
Model Acceleration for Efficient Deep Learning
Computing

by

Han Cai
B.Eng, Shanghai Jiao Tong University (2016)
M.Eng, Shanghai Jiao Tong University (2019)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2024

© 2024 Han Cai. This work is licensed under a CC BY-NC-ND 4.0 license.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license
to exercise any and all rights under copyright, including to reproduce, preserve, distribute
and publicly display copies of the thesis, or release the thesis under an open-access license.

Authored by: Han Cai
Department of Electrical Engineering and Computer Science
May 17, 2024

Certified by: Song Han
Associate Professor in Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by: Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

https://creativecommons.org/licenses/by-nc-nd/4.0/

2

Model Acceleration for Efficient Deep Learning Computing
by

Han Cai

Submitted to the Department of Electrical Engineering and Computer Science
on May 17, 2024 in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

ABSTRACT

Large foundation models play a central role in achieving recent fundamental breakthroughs
in artificial intelligence. By simultaneously scaling up the dataset and model size to an
unprecedented level, these foundation models demonstrate remarkable performances in
many areas such as protein structure prediction, image/video synthesis, code generation,
ChatBot, etc. However, their computation and memory costs grow dramatically. It makes
deploying these foundation models on real-world applications difficult, especially for resource-
constrained edge devices. In addition, their prohibitive training cost also significantly
hinders the development of new foundation models and raises concerns about the enormous
energy consumption and CO2 emission. To address these concerns, building effective model
acceleration techniques is critical to closing the gap between supply and demand for computing.

This thesis will cover three important aspects of model acceleration. First, we will discuss
efficient representation learning, including EfficientViT (a new vision transformer architecture)
for high-resolution vision and condition-aware neural networks (a new control module) for
conditional image generation. Second, we will present hardware-aware acceleration techniques
to create specialized neural networks for different hardware platforms and efficiency constraints.
Third, we will introduce TinyTL, a memory-efficient transfer learning technique to enable
on-device model customization. Through our design, we can significantly boost deep neural
networks’ efficiency on hardware without losing accuracy, making them more accessible and
reducing their serving cost. For example, our model delivers 48.9× higher throughput on
A100 GPU while achieving slightly better zero-shot instance segmentation performance than
the state-of-the-art model. For conditional image generation, our approach achieves 52×
computational cost reduction without performance degradation.

Thesis supervisor: Song Han
Title: Associate Professor in Electrical Engineering and Computer Science

3

4

Acknowledgments

First, I want to thank my PhD advisor, Professor Song Han. I have been very fortunate to
receive his guidance for the five years of the PhD. He always provides the best support for
us and helps us pursue our research interests. His enthusiasm for impactful research greatly
motivated me. His deep connection with the industry made his advice insightful beyond the
academic context. I also thank my friends and lab mates at MIT: Hanrui Wang, Zhijian Liu,
Yujun Lin, Ji Lin, Haotian Tang, Ligeng Zhu, Zhekai Zhang, Guangxuan Xiao, Muyang Li,
Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Nicole Stiles, and Tianhao Huang. It was a
great pleasure to have you all during my PhD journey.

I also want to thank my advisors during my master’s and undergraduate years, Professor
Yong Yu and Professor Weinan Zhang. I started to understand what is research and how to
do research work, under their supervision. It is my fortune to have them to guide me into
the world of research.

I thank my PhD thesis committee members, Professor Vincent Sitzmann and Professor
Vijay Janapa Reddi, for their time, help, and advice during my thesis preparation and defense.

I want to thank my mom and dad for their continued support, even though I haven’t
been home for four years due to various reasons.

Finally, I thank the Qualcomm Innovation Fellowship and Analog Devices Graduate
Fellowship for the funding support.

5

6

Contents

Abstract 3

Acknowledgments 5

List of Figures 9

List of Tables 13

1 Introduction 15
1.1 Thesis Outline . 15

2 Efficient Representation Learning 17
2.1 Efficient Vision Transformer for High-Resolution Vision 17

2.1.1 Introduction . 17
2.1.2 Related Work . 18
2.1.3 Method . 20
2.1.4 Experiments . 23
2.1.5 Conclusion . 29

2.2 Efficient Control Module for Conditional Image Generation 30
2.2.1 Introduction . 30
2.2.2 Related Work . 31
2.2.3 Method . 33
2.2.4 Experiments . 36
2.2.5 Conclusion . 40

3 Hardware-Aware Acceleration 43
3.1 Direct Neural Architecture Search on Target Task and Hardware 43

3.1.1 Introduction . 43
3.1.2 Related Work . 44
3.1.3 Method . 45
3.1.4 Experiments . 49
3.1.5 Conclusion . 53

3.2 Once-for-All Network for Diverse Deployment Scenarios 53
3.2.1 Introduction . 53
3.2.2 Related Work . 55
3.2.3 Method . 56

7

3.2.4 Training Once-for-All Network on ImageNet 61
3.2.5 Once-for-All Network Results for Different Hardware and Constraints 62
3.2.6 Conclusion . 66

4 Efficient Model Customization 67
4.1 Introduction . 67
4.2 Tiny Transfer Learning . 68

4.2.1 Understanding the Memory Footprint of Back-propagation 68
4.2.2 Lite Residual Learning . 70
4.2.3 Discussions . 71

4.3 Experiments . 71
4.3.1 Setups . 71
4.3.2 Main Results . 73
4.3.3 Ablation Studies and Discussions . 74

4.4 Conclusion . 76

5 Conclusion 79
5.1 Impact . 79

References 81

8

List of Figures

2.1 Latency/Throughput vs. Performance. All performance results are
obtained with the single model and single-scale inference. The GPU laten-
cy/throughput results are obtained on one edge GPU (Jetson AGX Orin) and
one cloud GPU (A100) using TensorRT and fp16. EfficientViT consistently
achieves a remarkable boost in speed on diverse hardware platforms while pro-
viding the same/higher performances on Cityscapes, ADE20K, and ImageNet
than prior segmentation/classification models. 18

2.2 EfficientViT’s Building Block (left) and Multi-Scale Linear Attention
(right). Left : EfficientViT’s building block consists of a multi-scale linear
attention module and an FFN with depthwise convolution (FFN+DWConv).
Multi-scale linear attention is responsible for capturing context information,
while FFN+DWConv captures local information. Right : After getting Q/K/V
tokens via the linear projection layer, we generate multi-scale tokens by aggre-
gating nearby tokens via lightweight small-kernel convolutions. ReLU linear
attention is applied to multi-scale tokens, and the outputs are concatenated
and fed to the final linear projection layer for feature fusing. 19

2.3 Softmax Attention vs. ReLU Linear Attention. Unlike softmax atten-
tion, ReLU linear attention cannot produce sharp attention distributions due
to a lack of the non-linear similarity function. Thus, its local information
extraction ability is weaker than the softmax attention. 20

2.4 Latency Comparison Between Softmax Attention and ReLU Linear
Attention. ReLU linear attention is 3.3-4.5× faster than softmax attention
with similar computation, thanks to removing hardware-unfriendly operations
(e.g., softmax). Latency is measured on the Qualcomm Snapdragon 855 CPU
with TensorFlow-Lite, batch size 1, and fp32. 21

2.5 Macro Architecture of EfficientViT. We adopt the standard backbone-
head/encoder-decoder design. We insert our EfficientViT modules in Stages 3
and 4 in the backbone. Following the common practice, we feed the features
from the last three stages (P2, P3, and P4) to the head. We use addition to
fuse these features for simplicity and efficiency. We adopt a simple head design
that consists of several MBConv blocks and output layers. 22

2.6 Qualitative results on Cityscapes. 28

9

2.7 Throughput vs. COCO Zero-Shot Instance Segmentation mAP.
EfficientViT-SAM is the first accelerated SAM model that matches/outper-
forms SAM-ViT-H’s [4] zero-shot performance, delivering the SOTA performance-
efficiency trade-off. 29

2.8 Comparing CAN Models and Prior Image Generative Models on Im-
ageNet 512×512. With the new conditional control method, we significantly
improve the performance of controlled image generative models. Combining
CAN and EfficientViT [8], our CaT model provides 52× MACs reduction per
sampling step than DiT-XL/2 [83] without performance loss. 30

2.9 Illustration of Condition-Aware Neural Network. Left: A regular neural
network with static convolution/linear layers. Right: A condition-aware neural
network and its equivalent form. 31

2.10 Overview of Applying CAN to Diffusion Transformer. The patch
embedding layer, the output projection layers in self-attention, and the depth-
wise convolution (DW Conv) layers are condition-aware. The other layers are
static. All output projection layers share the same conditional weight while
still having their own static weights. 32

2.11 CAN is More Effective than Adaptive Kernel Selection. 34
2.12 Practical Implementation of CAN. Left: The condition-aware layers have

different weights for different samples. A naive implementation requires running
the kernel call independently for each sample, which incurs a large overhead for
training and batch inference. Right: An efficient implementation for CAN. We
fuse all kernel calls into a grouped convolution. We insert a batch-to-channel
transformation before the kernel call and add a channel-to-batch conversion
after the kernel call to preserve the functionality. 35

2.13 Macro Architecture of CaT. Benefiting from EfficientViT’s linear computa-
tional complexity [8], we can keep the high-resolution stages without efficiency
concerns. 35

2.14 CAN Results on Different UViT and DiT Variants. CAN consistently
delivers lower FID and higher CLIP score for UViT and DiT variants. . . . 36

2.15 Training Curve. CAN’s improvements are not due to faster convergence.
We observe consistent FID improvements when trained longer. 37

2.16 Samples of Generated Images by CAN Models. 41

3.1 ProxylessNAS directly optimizes neural network architectures on target task
and hardware. Benefiting from the directness and specialization, ProxylessNAS
can achieve remarkably better results than previous proxy-based approaches.
On ImageNet, with only 200 GPU hours (200 × fewer than MnasNet [114]),
our searched CNN model for mobile achieves the same level of top-1 accuracy
as MobileNetV2 1.4 while being 1.8× faster. 44

3.2 Learning both weight parameters and binarized architecture parameters. . . 45
3.3 Making latency differentiable by introducing latency regularization loss. . . . 48
3.4 ProxylessNAS consistently outperforms MobileNetV2 under various latency

settings. 50
3.5 Our mobile latency model is close to y = x. The latency RMSE is 0.75ms. . 50

10

3.6 Efficient models optimized for different hardware. “MBConv3” and “MBConv6”
denote mobile inverted bottleneck convolution layer with an expansion ratio
of 3 and 6 respectively. Insights: GPU prefers shallow and wide model with
early pooling; CPU prefers deep and narrow model with late pooling. Pooling
layers prefer large and wide kernel. Early layers prefer small kernel. Late
layers prefer large kernel. 51

3.7 Left: a single once-for-all networkis trained to support versatile architectural
configurations including depth, width, kernel size, and resolution. Given a
deployment scenario, a specialized sub-network is directly selected from the
once-for-all networkwithout training. Middle: this approach reduces the cost
of specialized deep learning deployment from O(N) to O(1). Right: once-for-all
network followed by model selection can derive many accuracy-latency trade-
offs by training only once, compared to conventional methods that require
repeated training. 54

3.8 Comparison between OFA and state-of-the-art CNN models on ImageNet.
OFA provides 80.0% ImageNet top1 accuracy under the mobile setting (<
600M MACs). 55

3.9 Illustration of the progressive shrinking process to support different depth D,
width W , kernel size K and resolution R. It leads to a large space comprising
diverse sub-networks (> 1019). 57

3.10 Progressive shrinking can be viewed as a generalized network pruning technique
with much higher flexibility. Compared to network pruning, it shrinks more
dimensions (not only width) and provides a much more powerful once-for-all
network that can fit different deployment scenarios rather than a single pruned
network. 58

3.11 Left: Kernel transformation matrix for elastic kernel size. Right: Progressive
shrinking for elastic depth. Instead of skipping each layer independently, we
keep the first D layers and skip the last (4 −D) layers. The weights of the
early layers are shared. 59

3.12 Progressive shrinking for elastic width. In this example, we progressively
support 4, 3, and 2 channel settings. We perform channel sorting and pick the
most important channels (with large L1 norm) to initialize the smaller channel
settings. The important channels’ weights are shared. 59

3.13 ImageNet top1 accuracy (%) performances of sub-networks under resolution
224× 224. “(D = d, W = w, K = k)” denotes a sub-network with d layers in
each unit, and each layer has an width expansion ratio w and kernel size k. . 60

3.14 OFA saves orders of magnitude design cost compared to NAS methods. . . . 61
3.15 OFA achieves 80.0% top1 accuracy with 595M MACs and 80.1% top1 accuracy

with 143ms Pixel1 latency, setting a new SOTA ImageNet top1 accuracy on
the mobile setting. 62

3.16 OFA consistently outperforms MobileNetV3 on mobile platforms. 63
3.17 Specialized OFA models consistently achieve significantly higher ImageNet

accuracy with similar latency than non-specialized neural networks on CPU,
GPU, mGPU, and FPGA. More remarkably, specializing for a new hardware
platform does not add training cost using OFA. 64

11

3.18 OFA models improve the arithmetic intensity (OPS/Byte) and utilization
(GOPS/s) compared with the MobileNetV2 and MnasNet (measured results
on Xilinx ZU9EG and ZU3EG FPGA). 65

3.19 Quantative study of OFA’s roofline model on Xilinx ZU9EG and ZU3EG
FPGAs (log scale). OFA model increased the arithmetic intensity by 33%/43%
and GOPS/s by 72%/92% on these two FPGAs compared with MnasNet. . 65

3.20 OFA can design specialized models for different hardware and different latency
constraint. “MB4 3x3” means “mobile block with expansion ratio 4, kernel
size 3x3”. FPGA and GPU models are wider than CPU model due to larger
parallelism. Different hardware has different cost model, leading to different
optimal CNN architectures. OFA provides a unified and efficient design
methodology. 66

4.1 Left : The memory footprint required by training is much larger than inference.
Right : Memory cost comparison between ResNet-50 and MobileNetV2-1.4
under batch size 16. Recent advances in efficient model design only reduce the
size of parameters, but the activation size, which is the main bottleneck for
training, does not improve much. 68

4.2 TinyTL overview (“C” denotes the width and “R” denote the resolution).
Conventional transfer learning relies on fine-tuning the weights to adapt the
model (Fig.a), which requires a large amount of activation memory (in blue)
for back-propagation. TinyTL reduces the memory usage by fixing the weights
(Fig.b) while only fine-tuning the bias. (Fig.c) exploit lite residual learning
to compensate for the capacity loss, using group convolution and avoiding
inverted bottleneck to achieve high arithmetic intensity and small memory
footprint. The skip connection remains unchanged (omitted for simplicity). 69

4.3 Top1 accuracy results of different transfer learning methods under varied
resolutions using the same pre-trained neural network (ProxylessNAS-Mobile).
With the same level of accuracy, TinyTL achieves 3.9-6.5× memory saving
compared to fine-tuning the full network. 74

4.4 Compared with the dynamic activation pruning [175], TinyTL saves the
memory more effectively. 76

4.5 Results of TinyTL when trained with batch size 1. It further reduces the
training memory footprint to around 16MB (typical L3 cache size), making it
possible to train on the cache (SRAM) instead of DRAM. 76

12

List of Tables

2.1 Ablation Study. The mIoU and MACs are measured on Cityscapes with
1024x2048 input resolution. We rescale the width of the models so that they
have the same MACs. Multi-scale learning and the global receptive field are
essential for obtaining good semantic segmentation performance. 24

2.2 Backbone Performance on ImageNet Classification. ‘r224’ means the
input resolution is 224x224. ‘bs1’ represents that the latency is measured with
batch size 1. 25

2.3 Comparison with SOTA Semantic Segmentation Models on Cityscapes.
The input resolution is 1024x2048 for all models. Models with similar mIoU
are grouped for efficiency comparison. 26

2.4 Comparison with SOTA Semantic Segmentation Models on ADE20K.
The shorter side of the image is resized to 512, following the common practice. 27

2.5 Comparison with SOTA super-resolution models. 27
2.6 Zero-Shot Instance Segmentation Results, Prompted with ViTDet

Boxes. Throughput is profiled on A100 GPU with TensorRT and fp16,
including the image encoder and SAM head. 28

2.7 Zero-Shot Point-Prompted Segmentation Results. 29
2.8 Ablation Study on Making Which Modules Condition-Aware. . . . 34
2.9 Ablation Study on the Effect of Each Condition for CAN. 37
2.10 Comparison with Prior Conditional Control Methods. CAN can work

alone without adding other conditional control methods. 38
2.11 Class-Conditional Image Generation Results on ImageNet. 39
2.12 NVIDIA Jetson AGX Orin Latency vs. FID. Latency is profiled with

TensorRT and fp16. 39
2.13 Text-to-Image Generation Results on COCO 256×256. 40

3.1 ProxylessNAS achieves state-of-the art accuracy (%) on ImageNet (under
mobile latency constraint ≤ 80ms) with 200× less search cost in GPU hours.
“LL” indicates latency regularization loss. 49

3.2 ImageNet Accuracy (%) and GPU latency (Tesla V100) on ImageNet. 52
3.3 Hardware prefers specialized models. Models optimized for GPU does not

run fast on CPU and mobile phone, vice versa. ProxylessNAS provides an
efficient solution to search a specialized neural network architecture for a target
hardware architecture, while cutting down the search cost by 200× compared
with state-of-the-arts [43], [114]. 52

13

3.4 Comparison with SOTA hardware-aware NAS methods on Pixel1 phone. OFA
decouples model training from neural architecture search. The search cost and
training cost both stay constant as the number of deployment scenarios grows.
“#25” denotes the specialized sub-networks are fine-tuned for 25 epochs after
grabbing weights from the once-for-all network. “CO2e” denotes CO2 emission
which is calculated based on [131]. AWS cost is calculated based on the price
of on-demand P3.16xlarge instances. 61

4.1 Detailed forward and backward processes of non-linear activation layers. |ai|
denotes the number of elements of ai. “◦” denotes the element-wise prod-
uct. (1ai≥0)j = 0 if (ai)j < 0 and (1ai≥0)j = 1 otherwise. ReLU6(ai) =
min(6,max(0, ai)). 70

4.2 Comparison between TinyTL and conventional transfer learning methods
(training memory footprint is calculated assuming the batch size is 8 and
the classifier head for Flowers is used). For object classification datasets, we
report the top1 accuracy (%) while for CelebA we report the average top1
accuracy (%) over 40 facial attribute classification tasks. ‘B’ represents Bias
while ‘L’ represents LiteResidual. FT-Last represents only the last layer is
fine-tuned. FT-Norm+Last represents normalization layers and the last layer
are fine-tuned. FT-Full represents the full network is fine-tuned. The backbone
neural network is ProxylessNAS-Mobile, and the resolution is 224 except for
‘TinyTL-L+B@320’ whose resolution is 320. TinyTL consistently outperforms
FT-Last and FT-Norm+Last by a large margin with a similar or lower training
memory footprint. By increasing the resolution to 320, TinyTL can reach the
same level of accuracy as FT-Full while being 6× memory efficient. 72

4.3 Comparison with previous transfer learning results under different backbone
neural networks. ‘I-V3’ is Inception-V3; ‘N-A’ is NASNet-A Mobile; ‘M2-1.4’
is MobileNetV2-1.4; ‘R-50’ is ResNet-50; ‘PM’ is ProxylessNAS-Mobile; ‘FA’
represents feature extractor adaptation. † indicates the last two layers are up-
dated besides biases and lite residual modules in TinyTL. TinyTL+FA reduces
the training memory by 7.5-12.9× without sacrificing accuracy compared to
fine-tuning the widely used Inception-V3. 75

4.4 Results of TinyTL under different initialization strategies for lite residual
modules. TinyTL-L+B adds lite residual modules starting from the pre-
training phase and uses the pre-trained weights to initialize the lite residual
modules during transfer learning. In contrast, TinyTL-RandomL+B uses
random weights to initialize the lite residual modules. Using random weights
for initialization hurts the performances of TinyTL. But on datasets whose
distribution is far from the pre-training dataset, TinyTL-RandomL+B still
provides competitive results. 75

14

Chapter 1

Introduction

Large foundation models have revolutionized many AI areas, including natural language
processing [1], [2], computer vision [3]–[5], AI for science [6], etc. By scaling up the model size
and training these models on web-scale datasets, these foundation models demonstrate as-
tounding few-shot/zero-shot learning abilities in solving complicated tasks. These remarkable
performances have driven a surge of interest in using these foundation models in real-world
applications, bringing AI to our work and daily lives.

However, these foundation models have prohibitive training and inference costs due to
the increased model size and computation cost. For example, a GPT-3 [7] model has 175B
parameters. Storing it alone already exceeds the capacity of the current most powerful
GPUs (e.g., NVIDIA H100 GPU). It poses big challenges for serving these models on cloud
platforms or deploying them on edge devices. In addition, prohibitive training cost also leads
to enormous energy consumption and CO2 emission, raising sustainability concerns about
these AI foundation models.

In this dissertation, we aim to investigate model acceleration techniques to improve the
efficiency of deep neural networks to tackle this challenge. Our approach accelerates deep
neural networks from three aspects. First, we will discuss efficient representation learning,
targeting to build efficient building blocks / neural network architectures to extract useful
information from the raw data. Second, we will discuss hardware-aware acceleration, aiming
to get specialized neural networks for different hardware platforms and efficiency constraints to
get the best trade-off between accuracy and hardware efficiency. Third, we will discuss efficient
model customization that enables memory-efficient on-device learning to offer customized AI
services without sacrificing privacy. We summarize the main content of this thesis as follows:

1.1 Thesis Outline

• Chapter 2 describes techniques for efficient representation learning. The content is based
on [8] and [9]. First, the transformer architecture is the core component of current large
foundation models. However, the transformer architecture is bad at handling long sequences
since its computational cost grows quadratically as the input sequence length increases. We
propose EfficientViT, a new vision transformer architecture for high-resolution vision. It
achieves global receptive field and strong capacity with only hardware-efficient operations.

15

EfficientViT delivers remarkable performance gains over previous models with speedup on
diverse hardware platforms. Second, adding control is a critical step to convert image/video
generative models to productive tools for humans. We propose condition-aware neural
network (CAN), a new method for adding control to image generative models. In parallel
to prior conditional control methods, CAN controls the image generation process by
dynamically manipulating the weight of the neural network. CAN consistently delivers
significant improvements for diffusion transformer models.

• Chapter 3 presents hardware-aware AutoML techniques to efficiently get specialized deep
neural networks for different hardware platforms and efficiency constraints. The content is
based on [10] and [11]. Different hardware platforms have different properties (e.g., degree
of parallelism, cache size, bandwidth, etc.). Given different target hardware platforms
and different efficiency constraints, we need specialized neural networks to achieve the
best trade-off between performance and efficiency. However, manually customizing neural
networks for each case is unscalable. Thus, we propose hardware-aware AutoML techniques
to tackle this challenge. Our approach delivers significant speedup on diverse hardware
platforms, including mobile phones, CPU, GPU, FPGA, etc. In addition, our approach
has won first place in multiple low-power computer vision challenges.

• Chapter 4 presents TinyTL [12] for memory-efficient on-device learning. TinyTL freezes
the weights while only learns the memory-efficient bias modules, thus no need to store
the intermediate activations. To maintain the adaptation capacity, we introduce a new
memory-efficient bias module, the lite residual module, to refine the feature extractor
by learning small residual feature maps adding only 3.8% memory overhead. Extensive
experiments show that TinyTL significantly saves the memory with little accuracy loss
compared to fine-tuning the full network.

16

Chapter 2

Efficient Representation Learning

2.1 Efficient Vision Transformer for High-Resolution Vi-
sion

2.1.1 Introduction

High-resolution dense prediction is a fundamental task in computer vision and has broad
applications in the real world, including autonomous driving, medical image processing,
computational photography, etc. Therefore, deploying state-of-the-art (SOTA) high-resolution
dense prediction models on hardware devices can benefit many use cases.

However, there is a large gap between the computational cost required by SOTA high-
resolution dense prediction models and the limited resources of hardware devices. It makes
using these models in real-world applications impractical. In particular, high-resolution dense
prediction models require high-resolution images and strong context information extraction
ability to work well [13]–[18]. Therefore, directly porting efficient model architectures from
image classification is unsuitable for high-resolution dense prediction.

This work introduces EfficientViT, a new family of vision transformer models for efficient
high-resolution dense prediction. The core of EfficientViT is a new multi-scale linear attention
module that enables the global receptive field and multi-scale learning with hardware-efficient
operations. Our module is motivated by prior SOTA high-resolution dense prediction models.
They demonstrate that the multi-scale learning [15], [16] and global receptive field [19] are
critical in improving models’ performances. However, they do not consider hardware efficiency
when designing their models, which is essential for real-world applications. For example,
SegFormer [19] introduces softmax attention [20] into the backbone to have a global receptive
field. However, its computational complexity is quadratic to the input resolution, making it
unable to handle high-resolution images efficiently. SegNeXt [21] proposes a multi-branch
module with large-kernel convolutions (kernel size up to 21) to enable a large receptive field
and multi-scale learning. However, large-kernel convolution requires exceptional support
on hardware to achieve good efficiency [22], [23], which is usually unavailable on hardware
devices.

Hence, the design principle of our module is to enable these two critical features while
avoiding hardware-inefficient operations. Specifically, we propose substituting the inefficient

17

Table 2

EfficientViT EfficientNetV2 EfficientNetV2 ConvNeXt ConvNeXt Swin Swin CoAtNet CoAtNet FasterViT FasterViT MobileViTV2 MobileViTV2

Untitled 1 6207 84.5 5548 82.1 3303 82.1 5049 81.3 3011 81.6 5582 84.2 2728.0 81.2

Untitled 2 4998 85.1 2869 83.9 2081 83.1 3107 83 1512 83.3 3231 84.9

Untitled 3 3969 85.4 1160 85.1 1579 83.8 2236 83.5 1174 84.1 1382 85.4

Untitled 4 3102 85.63 85.7 1032 84.3 642 84.5 746 85.6

2099 85.9

1784 85.978

Im
ag

eN
et

 T
op

1
Ac

c

81

83

85

87

0 1,300 2,600 3,900 5,200 6,500

EfficientViT-L EfficientNetV2 ConvNeXt Swin
CoAtNet FasterViT MobileViTV2

A100 GPU Throughput (image/s)

4.2x
speedup

Cityscapes

EfficientViT Orin(ms) A100(ms) SegNeXt Orin(ms) A100(ms) SegFormer Orin(ms) A100(ms)

Untitled 1 82.716 45.9 79.8 93 10.5 76.2 107 14.4

Untitled 2 83.228 60 81.3 127 14.2 78.5 146 20.4

Untitled 3 82.6 228 24.2 81.0 296 37.5

Untitled 4 83.2 374 81.7 407 54.3

82.3 543 73.8

82.4 638 82

Ci
ty

sc
ap

es
 m

Io
U

76

78

80

82

84

0 325 650

EfficientViT-L SegNeXt SegFormer

Jetson AGX Orin Latency (ms)

ADE20k

EfficientViT Orin(ms) A100(ms) SegNeXt Orin(ms) A100(ms) SegFormer Orin(ms) A100(ms)

Untitled 1 49.191 7.2 41.1 12.4 3.0 42.2 12.3 2.7

Untitled 2 50.702 9 44.3 17.2 3.3 46.5 24.3 4.6

Untitled 3 48.5 32.9 6.2 49.4 33.8

Untitled 4 50.3 44.9

AD
E2

0K
 m

Io
U

41

43

45

47

49

51

0 15 30 45
Jetson AGX Orin Latency (ms)

6.2x speedup 5.0x speedup

Table 2-1

EfficientViT EfficientNetV2 EfficientNetV2 ConvNeXt ConvNeXt Swin Swin CoAtNet CoAtNet FasterViT FasterViT MobileViTV2 MobileViTV2

Untitled 1 2.62 84.5 2.68 82.1 3.82 82.1 3.00 81.3 4.50 81.6 4.62 84.2 4.36 81.2

Untitled 2 3.34 85.1 4.28 83.9 6.50 83.1 4.90 83 8.32 83.3 7.44 84.9

Untitled 3 3.58 85.4 9.22 85.1 7.80 83.8 6.00 83.5 10.33 84.1 12.95 85.4

Untitled 4 4.29 85.63 85.7 11.50 84.3 15.35 84.5 85.6

5.10 85.9

6.06 85.978

Im
ag

eN
et

 T
op

1
Ac

c

81

83

85

87

0 4 8 12 16
Jetson AGX Orin Latency (ms)

Figure 2.1: Latency/Throughput vs. Performance. All performance results are obtained
with the single model and single-scale inference. The GPU latency/throughput results are
obtained on one edge GPU (Jetson AGX Orin) and one cloud GPU (A100) using TensorRT
and fp16. EfficientViT consistently achieves a remarkable boost in speed on diverse hardware
platforms while providing the same/higher performances on Cityscapes, ADE20K, and
ImageNet than prior segmentation/classification models.

softmax attention with lightweight ReLU linear attention [24] to have the global receptive field.
By leveraging the associative property of matrix multiplication, ReLU linear attention can
reduce the computational complexity from quadratic to linear while preserving functionality.
In addition, it avoids hardware-inefficient operations like softmax, making it more suitable
for hardware deployment (Figure 2.4).

However, ReLU linear attention alone has limited capacity due to the lack of local
information extraction and multi-scale learning ability. Therefore, we propose to enhance
ReLU linear attention with convolution and introduce the multi-scale linear attention module
to address the capacity limitation of ReLU linear attention. Specifically, we aggregate nearby
tokens with small-kernel convolutions to generate multi-scale tokens. We perform ReLU
linear attention on multi-scale tokens (Figure 2.2) to combine the global receptive field with
multi-scale learning. We also insert depthwise convolutions into FFN layers to further improve
the local feature extraction capacity.

We extensively evaluate EfficientViT on two popular high-resolution dense prediction
tasks: semantic segmentation and super-resolution. EfficientViT provides significant perfor-
mance boosts over prior SOTA high-resolution dense prediction models. More importantly,
EfficientViT does not involve hardware-inefficient operations, so our #FLOPs reduction can
easily translate to latency reduction on hardware devices (Figure 2.1).

In addition to these conventional high-resolution dense prediction tasks, we apply Effi-
cientViT to Segment Anything [4], an emerging promptable segmentation task that allows
zero-shot transfer to many vision tasks. EfficientViT achieves 48.9× acceleration on A100
GPU than SAM-ViT-Huge [4] without performance loss.

2.1.2 Related Work

High-Resolution Dense Prediction. Dense prediction targets producing predictions for
each pixel given the input image. It can be viewed as an extension of image classification
from per-image prediction to per-pixel predictions. Extensive studies have been done to
improve the performance of CNN-based high-resolution dense prediction models [13]–[18].

18

Input

Output

FFN+DWC
onv

Multi-Scale
Linear Att

EfficientViT
Module

In
pu

t

Li
ne

ar

R
eL

U

Li
ne

ar

A
tte

nt
io

n

Q
K
V

DWConv 1x1GConv

Aggregate nearby tokens to get
multi-scale Q/K/V tokens

R
eL

U

Li
ne

ar

A
tte

nt
io

n

C

Li
ne

ar

R
eL

U

Li
ne

ar

A
tte

nt
io

n

d
Q

d
Q

head 1

head 2

…

d
K

d
V

d
K

d
V

… …

DSConv

DSConv

3x3

5x5

1

Figure 2.2: EfficientViT’s Building Block (left) and Multi-Scale Linear Attention
(right). Left : EfficientViT’s building block consists of a multi-scale linear attention module
and an FFN with depthwise convolution (FFN+DWConv). Multi-scale linear attention is re-
sponsible for capturing context information, while FFN+DWConv captures local information.
Right : After getting Q/K/V tokens via the linear projection layer, we generate multi-scale
tokens by aggregating nearby tokens via lightweight small-kernel convolutions. ReLU linear
attention is applied to multi-scale tokens, and the outputs are concatenated and fed to the
final linear projection layer for feature fusing.

In addition, there are also some works targeting improving the efficiency of high-resolution
dense prediction models [25]–[28]. While these models provide good efficiency, their perfor-
mances are far behind SOTA high-resolution dense prediction models.

Compared to these works, our models provide a better trade-off between performance
and efficiency by enabling a global receptive field and multi-scale learning with lightweight
operations.

Efficient Vision Transformer. While ViT provides impressive performances in the high-
computation region, it is usually inferior to previous efficient CNNs [11], [29]–[31] when
targeting the low-computation region. To close the gap, MobileViT [32] proposes to combine
the strength of CNN and ViT by replacing local processing in convolutions with global
processing using transformers. MobileFormer [33] proposes to parallelize MobileNet and
Transformer with a two-way bridge in between for feature fusing. NASViT [34] proposes to
leverage neural architecture search to search for efficient ViT architectures.

However, these models mainly focus on image classification and still rely on softmax
attention with quadratic computational complexity, thus unsuitable for high-resolution dense
prediction.

Efficient Deep Learning. Our work is also related to efficient deep learning, which aims
at improving the efficiency of deep neural networks so that we can deploy them on hardware
platforms with limited resources, such as mobile phones and IoT devices. Typical technologies
in efficient deep learning include network pruning [35]–[37], quantization [38], efficient model

19

So
ftm

ax

At
te

nt
io

n
Re

LU
 L

in
ea

r
At

te
nt

io
n

Table 2

With Softmax Latency Without Softmax Latency

Untitled 1 1 0.0171 1 0.1111

Untitled 2 2 0.0171 2 0.1111

Untitled 3 3 0.9317 3 0.5556

Untitled 4 4 0.0171 4 0.1111

5 0.0171 5 0.1111

0.0

0.5

1.0

Normalized Attention Score

Softmax Attention
ReLU Linear Attention

1

Figure 2.3: Softmax Attention vs. ReLU Linear Attention. Unlike softmax attention,
ReLU linear attention cannot produce sharp attention distributions due to a lack of the
non-linear similarity function. Thus, its local information extraction ability is weaker than
the softmax attention.

architecture design [39], [40], and training techniques [12], [41], [42]. In addition to manual
designs, many recent works use AutoML techniques [10], [43], [44] to automatically design
[11], prune [45] and quantize [46] neural networks.

2.1.3 Method

This section first introduces the multi-scale linear attention module. Unlike prior works, our
multi-scale linear attention simultaneously achieves the global receptive field and multi-scale
learning with only hardware-efficient operations. Then, based on the multi-scale linear
attention, we present a new family of vision transformer models named EfficientViT for
high-resolution dense prediction.

Multi-Scale Linear Attention

Our multi-scale linear attention balances two crucial aspects of efficient high-resolution dense
prediction, i.e., performance and efficiency. Specifically, the global receptive field and multi-
scale learning are essential from the performance perspective. Previous SOTA high-resolution
dense prediction models provide strong performances by enabling these features but fail to
provide good efficiency. Our module tackles this issue by trading slight capacity loss for
significant efficiency improvements.

An illustration of the proposed multi-scale linear attention module is provided in Figure 2.2
(right). In particular, we propose to use ReLU linear attention [24] to enable the global
receptive field instead of the heavy softmax attention [20]. While ReLU linear attention
[24] and other linear attention modules [47]–[50] have been explored in other domains, it
has never been successfully applied to high-resolution dense prediction. To the best of our
knowledge, EfficientViT is the first work demonstrating ReLU linear attention’s effectiveness
in high-resolution dense prediction. In addition, our work introduces novel designs to address
its capacity limitation.

