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Abstract

Transparent conducting electrodes (TCEs) are vital to many optoelectronic devices
including solar panels and touch-screens. Indium Tin Oxide, the dominant TCE,
comes with myriad problems including a shaky supply chain and brittleness. Net-
works of silver nanowires show many advantages over ITO, but they suffer from
problems with durability. In this work, we focus on electrothermal instability and
provide new insights into the electrothermal drivers of silver nanowire network fail-
ure. First, we borrow the notion of betweenness centrality from graph theory and
test its applicability to simulated nanowire network systems. We also test several
other centrality measures, some introduced here and designed specifically to describe
nanowire networks. We find that betweenness centrality performs as well as or better
than the other tested measures in terms of ability to identify network elements least
important to conduction. We then execute a combined computational and experi-
mental analysis of several small, computationally tractable silver nanowire networks.
We create high fidelity computational models of these specific systems and calculate
electrical and graph theoretic properties to test whether we can predict failure. We
find that standard circuit analysis outperforms graph theoretic measures, although
neither prove predictive. We find strong evidence that electromigration is the primary
driver of failure at contacts between silver nanowires, either by causing failure directly
or by providing the kinetic perturbations required to initiate spheroidization. In the
process of building our computational models of real nanowire networks, we develop
several new image processing techniques that show great promise when applied to the
challenging task of automatically extracting non-planar graphs from images.

Thesis Supervisor: Jeffrey C. Grossman
Title: Morton and Claire Goulder and Family Professor in Environmental Systems

Thesis Co-Supervisor: Joseph Checkelsky
Title: Mitsui Career Development Associate Professor of Physics
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Chapter 1

Introduction to Transparent

Conducting Electrodes

1.1 The Current TCE Landscape

As the name suggests, Transparent Conducting Electrodes (TCEs) are a class of ma-

terials that transmit both light and electrical current with little impedance. Although

they are relatively little known, TCEs are ubiquitous. The best known use of TCEs

is likely in the capacitive touch screens on modern phones and tablets [49], but TCEs

are also used in transparent film heaters [86] which are found on airplane windshields,

electromagnetic shielding [98], and in organic electronics [18] such as OLED displays

or organic photovoltaics. The optimal mix of properties for a TCE depends on the

application as shown in Figure 1.1.

Figure of merit (FOM), chemical stability, thermal stability, and flexibility are

assets in all cases but there are some cases in which they are not necessary. Displays,

for example, tend to be used indoors and are sheltered from the elements, so chemical

stability is comparatively less important than it is for solar panels which must endure

rain and temperature fluctuations. Low optical haze, defined as the ratio of scat-

tered transmission to total transmission, is unlike the other attributes in Figure 1.1

because there are some applications in which low optical haze can actually hamper
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Figure 1.1: Radar plot showing the relative importance of performance metrics for
Transparent Film Heaters (TFH), solar cells, displays, and sensors. Marks are only
general qualitative indications, where a higher score indicates greater importance of
the given attribute. FoM denotes that transparent electrode figure of merit. Taken
from [88]

device performance. In solar panels, a high degree of haze can increase path length

through the photovoltaic material and thereby enhance photon absorption probability.

The transparent conductor figure of merit (FoM) in Figure 1.1 merits special

discussion. A figure of merit for TCEs is an attempt to capture in a single scalar

quantity the ability of the material to both transmit light and conduct electricity. A

common choice for this quantity is the ratio of DC conductivity to optical conductivity

[106] shown in Equation

FoM =
𝜎DC

𝜎optical
=

𝑍0

2𝑅sh

(︁
1√
𝑇
− 1
)︁ (1.1)

where 𝑍0 = 377Ω is the impedance of free space, 𝑅sh is the material sheet resistance

in units of Ω/□, and 𝑇 is the material transmission coefficient (transparency) which

ranges from 0 to 1. This figure of merit has several nice properties: first, the value
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Figure 1.2: Diagram of conductive slab geometry. Taken from [4]

approaches zero as either 𝑅sh or 𝑇 approach zero; this is sensible because, for a trans-

parent conductor, there is no amount of electrical conductivity that can compensate

for zero optical transmission (and vice versa). In addition, the FoM approaches infin-

ity as 𝑅sh → 0 (infinite conductivity) or as 𝑇 → 1 (complete transparency). Getting

𝑅sh near 0 and 𝑇 near 1, however, is often challenging because of the mutually para-

sitic relationship that exists between conductivity and transparency in most TCEs.

