that refuting SETH requires making major progress in major open problems in
circuit complexity [Wil13, JMV18], so that even if one believes SETH is false, reductions
from SETH still imply barriers for obtaining faster algorithms for various problems.

Assuming SETH, APC requires at least (mn)1−o(1) time to solve [KT18, Theorem 1.8], and
APVC requires at least n2 +m3/2−o(1) time to solve [Tra23, Theorem 1.4]. Additional lower
bounds for APC have been shown by assuming hardness of the following graph problem.

4-Clique

Given an undirected graph G, determine if G has four distinct, mutually adjacent nodes.

The best known algorithms for 4-Clique rely on fast matrix multiplication. Given reals
a, b, c ≥ 0, we let ω(a, b, c) denote the rectangular matrix multiplication exponent, defined
to be the smallest positive real such that we can compute the product of an na × nb matrix
and an nb × nc matrix in nω(a,b,c)+o(1) time. As with for the standard matrix multiplication
exponent, we write O(nω(a,b,c)) instead of nω(a,b,c)+o(1) for convenience.

The current fastest algorithms for 4-Clique run in O(nω(1,2,1)) time [EG04]. The 4-Clique
Hypothesis in fine-grained complexity posits that solving 4-Clique requires nω(1,2,1)−o(1) time to
solve, i.e., the current algorithms for 4-Clique are essentially optimal. Although the 4-Clique
Hypothesis is not as established as SETH, it has also been used as a source of conditional
hardness in the literature, and identifies a key computational challenge that current methods
in graph algorithms seem unable to overcome.

Assuming the 4-Clique Hypothesis, APVC requires at least nω(1,2,1)−o(1) time to solve
[AGI+18, Section 4]. It seems that this reduction can be modified to show that APC re-
quires at least nω(1,2,1)−o(1) time under the 4-Clique Hypothesis as well. More recently, it
was shown that APVC over undirected graphs also requires nω(1,2,1)−o(1) time to solve under
the 4-Clique Hypothesis [HLSW23]. If optimal matrix multiplication algorithms exist, then
ω(1, 2, 1) = 3. Using the current fastest rectangular matrix multiplication algorithms, we
have ω(1, 2, 1) < 3.521 [WXXZ24, Table 1].

So overall, the 4-Clique Hypothesis implies APC and APVC cannot be solved in truly
subcubic time (which is the lower bound SETH implied for APC in dense directed graphs),
and that solving these problems in O(n3.5) time, for example, would require designing faster
matrix multiplication algorithms.

Although these cubic lower bounds rule out the possibility of solving APC in directed
graphs and APVC even in undirected graphs in near-quadratic time (under SETH or the
4-Clique Hypothesis), they remain far from the current best quartic time complexity upper
bounds we have for these problems. Can we narrow this gap, and show better lower bounds
for APC and APVC?

Open Problem 26. Can we prove, under some plausible hardness hypothesis, that APC
requires subercubic time to solve, even if ω(1, 2, 1) = 3?

157

As discussed above, the current best lower bounds for APC (under the 4-Clique Hypothesis)
hold even for the seemingly simpler problem of solving APVC on undirected graphs. This
is interesting, since we know how to solve the latter problem in m2+o(1) time, while no such
algorithm is known for APC. Can we show better hardness results for APC? Or do APC and
APVC actually have the same complexity?

Open Problem 27. Does some plausible hardness hypothesis imply a time lower bound
for APC in directed graphs that does not also hold for APVC in undirected graphs?

Open Problem 28. Are there efficient reductions between APC and APVC which show
the time complexities of these problems are essentially equivalent in directed graphs?

Conditional lower bounds have also been studied for the relaxations k-APC and k-APVC.
Under SETH, solving k-APC requires (kn2)1−o(1) time [KT18, Theorem 4.3]. Assuming the
4-Clique Hypothesis, solving k-APVC requires (k2nω(1,2,1)−2)1−o(1) time [AGI+18, Lemma 4.4],
and it seems that this reduction can be modified to show the same lower bound for k-APC.

Again, these lower bounds are very far from the current best time upper bounds we
have for k-APC and k-APVC. In fact, if ω(1, 2, 1) = 3, then the lower bounds under the 4-
Clique Hypothesis are only nontrivial if k ≥

√
n. Can we narrow this gap, by showing better

conditional lower bounds for these problems?

Open Problem 29. Can we prove better conditional lower bounds for the time com-
plexities of k-APC and k-APVC in terms of k and n? What about for the special case
where k ≤

√
n.

We can also ask the analogue of Open Problem 28 for k-APC and k-APVC.

Open Problem 30. Are there efficient reductions between k-APC and k-APVC which
show the time complexities of these problems are essentially equivalent in directed graphs,
at least for certain interesting ranges of the parameter k?

Faster Verification

In Section 2.1, we discussed verifiers in the context of the complexity class NP. Trying to
design efficient verifiers for APC and its variants is a fascinating research direction, which
seems closely tied to the problems discussed previously of designing faster algorithms and
better conditional lower bounds for these tasks.

In this section, a verifier is an algorithm which takes as input both the problem instance
and a certificate, and returns YES or NO. We view the certificate as a message which includes
a claim for what the answer to the problem is, together with a succinct proof explaining why
the answer is correct. We say the verifier is deterministic if its underlying algorithm is
deterministic. A deterministic verifier correctly solves a problem provided it returns YES if

158

and only if the claimed answer in the certificate is the correct answer to the input problem
instance. A verifier solves a problem instance I in time bound T (I) if there exists a certificate
c whose claim for the answer to I is correct, such that the verifier returns YES in time T (I)
when given I and c as input. In other words, the runtime of a verifier for a given problem
instance is defined by taking the minimum runtime of the algorithm over all certificates
which make the verifier solve that instance correctly. The overall runtime of the verifier is,
as usual, is its worst-case runtime over all problem instances.

Finding efficient verifiers for problems is interesting for at least two reasons. First, the
design of an efficient verifier for a task may influence and inform the design of faster classical
algorithms for the problem. For example, researchers first designed Õ(n2) deterministic
verifiers for APC on undirected graphs [AKT20], before eventually showing that APC could
be solved outright in Õ(n2) time. Second, the runtimes of verifiers for a task can provide
insight into hardness reductions for that problem, and thereby help inform our beliefs about
the true time complexity of the tasks we study, and in some cases conditionally rule out the
existence of certain hardness reductions [CGI+16].

The APVC problem admits a deterministic verifier running in O(nω(1,2,1)) time [Tra23,
Lemma 2.3]. This runtime is interesting, because it matches the fastest known runtime for
solving 4-Clique, using a standard algorithm or deterministic verifier. Since the current best
conditional lower bound for APVC comes via reduction from 4-Clique, this coincidence in
runtimes naturally motivates the question of whether 4-Clique or APVC have faster deter-
ministic verifiers. If the fastest deterministic verifiers for these problems turn out to have
the same runtime, that would give circumstantial evidence that APVC and 4-Clique should
have the same complexity.

Open Problem 31. Is there a constant δ > 0, such that 4-Clique admits a deterministic
verifier running in O(nω(1,2,1)−δ) time?

Since existing 4-Clique algorithms rely on matrix multiplication, resolving Open Prob-
lem 31 may be connected to designing fast deterministic verifiers for multiplying matrices.
This is an interesting open question in its own right, where not much progress has been
made. See [Kün18] for some discussion of this problem.

Although APVC can be solved by a deterministic verifier running in O(nω(1,2,1)) time, the
current best deterministic verifier for APC takes O(nω(1,2,1) + n5/2

√
m) time [Tra23, Lemma

2.4], which is slower than the former runtime in dense graphs. Can we close the gap between
verifier runtimes for APVC and APC?

Open Problem 32. Does APC have a deterministic verifier running in O(nω(1,2,1)) time?

It would also be interesting to obtain nontrivial deterministic verifiers for the parameter-
ized relaxations of APC and APVC.

Open Problem 33. Are there deterministic verifiers which solve k-APC in faster than
Õ((kn)ω) time, or solve k-APVC in faster than Õ(k2nω) time?

159

Note that the current best algorithms for k-APC and k-APVC are randomized, so a priori
it is not clear whether these problems even admit Õ((kn)ω) time verifiers.

We can also consider randomized verifiers, where the underlying algorithm of the verifier
can use randomness, and we only require that the verifier correctly checks a claimed answer to
a with high probability, for each fixed problem instance and certificate. It seems possible that
known algorithms for APC and its variants can be modified to obtain randomized verifiers
using standard techniques for verifying matrix products (e.g., see “Freivalds’ Technique” in
[MR95, Section 7.1]). The time complexity of randomized verifiers for these problems has
not been studied closely in the literature, and is worth investigating further.

Open Problem 34 (Randomized Verification). How quickly can we solve APC and its
variants using randomized verifiers?

Extending Techniques

Given a graph G with vertex set V , and distinguished subsets S, J ⊆ V , the gammoid on J
with respect to S is the collection I of subsets T ⊆ J with the property that G contains |T |
vertex-disjoint paths beginning at nodes in S and ending at the nodes in T .

Gammoids have many applications in algorithm design (e.g., see [FLSZ18, Chapter 10]).
These applications use the fact that there are randomized polynomial-time algorithms for
constructing linear representations of gammoids. A linear representation of the gammoid on
set J with respect to S is a matrix M, whose columns are indexed by vertices in J , with the
property that for any fixed T ⊆ J , with high probability we have T ∈ I if and only if M[·, T]
has full rank. Note that Lemma 7.30 gives an explicit construction for a randomized linear
representation of a gammoid, and Lemma 7.15 does the same for an edge-disjoint analogue
of the gammoid.

For most algorithmic applications in the literature, the existence of linear representations
of gammoids can be used as a black-box. However, the enumerative perspective we used to
prove Lemma 7.15 was important for obtaining results like Lemma 7.18, which were in turn
crucial for designing and proving correctness of our k-APC algorithm. It is not immediately
clear if Theorem 7.2 could be proved, for example, by using representations of gammoids in
a black-box fashion. Could the enumerative perspective give speed-ups for other problems
related to gammoids?

Open Problem 35. Can the the low-rank enumeration used Algorithm 6 to solve k-
APC help solve other problems involving gammoids? Conversely, can existing algorithms
which leverage computation on gammoids provide insights into the k-APC problem and
its variants?

The Laplacian matrix L of a graph is an important object of study in fast algorithms for
maximum flow. One of the key properties of L is that it can be factored into the product
of two “edge-vertex incidence” matrices. The low-rank factorization X = YZ employed in
our k-APC algorithms feels similar to this factorization. Could there be some advantage to

160

combining Laplacian-based techniques (such as those discussed in [Vis13]) and the arguments
used in our k-APC algorithm?

Open Problem 36. Can optimization techniques, such as approximate Laplacian solvers,
help design faster algorithms for k-APC?

The low-rank factorization in used in our k-APC intuitively reduces the complexity of an
edge-disjoint problem (computing connectivities) to something like a vertex-disjoint variant
of the problem (for example, this is suggested by Figure 3). Can we make this connection
formal, and use low-rank enumeration to solve other problems involving edge-disjoint paths?

Open Problem 37. Can the low-rank enumeration used in Algorithm 6 to solve k-APC
help design faster algorithms for other problems involving edge-disjoint paths? Can it
help design more efficient reductions from edge-disjoint to vertex-disjoint path problems?

161

162

Chapter 8

Disjoint Shortest Paths

8.1 Overview

In Section 7.1, we introduced the idea of using disjoint paths to measure connectivity in
networks, and more generally discussed the significance of routing disjoint paths on graphs in
mathematics and computer science. Finding connectivities involves detecting disjoint paths
between a fixed pair of vertices s and t. A natural generalization of this task is to seek disjoint
paths which connect multiple terminal pairs in the graph. Beyond being mathematically
interesting, such tasks arise in when studying questions concerning transportation networks
and circuit layout.

This motivates the following disjoint paths problem: for a fixed positive integer k, in
the k-Disjoint Paths (k-DP) problem, we are given a graph G, with specified source nodes
s1, . . . , sk and target nodes t1, . . . , tk, and are tasked with determining if G contains internally
vertex-disjoint si ⇝ ti paths. Note that the paths in a solution to k-DP are required to pair
each source si to its corresponding target ti. This condition turns out to make k-DP a very
difficult problem in general: if we were tasked with looking for k disjoint paths connecting
each source node to any target node instead of its corresponding target, then it turns out
the problem would be easy to solve using a simple reduction to maximum flow.

Suppose the input graph G has n vertices and m edges. How quickly can we solve k-DP?
If k is allowed to be unbounded, the k-DP problem becomes NP-hard even on very simple

classes of graphs [MP93], and over general directed graphs, k-DP is NP-hard already for
k = 2 [FHW80, Lemma 3]. In light of these hardness results, for the purpose of designing
polynomial-time algorithms for disjoint path problems, we should focus on the case where
the input comes from a restricted class of graphs and k is constant. One such class, which
has received extensive attention in the literature surrounding disjoint path problems, is the
class of undirected graphs.

Undirected Graphs

Over undirected graphs, k-DP can be solved in Õ(m + n) time for k = 2 [Tho05], and
more generally for any constant k in O(n2) time [KKR12] and m1+o(1) time [KPS24]. The
algorithms for k ≥ 3 are obtained using deep connections between the k-DP problem and
the theory of forbidden minors in undirected graphs [RS95]. So over undirected graphs, the

163

polynomial-time complexity of k-DP is essentially resolved: for unbounded k the problem is
NP-hard, and thus unlikely to be polynomial-time solvable, and for constant k the problem
can be solved in almost-linear time.

In this chapter, we study an optimization variant of k-DP, the k-Disjoint Shortest Paths
(k-DSP) problem. In k-DSP we are given the same input as in k-DP, but are now tasked
with determining if the input contains disjoint si ⇝ ti shortest paths.

k-Disjoint Shortest Paths (k-DSP)

Given a graph G with specified nodes s1, . . . , sk and t1, . . . , tk, determine if G contains
internally vertex-disjoint si ⇝ ti shortest paths.

The k-DSP problem is interesting both because it is a natural graph algorithms question
to investigate from the perspective of combinatorial optimization, and because understanding
the complexity of k-DSP could lead to a deeper understanding of the interaction between
shortest paths structures in graphs (analogous to how studying k-DP helped develop the rich
theory surrounding forbidden minors in graphs [RS95]).

Compared to k-DP, not much is known about the exact time complexity of k-DSP. In
directed graphs, 2-DSP can be solved in polynomial time [BK17], but no polynomial-time
algorithm (or NP-hardness proof) is known for k-DSP for any constant k ≥ 3. In undirected
graphs, it is known that for any constant k, k-DSP can be solved in polynomial time [Loc21].
However, the current best algorithms for k-DSP in undirected graphs run in nO(k·k!) time, so
in general this polynomial runtime is quite large for k ≥ 3. For example, the current fastest
algorithm for 3-DSP in undirected graphs takes O(n292) time [BNRZ21].

Significantly faster algorithms are known for detecting k = 2 disjoint shortest paths. In
this case, we allow G to be a weighted graph with positive edge weights (of course the k-DSP
problem makes sense on weighted graphs for any k, but currently there are no algorithms
published which explicitly handle the case of weighted graphs for any k ≥ 3). The paper
which first introduced the k-DSP problem in 1998 also presented an O(n8) time algorithm for
solving 2-DSP in weighted undirected graphs [ET98]. This algorithm was improved upon for
the first time over twenty years later in [Akh20], which presented an algorithm solving 2-DSP
in weighted undirected graphs in O(n7) time, and in unweighted undirected graphs in O(n6)
time. Soon after, [BNRZ21, Theorem 1] presented an even faster O(mn) time algorithm for
solving 2-DSP in the special case of unweighted undirected graphs.

Despite all the advances discussed above, there remains a gap between the fastest run-
times known for solving the 2-DSP and 2-DP problems in undirected graphs. We close this
gap, presenting an optimal algorithm for 2-DSP in weighted undirected graphs.

Theorem 8.1: 2-Disjoint Shortest Paths in Undirected Graphs

There is an algorithm solving 2-DSP on undirected graphs in linear time.

Directed Acyclic Graphs

Besides undirected graphs, another class of graphs for which research on disjoint path prob-
lems has been particularly fruitful is the class of directed acyclic graphs (DAGs). Designing

164

algorithms for detecting disjoint paths on DAGs appears to be especially important because
such algorithms have been used as key subroutines for finding disjoint paths in other types
of graphs. For example, the only known polynomial-time algorithm for 2-DSP on general
directed graphs works by reducing to several instances of 2-DP on DAGs [BK17]. Similarly,
the fastest known algorithm for k-DSP on undirected graphs works by reducing to several
instances of disjoint paths on DAGs [BNRZ21].

Over DAGs, k-DP can be solved in linear time for k = 2 [Tho12], and in O(mnk−1) time
for k ≥ 3 [FHW80, Theorem 3]. As observed in [BK17, Proposition 10], the algorithm of
[FHW80] for k-DP on DAGs can be modified to solve k-DSP in weighted DAGs in the same
O(mnk−1) runtime. This is the fastest known runtime for k-DSP in DAGs for all k.

In particular, the fastest algorithm for 2-DSP from previous work runs in O(mn) time,
slower than the O(m + n) runtime known for 2-DP in DAGs. As in the case of undirected
graphs, we close this gap, presenting an optimal algorithm for 2-DSP in weighted DAGs.

Theorem 8.2: 2-Disjoint Shortest Paths in Directed Acyclic Graphs

There is an algorithm solving 2-DSP on directed acyclic graphs in linear time.

As we discuss in Section 8.6, Theorem 8.2 implies an alternate linear time algorithm for
2-DP in DAGs, which may be interesting due to its simplicity and the different techniques
it employs compared to [Tho12].

Our algorithms for solving 2-DSP in undirected graphs and DAGs are algebraic, following
the framework of Chapter 6. As a consequence, the algorithms establishing Theorems 8.1
and 8.2 determine whether the input graph contains disjoint si ⇝ ti shortest paths, but do
not explicitly return these solution paths when they exist. So while our algorithms solve
the decision problem 2-DSP, they do not solve the search problem of returning two disjoint
shortest paths if they exist. This is a common limitation for algebraic graph algorithms.
We show nonetheless that using a simple search to decision reduction for 2-DSP, we can
bootstrap Theorems 8.1 and 8.2 to obtain O(mn) time algorithms which find two disjoint
shortest paths in weighted undirected graphs and DAGs, or report that no such paths exist.

Theorem 8.3: Finding 2 Disjoint Shortest Paths

There is an algorithm which solves 2-DSP over weighted DAGs and undirected graphs,
and returns a pair of solution paths if they exist in O(mn) time.

Organization

In Section 8.2, we go over useful notation and results on graphs. In Section 8.3, we introduce
the basic ideas behind our 2-DSP algorithms, and prove lemmas which apply to 2-DSP on
both DAGs and undirected graphs. In Section 8.4, we present our algorithm for 2-DSP in
weighted DAGs, and prove Theorem 8.2. In Section 8.5, we present our algorithm for 2-DSP
in weighted undirected graphs, and prove Theorem 8.1.

In Section 8.6, we observe some simple corollaries of Theorems 8.1 and 8.2. Finally, in
Section 8.7, we conclude with relevant open problems.

165

8.2 Preliminaries

We make use of the preliminaries from Section 6.1. We introduce some additional graph
theoretic notation, assumptions, and concepts below.

Basic Graph Notation and Assumptions

Throughout, we let G be the input graph on n vertices and m edges. We assume G is
a simple graph (i.e., has no parallel edges between nodes). We let s1, s2 and t1, t2 denote
the source nodes and target nodes in G respectively. We assume that s1, s2, t1, t2 are all
distinct. This is without loss of generality, since given an arbitrary instance of 2-DSP, we
can introduce new nodes s′1, s′2, t′1, t′2 such that each s′i has the same neighbors as si and
each t′i has the same neighbors as ti (if the input graphs are directed, then s′i and t′i have
both the same in-neighbors and the same out-neighbors as si and ti respectively), and then
delete the original copies of si and ti. With this addition, the graph contains vertex-disjoint
s′i ⇝ t′i shortest paths if and only if it contains internally vertex-disjoint si ⇝ ti shortest
paths. Moreover, if the graph was originally undirected it stays undirected, and if the graph
was originally a DAG it stays a DAG.