20

So
ftm

ax

At
te

nt
io

n
Re

LU
 L

in
ea

r
At

te
nt

io
n

Table 2

With Softmax Latency Without Softmax Latency

Untitled 1 1 0.0171 1 0.1111

Untitled 2 2 0.0171 2 0.1111

Untitled 3 3 0.9317 3 0.5556

Untitled 4 4 0.0171 4 0.1111

5 0.0171 5 0.1111

0.0

0.5

1.0

Normalized Attention Score

Softmax Attention
ReLU Linear Attention

Table 2-1

Softmax Attention Latency ReLU-based
Linear Attention

Latency

Untitled 1

Untitled 2 24 21.7 24 6.6

Untitled 3 32 103 32 19.8

Untitled 4 40 189 40 41.8

M
ob

ile
 C

PU
 L

at
en

cy
 (m

s)

0

40

80

120

160

200

24 32 40

Softmax Attention
ReLU Linear Attention

Input Feature Map Size

4.5x
faster

3.3x faster

1

Figure 2.4: Latency Comparison Between Softmax Attention and ReLU Linear
Attention. ReLU linear attention is 3.3-4.5× faster than softmax attention with similar
computation, thanks to removing hardware-unfriendly operations (e.g., softmax). Latency is
measured on the Qualcomm Snapdragon 855 CPU with TensorFlow-Lite, batch size 1, and
fp32.

Enable Global Receptive Field with ReLU Linear Attention. Given input x ∈ RN×f ,
the generalized form of softmax attention can be written as:

Oi =
N∑

j=1

Sim(Qi, Kj)∑N
j=1 Sim(Qi, Kj)

Vj, (2.1)

where Q = xWQ, K = xWK , V = xWV and WQ/WK/WV ∈ Rf×d is the learnable linear
projection matrix. Oi represents the i-th row of matrix O. Sim(·, ·) is the similarity function.
When using the similarity function Sim(Q,K) = exp(QKT

√
d
), Eq. (2.1) becomes the original

softmax attention [20].
Apart from exp(QKT

√
d
), we can use other similarity functions. In this work, we use ReLU

linear attention [24] to achieve both the global receptive field and linear computational
complexity. In ReLU linear attention, the similarity function is defined as

Sim(Q,K) = ReLU(Q)ReLU(K)T . (2.2)

With Sim(Q,K) = ReLU(Q)ReLU(K)T , Eq. (2.1) can be rewritten as:

Oi =
N∑

j=1

ReLU(Qi)ReLU(Kj)
T

∑N
j=1 ReLU(Qi)ReLU(Kj)T

Vj =

∑N
j=1(ReLU(Qi)ReLU(Kj)

T)Vj

ReLU(Qi)
∑N

j=1 ReLU(Kj)T
.

Then, we can leverage the associative property of matrix multiplication to reduce the
computational complexity and memory footprint from quadratic to linear without changing

21

In
pu

t

C
on

v

D

SC
on

v

3
x

10
24

 x
 2

04
8

Input Stem
C0 x 512 x 1024

M
B

C
on

v

Stage 1
C1 x 256 x 512

× L1

Stage 2
C2 x 128 x 256

× L2 × L3

Stage 3
C3 x 64 x 128

M
B

C
on

v

M
B

C
on

v

Stage 4
C4 x 32 x 64

Ef
fic

ie
nt

Vi
T

M
od

ul
e

× L4

M
B

C
on

v

Ef
fic

ie
nt

Vi
T

M
od

ul
e

P4

P3
P2

4x up

2x up × L5

M
B

C
on

v

O
ut

pu
t

Head
C5 x 128 x 256

1

Figure 2.5: Macro Architecture of EfficientViT. We adopt the standard backbone-
head/encoder-decoder design. We insert our EfficientViT modules in Stages 3 and 4 in the
backbone. Following the common practice, we feed the features from the last three stages (P2,
P3, and P4) to the head. We use addition to fuse these features for simplicity and efficiency.
We adopt a simple head design that consists of several MBConv blocks and output layers.

its functionality:

Oi =

∑N
j=1 [ReLU(Qi)ReLU(Kj)

T]Vj

ReLU(Qi)
∑N

j=1 ReLU(Kj)T
=

∑N
j=1 ReLU(Qi)[(ReLU(Kj)

TVj)]

ReLU(Qi)
∑N

j=1 ReLU(Kj)T

=
ReLU(Qi)(

∑N
j=1 ReLU(Kj)

TVj)

ReLU(Qi)(
∑N

j=1 ReLU(Kj)T)
. (2.3)

As demonstrated in Eq. (2.3), we only need to compute (
∑N

j=1 ReLU(Kj)
TVj) ∈ Rd×d and

(
∑N

j=1 ReLU(Kj)
T) ∈ Rd×1 once, then can reuse them for each query, thereby only requires

O(N) computational cost and O(N) memory.
Another key merit of ReLU linear attention is that it does not involve hardware-unfriendly

operations like softmax, making it more efficient on hardware. For example, Figure 2.4 shows
the latency comparison between softmax attention and ReLU linear attention. With similar
computation, ReLU linear attention is significantly faster than softmax attention on the
mobile CPU.

Address ReLU Linear Attention’s Limitations. Although ReLU linear attention is
superior to softmax attention in terms of computational complexity and hardware latency,
ReLU linear attention has limitations. Figure 2.3 visualizes the attention maps of softmax
attention and ReLU linear attention. Because of the lack of the non-linear similarity function,
ReLU linear attention cannot generate concentrated attention maps, making it weak at
capturing local information.

To mitigate its limitation, we propose to enhance ReLU linear attention with convolution.
Specifically, we insert a depthwise convolution in each FFN layer. An overview of the resulting
building block is illustrated in Figure 2.2 (left), where the ReLU linear attention captures
context information and the FFN+DWConv captures local information.

Furthermore, we propose to aggregate the information from nearby Q/K/V tokens to
get multi-scale tokens to enhance the multi-scale learning ability of ReLU linear attention.
This information aggregation process is independent for each Q, K, and V in each head. We

22

only use small-kernel depthwise-separable convolutions [39] for information aggregation to
avoid hurting hardware efficiency. In the practical implementation, independently executing
these aggregation operations is inefficient on GPU. Therefore, we take advantage of the group
convolution to reduce the number of total operations. Specifically, all DWConvs are fused
into a single DWConv while all 1x1 Convs are combined into a single 1x1 group convolution
(Figure 2.2 right) where the number of groups is 3× #heads and the number of channels in
each group is d. After getting multi-scale tokens, we perform ReLU linear attention upon
them to extract multi-scale global features. Finally, we concatenate the features along the
head dimension and feed them to the final linear projection layer to fuse the features.

EfficientViT Architecture

We build a new family of vision transformer models based on the proposed multi-scale linear
attention module. The core building block (denoted as ‘EfficientViT Module’) is illustrated
in Figure 2.2 (left). The macro architecture of EfficientViT is demonstrated in Figure 2.5.
We use the standard backbone-head/encoder-decoder architecture design.

• Backbone. The backbone of EfficientViT also follows the standard design, which consists
of the input stem and four stages with gradually decreased feature map size and gradually
increased channel number. We insert the EfficientViT module in Stages 3 and 4. For
downsampling, we use an MBConv with stride 2.

• Head. P2, P3, and P4 denote the outputs of Stages 2, 3, and 4, forming a pyramid of
feature maps. For simplicity and efficiency, we use 1x1 convolution and standard upsampling
operation (e.g., bilinear/bicubic upsampling) to match their spatial and channel size and
fuse them via addition. Since our backbone already has a strong context information
extraction capacity, we adopt a simple head design that comprises several MBConv blocks
and the output layers (i.e., prediction and upsample). In the experiments, we empirically
find this simple head design is sufficient for achieving SOTA performances.

In addition to dense prediction, our model can be applied to other vision tasks, such as
image classification, by combining the backbone with task-specific heads.

Following the same macro architecture, we design a series of models with different sizes to
satisfy various efficiency constraints. We name these models EfficientViT-B0, EfficientViT-B1,
EfficientViT-B2, and EfficientViT-B3, respectively. In addition, we designed the EfficientViT-
L series for the cloud platforms. Detailed configurations of these models are provided in our
official GitHub repository1.

2.1.4 Experiments

Setups

Datasets. We evaluate the effectiveness of EfficientViT on three representative high-
resolution dense prediction tasks, including semantic segmentation, super-resolution, and
Segment Anything.

1https://github.com/mit-han-lab/efficientvit

23

https://github.com/mit-han-lab/efficientvit

Components mIoU ↑ Params ↓ MACs ↓
Multi-scale Global att.

68.1 0.7M 4.4G
✓ 72.3 0.7M 4.4G

✓ 72.2 0.7M 4.4G
✓ ✓ 74.5 0.7M 4.4G

Table 2.1: Ablation Study. The mIoU and MACs are measured on Cityscapes with
1024x2048 input resolution. We rescale the width of the models so that they have the same
MACs. Multi-scale learning and the global receptive field are essential for obtaining good
semantic segmentation performance.

For semantic segmentation, we use two popular benchmark datasets: Cityscapes [56] and
ADE20K [57]. In addition, we evaluate EfficientViT under two settings for super-resolution:
lightweight super-resolution (SR) and high-resolution SR. We train models on DIV2K [58] for
lightweight SR and test on BSD100 [59]. For high-resolution SR, we train models on the first
3000 training images of FFHQ [60] and test on the first 500 validation images of FFHQ2.

Apart from dense prediction, we also study the effectiveness of EfficientViT for image
classification using the ImageNet dataset [61].

Latency Measurement. We measure the mobile latency on Qualcomm Snapdragon 8Gen1
CPU with Tensorflow-Lite3, batch size 1 and fp32. We use TensorRT4 and fp16 to measure
the latency on edge GPU and cloud GPU. The data transfer time is included in the reported
latency/throughput results.

Implementation Details. We implement our models using Pytorch [62] and train them
on GPUs. We use the AdamW optimizer with cosine learning rate decay for training our
models. For multi-scale linear attention, we use a two-branch design for the best trade-off
between performance and efficiency, where 5x5 nearby tokens are aggregated to generate
multi-scale tokens.

For semantic segmentation experiments, we use the mean Intersection over Union (mIoU)
as our evaluation metric. The backbone is initialized with weights pretrained on ImageNet
and the head is initialized randomly, following the common practice.

For super-resolution, we use PSNR and SSIM on the Y channel as the evaluation metrics,
same as previous work [63]. The models are trained with random initialization.

Ablation Study

Effectiveness of EfficientViT Module. We conduct ablation study experiments on
Cityscapes to study the effectiveness of two key design components of our EfficientViT

2https://rb.gy/7je1a
3https://www.tensorflow.org/lite
4https://docs.nvidia.com/deeplearning/tensorrt/

24

https://rb.gy/7je1a
https://www.tensorflow.org/lite
https://docs.nvidia.com/deeplearning/tensorrt/

Models Top1 Acc ↑ Top5 Acc ↑ Params ↓ MACs ↓ Latency ↓ Throughput ↑
Nano(bs1) Orin(bs1) A100 (image/s)

CoAtNet-0 [51] 81.6 - 25M 4.2G 95.8ms 4.5ms 3011
ConvNeXt-T [52] 82.1 - 29M 4.5G 87.9ms 3.8ms 3303
EfficientViT-B2 (r256) 82.7 96.1 24M 2.1G 58.5ms 2.8ms 5325

Swin-B [53] 83.5 - 88M 15G 240ms 6.0ms 2236
CoAtNet-1 [51] 83.3 - 42M 8.4G 171ms 8.3ms 1512
ConvNeXt-S [52] 83.1 - 50M 8.7G 146ms 6.5ms 2081
EfficientViT-B3 (r224) 83.5 96.4 49M 4.0G 101ms 4.4ms 3797

CoAtNet-2 [51] 84.1 - 75M 16G 254ms 10.3ms 1174
ConvNeXt-B [52] 83.8 - 89M 15G 211ms 7.8ms 1579
EfficientViT-B3 (r288) 84.2 96.7 49M 6.5G 141ms 5.6ms 2372

CoAtNet-3 [51] 84.5 - 168M 35G - 15.4ms 642
ConvNeXt-L [52] 84.3 - 198M 34G - 11.5ms 1032
EfficientNetV2-S [54] 83.9 - 22M 8.8G - 4.3ms 2869
EfficientViT-L1 (r224) 84.5 96.9 53M 5.3G - 2.6ms 6207

EfficientNetV2-M [54] 85.2 - 54M 25G - 9.2ms 1160
FasterViT-4 [55] 85.4 97.3 425M 37G - 13.0ms 1382
EfficientViT-L2 (r288) 85.6 97.4 64M 11G - 4.3ms 3102

FasterViT-6 [55] 85.8 97.4 1360M 142G - - 594
EfficientNetV2-L [54] 85.7 - 120M 53G - - 696
EfficientViT-L2 (r384) 86.0 97.5 64M 20G - - 1784

Table 2.2: Backbone Performance on ImageNet Classification. ‘r224’ means the input
resolution is 224x224. ‘bs1’ represents that the latency is measured with batch size 1.

module, i.e., multi-scale learning and global attention. To eliminate the impact of pre-
training, we train all models from random initialization. In addition, we rescale the width of
the models so that they have the same #MACs. The results are summarized in Table 2.1.
We can see that removing either global attention or multi-scale learning will significantly
hurt the performances. It shows that all of them are essential for achieving a better trade-off
between performance and efficiency.

Backbone Performance on ImageNet. To understand the effectiveness of EfficientViT’s
backbone in image classification, we train our models on ImageNet following the standard
training strategy. We summarize the results and compare our models with SOTA image
classification models in Table 2.2.

Though EfficientViT is designed for high-resolution dense prediction, it achieves highly
competitive performances on ImageNet classification. In particular, EfficientViT-L2-r384
obtains 86.0 top1 accuracy on ImageNet, providing +0.3 accuracy gain over EfficientNetV2-L
and 2.6x speedup on A100 GPU.

Semantic Segmentation

Cityscapes. Table 2.3 reports the comparison between EfficientViT and SOTA semantic
segmentation models on Cityscapes. EfficientViT achieves remarkable efficiency improvements
over prior SOTA semantic segmentation models without sacrificing performances. Specifically,

25

Models mIoU ↑ Params ↓ MACs ↓ Latency ↓ Throughput ↑
Nano(bs1) Orin(bs1) A100(image/s)

DeepLabV3plus-Mbv2 [64] 75.2 15M 555G - 83.5ms 102
EfficientViT-B0 75.7 0.7M 4.4G 0.28s 9.9ms 263

SegFormer-B1 [19] 78.5 14M 244G 5.6s 146ms 49
SegNeXt-T [21] 79.8 4.3M 51G 2.2s 93.2ms 95
EfficientViT-B1 80.5 4.8M 25G 0.82s 24.3ms 175

SegFormer-B3 [19] 81.7 47M 963G - 407ms 18
SegNeXt-S [21] 81.3 14M 125G 3.4s 127ms 70
EfficientViT-B2 82.1 15M 74G 1.7s 46.5ms 112

SegFormer-B5 [19] 82.4 85M 1460G - 638ms 12
SegNeXt-B [21] 82.6 28M 276G - 228ms 41
EfficientViT-B3 83.0 40M 179G - 81.8ms 70
EfficientViT-L1 82.7 40M 282G - 45.9ms 122

SegNeXt-L [21] 83.2 49M 578G - 374ms 26
EfficientViT-L2 83.2 53M 396G - 60.0ms 102

Table 2.3: Comparison with SOTA Semantic Segmentation Models on Cityscapes.
The input resolution is 1024x2048 for all models. Models with similar mIoU are grouped for
efficiency comparison.

compared with SegFormer, EfficientViT obtains up to 13x #MACs saving and up to 8.8x
latency reduction on the edge GPU (Jetson AGX Orin) with higher mIoU. Compared with
SegNeXt, EfficientViT provides up to 2.0x MACs reduction and 3.8x speedup on the edge
GPU (Jetson AGX Orin) while maintaining higher mIoU. On A100 GPU, EfficientViT
delivers up to 3.9x higher throughput than SegNeXt and 10.2x higher throughput than
SegFormer while achieving the same or higher mIoU. Having similar computational cost,
EfficientViT also yields significant performance gains over previous SOTA models. For
example, EfficientViT-B3 delivers +4.5 mIoU gain over SegFormer-B1 with lower MACs.

In addition to the quantitative results, we visualize EfficientViT and the baseline models
qualitatively on Cityscapes. The results are shown in Figure 2.6. We can find that EfficientViT
can better recognize boundaries and small objects than the baseline models while achieving
lower latency on GPU.

ADE20K. Table 2.4 summarizes the comparison between EfficientViT and SOTA seman-
tic segmentation models on ADE20K. Like Cityscapes, we can see that EfficientViT also
achieves significant efficiency improvements on ADE20K. For example, with +0.6 mIoU gain,
EfficientViT-B1 provides 5.2x MACs reduction and up to 3.5x GPU latency reduction than
SegFormer-B1. With +1.6 mIoU gain, EfficientViT-B2 requires 1.8x fewer computational
costs and runs 2.4x faster on Jetson AGX Orin GPU than SegNeXt-S.

26

Models mIoU ↑ Params ↓ MACs ↓ Latency ↓ Throughput ↑
Nano(bs1) Orin(bs1) A100(image/s)

SegFormer-B1 [19] 42.2 14M 16G 389ms 12.3ms 542
SegNeXt-T [21] 41.1 4.3M 6.6G 281ms 12.4ms 842
EfficientViT-B1 42.8 4.8M 3.1G 110ms 4.0ms 1142

SegNeXt-S [21] 44.3 14M 16G 428ms 17.2ms 592
EfficientViT-B2 45.9 15M 9.1G 212ms 7.3ms 846

Mask2Former [65] 47.7 47M 74G - - -
MaskFormer [66] 46.7 42M 55G - - -
SegFormer-B2 [19] 46.5 28M 62G 920ms 24.3ms 345
SegNeXt-B [21] 48.5 28M 35G 806ms 32.9ms 347
EfficientViT-B3 49.0 39M 22G 411ms 12.5ms 555
EfficientViT-L1 49.2 40M 36G - 7.2ms 947

SegFormer-B4 [19] 50.3 64M 96G - 44.9ms 212
EfficientViT-L2 50.7 51M 45G - 9.0ms 758

Table 2.4: Comparison with SOTA Semantic Segmentation Models on ADE20K.
The shorter side of the image is resized to 512, following the common practice.

Model FFHQ (512x512 → 1024x1024) BSD100 (160x240 → 320x480)

PSNR ↑ SSIM ↑ A100(bs1) ↓ Speedup ↑ PSNR ↑ SSIM ↑ A100(bs1) ↓ Speedup ↑
Restormer [67] 43.43 0.9806 92.0ms 1x 32.31 0.9021 15.1ms 1x
SwinIR [63] 43.49 0.9807 61.2ms 1.5x 32.31 0.9012 9.7ms 1.6x
VapSR [68] - - - - 32.27 0.9011 4.8ms 3.1x
BSRN [69] - - - - 32.24 0.9006 4.5ms 3.4x

EfficientViT w0.75 43.54 0.9809 14.3ms 6.4x 32.31 0.9016 2.8ms 5.4x
EfficientViT 43.58 0.9810 17.8ms 5.2x 32.33 0.9019 3.2ms 4.7x

Table 2.5: Comparison with SOTA super-resolution models.

Super-Resolution

Table 2.5 presents the comparison of EfficientViT with SOTA ViT-based SR methods (SwinIR
[63] and Restormer [67]) and SOTA CNN-based SR methods (VapSR [68] and BSRN [69]).
EfficientViT provides a better latency-performance trade-off than all compared methods.

On lightweight SR, EfficientViT provides up to 0.09dB gain in PSNR on BSD100 while
maintaining the same or lower GPU latency compared with SOTA CNN-based SR methods.
Compared with SOTA ViT-based SR methods, EfficientViT provides up to 5.4× speedup on
GPU and maintains the same PSNR on BSD100.

On high-resolution SR, the advantage of EfficientViT over previous ViT-based SR methods
becomes more significant. Compared with Restormer, EfficientViT achieves up to 6.4×
speedup on GPU and provides 0.11dB gain in PSNR on FFHQ.

27

76
78
80
82
84

0 100 200 300

EfficientViT SegNeXt SegFormer

GMACs

Cityscapes

EfficientViT GMACs 8Gen(s) Nano(s) Xavier(ms) Orin(ms) A100(ms) SegNeXt GMACs 8Gen(s) Nano(s) Xavier(ms) Orin(ms) A100(ms) SegFormer GMACs 8Gen(s) Nano(ms) Xavier(ms) Orin(ms) A100(ms)

Untitled 1 4.4 0.24 0.275 32.7 9.9 3.84 79.8 50.5 7.6 2.2 287 93 10.5 76.2 125.5 6.9 3.9 368 107 14.4

Untitled 2 80.5 25 1.13 0.82 88.3 24.3 5.71 81.3 124.6 18 3.4 415 127 14.2 78.5 243.7 12 5.6 530 146 20.4

Untitled 3 82.1 74 3.09 1.676 180 46.5 8.91 82.6 275.7 767 228 24.2 717.1 1170 296 37.5

Untitled 4 83.0 179 7.35 3.192 336 81.8 14.2 962.9 407 54.3

1240.6 73.8

1460.4 82

76
78
80
82
84

0 5 10 15 20
Snapdragon 8Gen1 (s)

76
78
80
82
84

0 7 14 21 28
A100 GPU (ms)

76
78
80
82
84

0 2 4 6
Jetson Nano (s)

76
78
80
82
84

0 200 400 600 800
Jetson AGX Xavier (ms)

76
78
80
82
84

0 125 250
Jetson AGX Orin (ms)

Ci
ty

sc
ap

es
 m

Io
U

Im
ag

eN
et

 T
op

1
Ac

c

78.5

80.5

82.5

84.5

0 5 10 15 20

EfficientViT EfficientNet
ConvNeXt Swin

GMACs

ImageNet

EfficientViT EfficientNet EfficientNetV2 ConvNeXt Swin

Untitled 1 0.52 79.4 77.1 78.7 4.5 82.1 4.5 81.3

Untitled 2 0.86 80.4 0.70 79.1 79.8 8.7 83.1 8.7 83.0

Untitled 3 1.6 82.1 1.0 80.1 80.5 15.4 83.8 15.4 83.5

Untitled 4 2.1 82.7 1.8 81.6 82.1 84.3 84.5

2.6 83.1 4.2 82.9 83.9

6.5 84.2 9.9 83.6 85.1

19 84 85.7

84.3

2.9x reduction

Ci
ty

sc
ap

es
 m

Io
U

78

80

82

84

0 200 400 600 800

EfficientViT SegNeXt SegFormer

GMACs

Cityscapes-1

EfficientViT SegNeXt SegFormer

Untitled 1

Untitled 2 25 80.5 50.5 79.8

Untitled 3 74 82.1 124.6 81.3 243.7 78.5

Untitled 4 179 83.0 275.7 82.6 717.1 81.0

AD
E2

0K
 m

Io
U

40

42

44

46

48

50

0 13 26 39 52 65
GMACs

ADE20k

EfficientViT SegNeXt SegFormer

Untitled 1 3.1 42.8 6.6 41.1

Untitled 2 9.1 45.9 15.9 44.3 15.9 42.2

Untitled 3 22 49.0 34.9 48.5 62.4 46.5

Untitled 4

Ef
fic
ie
nt
Vi
T

47
m
s@

O
rin

Se
gN
eX
t

90
m
s@

O
rin

Se
gF
or
m
er

10
5m

s@
O
rin

1

Figure 2.6: Qualitative results on Cityscapes.

Params ↓ MACs ↓ Throughput ↑ COCO LVIS

A100(image/s) mAP APS APM APL mAP APS APM APL

SAM-ViT-H [4] 641M 2973G 11 46.5 30.8 51.0 61.7 44.2 31.8 57.1 65.3

EfficientViT-SAM-L0 35M 35G 762 45.7 28.2 49.5 63.4 41.8 28.8 53.4 64.7
EfficientViT-SAM-L1 48M 49G 638 46.2 28.7 50.4 64.0 42.1 29.1 54.3 65.0
EfficientViT-SAM-L2 61M 69G 538 46.6 28.9 50.8 64.2 42.7 29.4 55.1 65.5

EfficientViT-SAM-XL0 117M 185G 278 47.5 30.0 51.5 64.6 43.9 31.2 56.2 65.9
EfficientViT-SAM-XL1 203M 322G 182 47.8 30.5 51.8 64.7 44.4 31.6 57.0 66.4

Table 2.6: Zero-Shot Instance Segmentation Results, Prompted with ViTDet Boxes.
Throughput is profiled on A100 GPU with TensorRT and fp16, including the image encoder
and SAM head.

Segment Anything

We build EfficientViT-SAM [70], a new family of accelerated segment anything models,
by leveraging EfficientViT to replace SAM’s image encoder. Meanwhile, we retain SAM’s
lightweight prompt encoder and mask decoder. The training process consists of two phases.
First, we train the image encoder of EfficientViT-SAM using SAM’s image encoder as the
teacher. Second, we train EfficientViT-SAM end-to-end using the whole SA-1B dataset [4].

We thoroughly test EfficientViT-SAM on various zero-shot benchmarks to verify its effec-
tiveness. Table 2.6 demonstrates the zero-shot instance segmentation results on COCO [71]
and LVIS [72], prompted with the predicted bounding boxes from ViTDet [73]. EfficientViT-
SAM provides superior performance/efficiency compared with SAM-ViT-H [4]. In particular,
EfficientViT-SAM-XL1 outperforms SAM-ViT-H on COCO and LVIS while having 16.5×
higher throughput on A100 GPU.

Figure 2.7 shows the comparison between EfficientViT-SAM and prior SAM models.

28

Ze
ro

-S
ho

t C
O

CO
 m

AP

37

40

43

46

49

A100 GPU TRT FP16 Throughput (image/s)
0 200 400 600 800

47.8 47.5
46.6 46.2

45.7

44.4

42.1

38.7

46.5

Table 2

April SAM MobileSAM EdgeSAM EfficientSAM EfficientViT-SAM-L EfficientViT-SAM-
XL

April 278 38.7

449 42.1

June 183 44.4

July 762 45.7

August 638 46.2

September 538 46.6

October 294

November 11 46.5

Untitled 1

Untitled 2 278 47.5

Untitled 3 182 47.8

SAM-ViT-H

EfficientSAM

EdgeSAM

MobileSAM

EfficientViT-SAM-L

EfficientViT-SAM-XL

16.5x faster

In
pu

t

C
on

v

R
es

B
lo

ck

3
x

10
24

 x
 1

02
4

Input Stem Stage1

× L4

M
B

C
on

v

Stage 4

Ef
fic

ie
nt

Vi
T

M
od

ul
e

× L5

M
B

C
on

v

Ef
fic

ie
nt

Vi
T

M
od

ul
e

4x up

2x up × L6

F-
M

B
C

on
v

× L1

F-
M

B
C

on
v

× L2

F-
M

B
C

on
v

× L3

Stage2 Stage3 Stage 5

P5

P4
P3

F-
M

B
C

on
v

SA
M

 H
ea

d

× L0

48.9x faster

1

Figure 2.7: Throughput vs. COCO Zero-Shot Instance Segmentation mAP.
EfficientViT-SAM is the first accelerated SAM model that matches/outperforms SAM-
ViT-H’s [4] zero-shot performance, delivering the SOTA performance-efficiency trade-off.

COCO LVIS

1 click 3 click 5 click 1 click 3 click 5 click

SAM-ViT-H [4] 58.4 69.6 71.4 59.2 66.0 66.8

EfficientViT-SAM-XL1 59.8 71.3 75.3 56.6 67.0 71.7

Table 2.7: Zero-Shot Point-Prompted Segmentation Results.

EfficientViT-SAM is the first accelerated SAM model that matches/outperforms SAM-ViT-
H’s [4] zero-shot performance, delivering the SOTA performance-efficiency trade-off.

Apart from box-prompted instance segmentation, we also evaluate EfficientViT-SAM
on point-prompted segmentation. The results are summarized in Table 2.7. EfficientViT-
SAM-XL1 outperforms SAM-ViT-H in most cases, especially when more points are given.
On LVIS, when given a single point, we find SAM-ViT-H performs better than EfficientViT-
SAM-XL1. This might be because we do not have the interactive segmentation setup during
the end-to-end training phase. Further investigation is needed to improve the performance of
the single-point setting.

2.1.5 Conclusion

In this section, we studied efficient architecture design for high-resolution dense prediction. We
introduced a lightweight multi-scale attention module that simultaneously achieves a global
receptive field, and multi-scale learning with lightweight and hardware-efficient operations,
thus providing significant speedup on diverse hardware devices without performance loss than
SOTA high-resolution dense prediction models. For future work, we will explore applying
EfficientViT to other vision tasks and further scaling up our EfficientViT models.

29

0

2

4

6

8

10 100 1,000 10,000

2.78 3.85

7.72

4.05 3.044.04

ImageNet 512x512

Ours DiT U-ViT ADM ADM-U CaT

Untitled 1 16 4.04 525 3.04 133 4.05 1983 7.72 2813.00 3.85 10.1 2.78

Untitled 2
Untitled 3
Untitled 4

GMACs (Per Step) ↓

FI
D ↓

ADM

ADM-U

DiT-XL/2
525G MACs

UViT-H/4
CAN-UViT-S-

Deep/4

CaT-L0
10G MACs

52x fewer MACs

ImageNet 512 512×

UViT - ImageNet 256x256

CAN Baseline

Untitled 1 3.1 5.49 14.7 5.95

Untitled 2 6.8 5.22 19.3 5.48

Untitled 3
Untitled 4

5.0

5.5

6.0

0 5 10 15 20

5.48

5.95

5.22

5.49

FI
D

↓

GMACs (Per Step) ↓

COCO 256 256×

CaT

UViT

6x fewer MACs

1

Figure 2.8: Comparing CAN Models and Prior Image Generative Models on
ImageNet 512×512. With the new conditional control method, we significantly improve
the performance of controlled image generative models. Combining CAN and EfficientViT
[8], our CaT model provides 52× MACs reduction per sampling step than DiT-XL/2 [83]
without performance loss.

2.2 Efficient Control Module for Conditional Image Gen-
eration

2.2.1 Introduction

Large-scale image [3], [74]–[76] and video generative models [5], [77] have demonstrated
astounding capacity in synthesizing photorealistic images and videos. To convert these
models into productive tools for humans, a critical step is adding control. Instead of letting
the model randomly generate data samples, we want the generative model to follow our
instructions (e.g., class label, text, pose) [78].

Extensive studies have been conducted to achieve this goal. For example, in GANs [60],
[79], a widespread solution is to use adaptive normalization [80], [81] that dynamically scales
and shifts the intermediate feature maps according to the input condition. In addition,
another widely used technique is to use cross-attention [3] or self-attention [82] to fuse
the condition feature with the image feature. Though differing in the used operations,
these methods share the same underlying mechanism, i.e., adding control by feature space
manipulation. Meanwhile, the neural network weight (convolution/linear layers) remains the
same for different conditions.

This work aims to answer the following questions: i) Can we control image generative
models by manipulating their weight? ii) Can controlled image generative models benefit from
this new conditional control method?

To this end, we introduce Condition-Aware Neural Network (CAN), a new condi-
tional control method based on weight space manipulation. Differentiating from a regular
neural network, CAN introduces an additional weight generation module (Figure 2.9). The
input to this module is the condition embedding, which consists of the user instruction

30

Input Image
Feature

Output Image
Feature

Condition: Class,
Timestep, …

xi

xi+1

c

Conv / Linear

Condition-Aware
Conv/Linear Weight

Generation

WcW+Conv / LinearW

Input Image
Feature

xi

Output Image
Feature

xi+1

Condition: Class,
Timestep, …c

Conv / LinearW

Input Image
Feature

xi

Output Image
Feature

xi+1

Conv / Linear
Wc

Condition-Aware
Conv/Linear Weight

Generation

1

Figure 2.9: Illustration of Condition-Aware Neural Network. Left: A regular neural
network with static convolution/linear layers. Right: A condition-aware neural network and
its equivalent form.

(e.g., class label) and the timestep for diffusion models [84]. The module’s output is the
conditional weight used to adapt the static weight of the convolution/linear layer. We conduct
extensive ablation study experiments investigating the practical use of CAN on diffusion
transformers. Our study reveals two critical insights for CAN. First, rather than making all
layers condition-aware, we find carefully choosing a subset of modules to be condition-aware
(Figure 2.10) is beneficial for both efficiency and performance (Table 2.8). Second, we find
directly generating the conditional weight is much more effective than adaptively merging a
set of base static layers [85] for conditional control (Figure 2.11).

We evaluate CAN on two representative diffusion transformer models, including DiT [83],
and UViT [82]. CAN achieves significant performance boosts for all these diffusion transformer
models while incurring negligible computational cost increase (Figure 2.14). We also find
that CAN alone provides effective conditional control for image generative models, delivering
lower FID and higher CLIP scores than prior conditional control methods (Table 2.10). Apart
from applying CAN to existing diffusion transformer models, we further build a new family of
diffusion transformer models called CaT by marrying CAN and EfficientViT [8] (Figure 2.13).

2.2.2 Related Work

Controlled Image Generation. Controlled image generation requires the models to
incorporate the condition information into the computation process to generate related
images. Various techniques have been developed in the community for controlled image
generation. One typical example is adaptive normalization [81] that regresses scale and shift
parameters from the condition information and applies the feature-wise affine transformation
to influence the output. Apart from adaptive normalization, another typical approach is
to treat condition information as tokens and use either cross-attention [3] or self-attention
[82] to fuse the condition information. ControlNet [78] is another representative technique
that uses feature-wise addition to add extra control to pre-trained text-to-image diffusion
models. In parallel to these techniques, this work explores another mechanism for adding
conditional control to image generative models, i.e., making the weight of neural network
layers (conv/linear) condition-aware.

Dynamic Neural Network. Our work can be viewed as a new type of dynamic neural
network. Apart from adding conditional control explored in this work, dynamically adapting

31

Pa
tc

h
Em

be
dd

in
g

Q
K

V
Pr

oj
ec

tio
n

A
tte

nt
io

n

O
ut

pu
t

Pr
oj

ec
tio

n

M
LP

-1

D
W

 C
on

v

M
LP

-2

H
ea

d

R
es

ha
pe

Condition Condition L ×

All Blocks Share the Conditional Weight
of the Output Projection Layer

Wc

Pa
tc

h
Em

be
dd

in
g

Q
K

V
Pr

oj
ec

tio
n

A
tte

nt
io

n

O
ut

pu
t

Pr
oj

ec
tio

n

M
LP

-1

D
W

 C
on

v

M
LP

-2

H
ea

d

R
es

ha
pe

Condition

L ×

All Blocks Share the Conditional Weight
of the Output Projection Layer

Wc

Shared

Pa
tc

h
Em

be
dd

in
g

Q
K

V
Pr

oj
ec

tio
n

A
tte

nt
io

n

O
ut

pu
t

Pr
oj

ec
tio

n

M
LP

-1

D
W

 C
on

v

M
LP

-2

H
ea

d

R
es

ha
pe

Condition

L ×Shared

1

Figure 2.10: Overview of Applying CAN to Diffusion Transformer. The patch
embedding layer, the output projection layers in self-attention, and the depthwise convolution
(DW Conv) layers are condition-aware. The other layers are static. All output projection
layers share the same conditional weight while still having their own static weights.

the neural network can be applied to many deep learning applications. For example, CondConv
[85] proposes to dynamically combine a set of base convolution kernels based on the input
image feature to increase the model capacity. Similarly, the mixture-of-expert [86] technique
uses a gating network to route the input to different experts dynamically. For efficient
deployment, once-for-all network [87] and slimmable neural network [88] dynamically adjust
the neural network architecture according to the given efficiency constraint to achieve better
tradeoff between efficiency and accuracy.

