
Broadband single and multimode quantum light
generation using optical nonlinearities

by
Sahil Pontula

S.B., Massachusetts Institute of Technology (2023)
Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Master of Science
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 2024

©2024 Sahil Pontula. All rights reserved.
The author hereby grants to MIT a nonexclusive, worldwide,

irrevocable, royalty-free license to exercise any and all rights under
copyright, including to reproduce, preserve, distribute and publicly

display copies of the thesis, or release the thesis under an open-access
license.

Authored by: Sahil Pontula
Department of Electrical Engineering and Computer Science
May 17, 2024

Certified by: Marin Soljačić
Professor of Physics
Thesis Supervisor

Accepted by: Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students



2



Broadband single and multimode quantum light generation

using optical nonlinearities

by

Sahil Pontula

Submitted to the Department of Electrical Engineering and Computer Science
on May 17, 2024, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

There is a growing effort in many fields of physics to bridge the classical and quantum
realms. To our best understanding, our world is governed by the laws of quantum
mechanics, but some of its most interesting features - such as the ability to morph
uncertainty and noise - are washed out when system sizes become too large. Light is
the ideal playground to investigate the interplay between the classical and quantum
domains, with its well known particle-wave duality and diverse behaviors at both
the classical wave and single photon levels. To this end, there is significant interest
in generating quantum states of light that can be harnessed for applications in the
classical world we are most familiar with. However, maintaining “quantumness” as
the number of photons grows large has proved challenging due to the detrimental
effects of loss. In this thesis, I describe two theoretical proposals to make macroscopic
quantum light a reality. I focus on bright intensity squeezed states of light that have
intensity noise far below the standard quantum limit. If realized, these states would
bring the quantum mechanical phenomenon of squeezing to macroscopic intensities,
which in turn could pave the way towards widespread quantum light sources that
offer enhanced signal to noise ratios. I describe two distinct methods that use tools
from nonlinear optics and dissipation engineering to realize broadband squeezing in
both single and multiple frequency modes. I show that the squeezing can be tunable
across a wide range of the electromagnetic spectrum that spans frequencies where
quantum light has never been generated.

Thesis Supervisor: Marin Soljačić
Title: Professor of Physics
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List of Figures

2-1 Semiconductor lasers with nonlinear dispersive loss. (a) Basic

semiconductor laser diode heterostructure design with nonlinear dis-

persive loss. Dispersive outcoupling is generated via the sharp frequency-

dependent transmission of a photonic crystal element. Coupling of Kerr

nonlinearity from the Kerr material and carrier nonlinearity from the

gain material with a dispersive mirror of reflectivity 𝑅(𝜔) creates sharp

nonlinear loss 𝜅(𝑛,𝑁). Here, ∆ denotes detuning from the dispersive

(Lorentzian) resonance and 𝛾 denotes the width of the dispersive reso-

nance (related to its FWHM). (b) Semiconductor optical nonlinearities,

including carrier-dependent free carrier dispersion (FCD) and two pho-

ton absorption (TPA). In addition to the photon number-dependent

Kerr effect, these nonlinearities shift the real part of the active region’s

refractive index, in turn shifting the resonance frequency in the laser

cavity. Weak nonlinear loss from shifting the imaginary part of the re-

fractive index via the Kramers-Kronig relations is also generated, but

in most cases is negligible compared to the nonlinear dispersive loss. (c)

Sample implementation of nonlinear loss in a photonic crystal (PhC)

“Fano” laser. The PhC platform allows much stronger per-photon non-

linearities due to very small mode volumes. Dispersive loss is provided

by waveguide-nanocavity Fano interference in a photonic crystal slab [1]. 43
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2-2 Mean-field dynamics and steady state behavior. (a) Dynamical

and steady state solutions in semiconductor lasers with nonlinear dis-

persive loss. In the region 𝜅𝑛 = 𝜕𝜅/𝜕𝑛 < 0 (photon numbers left of the

Fano resonance), a variety of different behaviors are possible. At large

detunings (small 𝑛, blue region), the loss does not depend strongly

on photon number, and the relaxation oscillations typical of conven-

tional semiconductor lasers are observed. At a certain detuning (𝑛),

the relaxation oscillations become critically damped and, at smaller de-

tunings, they become undamped, leading to self-sustained picosecond

pulses (orange region). When the pump enters the bistable region (red

region, only present for 𝛽 = −10−9 (purple curve)), the pulses become

transient and the laser ultimately collapses to a continuous wave (CW)

steady state. Lastly, to the right of the loss minimum (green), relax-

ation oscillations are heavily damped since 𝜅𝑛 = 𝜕𝜅/𝜕𝑛 > 0, leaving

a CW steady state. Plots were produced by considering a transient

increase in intracavity intensity by 10% at 𝑡 = 0 relative to steady

state. (b) Steady state intracavity photon number 𝑛 as a function of

pump current (S-curve) for three different linear background losses 𝜅0

and nonlinear strengths 𝛽. The indicated unstable region is bypassed

by the bistable point and is not generally accessible during lasing. The

gray vertical lines denote the boundaries of the bistable region for the

purple dotted curve. In these simulations, we use parameters based

on experimentally determined values for buried heterostructure lasers

with GaAs gain and AlGaAs cladding (Fig. 2-1a): active region dimen-

sions 0.1 𝜇m × 5 𝜇m × 1 mm, confinement factor Γ = 0.3, bare cavity

resonance frequency 𝜔0 = 2.16×1015 s-1 (873 nm, GaAs bandgap), free

spectral range FSR = 43 GHz, transparency density 𝑁trans = 2× 1024

m-3, nonradiative decay rate 𝛾‖ = 3×108 s-1, and linear gain coefficient

𝐺𝑁 = 1/𝑉 ·𝑑𝐺/𝑑𝑁 = 3694 s-1 [2]. The Appendix provides an estimate

of typical Kerr nonlinear strengths in this structure. The Fano reso-

nance is centered at photon number 𝑛𝑐 = 8× 106 (a) and 𝑛𝑐 = 106 (b).

Its resonance decay (FWHM) is 𝛾 = 2×1012 s-1. In (a), 𝜅0 = 10−2 ·FSR

for 𝛽 ̸= 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
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2-3 Intensity noise squeezing. (a) Comparison of steady state photon

probability distribution 𝑝(𝑛) under conventional and sharp loss. The

steady state photon number is determined by the location of intersec-

tion between saturable gain and loss. The variance of the probability

distribution is determined by the effective “steepness” of intersection

of the gain and loss curves. While the conventional laser architecture

with linear loss results in a near-coherent state far above threshold,

the sharp loss architecture results in states with variance below the

mean, which correspond to non-classical light. In the most extreme

limit, this mechanism can enable the generation of near-Fock states in-

side the laser cavity. (b) Intracavity Fano factor spectrum (∆𝑛2(𝜔)/𝑛)

as a function of noise frequency for the three different steady states

(⋆,▲,■) indicated in the input-output curve of Fig. 2-2b (𝑟 ≡ 𝐼/𝐼thres

is the pumping ratio). Here, 𝜅0 = FSR for the linear loss (blue) and

𝜅0 = 10−2 · FSR for the nonlinear loss (purple). Nonlinear loss cre-

ates a strong suppression of the relaxation oscillation (RO) peak. (c)

Output squeezing over a > 1 GHz bandwidth with (“noisy”) and with-

out (“quiet”) pump noise suppression (plotted for three different pump

powers with nonlinear strength 𝛽 = −10−9). (d), (e), (f) Comparison

of loss profiles and integrated Fano factor as a function of pump cur-

rent for a nonlinear laser with a Fano mirror or DBR. Fano factors are

plotted for the low noise branch when bistability is present. In (d),

(e), (f), 𝑛𝑐 = 5× 106 marks the center of the Fano resonance, while for

DBR loss profiles, the average index is 𝑛̃ = 3.0, the index contrast is

∆𝑛 ≲ 1.0, and the first transition from stop to pass band is tuned to

occur around 𝑛𝑐 = 5 × 106. All other simulation parameters are the

same as those in Fig. 2-2. . . . . . . . . . . . . . . . . . . . . . . . . 45
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2-4 Strongly squeezed IR and terahertz light using QCLs. (a), (b)

Basic dispersive Kerr-squeezed QCL laser architecture with nonlinear

dispersive loss. Electrons make subband transitions in a given quantum

well and tunnel to the next one. Dispersive outcoupling is provided by

a photonic crystal fabricated on an end facet of the QCL. The giant,

ultrafast Kerr nonlinearity of the active region due to intersubband

transitions is used to generate nonlinear dispersive loss. (c) Three-

level system used for rate equation analysis with nonradiative decay

timescales from each level indicated. (d) Fano factor spectrum for two

different pump strengths 𝑟 ≡ 𝐼/𝐼thres, with 𝛽 = 10−9 and 𝜅0 = FSR.

A similar bistability to the diode laser case is present here, and the

𝑟 = 0.5 curve is for the upper (low noise) branch (𝑟 = 5 corresponds to

large detuning from the Fano resonance and lies in the approximately

linear loss regime). (e) Integrated Fano factor as a function of pump

strength for the low noise branch for three different nonlinear strengths

and operating wavelengths in the IR and THz. For these simulations,

we use system parameters measured from experiment: wavelength 𝜆0 =

4, 103 𝜇m (IR, THz), 𝜏32 = 2.1 ps, 𝜏31 = 3.4 ps, 𝜏21 = 0.5 ps, 𝑚 = 25

gain stages, confinement factor Γ = 0.2, cavity length 𝐿 = 3 mm, and

gain coefficient 𝐺𝑁 = 105Γ s-1 [3, 4]. The Fano resonance has FWHM

𝛾 = 2× 1012 rad/s and is centered at 𝑛𝑐 = 2.5× 107. . . . . . . . . . 46
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3-1 Squeezing in a multimode cavity with THz-mediated cascaded

three wave mixing. (a) Cascading infrared (IR) orders are resonant

in a multimode cavity and undergo three wave mixing (TWM) medi-

ated by a terahertz (THz) mode, creating a frequency comb (red) with

modes separated by the THz frequency 𝜔𝑇 (green). The cascade starts

with a single TWM process wherein a pump photon at 𝜔0 amplifies a

seed photon at 𝜔1 (solid line) and simultaneously creates an idler pho-

ton (THz, dashed line) (1). Subsequently, the amplified mode at 𝜔1

initiates cascading downconversion processes, now seeded by the THz

idler photon (2). Concomitantly, THz photons can also initiate upcon-

version processes that repopulate the IR orders (3). By shaping the 𝑄

factor distribution of the cavity (e.g., through a frequency-dependent

coupler), the modes blueshifted relative to the pump frequency 𝜔0

can be suppressed, biasing downconversions that create THz photons.

Through parametric squeezing enabled by the strong nonlinear rates,

the multimode cavity can create above-threshold output squeezing in

frequency mode(s) that are separated from the coherent pump mode

by multiple idler photons. (b) Shown for a single mode, the output

squeezing emerges due to destructive interference between the intra-

cavity fluctuations and vacuum shot noise on the output facet of the

cavity outcoupling mirror. (c) Strong squeezing requires strong nonlin-

ear energy flow, which creates a kind of nonlinear tight binding system

in frequency space. The system is bounded by low 𝑄 modes at frequen-

cies 𝜔0,𝑁 , resulting in a frequency space cavity (modes within the cav-

ity generally have high 𝑄 factors). Excitation of counter-propagating

Bloch modes in this cavity creates an interference pattern that is ob-

servable in the modal energy distribution. . . . . . . . . . . . . . . . 63
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3-2 Intracavity dynamics and noise due to strong cascaded nonlin-

ear interactions. (a) 𝑄 factor shaping (through the use of frequency-

dependent couplers) permits the creation of frequency combs contain-

ing only redshifted modes relative to the pump mode 𝑎0. The temporal

dynamics feature Bloch waves that propagate through frequency space,

establishing the steady state interference pattern in intracavity modal

energy. (b) 𝑄 factors for the different frequency modes and quasi-

periodic modal energy distribution in frequency space enabled through

cascaded nonlinear interactions. Green denotes the (THz) idler mode

𝑎𝑇 , red denotes infrared cascading orders 𝑎𝑛>0, black denotes the pump

mode 𝑎0, and blue denotes blueshifted modes 𝑎𝑛<0 (suppressed in the

present system). The dashed lines indicate the boundaries of the cav-

ity in the synthetic frequency dimension. (c), (d) Intracavity relative

intensity noise spectra for modes 𝑎𝑇 (green), 𝑎𝑁−1,𝑁 (red, ▲ for 𝑎𝑁

and ■ for 𝑎𝑁−1), 𝑎0 (black), and 𝑎−1 (blue). The blueshifted mode

is a coherent state that is approximately decoupled from the nonlin-

ear interactions due to its low 𝑄 factor. The pump and IR cascading

orders have low frequency noise that lies far below the reference co-

herent state defined by a state with identical decay channel but no

nonlinear coupling. However, these modes feature strong GHz relax-

ation oscillations (ROs). Multiple relaxation oscillation peaks (around

the nonlinear rate |𝜅𝑎𝑇 |) are present due to the TWM processes oc-

curring in the multi-resonant cavity. In these simulations, the pump

and seed wavelengths are 𝜆0,1 = 1064, 1068 nm (so that 𝜔𝑇 = 2𝜋 · 1.06

THz). 𝑁 = 9 cascading orders are simulated, along with two low 𝑄

“padding modes” on either side of the frequency space cavity. 𝑄 fac-

tors used are: 𝑄𝑟 = 107 (redshifted modes in frequency space cavity),

𝑄0 = 𝑄𝑁 = 105 (frequency mirrors), 𝑄𝑏 = 102 (blueshifted modes),

and 𝑄𝑇 = 104 (THz idler mode). The nonlinear strength is 𝜅 = 4.70

s−1 and the input pump and seed powers are |𝑠0,1|2 = 1 MW. . . . . . 64
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3-3 Single and multimode output noise squeezing. (a) Using a sim-

ilar cavity design to that presented in Fig. 3-2, single frequency modes

in the synthetic frequency dimension can be squeezed in output noise.

Here, we simulate 𝑁 = 15 cascading orders, and the mode with low 𝑄

is squeezed. Dashed lines demarcate the boundaries of the frequency

space cavity. We plot the steady state output power in the modes; due

to their low 𝑄, the squeezed modes have the highest power outside

the cavity. The remaining IR modes show an interference pattern in

steady state power characteristic of the Bloch interference phenomenon

in Fig. 3-2. The terahertz mode 𝑎𝑇 also has high power, while modes

outside the frequency space cavity are very leaky and negligibly oc-

cupied in the steady state. The modes that are designed to have low

𝑄 are the only ones to show significant departure from the shot noise

limit (SNL), demonstrating intensity noise squeezing exceeding 10 dB.

In these simulations, 𝑄0 = 3 × 106, 𝑄𝑁 = 2 × 105, 𝑄𝑟 = 𝑄𝑇 = 109

and 𝜅 = 14.1 s−1. (b), (c) The single mode output squeezing (here

for mode 𝑎𝑁) can be maximized by optimizing multiple parameters

simultaneously. Here, we show that higher 𝑄𝑇 and lower intrinsic loss

generates stronger squeezing due to stronger nonlinear energy flow. A

larger number of modes (𝑁) can also help increase squeezing, though

too many modes can make the noise contribution from modes 𝑎𝑘 ̸=𝑁

significant (red dashed curve in (c)). Lastly, an optimal 𝑄𝑁 exists

(with all parameters held equal) to maximize squeezing. Roughly, this

𝑄𝑁 maximizes destructive interference with vacuum shot noise as per

condition (1) (red dotted curve in (c)). In (b), (c), 𝑄𝑟 = 108 and

𝜇/𝛾 denotes the ratio of intrinsic loss to the outcoupling rate. (d), (e)

By shaping the 𝑄 factor profile of the multimode cavity, specifically

by introducing multiple 𝑄 factor “defects,” output squeezing can be

obtained for multiple frequency modes. Here, 𝑁 = 7 modes are sim-

ulated. The bandwidth for squeezing in the inset is around 100 MHz,

but can be optimized to > 1 GHz by enabling stronger nonlinear rates. 65
17



3-4 Twin beam correlations. (a) Single beam outcoupled power and

(DC) output noise. (b) Twin beam intensity sum and difference fluctu-

ations ⟨𝛿𝑛𝑖±𝛿𝑛𝑗⟩ normalized to the uncorrelated twin beam noise. De-

spite certain modes being strongly antisqueezed in (individual) output

amplitude noise, strong correlations between multiple pairs of modes

significantly reduce the twin beam noise. These correlations span the

dimension of the frequency cavity and may point towards the possi-

bility of long-range entanglement in a synthetic frequency dimension.

Simulation parameters are 𝑄0 = 𝑄𝑁 = 𝑄𝑟 = 𝑄𝑏 = 3 × 106, 𝑄𝑇 =

105, 𝜅 = 3 × 10−4 J−1/2, and |𝑠0|2 = 1 MW, |𝑠1|2 = 100 W. All noises

are computed at noise frequencies much lower than the cavity bandwidth. 66

A-1 Evolution of the pulse profile for carrier density and photon

number from the self-pulsing to collapsed pulse regimes. As

the initial photon number 𝑛0 approaches the left bistable edge, the

pulse plateaus for longer at the center of the Fano resonance. Thus,

the effective width of the pulse is dynamic within the regime over which

self-pulsing occurs, depending on the initial state’s proximity to the left

bistable edge. Once the left bistable edge is crossed, the pulse collapses

to a CW solution at higher photon number than the initial state. Here,

𝑟0 denotes the initial pumping rate relative to threshold. . . . . . . . 76

A-2 Steady state and noise plots for two photon absorption. (a)

Steady state intracavity photon number as a function of pump cur-

rent (S-curve), demonstrating sub-linear dependence of photon num-

ber with pump current for two-photon absorption (TPA). (b) Photon

number variance spectrum for two different pump powers 𝑟 = 𝐼/𝐼thres,

with broadband squeezing for intensity-dependent TPA. (c) Fano fac-

tor plots for linear and TPA loss profiles. The intensity dependence of

TPA 𝜅(𝑛) ∝ 𝑛 creates small (< 2 dB) drops in Fano factor below the

shot noise limit when pumped far above threshold. Here, 𝛼 ≡ 𝛼TPA/FSR. 82
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A-3 Comparison of frequency and temporal response for Fano mir-

ror and DBR losses. In the top row, the DBR stop band is made

sharper and its width is increased by increasing the number of layers.

This results in a shorter, ultrafast relaxation time. In contrast, in the

bottom row, the Fano mirror frequency response is made sharper by

increasing the quality factor (𝑄) of the resonance, which has the effect

of decreasing the width of the resonance while increasing its lifetime. 84

19



A-4 Effects of carrier and Kerr nonlinearities composed with dis-

persive loss. (a) In the presence of only carrier nonlinearity 𝜎, the

resonance frequency and thus loss depend “directly” on carrier den-

sity 𝑁 , and steady states are set by the intersections of gain and loss.

For strong 𝜎 and low background loss 𝜅0, multiple steady state carrier

densities 𝑁 can correspond to a given photon number 𝑛, resulting in

different steady state losses (detunings from the Fano resonance). The

lowest loss solution (smallest detuning) is most likely to lase, though

extra solutions may be accessible by dynamic pumping schemes. (b)

The schematic effect of this “carrier bistability” is to create multiple

branches in the S-curve of different slope/threshold current. The pres-

ence of both strong carrier and Kerr nonlinearities result in the novel

behaviors shown in panels (c), (d), and (e). Carrier nonlinearity causes

a deformation of the intensity-nonlinear Lorentzian loss profile, even-

tually pinching off the “sharp loss” from the linear loss for sufficiently

strong carrier nonlinearity (purple curve). This stems from leftward

motion of the carrier bistability boundaries and creates a demarcation

between linear (𝐹 ≫ 1) and nonlinear (𝐹 < 1) loss regimes which may

be separated by a region of lasing with no stable solution. System

parameters used are the same as those in Fig. 2 with 𝛽 = −10−10,

𝜅0 = 10−2 ·FSR, and 𝛾 = 2× 1012 rad/s. The magnitudes of Kerr and

carrier nonlinearities taken here are comparable to what they might be

in GaAs-based gain media: 𝛽 ∼ −10−10 and 𝜎 ∼ −3× 10−27 m3 (with

the proviso of being taken as instantaneous and being evaluated at a

single wavelength). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
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B-1 One-sided and two-sided frequency comb generation. 𝑄 factor

shaping (through the use of frequency-dependent couplers) permits the

creation of frequency combs containing only redshifted or blueshifted

(one-sided) or both redshifted and blueshifted (two-sided) modes rela-

tive to the pump. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

B-2 Correlation matrix showing interplay between nonlinear cou-

pling and dissipation. (a), (b) In the presence of weak nonlinearity,

the correlations are driven by the dissipative dynamics. In particular,

the correlations are most sensitive amongst the high 𝑄 factor cascad-

ing orders and the THz bath. All correlations are positive since loss

in one of these modes reduces the conversion efficiency of another.

(c), (d) In the presence of stronger nonlinearity, the correlation ma-

trix heatmap changes noticeably. Correlations are now dominated by

the nonlinear dynamics, where the effect of Bloch mode interference

can be seen in the checkerboard pattern in the cascading orders. The

output noise correlation matrix notably displays strong positive corre-

lation between the THz bath mode and certain IR modes (here, the

two frequency mirror modes 𝑎0,𝑁 , likely because these two modes have

the strongest outcoupling). In this simulation, 𝑁 = 7 cascading orders

are considered and the quality factors are 𝑄𝑟 = 108, 𝑄𝑏 = 102, 𝑄0 =

𝑄𝑁 = 105, 𝑄𝑇 = 104. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
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Chapter 1

Introduction

The generation of quantum states of light is a long-standing goal of quantum op-

tics. These states comprise a toolbox from which quantum mechanical properties

such as squeezing and entanglement can be harnessed to enhance the performance

of classical photonic devices. The past few years have seen a burgeoning interest

in research towards realizing practical sources of quantum light, driven largely by

quantum computing but also by sensing and metrology applications (e.g., the use of

squeezed vacuum by the LIGO gravitational wave detector). Despite this incredible

progress, there are some quantum states of light that still remain notoriously elu-

sive despite their tantalizing potential for real-world applications. Examples include

many-photon Fock states (which have no photon number uncertainty) and macro-

scopic states of light (states such as those in optical cavities like lasers) with strongly

squeezed intensity noise. (When the squeezing is infinite, a macroscopic Fock state

is produced.) The main issue is loss, though most existing protocols to generate

bright squeezing also suffer from low bandwidths and lack spectral tunability. For

example, protocols to produce quantum light at some frequencies (e.g., microwave)

do not easily generalize to other frequencies (e.g., optical). In this thesis, I describe

two theory projects that aim to harness loss and optical nonlinearity in ways that

are advantageous for squeezing - first by engineering nonlinear dissipation to cre-

ate strong single-mode squeezing and second by controlling the relationship between

outcoupling loss and nonlinear intermodal coupling to generate multimode output
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squeezing. These works pave the way towards single-mode and multimode sources of

bright intensity noise-squeezed states of light that could provide a new resource for

multiple quantum applications, such as on-demand squeezed light generation from

lasers and squeezed frequency combs for metrology applications.