We view undirected graphs as graphs whose edges are still ordered pairs of vertices (u, v),
but with the property that (u, v) ∈ E is an edge if and only if (v, u) ∈ E is an edge.

If G is weighted, we let ℓ(u, v) denote the weight of an edge (u, v) ∈ E. We assume
that edge weights ℓ(u, v) > 0 are positive for all (u, v). Given vertices u and v in G, we let
dist(u, v) denote the shortest path distance from u to v in G, i.e., the minimum possible sum
of edge weights among all u⇝ v paths in G.

Given a path P which passes through vertices u and v in that order, we let P [u, v] denote
the u⇝ v subpath of P . If P is a path in an undirected graph, we let

 −
P denote the reverse

path of P , which traverses the vertices of P in reverse order. Given two paths P and Q
such that the final vertex of P is the same as the first vertex of Q, we let P ⋄Q denote the
concatenation of P and Q.

Field Size

We recall the preliminaries from the Finite Field Computation subsection of Section 6.1. In
particular we work over a field F = F2q . In this chapter, we set q to be the smallest positive
integer with

2q ≥ 2n2. (111)

Note that q = Θ(log n).

Topological Order

Any directed acyclic graph (DAG) admits a topological order: this is an ordering (≺) of
the vertices in the graph with the property that u ≺ v implies that (v, u) is not an edge in
the graph. In other words, edges only go forwards with respect to the topological order of
a graph. Using depth-first search, it is easy to construct a topological order for a DAG in
linear time. This fact will be useful for us.

166

Proposition 8.4. We can compute a topological order of a DAG in linear time.

See [CLRS09, Section 22.4] for a proof of Proposition 8.4.

Shortest Paths Graphs

For any vertex s in G, we define the s-shortest paths DAG to be the directed acyclic graph
with the same vertex set as G, which includes an edge (u, v) if and only if (u, v) ∈ E is the
last edge in some s⇝ v shortest path in G.

From this definition, it is easy to see that a sequence of vertices P is an s ⇝ v shortest
path in G if and only if P is an s⇝ v path in the s-shortest paths DAG of G. Indeed, given
a sequence of vertices P = ⟨v0, . . . , vr⟩ with v0 = s and vr = v, if P is an s⇝ v shortest path
in G, then ⟨v0, . . . , vi⟩ is an s⇝ vi shortest path for all i ∈ [r]. This means that (vi−1, vi) is
an edge in the s-shortest paths DAG of G for all i ∈ [r], so P is an s⇝ v path in this DAG
as claimed. Conversely, if P = ⟨v0, . . . , vr⟩ is an s⇝ v path in the s-shortest paths DAG of
G, an easy induction argument shows that ⟨v0, . . . , vi⟩ is a shortest path in G for all i ∈ [r].
Applying this result for i = r shows that P is an s⇝ t shortest path in G as claimed.

The argument in the previous paragraph implies that the s-shortest paths DAG is indeed
acyclic, since a cycle cannot be a shortest path in a graph with positive edge weights.

Working with shortest paths DAGs is useful for us because it helps reduce the task of
enumerating shortest paths in G to enumerating arbitrary paths in a DAG.

Given a node s in G, we can construct the s-shortest paths DAG of G in linear time,
using standard algorithms for computing single-source shortest path distances.

Proposition 8.5 (Single-Source Distances in DAGs). Given a weighted DAG G with dis-
tinguished node s, we can compute dist(s, v) for all vertices v in G in linear time.

See [CLRS09, Section 24.2] for a proof of Proposition 8.5.

Proposition 8.6 (Single-Source Distances in Undirected Graphs). Given a weighted undi-
rected graph G and node s, we can compute dist(s, v) for all vertices v in G in linear time.

See [Tho97] for a proof of Proposition 8.6.

Proposition 8.7 (Shortest Path DAGs). Let G be a weighted DAG or undirected graph
with vertex s. Then we can construct the s-shortest paths DAG of G in linear time.

Proof. By Propositions 8.5 and 8.6, we can compute dist(s, v) for all vertices v in G in linear
time. We claim that an edge (u, v) is in the s-shortest paths DAG of G if and only if

dist(s, v) = dist(s, u) + ℓ(u, v). (112)

Indeed, if (u, v) is in the s-shortest paths DAG, it is the last edge on some s ⇝ v shortest
path P in G. Since P is a shortest path, it has length dist(s, v). Since it has last edge (u, v),
its s⇝ u prefix must also be a shortest path, so its length also equals dist(s, u) + ℓ(u, v), so
eq. (112) holds. Conversely, if eq. (112) holds, then concatenating an s ⇝ u shortest path
in G with the edge (u, v) produces a path of minimum length dist(s, v). Hence (u, v) is the
last edge of an s⇝ v shortest path, so (u, v) is in the s-shortest paths DAG as claimed.

167

So we can construct the s-shortest paths DAG G by going through every edge (u, v) in
G, and checking if it satisfies eq. (112). Since we already computed the distances from s to
every vertex in G, checking eq. (112) takes O(1) time for each edge. Thus we can construct
the s-shortest paths DAG in linear time as claimed. ■

Additional Notation

For each i ∈ [2], we define Gi to be the si-shortest paths DAG of G.
For each i ∈ [2] and vertex v ∈ V , we define V i

in(v) to be the set of in-neighbors of v in
Gi, and V i

out(v) to be the set of out-neighbors of v in Gi. We further let

Vin(v) = V 1
in(v) ∩ V 2

in(v) and Vout(v) = V 1
out(v) ∩ V 2

out(v)

be the sets of in-neighbors and out-neighbors respectively of v common to both G1 and G2.
We also define

Vmix(v) = V 1
in(v) ∩ V 2

out(v) (113)

to be the mixed neighborhood of v, defined to be the set of nodes u such that (u, v) is an
edge in G1 and (v, u) is an edge in G2.

A pair of paths ⟨P1, P2⟩ is a standard pair if Pi is an si ⇝ ti path in Gi for each i ∈ [2].
Equivalently, a standard pair consists of si ⇝ ti shortest paths Pi in G.

8.3 General Ideas

Throughout this section, G is allowed to be a weighted DAG or undirected graph. All of the
arguments in this section apply to both cases.

We will solve 2-DSP using the algebraic framework introduced in Chapter 6.
For every edge (u, v) ∈ E, we introduce an indeterminate variable xuv. We use these

variables to enumerate families of pairs of paths in G, following the discussion from the
Node-Based subsection of Section 6.2. In particular, each path W is assigned a monomial
ξ(W) recording the consecutive pairs of nodes it traverses as in eq. (56), and each pair of
paths P = ⟨P1, P2⟩ is assigned a monomial ξ(P) = ξ(P1, P2) according to eq. (58).

Recall the definition of an enumerating polynomial from eq. (59).

Definition 8.8 (Disjoint Paths Polynomial). Let Fdisj be the enumerating polynomial for
the collection of vertex-disjoint standard pairs of paths.

We will solve 2-DSP by testing if the polynomial Fdisj is nonzero. The following result
shows that this is possible, even though we work over a field of characteristic two.

Proposition 8.9 (Testing for Disjoint Paths). The polynomial Fdisj is nonzero if and only
if G contains disjoint si ⇝ ti shortest paths for i ∈ [2].

Proof. If G does not have disjoint si ⇝ ti shortest paths, then Fdisj is the zero polynomial
by definition. If instead G does contain disjoint si ⇝ ti shortest paths Pi, then Fdisj contains
the monomial ξ(P1, P2). By looking at the set of variables xe which appear in this monomial,
we can recover the set E of all edges used by the paths P1 and P2. Because the Pi are disjoint

168

si ⇝ ti paths, Pi is the unique si ⇝ ti contained in the subgraph of G on E for each i ∈ [2].
Consequently, the monomial ξ(P1, P2) uniquely encodes ⟨P1, P2⟩, and no other monomial
appearing in Fdisj cancels it out. So Fdisj is a nonzero polynomial.

This proves the desired result. ■

To compute Fdisj, we need to find a way of enumerating disjoint standard pairs of paths.
Doing this directly seems difficult, because it is unclear how to enforce the condition that two
paths never intersect. Instead, it might be easier to compute Fdisj indirectly, by enumerating
all standard pairs of paths, and then substracting out those pairs which intersect.

Idea 14 Instead of enumerating pairs of disjoint paths directly, we can count the com-
plement and enumerate pairs of intersecting paths instead.

Intersecting paths should intuitively be easier to work with, because we can split them
along their intersection points into smaller paths.

Before we can enumerate pairs of paths, we should figure how to enumerate collections
of individual paths. In Sections 7.2 and 7.3 we saw ways of enumerating paths using matrix
inverses and determinants. These methods would take Ω(nω) time however, which is too
slow to prove Theorems 8.1 and 8.2. Since we are aiming for linear-time algorithms, we
cannot afford to enumerate paths between all pairs of vertices in G. We can however afford
to enumerate paths leaving and entering terminals in G.

For each i ∈ [2] and vertex v, let Li(v) be the enumerating polynomial for the collection
of si ⇝ v paths in Gi. Similarly, let Ri(v) be the enumerating polynomial for the collection
of v ⇝ ti paths in Gi. The same simple procedure for computing single-source shortest
distances in a DAG enables us to efficiently compute the Li(v) and Ri(v) polynomials.

Lemma 8.10 (Source Paths). For each i ∈ [2] and vertex v, we have

Li(v) =
∑

u∈V i
in(v)

Li(u)xuv.

Proof. Since Li(u) enumerates si ⇝ u paths in Gi, the polynomial

Li(u)xuv

enumerates si ⇝ v paths in Gi whose penultimate vertex is u. Every si ⇝ v path in Gi has
some unique penultimate vertex u ∈ V i

in(v). Consequently∑
u∈V i

in(v)

Li(u)xuv

enumerates all si ⇝ v paths in Gi, which proves the claim. ■

Lemma 8.11 (Target Paths). For each i ∈ [2] and vertex v, we have

Ri(v) =
∑

w∈V i
out(v)

xvwRi(v).

169

Proof. Follows from symmetric reasoning to the proof of Lemma 8.10. ■

Corollary 8.12 (Evaluating Paths). Given an assignment to the xuv variables over F, we
can evaluate Li(v) and Ri(v) at that assignment for all vertices v and i ∈ [2] in linear time.

Proof. By Proposition 8.4, we can find a topological order (≺) of Gi in linear time. Let

v1 ≺ · · · ≺ vr

be all the nodes of G occurring after s in the topological order. Let v0 = s.
We can return Li(v) = 0 for all v ̸∈ v0, . . . , vr, since any such node v is not reachable

from s. We can return Li(s) = 1, since the one-node path ⟨s⟩ is assigned weight 1.
For each j ∈ [r], by Lemma 8.10 we have

Li(vj) =
∑

u∈V i
in(vj)

Li(u)xuvj .

We can evaluate Li(vj) at the given assignment for j = 1, . . . , r in order, using the above
equation. At iteration j, we compute Li(vj) using the values of Li(u) for u ≺ vj (which will
have already been computed since we are proceeding according to the topological order) and
the values assigned to the variables xuvj . It takes O(degin(vj)) time to compute Li(vj) in
this way for each j ∈ [r], so the process takes O(m) time overall.

Doing this for each i ∈ [2] allows us to evaluate all the Li(v) in linear time. Symmetric
reasoning (using Lemma 8.11 and dynamic programming backwards with respect to the
topological order) shows that we can also evaluate all the Ri(v) in linear time. ■

So in linear time, we can compute all the Li(v) and Ri(v) polynomials, enumerating all
shortest paths leaving the sources and entering the targets.

As suggested by Idea 14, we can use these polynomials to reduce the enumeration of
disjoint paths to the enumeration of intersecting paths.

Definition 8.13 (Intersecting Paths Polynomial). Let F∩ be the enumerating polynomial
for the collection of intersecting, standard pairs of paths.

Lemma 8.14 (Disjoint Paths ≤ Intersecting Paths). We have

Fdisj = L1(t1)L2(t2)− F∩.

Proof. By expanding out the product, we see that L1(t1)L2(t2) enumerates all standard pairs
of paths ⟨P1, P2⟩. Each such pair is either vertex-disjoint or consists of paths intersecting at
a common node, so we have

L1(t1)L2(t2) = Fdisj + F∩

which implies the desired result. ■

The relationship from Lemma 8.14 between Fdisj and F∩ is pictured in Figure 4.
So to compute Fdisj, it suffices to compute F∩.

170

= −

Figure 4: To enumerate the family of disjoint pairs of paths on the left (the dashed borders
around the paths indicate that the paths do not intersect), it suffices to enumerate all pairs of paths
and subtract out those pairs in the family which intersect at some point.

To compute F∩, we need to enumerate intersecting, standard pairs of paths. Any standard
pair ⟨P1, P2⟩ of intersecting paths has a unique first intersection point v. Formally, vertex v
is defined to be the first node of P1 which lies in P1 ∩ P2. The paths uniquely decompose as

Pi = Ai ⋄Bi,

where Ai is an si ⇝ v path and Bi is a v ⇝ ti path in Gi for i ∈ [2], such that A1 and A2

intersect only at v.
We say the pair of paths ⟨A1, A2⟩ forms a linkage, because they link the terminal nodes

to a common endpoint v, but are disjoint otherwise.

Definition 8.15 (Source Linkages). Given a vertex v, let S(v) be the collection of pairs of
paths ⟨P1, P2⟩ such that each Pi is an si ⇝ v path in Gi, and P1 ∩ P2 = {v}. Let S(v) be
the enumerating polynomial for S(v).

Since linkages naturally arise when we decompose intersecting pairs of paths, it seems like
enumerating linkages should help compute F∩. As with Fdisj however, it is not immediately
clear how to enumerate linkages, because the condition that they are internally vertex-disjoint
is a general “global” condition that seems difficult to enforce.

We can try repeating the strategy of Idea 14, and compute S(v) by first enumerating all
pairs of paths ⟨P1, P2⟩ where Pi is an si ⇝ v path in Gi, and then subtracting out those where
the Pi intersect at some node before v. The Pi paths could intersect in fairly complicated
ways however—how can we enumerate all such intersecting pairs?

The key idea we can use at this point is that because we are working over a field F of
characteristic two, many pairs of intersecting paths actually cancel out in our enumeration.
Indeed, as above consider a pair of paths ⟨P1, P2⟩ such that Pi is an si ⇝ v path in Gi, such
that P1 and P2 intersect at some node u before v. If the subpaths P1[u, v] and P2[u, v] are
distinct, then we can form a new pair of paths ⟨Q1, Q2⟩ by

Q1 = P1[s1, u] ⋄ P2[u, v] and Q2 = P2[s2, u] ⋄ P1[u, v]

swapping the u ⇝ v subpaths of P1 and P2. Since the edges traversed by the Q1 are
identical to the edges traversed by the Pi, both pairs of paths will have the same weight
ξ(P1, P2) = ξ(Q1, Q2). Then modulo two, the weights ξ(P1, P2) and ξ(Q1, Q2) will cancel out
when we enumerate these pairs of paths. This means that when we are subtracting out pairs
of paths that intersect somewhere before v (in order to compute S(v)), we do not need to
explicitly handle those pairs that intersect at a node u and have different u ⇝ v subpaths,

171

because the contributions from such pairs will cancel over F anyway. We only need to worry
about subtracting out those paths which intersect along a full segment leading up to v, which
should intuitively be easier to handle, since such pairs of paths are quite structured.

Idea 15 When we enumerate modulo two, the only intersecting pairs of paths which
survive are those that overlap on a single segment. In particular, the contributions from
the more complicated intersecting pairs of paths vanish for free.

We note that the general phenomenon of disjoint path structures simplifying modulo two
has been used in algorithms many times before (e.g., see [BHT12, BH19, BHK22]). This
simplification appears to be connected to the idea of permanents reducing to determinants
modulo two, discussed at the beginning of Chapter 6.

Based off the intuition above, we next introduce some lemmas which help identify com-
mon situations where enumerating polynomials simplify modulo two. The main idea is that
enumerating polynomials for a family F can be simplified whenever we can identify a sub-
family V ⊆ F of pairs of paths which admits a nice subpath swapping involution.

Subpath Swapping

Lemma 8.16 (Shortest Path Swapping). Let P1 and P2 be shortest paths passing through
vertices a and b in that order. Then the walks obtained by swapping the a⇝ b subpaths in
P1 and P2 are also shortest paths.

Proof. Since P1 and P2 are shortest paths, each of their a⇝ b subpaths have length dist(a, b).
Since these subpaths have the same length, swapping these subpaths of P1 and P2 produce
walks with the same endpoints and lengths as P1 and P2 respectively. Since P1 and P2 are
shortest paths, this implies that the new walks are shortest paths as well. Here, we are using
the fact that we work over graphs with positive edge weights, so that any walk whose length
equals to the shortest path distance between its endpoints cannot have repeat vertices. ■

Lemma 8.16 says that swapping subpaths between shortest paths is a “safe operation,” in
the sense after the subpaths swap we are still working with shortest paths. We will use this
observation to argue correctness for the subpath swapping argument we informally discussed
in the paragraph before Idea 15.

The following lemma describes a general setting in which we can simplify enumerating
polynomials for pairs of paths modulo two, by matching up different pairs via subpaths
swaps. We will make use of it frequently when proving correctness of our 2-DSP algorithms.

Lemma 8.17 (Vanishing Modulo 2). Let F be a family of pairs of paths in G, and let V ⊆ F .
Suppose there exist maps α, β : V ! V and Φ : V ! V such that for all P = ⟨P1, P2⟩ ∈ V ,

1. the vertices a = α(P) and b = β(P) lie in P1 ∩ P2, a appears before b in P1 and P2,
and the subpaths P1[a, b] and P2[a, b] are distinct;

2. Φ(P) = ⟨Q1, Q2⟩, where Q1 is obtained by replacing the a ⇝ b subpath in P1 with
P2[a, b], and Q2 is obtained by replacing the a⇝ b subpath in P2 with P1[a, b]; and

3. we have Φ(Φ(P)) = P .

172

s1

s2

a b

t1

t2

s1

s2

a b

t1

t2

Figure 5: Given paths P1 and P2 which intersect at nodes a = α(P1, P2) and b = β(P1, P2),
such that a appears before b on both paths, if we swap the a to b subpaths of of P1 and P2 to
produce new paths Q1 and Q2 respectively, then these pairs ξ(P1, P2) = ξ(Q1, Q2) have the same
monomials. Moreover, swapping the a to b subpaths of Q1 and Q2 recovers P1 and P2.

Then the enumerating polynomial for F is the same as the enumerating polynomial for F\V .

Proof. Let F be the enumerating polynomial for F . By definition, we have

F =
∑
P∈F

ξ(P) =
∑

P∈F\V

ξ(P) +
∑
P∈V

ξ(P). (114)

Take any P = ⟨P1, P2⟩ ∈ V . By property 1 from the lemma statement, the subpaths from
α(P) to β(P) in P1 and P2 are distinct. Then by property 2, Φ(P) ̸= P . Consequently,
by property 3, we can partition V = V1 ∪ V2 into two equally sized pieces such that Φ is a
bijection from V1 to V2. So we can write∑

P∈V

ξ(P) =
∑
P∈V1

ξ(P) +
∑
P∈V2

ξ(P) =
∑
P∈V1

(ξ(P) + ξ(Φ(P))) . (115)

By property 2, the multiset of edges traversed by the pair P is the same as the multiset of
edges traversed by Φ(P), for all P ∈ V . Consequently, ξ(P) = ξ(Φ(P)) for all P ∈ V .

The subpath swapping procedure determined by Φ is depicted in Figure 5.
Since we work over a field of characteristic two, this implies that∑

P∈V1

(ξ(P) + ξ(Φ(P))) = 0.

Substituting the above equation into eq. (115) implies that∑
P∈V

ξ(P) = 0.

Then substituting the above equation into eq. (114) yields

F =
∑

P∈F\V

ξ(P).

This proves that F is the enumerating polynomial for F \ V as desired. ■

173

In general, Lemma 8.17 is useful in situations where we have a “complicated” family of
pairs of paths F we need to enumerate. If we can identify a subfamily V ⊆ F for which there
exists maps α, β,Φ satisfying the conditions from the statement of Lemma 8.17 (intuitively,
these maps describe a way of matching up pairs of paths in V with equal weight), then
Lemma 8.17 says to enumerate F it suffices to enumerate the “simpler” family F \ V .

