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ABSTRACT

This thesis presents a method that improves data efficiency in computational imaging
by incorporating prior knowledge from physical models into machine learning algorithms.
Our approach optimizes image reconstruction from sparse and noisy datasets by utilizing
physical constraints to guide deep learning models. This integration accelerates the imaging
workflow, minimizes the need for large datasets, and improves resilience to measurement
noise. The key insight is that physical model-based priors can regularize deep learning
for more robust performance. Experiments demonstrate how this physics-assisted machine
learning technique enables faster, more accurate, and reliable imaging. By facilitating high-
quality imaging from limited data, this method has the potential to advance applications in
healthcare, material studies, and industrial inspection. One of the highlights of our method
is the application of real-time 2D imaging for improving 3D printing. High-performance
manufacturing is achieved by training a neural model combined with a system of dynamic
equations. The thesis offers a framework that seamlessly integrates physical insights and
data-driven methods, enabling advances beyond what either approach could achieve alone.

Thesis supervisor: George Barbastathis
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Chapter 1

Introduction

Computational imaging is a process that indirectly reconstructs images from measurements
using computational algorithms. It covers a wide range of applications, including compu-
tational microscopy [1], tomographic imaging [2], MRI (Magnetic resonance imaging) [3],
ultrasound imaging [4], and more. By integrating sensing and computation, computational
imaging systems can access information that would otherwise be inaccessible. These tech-
niques play a crucial role in various fields, from medical diagnostics to materials science, by
revealing the internal structures of objects [5, 6, 7, 8, 9, 10, 11, 12].

However, achieving high-quality imaging often requires extensive data acquisition and
computational efforts, which can limit the temporal resolution and overall throughput of
imaging systems. This challenge stems from the ill-posedness and ill-conditioning of the
inverse problem, where limited-angle, sparse, and noisy measurements result in deficits in
the Fourier-space information [13, 14, 15], leading to suboptimal results with conventional
algorithms.

Model-based reconstruction strategies have attempted to address these issues by incor-
porating prior knowledge about the target object using iterative optimization with prior
terms. However, these approaches are computationally demanding for large datasets, and
selecting ideal priors and their weights often involves trial and error. As an alternative, ma-
chine learning algorithms, particularly deep neural networks, offer the ability to learn from
data distributions and establish direct correlations between projections and reconstructions,
inherently encoding priors about object properties and noise for regularization [16, 17, 18,
19, 20, 21]. Nevertheless, their reliance on large datasets can lead to inaccuracies and insta-
bilities when training distributions are narrow, especially when applied to real-world data
that may differ from the training set [22, 23]. Physics-assisted machine learning presents a
promising solution to these limitations by integrating physics-based models with the learn-
ing capabilities of neural networks [24, 25, 26, 27, 28]. This approach ensures adherence
to real-world physics while utilizing learned priors about object characteristics and noise
from training data. By doing so, physics-assisted machine learning improves data efficiency,
reconstruction speed, and resilience to noise, particularly under stringent data constraints
often encountered in imaging applications where collecting large datasets is difficult.

In this thesis, we demonstrate the effectiveness of physics-assisted machine learning, also
referred to as data-efficient machine learning, in overcoming existing limitations and enhanc-
ing imaging accuracy and efficiency. By combining physics-based models and learned priors,
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data-efficient machine learning can reduce the amount of data required for training, making
it an attractive solution for applications where data acquisition is challenging or expensive.
This approach has the potential to advance fields such as medical diagnostics, materials
science, and additive manufacturing by enabling more efficient and accurate computational
imaging techniques.

1.1 General framework for computational imaging

Computational imaging is a powerful approach that enables the reconstruction of objects
that are difficult to image directly. This includes objects that are too small, reaching the
diffraction limit, transparent, hard to see with the naked eye, or have hidden internal struc-
tures. The general framework for computational imaging can be succinctly described by the
following equation:

g = H(f), (1.1)

where g represents the measured image data, f denotes the object being imaged, and H
is the imaging system’s response, often termed as the point spread function (PSF) or the
system’s transfer function. This equation encapsulates the essence of computational imaging
by modeling how an object of interest is transformed by the imaging system to produce the
observed data. In situations where direct imaging is challenging, the goal is to indirectly
measure what is accessible and then computationally reconstruct the desired object.

Depending on the imaging modality in question, H can represent a wide array of physical
processes. For example, in optical imaging, H could represent the diffraction and interfer-
ence of light as it passes through the imaging system. In magnetic resonance imaging (MRI),
H would model the spatial encoding of magnetic fields. Therefore, understanding and ac-
curately modeling H is crucial, as it allows for the manipulation of g to extract detailed
information about f .

In practice, the imaging system is also subject to noise from the environment and mea-
suring instruments. Two key sources of noise are shot noise due to the quantum nature of
light, and thermal noise arising from fluctuations in the electronic circuitry. Shot noise fol-
lows Poisson statistics, while thermal noise approximately follows Gaussian statistics. The
combination of these two noise sources leads to a hybrid probability distribution for the
measured signal at each pixel [29].

1.1.1 Shot Noise

Discrete photons arrive at the detector at random times, following a Poisson distribution.
The probability of pixel m receiving k photons, given an expected photon count g̃m is:

p(gm = k|g̃m) = exp(−g̃m)
g̃km
k!
. (1.2)

The mean and variance of this distribution are both equal to the expected photon count g̃m.
The pixel-wise signal-to-noise ratio (SNR) due to shot noise is:

(SNR)pix =
√
g̃m. (1.3)
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Thus, the relative noise decreases with the square root of the photon flux. Shot noise has a
signal-dependent nature, with bright pixels being less noisy than dark pixels.

1.1.2 Thermal Noise

Thermal noise arises from charge carrier fluctuations in the electronic circuitry and ap-
proximately follows a Gaussian distribution with zero mean and variance σ2 dependent on
temperature T , resistance R, and bandwidth ∆ν:

σ2 ≈ 4kBT∆ν

R
, (1.4)

where kB is Boltzmann’s constant. The probability density of a measured pixel value gm is:

p(gm|g̃m) =
1√
2πσ2

exp

(
−(gm − g̃m)2

2σ2

)
. (1.5)

Thermal noise is additive and signal-independent. The pixel-wise SNR is simply g̃m/σ.

1.1.3 Hybrid noise statistics

In realistic imaging systems, both shot and thermal noise are present. The probability
density of the measured signal considering both noise sources is approximately:

p(gm|g̃m) ≈
1√

2π(g̃m + σ2)
exp

(
−(gm − g̃m)2

2(g̃m + σ2)

)
. (1.6)

This is a Gaussian distribution with signal-dependent variance g̃m+σ2. The combination of
shot and thermal noise leads to a noise profile that is worse than either noise source alone,
particularly at low light levels.

Assuming Poisson statistics in the detection system, the forward model is modified as

g∗ ∼P(g), (1.7)

where g∗ is the noisy measurements vector, and P is a vector of Poisson distributions
whose parameters are elements of the vector g. The operator ∼ means “is drawn from the
distribution,” following a convention from statistics. Understanding the statistical properties
of these noise sources is crucial for developing effective image denoising and reconstruction
algorithms. The log-likelihood expressions derived from these probability distributions serve
as key ingredients in maximum likelihood and Bayesian estimation approaches to image
restoration.

1.2 Inverse estimation of the imaging object

Solving an inverse problem in computational imaging involves estimating the original object
from the measured data, given knowledge of the system’s response. This requires finding f
when g∗ and H are known. However, inverse problems are notoriously difficult to solve for
three reasons:
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1. Noise and errors: Measured data are often contaminated with noise, and the system’s
response may not be perfectly known, making the inverse process more challenging.

2. Ill-conditioning: Ill-conditioning occurs when small perturbations in the measured
data, such as noise, lead to disproportionately large variations in the solution. As a
result, even small amounts of noise in the measurements can get significantly amplified,
resulting in solutions that deviate greatly from the ground truth.

3. Ill-posedness: Ill-posedness deals with more fundamental challenges in inverse prob-
lems. It encompasses situations where a unique solution might not exist, or where
solutions do not continuously depend on the input data. This often arises from infor-
mation loss during imaging processes, where the system’s response can map different
imaging objects to the same measurements.

To solve inverse problems, several approaches are commonly used:

1. Regularization: This involves incorporating additional information or constraints
into the inversion process to make the problem well-posed. For example, one might
assume that the object f is smooth or sparse in a certain domain, which helps in
narrowing down the possible solutions [30, 31].

2. Iterative methods: These methods start with an initial guess of f̂ and iteratively
refine it to better fit the measured data. Examples include the gradient descent
method [32] and more sophisticated algorithms like the Conjugate Gradient [33] or
Expectation Maximization [34].

3. Machine learning: Recent approaches use machine learning, particularly deep learn-
ing, to learn the approximate mapping to f [35, 24, 36, 37, 38, 39, 40, 41]. These
methods typically require training data consisting of pairs of objects and the corre-
sponding measured data, but they can offer fast and accurate reconstructions once
trained.

In this thesis, we focus on the third approach, using machine learning for the inverse problem
without requiring extensive training data, hence data-efficient machine learning.

1.3 Applying machine learning in computational imaging

Machine learning, particularly deep learning, has emerged as a transformative tool in com-
putational imaging, offering novel ways to address the challenges associated with inverse
problems. Deep learning models can be trained to effectively filter out noise from measured
data, resulting in more accurate reconstructions compared to traditional methods [42, 43,
20]. These models can learn the inverse mapping for a wide range of imaging systems without
requiring explicit mathematical formulations, making them adaptable to different imaging
modalities. Once trained, deep learning models can perform reconstructions much faster
than iterative algorithms, as the computation is often a single forward pass, which is critical
for real-time applications.
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Various implementation strategies have been explored in recent years. One of the pio-
neering works in this field is the use of convolutional neural networks (CNNs) for end-to-end
learning in computational imaging. Krizhevsky et al. [44] first showcased the effectiveness
of CNNs in image classification tasks, paving the way for their application in inverse prob-
lems. CNNs have then been successfully applied to inverse problems in lensless imaging [35],
compressed sensing MRI [45], and holographic phase retrieval [46]. Generative models, such
as generative adversarial networks (GANs) and variational autoencoders (VAEs), have also
been explored for computational imaging. Yang et al. [47] used a GAN-based approach
for learning the inverse mapping in compressive sensing, while Zhang et al. [38] employed
cycleGAN [48] to address the phase problem in real-time when no phase reconstructions but
good simulations or data from other experiments are available. VAEs have been used by
Francesco et al. [49] for reconstructions in holographic imaging and imaging through scatter-
ing media. A neural network based on deep image prior [50, 51] can simultaneously learn the
illumination spectrum and recover the complex object from a single diffraction measurement
in digital holography [52]. For imaging through scattering media, a recurrent neural net-
work (RNN) approach can exploit spatiotemporal dynamics to reveal hidden phase objects
[53]. Beyond phase retrieval, treating a sequence of images from different illumination angles
as a dynamical system allowed an RNN to reconstruct object interiors with limited-angle
measurements under both weak and strong scattering [40].

Deep learning has been applied to various imaging modalities, including holography and
coherent imaging [54, 55, 56, 57, 58, 26], imaging through scattering media and diffraction
tomography [59, 60, 61, 53], ptychographic image reconstruction [62, 63, 64, 65], model-based
nonlinear inverse scattering [66], optical microscopy [67, 68], and uncertainty quantification
in phase imaging [69]. These works demonstrate the potential of deep learning in improv-
ing reconstruction quality, speed, and enabling new capabilities in computational imaging.
In the field of holography and coherent imaging, deep learning has enabled new image re-
construction and phase recovery techniques that are faster and more robust compared to
traditional iterative methods. CNNs can be trained to improve reconstruction quality [54,
56], and compute the computer-generated holograms non-iteratively [55, 58]. Novel deep
learning methods have been proposed for ptychographic image reconstruction, such as Pty-
choDV [70], which consists of a vision transformer [71] for initial image generation and a
deep unrolling network [72, 73] for refinement. PtychoDV outperforms existing deep learn-
ing methods and achieves results competitive with iterative algorithms while being substan-
tially faster. Plug-and-play priors (PPP) have been used in combination with deep learning
for model-based nonlinear inverse scattering problems in imaging. A FISTA (fast iterative
shrinkage-thresholding algorithm) variant of PPP has been proposed, which enables advanced
denoising priors for regularization [66]. Online plug-and-play algorithms, such as PnP-SPGM
(plug-and-play stochastic proximal gradient method), have been developed for regularized
image reconstruction from a large number of measurements, making them scalable to large
datasets [74]. Deep learning has also been used to enhance optical microscopy images, im-
proving spatial resolution, field of view (FOV), and depth of field (DOF) without requiring
hardware modifications. CNNs trained on pairs of low-resolution and high-resolution micro-
scopic images can successfully enhance resolution, FOV, and DOF of test images not used
in training, demonstrating generalizability across different tissue types and staining meth-
ods [67, 68]. In addition, uncertainty quantification in deep learning-based phase imaging
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has been explored using Bayesian convolutional neural networks. The combination of multi-
plexed illumination with uncertainty-quantifying deep learning enables reliable and scalable
high-space-bandwidth product phase imaging, with the uncertainty predictions providing a
reliability measure for deep learning predictions in scientific imaging applications [69].

Deep learning for computational imaging often involves intelligent representation and
fusion of spatial frequencies. For example, separately processing low and high frequencies
with dedicated deep neural networks (DNNs) before optimally synthesizing them has enabled
robust, high-quality phase retrieval [37]. Physics-assisted DNNs incorporate elements of the
physical model, such as an initial approximant, and have demonstrated superior performance
to end-to-end learning approaches [75, 24, 21, 40]. These physics-assisted approaches dif-
fer from physics-informed neural networks [76, 77] by utilizing conventional algorithms to
generate inputs to the neural network that already satisfy known physical constraints. By
separating physics from network optimization, physics-assisted strategy allows the network
to focus on learning priors from datasets like ImageNet [78], which has been empirically
shown to improve results in recent research [39].

1.3.1 Limitations and the need for data-efficient machine learning

While deep learning has shown great promise in computational imaging, prior works have
several limitations that need to be addressed. One of the main challenges is the generalization
ability of the learned models to unseen data, particularly when the imaging conditions or
noise levels differ from those encountered during training. Many existing methods rely on
supervised learning with large training datasets [35, 24, 26, 37, 40, 41], raising concerns
regarding the instability and lack of generalizability in deep learning methods for image
reconstruction [22, 79].