To understand this, consider the slab of material shown in Figure 1.2. If the

material has electrical resistivity 𝜌, the sheet resistance can be expressed as

𝑅sh =
𝜌

𝑡
(1.2)

Therefore increasing the thickness 𝑡 will decrease the sheet resistance. But increasing

the thickness will also decrease the transparency as 𝑇 ∝ exp (−𝑡/𝜏) for optical depth

𝜏 (note that, in general, 𝜏 may depend on wavelength as well as material).

Currently, the industry standard material that manages to achieve a high degree

of both transparency and conductivity is Indium Tin Oxide, also known as ITO [87].

ITO is a semiconductor with a high carrier concentration of 1020–1021 cm−3 and a
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wide bandgap of 3.5–4.3 eV that, respectively, give the material a low sheet resistance

of approximately 20Ω/□ and a high transparency of approximately 85% average

visible transmittance [63]. ITO is also resistanct to moisture and bonds strongly to

glass. This cocktail of characteristics explains ITO’s commercial preeminence in ap-

plications requiring a TCE.

One of the great drawbacks of ITO is that it comprises roughly 75% indium by

mass [3], and indium faces some challenging economics. Indium is almost exclusively

found in the zinc-rich mineral sphalerite which is typically less than 0.1% indium by

mass [103]. This means that indium is generally only found in significant quantities

in the byproducts of other industrial processes which, in turn, means that indium

production cannot respond elastically to changes in demand. We can see the effects

of this in indium prices: from 1999-2020 the cost of 1 kg of indium increased by

28% even though indium production quadrupled during the same period [112, 113].

Indium is considered critical to renewable energy by the United States Geological

Survey [14] owing to its use in copper-indium-gallium-diselenide thin film solar cells.

Furthermore, the geographical distribution of indium deposits renders them vulnera-

ble to supply disruptions [114].

The obstacles to a reliable indium supply are not the only problem with our de-

pendence on ITO as a TCE. The manufacture of Indium Tin Oxide at industrial scale

relies on complex and often costly techniques such as E-beam evaporation, pulsed laser

deposition, spray pyrolisis, radio frequency magnetron sputtering, or most commonly

direct current magnetron sputtering [118]. These processes require high tempera-

tures, specialized equipment such as lasers of high vacuum chambers, or sometimes a

combination thereof. The resulting ITO films are also brittle which limits their use in

flexible electronics [87]. In addition, ITO has very poor infrared transparency [12, 21]

which limits its use as a TCE in photovoltaics because a majority of solar radiation

incident on the earth’s surface comprises IR photons [115].
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In summary, there is a great need for alternative transparent electrodes for two

primary reasons. First, we are not well positioned to reliably satisfy current demand

for indium, to say nothing of future demand. As most indium is used in the pro-

duction of ITO, alternative TCEs can obviate many of our present indium supply

problems by replacing ITO in some applications (e.g. charge collection in thin film

organic photovoltaics) and in so doing increase the availability of indium for those

applications in which is truly irreplaceable. Second, ITO is not suitable for all appli-

cations that call for TCEs. Developing alternative transparent conducting materials

will enhance the ability to manufacture important devices such as flexible electronics

and solar cells.

1.2 Silver Nanowire Networks as TCEs

Networks of interconnected silver nanowires have the potential to serve as one of these

replacement TCEs and, due to these networks’ mechanical flexibility, they can also be

used in ways that ITO cannot. The components of these materials, silver nanowires,

earn their name from their minuscule size: typical diameters range from 10–100 nm

and typical lengths range from 10–100µm. They are shaped much like human hairs

with diameter and length scaled down by a factor of 1000. This characteristic size

renders these wires quite invisible to the naked eye, both because our eyes cannot

resolve details this small and because silver wires are almost entirely optically trans-

parent when they are this thin. These silver wires, much like bulk silver, are also

excellent conductors of electricity.