Having established these subpath swapping lemmas, we return to the task of enumer-
ating the collection of source linkages S(v) from Definition 8.15. Using Idea 15, we argue
that instead of enumerating S(v), it suffices to enumerate a simpler collection where the
disjointness condition of linkages is relaxed.

Definition 8.18 (Relaxed Source Linkage). Given a vertex v, let S̃(v) be the collection of
pairs of paths ⟨P1, P2⟩, where each Pi is an si ⇝ v-path in Gi, and the penultimate vertices
of P1 and P2 are distinct.

So while a pair of paths in S(v) cannot overlap at any vertex before v, a pair of paths
in the collection S̃(v) may overlap before v, as long as the paths in this pair do not overlap
immediately before v. The next lemma shows that modulo two, the enumerating polynomials
for S(v) and S̃(v) are the same. Recall from Definition 8.15 that we let S(v) denote the
enumerating polynomial for S(v).

Lemma 8.19. For any vertex v, the polynomial S(v) enumerates S̃(v).

Proof. For convenience, let F = S̃(v). Let

V = F \ S(v)

be the family of pairs of paths ⟨P1, P2⟩ where each Pi is an si ⇝ v path in Gi, such that

1. the paths P1 and P2 intersect at some vertex other than v, and

2. the vertices immediately before v on P1 and P2 are distinct.

Take arbitrary ⟨P1, P2⟩ ∈ V . Let u be the vertex in P1∩P2 maximizing the value of dist(u, v).
By condition 1 above, u ̸= v. By condition 2 above, P1[u, v] and P2[u, v] are distinct.

Now define walks

Q1 = P1[s1, u] ⋄ P2[u, v] and Q2 = P2[s2, u] ⋄ P1[u, v].

By Lemma 8.16 each Qi is a shortest path, and thus an si ⇝ v path in Gi.
The pair ⟨Q1, Q2⟩ satisfies condition 1 above, since u ∈ Q1 ∩Q2. This pair also satisfies

condition 2 above, since the penultimate vertices of Q1 and Q2 are the same as the penulti-
mate vertices of P2 and P1 respectively. Also, u is the node in Q1∩Q2 maximizing dist(u, v),
so applying the same subpath swapping operation from above to ⟨Q1, Q2⟩ produces ⟨P1, P2⟩.

By the discussion in the previous paragraph, the map α sending ⟨P1, P2⟩ to node u,
the map β sending ⟨P1, P2⟩ to node v, and the map Φ sending ⟨P1, P2⟩ to ⟨Q1, Q2⟩ meet
the conditions of Lemma 8.17, so the enumerating polynomial for F is the same as the
enumerating polynomial for F \V = S(v). The enumerating polynomial for S(v) is S(v), so
this proves the desired result. ■

174

By Lemma 8.19, instead of trying to enumerate S(v) directly, which seems difficult,
we can instead focus on enumerating S̃(v), whose conditions seems easier to handle. The
high-level strategy being employed is summarized in the idea below.

Idea 16 When enumerating pairs of paths modulo two, we can replace global con-
ditions about paths not intersecting anywhere outside a node v with simpler local
conditions about paths not intersecting immediately before or after v.

Lemma 8.20 (Enumerating Source Linkages). For each vertex v, we have

S(v) = L1(v)L2(v)−
∑

u∈Vin(v)

L1(u)L2(u)x
2
uv.

Proof. To prove the lemma, we first establish the following claim.

▷ Claim 8.21. For any vertices u and v with u ∈ Vin(v), the polynomial

L1(u)L2(u)x
2
uv (116)

enumerates the collection of pairs of paths ⟨P1, P2⟩ such that each Pi is an si ⇝ v path with
final edge (u, v).

Proof. Let ⟨P1, P2⟩ be a pair of paths where each Pi is an si ⇝ v path with final edge (u, v).
Then we can split the Pi along their final edges as

P1 = P1[s1, u] ⋄ (u, v) and P2 = P2[s2, u] ⋄ (u, v).

The paths Pi[si, u] are enumerated by the Li(u) factors in eq. (116), and the two copies of
(u, v) are encoded by the x2uv factor in eq. (116). Conversely, any monomial in the expansion
of eq. (116) is the product of monomials for some si ⇝ u paths Qi in Gi and two occurrences
of the edge (u, v), so that if we define

P1 = Q1 ⋄ (u, v) and P2 = Q2 ⋄ (u, v)

then the monomial we are considering is precisely ξ(P1, P2). This proves the claim. Note
that we used the fact that u ∈ Vin(v) to ensure that (u, v) is an edge in both G1 and G2.

By expanding out the definitions of L1(v) and L2(v) in the product product, we see that

L1(v)L2(v)

enumerates all pairs of paths ⟨P1, P2⟩ where Pi is an si ⇝ v path in Gi. By summing the
enumerating polynomials from Claim 8.21 for each u ∈ Vin(v), we see that∑

u∈Vin(v)

L1(u)L2(u)x
2
uv

enumerates all pairs of paths ⟨P1, P2⟩ where Pi is an si ⇝ v path in Gi, and the penultimate
vertices of the Pi are the same.

175

=
∑
v∈V

v

Figure 6: To enumerate the family of intersecting pairs of paths on the left, we can perform
casework on the earliest intersection point v for the paths (the dashed border on the subpaths on
the right indicates that the paths do not intersect before v).

By subtracting the polynomials from the two previous equations, we get that

L1(v)L2(v)−
∑

u∈Vin(v)

L1(u)L2(u)x
2
uv

enumerates all pairs of paths ⟨P1, P2⟩ where each Pi is an si ⇝ v path in Gi, and the
penultimate vertices of the Pi are distinct.

Consequently, the above equation is the enumerating polynomial for S̃(v). By Lemma 8.19,
this implies that

S(v) = L1(v)L2(v)−
∑

u∈Vin(v)

L1(u)L2(u)x
2
uv.

as desired. ■

In the next section, we use our construction from Lemma 8.20 of the enumerating poly-
nomial for S(v) to construct Fdisj when G is a weighted DAG.

8.4 Directed Acyclic Graphs

In this section, we assume that G is a weighted DAG, and fix a topological order (≺) of G.
As noted in Lemma 8.14, to compute Fdisj it suffices to compute F∩, the enumerating

polynomial for intersecting, standard pairs of paths. We perform this enumeration by case-
work on the first intersection v of the pair of paths. Here “first intersection” means that
v is the earliest node in both paths with respect to the topological order of G. We then
(implicitly) use Lemma 8.19 to relax the global condition that the pair of paths have first
intersection at v to the simpler local condition that the pair intersects at v, and does not
intersect at the node immediately before v.

This overall strategy is depicted in Figures 6 and 7.

Lemma 8.22 (Enumerating Intersecting Paths). We have

F∩ =
∑
v∈V

S(v)R1(v)R2(v).

Proof. The lemma follows from the following claim.

176

v
≡

v
(mod 2)

Figure 7: If we work modulo two, then we can enumerate pairs of paths which have common
first intersection at node v by enumerating pairs of paths which intersect at v and have the property
that the vertices appearing immediately before v on each path are distinct.

▷ Claim 8.23. For any vertex v, the polynomial

S(v)R1(v)R2(v) (117)

enumerates the standard pairs ⟨P1, P2⟩ such that P1 and P2 have first intersection at v.

Proof. Let ⟨P1, P2⟩ be a standard pair with first intersection at v. Then we can decompose

Pi = Pi[si, v] ⋄ Pi[v, ti]

for each i ∈ [2], and observe that the pair ⟨P1[s1, v], P2[s2, v]⟩ is enumerated by the S(v)
factor in eq. (117), while the Pi[v, ti] paths are enumerated by the respective Ri(v) factors
from eq. (117).

Conversely, any monomial in the expansion of eq. (117) is the product of a monomial
from S(v) with monomials from Ri(v) for i ∈ [2]. Any monomial from S(v) is of the form
ξ(A1, A2), where each Ai is an si ⇝ v path in Gi such that A1 and A2 only intersect at v.
For each i ∈ [2], any monomial from Ri is of the form ξ(Bi), where Bi is a v ⇝ ti path in
Gi. Then if we define

Pi = Ai ⋄Bi

we see that the Pi are si ⇝ ti paths in Gi with the property that P1 and P2 have first
intersection at v. Here, we are using the fact that G is a DAG—this ensures that every node
in A1 or A2 appears at or before v in the topological order, and that every node in B1 or B2

appears at or after v in the topological order, so that A1 ∩B2 = A2 ∩B1 = {v}.

Since G is a DAG, every intersecting pair of paths intersects at some unique earlier vertex.
Then by Claim 8.23, the polynomial∑

v∈V

S(v)R1(v)R2(v)

enumerates all intersecting, standard pairs of paths ⟨P1, P2⟩. This proves the lemma. ■

Having established a formula for F∩ in Lemma 8.22, we present our algorithm for solving
2-DSP in weighted DAGs in Algorithm 9. Note that in the algorithm, we never compute poly-
nomials explicitly, and instead compute polynomial evaluations with respect to the random
assignment in step 2 of Algorithm 9.

Lemma 8.24. Algorithm 9 solves 2-DSP in weighted DAGs with high probability.

177

Algorithm 9. The 2-DSP Algorithm in Directed Acyclic Graphs

Inputs: A directed acyclic graph G, with specified sources s1, s2 and targets t1, t2.
Returns: YES if G contains disjoint si ⇝ ti shortest paths for i ∈ [2], NO otherwise.

1. For each i ∈ [2], compute the si-shortest paths DAG Gi.

2. Assign independent, uniform random values xuv from F for each (u, v) ∈ E.

3. For every vertex v and each i ∈ [2], compute Li(v) and Ri(v).

4. For every vertex v, compute

S(v) = L1(v)L2(v)−
∑

u∈Vin(v)

L1(u)L2(u)x
2
uv.

5. Compute
F∩ =

∑
v∈V

S(v)R1(v)R2(v).

6. Compute
Fdisj = L1(t1)L2(t2)− F∩.

Return YES if Fdisj is nonzero, NO if Fdisj is zero.

Proof. By Lemma 8.20, step 4 of Algorithm 9 correctly computes S(v) for each vertex v.
By Lemma 8.22, step 5 of Algorithm 9 correctly computes F∩.
By Lemma 8.14, step 6 of Algorithm 9 correctly computes Fdisj.
By Proposition 8.9, Fdisj is a nonzero polynomial if and only if G contains vertex-disjoint

si ⇝ ti shortest paths for i ∈ [2]. By definition, Fdisj is a polynomial of degree at most 2n.
Then by Proposition 6.1 and our choice of q in eq. (111), with high probability the evaluation
of Fdisj on the random assignment from step 2 of Algorithm 9 is nonzero if and only if G
contains a solution to the 2-DSP problem. Thus with high probability, Algorithm 9 returns
the correct answer to the 2-DSP problem in step 6. ■

Proof of Theorem 8.2. By Lemma 8.24, Algorithm 9 solves the 2-DSP problem in weighted
DAGs. It remains to prove that we can implement Algorithm 9 to run in linear time.

Step 1 of Algorithm 9 takes linear time by Proposition 8.7.
Step 2 of Algorithm 9 takes linear time because we spend O(1) time at each edge of G.
Step 3 of Algorithm 9 takes linear time by Corollary 8.12.
For each fixed vertex v, computing S(v) using the formula in step 4 of Algorithm 9 takes

O(degin(v)) time. Summing this runtime bound over all vertices v, we see that step 4 of
Algorithm 9 takes O(m) time.

Step 5 of Algorithm 9 takes O(n) time since we add and multiply O(n) terms.
Step 6 of Algorithm 9 takes O(1) time given our previous computations.

178

So overall Algorithm 9 runs in linear time as claimed. ■

8.5 Undirected Graphs

In this section, we assume that G is a weighted undirected graph.
Our goal is to solve 2-DSP in weighted undirected graphs. We continue the approach be-

gun in Section 8.3, and aim to compute F∩ efficiently, by enumerating intersecting, standard
pairs of paths. As pictured in Figure 6, we will perform this enumeration by casework on
the first intersection v of the pairs of paths ⟨P1, P2⟩. By “first intersection” we mean that v
is the first vertex of P1 lying in P1 ∩ P2.

In the case of DAGs, we were able to use the simple formula from Claim 8.23 to enumerate
standard pairs of paths with first intersection v, because the topological order ensured that
v was also the first vertex of P2 lying in P1 ∩ P2. This no longer holds in undirected graphs,
as shown in Figure 8 for example.

Even though this property no longer holds, the Pi are shortest paths, and so intuitively
cannot intersect in an arbitrary manner—there should still be useful structure we can impose
on the ways P1 and P2 can overlap.

Shortest Paths Structure

The following observation will help us constrain how shortest paths can overlap in G.

Proposition 8.25 (Shortest Path Orderings). Let G be a weighted undirected graph. Sup-
pose vertices a, b, c appear in that order on some shortest path of G. Then on any shortest
path in G passing through these three vertices, b appears between a and c.

Proof. Since some shortest path in G passes through vertices a, b, c in that order, we know
that dist(a, b) and dist(b, c) are both less than dist(a, c).

Now, consider any shortest path in G which passes through these three vertices.
If a appears between b and c in this shortest path, then

dist(a, c) < dist(b, c)

which contradicts the observation from the first sentence.
Similarly, if c appears between a and b in this shortest path, then

dist(a, c) < dist(a, b)

which again contradicts the observation from the first sentence of this proof.
Note that in the arguments above, we used the facts that dist(u, v) = dist(v, u) for any

vertices u and v in an undirected graph, and that G has positive edge weights.
Thus b must appear between a and c on the shortest path as claimed. ■

Using Proposition 8.25, we can classify the ways two shortest paths can overlap.

Definition 8.26 (Intersection Types). Let P1 and P2 be intersecting shortest paths in a
weighted undirected graph. Let v be the first vertex in P1 lying in P1 ∩ P2.

179

s1 s2

t1t2

v w

s1 s2

t1t2

v w

Figure 8: The unweighted undirected graph G depicted on the left has unique si ⇝ ti shortest
paths Pi, for i ∈ [2]. As shown on the right, the first vertex on P1 lying in P1 ∩ P2 is node v, which
is distinct from w, the first vertex on P2 lying in P1 ∩ P2. Here P1 and P2 are reversing paths, as
defined in Definition 8.26. Reversing paths can appear in undirected graphs, but not in DAGs.

• If P1 ∩ P2 = {v}, we say P1 and P2 have single intersection.

• If |P1 ∩ P2| ≥ 2 and v is also the first vertex of P2 in P1 ∩ P2, we say P1 and P2 agree.

• If |P1∩P2| ≥ 2 and v is the last vertex of P2 in P1∩P2, we say P1 and P2 are reversing.

If paths P1 and P2 do not agree, we say they disagree, i.e., have single intersection or are
reversing. Equivalently, P1 and P2 disagree if the first vertex v in P1 lying in P1 ∩ P2 is also
the last vertex in P2 lying in P1 ∩ P2.

Lemma 8.27 (Intersection Types are Exhaustive). Let P1 and P2 be intersecting shortest
paths in a weighted undirected graph. Then P1 and P2 either agree, are reversing, or have
single intersection.

Proof. If |P1 ∩ P2| = 1, then the paths have single intersection.
Otherwise, |P1 ∩ P2| ≥ 2. Let v be the first vertex in P1 lying in P1 ∩ P2. To prove the

lemma, it suffices to show that v is either the first or last vertex in P2 lying in P1 ∩ P2.
Suppose to the contrary that v is not the first or last vertex of P2 in P1 ∩ P2.
Let u and w be the first and last vertices respectively in path P2 appearing in P1 ∩ P2.

By assumption, u, v, w are all distinct. By definition, P2 passes through u, v, w in that order.
Since P2 is a shortest path, by Proposition 8.25, v must appear between u and w on P1. This
contradicts the definition of v as the first vertex on P1 lying in the intersection P1 ∩ P2.

Thus our initial assumption was false, and the paths P1 and P2 must agree or be reversing
whenever |P1 ∩ P2| ≥ 2, which proves the desired result. ■

By Lemma 8.27, we can enumerate intersecting, standard pairs of paths ⟨P1, P2⟩ by
casework on the type of intersection they have, from the options listed in Definition 8.26.
One issue we run into if we attempt to use this strategy, is that it is not clear how to
enumerate standard pairs with single intersection in linear time.

Indeed, fix a vertex v. Suppose we want to enumerate standard pairs ⟨P1, P2⟩ with single
intersection at v. Let ai and bi denote the vertices appearing on Pi immediately before and
after v respectively. Using subpath swapping arguments and the strategy of Idea 16, we can
show that this enumeration is equivalent, modulo two, to the task of enumerating standard
pairs ⟨P1, P2⟩ such that a1 ̸∈ {b1, b2} and b1 ̸∈ {a1, a2}. The natural way to enumerate
such pairs for fixed v is to use the principle of inclusion-exclusion on the conditions for the
vertices a1 and b1, which can take Ω(degin(v) degout(v)) time in general (intuitively because

180

in one term of the inclusion-exclusion expansion, we would need to enumerate the case where
a1 = b1 and a2 = b2, and in this situation a1 could be any vertex in Vin(v) and a2 could be
any vertex in Vout(v)). Doing this for all vertices v would then take Ω(mn) time, which is
too slow for our purposes.

The takeaway from the previous paragraph is that naively enumerating intersecting,
standard pairs of paths for the intersection types from Definition 8.26 separately does not
seem to yield a linear-time algorithm for computing F∩.

However, it turns out that a minor change to this approach does work. Specifically, if
we bundle the pairs which are reversing or have single intersection into a single group of the
disagreeing, standard pairs of paths, this collection can be enumerated in linear time using
the idea of Idea 16. Similarly, the remaining group of agreeing, standard pairs of paths can
be enumerated efficiently.

We introduce polynomials enumerating these collections of paths.

Definition 8.28 (Agreeing Paths Polynomial). Let Fagree be the enumerating polynomial
for the collection of standard pairs of paths which agree.

Definition 8.29 (Disagreeing Paths Polynomial). Let Fdis be the enumerating polynomial
for the collection of standard pairs of paths which disagree.

Lemma 8.30. We have
F∩ = Fagree + Fdis.

Proof. This follows immediately from the fact that any intersecting shortest paths either
agree or disagree, by Lemma 8.27. ■

Motivated by Lemma 8.30, we next focus on computing Fagree and Fdis efficiently.

Agreeing Paths

In this subsection, we show how to compute Fagree efficiently.
Any shortest paths P1 and P2 which agree have a common first intersection by defini-

tion. The next lemma shows that they these paths also have a common final intersection.
Intuitively, this is because agreeing paths have a consistent shortest path ordering.

Lemma 8.31 (Common Final Intersection). If paths P1 and P2 agree, then they have a
common last intersection point, distinct from their common first intersection point.

Proof. Since P1 and P2 agree, they have a common first intersection at some vertex v. Then
the vertex w ∈ P1 ∩P2 which maximizes dist(v, w) must be the last node on both P1 and P2

in P1 ∩ P2. Since the paths agree, we have |P1 ∩ P2| ≥ 2, so w ̸= v. ■

From the intuition of Idea 15, the only agreeing, standard pairs of paths with first inter-
section v, that have nonzero contribution when we are enumerating modulo two should be
those pairs which overlap at a segment beginning at vertex v. In particular, we should only
have to enumerate those pairs which overlap at some edge (v, w) exiting v.

Next, we introduce the collection of pairs of paths satisfying the properties discussed in
the previous paragraph, and then prove that Fagree enumerates this collection.

181

Definition 8.32 (Edge-Agreeing). We say a pair of paths ⟨P1, P2⟩ is edge-agreeing if each
Pi is an si ⇝ ti path in Gi, and P1 and P2 traverse a common edge in the same direction.

Since Gi is the si-shortest paths DAG of G, the paths in an edge-agreeing pair are always
shortest paths. In fact, an edge-agreeing pair is always a standard pair.

Lemma 8.33 (Edge-Agreeing ⊆ Agreeing). Any edge-agreeing pair of paths is agreeing.

Proof. Suppose a pair of paths ⟨P1, P2⟩ is edge-agreeing. Let e = (a, b) be an edge traversed
by both P1 and P2 (by definition, such an edge exists).