Weight Generating Networks. Our conditional weight generation module can be viewed
as a new kind of weight generation network specially designed for adding conditional control
to generative models. There are some prior works exploiting weight generation networks in
other scenarios. For example, [89] proposes to use a small network to generate weights for
a larger network. These weights are the same for every example in the dataset for better
parameter efficiency. Additionally, weight generation networks have been applied to neural
architecture search to predict the weight of a neural network given its architecture [90] to
reduce the training and search cost [91] of neural architecture search.

Efficient Deep Learning Computing. Our work is also connected to efficient deep
learning computing [42], [92] that aims to improve the efficiency of deep learning models to
make them friendly for deployment on hardware. State-of-the-art image generative models
[3], [74], [76], [93] have enormous computation and memory costs, which makes it challenging
to deploy them on resource-constrained edge devices while maintaining high quality. Our
work can improve the efficiency of the controlled generative models by delivering the same
performance with fewer diffusion steps and lower-cost models. For future work, we will
explore combining our work and efficient deep learning computing techniques [87], [94] to
futher boost efficiency.

32

2.2.3 Method

Condition-Aware Neural Network

The image generation process can be viewed as a mapping from the source domain (noise or
noisy image) to the target domain (real image). For controlled image generation, the target
data distribution is different given different conditions (e.g., cat images’ data distribution vs.
castle images’ data distribution). In addition, the input data distribution is also different
for diffusion models [84] at different timesteps. Despite these differences, prior models use
the same static convolution/linear layers for all cases, limiting the overall performance due
to negative transfer between different sub-tasks [95]. To alleviate this issue, one possible
solution is to have an expert model [86] for each sub-task. However, this approach is infeasible
for practical use because of the enormous cost. Our condition-aware neural network (CAN)
tackles this issue by enabling the neural network to adjust its weight dynamically according
to the given condition, instead of explicitly having the expert models.

Figure 2.9 demonstrates the general idea of CAN. The key difference from a regular
neural network is that CAN has an extra conditional weight generation module. This module
takes the condition embedding c as the input and outputs the conditional weight Wc. In
addition to the conditional weight Wc, each layer has the static weight W . During training
and inference, Wc and W are fused into a single kernel call by summing the weight values.
This is equivalent to applying Wc and W independently on the input image feature and then
adding their outputs.

Practical Design

Which Modules to be Condition-Aware? Theoretically, we can make all layers in
the neural network condition-aware. However, in practice, this might not be a good design.
First, from the performance perspective, having too many condition-aware layers might
make the model optimization challenging. Second, from the efficiency perspective, while the
computational overhead of generating the conditional weight for all layers is negligible15,
it will incur a significant parameter overhead. For example, let’s denote the dimension of
the condition embedding as d (e.g., 384, 512, 1024, etc) and the model’s static parameter
size as #params. Using a single linear layer to map from the condition embedding to the
conditional weight requires #params ×d parameters, which is impractical for real-world use.
In this work, we carefully choose a subset of modules to apply CAN to solve this issue.

An overview of applying CAN to diffusion transformer [82], [83] is provided in Figure 2.10.
Depthwise convolution [96] has a much smaller parameter size than regular convolution,
making it a low-cost candidate to be condition-aware. Therefore, we add a depthwise
convolution in the middle of FFN following the previous design [8]. We conduct ablation
study experiments on ImageNet 256×256 using UViT-S/2 [82] to determine the set of modules
to be condition-aware. All the models, including the baseline model, have the same architecture.
The only distinction is the set of condition-aware modules is different.

51It is because the sequence length (or spatial size) of the condition embedding is much smaller than the
image feature.

33

ImageNet 256×256, UViT-S/2

Models FID ↓ CLIP Score ↑
1. Baseline (Static Conv/Linear) 28.32 30.09

Making Modules Condition-Aware:

2. DW Conv 11.18 31.54

3. + Patch Embedding 10.23 31.61
4. or + Head (✗) 12.29 31.40

5. + Output Projection 8.82 31.74
6. or + QKV Projection (✗) 9.71 31.66
7. or + MLP (✗) 10.06 31.62

Table 2.8: Ablation Study on Making Which Modules Condition-Aware.

Table 2

Copy number FID

Untitled 1 2 30.06

Untitled 2 4 26.91

Untitled 3 6 27.77

Untitled 4 8 29.46

12 29.67

5

15

25

35

2 4 6 8 10 12

Adaptive Kernel Selection

Baseline

CAN

FI
D↓

Number of Base Kernels

ImageNet 256 256
UViT-S/2

×

1

Figure 2.11: CAN is More Effective than Adaptive Kernel Selection.

We summarize the results in Table 2.8. We have the following observations in our ablation
study experiments:

• Making a module condition-aware does not always improve the performance. For example,
using a static head gives a lower FID and a higher CLIP score than using a condition-aware
head (row #2 vs. row #4 in Table 2.8).

• Making depthwise convolution layers, the patch embedding layer, and the output projection
layers condition-aware brings a significant performance boost. It improves the FID from
28.32 to 8.82 and the CLIP score from 30.09 to 31.74.

Based on these results, we chose this design for CAN. Details are illustrated in Figure 2.10.
For the depthwise convolution layers and the patch embedding layer, we use a separate
conditional weight generation module for each layer, as their parameter size is small. In
contrast, we use a shared conditional weight generation module for the output projection
layers, as their parameter size is large. Since different output projection layers have different
static weights, we still have different weights for different output projection layers.

CAN vs. Adaptive Kernel Selection. Instead of directly generating the conditional
weight, another possible approach is maintaining a set of base convolution kernels and dynam-

34

channel
to batch

batch to
channel

Conv

K × KSample1
Input

Grouped Conv
(#Groups=B)

K × K
Batch
Input

Sample2
Input

B × C × H × W

1 × C × H × W

…

Conv
K × K

Sample1
Output

Sample2
Output

… …

Batch
Output

1 × C × H × W

B × C × H × W

Without Kernel Fusion

Batch
Input

B × C × H × W
Batch
Input

1 × BC × H × W
Batch
Output

1 × BC × H × W
Batch
Output

B × C × H × W

With Kernel Fusion

1

Figure 2.12: Practical Implementation of CAN. Left: The condition-aware layers have
different weights for different samples. A naive implementation requires running the kernel
call independently for each sample, which incurs a large overhead for training and batch
inference. Right: An efficient implementation for CAN. We fuse all kernel calls into a grouped
convolution. We insert a batch-to-channel transformation before the kernel call and add a
channel-to-batch conversion after the kernel call to preserve the functionality.

C
A

N
 P

at
ch

Em
be

dd
in

g

In
pu

t
4

x
64

 x
 6

4

C
A

N

Ef
fic

ie
nt

Vi
T

M
od

ul
e

D
ow

n

D
ow

n

U
p C U
p C

H
ea

d

× L0 × L1 × L2 × L1 × L0

C0 x 64 x 64 C0 x 64 x 64C1 x 32 x 32 C1 x 32 x 32C2 x 16 x 16

C
A

N

Ef
fic

ie
nt

Vi
T

M
od

ul
e

C
A

N

Ef
fic

ie
nt

Vi
T

M
od

ul
e

C
A

N

Ef
fic

ie
nt

Vi
T

M
od

ul
e

C
A

N

Ef
fic

ie
nt

Vi
T

M
od

ul
e

1

Figure 2.13: Macro Architecture of CaT. Benefiting from EfficientViT’s linear computa-
tional complexity [8], we can keep the high-resolution stages without efficiency concerns.

ically generating scaling parameters to combine these base kernels [74], [85]. This approach’s
parameter overhead is smaller than CAN. However, this adaptive kernel selection strategy
cannot match CAN’s performance (Figure 2.11). It suggests that dynamic parameterization
alone is not the key to better performances; better condition-aware adaptation capacity is
critical.

Implementation. Since the condition-aware layers have different weights given different
samples, we cannot do the batch training and inference. Instead, we must run the kernel calls
independently for each sample, as shown in Figure 2.12 (left). This will significantly slow down
the training process on GPU. To address this issue, we employ an efficient implementation
for CAN (Figure 2.12 right). The core insight is to fuse all convolution kernel calls [97] into
a grouped convolution where #Groups is the batch size B. We do the batch-to-channel
conversion before running the grouped convolution to preserve the functionality. After the
operation, we add the channel-to-batch transformation to convert the feature map to the
original format.

Theoretically, with this efficient implementation, there will be negligible training overhead
compared to running a static model. In practice, as NVIDIA GPU supports regular convolution
much better than grouped convolution, we still observe 30%-40% training overhead. This
issue can be addressed by writing customized CUDA kernels. We leave it to future work.

35

UViT - ImageNet 256x256

CAN Baseline

Untitled 1 3.3 25.65 3.3 49.23

Untitled 2 7.2 13.50 7.1 37.36

Untitled 3 12.4 8.82 12.3 28.32

Untitled 4 16.3 5.69 16.1 19.04

0

20

40

60

0 6 12 18

CAN Baseline
FI

D
↓

GMACs (Per Step) ↓

ImageNet 256 256
UViT

×

DiT - ImageNet 256x256

CAN Baseline

Untitled 1 1.7 47.92 1.7 63.13

Untitled 2 3.6 31.95 3.6 48.57

Untitled 3 6.1 21.76 6.1 39.44

Untitled 4 23.3 10.07 23.1 23.29

0

20

40

60

80

0 6 12 18 24

FI
D↓

GMACs (Per Step) ↓

ImageNet 256 256
DiT

×

UViT - ImageNet 256x256-1

CAN Baseline

Untitled 1 3.3 30.55 3.3 28.86

Untitled 2 7.2 31.39 7.1 29.45

Untitled 3 12.4 31.74 12.3 30.09

Untitled 4 16.3 32.10 16.1 30.70

28

29

30

31

32

33

0 6 12 18

CAN Baseline

CL
IP

 S
co

re
↑

GMACs (Per Step) ↓

ImageNet 256 256
UViT

×

DiT - ImageNet 256x256-1

CAN Baseline

Untitled 1 1.7 29.38 1.7 28.35

Untitled 2 3.6 30.21 3.6 29.71

Untitled 3 6.1 31.38 6.1 29.57

Untitled 4 23.3 31.77 23.1 30.59

28

29

30

31

32

33

0 6 12 18 24

CL
IP

 S
co

re
 ↑

GMACs (Per Step) ↓

ImageNet 256 256
DiT

×

1

Figure 2.14: CAN Results on Different UViT and DiT Variants. CAN consistently
delivers lower FID and higher CLIP score for UViT and DiT variants.

2.2.4 Experiments

Setups

Datasets. Due to resource constraints, we conduct class-conditional image generation exper-
iments using the ImageNet dataset and use COCO for text-to-image generation experiments.
For large-scale text-to-image experiments [93], we leave them to future work.

Evaluation Metric. Following the common practice, we use FID [98] as the evaluation
metric for image quality. In addition, we use the CLIP score [99] as the metric for controllability.
We use the public CLIP ViT-B/32 [100] for measuring the CLIP score, following [93]. The
text prompts are constructed following CLIP’s zero-shot image classification setting [100].

Implementation Details. We apply CAN to recent diffusion transformer models, including
DiT [83] and UViT [82]. We follow the training setting suggested in the official paper or
GitHub repository. By default, classifier-free guidance [101] is used for all models unless
explicitly stated. The baseline models’ architectures are the same as the CAN models’, having
depthwise convolution in FFN layers. We implement our models using Pytorch and train
them using A6000 GPUs. Automatic mixed-precision is used during training. In addition to
applying CAN to existing models, we also build a new family of diffusion transformers called
CaT by marrying CAN and EfficientViT [8]. The macro architecture of CaT is illustrated in
Figure 2.13.

Ablation Study

We train all models for 80 epochs with batch size 1024 (around 100K iterations) for ablation
study experiments unless stated explicitly. All models use DPM-Solver [102] with 50 steps
for sampling images.

Effectiveness of CAN. Figure 2.14 summarizes the results of CAN on various UViT and
DiT variants. CAN significantly improves the image quality and controllability over the
baseline for all variants. Additionally, these improvements come with negligible computational

36

40

50

60

70

80

90

50 175 300

DiT-S2 (FID-10K)

Baseline CAN

100.00 86.07

92.85 80.45

137.2 69.89

119.60 65.74

50 82.79 50 59.49

60 71.10 60 55.32

70 67.18 70 52.49

80 65.35 80 50.44

90 65.55 90 49.23

100 64.34 100 48.54

110 63.37 110 47.80

120 62.36 120 46.73

130 61.76 130 45.81

140 61.29 140 45.21

150 61.11 150 44.96

160 60.02 160 44.24

170 59.50 170 44.26

180 58.93 180 43.58

190 58.38 190 43.32

200 58.12 200 42.98

210 57.25 210 43.01

220 57.19 220 42.68

230 56.71 230 42.47

240 56.72 240 42.18

250 56.53 250 42.05

260 56.30 260 41.97

270 56.02 270 41.93

280 55.92 280 41.72

290 55.54 290 41.85

300 55.13 300 41.51

FI
D-

10
K

 (n
o

cf
g)

↓

ImageNet 256 256
DiT-S/2

×

20

30

40

50

60

70

50 175 300

CAN Baseline

UViT-S2 (FID-10K)

Baseline CAN

86.78 65.61

74.81 55.26

69.53 52.41

64.50 43.33

50 60.50 50 38.89

60 56.91 60 36.65

70 53.95 70 33.87

80 51.07 80 31.89

90 48.80 90 30.44

100 47.09 100 29.70

110 45.45 110 28.81

120 44.29 120 28.30

130 43.18 130 27.60

140 42.06 140 27.15

150 41.07 150 26.84

160 40.34 160 26.41

170 39.74 170 26.16

180 39.08 180 25.72

190 38.86 190 25.44

200 38.52 200 25.22

210 37.94 210 25.14

220 37.71 220 24.70

230 36.97 230 24.43

240 36.92 240 24.30

250 36.58 250 24.23

260 36.20 260 23.85

270 36.04 270 23.78

280 35.65 280 23.62

290 35.50 290 23.52

300 35.11 300 23.35

FI
D-

10
K

 (n
o

cf
g)

↓

ImageNet 256 256
UViT-S/2

×

EpochEpoch

1

Figure 2.15: Training Curve. CAN’s improvements are not due to faster convergence. We
observe consistent FID improvements when trained longer.

ImageNet 256×256, UViT-S/2

Models FID ↓ CLIP Score ↑
Baseline 28.32 30.09

CAN (Timestep Only) 15.16 31.26
CAN (Class Label Only) 10.01 31.59

CAN (All) 8.82 31.74

Table 2.9: Ablation Study on the Effect of Each Condition for CAN.

cost overhead. Therefore, CAN also enhances efficiency by delivering the same FID and CLIP
score with lower-cost models.

Figure 2.15 compares the training curves of CAN and baseline on UViT-S/2 and DiT-S/2.
We can see that the absolute improvement remains significant when trained longer for both
models. It shows that the improvements are not due to faster convergence. Instead, adding
CAN improves the performance upper bound of the models.

Analysis. For diffusion models, the condition embedding contains both the class label
and timestep. To dissect which one is more important for the conditional weight generation
process, we conduct the ablation study experiments using UViT-S/2, and summarize the
results in Table 2.9. We find that:

• The class label information is more important than the timestep information in the weight
generation process. Adding class label alone provides 5.15 lower FID and 0.33 higher CLIP
score than adding timestep alone.

• Including the class label and the timestep in the condition embedding delivers the best
results. Therefore, we stick to this design in the following experiments.

37

ImageNet 256×256, DiT-S/2

Models FID ↓ CLIP Score ↑
Adaptive Normalization 39.44 29.57

CAN Only 26.44 30.54
CAN + Adaptive Normalization 21.76 30.86

ImageNet 256×256, UViT-S/2

Models FID ↓ CLIP Score ↑
Attention (Condition as Tokens) 28.32 30.09

CAN Only 8.79 31.75
CAN + Attention (Condition as Tokens) 8.82 31.74

Table 2.10: Comparison with Prior Conditional Control Methods. CAN can work
alone without adding other conditional control methods.

Comparison with Prior Conditional Control Methods. In prior experiments, we kept
the original conditional control methods of DiT (adaptive normalization) and UViT (attention
with condition as tokens) unchanged while adding CAN. To see if CAN can work alone
and the comparison between CAN and previous conditional control methods, we conduct
experiments and provide the results in Table 2.10. We have the following findings:

• CAN alone can work as an effective conditional control method. For example, CAN alone
achieves a 13.00 better FID and 0.97 higher CLIP score than adaptive normalization on
DiT-S/2. In addition, CAN alone achieves a 19.53 lower FID and 1.66 higher CLIP score
than attention (condition as tokens) on UViT-S/2.

• CAN can be combined with other conditional control methods to achieve better results.
For instance, combining CAN with adaptive normalization provides the best results for
DiT-S/2.

• For UViT models, combining CAN with attention (condition as tokens) slightly hurts the
performance. Therefore, we switch to using CAN alone on UViT models in the following
experiments.

Comparison with State-of-the-Art Models

We compare our final models with other diffusion models on ImageNet and COCO. The
results are summarized in Table 2.11 and Table 2.13. For CaT models, we use UniPC [104]
for sampling images to reduce the number of sampling steps.

Class-Conditional Generation on ImageNet 256×256. As shown in Table 2.11 (bot-
tom), with the classifier-free guidance (cfg), our CaT-B0 achieves 2.09 FID on ImageNet
256×256, outperforming DiT-XL/2 and UViT-H/2. More importantly, our CaT-B0 is much
more compute-efficient than these models: 9.9× fewer MACs than DiT-XL/2 and 11.1×

38

ImageNet 512×512

Models FID-50K (no cfg) ↓ FID-50K ↓ #MACs (Per Step) ↓ #Steps ↓ #Params ↓
ADM [103] 23.24 7.72 1983G 250 559M
ADM-U [103] 9.96 3.85 2813G 250 730M

UViT-L/4 [82] - 4.67 77G 50 287M
UViT-H/4 [82] - 4.05 133G 50 501M
DiT-XL/2 [83] 12.03 3.04 525G 250 675M

CAN (UViT-S-Deep/4) 23.40 4.04 16G 50 185M

CaT-L0 14.25 2.78 10G 20 377M
CaT-L1 10.64 2.48 12G 20 486M

ImageNet 256×256

Models FID-50K (no cfg) ↓ FID-50K ↓ #MACs (Per Step) ↓ #Steps ↓ #Params ↓
LDM-4 [3] 10.56 3.60 - 250 400M

UViT-L/2 [82] - 3.40 77G 50 287M
UViT-H/2 [82] - 2.29 133G 50 501M
DiT-XL/2 [83] 9.62 2.27 119G 250 675M

CAN (UViT-S/2) 16.20 3.52 12G 50 147M
CAN (UViT-S-Deep/2) 11.89 2.78 16G 50 182M

CaT-B0 8.81 2.09 12G 30 475M

Table 2.11: Class-Conditional Image Generation Results on ImageNet.

ImageNet 512×512

Models #Steps ↓ Orin Latency ↓ FID ↓
DiT-XL/2 [83] 250 45.9s 3.04

CaT-L0 20 0.2s 2.78

Table 2.12: NVIDIA Jetson AGX Orin Latency vs. FID. Latency is profiled with
TensorRT and fp16.

fewer MACs than UViT-H/2. Without the classifier-free guidance, our CaT-B0 also achieves
the lowest FID among all compared models (8.81 vs. 9.62 vs. 10.56).

Class-Conditional Generation on ImageNet 512×512. On the more challenging
512×512 image generation task, we observe the merits of CAN become more significant. For
example, our CAN (UViT-S-Deep/4) can match the performance of UViT-H (4.04 vs. 4.05)
while only requiring 12% of UViT-H’s computational cost per diffusion step. Additionally, our
CaT-L0 delivers 2.78 FID on ImageNet 512×512, outperforming DiT-XL/2 (3.04 FID) that
requires 52× higher computational cost per diffusion step. In addition, by slightly scaling up
the model, our CaT-L1 further improves the FID from 2.78 to 2.48.

In addition to computational cost comparisons, Table 2.12 compares CaT-L0 and DiT-
XL/2 on NVIDIA Jetson AGX Orin. The latency is measured with TensorRT, fp16. Delivering

39

COCO 256×256

Models FID-30K ↓ #MACs ↓ #Params ↓
Friro 8.97 - 512M

UViT-S/2 5.95 15G 45M
UViT-S-Deep/2 5.48 19G 58M
CaT-S0 5.49 3G 169M
CaT-S1 5.22 7G 307M

Table 2.13: Text-to-Image Generation Results on COCO 256×256.

a better FID on ImageNet 512×512, CaT-L0 combined with a training-free fast sampling
method (UniPC) runs 229× faster than DiT-XL/2 on Orin. It is possible to further push
the efficiency frontier by combining CaT with training-based few-step methods [105], [106],
showing the potential of enabling real-time diffusion model applications on edge devices.

Apart from quantitative results, Figure 2.16 provides samples from the randomly generated
images by CAN models, which demonstrate the capability of our models in generating high-
quality images.

Text-to-Image Generation on COCO 256×256. For text-to-image generation exper-
iments on COCO, we follow the same setting used in UViT [82]. Specifically, models are
trained from scratch on the COCO 2014 training set. Following UViT [82], we randomly
sample 30K text prompts from the COCO 2014 validation set to generate images and then
compute FID. We use the same CLIP encoder as in UViT for encoding the text prompts. The
results are summarized in Table 2.13. Our CaT-S0 achieves a similar FID as UViT-S-Deep/2
while having much less computational cost (19G MACs → 3G MACs). It justifies the
generalization ability of our models.

2.2.5 Conclusion

In this section, we studied adding control to image generative models by manipulating their
weight. We introduced a new conditional control method, called Condition-Aware Neural
Network (CAN), and provided efficient and practical designs for CAN to make it usable in
practice. We conducted extensive experiments on class-conditional generation using ImageNet
and text-to-image generation using COCO to evaluate CAN’s effectiveness. CAN delivered
consistent and significant improvements over prior conditional control methods. We also built
a new family of diffusion transformer models by marrying CAN and EfficientViT. For future
work, we will apply CAN to more challenging tasks like large-scale text-to-image generation,
video generation, etc.

40

1

Figure 2.16: Samples of Generated Images by CAN Models.

41

42

Chapter 3

Hardware-Aware Acceleration

3.1 Direct Neural Architecture Search on Target Task
and Hardware

3.1.1 Introduction

Neural architecture search (NAS) has demonstrated much success in automating neural
network architecture design for various deep learning tasks, such as image recognition [44],
[107]–[109] and language modeling [43]. Despite the remarkable results, conventional NAS
algorithms are prohibitively computation-intensive, requiring to train thousands of models
on the target task in a single experiment. Therefore, directly applying NAS to a large-scale
task (e.g. ImageNet) is computationally expensive or impossible, which makes it difficult
for making practical industry impact. As a trade-off, [107] propose to search for building
blocks on proxy tasks, such as training for fewer epochs, starting with a smaller dataset
(e.g. CIFAR-10), or learning with fewer blocks. Then top-performing blocks are stacked
and transferred to the large-scale target task. This paradigm has been widely adopted in
subsequent NAS algorithms [108], [110]–[115].

However, these blocks optimized on proxy tasks are not guaranteed to be optimal on
the target task, especially when taking hardware metrics such as latency into consideration.
More importantly, to enable transferability, such methods need to search for only a few
architectural motifs and then repeatedly stack the same pattern, which restricts the block
diversity and thereby harms performance.

In this work, we propose a simple and effective solution to the aforementioned limitations,
called ProxylessNAS, which directly learns the architectures on the target task and hardware
instead of with proxy (Figure 3.1). We also remove the restriction of repeating blocks in
previous NAS works [107], [113] and allow all of the blocks to be learned and specified. To
achieve this, we reduce the computational cost (GPU hours and GPU memory) of architecture
search to the same level of regular training in the following ways.

GPU hour-wise, inspired by recent works [113], [116], we formulate NAS as a path-level
pruning process. Specifically, we directly train an over-parameterized network that contains all
candidate paths (Figure 3.2). During training, we explicitly introduce architecture parameters
to learn which paths are redundant, while these redundant paths are pruned at the end of

43

Proxy
Task Learner

Target Task
&

Hardware

Transfer

(1) Previous proxy-based approach (2) Our proxy-less approach

Architecture

Updates

Architecture

Updates

Target Task
&

Hardware
Learner

Normal Train NAS  
Need Meta Controller

Need Proxy

DARTS & One-shot
No Meta Controller

Need Proxy

Proxyless (Ours) 
No Meta Controller

No Proxy

GPU Hours GPU Memory

Figure 3.1: ProxylessNAS directly optimizes neural network architectures on target task
and hardware. Benefiting from the directness and specialization, ProxylessNAS can achieve
remarkably better results than previous proxy-based approaches. On ImageNet, with only
200 GPU hours (200 × fewer than MnasNet [114]), our searched CNN model for mobile
achieves the same level of top-1 accuracy as MobileNetV2 1.4 while being 1.8× faster.

training to get a compact optimized architecture. In this way, we only need to train a single
network without any meta-controller (or hypernetwork) during architecture search.

However, naively including all the candidate paths leads to GPU memory explosion [113],
[116], as the memory consumption grows linearly w.r.t. the number of choices. Thus, GPU
memory-wise, we binarize the architecture parameters (1 or 0) and force only one path to be
active at run-time, which reduces the required memory to the same level of training a compact
model. We propose a gradient-based approach to train these binarized parameters based on
BinaryConnect [117]. Furthermore, to handle non-differentiable hardware objectives (using
latency as an example) for learning specialized network architectures on target hardware,
we model network latency as a continuous function and optimize it as regularization loss.
Additionally, we also present a REINFORCE-based [118] algorithm as an alternative strategy
to handle hardware metrics.

In our experiments on CIFAR-10 and ImageNet, benefiting from the directness and
specialization, our method can achieve strong empirical results. On CIFAR-10, our model
reaches 2.08% test error with only 5.7M parameters. On ImageNet, our model achieves 75.1%
top-1 accuracy which is 3.1% higher than MobileNetV2 [119] while being 1.2× faster.

3.1.2 Related Work

The use of machine learning techniques, such as reinforcement learning or neuro-evolution,
to replace human experts in designing neural network architectures, usually referred to
as neural architecture search, has drawn an increasing interest [43], [44], [90], [108], [110],
[112], [113], [116], [120]–[123]. In NAS, architecture search is typically considered as a
meta-learning process, and a meta-controller (e.g. a recurrent neural network (RNN)), is
introduced to explore a given architecture space with training a network in the inner loop to
get an evaluation for guiding exploration. Consequently, such methods are computationally
expensive to run, especially on large-scale tasks, e.g. ImageNet.

Some recent works [90], [120] try to improve the efficiency of this meta-learning process
by reducing the cost of getting an evaluation. In [90], a hypernetwork is utilized to generate
weights for each sampled network and hence can evaluate the architecture without training
it. Similarly, [120] propose to share weights among all sampled networks under the standard
NAS framework [43]. These methods speed up architecture search by orders of magnitude,

44

(1) Update weight parameters

Architecture Parameters
Binary Gate (0:prune, 1:keep)

OUTPUT

α β σ … δ
1 0 0 … 0

(2) Update architecture parameters

INPUT

α β σ … δ
0 1 0 … 0

update

fmap not in memory
fmap in memory

INPUT

CONV
5x5

POOL
3x3

... Weight  
Parameters

CONV
3x3 Identity CONV

5x5
POOL

3x3
...Identity

update

CONV
3x3

OUTPUT

Table 1

MIT Red

Trainer Latency
Model

Direct measurement:
expensive and slow

Latency modeling:
cheap, fast and differentiable

MIT Red-1

Learnable Block
i - 1

Learnable Block
i

……

Learnable Block
i + 1

……

INPUT

OUTPUT

...

α β σ … ζ
CONV

5x5
POOL

3x3
...CONV

3x3
Identity

E[latency] =
X

i

E[latencyi]
<latexit sha1_base64="lntrwtqgrPO1VSk1eaeyNufWf/Q=">AAACNXicfVDLSsNAFJ34rPUVdelmsAiuSiKCboSiCC5cVLAPaEKYTCft0JkkzEyEEPJTbvwPV7pwoYhbf8FJmoW24oGBwznnMvceP2ZUKst6MRYWl5ZXVmtr9fWNza1tc2e3K6NEYNLBEYtE30eSMBqSjqKKkX4sCOI+Iz1/cln4vXsiJI3CO5XGxOVoFNKAYqS05Jk3Dkdq7PvZVT7ISi54xpAiIU7z3IXn0JEJ9zKaw3+Sha/TntmwmlYJOE/sijRAhbZnPjnDCCechAozJOXAtmLlZkgoihnJ604iSYzwBI3IQNMQcSLdrLw6h4daGcIgEvqFCpbqz4kMcSlT7utksa2c9QrxL2+QqODMzWgYJ8Vx04+ChEEVwaJCOKSCYMVSTRAWVO8K8RgJhJUuuq5LsGdPnifd46ZtNe3bk0broqqjBvbBATgCNjgFLXAN2qADMHgAz+ANvBuPxqvxYXxOowtGNbMHfsH4+gbJva55</latexit><latexit sha1_base64="lntrwtqgrPO1VSk1eaeyNufWf/Q=">AAACNXicfVDLSsNAFJ34rPUVdelmsAiuSiKCboSiCC5cVLAPaEKYTCft0JkkzEyEEPJTbvwPV7pwoYhbf8FJmoW24oGBwznnMvceP2ZUKst6MRYWl5ZXVmtr9fWNza1tc2e3K6NEYNLBEYtE30eSMBqSjqKKkX4sCOI+Iz1/cln4vXsiJI3CO5XGxOVoFNKAYqS05Jk3Dkdq7PvZVT7ISi54xpAiIU7z3IXn0JEJ9zKaw3+Sha/TntmwmlYJOE/sijRAhbZnPjnDCCechAozJOXAtmLlZkgoihnJ604iSYzwBI3IQNMQcSLdrLw6h4daGcIgEvqFCpbqz4kMcSlT7utksa2c9QrxL2+QqODMzWgYJ8Vx04+ChEEVwaJCOKSCYMVSTRAWVO8K8RgJhJUuuq5LsGdPnifd46ZtNe3bk0broqqjBvbBATgCNjgFLXAN2qADMHgAz+ANvBuPxqvxYXxOowtGNbMHfsH4+gbJva55</latexit><latexit sha1_base64="lntrwtqgrPO1VSk1eaeyNufWf/Q=">AAACNXicfVDLSsNAFJ34rPUVdelmsAiuSiKCboSiCC5cVLAPaEKYTCft0JkkzEyEEPJTbvwPV7pwoYhbf8FJmoW24oGBwznnMvceP2ZUKst6MRYWl5ZXVmtr9fWNza1tc2e3K6NEYNLBEYtE30eSMBqSjqKKkX4sCOI+Iz1/cln4vXsiJI3CO5XGxOVoFNKAYqS05Jk3Dkdq7PvZVT7ISi54xpAiIU7z3IXn0JEJ9zKaw3+Sha/TntmwmlYJOE/sijRAhbZnPjnDCCechAozJOXAtmLlZkgoihnJ604iSYzwBI3IQNMQcSLdrLw6h4daGcIgEvqFCpbqz4kMcSlT7utksa2c9QrxL2+QqODMzWgYJ8Vx04+ChEEVwaJCOKSCYMVSTRAWVO8K8RgJhJUuuq5LsGdPnifd46ZtNe3bk0broqqjBvbBATgCNjgFLXAN2qADMHgAz+ANvBuPxqvxYXxOowtGNbMHfsH4+gbJva55</latexit><latexit sha1_base64="lntrwtqgrPO1VSk1eaeyNufWf/Q=">AAACNXicfVDLSsNAFJ34rPUVdelmsAiuSiKCboSiCC5cVLAPaEKYTCft0JkkzEyEEPJTbvwPV7pwoYhbf8FJmoW24oGBwznnMvceP2ZUKst6MRYWl5ZXVmtr9fWNza1tc2e3K6NEYNLBEYtE30eSMBqSjqKKkX4sCOI+Iz1/cln4vXsiJI3CO5XGxOVoFNKAYqS05Jk3Dkdq7PvZVT7ISi54xpAiIU7z3IXn0JEJ9zKaw3+Sha/TntmwmlYJOE/sijRAhbZnPjnDCCechAozJOXAtmLlZkgoihnJ604iSYzwBI3IQNMQcSLdrLw6h4daGcIgEvqFCpbqz4kMcSlT7utksa2c9QrxL2+QqODMzWgYJ8Vx04+ChEEVwaJCOKSCYMVSTRAWVO8K8RgJhJUuuq5LsGdPnifd46ZtNe3bk0broqqjBvbBATgCNjgFLXAN2qADMHgAz+ANvBuPxqvxYXxOowtGNbMHfsH4+gbJva55</latexit>

Loss = LossCE + �1||w||22 + �2E[latency]
<latexit sha1_base64="UvM7E2w6lXtW50LPl18+gDN1T4k=">AAACSnicbVBNSxxBEO3ZaGJWTTbJ0UvjIgjCMrMEkktAIoKHHBRcFXbHoaanVht7Puiu0Sy98/ty8eTNH+HFQ0LwYs+4gtEUdPN4VY969eJCSUO+f+21Xs3Nv36z8La9uLT87n3nw8cDk5da4EDkKtdHMRhUMsMBSVJ4VGiENFZ4GJ9t1f3Dc9RG5tk+TQoMUzjJ5FgKIEdFHfiRG/ON139kt7YrvsFHyskTiAI+nV5Mp1H/2PYbnvAnNRutxqSyj3N9PkqBTuPYblfDBurUKiDMxKQKq6jT9Xt+U/wlCGagy2a1G3WuRkkuyhQzEgqMGQZ+QaEFTVIorNqj0mAB4gxOcOhgBima0DbGKr7mmISPc+1eRrxhnyospMZM0thN1k7N815N/q83LGn8NbQyK8r6sIdF41JxynmdK0+kRkFq4gAILZ1XLk5BgyCXftuFEDw/+SU46PcCvxfsfe5ufp/FscBW2CpbZwH7wjbZDttlAybYL3bDfrM/3qV36/317h5GW95M84n9U625e9C6tBw=</latexit><latexit sha1_base64="UvM7E2w6lXtW50LPl18+gDN1T4k=">AAACSnicbVBNSxxBEO3ZaGJWTTbJ0UvjIgjCMrMEkktAIoKHHBRcFXbHoaanVht7Puiu0Sy98/ty8eTNH+HFQ0LwYs+4gtEUdPN4VY969eJCSUO+f+21Xs3Nv36z8La9uLT87n3nw8cDk5da4EDkKtdHMRhUMsMBSVJ4VGiENFZ4GJ9t1f3Dc9RG5tk+TQoMUzjJ5FgKIEdFHfiRG/ON139kt7YrvsFHyskTiAI+nV5Mp1H/2PYbnvAnNRutxqSyj3N9PkqBTuPYblfDBurUKiDMxKQKq6jT9Xt+U/wlCGagy2a1G3WuRkkuyhQzEgqMGQZ+QaEFTVIorNqj0mAB4gxOcOhgBima0DbGKr7mmISPc+1eRrxhnyospMZM0thN1k7N815N/q83LGn8NbQyK8r6sIdF41JxynmdK0+kRkFq4gAILZ1XLk5BgyCXftuFEDw/+SU46PcCvxfsfe5ufp/FscBW2CpbZwH7wjbZDttlAybYL3bDfrM/3qV36/317h5GW95M84n9U625e9C6tBw=</latexit><latexit sha1_base64="UvM7E2w6lXtW50LPl18+gDN1T4k=">AAACSnicbVBNSxxBEO3ZaGJWTTbJ0UvjIgjCMrMEkktAIoKHHBRcFXbHoaanVht7Puiu0Sy98/ty8eTNH+HFQ0LwYs+4gtEUdPN4VY969eJCSUO+f+21Xs3Nv36z8La9uLT87n3nw8cDk5da4EDkKtdHMRhUMsMBSVJ4VGiENFZ4GJ9t1f3Dc9RG5tk+TQoMUzjJ5FgKIEdFHfiRG/ON139kt7YrvsFHyskTiAI+nV5Mp1H/2PYbnvAnNRutxqSyj3N9PkqBTuPYblfDBurUKiDMxKQKq6jT9Xt+U/wlCGagy2a1G3WuRkkuyhQzEgqMGQZ+QaEFTVIorNqj0mAB4gxOcOhgBima0DbGKr7mmISPc+1eRrxhnyospMZM0thN1k7N815N/q83LGn8NbQyK8r6sIdF41JxynmdK0+kRkFq4gAILZ1XLk5BgyCXftuFEDw/+SU46PcCvxfsfe5ufp/FscBW2CpbZwH7wjbZDttlAybYL3bDfrM/3qV36/317h5GW95M84n9U625e9C6tBw=</latexit><latexit sha1_base64="UvM7E2w6lXtW50LPl18+gDN1T4k=">AAACSnicbVBNSxxBEO3ZaGJWTTbJ0UvjIgjCMrMEkktAIoKHHBRcFXbHoaanVht7Puiu0Sy98/ty8eTNH+HFQ0LwYs+4gtEUdPN4VY969eJCSUO+f+21Xs3Nv36z8La9uLT87n3nw8cDk5da4EDkKtdHMRhUMsMBSVJ4VGiENFZ4GJ9t1f3Dc9RG5tk+TQoMUzjJ5FgKIEdFHfiRG/ON139kt7YrvsFHyskTiAI+nV5Mp1H/2PYbnvAnNRutxqSyj3N9PkqBTuPYblfDBurUKiDMxKQKq6jT9Xt+U/wlCGagy2a1G3WuRkkuyhQzEgqMGQZ+QaEFTVIorNqj0mAB4gxOcOhgBima0DbGKr7mmISPc+1eRrxhnyospMZM0thN1k7N815N/q83LGn8NbQyK8r6sIdF41JxynmdK0+kRkFq4gAILZ1XLk5BgyCXftuFEDw/+SU46PcCvxfsfe5ufp/FscBW2CpbZwH7wjbZDttlAybYL3bDfrM/3qV36/317h5GW95M84n9U625e9C6tBw=</latexit>

E[Latency] = ↵⇥ F (conv 3x3)+

� ⇥ F (conv 5x5)+

� ⇥ F (identity)+

......