Prior works show that deep learning approaches have some level of generalization ability
for unseen test data. Sinha et al. [35] demonstrate that a DNN is robust to moderate
perturbations in sensor displacement and exhibits some degree of shift and rotation invariance
when applied to test inputs. More importantly, a DNN trained on face or natural images
can reconstruct test images from completely different classes, such as handwritten digits and
characters, indicating some level of generalization ability. However, the choice of training
dataset strongly impacts the cross-domain generalization performance of the trained neural
network. Deng et al. [39] show that training on a higher entropy, more generic dataset like
ImageNet leads to better generalization to unseen classes compared to training on a lower
entropy, more constrained dataset like MNIST [80]. Kang et al. [40] analyze cross-domain
generalization in terms of sparsity and find that networks perform better when trained and
tested on sparse samples compared to dense samples.

In a related study, Kang et al. [26] investigate the generalizability of DNNs for low pho-
ton phase imaging and find that it depends on the strength of the priors in the training
data. Strong priors enable the DNN to handle high noise even without coherent modulation
imaging (CMI), a technique that introduces a physical constraint by applying random phase
modulation to the optical field diffracted from the object at an intermediate distance between
the object and the camera. The CMI scheme effectively improves ill-posedness and elimi-
nates ambiguous solutions in the inverse estimate of the phase. Kang et al. show that weak
priors benefit more from the CMI scheme in combination with the DNN to improve recon-
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structions under severe noise. Wu et al. [79] propose the Analytic Compressed Iterative Deep
(ACID) framework, which synergizes a deep reconstruction network, kernel awareness from
compressed sensing inspired processing, and iterative refinement to minimize data residuals.
ACID is shown to be resilient against adversarial attacks and eliminates instabilities such as
strong artifacts from tiny perturbations, missing small features, and decreased performance
with increased input data.

Another important consideration in the generalization ability of deep learning methods is
the assumption of comparable noise statistics between training and test datasets, which was
made in previous studies [24, 26, 41]. For measurements that are corrupted by Poisson noise,
the reconstruction quality from using the learned prior is often evaluated by test data with
the same number of photons per ray as the training data. However, in practical systems,
training and test data might have different noise levels, leading to out-of-distribution data
and degradation in reconstruction fidelity [22, 79]. To mitigate these generalization issues,
one approach is to train models using a diverse range of datasets that span various noise levels
and imaging conditions. However, this is often impractical due to the long acquisition times
required to collect such extensive training data. Imaging systems, especially in scientific and
medical applications, may have limited throughput, making it challenging to acquire large
datasets that cover all possible scenarios. Some prior works have explored techniques like
transfer learning to address these limitations. Kang et al. [41] demonstrate that transfer
learning can be utilized to reduce the amount of training data required when working with
new integrated circuits (ICs) that have different design rules at low photon phase imaging,
allowing the network to adapt to variations in the imaging objects. However, there is still a
need for more effective data-efficient learning strategies.

Data-efficient machine learning aims to build upon the limitations of prior works by
developing strategies that incorporate prior knowledge and generative modeling to enable
robust and adaptable models for high-quality reconstructions in data-limited scenarios. By
applying prior knowledge about the imaging system and the objects being imaged, such as
physical laws, geometrical constraints, spatial correlations, or noise statistics, data-efficient
learning guides the models towards more plausible reconstructions even with limited training
samples. This is in contrast to many prior works that rely solely on the dataset itself to
learn the reconstruction mapping.

1.3.2 Contributions of this thesis

This thesis focuses on developing and applying data-efficient machine learning techniques in
computational imaging to address the limitations of traditional deep learning approaches.
The main contributions are:

1. We propose data-efficient machine learning frameworks that incorporate prior knowl-
edge about the imaging system and objects into the learning process, enabling high-
quality reconstructions with limited training data. These frameworks utilize physics-
assisted neural networks and generative modeling to enhance robustness and general-
ization, without making complicated neural model architectures.

2. We demonstrate the effectiveness of our data-efficient machine learning approaches
through experiments on tomographic reconstruction and imaging 3D printed objects.
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Results show that our methods consistently outperform traditional deep learning ap-
proaches and the state-of-the-art iterative reconstruction algorithms, especially with
limited or noisy training data.

3. We provide a comprehensive analysis of the performance and generalization capabilities
of our data-efficient machine learning frameworks, investigating their robustness to
different noise levels, imaging conditions, and data distributions. This analysis offers
valuable insights into the practical applicability and limitations of these approaches in
real-world computational imaging tasks.

We have released open-source implementations of our data-efficient machine learning
frameworks and datasets in an effort to promote reproducibility and encourage the research
community to build upon our works. By developing and applying data-efficient machine
learning techniques in computational imaging, this thesis expands the possibilities in this
field, enabling high-quality reconstructions in data-limited scenarios. The proposed methods
and insights have the potential to impact various applications, such as medical diagnostics,
materials science, and biological research, by enabling faster, more accurate, and more reli-
able imaging capabilities.

The following chapters provide detailed descriptions of our data-efficient machine learn-
ing frameworks, their implementation strategies, and their application to computational
imaging tasks. Chapter 2 introduces our Physics-assisted Generative Adversarial Network
(PGAN) for X-ray tomography, incorporating physical priors for efficient learning. We show-
case PGAN’s performance in achieving high-quality reconstructions with limited projection
angles and reduced photon requirements. Chapter 3 discusses our noise-resilient deep learn-
ing framework for integrated circuit tomography, combining Gaussian noise and sparsity-
promoting priors into MAP reconstructions before sending to the neural network. We demon-
strate improved noise resilience of the network without requiring additional training data
with varying noise levels. Chapter 4 presents our data-efficient neural modeling approach
for high-precision 3D printing using two-color projection micro-stereolithography (PµSL).
We introduce our neural network model, integrate real-time diffractive imaging and post-
printing microscope imaging, and employ a two-stage training approach. We demonstrate
strong performance in predicting final printed patterns with limited training data. Final
conclusions are in chapter 5. These chapters collectively showcase the effectiveness of our
data-efficient machine learning frameworks in addressing computational imaging challenges
in data-limited scenarios.
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Chapter 2

Physics-assisted generative adversarial
network for X-ray tomography

X-ray tomography is a non-invasive 3D imaging technique with applications in biomedical
imaging, materials science, and electronic inspection. It involves acquiring 2D radiographs
from various angles and reconstructing them into 3D objects using computed tomography
algorithms [81, 82, 83, 84]. The reconstruction process in X-ray tomography is often an ill-
conditioned and ill-posed inverse problem due to inadequate sampling of high frequencies by
discrete angular measurements. Practical constraints, such as limited-angle measurements
and low photon counts in radiation-sensitive samples, exacerbate this challenge [85].

Direct reconstruction algorithms such as filtered back-projection (FBP) are often inad-
equate as they can generate reconstructions with noise and streak artifacts [86]. Iterative
algorithms whose objective function includes a term representing prior knowledge about the
object may compensate for the deficits in Fourier space coverage and often produce higher
fidelity results [87, 88, 89]. When prior knowledge is used in an iterative algorithm, the
optimization balances minimization of the residual of the simulated measurements from a
reconstructed object against minimization of the regularization term. Assumed priors such
as sparsity, total variation, and nonlocal similarity priors have been used in X-ray tomog-
raphy [90, 91, 92]. However, without trial and error, it is not straightforward to choose the
appropriate prior and regularization weight for a given set of objects. A prior distribution
may also be learned from the dataset itself by a machine learning algorithm. Using a large
amount of paired training data, a prior can be determined through exploring the statisti-
cal properties of the training distributions, improving the reconstruction quality. Recently,
learned priors have been successfully applied to tomography in treating the ill-conditioned
inverse problem. In particular, deep learning, a subset of machine learning that is based on
artificial neural networks, achieved promising results [16, 17, 18, 19, 20, 21]. For example, ef-
forts have been made in using learned priors from deep neural networks to recover boundary
information [18], and to generate missing projections with a data-consistent reconstruction
method [19]. However, reports have shown that these methods suffer from reconstruction
artifacts and instabilities [22, 23]. To avoid these issues, some works use reconstructions from
a direct or iterative algorithm [75, 93, 20, 21, 41], or use a two-step deep learning strategy
to generate reconstructions that are empirically more stable and accurate [79].

In this chapter, we introduce a Physics-assisted Generative Adversarial Network (PGAN)
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for limited-angle, low-photon X-ray tomography of 3D integrated circuits. PGAN addresses
the key challenges of the inverse problem in the following ways:

1. The generative model in PGAN combines known physics with deep learning to learn
an appropriate prior from the dataset, eliminating the need for manual trial and error
in choosing priors and regularization weights for iterative algorithms.

2. By using iterative algorithm-derived maximum likelihood estimates (MLE) as inputs
and regularizing reconstructions with the learned prior, PGAN reduces noise and streak
artifacts common in conventional reconstruction algorithms like FBP and MLE. Com-
pared to MLE reconstruction, PGAN reduces the photons per ray required to achieve
a single error per sample with limited-angle measurements from 5000 to around 500.

3. PGAN outperforms deep learning methods with no or less physics assisting in terms
of the photon requirements to achieve a target reconstruction error.

To carry out our numerical explorations, we utilized CircuitFaker, a synthetic circuit
generator developed by Zachary Levine from NIST (National Institute of Standards and
Technology), to facilitate learning implicit circuit correlations. CircuitFaker plays an impor-
tant role in providing realistic training data for our PGAN model. Below we will provide an
overview of the forward model for X-ray tomography, explore inverse algorithms, present our
PGAN development, and demonstrate its effectiveness in enhancing X-ray imaging quality
while minimizing photon exposure.

2.1 Forward model for X-ray tomography

An X-ray tomography system typically includes a sample positioned between an X-ray source
and a detector. The system captures measurements by rotating the sample through various
angles, utilizing a cone-beam geometry to project rays from the source through the object
to the detector’s center pixel. This conceptual diagram is depicted in Figure 2.1, with the
sample being a three-dimensional integrated circuit (IC). Assuming noise-free conditions,
the detection model is described by:

g(0) =

∫
dE D(E) I(0)(E)e−α(E)Af , (2.1)

where A represents the system matrix (indicating the distance each ray travels from the
source, through the object, to a detector pixel), f is the vector representing the object’s
voxel compositions, E denotes the photon energy, α(E) is the energy-dependent absorption
coefficient, I(0)(E) the initial source intensity, D(E) the detector efficiency, and g(0) the
expected photon count for each detector pixel. The exponential function is applied to each
component individually. For monochromatic illumination, this model simplifies to:

g(0) = N0e
−αAf , (2.2)
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Figure 2.1: A conceptual diagram for our imaging system (IC as the object).

with N0 being the expected photon count per ray, A the system matrix as defined previously,
and α the absorption coefficient. This relationship can be reformulated as a linear equation:

ln g(0) − lnN0 = −αAf, (2.3)

applying the natural logarithm component-wise. Our forward model simulations account for
the Poisson distribution of measured photon counts.

It is important to note that the entire chapter’s analysis is subject to the Radon ap-
proximation, which assumes that the X-rays travel along straight lines through the object
and that the scattering of X-rays is negligible. This approximation is widely used in X-ray
tomography due to its simplicity and computational efficiency. However, in cases where
scattering effects are significant, such as in strongly scattering materials or at low X-ray
energies, a more complex forward model that accounts for scattering may be necessary. In
such scenarios, the analysis presented in this chapter may not be directly applicable, and
further modifications to the forward model and reconstruction algorithms would be required
to address the scattering effects accurately.
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2.2 Inverse algorithms for X-ray tomography

2.2.1 Filtered back-projection

Filtered back-projection (FBP) has long been a standard reconstruction algorithm in X-ray
tomography, performing a two-step process that first applies a filter to the measurements
and then back-projects them to construct the object image. However, FBP’s performance
is notably affected by the sampling rate and noise levels in the Fourier space, leading to
unsatisfactory reconstructions with noise and streak artifacts under limited-angle and low-
photon conditions [86].

2.2.2 Iterative algorithms with prior regularizer

Contrastingly, iterative algorithms enhanced with prior regularization, such as the Wiener-
Tikhonov method, offer improvements by optimizing:

f̂ = argmin
f

{
∥ − αAf − ln g + lnN0∥2 + βΨ(f)

}
, (2.4)

where f̂ represents the reconstruction, ∥·∥ denotes the L2 norm, Ψ(f) the regularization term
or Bayesian prior, and β the regularization parameter. This approach, assuming Gaussian
noise, begins with an initial object guess, simulates measurements, compares these with
actual measurements, and iteratively updates the object model to minimize discrepancies,
including those from prior assumptions. This iterative refinement, driven by the choice
of Ψ(f), aims to suppress artifacts and preserve edges. However, acquiring accurate prior
information can be challenging, and determining the optimal regularization parameter often
requires a trial-and-error approach.

2.2.3 Deep reconstruction networks with learned prior

Deep-learning-based inversion, using deep reconstruction networks with learned priors, has
emerged as an alternative approach in X-ray tomography. These networks employ learned
prior distributions, derived from supervised training on datasets of ground truth objects and
their corresponding measurements, to generate high-fidelity reconstructions.

There are two primary categories of deep reconstruction networks utilizing learned priors.
The first is the End-to-End model, which establishes a direct correlation between measure-
ments and object reconstructions using paired datasets for training. This model operates
without explicitly incorporating physical models, attempting to implicitly learn both the
inverse physics and object priors. However, End-to-End approaches have been criticized for
their potential to produce unstable reconstructions due to ambiguities in the system matrix’s
null space [22, 23].

To address these challenges, a second type of network incorporates some degree of physics
into the reconstruction process. Initially, an FBP algorithm generates a preliminary, though
noisy, reconstruction from the measurements. Subsequently, a deep network refines this
initial image by eliminating noise and artifacts [75, 93, 20, 21, 41]. This approach allows
the network to focus on learning the object prior from the FBP output and ground truth,
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bypassing the need to infer the inverse physical process. For enhanced stability, some studies
have replaced FBP with another deep network, aiming to mitigate reconstruction instabilities
more effectively [94, 79].

2.3 Physics-assisted Generative Adversarial Network

Our Physics-assisted Generative Adversarial Network (PGAN) advances deep reconstruction
networks by employing a two-step process for image reconstruction. Initially, instead of
using an FBP approach, we apply a maximum-likelihood estimate derived from an iterative
algorithm that integrates known physical principles. This first step includes the forward
imaging geometry of X-ray tomography and accounts for Poisson noise characteristic of low-
photon measurements. Subsequently, a generative model refines this estimate using a learned
prior Ψ(f), thereby enhancing the quality of the reconstruction. PGAN thus combines the
precision of physics-based iterative algorithms with the adaptability of deep learning through
learned priors, offering improvements in reconstruction accuracy.