Since {a, b} ⊆ P1 ∩ P2, we have |P1 ∩ P2| ≥ 2.
Then by Lemma 8.27, P1 and P2 are either agreeing or reversing.
Suppose to the contrary that P1 and P2 are reversing paths. Let v be the first vertex in

path P1 lying in P1 ∩ P2. Then v ̸= b, since a appears before b on P1.
Since the paths are reversing, v is the final vertex in P2 lying in P1 ∩ P2. Then v ̸= a,

since b appears after a on P2. Path P1 passes through vertices v, a, b in that order. Since
the Pi are si ⇝ ti paths in Gi, the Pi are shortest paths. Then by Proposition 8.25, a must
appear between v and b on any shortest path containing these three vertices. However, this
contradicts the fact that b is between a and v on P2.

Thus P1 and P2 are not reversing, and so must agree as claimed. ■

Next, we invoke Lemma 8.17 to show that the enumerating polynomials for agreeing,
standard pairs of paths and edge-agreeing pairs are the same.

Lemma 8.34. The polynomial Fagree enumerates the family of edge-agreeing pairs of paths.

Proof. Let F be the collection of agreeing, standard pairs of paths ⟨P1, P2⟩.
Let Fedge be the family of edge-agreeing pairs of paths.
By Lemma 8.33, we have Fedge ⊆ F .
Let V = F\Fedge be the collection of pairs of paths which agree but are not edge-agreeing.
Take arbitrary ⟨P1, P2⟩ ∈ V . Since ⟨P1, P2⟩ is agreeing, P1 and P2 have a unique first

intersection v. By Lemma 8.31, these paths also have a unique last intersection w ̸= v.
Hence, we can decompose the paths into

P1 = P1[s1, v] ⋄ P1[v, w] ⋄ P1[w, t1] and P2 = P2[s2, v] ⋄ P2[v, w] ⋄ P2[w, t2].

Now define walks

Q1 = P1[s1, v] ⋄ P2[v, w] ⋄ P1[w, t1] and Q2 = P2[s2, v] ⋄ P1[v, w] ⋄ P2[w, t2]

by swapping the v ⇝ w subpaths of P1 and P2.
By Lemma 8.16 each Qi is a shortest path, and thus an si ⇝ ti path in Gi.
Since P1 and P2 are not edge-agreeing, the subpaths P1[v, w] and P2[v, w] are distinct.
The si ⇝ v subpaths of each Qi and Pi are the same, so Q1 and Q2 have common first

intersection at v. Hence paths Q1 and Q2 agree, so ⟨Q1, Q2⟩ ∈ F .
Since ⟨P1, P2⟩ is not edge-agreeing, neither is ⟨Q1, Q2⟩. So ⟨Q1, Q2⟩ ̸∈ Fedge.
Since ⟨Q1, Q2⟩ is in F but not in Fedge, we have ⟨Q1, Q2⟩ ∈ V .

182

Since the w ⇝ ti subpaths of each Qi and Pi are the same, Q1 and Q2 have common last
intersection at w. So the common first intersection v and common last intersection w are
the same for the pairs ⟨P1, P2⟩ and ⟨Q1, Q2⟩. Moreover, swapping the v ⇝ w subpaths of
paths Q1 and Q2 recovers paths P1 and P2 respectively.

The above discussion implies that the map α sending ⟨P1, P2⟩ to node v, the map β
sending ⟨P1, P2⟩ to node w, and the map Φ sending ⟨P1, P2⟩ to ⟨Q1, Q2⟩ meet the conditions of
Lemma 8.17, so the enumerating polynomial for F is the same as the enumerating polynomial
for F \ V = Fedge. The enumerating polynomial for F is Fagree.

Thus the enumerating polynomial for Fedge is Fagree as well, proving the claim. ■

We now use the polynomials introduced in Section 8.3 to construct a formula for Fagree.
The formula is similar to the expression for F∩ over weighted DAGs presented in Lemma 8.22.
Intuitively this makes sense, because agreeing pairs of shortest paths have a common first
intersection, and so behave like shortest paths in DAGs.

Lemma 8.35 (Enumerating Agreeing Pairs). We have

Fagree =
∑
v∈V

∑
w∈Vout(v)

(
S(v)x2vw

)
R1(w)R2(w).

Proof. Let F be the family of edge-agreeing pairs. By Lemma 8.34, it suffices to show that∑
v∈V

∑
w∈Vout(v)

(
S(v)x2vw

)
R1(w)R2(w)

is the enumerating polynomial for F . To that end, the following claim about the individual
terms of the above sum will be useful.

▷ Claim 8.36. For any choice of vertices v and w with w ∈ Vout(v), the polynomial(
S(v)x2vw

)
R1(w)R2(w) (118)

enumerates all standard pairs of paths ⟨P1, P2⟩ such that P1 and P2 overlap at edge e = (v, w),
and have common first intersection at v.

Proof. Take any pair ⟨P1, P2⟩ satisfying the conditions from the statement of the claim. Then
we can decompose the Pi paths into

Pi = Pi[si, v] ⋄ (v, w) ⋄ Pi[w, ti]

such that the Pi[si, v] subpaths intersect only at v.
This means that the pair ⟨P1[s1, v], P2[s2, v]⟩ is enumerated by S(v), the two edges (v, w)

are enumerated by x2vw, and each path Pi[w, ti] is enumerated by Ri(w), so that the expansion
of the polynomial in eq. (118) includes the monomial ξ(P1, P2).

Conversely, any monomial in the expansion of eq. (118) is equal to the product of

• a monomial ξ(A1, A2) recording the edges traversed by some pair of paths ⟨A1, A2⟩
only intersecting at node v, where Ai is an si ⇝ v path in Gi;

183

• a monomial x2vw recording two copies of the edge (v, w); and

• the two monomials ξ(B1) and ξ(B2), where each Bi is a w ⇝ ti path in Gi.

The product of the above monomials is equal to the monomial

ξ(A1 ⋄ (v, w) ⋄B1, A2 ⋄ (v, w) ⋄B2).

Define the paths Pi = Ai ⋄ (v, w) ⋄Bi for each i ∈ [2].
Since Ai and Bi are paths in Gi, and (v, w) is an edge in both G1 and G2, we know that

each Pi is an si ⇝ ti shortest path.
We claim that A1 does not intersect B2.
Indeed, suppose to the contrary that A1 and B2 intersect at some vertex u. Then P1 is

a shortest path which passes through nodes u, v, w in that order, yet P2 is a shortest path
which passes through v, w, u in that order, which contradicts Proposition 8.25.

Thus A1 does not intersect B2 as claimed.
Symmetric reasoning shows that A2 does not intersect B1.
Thus the paths P1 and P2 have common first intersection at v. Then the pair ⟨P1, P2⟩

satisfies the conditions from the claim statement.
Since each pair ⟨P1, P2⟩ satisfying the conditions from the claim statement appears as a

monomial in eq. (118), and each monomial in eq. (118) is the weight assigned to some such
pair, eq. (118) is the enumerating polynomial for the collection of pairs of paths described
in the claim statement. This proves the desired result.

By Claim 8.36, the sum ∑
v∈V

∑
w∈Vout(v)

(
S(v)x2vw

)
R1(w)R2(w) (119)

enumerates all edge-agreeing pairs whose first intersection v is the beginning of an edge
traversed by both paths in the pair. Let Fstart be the set of such pairs, so that the polynomial
from eq. (119) enumerates Fstart.

We claim that the polynomial from eq. (119) also enumerates F .
To prove this, define V = F \ Fstart.
Take arbitrary ⟨P1, P2⟩ ∈ V . Since ⟨P1, P2⟩ is edge-agreeing, by Lemma 8.33 this pair

is agreeing. Hence P1 and P2 have a common first intersection at some vertex v. By
Lemma 8.31, these paths also have a common last intersection point at some node w ̸= v.
Since the pair is not in Fstart, the subpaths P1[v, w] and P2[v, w] are distinct.

Now define walks

Q1 = P1[s1, v] ⋄ P2[v, w] ⋄ P1[w, t1] and Q2 = P2[s2, v] ⋄ P1[v, w] ⋄ P2[w, t2]

by swapping the v ⇝ w subpaths of P1 and P2.
By Lemma 8.16 each Qi is a shortest path, and thus an si ⇝ ti path in Gi.
Since the Pi are edge-agreeing, and their edge overlap must occur in their v ⇝ w subpaths,

the Qi are also edge-agreeing. Since ⟨P1, P2⟩ is not in Fstart, vertex v is not the beginning
of a common edge traversed by the Pi. Thus, v is also not the beginning of a common edge
traversed by the Qi. This implies that ⟨Q1, Q2⟩ ∈ V .

184

Since the w ⇝ ti subpaths of each Qi and Pi are the same, Q1 and Q2 have common last
intersection at w. So the common first intersect v and common last intersection W are the
same for the pairs ⟨P1, P2⟩ and ⟨Q1, Q2⟩. Moreover, swapping the v ⇝ w subpaths of paths
Q1 and Q2 recovers paths P1 and P2 respectively.

Consequently, the map α sending ⟨P1, P2⟩ to node v, the map β sending ⟨P1, P2⟩ to node
w, and the map Φ sending ⟨P1, P2⟩ to ⟨Q1, Q2⟩ meet the conditions of Lemma 8.17, so the
enumerating polynomial for F is the same as the enumerating polynomial for F \V = Fstart.

Since eq. (119) is the enumerating polynomial for Fstart, by the previous paragraph it
enumerates F as well. By the discussion from the first paragraph of this proof, this implies
the desired result. ■

Disagreeing Paths

Let Fdis be the family of disagreeing, standard pairs of paths. In this subsection, we show
how to compute Fdis, the enumerating polynomial for Fdis, efficiently.

As with previous enumerations, we compute Fdis by following the strategy from Idea 16 to
argue that Fdis is the enumerating polynomial for a larger class B of pairs of paths containing
the family Fdis, defined by local constraints around a specified intersection point.

Definition 8.37 (Local Relaxation). For each vertex v, let B̃(v) be the set of standard pairs
of paths ⟨P1, P2⟩ intersecting at v, such that if we let ai and bi denote the nodes appearing
immediately before and after v on Pi respectively, then

1. a1 ̸= a2,

2. b1 ̸= b2, and

3. a1 ̸= b2.

Let B(v) ⊆ B̃(v) be the collection of pairs in B̃(v) such that v is the first vertex in P1 lying
in P1 ∩ P2. Then define the family

B =
⋃
v∈V

B(v)

by taking the disjoint union of the B(v) collections over all vertices v.

Our high-level approach for computing Fdis is as follows:

1. We use the strategy depicted in Figure 6, and for each vertex v, try to compute the
polynomial Fv which enumerates all disagreeing, standard pairs of paths ⟨P1, P2⟩ such
that v is the first vertex in P1 lying in P1 ∩ P2. Summing the Fv recovers Fdis.

2. We argue that each Fv is the enumerating polynomial for B(v), using Lemma 8.17.

3. We argue that the enumerating polynomials for B(v) and B̃(v) are the same for each v,
using Lemma 8.17 and additional subpath swapping arguments for undirected graphs.

4. We then enumerate each B̃(v) directly, using the conditions from Definition 8.37. By
steps 1 through 3 above, this then lets us compute Fdis.

185

This approach can be viewed as another manifestation of Idea 16.
Intuitively, using the subpath swapping idea shown in Figure 7, conditions 1 and 2 from

Definition 8.37 (that a1 ̸= a2 and a1 ̸= b2) ensure that v is the first vertex of P1 lying in
P1 ∩ P2, which helps us argue that B(v) and B̃(v) have the same enumerating polynomials.
Condition 3 from Definition 8.37 (that b1 ̸= b2) ensures that the paths disagree, which helps
us argue that Fdis and B have the same enumerating polynomials.

We begin with steps 1 and 2 above, and show that Fdis enumerates B.

Lemma 8.38. The enumerating polynomial for B is Fdis.

Proof. We start by observing that Fdis ⊆ B.

▷ Claim 8.39. We have Fdis ⊆ B.

Proof. Take arbitrary ⟨P1, P2⟩ ∈ Fdis.
By definition, ⟨P1, P2⟩ is a disagreeing, standard pair of paths. Let v be the first vertex

of P1 lying in P1 ∩ P2. Let ai and bi be the vertices immediately before and after v in Pi

for each i ∈ [2]. From the definition of v, we have a1 ̸= a2 and a1 ̸= b2. We also know that
b1 ̸= b2, because if b1 = b2 then P1 and P2 would be edge-agreeing, which by Lemmas 8.27
and 8.33 would contradict the fact that P1 and P2 disagree.

Thus ⟨P1, P2⟩ satisfies all the conditions from Definition 8.37, so this pair is in B. Since
our choice of ⟨P1, P2⟩ in Fdis was arbitrary, we have Fdis ⊆ B as claimed.

Our goal is to show that B and Fdis have the same enumerating polynomial.
To that end, let V = B \ Fdis be the collection of agreeing pairs in B.
Take arbitrary ⟨P1, P2⟩ ∈ V . Let v be the first common intersection of P1 and P2 (this

vertex exists because P1 and P2 agree). Let w ̸= v be the last common intersection of the
paths P1 and P2 (this vertex exists and is distinct from v by Lemma 8.31).

Now define walks

Q1 = P1[s1, v] ⋄ P2[v, w] ⋄ P1[w, t1] and Q2 = P2[s2, v] ⋄ P1[v, w] ⋄ P2[w, t2]

by swapping the v ⇝ w subpaths in P1 and P2.
By Lemma 8.16 each Qi is a shortest path, and thus an si ⇝ ti path in Gi.
Let ai and bi be the nodes appearing immediately before and after v respectively on Pi,

for i ∈ [2]. Similarly, let a′i and b′i be the nodes appearing immediately before and after v
respectively on Qi for i ∈ [2].

By the definitions of the Qi paths, we have a′1 = a1 and a′2 = a2, but b′1 = b2 and b′2 = b1.
Since ⟨P1, P2⟩ ∈ B, condition 1 of Definition 8.37 implies that a1 ̸= a2. This is equivalent

to a′1 ̸= a′2. Similarly, condition 2 of Definition 8.37 implies that b1 ̸= b2, which is equivalent
to b′1 ̸= b′2. Also, since a1 and b1 are distinct vertices on the path P1, we have a1 ̸= b1, which
is equivalent to a′1 ̸= b′2. Thus ⟨Q1, Q2⟩ ∈ B.

The si ⇝ v subpaths of Pi and Qi are the same for each i ∈ [2], so Q1 and Q2 have
common first intersection at v. Thus Q1 and Q2 agree, so ⟨Q1, Q2⟩ ̸∈ Fdis.

Since ⟨Q1, Q2⟩ is in B but not Fdis, we have ⟨Q1, Q2⟩ ∈ V .
Since b1 ̸= b2, the subpaths P1[v, w] and P2[v, w] are distinct.

186

Since the w ⇝ ti subpaths of Pi and Qi are the same for each i ∈ [2], Q1 and Q2 have
common last intersection at w, just like P1 and P2. Moreover, swapping the v ⇝ w subpaths
of paths Q1 and Q2 recovers paths P1 and P2 respectively.

The above discussion implies that the map α sending ⟨P1, P2⟩ to node v, the map β
sending ⟨P1, P2⟩ to node w, and the map Φ sending ⟨P1, P2⟩ to ⟨Q1, Q2⟩ meet the conditions of
Lemma 8.17, so the enumerating polynomial for B is the same as the enumerating polynomial
for B \ V = Fdis. The enumerating polynomial for Fdis is Fdis, which proves the lemma. ■

Having established that Fdis enumerates B, we move onto step 3 of our approach, and
argue that B(v) and B̃(v) have the same enumerating polynomial for each vertex v. To show
this, we will need a variant of the subpath swapping argument from Lemma 8.17, specialized
to undirected graphs, which will allow us to swap subpaths and reverse their direction.

Lemma 8.40 (Shortest Path Swapping and Reversing). Let P1 and P2 be shortest paths in
the weighted, undirected graph G. Let a and b be vertices in P1 ∩ P2, such that a appears
before b on P1, and b appears before a on P2. Then the walks obtained by replacing the
a ⇝ b subpath of P1 with the a ⇝ b subpath of

 −
P2, and replacing the b ⇝ a subpath of P2

with the b⇝ a subpath of
 −
P1 are shortest paths in G.

Proof. Since P1 is a shortest path, its a ⇝ b subpath has length dist(a, b). Since P2 is a
shortest path, its b⇝ a subpath has length dist(b, a). We have dist(a, b) = dist(b, a), because
G is undirected, so these subpaths and their reversals have the same length in G. Thus, the
walks constructed in the lemma statement by replacing subpaths have the same endpoints
and lengths as P1 and P2 respectively.

Since G has positive edge weights, any walk in G whose length equals the shortest path
distance between its endpoints cannot have repeat vertices. Since P1 and P2 are shortest
paths, this implies that the new walks are shortest paths as well. ■

Lemma 8.41 (Vanishing Modulo 2 in Undirected Graphs). Let F be a family of pairs of
paths in the undirected graph G, and let V ⊆ F . Suppose there exist maps α, β : V ! V
and Φ : V ! V such that for all P = ⟨P1, P2⟩ ∈ V ,

1. the vertices a = α(P) and b = β(P) lie in P1 ∩ P2, a appears before b in P1, b appears
before a in P2, and the subpaths P1[a, b] and

 −
P2[a, b] are distinct;

2. Φ(P) = ⟨Q1, Q2⟩, where Q1 is obtained by replacing the a ⇝ b subpath in P1 with
 −
P2[a, b], and Q2 is obtained by replacing the b⇝ a subpath in P2 with

 −
P1[a, b]; and

3. we have Φ(Φ(P)) = P .

Then the enumerating polynomial for F is the same as the enumerating polynomial for F\V .

Proof. The proof is nearly identical to the proof of Lemma 8.17.
Let F be the enumerating polynomial for F . By definition, we have

F =
∑
P∈F

ξ(P) =
∑

P∈F\V

ξ(P) +
∑
P∈V

ξ(P). (120)

187

s1

t2

a b

t1

s2

s1

t2

a b

t1

s2

Figure 9: Given paths P1 and P2 in an undirected graph which intersect at nodes a = α(P1, P2)
and b = β(P1, P2), such that a appears before b on P1 and b appears before a on P2, then if we
replace the a ⇝ b subpath of P1 with the a ⇝ b subpath of

 −
P2 and similarly replace the b ⇝ a

subpath of P2 with the b⇝ a subpath of
 −
P1 to produce new paths Q1 and Q2 respectively, then these

pairs ξ(P1, P2) = ξ(Q1, Q2) have the same weight. Moreover, repeating this subpath replacement
transformation on Q1 and Q2 recovers the pair ⟨P1, P2⟩. This operation is similar to the process
from Figure 5. The main difference here is that we use the fact that the graph is undirected, so
that edges may be traversed backwards.

Take any P = ⟨P1, P2⟩ ∈ V . By property 1 from the lemma statement, the α(P) to β(P)

subpath of P1 is not equal to the α(P) to β(P) subpath of
 −
P2. So by property 2 from the

lemma statement, Φ(P) ̸= P . Consequently, by property 3, we can partition V = V1 ∪ V2

into two equally sized pieces such that Φ is a bijection from V1 to V2. So we can write∑
P∈V

ξ(P) =
∑
P∈V1

ξ(P) +
∑
P∈V2

ξ(P) =
∑
P∈V1

(ξ(P) + ξ(Φ(P))) . (121)

By property 2, the multiset of edges traversed by the pair P is the same as the multiset of
edges traversed by Φ(P) for all P ∈ V , except some edges may have reversed orientation.
Since xuv = xvu for every edge (u, v) in the undirected graph G, we have ξ(P) = ξ(Φ(P))
for all P ∈ V .

The subpath swapping is depicted in Figure 9.
Since we work over a field of characteristic two, this implies that∑

P∈V1

(ξ(P) + ξ(Φ(P))) = 0.

Substituting the above equation into eq. (121) implies that∑
P∈V

ξ(P) = 0.

Then substituting the above equation into eq. (120) yields

F =
∑

P∈F\V

ξ(P).

This proves that F is the enumerating polynomial for F \ V as desired. ■

Lemma 8.42. For each vertex v, the enumerating polynomial for B̃(v) enumerates B(v).

188

Proof. Fix a vertex v. By definition, B(v) ⊆ B̃(v).
Our goal is to show that B̃(v) and B(v) have the same enumerating polynomial.
To prove this, define V = B̃(v) \ B(v).
For any pair P = ⟨P1, P2⟩ ∈ V , let u(P) denote the first vertex of P1 lying in P1 ∩ P2.