Fabricating a functional TCE made of silver requires synthesizing the nanowires

themselves and depositing them onto some suitable substrate, often glass or PE-

DOT:PSS. At the this point in fabrication, the electrical contacts between different

nanowires are usually of poor quality due to a combination of an insulating PVP layer

on the nanowire surfaces left over from synthesis [33], extremely small contact areas
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between wires, and boundaries between crystal planes. To ameliorate these problems

and give the network a low enough sheet resistance to be useful, it is essentially re-

quired to perform some form of junction optimization.

One such method is electroplating the network with gold, which has been shown

to decrease junction resistance from 1GΩ to 450Ω [52]. Studies examining the effects

of network optimization on individual junctions are unfortunately rare due to the dif-

ficulty of taking single junction measurements. Instead, it is much more common to

report the improvement in the entire network’s sheet resistance. Thermal annealing

is likely the most common technique to remove the PVP coating and optimize the

nanowire junctions but this is unacceptable in applications requiring mechanical flex-

ibility because the high temperatures required destroy the flexible polymer substrate

to which the nanowires are attached [41]. Methods that preserve the flexible nanowire

substrate include chemical welding [58], solvent evaporation [131], laser nano-welding

[73], encapsulation with other materials such as graphene oxide [19, 101], mechanical

pressing [41], plasmonic welding [41], and electrically induced welding [105].

In spite of the interconnectedness among transparency, conductivity, and haze,

there are some ways to circumvent inherent tradeoffs and improve the FOM. It has

been shown computationally that, by preferentially aligning nanowires in a given di-

rection, it is possible to increase conductivity along the axis of alignment at the cost

of a greater decrease in conductivity perpendicular to the direction of alignment [54].

At a fixed areal mass density, networks of longer wires have lower resistances than

networks of shorter wires [110]. Bi-disperse networks with 90% shorter wires and

10% longer wires show a near order of magnitude reduction in resistance compared

to networks at the same areal density with 100% shorter wires [84]. Networks of

longer nanowires also have higher transparency than networks of shorter wires at all

visible wavelengths [72]. Conductivity has been found to scale linearly with nanowire

length and the figure of merit scales approximately linearly with the nanowire aspect

ratio [110]. Thus the nanowire dimensions are vitally important to device perfor-
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mance. While it would be ideal to modify synthesis such that longer nanowires are

produced, achieving this is not trivial. Changes to synthesis tend to increase/decrease

both nanowire length and diameter at the same time [130], and increased nanowire

diameter leads to decreased transparency and increased haze. That said, there has

been considerable success growing very long nanowires with fixed diameters using a

multi-stage synthesis process [72].

Typical sheet resistances for silver nanowire networks range from 10s-100s of Ω/□

and transparencies range from 80–95% yielding a figure of merit that ranges from

roughly 16–725. As shown in Figure 1.3, this optoelectronic performance matches

that of ITO and exceeds that of many other TCEs in terms of sheet resistance. Fur-

thermore, silver nanowire networks are mechanically flexible and solution processible

[87], all significant advantages over ITO. As an added bonus, silver nanowire net-

works have very small mass loading compared to ITO making their costs (in absolute

terms) less sensitive to price fluctations in raw materials. As a result of these de-

sirable properties, silver nanowire based materials have been integrated into organic

solar cells [109, 85], transparent film heaters [55, 48], flexible health sensors attached

to the skin [127, 122], transparent shielding from electromagnetic interference [95],

high performance supercapacitors [74], and myriad components relevant to photonics

and quantum information [128].