2.3.1 Maximum-likelihood estimate

Maximum-likelihood estimates for tomographic reconstructions are achieved by optimizing
an objective function that reflects the projective geometry and Poisson statistics of the
imaging process. These estimates not only provide inputs for our generative models but
also serve as the baseline for evaluating our machine learning approaches. The target is
to optimize f̃ , the reconstruction from tomographic measurements g (photon counts per
detector pixel), under the assumption that measurement noise follows a Poisson distribution.
The optimization problem is defined as:

f̃(g) = argmax
f (0)

[
LMLE(g|f (0)) + Ψ(f (0))

]
and (2.5)

LMLE(g|f (0)) = −
∑
i

[
ln gi!− gi ln g(0)i + g

(0)
i

]
. (2.6)

where LMLE represents the log-likelihood based on Poisson statistics, Ψ denotes a regular-
ization function or the log of the Bayesian prior, g(0) simulates the measurement from a
proposed object f (0) as per Eq. 2.2 without considering noise,

∑
i aggregates over all de-

tector pixel measurements at various angles, and f̃ is the reconstruction maximizing the
log-likelihood. In our implementation, the projective reconstruction Fortran 95 code using
maximum likelihood method used here has been presented recently as parts of a study on
scatter corrections in tomography [95] and another on diffractive tomography [96]. The
key point is that the maximum likelihood objective function as formulated by Sauer and
Bouman [97] is minimized using the version of the Broyden-Fletcher-Goldfarb-Shanno algo-
rithm known as L-BFGS-B [98].

2.3.2 Deep generative models

Our approach utilizes a supervised machine learning framework known as the conditional
generative adversarial network (cGAN) [99] to enhance 3D reconstructions from X-ray to-
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mography under limited projection angles and photon counts. This model uses a prior distri-
bution learned from the data to improve upon reconstructions obtained through maximum-
likelihood estimation, which often suffer from artifacts due to incomplete data ("missing
cone problem"). The quality of maximum-likelihood reconstructions declines with reduced
angular coverage and photon flux, but our cGAN-based model counteracts this degradation,
producing outputs that more accurately reflect the true object structure by incorporating
the system’s imaging geometry and measurement statistics as conditional information.

In its foundational form, a GAN aims to generate data matching a target distribution,
utilizing a generator (G) to create examples and a discriminator (D) to evaluate them:

argmin
G

max
D

(
Ef

[
logD(f)

]
+ Ez

[
log

(
1−D(G(z))

)])
, (2.7)

where the generator aims to minimize this function while the discriminator aims to maximize
it, facilitating a dynamic optimization process. cGAN, an adaptation of GAN, conditions
both G and D on additional information, thus providing more control over the generated
distribution and addressing the instability issues associated with the original GAN [100].
Our model specifically conditions on the noisy maximum-likelihood estimation f̃ , bypassing
the need for a random input vector. Training involves pairs of such estimates and their
corresponding ground truths, focusing the learning process on improving the fidelity of re-
constructions. The discriminator’s objective in our cGAN framework is thus modified to:

argmin
G

max
D

E(f,f̃)
[
logD(f) + log

(
1−D(G(f̃))

)]
. (2.8)

Through iterative training, our generative model learns to navigate the complex interplay
between generator and discriminator towards achieving a Nash equilibrium, at which point
the training is deemed complete. The output of this trained model, denoted as f̂ , reflects a
significantly refined reconstruction, demonstrating the model’s capacity to harness physical
priors for improved imaging reconstructions.

In our model, the generator is structured as a 3D autoencoder, incorporating an encoder
to map the object representation into a latent space, followed by a decoder that reconstructs
the object from this latent representation. The discriminator, a 3D convolutional neural
network, assesses the quality of the generator’s output by predicting the probability that each
sample is real or fake, with values closer to 1 indicating a higher likelihood of the sample being
real. To ensure training stability, both the generator and discriminator employ spectrally
normalized convolutional kernels [101]. The discriminator’s role concludes post-training,
being unnecessary for testing phases. We explore four deep generative model variants: a
baseline, one with axial attention, another incorporating a scattering representation, and a
combination of axial attention with scattering representation, each modifying the encoder’s
design while maintaining consistent decoder and discriminator architectures, detailed further
in our Github repo [102].

The baseline model employs cascading 3D convolutional and pooling layers within the en-
coder to feature-extract from input reconstructions, with an increase in convolutional layers
enhancing the encoder’s ability to learn complex features [103]. The axial attention variant
captures contextual information by integrating full axial attention within the encoder, replac-
ing some 3D convolution layers. This approach decomposes 3D self-attention into sequential
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1D attentions along the input’s height, width, and depth axes, reducing computational com-
plexity to O(hwzm) and facilitating global feature extraction beyond the local scope of
convolutional kernels [104]. The last two variants incorporate a wavelet scattering transform
input, providing multi-scale features without requiring training [105, 106]. This scatter-
ing representation, when coupled with renormalization, conditions the generative model to
produce more realistic reconstructions by modulating the feature values derived from convo-
lutional layers or axial attention through a fully connected layer transformation [107]. This
approach enriches the model with additional features, aiding in the transition from noisy to
noiseless reconstructions.

2.4 Evaluation methods

Figure 2.2: Each image is a slice of 2D layer in the z dimension. The value of z increases
as a raster scan of the 8 slices shown. Yellow indicates copper and purple indicates silicon.
Here, x layers are the first (upper left) and fifth layers (lower left) in z, y layers are the third
and seventh layers in z. Others are via layers. The layer highlighted in red is the ground
truth circuit layer in the later comparisons.

Our evaluation methods involve two primary components: the generation of synthetic
tomographic objects using CircuitFaker and the assessment of reconstruction quality via
imaging geometry and bit error rate (BER) analysis.

2.4.1 CircuitFaker for tomographic objects

CircuitFaker is developed by our collaborator Zachary Levine, and it is designed to pro-
duce synthetic integrated circuit interconnects by randomly assigning binary voxel values
to simulate the circuit’s spatial layout. It initializes all voxels to 0 and then populates the
circuit using a probabilistic approach to mimic wire seed points and layer types, including
x, y, and via layers, with varying probabilities for extending wires (pw, px, py, and pz). For
our experiments, we set the circuit dimensions and probabilities as follows: Nx = Ny = 16,
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Nz = 8, pw = 0.75, px = py = 0.8, and pz = 0.5, producing circuits of size 16 × 16 × 8 as
shown in Fig. 2.2. The imaging geometry tailored for X-ray tomography of integrated circuits
features a voxel size of 0.15 µm × 0.15 µm × 0.30 µm, covering a total volume of 2.4 µm3.
The detector, positioned in the x-z plane without tilt (φ = 0◦), captures images at eight
tilt angles ranging from −30◦ to +22.5◦. We assume a single source point in a cone-beam
geometry, neglect minor corrections for source-detector distance variability, and focus solely
on copper as the material of interest, with a binary reconstruction outcome based on two
primary X-ray lines.

2.4.2 Bit-error-rate formulation

To quantify reconstruction accuracy, we introduce BER as a metric, calculated by:

1. Estimating posterior distributions p(fi = 0 | f̃) for each voxel fi by considering the
likelihoods p(f̃ | fi = 0) and p(f̃ | fi = 1) alongside their priors.

2. Classifying voxels as 0 or 1 based on a threshold derived from the intersection of their
distribution likelihoods.

3. Calculating error rates for both binary states by integrating over their misclassified
probability density functions.

4. Computing the average BER as ηavg = η0p0 + η1p1.

This approach provides a direct measure of the frequency of voxel misclassification, offering
insights into the performance of our tomographic reconstructions.

2.5 GAN training

2.5.1 Network architecture

Fig. 2.3 is the detailed network architecture for the deep generative model (the generator).
The overall design is based on UNet [108] to perform pixel-by-pixel prediction (for 3D re-
construction, where the 3D object is voxelized by a 3D matrix). The input dimension to the
model is in (16, 16, 8, 1). Four DownResBlocks encode the input approximant and produce a
latent representation that is in dimension of (1, 1, 8, 512). Four UpResBlocks decode the la-
tent representation to a vector in dimension of (16, 16, 8, 64). Concatenated skip-connections
are used in between the last three DownResBlocks and the first three UpResBlocks to pre-
serve high frequency information of the input approximant [39]. Dropout layers are included
to prevent over-fitting. The final layer of convolution reduces this vector to a final output
in (16, 16, 8, 1), and a Tanh layer forces the final output to the range between -1 and 1. The
DownResBlock and UpResBlock share similar topology to the Resblock in ResNet [109],
except the use of different 3D sampling layers. Here, we implemented downsampling and
upsampling layers that only sample the dimension in height and width but not depth.
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Figure 2.3: Network architecture for the deep generative model (generator).

For the base generative model, feature extraction in the DownResBlock and UpResBlock
is achieved by 3D convolutional kernel with spectral normalization [101]. For the axial-
attention based model, feature extraction in the DownResBlock is achieved by the mixture
of 3D convolutional kernel and axial attention both with spectral normalization.

For models including the wavelet scattering transform, the wavelet representation for the
input approximant is first produced by HarmonicScattering3D in the Kymatio pack-
age [110] with J = 2 (maximum scale of 22), integral powers with {0.5, 1.0, 2.0, 3.0}. Then,
the batch normalization layers in the UpResBlock are replaced by conditional batch normal-
ization (CBN) layers [111], where the conditional information is the wavelet representation.
Note that the fully connected layers within the CBN are spectrally normalized as well.

The discriminator for all the generative models is the same, with four DownResBlocks
bringing the input from dimension (16, 16, 8) to (2, 2, 1024), following with a reduce sum
operation to bring it further to a vector of (1, 1, 1024). A fully connected layer followed
thereafter to produce a floating point number for classification.

For End-to-End methods, we add an additional DownResBlock at the top of the generator
to down sample the measurements from (32, 32, 8, 1) to (16, 16, 8, 1). Concatenated skip-
connections are also removed to avoid the issues of overlapping features from two different
domains (from projections to object reconstruction).

2.5.2 Training parameters

Our proposed networks are implemented in Python 3.7.9 using TensorFlow 2.3.1, and trained
with an NVIDIA V100 tensor core graphics processing unit on MIT Supercloud [112]. An
Adam optimizer [113] is used with parameters β1 = 0.9 and β2 = 0.999. The two time-scale
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update rule (TTUR) is used to stabilize the training of the generative network [114], where
the initial learning rate is 10−4 for the generator and 4× 10−4 for the discriminator. In each
iteration, the generator is updated four times while the discriminator is updated once.

Training sets of 1800 reconstructions are generated independently for each condition stud-
ied, except that the ground truth is common. The batch size for training is 20. An additional
200 reconstructions per condition are used for testing. The learning rate is reduced by half
when the validation loss stops improving for 5 iterations. We set the maximum number of
iterations to be 200, and the training stops early when either the validation loss plateaus
for 20 iterations, or the minimum learning rate 10−8 is reached. This early-stop technique
can prevent the model from over-fitting. The loss function for the autoencoder/generator
consists of two parts: supervised loss and adversarial loss. We choose supervised loss to be
the negative of the Pearson correlation coefficient rf,f̃ , which is defined as

rf,f̃ =
cov(f, f̃)
σf σf̃

, (2.9)

where cov is the covariance and σ is the standard deviation. The total objective of training
is to find the optimal generator Gopt given the approximant f̃ and ground truth f :

Gopt(f̃) = argmin
G

max
D

E(f,f̃)
{
− rf,G(f̃) + λ

[
logD(f) + log

(
1−D(G(f̃))

)]}
. (2.10)

The hyper-parameter λ controls the degree of generation from input noise to features.
In our experiments, λ ranges from 20 to 2−6 with an incremental factor of 1/2. The loss
function for GAN is the hinge loss [115], and is defined below:

LD = mean
{
min{0, 1−D(f)}

}
+ mean

{
min{0, 1 +D(G(f̂))}

}
,

LG = −mean{D(G(f̂))}.
(2.11)

Here, LG is the loss for generator and LD is the loss for discriminator. The operator min(...)
chooses the smaller value between the two inputs. The mean is taken over the batch of the
training data.

2.5.3 Convergence and stability of the deep generative network

Initially, Generative Adversarial Networks (GANs) encountered training instability, often
leading to model collapse and unsatisfactory outputs. The development of deep convolutional
GANs (DCGANs) marked a turning point, introducing structural and training improvements
that enhanced GAN stability [116]. Further advancements came with the Wasserstein GAN
(WGAN), which offered insights into GANs’ control issues and proposed Lipschitz continuity
as a solution for improving result quality [117, 118]. Presently, several well-established
techniques have been adopted to address GAN training challenges, as we detail in the context
of our Physics-assisted Generative Adversarial Network (PGAN).

1. Spectral Normalization: Unlike WGAN’s gradient clipping or penalty methods for
enforcing Lipschitz continuity, spectral normalization achieves this by normalizing the
network’s weights. This method is both computationally efficient and straightforward
to integrate, proving effective across various applications [119, 120, 121].
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2. Hinge Loss: Coupling hinge loss with spectral normalization has become a standard
practice in cutting-edge GANs, noted for its performance enhancement [122].

3. Two Time-scale Update Rule (TTUR): TTUR facilitates the GAN’s theoretical
convergence to a stable local Nash equilibrium by assigning distinct learning rates to
the discriminator (4× 10−4) and the generator (10−4), an approach we adopted in our
PGAN implementation.

2.6 Simulation results

2.6.1 Reconstructions for IC

To evaluate the effectiveness of learned priors in addressing ill-conditioned tomography chal-
lenges, we compare the performance of our PGAN against models with no physics assistance
and limited physics assistance under constrained imaging conditions of limited angles and
low photons, where ill-conditioning is exacerbated. The non-physics-assisted approach, End-
to-End training, involves the generative model transforming X-ray projections into imaging
objects without incorporating imaging geometry or Poisson statistics. In contrast, the lim-
ited physics-assisted strategy utilizes FBP to inform the generative model of the imaging
geometry alone. PGAN, however, integrates both the imaging geometry and Poisson statis-
tics through maximum-likelihood estimates as conditional inputs.

For fair comparisons, the generative model and training parameters remain consistent
across all methods. Selected IC reconstruction examples under these conditions are depicted
in Fig. 2.4, with simulations based on 1800 training and 200 test sets, each comprising
16× 16× 8 voxels, under two photon scenarios (256 and 800 photons per ray). Each row in
the figure corresponds to a different reconstruction method, with odd columns showing recon-
structions at various photon counts and even columns highlighting the absolute differences
from the ground truth.

As photon counts increase, generative model-based methods show improved IC recon-
struction quality, though improvements are marginal for MLE and FBP methods. Notably,
using MLE as conditional input yields superior reconstruction quality, with the FBP-assisted
model slightly lagging and the End-to-End method exhibiting the most discrepancies. This
suggests the benefits of incorporating physical priors into generative models, which narrows
the gap between reconstructed ICs and their ground truths.