Since P is not in B(v), we have u(P) ̸= v.
Let Vbefore be the collection of pairs P in V such that u(P) appears before v in P2.

Similarly, let Vafter be the collection of pairs P in V such that u(P) appears after v in P2.
Since u(P) must appear before or after v on P2, we have V = Vbefore ⊔ Vafter. Next, we use
subpath swapping arguments to argue that the contributions from V vanish modulo two in
the enumerating polynomial for B̃(v). We do this in cases, considering the pairs from Vbefore

and Vafter separately.
Case 1: u before v
Take arbitrary P = ⟨P1, P2⟩ ∈ Vbefore. Write u = u(P) for convenience.
By definition, u appears before v in P2.
Define the walks

Q1 = P1[s1, u] ⋄ P2[u, v] ⋄ P1[v, t1] and Q2 = P2[s2, u] ⋄ P1[u, v] ⋄ P2[v, t2]

obtained by swapping the u⇝ v subpaths of P1 and P2.
By Lemma 8.16 each Qi is a shortest path, and thus an si ⇝ ti path in Gi.
Let ai and bi be the nodes appearing immediately before and after v respectively on Pi,

for i ∈ [2]. Similarly, let a′i and b′i be the nodes appearing immediately before and after v
respectively on Qi for i ∈ [2].

By the definitions of the Qi paths, we have b′1 = b1 and b′2 = b2, but a′1 = a2 and a′2 = a1.
Since P ∈ B̃(v), condition 1 of Definition 8.37 implies that a1 ̸= a2, so a′1 ̸= a′2. Similarly,

condition 2 of Definition 8.37 implies that b1 ̸= b2, so b′1 ̸= b′2. Also, since a2 and b2 are
distinct vertices on the path P2, we have a2 ̸= b2, so a′1 ̸= b′2. Thus ⟨Q1, Q2⟩ ∈ B̃(v).

Also, since u ∈ Q1 ∩Q2 appears before v in Q1, we have ⟨Q1, Q2⟩ ̸∈ B(v).
Since ⟨Q1, Q2⟩ is in B̃(v) but not B(v), we have ⟨Q1, Q2⟩ ∈ V . Since vertex u appears

before vertex v in Q2, we in fact have ⟨Q1, Q2⟩ ∈ Vbefore.
Since a1 ̸= a2, the subpaths P1[u, v] and P2[u, v] are distinct.
Since the si ⇝ u subpaths of Pi and Qi are the same for each i ∈ [2], u is also the first

vertex of Q1 lying in Q1∩Q2. Moreover, swapping the u⇝ v subpaths of Q1 and Q2 recovers
paths P1 and P2 respectively.

The above discussion implies that the map α sending P to node u(P), the map β send-
ing P to node v, and the map Φ sending P to ⟨Q1, Q2⟩ all have domain Vbefore and meet
the conditions of Lemma 8.17, so the enumerating polynomial for B̃(v) is the same as the
enumerating polynomial for B̃(v) \ Vbefore = B(v) ⊔ Vafter.

So from our arguments in case 1, we have removed the contributions from Vbefore in the
enumeration of B̃(v). We now continue in case 2, to enumerate the contributions from Vafter.

Case 2: u after v
Take arbitrary P = ⟨P1, P2⟩ ∈ Vafter. Write u = u(P) for convenience.
By definition, u appears after v in P2.
Define the walks

Q1 = P1[s1, u] ⋄
 −
P2[u, v] ⋄ P1[v, t1] and Q2 = P2[s2, v] ⋄

 −
P1[v, u] ⋄ P2[u, t2]

189

obtained by replacing the u⇝ v subpath of P1 with the u⇝ v subpath of
 −
P2, and vice-versa.

By Lemma 8.40 each Qi is a shortest path, and thus an si ⇝ ti path in Gi.
Let ai and bi be the nodes appearing immediately before and after v respectively on Pi,

for i ∈ [2]. Similarly, let a′i and b′i be the nodes appearing immediately before and after v
respectively on Qi for i ∈ [2].

By the definitions of the Qi paths, we have b′1 = b1 and a′2 = a2, but a′1 = b2 and b′2 = a1.
Since a2 and b2 are distinct vertices of P2, we have a2 ̸= b2, so a′1 ̸= a′2. Similarly, since

a1 and b1 are distinct vertices of P1, we have a1 ̸= b1, so b′1 ̸= b′2. Finally, since P ∈ B̃(v),
condition 3 of Definition 8.37 implies that a1 ̸= b2, so a′1 ̸= b′2. Thus ⟨Q1, Q2⟩ ∈ B̃(v).

Also, since u ∈ Q1 ∩Q2 appears before v in Q1, we have ⟨Q1, Q2⟩ ̸∈ B(v).
Since ⟨Q1, Q2⟩ is in B̃(v) but not B(v), we have ⟨Q1, Q2⟩ ∈ V . Since vertex u appears

after vertex v in Q2, we in fact have ⟨Q1, Q2⟩ ∈ Vafter.
Since a1 ̸= b2, P1[u, v] and

 −
P2[u, v] are distinct paths.

Since the s1 ⇝ u subpath P1 and Q1 are the same, u is also the first vertex of Q1 lying in
Q1 ∩ Q2. Moreover, replacing the u ⇝ v subpath of Q1 with the u ⇝ v subpath of

 −
Q2 and

replacing the v ⇝ u subpath of Q2 with the v ⇝ u subpath of
 −
Q1, recovers paths P1 and P2

respectively.
The above discussion implies that the map α sending P to node u(P), the map β sending

P to node v, and the map Φ sending P to ⟨Q1, Q2⟩ all have domain Vafter and meet the
conditions of Lemma 8.41, so the enumerating polynomial for F = B(v) ⊔ Vafter is the
same as the enumerating polynomial for F \ Vafter = B(v). Combining this result with the
conclusion of case 1, we get that the enumerating polynomial for B̃(v) is the same as the
enumerating polynomial for B(v), which proves the lemma. ■

By Lemmas 8.38 and 8.42, we can enumerate Fdis simply by enumerating B̃(v) for each
vertex v. Our next goal is to perform this enumeration efficiently.

To enumerate B̃(v), it will be helpful to introduce a polynomial enumerating a target-
based analogue of the relaxed source linkages from Definition 8.18.

Definition 8.43 (Relaxed Target Linkages). Given a vertex v, let T̃ (v) be the collection of
pairs of paths ⟨P1, P2⟩, where each Pi is a v ⇝ ti path in Gi, and the second vertices of P1

and P2 are distinct. Let T (v) be the enumerating polynomial for T̃ (v).

Lemma 8.44. For each vertex v, we have

T (v) = R1(v)R2(v)−
∑

w∈Vout(v)

x2vwR1(w)R2(w).

Proof. This follows from symmetric reasoning to the proof of Lemma 8.20. ■

For any fixed vertex v, by Lemma 8.19 the product S(v)T (v) should enumerate pairs of
paths satisfying conditions 1 and 2 from Definition 8.37. To enumerate B̃(v), we want to ad-
ditionally enforce condition 3 from Definition 8.37. Said another way, we want to subtract off
the pairs of paths which violate condition 3. We will do this using the following polynomial,
that enumerates pairs of paths which do not satisfy condition 3 from Definition 8.37.

190

Definition 8.45. Given a vertex v, let M(v) be the collection of standard pairs of paths
⟨P1, P2⟩ intersecting at v, such that the vertex immediately before v on P1 is the same as
the vertex immediately after v on P2. Let M(v) be the enumerating polynomial for M(v).

Recall the definition of the mixed-neighborhood Vmix(v) of a vertex v from eq. (113).
From Definition 8.45, we see that for any pair of paths in M(v), the vertex immediately
before v in P1 must belong to Vmix(v). This motivates the following formula for M(v).

Lemma 8.46. For each vertex v, we have

M(v) =
∑

u∈Vmix(v)

L1(u)xuvR1(v)L2(v)xvuR2(u).

Proof. For any vertices u and v, define F(u, v) to be the collection of standard pairs of paths
⟨P1, P2⟩ such that P1 traverses edge (u, v) and P2 traverses edge (v, u).

To prove the lemma, we first establish the following claim.

▷ Claim 8.47. For any vertices u and v with u ∈ Vmix(v), the polynomial

L1(u)xuvR1(v)L2(v)xvuR2(u) (122)

enumerates F(u, v).

Proof. Take arbitrary ⟨P1, P2⟩ ∈ F(u, v). Then we can decompose the paths as

P1 = P1[s1, u] ⋄ (u, v) ⋄ P1[v, t1] and P2 = P2[s2, v] ⋄ (v, u) ⋄ P2[u, t2].

Since path P1[s1, u] is enumerated in L1(u), edge (u, v) is enumerated by xuv, path P1[v, t1]
is enumerated by R1(v), path P2[s2, v] is enumerated by L2(v), edge (v, u) is enumerated by
xvu, and path P2[u, t2] is enumerated byR2(u), the expansion of the polynomial from eq. (122)
contains ξ(P1, P2) as a monomial.

Conversely, any monomial in the expansion of eq. (122) is equal to the product of

• a monomial ξ(A1) from L1(u), where A1 is an s1 ⇝ u path in G1;

• a monomial xuv recording the edge (u, v);

• a monomial ξ(B1) from R1(v), where B1 is a v ⇝ t1 path in G1;

• a monomial ξ(A2) from L2(u), where A2 is an s2 ⇝ v path in G2;

• a monomial xvu recording the edge (v, u); and

• a monomial ξ(B2) from R2(v), where B2 is a u⇝ t2 path in G2.

The product of the above monomials is equal to the monomial

ξ (A1 ⋄ (u, v) ⋄B1, A2 ⋄ (v, u) ⋄B2) .

Define the paths

P1 = A1 ⋄ (u, v) ⋄B1 and P2 = A2 ⋄ (v, u) ⋄B2.

191

Since u ∈ Vmix(v), (u, v) is an edge in G1, and (v, u) is an edge in G2.
Consequently, Pi is an si ⇝ ti path in Gi for each i ∈ [2].
Since P1 traverses (u, v) and P2 traverses (v, u), we have ⟨P1, P2⟩ ∈ F(u, v).
Since every pair in F(u, v) contributes a monomial to eq. (122), and every monomial of

the polynomial eq. (122) is the weight of a pair in F(u, v), the desired result holds.

For any pair of paths ⟨P1, P2⟩ ∈ M(v), there exists a unique vertex u such that u appears
immediately before v on P1 and immediately after v on P2. Since Pi is a path in Gi for i ∈ [2],
any such vertex u must lie in V 1

in(v) ∩ V 2
out(v) = Vmix(v) by definition.

Then by applying Claim 8.47 to each u ∈ Vmix(v), we get that∑
u∈Vmix(v)

L1(u)xuvR1(v)L2(v)xvuR2(u)

is the enumerating polynomial for M(v), which proves the desired result. ■

We now present our formula for Fdis, in terms of the polynomials S(v) and T (v) defined in
Definitions 8.15 and 8.43 respectively. This formula comes from implementing the strategy
discussed in the paragraph preceding Definition 8.45.

Lemma 8.48 (Enumerating Disagreeing Pairs). We have

Fdis =
∑
v∈V

(S(v)T (v)−M(v)) .

Proof. We prove the lemma by using the following claim.

▷ Claim 8.49. For any vertex v, the polynomial

S(v)T (v)

enumerates all standard pairs of paths ⟨P1, P2⟩ intersecting at v, such that the nodes imme-
diately before v on paths P1 and P2 are distinct, and the nodes immediately after v on P1

and P2 are distinct.

Proof. Fix a vertex v. Let ⟨P1, P2⟩ be any standard pair of paths intersecting at v, such that
the nodes immediately before v on paths P1 and P2 are distinct, and the nodes immediately
after v on P1 and P2 are also distinct. Then we can write

Pi = Ai ⋄Bi

where Ai is an si ⇝ v path in Gi, and Bi is a v ⇝ ti path in Gi, for each i ∈ [2], such that
the penultimate vertices of A1 and A2 are distinct, and the second vertices of B1 and B2

are distinct. Then by definition S(v) includes the monomial ξ(A1, A2) and T (v) includes the
monomial ξ(B1, B2), so their product S(v)T (v) includes the monomial

ξ(A1, A2) · ξ(B1, B2) = ξ(P1, P2).

192

Conversely, any monomial in the expansion of S(v)T (v) is of the form

ξ(A1, A2) · ξ(B1, B2)

where the Ai are si ⇝ v paths in Gi with distinct penultimate nodes, and the Bi are v ⇝ ti
paths in Gi with distinct second nodes. Then if we set Pi = Ai ⋄Bi for each i ∈ [2], ⟨P1, P2⟩
is a standard pair of paths intersecting at v, such that P1 and P2 have with distinct nodes
immediately before v, and distinct nodes immediately after v.

This proves the claim.

We can now prove the following.

▷ Claim 8.50. For each vertex v,

S(v)T (v)−M(v)

is the enumerating polynomial for B̃(v).

Proof. Fix a vertex v. By Claim 8.49, S(v)T (v) enumerates all standard pairs of paths
⟨P1, P2⟩ intersecting at v, such that if we let ai and bi denote the nodes appearing immediately
before and after v on Pi respectively, we have a1 ̸= a2 and b1 ̸= b2.

By Definition 8.45, M(v) enumerates all standard pairs of paths ⟨P1, P2⟩ intersecting at
vertex v, such that (using the ai and bi notation from above) a1 = b2. Since P1 and P2 are
paths, they do not have repeat vertices. In particular, a1 ̸= b1 and a2 ̸= b2. Since a1 = b2,
this implies that a1 ̸= a2 and b1 ̸= b2.

So we can equivalently state that M(v) is the enumerating polynomial for all standard
pairs of paths ⟨P1, P2⟩ intersecting at v, such that a1 ̸= a2, b1 ̸= b2, and a1 = b2.

Since every pair of paths ⟨P1, P2⟩ must have either a1 = b2 or a1 ̸= b2, we get that

S(v)T (v)−M(v)

is the enumerating polynomial for all standard pairs of paths ⟨P1, P2⟩ intersecting at v, such
that a1 ̸= a2, b1 ̸= b2, and a1 ̸= b2. By Definition 8.37, this proves the desired result.

By Claim 8.50 and Lemma 8.42, for each vertex v, the polynomial

S(v)T (v)−M(v)

enumerates B(v).
Since B is the disjoint union of the B(v) sets over all vertices v, we get that∑

v∈V

(S(v)T (v)−M(v))

is the enumerating polynomial for B.
By Lemma 8.38, this means that the above polynomial enumerates Fdis.
Since Fdis is the enumerating polynomial for Fdis, this proves the desired result. ■

193

Having presented formulas for Fagree and Fdis, we present our algorithm for 2-DSP in
weighted undirected graphs in Algorithm 10.

Note that steps 1 to 3 of Algorithm 10 are the same as steps 1 to 3 of Algorithm 9, and
step 9 of Algorithm 10 is the same as step 6 of Algorithm 9, because our algorithms for 2-DSP
in DAGs and undirected graphs have the same overall structure. Just like in Algorithm 9, we
never compute polynomials explicitly in Algorithm 10, and instead just compute polynomial
evaluations with respect to the random assignment in step 2 of Algorithm 10.

Lemma 8.51 (Undirected Algorithm Correctness). Algorithm 10 solves 2-DSP in weighted
undirected graphs with high probability.

Proof. By Lemmas 8.20 and 8.44, step 4 of Algorithm 10 correctly computes S(v) and T (v)
for each vertex v.

By Lemma 8.46, step 5 of Algorithm 10 correctly computes M(v) for each vertex v.
By Lemma 8.35, step 6 of Algorithm 10 correctly computes Fagree.
By Lemma 8.48, step 7 of Algorithm 10 correctly computes Fdis.
By Lemma 8.30, step 8 of Algorithm 10 correctly computes F∩.
By Proposition 8.9, Fdisj is a nonzero polynomial if and only if G contains vertex-disjoint

si ⇝ ti shortest paths for i ∈ [2]. By definition, Fdisj is a polynomial of degree at most 2n.
Then by Proposition 6.1 and our choice of q in eq. (111), with high probability the evaluation
of Fdisj on the random assignment from step 2 of Algorithm 10 is nonzero if and only if G
contains a solution to the 2-DSP problem. Thus with high probability, Algorithm 10 returns
the correct answer to the 2-DSP problem in step 9. ■

Proof of Theorem 8.1. By Lemma 8.24, Algorithm 10 solves the 2-DSP problem in weighted
undirected graphs. It remains to show that Algorithm 10 runs in linear time.

Step 1 of Algorithm 10 takes linear time by Proposition 8.7.
Step 2 of Algorithm 10 takes linear time because we spend O(1) time at each edge of G.
Step 3 of Algorithm 10 takes linear time by Corollary 8.12.
For each fixed vertex v, computing S(v) and T (v) using the formulas in step 4 of Algo-

rithm 10 takes O(degin(v)) and O(degout(v)) time respectively. Summing this runtime bound
over all vertices v, we see that step 4 of Algorithm 10 takes O(m) time.

For each fixed vertex v, computing M(v) using the formula in step 5 of Algorithm 10
takes O(degin(v)) time, since Vmix(v) contains at most degin(v) nodes. Summing this runtime
bound over all vertices v, we see that step 5 of Algorithm 10 takes O(m) time.

The sum from the formula in step 6 of Algorithm 10 has a summand for each pair of
vertices (v, w) with w ∈ Vout(v). Each such pair (v, w) must be an edge in the graph, so the
sum has at most m terms. Step 6 of Algorithm 10 then takes O(m) time, since we add and
multiply O(m) field elements.

Step 7 of Algorithm 10 takes O(n) time because we add and multiply O(n) field elements.
Step 8 of Algorithm 10 takes O(1) time given our previous computations.
Step 9 of Algorithm 10 also takes O(1) time given our previous computations.
So overall Algorithm 10 runs in linear time as claimed. ■

194

Algorithm 10. The 2-DSP Algorithm in Undirected Graphs

Inputs: An undirected graph G, with specified sources s1, s2 and targets t1, t2.
Returns: YES if G contains disjoint si ⇝ ti shortest paths for i ∈ [2], NO otherwise.

1. For each i ∈ [2], compute the si-shortest paths DAG Gi.

2. Sample independent, uniform random values xuv from F for each (u, v) ∈ E.

3. For every vertex v and each i ∈ [2], compute Li(v) and Ri(v).

4. For every vertex v, compute

S(v) = L1(v)L2(v)−
∑

u∈Vin(v)

L1(u)L2(u)x
2
uv

and
T (v) = R1(v)R2(v)−

∑
w∈Vout(v)

x2vwR1(w)R2(w).

5. For each vertex v, compute

M(v) =
∑

u∈Vmix(v)

L1(u)xuvR1(v)L2(v)xvuR2(u).

6. Compute
Fagree =

∑
v∈V

∑
w∈Vout(v)

(
S(v)x2vw

)
R1(w)R2(w).

7. Compute
Fdis =

∑
v∈V

(S(v)T (v)−M(v)) .

8. Compute
F∩ = Fagree + Fdis.

9. Compute
Fdisj = L1(t1)L2(t2)− F∩.

Return YES if Fdisj is nonzero, NO if Fdisj is zero.

195

8.6 Additional Consequences

Finding Disjoint Shortest Paths

Our algorithms for 2-DSP in weighted DAGs and undirected graphs detect if G contains
vertex-disjoint si ⇝ ti shortest paths, but do not explicitly return these paths if they exist.
How can we solve the search problem of finding disjoint shortest paths, when they exist?

A natural approach is to run our detection algorithms for 2-DSP multiple times on sub-
graphs of G, to identify the edges which belong in a solution.

For example, we could start by solving 2-DSP on G. If the answer is YES, then, for each
edge e ∈ V 1

out(s1), we can solve 2-DSP in the graph obtained by taking G and contracting
the edge e. The answer to 2-DSP is YES on such a graph precisely when G contains vertex-
disjoint si ⇝ ti such that e is the first edge on the s1 ⇝ t1 path. So one of these calls will
return YES, and help us identify the first edge e on a solution path. We can then repeat this
strategy, continuing to contract edges until we find all edges on an s1 ⇝ t1 shortest path
belong to a solution. We then delete all nodes on this path, and look for an s2 ⇝ t2 path in
the resulting graph to find the desired solution paths.