1.3 Instabilities in Silver Nanowire Network TCEs

The list of successes in the preceeding discussion would lead any red-blooded nanowire

enthusiast to wonder: if silver nanowire meshes are so great, why have they not com-

pletely displaced ITO in the market for TCEs? The answer is stability: meshes of

silver nanowires, although robust enough for some applications, generally do not last

as long as ITO. The failure mechanisms of silver nanowire generally fall into four

categories: mechanical effects, chemical effects, electrical effects, and thermal effects,
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Figure 1.3: Shaded regions show transmittance and sheet resistance requirements for
various flexible TCE applications including photovoltaic (PV), screen and lighting,
capacitive and resistive touch screens and antistatic coatings. Points and lines com-
pare the best performing TCE technologies currently available. Data sources are: Cu
Nanotrough and ITO [47], MTI Nanoweb [8], Ag nanowires (NWs) with an aspect
ratio (AR) of 360 [9], 1000 [64], Cu NWs with an AR of 2280 [129], PEDOT:PSS
TCE [30], calculated and experimental graphene TCEs [64, 83]. Figure taken from
[81].
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although there can be significant interplay between any of these.

Mechanical failures typically occur as a result of flexion. Althought the nanowires

have random orientations, and therefore strains are scaled by a factor of cos 𝜃 where

𝜃 is the angle between the nanowire axis and the strain direction, it is still quite pos-

sible for nanowires to undergo brittle failure [87]. In general, networks deposited on

thicker substrates will break more easily from flexion than will networks on thinner

substrates because the strain is equal to 𝑡/2𝑅𝑐 where 𝑡 is the substrate thickness and

𝑅𝑐 is the radius of curvature [87]. Chemical failure of silver nanowire networks arises

most commonly from the degradation of silver into Ag2S as a result of contact with

atmospheric sulfur [87]. Ag2S, also known as acanthite, forms nanoparticles on the

surface of silver nanowires thus consuming silver and eventually severing connections

between different segments of the same nanowire. There is evidence that this process

takes about 6 months [29], but the precise rate is dependent on temperature, humidity,

and initial defect concentration in the nanowires themselves [88]. In addition, Ag has

poor stability in acidic conditions, a particular problem given that PEDOT:PSS, a

transparent conductive polymer and one of the more common choices of susbtrate for

silver nanowire networks, is acidic [87]. These chemical instabilities are exacerbated

by the high surface area to volume ratio of nanowires: these systems offer a large area

for hostile chemistry with little internal material in reserve to preserve the desirable

properties of the wire. The high surface area to volume ratio of silver nanowires,

in fact, plays an important role electrical and thermal failures as well and it is to

these electrothermal failure dynamics that we now restrict our attention. This choice

is motivated by the fact that every application of silver nanowires as TCEs involves

carrying current and therefore every application of silver nanowires as TCEs will also

involve some degree of joule heating. We begin with a discussion of electrothermal

failure mechanics at small scales and then move to a discussion of larger scales.

The primary means of microscale electrical failure in silver nanowires is electro-

migration [89], which is shown schematically in Figure 1.4. When current is flowing
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Figure 1.4: Schematic representation of electromigration of positive ions in a crystal
due to momentum transfer from the rightward moving electrons (represented by the
current density vector

⇀

J𝑒). Note that
⇀

J𝑒 points in the direction of electron flow rather
than the direction of conventional current. Figure adapted from [2].

through a conductor, some momentum is transferred from the traveling electrons to

the ions in the crystal lattice. In most circumstances, this momentum transfer is

insufficient to permanently dislocate the positively charged ions from their site in the

crystal lattice, instead simply leading to phononic oscillations (known at the macro

scale as joule heating). However, at sites where the ionic diffusivity is greater, such

as grain boundaries or surfaces, the momentum transfer can induce ions to dislocate

permanently and occupy a new site in the lattice. This is represented by the sec-

ond frame of Figure 1.4. This dislocation leaves a void in the original lattice thus

causing a volume relaxation (tensile strain), as shown in the third frame of Figure

1.4. Although it is not shown in the figure, the ion’s presence at its new site can also

cause a compressive strain. As these strains accumulate, the nanowire can discon-

nect completely. As mentioned before, the importance of electromigration in silver

nanowire based systems is largely a result of high surface area to volume ratios which

lead to a far greater proportion of lattice sites with high ionic diffusivities. Further,

silver nanowires are not truly cylinders but instead a collection of five wedges joined

at five twin boundaries (known as a pentatwinned structure), shown in Figure 1.5.