⇣ ⇥ F (pool 3x3)
<latexit sha1_base64="Lm2s03uPUYjMAPu22Qv9NriXYRM=">AAADIHicfVJNb9QwEHXCVwlfWzhysViBipBWSUuBC1IFAnHgUCS2rbSOVo4zm7Xq2JHtVBui8E+48Fe4cAAhuMGvwUnDV7vLSJaeZuZ53jw7KQQ3Ngy/e/6Zs+fOX1i7GFy6fOXqtcH69T2jSs1gzJRQ+iChBgSXMLbcCjgoNNA8EbCfHD5t6/tHoA1X8rWtCohzmkk+44xal5quew9IAhmXNRU8k5A2AcmpnSdJ/ayZdFDn9UtqQbKqifFjfOctsbCw3eQ6ESU0NaGimNMGE8tzMPj5xi8eU/KITLcWW81dfA8TEiwjJ2AddxV5e7H9P7LhWb5sMk9BOjeqP9xRF6vuebNCRKGU6DcICMj0t03TwTAchV3g0yDqwRD1sTsdfCOpYmXudDFBjZlEYWHjmmrLmQBne2mgoOyQZjBxUFInJK47kQ2+7TIpnintjrS4y/7NqGluTJUnrrMVbk7W2uSy2qS0s0dxzWVRti98PGhWCmwVbn8LTrkGZkXlAGWaO62YzammzLo/FTgTopMrnwZ7m6MoHEWv7g93nvR2rKGb6BbaQBF6iHbQC7SLxoh577wP3ifvs//e/+h/8b8et/pez7mB/gn/x09YVgHC</latexit><latexit sha1_base64="Lm2s03uPUYjMAPu22Qv9NriXYRM=">AAADIHicfVJNb9QwEHXCVwlfWzhysViBipBWSUuBC1IFAnHgUCS2rbSOVo4zm7Xq2JHtVBui8E+48Fe4cAAhuMGvwUnDV7vLSJaeZuZ53jw7KQQ3Ngy/e/6Zs+fOX1i7GFy6fOXqtcH69T2jSs1gzJRQ+iChBgSXMLbcCjgoNNA8EbCfHD5t6/tHoA1X8rWtCohzmkk+44xal5quew9IAhmXNRU8k5A2AcmpnSdJ/ayZdFDn9UtqQbKqifFjfOctsbCw3eQ6ESU0NaGimNMGE8tzMPj5xi8eU/KITLcWW81dfA8TEiwjJ2AddxV5e7H9P7LhWb5sMk9BOjeqP9xRF6vuebNCRKGU6DcICMj0t03TwTAchV3g0yDqwRD1sTsdfCOpYmXudDFBjZlEYWHjmmrLmQBne2mgoOyQZjBxUFInJK47kQ2+7TIpnintjrS4y/7NqGluTJUnrrMVbk7W2uSy2qS0s0dxzWVRti98PGhWCmwVbn8LTrkGZkXlAGWaO62YzammzLo/FTgTopMrnwZ7m6MoHEWv7g93nvR2rKGb6BbaQBF6iHbQC7SLxoh577wP3ifvs//e/+h/8b8et/pez7mB/gn/x09YVgHC</latexit><latexit sha1_base64="Lm2s03uPUYjMAPu22Qv9NriXYRM=">AAADIHicfVJNb9QwEHXCVwlfWzhysViBipBWSUuBC1IFAnHgUCS2rbSOVo4zm7Xq2JHtVBui8E+48Fe4cAAhuMGvwUnDV7vLSJaeZuZ53jw7KQQ3Ngy/e/6Zs+fOX1i7GFy6fOXqtcH69T2jSs1gzJRQ+iChBgSXMLbcCjgoNNA8EbCfHD5t6/tHoA1X8rWtCohzmkk+44xal5quew9IAhmXNRU8k5A2AcmpnSdJ/ayZdFDn9UtqQbKqifFjfOctsbCw3eQ6ESU0NaGimNMGE8tzMPj5xi8eU/KITLcWW81dfA8TEiwjJ2AddxV5e7H9P7LhWb5sMk9BOjeqP9xRF6vuebNCRKGU6DcICMj0t03TwTAchV3g0yDqwRD1sTsdfCOpYmXudDFBjZlEYWHjmmrLmQBne2mgoOyQZjBxUFInJK47kQ2+7TIpnintjrS4y/7NqGluTJUnrrMVbk7W2uSy2qS0s0dxzWVRti98PGhWCmwVbn8LTrkGZkXlAGWaO62YzammzLo/FTgTopMrnwZ7m6MoHEWv7g93nvR2rKGb6BbaQBF6iHbQC7SLxoh577wP3ifvs//e/+h/8b8et/pez7mB/gn/x09YVgHC</latexit><latexit sha1_base64="Lm2s03uPUYjMAPu22Qv9NriXYRM=">AAADIHicfVJNb9QwEHXCVwlfWzhysViBipBWSUuBC1IFAnHgUCS2rbSOVo4zm7Xq2JHtVBui8E+48Fe4cAAhuMGvwUnDV7vLSJaeZuZ53jw7KQQ3Ngy/e/6Zs+fOX1i7GFy6fOXqtcH69T2jSs1gzJRQ+iChBgSXMLbcCjgoNNA8EbCfHD5t6/tHoA1X8rWtCohzmkk+44xal5quew9IAhmXNRU8k5A2AcmpnSdJ/ayZdFDn9UtqQbKqifFjfOctsbCw3eQ6ESU0NaGimNMGE8tzMPj5xi8eU/KITLcWW81dfA8TEiwjJ2AddxV5e7H9P7LhWb5sMk9BOjeqP9xRF6vuebNCRKGU6DcICMj0t03TwTAchV3g0yDqwRD1sTsdfCOpYmXudDFBjZlEYWHjmmrLmQBne2mgoOyQZjBxUFInJK47kQ2+7TIpnintjrS4y/7NqGluTJUnrrMVbk7W2uSy2qS0s0dxzWVRti98PGhWCmwVbn8LTrkGZkXlAGWaO62YzammzLo/FTgTopMrnwZ7m6MoHEWv7g93nvR2rKGb6BbaQBF6iHbQC7SLxoh577wP3ifvs//e/+h/8b8et/pez7mB/gn/x09YVgHC</latexit>

Figure 3.2: Learning both weight parameters and binarized architecture parameters.

however, they require a hypernetwork or an RNN controller and mainly focus on small-scale
tasks (e.g. CIFAR) rather than large-scale tasks (e.g. ImageNet).

Our work is most closely related to One-Shot [116] and DARTS [113], both of which
get rid of the meta-controller (or hypernetwork) by modeling NAS as a single training
process of an over-parameterized network that comprises all candidate paths. Specifically,
One-Shot trains the over-parameterized network with DropPath [107] that drops out each
path with some fixed probability. Then they use the pre-trained over-parameterized network
to evaluate architectures, which are sampled by randomly zeroing out paths. DARTS
additionally introduces a real-valued architecture parameter for each path and jointly train
weight parameters and architecture parameters via standard gradient descent. However, they
suffer from the large GPU memory consumption issue and hence still need to utilize proxy
tasks. In this work, we address the large memory issue in these two methods through path
binarization.

Another relevant topic is network pruning [92] that aim to improve the efficiency of neural
networks by removing insignificant neurons [35] or channels [37]. Similar to these works,
we start with an over-parameterized network and then prune the redundant parts to derive
the optimized architecture. The distinction is that they focus on layer-level pruning that
only modifies the filter (or units) number of a layer but can not change the topology of the
network, while we focus on learning effective network architectures through path-level pruning.
We also allow both pruning and growing the number of layers.

3.1.3 Method

We first describe the construction of the over-parameterized network with all candidate paths,
then introduce how we leverage binarized architecture parameters to reduce the memory
consumption of training the over-parameterized network to the same level as regular training.
We propose a gradient-based algorithm to train these binarized architecture parameters.
Finally, we present two techniques to handle non-differentiable objectives (e.g. latency) for
specializing neural networks on target hardware.

45

Construction of Over-Parameterized Network

Denote a neural network as N (e, · · · , en) where ei represents a certain edge in the directed
acyclic graph (DAG). Let O = {oi} be the set of N candidate primitive operations (e.g.
convolution, pooling, identity, zero, etc). To construct the over-parameterized network that
includes any architecture in the search space, instead of setting each edge to be a definite
primitive operation, we set each edge to be a mixed operation that has N parallel paths
(Figure 3.2), denoted as mO. As such, the over-parameterized network can be expressed as
N (e = m1

O, · · · , en = mn
O).

Given input x, the output of a mixed operation mO is defined based on the outputs of its
N paths. In One-Shot, mO(x) is the sum of {oi(x)}, while in DARTS, mO(x) is weighted sum
of {oi(x)} where the weights are calculated by applying softmax to N real-valued architecture
parameters {αi}:

mOne-Shot
O (x) =

N∑

i=1

oi(x), mDARTS
O (x) =

N∑

i=1

pioi(x) =
N∑

i=1

exp(αi)∑
j exp(αj)

oi(x). (3.1)

As shown in Eq. (3.1), the output feature maps of all N paths are calculated and stored in
the memory, while training a compact model only involves one path. Therefore, One-Shot
and DARTS roughly need N times GPU memory and GPU hours compared to training a
compact model. On large-scale dataset, this can easily exceed the memory limits of hardware
with large design space. In the following section, we solve this memory issue based on the
idea of path binarization.

Learning Binarized Path

To reduce memory footprint, we keep only one path when training the over-parameterized
network. Unlike [117] which binarize individual weights, we binarize entire paths. We
introduce N real-valued architecture parameters {αi} and then transforms the real-valued
path weights to binary gates:

g = binarize(p1, · · · , pN) =





[1, 0, · · · , 0] with probability p1,

· · ·
[0, 0, · · · , 1] with probability pN .

(3.2)

Based on the binary gates g, the output of the mixed operation is given as:

mBinary
O (x) =

N∑

i=1

gioi(x) =





o1(x) with probability p1

· · ·
oN(x) with probability pN .

. (3.3)

As illustrated in Eq. (3.3) and Figure 3.2, by using the binary gates rather than real-valued
path weights [113], only one path of activation is active in memory at run-time and the
memory requirement of training the over-parameterized network is thus reduced to the same
level of training a compact model. That’s more than an order of magnitude memory saving.

46

Training Binarized Architecture Parameters. Figure 3.2 illustrates the training
procedure of the weight parameters and binarized architecture parameters in the over-
parameterized network. When training weight parameters, we first freeze the architecture
parameters and stochastically sample binary gates according to Eq. (3.2) for each batch of
input data. Then the weight parameters of active paths are updated via standard gradient
descent on the training set (Figure 3.2 left). When training architecture parameters, the
weight parameters are frozen, then we reset the binary gates and update the architecture
parameters on the validation set (Figure 3.2 right). These two update steps are performed in
an alternative manner. Once the training of architecture parameters is finished, we can then
derive the compact architecture by pruning redundant paths. In this work, we simply choose
the path with the highest path weight.

Unlike weight parameters, the architecture parameters are not directly involved in the
computation graph and thereby cannot be updated using the standard gradient descent. In
this section, we introduce a gradient-based approach to learn the architecture parameters.

In BinaryConnect [117], the real-valued weight is updated using the gradient w.r.t.
its corresponding binary gate. In our case, analogously, the gradient w.r.t. architecture
parameters can be approximately estimated using ∂L/∂gi in replace of ∂L/∂pi:

∂L

∂αi

=
N∑

j=1

∂L

∂pj

∂pj
∂αi

≈
N∑

j=1

∂L

∂gj

∂pj
∂αi

=
N∑

j=1

∂L

∂gj

∂
(

exp(αj)∑
k exp(αk)

)

∂αi

=
N∑

j=1

∂L

∂gj
pj(δij − pi), (3.4)

where δij = 1 if i = j and δij = 0 if i ̸= j. Since the binary gates g are involved in the
computation graph, as shown in Eq. (3.3), ∂L/∂gj can be calculated through backpropagation.
However, computing ∂L/∂gj requires to calculate and store oj(x). Therefore, directly using
Eq. (3.4) to update the architecture parameters would also require roughly N times GPU
memory compared to training a compact model.

To address this issue, we consider factorizing the task of choosing one path out of N
candidates into multiple binary selection tasks. The intuition is that if a path is the best
choice at a particular position, it should be the better choice when solely compared to any
other path.

Following this idea, within an update step of the architecture parameters, we first sample
two paths according to the multinomial distribution (p1, · · · , pN) and mask all the other
paths as if they do not exist. As such the number of candidates temporarily decrease from
N to 2, while the path weights {pi} and binary gates {gi} are reset accordingly. Then we
update the architecture parameters of these two sampled paths using the gradients calculated
via Eq. (3.4). Finally, as path weights are computed by applying softmax to the architecture
parameters, we need to rescale the value of these two updated architecture parameters by
multiplying a ratio to keep the path weights of unsampled paths unchanged. As such, in each
update step, one of the sampled paths is enhanced (path weight increases) and the other
sampled path is attenuated (path weight decreases) while all other paths keep unchanged. In
this way, regardless of the value of N , only two paths are involved in each update step of the
architecture parameters, and thereby the memory requirement is reduced to the same level of
training a compact model.

47

(1) Update weight parameters

Architecture Parameters
Binary Gate (0:prune, 1:keep)

OUTPUT

α β σ … δ
1 0 0 … 0

(2) Update architecture parameters

INPUT

α β σ … δ
0 1 0 … 0

update

fmap not in memory
fmap in memory

INPUT

CONV
5x5

POOL
3x3

... Weight  
Parameters

CONV
3x3 Identity CONV

5x5
POOL

3x3
...Identity

update

CONV
3x3

OUTPUT

Table 1

MIT Red

Trainer Latency
Model

Direct measurement:
expensive and slow

Latency modeling:
cheap, fast and differentiable

MIT Red-1

Learnable Block
i - 1

Learnable Block
i

……

Learnable Block
i + 1

……

INPUT

OUTPUT

...

α β σ … ζ
CONV

5x5
POOL

3x3
...CONV

3x3
Identity

E[latency] =
X

i

E[latencyi]
<latexit sha1_base64="lntrwtqgrPO1VSk1eaeyNufWf/Q=">AAACNXicfVDLSsNAFJ34rPUVdelmsAiuSiKCboSiCC5cVLAPaEKYTCft0JkkzEyEEPJTbvwPV7pwoYhbf8FJmoW24oGBwznnMvceP2ZUKst6MRYWl5ZXVmtr9fWNza1tc2e3K6NEYNLBEYtE30eSMBqSjqKKkX4sCOI+Iz1/cln4vXsiJI3CO5XGxOVoFNKAYqS05Jk3Dkdq7PvZVT7ISi54xpAiIU7z3IXn0JEJ9zKaw3+Sha/TntmwmlYJOE/sijRAhbZnPjnDCCechAozJOXAtmLlZkgoihnJ604iSYzwBI3IQNMQcSLdrLw6h4daGcIgEvqFCpbqz4kMcSlT7utksa2c9QrxL2+QqODMzWgYJ8Vx04+ChEEVwaJCOKSCYMVSTRAWVO8K8RgJhJUuuq5LsGdPnifd46ZtNe3bk0broqqjBvbBATgCNjgFLXAN2qADMHgAz+ANvBuPxqvxYXxOowtGNbMHfsH4+gbJva55</latexit><latexit sha1_base64="lntrwtqgrPO1VSk1eaeyNufWf/Q=">AAACNXicfVDLSsNAFJ34rPUVdelmsAiuSiKCboSiCC5cVLAPaEKYTCft0JkkzEyEEPJTbvwPV7pwoYhbf8FJmoW24oGBwznnMvceP2ZUKst6MRYWl5ZXVmtr9fWNza1tc2e3K6NEYNLBEYtE30eSMBqSjqKKkX4sCOI+Iz1/cln4vXsiJI3CO5XGxOVoFNKAYqS05Jk3Dkdq7PvZVT7ISi54xpAiIU7z3IXn0JEJ9zKaw3+Sha/TntmwmlYJOE/sijRAhbZnPjnDCCechAozJOXAtmLlZkgoihnJ604iSYzwBI3IQNMQcSLdrLw6h4daGcIgEvqFCpbqz4kMcSlT7utksa2c9QrxL2+QqODMzWgYJ8Vx04+ChEEVwaJCOKSCYMVSTRAWVO8K8RgJhJUuuq5LsGdPnifd46ZtNe3bk0broqqjBvbBATgCNjgFLXAN2qADMHgAz+ANvBuPxqvxYXxOowtGNbMHfsH4+gbJva55</latexit><latexit sha1_base64="lntrwtqgrPO1VSk1eaeyNufWf/Q=">AAACNXicfVDLSsNAFJ34rPUVdelmsAiuSiKCboSiCC5cVLAPaEKYTCft0JkkzEyEEPJTbvwPV7pwoYhbf8FJmoW24oGBwznnMvceP2ZUKst6MRYWl5ZXVmtr9fWNza1tc2e3K6NEYNLBEYtE30eSMBqSjqKKkX4sCOI+Iz1/cln4vXsiJI3CO5XGxOVoFNKAYqS05Jk3Dkdq7PvZVT7ISi54xpAiIU7z3IXn0JEJ9zKaw3+Sha/TntmwmlYJOE/sijRAhbZnPjnDCCechAozJOXAtmLlZkgoihnJ604iSYzwBI3IQNMQcSLdrLw6h4daGcIgEvqFCpbqz4kMcSlT7utksa2c9QrxL2+QqODMzWgYJ8Vx04+ChEEVwaJCOKSCYMVSTRAWVO8K8RgJhJUuuq5LsGdPnifd46ZtNe3bk0broqqjBvbBATgCNjgFLXAN2qADMHgAz+ANvBuPxqvxYXxOowtGNbMHfsH4+gbJva55</latexit><latexit sha1_base64="lntrwtqgrPO1VSk1eaeyNufWf/Q=">AAACNXicfVDLSsNAFJ34rPUVdelmsAiuSiKCboSiCC5cVLAPaEKYTCft0JkkzEyEEPJTbvwPV7pwoYhbf8FJmoW24oGBwznnMvceP2ZUKst6MRYWl5ZXVmtr9fWNza1tc2e3K6NEYNLBEYtE30eSMBqSjqKKkX4sCOI+Iz1/cln4vXsiJI3CO5XGxOVoFNKAYqS05Jk3Dkdq7PvZVT7ISi54xpAiIU7z3IXn0JEJ9zKaw3+Sha/TntmwmlYJOE/sijRAhbZnPjnDCCechAozJOXAtmLlZkgoihnJ604iSYzwBI3IQNMQcSLdrLw6h4daGcIgEvqFCpbqz4kMcSlT7utksa2c9QrxL2+QqODMzWgYJ8Vx04+ChEEVwaJCOKSCYMVSTRAWVO8K8RgJhJUuuq5LsGdPnifd46ZtNe3bk0broqqjBvbBATgCNjgFLXAN2qADMHgAz+ANvBuPxqvxYXxOowtGNbMHfsH4+gbJva55</latexit>

Loss = LossCE + �1||w||22 + �2E[latency]
<latexit sha1_base64="UvM7E2w6lXtW50LPl18+gDN1T4k=">AAACSnicbVBNSxxBEO3ZaGJWTTbJ0UvjIgjCMrMEkktAIoKHHBRcFXbHoaanVht7Puiu0Sy98/ty8eTNH+HFQ0LwYs+4gtEUdPN4VY969eJCSUO+f+21Xs3Nv36z8La9uLT87n3nw8cDk5da4EDkKtdHMRhUMsMBSVJ4VGiENFZ4GJ9t1f3Dc9RG5tk+TQoMUzjJ5FgKIEdFHfiRG/ON139kt7YrvsFHyskTiAI+nV5Mp1H/2PYbnvAnNRutxqSyj3N9PkqBTuPYblfDBurUKiDMxKQKq6jT9Xt+U/wlCGagy2a1G3WuRkkuyhQzEgqMGQZ+QaEFTVIorNqj0mAB4gxOcOhgBima0DbGKr7mmISPc+1eRrxhnyospMZM0thN1k7N815N/q83LGn8NbQyK8r6sIdF41JxynmdK0+kRkFq4gAILZ1XLk5BgyCXftuFEDw/+SU46PcCvxfsfe5ufp/FscBW2CpbZwH7wjbZDttlAybYL3bDfrM/3qV36/317h5GW95M84n9U625e9C6tBw=</latexit><latexit sha1_base64="UvM7E2w6lXtW50LPl18+gDN1T4k=">AAACSnicbVBNSxxBEO3ZaGJWTTbJ0UvjIgjCMrMEkktAIoKHHBRcFXbHoaanVht7Puiu0Sy98/ty8eTNH+HFQ0LwYs+4gtEUdPN4VY969eJCSUO+f+21Xs3Nv36z8La9uLT87n3nw8cDk5da4EDkKtdHMRhUMsMBSVJ4VGiENFZ4GJ9t1f3Dc9RG5tk+TQoMUzjJ5FgKIEdFHfiRG/ON139kt7YrvsFHyskTiAI+nV5Mp1H/2PYbnvAnNRutxqSyj3N9PkqBTuPYblfDBurUKiDMxKQKq6jT9Xt+U/wlCGagy2a1G3WuRkkuyhQzEgqMGQZ+QaEFTVIorNqj0mAB4gxOcOhgBima0DbGKr7mmISPc+1eRrxhnyospMZM0thN1k7N815N/q83LGn8NbQyK8r6sIdF41JxynmdK0+kRkFq4gAILZ1XLk5BgyCXftuFEDw/+SU46PcCvxfsfe5ufp/FscBW2CpbZwH7wjbZDttlAybYL3bDfrM/3qV36/317h5GW95M84n9U625e9C6tBw=</latexit><latexit sha1_base64="UvM7E2w6lXtW50LPl18+gDN1T4k=">AAACSnicbVBNSxxBEO3ZaGJWTTbJ0UvjIgjCMrMEkktAIoKHHBRcFXbHoaanVht7Puiu0Sy98/ty8eTNH+HFQ0LwYs+4gtEUdPN4VY969eJCSUO+f+21Xs3Nv36z8La9uLT87n3nw8cDk5da4EDkKtdHMRhUMsMBSVJ4VGiENFZ4GJ9t1f3Dc9RG5tk+TQoMUzjJ5FgKIEdFHfiRG/ON139kt7YrvsFHyskTiAI+nV5Mp1H/2PYbnvAnNRutxqSyj3N9PkqBTuPYblfDBurUKiDMxKQKq6jT9Xt+U/wlCGagy2a1G3WuRkkuyhQzEgqMGQZ+QaEFTVIorNqj0mAB4gxOcOhgBima0DbGKr7mmISPc+1eRrxhnyospMZM0thN1k7N815N/q83LGn8NbQyK8r6sIdF41JxynmdK0+kRkFq4gAILZ1XLk5BgyCXftuFEDw/+SU46PcCvxfsfe5ufp/FscBW2CpbZwH7wjbZDttlAybYL3bDfrM/3qV36/317h5GW95M84n9U625e9C6tBw=</latexit><latexit sha1_base64="UvM7E2w6lXtW50LPl18+gDN1T4k=">AAACSnicbVBNSxxBEO3ZaGJWTTbJ0UvjIgjCMrMEkktAIoKHHBRcFXbHoaanVht7Puiu0Sy98/ty8eTNH+HFQ0LwYs+4gtEUdPN4VY969eJCSUO+f+21Xs3Nv36z8La9uLT87n3nw8cDk5da4EDkKtdHMRhUMsMBSVJ4VGiENFZ4GJ9t1f3Dc9RG5tk+TQoMUzjJ5FgKIEdFHfiRG/ON139kt7YrvsFHyskTiAI+nV5Mp1H/2PYbnvAnNRutxqSyj3N9PkqBTuPYblfDBurUKiDMxKQKq6jT9Xt+U/wlCGagy2a1G3WuRkkuyhQzEgqMGQZ+QaEFTVIorNqj0mAB4gxOcOhgBima0DbGKr7mmISPc+1eRrxhnyospMZM0thN1k7N815N/q83LGn8NbQyK8r6sIdF41JxynmdK0+kRkFq4gAILZ1XLk5BgyCXftuFEDw/+SU46PcCvxfsfe5ufp/FscBW2CpbZwH7wjbZDttlAybYL3bDfrM/3qV36/317h5GW95M84n9U625e9C6tBw=</latexit>

E[Latency] = ↵⇥ F (conv 3x3)+

� ⇥ F (conv 5x5)+

� ⇥ F (identity)+

......

⇣ ⇥ F (pool 3x3)
<latexit sha1_base64="Lm2s03uPUYjMAPu22Qv9NriXYRM=">AAADIHicfVJNb9QwEHXCVwlfWzhysViBipBWSUuBC1IFAnHgUCS2rbSOVo4zm7Xq2JHtVBui8E+48Fe4cAAhuMGvwUnDV7vLSJaeZuZ53jw7KQQ3Ngy/e/6Zs+fOX1i7GFy6fOXqtcH69T2jSs1gzJRQ+iChBgSXMLbcCjgoNNA8EbCfHD5t6/tHoA1X8rWtCohzmkk+44xal5quew9IAhmXNRU8k5A2AcmpnSdJ/ayZdFDn9UtqQbKqifFjfOctsbCw3eQ6ESU0NaGimNMGE8tzMPj5xi8eU/KITLcWW81dfA8TEiwjJ2AddxV5e7H9P7LhWb5sMk9BOjeqP9xRF6vuebNCRKGU6DcICMj0t03TwTAchV3g0yDqwRD1sTsdfCOpYmXudDFBjZlEYWHjmmrLmQBne2mgoOyQZjBxUFInJK47kQ2+7TIpnintjrS4y/7NqGluTJUnrrMVbk7W2uSy2qS0s0dxzWVRti98PGhWCmwVbn8LTrkGZkXlAGWaO62YzammzLo/FTgTopMrnwZ7m6MoHEWv7g93nvR2rKGb6BbaQBF6iHbQC7SLxoh577wP3ifvs//e/+h/8b8et/pez7mB/gn/x09YVgHC</latexit><latexit sha1_base64="Lm2s03uPUYjMAPu22Qv9NriXYRM=">AAADIHicfVJNb9QwEHXCVwlfWzhysViBipBWSUuBC1IFAnHgUCS2rbSOVo4zm7Xq2JHtVBui8E+48Fe4cAAhuMGvwUnDV7vLSJaeZuZ53jw7KQQ3Ngy/e/6Zs+fOX1i7GFy6fOXqtcH69T2jSs1gzJRQ+iChBgSXMLbcCjgoNNA8EbCfHD5t6/tHoA1X8rWtCohzmkk+44xal5quew9IAhmXNRU8k5A2AcmpnSdJ/ayZdFDn9UtqQbKqifFjfOctsbCw3eQ6ESU0NaGimNMGE8tzMPj5xi8eU/KITLcWW81dfA8TEiwjJ2AddxV5e7H9P7LhWb5sMk9BOjeqP9xRF6vuebNCRKGU6DcICMj0t03TwTAchV3g0yDqwRD1sTsdfCOpYmXudDFBjZlEYWHjmmrLmQBne2mgoOyQZjBxUFInJK47kQ2+7TIpnintjrS4y/7NqGluTJUnrrMVbk7W2uSy2qS0s0dxzWVRti98PGhWCmwVbn8LTrkGZkXlAGWaO62YzammzLo/FTgTopMrnwZ7m6MoHEWv7g93nvR2rKGb6BbaQBF6iHbQC7SLxoh577wP3ifvs//e/+h/8b8et/pez7mB/gn/x09YVgHC</latexit><latexit sha1_base64="Lm2s03uPUYjMAPu22Qv9NriXYRM=">AAADIHicfVJNb9QwEHXCVwlfWzhysViBipBWSUuBC1IFAnHgUCS2rbSOVo4zm7Xq2JHtVBui8E+48Fe4cAAhuMGvwUnDV7vLSJaeZuZ53jw7KQQ3Ngy/e/6Zs+fOX1i7GFy6fOXqtcH69T2jSs1gzJRQ+iChBgSXMLbcCjgoNNA8EbCfHD5t6/tHoA1X8rWtCohzmkk+44xal5quew9IAhmXNRU8k5A2AcmpnSdJ/ayZdFDn9UtqQbKqifFjfOctsbCw3eQ6ESU0NaGimNMGE8tzMPj5xi8eU/KITLcWW81dfA8TEiwjJ2AddxV5e7H9P7LhWb5sMk9BOjeqP9xRF6vuebNCRKGU6DcICMj0t03TwTAchV3g0yDqwRD1sTsdfCOpYmXudDFBjZlEYWHjmmrLmQBne2mgoOyQZjBxUFInJK47kQ2+7TIpnintjrS4y/7NqGluTJUnrrMVbk7W2uSy2qS0s0dxzWVRti98PGhWCmwVbn8LTrkGZkXlAGWaO62YzammzLo/FTgTopMrnwZ7m6MoHEWv7g93nvR2rKGb6BbaQBF6iHbQC7SLxoh577wP3ifvs//e/+h/8b8et/pez7mB/gn/x09YVgHC</latexit><latexit sha1_base64="Lm2s03uPUYjMAPu22Qv9NriXYRM=">AAADIHicfVJNb9QwEHXCVwlfWzhysViBipBWSUuBC1IFAnHgUCS2rbSOVo4zm7Xq2JHtVBui8E+48Fe4cAAhuMGvwUnDV7vLSJaeZuZ53jw7KQQ3Ngy/e/6Zs+fOX1i7GFy6fOXqtcH69T2jSs1gzJRQ+iChBgSXMLbcCjgoNNA8EbCfHD5t6/tHoA1X8rWtCohzmkk+44xal5quew9IAhmXNRU8k5A2AcmpnSdJ/ayZdFDn9UtqQbKqifFjfOctsbCw3eQ6ESU0NaGimNMGE8tzMPj5xi8eU/KITLcWW81dfA8TEiwjJ2AddxV5e7H9P7LhWb5sMk9BOjeqP9xRF6vuebNCRKGU6DcICMj0t03TwTAchV3g0yDqwRD1sTsdfCOpYmXudDFBjZlEYWHjmmrLmQBne2mgoOyQZjBxUFInJK47kQ2+7TIpnintjrS4y/7NqGluTJUnrrMVbk7W2uSy2qS0s0dxzWVRti98PGhWCmwVbn8LTrkGZkXlAGWaO62YzammzLo/FTgTopMrnwZ7m6MoHEWv7g93nvR2rKGb6BbaQBF6iHbQC7SLxoh577wP3ifvs//e/+h/8b8et/pez7mB/gn/x09YVgHC</latexit>

Figure 3.3: Making latency differentiable by introducing latency regularization loss.

Handling Non-differentiable Hardware Metrics

Besides accuracy, latency (not FLOPs) is another very important objective when designing
efficient neural network architectures for hardware. Unfortunately, unlike accuracy that can
be optimized using the gradient of the loss function, latency is non-differentiable. In this
section, we present two algorithms to handle the non-differentiable objectives.

Making Latency Differentiable. To make latency differentiable, we model the latency
of a network as a continuous function of the neural network dimensions. Consider a mixed
operation with a candidate set {oj} and each oj is associated with a path weight pj which
represents the probability of choosing oj. As such, we have the expected latency of a mixed
operation (i.e. a learnable block) as:

E[latencyi] =
∑

j

pij × F (oij), (3.5)

where E[latencyi] is the expected latency of the ith learnable block, F (·) denotes the latency
prediction model and F (oij) is the predicted latency of oij. The gradient of E[latencyi] w.r.t.
architecture parameters can thereby be given as: ∂E[latencyi] / ∂pij = F (oij).

For the whole network with a sequence of mixed operations (Figure 3.3 left), since these
operations are executed sequentially during inference, the expected latency of the network
can be expressed with the sum of these mixed operations’ expected latencies:

E[latency] =
∑

i

E[latencyi], (3.6)

We incorporate the expected latency of the network into the normal loss function by multi-
plying a scaling factor λ2(> 0) which controls the trade-off between accuracy and latency.
The final loss function is given as (also shown in Figure 3.3 right)

Loss = LossCE + λ1||w||22 + λ2E[latency], (3.7)

where LossCE denotes the cross-entropy loss and λ1||w||22 is the weight decay term.

48

Model Top-1 Top-5 Mobile Hardware No No Search cost
Latency -aware Proxy Repeat (GPU hours)

MobileNetV1 [39] 70.6 89.5 113ms - - ✗ Manual
MobileNetV2 [119] 72.0 91.0 75ms - - ✗ Manual
NASNet-A [107] 74.0 91.3 183ms ✗ ✗ ✗ 48, 000
AmoebaNet-A [111] 74.5 92.0 190ms ✗ ✗ ✗ 75, 600
MnasNet [114] 74.0 91.8 76ms ✓ ✗ ✗ 40, 000
MnasNet (our impl.) 74.0 91.8 79ms ✓ ✗ ✗ 40, 000

Proxyless-G (mobile) 71.8 90.3 83ms ✗ ✓ ✓ 200
Proxyless-G + LL 74.2 91.7 79ms ✓ ✓ ✓ 200
Proxyless-R (mobile) 74.6 92.2 78ms ✓ ✓ ✓ 200

Table 3.1: ProxylessNAS achieves state-of-the art accuracy (%) on ImageNet (under mobile
latency constraint ≤ 80ms) with 200× less search cost in GPU hours. “LL” indicates latency
regularization loss.