Chapter 2 describes my theoretical proposal for generating strong intensity noise

squeezing (both intracavity and output) in semiconductor lasers. As I show, through a

combination of Kerr nonlinearity and photonic crystal-based dispersive loss, semicon-

ductor laser systems can be engineered to have sharply nonlinear intensity-dependent

dissipation, resulting in strongly squeezed steady states. Using quantum cascade laser

architectures, nonlinear dissipation can extend strong squeezing to frequency ranges

that have not been previously investigated for quantum light generation, such as the

mid-infrared (mid-IR) and terahertz (THz). Furthermore, I show how the same phe-

nomenon of nonlinear dissipation creates bistability and diverse mean field behaviors,

including picosecond self-pulsing. Together, these results may enable combined dy-

namical and quantum noise control across a wide range of wavelengths in a single

semiconductor laser platform.

In Chapter 3, I describe my work over the past academic year demonstrating

multimode squeezing and quantum noise correlations in a platform that supports

cascaded second-order nonlinear processes. By controlling the 𝑄 factor of different

modes in a multimode cavity that are coupled nonlinearly to one another through

a common “idler” bath mode, I show how tunable frequency combs and cavities in

a synthetic frequency dimension can be created. Within these frequency space cav-

ities, strong nonlinear rates can exceed dissipation rates, resulting in intensity noise

squeezing for one or more modes. Furthermore, these strong nonlinear interactions

also sustain long-range quantum noise correlations in the synthetic frequency dimen-

sion, providing a resource for multimode entanglement.

Finally, in Chapter 4, I describe active projects that I am currently working on,

including other theory projects and a free-space experiment designed to demonstrate

some of the predictions highlighted in the multimode work above.
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Chapter 2

Single mode squeezing in

semiconductor lasers at mid-infrared

and terahertz frequencies

The content of this chapter is taken largely from my first author preprint [5]. The

foundational theory was also developed in my bachelor’s thesis [6].

2.1 Introduction

The generation of states of light with noise “squeezed” below the standard quantum

limit for a coherent state is a decades-old pursuit of quantum optics. In these squeezed

states, the variance in one observable (such as amplitude or phase) is reduced at

the expense of another, permitting levels of quantum fluctuations which lie below

the standard quantum limit. Such squeezed states of light have been harnessed for

optical quantum computing as well as precision sensing and metrology [7, 8]. The

most common methods to generate squeezed light employ laser-pumped nonlinear

crystals. For example, sub-threshold optical parametric amplifiers have been used to

produce up to 3 dB of intracavity squeezing [9–11] and 15 dB of propagating squeezed

vacuum [12–14].

By contrast, schemes to generate squeezing in bright states of light are less ma-
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ture, despite their promise as sources for sensitive spectroscopy applications and

pumps for low-noise optical amplifiers [15, 16]. Generation of bright squeezing has

been limited to methods developed over two decades ago such as second harmonic

generation, Kerr nonlinearity in fiber-optic interferometers, and “quietly pumped”

semiconductor lasers [17–19]. However, these mechanisms come with inherent trade-

offs that limit the space of possible applications. First, the magnitude of squeez-

ing achieved has not approached that achievable with squeezed vacuum (in either

intracavity or output intensity noise), limiting applications where intense squeezed

light is preferred over squeezed vacuum. Secondly, large (GHz) bandwidths have not

been demonstrated with these bright squeezing methods, limiting their application

in quantum communication protocols. In mesoscopic systems with strong nonlineari-

ties, high levels of broadband intracavity squeezing could produce approximate large

Fock states, with exciting potential applications in qubit nondemolition readout in

cavity QED, optomechanical cooling, quantum metrology, and enhanced light-matter

interactions [11,20–23]. Finally, existing methods to produce intense squeezed states

have been generally limited to narrow wavelength ranges in the infrared (e.g., due to

nonlinear phase matching and conversion efficiency constraints). As a result, there

are large wavelength ranges (MIR-THz) in which intensity squeezing has never been

demonstrated, despite tantalizing applications in quantum-enhanced chemical finger-

printing, wireless communication, and solid-state qubit manipulation [24].

These wavelengths spanning from the IR to the THz have been particularly well-

served by semiconductor lasers, owing to their wide gain bandwidths, convenient

form factors, and ease of electrical pumping. Several methods have been explored

to produce intensity squeezing directly from semiconductor lasers, including so-called

“quiet pumping” (pump noise suppression) and optical feedback/dispersive loss to

exploit amplitude-phase correlations [25–27]. However, these methods have achieved

only a few dB of squeezing. Moreover, such squeezing has been achieved only at low

noise frequencies, leaving the large excess noise from so-called “relaxation oscillations”

at higher frequencies unmitigated. Thus, the majority of modern semiconductor lasers

do not surpass — or even reach — the shot noise limit at large bandwidths. This,
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together with the limitations of other nonlinear optical techniques described above,

highlights a broad open challenge in producing sources of highly squeezed intense

light which are versatile in wavelength and bandwidth.

Here, we show how semiconductor lasers equipped with Kerr nonlinearity and

frequency-dependent outcoupling can enable sharply nonlinear dissipation and act as

a source of intense squeezed light from IR to THz wavelengths, reducing intracavity

fluctuations to more than 10 dB below the shot noise limit. Output fluctuations are

significantly suppressed relative to conventional semiconductor lasers and, when com-

bined with quiet pumping schemes, can be squeezed over 10 dB below the shot noise

limit at GHz bandwidths. Our approach exploits intensity-dependent dissipation, in

conjunction with a semiconductor gain medium, to create a laser architecture which

natively produces light with intensity fluctuations far below the shot noise limit. We

show that semiconductor laser architectures are aptly suited for this purpose due to

their compact form factor, strong intrinsic optical nonlinearities, and ease of on-chip

integration with the low loss resonators and photonic crystals required to generate

frequency-dependent dissipation. In addition, we explain how these same architec-

tures can exhibit classical nonlinear phenomena such as self-pulsing and bistability.

Together, these functionalities could pave the way towards combined temporal and

quantum noise control over light across the electromagnetic spectrum. This could

unlock elusive quantum states such as THz pulsed squeezed states, with novel appli-

cations in communications and sensing.

2.2 Theory

2.2.1 Nonlinear dispersive loss

We first describe how, under the right conditions, the combination of Kerr nonlin-

earity and frequency-dependent loss lead to a laser cavity with an effective intensity-

dependent loss that controls the quantum state of light produced by the laser. Con-

sider the cavity architecture shown for a semiconductor laser in Fig. 2-1a. We focus
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on a single cavity mode, with annihilation operator 𝑎. As is well known, a cavity

containing a Kerr nonlinearity develops an intensity-dependent resonance frequency

due to the intensity-dependent index of the Kerr material [28]. In the case of semicon-

ductor lasers, free carrier nonlinearities (Fig. 2-1b) also shift the cavity resonance.

Then, the cavity resonance frequency depends linearly on the photon number and

inverted carrier density 𝑛 and 𝑁 as

𝜔𝑅(𝑛,𝑁) = 𝜔0 · (1 + 𝛽𝑛+ 𝜎𝑁), (2.1)

as derived in the Appendix. This form for the cavity resonance shift due to semicon-

ductor nonlinearities has been analyzed previously using coupled mode theory and

supported experimentally [29–32]. Here, 𝜔0 is the bare resonance frequency of the

cavity mode 𝑎, 𝛽 is a dimensionless per-photon nonlinearity that can be directly cal-

culated from the Kerr nonlinear coefficient 𝑛2 or nonlinear susceptibility 𝜒(3), and the

carrier nonlinearity 𝜎 is material-dependent and is directly related to the linewidth

enhancement factor (see Appendix for details).

Additionally, in the laser cavity of Fig. 2-1a, one of the end facets is a broad-

band reflector, while the other is a sharply dispersive element, such as a Fano reso-

nance structure or a Bragg reflector, which equips the cavity with sharply frequency-

dependent dissipation through its reflection coefficient 𝑅(𝜔). When combined, the

intensity-dependent resonance frequency and frequency-dependent dissipation give

the cavity mode an effective intensity-dependent dissipation, which can promote the

formation of quantum states [33,34]. The one critical assumption for this description

is that the temporal response of the dispersive mirror is fast compared to the round

trip time of the cavity. This corresponds to an adiabatic limit where the dispersive

resonance, which sets the cavity transmission 𝑇 (𝜔), is able to near-instantaneously

follow shifts in the cavity frequency caused by the nonlinearities. When these as-

sumptions are fulfilled, the cavity field is subject to an effective intensity-dependent
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damping rate

𝜅(𝑛,𝑁) ≡ 𝜅(𝜔𝑅(𝑛,𝑁)) = −FSR · log𝑅(𝜔𝑅(𝑛,𝑁))

≈ FSR · 𝑇 (𝜔𝑅(𝑛,𝑁)),
(2.2)

where the approximation holds when 𝑅(𝜔𝑅) ≈ 1. Sharply frequency-dependent re-

flectivity profiles enable the dissipation rate 𝜅(𝑛,𝑁) to take on forms which are highly

nonperturbative in 𝑛, making this type of nonlinear dissipation fundamentally differ-

ent than the types of nonlinear dissipation realized by multi-photon absorption. One

example of such a reflectivity profile has been realized in self-pulsing Fano lasers [1]

with low mode volumes which, when augmented with a Kerr nonlinear material (Fig.

2-1c), could create strongly nonlinear dissipation. As we will show, systems exhibiting

this kind of loss can provide new behaviors not just in their steady states, but also

through new quantum noise behaviors.

Note that in Fig. 2-1a we consider a semiconductor laser with separate gain and

Kerr nonlinear elements. We choose to use a different material for the Kerr non-

linearity in order to avoid possible dispersive resonant effects of optical nonlinearity

near transition energies in the gain material. The Kerr material is chosen to be a

GaAs-based semiconductor due to its strong optical nonlinearity from bound carriers.

Semiconductor lasers with nonlinear dispersive loss based on “active nonlinearity” (in

which the gain and Kerr materials are the same) may be possible, but the timescale

of resonant effects may call into question the adiabatic assumption of the cavity reso-

nance frequency’s instantaneous response to changes in photon number, thus placing

such systems outside the scope of the models we consider here.

2.2.2 Laser dynamics

Semiconductors typically fall into the category of so-called “class B” lasers, in which

the polarization dynamics decay quickly relative to the timescales associated with

carrier recombination and cavity decay. In this case, the polarization dynamics are

adiabatically eliminated, resulting in Heisenberg-Langevin equations for photon num-
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ber and carrier number operators, as derived in the Appendix [2, 35]:

𝑛̇ = (𝐺(𝑛,𝑁)− 𝜅(𝑛,𝑁))𝑛+ 𝐹𝑛 (2.3a)

𝑁̇ = 𝐼 −
(︀
𝑛𝐺(𝑛,𝑁) + 𝛾‖𝑁

)︀
+ 𝐹𝑁 . (2.3b)

To be maximally general here, we allow the gain 𝐺 and loss 𝜅 to depend on both the

carrier density 𝑁 and photon number 𝑛 (the latter could account for gain saturation).

In writing this form of the gain and loss, we have assumed that the gain and loss

respond effectively instantaneously to changes in the photon and carrier number.

Pumping is performed by carrier injection using current 𝐼 (in units of carrier density

per unit time), and 𝛾‖ denotes the nonradiative decay rate of carriers. The case of

optically pumped excitation of free carriers is described in the Appendix. Finally,

the decay rates and pump noise are associated with zero-mean Langevin force terms

𝐹𝑛,𝑁, with nonzero correlators provided in the Appendix.

In all examples presented in the main text, we consider linear gain which neglects

saturation effects, so that 𝐺(𝑛,𝑁) = 𝐺(𝑁) = 𝐺𝑁(𝑁 −𝑁trans) with 𝑁trans the trans-

parency carrier density. We found no phenomenological differences using logarithmic

quantum well gain or including the effects of gain saturation [36].

2.2.3 Noise properties

The noise properties of semiconductor lasers can be computed by considering oper-

ator valued fluctuations of the Heisenberg-Langevin equations from their mean field

solutions. In the steady state, this results in a pair of coupled linear equations for

the operator values fluctuations 𝛿𝑛 and 𝛿𝑁 , which are given as:

⎡⎣ 𝛿𝑛̇
𝛿𝑁̇

⎤⎦ =

⎡⎣−𝑛𝜅𝑛 𝑛 (𝐺𝑁 − 𝜅𝑁)

−𝐺0 −(𝑛𝐺𝑁 + 𝛾‖)

⎤⎦⎡⎣ 𝛿𝑛
𝛿𝑁

⎤⎦+

⎡⎣𝐹𝑛 − 𝑛𝜅𝜔𝐹𝜑

𝐹𝑁

⎤⎦ . (2.4)

Here, 𝜅𝑛 ≡ 𝜕𝜅/𝜕𝑛 = −𝛽𝜔0𝜅𝜔 = −𝛽𝜔0(𝜕𝜅/𝜕𝜔) represents the sharpness of the disper-

sive loss, 𝜅𝑁 ≡ 𝜕𝜅/𝜕𝑁 = 𝛼𝐿𝐺𝑁𝜅𝜔/2 = −𝜎𝜔0𝜅𝜔, where 𝛼𝐿 is the linewidth enhance-
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ment factor (directly related to 𝜎, the free carrier dependence of the refractive index),

and 𝐹𝜑 is a Langevin force associated with the phase equation of motion. Note that

𝛼𝐿, which emerges due to amplitude-phase coupling in semiconductor lasers, affects

noise behavior, but not steady state operation. Important physical parameters to

characterize intensity noise are the relaxation oscillation frequency and damping rate

of relaxation oscillations. As derived in the Appendix, these can be calculated from

the complex poles of the fluctuation dynamics:

Ω2
𝑅 ≈ (𝑛𝐺𝑁 + 𝛾‖)(𝑛𝜅𝑛) + 𝑛(𝐺𝑁 − 𝜅𝑁)𝜅

Γ1 ≈ 𝑛(𝐺𝑁 + 𝜅𝑛) + 𝛾‖.
(2.5)

These measures provide an important way to understand the effect of nonlinear dis-

persive loss on quantum noise. They will also dictate mean field dynamics that result

from fluctuations from steady state operation.

Going forward, we will assume in the main text that the shift in refractive in-

dex due to Kerr nonlinearity is much stronger than that due to carrier nonlinearity,

|𝛽𝑛| ≫ |𝜎(𝑁 − 𝑁trans)|, so that the dependence of loss on carrier number 𝜅𝑁 can

be neglected. With strong Kerr nonlinearity, this is generally true for linewidth en-

hancement factors 𝛼𝐿 < 5. Many semiconductor laser systems fall in this regime,

but quantum well/quantum dot designs and gain-symmetric quantum cascade lasers

generally minimize 𝛼𝐿 [37,38]. We consider the behavior when |𝛽𝑛| ∼ |𝜎(𝑁 −𝑁trans)|

as well as the effect of two photon absorption in the Appendix.

2.3 Results

2.3.1 Mean-field dynamics

We begin by considering the mean-field steady-state and dynamical solutions that

emerge for a Kerr nonlinear semiconductor laser with a symmetric Fano resonance.

As shown in Fig. 2-2a, the mean-field behavior can differ drastically depending on

the sharpness of the loss 𝜅𝑛 = 𝜕𝜅/𝜕𝑛.
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The mean-field dynamics of the equations of motion allow diverse modes of opera-

tion, as shown in Fig. 2-2a. The key driving force for these behaviors is the variation

in the damping rate for relaxation oscillations (Eq. 2.5), which describes relaxation

back to the mean field steady state. We plot the temporal evolution of the intra-

cavity photon number following a transient 10% increase in the photon number at

𝑡 = 0 relative to the initial steady state. For 𝜅𝑛 ≈ 0 (low 𝑛 and far detuned from

Fano resonance, blue region), relaxation oscillations are observed. For 𝜅𝑛 ≪ 0, the

relaxation oscillations become critically damped and eventually undamped (orange

region), resulting in oscillations that transition into self-generated and self-sustained

pulses. The pulses are quenched when the initial photon number enters the bistable

region’s lowest branch (demarcated by gray lines in Fig. 2-2b), ultimately collapsing

to the topmost branch (and bypassing the intermediate unstable branch). For 𝜅𝑛 > 0,

relaxation oscillations are strongly damped (Γ1 grows with 𝜅𝑛 in Eq. 2.5). We note

that in many semiconductor lasers that are not operated very far above threshold,

intensity noise is often far from the shot noise limit due to the relaxation oscillation

peak. The nonlinear loss in the region 𝜅𝑛 > 0 suppresses this peak by over four orders

of magnitude, as we will show. Physically, the nonlinear loss magnifies the strength of

attraction of the laser steady state (a fixed point of the rate equations) in proportion

to the slope 𝜅𝑛. This has the effect of strongly resisting deviations from the steady

state photon number, leading to the strong intensity squeezing described in the next

section.

Self-pulsing has been reported previously using photonic crystal-based “Fano”

lasers with saturable free carrier absorption from a nanocavity [1]. Here, we see

that a similar phenomenon occurs due to a different physical mechanism: the combi-

nation of Kerr nonlinearity and dispersive loss. Suppose that the laser is pumped to

a CW steady-state lying in the self-pulsing region of Fig. 2-2a. A transient increase

in intracavity intensity (e.g., due to spontaneous emission into the lasing mode) now

decreases the photonic loss, providing a positive feedback mechanism that builds up

the intracavity intensity further. This should continue up to the point where the

stimulated emission rate is high enough to drop the carrier density below threshold.

34



The pump then builds up the carrier density again, and the pulsing continues. Fur-

ther details about the self-pulsing behavior, including an analysis of the pulse profile,

are provided in the Appendix.

We now examine the steady-state input-output curve (S-curve), as shown in Fig.

2-2b. Linear loss presents an 𝑛-independent loss profile, and leads to the well known

linear dependence of steady state photon number on pump current (as well as clamp-

ing of the carrier density and gain above threshold). In the presence of dispersive

loss, moderate nonlinearity (𝛽 = −10−10) begins to modify the steady state behavior.

For pump currents just above threshold, the behavior is close to linear. However, as

the pump current increases, so does the loss, pulling down the input-output curve

to a sub-linear behavior. For even stronger nonlinearity (𝛽 = −10−9), a bistable

transition occurs that creates a range of photon numbers which have no stable steady

state solution. In particular, this occurs because there is a nonzero photon number

at which the cavity experiences minimum loss. The topmost bistable branch (with

𝜅𝑛 ≫ 0 and strongest squeezing) needs to be accessed hysteretically “from above,” by

pumping to a high power (beyond the right bistable edge) and slowly lowering the

power.

2.3.2 Broadband intensity noise squeezing

We now describe how the mechanism of intensity-dependent loss can compress steady

state photon statistics (Fig. 2-3a). The steady states of all lasers are characterized

by a balance between saturable gain and loss. In a conventional laser with “linear

loss,” the loss rate seen by the cavity field is the same for all photon numbers. For

photon numbers where gain exceeds loss, an effective “force” encourages occupation

of yet higher photon numbers; for photon numbers where loss dominates gain, an

effective force encourages occupation of lower photon numbers. The intersection point

where “gain equals loss” represents the equilibrium point between these two forces,

and consequently determines the mean photon number of the cavity in the laser

steady state. While the intersection point determines the mean photon number,

the behavior of the photon number-dependent gain and loss in the vicinity of this
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intersection dictates the variance of the photon number probability distribution 𝑝(𝑛).

In conventional lasers which are far above threshold, the probability distribution

approaches that of a coherent state, with Poissonian statistics.

This situation changes significantly when linear loss is replaced by a strongly

intensity-dependent loss. If the loss rises sharply with photon number around its

intersection with the saturable gain, then the steady state probability distribution

becomes compressed compared to the case of linear loss. Intuitively, this is because

the disparity between loss and gain around the steady state is magnified relative to

the conventional laser, resulting in larger “forces” that squeeze the probability distri-

bution to sub-Poissonian statistics. Roughly speaking, the photon number variance

is determined by the ratio of the slopes of the gain and loss. This mechanism enables

the sharp loss laser to create steady states with variance lower than the mean, a fea-

ture only possible in non-classical light. In the most extreme limit, the loss may rise

so sharply that only a single number state (the mean) has a substantial probability

of occupation, approaching a cavity Fock state. However, realizing intracavity Fock

states would likely require systems with fewer photons and stronger nonlinearities,

such as exciton-polariton condensates [33].

To quantify this effect in semiconductor laser systems, we consider the photon

number variance, given by (∆𝑛)2 = 1
𝜋

∫︀∞
0

𝑑𝜔⟨𝛿𝑛†(𝜔)𝛿𝑛(𝜔)⟩, where 𝛿𝑛(𝜔) gives the

spectrum of intensity fluctuations and is governed by Eq. 2.4. A useful parameter to

quantify the quantum nature of light is the Fano factor, defined as 𝐹 = (∆𝑛)2/𝑛. The

Fano factor is 1 for Poissonian light, corresponding to the shot noise limit; values below

one indicate sub-Poissonian light below the shot noise level. We calculate the most

general expression for 𝐹 (including carrier nonlinearity) in the presence of nonlinear

dispersive loss in the Appendix. For weak Kerr and carrier nonlinearities, 𝐹 → 1 when

pumping far above threshold, approaching Poissonian (coherent) statistics. Our main

result here is that for strong Kerr nonlinearity (𝑛𝜅𝑛 ≫ 𝜅0, 𝑛|𝜅𝑁 |, 𝛾‖, 𝐺𝑁), the Fano

factor behaves as

𝐹 → 𝜅/(𝑛𝜅𝑛) (2.6)
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for large 𝑛. Critically, the ratio 𝜅𝑛/𝜅 is a measure of how sharply the loss varies

with 𝑛 compared to the absolute loss rate at the steady state photon number, and

thus dictates the dimensionless “sharpness” of the loss. The Fano factor is inversely

proportional to this sharpness factor, and thus sharp losses can lead to sub-Poissonian

states.

In Fig. 2-3, we demonstrate the effects of intensity noise squeezing in semicon-

ductor lasers with nonlinear dispersive loss. Just above the left point of bistability,

𝑛 stays approximately constant while the photon number variance ∆𝑛2 can decrease

sharply. In the plot of the Fano factor spectrum ∆𝑛2(𝜔)/𝑛 (Fig. 2-3b), the intensity

noise fluctuations associated with relaxation oscillations (ROs) are quenched closer to

the left bistable point. Due to the sharp loss, the RO peak is in general significantly

suppressed compared to the case of linear loss (the RO frequency and damping rate

are increased in accordance with Eq. 2.5). Note that as a result of the bistability, the

laser can exist in two states with very different photon numbers over a range of pump

currents. The larger photon number branch corresponds to sharp loss (𝜅𝑛 > 0) in

this scheme. Overall, nonlinear dispersive loss creates significant broadband intensity

noise squeezing by orders of magnitude compared to analogous linear loss.

We also found that intensity noise squeezing can extend to the light which exits the

cavity. To analyze this effect, the output noise spectrum can be computed from the

intracavity noise spectrum by coupled mode theory (see Appendix for details). In Fig.