While twin boundaries do not show the same high atomic diffusivities as true grain

boundaries, they nonetheless enhance the mobility of silver ions in the lattice [87] and

thereby enhance their susceptibility to electrimigration induced failure.
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Figure 1.5: Diagram of the penta-twinned structure of silver nanowires synthesized in
the polyol process. Numbers represent crystal facet miller indices. Red lines are the
twin boundaries, coated with PVP, between silver wedges. Image taken from [111].

The second significant microscale failure mechanism of silver nanowire networks

under electrothermal stress is spheroidization [87], a morphological evolution in which

a cylinder-like object transitions into a set of disconnected spheres separated by a

characteristic wavelength as shown in Figure 1.6. This transition results from the

nanowire’s minimization of surface energy - a set of spheres of radius 𝑅0 have a lower

surface area to volume ratio than a cylinder of length 𝐿 and radius 𝑅0 as long as

𝐿 > 9
2
𝑅0. This transition, however, does not initiate without some perturbation that

is usually provided by elevated temperatures. It is worth noting that this failure

mechanism tends to occur at temperatures from 250–350 ∘C, considerably lower than

the melting point of silver even after accounting for melting point depression resulting

from the Gibbs-Thomson effect [87]. A given perturbation of size 𝜀 grows as

𝜕𝜀

𝜕𝑡
=

𝛾Ω2𝐷𝑐𝑠
𝑘𝐵𝑇

(︂
𝜕2𝜅

𝜕𝑆2

)︂
(1.3)

where 𝑡 is time, 𝛾 is surface energy, Ω is atomic volume, 𝐷 is surface diffusivity, 𝑐𝑠 is

concentration of surface sites, 𝑘𝐵 is the Boltzmann constant, 𝑇 is temperature, and

𝜅 is curvature as a function of position 𝑆 along the wire [66].

It is worth noting two common themes in electrical and thermal (also known as

electrothermal) mechanisms. First, the high surface area to volume ratio of silver

nanowires magnifies the importance of certain effects that would be negligible in a

bulk material. Second, the electrical stress that is essentially inherent in use as a
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Figure 1.6: Depiction of spheroidization of a nanowire approximated here as a cylin-
der. Perturbation size is denoted by 𝜀 and characteristic wavelength denoted by
𝜆𝑚𝑎𝑥 = 2

√
2𝜋𝑅0 where 𝑅0 is the radius of the cylinder. Image taken from [87].

TCE can drive a feedback loop that turns local failures into global ones [102, 67].

When nanowire or junction fails, current gets redirected to adjacent components pos-

sibly causing them to fail as well. This can cause a crack to propagate cross the

network roughly perpendicular to the direction of current flow that eventually en-

tirely deletes electrical conductivity. An example of this process is shown in Figure

1.7 which depicts the time evolution of a nanowire network subjected to a voltage

ramp of 0.5V/min [102]. Note that in the diagrams, current flows on the left/right

axis. Subfigure A0 shows the evolution of resistance with time during the voltage

ramp. The Subfigures labeled A1-A5 are IR images of the network showing local

temperature. Subfigures A1-A3 show the localization of a hotspot along the central

axis of the network. Subfigure A4 shows the seeds of a crack forming at the bottom

of the sample. Subfigure A5 shows how the crack has advanced perpendicular to cur-

rent flow. The crack region in A5 is especially dark because, with no current flowing

through it, the crack has cooled down considerably. 1.7. The dynamics of this system

can change significantly depending on whether it is subjected to a constant voltage

or a constant current: a current ramp for example would funnel increasing current

through a constricted area thus creating considerably higher current density in the

intact region of the network. We should therefore expect current ramps to damage a

network more quickly than voltage ramps.

In summary, we have a relatively detailed understanding of silver nanowire net-

work failure dynamics both at the scale of individual wires and at the scale of devices.