REINFORCE-based Approach. As an alternative to BinaryConnect, we can utilize
REINFORCE to train binarized weights as well. Consider a network that has binarized
parameters α, the goal of updating binarized parameters is to find the optimal binary gates
g that maximizes a certain reward, denoted as R(·). Here we assume the network only has
one mixed operation for ease of illustration. Therefore, according to REINFORCE [118], we
have the following updates for binarized parameters:

J(α) = Eg∼α[R(Ng)] =
∑

i

piR(N (e = oi)),

∇αJ(α) =
∑

i

R(N (e = oi))∇αpi =
∑

i

R(N (e = oi))pi∇α log(pi),

= Eg∼α[R(Ng)∇α log(p(g))] ≈
1

M

M∑

i=1

R(Ngi)∇α log(p(g
i)), (3.8)

where gi denotes the ith sampled binary gates, p(gi) denotes the probability of sampling
gi according to Eq. (3.2) and Ngi is the compact network according to the binary gates
gi. Since Eq. (3.8) does not require R(Ng) to be differentiable w.r.t. g, it can thus handle
non-differentiable objectives. An interesting observation is that Eq. (3.8) has a similar form
to the standard NAS [43], while it is not a sequential decision-making process and no RNN
meta-controller is used in our case. Furthermore, since both gradient-based updates and
REINFORCE-based updates are essentially two different update rules to the same binarized
architecture parameters, it is possible to combine them to form a new update rule for the
architecture parameters.

3.1.4 Experiments

For ImageNet experiments, we focus on learning efficient CNN architectures [39], [119],
[124] that have not only high accuracy but also low latency on specific hardware platforms.
Therefore, it is a multi-objective NAS task [45], [114], [125]–[128], where one of the objectives

49

74.6

76.7

68.2

65.4

72.0

74.71.83x faster

Figure 3.4: ProxylessNAS consis-
tently outperforms MobileNetV2 un-
der various latency settings.

80 90 100 110 120 130
Estimated (ms)

80

90

100

110

120

130

Re
al

(m
s)

y=x

Figure 3.5: Our mobile latency model
is close to y = x. The latency RMSE is
0.75ms.

is non-differentiable (i.e. latency). We use three different hardware platforms, including
mobile phone, GPU and CPU, in our experiments. The GPU latency is measured on V100
GPU with a batch size of 8 (single batch makes GPU severely under-utilized). The CPU
latency is measured under batch size 1 on a server with two 2.40GHz Intel(R) Xeon(R) CPU
E5-2640 v4. The mobile latency is measured on Google Pixel 1 phone with a batch size of 1.
For Proxyless-R, we use ACC(m)× [LAT (m)/T]w as the optimization goal, where ACC(m)
denotes the accuracy of model m, LAT (m) denotes the latency of m, T is the target latency
and w is a hyperparameter for controlling the trade-off between accuracy and latency.

Additionally, on mobile phone, we use the latency prediction model during architecture
search. As illustrated in Figure 3.5, we observe a strong correlation between the predicted
latency and real measured latency on the test set, suggesting that the latency prediction
model can be used to replace the expensive mobile farm infrastructure [114] with little error
introduced.

Architecture Space

We use MobileNetV2 [119] as the backbone to build the architecture space. Specifically,
rather than repeating the same mobile inverted bottleneck convolution (MBConv), we allow
a set of MBConv layers with various kernel sizes {3, 5, 7} and expansion ratios {3, 6}. To
enable a direct trade-off between width and depth, we initiate a deeper over-parameterized
network and allow a block with the residual connection to be skipped by adding the zero
operation to the candidate set of its mixed operation. In this way, with a limited latency
budget, the network can either choose to be shallower and wider by skipping more blocks
and using larger MBConv layers or choose to be deeper and thinner by keeping more blocks
and using smaller MBConv layers.

50

April May June July

Region 1 Region 2

M
B

1
3x

3

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

M
B

3
5x

5

M
B

6
5x

5

M
B

3
3x

3

M
B

3
5x

5

M
B

6
7x

7

M
B

6
7x

7

M
B

6
7x

7

M
B

6
5x

5

M
B

6
7x

7

C
on

v
3x

3

P
oo

lin
g

FC

M
B

3
3x

3 40
x1
12
x1
12

24
x1
12
x1
12

3x
22
4x
22
4

32
x5
6x
56

56
x2
8x
28

56
x2
8x
28

11
2x
14
x1
4

11
2x
14
x1
4

12
8x
14
x1
4

12
8x
14
x1
4

12
8x
14
x1
4

25
6x
7x
7

25
6x
7x
7

25
6x
7x
7

25
6x
7x
7

43
2x
7x
7

C
on

v
3x

3

M
B

1
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7 32
x1
12
x1
12

32
x1
12
x1
12

3x
22
4x
22
4

32
x5
6x
56

32
x5
6x
56

40
x2
8x
28

40
x2
8x
28

40
x2
8x
28

40
x2
8x
28

M
B

3
5x

5

M
B

3
5x

5

80
x1
4x
14

80
x1
4x
14

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
7x

7

M
B

6
7x

7

P
oo

lin
g

FC

80
x1
4x
14

96
x1
4x
14

96
x1
4x
14

96
x1
4x
14

19
2x
7x
7

19
2x
7x
7

19
2x
7x
7

19
2x
7x
7

32
0x
7x
7

M
B

3
5x

5

80
x1
4x
14

M
B

6
7x

7

M
B

3
7x

7

96
x1
4x
14

C
on

v
3x

3

M
B

1
3x

3

M
B

6
3x

3

M
B

3
3x

3

M
B

3
3x

3

M
B

3
3x

3

M
B

6
3x

3

M
B

3
3x

3

M
B

3
3x

3 40
x1
12
x1
12

24
x1
12
x1
12

3x
22
4x
22
4

32
x5
6x
56

32
x5
6x
56

32
x5
6x
56

32
x5
6x
56

48
x2
8x
28

48
x2
8x
28

M
B

6
3x

3

M
B

3
5x

5

48
x2
8x
28

48
x2
8x
28

M
B

6
5x

5

M
B

3
3x

3

M
B

3
3x

3

M
B

3
3x

3

M
B

6
5x

5

M
B

3
3x

3

M
B

6
5x

5

P
oo

lin
g

FC

88
x1
4x
14

10
4x
14
x1
4

10
4x
14
x1
4

10
4x
14
x1
4

21
6x
7x
7

21
6x
7x
7

21
6x
7x
7

21
6x
7x
7

36
0x
7x
7

M
B

3
3x

3

88
x1
4x
14

M
B

3
5x

5

M
B

3
5x

5

10
4x
14
x1
4

(1) Efficient mobile architecture found by ProxylessNAS.

(2) Efficient CPU architecture found by ProxylessNAS.

(3) Efficient GPU architecture found by ProxylessNAS.

MIT Red

(a) Efficient GPU model found by ProxylessNAS.

April May June July

Region 1 Region 2

M
B

1
3x

3

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

M
B

3
5x

5

M
B

6
5x

5

M
B

3
3x

3

M
B

3
5x

5

M
B

6
7x

7

M
B

6
7x

7

M
B

6
7x

7

M
B

6
5x

5

M
B

6
7x

7

C
on

v
3x

3

P
oo

lin
g

FC

M
B

3
3x

3 40
x1
12
x1
12

24
x1
12
x1
12

3x
22
4x
22
4

32
x5
6x
56

56
x2
8x
28

56
x2
8x
28

11
2x
14
x1
4

11
2x
14
x1
4

12
8x
14
x1
4

12
8x
14
x1
4

12
8x
14
x1
4

25
6x
7x
7

25
6x
7x
7

25
6x
7x
7

25
6x
7x
7

43
2x
7x
7

C
on

v
3x

3

M
B

1
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7 32
x1
12
x1
12

32
x1
12
x1
12

3x
22
4x
22
4

32
x5
6x
56

32
x5
6x
56

40
x2
8x
28

40
x2
8x
28

40
x2
8x
28

40
x2
8x
28

M
B

3
5x

5

M
B

3
5x

5

80
x1
4x
14

80
x1
4x
14

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
7x

7

M
B

6
7x

7

P
oo

lin
g

FC

80
x1
4x
14

96
x1
4x
14

96
x1
4x
14

96
x1
4x
14

19
2x
7x
7

19
2x
7x
7

19
2x
7x
7

19
2x
7x
7

32
0x
7x
7

M
B

3
5x

5

80
x1
4x
14

M
B

6
7x

7

M
B

3
7x

7

96
x1
4x
14

C
on

v
3x

3

M
B

1
3x

3

M
B

6
3x

3

M
B

3
3x

3

M
B

3
3x

3

M
B

3
3x

3

M
B

6
3x

3

M
B

3
3x

3

M
B

3
3x

3 40
x1
12
x1
12

24
x1
12
x1
12

3x
22
4x
22
4

32
x5
6x
56

32
x5
6x
56

32
x5
6x
56

32
x5
6x
56

48
x2
8x
28

48
x2
8x
28

M
B

6
3x

3

M
B

3
5x

5

48
x2
8x
28

48
x2
8x
28

M
B

6
5x

5

M
B

3
3x

3

M
B

3
3x

3

M
B

3
3x

3

M
B

6
5x

5

M
B

3
3x

3

M
B

6
5x

5

P
oo

lin
g

FC

88
x1
4x
14

10
4x
14
x1
4

10
4x
14
x1
4

10
4x
14
x1
4

21
6x
7x
7

21
6x
7x
7

21
6x
7x
7

21
6x
7x
7

36
0x
7x
7

M
B

3
3x

3

88
x1
4x
14

M
B

3
5x

5

M
B

3
5x

5

10
4x
14
x1
4

(1) Efficient mobile architecture found by ProxylessNAS.

(2) Efficient CPU architecture found by ProxylessNAS.

(3) Efficient GPU architecture found by ProxylessNAS.

MIT Red
(b) Efficient CPU model found by ProxylessNAS.

April May June July

Region 1 Region 2

M
B

1
3x

3

M
B

3
5x

5

M
B

3
7x

7

M
B

6
7x

7

M
B

3
5x

5

M
B

6
5x

5

M
B

3
3x

3

M
B

3
5x

5

M
B

6
7x

7

M
B

6
7x

7

M
B

6
7x

7

M
B

6
5x

5

M
B

6
7x

7

C
on

v
3x

3

P
oo

lin
g

FC

M
B

3
3x

3 40
x1
12
x1
12

24
x1
12
x1
12

3x
22
4x
22
4

32
x5
6x
56

56
x2
8x
28

56
x2
8x
28

11
2x
14
x1
4

11
2x
14
x1
4

12
8x
14
x1
4

12
8x
14
x1
4

12
8x
14
x1
4

25
6x
7x
7

25
6x
7x
7

25
6x
7x
7

25
6x
7x
7

43
2x
7x
7

C
on

v
3x

3

M
B

1
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7 32
x1
12
x1
12

16
x1
12
x1
12

3x
22
4x
22
4

32
x5
6x
56

32
x5
6x
56

40
x2
8x
28

40
x2
8x
28

40
x2
8x
28

40
x2
8x
28

M
B

3
5x

5

M
B

3
5x

5

80
x1
4x
14

80
x1
4x
14

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
7x

7

M
B

6
7x

7

P
oo

lin
g

FC

80
x1
4x
14

96
x1
4x
14

96
x1
4x
14

96
x1
4x
14

19
2x
7x
7

19
2x
7x
7

19
2x
7x
7

19
2x
7x
7

32
0x
7x
7

M
B

3
5x

5

80
x1
4x
14

M
B

6
7x

7

M
B

3
7x

7

96
x1
4x
14

C
on

v
3x

3

M
B

1
3x

3

M
B

6
3x

3

M
B

3
3x

3

M
B

3
3x

3

M
B

3
3x

3

M
B

6
3x

3

M
B

3
3x

3

M
B

3
3x

3 40
x1
12
x1
12

24
x1
12
x1
12

3x
22
4x
22
4

32
x5
6x
56

32
x5
6x
56

32
x5
6x
56

32
x5
6x
56

48
x2
8x
28

48
x2
8x
28

M
B

6
3x

3

M
B

3
5x

5

48
x2
8x
28

48
x2
8x
28

M
B

6
5x

5

M
B

3
3x

3

M
B

3
3x

3

M
B

3
3x

3

M
B

6
5x

5

M
B

3
3x

3

M
B

6
5x

5

P
oo

lin
g

FC

88
x1
4x
14

10
4x
14
x1
4

10
4x
14
x1
4

10
4x
14
x1
4

21
6x
7x
7

21
6x
7x
7

21
6x
7x
7

21
6x
7x
7

36
0x
7x
7

M
B

3
3x

3

88
x1
4x
14

M
B

3
5x

5

M
B

3
5x

5

10
4x
14
x1
4

(1) Efficient mobile architecture found by ProxylessNAS.

(2) Efficient CPU architecture found by ProxylessNAS.

(3) Efficient GPU architecture found by ProxylessNAS.

MIT Red

(c) Efficient mobile model found by ProxylessNAS.

Figure 3.6: Efficient models optimized for different hardware. “MBConv3” and “MBConv6”
denote mobile inverted bottleneck convolution layer with an expansion ratio of 3 and 6
respectively. Insights: GPU prefers shallow and wide model with early pooling; CPU prefers
deep and narrow model with late pooling. Pooling layers prefer large and wide kernel. Early
layers prefer small kernel. Late layers prefer large kernel.

Training Details

We randomly sample 50,000 images from the training set as a validation set during the
architecture search. The settings for updating architecture parameters are the same as
CIFAR-10 experiments except the initial learning rate is 0.001. The over-parameterized
network is trained on the remaining training images with batch size 256.

ImageNet Classification Results

We first apply our ProxylessNAS to learn specialized CNN models on the mobile phone.
The summarized results are reported in Table 3.1. Compared to MobileNetV2, our model
improves the top-1 accuracy by 2.6% while maintaining a similar latency on the mobile phone.
Furthermore, by rescaling the width of the networks using a multiplier [114], [119], it is
shown in Figure 3.4 that our model consistently outperforms MobileNetV2 by a significant
margin under all latency settings. Specifically, to achieve the same level of top-1 accuracy
performance (i.e. around 74.6%), MobileNetV2 has 143ms latency while our model
only needs 78ms (1.83× faster). While compared with MnasNet [114], our model can
achieve 0.6% higher top-1 accuracy with slightly lower mobile latency. More importantly, we
are much more resource efficient: the GPU-hour is 200× fewer than MnasNet (Table 3.1).

51

Model Top-1 Top-5 GPU latency
MobileNetV2 [119] 72.0 91.0 6.1ms
ShuffleNetV2 (1.5) [40] 72.6 - 7.3ms
ResNet-34 [129] 73.3 91.4 8.0ms
NASNet-A [107] 74.0 91.3 38.3ms
DARTS [113] 73.1 91.0 -
MnasNet [114] 74.0 91.8 6.1ms
Proxyless (GPU) 75.1 92.5 5.1ms

Table 3.2: ImageNet Accuracy (%) and GPU latency (Tesla V100) on ImageNet.

Model Top-1 (%) GPU latency CPU latency Mobile latency
Proxyless (GPU) 75.1 5.1ms 204.9ms 124ms
Proxyless (CPU) 75.3 7.4ms 138.7ms 116ms
Proxyless (mobile) 74.6 7.2ms 164.1ms 78ms

Table 3.3: Hardware prefers specialized models. Models optimized for GPU does not run fast
on CPU and mobile phone, vice versa. ProxylessNAS provides an efficient solution to search
a specialized neural network architecture for a target hardware architecture, while cutting
down the search cost by 200× compared with state-of-the-arts [43], [114].

Additionally, we also observe that Proxyless-G has no incentive to choose computation-
cheap operations if were not for the latency regularization loss. Its resulting architecture
initially has 158ms latency on Pixel 1. After rescaling the network using the multiplier, its
latency reduces to 83ms. However, this model can only achieve 71.8% top-1 accuracy on
ImageNet, which is 2.4% lower than the result given by Proxyless-G with latency regularization
loss. Therefore, we conclude that it is essential to take latency as a direct objective when
learning efficient neural networks.

Besides the mobile phone, we also apply our ProxylessNAS to learn specialized CNN
models on GPU and CPU. Table 3.2 reports the results on GPU, where we find that our
ProxylessNAS can still achieve superior performances compared to both human-designed and
automatically searched architectures. Specifically, compared to MobileNetV2 and MnasNet,
our model improves the top-1 accuracy by 3.1% and 1.1% respectively while being 1.2× faster.
Table 3.3 shows the summarized results of our searched models on three different platforms.
An interesting observation is that models optimized for GPU do not run fast on CPU and
mobile phone, vice versa. Therefore, it is essential to learn specialized neural networks for
different hardware architectures to achieve the best efficiency on different hardware.

Specialized Models for Different Hardware

Figure 3.6 demonstrates the detailed architectures of our searched CNN models on three
hardware platforms: GPU/CPU/Mobile. We notice that the architecture shows different
preferences when targeting different platforms: (i) The GPU model is shallower and wider,
especially in early stages where the feature map has higher resolution; (ii) The GPU model
prefers large MBConv operations (e.g. 7 × 7 MBConv6), while the CPU model would go
for smaller MBConv operations. This is because GPU has much higher parallelism than

52

CPU so it can take advantage of large MBConv operations. Another interesting observation
is that our searched models on all platforms prefer larger MBConv operations in the first
block within each stage where the feature map is downsampled. We suppose it might because
larger MBConv operations are beneficial for the network to preserve more information when
downsampling. Notably, such kind of patterns cannot be captured in previous NAS methods
as they force the blocks to share the same structure [107], [108].

3.1.5 Conclusion

We introduced ProxylessNAS that can directly learn neural network architectures on the
target task and target hardware without any proxy. We also reduced the search cost (GPU-
hours and GPU memory) of NAS to the same level of normal training using path binarization.
Benefiting from the direct search, we achieve strong empirical results on CIFAR-10 and
ImageNet. Furthermore, we allow specializing network architectures for different platforms
by directly incorporating the measured hardware latency into optimization objectives. We
compared the optimized models on CPU/GPU/mobile and raised the awareness of the needs
of specializing neural network architecture for different hardware architectures.

3.2 Once-for-All Network for Diverse Deployment Scenar-
ios

3.2.1 Introduction

Deep Neural Networks (DNNs) deliver state-of-the-art accuracy in many machine learning
applications. However, the explosive growth in model size and computation cost gives
rise to new challenges on how to efficiently deploy these deep learning models on diverse
hardware platforms, since they have to meet different hardware efficiency constraints (e.g.,
latency, energy). For instance, one mobile application on App Store has to support a
diverse range of hardware devices, from a high-end Samsung Note10 with a dedicated neural
network accelerator to a 5-year-old Samsung S6 with a much slower processor. With different
hardware resources (e.g., on-chip memory size, #arithmetic units), the optimal neural network
architecture varies significantly. Even running on the same hardware, under different battery
conditions or workloads, the best model architecture also differs a lot.

Given different hardware platforms and efficiency constraints (defined as deployment
scenarios), researchers either design compact models specialized for mobile [39], [119], [130]
or accelerate the existing models by compression [38], [45] for efficient deployment. However,
designing specialized DNNs for every scenario is engineer-expensive and computationally
expensive, either with human-based methods or NAS. Since such methods need to repeat the
network design process and retrain the designed network from scratch for each case. Their
total cost grows linearly as the number of deployment scenarios increases, which will result in
excessive energy consumption and CO2 emission [131]. It makes them unable to handle the
vast amount of hardware devices (23.14 billion IoT devices till 20181) and highly dynamic

1https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

53

Number of Deployment Scenarios
 0 20 40 60 80

16x~1300x
reduction

direct deploy (no retrain)

train a once-for-all network

specialized sub-nets

Samsung Note10 Latency (ms)

cpu
F P

G A

Different Hardware / Constraint

De
sig

n
Co

st

Previous: O(N) design cost
Ours: O(1) design cost

Mobile AI
Tiny AI
(AIoT)Cloud AI

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

67

69

71

73

75

77

6 9 12 15 18 21 24

OFA MobileNetV3

70.0

76.1

Train Once, 

 Get M
any

75.2

73.3

70.4

67.4
Tra

in Four T
im

es,

Get F
our

MCU

Number of Deployment Scenarios
 0 20 40 60 80

16x~1300x
reduction

direct deploy (no retrain)

train a once-for-all network

specialized sub-nets

cpu
F P

G A

Different Hardware / Constraint

De
sig

n
Co

st

Previous: O(N) design cost
Ours: O(1) design cost

Mobile AI
Tiny AI
(AIoT)Cloud AI

MCU

1

Figure 3.7: Left: a single once-for-all networkis trained to support versatile architectural
configurations including depth, width, kernel size, and resolution. Given a deployment
scenario, a specialized sub-network is directly selected from the once-for-all networkwithout
training. Middle: this approach reduces the cost of specialized deep learning deployment
from O(N) to O(1). Right: once-for-all network followed by model selection can derive many
accuracy-latency trade-offs by training only once, compared to conventional methods that
require repeated training.

deployment environments (different battery conditions, different latency requirements, etc.).
This paper introduces a new solution to tackle this challenge – designing a once-for-all

network that can be directly deployed under diverse architectural configurations, amortizing
the training cost. The inference is performed by selecting only part of the once-for-all network.
It flexibly supports different depths, widths, kernel sizes, and resolutions without retraining.
A simple example of Once-for-All (OFA) is illustrated in Figure 3.7 (left). Specifically, we
decouple the model training stage and the neural architecture search stage. In the model
training stage, we focus on improving the accuracy of all sub-networks that are derived by
selecting different parts of the once-for-all network. In the model specialization stage, we
sample a subset of sub-networks to train an accuracy predictor and latency predictors. Given
the target hardware and constraint, a predictor-guided architecture search [132] is conducted
to get a specialized sub-network, and the cost is negligible. As such, we reduce the total cost
of specialized neural network design from O(N) to O(1) (Figure 3.7 middle).

However, training the once-for-all networkis a non-trivial task, since it requires joint
optimization of the weights to maintain the accuracy of a large number of sub-networks
(more than 1019 in our experiments). It is computationally prohibitive to enumerate all
sub-networks to get the exact gradient in each update step, while randomly sampling a
few sub-networks in each step will lead to significant accuracy drops. The challenge is that
different sub-networks are interfering with each other, making the training process of the
whole once-for-all networkinefficient. To address this challenge, we propose a progressive
shrinking algorithm for training the once-for-all network. Instead of directly optimizing
the once-for-all networkfrom scratch, we propose to first train the largest neural network
with maximum depth, width, and kernel size, then progressively fine-tune the once-for-all
networkto support smaller sub-networks that share weights with the larger ones. As such, it
provides better initialization by selecting the most important weights of larger sub-networks,

54

0 1 2 3 4 5 6 7 8 9
MACs (Billion)

69

71

73

75

77

79

81
Im

ag
eN

et
 T

op
-1

 a
cc

ur
ac

y
(%

)

2M 4M 8M

Handcrafted

16M

AutoML

32M 64M

→→The higher the better

The lower the better

Once-for-All (ours)

EfficientNet

ProxylessNAS
MBNetV3

AmoebaNet

MBNetV2
PNASNet
ShuffleNet
DARTS

IGCV3-D

MobileNetV1 (MBNetV1)

NASNet-A

InceptionV2

DenseNet-121

DenseNet-169

ResNet-50

ResNetXt-50

InceptionV3

DenseNet-264

DPN-92

ResNet-101

Xception

ResNetXt-101

14x reduction
595M MACs

80.0% Top-1

Model Size

1

Figure 3.8: Comparison between OFA and state-of-the-art CNN models on ImageNet. OFA
provides 80.0% ImageNet top1 accuracy under the mobile setting (< 600M MACs).

and the opportunity to distill smaller sub-networks, which greatly improves the training
efficiency. From this perspective, progressive shrinking can be viewed as a generalized network
pruning method that shrinks multiple dimensions (depth, width, kernel size, and resolution)
of the full network rather than only the width dimension. Besides, it targets on maintaining
the accuracy of all sub-networks rather than a single pruned network.

We extensively evaluated the effectiveness of OFA on ImageNet with many hardware
platforms (CPU, GPU, mCPU, mGPU, FPGA accelerator) and efficiency constraints. Under
all deployment scenarios, OFA consistently improves the ImageNet accuracy by a significant
margin compared to SOTA hardware-aware NAS methods while saving the GPU hours,
dollars, and CO2 emission by orders of magnitude. On the ImageNet mobile setting (less
than 600M MACs), OFA achieves a new SOTA 80.0% top1 accuracy with 595M MACs
(Figure 3.8). To the best of our knowledge, this is the first time that the SOTA ImageNet
top1 accuracy reaches 80% under the mobile setting.

3.2.2 Related Work

Efficient Deep Learning. Many efficient neural network architectures are proposed to
improve the hardware efficiency, such as SqueezeNet [124], MobileNets [39], [119], ShuffleNets
[40], [130], etc. Orthogonal to architecting efficient neural networks, model compression [38],
[133] is another very effective technique for efficient deep learning, including network pruning
that removes redundant units [35] or redundant channels [37], [45], and quantization that
reduces the bit width for the weights and activations [38], [117], [134].

55

Neural Architecture Search. Neural architecture search (NAS) focuses on automating
the architecture design process [43], [44], [107], [111], [113], [135]. Early NAS methods
[107], [111], [112] search for high-accuracy architectures without taking hardware efficiency
into consideration. Therefore, the produced architectures (e.g., NASNet, AmoebaNet) are
not efficient for inference. Recent hardware-aware NAS methods [10], [114], [136] directly
incorporate the hardware feedback into architecture search. As a result, they can improve
inference efficiency. However, given new inference hardware platforms, these methods need to
repeat the architecture search process and retrain the model, leading to prohibitive GPU
hours, dollars, and CO2 emission. They are not scalable to a large number of deployment
scenarios. The individually trained models do not share any weight, leading to large total
model size and high downloading bandwidth.

Dynamic Neural Networks. To improve the efficiency of a given neural network, some
work explored skipping part of the model based on the input image. For example, [137]–[139]
learn a controller or gating modules to adaptively drop layers; [140] introduce early-exit
branches in the computation graph; [141] adaptively prune channels based on the input feature
map; [142] introduce stochastic downsampling point to reduce the feature map size adaptively.
Recently, Slimmable Nets [88], [143] propose to train a model to support multiple width
multipliers (e.g., 4 different global width multipliers), building upon existing human-designed
neural networks (e.g., MobileNetV2 0.35, 0.5, 0.75, 1.0). Such methods can adaptively
fit different efficiency constraints at runtime, however, still inherit a pre-designed neural
network (e.g., MobileNet-v2), which limits the degree of flexibility (e.g., only width multiplier
can adapt) and the ability in handling new deployment scenarios where the pre-designed
neural network is not optimal. In this work, in contrast, we enable a much more diverse
architecture space (depth, width, kernel size, and resolution) and a significantly larger number
of architectural settings (1019 v.s. 4 [88]). Thanks to the diversity and the large design space,
we can derive new specialized neural networks for many different deployment scenarios rather
than working on top of an existing neural network that limits the optimization headroom.
However, it is more challenging to train the network to achieve this flexibility, which motivates
us to design the progressive shrinking algorithm to tackle this challenge.

3.2.3 Method

Problem Formalization

Assuming the weights of the once-for-all network as Wo and the architectural configurations
as {archi}, we then can formalize the problem as

min
Wo

∑

archi

Lval

(
C(Wo, archi)

)
, (3.9)

where C(Wo, archi) denotes a selection scheme that selects part of the model from the
once-for-all network Wo to form a sub-network with architectural configuration archi. The
overall training objective is to optimize Wo to make each supported sub-network maintain
the same level of accuracy as independently training a network with the same architectural
configuration.

56

39

train with full width

channel
importance

0.02

0.15

0.85

0.63

channel
sorting

progressively shrink the width

channel
importance

0.82

0.11

0.46
reorg.

reorg.

progressively shrink the width

channel
sorting

O1
O2

O3

O1

O2

O1

Gradually shrink the width
Keep the most important channels when shrinking via channel sorting

Full Full Full Full

Partial Partial Partial

Elastic
Resolution

Elastic
Kernel Size

Partial

Elastic
Width

Elastic
Depth

Progressive Shrinking

Figure 3.9: Illustration of the progressive shrinking process to support different depth D,
width W , kernel size K and resolution R. It leads to a large space comprising diverse
sub-networks (> 1019).

Architecture Space

Our once-for-all network provides one model but supports many sub-networks of different
sizes, covering four important dimensions of the convolutional neural networks (CNNs)
architectures, i.e., depth, width, kernel size, and resolution. Following the common practice
of many CNN models [119], [129], [144], we divide a CNN model into a sequence of units
with gradually reduced feature map size and increased channel numbers. Each unit consists
of a sequence of layers where only the first layer has stride 2 if the feature map size decreases
[119]. All the other layers in the units have stride 1.

We allow each unit to use arbitrary numbers of layers (denoted as elastic depth); For
each layer, we allow to use arbitrary numbers of channels (denoted as elastic width) and
arbitrary kernel sizes (denoted as elastic kernel size). In addition, we also allow the CNN
model to take arbitrary input image sizes (denoted as elastic resolution). For example, in
our experiments, the input image size ranges from 128 to 224 with a stride 4; the depth of
each unit is chosen from {2, 3, 4}; the width expansion ratio in each layer is chosen from
{3, 4, 6}; the kernel size is chosen from {3, 5, 7}. Therefore, with 5 units, we have roughly
((3× 3)2 + (3× 3)3 + (3× 3)4)5 ≈ 2× 1019 different neural network architectures and each
of them can be used under 25 different input resolutions. Since all of these sub-networks
share the same weights (i.e., Wo) [145], we only require 7.7M parameters to store all of them.
Without sharing, the total model size will be prohibitive.

Training the Once-for-All Network

Naïve Approach. Training the once-for-all network can be cast as a multi-objective
problem, where each objective corresponds to one sub-network. From this perspective, a
naïve training approach is to directly optimize the once-for-all network from scratch using
the exact gradient of the overall objective, which is derived by enumerating all sub-networks
in each update step, as shown in Eq. (3.9). The cost of this approach is linear to the number
of sub-networks. Therefore, it is only applicable to scenarios where a limited number of
sub-networks are supported [88], while in our case, it is computationally prohibitive to adopt
this approach.

Another naïve training approach is to sample a few sub-networks in each update step
rather than enumerate all of them, which does not have the issue of prohibitive cost. However,
with such a large number of sub-networks that share weights, thus interfere with each other,
we find it suffers from significant accuracy drop. In the following section, we introduce a
solution to address this challenge, i.e., progressive shrinking.

57

Connection to Network Pruning

15

Train the
full model

Shrink the model
(only width)

Fine-tune
the small net

single pruned
network

Network Pruning

Train the
full model

Shrink the model
(4 dimensions)

Fine-tune
both large and
small sub-nets

once-for-all
network

• Progressive shrinking can be viewed as a generalized network pruning with much
higher flexibility across 4 dimensions.

Progressive Shrinking

Figure 3.10: Progressive shrinking can be viewed as a generalized network pruning technique
with much higher flexibility. Compared to network pruning, it shrinks more dimensions (not
only width) and provides a much more powerful once-for-all network that can fit different
deployment scenarios rather than a single pruned network.

Progressive Shrinking. The once-for-all network comprises many sub-networks of different
sizes where small sub-networks are nested in large sub-networks. To prevent interference
between the sub-networks, we propose to enforce a training order from large sub-networks to
small sub-networks in a progressive manner. We name this training scheme as progressive
shrinking (PS). An example of the training process with PS is provided in Figure 3.9 and
Figure 3.10, where we start with training the largest neural network with the maximum
kernel size (e.g., 7), depth (e.g., 4), and width (e.g., 6). Next, we progressively fine-tune the
network to support smaller sub-networks by gradually adding them into the sampling space
(larger sub-networks may also be sampled). Specifically, after training the largest network,
we first support elastic kernel size which can choose from {3, 5, 7} at each layer, while the
depth and width remain the maximum values. Then, we support elastic depth and elastic
width sequentially, as is shown in Figure 3.9. The resolution is elastic throughout the whole
training process, which is implemented by sampling different image sizes for each batch of
training data. We also use the knowledge distillation technique after training the largest
neural network [41], [143], [146]. It combines two loss terms using both the soft labels given
by the largest neural network and the real labels.

Compared to the naïve approach, PS prevents small sub-networks from interfering large
sub-networks, since large sub-networks are already well-trained when the once-for-all network is
fine-tuned to support small sub-networks. Regarding the small sub-networks, they share
the weights with the large ones. Therefore, PS allows initializing small sub-networks with
the most important weights of well-trained large sub-networks, which expedites the training
process. Compared to network pruning (Figure 3.10), PS also starts with training the full
model, but it shrinks not only the width dimension but also the depth, kernel size, and
resolution dimensions of the full model. Additionally, PS fine-tunes both large and small
sub-networks rather than a single pruned network. As a result, PS provides a much more
powerful once-for-all network that can fit diverse hardware platforms and efficiency constraints
compared to network pruning. We describe the details of the PS training flow as follows:

58

7x7

Transform

Matrix

25x25

5x5

Transform

Matrix

9x9

3x3

train with full width

channel

importance

0.02
0.15
0.85
0.63

channel

sorting

progressively shrink the width

unit i

train with full depth

channel

importance

0.82
0.11
0.46

reorg.
channel

sorting

reorg.

progressively shrink the width

channel

sorting .

+
+ +

p1

p2

p3O1

O2

O3O1

O2

O1

unit i

shrink the depth

O1

O2

unit i

shrink the depth

O1

O2

O3

�1

Figure 3.11: Left: Kernel transformation matrix for elastic kernel size. Right: Progressive
shrinking for elastic depth. Instead of skipping each layer independently, we keep the first D
layers and skip the last (4−D) layers. The weights of the early layers are shared.

7x7

Transformation

Matrix: 25x25

5x5

Transformation

Matrix: 9x9

3x3

train with full width

channel

importance

0.02
0.15
0.85
0.63

channel

sorting

progressively shrink the width

stage i stage i

train with full depth

stage i

channel

importance

0.82
0.11
0.46

reorg.
channel

sortingreorg.

progressively shrink the width

channel

sorting

progressively shrink the depth progressively shrink the depth

.

O1

+
+ +

p1

p2

p3

O2

O3

O1

O2

O1

O2

O3

O1

O2

O1

�1

Figure 3.12: Progressive shrinking for elastic width. In this example, we progressively support
4, 3, and 2 channel settings. We perform channel sorting and pick the most important
channels (with large L1 norm) to initialize the smaller channel settings. The important
channels’ weights are shared.

• Elastic Kernel Size (Figure 3.11 left). We let the center of a 7x7 convolution kernel also
serve as a 5x5 kernel, the center of which can also be a 3x3 kernel. Therefore, the kernel
size becomes elastic. The challenge is that the centering sub-kernels (e.g., 3x3 and 5x5) are
shared and need to play multiple roles (independent kernel and part of a large kernel). The
weights of centered sub-kernels may need to have different distribution or magnitude as
different roles. Forcing them to be the same degrades the performance of some sub-networks.
Therefore, we introduce kernel transformation matrices when sharing the kernel weights.
We use separate kernel transformation matrices for different layers. Within each layer, the
kernel transformation matrices are shared among different channels. As such, we only need
25× 25 + 9× 9 = 706 extra parameters to store the kernel transformation matrices in each
layer, which is negligible.

• Elastic Depth (Figure 3.11 right). To derive a sub-network that has D layers in a unit
that originally has N layers, we keep the first D layers and skip the last N −D layers,
rather than keeping any D layers as done in current NAS methods [10], [136]. As such,
one depth setting only corresponds to one combination of layers. In the end, the weights of
the first D layers are shared between large and small models.