2-3c, we plot the output intensity spectrum normalized to the shot noise limit (SNL)

for three different pump powers (with 𝛽 = −10−9). When a shot noise limited pump

is used, output photon noise is not squeezed below the SNL. By using “quiet” pumping

(i.e. constant current driving), it is possible to achieve noise reduction exceeding 10 dB

below the SNL over GHz bandwidths. In conventional semiconductor lasers that are

quietly pumped, weak output squeezing has been experimentally observed at sub-GHz

bandwidths and strong squeezing (> 10 dB) is only predicted to occur for operation

far above threshold and is not associated with intracavity squeezing [39]. In contrast,

the mechanism of nonlinear dispersive loss (1) creates strongly squeezed intracavity

states, (2) strongly suppresses the relaxation oscillation peak (> 12 dB relative to a
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conventional semiconductor laser with the same pump current but without nonlinear

dispersive loss), extending output squeezing to GHz bandwidths, and (3) may allow

significant output squeezing even at moderate pump currents owing to the bistability

that creates strong intracavity squeezing near threshold for nonzero photon number.

Finally, we calculate noise frequency-integrated Fano factors as a function of pump

current in Fig. 2-3e by integrating the spectra in Fig. 2-3b. For linear loss, the Fano

factor approaches unity (shot noise limit) far above threshold. The behavior of Fano

factor for nonlinear dispersive loss is phenomenologically different. For simplicity,

in Fig. 2-3e, we only plot the sharp loss (upper) branch when bistability is present

(purple curves). We note that the lower branch, accessible by normal pumping from

threshold, resembles linear behavior apart from the bistable point, which creates a

discontinuity in the Fano factor as a function of pump current. On the upper branch,

linear behavior (shot noise) is restored when the detuning from the Fano resonance

grows large (𝜅𝑛 ≈ 0). Approaching the left bistable edge, the cavity frequency ap-

proaches the Fano resonance and, for a certain 𝑛, the ratio 𝜅/(𝑛𝜅𝑛) approaches a

minimum, corresponding to maximum intracavity squeezing. The Fano factor does

not decrease indefinitely due to intensity-carrier noise coupling and finite carrier noise

from nonradiative decay processes. Nonetheless, low linear background losses, sharp

dispersive dissipation, and large Kerr nonlinearities can create intracavity squeezing

over 10 dB below the shot noise limit.

We next consider a second kind of dispersive loss – distributed feedback provided

by, for example, a distributed Bragg reflector (DBR). This type of loss marks a

departure from the adiabaticity criterion that limits the sharpness of Fano-type losses

because its timescale is instead set by the width of the DBR pass/stop band, not the

sharpness of its decay. In principle, this means that the DBR-type loss can be made

quite large, enhancing intensity noise squeezing further. This is shown in Fig. 2-3c,e,

where sharper loss profiles (obtained by increasing the number of layers in the DBR)

correspond to enhanced squeezing (5 dB lower than the Fano mirror example in Fig.

2-3d). Additionally, the sharp loss region (𝜅𝑛 > 0) in the case of DBR loss profiles

can be accessed by pumping directly from threshold, where a stop band transitions to
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a pass band. Further details about the DBR example, including the exact analytical

form for the loss, are provided in the Appendix.

2.3.3 IR and terahertz squeezing using quantum cascade lasers

To emphasize the generality of the physics of nonlinear dissipation, we apply this

mechanism to quantum cascade lasers (QCLs), showing that strong intensity squeez-

ing can be extended to “difficult” spectral ranges where squeezing has not been demon-

strated, such as the mid-IR and THz. QCLs employ intersubband transitions for

stimulated emission, allowing recycling of the carrier population and therefore high

output powers, since a single carrier can now generate 𝑚 photons if 𝑚 gain stages

are used [40, 41]. This endows QCLs with giant intrinsic Kerr nonlinearities that

have been employed in a variety of applications, such as frequency comb genera-

tion for molecular spectroscopy in the infrared [42]. We note that the picosecond

timescale of these nonlinearities can fulfill the adiabaticity criterion for nonlinear dis-

persive loss [43] and that low-loss dispersive mirrors have been previously used to

create dispersion-compensated QCL frequency combs [44]. Strongly intensity noise-

squeezed light from QCLs, if realized, is extremely promising given that (1) intensity

noise squeezing is more difficult to achieve in QCLs than other semiconductor lasers

due to nonradiative decay of carriers in multiple levels [3], and (2) QCLs operate at

wavelengths that are of great interest for sensing applications but are inaccessible by

most other lasers.

A sample design for a QCL with nonlinear dispersive loss is provided in Fig. 2-4a.

Here, the intrinsic Kerr nonlinearity of the active region combined with a dispersive

mirror on the laser’s output facet generates nonlinear dissipation. To quantify the

steady state and noise behavior of this system, we proceed by a Langevin force-

based rate equation analysis as before. We use a three-level model for the carrier

dynamics (Fig. 2-4b, c), with rate equations describing the evolution of the photon

and carrier populations provided in the Appendix. The nonradiative decay time

constants governing transitions between the three carrier levels are given by 𝜏31, 𝜏32, 𝜏21

and linear gain proportional to the difference in population between levels 2 and 3 is
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assumed.

We calculate intracavity intensity noise spectra and integrated Fano factors by

Fourier transforming the linearized rate equations (as done above), with details

of the calculation provided in the Appendix. We find that the DC/low-frequency

noise is suppressed by a factor (𝑛𝜅𝑛/𝜅)
2 in the presence of strong nonlinear loss,

𝑛𝜅𝑛 ≫ 𝜅, 1/𝜏21, 1/𝜏31, 1/𝜏32. We plot the noise behavior for a sample system with

Fano mirror outcoupling in Fig. 2-4d, e. In this figure, we consider steady state and

noise for three different Kerr nonlinear strengths 𝛽 and two different operating wave-

lengths 𝜆0 to mimic realistic experimental systems operating in the IR and THz. For

comparison, we note that per-photon nonlinear strengths 𝛽 ∼ 10−10 were observed

nearly two decades ago when QCLs were first used for self-mode-locking [45]. Our

results show that the strong, ultrafast Kerr nonlinearity in QCLs in combination with

dispersive loss mechanisms can be harnessed to generate strong broadband intensity

noise squeezing that has generally evaded mid-IR and THz wavelengths. Note also

that (1) QCLs do not suffer from the GHz relaxation oscillations present in conven-

tional semiconductor lasers due to the ultrafast (intersubband) carrier dynamics [46]

and (2) linewidth enhancement due to free carriers is negligible, so the cavity res-

onance frequency 𝜔𝑅(𝑛,𝑁) → 𝜔𝑅(𝑛) and the nonlinear loss 𝜅(𝑛,𝑁) → 𝜅(𝑛). We

finally note that self-pulsing by the mechanism in Sec. 2.3.1 in QCLs may be possi-

ble but is more difficult to achieve than in conventional diode lasers. This is due to

the ultrafast (intersubband) carrier dynamics in QCLs, which create high frequency

(exceeding GHz) relaxation oscillations that are difficult to undamp.

2.4 Discussion

We briefly describe some of the other experimental platforms for realizing the effects of

nonlinear dispersive loss. We have already shown how quantum cascade lasers (QCLs)

are promising realizations of semiconductor lasers with nonlinear dispersive loss given

their giant, ultrafast Kerr nonlinearities. QCLs emit at IR and THz wavelengths,

overlapping with the vibrational modes of many biochemically relevant molecules,
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making the possibility of developing quantum-enhanced chemosensors based on the

principles described here tantalizing.

Because semiconductor platforms are conducive to integration with on-chip pho-

tonic crystal optical elements, many designs have already achieved the dispersive

losses considered here and therefore could exhibit intensity noise reduction if qual-

ity factors and nonlinear strengths are within the tolerances required. For example,

previous work has realized “Fano lasers” that exhibit self-pulsing due to the interplay

between dispersive loss and carrier nonlinearity [1]. A Fano resonance is created by

coupling between a waveguide and nanocavity (point defect) in a photonic crystal

slab. By increasing the quality factor of the lasing waveguide mode in these types of

structures and integrating a Kerr material in/around the gain region, intensity noise

reduction by nonlinear dispersive loss could be observable (Fig. 2-1c).

Photonic crystal surface-emitting lasers (PCSELs) are another platform that may

be used for demonstrating the effects of nonlinear dispersive loss [47]. PCSELs may

present advantages such as single-mode operation and high output powers; in contrast

to the Fano laser concept, lasing occurs transversely (and thus the Fano mirror is

aligned transversely rather than longitudinally). However, because losses may be

significant in both longitudinal and transverse directions, it is necessary to optimize

quality factors in both directions. The use of bound states in the continuum is also

a promising way forward to achieve high quality factor resonances and nonlinear

dissipation when PCSELs are endowed with strong Kerr nonlinearity [48].

In addition to Fano-type dispersive losses, distributed feedback-based losses have

been commonly exploited to enforce single-mode operation. Examples include dis-

tributed Bragg reflector (DBR) fiber lasers, vertical cavity surface-emitting lasers

(VCSELs), and DBR diode lasers [49, 50]. All of these architectures include sharply

frequency-dependent elements that may be used to achieve strong noise condensation.

High quality fabrication is necessary to minimize background losses (e.g., scattering)

at interfaces in order to observe the intensity noise condensation described here.

Furthermore, we note that even stronger nonlinearities may be achievable in sys-

tems such as microdisk and quantum dot lasers due to enhanced confinement and
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ultralow mode volumes [51]. For mode volumes achieving 𝜆3, the dimensionless Kerr

coefficient can be orders of magnitude larger than the values considered here. Lastly,

combining our methodology with recent proposals for nanolasers with strong sub-

wavelength confinement [52] could yield even further intensity noise reduction in out-

put noise.

2.5 Outlook

In this project, we have shown how semiconductor lasers with sharply frequency-

dependent outcoupling and Kerr nonlinearity can be used to create lasers which pos-

sess intrinsic bistability and self-pulsing capabilities in the classical domain as well as

high levels of quantum mechanical intensity noise squeezing both inside and outside

the laser cavity. The squeezing occurs across a huge bandwidth in noise frequency,

giving rise to near-Fock states with strong squeezing in photon number. Further-

more, we have shown that the squeezing is achievable from IR to THz wavelengths,

potentially unlocking numerous applications in sensing, computing, and metrology.

We anticipate that many existing experimental platforms could realize the intensity

noise reduction, bistability, and self-pulsing effects described here, especially systems

employing a geometry that maximizes photonic (Kerr) nonlinearity.

This work naturally suggests additionally possibilities for using nonlinear disper-

sive dissipation to control the output state of semiconductor lasers. Examples of

topics for additional investigation include the effect of nonlinear dispersive loss on

phase noise and linewidth, the effects of optical feedback on pulsing, bistability, and

intensity/phase noise (e.g., in external cavity lasers), and the simultaneous control

of self-pulsing and squeezing to generate pulsed squeezing. Semiconductor lasers are

ubiquitous in many real-world applications and we envision that the use of nonlin-

ear dispersive loss could render them novel tools to control the mean field and noise

behavior of light across a wide range of wavelengths.
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Figure 2-1: Semiconductor lasers with nonlinear dispersive loss. (a) Basic
semiconductor laser diode heterostructure design with nonlinear dispersive loss. Dis-
persive outcoupling is generated via the sharp frequency-dependent transmission of a
photonic crystal element. Coupling of Kerr nonlinearity from the Kerr material and
carrier nonlinearity from the gain material with a dispersive mirror of reflectivity 𝑅(𝜔)
creates sharp nonlinear loss 𝜅(𝑛,𝑁). Here, ∆ denotes detuning from the dispersive
(Lorentzian) resonance and 𝛾 denotes the width of the dispersive resonance (related
to its FWHM). (b) Semiconductor optical nonlinearities, including carrier-dependent
free carrier dispersion (FCD) and two photon absorption (TPA). In addition to the
photon number-dependent Kerr effect, these nonlinearities shift the real part of the
active region’s refractive index, in turn shifting the resonance frequency in the laser
cavity. Weak nonlinear loss from shifting the imaginary part of the refractive index
via the Kramers-Kronig relations is also generated, but in most cases is negligible
compared to the nonlinear dispersive loss. (c) Sample implementation of nonlinear
loss in a photonic crystal (PhC) “Fano” laser. The PhC platform allows much stronger
per-photon nonlinearities due to very small mode volumes. Dispersive loss is provided
by waveguide-nanocavity Fano interference in a photonic crystal slab [1].
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Figure 2-2: Mean-field dynamics and steady state behavior. (a) Dynamical
and steady state solutions in semiconductor lasers with nonlinear dispersive loss. In
the region 𝜅𝑛 = 𝜕𝜅/𝜕𝑛 < 0 (photon numbers left of the Fano resonance), a variety
of different behaviors are possible. At large detunings (small 𝑛, blue region), the
loss does not depend strongly on photon number, and the relaxation oscillations
typical of conventional semiconductor lasers are observed. At a certain detuning (𝑛),
the relaxation oscillations become critically damped and, at smaller detunings, they
become undamped, leading to self-sustained picosecond pulses (orange region). When
the pump enters the bistable region (red region, only present for 𝛽 = −10−9 (purple
curve)), the pulses become transient and the laser ultimately collapses to a continuous
wave (CW) steady state. Lastly, to the right of the loss minimum (green), relaxation
oscillations are heavily damped since 𝜅𝑛 = 𝜕𝜅/𝜕𝑛 > 0, leaving a CW steady state.
Plots were produced by considering a transient increase in intracavity intensity by
10% at 𝑡 = 0 relative to steady state. (b) Steady state intracavity photon number 𝑛
as a function of pump current (S-curve) for three different linear background losses 𝜅0

and nonlinear strengths 𝛽. The indicated unstable region is bypassed by the bistable
point and is not generally accessible during lasing. The gray vertical lines denote the
boundaries of the bistable region for the purple dotted curve. In these simulations, we
use parameters based on experimentally determined values for buried heterostructure
lasers with GaAs gain and AlGaAs cladding (Fig. 2-1a): active region dimensions 0.1
𝜇m × 5 𝜇m × 1 mm, confinement factor Γ = 0.3, bare cavity resonance frequency
𝜔0 = 2.16 × 1015 s-1 (873 nm, GaAs bandgap), free spectral range FSR = 43 GHz,
transparency density 𝑁trans = 2× 1024 m-3, nonradiative decay rate 𝛾‖ = 3× 108 s-1,
and linear gain coefficient 𝐺𝑁 = 1/𝑉 · 𝑑𝐺/𝑑𝑁 = 3694 s-1 [2]. The Appendix provides
an estimate of typical Kerr nonlinear strengths in this structure. The Fano resonance
is centered at photon number 𝑛𝑐 = 8× 106 (a) and 𝑛𝑐 = 106 (b). Its resonance decay
(FWHM) is 𝛾 = 2× 1012 s-1. In (a), 𝜅0 = 10−2 · FSR for 𝛽 ̸= 0.
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Figure 2-3: Intensity noise squeezing. (a) Comparison of steady state photon
probability distribution 𝑝(𝑛) under conventional and sharp loss. The steady state
photon number is determined by the location of intersection between saturable gain
and loss. The variance of the probability distribution is determined by the effective
“steepness” of intersection of the gain and loss curves. While the conventional laser
architecture with linear loss results in a near-coherent state far above threshold, the
sharp loss architecture results in states with variance below the mean, which corre-
spond to non-classical light. In the most extreme limit, this mechanism can enable
the generation of near-Fock states inside the laser cavity. (b) Intracavity Fano factor
spectrum (∆𝑛2(𝜔)/𝑛) as a function of noise frequency for the three different steady
states (⋆,▲,■) indicated in the input-output curve of Fig. 2-2b (𝑟 ≡ 𝐼/𝐼thres is the
pumping ratio). Here, 𝜅0 = FSR for the linear loss (blue) and 𝜅0 = 10−2 ·FSR for the
nonlinear loss (purple). Nonlinear loss creates a strong suppression of the relaxation
oscillation (RO) peak. (c) Output squeezing over a > 1 GHz bandwidth with (“noisy”)
and without (“quiet”) pump noise suppression (plotted for three different pump pow-
ers with nonlinear strength 𝛽 = −10−9). (d), (e), (f) Comparison of loss profiles and
integrated Fano factor as a function of pump current for a nonlinear laser with a Fano
mirror or DBR. Fano factors are plotted for the low noise branch when bistability is
present. In (d), (e), (f), 𝑛𝑐 = 5 × 106 marks the center of the Fano resonance, while
for DBR loss profiles, the average index is 𝑛̃ = 3.0, the index contrast is ∆𝑛 ≲ 1.0,
and the first transition from stop to pass band is tuned to occur around 𝑛𝑐 = 5×106.
All other simulation parameters are the same as those in Fig. 2-2.
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Figure 2-4: Strongly squeezed IR and terahertz light using QCLs. (a), (b)
Basic dispersive Kerr-squeezed QCL laser architecture with nonlinear dispersive loss.
Electrons make subband transitions in a given quantum well and tunnel to the next
one. Dispersive outcoupling is provided by a photonic crystal fabricated on an end
facet of the QCL. The giant, ultrafast Kerr nonlinearity of the active region due
to intersubband transitions is used to generate nonlinear dispersive loss. (c) Three-
level system used for rate equation analysis with nonradiative decay timescales from
each level indicated. (d) Fano factor spectrum for two different pump strengths
𝑟 ≡ 𝐼/𝐼thres, with 𝛽 = 10−9 and 𝜅0 = FSR. A similar bistability to the diode laser
case is present here, and the 𝑟 = 0.5 curve is for the upper (low noise) branch (𝑟 = 5
corresponds to large detuning from the Fano resonance and lies in the approximately
linear loss regime). (e) Integrated Fano factor as a function of pump strength for the
low noise branch for three different nonlinear strengths and operating wavelengths in
the IR and THz. For these simulations, we use system parameters measured from
experiment: wavelength 𝜆0 = 4, 103 𝜇m (IR, THz), 𝜏32 = 2.1 ps, 𝜏31 = 3.4 ps,
𝜏21 = 0.5 ps, 𝑚 = 25 gain stages, confinement factor Γ = 0.2, cavity length 𝐿 = 3
mm, and gain coefficient 𝐺𝑁 = 105Γ s-1 [3, 4]. The Fano resonance has FWHM
𝛾 = 2× 1012 rad/s and is centered at 𝑛𝑐 = 2.5× 107.
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Chapter 3

Multimode squeezing and quantum

correlations using cascaded nonlinear

optical processes

The content of this chapter is taken largely from my first author preprint [53].

3.1 Introduction

Quantum states of light prepared using nonlinear parametric processes have attracted

significant interest for applications in precision measurement and quantum technolo-

gies through noise squeezing and entanglement properties [8, 54–56]. Second order

nonlinear processes have emerged as a key platform to generate quantum states of light

by processes including second harmonic generation and parametric downconversion

in optical parametric oscillators (OPOs), leading to numerous theoretical proposals

and experimental realizations of entangled single photon pairs, single mode squeez-

ing, squeezed supermodes (including two-mode squeezing), and broadband quantum

frequency combs [12,13,57–67]. However, most of these works have focused on single

mode and multimode squeezed vacua (as generated, for example, by OPOs pumped

below threshold). Nondegenerate OPOs operated above threshold have also been

investigated for amplitude squeezing. In many works, twin beam squeezing is often
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considered, given the strong correlation between intensity noise in signal and idler

modes from a single parametric downconversion process. Single beam squeezing is

also possible, considering the photon number filtering that twin beam correlations

induce [68–70]. However, the output amplitude noise squeezing for a single nonde-

generate downconversion process is theoretically limited to 3 dB below the shot noise

limit [68]. This squeezing is also generally limited to narrow spectral ranges depending

on the nonlinear crystal used and its phase matching conditions. Achieving tunable

single mode and multimode “bright” amplitude squeezing in systems with multiple

frequency modes remains unexplored, despite exciting potential for quantum opti-

cal information multiplexing and bright squeezed frequency combs for spectroscopy

applications [71].

Here, we explore a novel scheme for amplitude squeezing within a multimode

cavity with second-order nonlinearity that employs cascaded parametric amplifica-

tion mediated by a common terahertz “bath” mode to create an infrared frequency

comb with terahertz mode spacing [72–74]. We demonstrate that by strategically

engineering the cavity’s 𝑄 factor profile, we can manipulate the nonlinear energy

flow through frequency space, thereby significantly shaping both mean field and noise

properties. Our method works by creating a high 𝑄 factor cavity in frequency space

that traps nonlinear energy flow within a finite (and controllable) span of discrete

frequency modes [75]. This enables very strong nonlinear coupling between nearest-

neighbor frequency modes that can exceed decay rates in the system. This can lead to

excitation of counter-propagating Bloch modes in the “frequency cavity,” whose inter-

ference is manifested in a standing wave distribution of steady state modal energies.

By increasing the outcoupling (lowering the loaded 𝑄 factor) for one or more selected

discrete frequency modes, we show that the frequency cavity supports simultaneous

output amplitude squeezing in these mode(s) over a > 100 MHz bandwidth. Strong

squeezing emerges because of an enhancement in the noiseless nonlinear coupling over

dissipation. Finally, we describe how the strong nonlinear interactions in our system

create strong long-range correlations in amplitude noise that may suggest existence of

long-range entanglement in a synthetic frequency dimension. Our study of quantum
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noise through cascaded nonlinear interactions suggests many exciting possibilities, in-

cluding bright squeezed frequency combs, trapped states and solitons in the synthetic

frequency dimension, tunable quantum walks, and much more [75].

The rest of this chapter is structured as follows. In Sec. 3.2, we introduce our

system and describe how its mean field dynamics and quantum noise behavior can

be calculated. Included in this section is a discussion of the “frequency cavity” that

our system realizes, which supports counter-propagating resonant Bloch modes that

cause interference patterns in the modal energy distribution. In Sec. 3.3.1, we describe

intracavity mean field dynamics, noise, and the presence of relaxation oscillations due

to strong multimode nonlinear coupling. In Sec. A.4, we show tunable single mode

and multimode squeezing in output amplitude noise, describing the limitations and

conditions for generating strong squeezing. Lastly, in Sec. 3.5, we show how the

coupling of the infrared frequency comb to a common terahertz bath mode allows

strong long-range correlations in frequency space.

3.2 Theory

At the heart of our concept is the novel 𝑄 engineering of a multimode nonlinear

cavity [76], as illustrated in Fig. 3-1a. Our system comprises a comb of infrared

(IR) cavity modes, each mode coupled to its nearest neighbors via a bath mode,

here specifically a terahertz (THz) frequency mode (whose small frequency allows for

many modes in a small IR span). The process begins with nonlinear three wave mixing

(TWM) where a pump photon (𝜔0) simultaneously amplifies a seed photon (𝜔1) and

generates a new photon in the idler “bath” mode (𝜔𝑇 ). Subsequently, cascading steps

are initiated by the nonlinear interaction of the bath mode (THz) with the IR modes,

resulting in multiple equally spaced modes. This produces a frequency comb with

spacing given by 𝜔𝑇 . By properly engineering the 𝑄 factors of the cavity modes, one

can favor the three wave downconversion processes that create THz idler photons.