Quantitative analysis, as shown in Fig. 2.5, plots the bit error rate of reconstructed 3D
IC test datasets against photon counts per ray. For cases between 320 and 800 photons
per ray, simulations were repeated with five independent IC circuit sets, with results indi-
cating that the generative model informed by MLE attains single-error-per-sample accuracy
at 400 photons. The FBP-informed model requires approximately 800 photons to achieve
similar accuracy, while the End-to-End model demonstrates only modest improvements with
increased photon counts. This affirms the superiority of the physics-assisted approach in
generative modeling for tomographic reconstruction.

To evaluate the design choice of our generative model, we extended our study in a larger
range of photon number per ray. Now, variants of the generative models share the same con-
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Figure 2.4: Selected examples of IC reconstructions with an angular range of −30◦ to 22.5◦.
The color scale runs from 0 to 1. Each row represents different reconstruction methods, and
each column in odd number represents the same location at the given IC distribution with
a different photon number per ray, and each column in even number shows the absolute
difference between the reconstruction in the previous column to the ground truth circuit.
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Figure 2.5: Different reconstruction approaches with an angular range of −30◦ to 22.5◦ for
IC objects. Single-error-per-sample in the red dashed line means that the bit error rate is
equal to 1

16×16×8
.

ditional information (maximum-likelihood reconstructions with the known physical priors)
and training parameters, with differences in network architectures.

Figure 2.6 shows a selection of IC reconstructions under limited-angle and low-photon
conditions. Each row is a different reconstruction method, with odd-numbered columns illus-
trating the same IC location at varying photon counts per ray, and even-numbered columns
depicting the absolute differences between the reconstruction and the ground truth. Notably,
generative reconstructions exhibit improvements over maximum-likelihood reconstructions.

Figure 2.7 provides a quantitative comparison of tomography under limited angles and
low-photon conditions, plotting the number of photons per ray (ranging from 100 to 104)
against the average bit error rate for a reconstructed 3D IC test dataset. Generative models
show a critical transition from above to below a single-error-per-sample between 320 and 640
photons per ray. This transition is further analyzed with simulations across five independent
synthetic IC circuit sets, where the means and standard errors are reported. At 640 photons
per ray, generative models reduce bit error rates by at least two orders of magnitude compared
to maximum-likelihood methods, particularly for the model variant with axial attention due
to its efficiency in capturing long-range data dependencies. However, generative models
using wavelet scattering representation do not demonstrate a performance advantage, likely
owing to the convolutional and axial-attention mechanisms already capturing the necessary
information from small inputs. Maximum-likelihood reconstructions achieve a single-error-
per-sample at approximately 5000 photons per ray, indicating that generative models require
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Figure 2.6: Selected examples of IC reconstructions with an angular range of −30◦ to 22.5◦.
The color scale runs from 0 to 1. Each row represents different reconstruction methods, and
each column in odd number represents the same location at the given IC distribution with
a different photon number per ray, and each column in even number shows the absolute
difference between the reconstruction in the previous column to the ground truth circuit.

an order of magnitude fewer photons to reach similar error rates.
We also explores the effectiveness of incorporating a Bayesian prior into the maximum-

likelihood algorithm. The selected Bouman-Sauer prior imposes the smoothness of the re-
construction. It is very similar to the Total Variation (TV) prior, particularly since we
choose the weights of the neighbors to mimic the absolute value of the gradient. Fig. 2.8

38



Figure 2.7: Maximum-likelihood vs. generative model reconstructions with an angular range
of −30◦ to 22.5◦ for IC objects.

Figure 2.8: Maximum-likelihood reconstructions including the Bouman-Sauer prior with an
angular range of −30◦ to 22.5◦ for IC objects.
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shows the reconstruction quality versus the regularization weight for three imaging condi-
tions with limited angles. The measurements are the 200 test datasets with 3D ICs as the
sample, identical to dataset that generates Fig. 2.7. Note that when the weight is 0, the
reconstruction is the same as maximum-likelihood estimate without the prior (our baseline
in the main text). The Bouman-Sauer prior provides limited improvement for 256 photons
per ray case. Quality degradation is obvious for the cases of 1000 and 4000 photons per ray.
This outcome suggests that this specific Bayesian prior does not aid our problem.

2.6.2 Reconstructions for independent coin toss object

To validate the contribution of the learned prior to the enhancements observed with the
generative approach, we extend our quantitative analysis to 3D objects lacking spatial cor-
relation, generated via independent coin tosses for each voxel. With a fair toss probability
(copper being 0.5) and an adjusted probability to match the fill fraction of CircuitFaker
generated circuits (p = 0.18521), the learned prior effectively becomes the probability p for
each voxel. Given the absence of spatial correlation, the effectiveness of the learned prior in
addressing the inverse problem is anticipated to diminish.

Fig. 2.9 shows the selected examples of independent 3D object reconstruction by limited
angle and low-photon tomography. The imaging geometry is the same as before, where
the angular range is fixed at −30◦ to 22.5◦ with 7.5◦ steps. The improvement from the
deep generative model is less pronounced than having a circuit object. The assumed prior
in our maximum-likelihood approach is now more proper to the reconstruction object with
independent voxel. Therefore, the maximum-likelihood estimate improves. The learned prior
from the deep generative model behaves similarly to a better classification cut-off for each
voxel, shows limited improvements.

Fig. 2.10 shows the quantitative comparison for independent 3D object reconstructions.
The x axis is the number of photons per ray in the tomographic projection ranging from 50
to 5000, y axis is the averaged bit error rate of the reconstructed 3D coin toss test dataset.
Fig. 2.10(a) is the case with fair coin toss. Compared to the case with spatial correlation (see
Fig. 2.7), the required number of photons per ray to achieve single-error-per-sample reduced
from 5000 to the range between 320 and 400 for maximum-likelihood estimation. This is
attributed to a more proper prior that the maximum-likelihood approach assumed, which
leads to better quality reconstructions. The generative models are slightly worse than the
maximum-likelihood estimate at lower photon cases. Limited improvements are visible as
the generative models need 200 to 256 photons per ray to achieve single-error-per-sample.
Fig. 2.10(b) is the case with a biased coin toss that has p = 0.18521. Compared with
Fig. 2.10(a), the required number of photons per ray for maximum-likelihood estimation to
achieve single-error-per-sample is slightly reduced to the range between 200 and 256. With
a lower probability of having copper, the 3D objects are now more sparse. Therefore, less
attenuation from the copper material leads to effectively more photons captured by the
detector pixel, improving the quality of the limited-angle measurements. We also observe
a cross-over between maximum-likelihood estimation and deep generative reconstructions
in Fig. 2.10 that was not present in the case with imaging object from CircuitFaker. The
maximum-likelihood estimation has lower bit error rate in the very low photon regions for
independent coin toss objects. This can be explained by our previous interpretation of the
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(a) p = 0.5 Bernoulli trial (fair coin)

(b) p = 0.18521 (unfair coin matching circuit fill factor)

Figure 2.9: Selected examples of independent coin toss an angular range of −30◦ to 22.5◦.
The color scale runs from 0 to 1. Each row represents different reconstruction methods, and
each column in odd number represents the same location at the given IC distribution with
a different photon number per ray, and each column in even number shows the absolute
difference between the reconstruction in the previous column to the ground truth circuit.
Reconstructions for Generative Axial at 400 photons per ray resemble the ground truth
circuit layer.
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(a) p = 0.5 Bernoulli trial (fair coin)

(b) p = 0.18521 (unfair coin matching circuit fill factor)

Figure 2.10: Results for independent coin toss at every voxel with an angular range of −30◦
to 22.5◦.
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learned prior: since there is no spatial correlation of the object can be learned, a learned
classification cut-off may only reduce the quality of a poor reconstruction in the very low
photon conditions, especially when all the physical priors have already been considered.

These results confirm that the deep learning approach benefits from the learned prior:
when the assumed prior in the iterative algorithm is not well-suited for the reconstruction
object (as for the case of circuit reconstruction), the generative models can improve the
reconstruction quality. On the other hand, when the prior distribution itself is simple, and
the assumed prior matches the distribution (for the independent coin toss object), then the
generative models may only provide a marginal improvement over the iterative algorithm.

2.7 Summary and contributions

This study demonstrates the effectiveness of PGAN for X-ray tomography, which integrates
maximum-likelihood estimates based on known physics and refines them with a learned prior
from a deep generative model. The key contributions of this work include:

1. The development of PGAN, a physics-assisted generative adversarial network for the
tomographic reconstruction process. By using a maximum-likelihood estimate derived
from an iterative algorithm as input to the generative model, PGAN utilizes both
known physics and a learned prior to improve reconstruction quality, especially in
limited-angle and low-photon imaging conditions.

2. Demonstrating that further separation of physical priors by using the maximum-
likelihood estimate as input, rather than the raw measurements or a direct recon-
struction like filtered back-projection, improves the effectiveness of the learned prior
from the generative model. This physics-assisted approach reduces the photon require-
ments to achieve a target reconstruction error compared to methods with no or less
incorporation of physical information.

3. Utilizing CircuitFaker, a parametric model developed by Zachary Levine from NIST
to generate synthetic 3D circuits emulating real integrated circuit interconnects. Cir-
cuitFaker provides a realistic prior distribution for the PGAN model to learn. Using
objects generated from CircuitFaker, we show that the learned prior from PGAN en-
ables high-quality reconstructions from limited-angle, low-photon measurements. We
thank Zachary Levine for his contribution in creating CircuitFaker and acknowledge
his role in its development.

4. Confirming the performance gains are attributable to PGAN’s ability to learn the prior
distribution of the CircuitFaker model by comparing against reconstructions of objects
generated by spatially-independent Bernoulli trials. In this case where the prior is
simple and more closely matches the assumptions of the maximum-likelihood estimate,
PGAN provides limited improvement, validating that the gains on the CircuitFaker
dataset arise from learning the complex prior.

PGAN lowers photon requirements for achieving a specified error rate with limited pro-
jection angles. This reduction in photon requirements effectively reduces data acquisition
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time during measurement. However, it is important to note that this does not necessarily
imply a reduction in the required training data for learning the prior.

The successful application of physics-assisted learned priors in X-ray tomography opens
avenues for nanoscale imaging with fewer photons and limited angles. Future work could
further explore the impact of PGAN on reducing the amount of training data needed for
learning effective priors in X-ray tomography and other imaging modalities. In the following
chapter, we will explore one extension of this work that enables data-efficient training for
different noise levels encountered during testing.
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Chapter 3

Noise-resilient deep learning for
integrated circuit tomography

Recent advancements in tomographic reconstruction have incorporated learned regulariza-
tion priors through machine learning, including unsupervised approaches like sparse cod-
ing [123, 124, 125] to regularize the image reconstructions [126, 127], and supervised methods
that generate reconstructions directly from measurements [128, 129, 130, 20]. Deep learn-
ing, particularly artificial neural networks, has demonstrated success in capturing high-order
spatial correlations and noise statistics. Networks based on UNet [131] have significantly
improved filtered back-projection (FBP) reconstructions without additional iterations [75].
In Chapter 2, we introduced a physics-assisted generative adversarial network (PGAN) that
improves reconstruction quality at low photon budgets compared to alternative methods
with less physics assisted approaches [28]. However, while effective, PGAN is specific to the
noise level used during training, raising the question of how to handle varying noise levels
between training and testing.

Researchers in the machine learning community have investigated this problem, known
as out-of-distribution generalization [132, 133, 134]. In computational imaging, studies have
shown that learned priors face challenges in noise resilience under out-of-distribution condi-
tions, leading to unstable and low-quality reconstruction [22, 79, 23]. Therefore, when the
noise level of the measurements varies, training multiple networks to handle different noise
levels for optimal reconstruction quality is necessary, which is a limitation of PGAN.

In this chapter, we introduce a noise-resilient deep-reconstruction algorithm for X-ray
tomography of integrated circuits. By incorporating maximum a posteriori (MAP) recon-
structions with Gaussian noise and sparsity-promoting priors into the neural network input,
we mitigate input distribution shifts from varying noise levels, improving the noise resilience
of the learned prior. Unlike PGAN, our approach only requires training one network at a
particular noise level and can generalize to different noise levels at test time, making it par-
ticularly advantageous in scenarios like circuit imaging, where obtaining training datasets
with varied noise levels is time-consuming and difficult.

We demonstrate the effectiveness of our noise-resilient deep learning, which utilizes a
Total Variation regularizer on MAP estimates, in improving noise resilience through simula-
tions and experiments. Our method achieves high fidelity reconstructions with fewer photons
compared to traditional FBP+UNet methods for integrated circuit imaging, with up to an

45



8× reduction in required photons in simulations and a 2.5× reduction in experiments. These
findings highlight the potential of our algorithm in enhancing the efficiency and quality of
X-ray tomography for integrated circuit imaging while maintaining data efficiency by elimi-
nating the need for diverse noise-level training data.

3.1 Deep-reconstruction network

Supervised learning uses training data to capture the underlying patterns of a given problem.
In the context of tomography, this involves learning from pairs of physical measurements g∗
and corresponding ground truths f0, drawn from a joint distribution P (g∗, f0). The goal is
to approximate the conditional probability P (f0 | g∗), essentially learning to predict f0 from
g∗ [128, 129, 130, 20]. This task transforms into an optimization problem aiming to identify
optimal network parameters (weights) w that map g∗ to f0. The process, encapsulated by

ŵg = argmin
w

E(g∗,f0) [L {Gw(g
∗), f0}] ≈ argmin

w

ntrain∑
i=1

L {Gw(g
∗
i ), f0i} , (3.1)

where Gw denotes the neural network, ntrain the number of training samples, and L the loss
function, is known as end-to-end training.

Physics-assisted training introduces an additional step by preprocessing the input data
with a conventional reconstruction algorithm before feeding it into the neural network [75,
24, 40, 28]. This method effectively lightens the network’s learning, expressed as

ŵf = argmin
w

E(f̂ ,f0)
[
L

{
Gw(f̂), f0

}]
≈ argmin

w

ntrain∑
i=1

L
{
Gw(f̂i), f0i

}
, (3.2)

with f̂ representing the conventional algorithm’s object estimate.
A widely adopted approach is combining FB) with a convolutional neural network such

as UNet. It utilizes FBP-generated approximations to incorporate the imaging system’s
physical model directly. Post-training, the UNet is used in artifact removal and image struc-
ture preservation within FBP reconstructions, sidestepping the need for further iterations
and regularization. This approach has been adopted for its computational efficiency, low
latency, and superior reconstruction quality compared to conventional methods like MAP
with general-purpose priors [75, 135, 136].