The downside of this approach is that in the worst case, we might end up solving up to m
instances of 2-DSP, as we try deleting each edge in G. This then would lead to an algorithm
taking Ω(m2) time, which is far slower than we would hope for.

We can get a slightly better algorithm, by exploiting the fact that our 2-DSP algorithms
involve evaluating a disjoint paths polynomial.

An arithmetic circuit C is a list of steps for building up a polynomial P (intuitively a
polynomial version of a Boolean circuit, which is defined in Definition 4.20). Formally, the
circuit can be viewed as a sequence of gates. Each variable of P corresponds to one of initial
gates of C. Each later gate is either the product of two earlier gates, an F-linear combination
of two earlier gates, the product of a field element with a previous gate, or the sum of a
field element with a previous gate. In this way, each gate computes a polynomial, defined
inductively in terms of the polynomials computed by earlier gates. The circuit C computes
a polynomial P if its final gate computes P . The size |C| of circuit C is the number of gates
it contains. Given an arithmetic circuit C computing a polynomial P , we can evaluate P at
a point over F in |C| time, just scanning through C and computing the evaluation of each
gate at the given point.

Since Algorithms 9 and 10 build up Fdisj using only polynomial addition and multipli-
cation, Lemmas 8.24 and 8.51 and the proofs of Theorems 8.1 and 8.2 show that these
algorithms actually describe linear-size arithmetic circuits for Fdisj over weighted DAGs and
undirected graphs (i.e., if we ignore the random evaluation from step 2 of Algorithms 9
and 10, these algorithms yield descriptions of arithmetic circuits for Fdisj).

Proposition 8.52. Over weighted DAGs and undirected graphs, Fdisj admits an arithmetic
circuit of size O(m).

We recall that given a variable x and a polynomial P , the polynomial (∂/∂x)P denotes
the partial derivative of P with respect to x. The following result on partial derivatives will
help us use Proposition 8.52 to find disjoint shortest paths.

196

Proposition 8.53 (Baur-Strassen Theorem). Given an arithmetic circuit C of size s com-
puting a polynomial P , we can compute a multi-output arithmetic circuit C̃ of size O(s),
which computes the polynomial (∂/∂x)P for every variable x of P .

Proposition 8.53 was originally proved in [BS83]. For a modern exposition of the proof
of Proposition 8.53, we refer the reader to [SY09, Theorem 2.5].

Proof of Theorem 8.3. Set q to be the smallest positive integer with

2q ≥ 2m2n2.

We work over F = F2q . Note that q = Θ(log n), so addition and multiplication over F takes
O(1) time over the Word RAM model. For this proof we use the value of q defined above,
instead of the value of q from Equation (111).

Given an edge (u, v), the polynomial (∂/∂xuv)Fdisj is nonzero if and only if edge (u, v)
appears in some solution to the 2-DSP problem. Also, (∂/∂xuv)Fdisj has degree less than
2n. So by Proposition 6.1 and our choice of field size in eq. (111), (∂/∂xuv)Fdisj has nonzero
evaluation at a uniform random assignment over F if and only if (u, v) is an edge occurring
in some pair of disjoint shortest paths, for fixed (u, v) with probability at least 1− 1/(m2n).
By taking a union bound over all edges xuv in the graph, this holds for all edges (u, v) with
probability at least 1− 1/(mn).

By Propositions 8.52 and 8.53, we can compute all first-order partial derivatives of Fdisj

at a given random evaluation point in O(m) time. We pick an edge (s1, v) such that
(∂/∂xs1v)Fdisj has nonzero evaluation. Then we delete vertex s1 from G, and consider a
smaller instance of 2-DSP on the graph, where source s1 is replaced with v. We can repeat
this process on the new instance, to find the first edge on a v ⇝ t1 shortest path which is
disjoint from some s2 ⇝ t2 shortest path. Repeating this process at most n times, we can
recover an s1 ⇝ t1 shortest path P1, which is disjoint from some s2 ⇝ t2 shortest path.

At this point, we just delete all vertices of P1 from the original graph G, find an s2 ⇝ t2
shortest path P2 in the resulting graph in linear time, and then return ⟨P1, P2⟩ as our answer.

Overall, we compute at most n evaluations of arithmetic circuits of size O(m), so the
algorithm runs in O(mn) time. Moreover, by a union bound, all the random evaluations
correctly detect disjoint shortest paths when they exist with probability at least 1− 1/m, so
the algorithm is correct with high probability. ■

Edge-Disjoint Paths

We defined k-DSP in terms vertex-disjoint paths. We can of course also ask questions about
edge-disjoint paths. In some contexts, this might even be more natural to study (for example,
in Chapter 7 we viewed connectivity in terms of edge-disjoint paths as the primary definition,
and its vertex-disjoint analogue of vertex connectivity as a secondary concept).

k-Edge Disjoint Shortest Paths (k-EDSP)

Given a graph G with specified nodes s1, . . . , sk and t1, . . . , tk, determine if G contains
edge-disjoint si ⇝ ti shortest paths.

197

For any constant k, there is a simple reduction from k-EDSP on n nodes and m edges
to k-DSP on O(m + n) nodes and O(m) edges. We can use this reduction together with
Theorems 8.1 and 8.2 to derive linear-time algorithms for 2-EDSP in weighted DAGs and
undirected graphs.

Proposition 8.54 (Edge-Disjoint ≤ Vertex-Disjoint). There is an O(k(m+n)) time reduc-
tion from k-EDSP on n vertices and m edges to k-DSP on m+k(n+2) nodes and 2k(m+1)
edges.

Proof. Let G = (V,E) be an arbitrary instance of k-EDSP on n vertices and m edges, with
sources s1, . . . , sk and targets t1, . . . , tk.

We construct a graph G′, an instance of k-DSP, as follows. For every vertex v ∈ V , G′

has k nodes v1, . . . , vk. We call the vi the copies of v in G′. For every edge e ∈ E, G′ has a
node e. For every edge e = (v, w) ∈ E, we include edges in G′ from vi to e and from e to wi

for all i ∈ [k]. If e = (v, w) had weight ℓ(v, w) in G, then the (vi, e) and (e, wi) edges in G
each have weight ℓ(v, w). We also introduce new sources s′1, . . . , s′k and targets t′1, . . . , t′k in
G′. For all i, j ∈ [k], we add edges from s′i to (si)j and from (ti)j to t′i of weight 1.

By definition, G′ has m+ k(n+ 2) nodes and 2k(m+ 1) edges.
Moreover, we can construct G′ in O(k(m+ n)) time, given G.
We now prove that solving k-DSP on G′ corresponds to solving k-EDSP on G.
Suppose we have vertex-disjoint s′i ⇝ t′i shortest paths P ′

i in G′. Since each P ′
i is a

shortest path, we know it never traverses two copies of the same vertex v ∈ V (if it did, we
could remove the subpath between two consecutive copies of v that P ′

i enters to obtain a
shorter s′i ⇝ t′i path). We map each P ′

i to an si ⇝ ti shortest path Pi in G, by having Pi

pass through the vertices v ∈ V for which P ′
i contains a copy of v, in the order the copies

appear in P ′
i .

By construction, Pi has length r if and only if P ′
i has length 2r + 2. Since the P ′

i are
shortest paths, this implies that the Pi are also shortest paths. The Pi are also edge-disjoint,
since if some Pi and Pj overlap at an edge e, the paths P ′

i and P ′
j would overlap at node e

in G′, which would contradict the assumption that the P ′
i are vertex-disjoint.

Thus, any solution to k-DSP on G′ pulls back to a solution to k-EDSP on G.
Conversely, given edge-disjoint si ⇝ ti shortest paths Pi in G of the form

Pi = ⟨vi,1, . . . , vi,ri⟩

we can produce s′i ⇝ t′i paths P ′
i in G′ of the form

P ′
i = ⟨s′i, (vi,1)i, ((vi,1)i, (vi,2)i), (vi,2)i, . . . , (vi,ri)i, t′i⟩.

By construction, P ′
i has length 2r + 2 if and only if P ′

i has length r. So since the Pi are
shortest paths, the P ′

i are shortest paths as well. These paths are vertex-disjoint because
each P ′

i only uses the ith copies of v ∈ V , and the Pi were edge-disjoint, so the P ′
i cannot

overlap at any nodes of the form e ∈ E.
This proves the desired result. ■

Corollary 8.55. There are algorithms solving 2-EDSP on weighted DAGs and undirected
graphs in linear time.

198

Proof. By setting k = 2 in Proposition 8.54, we can reduce 2-EDSP on graphs with n vertices
and m edges to 2-DSP on graphs with O(m+n) vertices and O(m) edges. Running the linear-
time algorithms of Theorems 8.1 and 8.2 on the resulting 2-DSP instance solves the original
2-EDSP instance in linear time as well. ■

8.7 Open Problems

Our linear-time algorithms for 2-DSP are randomized, and only detect the existence of dis-
joint shortest paths, instead of returning those paths when they exist. These are common
limitations for algorithms which employ the algebraic framework discussed in Chapter 6.
It is an interesting research direction to design algorithms for 2-DSP which overcome these
limitations, yet still run in linear time.

Open Problem 38. Can 2-DSP be solved in deterministic linear time over weighted
DAGs? What about over undirected graphs?

Open Problem 39. Is there a linear-time algorithm which solves 2-DSP over weighted
DAGs and returns a pair of solution paths when such a pair exists? Is this possible over
undirected graphs?

It is also natural to ask whether we can solve 2-DSP over general directed graphs in linear
time. The only known polynomial-time algorithm for 2-DSP over general directed graphs is
presented in [BK17, Theorem 2]. Their exposition actually solves the more general 2-EDSP
problem, and their approach necessarily takes Ω(m2) time, because they construct a larger
graph, whose nodes are pairs of edges in the original graph. To solve 2-DSP instead of 2-
EDSP, it seems likely that one could modify the approach of [BK17] to only work with a
graph whose nodes are pairs of vertices (rather than edges) in the original graph. Such an
approach would still take Ω(n2) time however.

It is unclear if the algebraic approach employed in our 2-DSP algorithms on DAGs
and undirected graphs can help design linear-time algorithms for 2-DSP in general directed
graphs. The main issues are that in directed graphs, shortest paths can intersect in more
complicated ways (e.g., Proposition 8.25 and Lemma 8.27 do not necessarily hold), and we
cannot perform subpath swaps which reverse the orientations of edges (so that we cannot
apply Lemma 8.41 directly). On the other hand, [BK17] solves 2-DSP on directed graphs
by reducing the problem to several instances of 2-DP in DAGs. So perhaps combining the
ideas from this chapter with the method of [BK17] could be fruitful.

Open Problem 40. Can 2-DSP be solved over directed graphs in linear time? Or does
a plausible hardness hypothesis rule out such an algorithm?

It would also be interesting to design faster algorithms for k-DSP when k ≥ 3. The
simplest interesting case to consider is 3-DSP over DAGs, where the current fastest algorithm

199

runs in O(mn2) time. This is also the fastest known algorithm for 3-DP over DAGs. In dense
graphs with m = Θ(n2) this runtime becomes O(n4), so obtaining a truly subquartic time
algorithm for this problem on general DAGs would be very interesting.

Open Problem 41. Can 3-DP or 3-DSP be solved over DAGs in O(n4−ε) time for some
constant ε > 0? Or is such a runtime ruled out by some plausible hardness hypothesis?

It is not clear if the algebraic techniques we use to solve 2-DSP can help solve 3-DSP
in DAGs as well. In our proofs, we used subpaths swapping arguments to show that enu-
merating polynomials for pairs of shortest paths in DAGs simplify greatly modulo two. In
particular, as mentioned in Idea 15, when enumerating pairs of shortest paths in a DAG mod-
ulo two, it generally suffices to restrict our attention to pairs of paths whose intersections
form single common subpath. This is intuitively because we can use Lemma 8.17 to argue
that contributions from pairs of paths whose intersections do not lie on a common subpath
vanish modulo two. To solve 3-DSP in DAGs efficiently using these algebraic techniques, we
would ideally want to argue that triples of shortest paths in DAGs simplify in an analogous
fashion modulo two.

Unfortunately, when enumerating triples of shortest paths in DAGs modulo two, restrict-
ing our attention to the subcollection of triples where the intersections for each pair of paths
in the triple form a common subpath does not suffice. This is because there exist DAGs with
an odd number of triples of shortest paths between specified terminal pairs, with the prop-
erty that each triple contains a pair of paths which do not just overlap at a single common
segment. For example, such a DAG is pictured in Figure 10. This means that polynomials
which enumerate triples of shortest paths in DAGs do not simplify as much modulo two as
polynomials which just enumerate pairs of shortest paths, so applying algebraic methods to
solve 3-DSP faster may prove difficult.

Designing faster algorithms for k-DSP for k ≥ 3 over undirected graphs would also be very
interesting. As discussed in Section 8.1, the current best algorithms for k-DSP in undirected
graphs run in nO(k·k!) time, and the current fastest algorithm for 3-DSP in undirected graphs
takes O(n292) time [BNRZ21]. Obtaining more practical runtimes for this problem for small
values of k would mark significant progress in our understanding of the structure of shortest
paths in graphs.

Open Problem 42. Is there an algorithm solving 3-DSP over undirected graphs, with
a practical polynomial runtime?

Open Problem 43. Can k-DSP be solved over undirected graphs in no(k·k!) time?

Even though existing algorithms for k-DSP over undirected graphs are significantly slower
than the fastest algorithms we have for k-DSP over DAGs, the best conditional lower bounds
we have for the time complexities of these problems are essentially the same. These lower
bounds come via reductions from the k-Clique problem, defined below.

200

s1 t1

s2

t2

s3 t3

s1 t1

s2

t2

s3 t3

s1 t1

s2

t2

s3 t3

Figure 10: An example of an unweighted DAG and its three triples of si ⇝ ti shortest paths for
i ∈ [3]. We can move between the triples on the left and the center by swapping subpaths between
the s1 ⇝ t1 and s2 ⇝ t2 paths. We can move between the triples on the center and the right by
swapping subpaths between the s2 ⇝ t2 and s3 ⇝ t3 subpaths. The pictured triples account for
all collections of paths which can be generated by starting from these triples and applying subpath
swapping operations. Since each triple has the same monomial weight and there are three of them,
the contributions from these triples do not vanish when enumerating modulo two. Yet, each triple
contains a pair of paths whose intersections do not form a common subpath.

k-Clique

Given an undirected graph G with vertex set V1⊔· · ·⊔Vk, where |Vi| = n for each i ∈ [k],
determine if there exist vertices v1, . . . , vk with vi ∈ Vi for all i ∈ [k], such that (vi, vj) is
an edge of G for all distinct indices i, j ∈ [k].

Under the Exponential Time Hypothesis (ETH) (a popular hardness hypothesis in com-
plexity, whose definition can be found, for example, in [CFK+16, Section 14.1]) the k-Clique
problem requires nΩ(k) time to solve [CFK+16, Theorem 14.21]. There are O((kn)2) time
reductions from k-Clique to k-DSP on unweighted DAGs [AWW24, Theorem 7] and undi-
rected graphs [BFG24, Proof of Theorem 1] over O((kn)2) vertices, so under ETH these
k-DSP requires nΩ(k) time to solve as well, over DAGs and undirected graphs. Since k-DSP
over DAGs can be solved in O(mnk−1) time, this shows that under ETH, nΘ(k) is the correct
runtime for k-DSP over DAGs. However, it remains unclear what the best runtime for k-DSP
over undirected graphs should be —is the truth near the current upper bound of nO(k·k!), or
is it closer to the current ETH-based lower bound of nΩ(k)?

The difference between the Ω(k) and O(k ·k!) factors in the exponent for the current lower
and upper bounds for the runtime of k-DSP in undirected graphs is quite large, and we view
it as an important open problem to close this gap. In particular, it would be interesting to
establish a conditional lower bound which separates the complexities of k-DSP in undirected
graphs and DAGs. On the other hand, if designing such a lower bound proves difficult, that
might suggest that far faster algorithms for k-DSP in undirected graphs may exist.

Open Problem 44. Does k-DSP over weighted, undirected graphs require nω(k) time
to solve under some plausible hardness hypothesis?

The best algorithms we have for k-DSP over weighted DAGs run as quickly as the best
algorithms we have for k-DP over DAGs, even though the former is a generalization of the

201

latter [AWW24, Proposition 54]. Yet, the current best conditional lower bounds for k-DP on
DAGs remain worse than the best lower bounds we have for k-DSP on DAGs (see [Chi23], and
the discussion between Corollary 8 and Theorem 9 of [AWW24]). In this context, resolving
the gap between these lower bounds, or getting faster algorithms for k-DP when k ≥ 3 would
be very interesting.

Open Problem 45. Can k-DP on DAGs be solved faster than k-DSP on weighted DAGs
for some constant k? Or, is k-DP on DAGs at least hard as k-DSP on weighted DAGs
for every k, under some plausible hardness hypothesis?

We introduced k-DSP as an optimization variant of k-DP. Another natural attempt at
turning k-DP into an optimization problem produces the following task:

MinSum k-Disjoint Paths (MinSum k-DP)

Given a graph G with specified nodes s1, . . . , sk and t1, . . . , tk, determine the smallest
length ℓ for which G contains internally vertex-disjoint si ⇝ ti paths Pi, such that the
sum of the lengths of the Pi is at most ℓ, or report that no such positive integer ℓ exists.

Unlike in k-DSP, in MinSum k-DP we do not require the individual solution paths to be
shortest paths, but instead just want to detect the existence of disjoint paths connecting
specified terminal pairs with minimum total length.

For all k ≥ 2, this problem is NP-hard on general directed graphs since solving the easier
problem of 2-DP on directed graphs is NP-hard [FHW80]. So from the view of polynomial-
time algorithms, MinSum k-DP is only interesting on restricted classes of graphs.

It is known that MinSum 2-DP can be solved in Õ(n3+ω) time over unweighted, undirected
graphs [BHK22, Section 6]. No polynomial-time algorithms or hardness results appear to
currently be known for MinSum 2-DP over weighted undirected graphs, or MinSum k-DP over
undirected graphs for any constant k ≥ 3.

Open Problem 46. Can MinSum 2-DP be solved over unweighted undirected graphs
in faster than Õ(n3+ω) time? Does some plausible hardness hypothesis rule out the
possibility of solving this problem in linear time?

Open Problem 47. Is MinSum 2-DP polynomial-time solvable over weighted undirected
graphs? Or is this problem NP-hard?

Open Problem 48. Is MinSum 3-DP polynomial-time solvable over undirected graphs?
Or is this problem NP-hard?

Since the known polynomial-time algorithms for MinSum 2-DP use algebraic techniques,
they are randomized (just like our 2-DSP algorithms). It would be interesting to remove the
use of randomness in this approach.

202

Open Problem 49. Can MinSum 2-DP be solved over unweighted undirected graphs
in deterministic polynomial time?

Given the utility of algorithms for k-DP and k-DSP over DAGs in helping solve k-DSP
over undirected graphs, to make progress on Open Problems 46 to 48 it may be useful to
design efficient algorithms for MinSum k-DP over DAGs. We are not aware of previous work
studying this problem.

Open Problem 50. What is the complexity of MinSum k-DP over DAGs? Can this
problem be solved as quickly as k-DSP over DAGs?

203

204

Chapter 9

Conclusion

. . . these waters . . . heap themselves on me; they sweep me between their
great shoulders; I am turned; I am tumbled; I am stretched, among these
long lights, these long waves . . .

Virginia Woolf, Waves

. . . an ocean of knowledge is apt to drown you long before it
educates you. The art of learning [is] in selection . . .

Mark Lawrence, The Book That Wouldn’t Burn

I want to recognize something I never saw before. I want
the vision to leap out at me, terrible and blazing—the
fire of the transfiguring imagination.

Urusula K. Le Guin, The Wave in the Mind

In this thesis, we discussed algorithms for parameterized relaxations of the circuit analysis
problem, Majority-SAT, and the disjoint paths problems, All-Pairs Connectivity and 2-Disjoint
Shortest Paths, as well as interesting variants of these tasks. For each of these starting
problems, we observed that the tasks were intractable in a formal complexity-theoretic sense,
and then argued that suitable relaxations of these problems could be solved faster, thereby
helping us evade intractability.