This enhances the rate of nonlinear energy flow in the cavity and, due to its noiseless

nature, can result in squeezing when the nonlinear rate surpasses dissipation rates in
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the system.

We design the multimode cavity such that, through phase matching constraints,

only TWMs of the form 𝜔𝑛−1 ↔ 𝜔𝑛 + 𝜔𝑇 are supported (here, 𝜔𝑘 < 𝜔𝑛 when 𝑘 > 𝑛).

The decay rates for modes of all other frequencies are assumed much faster than the

relevant timescales in this system, so we restrict our attention to the system specified

by the coupled IR modes and the THz mode.

We simulate the mean field and noise properties of our system by using the

Heisenberg-Langevin equations of motion for the mode field (annihilation) operators

(see Appendix for details), which read

𝑎̇𝑇 = 𝜅
∑︁
𝑛

𝑎†𝑛𝑎𝑛−1 − 𝛾𝑇𝑎𝑇 +
√︀

2𝛾𝑇 𝑠𝑇

𝑎̇𝑛 = 𝜅
(︁
𝑎†𝑇𝑎𝑛−1 − 𝑎𝑛+1𝑎𝑇

)︁
− 𝛾𝑛𝑎𝑛 +

√︀
2𝛾𝑛𝑠𝑛,

(3.1)

where 𝑎𝑛 are field operators that determine the photon number ⟨𝑎†𝑛𝑎𝑛⟩, 𝜅 ∈ R has

units of s−1 and denotes the nonlinear coupling strength (related to the nonlinear sus-

ceptibility 𝜒(2) and assumed frequency-independent), 𝛾𝑛, 𝛾𝑇 denote the outcoupling

rates for the IR and THz modes, 𝑠𝑛 denotes the external fields, and the indexing is

such that 𝑛 > 0 correspond to redshifted modes relative to the pump at 𝑛 = 0. An

estimation of typical values of 𝜅 for realistic experimental settings is provided in the

Appendix. Unless specified otherwise, only modes 𝑎0,1 are pumped, so that only 𝑠0,1

have nonzero mean. Note that in the Heisenberg-Langevin formalism, the zero-mean

terms
√
2𝛾𝑛𝑠𝑛 are Langevin forces associated with the outcoupling process (see Ap-

pendix). In Sec. A.4, we consider the effect of intrinsic loss, which adds further noise

to the system through other Langevin forces (the full equations of motion including

intrinsic loss are provided in the Appendix). In our simulations, we numerically solve

the Heisenberg-Langevin equations of motion in the mean field domain using back-

ward differentiation 1 to obtain the steady state mode amplitudes 𝑎𝑛 ≡ ⟨𝑎𝑛⟩, 𝑎*𝑛 = ⟨𝑎†𝑛⟩

from a vacuum initial state.

Assuming a strong, coherent pump (up to small fluctuations), when the system

1This allows us to handle numerically stiff systems with strong nonlinearity.
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reaches steady state, we can linearize the equations of motion about the mean values

for the fields (𝑎̂𝑛 = 𝑎𝑛 + 𝛿𝑎̂𝑛 where here we made explicit the distinction between an

operator and complex number) to construct linearized equations of motion for the

operators 𝛿𝑎𝑛, 𝛿𝑎
†
𝑛. Note that we do in general need to linearize with respect to two

degrees of freedom for each mode (𝑎𝑛, 𝑎†𝑛). However, by picking zero initial conditions

for the fields and taking 𝜅 ∈ R, the steady states will be real-valued in this model.

Then, we can define quadrature operators 𝑝𝑛 = 𝑎𝑛 + 𝑎†𝑛, 𝑞𝑛 = −𝑖
(︀
𝑎𝑛 − 𝑎†𝑛

)︀
, whose

fluctuations directly give the amplitude and phase noise of mode 𝑎𝑛 (as shown in

the Appendix). Because the modal amplitudes are real-valued, 𝑝𝑛, 𝑞𝑛 do not cou-

ple. We can perform a Fourier transform and derive a system linear in the fluctu-

ations 𝛿𝑝𝑛(𝜔) that can be arranged in matrix form as 𝑀(𝜔)𝑃 (𝜔) = 𝐹 (𝜔), where

𝑃 (𝜔) = [𝛿𝑝0(𝜔)𝛿𝑝1(𝜔) · · · 𝛿𝑝𝑁(𝜔)𝛿𝑝𝑇 (𝜔)]𝑇 and 𝐹 = [𝐹0(𝜔)𝐹1(𝜔) · · ·𝐹𝑁(𝜔)𝐹𝑇 (𝜔)]
𝑇 is

the Langevin force vector. The zero-mean Langevin forces satisfy ⟨𝐹 †
𝑛𝐹𝑛′⟩ = 2𝛾𝑛𝛿𝑛𝑛′

(see Appendix for details). An explicit expression for the fluctuation matrix 𝑀 is

also provided in the Appendix. The amplitude noise for mode 𝑎𝑛 is coupled to the

noise of 𝑎𝑇 , 𝑎𝑛−1, 𝑎𝑛+1 in the frequency domain according to

𝛿𝑝𝑛 =
𝜅 [𝛿𝑝𝑇 (𝑎𝑛−1 − 𝑎𝑛+1) + 𝑎𝑇 (𝛿𝑝𝑛−1 − 𝛿𝑝𝑛+1)] + 𝐹𝑛

−𝑖𝜔 + 𝛾𝑛
. (3.2)

From the elements of the inverse fluctuation matrix 𝑀−1 as well as the Langevin force

correlators, the intracavity and output amplitude noise can be computed according

to

⟨𝛿𝑝†𝑛,in𝛿𝑝𝑛,in⟩ = |𝑀−1
𝑛,𝑁+1|

2(2𝛾𝑇 ) +
𝑁∑︁
𝑘=0

|𝑀−1
𝑛,𝑘|

2(2𝛾𝑘)

⟨𝛿𝑝†𝑛,out𝛿𝑝𝑛,out⟩ = 1 + 2𝛾𝑛⟨𝛿𝑝†𝑛,in𝛿𝑝𝑛,in⟩ − 4𝛾𝑛Re(𝑀
−1
𝑛,𝑛),

(3.3)

where the output fluctuation amplitude for mode 𝑎𝑛 is given by 𝛿𝑝𝑛,out =
√
2𝛾𝑛𝛿𝑝𝑛,in−

(𝛿𝑠𝑛 + 𝛿𝑠†𝑛). To compute the squeezing factor, we compare the amplitude noise to

the corresponding shot noise limit (SNL) in the absence of any nonlinear processes.

Under only driven-dissipative dynamics (and neglecting intrinsic loss), one can show
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(see Appendix) that ⟨𝛿𝑝†𝑛,in(𝜔)𝛿𝑝𝑛,in(𝜔)⟩ = 2𝛾𝑛/(𝛾
2
𝑛+𝜔2) and ⟨𝛿𝑝†𝑛,out(𝜔)𝛿𝑝𝑛,out(𝜔)⟩ =

1. These represent what we will use as “reference coherent states” when analyzing

intracavity and output noise in our system. As we will show, enhancement of nonlinear

coupling can enable destructive interference between the vacuum field 𝑠𝑛 and the

intracavity field 𝑝𝑛,in, generating output squeezing as shown in Fig. 3-1b.

3.3 Intracavity mean field dynamics and noise

3.3.1 Frequency space cavity

Our system is analogous to the implementation of coupled resonator optical waveg-

uides in a synthetic frequency dimension [77]. When the system is truncated by

boundary modes in the frequency dimension, it can be thought of as a Fabry-Perot-

type cavity in frequency space defined by the finite extent of the high 𝑄 factor cascad-

ing orders and bounded by lower 𝑄 factor frequency “mirrors.” The leakiest modes

lie outside the frequency cavity. In Fig. 3-1c, this is shown for a one-sided comb

where frequency cavity modes 𝜔1,...,𝑁−1 have high 𝑄 factor (𝑄𝑟) and frequency mir-

rors at 𝜔0,𝑁 have lower 𝑄 factor (𝑄0,𝑁). A natural consequence is that the excitation

of modes in this frequency space cavity should manifest in the steady state energy

distribution of the frequency modes. We can make this rigorous by considering a

Bloch mode analysis, noting that our system is a kind of nonlinear tight-binding

model with quasi-discrete translational symmetry (up to boundary conditions at the

frequency mirrors) in the synthetic frequency dimension. As a crude approximation,

in the case of linear coupling (i.e. assuming 𝑎𝑇 is constant) and neglecting disper-

sion, we have the result that two counter-propagating Bloch waves with wave vectors

𝑘± = 𝜋/2𝑎 (where 𝑎 = 𝜔𝑇 is the lattice constant of the frequency crystal defined

by the cascading frequency modes) are excited [75]. (Though beyond the scope of

our work, we note that higher order Bloch modes may be excited by using a pump

detuned from 𝜔0. This provides an extra degree of freedom that could allow synthesis

of arbitrary states/modal profiles in the frequency dimension.) Interference of the
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Bloch modes creates a modal energy distribution with quasi-periodicity 2𝑎 (due to

dissipation, modal energy drops further from the pump mode). The magnitude of

interference can be tuned via the reflectivity of the frequency mirrors. For example,

one can minimize interference by creating an open boundary condition at 𝜔𝑁 . This

can be done by “impedance matching” mode 𝑎𝑁 such that 𝛾𝑁 ≈ 𝜅𝑎𝑇 . This results in

minimum reflectivity at 𝜔𝑁 . While minimizing interference is advantageous for max-

imizing efficiency of populating the terahertz idler mode [76], other design methods,

which we describe below, are more optimal for maximizing output squeezing.

We briefly note that the interference state in steady state modal energy naturally

translates into interference in the low frequency modal amplitude noise from the

linearization procedure. In steady state, 𝑎𝑛 ∝ 𝑎𝑛−1−𝑎𝑛+1 and at zero noise frequency,

𝛿𝑝𝑛(0) ∝ 𝛿𝑝𝑇 (0)(𝑎𝑛−1 − 𝑎𝑛+1) (the first term in Eq. 3.2 is usually dominant since

the terahertz mode contains additive noise from all of the TWM processes). Thus,

generally, cascading IR modes with higher intracavity intensity are accompanied with

higher low-frequency intracavity amplitude noise.

In Fig. 3-2a, b, we show how a 𝑄 engineered multimode cavity that favors fre-

quency downconversions enables strong nonlinear energy flow that creates a frequency

comb in modes redshifted relative to the pump mode 𝑎0. Fig. 3-2a shows the tempo-

ral dynamics of the modal energy distribution for a multimode cavity with 𝑄 factor

spectrum given by the first panel of Fig. 3-2b. Intuitively, energy “bounces” back and

forth between the two frequency mirrors, eventually creating a steady state modal

energy distribution that shows Bloch mode interference (excitation of Bloch modes

with wavevectors 𝑘± = 𝜋/2𝜔𝑇 ) for the infrared modes lying inside the cavity, as shown

in the second panel of Fig. 3-2b. Only modes trapped within the frequency cavity

defined by the frequency mirrors at 𝜔0,𝑁 are appreciably occupied. Of additional note

is the high energy of the terahertz idler mode in the steady state, reflecting the ability

of our system to generate the terahertz idler mode with high efficiency [76]. In the

Appendix, we show how one-sided (blueshifted) and two-shifted frequency combs can

also be produced in our system with appropriate 𝑄 factor shaping.
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3.3.2 Intracavity noise

Using the formalism described in Sec. 3.2, we can compute the Fano factor noise

spectrum for an arbitrary mode 𝑎𝑛 as ⟨𝛿𝑛†
𝑛(𝜔)𝛿𝑛𝑛(𝜔)⟩/𝑛𝑛 = ⟨𝛿𝑝†𝑛(𝜔)𝛿𝑝𝑛(𝜔)⟩ (where

𝑛𝑛 = 𝑎†𝑛𝑎𝑛, 𝛿𝑛𝑛 = 𝑎𝑛𝛿𝑎
†
𝑛+𝑎*𝑛𝛿𝑎𝑛 denote the intracavity photon number and its fluctu-

ations for mode 𝑎𝑛). In Fig. 3-2c, this noise spectrum is plotted for several frequency

modes. The low 𝑄 blueshifted modes do not have strong nonlinear coupling with

other modes in the system and are governed by driven-dissipative dynamics, gener-

ating an intracavity coherent state (blue curve). By contrast, the idler mode (green),

cascading infrared orders (red), and pump mode (black) undergo strong nonlinear

interactions that dominate their dynamics. This results in strong gigahertz relax-

ation oscillations (on the order of the characteristic nonlinear rate |𝜅𝑎𝑇 |). Several

relaxation oscillation peaks are present due to the strong nonlinear coupling between

multiple modes within the cavity.

In Eq. 3.3, at frequencies much smaller than the cavity bandwidth, the inverse

fluctuation matrix has entries (for the cascading IR orders) governed by the small-

est timescale in the system, in our case 𝑀−1
𝑛,𝑘 ∼ 1/max(𝜅𝑎𝑇 , 𝛾0), and the noise for

these modes is dominated by the leakiest (lowest 𝑄) mode, which is generally the

pump mode 𝑎0. Thus, the low frequency noise for the cascading orders scales as

⟨𝛿𝑝†𝑛(0)𝛿𝑝𝑛(0)⟩ ∼ 𝒪(𝛾0/max(𝜅𝑎𝑇 , 𝛾0)
2). In Fig. 3-2d, we show how, when compared

to the noise of a “reference coherent state” with equivalent loss but no nonlinear cou-

pling, the low frequency noise is of order 𝛾0𝛾𝑛
max(𝜅𝑎𝑇 ,𝛾0)2

≪ 1 times that of the coherent

state. Thus, the intracavity low-frequency noise reduction relative to the aforemen-

tioned coherent state is enhanced by maximizing the nonlinear rate 𝜅𝑎𝑇 while making

the 𝑄 factor for all cascading modes large, so that 𝛾2
𝑛|𝑀−1

𝑛,𝑘|2 ≪ 1. This low-frequency

noise reduction can be interpreted as the enhancement of noiseless nonlinear processes

relative to dissipative outcoupling which, as we will see, permits output amplitude

noise squeezing.

Finally, we note that in the systems we have examined, integrated intracavity noise

appears to remain at the shot noise limit due to high frequency relaxation oscillations
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(ROs), resulting in multimode intracavity coherent states. System configurations that

damp ROs for some (or all) modes and thus permit intracavity squeezing may exist,

such as systems with saturable absorbers or other nonlinear losses [5, 78]. Nonlinear

dissipation has been proposed as a method to generate strong single mode intracavity

squeezing, and its multimode extension should be investigated.

3.4 Output noise squeezing

3.4.1 Single mode squeezing

We now describe how strong output amplitude noise squeezing can be generated using

cascaded nonlinear interactions in a multimode cavity. Notice from Eq. 3.3 that there

should be strong destructive interference between the intracavity fluctuations of mode

𝑎𝑛 and far-field vacuum fluctuations 𝑠𝑛 for the same mode (Fig. 3-1b). At the same

time, the noise contributions from all other modes should be minimized. Specifically,

the conditions to maximize output squeezing read

(1) [1− 2𝛾𝑛Re(𝑀
−1
𝑛,𝑛(𝜔))]

2 ≪ 1

(2) 4𝛾𝑛𝛾𝑘|(𝑀−1
𝑛,𝑘(𝜔))|

2 ≪ 1, 𝑘 ̸= 𝑛,

where 𝑀−1
𝑛,𝑘 is an element of the inverse fluctuation matrix that denotes the contri-

bution of fluctuations in mode 𝑎𝑘 to the (intracavity) amplitude noise of mode 𝑎𝑛

and 𝛾𝑛 denotes the outcoupling rate for mode 𝑎𝑛. These conditions are satisfied

when the mode to be squeezed has a decay rate 𝛾𝑛 on the order of the nonlinear

rate 𝜅𝑎𝑇 , while the other modes with non-negligible steady-state amplitude are of

higher 𝑄 factor (and other modes with low 𝑄 factor are negligibly occupied). To

see this, notice that for an ideal driven-dissipative state at zero noise frequency,

Re(𝑀−1
𝑛,𝑛(0)) = 1/𝛾𝑛 so the self-induced noise from condition (1) is at the shot noise

limit, while for Re(𝑀−1
𝑛,𝑛(0)) = 1/(2𝛾𝑛) perfect destructive interference in condition

(1) is achieved (zero self-induced noise in the output). In our system, this can be

tuned by the ratio 𝛾𝑛/𝜅𝑎𝑇 . When all other modes in the frequency comb have high
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𝑄 factor, the additive effect on noise in the outcoupled field due to other modes is

minimal (condition 2), and squeezing can be observed.

Conditions 1 and 2 determine which discrete frequency modes can be squeezed.

It is not possible for the high 𝑄 intermediate cascading orders to be squeezed since

condition 1 is violated. The external cavity noise for these modes is dominated

by external vacuum shot noise. However, mode 𝑎𝑁 , for example, terminates the

frequency comb and thus has a larger outcoupling (and lower loaded 𝑄 factor). When

𝛾𝑁 = 𝒪(𝜅𝑎𝑇 ), destructive interference of the intracavity amplitude fluctuations with

the external vacuum shot noise can occur. Condition 1 can be satisfied through

optimizing 𝑀−1
𝑁,𝑁 , which in turn can be controlled by the 𝑄 factor profile of the

cavity. When all other cascading orders (including the pump and seed) are of higher 𝑄

factor, both conditions 1 and 2 can be satisfied, yielding strong output amplitude noise

squeezing for 𝑎𝑁 that exceeds 10 dB over nearly gigahertz bandwidths, as described

below.

In Fig. 3-3a, we consider a one-sided comb with 𝑁 = 15 cascading orders where

we selectively squeeze a terminal mode (𝜆15 = 1127 nm) or a mode lying inside the

frequency cavity (𝜆9 = 1101 nm) by creating a low 𝑄 factor defect for the squeezed

mode in the otherwise high 𝑄 factor frequency cavity (left panel of Fig. 3-3a). In the

center panel, notice that (1) the nonzero reflectivity of frequency mirror 𝑎𝑁 generates

Bloch interference in the mean field and (2) the low 𝑄 factor for the squeezed mode

guarantees its large outcoupled power. Satisfying condition 1 (due to the low 𝑄 factor

of the squeezed mode) and condition 2 (due to the high 𝑄 factor of all other coupled

modes) generates strong single mode squeezing in low frequency output amplitude

noise over 10 dB below the shot noise limit, as seen in the right panel.

In Fig. 3-3b (first panel), we show the contribution of conditions (1) and (2) to

the output noise in the terminal mode 𝑎𝑁 . The total output noise is minimized when

the sum of the two contributions is minimized. We also show the contribution of

intrinsic loss to output squeezing (second panel), which reveals that strong squeezing

in 𝑎𝑁 persists even when intrinsic loss is around 10% of the outcoupling rate, i.e.

𝛾𝑛/𝜇𝑛 ≈ 10 (the same ratio of intrinsic loss to outcoupling is used for all modes).
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In Fig. 3-3c, we examine how various setup parameters shape single mode squeez-

ing in the terminal mode 𝑎𝑁 . In the first panel, we see that stronger squeezing is

achieved for higher 𝑄𝑇 . In addition to enhancing cycling of the terahertz idler pho-

ton within the cavity (which strengthens nonlinear energy flow), a higher 𝑄𝑇 reduces

the effect of coupling of fluctuations in 𝑎𝑇 to output noise in 𝑎𝑁 . As expected from

condition (1), with fixed 𝑄𝑇 , we see there is an optimal 𝑄𝑁 to generate strongest

squeezing. When 𝑄𝑁 is too low or too high, destructive interference with the exter-

nal vacuum field is ineffective. In the second panel, we sweep over 𝑄𝑁 and the number

of cascading orders 𝑁 . The most distinctive feature is the weakened squeezing for

even 𝑁 . This occurs due to the effect of Bloch interference, specifically the pump

mode. When 𝑁 is odd, the low 𝑄 factor end of the frequency space chain 𝑎0, 𝑎−1 are

negligibly occupied, so the squeezing for 𝑎𝑁 is strong. When 𝑁 is even, the noise

contribution from 𝑎0, 𝑎−1 is significant since they are non-negligibly occupied, so the

squeezing in 𝑎𝑁 is less due to noise coupling to 𝑎0, 𝑎−1. We also notice a tendency

towards stronger squeezing for longer combs (larger 𝑁). This appears to be because

of an inverse scaling with 𝑁 of the coupling of the idler mode fluctuations to the

output noise in 𝑎𝑁 , due to an enhancement in the effective nonlinear rate relative

to dissipation rates. We have found that when condition (1) is fully satisfied, the

output noise (relative to the SNL) in 𝑎𝑁 goes as 𝛾𝑇 |𝑎𝑇 |2
𝑁2𝛾𝑁 |𝑎𝑁 |2 . This holds as long as the

idler mode is the dominant source of (coupled) noise and may break down for very

large 𝑁 when the additive contribution of the noise coupling from the high 𝑄 infrared

cascading orders becomes significant.

3.4.2 Multimode squeezing

By introducing multiple low 𝑄 factor “defects” into the chain of cascading orders,

multiple frequency modes can be squeezed in output amplitude noise. When Bloch

interference is present, modes with opposite parity to mode 𝑎𝑁 have significantly

damped low-frequency intracavity noise, so the destructive interference with external

vacuum shot noise is ineffective. Therefore, modes 𝑎𝑁 , 𝑎𝑁−2, ... with the same parity

as 𝑎𝑁 (high steady-state amplitude, high intracavity noise branch) are more strongly
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squeezed. As the number of modes we would like to squeeze increases, the degree of

squeezing decreases. Suppose we aim to squeeze 𝑚 modes by introducing 𝑚 identical

“defects” (𝑄 factor dips). In the ideal case, the noise is dominated by these low 𝑄

modes. Let 𝑥 denote the quantity 2𝛾𝑛𝑀
−1
𝑛,𝑛 for one such squeezed mode. Then, for

equal squeezing in all modes, we compute

min
𝑥

[︀
(1− 𝑥)2 + (𝑚− 1)𝑥2

]︀
= 1− 1

𝑚
. (3.4)

Notice that this gives the 3 dB single beam output squeezing limit of the signal and

idler beams when 𝑚 = 2 [68]. As 𝑚 grows large, all modes approach the shot noise

limit.

In Fig. 3-3d, e, we show how introducing 1 (𝑎𝑁 squeezed), 2 (𝑎𝑁 , 𝑎𝑁−2 squeezed),

and 3 (𝑎𝑁 , 𝑎𝑁−2, 𝑎𝑁−4 squeezed) defects generates single and multimode output am-

plitude noise squeezing. By further tuning the 𝑄 factors of the squeezed modes, it

may be possible to control the “distribution of squeezing” over the squeezed modes

(e.g., in the trivial case, only one low 𝑄 factor defect corresponds to single mode

squeezing). As expected from the previous discussion, the squeezing for multiple

modes weakens. The inset shows that the bandwidth over which squeezing occurs is

similar to that for intracavity squeezing and limited by the onset of relaxation os-

cillations. The amplitude noise returns to shot noise level around 100 MHz-1 GHz.