• Elastic Width (Figure 3.12). Width means the number of channels. We give each layer the
flexibility to choose different channel expansion ratios. Following the progressive shrinking
scheme, we first train a full-width model. Then we introduce a channel sorting operation
to support partial widths. It reorganizes the channels according to their importance, which

59

40

Performances of Sub-networks on ImageNet

Im
ag

eN
et

 T
op

-1
 A

cc
 (%

)

67

70

73

75

78
w/o PS w/ PS

D=2
W=3
K=3

D=2
W=3
K=7

D=2
W=6
K=3

D=2
W=6
K=7

D=4
W=3
K=3

D=4
W=3
K=7

D=4
W=6
K=3

D=4
W=6
K=7

2.5%
2.8%

3.5%
3.4% 3.3%

3.4%
3.7%

3.5%

Sub-networks under various architecture configurations
D: depth, W: width, K: kernel size

• Progressive shrinking consistently improves accuracy of sub-networks on ImageNet.Figure 3.13: ImageNet top1 accuracy (%) performances of sub-networks under resolution
224× 224. “(D = d, W = w, K = k)” denotes a sub-network with d layers in each unit, and
each layer has an width expansion ratio w and kernel size k.

is calculated based on the L1 norm of a channel’s weight. Larger L1 norm means more
important. For example, when shrinking from a 4-channel-layer to a 3-channel-layer, we
select the largest 3 channels, whose weights are shared with the 4-channel-layer (Figure 3.12
left and middle). Thereby, smaller sub-networks are initialized with the most important
channels on the once-for-all network which is already well trained. This channel sorting
operation preserves the accuracy of larger sub-networks.

Specialized Model Deployment with once-for-all networkCap

Having trained a once-for-all network, the next stage is to derive the specialized sub-network
for a given deployment scenario. The goal is to search for a neural network that satisfies
the efficiency (e.g., latency, energy) constraints on the target hardware while optimizing the
accuracy. Since OFA decouples model training from neural architecture search, we do not
need any training cost in this stage. Furthermore, we build neural-network-twins to predict
the latency and accuracy given a neural network architecture, providing a quick feedback
for model quality. It eliminates the repeated search cost by substituting the measured
accuracy/latency with predicted accuracy/latency (twins).

Specifically, we randomly sample 16K sub-networks with different architectures and input
image sizes, then measure their accuracy on 10K validation images sampled from the original
training set. These [architecture, accuracy] pairs are used to train an accuracy predictor to
predict the accuracy of a model given its architecture and input image size. We also build a
latency lookup table [10] on each target hardware platform to predict the latency. Given the
target hardware and latency constraint, we conduct an evolutionary search [111] based on
the neural-network-twins to get a specialized sub-network. Since the cost of searching with
neural-network-twins is negligible, we only need 40 GPU hours to collect the data pairs, and
the cost stays constant regardless of #deployment scenarios.

60

Model ImageNet MACs Mobile Search cost Training cost Total cost (N = 40)
Top1 (%) latency (GPU hours) (GPU hours) GPU hours CO2e (lbs) AWS cost

MobileNetV2 [119] 72.0 300M 66ms 0 150N 6k 1.7k $18.4k
MobileNetV2 #1200 73.5 300M 66ms 0 1200N 48k 13.6k $146.9k
NASNet-A [107] 74.0 564M - 48,000N - 1,920k 544.5k $5875.2k
DARTS [113] 73.1 595M - 96N 250N 14k 4.0k $42.8k
MnasNet [114] 74.0 317M 70ms 40,000N - 1,600k 453.8k $4896.0k
FBNet-C [136] 74.9 375M - 216N 360N 23k 6.5k $70.4k
ProxylessNAS [10] 74.6 320M 71ms 200N 300N 20k 5.7k $61.2k
SinglePathNAS [147] 74.7 328M - 288 + 24N 384N 17k 4.8k $52.0k
AutoSlim [148] 74.2 305M 63ms 180 300N 12k 3.4k $36.7k
MobileNetV3-Large [30] 75.2 219M 58ms - 180N 7.2k 1.8k $22.2k
OFA w/o PS 72.4 235M 59ms 40 1200 1.2k 0.34k $3.7k
OFA w/ PS 76.0 230M 58ms 40 1200 1.2k 0.34k $3.7k
OFA w/ PS #25 76.4 230M 58ms 40 1200 + 25N 2.2k 0.62k $6.7k
OFA w/ PS #75 76.9 230M 58ms 40 1200 + 75N 4.2k 1.2k $13.0k
OFALarge w/ PS #75 80.0 595M - 40 1200 + 75N 4.2k 1.2k $13.0k

Table 3.4: Comparison with SOTA hardware-aware NAS methods on Pixel1 phone. OFA
decouples model training from neural architecture search. The search cost and training
cost both stay constant as the number of deployment scenarios grows. “#25” denotes the
specialized sub-networks are fine-tuned for 25 epochs after grabbing weights from the once-
for-all network. “CO2e” denotes CO2 emission which is calculated based on [131]. AWS cost
is calculated based on the price of on-demand P3.16xlarge instances.

High (Low) Workload

High (Low) Battery

Specialized
sub-network

Number of Deployment Scenarios
 0 20 40 60 80

16x~1300x
reduction

direct deploy (no retrain)

train a once-for-all network

specialized sub-nets

Samsung Note10 Latency (ms)

75.4

cpu
F P

G A

Different Hardware / Constraint

De
sig

n
Co

st

Previous: O(N) design cost
Ours: O(1) design cost

8.
9%

Edge,

Full battery

Edge,

Low battery Cloud

Number of Deployment Scenarios
 0 20 40 60 80

cpu
F P

G A

Different Hardware / Constraint

De
sig

n
Co

st

Previous: O(N) design costEdge,

Full battery

Edge,

Low battery

Cloud

…

Architecture
Design

Train from
Scratch

Architecture
Design

Train from
Scratch

Architecture
Design

Train from
Scratch

Repeated architecture

design and model training

Note10

OFA #5 Acc Loss MobileNetV3-
Small

#5 Acc Loss MobileNetV3-
Large

Untitled 1 8.0 70.0 8.0 67.4 15.3

Untitled 2 8.9 71.0 10.8 70.4 22.0

Untitled 3 10.0 71.7

Untitled 4 10.9 72.6

11.7 73.4

13.0 73.8

14.1 74.3

15.1 74.6

15.8 74.8

17.0 75.0

18.5 75.1

19.4 75.5

20.0 75.6

21.3 75.7

21.7 75.9

22.4 76.1

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

67

69

71

73

75

77

6 9 12 15 18 21 24

OFA MobileNetV3-Large
MobileNetV3-Small

70.0

76.1

Train Once, 

 Get M
any

75.2

73.3

70.4

67.4
Tra

in Four T
im

es,

Get F
our

ProxylessNAS

FBNet

MnasNet

0 30000 60000 90000 120000

N = 40 N = 100

Table 1

40 100

ProxylessNAS 5700 8550

FBNet 6500 9750

MnasNet 45380 68070 453800 567250

14.3k

16.3k

1134.5k453.8k

specialized
sub-nets

Once-for-all
network

Edge,

Full battery

Cloud

Edge,

Full battery

Edge,

Low battery

Cloud

…

Architecture
Design

Train from
Scratch

Architecture
Design

Train from
Scratch

Architecture
Design

Train from
Scratch

Previous
Repeated architecture

design and model training

direct deploy
(no retrain)

Ours
Train once, specialize for

many deployment scenarios

…

Edge,

Low battery

Improved Efficiency

SOTA Accuracy on ImageNet Mobile Setting

CO2

ProxylessNAS

FBNet

MnasNet

OFA
0 12500 25000 37500 50000

Total cost (lbs of CO2 emission), N = 40 Table 1-1-1

40 100

ProxylessNAS 5700 8550

FBNet 6500 9750

MnasNet 45380 68070 453800 567250

OFA 300 300

5.7k
6.5k

454k

0.34k 1300x

1

Figure 3.14: OFA saves orders of magnitude design cost compared to NAS methods.

3.2.4 Training Once-for-All Network on ImageNet

Training Details. We use the same architecture space as MobileNetV3 [30]. For training
the full network, we use the standard SGD optimizer with Nesterov momentum 0.9 and
weight decay 3e−5. The initial learning rate is 2.6, and we use the cosine schedule [149] for
learning rate decay. The full network is trained for 180 epochs with batch size 2048 on 32
GPUs. Then we follow the schedule described in Figure 3.9 to further fine-tune the full
network. The whole training process takes around 1,200 GPU hours on V100 GPUs. This is
a one-time training cost that can be amortized by many deployment scenarios.

Results. Figure 3.13 reports the top1 accuracy of sub-networks derived from the once-for-all
networks that are trained with our progressive shrinking (PS) algorithm and without PS
respectively. Due to space limits, we take 8 sub-networks for comparison, and each of them
is denoted as “(D = d, W = w, K = k)”. It represents a sub-network that has d layers for
all units, while the expansion ratio and kernel size are set to w and k for all layers. PS can
improve the ImageNet accuracy of sub-networks by a significant margin under all architectural
settings. Specifically, without architecture optimization, PS can achieve 74.8% top1 accuracy

61

Compared with EfficientNet (FLOPs)

OFA - Train From
Scratch

#5 Acc Loss Once for All #25 Slimmable Nets #5 Acc Loss EfficientNet #5 Acc Loss MnasNet #5 Acc Loss ProxylessNAS

Untitled 1 389 77.0 389 79.10 390 76.3

Untitled 2 482.0 77.6 482.0 79.60 700 78.8

Untitled 3 595.0 77.9 595.0 80.00 1000 79.8

Untitled 4

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

76

77

78

79

80

81

200 400 600 800 1,000 1,200

OFA OFA - Train from scratch EfficientNet

76.3

78.8

79.879.6
79.1

MACs (M)

80.0
1.68x MACs
reduction

Compared with EfficientNet (Pixel1)

OFA - Train From
Scratch

#5 Acc Loss Once for All #25 Slimmable Nets #5 Acc Loss EfficientNet #5 Acc Loss MnasNet #5 Acc Loss ProxylessNAS

Untitled 1 78.7 76.4 78.7 78.70 163 76.3

Untitled 2 132.0 78.0 132.0 79.80 276 78.8

Untitled 3 143.0 78.2 143.0 80.10 375 79.8

Untitled 4

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

76

77

78

79

80

81

0 50 100 150 200 250 300 350 400
76.3

78.8

79.8
79.8

78.7

Google Pixel1 Latency (ms)

80.1
2.6x latency
reduction

3.8% higher
accuracy

2.8% higher
accuracy

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

76

77

78

79

80

81

200 400 600 800 1,000 1,200

OFA EfficientNet

76.3

78.8

79.879.6
79.1

MACs (M)

80.0
1.68x MACs
reduction

2.8% higher
accuracy

FLOPs

Once for All #5 Acc Loss Once for All #25

Untitled 1 59.0

Untitled 2 90.0

Untitled 3 154.0

Untitled 4 213.0

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)
67

69

71

73

75

77

40 80 120 160 200 240

OFA MobileNetV3

75.2

73.3

70.4

67.4

69.8

72.6

75.2
76.3

MACs (M)

Pixel1

OFA - Train From
Scratch

Untitled 1 20.0

Untitled 2 28

Untitled 3 40

Untitled 4 58

Google Pixel1 Latency (ms)

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

67

69

71

73

75

77

18 24 30 36 42 48 54 60

OFA MobileNetV3
OFA - Train from scratch

75.2

73.3

70.4

67.4

76.4
74.9

73.3

71.4

4% higher
accuracy

1.5x speedup

77.0
77.6

77.9

76.4

78.0
78.2

1

Figure 3.15: OFA achieves 80.0% top1 accuracy with 595M MACs and 80.1% top1 accuracy
with 143ms Pixel1 latency, setting a new SOTA ImageNet top1 accuracy on the mobile
setting.

using 226M MACs under the architecture setting (D=4, W=3, K=3), which is on par with
MobileNetV3-Large. In contrast, without PS, it only achieves 71.5%, which is 3.3% lower.

3.2.5 Once-for-All Network Results for Different Hardware and
Constraints

We apply our trained once-for-all network to get different specialized sub-networks for diverse
hardware platforms: from the cloud to the edge. On cloud devices, the latency for GPU is
measured with batch size 64 on NVIDIA 1080Ti and V100 with Pytorch 1.0+cuDNN. The
CPU latency is measured with batch size 1 on Intel Xeon E5-2690 v4+MKL-DNN. On edge
devices, including mobile phones, we use Samsung, Google and LG phones with TF-Lite,
batch size 1; for mobile GPU, we use Jetson TX2 with Pytorch 1.0+cuDNN, batch size of 16;
for embedded FPGA, we use Xilinx ZU9EG and ZU3EG FPGAs with Vitis AI2, batch size 1.

Comparison with NAS on Mobile Devices. Table 3.4 reports the comparison between
OFA and state-of-the-art hardware-aware NAS methods on the mobile phone (Pixel1). OFA
is much more efficient than NAS when handling multiple deployment scenarios since the
cost of OFA is constant while others are linear to the number of deployment scenarios (N).
With N = 40, the total CO2 emissions of OFA is 16× fewer than ProxylessNAS,
19× fewer than FBNet, and 1,300× fewer than MnasNet (Figure 3.14). Without
retraining, OFA achieves 76.0% top1 accuracy on ImageNet, which is 0.8% higher than
MobileNetV3-Large while maintaining similar mobile latency. We can further improve the
top1 accuracy to 76.4% by fine-tuning the specialized sub-network for 25 epochs and to 76.9%
by fine-tuning for 75 epochs. Besides, we also observe that OFA with PS can achieve 3.6%
better accuracy than without PS.

2https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html

62

Note10

OFA #5 Acc Loss OFA #25 #5 Acc Loss MobileNetV3-
Small

#5 Acc Loss MobileNetV3-
Large

#5 Acc Loss

Untitled 1 8.0 70.0 8 71.4 8.0 67.4

Untitled 2 8.9 71.0 10.9 73.6 10.8 70.4

Untitled 3 10.0 71.7 15.8 75.5 15.3 73.3

Untitled 4 10.9 72.6 22.4 76.6 22.0 75.2

11.7 73.4

13.0 73.8

14.1 74.3

15.1 74.6

15.8 74.8

17.0 75.0

18.5 75.1

19.4 75.5

20.0 75.6

21.3 75.7

21.7 75.9

22.4 76.1

Note8

OFA #5 Acc Loss OFA #25 #5 Acc Loss MobileNetV3-
Small

#5 Acc Loss MobileNetV3-
Large

#5 Acc Loss

Untitled 1 22.0 68.5 22.0 70.4 22.0 67.4

Untitled 2 24.0 69.4 31.0 72.8 31.0 70.4

Untitled 3 26.0 70.3 49.0 74.9 49.0 73.3

Untitled 4 28.0 70.9 65.0 76.1 65.0 75.2

30.0 71.6

31.0 71.7

34.0 72.3

36.0 72.7

38.0 73.1

39.0 73.4

42.0 73.7

44.0 74.0

46.0 74.3

49.0 74.7

52.0 74.9

54.0 75.0

56.0 75.2

58.0 75.3

60.0 75.4

62.0 75.6

65.0 75.7

LG G8

OFA #5 Acc Loss OFA #25 #5 Acc Loss MobileNetV3-
Small

#5 Acc Loss MobileNetV3-
Large

#5 Acc Loss

Untitled 1 8.3 69.4 8.3 71.1 8.2 67.4

Untitled 2 8.9 70.0 11.3 73.0 11.0 70.4

Untitled 3 10.0 70.9 16.0 74.7 17.0 73.3

Untitled 4 11.3 72.1 24.0 76.4 24.0 75.2

13.3 73.0

14.0 73.5

15.3 73.9

16.0 74.3

18.0 75.0

19.0 75.2

20.0 75.3

21.0 75.4

22.0 75.6

23.0 75.8

24.0 76.0

Samsung S7 Edge Latency (ms)

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

67

69

71

73

75

77

25 40 55 70 85 100

75.2

73.3

70.4

67.4

70.5

73.1

74.7

76.3

Samsung Note10 Latency (ms)

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

67

69

71

73

75

77

7 9 11 13 15 17 19 21 23

OFA #25 OFA MobileNetV3

75.2

73.3

70.4

67.4

76.6
75.5

73.6

71.4

Samsung Note8 Latency (ms)

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

67

69

71

73

75

77

20 26 32 38 44 50 56 62 68

75.2

73.3

70.4

67.4

76.1
74.9

72.8

70.4

LG G8 Latency (ms)

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

67

69

71

73

75

77

7 10 13 16 19 22 25

75.2

73.3

70.4

67.4

76.4

74.7

73.0

71.1

Google Pixel1 Latency (ms)

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

67

69

71

73

75

77

18 24 30 36 42 48 54 60

75.2

73.3

70.4

67.4

76.4
74.9

73.3

71.4

Google Pixel2 Latency (ms)

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

67

69

71

73

75

77

23 28 33 38 43 48 53 58 63 68

75.2

73.3

70.4

67.4

75.8
74.7

73.4

71.5

1

Figure 3.16: OFA consistently outperforms MobileNetV3 on mobile platforms.

OFA under Different Computational Resource Constraints. Figure 3.15 summarizes
the results of OFA under different MACs and Pixel1 latency constraints. OFA achieves 79.1%
ImageNet top1 accuracy with 389M MACs, being 2.8% more accurate than EfficientNet-B0
that has similar MACs. With 595M MACs, OFA reaches a new SOTA 80.0% ImageNet top1
accuracy under the mobile setting (<600M MACs), which is 0.2% higher than EfficientNet-B2
while using 1.68× fewer MACs. More importantly, OFA runs much faster than EfficientNets
on hardware. Specifically, with 143ms Pixel1 latency, OFA achieves 80.1% ImageNet top1
accuracy, being 0.3% more accurate and 2.6× faster than EfficientNet-B2. We also find
that training the searched neural architectures from scratch cannot reach the same level of
accuracy as OFA, suggesting that not only neural architectures but also pre-trained weights
contribute to the superior performances of OFA.

Figure 3.16 reports detailed comparisons between OFA and MobileNetV3 on six mobile
devices. Remarkably, OFA can produce the entire trade-off curves with many points
over a wide range of latency constraints by training only once (green curve). It is
impossible for previous NAS methods [10], [114] due to the prohibitive training cost.

OFA for Diverse Hardware Platforms. Besides the mobile platforms, we extensively
studied the effectiveness of OFA on six additional hardware platforms (Figure 3.17) using
the ProxylessNAS architecture space [10]. OFA consistently improves the trade-off between
accuracy and latency by a significant margin, especially on GPUs which have more parallelism.
With similar latency as MobileNetV2 0.35, “OFA #25” improves the ImageNet top1 accuracy
from MobileNetV2’s 60.3% to 72.6% (+12.3% improvement) on the 1080Ti GPU. Detailed
architectures of our specialized models are shown in Figure 3.20. It reveals the insight that

63

2080ti-gpu64

Once for All #5 Acc Loss Once for All #25 Slimmable Nets #5 Acc Loss

Untitled 1 5.5 68.3 5.5 70.0 5.9 59.7

Untitled 2 6.8 71.1 6.8 72.2 7.7 64.4

Untitled 3 10.9 73.8 10.9 74.4 12.3 68.9

Untitled 4 13.4 74.6 13.4 75.0 14.3 70.5

59

63

66

70

73

77

5 7 9 11 13 15

OFA #25 OFA
MnasNet MobileNetV2
Slimmable Nets

V100 gpu64

Once for All #5 Acc Loss Once for All #25 Slimmable Nets #5 Acc Loss MobileNetV2 #5 Acc Loss MnasNet #5 Acc Loss

Untitled 1 4.8 69.0 4.8 71.6 4.9 59.7 4.9 60.3 4.8 62.4

Untitled 2 6.0 71.2 6.0 73.0 5.8 64.4 5.8 65.4 6.2 67.8

Untitled 3 9.2 74.6 9.2 75.3 9.2 68.9 9.2 69.8 9.3 71.5

Untitled 4 10.6 75.5 10.6 76.1 10.6 70.5 10.6 72.0 11.2 74.0

58

62

66

69

73

77

4 6 8 10 12

OFA #25 OFA MnasNet MobileNetV2 Slimmable Nets

1080ti gpu64

Once for All #5 Acc Loss Once for All #25 Slimmable Nets #5 Acc Loss MobileNetV2 #5 Acc Loss MnasNet #5 Acc Loss

Untitled 1 11.6 70.1 11.6 72.6 12.2 59.7 12.2 60.3 11.9 62.4

Untitled 2 14.9 72.1 14.9 73.8 15.1 64.4 15.1 65.4 15.4 67.8

Untitled 3 22.0 74.6 22.0 75.3 24.0 68.9 24.0 69.8 23.4 71.5

Untitled 4 27.3 75.9 27.3 76.4 27.9 70.5 27.9 72.0 28.5 74.0

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

58

62

66

69

73

77

10 14 18 22 26 30

2080Ti Latency (ms)

NVIDIA V100 Latency (ms)
Batch Size = 64

60.3

65.4

69.8
72.0

60.3

65.4

69.8

72.0

NVIDIA 1080Ti Latency (ms)
Batch Size = 64

60.3

65.4

69.8
72.0

72.6
73.8

75.3 76.4

70.0

72.2

74.4 75.0

71.6
73.0

75.3

Intel Xeon CPU

Once for All #5 Acc Loss Once for All #25 Slimmable Nets #5 Acc Loss MobileNetV2 #5 Acc Loss MnasNet #5 Acc Loss

Untitled 1 9.7 68.8 9.7 71.1 9.8 59.7 9.8 60.3 9.8 62.4

Untitled 2 10.9 70.2 10.9 72.0 10.6 64.4 10.6 65.4 11.0 67.8

Untitled 3 14.8 73.7 14.8 74.6 15.5 68.9 15.5 69.8 14.5 71.5

Untitled 4 16.8 75.0 16.8 75.7 17.8 70.5 17.8 72.0 17.5 74.0

58

62

66

69

73

77

9 11 13 15 17 19
Intel Xeon CPU Latency (ms)

Batch Size = 1

60.3

65.4

69.8

72.071.1

74.6
75.7

72.0

76.1

Jetson TX2 Latency (ms)
Batch Size = 16

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

58

62

66

69

73

77

30 45 60 75 90 105
58

62

66

69

73

77

1.5 2.0 2.5 3.0 3.5 4.0
58

62

66

69

73

77

3.0 4.0 5.0 6.0 7.0 8.0
59.1

63.3

69.0
71.5

67.0
69.4

72.8
73.6

Xilinx ZU9EG FPGA Latency (ms)
Batch Size = 1 (Quantized)

Xilinx ZU3EG FPGA Latency (ms)
Batch Size = 1 (Quantized)

59.1

63.3

69.0
71.5

67.0

69.6

72.8
73.7

72.0
69.8

65.4

60.3

75.875.4

72.9

70.3

58

62

66

69

73

77

3.0 4.0 5.0 6.0 7.0 8.0

58

62

66

69

73

77

3.0 4.0 5.0 6.0 7.0 8.0

58

62

66

69

73

77

3.0 4.0 5.0 6.0 7.0 8.0
58

62

66

69

73

77

3.0 4.0 5.0 6.0 7.0 8.0
58

62

66

69

73

77

3.0 4.0 5.0 6.0 7.0 8.0

1

Figure 3.17: Specialized OFA models consistently achieve significantly higher ImageNet
accuracy with similar latency than non-specialized neural networks on CPU, GPU, mGPU,
and FPGA. More remarkably, specializing for a new hardware platform does not add training
cost using OFA.

using the same model for different deployment scenarios with only the width multiplier
modified has a limited impact on efficiency improvement: the accuracy drops quickly as the
latency constraint gets tighter.

OFA for Specialized Hardware Accelerators. There has been plenty of work on NAS
for general-purpose hardware, but little work has been focused on specialized hardware
accelerators. We quantitatively analyzed the performance of OFA on two FPGAs accelerators
(ZU3EG and ZU9EG) using Xilinx Vitis AI with 8-bit quantization, and discuss two design
principles.

Principle 1: memory access is expensive, computation is cheap. An efficient CNN should
do as much as computation with a small amount of memory footprint. The ratio is defined
as the arithmetic intensity (OPs/Byte). The higher OPs/Byte, the less memory bounded,
the easier to parallelize. Thanks to OFA’s diverse choices of sub-network architectures (1019)
(Section 3.2.3), and the OFA model twin that can quickly give the accuracy/latency feedback
(Section 3.2.3), the evolutionary search can automatically find a CNN architecture that has
higher arithmetic intensity. As shown in Figure 3.18, OFA’s arithmetic intensity is 48%/43%
higher than MobileNetV2 and MnasNet (MobileNetV3 is not supported by Xilinx Vitis AI).

64

FPGA Arithmetic Intensity (op/B)

MobileNetV2 MnasNet OFA

0.35 27 27.6 39.4

0.5 35.3 37.1 49.4

0.75 51.6 51.9 54.4

1.0 61 61.2 63.9

Ar
ith

m
et

ic
In

te
ns

ity

(O
PS

/B
yt

e)

0

18

35

53

70

1.0x

FPGA UltraZed-EG GOPS/s

MobileNetV2 MnasNet OFA

0.35 36 31.8 61.2

0.5 48.1 44.0 75.5

0.75 67.8 81.3

1.0 79 83.7

ZU
3E

G
 F

PG
A

(G
O

PS
/s

)

0

23

45

68

90

FPGA ZCU102 GOPS/s-1

MobileNetV2 MnasNet OFA

0.35 77 67.6 126.8

0.5 102.6 94.4 155.3

0.75 150.6 135.4 164.6

1.0 185 167.3 186.3

ZU
9E

G
 F

PG
A

(G
O

PS
/s

)

0

50

100

150

200
MobileNet-v2 MnasNet OFA (Ours)

(under different latency constraints)

on Xilinx ZU3EG FPGAon Xilinx ZU9EG FPGA

0.75x0.5x0.35x1.0x0.75x0.5x0.35x1.0x0.75x0.5x0.35x
(under different latency constraints)(under different latency constraints)

O
ut

 o
f B

RA
M

O
ut

 o
f B

RA
M

Ar
ith

m
et

ic
In

te
ns

ity

(O
PS

/B
yt

e)

0.0

12.5

25.0

37.5

50.0

ZU
9E

G
 F

PG
A

(G
O

PS
/s

)

0.0

40.0

80.0

120.0

160.0
MobileNet-v2 MnasNet OFA (Ours)

ZU
3E

G
 F

PG
A

(G
O

PS
/s

)

0.0

20.0

40.0

60.0

80.0

1

Figure 3.18: OFA models improve the arithmetic intensity (OPS/Byte) and utilization
(GOPS/s) compared with the MobileNetV2 and MnasNet (measured results on Xilinx ZU9EG
and ZU3EG FPGA).

FPGA Arithmetic Intensity (op/B)

MobileNetV2 MnasNet OFA

0.35 27 27.6 39.4

0.5 35.3 37.1 49.4

0.75 51.6 51.9 54.4

1.0 61 61.2 63.9

Ar
ith

m
et

ic
In

te
ns

ity

(O
PS

/B
yt

e)

0

18

35

53

70

1.0x

FPGA UltraZed-EG GOPS/s

MobileNetV2 MnasNet OFA

0.35 36 31.8 61.2

0.5 48.1 44.0 75.5

0.75 67.8 81.3

1.0 79 83.7

ZU
3E

G
 F

PG
A

(G
O

PS
/s

)

0

23

45

68

90

FPGA ZCU102 GOPS/s-1

MobileNetV2 MnasNet OFA

0.35 77 67.6 126.8

0.5 102.6 94.4 155.3

0.75 150.6 135.4 164.6

1.0 185 167.3 186.3

ZU
9E

G
 F

PG
A

(G
O

PS
/s

)

0

50

100

150

200
MobileNet-v2 MnasNet OFA (Ours)

(under different latency constraints)

(b) on Xilinx ZU3EG FPGA(a) on Xilinx ZU9EG FPGA

0.75x0.5x0.35x1.0x0.75x0.5x0.35x1.0x0.75x0.5x0.35x
(under different latency constraints)(under different latency constraints)

�1

Figure 3.19: Quantative study of OFA’s roofline model on Xilinx ZU9EG and ZU3EG FPGAs
(log scale). OFA model increased the arithmetic intensity by 33%/43% and GOPS/s by
72%/92% on these two FPGAs compared with MnasNet.

Removing the memory bottleneck results in higher utilization and GOPS/s by 70%-90%,
pushing the operation point to the upper-right in the roofline model [150], as shown in
Figure 3.19. (70%-90% looks small in the log scale but that is significant).

Principle 2: the CNN architecture should be co-designed with the hardware accelerator’s
cost model. The FPGA accelerator has a specialized depth-wise engine that is pipelined with
the point-wise engine. The pipeline throughput is perfectly matched for 3x3 kernels. As a
result, OFA’s searched model only has 3x3 kernel (Figure 3.20, a) on FPGA, despite 5x5 and
7x7 kernels are also in the search space. Additionally, large kernels sometimes cause “out of
BRAM” error on FPGA, giving high cost. On Intel Xeon CPU, however, more than 50%
operations are large kernels. Both FPGA and GPU models are wider than CPU, due to the
large parallelism of the computation array.

65

M
B

1
3x

3

C
on

v
3x

3

P
oo

lin
g

FC

164x164

M
B

4
3x

3

M
B

5
3x

3

M
B

6
3x

3

M
B

5
3x

3

M
B

6
3x

3

ZU3EG 4.1ms (R = 164)
(3x3_MBConv1_RELU6

(3x3_MBConv4_RELU6

(3x3_MBConv4_RELU6

(3x3_MBConv4_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv4_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv6_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv6_RELU6

M
B

4
3x

3

M
B

4
3x

3

M
B

5
3x

3

M
B

5
3x

3

M
B

5
3x

3

M
B

5
3x

3

M
B

4
3x

3

CPU 10.9ms (R = 144)
3x3_Conv_O40

(3x3_MBConv1_RELU6_O24
(5x5_MBConv4_RELU6_O32
(5x5_MBConv3_RELU6_O32

(3x3_MBConv3_RELU6_O56
(7x7_MBConv3_RELU6_O56
(5x5_MBConv4_RELU6_O104
(3x3_MBConv4_RELU6_O104

(7x7_MBConv3_RELU6_O104
(5x5_MBConv4_RELU6_O128
(7x7_MBConv4_RELU6_O128

(3x3_MBConv6_RELU6_O248
(3x3_MBConv4_RELU6_O248
(5x5_MBConv4_RELU6_O416

1x1_Conv_O1664
1664x1000_Linear

M
B

1
3x

3

C
on

v
3x

3

144x144

M
B

4
5x

5

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

4
5x

5

M
B

4
3x

3

M
B

3
7x

7

M
B

4
5x

5

M
B

4
7x

7

M
B

6
3x

3

M
B

4
3x

3

M
B

4
5x

5

P
oo

lin
g

FC

M
B

1
3x

3

C
on

v
3x

3

144x144

M
B

4
3x

3

M
B

4
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

4
3x

3

M
B

3
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

4
5x

5

M
B

3
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

6
7x

7

M
B

4
7x

7

M
B

6
3x

3

M
B

3
5x

5

P
oo

lin
g

FC

1

(a) 4.1ms latency on Xilinx ZU3EG (batch size = 1).

M
B

1
3x

3

C
on

v
3x

3

P
oo

lin
g

FC

164x164

M
B

4
3x

3

M
B

5
3x

3

M
B

6
3x

3

M
B

5
3x

3

M
B

6
3x

3

ZU3EG 4.1ms (R = 164)
(3x3_MBConv1_RELU6

(3x3_MBConv4_RELU6

(3x3_MBConv4_RELU6

(3x3_MBConv4_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv4_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv6_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv6_RELU6

M
B

4
3x

3

M
B

4
3x

3

M
B

5
3x

3

M
B

5
3x

3

M
B

5
3x

3

M
B

5
3x

3

M
B

4
3x

3

CPU 10.9ms (R = 144)
3x3_Conv_O40

(3x3_MBConv1_RELU6_O24
(5x5_MBConv4_RELU6_O32
(5x5_MBConv3_RELU6_O32

(3x3_MBConv3_RELU6_O56
(7x7_MBConv3_RELU6_O56
(5x5_MBConv4_RELU6_O104
(3x3_MBConv4_RELU6_O104

(7x7_MBConv3_RELU6_O104
(5x5_MBConv4_RELU6_O128
(7x7_MBConv4_RELU6_O128

(3x3_MBConv6_RELU6_O248
(3x3_MBConv4_RELU6_O248
(5x5_MBConv4_RELU6_O416

1x1_Conv_O1664
1664x1000_Linear

M
B

1
3x

3

C
on

v
3x

3

144x144

M
B

4
5x

5

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

4
5x

5

M
B

4
3x

3

M
B

3
7x

7

M
B

4
5x

5

M
B

4
7x

7

M
B

6
3x

3

M
B

4
3x

3

M
B

4
5x

5

P
oo

lin
g

FC

M
B

1
3x

3

C
on

v
3x

3

144x144

M
B

4
3x

3

M
B

4
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

4
3x

3

M
B

3
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

4
5x

5

M
B

3
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

6
7x

7

M
B

4
7x

7

M
B

6
3x

3

M
B

3
5x

5

P
oo

lin
g

FC

1

(b) 10.9ms latency on Intel Xeon CPU (batch size = 1).

M
B

1
3x

3

C
on

v
3x

3

P
oo

lin
g

FC

164x164

M
B

4
3x

3

M
B

5
3x

3

M
B

6
3x

3

M
B

5
3x

3

M
B

6
3x

3

ZU3EG 4.1ms (R = 164)
(3x3_MBConv1_RELU6

(3x3_MBConv4_RELU6

(3x3_MBConv4_RELU6

(3x3_MBConv4_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv4_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv6_RELU6

(3x3_MBConv5_RELU6

(3x3_MBConv6_RELU6

M
B

4
3x

3

M
B

4
3x

3

M
B

5
3x

3

M
B

5
3x

3

M
B

5
3x

3

M
B

5
3x

3

M
B

4
3x

3

CPU 10.9ms (R = 144)
3x3_Conv_O40

(3x3_MBConv1_RELU6_O24
(5x5_MBConv4_RELU6_O32
(5x5_MBConv3_RELU6_O32

(3x3_MBConv3_RELU6_O56
(7x7_MBConv3_RELU6_O56
(5x5_MBConv4_RELU6_O104
(3x3_MBConv4_RELU6_O104

(7x7_MBConv3_RELU6_O104
(5x5_MBConv4_RELU6_O128
(7x7_MBConv4_RELU6_O128

(3x3_MBConv6_RELU6_O248
(3x3_MBConv4_RELU6_O248
(5x5_MBConv4_RELU6_O416

1x1_Conv_O1664
1664x1000_Linear

M
B

1
3x

3

C
on

v
3x

3

144x144

M
B

4
5x

5

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

4
5x

5

M
B

4
3x

3

M
B

3
7x

7

M
B

4
5x

5

M
B

4
7x

7

M
B

6
3x

3

M
B

4
3x

3

M
B

4
5x

5

P
oo

lin
g

FC

M
B

1
3x

3

C
on

v
3x

3

144x144

M
B

4
3x

3

M
B

4
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

4
3x

3

M
B

3
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

4
5x

5

M
B

3
3x

3

M
B

6
3x

3

M
B

6
3x

3

M
B

6
7x

7

M
B

4
7x

7

M
B

6
3x

3

M
B

3
5x

5

P
oo

lin
g

FC

1

(c) 14.9ms latency on NVIDIA 1080Ti (batch size = 64).

Figure 3.20: OFA can design specialized models for different hardware and different latency
constraint. “MB4 3x3” means “mobile block with expansion ratio 4, kernel size 3x3”. FPGA
and GPU models are wider than CPU model due to larger parallelism. Different hardware
has different cost model, leading to different optimal CNN architectures. OFA provides a
unified and efficient design methodology.