But we have a much less developed understanding of the failure dynamics of nanowire

networks at the scale where the interactions among wires are important but the indi-
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Figure 1.7: Time evolution of a physical nanowire sample subjected to a voltage ramp
of 0.5V/min. (A0) Evolution of resistance with time during voltage ramp. (A1-A5)
IR images taken in chronological order of the crack advancing across the network
perpendicular to the direction of current flow. Darker colors represent colder temper-
atures and brighter colors represent hotter temperatures. (B) Schematic diagram of
crack propagation. Figure taken from [102].
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vidual wires are very much distinguishable, known as the scale of percolating clusters

[87]. One significant reason for this is that measurement is quite challenging. SEM

and TEM are ideal for achieving the resolution necessary to analyze cluster failure in

detail, but these microscopy techniques require high vacuum. This significantly alters

surface diffusion which plays a key role in both spheroidization and electromigration.

For example, Zhao et. al [132] have shown that, for single nanowires under electrical

stress, electromigration is the primary cause of breakage. But there are reasons to be

cautious when extrapolating from this experiment on single wires to systems of many

interacting wires. First, because the measurements in [132] were taken under vacuum,

but perhaps more importantly because networks of nanowires involve electrothermal

fluxes flowing in many directions. It is not obvious that, given the myriad possibilities

for interactions between wires, nanowire networks under ambient conditions will fail

from the same causes as individual wires in vacuum.

All this said, if we can manage to predict exactly how silver nanowire networks

will fail, we can obviate one of the main osbtacles to their ore widespread adoption.

Furthermore, if we recast failure not as network destruction but rather as network

transition into a less conductive state, we can turn this instability into an asset. As an

example, recall that silver nanowires are extremely sensitive to sulfur. If we are able

to predict exactly how and where a given network will fail, we could use small silver

nanowire networks as chemical sensors. Just this year, an array of indium phosphide

nanowires was used to create a self-powered NO2 sensor with 84% sensing response

to concentrations of 1 ppm NO2 [124]. This brings us to the questions we seek to

answer:

1. Can network topology and graph theoretic measures of importance predict how

nanowire networks will reorganize under electrothermal stress?

2. Can a hybrid of experimental and computational techniques circumvent mea-

surement problems and elucidate the reconfiguration dynamics of silver nanowire

networks at cluster scale?
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We will begin our discussion with a brief primer on graph theory as it undergirds

a great deal of our analysis here. We will then discuss our procedure for created sim-

ulated nanowire networks and their corresponding graphs. Then we will apply some

results of graph theory to these simulated networks thus demonstrating concretely the

relevance of this branch of mathematics to silver nanowire networks. Motivated by

these computational results, we proceed to creating high fidelity graph models of real

nanowire networks with measurable properties and testing the predictive power of our

graph theoretic approach. Finally, we will discuss some of the novel image processing

techniques that we have developed in order to turn SEM images of nanowire networks

into high fidelity in silico representations of these real nanowire samples. When all

is said and done, we will have developed a new understanding of the cluster scale

reconfiguration dynamics of silver nanowire networks and developed several new im-

age processing routines that will be valuable to anyone seeking to extract non-planar

graphs from images.
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Chapter 2

Applying Graph Theory to Simulated

Nanowire Networks

2.1 Graphs in General

Leonhard Euler initiated the field of graph theory, though he certainly would not have

known it by that name, in his famous analysis of the seven bridges of Königsberg.

The Pregel river runs through the city of Königsberg, which was then in the Kingdom

of Prussia but is now known as the Russian city of Kaliningrad. In one part of town,

as shown in Figures 2.1a-2.1b, there are two islands in the middle of the river. These

islands are connected to each other and to either side of the river by a series of seven

bridges. Euler wondered whether he could find some walking path through the city

that would allow him to cross each of these bridges exactly once. He realized that

(a) Map (b) Diagram (c) Graph

Figure 2.1: The Seven Bridges of Königsberg, the origin of graph theory.
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Figure 2.2: A graph with clearly labeled nodes represented by the numbered circles
and edges represented by lines connecting the nodes. Image taken from [116].

the path he took on land was immaterial - it was only the bridges that mattered.