3.2 Noise resilience of deep-reconstruction networks

A major concern in employing supervised learning for tomography is the generalization
problem, specifically, the adaptability of the learned prior to new, unseen test data. If
optimally trained, such priors can yield high-quality reconstructions for test data matching
the training data’s distribution. However, in applications, discrepancies often exist between
the distributions of training and test data. Despite knowing the imaging object class and
maintaining consistent imaging geometry, noise characteristics within the data may fluctuate
over time.
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Prior works on supervised learning typically assume the noise statistics in training and
test datasets are similar. For instance, if Poisson noise corrupts measurements g∗, the eval-
uation of a learned prior’s reconstruction quality is based on test data with identical photon
count N0 per ray as in training. However, when test data has a different photon count N1

per ray, a shift in noise distribution between training and testing phases arises, potentially
compromising the learned prior’s reconstruction accuracy without training samples at N1

photons. The issue lies in the potential unreliability of the estimated conditional probability
P (f0 | g∗) if P

(
g∗N0

, f0
)
̸≈ P

(
g∗N1

, f0
)
, where N0 and N1 represent varying photon statistics

in measurements.
To improve this noise resilience, one approach might involve using a range of distributions

P
(
g∗Ni

, f0
)
, Ni ∈ {0, 1, 2, ...}, thus creating a network adaptable across noise statistics. Al-

ternatively, constructing a series of P
(
f0 | g∗Ni

)
, Ni ∈ {0, 1, 2, ...}, could yield a collection of

networks, each tailored to a specific noise level. However, these strategies demand extensive
training data across various noise levels, a daunting task for tomography systems character-
ized by lengthy acquisition times. Our method circumvents the need for additional noisy data
collection by training with a singular joint distribution. Employing a Gaussian noise prior
and a sparsity-promoting prior for reconstructions, we generate noise-resilient f̂MAP through
maximum a posteriori estimation. Subsequently, we approximate P

(
f0 | f̂MAP

)
by sampling

the training distribution P
(
f̂MAP, f0

)
at a fixed photon statistic level. This approach allows

us to assess the learned prior’s noise resilience using test data across a spectrum of photon
statistics.

3.3 Evaluation methods

3.3.1 Description of X-ray tomography experiment

Our study employs the Zeiss Xradia 620 Versa X-ray imaging system located at MIT.nano.
This system generates X-rays using a tungsten target, operating at a tube voltage of 80.0 kV
and a power of 10.0 W. We utilize a 3D printed sample designed by CircuitFaker [28], which
simulates basic circuit-like structures in three dimensions. The sample is positioned 230 mm
from the source and undergoes a full rotation from 0◦ to 360◦ in 1600 steps, facilitated by a
precision rotation stage. A charge-coupled device (CCD) detector captures the projections,
situated 572 mm from the source. Given a Fresnel number around 100, the projection-based
forward model is deemed suitable for our experiments. Both simulation and experimental
setups mirror this imaging geometry, employing a cone angle of 3◦ (with a maximum diver-
gent angle of 1.5◦) and accommodating a maximum tolerance angle of approximately 2.4◦

for the sample. This configuration validates the parallel-beam (Radon) approximation for
our forward model. For the simulations, we generate Poisson-distributed noise to replicate
measurement statistics. Experimentally, the exposure time ranges from 35 ms to 9 s per
projection, allowing for a controlled variation in photon counts.
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3.3.2 Reconstruction algorithms for comparison

We compare three traditional tomographic reconstruction algorithms, FBP, MLE, and MAP
with a total variation prior (MAP/TV), against their enhanced counterparts that incorporate
a UNet architecture for further refinement, as FBP+UNet, MLE+UNet, and MAP+UNet.
Our primary contribution is the MAP+UNet approach, designed to improve noise resilience
by refining MAP reconstructions through the approximation of P

(
f0 | f̂MAP

)
. In contrast,

MLE+UNet and FBP+UNet improve upon their foundational algorithms by approximat-
ing P

(
f0 | f̂MLE

)
and P

(
f0 | f̂FBP

)
respectively. The algorithms’ acronyms are detailed in

Table 3.1 for clarity. To ensure a balanced evaluation, all learning-based models utilize
identical optimization parameters and share the same UNet framework, differing only in the
initial reconstruction inputs. A consistent regularization parameter (β = 2) applies across
MAP reconstructions at varying noise levels. This setup is illustrated in a conceptual dia-
gram (Fig. 3.1). For simulations, network weights are initially randomized and subsequently
refined using 10,000 noise-free training samples. Experimental model weights initialized
with values derived from simulation data, then fine-tuned with 120 experimental samples,
a method known as transfer learning. This approach effectively minimizes the volume of
experimental data necessary for training [137].

Figure 3.1: A conceptual diagram for the learning-based algorithms. An inverse algorithm
first produces the traditional reconstruction f̂ from the sparsely-sampled and low photon
measurements. Then the UNet takes f̂ and outputs reconstruction Gw(f̂).

3.3.3 Network architecture

Fig. 3.2 shows the network architecture for the learning-based algorithms. Four downsam-
pling blocks and four up-sampling blocks were used in the UNet-like architecture. The spatial
dimension of the feature map is reduced or up-sampled by 2 per block. The downsampling
is achieved by stride convolution and the up-sampling is by transposed convolution. The
initial input is 128 × 128 × 1, the same as the output dimension. The latent vector in the
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Table 3.1: Acronyms for the reconstruction algorithms.

Abbreviation Definition
FBP filtered back projection
MLE maximum likelihood estimate

MAP/TV maximum a posteriori estimate with Total Variation
FBP+UNet improved FBP, MLE, or MAP/TV reconstructionMLE+UNet using the learned prior from UNet, shown in Fig. 3.1MAP+UNet

Figure 3.2: UNet architecture for the learning-based algorithms. The top box shows the
overall design of the network, where the light orange modules are downsampling blocks
and the dark orange modules are up-sampling blocks. Blue dotted lines represent the skip
connections. The middle box shows the design of the downsampling blocks. The bottom
box shows the design of up-sampling blocks. BN is batch normalization.
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center has the dimension 8 × 8 × 512, where the channel size is in the last dimension. ReLU
is used as the activation function in the blocks. The skip connections concatenate features
from downsampling blocks to up-sampling blocks. The script that generates the architecture
can be found on our GitHub page [138].

3.3.4 Quality metrics and their acceptability thresholds

Pearson correlation coefficient

The Pearson correlation coefficient r is defined as

rf0,f̂ =
cov(f0, f̂)
σf0 σf̂

, (3.3)

between ground truth reconstruction f0 and reconstruction f̂ from a particular algorithm,
where cov is the covariance and σ is the standard deviation. This first metric is introduced
to evaluate the perceptual quality of the reconstruction, and the acceptable quality threshold
is 1 − r ≤ 10−1, indicating a strong linear relationship between the reconstructions [139].
Its shortcoming is that it is a pixel-by-pixel correlation that is sensitive to misregistration
and image distortion, and is not highly sensitive to the connectivity or topology of the
image [140].

Mallat Scattering Transformation

The normalized L2 distance of the logarithm of the Mallat Scattering Transform (MST)
space [105, 141] is defined as

φf0,f̂
=
∥Φ(f0)− Φ(f̂)∥2

∥Φ(f0)∥ ∥Φ(f̂)∥
, (3.4)

where Φ is the logarithm of the MST operator. This second metric is introduced to eval-
uate multi-scale correlations and topology (connectivity) of the reconstructions. It is also
insensitive to misregistration and image distortion. The acceptable quality threshold is
φ ≤ n/M2 = 3× 10−3, where the reconstruction is of size M2 = 128× 128 and n = 50 is the
average number of circuit elements.

MST can be viewed as a Convolutional Neural Network (CNN) with predetermined
weights. The filters are designed so that the CNN can span an exponentially large range in
scale with a kernel of constant size. Following [142], we define the logarithm of MST of an
input image f as

Φ(f) =
(
log Φ

(0)
J (f), log Φ

(1)
J (f), log Φ

(2)
J (f)

)
(3.5)

and

Φ
(0)
J (f) = ϕJ ⊛ f

Φ
(1)
J (f) = ϕJ ⊛

∣∣ψλ1 ⊛ f
∣∣, λ1 ∈ Λ1,

Φ
(2)
J (f) = ϕJ ⊛

∣∣ψλ2 ⊛
∣∣ψλ1 ⊛ f

∣∣ ∣∣, λ1 ∈ Λ1, λ2 ∈ Λ2. (3.6)

50



Here, ⊛ denotes the convolution in 2D space, ϕJ is a low-pass filter, {ψλi
} is a family of

band-pass filters, i = 1, 2. Morlet filters [143] are used in our computation. There are three
parameters that determine how the MST is taken: M2 is the number of pixels in the image,
J is the log2 of the scattering scale and L is the number of angles used in the transform. For
this work, values of M = 128, J = 4, and L = 8 were used.

MST has been shown by Mallat [105] to be Lipschitz continuous to diffeomorphic de-
formation and invariant under translation. Therefore, MST is insensitive to misregistration
and deformation because they are both small diffeomorphic deformations. It also induces
a high sensitivity to topology, since the topology is invariant to diffeomorphic deformation.
Furthermore, taking the logarithm of the transformation flattens the extracted features to
a low-dimensional complex linear subspace where the topology of the features is exposed.
The practical outcome is that the extracted features in MST space will form a high-precision
cluster. The precision should be the fractional dimension of the space, n/M2, where n is the
number of the features.

3.4 Simulation results

Our simulation-based investigation showcases the efficacy of our noise-resilient methodol-
ogy in addressing ill-conditioned tomography challenges. We employed a full-angle, sparse
sampling setup with 32 out of 1600 angular views evenly distributed, under conditions of
low-photon tomography where the absence of regularization prominently exacerbates ill-
conditioning. The visual outcomes, depicted in Fig. 3.3, present 2D reconstructions at
varying photon counts per ray for distinct algorithms. Each row in the figure shows the
performance of different reconstruction algorithms, while each column illustrates the impact
of varying photon counts per ray on reconstructions. Notably, the MAP+UNet approach
outperforms both MLE+UNet and FBP+UNet, especially at reduced photon counts per ray,
demonstrating superior reconstruction quality.

A quantitative analysis, illustrated in Fig. 3.4, aggregates the mean values and standard
errors across two metrics over 1000 test instances from CircuitFaker. Observations from
both metrics converge on similar trends, prompting a focused discussion on the MST metric.
With a benchmark threshold of 3 × 10−3, the MAP+UNet strategy meets the criteria for
photon fluxes exceeding 80 photons per ray, establishing itself as the most effective method.
Following in effectiveness, the MLE+UNet approach meets the threshold for photon counts
of 128 per ray and above. Among the evaluated learning-based algorithms, FBP+UNet
displays the lowest noise resilience, tolerating noisy conditions down to 640 photons per
ray. Consequently, the MAP+UNet approach facilitates an 8× reduction in photon usage
compared to FBP+UNet in our simulations.

Furthermore, under low photon flux conditions, the sparsity-promoting MAP+UNet out-
performs the MLE+UNet based on maximum likelihood. However, this performance gap
narrows with the increase in photon flux. Importantly, integrating learning via a UNet
with traditional reconstruction algorithms reduces the photon flux necessities, suggesting
the value of the learned priors.
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Figure 3.3: Selected 2D reconstructions (in 128 × 128) for different algorithms using sim-
ulated data. Each row represents a reconstruction algorithm, and each column represents
an intensity of the photon rays. The ground truth is repeated in the last row. The dotted
orange line is the boundary between acceptable and unacceptable performance as determined
by the MST metric.
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Figure 3.4: Quantitative comparison between different reconstruction algorithms for tomo-
graphic simulations under different photon counts per ray. The x axis is the number of
photons per ray, and the y axis on the left figure is 1− r where r is the Pearson correlation
coefficient. The y axis on the right is the L2 distance in MST. The error bars are standard
deviations in the log scale of 1000 test instances. The dotted orange line shows the thresholds
of acceptable performance.
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3.5 Experimental results

Figure 3.5: Selected 2D reconstructions (in 128 × 128) for different algorithms using exper-
imental data. Each row represents a reconstruction algorithm. Each column represents an
intensity of the photon rays. The dotted orange line is the boundary between acceptable
and unacceptable performance as determined by the MST metric.

We extended our investigation of the noise-resilient approach to experimental datasets
under identical imaging conditions as those simulated. 2D reconstructions from experimental
projection data at varying photon counts per ray are depicted in Fig. 3.5, showcasing the
performance of different algorithms.
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Figure 3.6: Quantitative comparison between different reconstruction algorithms for experi-
mental data of 40 instances under different photon counts per ray. Symbols and error bars
as in Fig. 3.4. The dotted orange lines show the thresholds of acceptable performance.
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Quantitative assessments of these algorithms, derived from experimental data across a
range of photon fluxes, are presented in Fig. 3.6. These evaluations, based on two quality
metrics, affirm the simulation findings: superior input reconstructions yield equally or more
accurate UNet reconstructions, with parity more probable at higher photon counts. At di-
minished photon counts, MAP+UNet emerges as the most noise-resilient among the learning-
based algorithms. Adopting the same quality benchmark from the simulation (φ ≤ 3× 10−3

for the MST metric), traditional algorithms fail to reach acceptable quality under sparse
sampling and low-photon conditions. Conversely, all learning-based algorithms achieve sat-
isfactory outcomes. Table 3.2 consolidates the performance thresholds for all learning-based
algorithms, both experimentally and in simulation.

Figure 3.7: Quantitative comparison between different reconstruction algorithms with mean
squared error (MSE) and structural similarity index measure (SSIM) metrics. The top two
figures are for simulated data, and the bottom two are for experimental results.

In Fig. 3.7, we present our quantitative comparison of various reconstruction algorithms
with mean squared error (MSE) and structural similarity index measure (SSIM) metrics. We
find that our main conclusions do not depend on which metric is chosen.

In essence, MAP+UNet enables a reduction in photon usage by 2.5× in experimental
settings compared to FBP+UNet, a contrast to the 8× reduction observed in simulations.
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Table 3.2: Thresholds for acceptable performance based on the MST metric.

Method Simulation (photons/ray) Experiment (photons/ray)
FBP+UNet 640 531

MLE+UNet (+Gaussian) 128 330
MAP+UNet (+Gaussian+sparsity) 80 214

3.6 Discussion

In this investigation, Total Variation (TV) was adopted as the sparsity-promoting prior
for MAP and MAP+UNet algorithms. Although TV effectively reconstructs simple circuit
structures, its efficacy for complex structures in varied imaging tasks may be constrained. Ex-
ploring alternative priors, such as wavelet-based and Laplacian, could improve our method’s
versatility across diverse applications [144, 145, 146]. Additionally, the regularization pa-
rameter for TV was not optimized for different noise conditions, indicating potential for
improvement by adjusting this parameter to match the noise level.

The alignment between simulation and experimental results underscores the method’s
validity, albeit with noted performance threshold discrepancies. Such variations likely stem
from real-world complexities like additional noise sources, system imperfections, and model
simplifications that simulations cannot fully replicate.