Although Majority-SAT is unlikely to admit a polynomial-time algorithm (under the hy-
pothesis that P ̸= PP, a weaker hypothesis than P ̸= NP) we showed that for any fixed
integer k ≥ 1, Majority-SAT can be solved in linear time over k-CNF formulas. Similarly,
although All-Pairs Connectivity is unlikely to admit a truly subcubic time algorithm (under
the Strong Exponential Time Hypothesis and 4-Clique Hypothesis), we showed that for any
integer k ≥ 1, the relaxation k-APC can be solved in Õ((kn)ω) time, which is optimal for all
constant k (assuming a hardness hypothesis concerning the complexity of the Boolean Matrix
Multiplication problem). Finally, we showed that 2-Disjoint Shortest Paths can be solved in
linear time, despite the k-Disjoint Shortest Paths paths problem being NP-hard for general k.

205

The journey to these results has unveiled interesting properties of circuits and graphs.
In our discussion of relaxations of Majority-SAT, we proved a regularity lemma for k-CNF
formulas in Theorem 3.28. In our study of relaxations of APC, we showed how low-rank
enumeration suffices to encode small collections of edge-disjoint paths. In our exploration of
2-Disjoint Shortest Paths, we saw how the enumerative properties of pairs of shortest paths
in directed acyclic graphs and undirected graphs simplify modulo two.

Many beautiful mysteries remain—we refer the reader to the open problems raised in
Chapter 5 as well as Sections 7.4 and 8.7 for potential avenues to investigate the material
discussed in this thesis further. Beyond the specific open questions identified in those sec-
tions, the paradigm of parameterized relaxations is quite broad, and there are many other
tasks for which this framework could prove useful.

To conclude, rather than discussing additional specific problems, we highlight one general
research agenda, motivated by the questions in this work, which is: to what extent can we
combine combinatorial and algebraic techniques for solving computational problems?

In Part I, we proved structural properties of k-CNFs and their satisfaction probabilities for
constant k, to derive fast algorithms for kSAT-Prob≥p. Although our proof techniques seem
quite combinatorial, the arguments we employ brush up against areas where algebraic meth-
ods have proven useful. For example, our kSAT-Prob≥p algorithm in Section 3.3 utilizes an
algorithm of [JZC04] as a subroutine, recorded in Proposition 3.15, for the (k, s)-Set Packing
problem (a parameterized problem related to finding disjoint sets from a collection). There
have been many subsequent algebraic algorithms for faster parameterized set packing, closely
tied to computation on linear matroids [Kou05, EKW24]. Can these algebraic techniques
help design faster exact parameterized algorithms for kSAT-Prob≥p and its variants?

In Part II we designed fast algorithms for relaxations of All-Pairs Connectivity and Disjoint
Shortest Paths. Although our methods were algebraic, the fastest algorithms for many closely
related problems, such as Maximum Flow and k-Disjoint Shortest Paths on directed acyclic
graphs for k ≥ 3, use combinatorial and optimization-based techniques. In some cases, as
with the k-Vertex Connectivity problem, the fastest algorithms for these problems used to be
algebraic, and were only recently superseded by combinatorial approaches.

In general, it seems like the key to obtaining faster algorithms for various problems related
to circuits and graphs may require us to develop a better understanding of how to combine
more traditional combinatorial techniques with algebraic frameworks.

206

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Mod-
ern Approach. Cambridge University Press, April 2009. doi:10.1017/
cbo9780511804090.

[AGI+18] Amir Abboud, Loukas Georgiadis, Giuseppe F. Italiano, Robert Krauthgamer,
Nikos Parotsidis, Ohad Trabelsi, Przemysław Uznański, and Daniel Wolleb-Graf.
Faster Algorithms for All-Pairs Bounded Min-Cuts, 2018. arXiv:1807.05803v2.

[AGI+19] Amir Abboud, Loukas Georgiadis, Giuseppe F. Italiano, Robert Krauthgamer,
Nikos Parotsidis, Ohad Trabelsi, Przemysław Uznański, and Daniel Wolleb-Graf.
Faster Algorithms for All-Pairs Bounded Min-Cuts. In Christel Baier, Ioannis
Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP 2019),
volume 132 of Leibniz International Proceedings in Informatics (LIPIcs), pages
7:1–7:15, Dagstuhl, Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum für In-
formatik. doi:10.4230/LIPIcs.ICALP.2019.7.

[AJ24] Shyan Akmal and Ce Jin. An Efficient Algorithm for All-Pairs Bounded Edge
Connectivity. Algorithmica, January 2024. doi:10.1007/s00453-023-01203-2.

[Akh20] Maxim Akhmedov. Faster 2-Disjoint-Shortest-Paths Algorithm. In Computer
Science – Theory and Applications, pages 103–116. Springer International Pub-
lishing, 2020. doi:10.1007/978-3-030-50026-9_7.

[AKL+22] Amir Abboud, Robert Krauthgamer, Jason Li, Debmalya Panigrahi,
Thatchaphol Saranurak, and Ohad Trabelsi. Breaking the Cubic Barrier for
All-Pairs Max-Flow: Gomory-Hu Tree in Nearly Quadratic Time. In 2022 IEEE
63rd Annual Symposium on Foundations of Computer Science (FOCS), pages
884–895, 2022. doi:10.1109/FOCS54457.2022.00088.

[Akm24] Shyan Akmal. An Enumerative Perspective on Connectivity. In 2024 Symposium
on Simplicity in Algorithms (SOSA), pages 179–198, 2024. doi:10.1137/1.
9781611977936.18.

[AKT20] Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. New Algorithms and
Lower Bounds for All-Pairs Max-Flow in Undirected Graphs, page 48–61. So-
ciety for Industrial and Applied Mathematics, January 2020. doi:10.1137/1.
9781611975994.4.

207

https://doi.org/10.1017/cbo9780511804090
https://doi.org/10.1017/cbo9780511804090
https://arxiv.org/abs/1807.05803v2
https://doi.org/10.4230/LIPIcs.ICALP.2019.7
https://doi.org/10.1007/s00453-023-01203-2
https://doi.org/10.1007/978-3-030-50026-9_7
https://doi.org/10.1109/FOCS54457.2022.00088
https://doi.org/10.1137/1.9781611977936.18
https://doi.org/10.1137/1.9781611977936.18
https://doi.org/10.1137/1.9781611975994.4
https://doi.org/10.1137/1.9781611975994.4

[APT79] Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time algo-
rithm for testing the truth of certain quantified boolean formulas. Information
Processing Letters, 8(3):121–123, March 1979. doi:10.1016/0020-0190(79)
90002-4.

[AW22] Shyan Akmal and Ryan Williams. MAJORITY-3SAT (and Related Problems)
in Polynomial Time. In 2021 IEEE 62nd Annual Symposium on Foundations of
Computer Science (FOCS), pages 1033–1043, 2022. doi:10.1109/FOCS52979.
2021.00103.

[AWW24] Shyan Akmal, Virginia Vassilevska Williams, and Nicole Wein. Detecting Dis-
joint Shortest Paths in Linear Time and More, 2024. arXiv:2404.15916v2.

[AZ18] Martin Aigner and Günter M. Ziegler. Proofs from THE BOOK. Springer Berlin
Heidelberg, 2018. doi:10.1007/978-3-662-57265-8.

[BDK01] Delbert D. Bailey, Víctor Dalmau, and Phokion G. Kolaitis. Phase Transi-
tions of PP-Complete Satisfiability Problems. In Proceedings of the Seventeenth
International Joint Conference on Artificial Intelligence, IJCAI 2001, Seattle,
Washington, USA, August 4-10, 2001, pages 183–192. Morgan Kaufmann, 2001.

[BDK07] Delbert D. Bailey, Víctor Dalmau, and Phokion G. Kolaitis. Phase transi-
tions of PP-complete satisfiability problems. Discrete Applied Mathematics,
155(12):1627–1639, June 2007. doi:10.1016/j.dam.2006.09.014.

[BDPR19] Florian Bridoux, Nicolas Durbec, Kevin Perrot, and Adrien Richard. Com-
plexity of maximum fixed point problem in boolean networks. In Computing
with Foresight and Industry, pages 132–143, Cham, 2019. Springer International
Publishing.

[BDPR20] Florian Bridoux, Amélia Durbec, Kévin Perrot, and Adrien Richard. Complexity
of fixed point counting problems in Boolean Networks. CoRR, abs/2012.02513,
2020. arXiv:2012.02513.

[Ben95] András A. Benczúr. Counterexamples for Directed and Node Capacitated Cut-
Trees. SIAM Journal on Computing, 24(3):505–510, 1995. doi:10.1137/
S0097539792236730.

[BFG24] Matthias Bentert, Fedor V. Fomin, and Petr A. Golovach. Tight Approximation
and Kernelization Bounds for Vertex-Disjoint Shortest Paths, 2024. arXiv:
2402.15348.

[BGK+23] Tatiana Belova, Alexander Golovnev, Alexander S. Kulikov, Ivan Mihajlin, and
Denil Sharipov. Polynomial formulations as a barrier for reduction-based hard-
ness proofs, page 3245–3281. Society for Industrial and Applied Mathematics,
January 2023. doi:10.1137/1.9781611977554.ch124.

208

https://doi.org/10.1016/0020-0190(79)90002-4
https://doi.org/10.1016/0020-0190(79)90002-4
https://doi.org/10.1109/FOCS52979.2021.00103
https://doi.org/10.1109/FOCS52979.2021.00103
https://arxiv.org/abs/2404.15916v2
https://doi.org/10.1007/978-3-662-57265-8
https://doi.org/10.1016/j.dam.2006.09.014
https://arxiv.org/abs/2012.02513
https://doi.org/10.1137/S0097539792236730
https://doi.org/10.1137/S0097539792236730
https://arxiv.org/abs/2402.15348
https://arxiv.org/abs/2402.15348
https://doi.org/10.1137/1.9781611977554.ch124

[BH74] James R. Bunch and John E. Hopcroft. Triangular Factorization and Inversion
by Fast Matrix Multiplication. Mathematics of Computation, 28(125):231–236,
1974. doi:10.1090/s0025-5718-1974-0331751-8.

[BH19] Andreas Björklund and Thore Husfeldt. Shortest Two Disjoint Paths in Poly-
nomial Time. SIAM Journal on Computing, 48(6):1698–1710, January 2019.
doi:10.1137/18m1223034.

[BHK22] Andreas Björklund, Thore Husfeldt, and Petteri Kaski. The Shortest Even
Cycle Problem is Tractable. In Proceedings of the 54th Annual ACM SIGACT
Symposium on Theory of Computing. ACM, June 2022. doi:10.1145/3519935.
3520030.

[BHT12] Andreas Björklund, Thore Husfeldt, and Nina Taslaman. Shortest Cycle
Through Specified Elements. In Proceedings of the Twenty-Third Annual ACM-
SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied
Mathematics, January 2012. doi:10.1137/1.9781611973099.139.

[BK17] Kristof Berczi and Yusuke Kobayashi. The Directed Disjoint Shortest Paths
Problem. In Kirk Pruhs and Christian Sohler, editors, 25th Annual European
Symposium on Algorithms (ESA 2017), volume 87 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 13:1–13:13, Dagstuhl, Germany, 2017.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ESA.
2017.13.

[BNRZ21] Matthias Bentert, André Nichterlein, Malte Renken, and Philipp Zschoche. Us-
ing a Geometric Lens to Find k Disjoint Shortest Paths. In Nikhil Bansal,
Emanuela Merelli, and James Worrell, editors, 48th International Colloquium
on Automata, Languages, and Programming (ICALP 2021), volume 198 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 26:1–26:14,
Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.ICALP.2021.26.

[BS83] Walter Baur and Volker Strassen. The complexity of partial derivatives.
Theoretical Computer Science, 22(3):317–330, February 1983. doi:10.1016/
0304-3975(83)90110-x.

[BW24] Aaron Bernstein and Nicole Wein. Closing the Gap Between Directed Hopsets
and Shortcut Sets, 2024. arXiv:2207.04507v4.

[CDdB16] İsmail İlkan Ceylan, Adnan Darwiche, and Guy Van den Broeck. Open-world
probabilistic databases. In Principles of Knowledge Representation and Rea-
soning: Proceedings of the Fifteenth International Conference, KR 2016, Cape
Town, South Africa, April 25-29, 2016, pages 339–348. AAAI Press, 2016. URL:
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12908.

209

https://doi.org/10.1090/s0025-5718-1974-0331751-8
https://doi.org/10.1137/18m1223034
https://doi.org/10.1145/3519935.3520030
https://doi.org/10.1145/3519935.3520030
https://doi.org/10.1137/1.9781611973099.139
https://doi.org/10.4230/LIPIcs.ESA.2017.13
https://doi.org/10.4230/LIPIcs.ESA.2017.13
https://doi.org/10.4230/LIPIcs.ICALP.2021.26
https://doi.org/10.1016/0304-3975(83)90110-x
https://doi.org/10.1016/0304-3975(83)90110-x
https://arxiv.org/abs/2207.04507v4
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12908

[CFK+16] Marek Cygan, Fedor V Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel
Marx, Marcin Pilipczuk, and Saket Saurabh. Parameterized Algorithms.
Springer International Publishing, Cham, Switzerland, October 2016.

[CGI+16] Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamo-
han Paturi, and Stefan Schneider. Nondeterministic Extensions of the Strong
Exponential Time Hypothesis and Consequences for Non-reducibility. In Pro-
ceedings of the 2016 ACM Conference on Innovations in Theoretical Computer
Science, ITCS’16. ACM, January 2016. doi:10.1145/2840728.2840746.

[Chi23] Rajesh Chitnis. A tight lower bound for edge-disjoint paths on planar dags.
SIAM Journal on Discrete Mathematics, 37(2):556–572, May 2023. URL: http:
//dx.doi.org/10.1137/21M1395089, doi:10.1137/21m1395089.

[CKL13] Ho Yee Cheung, Tsz Chiu Kwok, and Lap Chi Lau. Fast Matrix Rank Algorithms
and Applications. J. ACM, 60(5), oct 2013. doi:10.1145/2528404.

[CKL+22] Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Guten-
berg, and Sushant Sachdeva. Maximum Flow and Minimum-Cost Flow in
Almost-Linear Time. In 2022 IEEE 63rd Annual Symposium on Foundations
of Computer Science (FOCS), pages 612–623, 2022. doi:10.1109/FOCS54457.
2022.00064.

[CLL13] Ho Yee Cheung, Lap Chi Lau, and Kai Man Leung. Graph Connectivities, Net-
work Coding, and Expander Graphs. SIAM Journal on Computing, 42(3):733–
751, 2013. doi:10.1137/110844970.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[CM18] Fabio G. Cozman and Denis D. Mauá. The complexity of Bayesian net-
works specified by propositional and relational languages. Artificial Intelligence,
262:96–141, 2018. doi:10.1016/j.artint.2018.06.001.

[CQ21] Chandra Chekuri and Kent Quanrud. Faster Algorithms for Rooted Connectiv-
ity in Directed Graphs. In Nikhil Bansal, Emanuela Merelli, and James Worrell,
editors, 48th International Colloquium on Automata, Languages, and Program-
ming (ICALP 2021), volume 198 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 49:1–49:16, Dagstuhl, Germany, 2021. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ICALP.2021.49.

[CR94] Joseph Cheriyan and John H. Reif. Directed s-t Numberings, Rubber Bands,
and Testing Digraph k-Vertex Connectivity. Combinatorica, 14(4):435–451, De-
cember 1994. doi:10.1007/bf01302965.

[Dar09] Adnan Darwiche. Modeling and Reasoning with Bayesian Networks. Cam-
bridge University Press, 2009. URL: http://www.cambridge.org/uk/catalogue/
catalogue.asp?isbn=9780521884389.

210

https://doi.org/10.1145/2840728.2840746
http://dx.doi.org/10.1137/21M1395089
http://dx.doi.org/10.1137/21M1395089
https://doi.org/10.1137/21m1395089
https://doi.org/10.1145/2528404
https://doi.org/10.1109/FOCS54457.2022.00064
https://doi.org/10.1109/FOCS54457.2022.00064
https://doi.org/10.1137/110844970
https://doi.org/10.1016/j.artint.2018.06.001
https://doi.org/10.4230/LIPIcs.ICALP.2021.49
https://doi.org/10.1007/bf01302965
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521884389
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521884389

[Dar21] Adnan Darwiche. Beyond NP with Tractable Circuits. Beyond Satisfiability
Workshop at the Simon’s Institute, 2021. URL: https://simons.berkeley.edu/
talks/beyond-np-tractable-circuits.

[Din16] Irit Dinur. Mildly exponential reduction from gap-3sat to polynomial-gap label-
cover. Electronic colloquium on computational complexity ECCC ; research re-
ports, surveys and books in computational complexity, August 2016.

[DW22] Heiko Dietrich and James B. Wilson. Group isomorphism is nearly-linear time
for most orders. In 2021 IEEE 62nd Annual Symposium on Foundations of
Computer Science (FOCS), pages 457–467, 2022. doi:10.1109/FOCS52979.
2021.00053.

[EG04] Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed param-
eter clique and dominating set. Theoretical Computer Science, 326(1–3):57–67,
October 2004. doi:10.1016/j.tcs.2004.05.009.

[EKW24] Eduard Eiben, Tomohiro Koana, and Magnus Wahlström. Determinantal Siev-
ing, page 377–423. Society for Industrial and Applied Mathematics, January
2024. doi:10.1137/1.9781611977912.16.

[ER60] P. Erdös and R. Rado. Intersection Theorems for Systems of Sets. Journal of
the London Mathematical Society, s1-35(1):85–90, January 1960. doi:10.1112/
jlms/s1-35.1.85.

[ET98] Tali Eilam-Tzoreff. The disjoint shortest paths problem. Discrete Applied Math-
ematics, 85(2):113–138, June 1998. doi:10.1016/s0166-218x(97)00121-2.

[FGL12] Pierluigi Frisco, Gordon Govan, and Alberto Leporati. Asynchronous P systems
with active membranes. Theoretical Computer Science, 429:74–86, 2012. Magic
in Science. doi:10.1016/j.tcs.2011.12.026.

[FHW80] Steven Fortune, John Hopcroft, and James Wyllie. The Directed Subgraph
Homeomorphism Problem. Theoretical Computer Science, 10(2):111–121, Febru-
ary 1980. doi:10.1016/0304-3975(80)90009-2.

[FLSZ18] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Ker-
nelization: Theory of Parameterized Preprocessing. Cambridge University Press,
December 2018. doi:10.1017/9781107415157.

[FM71] M. J. Fischer and A. R. Meyer. Boolean Matrix Multiplication and Transitive
Closure. In 12th Annual Symposium on Switching and Automata Theory (SWAT
1971). IEEE, October 1971. doi:10.1109/swat.1971.4.

[FNY+20] Sebastian Forster, Danupon Nanongkai, Liu Yang, Thatchaphol Saranurak, and
Sorrachai Yingchareonthawornchai. Computing and Testing Small Connectiv-
ity in Near-Linear Time and Queries via Fast Local Cut Algorithms, page
2046–2065. Society for Industrial and Applied Mathematics, January 2020.
doi:10.1137/1.9781611975994.126.

211

https://simons.berkeley.edu/talks/beyond-np-tractable-circuits
https://simons.berkeley.edu/talks/beyond-np-tractable-circuits
https://doi.org/10.1109/FOCS52979.2021.00053
https://doi.org/10.1109/FOCS52979.2021.00053
https://doi.org/10.1016/j.tcs.2004.05.009
https://doi.org/10.1137/1.9781611977912.16
https://doi.org/10.1112/jlms/s1-35.1.85
https://doi.org/10.1112/jlms/s1-35.1.85
https://doi.org/10.1016/s0166-218x(97)00121-2
https://doi.org/10.1016/j.tcs.2011.12.026
https://doi.org/10.1016/0304-3975(80)90009-2
https://doi.org/10.1017/9781107415157
https://doi.org/10.1109/swat.1971.4
https://doi.org/10.1137/1.9781611975994.126

[Fra11] Andras Frank. Connections in Combinatorial Optimization. Oxford Lecture
Series in Mathematics and Its Applications. Oxford University Press, London,
England, February 2011.