This bandwidth is limited by the onset of intracavity relaxation oscillations (i.e. the

nonlinear rate in our system). Thus, strong nonlinear interactions can in principle

reach GHz-surpassing bandwidths.

3.5 Multimode twin beam quantum correlations

In this section, we examine quantum noise correlations between discrete frequency

modes in our system. In the case of a single ideal TWM process, it is well known that

the amplitude sum of the signal and idler is noiseless and signal and idler photons are

entangled [79]. When cascaded nonlinear processes are present, this entanglement
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is now distributed over many modes. In Fig. 3-4, we consider a two-sided comb

(in contrast to the one-sided comb design for squeezing above; see Appendix for 𝑄

factor profile) and plot the low frequency noise in the output intensity sum 𝑆𝑖𝑗 =∑︀
𝑘,𝑘′∈{𝑖,𝑗}⟨𝛿𝑛

†
𝑘𝛿𝑛𝑘′⟩ and difference 𝐷𝑖𝑗 =

∑︀
𝑘,𝑘′∈{𝑖,𝑗}(−1)1+𝛿𝑘,𝑘′ ⟨𝛿𝑛†

𝑘𝛿𝑛𝑘′⟩, where 𝑛𝑘 =

𝑎†𝑘𝑎𝑘 is the number operator for mode 𝑘 (further details on the calculation are provided

in the Appendix). These twin beam noises are normalized to the uncorrelated twin

beam noise 𝑈𝑖𝑗 =
∑︀

𝑘∈{𝑖,𝑗}⟨𝛿𝑛
†
𝑘𝛿𝑛𝑘⟩. Normalization by 𝑈𝑖𝑗 shows that twin beam

squeezing emerges due to correlations between the two modes rather than single

beam squeezing.

We can compare the twin beam noise to the noise in a single mode. In Fig.

3-4a, we plot the outcoupled power and low frequency output amplitude noise for

individual modes. Certain modes are near the SNL, while others are strongly anti-

squeezed. Fig. 3-4b demonstrates that twin beam noise can be reduced by orders

of magnitude relative to single beam noise. This strong squeezing relative to single

beam noise generally occurs when the two modes have comparable individual noise,

as this permits stronger destructive interference in the amplitude fluctuations. We see

that strong correlations can occur within the frequency cavity and with the common

terahertz idler mode, resulting in squeezing over 20 dB relative to the uncorrelated

twin beam noise. In contrast to the correlations for a single TWM process, the

correlations in our system can be much longer range, spanning the dimension of the

frequency cavity. We also point out the twin beam squeezing in the noise of the

amplitude difference 𝑝𝑛 − 𝑝−𝑛. This is reminiscent of the strong squeezing reported

in the supermodes of soliton microcombs, 𝑝𝑛 ± 𝑝−𝑛 [64]. We conclude by noting that

recent experiments have reported strong noise correlations for multiple wavelength

pairs in the continuous spectrum generated by a nonlinear fiber, providing impetus

for realizing multimode quantum states over discrete frequency modes [80].
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3.6 Discussion

In this project, we demonstrated bright single- and multimode squeezing using cas-

caded three wave mixing processes in a nonlinear cavity. Our work constitutes a

distinct paradigm shift relative to most previous works that have focused on below-

threshold parametric squeezing in the single- and multimode regimes. Furthermore,

we have shown the existence of quantum correlations between multiple pairs of fre-

quency modes, extending the concept of twin beam squeezing that is well-known for

single parametric downconversion processes. In this section, we provide an outlook

on this work from both a theoretical and experimental perspective.

We have noted previously that intracavity squeezed state generation in the pro-

posed system is difficult given the existence of high frequency relaxation oscillations.

However, the generation of multimode intracavity bright squeezed states could enable

a new regime of cavity QED experiments [81–84]. For example, single mode cavity

QED is generally limited to global interactions well-described by mean field theory,

whereas multimode cavity QED may permit tunable local couplings that can elucidate

beyond-mean-field physics [85]. Thus, mechanisms for the suppression of relaxation

oscillations should be investigated, such as recent theoretical work on the application

of nonlinear dissipation to single mode intracavity squeezing in lasers [5, 78].

Exciting topological phenomena have been studied in synthetic dimensions in pho-

tonics, and our work suggests a platform for studying the intersection of topology and

nonlinear quantum optics in a synthetic frequency dimension [86, 87]. For example,

recent work has explored the use of external amplitude and phase modulation in ring

resonators and coupled OPOs to generate non-Hermitian tight-binding coupling be-

tween resonant frequency modes [88–90]. Our system offers the opportunity to tune

both nonlinear coupling (as we have done here) and non-Hermitian modulation, shap-

ing energy propagation between discrete frequency modes. This could unlock novel

topological phenomena such as skin effects in a synthetic frequency dimension and

topologically-protected quantum optical states.

Recent work with electro-optic modulated thin-film lithium niobate microres-
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onators has revealed the potential of using interference between Bloch modes to tailor

the flow of light in the synthetic frequency dimension, creating, for example, trapped

states [75]. Applying similar techniques to our system could allow creation of squeezed

frequency-space solitons and other more exotic classical and quantum states of light.

Additionally, we anticipate that squeezing in these Bloch modes or quasi-Bloch modes

that diagonalize the nonlinear Hamiltonian could be even larger than the squeezing for

individual frequency modes described here, inspired by recent proposals to generate

output squeezing exceeding 15 dB in supermodes of a soliton microcomb system [64].

We now comment on experimental platforms that may realize the effects described

here. The important criterion to generate squeezing and strong long-range correla-

tions is a strong enhancement of the nonlinear coupling relative to dissipation in the

system, which requires (1) high pump and seed power, (2) a strongly resonant nonlin-

ear multimode cavity, and (3) a method to tune the dissipation (𝑄 factor) for different

frequency modes. In addition to free space optical parametric oscillators (OPOs), on

chip OPOs may offer a platform to realize the effects described here with compact

form factor [91]. Recent advances in the integration of lithium niobate photonics with

ultra high 𝑄 whispering gallery mode resonators [92, 93], for instance, may provide

the necessary elements to generate cascading nonlinear processes, though intrinsic

losses (particularly at the idler frequency) will need to be minimized.

The effects we have described here do not depend on specific spectral ranges for

the pump, signal, and idler modes. Depending on the platform and material, a higher

frequency mid-IR idler mode could be used instead, potentially with lower losses at

the expense of a shorter comb. Furthermore, an essential part of our approach is

𝑄 factor engineering, which allows one to tune the length of the frequency comb,

relative amplitudes of the different modes, and which modes are squeezed/correlated.

Experimentally, this 𝑄 factor engineering can be achieved by using photonic crystals

that provide frequency-tunable filters for coupling into and out of the cavity.

Our work establishes the mechanism of cascaded nonlinear optical processes as

a method to generate frequency combs that exhibit bright squeezing and quantum

correlations over a broad (and tunable) spectral range. We envision future appli-
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cation of the concepts described here to tunable squeezed light sources, multimode

entanglement for sensing and quantum computing protocols, and much more.
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Figure 3-1: Squeezing in a multimode cavity with THz-mediated cascaded
three wave mixing. (a) Cascading infrared (IR) orders are resonant in a multimode
cavity and undergo three wave mixing (TWM) mediated by a terahertz (THz) mode,
creating a frequency comb (red) with modes separated by the THz frequency 𝜔𝑇

(green). The cascade starts with a single TWM process wherein a pump photon at
𝜔0 amplifies a seed photon at 𝜔1 (solid line) and simultaneously creates an idler photon
(THz, dashed line) (1). Subsequently, the amplified mode at 𝜔1 initiates cascading
downconversion processes, now seeded by the THz idler photon (2). Concomitantly,
THz photons can also initiate upconversion processes that repopulate the IR orders
(3). By shaping the 𝑄 factor distribution of the cavity (e.g., through a frequency-
dependent coupler), the modes blueshifted relative to the pump frequency 𝜔0 can be
suppressed, biasing downconversions that create THz photons. Through parametric
squeezing enabled by the strong nonlinear rates, the multimode cavity can create
above-threshold output squeezing in frequency mode(s) that are separated from the
coherent pump mode by multiple idler photons. (b) Shown for a single mode, the
output squeezing emerges due to destructive interference between the intracavity
fluctuations and vacuum shot noise on the output facet of the cavity outcoupling
mirror. (c) Strong squeezing requires strong nonlinear energy flow, which creates a
kind of nonlinear tight binding system in frequency space. The system is bounded by
low 𝑄 modes at frequencies 𝜔0,𝑁 , resulting in a frequency space cavity (modes within
the cavity generally have high 𝑄 factors). Excitation of counter-propagating Bloch
modes in this cavity creates an interference pattern that is observable in the modal
energy distribution.
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Figure 3-2: Intracavity dynamics and noise due to strong cascaded nonlin-
ear interactions. (a) 𝑄 factor shaping (through the use of frequency-dependent
couplers) permits the creation of frequency combs containing only redshifted modes
relative to the pump mode 𝑎0. The temporal dynamics feature Bloch waves that
propagate through frequency space, establishing the steady state interference pattern
in intracavity modal energy. (b) 𝑄 factors for the different frequency modes and
quasi-periodic modal energy distribution in frequency space enabled through cas-
caded nonlinear interactions. Green denotes the (THz) idler mode 𝑎𝑇 , red denotes
infrared cascading orders 𝑎𝑛>0, black denotes the pump mode 𝑎0, and blue denotes
blueshifted modes 𝑎𝑛<0 (suppressed in the present system). The dashed lines indicate
the boundaries of the cavity in the synthetic frequency dimension. (c), (d) Intracavity
relative intensity noise spectra for modes 𝑎𝑇 (green), 𝑎𝑁−1,𝑁 (red, ▲ for 𝑎𝑁 and ■
for 𝑎𝑁−1), 𝑎0 (black), and 𝑎−1 (blue). The blueshifted mode is a coherent state that
is approximately decoupled from the nonlinear interactions due to its low 𝑄 factor.
The pump and IR cascading orders have low frequency noise that lies far below the
reference coherent state defined by a state with identical decay channel but no nonlin-
ear coupling. However, these modes feature strong GHz relaxation oscillations (ROs).
Multiple relaxation oscillation peaks (around the nonlinear rate |𝜅𝑎𝑇 |) are present due
to the TWM processes occurring in the multi-resonant cavity. In these simulations,
the pump and seed wavelengths are 𝜆0,1 = 1064, 1068 nm (so that 𝜔𝑇 = 2𝜋 · 1.06
THz). 𝑁 = 9 cascading orders are simulated, along with two low 𝑄 “padding modes”
on either side of the frequency space cavity. 𝑄 factors used are: 𝑄𝑟 = 107 (redshifted
modes in frequency space cavity), 𝑄0 = 𝑄𝑁 = 105 (frequency mirrors), 𝑄𝑏 = 102

(blueshifted modes), and 𝑄𝑇 = 104 (THz idler mode). The nonlinear strength is
𝜅 = 4.70 s−1 and the input pump and seed powers are |𝑠0,1|2 = 1 MW.
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Figure 3-3: Single and multimode output noise squeezing. (a) Using a similar
cavity design to that presented in Fig. 3-2, single frequency modes in the synthetic
frequency dimension can be squeezed in output noise. Here, we simulate 𝑁 = 15
cascading orders, and the mode with low 𝑄 is squeezed. Dashed lines demarcate the
boundaries of the frequency space cavity. We plot the steady state output power in
the modes; due to their low 𝑄, the squeezed modes have the highest power outside
the cavity. The remaining IR modes show an interference pattern in steady state
power characteristic of the Bloch interference phenomenon in Fig. 3-2. The terahertz
mode 𝑎𝑇 also has high power, while modes outside the frequency space cavity are very
leaky and negligibly occupied in the steady state. The modes that are designed to
have low 𝑄 are the only ones to show significant departure from the shot noise limit
(SNL), demonstrating intensity noise squeezing exceeding 10 dB. In these simulations,
𝑄0 = 3 × 106, 𝑄𝑁 = 2 × 105, 𝑄𝑟 = 𝑄𝑇 = 109 and 𝜅 = 14.1 s−1. (b), (c) The single
mode output squeezing (here for mode 𝑎𝑁) can be maximized by optimizing multiple
parameters simultaneously. Here, we show that higher 𝑄𝑇 and lower intrinsic loss
generates stronger squeezing due to stronger nonlinear energy flow. A larger number
of modes (𝑁) can also help increase squeezing, though too many modes can make the
noise contribution from modes 𝑎𝑘 ̸=𝑁 significant (red dashed curve in (c)). Lastly, an
optimal 𝑄𝑁 exists (with all parameters held equal) to maximize squeezing. Roughly,
this 𝑄𝑁 maximizes destructive interference with vacuum shot noise as per condition
(1) (red dotted curve in (c)). In (b), (c), 𝑄𝑟 = 108 and 𝜇/𝛾 denotes the ratio of
intrinsic loss to the outcoupling rate. (d), (e) By shaping the 𝑄 factor profile of
the multimode cavity, specifically by introducing multiple 𝑄 factor “defects,” output
squeezing can be obtained for multiple frequency modes. Here, 𝑁 = 7 modes are
simulated. The bandwidth for squeezing in the inset is around 100 MHz, but can be
optimized to > 1 GHz by enabling stronger nonlinear rates.
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Figure 3-4: Twin beam correlations. (a) Single beam outcoupled power and (DC)
output noise. (b) Twin beam intensity sum and difference fluctuations ⟨𝛿𝑛𝑖±𝛿𝑛𝑗⟩ nor-
malized to the uncorrelated twin beam noise. Despite certain modes being strongly
antisqueezed in (individual) output amplitude noise, strong correlations between mul-
tiple pairs of modes significantly reduce the twin beam noise. These correlations span
the dimension of the frequency cavity and may point towards the possibility of long-
range entanglement in a synthetic frequency dimension. Simulation parameters are
𝑄0 = 𝑄𝑁 = 𝑄𝑟 = 𝑄𝑏 = 3 × 106, 𝑄𝑇 = 105, 𝜅 = 3 × 10−4 J−1/2, and |𝑠0|2 = 1 MW,
|𝑠1|2 = 100 W. All noises are computed at noise frequencies much lower than the
cavity bandwidth.
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Chapter 4

Future directions

In this thesis, I have described two theoretical proposals for generating broadband

and spectrally tunable bright intensity noise squeezing in single and multiple optical

modes. This work stands as a distinct paradigm shift from most works that have

considered vacuum squeezing and thus opens up many exciting quantum applica-

tions. For example, the strong intracavity squeezing we have shown through the

mechanism of nonlinear dissipation could enable new systems in cavity quantum elec-

trodynamics characterized by strong interactions with macroscopic “bright” quantum

light. The squeezing at mid-IR and THz frequencies described in Chapter 2 suggests

the possibly of developing quantum-enhanced biochemical sensors, considering that

many molecules have important spectral signatures at these frequencies. Finally,

the spectrally tunable single- and multimode squeezing I have shown through cas-

caded nonlinear optical processes could enable bright squeezing in frequency combs

for quantum metrology and noise-reduced frequency multiplexing in quantum optics.

I am actively investigating multiple avenues related to these works. Here, I briefly

describe some of my active theoretical and experimental projects. On the theory side:

1. For practical applications in metrology, linewidth is an important consideration

for light sources. For both mechanisms of single-mode and multimode squeezing

considered here, it would be of interest to characterize the phase noise of the

squeezed modes. Note that it is not necessarily the case that phase noise will
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be antisqueezed if the intensity noise is squeezed, since the systems we consider

here (such as the laser) are not Heisenberg-limited.

2. We saw in Chapter 3 that intracavity squeezing was difficult due to the presence

of heavily multimoded relaxation oscillations. Techniques like nonlinear dissipa-

tion could be incorporated into the system to generate multimode intracavity

squeezing. Furthermore, we saw that output squeezing can decrease signifi-

cantly as the number of squeezed modes increases. This is because of stronger

output coupling noise between the squeezed modes. To overcome this, I am

investigating the generalization of nonlinear dissipation to multimode squeez-

ing. This may require engineering multiple sharp dispersive resonances at the

frequencies of the squeezed modes.

3. The multimode cavity system considered in Chapter 3 is the ideal platform

to investigate non-Hermitian physics and topological effects in a synthetic fre-

quency dimension. I am actively investigating topologically-protected quantum

states that this system can sustain in both the few-photon and many-photon

regimes.

On the experimental side, I am actively working on an experiment designed to

probe some of the theoretical predictions made in Chapter 3. Currently, we are

working towards showing an enhancement in the terahertz idler mode generation

efficiency beyond the Manley-Rowe limit, as described in [76]. This is the first step

towards realizing strong intermodal nonlinear coupling in our multimode cavity that

will be essential to mold the quantum noise properties of the system as described in

Chapter 3.
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Appendix A

Appendix for strong intensity noise

squeezing in semiconductor lasers

using nonlinear dissipation

A.1 Heisenberg-Langevin equations of motion

The Hamiltonian of a simple two-band semiconductor can be writen as

𝐻SC =
∑︁
𝑞

(𝜖(0)𝑔 + 𝜖𝑒,𝑞)𝑐
†
𝑞𝑐𝑞 +

∑︁
𝑞

𝜖ℎ,𝑞ℎ
†
𝑞ℎ𝑞 + 𝑉int. (A.1)

Here, 𝑐𝑞 and ℎ𝑞 are the fermionic annihilation operators for conduction-band electrons

and valence-band holess at momentum 𝑞. They satisfy the fermionic commutation

relations {𝑐𝑞, 𝑐†𝑞′} = 𝛿𝑞𝑞′ , and likewise for ℎ𝑞. Additionally, 𝜖(0)𝑔 is the unrenormalized

bandgap energy which separates the two bands at zero momentum. Also note that the

sums
∑︀

𝑞 are intended to note a sum over all electron states 𝑞, including momentum,

spin, and anything else that might be relevant. Finally, 𝑉int represent interactions

(collisions between electrons, interactions of the electron with the lattice, etc.). We

will not need to consider the effects of this term, but its presence will lead to effects

such as collision-induced equilibration of carriers within a band, relaxation of carriers

from the upper band to the lower band, etc. Interactions can also lead to some shifts
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in the gain spectrum induced by carrier screening and band-gap renormalization.

Now, we would like to introduce a single mode Kerr nonlinear cavity which has

frequency 𝜔0 and annihilation operator 𝑎, so that the Hamiltonian of the cavity is

𝐻cavity = 𝜔0𝑎
†𝑎
(︀
1 + 𝛽𝑎†𝑎

)︀
with 𝛽 the per-photon Kerr nonlinearity. In order to de-

scribe lasing, the cavity should interact with the semiconductor gain medium through

its dipole moment. We can define analogs of the atomic raising/lowering operators

𝜎± for each electron label 𝑞 as 𝜎𝑞 ≡ 𝑐𝑞ℎ𝑞. Then, in the rotating wave approxima-

tion (which assumes the light-matter coupling between the light and semiconductor

is weak), the interaction between cavity and semiconductor is

𝐻int =
∑︁
𝑞

(︀
𝑔𝑞𝑎𝜎

†
𝑞 + 𝑔*𝑞𝜎𝑞𝑎

†)︀ . (A.2)

Then the Hamiltonian of the full laser is the sum of the contributions 𝐻 = 𝐻SC +

𝐻cavity +𝐻int. Our goal then is to write equations of motion for quantities of interest,

and then solve these equations for steady state, transient, and noise properties of the

laser. To do so, we will now write Langevin equations of motion for the semicon-

ductor laser. This amounts to computing the Heisenberg equations of motion for the

operators of interest, adding the relevant pumping and damping terms, and finally

computing the correlations between the Langevin forces which results to describe

noise behavior.

For the polarization operator, we find

𝜎̇𝑞 = −𝑖𝜔𝑞𝜎𝑞 − 𝛾⊥𝜎𝑞 + 𝑖𝑔𝑞𝑎(𝑛𝑒,𝑞 + 𝑛ℎ,𝑞 − 1) + 𝑓𝑞, (A.3)

where 𝜔𝑞 is the energy difference between the valence and conduction bands for state

𝑞. We see that 𝜎𝑞 oscillates in the same way that 𝜎𝑖 does for an atomic gain medium.

Additionally, we see that the quantity in parentheses (which we shall define as 𝑑𝑞) in

the second term acts like the inversion in an atomic gain medium. Specifically, the

occupation operators for the electrons and holes can both takes values between 0 and

1. For a completely unexcited state (𝑛𝑒 = 𝑛ℎ = 0), the grouped quantity is 𝑑𝑞 = −1.
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For a completely excited state (𝑛𝑒 = 𝑛ℎ = 1) we have 𝑑𝑞 = 1. Thus 𝑑𝑞 can be thought

of as the population inversion for each electron state 𝑞.

For the cavity photon annihilation operator,

𝑎̇ = −𝑖𝜔0

(︀
1 + 𝛽𝑎†𝑎

)︀
𝑎− 𝜅

2
𝑎− 𝑖

∑︁
𝑞

𝑔*𝑞𝜎𝑞 + 𝑓𝑎

= −𝑖𝜔0𝑎
(︀
1 + 𝛽𝑎†𝑎

)︀
𝑎− 𝜅

2
𝑎+

𝑎

𝛾⊥

∑︁
𝑞

|𝑔𝑞|2𝒟𝑞𝑑𝑞 + 𝑓𝑎,
(A.4)

where 𝜅 is the cavity number/energy damping rate, 𝒟𝑞 ≡ 𝛾⊥
𝑖(𝜔−𝜔𝑞)+𝛾⊥

and 𝑓𝑎 is the

Langevin force for the annihilation operator. In the second line, we adiabatically

eliminated the polarization. Note that 𝛽 represents the per-photon Kerr nonlinear

strength.

Lastly, for the electron occupation operator,

𝑛̇𝑒,𝑞 = Λ𝑒,𝑞(1− 𝑛𝑒,𝑞)−𝐵𝑞𝑛𝑒,𝑞𝑛ℎ,𝑞 − 𝛾‖𝑛𝑒,𝑞 − 𝛾𝑒(𝑛𝑒,𝑞 − (𝑛𝑒,𝑞)0) + 𝑖𝑔*𝑞𝑎
†𝜎𝑞 − 𝑖𝑔𝑞𝜎

†
𝑞𝑎+𝐹𝑒,𝑞.

(A.5)

In order from left to right, the terms are

• Population pumping. This is the pump rate due to carrier injection. When

summing over this term, we get the actual pump rate 𝐼 at which free carriers

are injected.

• Loss due to spontaneous emission. Excited carriers can be lost due to

spontaneous emission. Since different 𝑞 can have different energy splittings, one

of these spontaneous emission events will not necessarily be into the laser mode

of interest. The coefficient 𝐵𝑞 is the rate for a particular momentum state 𝑞.

• Nonradiative decay of population. This term represents the rate at which

exited carriers become unexcited in a manner which is proportional to the pop-

ulation (e.g., due to phonon emission).