3.2.6 Conclusion

We proposed Once-for-All (OFA), a new methodology that decouples model training from
architecture search for efficient deep learning deployment under a large number of hardware
platforms. Unlike previous approaches that design and train a neural network for each
deployment scenario, we designed a once-for-all network that supports different architectural
configurations, including elastic depth, width, kernel size, and resolution. It reduces the
training cost (GPU hours, energy consumption, and CO2 emission) by orders of magni-
tude compared to conventional methods. To prevent sub-networks of different sizes from
interference, we proposed a progressive shrinking algorithm that enables a large number of
sub-networks to achieve the same level of accuracy compared to training them independently.
Experiments on a diverse range of hardware platforms and efficiency constraints demonstrated
the effectiveness of our approach. OFA provides an automated ecosystem to efficiently design
efficient neural networks with the hardware cost model in the loop.

66

Chapter 4

Efficient Model Customization

4.1 Introduction

Intelligent edge devices with rich sensors (e.g., billions of mobile phones and IoT devices)1

have been ubiquitous in our daily lives. These devices keep collecting new and sensitive data
through the sensor every day while being expected to provide high-quality and customized
services without sacrificing privacy2. These pose new challenges to efficient AI systems that
could not only run inference but also continually fine-tune the pre-trained models on newly
collected data (i.e., on-device learning).

Though on-device learning can enable many appealing applications, it is an extremely
challenging problem. First, edge devices are memory-constrained. For example, a Raspberry
Pi 1 Model A only has 256MB of memory, which is sufficient for inference, but by far
insufficient for training (Figure 4.1 left), even using a lightweight neural network architecture
(MobileNetV2 [119]). Furthermore, the memory is shared by various on-device applications
(e.g., other deep learning models) and the operating system. A single application may only
be allocated a small fraction of the total memory, which makes this challenge more critical.
Second, edge devices are energy-constrained. DRAM access consumes two orders of magnitude
more energy than on-chip SRAM access. The large memory footprint of activations cannot fit
into the limited on-chip SRAM, thus has to access DRAM. For instance, the training memory
of MobileNetV2, under batch size 16, is close to 1GB, which is by far larger than the SRAM
size of an AMD EPYC CPU3 (Figure 4.1 left), not to mention lower-end edge platforms. If
the training memory can fit on-chip SRAM, it will drastically improve the speed and energy
efficiency.

There is plenty of efficient inference techniques that reduce the number of trainable
parameters and the computation FLOPs [11], [30], [35], [38], [39], [114], [119], [130], [136], [151],
however, parameter-efficient or FLOPs-efficient techniques do not directly save the training
memory. It is the activation that bottlenecks the training memory, not the parameters. For
example, Figure 4.1 (right) compares ResNet-50 and MobileNetV2-1.4. In terms of parameter
size, MobileNetV2-1.4 is 4.3× smaller than ResNet-50. However, for training activation

1https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
2https://ec.europa.eu/info/law/law-topic/data-protection_en
3https://www.amd.com/en/products/cpu/amd-epyc-7302

67

https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://ec.europa.eu/info/law/law-topic/data-protection_en
https://www.amd.com/en/products/cpu/amd-epyc-7302

Training

128x expensive!

Inference Memory Footprint, Batch Size = 1 (20MB)

Memory Cost

#batch size ResNet50 Act ResNet50 Params ResNet50 Running
Act

ResNet50 Training
Memory Cost

#batch size ResNet50 Inference
Memory Cost

#batch size MobileNetV2 Act MobileNetV2
Params

MobileNetV2
Running Act

MobileNetV2
Training Memory
Cost

#batch size MobileNetV2
Inference Memory
Cost

Untitled 1 0 88.4 102.23 6.42 190.63 0 108.65 0 54.80 14.02 5.60 68.82 0 19.62

Untitled 2 1 176.8 102.23 279.03 1 108.65 1 109.60 14.02 123.62 1 19.62

Untitled 3 2 353.6 102.23 456.83 2 108.65 2 219.20 14.02 233.22 2 19.62

Untitled 4 3 707.2 102.23 809.43 3 108.65 3 438.40 14.02 452.42 3 19.62

4 1414.4 102.23 1516.63 4 108.65 4 876.80 14.02 890.82 4 19.62

101

102

103

TPU SRAM (28MB)

21 4 8

Raspberry Pi 1 DRAM
(256MB)

float mult SRAM access DRAM access

Energy 3.7 5.0 640.0

Table 1

ResNet MBV2-1.4

Params (M) 102 24

Activations (M) 707.2 626.4

0

200

400

600

800

Param (MB) Activation (MB)

ResNet-50 MbV2-1.4

4.3x

1.1x

The main bottleneck
does not improve much.

DRAM: 640 pJ/byte

SRAM: 5 pJ/byte

6.9x larger

Table 1-1

MobileNetV3-1.4

4

40

59

16
Batch Size

M
bV

2
M

em
or

y
Fo

ot
pr

in
t (

M
B)

Activation is the
main bottleneck,
not parameters.

float mult SRAM access DRAM access

Energy 3.7 5.0 640.0

Training Inference

Batch Size

101

102

103

M
ob

ile
Ne

tV
2

M
em

or
y

Fo
ot

pr
in

t (
M

B)

TPU SRAM (28MB)

21 4 8 16

Raspberry Pi 1
Model A DRAM (256MB)

32 bit
Float Mult

32 bit
SRAM Access

32 bit
DRAM Access

102

103

101

100

En
er

gy
 (p

J)

3.7 pJ 5 pJ

640 pJ

128x
Expensive

float mult SRAM access DRAM access

Energy 3.7 5.0 640.0

Inference, bs=1

Energy 20.0

0

125

250

375

500

Inference
Batch Size = 1

M
ob

ile
Ne

tV
2

M
em

or
y

Fo
ot

pr
in

t (
M

B)

SRAM: 5 pJ/byte

DRAM: 640 pJ/byte

128x expensive!

Table 2

SRAM Access Training, bs=8

Energy 20 890.82

0

250

500

750

1000

AMD EPYC CPU SRAM (L3 Cache)

Raspberry Pi 1 DRAM

M
bV

2
M

em
or

y
Fo

ot
pr

in
t (

M
B)

Inference
Batch Size = 1

Training
Batch Size = 16

Table 3

ResNet-50 MbV2-1.4

Param (MB) 102 24

Activation (MB) 1414.4 1252.8

0

400

800

1200

1600

Param (MB) Activation (MB)

ResNet-50 MbV2-1.4
The main bottleneck does not improve much.

13.9x larger

Activation is the
main bottleneck,
not parameters.

4.3x

1.1x

1

Figure 4.1: Left : The memory footprint required by training is much larger than inference.
Right : Memory cost comparison between ResNet-50 and MobileNetV2-1.4 under batch size
16. Recent advances in efficient model design only reduce the size of parameters, but the
activation size, which is the main bottleneck for training, does not improve much.

size, MobileNetV2-1.4 is almost the same as ResNet-50 (only 1.1× smaller), leading to little
memory reduction. It is essential to reduce the size of intermediate activations required by
back-propagation, which is the key memory bottleneck for efficient on-device training.

In this paper, we propose Tiny-Transfer-Learning (TinyTL) to address these challenges.
By analyzing the memory footprint during the backward pass, we notice that the intermediate
activations (the main bottleneck) are only needed when updating the weights, not the biases
(Eq. 4.2). Inspired by this finding, we propose to freeze the weights of the pre-trained feature
extractor and only update the biases to reduce the memory footprint (Figure 4.2b). To
compensate for the capacity loss, we introduce a memory-efficient bias module, called lite
residual module, which improves the model capacity by refining the intermediate feature maps
of the feature extractor (Figure 4.2c). Meanwhile, we aggressively shrink the resolution and
width of the lite residual module to have a small memory overhead (only 3.8%). Extensive
experiments on 9 image classification datasets with the same pre-trained model (ProxylessNAS-
Mobile [10]) demonstrate the effectiveness of TinyTL compared to previous transfer learning
methods. Further, combined with a pre-trained once-for-all network [11], TinyTL can select
a specialized sub-network as the feature extractor for each transfer dataset (i.e., feature
extractor adaptation): given a more difficult dataset, a larger sub-network is selected, and vice
versa. TinyTL achieves the same level of (or even higher) accuracy compared to fine-tuning
the full Inception-V3 while reducing the training memory footprint by up to 12.9×.

4.2 Tiny Transfer Learning

4.2.1 Understanding the Memory Footprint of Back-propagation

Without loss of generality, we consider a neural network M that consists of a sequence of
layers:

M(·) = Fwn(Fwn−1(· · · Fw2(Fw1(·)) · · ·)), (4.1)

68

fmap in memory

fmap not in memory

learned weights on target task

pre-trained weights

(a) Fine-tune the full network

Downsample Upsample

(b) Lightweight residual learning (ours) (d) Our lightweight residual branch

KxK Group
Conv

1x1
Conv

keep activations small while using group conv
to increase the arithmetic intensity

(c) Mobile inverted bottleneck block

little computation but large activation

(a) Fine-tune the full network (Conventional)

train a once-for-all network

(c) Lite residual learning

fmap in memory fmap not in memory

learnable params fixed params weight bias
 mobile inverted bottleneck blockith

UpsampleDownsample Group Conv 1x1 Conv

(b) Fine-tune bias only

(a) Fine-tune the full network (Conventional)

(c) Lite residual learning(d) Feature network adaptation

fmap in memory fmap not in memory

learnable params fixed params

weight bias

 mobile inverted bottleneck blockith

Aircraft Cars
Flowers

Downsample Group Conv

1x1 Conv

Avoid inverted bottleneck

1x1 Conv

(b) Fine-tune bias only

C, R 6C, R 6C, R C, R

C, 0.5R C, 0.5R

1x1 Conv1x1 Conv Depth-wise Conv

1x1 Conv1x1 Conv Depth-wise Conv

(a) Fine-tune the full network (Conventional)

(c) Lite residual learning

fmap in memory fmap not in memory

learnable params fixed params weight bias
 mobile inverted bottleneck blockith

UpsampleDownsample Group Conv 1x1 Conv

(b) Fine-tune bias only

R

R R

R

0.5R 0.5R

1x1 Conv1x1 Conv Depth-wise Conv

1x1 Conv1x1 Conv Depth-wise Conv

C 6C 6C C

C

1

Figure 4.2: TinyTL overview (“C” denotes the width and “R” denote the resolution). Conven-
tional transfer learning relies on fine-tuning the weights to adapt the model (Fig.a), which
requires a large amount of activation memory (in blue) for back-propagation. TinyTL reduces
the memory usage by fixing the weights (Fig.b) while only fine-tuning the bias. (Fig.c)
exploit lite residual learning to compensate for the capacity loss, using group convolution and
avoiding inverted bottleneck to achieve high arithmetic intensity and small memory footprint.
The skip connection remains unchanged (omitted for simplicity).

where wi denotes the parameters of the ith layer. Let ai and ai+1 be the input and output
activations of the ith layer, respectively, and L be the loss. In the backward pass, given ∂L

∂ai+1
,

there are two goals for the ith layer: computing ∂L
∂ai

and ∂L
∂wi

.
Assuming the ith layer is a linear layer whose forward process is given as: ai+1 = aiW+b,

then its backward process under batch size 1 is

∂L
∂ai

=
∂L

∂ai+1

∂ai+1

∂ai

=
∂L

∂ai+1

WT ,
∂L
∂W

= aT
i

∂L
∂ai+1

,
∂L
∂b

=
∂L

∂ai+1

. (4.2)

According to Eq. (4.2), the intermediate activations (i.e., {ai}) that dominate the memory
footprint are only required to compute the gradient of the weights (i.e., ∂L

∂W
), not the bias.

If we only update the bias, training memory can be greatly saved. This property is also
applicable to convolution layers and normalization layers (e.g., batch normalization [152],
group normalization[153], etc) since they can be considered as special types of linear layers.

Regarding non-linear activation layers (e.g., ReLU, sigmoid, h-swish), sigmoid and h-swish
require to store ai to compute ∂L

∂ai
(Table 4.1), hence they are not memory-efficient. Activation

layers that build upon them are also not memory-efficient consequently, such as tanh, swish
[154], etc. In contrast, ReLU and other ReLU-styled activation layers (e.g., LeakyReLU [155])
only requires to store a binary mask representing whether the value is smaller than 0, which
is 32× smaller than storing ai.

69

Table 4.1: Detailed forward and backward processes of non-linear activation layers. |ai|
denotes the number of elements of ai. “◦” denotes the element-wise product. (1ai≥0)j = 0 if
(ai)j < 0 and (1ai≥0)j = 1 otherwise. ReLU6(ai) = min(6,max(0, ai)).

Layer Type Forward Backward Memory Cost

ReLU ai+1 = max(0,ai) ∂L
∂ai

= ∂L
∂ai+1

◦ 1ai≥0 |ai| bits
sigmoid ai+1 = σ(ai) =

1
1+exp(−ai)

∂L
∂ai

= ∂L
∂ai+1

◦ σ(ai) ◦ (1− σ(ai)) 32 |ai| bits

h-swish [30] ai+1 = ai ◦ ReLU6(ai+3)
6

∂L
∂ai

= ∂L
∂ai+1

◦ (ReLU6(ai+3)
6 + ai ◦ 1−3≤ai≤3

6) 32 |ai| bits

4.2.2 Lite Residual Learning

Based on the memory footprint analysis, one possible solution of reducing the memory cost
is to freeze the weights of the pre-trained feature extractor while only update the biases
(Figure 4.2b). However, only updating biases has limited adaptation capacity. Therefore, we
introduce lite residual learning that exploits a new class of generalized memory-efficient bias
modules to refine the intermediate feature maps (Figure 4.2c).

Formally, a layer with frozen weights and learnable biases can be represented as:

ai+1 = FW(ai) + b. (4.3)

To improve the model capacity while keeping a small memory footprint, we propose to add a
lite residual module that generates a residual feature map to refine the output:

ai+1 = FW(ai) + b+ Fwr(a
′
i = reduce(ai)), (4.4)

where a′
i = reduce(ai) is the reduced activation. According to Eq. (4.2), learning these lite

residual modules only requires to store the reduced activations {a′
i} rather than the full

activations {ai}.

Implementation (Figure 4.2c). We apply Eq. (4.4) to mobile inverted bottleneck blocks
(MB-block) [119]. The key principle is to keep the activation small. Following this principle,
we explore two design dimensions to reduce the activation size:

• Width. The widely-used inverted bottleneck requires a huge number of channels (6×) to
compensate for the small capacity of a depthwise convolution, which is parameter-efficient
but highly activation-inefficient. Even worse, converting 1× channels to 6× channels
back and forth requires two 1 × 1 projection layers, which doubles the total activation
to 12×. Depthwise convolution also has a very low arithmetic intensity (its OPs/Byte is
less than 4% of 1× 1 convolution’s OPs/Byte if with 256 channels), thus highly memory
in-efficient with little reuse. To solve these limitations, our lite residual module employs the
group convolution that has much higher arithmetic intensity than depthwise convolution,
providing a good trade-off between FLOPs and memory. That also removes the 1×1
projection layer, reducing the total channel number by 6×2+1

1+1
= 6.5×.

70

• Resolution. The activation size grows quadratically with the resolution. Therefore, we
shrink the resolution in the lite residual module by employing a 2× 2 average pooling to
downsample the input feature map. The output of the lite residual module is then upsampled
to match the size of the main branch’s output feature map via bilinear upsampling.
Combining resolution and width optimizations, the activation of our lite residual module is
roughly 22 × 6.5 = 26× smaller than the inverted bottleneck.

4.2.3 Discussions

Normalization Layers. As discussed in Section 4.2.1, TinyTL flexibly supports different
normalization layers, including batch normalization (BN), group normalization (GN), layer
normalization (LN), and so on. In particular, BN is the most widely used one in vision
tasks. However, BN requires a large batch size to have accurate running statistics estimation
during training, which is not suitable for on-device learning where we want a small training
batch size to reduce the memory footprint. Moreover, the data may come in a streaming
fashion in on-device learning, which requires a training batch size of 1. In contrast to BN,
GN can handle a small training batch size as the running statistics in GN are computed
independently for different inputs. In our experiments, GN with a small training batch size
(e.g., 8) performs slightly worse than BN with a large training batch size (e.g., 256). However,
as we target at on-device learning, we choose GN in our models.

Feature Extractor Adaptation. TinyTL can be applied to different backbone neural
networks, such as MobileNetV2 [119], ProxylessNASNets [10], EfficientNets [29], etc. However,
since the weights of the feature extractor are frozen in TinyTL, we find using the same backbone
neural network for all transfer tasks is sub-optimal. Therefore, we choose the backbone
of TinyTL using a pre-trained once-for-all network [11] to adaptively select the specialized
feature extractor that best fits the target transfer dataset. Specifically, a once-for-all network
is a special kind of neural network that is sparsely activated, from which many different
sub-networks can be derived without retraining by sparsely activating parts of the model
according to the architecture configuration (i.e., depth, width, kernel size, resolution), while
the weights are shared. This allows us to efficiently evaluate the effectiveness of a backbone
neural network on the target transfer dataset without the expensive pre-training process.

4.3 Experiments

4.3.1 Setups

Datasets. Following the common practice [156]–[158], we use ImageNet [61] as the pre-
training dataset, and then transfer the models to 8 downstream object classification tasks,
including Cars [159], Flowers [160], Aircraft [161], CUB [162], Pets [163], Food [164], CIFAR10
[165], and CIFAR100 [165]. Besides object classification, we also evaluate our TinyTL on
human facial attribute classification tasks, where CelebA [166] is the transfer dataset and
VGGFace2 [167] is the pre-training dataset.

71

Table 4.2: Comparison between TinyTL and conventional transfer learning methods (training
memory footprint is calculated assuming the batch size is 8 and the classifier head for
Flowers is used). For object classification datasets, we report the top1 accuracy (%) while
for CelebA we report the average top1 accuracy (%) over 40 facial attribute classification
tasks. ‘B’ represents Bias while ‘L’ represents LiteResidual. FT-Last represents only the last
layer is fine-tuned. FT-Norm+Last represents normalization layers and the last layer are
fine-tuned. FT-Full represents the full network is fine-tuned. The backbone neural network
is ProxylessNAS-Mobile, and the resolution is 224 except for ‘TinyTL-L+B@320’ whose
resolution is 320. TinyTL consistently outperforms FT-Last and FT-Norm+Last by a large
margin with a similar or lower training memory footprint. By increasing the resolution to 320,
TinyTL can reach the same level of accuracy as FT-Full while being 6× memory efficient.

Method Train. Flowers Cars CUB Food Pets Aircraft CIFAR10 CIFAR100 CelebAMem.

FT-Last 31MB 90.1 50.9 73.3 68.7 91.3 44.9 85.9 68.8 88.7

TinyTL-B 32MB 93.5 73.4 75.3 75.5 92.1 63.2 93.7 78.8 90.4
TinyTL-L 37MB 95.3 84.2 76.8 79.2 91.7 76.4 96.1 80.9 91.2
TinyTL-L+B 37MB 95.5 85.0 77.1 79.7 91.8 75.4 95.9 81.4 91.2
TinyTL-L+B@320 65MB 96.8 88.8 81.0 82.9 92.9 82.3 96.1 81.5 -

FT-Norm+Last 192MB 94.3 77.9 76.3 77.0 92.2 68.1 94.8 80.2 90.4
FT-Full 391MB 96.8 90.2 81.0 84.6 93.0 86.0 97.1 84.1 91.4

Model Architecture. To justify the effectiveness of TinyTL, we first apply TinyTL and
previous transfer learning methods to the same backbone neural network, ProxylessNAS-
Mobile [10]. For each MB-block in ProxylessNAS-Mobile, we insert a lite residual module as
described in Section 4.2.2 and Figure 4.2 (c). The group number is 2, and the kernel size is 5.
We use the ReLU activation since it is more memory-efficient according to Section 4.2.1. We
replace all BN layers with GN layers to better support small training batch sizes. We set
the number of channels per group to 8 for all GN layers. Following [168], we apply weight
standardization [169] to convolution layers that are followed by GN.

For feature extractor adaptation, we build the once-for-all network using the MobileNetV2
design space [10], [11] that contains five stages with a gradually decreased resolution, and
each stage consists of a sequence of MB-blocks. In the stage-level, it supports elastic depth
(i.e., 2, 3, 4). In the block-level, it supports elastic kernel size (i.e., 3, 5, 7) and elastic width
expansion ratio (i.e., 3, 4, 6). Similarly, for each MB-block in the once-for-all network, we
insert a lite residual module that supports elastic group number (i.e., 2, 4) and elastic kernel
size (i.e., 3, 5).

Training Details. We freeze the memory-heavy modules (weights of the feature extractor)
and only update memory-efficient modules (bias, lite residual, classifier head) during transfer
learning. The models are fine-tuned for 50 epochs using the Adam optimizer [170] with
batch size 8 on a single GPU. The initial learning rate is tuned for each dataset while cosine
schedule [149] is adopted for learning rate decay. We apply 8bits weight quantization [38] on
the frozen weights to reduce the parameter size, which causes a negligible accuracy drop in

72

our experiments. For all compared methods, we also assume the 8bits weight quantization
is applied if eligible when calculating their training memory footprint. Additionally, as
PyTorch does not support explicit fine-grained memory management, we use the theoretically
calculated training memory footprint for comparison in our experiments. For simplicity, we
assume the batch size is 8 for all compared methods throughout the experiment section.

4.3.2 Main Results

Effectiveness of TinyTL. Table 4.2 reports the comparison between TinyTL and previous
transfer learning methods including: i) fine-tuning the last linear layer [171]–[173] (referred to
as FT-Last); ii) fine-tuning the normalization layers (e.g., BN, GN) and the last linear layer
[174] (referred to as FT-Norm+Last) ; iii) fine-tuning the full network [156], [158] (referred to
as FT-Full). We also study several variants of TinyTL including: i) TinyTL-B that fine-tunes
biases and the last linear layer; ii) TinyTL-L that fine-tunes lite residual modules and the
last linear layer; iii) TinyTL-L+B that fine-tunes lite residual modules, biases, and the last
linear layer. All compared methods use the same pre-trained model but fine-tune different
parts of the model as discussed above. We report the average accuracy across five runs.

Compared to FT-Last, TinyTL maintains a similar training memory footprint while
improving the top1 accuracy by a significant margin. In particular, TinyTL-L+B improves
the top1 accuracy by 34.1% on Cars, by 30.5% on Aircraft, by 12.6% on CIFAR100, by
11.0% on Food, etc. It shows the improved adaptation capacity of our method over FT-Last.
Compared to FT-Norm+Last, TinyTL-L+B improves the training memory efficiency by 5.2×
while providing up to 7.3% higher top1 accuracy, which shows that our method is not only
more memory-efficient but also more effective than FT-Norm+Last. Compared to FT-Full,
TinyTL-L+B@320 can achieve the same level of accuracy while providing 6.0× training
memory saving.

Regarding the comparison between different variants of TinyTL, both TinyTL-L and
TinyTL-L+B have clearly better accuracy than TinyTL-B while incurring little memory
overhead. It shows that the lite residual modules are essential in TinyTL. Besides, we find
that TinyTL-L+B is slightly better than TinyTL-L on most of the datasets while maintaining
the same memory footprint. Therefore, we choose TinyTL-L+B as the default.

Figure 4.3 demonstrates the results under different input resolutions. We can observe
that simply reducing the input resolution will result in significant accuracy drops for FT-Full.
In contrast, TinyTL can reduce the memory footprint by 3.9-6.5× while having the same or
even higher accuracy compared to fine-tuning the full network.

Combining TinyTL and Feature Extractor Adaptation. Table 4.3 summarizes the
results of TinyTL and previously reported transfer learning results, where different backbone
neural networks are used as the feature extractor. Combined with feature extractor adaptation,
TinyTL achieves 7.5-12.9× memory saving compared to fine-tuning the full Inception-V3,
reducing from 850MB to 66-114MB while providing the same level of accuracy. Additionally,
we try updating the last two layers besides biases and lite residual modules (indicated by †),
which results in 2MB of extra training memory footprint. This slightly improves the accuracy
performances, from 90.7% to 91.5% on Cars, from 85.0% to 86.0% on Food, and from 84.8%
to 85.4% on Aircraft.

73

Stanford-Cars

Full Last BN Bias LiteResidual LiteResidual+Bias

256, 448

224, 416

192, 384 89.1 292.4

160, 352 87.3 208.7

128, 320 84.2 140.5 60.0 57.6 80.1 59.3 88.3 64.7 88.8 64.7

96, 288 76.1 87.2 58.4 47.6 78.1 49.0 87.7 54.4 88.0 54.4

, 256 54.7 38.7 80.2 249.9 75.9 39.8 86.3 45.2 87.4 45.2

, 224 50.9 30.8 77.9 192.4 73.4 31.7 84.2 37.1 85.0 37.1

, 192 73.7 142.9 68.6 24.7 82.1 30.1 83.6 30.1

, 160 67.9 100.7 61.2 18.7 77.3 24.1 78.2 24.2

45

55

65

75

85

95

0 75 150 225 300

TinyTL (LiteResidual+Bias) TinyTL (Bias) FT-Norm+Last FT-Last FT-Full

Training Memory (MB)

Ca
rs

Flowers102-1

Full Last BN Bias LiteResidual LiteResidual+bias Batch Size

Model Size 18.98636 5.138576 5.264432 5.201504 10.587824 10.63352 8

Act@256, Act@448 60.758528 12.845056 93.6488 13.246464 13.246464 13.246464

Act@224, Act@416 46.482132 11.075584 80.713856 11.421696 11.421696 11.421696

Act@192, Act@384 34.176672 9.437184 68.8032 9.732096 9.732096 9.732096

Act@160, Act@352 23.70904 7.929856 57.785036 8.177664 8.177664 8.177664

Act@128, Act@320 15.189632 6.5536 47.78 6.7584 6.7584 6.7584

Act@96, Act@288 8.530757 5.308416 38.678632 5.474304 5.474304 5.474304

, Act@256 4.194304 30.5792 4.325376 4.325376 4.325376

, Act@224 3.211264 23.39462 3.311616 3.311616 3.311616

, Act@192 2.359296 17.2008 2.433024 2.433024 2.433024

, Act@160 1.6384 11.933009 1.6896 1.6896 1.6896

Aircraft

Full Last BN Bias LiteResidual LiteResidual+Bias

256, 448

224, 416

192, 384 83.5 292.4

160, 352 81.0 208.7

128, 320 77.7 140.5 51.9 57.6 68.6 59.3 81.5 64.7 82.3 64.7

96, 288 70.5 87.2 50.6 47.6 67.3 49.0 80.0 54.4 80.8 54.4

, 256 48.6 38.7 70.7 249.9 65.6 39.8 79.0 45.2 78.9 45.2

, 224 44.9 30.8 68.1 192.4 63.2 31.7 76.4 37.1 75.4 37.1

, 192 64.7 142.9 59.4 24.7 73.3 30.1 74.9 30.1

, 160 60.5 100.7 55.2 18.7 69.5 24.1 70.4 24.2

40

50

60

70

80

90

0 75 150 225 300

Training Memory (MB)

Ai
rc

ra
ft

Flowers

Full Last BN Bias LiteResidual LiteResidual+Bias

256, 448

224, 416 96.8 390.8

192, 384 96.1 292.4

160, 352 95.4 208.7

128, 320 93.6 140.5 93.3 57.6 96.0 387.5 95.6 59.3 96.7 64.7 96.8 64.7

96, 288 89.6 87.2 92.6 47.6 95.6 314.7 95.1 49.0 96.4 54.4 96.4 54.4

, 256 91.6 38.7 95.0 249.9 94.5 39.8 95.9 45.2 96.0 45.2

, 224 90.1 30.8 94.3 192.4 93.5 31.7 95.3 37.1 95.5 37.1

, 192 92.8 142.9 91.5 24.7 94.6 30.1 94.6 30.1

, 160 90.5 100.7 89.5 18.7 92.8 24.1 93.1 24.2

88

90

92

94

96

98

0 100 200 300 400
Training Memory (MB)

Fl
ow

er
s

Cub200

Full Last BN Bias LiteResidual LiteResidual+Bias

256, 448

224, 416 81.0 390.8

192, 384 79.0 292.4

160, 352 76.7 208.7

128, 320 71.8 140.5 77.9 57.6 80.6 387.5 79.8 59.3 80.5 64.7 81.0 64.7

96, 288 77.0 47.6 79.6 314.7 78.6 49.0 79.6 54.4 80.0 54.4

, 256 75.4 38.7 79.1 249.9 77.5 39.8 78.5 45.2 78.8 45.2

, 224 73.3 30.8 76.3 192.4 75.3 31.7 76.8 37.1 77.1 37.1

, 192 73.7 142.9 72.7 24.7 74.7 30.1 74.7 30.1

, 160

70

72

74

76

78

80

82

0 100 200 300 400

Training Memory (MB)

CU
B

Food101

Full Last BN Bias LiteResidual LiteResidual+Bias

256, 448

224, 416 84.6 390.8

192, 384 83.2 292.4

160, 352 81.2 208.7

128, 320 78.1 140.5 73.0 57.6 80.2 387.5 78.7 59.3 82.8 64.7 82.9 64.7

96, 288 73.5 87.2 72.0 47.6 79.5 314.7 77.9 49.0 82.0 54.4 82.1 54.4

, 256 70.7 38.7 78.4 249.9 76.8 39.8 81.1 45.2 81.5 45.2

, 224 68.7 30.8 77.0 192.4 75.5 31.7 79.2 37.1 79.7 37.1

, 192 74.9 142.9 73.0 24.7 78.2 30.1 78.4 30.1

, 160 72.4 100.7 70.1 18.7 74.6 24.1 75.1 24.2

65

69

73

77

81

85

0 100 200 300 400
Training Memory (MB)

Fo
od

Pets

Full Last BN Bias LiteResidual LiteResidual+Bias256, 448

88

89

90

91

92

93

94

0 100 200 300 400
Training Memory (MB)

Pe
ts

75

80

85

90

95

100

0 40 80 120 160
Training Memory (MB)

CI
FA

R1
0

55

61

67

73

79

85

0 40 80 120 160
Training Memory (MB)

CI
FA

R1
00

6.5x memory
saving 292MB45MB

209MB
45MB

4.6x memory
saving

292MB
45MB

6.5x memory
saving

292MB
65MB

4.5x memory
saving

391MB65MB

6.0x memory
saving

209MB
54MB

3.9x memory
saving 87MB19MB

4.6x memory
saving 87MB19MB

4.6x memory
saving

1

Figure 4.3: Top1 accuracy results of different transfer learning methods under varied reso-
lutions using the same pre-trained neural network (ProxylessNAS-Mobile). With the same
level of accuracy, TinyTL achieves 3.9-6.5× memory saving compared to fine-tuning the full
network.

4.3.3 Ablation Studies and Discussions

Comparison with Dynamic Activation Pruning. The comparison between TinyTL
and dynamic activation pruning [175] is summarized in Figure 4.4. TinyTL is more effective
because it re-designed the transfer learning framework (lite residual module, feature extractor
adaptation) rather than prune an existing architecture. The transfer accuracy drops quickly
when the pruning ratio increases beyond 50% (only 2× memory saving). In contrast, TinyTL
can achieve much higher memory reduction without loss of accuracy.

Initialization for Lite Residual Modules. By default, we use the pre-trained weights on
the pre-training dataset to initialize the lite residual modules. It requires to have lite residual
modules during both the pre-training phase and transfer learning phase. When applying
TinyTL to existing pre-trained neural networks that do not have lite residual modules during
the pre-training phase, we need to use another initialization strategy for the lite residual
modules during transfer learning. To verify the effectiveness of TinyTL under this setting,
we also evaluate the performances of TinyTL when using random weights [129] to initialize
the lite residual modules except for the scaling parameter of the final normalization layer in
each lite residual module. These scaling parameters are initialized with zeros.

Table 4.4 reports the summarized results. We find using the pre-trained weights to
initialize the lite residual modules consistently outperforms using random weights. Besides,
we also find that using TinyTL-RandomL+B still provides highly competitive results on
Cars, Food, Aircraft, CIFAR10, CIFAR100, and CelebA. Therefore, if having the budget, it
is better to use pre-trained weights to initialize the lite residual modules. If not, TinyTL can
still be applied and provides competitive results on datasets whose distribution is far from

74

Table 4.3: Comparison with previous transfer learning results under different backbone neural
networks. ‘I-V3’ is Inception-V3; ‘N-A’ is NASNet-A Mobile; ‘M2-1.4’ is MobileNetV2-
1.4; ‘R-50’ is ResNet-50; ‘PM’ is ProxylessNAS-Mobile; ‘FA’ represents feature extractor
adaptation. † indicates the last two layers are updated besides biases and lite residual modules
in TinyTL. TinyTL+FA reduces the training memory by 7.5-12.9× without sacrificing
accuracy compared to fine-tuning the widely used Inception-V3.

Method Net Train. Reduce Flowers Cars CUB Food Pets Aircraft CIFAR10 CIFAR100mem. ratio

FT-Full

I-V3 [156] 850MB 1.0× 96.3 91.3 82.8 88.7 - 85.5 - -
R-50 [158] 802MB 1.1× 97.5 91.7 - 87.8 92.5 86.6 96.8 84.5
M2-1.4 [158] 644MB 1.3× 97.5 91.8 - 87.7 91.0 86.8 96.1 82.5
N-A [158] 566MB 1.5× 96.8 88.5 - 85.5 89.4 72.8 96.8 83.9

FT-Norm+Last I-V3 [174] 326MB 2.6× 90.4 81.0 - - - 70.7 - -

FT-Last I-V3 [174] 94MB 9.0× 84.5 55.0 - - - 45.9 - -

TinyTL

PM@320 65MB 13.1× 96.8 88.8 81.0 82.9 92.9 82.3 96.1 81.5
FA@256 66MB 12.9× 96.8 89.6 80.8 83.4 93.0 82.4 96.8 82.7
FA@352 114MB 7.5× 97.4 90.7 82.4 85.0 93.4 84.8 - -
FA@352† 116MB 7.3× - 91.5 - 86.0 - 85.4 - -

Table 4.4: Results of TinyTL under different initialization strategies for lite residual modules.
TinyTL-L+B adds lite residual modules starting from the pre-training phase and uses
the pre-trained weights to initialize the lite residual modules during transfer learning. In
contrast, TinyTL-RandomL+B uses random weights to initialize the lite residual modules.
Using random weights for initialization hurts the performances of TinyTL. But on datasets
whose distribution is far from the pre-training dataset, TinyTL-RandomL+B still provides
competitive results.

Method Train. Flowers Cars CUB Food Pets Aircraft CIFAR10 CIFAR100 CelebAMem.

FT-Last 31MB 90.1 50.9 73.3 68.7 91.3 44.9 85.9 68.8 88.7

TinyTL-RandomL+B 37MB 88.0 82.4 72.9 79.3 84.3 73.6 95.7 81.4 91.2
TinyTL-L+B 37MB 95.5 85.0 77.1 79.7 91.8 75.4 95.9 81.4 91.2

FT-Norm+Last 192MB 94.3 77.9 76.3 77.0 92.2 68.1 94.8 80.2 90.4
FT-Full 391MB 96.8 90.2 81.0 84.6 93.0 86.0 97.1 84.1 91.4

the pre-training dataset.

Results of TinyTL under Batch Size 1. Figure 4.5 demonstrates the results of TinyTL
when using a training batch size of 1. We tune the initial learning rate for each dataset while
keeping the other training settings unchanged. As our model employs group normalization
rather than batch normalization (Section 4.2.3), we observe little/no loss of accuracy than
training with batch size 8. Meanwhile, the training memory footprint is further reduced
to around 16MB, a typical L3 cache size. This makes it much easier to train on the cache
(SRAM), which can greatly reduce energy consumption than DRAM training.