3.7 Summary and contributions

We present a noise-resilient deep learning approach for X-ray tomography of integrated
circuits, validated through simulations and experiments. Our method incorporates MAP
reconstructions as training inputs to obtain a learned prior that withstands noise variations
without requiring diverse noise-level training data. This data-efficient approach is valuable
when acquiring varied datasets is impractical due to long acquisition times. Furthermore, it
is particularly useful in real-time dynamic imaging scenarios. Our main contributions are:

1. Demonstrating that using MAP reconstructions with Gaussian noise and Total Varia-
tion priors as inputs to a convolutional neural network improves noise resilience com-
pared to FBP or MLE reconstructions.

2. Thoroughly examining and addressing generalization of deep learning reconstruction
algorithms to out-of-distribution test data with different noise levels than training data.
Achieving noise resilience during the testing phase without requiring additional training
data at various noise levels, crucial for applications like integrated circuit imaging with
limited dataset sizes.

3. Quantitatively evaluating noise resilience using Pearson correlation and Mallat Scat-
tering Transformation metrics, establishing performance thresholds. MAP+UNet re-
duces photons per ray by 8× in simulations and 2.5× in experiments compared to
FBP+UNet.
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Our approach advances X-ray tomography by enabling high-quality reconstructions with
reduced photon requirements, improved noise robustness, and data efficiency, enhancing
deep learning for X-ray imaging in real-world scenarios with different training and test noise
distributions.

It is worth noting that while the physics-assisted generative adversarial network intro-
duced in Chapter 2 also reduces photon requirements, it requires training a new network
for each noise level. In contrast, the noise-resilient deep learning approach presented in this
chapter only requires training one network at a particular noise level, and it can generalize
to different noise levels at test time without the need for retraining. This feature makes our
noise-resilient approach more practical and efficient in scenarios where the noise level may
vary during the imaging process or across different datasets, reducing computational cost
and increasing flexibility in real-world applications.
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Chapter 4

Data-efficient neural modeling for 3D
Printing

Two-color projection micro-stereolithography (PµSL) is an additive manufacturing technique
that enables rapid, continuous printing of 3D objects [147, 148, 149]. This approach utilizes
two different wavelengths of light to independently control photoinitiation and photoinhi-
bition of polymerization in a photocurable resin. By carefully selecting the photoinitiator
and photoinhibitor with complementary absorption spectra, the two processes can be con-
trolled independently, allowing for continuous printing, high precision, and the ability to
use viscous resins. The technique finds potential applications in the development of optical
diffractive neural networks (D2NNs), which necessitates the manufacturing of sophisticated
three-dimensional photonic structures capable of optical computation [150, 151, 152, 153].

Despite its potential, achieving high-precision 3D printing with PµSL remains challenging
due to the limitations of current inspection and modeling approaches. The photochemical
processes that are present during photopolymerization are extremely complex, and that an
understanding of these processes is importance if a practical model is to be developed [154,
155, 156]. Conventional inspection techniques, such as profilometry, atomic force microscopy,
or X-ray tomography, are typically performed offline after printing, washing, and cleaning
steps, hindering rapid iteration and feedback to the printing process. These limitations
make it difficult to achieve the level of precision required for advanced applications like
optical neural networks.

In this chapter, we introduce a data-efficient approach that employs a neural network to
model and optimize the diffusion processes within the two-color PµSL manufacturing. Our
neural model, derived from ODEs with a data-driven correction term modeling the non-local
diffusion effects, offers a more accurate representation of the chemical conversion dynamics
during the printing process. Notably, the ODE component of the model is pre-determined
by conventional Fourier-transform infrared spectroscopy (FTIR) measurements [157, 158],
contributing to the data efficiency of the neural network. By integrating coherent diffractive
phase imaging into the printing system, we can collect the 2D dynamics of the conversion
process in real-time. Additionally, we employ conventional microscope imaging after the
printing process to capture the final printed structure. We train the neural model to predict
the final printed structure given the printing parameters, effectively modeling the non-local
diffusion from a series of 2D measurements.
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Through simulations and experimental validation, we demonstrate the advantages of our
neural model over conventional models in achieving better precision in the fabrication of
optical diffractive elements using two-color PµSL. The combination of real-time phase imag-
ing and post-printing microscope imaging allows our model to capture the complex diffusion
dynamics, resulting in improved precision in the manufacturing process. This synergistic
approach not only advances the state of the art in high-precision 3D printing but also holds
the potential to drive breakthroughs in the development of next-generation optical neural
networks and computational architectures.

4.1 Projection micro-stereolithography for 3D printing

Projection micro-stereolithography (PµSL) is an advanced 3D printing technique based on
area projection triggered photopolymerization, capable of fabricating complex 3D architec-
tures covering multiple scales with precision up to 0.6µm [159]. PµSL stands out among
various 3D printing technologies for its ability to achieve high precision over relatively wide
areas. This technique utilizes a digital micromirror device (DMD) to modulate UV light
and project 2D patterns onto a photosensitive resin, selectively polymerizing the resin in a
layer-by-layer manner.

Compared to other 3D printing techniques, PµSL offers several advantages. Inkjet print-
ing, although capable of depositing nano/microscale droplets [160, 161], cannot achieve true
3D structures at such fine scales. Stereolithography (SLA), another laser-induced local-
ized polymerization method, also exhibits lower precision limits compared to PµSL [162].
While two-photon polymerization (2PP) can achieve even higher precision down to 100nm,
it relies on a point-by-point writing process that sacrifices speed [163, 164, 165]. PµSL’s
high precision and relatively wide printing area make it well-suited for fabricating intricate
micro-structures for applications like optical diffractive neural networks. These bio-inspired
systems require precisely engineered 3D photonic architectures to manipulate light for op-
tical computation. PµSL’s ability to create such structures directly from computer-aided
design (CAD) models offers a significant advantage over alternative techniques.

Our work uses the two-color PµSL system that utilizes two DMDs with different wave-
lengths to independently control photoinitiation and photoinhibition of polymerization in a
photocurable resin. In this system, a photoinitiator absorbs blue light from one DMD to
generate radicals and initiate polymerization, while a photoinhibitor absorbs UV light from
the second DMD to generate inhibiting species that terminate polymerization. By carefully
selecting the photoinitiator and photoinhibitor with complementary absorption spectra and
optimizing their concentrations, we can control the two processes independently. The thick-
ness of the cured polymer is determined by the intensity ratio of blue to UV light, enabling
high-precision printing.
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4.2 Model development for 3D printing

4.2.1 ODEs chemical model

The development of ODEs for modeling free-radical photopolymerization in 3D printing pro-
cesses requires a thorough understanding of the underlying chemical reactions. As demon-
strated in prior works [166, 156], these light-initiated reactions involve complex interactions
between various species, such as initiators, co-initiators, monomers, and inhibitors. To com-
prehensively represent the photopolymerization kinetics, the kinetic model is constructed
based on four primary processes: initiation, propagation, termination, and inhibition.

4.2.2 Components and Terminology

Before presenting the system of ODEs, it is essential to define the components and termi-
nology involved in the photopolymerization process:

P0: Initiator in its ground state.

P1: Excited Initiator, indicating the initiator in its excited state.

P3: Active growing radical, playing a role in the propagation of the reaction.

C0: Co-initiator, essential for initiating the polymerization process.

M : Monomer, the basic building block for the polymer chain.

Q: Oxygen, acting as an inhibitor by quenching growing radicals.

I0: Inhibitor in its ground state.

I1: Excited Inhibitor, the excited state of the inhibitor.

I2: Inhibitor radical, a radical form of the inhibitor.

τ1, τ2: Deactivation constants for the initiator and inhibitor, respectively.

σE, σS: Absorption cross-sections of the initiator and inhibitor, respectively.

kd, kp, kt, ht: Kinetic constants associated with various reactions in the photopolymeriza-
tion process.

4.2.3 System of ODEs

Based on the defined components and terminology, the system of ODEs modeling the pho-
topolymerization process is as follows:

61



dP0

dt
= −σEIE(P0 − P1) + τ1P1, (4.1)

dP1

dt
= σEIE(P0 − P1)− τ1P1 − kdP1C0, (4.2)

dC0

dt
= −kdP1C0, (4.3)

dP3

dt
= kdP1C0 + riI2M − rktI2P3 − ktP 2

3 − htP3Q, (4.4)

dI0
dt

= −σSIS(I0 − I1) + τ2I1, (4.5)

dI1
dt

= σSIS(I0 − I1)− τ2I1 − rdI1, (4.6)

dI2
dt

= 2rdI1 − rktI2P3 − riI2M, (4.7)

dM

dt
= −kpP3M − riI2M, (4.8)

dQ

dt
= −htQP3. (4.9)

These equations model the interactions and kinetics of the various components involved
in the photopolymerization process, capturing the essential dynamics and providing a ro-
bust framework for simulating and optimizing 3D printing processes based on free-radical
photopolymerization. Detailed construction and analysis of the model can be found in [156].

4.2.4 Stiffness index for system of ODEs

The stiffness index S quantifies the stiffness of a system of ODEs, and is defined as below:

S =
Re(λmax)

Re(λmin)
(t1 − t0). (4.10)

Here, λmax and λmin are eigenvalues of the Jacobian matrix with largest and smallest real
parts. t0 and t1 are initial and final times. A large S indicates large disparity between
fastest and slowest dynamics, requiring implicit solvers for stability and accuracy [167]. For
the system of ODEs modeling the photopolymerization process, the Jacobian matrix is as
follows:



−IEσE IEσE + τ1 0 0 0 0 0 0 0
IEσE −C0kd − IEσE − τ1 −P1kd 0 0 0 0 0 0
0 −C0kd −P1kd 0 0 0 0 0 0
0 C0kd P1kd −I2rkt − 2P3kt −Qht 0 0 Mri − P3rkt I2ri −P3ht
0 0 0 0 −ISσS ISσS + τ2 0 0 0
0 0 0 0 ISσS −ISσS − rd − τ2 0 0 0
0 0 0 −I2rkt 0 2rd −Mri − P3rkt −I2ri 0
0 0 0 −Mkp 0 0 −Mri −I2ri − P3kp 0
0 0 0 −Qht 0 0 0 0 −P3ht


(4.11)

The stiffness index with parameters estimated from experimental data is around 144, which
suggests that the ODE system is mildly stiff. Ideally, an implicit ODE solver would be
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preferred. However, for a mildly stiff system, we choose an adaptive explicit method for
computational efficiency when later incorporating a neural network into the ODEs.

4.2.5 Numerical solver for the system of ODEs

To simulate the photopolymerization process, we employ the Dormand-Prince method, a
fifth-order Runge-Kutta method for its efficiency and adaptive step-size control [168]. This
method dynamically adjusts the step size to maintain the desired level of accuracy while
minimizing computational effort. The system of our coupled ODEs can be expressed as a
vector function f(t,C), where

C = [P0, P1, C0, P3, I0, I1, I2,M,Q]T (4.12)

represents the dependent variables, and t is the independent variable (time). The initial
conditions are given by

C0 = [P0(0), P1(0), C0(0), P3(0), I0(0), I1(0), I2(0),M(0), Q(0)]T . (4.13)

The Dormand-Prince method can be summarized in Algorithm 1. It first calculates a
set of slopes (k1 to k6) at each time step based on the system of ODEs f , the current
time t, the current state vector C, and the step size h. These slopes are used to estimate
the new state vector Cnew and the error vector Cerr using different weighted combinations.
The error vector is then used to calculate the step size scaling factor δ, which is then used
to adjust the step size h for the next iteration. The step size is constrained between the
minimum step size hmin and the maximum step size hmax to ensure stability and efficiency. By
applying the Dormand-Prince method to the system of coupled ODEs, we can numerically
simulate the photopolymerization process with high accuracy and efficiency. The adaptive
step-size control ensures that the solution is computed with the desired level of accuracy
while minimizing the computational cost.

4.2.6 Partial differential equations (PDEs) for diffusion

In practice, chemical components not only interact locally through the coupled ODEs, but
also diffuse spatially with different rate. The general form for each chemical component,
considering a two-dimensional spatial domain, would include a diffusion term ∇2, the Laplace
operator, applied to the concentration of each species. Here are the PDEs incorporating
diffusion for each of the species, labeled P0, P1, C0, P3, I0, I1, I2,M, and Q:
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Algorithm 1 Adaptive Runge-Kutta Method (Dormand-Prince)
Require:
1: Function f(t,C): The system of ODEs
2: Initial condition (t0,C0): The starting time t0 and the initial state vector C0

3: Initial step size h0: The initial size of each time step
4: Error tolerance ϵ: The desired level of accuracy
5: Minimum step size hmin: The lower bound for the step size
6: Maximum step size hmax: The upper bound for the step size
7: Final time tf : The end time of the simulation

Ensure:
8: Approximations of C at each time step
9: t← t0 ▷ Initialize the current time

10: C← C0 ▷ Initialize the state vector
11: h← h0 ▷ Initialize the step size
12: while t < tf do
13: Calculate slopes ki for i = 1, . . . , 6 based on f , t, C, and h
14: Estimate Cnew: The updated state vector using a weighted combination of ki

15: Estimate Cerr: The error vector using a different weighted combination of ki

16: δ ← (ϵh/(2∥Cerr∥))1/5 ▷ Calculate the step size scaling factor
17: h← min(max(δh, hmin), hmax) ▷ Adjust the step size
18: if t+ h > tf then
19: h← tf − t ▷ Adjust the final step size to reach tf exactly
20: end if
21: t← t+ h ▷ Increment the current time
22: C← Cnew ▷ Update the state vector
23: end while
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∂P0

∂t
= kP0∇2P0 − σEIE(P0 − P1) + τ1P1, (4.14)

∂P1

∂t
= kP1∇2P1 + σEIE(P0 − P1)− τ1P1 − kdP1C0, (4.15)

∂C0

∂t
= kC0∇2C0 − kdP1C0, (4.16)

∂P3

∂t
= kP3∇2P3 + kdP1C0 + riI2M − rktI2P3 − ktP 2

3 − htP3Q, (4.17)

∂I0
∂t

= kI0∇2I0 − σSIS(I0 − I1) + τ2I1, (4.18)

∂I1
∂t

= kI1∇2I1 + σSIS(I0 − I1)− τ2I1 − rdI1, (4.19)

∂I2
∂t

= kI2∇2I2 + 2rdI1 − rktI2P3 − riI2M, (4.20)

∂M

∂t
= kM∇2M − kpP3M − riI2M, (4.21)

∂Q

∂t
= kQ∇2Q− htQP3, (4.22)

Where ∇2 represents the Laplacian operator, capturing the diffusion effect in space. In two
dimensions, this is ∇2f = ∂2f

∂x2 + ∂2f
∂y2

for a function f(x, y, t). k is the assumed diffusion
coefficient for each chemical component.