• Carrier-carrier relaxation. This term represents relaxation to the equilib-

rium value (𝑛𝑒,𝑞)0 within a band. The fact that 𝛾𝑒 tends to be very large
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compared to other relaxation rates allows one to make the so-called “quasiequi-

librium” approximation in which each band acquires a Fermi-Dirac distribution.

Moreover, because this term only redistributes carriers to different 𝑞 within the

same band, it does not have an effect on the total inverted population. Thus,

when summing this term over electron states, it vanishes.

• Population depletion by stimulated emission into cavity mode. This is

the only term that can be derived from the Hamiltonian written above. This is

the term that causes the population of excited states to deplete when stimulated

emission occurs.

Now, we identify

𝐺(𝑁)(1− 𝑖𝛼𝐿) ≡
2

𝛾⊥

∑︁
𝑞

|𝑔𝑞|2𝑑𝑞𝒟𝑞 (A.6)

Γ(𝑁) ≡ 𝛾‖𝑁 +
1

𝑉

∑︁
𝑞

𝐵𝑞𝑛𝑒,𝑞𝑛ℎ,𝑞 (A.7)

𝑁 ≡
∑︁
𝑞

𝑛𝑒,𝑞. (A.8)

where the linewidth enhancement factor 𝛼𝐿 ≡ 𝑑𝜒𝑟/𝑑𝑁
𝑑𝜒𝑖/𝑑𝑁

, with 𝜒 = 𝜒𝑟 + 𝑖𝜒𝑖 the suscepti-

bility of the active material [94]. We can now identify the resonance frequency using

𝑎 ≡ 𝛼𝑒𝑖𝜑 and 𝜑̇ = 1
2

𝑑
𝑑𝑡
ln
(︀

𝑎
𝑎†

)︀
= 𝑎̇

2𝑎
− 𝑎̇†

2𝑎†
, showing that

𝜔0 → 𝜔0

(︂
1 + 𝛽𝑛+

𝛼𝐿

2𝜔0

𝐺(𝑁)

)︂
, (A.9)

so that the “carrier nonlinearity” is identified as 𝜎 ≡ 𝛼𝐿𝐺𝑁/2𝜔0. With these substi-

tutions and neglecting the effects of spontaneous emission, the Heisenberg-Langevin

equations in the main text are obtained.

Here, we neglected any frequency-dependent phase shifts imparted by the Fano

mirror. These can be rigorously incorporated into the Heisenberg-Langevin equations

using coupled mode theory, as we do below in Sec. A.4. The result is a phase shift

tan−1(𝛿(𝜔)/𝛾), where 𝛿(𝜔) represents the detuning from the Fano resonance and 2𝛾
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the width of the Fano resonance. We assume the second cavity mirror (back reflector)

is broadband and imparts no phase shift. The effect of including the Fano mirror’s

phase shift is to make the resonance frequency no longer analytically solvable given

𝑛,𝑁 using Eq. A.9. Instead, it must be solved numerically. However, we find that

the effect of this dispersive phase shift is negligible over the detunings we consider:

sweeping across the Fano resonance gives a deviation from the prediction of Eq. A.9

of at most 0.02𝛾, likely from the broad width we assume for the Fano resonance under

the adiabatic approximation.

A.1.1 Carrier equation of motion under optical excitation

In the case of free carrier excitation due to optical pumping, the mean field carrier

equation of motion derived from the Heisenberg-Langevin formalism reads [1]

𝑁̇ =
𝜂𝑃𝑝

ℏ𝜔𝑝𝑉𝑝

− 𝛾‖𝑁 − 𝑛𝐺(𝑁), (A.10)

where 𝜂 is the pump efficiency, 𝑃𝑝 the pump power, ℏ𝜔𝑝 the energy of a pump photon,

and 𝑉𝑝 the pump volume. Assuming a pump volume 𝑉𝑝 on the order of the active

region volume and excitation by a near-IR source (around 800 nm), typical pump

powers are on the order of tens of mW for examples considered in the main text with

pump currents on the order of tens of mA.

A.1.2 Estimation of per-photon Kerr nonlinearity 𝛽

We briefly describe how the per-photon Kerr nonlinearity 𝛽 can be estimated. Previ-

ous work has derived the per-photon Kerr nonlinearity from a quantum mechanical

Hamiltonian approach [28]:

𝛽 =
3ℏ𝜔0

8𝜖20

∫︁
𝜒(3)(r)|u(r)|4𝑑3r, (A.11)

where the electric field profile is normalized as
∫︀
|u(r)|2𝜖𝑟(r)𝑑3r = 1. To get an

estimate of achievable 𝛽, we consider a buried heterostructure laser with GaAs gain
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and Al0.34Ga0.66As cladding. The active region has dimensions 0.1 𝜇m × 5 𝜇m × 1

mm, the lasing frequency is near the bandgap of GaAs, 𝜔0 = 2.16 × 1015 rad/s, and

the refractive indices of GaAs and Al0.34Ga0.66As are 3.6051 and 3.3734 respectively.

We take 𝑛2 ≈ −10−16 m2/W for Al0.34Ga0.66As [95]. We solve Maxwell’s equations in

the core and cladding using a slab waveguide model, obtaining a confinement factor

Γ ≈ 0.3 and per-photon Kerr nonlinearity 𝛽 ≈ −6× 10−10.

A.2 Mean-field dynamics: bistability and self-pulsing

A.2.1 Bistability due to Kerr nonlinearity

Here, we quantify the bistability boundaries that arise when intensity-dependent loss

is present. As shown in Fig. 2, this bistability correlates with the phenomenon of self-

pulsing and demarcates an unstable region in the S-curve for the laser. Its boundaries

can be found by noting that, in the steady state,

𝐼(𝑛) = 𝛾‖𝑁(𝑛) + 𝑛𝐺𝑁 (𝑁(𝑛)−𝑁trans)

𝑁(𝑛) =
𝜅(𝑛)

𝐺𝑁

+𝑁trans.
(A.12)

The bistability boundaries (in pump 𝐼) are those values 𝐼(𝑛) for which 𝑑𝐼/𝑑𝑛 = 0,

for which we require

𝑑𝐼

𝑑𝑛
= 0 =⇒ 𝜅𝑛

(︂
𝛾‖
𝐺𝑁

+ 𝑛

)︂
+ 𝜅(𝑛) = 0. (A.13)

One can see, for example, that in the absence of intrinsic loss, 𝑛𝑐, the point of zero

loss, satisfies this condition, since 𝜅𝑛(𝑛𝑐) = 𝜅(𝑛𝑐) = 0.

A.2.2 Onset and cessation of self-pulsing

Self-pulsations begin when relaxation oscillations become undamped, Γ1 < 0 and

Ω2
𝑅 > 0 (in the initial steady state solution). They do not, however, persist throughout

the entire region where Γ1 < 0, as shown in Fig. 2 of the main text. When the laser
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begins at the left edge of bistability in the S-curve (as in Fig. 2b) at steady state,

the pulsations are transient and eventually collapse to the steady state solution at

the center of the Fano resonance with minimum loss at photon number 𝑛𝑐 (this is the

leftmost point of bistability). Note that the laser began at the second photon number

𝑛* (low intensity branch) that corresponds to the same pump power as photon number

𝑛𝑐. Eventually, we sweep through initial steady state photon numbers within the

region of instability (still within bistable operation) that is not normally accessible

by pumping directly from threshold. When the right edge of bistability is finally

crossed, the laser enters the region with 𝜅𝑛 > 0, characterized by heavily damped

relaxation oscillations and intensity noise squeezing. When pumping from threshold,

the laser jumps from the low intensity to high intensity branch at the right bistable

edge.

A.2.3 Pulse characteristics in self-pulsing regime

The self-pulsations demonstrate an interesting behavior in pulse shape, as shown in

Fig. A-1. The initial sharp rise in the pulse profile is due to the undamping of

relaxation oscillations, and its timescale is thus set by 1/|Γ1|max ≈ 1/|𝑛𝜅𝑛|max (𝒪(1)

ps in our simulations). The same timescale characterizes the final drop in pulse

power. In between these two features, two further timescales are at play. The decay

after peak pulse power is initially very fast (𝒪(1) ps) due to the strong damping of

relaxation oscillations in the 𝜅𝑛 > 0 region. The decay slows as the photon number

approaches 𝑛𝑐, governed by Γ1 evaluated at 𝑛 ≈ 𝑛𝑐. The final feature also sets the

longest timescale for the pulse. It is a plateau near 𝑛 ≈ 𝑛𝑐 that emerges from “quasi”

steady state conditions. The carrier density can be calculated by solving the carrier

equation of motion in the steady state as

𝑁 ≈ 𝐼0 + 𝑛𝑐𝐺𝑁𝑁trans

𝛾‖ + 𝑛𝑐𝐺𝑁

, (A.14)

where 𝐼0 denotes the (fixed) pumping rate. Notice here that for 𝑛 < 𝑛*, 𝑁 < 𝑁(𝑛𝑐),

so that 𝐺(𝑁) < 𝜅(𝑛) as the photon number drops below 𝑛𝑐 and approaches the
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Figure A-1: Evolution of the pulse profile for carrier density and photon
number from the self-pulsing to collapsed pulse regimes. As the initial photon
number 𝑛0 approaches the left bistable edge, the pulse plateaus for longer at the center
of the Fano resonance. Thus, the effective width of the pulse is dynamic within the
regime over which self-pulsing occurs, depending on the initial state’s proximity to
the left bistable edge. Once the left bistable edge is crossed, the pulse collapses to
a CW solution at higher photon number than the initial state. Here, 𝑟0 denotes the
initial pumping rate relative to threshold.
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point where the pulsing continues (Γ1 < 0). The timescale for the plateau is then

given by 𝜏𝑝 = 1/|𝐺(𝑁) − 𝜅(𝑛𝑐)|. Notice that 𝑁 → 𝑁𝑐, 𝜏𝑝 → ∞ as the initial steady

state photon number 𝑛0 → 𝑛*. When 𝑛0 = 𝑛*, the pulsations are transient and the

laser approaches a steady state at 𝑛0 = 𝑛𝑐, as shown in Fig. A-1. For 𝑛0 ≈ 𝑛*,

the plateau changes based on the initial steady state (i.e. pumping rate) and can

approach timescales of tens to hundreds of ps.

The peak pulse power is more difficult to predict, depending on the initial fluctu-

ation from steady state. However, it must occur at 𝑛 > 𝑛𝑐 to saturate the pulse and

begin its decline.

The pulse repetition rate is set by the carrier density recovery timescale when

the pulse is off. During this time, the photon number 𝑛 ≈ 0, so that the mean-field

dynamics of carrier density are given by

𝑁(𝑡) =

(︂
𝑁min −

𝐼

𝛾‖

)︂
𝑒−𝛾‖𝑡 +

𝐼

𝛾‖
, (A.15)

where 𝐼 denotes the pump current and 𝑁min the minimum carrier density. If ∆𝑁 =

𝑁max −𝑁min is the difference in carrier density at the pulse maximum and minimum,

the period between pulses is given roughly by

𝑇rep ≈ 1

𝛾‖
ln

(︂
𝐼/𝛾‖ −𝑁min

𝐼/𝛾‖ −𝑁max

)︂
. (A.16)

For the system parameters in the main text, 𝑇rep ∼ 10 ns (100 MHz repetition rate).

A.3 Intensity noise

A.3.1 Langevin force correlators

In this section, we derive the photon number correlator in the presence of two-photon

absorption (TPA). We begin with the equation of motion for photon number proba-

bilities in the presence of TPA only, 𝑝̇𝑛 = −𝛼TPA

2
𝑛(𝑛− 1)𝑝𝑛 +

𝛼TPA

2
(𝑛+1)(𝑛+2)𝑝𝑛+2,

where 𝑝𝑛 denotes the probability of having 𝑛 photons inside the laser cavity. Thus,
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⟨𝑛̇⟩ =
∑︁
𝑗

𝑗𝑝̇𝑗

= −2𝛼TPA

∑︁
𝑗

𝑗(𝑗 − 1)𝑝𝑗

= −𝛼TPA[⟨𝑛2⟩ − ⟨𝑛⟩].

(A.17)

The RHS reduces to −𝛼TPA⟨𝑛⟩2 assuming mean field theory, ∆𝑛 ≪ ⟨𝑛⟩, recovering

the equation of motion 𝑛̇ = −𝛼TPA𝑛
2. Using the generalized Einstein relation, the

correlator is ⟨2𝐷𝑛𝑛⟩ = 𝑑
𝑑𝑡
⟨𝑛2⟩ − 2⟨𝑛𝐷𝑛⟩, where we express 𝑛̇ = 𝐷𝑛 + 𝐹𝑛, with 𝐷𝑛 a

diffusion term and 𝐹𝑛 a Langevin force. Thus

⟨2𝐷𝑛𝑛⟩ =
(︁∑︁

𝑛2𝑝̇𝑛

)︁
+ 2𝛼TPA⟨𝑛3 − 𝑛2⟩

= −𝛼TPA⟨𝑛(𝑛− 1)2⟩+ 2𝛼TPA⟨𝑛2(𝑛− 1)⟩

≈ 2𝛼TPA⟨𝑛⟩2,

(A.18)

again assuming mean field theory. Allowing for one-photon gain and loss, ⟨2𝐷𝑛𝑛⟩ =

2𝜅𝑛 + 𝛼TPA𝑛
2. The other nonzero diffusion coefficients are ⟨𝐹 †

𝑁𝐹𝑁⟩ = ⟨2𝐷𝑁𝑁⟩ =

𝜖𝐼 +𝑅𝑠𝑝𝑛+ 𝛾‖𝑁, ⟨𝐹 †
𝑁𝐹𝑛⟩ = ⟨2𝐷𝑁𝑛⟩ = −𝑅𝑛, ⟨𝐹 †

𝜑𝐹𝜑⟩ = ⟨2𝐷𝜑𝜑⟩ = 𝑅𝑠𝑝/2𝑛 where 𝑅𝑠𝑝 ≈

𝐺(𝑛,𝑁) denotes the rate of spontaneous emission into the cavity mode, 𝑅𝑎𝑏𝑠 ≈ 0

denotes the rate of absorption (negligible above threshold), 𝑅 = 𝑅𝑠𝑝 + 𝑅𝑎𝑏𝑠, and

𝜖 = 0 (1) for quiet (noisy) pumping. These correlators can be derived by computing

the Einstein diffusion coefficients [2] and give rise to nonzero fluctuations in 𝑛,𝑁

about their steady state values. For intracavity noise calculations in the main text,

pump noise is always included. Output noise calculations are performed for both

noisy and quiet pumping schemes.
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A.3.2 Analytic intensity noise spectra and Fano factor expres-

sions

In this section, we provide a linearization of the semiconductor laser rate equations

in the presence of various nonlinearities and calculate relative intensity noise using

this formalism. We obtain

𝛿𝑛̇ = −
(︂
𝜅𝑛𝑛+

𝑝𝐺0

2(1 + 𝑝)

)︂
𝛿𝑛+ 𝑛 (𝐺𝑁 − 𝜅𝑁) 𝛿𝑁 + 𝐹𝑛 − 𝑛𝜅𝜔𝐹𝜑

𝛿𝑁̇ = −
(︂
𝐺0(1 + 𝑝/2)

1 + 𝑝
− 𝐼𝑛

)︂
𝛿𝑛−

(︀
𝐺𝑁𝑛+ 𝛾‖

)︀
𝛿𝑁 + 𝐹𝑁 .

(A.19)

where 𝑝 = 𝑛/𝑛sat denotes the saturation fraction for photon number and 𝐼𝑛 ≡ 𝑑𝐼/𝑑𝑛

denotes carrier generation by TPA. Note that 𝐺0, 𝐺𝑁 implicitly include the effects of

gain saturation, 𝐺0,𝑁 → 𝐺0,𝑁/
√
1 + 𝑝. Results in the main text assume 𝑝, 𝐼𝑛 → 0.

For simplicity of notation, we will introduce 𝑎 = 𝑛𝐺𝑁 + 𝛾‖, 𝑏 = 𝑛 (𝐺𝑁 − 𝜅𝑁) , 𝑐 =

𝐺0
1+𝑝/2
1+𝑝

− 𝐼𝑛, 𝑑 = 𝑛(𝜅𝑛−𝐺𝑛),Γ1 = 𝑎+𝑑,Ω2
𝑅 = 𝑎𝑑+ 𝑏𝑐. Note that Ω2

𝑅 denotes the ap-

proximate relaxation oscillation frequency and Γ1 the decay of relaxation oscillations.

Fourier transforming the linearized rate equations,

⎡⎣−𝑖Ω + 𝑑 −𝑏

𝑐 −𝑖Ω + 𝑎

⎤⎦⎡⎣ 𝛿𝑛(Ω)
𝛿𝑁(Ω)

⎤⎦ =

⎡⎣𝐹𝑛 − 𝑛𝜅𝜔𝐹𝜑

𝐹𝑁

⎤⎦ , (A.20)

yielding⎡⎣ 𝛿𝑛(Ω)
𝛿𝑁(Ω)

⎤⎦ =
1

−Ω2 + (𝑎𝑑+ 𝑏𝑐)− 𝑖Ω(𝑎+ 𝑑)

⎡⎣ (−𝑖Ω + 𝑎) (𝐹𝑛 − 𝑛𝜅𝜔𝐹𝜑) + 𝑏𝐹𝑁

−𝑐 (𝐹𝑛 − 𝑛𝜅𝜔𝐹𝜑) + (−𝑖Ω + 𝑑)𝐹𝑁 .

⎤⎦
(A.21)

The intensity noise spectrum is then

⟨𝛿𝑛†(Ω)𝛿𝑛(Ω)⟩ = (Ω2 + 𝑎2)[⟨2𝐷𝑛𝑛⟩+ 𝑛2𝜅2
𝜔⟨2𝐷𝜑𝜑⟩] + 𝑏2⟨2𝐷𝑁𝑁⟩+ 2𝑎𝑏⟨2𝐷𝑁𝑛⟩

(Ω2 − Ω2
𝑅)

2 + Ω2Γ2
1

.

(A.22)
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As a side note, ignoring the effect of Kerr nonlinearity but including dispersive loss

and the associated amplitude-phase coupling, we see that RIN can be reduced by a

factor (1+𝜅2
𝜔)/(1−𝛼𝐿𝜅𝜔/2)

2 → 1/(1+𝛼2
𝐿) if the slope 𝜅𝜔 is chosen appropriately, in

agreement with earlier work on amplitude-phase decorrelation (where intensity noise

is reduced somewhat at the expense of an increase in phase noise) [25]. However, this

method leads to frequency selective squeezing, as opposed to the type of broadband

squeezing we consider here.

We compute the Fano factor from Eq. A.22 using the integrals

𝐼1 =

∫︁ ∞

0

1

(𝜔2 − 𝑥2)2 + 𝑦2
𝑑𝜔 =

𝜋

4𝑦

√︁
2𝑥2 + 2

√︀
𝑥4 + 𝑦2√︀

𝑥4 + 𝑦2

𝐼2 =

∫︁ ∞

0

𝜔2

(𝜔2 − 𝑥2)2 + 𝑦2
𝑑𝜔 =

𝜋

4

√︁
−2𝑥2 + 2

√︀
𝑥4 + 𝑦2√︀

𝑥4 + 𝑦2
+ 𝑥2𝐼1,

where 𝑥, 𝑦 ∈ R. With 𝑥2 = Ω2
𝑅−

Γ2
1

2
, 𝑦2 = Γ2

1

(︁
Ω2

𝑅 − Γ2
1

4

)︁
, we have 𝐼1 = 𝜋

2Γ1Ω2
𝑅
, 𝐼2 =

𝜋
2Γ1

.

Thus, the Fano factor reads

𝐹 =
1

2𝑛Γ1Ω2
𝑅

(︁
[⟨2𝐷𝑛𝑛⟩+ 𝑛2𝜅2

𝜑̇
⟨2𝐷𝜑𝜑⟩](Ω2

𝑅 + 𝑎2) + ⟨2𝐷𝑁𝑛⟩𝑎𝑏+ ⟨2𝐷𝑁𝑁⟩𝑏2
)︁

(A.23)

We now consider limiting expressions for 𝐹 in various limiting cases:

1. For weak Kerr and carrier nonlinearities, 𝜅𝑛, 𝜅𝑁 → 0, we have 𝐹 → 1+𝜅/(𝑛𝐺𝑁)

when pumping far above threshold, recovering linear behavior. When 𝑛 becomes

large far about threshold, the Fano factor approaches 1, resulting in Poissonian

(coherent) statistics.

2. For strong Kerr nonlinearity but weak carrier nonlinearity, 𝑛𝜅𝑛 ≫ 𝜅0, 𝑛|𝜅𝑁 |, 𝛾‖, 𝐺𝑁 ,

the Fano factor 𝐹 → 𝜅/(𝑛𝜅𝑛) for large 𝑛, resulting in squeezing when 𝑛𝜅𝑛 > 𝜅.

3. For strong carrier nonlinearity but weak Kerr nonlinearity, 𝑛|𝜅𝑁 | ≫ 𝜅0, 𝑛|𝜅𝑛|, 𝛾‖,

we have 𝐹 → 𝜅/(𝑛𝐺𝑁) + 𝐺𝑁/|𝐺𝑁 − 𝜅𝑁 | → 𝐺𝑁/|𝐺𝑁 − 𝜅𝑁 | for large 𝑛. The
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carrier nonlinearity reduces dependence of the rate of change of intensity fluc-

tuations on carrier fluctuations (𝐺𝑁 → 𝐺𝑁 −𝜅𝑁), lowering the relaxation oscil-

lation frequency Ω2
𝑅 while leaving the damping of these oscillations unchanged.

This can amplify low-frequency intensity noise slightly.

4. For simultaneously strong Kerr and carrier nonlinearities, 𝑛|𝜅𝑛,𝑁 | ≫ 𝜅0, 𝛾‖,

𝐹 → 𝜅

𝑛|𝐺𝑁 + 𝜅𝑛|

(︂
1 +

𝑛𝐺2
𝑁

𝑛𝜅𝑛𝐺𝑁 + |𝐺𝑁 − 𝜅𝑁 |𝜅

)︂
. (A.24)

Roughly, this expression can be broken into Kerr nonlinearity (first term) and

carrier nonlinearity (second term) contributions. The former describes squeez-

ing via increased Ω2
𝑅 and damping of relaxation oscillations due to “sharp”

intensity-dependent loss, while the latter reduces intensity noise-carrier noise

coupling and thus Ω2
𝑅. Kerr and carrier nonlinearities may therefore have com-

peting effects, leading to interesting steady state and noise fluctuation behavior.

A.3.3 Noise reduction using two photon absorption (TPA)

Two photon absorption (TPA), though not a dispersive loss, is weakly nonlinear in

photon number and thus may be expected to permit some squeezing in intensity noise.