[GGI+17] Loukas Georgiadis, Daniel Graf, Giuseppe F. Italiano, Nikos Parotsidis, and
Przemysław Uznański. All-Pairs 2-Reachability in O(nωlogn) Time. In 44th
International Colloquium on Automata, Languages, and Programming (ICALP
2017), volume 80 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 74:1–74:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik. doi:10.4230/LIPIcs.ICALP.2017.74.

[GHM08] Judy Goldsmith, Matthias Hagen, and Martin Mundhenk. Complexity of DNF
minimization and isomorphism testing for monotone formulas. Information and
Computation, 206(6):760–775, 2008. doi:10.1016/j.ic.2008.03.002.

[Gil74] John T. Gill. Computational Complexity of Probabilistic Turing Machines. In
Proceedings of the Sixth Annual ACM Symposium on Theory of Computing,
STOC ’74, page 91–95, New York, NY, USA, 1974. Association for Computing
Machinery. doi:10.1145/800119.803889.

[GJ79] Michael R Garey and David S Johnson. Computers and intractability. W.H.
Freeman, New York, NY, April 1979.

[GLR+23] Venkatesan Guruswami, Bingkai Lin, Xuandi Ren, Yican Sun, and Kewen Wu.
Parameterized Inapproximability Hypothesis under ETH, 2023. arXiv:2311.
16587.

[Gow97] W.T. Gowers. Lower bounds of tower type for Szemerédis uniformity lemma.
Geometric and Functional Analysis, 7(2):322–337, May 1997. doi:10.1007/
pl00001621.

[HL23] Xiaoyu He and Ray Li. Approximating Binary Longest Common Subsequence
in Almost-Linear Time. In Proceedings of the 55th Annual ACM Symposium
on Theory of Computing, STOC ’23. ACM, June 2023. doi:10.1145/3564246.
3585104.

[HLSW23] Zhiyi Huang, Yaowei Long, Thatchaphol Saranurak, and Benyu Wang. Tight
Conditional Lower Bounds for Vertex Connectivity Problems. In Proceedings of
the 55th Annual ACM Symposium on Theory of Computing, STOC ’23. ACM,
June 2023. doi:10.1145/3564246.3585223.

[IMH82] Oscar H Ibarra, Shlomo Moran, and Roger Hui. A Generalization of the Fast
LUP Matrix Decomposition Algorithm and Applications. Journal of Algorithms,
3(1):45–56, March 1982. doi:10.1016/0196-6774(82)90007-4.

[JMV18] Hamidreza Jahanjou, Eric Miles, and Emanuele Viola. Local reduction. In-
formation and Computation, 261:281–295, August 2018. doi:10.1016/j.ic.
2018.02.009.

212

https://doi.org/10.4230/LIPIcs.ICALP.2017.74
https://doi.org/10.1016/j.ic.2008.03.002
https://doi.org/10.1145/800119.803889
https://arxiv.org/abs/2311.16587
https://arxiv.org/abs/2311.16587
https://doi.org/10.1007/pl00001621
https://doi.org/10.1007/pl00001621
https://doi.org/10.1145/3564246.3585104
https://doi.org/10.1145/3564246.3585104
https://doi.org/10.1145/3564246.3585223
https://doi.org/10.1016/0196-6774(82)90007-4
https://doi.org/10.1016/j.ic.2018.02.009
https://doi.org/10.1016/j.ic.2018.02.009

[JX24] Ce Jin and Yinzhan Xu. Shaving Logs via Large Sieve Inequality: Faster Algo-
rithms for Sparse Convolution and More, 2024. arXiv:arXiv:2403.20326.

[JZC04] Weijia Jia, C huanlin Zhang, and Jianer Chen. An efficient parameterized algo-
rithm for m-set packing. Journal of Algorithms, 50(1):106–117, January 2004.
doi:10.1016/j.jalgor.2003.07.001.

[KdC15a] Johan Kwisthout and Cassio P. de Campos. Computional complexity of Bayesian
networks, July 2015. Tutorials of the 31st Conference on Uncertainty in Artificial
Intelligence. URL: https://www.youtube.com/watch?v=7CU5uo2XwIc.

[KdC15b] Johan Kwisthout and Cassio P. de Campos. Lecture notes: Computational com-
plexity of Bayesian networks, July 2015. Tutorials of the 31st Conference on Un-
certainty in Artificial Intelligence. URL: https://auai.org/uai2015/proceedings/
slides/UAI2015_Comp_LN.pdf.

[KG05] Andreas Krause and Carlos Guestrin. Optimal nonmyopic value of information
in graphical models - efficient algorithms and theoretical limits. In IJCAI-05,
Proceedings of the Nineteenth International Joint Conference on Artificial Intel-
ligence, Edinburgh, Scotland, UK, July 30 - August 5, 2005, pages 1339–1345.
Professional Book Center, 2005. URL: http://ijcai.org/Proceedings/05/Papers/
1154.pdf.

[KG09] Andreas Krause and Carlos Guestrin. Optimal value of information in graphical
models. Journal of Artificial Intelligence Research, 35:557–591, July 2009. doi:
10.1613/jair.2737.

[KKR12] Ken-ichi Kawarabayashi, Yusuke Kobayashi, and Bruce Reed. The disjoint
paths problem in quadratic time. Journal of Combinatorial Theory, Series B,
102(2):424–435, March 2012. doi:10.1016/j.jctb.2011.07.004.

[Kou05] Ioannis Koutis. A faster parameterized algorithm for set packing. Information
Processing Letters, 94(1):7–9, April 2005. doi:10.1016/j.ipl.2004.12.005.

[KPS24] Tuukka Korhonen, Michał Pilipczuk, and Giannos Stamoulis. Minor Contain-
ment and Disjoint Paths in almost-linear time, 2024. arXiv:arXiv:2404.03958.

[KT18] Robert Krauthgamer and Ohad Trabelsi. Conditional Lower Bounds for All-
Pairs Max-Flow. ACM Trans. Algorithms, 14(4), aug 2018. doi:10.1145/
3212510.

[Kün18] Marvin Künnemann. On Nondeterministic Derandomization of Freivalds’ Algo-
rithm: Consequences, Avenues and Algorithmic Progress. In Yossi Azar, Hannah
Bast, and Grzegorz Herman, editors, 26th Annual European Symposium on Al-
gorithms (ESA 2018), volume 112 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 56:1–56:16, Dagstuhl, Germany, 2018. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ESA.2018.56.

213

https://arxiv.org/abs/arXiv:2403.20326
https://doi.org/10.1016/j.jalgor.2003.07.001
https://www.youtube.com/watch?v=7CU5uo2XwIc
https://auai.org/uai2015/proceedings/slides/UAI2015_Comp_LN.pdf
https://auai.org/uai2015/proceedings/slides/UAI2015_Comp_LN.pdf
http://ijcai.org/Proceedings/05/Papers/1154.pdf
http://ijcai.org/Proceedings/05/Papers/1154.pdf
https://doi.org/10.1613/jair.2737
https://doi.org/10.1613/jair.2737
https://doi.org/10.1016/j.jctb.2011.07.004
https://doi.org/10.1016/j.ipl.2004.12.005
https://arxiv.org/abs/arXiv:2404.03958
https://doi.org/10.1145/3212510
https://doi.org/10.1145/3212510
https://doi.org/10.4230/LIPIcs.ESA.2018.56

[Kwi11] Johan Kwisthout. Most probable explanations in Bayesian networks: Com-
plexity and tractability. International Journal of Approximate Reasoning,
52(9):1452–1469, 2011. Handling Incomplete and Fuzzy Information in Data
Analysis and Decision Processes. doi:10.1016/j.ijar.2011.08.003.

[LGM98] Michael L. Littman, Judy Goldsmith, and Martin Mundhenk. The Computa-
tional Complexity of Probabilistic Planning. Journal of Artificial Intelligence
Research, 9:1–36, August 1998. doi:10.1613/jair.505.

[Lin20] Andrea(andrea I) Lincoln. Applications of Fine-Grained Complexity. PhD
thesis, Massachusetts Institute of Technology, 2020.

[LLW88] N. Linial, L. Lovász, and A. Wigderson. Rubber Bands, Convex Embeddings
and Graph Connectivity. Combinatorica, 8(1):91–102, March 1988. doi:10.
1007/bf02122557.

[LNP+21] Jason Li, Danupon Nanongkai, Debmalya Panigrahi, Thatchaphol Saranurak,
and Sorrachai Yingchareonthawornchai. Vertex Connectivity in Poly-logarithmic
Max-Flows. In Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2021, page 317–329, New York, NY, USA, 2021.
Association for Computing Machinery. doi:10.1145/3406325.3451088.

[Loc21] Willian Lochet. A Polynomial Time Algorithm for the k-Disjoint Shortest Paths
Problem. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 169–178. Society for Industrial and Applied Mathematics,
January 2021. doi:10.1137/1.9781611976465.12.

[MDCC15] Denis D. Mauá, Cassio P. De Campos, and Fabio G. Cozman. The complex-
ity of MAP inference in Bayesian networks specified through logical languages.
In Proceedings of the 24th International Conference on Artificial Intelligence,
IJCAI’15, page 889–895. AAAI Press, 2015.

[MP93] Matthias Middendorf and Frank Pfeiffer. On the complexity of the disjoint paths
problem. Combinatorica, 13(1):97–107, March 1993. doi:10.1007/bf01202792.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge
University Press, August 1995. doi:10.1017/cbo9780511814075.

[MS14] Guy Moshkovitz and Asaf Shapira. A short proof of Gowers’ lower bound for
the regularity lemma. Combinatorica, 36(2):187–194, November 2014. doi:
10.1007/s00493-014-3166-4.

[Mun00a] Martin Mundhenk. The Complexity of Optimal Small Policies. Mathematics
of Operations Research, 25(1):118–129, 2000. doi:10.1287/moor.25.1.118.
15214.

[Mun00b] Martin Mundhenk. The Complexity of Planning with Partially-Observable
Markov Decision Processes. Technical report, Dartmouth College, USA, 2000.

214

https://doi.org/10.1016/j.ijar.2011.08.003
https://doi.org/10.1613/jair.505
https://doi.org/10.1007/bf02122557
https://doi.org/10.1007/bf02122557
https://doi.org/10.1145/3406325.3451088
https://doi.org/10.1137/1.9781611976465.12
https://doi.org/10.1007/bf01202792
https://doi.org/10.1017/cbo9780511814075
https://doi.org/10.1007/s00493-014-3166-4
https://doi.org/10.1007/s00493-014-3166-4
https://doi.org/10.1287/moor.25.1.118.15214
https://doi.org/10.1287/moor.25.1.118.15214

[MV97] Meena Mahajan and V. Vinay. Determinant: Combinatorics, algorithms, and
complexity. Chicago Journal of Theoretical Computer Science, 1997.

[MW21] Abhijit S. Mudigonda and R. Ryan Williams. Time-Space Lower Bounds
for Simulating Proof Systems with Quantum and Randomized Verifiers. In
James R. Lee, editor, 12th Innovations in Theoretical Computer Science Con-
ference (ITCS 2021), volume 185 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 50:1–50:20, Dagstuhl, Germany, 2021. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ITCS.2021.50.

[Pap93] Christos H Papadimitriou. Computational Complexity. Pearson, Upper Saddle
River, NJ, November 1993.

[PD04] James D. Park and Adnan Darwiche. Complexity Results and Approximation
Strategies for MAP Explanations. J. Artif. Intell. Res., 21:101–133, 2004. doi:
10.1613/jair.1236.

[PLMZ11] Antonio E. Porreca, Alberto Leporati, Giancarlo Mauri, and Claudio Zandron. P
systems with elementary active membranes: Beyond np and conp. In Membrane
Computing, pages 338–347, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[Rao22] Anup Rao. Sunflowers: From Soil to Oil. Bulletin of the American Mathematical
Society, 60(1):29–38, September 2022. doi:10.1090/bull/1777.

[RS95] N. Robertson and P.D. Seymour. Graph Minors .XIII. The Disjoint Paths Prob-
lem. Journal of Combinatorial Theory, Series B, 63(1):65–110, January 1995.
doi:10.1006/jctb.1995.1006.

[Sch02] Alexander Schrijver. Combinatorial Optimization. Algorithms and Combina-
torics. Springer, Berlin, Germany, 2003 edition, December 2002.

[SCWW21] Jessica Su, Kathy Cooper, Nicole Wein, and Virginia Vassilevska Williams.
MIT 6.890 Lecture Notes: Lecture 1. https://people.csail.mit.edu/virgi/6.890/
lecture1.pdf, September 2021.

[Sim75] Janos Simon. On Some Central Problems in Computational Complexity. PhD
thesis, Cornell University, January 1975. URL: https://ecommons.cornell.edu/
handle/1813/6975.

[Sip12] Michael Sipser. Introduction to the Theory of Computation. Wadsworth Pub-
lishing, Belmont, CA, 3 edition, June 2012.

[SY09] Amir Shpilka and Amir Yehudayoff. Arithmetic Circuits: A survey of recent
results and open questions. Foundations and Trends® in Theoretical Computer
Science, 5(3-4):207–388, 2009. doi:10.1561/0400000039.

[Sze75] E. Szemerédi. On sets of integers containing k elements in arithmetic progression.
Acta Arithmetica, 27(1):199–245, 1975. URL: http://eudml.org/doc/205339.

215

https://doi.org/10.4230/LIPIcs.ITCS.2021.50
https://doi.org/10.1613/jair.1236
https://doi.org/10.1613/jair.1236
https://doi.org/10.1090/bull/1777
https://doi.org/10.1006/jctb.1995.1006
https://people.csail.mit.edu/virgi/6.890/lecture1.pdf
https://people.csail.mit.edu/virgi/6.890/lecture1.pdf
https://ecommons.cornell.edu/handle/1813/6975
https://ecommons.cornell.edu/handle/1813/6975
https://doi.org/10.1561/0400000039
http://eudml.org/doc/205339

[Tan22a] Till Tantau. On the Satisfaction Probability of k-CNF Formulas. In Shachar
Lovett, editor, 37th Computational Complexity Conference (CCC 2022), volume
234 of Leibniz International Proceedings in Informatics (LIPIcs), pages 2:1–2:27,
Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.CCC.2022.2.

[Tan22b] Till Tantau. On the Satisfaction Probability of k-CNF Formulas, 2022. arXiv:
2201.08895v3.

[TF10] Tino Teige and Martin Fränzle. Resolution for stochastic boolean satisfiability.
In Logic for Programming, Artificial Intelligence, and Reasoning, pages 625–639,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[Tho97] M. Thorup. Undirected Single Source Shortest Paths in Linear Time. In Pro-
ceedings 38th Annual Symposium on Foundations of Computer Science. IEEE
Comput. Soc, 1997. doi:10.1109/sfcs.1997.646088.

[Tho05] Torsten Tholey. Solving the 2-Disjoint Paths Problem in Nearly Linear Time.
Theory of Computing Systems, 39(1):51–78, November 2005. doi:10.1007/
s00224-005-1256-9.

[Tho12] Torsten Tholey. Linear time algorithms for two disjoint paths problems on
directed acyclic graphs. Theoretical Computer Science, 465:35–48, December
2012. doi:10.1016/j.tcs.2012.09.025.

[Tod91] Seinosuke Toda. PP is as Hard as the Polynomial-Time Hierarchy. SIAM Journal
on Computing, 20(5):865–877, October 1991. doi:10.1137/0220053.

[Tra23] Ohad Trabelsi. (Almost) Ruling Out SETH Lower Bounds for All-Pairs Max-
Flow, 2023. arXiv:2304.04667v3.

[Val79a] Leslie G. Valiant. The Complexity of Enumeration and Reliability Problems.
SIAM Journal on Computing, 8(3):410–421, 1979. doi:10.1137/0208032.

[Val79b] L.G. Valiant. The complexity of computing the permanent. Theoretical Com-
puter Science, 8(2):189–201, 1979. doi:10.1016/0304-3975(79)90044-6.

[Vis13] Nisheeth K Vishnoi. Lx = b. Foundations and Trends (R) in Theoretical Com-
puter Science. now, Hanover, MD, 3 edition, May 2013.

[VW21] Nikhil Vyas and Ryan Williams. On Super Strong ETH. Journal of Artificial
Intelligence Research, 70:473–495, January 2021. doi:10.1613/jair.1.11859.

[Wag86] Klaus W. Wagner. The Complexity of Combinatorial Problems with Succinct
Input Representation. Acta Informatica, 23(3):325–356, June 1986. doi:10.
1007/bf00289117.

[Wei21] Nicole Spence Wein. Algorithms and Hardness for Approximating the Diameter
of a Graph. PhD thesis, Massachusetts Institute of Technology, September 2021.

216

https://doi.org/10.4230/LIPIcs.CCC.2022.2
https://arxiv.org/abs/2201.08895v3
https://arxiv.org/abs/2201.08895v3
https://doi.org/10.1109/sfcs.1997.646088
https://doi.org/10.1007/s00224-005-1256-9
https://doi.org/10.1007/s00224-005-1256-9
https://doi.org/10.1016/j.tcs.2012.09.025
https://doi.org/10.1137/0220053
https://arxiv.org/abs/2304.04667v3
https://doi.org/10.1137/0208032
https://doi.org/10.1016/0304-3975(79)90044-6
https://doi.org/10.1613/jair.1.11859
https://doi.org/10.1007/bf00289117
https://doi.org/10.1007/bf00289117

[Wig19] Avi Wigderson. Mathematics and Computation: A Theory Revolutionizing
Technology and Science. Princeton University Press, October 2019. doi:
10.2307/j.ctvckq7xb.

[Wil13] Ryan Williams. Improving Exhaustive Search Implies Superpolynomial Lower
Bounds. SIAM Journal on Computing, 42(3):1218–1244, January 2013. doi:
10.1137/10080703x.

[WXXZ24] Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New
Bounds for Matrix Multiplication: from Alpha to Omega, page 3792–3835. So-
ciety for Industrial and Applied Mathematics, January 2024. doi:10.1137/1.
9781611977912.134.

[Zuc96] David Zuckerman. On Unapproximable Versions of NP-Complete Prob-
lems. SIAM Journal on Computing, 25(6):1293–1304, 1996. doi:10.1137/
S0097539794266407.

217

https://doi.org/10.2307/j.ctvckq7xb
https://doi.org/10.2307/j.ctvckq7xb
https://doi.org/10.1137/10080703x
https://doi.org/10.1137/10080703x
https://doi.org/10.1137/1.9781611977912.134
https://doi.org/10.1137/1.9781611977912.134
https://doi.org/10.1137/S0097539794266407
https://doi.org/10.1137/S0097539794266407

	Title page
	Abstract
	Acknowledgments
	1 Introduction
	1.1 Overview of Results
	Circuits
	Graphs

	1.2 Organization
	Bibliographic Notes

	1.3 General Preliminaries

	I Circuits
	2 Meeting Majority Satisfiability
	2.1 Complexity Classes and Complete Problems
	The Significance and Intractability of Majority-SAT

	2.2 Formulas of Bounded Width
	Reducing Width for SAT and #SAT
	Barriers to Reducing Width for Majority-SAT

	2.3 Helpful Facts
	2.4 Organization

	3 Algorithms for Threshold Satisfiability
	3.1 Threshold 2SAT
	3.2 Threshold 3SAT
	3.3 Threshold kSAT
	3.4 Commentary on Algorithms
	Exact Parameterized Complexity
	Regularity

	4 Variants of Threshold Satisfiability
	4.1 Strict Thresholds
	4.2 Limited Long Clauses
	4.3 Existential
	4.4 Inference

	5 Open Problems

	II Graphs
	6 Algebraic Framework
	What's this chapter useful for?
	Organization
	6.1 Preliminaries
	6.2 Enumerating Families of Walks
	Node-Based
	Edge-Based

	6.3 Formal Power Series

	7 Connectivity
	7.1 Overview
	7.2 Edge Connectivity
	Exact
	Bounded

	7.3 Vertex Connectivity
	All-Pairs
	Global

	7.4 Open Problems

	8 Disjoint Shortest Paths
	8.1 Overview
	Organization

	8.2 Preliminaries
	8.3 General Ideas
	Subpath Swapping

	8.4 Directed Acyclic Graphs
	8.5 Undirected Graphs
	Shortest Paths Structure
	Agreeing Paths
	Disagreeing Paths

	8.6 Additional Consequences
	Finding Disjoint Shortest Paths
	Edge-Disjoint Paths

	8.7 Open Problems

	9 Conclusion
	References