To include diffusion processes in the modeling, we employ a numerical approach based
on the finite difference method. This method discretizes the spatial domain into a grid
and approximates derivatives with differences, thus transforming the continuous PDE into a
system of linear equations. The diffusion equation, which is central to modeling the spread
of substances in space and time, for a single component in two dimensions is given by:

∂C

∂t
= kdiff

(
∂2C

∂x2
+
∂2C

∂y2

)
+R(C, x, y, t), (4.23)

where C represents the concentration of the substance, kdiff is the diffusion coefficient for
a particular C, and R(C, x, y, t) represents the reaction terms in the system. The spatial
domain is then discretized into a grid with spacing ∆x and ∆y in the x and y directions,
respectively. The second derivatives in the diffusion term are approximated using the central
difference scheme:

∂2C

∂x2
≈ Ci+1,j − 2Ci,j + Ci−1,j

∆x2
, (4.24)

∂2C

∂y2
≈ Ci,j+1 − 2Ci,j + Ci,j−1

∆y2
, (4.25)

where Ci,j denotes the concentration at the grid point (i, j).
For numerical computation, the system of equations derived from discretization is repre-

sented in matrix form. The diffusion part of the PDEs can be expressed as a linear system:
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AC = b, (4.26)

where A is a sparse matrix encoding the discretized Laplace operator and the effects of
boundary conditions, C is the vector of unknown concentrations for multiple substances,
and b includes the reaction term. The matrix A for a single component is constructed as
follows:

• Diagonal elements of A represent the negative sum of the second derivative approxi-
mations in both directions: −kdiff (2/∆x

2 + 2/∆y2), assuming isotropic diffusion.

• Off-diagonal elements corresponding to adjacent points in the x and y directions rep-
resent the diffusion into or out of each grid point: kdiff/∆x

2 and kdiff/∆y
2, respectively.

Boundary conditions are incorporated by modifying the entries of matrix A and vector
b at the edges of the spatial domain:

• For Dirichlet boundaries, specific concentration values are imposed directly.

• For Neumann or Robin boundary conditions, the modifications reflect the gradient or
flux of the substance at the boundary, influencing the diffusion process.

In our implementations, we use Robin boundary conditions (also known as convective or
third-type boundary conditions) [169], which model scenarios where the flux of a substance
across a boundary is proportional to the difference between the substance concentration at
the boundary and the ambient concentration outside:

−kdiff
∂C

∂n
= htrans(C − C∞), (4.27)

where kdiff is the diffusion coefficient, ∂C
∂n

is the derivative of concentration C normal to
the boundary surface, htrans is the transfer coefficient, C is the concentration at the boundary,
and C∞ is the ambient concentration outside the boundary.

This approach enables the detailed modeling of diffusion processes in a PDE framework,
accounting for spatial variability, reaction kinetics, and boundary influences.

4.3 Challenges and approaches in parameter estimation

Accurate estimation of the parameters in the ODE system and the diffusion coefficients in
the PDE formulation are important for reliable modeling and simulation of the photopoly-
merization process. However, this task presents several challenges:

• The photopolymerization process is complex, involving multiple interacting compo-
nents with kinetic parameters and concentration-dependent behavior. Estimating
these parameters requires extensive experimental data, which may be difficult or time-
consuming to obtain. Moreover, the parameters may vary depending on the specific
materials, environmental conditions, and experimental setup.
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• The coupling between the ODE system and the PDE formulation complicates the
parameter estimation process. The concentrations of the species in the ODE system
influence the diffusion processes modeled by the PDEs, while the diffusion affects the
local concentrations and reaction rates in the ODEs.

• Experimental limitations and measurement uncertainties pose challenges in parameter
estimation. Typically, only the monomer concentration (M) is measured as a func-
tion of time using FTIR measurements, making it challenging to estimate the kinetic
parameters in the ODE system.

To address these challenges, we propose the following approaches:

• Utilize prior knowledge of chemical parameters from the literature to incorporate into
our model. This approach allows us to obtain a good model even with limited experi-
mental data, as the optimization process becomes primarily focused on fine-tuning the
model to match the observed monomer concentration profile.

• Simplify the modeling of diffusion processes by assuming that the diffusion of the
monomer (M) is the most important and non-zero, while the diffusion terms for other
species are ignored. This assumption is justified by the fact that the monomer concen-
tration is the only observable in the system, while all other species are hidden variables
that cannot be directly measured.

By using prior knowledge and making simplifying assumptions about diffusion, we can
develop a model that effectively captures the key aspects of the photopolymerization process
while working within the constraints of limited experimental data. However, it is important
to acknowledge that these simplifications and assumptions may introduce some uncertainties
and limitations in the model’s predictive power. As more experimental data becomes avail-
able, the model can be refined and updated to incorporate more detailed information about
the kinetics and diffusion behavior of the various chemical species involved in the process.

4.4 Connection to Gaussian filter with simplified diffu-
sion modeling

We simplify the system by assuming that the diffusion of the monomer (M) is the most
important and non-zero, while the diffusion terms for other species are ignored. This as-
sumption is justified by the fact that the monomer concentration is the only observable in
the system, while all other species are hidden variables that cannot be directly measured.

Under this assumption, the equation for isotropic diffusion of the monomer in two di-
mensions is given by:

∂M

∂t
= kdiff

(
∂2M

∂x2
+
∂2M

∂y2

)
, (4.28)

where M(x, y, t) represents the monomer concentration at spatial location (x, y) and time t,
and kdiff is the diffusion coefficient. The fundamental solution to this equation for an initial
delta function (point source) at the origin and time t = 0 is the Gaussian function:
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G(x, y, t) =
1

4πkdifft
exp

(
−x

2 + y2

4kdifft

)
. (4.29)

For a general initial monomer concentration M(x, y, 0), the solution at a later time t can
be obtained by convolving the initial condition with the fundamental solution G(x, y, t):

M(x, y, t) = (G(·, ·, t) ∗M(·, ·, 0))(x, y) =
∫ ∫

G(x− ξ, y − η, t)M(ξ, η, 0)dξdη. (4.30)

This convolution operation is equivalent to applying a Gaussian filter to the initial
monomer concentration, where the standard deviation σ of the Gaussian kernel is related to
the diffusion coefficient and time by σ =

√
2kdifft. Therefore, applying a Gaussian filter with

standard deviation σ simulates the effect of isotropic diffusion of the monomer over time t,
while neglecting the diffusion terms for other species in the system.

4.5 Conventional optimization for diffusion parameter

Given the well-established relationship between the Gaussian filter and the diffusion equa-
tion, we can formulate an optimization problem to estimate the diffusion coefficient kdiff. Ap-
plying a Gaussian filter with standard deviation σ to the monomer concentration is equivalent
to evolving the monomer concentration under the diffusion equation for a time proportional
to σ2.

The optimization problem for estimating the diffusion coefficient can be expressed as:

min
kdiff

1

N

N∑
i=1

∑
x,y

(
M

(i)
t (x, y)−Gσ(M

(i)
0 )(x, y)

)2

, (4.31)

where:

• M
(i)
t (x, y) represents the monomer concentration at coordinates (x, y) after the pho-

topolymerization process and subsequent washing, as observed in the microscope image
for the i-th training sample.

• Gσ(M
(i)
0 )(x, y) denotes the result of applying the Gaussian filter (with standard devi-

ation σ) to the initial monomer concentration M
(i)
0 , simulating the effect of diffusion

over time for the i-th training sample.

• σ is related to the diffusion coefficient kdiff and the elapsed time t by the relation
σ =
√
2kdifft.

• N is the total number of training samples.

The objective of the optimization is to minimize the sum of squared differences across
all pixels between the observed monomer concentration Mt and the initial monomer concen-
tration M0. By solving this optimization problem, we can estimate the diffusion coefficient
kdiff that best explains the transformation from M0 to Mt. This approach will be serving as
one of the baselines in comparison to the neural modeling.
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4.6 Data-efficient neural modeling

Conventional optimization techniques for estimating the diffusion parameter, such as least
squares fitting, are limited by their reliance on a single free parameter and the assumption
of isotropic diffusion. In reality, diffusion processes are more complex, exhibiting anisotropic
behavior influenced by factors like concentration gradients, temperature fluctuations, and
material heterogeneity. To improve the precision of our polymerization reaction model for
designing and printing, we have integrated a data-efficient neural model. This technique is
designed to account for complexities not fully captured by ordinary differential equations,
such as oxygen inhibition and chemical diffusion processes, which are critical in modeling
the dynamics of polymerization reactions and improving manufacturing precision.

Figure 4.1: Conceptual diagram for our data-efficient neural model.

To achieve this, we incorporate a neural network term into the governing equations of
the polymerization process. This term is designed to learn and represent the non-local
interactions and complex dynamics that are not described by ordinary differential equations.
The augmented equation for the rate of change of the monomer concentration M (which is
the only observable in the experiments), is given by:

∂M

∂t
≈ NN(IE(x, y), IS(x, y),M(x, y), t)− kpP3M − riI2M. (4.32)

Here, the term NN (IE(x, y), IS(x, y),M(x, y), t) represents the output of a neural net-
work model. This model is trained to encapsulate the effects of non-local interactions on the
polymerization process. The inputs to the neural network are the spatial distributions of
the blue wavelength intensity IE(x, y) for initiation, the UV wavelength intensity IS(x, y) for
inhibition, and the monomer concentration M(x, y), along with the time t. This approach
allows for adapting to variations in reaction conditions and material properties that are not
easily captured by conventional models with ODEs from the imaging data. A conceptual
diagram for our data-efficient neural model is shown in Fig. 4.1.

69



4.7 Couplings between monomer and other species

Given the complete set of equations with a neural network modeling the diffusion of M :

∂P0

∂t
≈ −σEIE(P0 − P1) + τ1P1, (4.33)

∂P1

∂t
≈ σEIE(P0 − P1)− τ1P1 − kdP1C0, (4.34)

∂C0

∂t
≈ −kdP1C0, (4.35)

∂P3

∂t
≈ kdP1C0 + riI2M − rktI2P3 − ktP 2

3 − htP3Q, (4.36)

∂I0
∂t
≈ −σSIS(I0 − I1) + τ2I1, (4.37)

∂I1
∂t
≈ σSIS(I0 − I1)− τ2I1 − rdI1, (4.38)

∂I2
∂t
≈ 2rdI1 − rktI2P3 − riI2M, (4.39)

∂M

∂t
≈ NN (IE(x, y), IS(x, y),M(x, y), t)− kpP3M − riI2M, (4.40)

∂Q

∂t
≈ −htQP3. (4.41)

The concentration of the monomer M exhibits both direct and indirect couplings with various
other species in the system. The direct couplings are evident in the equations governing the
dynamics of P3 and I2:

∂P3

∂t
≈ kdP1C0 + riI2M − rktI2P3 − ktP 2

3 − htP3Q, (4.42)

∂I2
∂t
≈ 2rdI1 − rktI2P3 − riI2M, (4.43)

∂M

∂t
≈ NN(IE(x, y), IS(x, y),M(x, y), t)− kpP3M − riI2M. (4.44)

The terms riI2M and −riI2M in the equations for P3 and I2, respectively, showcase the
direct influence of M on these species. Similarly, the term −kpP3M in the equation for M
highlights the direct impact of P3 on M .

In addition to these direct couplings, M also exhibits indirect coupling with Q through
P3, as evident in their respective equations:

∂Q

∂t
≈ −htQP3. (4.45)

While P0, P1, C0, I0, I1 are not coupled with M .
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4.8 Overall framework

The overall framework for using the non-local neural model in the optical inverse design,
depicted in Fig. 4.2, involves the following steps:

• Input DMD patterns for UV and blue light as initial mask designs.

• The neural model predicts the 3D printed structure based on the light modulation
patterns.

• A gradient descent method compares the predicted structure with the intended design.

• The DMD patterns are adjusted to minimize the discrepancy between predicted and
intended structures.

• The process iterates with the neural model providing updated predictions until the
predicted structure aligns with the intended design.

Figure 4.2: Using non-local neural model in the optical inverse design.

By integrating the data-efficient neural model into the inverse design process, we can
predict the complex interaction between light modulation and material response, enabling
the fabrication of structures that closely match the intended design.

4.9 Numerical simulations

We first compare the simulation results of ODEs and PDEs in modeling the photopolymer-
ization process for 3D printing. Fig. 4.3 shows the ODE simulations, which model local
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(a) Simulated conversion using ODEs (b) Cross-section of one printed sample using
ODEs

Figure 4.3: 3 x 3 printed sample simulated with ODEs, illustrating local conversion effects.

(a) Simulated conversion using PDEs (b) Cross-section of one printed sample using
PDEs

Figure 4.4: 3 x 3 printed sample simulated with PDEs, highlighting non-local conversion
effects.

72



interactions within the polymerization process. The results exhibit a distinct and sharp
conversion pattern, reflecting the localized nature of the reactions modeled by the ODEs.
In contrast, Fig. 4.4 presents the PDE simulations with an assumed diffusion parameter for
all the chemical species. The visual results display a more blurred conversion pattern and a
smoother, more realistic cross-section texture compared to the ODE-based simulation.

The ODE and PDE simulations highlight the impact of mathematical modeling choices on
the performance of 3D printed functional samples. While ODEs provide a localized reaction
representation, PDEs offer a more comprehensive simulation by accounting for non-local
interactions, better capturing the nuances of photopolymerization. However, it is important
to note that PDEs are computationally demanding and data-intensive due to the inclusion of
non-local interactions, which increases model complexity. In practice, parameter estimation
for diffusion parameters in PDEs poses challenges due to the need for 2D spatial and temporal
data, computationally intensive forward processes, complex optimization. To address these
challenges, our data-efficient neural model serves as a surrogate model trained with imaging
data. By approximating the forward process with a computationally cheaper neural network,
we can efficiently perform parameter estimation and reduce the overall computational cost
while maintaining accuracy.

4.10 Capturing real-time dynamics by coherent diffrac-
tive imaging

Coherent diffractive imaging (CDI) is a powerful, non-destructive imaging technique [170]. It
is uniquely suited for real-time imaging during 3D printing because it does not require lenses,
which could interfere with the printing process. In contrast, lens-based imaging methods,
such as optical microscopy [171, 172], require focusing optics and have a limited depth
of field, making them unsuitable for capturing sharp images of objects with large height
variations. CDI can obtain high-quality reconstructions with a wide field of view, allowing
for the observation of both fine details and larger-scale structures in real-time, regardless of
the object’s height.

Fig. 4.5 illustrates how we use CDI in reflection mode to measure the printing dynamics
in real-time. Note that the printing optics is orthogonal to the CDI optics and is not shown
in the figure.