When TPA is present, for large 𝑛,

𝐹 → 3𝜅

2𝑛(𝐺𝑁 + 𝛼TPA)

(︂
1 +

𝐺𝑁

𝛼TPA + 𝜅/𝑛

)︂
, (A.25)

where 𝛼TPA = 𝜅𝑛. The minimum achievable Fano factor is 3/4, obtained when

𝜅0/𝑛 ≪ 𝛼TPA ≪ 𝐺𝑁 (here 𝜅0 denotes linear background loss). To obtain the TPA

coefficient 𝛼TPA, we use the relationship between intensity 𝐼 and photon number

𝐼 ∼ 𝑛ℏ𝜔𝑐/𝑉 , so that 𝛼TPA ∼ 2ℏ𝜔𝑐𝐿𝛽TPA · FSR/𝑉 , where 𝐿, 𝑉 respectively denote

the length and volume of the cavity. For a cavity field oscillating at 𝜔 ∼ 1015 Hz

for GaAs at 1064 nm (𝛽TPA = 260 m/TW), we find 𝛼TPA ∼ 10−8 · FSR for 𝐿 ≈ 1

mm, 𝑉 ≈ 10−16 m3. For typical intracavity photon numbers, the TPA contribution

to the loss is then 10−2 · FSR, a weak nonlinear background loss that is neglected for
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Figure A-2: Steady state and noise plots for two photon absorption. (a)
Steady state intracavity photon number as a function of pump current (S-curve),
demonstrating sub-linear dependence of photon number with pump current for two-
photon absorption (TPA). (b) Photon number variance spectrum for two different
pump powers 𝑟 = 𝐼/𝐼thres, with broadband squeezing for intensity-dependent TPA.
(c) Fano factor plots for linear and TPA loss profiles. The intensity dependence of
TPA 𝜅(𝑛) ∝ 𝑛 creates small (< 2 dB) drops in Fano factor below the shot noise limit
when pumped far above threshold. Here, 𝛼 ≡ 𝛼TPA/FSR.

the examples in the main text where the primary nonlinear dispersive loss is much

stronger.

As shown in Fig. A-2a, TPA creates a sublinear S-curve that arises from the

monotonic dependence of 𝜅(𝑛) on 𝑛. Fig. A-2b demonstrates how TPA induces

broadband intensity noise squeezing, resulting in a weak suppression of Fano factor

(integrated over all noise frequencies) in Fig. A-2c. Linear loss asymptotes to unit

Fano factor for large pump powers, while TPA can result in minor noise condensation

(though this effect can be washed out if TPA is too strong or too weak, in violation of

𝜅0/𝑛 ≪ 𝛼TPA ≪ 𝐺𝑁). The source of Fano factor reduction for higher pump currents

is slightly different for both loss profiles. For linear loss, it occurs because steady state

𝑛 increases linearly with pump current while the fluctuations (∆𝑛)2 have a sublinear

dependence on pump current. In contrast, for TPA, the photon number 𝑛 is clamped

at high pump current and the photon number distribution is squeezed slightly due to

the nonlinear loss 𝜅(𝑛).
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A.3.4 Noise reduction using nonlinear distributed feedback-

based loss

In this section, we consider distributed feedback semiconductor lasers where a dis-

tributed Bragg reflector (DBR) is fabricated on one (or both) ends/facets of the laser

cavity, or a VCSEL-type structure is employed. In this case, we use the analytical

form for DBR reflectivity given by coupled mode theory [96,97] to obtain

𝜅(𝜔) = −FSR · log
⃒⃒⃒⃒

𝑔 sinh(𝜃)

Γ cosh(𝜃) + (𝛼DBR + 𝑖𝛿) sinh(𝜃)

⃒⃒⃒⃒2
, (A.26)

where 𝛽 = 𝜔𝑛̃/𝑐 is the propagation constant (wavevector), 𝑔 = 𝜔∆𝑛/(𝜋𝑐) is the

approximate coupling coefficient, 𝛿 = 𝛽 − 𝜋/𝑑, Γ2 = 𝑔2 + (𝛼DBR + 𝑖𝛿)2, 𝜃 = 𝑁DBR𝑑Γ,

and 𝛼DBR the radiative loss from the DBR. Here, 𝑁DBR denotes the number of pairs

of layers in the DBR, 𝑑 the thickness of a pair of layers, ∆𝑛 the index contrast,

𝑛̃ the effective index, and 𝜔 ≡ 𝜔(𝑛,𝑁) the laser frequency. Note that 𝛿 has the

interpretation of a detuning from the Bragg value 𝜋/𝑑 (the center of the Bragg stop-

band of maximum reflectivity and thus lowest loss is at 𝛿 = 0). We would like to

operate in the “sharp loss” regime, which is where the stop-band switches over to a

pass-band, first occurring when 𝜃 = 𝜋 =⇒ 𝛿2 − 𝑔2 = 𝜋2/𝐿2. For a lossless DBR,

choosing the frequency 𝜔𝑐 at which this sharp transition occurs fixes 𝛿 and therefore

∆𝑛 from the above relations:

∆𝑛 =
𝜋𝑐

𝜔𝑐

√︃(︂
𝑛̃

𝑐
(𝜔𝑐 − 𝜔𝑡)

)︂2

−
(︁𝜋
𝐿

)︁2
, (A.27)

where 𝜔𝑡 denotes the center of the stop band, so that 𝜔𝑐 − 𝜔𝑡 is effectively the half-

width of the stop band. The coupling coefficient 𝑔, index contrast ∆𝑛 and stop band

width 2(𝜔𝑡 − 𝜔𝑐) are thus closely related.

To use Eq. A.26, it is necessary to ensure the time response of the DBR is much

faster than the free spectral range. We extract this time response by performing an

FFT of 𝑅(𝜔). For lossy DBRs, 𝑅(𝜔) approaches a Lorentzian with width governed

by 𝛼DBR, and the maximum reflectivity may be far from unity. When the DBR is
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Figure A-3: Comparison of frequency and temporal response for Fano mirror
and DBR losses. In the top row, the DBR stop band is made sharper and its width
is increased by increasing the number of layers. This results in a shorter, ultrafast
relaxation time. In contrast, in the bottom row, the Fano mirror frequency response
is made sharper by increasing the quality factor (𝑄) of the resonance, which has the
effect of decreasing the width of the resonance while increasing its lifetime.

lossless, an analytical expression for the time response is in general difficult to obtain.

We observe that the time response is faster for DBRs of larger bandgap (wider stop

bands). Intuitively, outcoupling in a lossless DBR is through the coupling coefficient 𝑔

which scales with the index contrast ∆𝑛 and thus correspondingly with the stop band

width 2(𝜔𝑐 − 𝜔𝑡). This is distinct from the Fano resonances considered in the main

text where the loss profile was derived from interference between a “direct channel”

pathway bypassing the Fano resonance and an “indirect pathway” coupling to an

intrinsic resonant mode of the photonic crystal. In such a case, the time response

of the effective nonlinear dispersive loss is governed by the the complex resonance

frequency of the Fano resonance (intuitively, how long light spends trapped in the

photonic crystal). Here, however, sharply frequency-dependent loss arises from a

different mechanism, namely the photonic bandgap of the DBR. A comparison of the

two different types of temporal responses are provided in Fig. A-3.

The sharpness of 𝜅(𝑛) increases with the number of layers 𝑁DBR and Kerr non-

linear strength (the former corresponds to sharper evanescent decay of modes in the
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photonic bandgap). For the strongest nonlinearity and sharpest 𝑅(𝜔), multiple stop

bands may be accessible, corresponding to multiple regions of noise condensation and

bistability for each transition from pass band to stop band. An important distinction

from the Fano resonances considered earlier is that the sharp loss regions 𝜅𝑛 > 0

are now the lower bistability branches, accessible by simply pumping smoothly from

threshold.

From an experimental standpoint, the sharpest loss (and strongest squeezing) can

be obtained by maximizing the stop band width and number of layer pairs 𝑁DBR.

The former is limited by the intracavity saturation intensity and required index con-

trast ∆𝑛, while the latter is limited by fabrication methods. Nevertheless, carefully-

engineered DBR-based losses when coupled to strong Kerr nonlinearity in semicon-

ductor lasers may result in unprecedented broadband intensity noise squeezing.

A.4 Output photon noise

Here, we develop formalism to compute output photon noise in the presence of non-

linearity and dispersive dissipation. Let 𝑎, 𝑑 respectively denote the nonlinear cavity

mode and the Fano mirror mode, both of which couple to a continuum of far-field

modes 𝑠𝑘 (here 𝑘 labels momentum). From the full Hamiltonian of the system [33],

the Heisenberg equations of motion can be derived as

𝑎̇ = −𝑖𝜔𝑎(1 + 𝛽𝑎†𝑎)𝑎+𝐺(𝑁)(1− 𝑖𝛼𝐿)𝑎− 𝑖
∑︁
𝑘

𝑔*𝑘𝑠𝑘 + 𝐹𝐺

𝑑 = −𝑖𝜔𝑑𝑑− 𝑖
∑︁
𝑘

𝑣*𝑘𝑠𝑘

𝑠̇𝑘 = −𝑖𝜔𝑘𝑠𝑘 − 𝑖(𝑔𝑘𝑎+ 𝑣𝑘𝑑).

(A.28)

where 𝜔𝑎,𝑑 denote the resonance frequencies of the cavity and Fano mirror, 𝛽 is the

per-photon Kerr nonlinearity, 𝐺(𝑁) is the carrier-dependent gain (added phenomeno-

logically), 𝛼𝐿 is the linewidth enhancement factor, and 𝑔𝑘, 𝑣𝑘 are the couplings of 𝑎, 𝑑

to the far-field mode 𝑠𝑘. 𝐹𝐺(𝑡) is a Langevin force term for the gain. We neglect

direct coupling between 𝑎 and 𝑑, though this can be readily incorporated into the
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Heisenberg equations. We can solve for 𝑠𝑘 as

𝑠𝑘(𝑡) = 𝑠𝑘(0)𝑒
−𝑖𝜔𝑘𝑡 − 𝑖

∫︁ 𝑡

𝑑𝑡′𝑒−𝑖𝜔𝑘(𝑡−𝑡′)[𝑔𝑘𝑎(𝑡
′) + 𝑣𝑘𝑑(𝑡

′)]. (A.29)

We assume momentum independent coupling 𝑔 = 𝑔𝑘, 𝑣 = 𝑣𝑘 and introduce 𝜅FSR =

𝜋𝜌|𝑔|2, 𝛾 = 𝜋𝜌|𝑣|2. The input-output relation can then be found by taking 𝑡 → ∞,

performing an integral over 𝑘, and Fourier transforming:

𝑠out(𝜔) = −𝑠in(𝜔) +
√
2𝜅FSR𝑎(𝜔) +

√︀
2𝛾𝑑(𝜔). (A.30)

We can write the Fourier transformed Heisenberg equations for 𝑎, 𝑑 as

−𝑖𝜔𝑎 = −𝑖𝜔𝑎(1 + 𝛽𝑎†𝑎)𝑎+ [𝐺(𝑁)(1− 𝑖𝛼𝐿)− 𝜅FSR]𝑎−
√
𝜅FSR𝛾𝑑+

√
2𝜅FSR𝑠in + 𝐹𝐺

−𝑖𝜔𝑑 = −𝑖𝜔𝑑𝑑− 𝛾𝑑−√
𝜅FSR𝛾𝑎+

√︀
2𝛾𝑠in.

(A.31)

Eliminating 𝑑(𝜔) as

𝑑(𝜔) =

√
2𝛾𝑠in −

√
𝜅FSR𝛾𝑎

𝑖𝛿𝑑 + 𝛾
, (A.32)

with 𝛿𝑑 ≡ 𝜔𝑑 −𝜔, we can write the Fourier transformed equation of motion for 𝑎 and

the input-output relation as

−𝑖𝜔𝑎 = −𝑖𝜔𝑎(1 + 𝛽𝑎†𝑎)𝑎+ [𝐺(𝑁)(1− 𝑖𝛼𝐿)−𝐾𝑙(𝜔)]𝑎+

𝐹𝑎⏞  ⏟  
𝐾𝑐(𝜔)𝑠in + 𝐹𝐺 (A.33)

𝑠out(𝜔) = 𝐾𝑎(𝜔)𝑎(𝜔)−𝐾𝑠(𝜔)𝑠in(𝜔), (A.34)
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where

𝐾𝑎(𝜔) =
√
2𝜅FSR

(︂
1− 𝛾

𝑖𝛿𝑑 + 𝛾

)︂
𝐾𝑠(𝜔) = 1− 2𝛾

𝑖𝛿𝑑 + 𝛾

𝐾𝑙(𝜔) = 𝜅FSR

(︂
1− 𝛾

𝑖𝛿𝑑 + 𝛾

)︂
𝐾𝑐(𝜔) = 𝐾𝑎(𝜔).

(A.35)

To compute noise, we begin with the intracavity fluctuations, which are governed

by the linearized system

𝑀(Ω)

⎡⎢⎢⎢⎣
𝛿𝑎(Ω)

𝛿𝑎†(Ω)

𝛿𝑁(Ω)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝐹𝑎(Ω)

𝐹𝑎†(Ω)

𝐹𝑁(Ω)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝐾𝑐(𝜔+)𝛿𝑠in(Ω) + 𝐹𝐺(Ω)

𝐾*
𝑐 (𝜔−)𝛿𝑠

†
in(Ω) + 𝐹 †

𝐺(Ω)

𝐹𝑁(Ω)

⎤⎥⎥⎥⎦ , (A.36)

where for a generic operator 𝑋†(Ω) = [𝑋(−Ω)]† follows from the definition 𝑋†(𝑡) =

[𝑋(𝑡)]†. The fluctuation matrix has columns

𝑀𝑥1(Ω) =

⎡⎢⎢⎢⎣
−𝑖𝜔+ + 𝑖𝜔𝑎(1 + 2𝛽|𝛼|2) +𝐾𝑙(𝜔+)−𝐺(𝑁)(1− 𝑖𝛼𝐿)

−𝑖𝜔𝑎𝛽𝛼
*2

2𝐺(𝑁)𝛼*

⎤⎥⎥⎥⎦

𝑀𝑥2(Ω) =

⎡⎢⎢⎢⎣
𝑖𝜔𝑎𝛽𝛼

2

𝑖𝜔− − 𝑖𝜔𝑎(1 + 2𝛽|𝛼|2) +𝐾*
𝑙 (𝜔−)−𝐺(𝑁)(1 + 𝑖𝛼𝐿)

2𝐺(𝑁)𝛼

⎤⎥⎥⎥⎦

𝑀𝑥3(Ω) =

⎡⎢⎢⎢⎣
−𝐺𝑁𝛼(1− 𝑖𝛼𝐿)

−𝐺𝑁𝛼(1 + 𝑖𝛼𝐿)

−𝑖𝜔 + 𝛾‖ + 2𝐺𝑁 |𝛼|2

⎤⎥⎥⎥⎦ .

(A.37)

Here, 𝑥 ∈ [1, 2, 3] to denote the row of 𝑀 , 𝜔± = 𝜔 ± Ω, and the steady state cavity

amplitude 𝛼 is determined through

[𝑖(−𝜔𝑎(1 + 𝛽|𝛼|2) + 𝜔) +𝐺(𝑁)(1− 𝑖𝛼𝐿)−𝐾𝑙(𝜔)]𝛼 = 0. (A.38)
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Noise emerges from the nonzero correlators [2, 98]

⟨𝐹 †
𝐺(𝜔)𝐹𝐺(𝜔

′)⟩ = 𝐺(𝑁)𝛿(𝜔 − 𝜔′)

⟨𝐹 †
𝑁(𝜔)𝐹𝐺(𝜔

′)⟩ = −𝛼𝐺(𝑁)𝛿(𝜔 − 𝜔′)

⟨𝐹 †
𝑁(𝜔)𝐹𝑁(𝜔

′)⟩ = [𝑛𝐺(𝑁) + 𝛾‖𝑁 + 𝜖𝐼]𝛿(𝜔 − 𝜔′)

⟨𝑠in(𝜔)𝑠†in(𝜔′)⟩ = 𝛿(𝜔 − 𝜔′),

(A.39)

with 𝜖 = 0 for quiet pumping and 𝜖 = 1 for shot noise limited pumping. We can now

compute the output photon noise by noting

𝛿𝑛out(𝑡) = 𝑠*0𝛿𝑠out(𝑡) + 𝑠0𝛿𝑠
†
out(𝑡)

𝛿𝑛out(Ω) = 𝑠*0𝛿𝑠out(Ω) + 𝑠0[𝛿𝑠out(−Ω)]†

= 𝑠*0𝐾𝑎(𝜔+)𝛿𝑎(Ω) + 𝑠0𝐾
*
𝑎(𝜔−)𝛿𝑎

†(Ω)− [𝑠*0𝐾𝑠(𝜔+)𝛿𝑠in(Ω) + 𝑠0𝐾
*
𝑠 (𝜔−)𝛿𝑠

†
in(Ω)]

(A.40)

where here 𝑠0(𝜔) = 𝐾𝑎(𝜔)𝛼(𝜔) is the steady state output (propagating) amplitude

and the intensity noise spectrum is given by ⟨𝛿𝑛†
out(Ω)𝛿𝑛out(Ω)⟩. Spectra in the limit

of nondispersive loss closely match those found by Yamamoto et al. [98].

A.5 Intensity noise in QCLs with nonlinear disper-

sive loss

The photon and carrier dynamics for QCLs are conventionally described using a

three-level model for the carrier populations [3]

𝑁̇ 𝑗
3 = 𝐼𝑗 −𝑁 𝑗

3

(︂
1

𝜏32
+

1

𝜏31

)︂
− 𝑛𝐺

(︀
𝑁 𝑗

3 , 𝑁
𝑗
2

)︀
+ 𝐹 𝑗

3

𝑁̇ 𝑗
2 =

𝑁 𝑗
3

𝜏32
− 𝑁 𝑗

2

𝜏21
+ 𝑛𝐺

(︀
𝑁 𝑗

3 , 𝑁
𝑗
2

)︀
+ 𝐹 𝑗

2

𝑛̇ = 𝑛

(︃
−𝜅(𝑛) +

𝑚∑︁
𝑗=1

𝐺
(︀
𝑁 𝑗

3 , 𝑁
𝑗
2

)︀)︃
+ 𝐹𝑛,

(A.41)
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where 𝑁 𝑗
3 , 𝑁

𝑗
2 respectively denote the carrier populations in levels 3 and 2 in each

gain stage 𝑗, 𝐼𝑗 denotes the injected current to gain stage 𝑗, and 𝜏31, 𝜏32, 𝜏21 are the

nonradiative decay time constants indicated in Fig. 4c. A linear model for the gain

𝐺
(︀
𝑁 𝑗

3 , 𝑁
𝑗
2

)︀
= 𝐺𝑁(𝑁

𝑗
3 − 𝑁 𝑗

2 ) is employed. Langevin forces 𝐹 𝑗
𝑛, 𝐹

𝑗
3 , 𝐹

𝑗
2 are added for

the following noise analysis.

We can simplify the analysis by introducing 𝑁2,3 =
∑︀

𝑗 𝑁
𝑗
3,2 and assuming all of

the gain stages are identical. Then, the dynamics for 𝑛,𝑁2, 𝑁3 are described by a set

of three coupled nonlinear equations. Note that we neglect the dynamics of 𝑁1 (the

carrier population in level 1) since the populations of interest 𝑛,𝑁2, 𝑁3 form a closed

system of equations. Linearizing and Fourier transforming the QCL rate equations,

we find

𝑀

⎡⎢⎢⎢⎣
𝛿𝑁3(Ω)

𝛿𝑁2(Ω)

𝛿𝑛(Ω)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝐹3

𝐹2

𝐹𝑛 − 𝑛𝜅𝜔𝐹𝜑

⎤⎥⎥⎥⎦
with the fluctuation matrix

𝑀 =

⎡⎢⎢⎢⎣
−𝑖Ω + 𝛾11 −𝛾12 𝛾13

−𝛾21 −𝑖Ω + 𝛾22 −𝛾23

−𝛾31 𝛾32 −𝑖Ω− 𝛾33

⎤⎥⎥⎥⎦ ,

where 𝛾11 = 𝑛𝐺𝑁 + 1/𝜏32 + 1/𝜏31, 𝛾12 = 𝑛𝐺𝑁 , 𝛾13 = 𝛾23 = 𝐺𝑁∆𝑁, 𝛾21 = 𝑛𝐺𝑁 +

1/𝜏32, 𝛾22 = 𝑛𝐺𝑁 + 1/𝜏21, 𝛾31 = 𝛾32 = 𝑛𝐺𝑁 , 𝛾33 = −𝑛𝜅𝑛 and ∆𝑁 = 𝑁3 − 𝑁2. The

correlators between the Langevin forces are given by ⟨2𝐷𝑛𝑛⟩ = 2𝐺𝑁𝑁3𝑛, ⟨2𝐷𝜑𝜑⟩ =

𝐺𝑁𝑁3/(2𝑛), ⟨2𝐷22⟩ = 2𝐺𝑁𝑁3𝑛 + 𝑁3/𝜏32, ⟨2𝐷33⟩ = 2𝐺𝑁𝑁3𝑛 + 𝑁3/𝜏32 + 𝑁3/𝜏31,

⟨2𝐷3𝑛⟩ = −𝐺𝑁 (𝑁2 +𝑁3)𝑛, ⟨2𝐷2𝑛⟩ = 𝐺𝑁 (𝑁2 +𝑁3)𝑛, ⟨2𝐷32⟩ = − (𝐺𝑁(𝑁2 +𝑁3)𝑛+𝑁3/𝜏32).

In QCLs, the intensity noise is dominated by both spontaneous emission and

nonradiative decay of excited carriers, whereas in typical semiconductor lasers, it is

only the former that matters [99]. Thus, starting from the linearized matrix equations,
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we can approximate the DC intensity noise as

⟨𝛿𝑛†(0)𝛿𝑛(0)⟩ ≈ 𝛾2
𝑠 (𝛾21 − 𝛾22)

2⟨2𝐷33⟩+ (𝛾𝑠𝛾21 − 𝛾11𝛾22)
2⟨2𝐷𝑛𝑛⟩

(𝛾2
𝑠𝛾23 + 𝛾11𝛾22𝛾33 + 𝛾𝑠(𝛾13(𝛾21 − 𝛾22)− 𝛾11𝛾23 = 𝛾21𝛾33))

2 , (A.42)

where 𝛾𝑠 = 𝛾12 = 𝛾31 = 𝛾32 = 𝑛𝐺𝑁 . In the absence of nonlinear dispersive loss,

𝛾33 = 0 and the DC intensity noise goes as (𝜏𝑠/𝜏nr)2 where 1/𝜏𝑠 ≡ 𝑛𝐺𝑁 is the rate of

stimulated emission (per carrier) and 1/𝜏nr is an effective nonradiative decay rate of

the carriers. The scaling with the stimulated emission lifetime is expected given that

the light approaches a coherent state as the power increases. The inverse scaling with

𝜏nr reflects the fact that in QCLs, in contrast to conventional semiconductor lasers,

the carrier density is not clamped above threshold. Instead, 𝑁2, 𝑁3 are dynamic and

their fluctuations have fast response times, significantly affecting the intensity noise

even above threshold. We also note that the fast nonradiative decay of the carriers

also leads to the relaxation oscillations in QCLs being overdamped, despite increasing

intensity noise. In this case, the increased intensity noise of QCLs compared to con-

ventional lasers stems from stronger low-frequency noise arising from the unclamped

carrier populations above threshold (which increase proportionately with pump cur-

rent, together with the photon number). The effect of nonlinear dispersive loss is

to outcompete the nonradiative decay rates to dominate the intensity noise. Thus,

|𝛾33| ≫ 1/𝜏nr is a necessary condition for this mechanism for squeezing to be effective.