75

Flowers102

ResNet-50
Activation Pruning

Ours MobileNetV2
Activation Pruning

97.5 802.2 96.6 447.8

96.9 682.7 97.4 114.0 95.8 373.8

96.3 612.0 96.8 66.0 94.1 330.0

95.2 541.3 90.4 286.2

93.4 470.6 79.7 242.3

88.6 399.9

75

80

85

90

95

100

0 225 450 675 900

TinyTL Activation Pruning (ResNet-50) Activation Pruning (MobileNetV2)

Training Memory (MB)

Aircraft

ResNet-50
Activation Pruning

Ours MobileNetV2
Activation Pruning

86.6 802.1 82.8 447.8

83.53 682.7 84.8 116.0 79.8 373.8

80.83 612.0 82.4 69.0 77.0 330.0

77.47 541.3 70.4 286.2

75.64 470.6 61.8 242.3

72.24 399.8

60

66

72

78

84

90

0 225 450 675 900
Training Memory (MB)

Stanford-Cars

ResNet-50
Activation Pruning

Ours MobileNetV2
Activation Pruning

91.7 802.8 91.0 448.3

91.28 683.5 90.7 119.0 88.7 374.3

90.95 612.8 89.6 71.0 86.2 330.5

89.71 542.1 82.5 286.6

88.20 471.3 75.0 242.8

85.20 400.6

70

75

80

85

90

95

0 225 450 675 900
Training Memory (MB)

Fl
ow

er
s

To
p1

 (%
)

Ai
rc

ra
ft

To
p1

 (%
)

Ca
rs

 T
op

1
(%

) 0%
pruning 50%

pruning
50%

0%0%

pruning 50%

0%
20%

pruning 60%

20%
20%

pruning
50%

pruning 60%

0%

pruning 50%

0% 20%

pruning 60%

20%

pruning
50%

20%

1

Figure 4.4: Compared with the dynamic activation pruning [175], TinyTL saves the memory
more effectively.

Flowers102

TinyTL (batch size
8)

TinyTL (batch size
1)

96.8 64.7 96.3 17.4
96.4 54.4 96.1 16.1

96.0 45.2 95.9 15.0

95.5 37.1 95.6 13.9

94.6 30.1 94.8 13.1

93.1 24.2 93.4 12.3

92

94

96

98

0 18 35 53 70

TinyTL (batch size 1) TinyTL (batch size 8)

Training Memory (MB)

Aircraft

TinyTL (batch size
8)

TinyTL (batch size
1)

82.3 64.7 82.7 17.4
80.8 54.4 80.2 16.1

78.9 45.2 79.6 15.0

75.4 37.1 77.5 13.9

74.9 30.1 75.0 13.1

70.4 24.2 70.7 12.3

60

66

72

78

84

90

0 18 35 53 70
Training Memory (MB)

Stanford-Cars

TinyTL (batch size
8)

TinyTL (batch size
1)

88.8 64.7 88.7 17.4
88.0 54.4 87.8 16.1

87.4 45.2 86.6 15.0

85.0 37.1 84.5 13.9

83.6 30.1 82.1 13.1

78.2 24.2 78.1 12.3

75

79

83

87

91

95

0 18 35 53 70
Training Memory (MB)

Fl
ow

er
s

To
p1

 (%
)

Ai
rc

ra
ft

To
p1

 (%
)

Ca
rs

 T
op

1
(%

)

16MB
Typical L3 Cache Size

16MB
Typical L3 Cache Size

16MB
Typical L3 Cache Size

1

Figure 4.5: Results of TinyTL when trained with batch size 1. It further reduces the training
memory footprint to around 16MB (typical L3 cache size), making it possible to train on the
cache (SRAM) instead of DRAM.

4.4 Conclusion

This chapter presented Tiny-Transfer-Learning (TinyTL) for memory-efficient on-device
learning that aims to adapt pre-trained models to newly collected data on edge devices.
Unlike previous methods that focus on reducing the number of parameters or FLOPs, TinyTL
directly optimizes the training memory footprint by fixing the memory-heavy modules (i.e.,
weights) while learning memory-efficient bias modules. We further introduce lite residual
modules that significantly improve the adaptation capacity of the model with little memory
overhead. Extensive experiments on benchmark datasets consistently show the effectiveness
and memory-efficiency of TinyTL, paving the way for efficient on-device machine learning.

The proposed efficient on-device learning technique greatly reduces the training memory
footprint of deep neural networks, enabling adapting pre-trained models to new data locally
on edge devices without leaking them to the cloud. It can democratize AI to people in the
rural areas where the Internet is unavailable or the network condition is poor. They can not
only inference but also fine-tune AI models on their local devices without connections to the

76

cloud servers. This can also benefit privacy-sensitive AI applications, such as health care,
smart home, and so on.

77

78

Chapter 5

Conclusion

Deep neural networks have demonstrated remarkable performances in many areas, such as
computer vision, natural language processing, speech recognition, etc. In particular, recent
large foundation models, such as GPT and diffusion models, have shown an astounding
capacity for generating high-quality content and tackling zero-shot or few-shot learning
tasks. However, the performance breakthroughs come at the cost of significantly increased
computational and memory costs. It makes deploying these deep learning models on real-world
applications challenging and costly. To make them more accessible and reduce the serving
cost of these models, it is crucial to investigate techniques for improving their efficiency
on hardware while maintaining their remarkable performances. In this dissertation, we
focus on tackling this challenge from three perspectives: efficient representation learning,
hardware-aware acceleration, and efficient model customization. Extensive experiments on
diverse tasks and hardware platforms demonstrate the effectiveness of our approach.

5.1 Impact

My research interests lie in machine learning, particularly efficient foundation models (diffusion
models, LLMs, etc), EdgeAI, and AutoML, resulting in multiple impactful publications across
leading conferences in machine learning (ICLR, ICML, NeurIPS), computer vision (ICCV,
CVPR), and natural language processing (ACL). In particular, my works on hardware-aware
neural architecture search (ProxylessNAS and Once-for-All) have received 2062 and 1272
citations and have been listed as top influential papers in ICLR 2019 and ICLR 20201. My
research has been honored by the Qualcomm Innovation Fellowship. In addition, I have
been awarded 1st Place in multiple prestigious competitions, including 2020 IEEE Low-
Power Computer Vision Challenge, 2019 IEEE Low-Power Image Recognition Challenge, and
Low-Power Computer Vision Workshop at ICCV 2019.

My research also has significant industry impacts. My research in hardware-aware
model optimization has landed in many industry projects, such as Meta PytorchHub, AWS
AutoGluon, Microsoft NNI, Sony nnabla, etc. It has also been commercialized by OmniML
(acquired by NVIDIA) and has generated real-world revenue. My research in EfficientViT has

1https://www.paperdigest.org/2021/05/most-influential-iclr-papers-2021-05/

79

https://www.qualcomm.com/research/university-relations/innovation-fellowship/2021-north-america
https://lpcv.ai/2020CVPR/introduction
https://lpcv.ai/2020CVPR/introduction
https://lpcv.ai/competitions/2019
https://lpcv.ai/competitions/2019

been used in NVIDIA Picasso, AMD Low-Level Vision, NVIDIA Generative AI, Huggingface
Pytorch Image Models, etc.

80

References

[1] OpenAI, “Gpt-4 technical report,” ArXiv, vol. abs/2303.08774, 2023. url: https :
//api.semanticscholar.org/CorpusID:257532815.

[2] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière,
N. Goyal, E. Hambro, F. Azhar, et al., “Llama: Open and efficient foundation language
models,” arXiv preprint arXiv:2302.13971, 2023.

[3] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image
synthesis with latent diffusion models,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2022, pp. 10 684–10 695.

[4] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. White-
head, A. C. Berg, W.-Y. Lo, et al., “Segment anything,” arXiv preprint arXiv:2304.02643,
2023.

[5] T. Brooks, B. Peebles, C. Holmes, et al., “Video generation models as world simulators,”
2024. url: https://openai.com/research/video-generation-models-as-world-simulators.

[6] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasu-
vunakool, R. Bates, A. Žídek, A. Potapenko, et al., “Highly accurate protein structure
prediction with alphafold,” Nature, vol. 596, no. 7873, pp. 583–589, 2021.

[7] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, et al., “Language models are few-shot learners,” in
Advances in neural information processing systems, vol. 33, 2020, pp. 1877–1901.

[8] H. Cai, J. Li, M. Hu, C. Gan, and S. Han, “Efficientvit: Lightweight multi-scale
attention for high-resolution dense prediction,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2023, pp. 17 302–17 313.

[9] H. Cai, M. Li, Z. Zhang, Q. Zhang, M.-Y. Liu, and S. Han, “Condition-aware neural
network for controlled image generation,” in CVPR, 2024.

[10] H. Cai, L. Zhu, and S. Han, “ProxylessNAS: Direct neural architecture search on target
task and hardware,” in ICLR, 2019. url: https://arxiv.org/pdf/1812.00332.pdf.

[11] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once for all: Train one network and
specialize it for efficient deployment,” in ICLR, 2020. url: https://arxiv.org/pdf/
1908.09791.pdf.

[12] H. Cai, C. Gan, L. Zhu, and S. Han, “Tinytl: Reduce memory, not parameters for
efficient on-device learning,” Advances in Neural Information Processing Systems,
vol. 33, pp. 11 285–11 297, 2020.

81

https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815
https://openai.com/research/video-generation-models-as-world-simulators
https://arxiv.org/pdf/1812.00332.pdf
https://arxiv.org/pdf/1908.09791.pdf
https://arxiv.org/pdf/1908.09791.pdf

[13] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional encoder-
decoder architecture for image segmentation,” IEEE transactions on pattern analysis
and machine intelligence, vol. 39, no. 12, pp. 2481–2495, 2017.

[14] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical
image segmentation,” in Medical Image Computing and Computer-Assisted Intervention–
MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015,
Proceedings, Part III 18, Springer, 2015, pp. 234–241.

[15] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs,” IEEE transactions on pattern analysis and machine intelligence,
vol. 40, no. 4, pp. 834–848, 2017.

[16] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2017,
pp. 2881–2890.

[17] Y. Yuan, X. Chen, and J. Wang, “Object-contextual representations for semantic
segmentation,” in European conference on computer vision, Springer, 2020, pp. 173–
190.

[18] J. Wang, K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu, Y. Mu, M. Tan,
X. Wang, et al., “Deep high-resolution representation learning for visual recognition,”
IEEE transactions on pattern analysis and machine intelligence, vol. 43, no. 10,
pp. 3349–3364, 2020.

[19] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo, “Segformer:
Simple and efficient design for semantic segmentation with transformers,” Advances in
Neural Information Processing Systems, vol. 34, 2021.

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin, “Attention is all you need,” in NeurIPS, 2017.

[21] M.-H. Guo, C.-Z. Lu, Q. Hou, Z.-N. Liu, M.-M. Cheng, and S.-m. Hu, “Segnext:
Rethinking convolutional attention design for semantic segmentation,” in Advances
in Neural Information Processing Systems, A. H. Oh, A. Agarwal, D. Belgrave, and
K. Cho, Eds., 2022. url: https://openreview.net/forum?id=VgOw1pUPh97.

[22] X. Ding, X. Zhang, Y. Zhou, J. Han, G. Ding, and J. Sun, “Scaling up your kernels to
31x31: Revisiting large kernel design in cnns,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2022.

[23] Y. Wang, M. Li, H. Cai, W.-M. Chen, and S. Han, “Lite pose: Efficient architecture
design for 2d human pose estimation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2022.

[24] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret, “Transformers are rnns: Fast
autoregressive transformers with linear attention,” in International Conference on
Machine Learning, PMLR, 2020, pp. 5156–5165.

82

https://openreview.net/forum?id=VgOw1pUPh97

[25] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia, “Icnet for real-time semantic segmentation
on high-resolution images,” in Proceedings of the European conference on computer
vision (ECCV), 2018, pp. 405–420.

[26] R. P. Poudel, S. Liwicki, and R. Cipolla, “Fast-scnn: Fast semantic segmentation
network,” arXiv preprint arXiv:1902.04502, 2019.

[27] H. Li, P. Xiong, H. Fan, and J. Sun, “Dfanet: Deep feature aggregation for real-time
semantic segmentation,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2019, pp. 9522–9531.

[28] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, “Bisenet: Bilateral segmen-
tation network for real-time semantic segmentation,” in Proceedings of the European
conference on computer vision (ECCV), 2018, pp. 325–341.

[29] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural
networks,” in ICML, 2019.

[30] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu,
R. Pang, V. Vasudevan, et al., “Searching for mobilenetv3,” in ICCV, 2019.

[31] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, “Ghostnet: More features from
cheap operations,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2020, pp. 1580–1589.

[32] S. Mehta and M. Rastegari, “Mobilevit: Light-weight, general-purpose, and mobile-
friendly vision transformer,” in International Conference on Learning Representations,
2022. url: https://openreview.net/forum?id=vh-0sUt8HlG.

[33] Y. Chen, X. Dai, D. Chen, M. Liu, X. Dong, L. Yuan, and Z. Liu, “Mobile-former:
Bridging mobilenet and transformer,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2022.

[34] C. Gong, D. Wang, M. Li, X. Chen, Z. Yan, Y. Tian, qiang liu, and V. Chandra,
“NASVit: Neural architecture search for efficient vision transformers with gradient con-
flict aware supernet training,” in International Conference on Learning Representations,
2022. url: https://openreview.net/forum?id=Qaw16njk6L.

[35] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connections for
efficient neural network,” in NeurIPS, 2015.

[36] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deep neural
networks,” in ICCV, 2017.

[37] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning efficient convolutional
networks through network slimming,” in ICCV, 2017.

[38] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding,” in ICLR, 2016.

[39] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto,
and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision
applications,” arXiv preprint arXiv:1704.04861, 2017.

83

https://openreview.net/forum?id=vh-0sUt8HlG
https://openreview.net/forum?id=Qaw16njk6L

[40] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical guidelines for
efficient cnn architecture design,” in ECCV, 2018.

[41] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,”
arXiv preprint arXiv:1503.02531, 2015.

[42] H. Cai, C. Gan, J. Lin, and S. Han, “Network augmentation for tiny deep learning,”
arXiv preprint arXiv:2110.08890, 2021.

[43] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learning,” in
ICLR, 2017.

[44] H. Cai, T. Chen, W. Zhang, Y. Yu, and J. Wang, “Efficient architecture search by
network transformation,” in AAAI, 2018.

[45] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “Amc: Automl for model
compression and acceleration on mobile devices,” in ECCV, 2018.

[46] T. Wang, K. Wang, H. Cai, J. Lin, Z. Liu, H. Wang, Y. Lin, and S. Han, “Apq: Joint
search for network architecture, pruning and quantization policy,” in CVPR, 2020.

[47] D. Bolya, C.-Y. Fu, X. Dai, P. Zhang, and J. Hoffman, “Hydra attention: Efficient
attention with many heads,” in Computer Vision–ECCV 2022 Workshops: Tel Aviv,
Israel, October 23–27, 2022, Proceedings, Part VII, Springer, 2023, pp. 35–49.

[48] K. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane, T. Sarlos, P. Hawkins,
J. Davis, A. Mohiuddin, L. Kaiser, et al., “Rethinking attention with performers,”
arXiv preprint arXiv:2009.14794, 2020.

[49] Z. Shen, M. Zhang, H. Zhao, S. Yi, and H. Li, “Efficient attention: Attention with linear
complexities,” in Proceedings of the IEEE/CVF winter conference on applications of
computer vision, 2021, pp. 3531–3539.

[50] S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma, “Linformer: Self-attention with
linear complexity,” arXiv preprint arXiv:2006.04768, 2020.

[51] Z. Dai, H. Liu, Q. V. Le, and M. Tan, “Coatnet: Marrying convolution and attention for
all data sizes,” Advances in Neural Information Processing Systems, vol. 34, pp. 3965–
3977, 2021.

[52] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A convnet for
the 2020s,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2022.

[53] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin trans-
former: Hierarchical vision transformer using shifted windows,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021, pp. 10 012–10 022.

[54] M. Tan and Q. Le, “Efficientnetv2: Smaller models and faster training,” in International
Conference on Machine Learning, PMLR, 2021, pp. 10 096–10 106.

[55] A. Hatamizadeh, G. Heinrich, H. Yin, A. Tao, J. M. Alvarez, J. Kautz, and P.
Molchanov, “Fastervit: Fast vision transformers with hierarchical attention,” arXiv
preprint arXiv:2306.06189, 2023.

84

[56] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S.
Roth, and B. Schiele, “The cityscapes dataset for semantic urban scene understanding,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 3213–3223.

[57] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba, “Scene parsing
through ade20k dataset,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 633–641.

[58] E. Agustsson and R. Timofte, “Ntire 2017 challenge on single image super-resolution:
Dataset and study,” in Proceedings of the IEEE conference on computer vision and
pattern recognition workshops, 2017, pp. 126–135.

[59] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human segmented natural
images and its application to evaluating segmentation algorithms and measuring eco-
logical statistics,” in Proceedings Eighth IEEE International Conference on Computer
Vision. ICCV 2001, IEEE, vol. 2, 2001, pp. 416–423.

[60] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative
adversarial networks,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2019, pp. 4401–4410.

[61] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in CVPR, 2009.

[62] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al., “Pytorch: An imperative style, high-performance deep
learning library,” Advances in neural information processing systems, vol. 32, 2019.

[63] J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, and R. Timofte, “Swinir: Image
restoration using swin transformer,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 1833–1844.

[64] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-decoder with
atrous separable convolution for semantic image segmentation,” in Proceedings of the
European conference on computer vision (ECCV), 2018, pp. 801–818.

[65] B. Cheng, I. Misra, A. G. Schwing, A. Kirillov, and R. Girdhar, “Masked-attention
mask transformer for universal image segmentation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp. 1290–1299.

[66] B. Cheng, A. Schwing, and A. Kirillov, “Per-pixel classification is not all you need for
semantic segmentation,” Advances in Neural Information Processing Systems, vol. 34,
2021.

[67] S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, and M.-H. Yang, “Restormer:
Efficient transformer for high-resolution image restoration,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 5728–
5739.

[68] L. Zhou, H. Cai, J. Gu, Z. Li, Y. Liu, X. Chen, Y. Qiao, and C. Dong, “Efficient image
super-resolution using vast-receptive-field attention,” arXiv preprint arXiv:2210.05960,
2022.

85

[69] Z. Li, Y. Liu, X. Chen, H. Cai, J. Gu, Y. Qiao, and C. Dong, “Blueprint separable
residual network for efficient image super-resolution,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp. 833–843.

[70] Z. Zhang, H. Cai, and S. Han, “Efficientvit-sam: Accelerated segment anything model
without performance loss,” arXiv preprint arXiv:2402.05008, 2024.

[71] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, “Microsoft coco: Common objects in context,” in European conference
on computer vision, Springer, 2014, pp. 740–755.

[72] A. Gupta, P. Dollar, and R. Girshick, “Lvis: A dataset for large vocabulary instance
segmentation,” in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2019, pp. 5356–5364.

[73] Y. Li, H. Mao, R. Girshick, and K. He, “Exploring plain vision transformer backbones
for object detection,” arXiv preprint arXiv:2203.16527, 2022.

[74] M. Kang, J.-Y. Zhu, R. Zhang, J. Park, E. Shechtman, S. Paris, and T. Park, “Scaling
up gans for text-to-image synthesis,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2023, pp. 10 124–10 134.

[75] Y. Balaji, S. Nah, X. Huang, A. Vahdat, J. Song, K. Kreis, M. Aittala, T. Aila, S.
Laine, B. Catanzaro, et al., “Ediffi: Text-to-image diffusion models with an ensemble
of expert denoisers,” arXiv preprint arXiv:2211.01324, 2022.

[76] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton, K. Ghasemipour,
R. Gontijo Lopes, B. Karagol Ayan, T. Salimans, et al., “Photorealistic text-to-image
diffusion models with deep language understanding,” Advances in Neural Information
Processing Systems, vol. 35, pp. 36 479–36 494, 2022.

[77] A. Blattmann, T. Dockhorn, S. Kulal, D. Mendelevitch, M. Kilian, D. Lorenz, Y. Levi,
Z. English, V. Voleti, A. Letts, et al., “Stable video diffusion: Scaling latent video
diffusion models to large datasets,” arXiv preprint arXiv:2311.15127, 2023.

[78] L. Zhang, A. Rao, and M. Agrawala, “Adding conditional control to text-to-image
diffusion models,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2023, pp. 3836–3847.

[79] A. Brock, J. Donahue, and K. Simonyan, “Large scale gan training for high fidelity
natural image synthesis,” arXiv preprint arXiv:1809.11096, 2018.

[80] X. Huang and S. Belongie, “Arbitrary style transfer in real-time with adaptive instance
normalization,” in Proceedings of the IEEE international conference on computer
vision, 2017, pp. 1501–1510.

[81] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville, “Film: Visual reasoning
with a general conditioning layer,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 32, 2018.

[82] F. Bao, C. Li, Y. Cao, and J. Zhu, “All are worth words: A vit backbone for score-based
diffusion models,” in NeurIPS 2022 Workshop on Score-Based Methods, 2022.

86

[83] W. Peebles and S. Xie, “Scalable diffusion models with transformers,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 4195–4205.

[84] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in
neural information processing systems, vol. 33, pp. 6840–6851, 2020.

[85] B. Yang, G. Bender, Q. V. Le, and J. Ngiam, “Condconv: Conditionally parameterized
convolutions for efficient inference,” Advances in neural information processing systems,
vol. 32, 2019.

[86] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean,
“Outrageously large neural networks: The sparsely-gated mixture-of-experts layer,”
arXiv preprint arXiv:1701.06538, 2017.

[87] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all: Train one network and
specialize it for efficient deployment,” arXiv preprint arXiv:1908.09791, 2019.

[88] J. Yu, L. Yang, N. Xu, J. Yang, and T. Huang, “Slimmable neural networks,” in ICLR,
2019.

[89] D. Ha, A. M. Dai, and Q. V. Le, “Hypernetworks,” in International Conference on
Learning Representations, 2017. url: https://openreview.net/forum?id=rkpACe1lx.

[90] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “Smash: One-shot model architecture
search through hypernetworks,” arXiv preprint arXiv:1708.05344, 2017.

[91] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture search on target
task and hardware,” arXiv preprint arXiv:1812.00332, 2018.

[92] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding,” arXiv preprint
arXiv:1510.00149, 2015.

[93] Z. Shi, X. Zhou, X. Qiu, and X. Zhu, “Improving image captioning with better use of
captions,” arXiv preprint arXiv:2006.11807, 2020.

[94] X. Li, Y. Liu, L. Lian, H. Yang, Z. Dong, D. Kang, S. Zhang, and K. Keutzer, “Q-
diffusion: Quantizing diffusion models,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2023, pp. 17 535–17 545.

[95] S. Wu, H. R. Zhang, and C. Ré, “Understanding and improving information transfer
in multi-task learning,” arXiv preprint arXiv:2005.00944, 2020.

[96] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2017,
pp. 1251–1258.

[97] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila, “Analyzing and
improving the image quality of stylegan,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2020, pp. 8110–8119.

[98] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans trained
by a two time-scale update rule converge to a local nash equilibrium,” Advances in
neural information processing systems, vol. 30, 2017.

87

https://openreview.net/forum?id=rkpACe1lx

[99] J. Hessel, A. Holtzman, M. Forbes, R. L. Bras, and Y. Choi, “Clipscore: A reference-free
evaluation metric for image captioning,” arXiv preprint arXiv:2104.08718, 2021.

[100] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A.
Askell, P. Mishkin, J. Clark, et al., “Learning transferable visual models from natural
language supervision,” in International conference on machine learning, PMLR, 2021,
pp. 8748–8763.

[101] J. Ho and T. Salimans, “Classifier-free diffusion guidance,” arXiv preprint arXiv:2207.12598,
2022.

[102] C. Lu, Y. Zhou, F. Bao, J. Chen, C. Li, and J. Zhu, “Dpm-solver: A fast ode solver
for diffusion probabilistic model sampling in around 10 steps,” Advances in Neural
Information Processing Systems, vol. 35, pp. 5775–5787, 2022.

[103] P. Dhariwal and A. Nichol, “Diffusion models beat gans on image synthesis,” Advances
in neural information processing systems, vol. 34, pp. 8780–8794, 2021.

[104] W. Zhao, L. Bai, Y. Rao, J. Zhou, and J. Lu, “Unipc: A unified predictor-corrector
framework for fast sampling of diffusion models,” Advances in Neural Information
Processing Systems, vol. 36, 2024.

[105] T. Salimans and J. Ho, “Progressive distillation for fast sampling of diffusion models,”
arXiv preprint arXiv:2202.00512, 2022.

[106] Y. Song, P. Dhariwal, M. Chen, and I. Sutskever, “Consistency models,” arXiv preprint
arXiv:2303.01469, 2023.

[107] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable architectures
for scalable image recognition,” in CVPR, 2018.

[108] C. Liu, B. Zoph, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille, J. Huang, and
K. Murphy, “Progressive neural architecture search,” in ECCV, 2018.

[109] Z. Zhong, J. Yan, W. Wu, J. Shao, and C.-L. Liu, “Practical block-wise neural network
architecture generation,” in CVPR, 2018.

[110] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu, “Hierarchical
representations for efficient architecture search,” in ICLR, 2018.

[111] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution for image
classifier architecture search,” in AAAI, 2019.

[112] H. Cai, J. Yang, W. Zhang, S. Han, and Y. Yu, “Path-level network transformation
for efficient architecture search,” in ICML, 2018.

[113] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture search,” in
ICLR, 2019.

[114] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V. Le,
“Mnasnet: Platform-aware neural architecture search for mobile,” in CVPR, 2019.

[115] R. Luo, F. Tian, T. Qin, and T.-Y. Liu, “Neural architecture optimization,” in NeurIPS,
2018.

88

[116] G. Bender, P.-J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le, “Understanding and
simplifying one-shot architecture search,” in ICML, 2018.

[117] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training deep neural
networks with binary weights during propagations,” in NeurIPS, 2015.

[118] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist
reinforcement learning,” in Reinforcement Learning, 1992.

[119] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: Inverted
residuals and linear bottlenecks,” in CVPR, 2018.

[120] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient neural architecture
search via parameter sharing,” in ICML, 2018.

[121] T. Elsken, J.-H. Metzen, and F. Hutter, “Simple and efficient architecture search for
convolutional neural networks,” arXiv preprint arXiv:1711.04528, 2017.

[122] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A survey,” JMLR,
2019.

[123] H. Wang, Z. Wu, Z. Liu, H. Cai, L. Zhu, C. Gan, and S. Han, “Hat: Hardware-aware
transformers for efficient natural language processing,” arXiv preprint arXiv:2005.14187,
2020.

[124] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,
“Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model
size,” arXiv preprint arXiv:1602.07360, 2016.

[125] C.-H. Hsu, S.-H. Chang, D.-C. Juan, J.-Y. Pan, Y.-T. Chen, W. Wei, and S.-C. Chang,
“Monas: Multi-objective neural architecture search using reinforcement learning,” arXiv
preprint arXiv:1806.10332, 2018.

[126] J.-D. Dong, A.-C. Cheng, D.-C. Juan, W. Wei, and M. Sun, “Dpp-net: Device-aware
progressive search for pareto-optimal neural architectures,” in ECCV, 2018.

[127] T. Elsken, J. H. Metzen, and F. Hutter, “Multi-objective architecture search for cnns,”
arXiv preprint arXiv:1804.09081, 2018.

[128] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware-aware automated
quantization,” in CVPR, 2019.

[129] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in CVPR, 2016.

[130] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely efficient convolutional
neural network for mobile devices,” in CVPR, 2018.

[131] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy considerations for deep
learning in nlp,” in ACL, 2019.

[132] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille,
J. Huang, and K. Murphy, “Progressive neural architecture search,” in ECCV, 2018.

89

[133] H. Cai, J. Lin, Y. Lin, Z. Liu, H. Tang, H. Wang, L. Zhu, and S. Han, “Enable deep
learning on mobile devices: Methods, systems, and applications,” ACM Transactions
on Design Automation of Electronic Systems (TODAES), vol. 27, no. 3, pp. 1–50,
2022.

[134] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quantization,” in ICLR,
2017.

[135] H. Cai, T. Wang, Z. Wu, K. Wang, J. Lin, and S. Han, “On-device image classification
with proxyless neural architecture search and quantization-aware fine-tuning,” in Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision Workshops,
2019, pp. 0–0.

[136] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda, Y. Jia, and
K. Keutzer, “Fbnet: Hardware-aware efficient convnet design via differentiable neural
architecture search,” in CVPR, 2019.

[137] Z. Wu, T. Nagarajan, A. Kumar, S. Rennie, L. S. Davis, K. Grauman, and R. Feris,
“Blockdrop: Dynamic inference paths in residual networks,” in CVPR, 2018.

[138] L. Liu and J. Deng, “Dynamic deep neural networks: Optimizing accuracy-efficiency
trade-offs by selective execution,” in AAAI, 2018.

[139] X. Wang, F. Yu, Z.-Y. Dou, T. Darrell, and J. E. Gonzalez, “Skipnet: Learning dynamic
routing in convolutional networks,” in ECCV, 2018.

[140] G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, and K. Q. Weinberger, “Multi-
scale dense networks for resource efficient image classification,” in ICLR, 2018.

[141] J. Lin, Y. Rao, J. Lu, and J. Zhou, “Runtime neural pruning,” in NeurIPS, 2017.

[142] J. Kuen, X. Kong, Z. Lin, G. Wang, J. Yin, S. See, and Y.-P. Tan, “Stochastic down-
sampling for cost-adjustable inference and improved regularization in convolutional
networks,” in CVPR, 2018.

[143] J. Yu and T. Huang, “Universally slimmable networks and improved training tech-
niques,” in ICCV, 2019.

[144] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected
convolutional networks.,” in CVPR, 2017.

[145] B. Cheung, A. Terekhov, Y. Chen, P. Agrawal, and B. Olshausen, “Superposition of
many models into one,” in NeurIPS, 2019.

[146] A. Ashok, N. Rhinehart, F. Beainy, and K. M. Kitani, “N2n learning: Network to
network compression via policy gradient reinforcement learning,” in ICLR, 2018.

[147] Z. Guo, X. Zhang, H. Mu, W. Heng, Z. Liu, Y. Wei, and J. Sun, “Single path one-shot
neural architecture search with uniform sampling,” arXiv preprint arXiv:1904.00420,
2019.

[148] J. Yu and T. Huang, “Autoslim: Towards one-shot architecture search for channel
numbers,” arXiv preprint arXiv:1903.11728, 2019.

[149] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with warm restarts,”
arXiv preprint arXiv:1608.03983, 2016.

90

[150] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful visual per-
formance model for floating-point programs and multicore architectures,” Lawrence
Berkeley National Lab.(LBNL), Berkeley, CA (United States), Tech. Rep., 2009.

[151] H. Cai, J. Lin, Y. Lin, Z. Liu, K. Wang, T. Wang, L. Zhu, and S. Han, “Automl for
architecting efficient and specialized neural networks,” IEEE Micro, 2019.

[152] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” in ICML, 2015.

[153] Y. Wu and K. He, “Group normalization,” in ECCV, 2018.

[154] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation functions,” in
ICLR Workshop, 2018.

[155] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified activations in
convolutional network,” arXiv preprint arXiv:1505.00853, 2015.

[156] Y. Cui, Y. Song, C. Sun, A. Howard, and S. Belongie, “Large scale fine-grained
categorization and domain-specific transfer learning,” in CVPR, 2018.

[157] P. K. Mudrakarta, M. Sandler, A. Zhmoginov, and A. Howard, “K for the price of 1:
Parameter-efficient multi-task and transfer learning,” in ICLR, 2019.

[158] S. Kornblith, J. Shlens, and Q. V. Le, “Do better imagenet models transfer better?”
In CVPR, 2019.

[159] J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3d object representations for fine-grained
categorization,” in Proceedings of the IEEE International Conference on Computer
Vision Workshops, 2013.

[160] M.-E. Nilsback and A. Zisserman, “Automated flower classification over a large number
of classes,” in Sixth Indian Conference on Computer Vision, Graphics & Image
Processing, 2008.

[161] S. Maji, E. Rahtu, J. Kannala, M. Blaschko, and A. Vedaldi, “Fine-grained visual
classification of aircraft,” arXiv preprint arXiv:1306.5151, 2013.

[162] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The caltech-ucsd
birds-200-2011 dataset,” 2011.

[163] O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. Jawahar, “Cats and dogs,” in CVPR,
2012.

[164] L. Bossard, M. Guillaumin, and L. Van Gool, “Food-101–mining discriminative com-
ponents with random forests,” in ECCV, 2014.

[165] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny images,”
Citeseer, Tech. Rep., 2009.

[166] Z. Liu, P. Luo, X. Wang, and X. Tang, “Large-scale celebfaces attributes (celeba)
dataset,” Retrieved August, 2018.

[167] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman, “Vggface2: A dataset for
recognising faces across pose and age,” in 2018 13th IEEE International Conference
on Automatic Face & Gesture Recognition (FG 2018), 2018.

91

[168] A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly, and N. Houlsby, “Big
transfer (bit): General visual representation learning,” arXiv preprint arXiv:1912.11370,
2019.

[169] S. Qiao, H. Wang, C. Liu, W. Shen, and A. Yuille, “Weight standardization,” arXiv
preprint arXiv:1903.10520, 2019.

[170] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[171] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, “Return of the devil in the
details: Delving deep into convolutional nets,” in BMVC, 2014.

[172] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell, “Decaf:
A deep convolutional activation feature for generic visual recognition,” in ICML, 2014.

[173] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn features off-the-
shelf: An astounding baseline for recognition,” in CVPR Workshops, 2014.

[174] P. K. Mudrakarta, M. Sandler, A. Zhmoginov, and A. Howard, “K for the price of 1:
Parameter efficient multi-task and transfer learning,” in ICLR, 2019.

[175] L. Liu, L. Deng, X. Hu, M. Zhu, G. Li, Y. Ding, and Y. Xie, “Dynamic sparse graph
for efficient deep learning,” in ICLR, 2019.

92

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Thesis Outline

	2 Efficient Representation Learning
	2.1 Efficient Vision Transformer for High-Resolution Vision
	2.1.1 Introduction
	2.1.2 Related Work
	2.1.3 Method
	2.1.4 Experiments
	2.1.5 Conclusion

	2.2 Efficient Control Module for Conditional Image Generation
	2.2.1 Introduction
	2.2.2 Related Work
	2.2.3 Method
	2.2.4 Experiments
	2.2.5 Conclusion

	3 Hardware-Aware Acceleration
	3.1 Direct Neural Architecture Search on Target Task and Hardware
	3.1.1 Introduction
	3.1.2 Related Work
	3.1.3 Method
	3.1.4 Experiments
	3.1.5 Conclusion

	3.2 Once-for-All Network for Diverse Deployment Scenarios
	3.2.1 Introduction
	3.2.2 Related Work
	3.2.3 Method
	3.2.4 Training Once-for-All Network on ImageNet
	3.2.5 Once-for-All Network Results for Different Hardware and Constraints
	3.2.6 Conclusion

	4 Efficient Model Customization
	4.1 Introduction
	4.2 Tiny Transfer Learning
	4.2.1 Understanding the Memory Footprint of Back-propagation
	4.2.2 Lite Residual Learning
	4.2.3 Discussions

	4.3 Experiments
	4.3.1 Setups
	4.3.2 Main Results
	4.3.3 Ablation Studies and Discussions

	4.4 Conclusion

	5 Conclusion
	5.1 Impact

	References