The scattering model for diffractive imaging is based on non-paraxial version of beam
propagation method (BPM) [173, 174, 93], where the exiting wave ψ after interacting with
an object under thin-film approximation is

ψ(x, y) = F−1
[
F [p(x, y)f(x, y)]e−i(k0−

√
k20−k2x−k2y)δz

]
. (4.46)

Here, p(x, y) is the illumination profile propagating along the z axis, f(x, y) is the phase-only
scattering object, δz is the layer thickness of the object, k0 is the wavenumber in the object
medium, F is the two-dimensional Fourier transform. The intensity of the exiting wave is
measured in a de-focused plane, and is

g(x, y) =
∣∣∣F−1[F [ψ(x, y)]e−i(k1−

√
k21−k2x−k2y)∆z]

∣∣∣2 + N , (4.47)
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Figure 4.5: Real-time CDI measurements. The probe beam is in 632nm wavelength illumi-
nating the sample. After reflected from the mirror and pass once again across the sample,
the exisitng waving is measured with a CCD camera de-focused to the top sufrace of the
printing sample.

where k1 is the wavenumber in the background medium, ∆z is the de-focus displacement,
N is the additive background noise.

To estimate the optimal ∆z for the de-focus displacement, we can consider the phase
transfer function in the Fresnel region, which is proportional to

sin [πλ(ξ2 + η2)z], (4.48)

Another constraint is the diffraction limit NA
λ

, which sets the highest frequency that can be
recovered. For our system, λ = 632nm, we have the phase transfer function as shown in
Fig. 4.6 for four defocus distances.

By using CDI’s ability to capture real-time data during the printing process, we can obtain
valuable datasets for pre-training our data-efficient neural model. These datasets provide
crucial insights into the complex dynamics underlying the fabrication process, enabling the
neural model to learn and predict the behavior of the system.

4.11 Training the neural model

To train the data-efficient neural model for the inverse design, we employ a two-stage ap-
proach: pre-training with real-time CDI data and fine-tuning with microscope images of the
final printed patterns.

In the first stage, we collect real-time diffraction patterns using CDI during the photopoly-
merization process (Fig. 4.7). These diffraction patterns capture the dynamic evolution of
the printed structure. We then apply a gradient descent algorithm to reconstruct the real-
time CDI data, providing a time-series of 2D spatial images that represent the intermediate
states of the printed pattern (Fig. 4.8).
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Figure 4.6: Numerical plot for the phase transfer function at four defocus distances. The
orange bar represents phase transfer function with value at 0.75.
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Figure 4.7: Real-time CDI reconstructions. Experimental settings: Blue intensity - 2500mV,
UV intensity - 0mV, Exposure time - 70 sec, Pattern size - approximately 5um x 5um x 1um.

Figure 4.8: Pre-training CDI reconstructions.
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The pre-training of the neural model is performed using the reconstructed CDI data. The
neural network is incorporated into the ODE equations along with the other relevant ODEs,
and the entire ODE system is integrated using the odeint function with the Dormand-Prince
method. The objective is to train the model to predict the CDI reconstruction at each time
step, given the DMD patterns for blue and UV light, and time. The optimization objective
for pre-training the neural model can be expressed as follows:

min
θ

1

N

N∑
i=1

T∑
t=1

∥∥∥∥x̂(i)t − odeint
(
dC

dt
,C

(i)
0 , t, args = (I

(i)
E (x, y), I

(i)
S (x, y),NNθ)

)
t

∥∥∥∥
1

(4.49)

where:

• θ represents the parameters of the neural model,

• N is the total number of training samples,

• T is the total number of time steps,

• x̂
(i)
t is the target CDI reconstruction at time step t for the i-th training sample,

• dC
dt

represents the entire ODE system, which includes the neural network NNθ and
other relevant ODEs,

• C
(i)
0 is the initial condition for all the variables in the ODE system for the i-th training

sample,

• odeint(·) is the function that integrates the ODE system using the Dormand-Prince
method, taking as input the ODE system dC

dt
, initial condition C

(i)
0 , time points t, and

the DMD patterns for blue and UV light, I(i)E (x, y) and I
(i)
S (x, y), respectively, as well

as the neural network NNθ for modeling the diffusion of monomer M ,

• ∥·∥1 denotes the L1 norm, which measures the absolute difference between the predicted
and target CDI reconstructions.

Figure 4.9: Data pre-process for microscope images. Experimental settings: Blue intensity -
2500mV, UV intensity - 0mV, Exposure time - 90 sec, Pattern size - approximately 5.63um
x 5.63um x 1um.
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Figure 4.10: Fintuning with microscope images.

In the second stage, we collect microscope images of the final printed patterns after the
completion of the photopolymerization process and subsequent washing (Fig. 4.9). These
images represent the actual outcome of the printing process and provide ground truth data
for fine-tuning the neural model.

The fine-tuning step involves continual training the pre-trained model using the micro-
scope images. The input to the model consists of the DMD projection parameters and time,
while the output is the predicted printed features (Fig. 4.10). The optimization objective
for fine-tuning the neural model can be expressed as follows:

min
θ

1

N

N∑
i=1

∥∥∥∥m(i) − odeint
(
dC

dt
,C

(i)
0 , t, args = (I

(i)
E (x, y), I

(i)
S (x, y),NNθ)

)
t=T

∥∥∥∥
1

(4.50)

where:

• m(i) is the microscope image of the final printed pattern for the i-th training sample,

• t = T denotes the final time step of the integration, corresponding to the completion
of the photopolymerization process.

By combining the pre-training and the fine-tuning stages, the neural model learns to
capture both the dynamic evolution of the photopolymerization process and the final outcome
of the printed patterns. This two-stage training approach enables the model to effectively
learn the complex relationships between DMD patterns, time, and the resulting printed
structures, ultimately facilitating the inverse design of DMD masks for targeted 3D printing
applications.

4.12 Experimental results

To validate the performance of the proposed data-efficient neural model, we conduct a series
of experiments using our optical printing and imaging system. Fig. 4.11 showcases a repre-
sentative set of data collected from the system. From left to right, we have: (a) the DMD
pattern used for printing, (b) the diffractive pattern obtained from raw CDI measurements
during the printing process, (c) the CDI reconstruction obtained by applying an iterative
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Figure 4.11: Example data collected from the optical printing and imaging system.

algorithm to the diffractive pattern, and (d) the binarized microscope image of the final
printed structure.

Fig. 4.12 provides an illustrative overview of where and how we collect data from the
optical printing and imaging system. The DMD projector is used to display the input
pattern, which is then projected onto the photopolymer resin. During the printing process,
the CDI camera captures the diffractive patterns generated by the interaction of light with
the evolving structure. After printing, the sample is washed and imaged using a microscope
to obtain the final printed pattern.

Figure 4.12: Illustrative figure on where and how we collect the data from the optical printing
and imaging system.

Fig. 4.13 compares the predictions of the neural model, a conventional local chemical
model (DMD), a diffusion model (DMD diffused), and the actual printed patterns (micro-
scope). The neural model predictions (top two rows) are shown for different numbers of
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Figure 4.13: Visual comparison between neural model predictions and local chemical model
predictions. The top-2 rows represent the neural model trained with different epochs, DMD
diffused represents the predictions from conventional optimization for the diffusion parame-
ter. DMD represents the local chemical model prediction for the pattern, and the microscope
is the actual pattern after printing. Each column for the top-2 rows represent neural model
trained with different data-point. The pattern size is about 5.63um x 5.63um x 1um physi-
cally, where 1um is the layer thickness.
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Figure 4.14: Quantitative comparison between neural model trained with different data
points with pearson correlation and structural similarity metrics (higher the better). The
orange dotted line represents the accuracy for local chemical model. Though 4 data-points
would be enough for the neural model outperforms local chemical model, more training data
further improves the results.
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training epochs and data points, while the DMD diffused predictions (third row) are shown
for different numbers of data points. The DMD diffused model relies on a single free param-
eter, resulting in predictions that appear blurred and lack the intricate details present in the
actual printed patterns. In contrast, the neural model’s predictions improve with increasing
training data and epochs, capturing more of the complex features found in the microscope
images. The local chemical model (DMD, fourth row) provides a basic prediction of the
pattern, but it fails to account for the diffusion effects and intricate details observed in the
actual printed patterns (microscope, bottom row). From the visual comparison, we observe
that the neural model predictions closely resemble the actual printed patterns, capturing fine
details and intricate structures that the local chemical model often fails to reproduce, partic-
ularly around the edges. This demonstrates the neural model’s ability to learn and predict
the complex, nonlinear dynamics of the photopolymerization process from a larger dataset,
outperforming the conventional local chemical model by modeling the intricate relationships
between various factors influencing the polymerization process.

To quantitatively assess the performance of the neural model, we use two metrics: Pearson
correlation and structural similarity (SSIM). Fig. 4.14 presents a comparison of the neural
model and DMD diffused model trained with different numbers of data points, along with the
accuracy of the local chemical model (indicated by the orange dotted line). The results show
that the neural model consistently outperforms the local chemical model, even when trained
with as few as four data points. Moreover, increasing the number of training data points
further improves the performance of the neural model, as evidenced by the higher Pearson
correlation and SSIM scores. The DMD diffused model, indicated by the grey color bars,
lags behind the neural model in SSIM but exhibits comparable PCC performance. Unlike
the neural model, the DMD diffused model’s performance does not improve with increasing
training data points, which is not surprising given that it has only one diffusion parameter
in the optimization.

The experimental results demonstrate the effectiveness of the proposed data-efficient
neural model in predicting the outcomes of the photopolymerization process. By learning
from a limited number of CDI measurements and microscope images, the neural model can
accurately predict the final printed patterns, surpassing the performance of the conventional
diffusion model and local chemical model. This highlights the potential of the neural model
for efficient inverse design of DMD masks, enabling the creation of complex, high-precision
3D structures with reduced experimental overhead and computational complexity.

4.13 Limitations and discussion

Our data-efficient neural modeling approach for high-precision 3D printing using two-color
projection micro-stereolithography (PµSL) has several key limitations that should be con-
sidered:

1. Performance of the neural model may be affected by the spacing between printed fea-
tures. As feature spacing decreases, more pronounced non-local diffusion effects can
occur due to increased interactions between nearby regions during the photopolymer-
ization process. This can lead to potential challenges in predicting the final printed
patterns, especially for designs with closely spaced and intricate features.
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2. The prediction accuracy of our approach is also limited by the quality of the real-time
CDI data and post-printing microscope images used for training the neural network.
Higher quality and lower noise in these imaging modalities can improve the model’s
ability to capture fine details and subtle variations in the structures.

3. Generalization of the trained neural model to new structures or materials not repre-
sented in the training data may be restricted. The diversity of the training dataset play
a crucial role in determining the model’s ability to predict the outcomes for new designs
or material compositions. Limited training data diversity can lead to overfitting and
reduced performance on out-of-distribution samples.

Despite these limitations, our approach offers benefits over conventional methods in terms of
prediction accuracy and data efficiency. Future research directions could focus on addressing
the mentioned limitations by exploring techniques such as transfer learning and domain
adaptation to improve the generalization and robustness of the neural model across a wider
range of structures and materials.

4.14 Summary and contributions

In this chapter, we present a data-efficient neural modeling approach for high-precision 3D
printing using two-color PµSL. Our key contributions can be summarized as follows:

1. We develop a neural model that augments traditional ODEs to effectively capture
non-local diffusion effects and complex dynamics inherent in the photopolymerization
process, enabling accurate predictions of the printing outcomes.

2. We propose a two-stage training approach that combines both real-time CDI data and
post-printing microscope images. In the first stage, the model learns to predict the
printing dynamics based on the CDI data, capturing the temporal evolution of the
structures. In the second stage, the model is fine-tuned using the microscope images
to predict the final printed patterns. This two-stage approach allows our model to
effectively learn both the dynamic process and the final outcome.

3. Through experimental validations, we demonstrate strong performance of our neural
model compared to conventional modeling methods. Our approach achieves higher pre-
diction accuracy and requires a few training data, making it particularly advantageous
in data-limited scenarios. This data efficiency is important for practical applications
where obtaining large amounts of experimental data may be time-consuming or costly.

Our data-efficient neural model serves as a valuable tool for creating complex, high-precision
3D structures in scenarios where limited training data is available. Its efficiency and predic-
tive power have the potential to drive breakthroughs in next-generation optical computing
and other advanced applications.
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Chapter 5

Conclusion

In this thesis, we have explored the potential of data-efficient machine learning in advanc-
ing computational imaging techniques. By intelligently integrating physical models with
the adaptability of deep learning, we have demonstrated strong improvements in imaging
accuracy, efficiency, and noise resilience under stringent data and time constraints.

For X-ray tomography, we developed a Physics-assisted Generative Adversarial Net-
work (PGAN) for limited-angle, low-photon imaging conditions. Our PGAN integrates a
maximum-likelihood estimate informed by known physics to address the challenges of ill-
conditioning and Poisson shot noise inherent in such scenarios. The separation of physi-
cal constraints from the network optimization proved to yield better reconstruction quality
compared to less physics-assisting strategies. Using the CircuitFaker model to generate 3D
circuit objects, we demonstrated that PGAN improves reconstruction quality under limited
viewing angles and photon flux compared to traditional maximum-likelihood estimates and
alternative deep learning approaches.

In addition, we introduced a noise-resilient deep-reconstruction algorithm for X-ray to-
mography of integrated circuits that incorporates maximum a posteriori (MAP) reconstruc-
tions into the neural network input. By integrating a Gaussian noise prior and a sparsity-
promoting prior into MAP reconstructions, we mitigate input distribution shifts from varying
noise levels, improving learned prior noise resilience without additional noise statistic sam-
pling. This data-efficient approach eliminates the need to collect and label data under dif-
ferent noise conditions, making it particularly advantageous in scenarios like circuit imaging
where obtaining varied-noise-level training datasets is difficult. Our method achieves high
fidelity reconstructions requiring fewer photons compared to prior works with FBP+UNet
approach, with up to an 8× reduction in required photons in simulations and a 2.5× reduc-
tion in experiments.

Lastly, we introduced a data-efficient neural model that captures the diffusion processes
underlying high-precision 3D printing. The model combines real-time phase imaging, conven-
tional camera imaging, and pre-determined system of ordinary differential equations (ODEs).
This approach demonstrates improved accuracy in predicting the printing of optical diffrac-
tive elements, which is an important step towards more advanced and efficient optical neural
computing systems. The data-efficient nature of our neural model reduces experimental
overhead and computational complexity in the inverse design for 3D printing, serving as a
valuable tool for creating complex, high-precision 3D structures, even in data-limited sce-
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narios.
These advancements highlight the potential of data-efficient machine learning in pushing

the boundaries of computational imaging. By harnessing the complementary strengths of
physical models and deep learning, we can unlock new possibilities for applications demand-
ing high-fidelity imaging under challenging conditions. As we continue to refine and expand
upon these techniques, we anticipate a profound impact on fields ranging from biomedical
diagnostics and materials science to additive manufacturing and optical computing, enabling
faster, more accurate, and more efficient imaging and analysis of complex systems.
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