To provide analytical checks against previous theory on QCL intensity noise [3], we

compute output photon noise as described above in Sec. A.4, agreeing qualitatively

with Eq. 95 of [3].

A.6 Nonlinear dispersive loss with carrier and Kerr

nonlinearities

In this section, we describe how the interplay of carrier nonlinearity with dispersive

loss can result in unexplored “carrier bistability” behavior in conventional semicon-

ductor lasers. We consider carrier nonlinear strengths 𝜎 comparable to what they
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might be in, for example, GaAs-based gain media [32,95].

We first describe how multiple lasing steady states can exist when strong carrier

nonlinearity and dispersive loss are simultaneously present. In an ordinary semicon-

ductor laser, the “gain equals loss” requirement leads to a so-called “gain clamping”

condition, wherein above threshold, the inverted carrier density is fixed at some value,

regardless of the intensity (i.e. the carrier density 𝑁 such that 𝐺𝑁(𝑁 −𝑁trans) = 𝜅).

This is depicted in Fig. A-4a by the “linear loss” case which shows only a single

intersection point of the carrier-dependent gain and carrier-independent loss. How-

ever, in the presence of strong carrier nonlinearity and sharply frequency-dependent

outcoupling (with a Fano mirror for example), the loss of the cavity mode can de-

pend nonlinearly on the carrier density 𝑁 , 𝜅(𝜔(𝑁)) = 𝜅(𝑁). As the carrier density

changes, so does the cavity frequency, and hence the damping rate via the frequency-

dependent mirror. The “gain equals loss” condition now reads 𝐺𝑁(𝑁−𝑁trans) = 𝜅(𝑁).

As shown in Fig. A-4a, this leads to a situation where more than one carrier density

𝑁 can cause gain and loss to be equal, corresponding to multiple cavity resonance

frequencies. In the case of the Fano resonance, we see that up to three different steady

states are possible.

Fig. A-4b shows how this phenomenon manifests in the steady state laser behavior.

The dependence of steady state intensity on the pump current is still linear, but

there can be up to three independent branches, corresponding to different steady

state 𝑁 and different lasing frequencies. For the Fano mirror example, one resonance

frequency is always present such that the detuning from the Fano resonance ∆ ≈ 0.

Since this solution has lowest loss, and thus the lowest threshold, lasing will occur

here by default. The other branches are also stable, but disconnected from the lowest

branch. It may be possible to experimentally access these higher branches through

dynamic pumping schemes which generate transients that can travel from one branch

to another.

When Kerr nonlinearity is also introduced, additional phenomena appear due to

the simultaneous nonlinear dependence of the damping rate on intensity and carrier

number. It is important to note that the profile 𝜅(𝜔) is unchanged, though 𝜅(𝑛,𝑁)
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will vary based on the nonlinear strengths. Furthermore, the gain (and thus loss) is

monotonically increasing in 𝑁 . For typical materials (and for the results presented in

Fig. A-4), 𝜎 < 0 increases the resonance frequency 𝜔𝑅(𝑛,𝑁) and thus pushes lasing

solutions rightward along 𝜅(𝜔).

Consider first weak carrier nonlinearity (orange and green curves in Fig. A-4c).

Then, the carrier nonlinearity can be treated as a perturbation to the initially sym-

metric Lorentzian loss 𝜅(𝑛). On the 𝜅𝜔 ≡ 𝑑𝜅/𝑑𝜔 > 0 (right) branch of the dispersive

loss, the carrier nonlinearity shifts the loss curve upward. On the other hand, the

𝜅𝜔 < 0 (left) branch shifts downwards since an increase in 𝜔 corresponds to a point

of lower loss (approaching detuning ∆ = 0).

Suppose we increase the carrier nonlinearity further (red curve in Fig. A-4c). For

𝑛 near threshold, far below the “magic” photon number 𝑛𝑐 ≈ 106 of lowest loss, the

carrier nonlinearity pushes solutions rightward along the Lorentzian. However, the

laser still lies on the 𝜅𝜔 < 0 branch - the carrier nonlinearity pushes the mode closer to

𝑛𝑐, which is near zero loss and thus 𝑁 ≈ 𝑁trans. This yields one steady state solution.

For higher 𝑛, near but still below 𝑛𝑐, we eventually reach an 𝑛 at which two solutions

are possible: 𝑁 ≈ 𝑁trans (lower loss) or 𝑁 > 𝑁trans (higher loss). Immediately

afterwards, a third solution is possible with still higher loss/higher carrier density,

phenomenologically similar to the dashed curve in Fig. A-4a. Finally, as 𝜅𝜔 drops

past the inflection point of 𝜅(𝜔), a point corresponding to two solutions marks the

end of the carrier bistability and for the largest 𝑛 we again obtain only one solution

(the Lorentzian loss looks approximately linear).

For even stronger carrier nonlinearity (purple curve in Fig. A-4c), the carrier

bistability boundaries shift leftward in photon number. Comparing the red and purple

curves in Fig. A-4c, the left boundary eventually crosses zero and becomes negative,

at which point the loss curve detaches into two parts: a sharp part at low loss and

linear part at higher loss, separated by a range of pump currents over which no stable

lasing solution occurs. When the right bistability boundary also crosses 𝑛 = 0 the

sharp loss vanishes and laser operation only occurs on the linear high-loss branch

(with correspondingly larger threshold currents), as shown for the brown curve in
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Fig. A-4c.

We now examine the effects of this carrier bistability on intensity noise. As shown

in Fig. A-4e, the minimum achievable Fano factor is relatively independent of the

level of carrier nonlinearity. This can be seen by noting that the first term in Eq.

A.24 dominates the Fano factor at these points. However, past the sharp loss region,

the linear branch created by the carrier nonlinearity possesses a higher loss that pulls

the Fano factor upward for larger pump currents. For large carrier nonlinearities,

the system eventually hits bistability and a region of unstable lasing, transitioning

to (approximately) linear behavior again. For carrier nonlinearities much stronger

than the Kerr nonlinearity (brown curve), approximately linear loss is restored as

described above and no intensity noise reduction is observed. Mathematically, Eq.

A.24 essentially contains a combination of dominant Kerr and dominant carrier non-

linearity terms, demarcated by pump currents smaller and larger than the Fano factor

minimum/sharp loss regime, respectively.
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Figure A-4: Effects of carrier and Kerr nonlinearities composed with disper-
sive loss. (a) In the presence of only carrier nonlinearity 𝜎, the resonance frequency
and thus loss depend “directly” on carrier density 𝑁 , and steady states are set by
the intersections of gain and loss. For strong 𝜎 and low background loss 𝜅0, multiple
steady state carrier densities 𝑁 can correspond to a given photon number 𝑛, result-
ing in different steady state losses (detunings from the Fano resonance). The lowest
loss solution (smallest detuning) is most likely to lase, though extra solutions may
be accessible by dynamic pumping schemes. (b) The schematic effect of this “carrier
bistability” is to create multiple branches in the S-curve of different slope/threshold
current. The presence of both strong carrier and Kerr nonlinearities result in the novel
behaviors shown in panels (c), (d), and (e). Carrier nonlinearity causes a deformation
of the intensity-nonlinear Lorentzian loss profile, eventually pinching off the “sharp
loss” from the linear loss for sufficiently strong carrier nonlinearity (purple curve).
This stems from leftward motion of the carrier bistability boundaries and creates a
demarcation between linear (𝐹 ≫ 1) and nonlinear (𝐹 < 1) loss regimes which may
be separated by a region of lasing with no stable solution. System parameters used
are the same as those in Fig. 2 with 𝛽 = −10−10, 𝜅0 = 10−2 · FSR, and 𝛾 = 2× 1012

rad/s. The magnitudes of Kerr and carrier nonlinearities taken here are comparable
to what they might be in GaAs-based gain media: 𝛽 ∼ −10−10 and 𝜎 ∼ −3× 10−27

m3 (with the proviso of being taken as instantaneous and being evaluated at a single
wavelength).
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Appendix B

Appendix for multimode amplitude

squeezing through cascaded nonlinear

optical processes

B.1 Heisenberg-Langevin equations and noise anal-

ysis

The equations of motion provided in the main text are obtained by finding the

Heisenberg-Langevin equations for the Hamiltonian

𝐻/ℏ =
∑︁
𝑛

𝜔𝑛𝑎
†
𝑛𝑎𝑛 + 𝑖𝜅

∑︁
𝑛

(︁
𝑎†𝑇𝑎

†
𝑛𝑎𝑛−1 − h.c.

)︁
, (B.1)

and supplementing decay terms and their corresponding Langevin forces. The result,

including intrinsic losses and working in the interaction picture, is

𝑎̇𝑇 = 𝜅
∑︁
𝑛

𝑎†𝑛𝑎𝑛−1 − (𝛾𝑇 + 𝜇𝑇 )𝑎𝑇 +
√︀
2𝛾𝑇 𝑠𝑇 +

√︀
2𝜇𝑇𝑓𝑇

𝑎̇𝑛 = 𝜅
(︁
𝑎†𝑇𝑎𝑛−1 − 𝑎𝑛+1𝑎𝑇

)︁
− (𝛾𝑛 + 𝜇𝑛)𝑎𝑛 +

√︀
2𝛾𝑛𝑠𝑛 +

√︀
2𝜇𝑛𝑓𝑛,

(B.2)
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where ⟨𝑠0,1⟩ ≠ 0 since these two modes are pumped (initial pump and seed, respec-

tively), 𝑓𝑛, 𝑠𝑛̸=0,1 are zero mean Langevin forces that satisfy the conventional corre-

lator ⟨𝑓𝑛(𝑡)𝑓 †
𝑛(𝑡

′)⟩ = 𝛿(𝑡 − 𝑡′) and likewise for 𝑠𝑛 (𝑠𝑛, 𝑓𝑛 do not couple to each other

since they are distinct decay channels). These correlators can be derived rigorously by

considering the complete Hamiltonian with coupling to the bath of all vacuum modes

(or, more precisely, thermal states, but we assume the thermal occupation 𝑛th ≪ 1,

which is true under most experimental conditions). For example, the Langevin forces

𝑠𝑛 give rise to amplitude noise due to outcoupling to far-field vacuum modes. The

Langevin force associated with this process for the quadrature 𝑝𝑛 = 𝑎𝑛 + 𝑎†𝑛 in Eq.

3.2 is given by

𝐹𝑛 =
√︀

2𝛾𝑛(𝛿𝑠𝑛 + 𝛿𝑠†𝑛) (B.3)

In computing the amplitude noise ⟨𝛿𝑝†𝑛𝛿𝑝𝑛⟩, the Langevin force correlator is then

⟨𝐹 †
𝑛𝐹𝑛⟩/2𝛾𝑛 = ⟨𝛿𝑠2𝑛 + 𝛿𝑠†2𝑛 + 2𝛿𝑠†𝑛𝛿𝑠𝑛 + 1⟩ (B.4)

= −⟨𝑠𝑛⟩2 + ⟨𝑠2𝑛⟩ − ⟨𝑠†𝑛⟩2 + ⟨𝑠†2𝑛 ⟩+ 2[⟨𝑠†𝑛𝑠𝑛⟩ − ⟨𝑠†𝑛⟩⟨𝑠𝑛⟩] + 1 (B.5)

where 𝑠𝑛 is an annihilation operator for the external mode of frequency 𝜔𝑛 satisfying

the commutator [𝑠𝑛, 𝑠
†
𝑛] = 1. If the external mode is either vacuum or a coherent

state, the above expression reduces to 1.

The steady state solutions to the Heisenberg-Langevin equations can be found

by setting 𝑎̇𝑛 = 𝑎̇𝑇 = 0 and using the mean values for the incoupled fields (zero

except for modes that are externally pumped). This results in a system of nonlinear

coupled equations that can be solved numerically given the initial modal amplitude

distribution. To compute noise spectra, we perform a linearization about the mean

field such that 𝑀(𝜔)𝑃 (𝜔) = 𝐹 (𝜔), where 𝑃 (𝜔) = [𝛿𝑝0(𝜔)𝛿𝑝1(𝜔) · · · 𝛿𝑝𝑁(𝜔)𝛿𝑝𝑇 (𝜔)]𝑇

and 𝐹 (𝜔) = [𝐹0(𝜔)𝐹1(𝜔) · · ·𝐹𝑁(𝜔)𝐹𝑇 (𝜔)]
𝑇 with the fluctuation matrix (shown here
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for a system with modes 𝑎𝑇 and 𝑎0,1,...,𝑁) given by

𝑀(𝜔) =

⎡⎢⎢⎢⎢⎢⎢⎣
−𝑖𝜔 + 𝛾0 𝜅𝑎𝑇 . . . . . . . . . 𝜅𝑎1

−𝜅𝑎𝑇 −𝑖𝜔 + 𝛾1 𝜅𝑎𝑇 . . . . . . 𝜅(𝑎2 − 𝑎0)
...

...
...

...
...

...

−𝜅𝑎1 −𝜅(𝑎0 + 𝑎2) . . . −𝜅(𝑎𝑁−2 + 𝑎𝑁) −𝜅𝑎𝑁−1 −𝑖𝜔 + 𝛾𝑇

⎤⎥⎥⎥⎥⎥⎥⎦ .

A useful metric to quantify the quantum nature of squeezed light is the photon

number (intensity) noise ⟨𝛿𝑛†𝛿𝑛⟩, where 𝑛 = 𝑎†𝑎 denotes the photon number operator.

We can show using the mean field approximation 𝑎 = 𝛼+𝛿𝑎 (with 𝛼 a complex number

and 𝛿𝑎 an operator) that

⟨𝛿𝑛†𝛿𝑛⟩ =
⟨︀(︀
𝛼*𝛿𝑎+ 𝛼𝛿𝑎†

)︀ (︀
𝛼𝛿𝑎† + 𝛼*𝛿𝑎

)︀⟩︀
= |𝛼|2

⟨︀
𝛿𝑎𝛿𝑎† + 𝛿𝑎†𝛿𝑎

⟩︀
= |𝛼|2⟨𝛿𝑝†𝛿𝑝⟩,

(B.6)

where ⟨𝑛⟩ = |𝛼|2 and 𝑝 = 𝑎 + 𝑎†. Thus, the intensity noise spectrum relative to the

shot noise limit 𝐹 (𝜔) = ∆𝑛2(𝜔)/⟨𝑛⟩ is directly given by ⟨𝛿𝑝†(𝜔)𝛿𝑝(𝜔)⟩. In the case

of intracavity statistics, we can integrate over frequency to get the total Fano factor,

defined as 𝐹 = ∆𝑛2/⟨𝑛⟩:

𝐹 =

∫︁
𝑑𝜔

2𝜋
⟨𝛿𝑝†(𝜔)𝛿𝑝(𝜔)⟩. (B.7)

Note that 𝐹 < 1 indicates sub-Poissonian statistics and quantum mechanically-

squeezed light. For the cases presented in the main text, we have found no significant

squeezing in 𝐹 due to the presence of relaxation oscillations from the strong nonlinear

processes inside the cavity. However, in the case of a single TWM process, we have

verified the established 3 dB squeezing limit in 𝐹 for the signal and idler modes [9].
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B.1.1 Quantum noise of coherently driven state with dissipa-

tion

The Heisenberg-Langevin equation for a single mode evolving under driven-dissipative

dynamics (alone) reads

𝑎̇𝑛 = −𝛾𝑛𝑎𝑛 +
√︀

2𝛾𝑛𝑠𝑛 (B.8)

On linearizing and Fourier transforming about the steady state, we obtain

𝛿𝑎𝑛(𝜔) =

√
2𝛾𝑛𝛿𝑠𝑛(𝜔)

−𝑖𝜔 + 𝛾𝑛
, (B.9)

which for a coherent pump gives the intracavity amplitude noise spectrum

⟨𝛿𝑝†𝑛,in(𝜔)𝛿𝑝𝑛,in(𝜔)⟩ =
2𝛾𝑛

𝜔2 + 𝛾2
𝑛

. (B.10)

It is straightforward to show that
∫︀∞
0

𝑑𝜔
𝜋
⟨𝛿𝑝†𝑛,in(𝜔)𝛿𝑝𝑛,in(𝜔)⟩ = 1, as expected for a

coherent state. The output fluctuations can be computed similarly for the output

propagating field 𝑎𝑛,out = −𝑠𝑛 +
√
2𝛾𝑛𝑎𝑛,in which yields

⟨𝛿𝑝†𝑛,out(𝜔)𝛿𝑝𝑛,out(𝜔)⟩ = 1 + 2𝛾𝑛⟨𝛿𝑝†𝑛,in(𝜔)𝛿𝑝𝑛,in(𝜔)⟩ − 2Re
(︁
𝛿𝑠𝑛(𝜔)𝛿𝑎

†
𝑛,in(𝜔)

)︁
= 1 +

4𝛾2
𝑛

𝜔2 + 𝛾2
𝑛

− 4𝛾2
𝑛

𝜔2 + 𝛾2
𝑛

= 1.

(B.11)

B.2 Estimation of nonlinear strength

In this section, we provide a rough estimation of typical nonlinear strengths 𝜅 in a

free space multimode cavity. As derived from first-order perturbation theory [72],

𝜅 = 2𝑑eff

√︂
ℏ𝜔𝑇𝜔1𝜔2

𝜖0

∫︀
NL

𝑑𝑉 𝐸1𝐸2𝐸𝑇√︁∫︀
cav

𝑑𝑉 𝜖1𝑟|𝐸1|2
√︁∫︀

cav
𝑑𝑉 𝜖2𝑟|𝐸2|2

√︁∫︀
cav

𝑑𝑉 𝜖𝑇𝑟|𝐸𝑇 |2
(B.12)
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For concreteness, we consider GaAs, for which 𝑑eff = 274 pm/V [?]. Then, with

frequencies 𝜔1 = 2𝜋 · 282 THz, 𝜔2 = 2𝜋 · 281 THz, and 𝜔𝑇 = 2𝜋 · 1 THz, we have

refractive indices 𝑛1,2 =
√
𝜖1𝑟,2𝑟 ≈ 3.5 and 𝑛𝑇 =

√
𝜖𝑇𝑟 ≈ 3.0. We assume the electric

field profiles 𝐸1,2,𝑇 are uniform over a cross-section 𝐴 ≈ 4 × 10−6 m2 and that the

crystal length is 𝐿NL ≈ 3 mm while the cavity length is 𝐿cav ≈ 50 cm. Then, we have

𝜅 =
2𝑑eff

𝑛1𝑛2𝑛𝑇

√︂
ℏ𝜔𝑇𝜔1𝜔2

𝜖0

𝐴𝐿NL

(𝐴𝐿cav)3/2

≈ 3.32 s−1,

(B.13)

closely matching the order of magnitude for values of 𝜅 considered in the main text.

B.3 Frequency comb generation

By carefully engineering the 𝑄 factor for different frequency modes in the multimode

cavity, it is possible to create one-sided frequency combs (consisting exclusively of

redshifted or blueshifted modes relative to the pump mode at 𝜔0) or two-sided fre-

quency modes, as shown in Fig. B-1. The modes that comprise the frequency space

cavity where nonlinear energy flow is strong have high 𝑄 factor. For example, in the

redshifted comb, blueshifted modes are very leaky (low 𝑄 factor), are not part of the

frequency space cavity, and do not get populated through nonlinear coupling. Notice

that including blueshifted modes reduces the efficiency of generating the terahertz

idler mode since terahertz photons are destroyed in upconversion processes that gen-

erate the blueshifted modes. Therefore, the first configuration in Fig. B-1 (which

we consider in the main text) is optimal for maximizing generation of terahertz idler

photons and thus the nonlinear rate in the cavity.
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Figure B-1: One-sided and two-sided frequency comb generation. 𝑄 factor
shaping (through the use of frequency-dependent couplers) permits the creation of
frequency combs containing only redshifted or blueshifted (one-sided) or both red-
shifted and blueshifted (two-sided) modes relative to the pump.

B.4 Multimode correlation matrix

In this section, we plot and analyze the correlation matrix 𝐶 of the multimode system,

where the entries of 𝐶 are computed according to

𝐶𝑖𝑗 =
⟨𝛿𝑝†𝑖𝛿𝑝𝑗⟩√︁

⟨𝛿𝑝†𝑖𝛿𝑝𝑖⟩⟨𝛿𝑝
†
𝑗𝛿𝑝𝑗⟩

. (B.14)

Here, all noises (intracavity and output) are computed at zero Fourier frequency, so

the following discussion only applies to low-frequency noise (up to around 100 MHz).

In the presence of weak nonlinear coupling (Fig. B-2a,b) between modes, the cor-

relation coefficient between the amplitude noise of different modes is dominated by

simple driven-dissipative dynamics. The correlation coefficients are most sensitive for

the high 𝑄 factor cascading orders. Almost all correlations are positive, indicating

that, as expected, (outcoupling) loss of photons from one of these modes is correlated

with loss in the signal and idler of the corresponding TWM/downconversion process

(and vice versa for the upconversion). This is reflected in both the intracavity and

output noise correlation coefficients. With strong nonlinearity, the correlation ma-

trix is now significantly altered by the nonlinear dynamics. The interference from

the counter-propagating Bloch waves is reflected in the checkerboard pattern of the

intracavity correlation matrix, which results in alternating positive and negative cor-

100



0

5

M
od

e 
in

de
x

Intracavity amplitude
noise corr. matrix

05
Mode index

0

5

M
od

e 
in

de
x

05
Mode index

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00κ = 0.047 κ = 0.047

κ = 0.47 κ = 0.47

THz
THz

THz
THz

Output amplitude
noise corr. matrix

Figure B-2: Correlation matrix showing interplay between nonlinear cou-
pling and dissipation. (a), (b) In the presence of weak nonlinearity, the correla-
tions are driven by the dissipative dynamics. In particular, the correlations are most
sensitive amongst the high 𝑄 factor cascading orders and the THz bath. All corre-
lations are positive since loss in one of these modes reduces the conversion efficiency
of another. (c), (d) In the presence of stronger nonlinearity, the correlation matrix
heatmap changes noticeably. Correlations are now dominated by the nonlinear dy-
namics, where the effect of Bloch mode interference can be seen in the checkerboard
pattern in the cascading orders. The output noise correlation matrix notably dis-
plays strong positive correlation between the THz bath mode and certain IR modes
(here, the two frequency mirror modes 𝑎0,𝑁 , likely because these two modes have the
strongest outcoupling). In this simulation, 𝑁 = 7 cascading orders are considered
and the quality factors are 𝑄𝑟 = 108, 𝑄𝑏 = 102, 𝑄0 = 𝑄𝑁 = 105, 𝑄𝑇 = 104.

relation coefficients for modes within the frequency space cavity. Furthermore, the

output correlation matrix shows evidence for strong, long-range correlations between

the THz bath mode 𝑎𝑇 and the leaky IR frequency mirror modes 𝑎0,𝑁 .
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