He could therefore envision the system simply as a series of points with connections

between some pairs of points, as shown in Figure 2.1c. The resolution of this problem

is beyond the scope of the present discussion but the structure Euler developed, in

which a system is represented by a series of objects and pairwise connections between

the objects, is known as a graph.

Formally, a graph 𝐺 = (𝑁,𝐸) consists of a set 𝑁 of objects called nodes (also

known as vertices) and a set 𝐸 of pairwise connections between these objects called

edges [40]. An edge 𝑒𝑖𝑗 = (𝑛𝑖, 𝑛𝑗) is a two-set where 𝑛𝑗, 𝑛𝑘 ∈ 𝑁 . In the bridges of

Konigsberg, the land masses are nodes (represented by green dots in Figure 2.1c) and

the bridges are edges (represented by black lines connecting the green dots in Figure

2.1c). This structure is quite simple, but is so flexible that it can be used to represent

nearly any kind of interaction in nature. In fact, in fundamental physics, it is only

the strong nuclear interaction which cannot be represented by an interaction graph

due to the presence of non-linear multibody interactions. Consider the graph shown

in Figure 2.2 as another instructive example. Here we have the set of nodes 𝑁 and
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the set of edges 𝐸 where

𝑁 = {1, 2, 3, 4, 5, 6, 7}

𝐸 = {(1, 2), (2, 3), (2, 4), (2, 7), (3, 4), (4, 5), (5, 6), (6, 7)}

Note that each edge here is a set and therefore the order of the two nodes within it

does not matter. That is to say we could write the edges as

𝐸 = {(2, 1), (3, 2), (2, 4), (2, 7), (3, 4), (5, 4), (5, 6), (6, 7)}

and still be describing the exact same graph. This is because, unless stated otherwise,

it is assumed that that the edge (𝑛𝑖, 𝑛𝑗) allows one to travel 𝑛𝑖 → 𝑛𝑗 and 𝑛𝑗 → 𝑛𝑖.

Graphs with this property are called undirected graphs. As anyone who has ever

driven in Boston can tell you, however, there are some paths that can only be tra-

versed in one direction. In a directed graph, each edge (𝑛𝑖, 𝑛𝑗) only allows travel from

𝑛𝑖 to 𝑛𝑗 and not the other way around. It is however still possible to have two way

travel between nodes 𝑛𝑖 and 𝑛𝑗, it just requires two edges: (𝑛𝑖, 𝑛𝑗) and (𝑛𝑗, 𝑛𝑖).

It is also possible for edges to have some number (or numbers) assigned to them.

Graphs for which the edges are assigned numbers are known as weighted graphs

and the edge weight is usually regarded as analogous to edge length or distance. This

might be relevant if you wanted to plan to get across the Pregel river and noticed that

one of the bridges, evidently designed by an ancestor of both Escher and Mandelbrot,

snakes up and down and left and right for quite some distance before reaching the

other side. A path in a graph is an alternating sequence of nodes and edges in which

neither nodes nor edges are repeated. For some graph we could write a path 𝑃 as

𝑃 = 𝑛1, 𝑒12, 𝑛2, 𝑒23 ... 𝑛𝑁−1, 𝑒𝑁−1,𝑁 , 𝑛𝑁 (2.1)

where 𝑛𝑖 are nodes in the graph and edge 𝑒𝑖 = (𝑛𝑖−1, 𝑛𝑖) connects nodes 𝑛𝑖−1 and 𝑛𝑖.
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The length of such a path is simply the sum of the weights of the edges it contains (in

a weighted graph) or the number of edges (in an unweighted graph). Equivalently, we

can treat an unweighted graph as a weighted graph where all edges have unit weight.

2.2 Nanowire Networks as Graphs

In the graph representation of a nanowire network, each node represents a nanowire

segment and each edge represents either a junction between distinct segments or an

internal connection between different segments of the same wire. The edge weights

are treated as resistances. An example of this process is shown in Figure 2.3. Creat-

ing a graph from a nanowire network begins by labeling each nanowire as shown in

Figure 2.3a. Then we create an equivalent circuit, as shown in Figure 2.3b, including

both the contact resistances between different nanowires and the internal resistances

within a single wire. Note that this means wire 𝑦 has been subdivided into two wire

segments, 𝑦1 and 𝑦2. From the equivalent circuit, we can transition to a nanowire

network graph as shown in Figure 2.3c. In the graph, nanowires/nanowire segments

are nodes and resistors are edges. Each edge in this nanowire network graph also has

a weight which is equal to the resistance of the corresponding resistor. These weights

are usually treated as lengths so, in our case, short paths between nodes correspond

to low resistance paths between nanowire segments. Note that the insertion of in-

ternal resistance edges in nanowires means that many segments may come from the

same nanowire. There often arises some pictorial confusion here so this point bears

repeating: nanowires, which appears as thin lines in an image, are represented by

circles in a diagram of a nanowire network graph.

In graph theory, a node’s importance is called its centrality. Importance, though, is

highly contextual. What makes a node important will vary with the type of graph and

with the behavior being examined [7]. There are, therefore, many types of centrality.

Betweenness centrality, a measure introduced in [7, 34], is among the most influential

[15] and is used to identify the nodes with the greatest control of flow in networks.
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(a) Nanowire system (b) Nanowire circuit (c) Nanowire graph

Figure 2.3: (2.3a) Depiction of three nanowires labeled x,y,z and color coded. (2.3b)
Circuit that is electrically equivalent to the configuration of nanowires in previous
frame. (2.3c) Graph representation of nanowire system. Edges have weights equal
to resistance values. Note that nanowires, which are originally represented as lines,
become circles (nodes) in the final image and resistances become lines (edges).

As its name suggests, betweenness centrality measures a node’s tendency to lie on

shortest paths between other nodes. We proceed with a formal definition.

For some graph 𝐺 = (𝑁,𝐸), define 𝜎𝑠𝑡 to be the number of shortest paths from

source node 𝑠 ∈ 𝑁 to target node 𝑡 ∈ 𝑁 . We call such shortest paths 𝑠− 𝑡 paths. If

𝑡 is unreachable from 𝑠, then 𝜎𝑠𝑡 = 0. If 𝑠 = 𝑡 then 𝜎𝑠𝑡 is defined to be 1. A node 𝑣 is

between nodes 𝑠 and 𝑡 if 𝑣 lies on one or more 𝑠− 𝑡 paths. In Fig. 2.4, for example,

node 5 is between nodes 4 and 6. Define 𝜎𝑠𝑡(𝑣) to be the number of 𝑠− 𝑡 paths that

pass through 𝑣. We define 𝜎𝑠𝑡(𝑣) = 0 if 𝑣 ∈ {𝑠, 𝑡}. If 𝑣 lies on the only 𝑠 − 𝑡 path,

then 𝑣 has complete control over the flow from 𝑠 to 𝑡 and from 𝑡 to 𝑠. If 𝑣 lies on

some but not all of the multiple 𝑠− 𝑡 paths, then 𝑣 has only partial control over this

flow. We define the pair dependency 𝛿𝑠𝑡(𝑣) as the fraction of 𝑠− 𝑡 paths that contain

𝑣.

𝛿𝑠𝑡(𝑣) =
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡

(2.2)

The betweenness centrality of a node 𝑣, defined in Equation 2.3, is the sum of these

pair dependencies over all possible source and target nodes in 𝑁 . This measure

captures the tendency of a node 𝑣 to lie on shortest paths between all other nodes
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Node Betweenness
Centrality

1 0
2 7.5
3 0
4 3.5
5 1.5
6 1
7 1.5

Figure 2.4: An unweighted graph with nodes as numbered circles and edges as lines
connecting the circles. Betweenness centralities shown in the table.

and therefore quantifies its degree of control of flow through the network.

𝐶𝐵(𝑣) =
∑︁
𝑠,𝑡∈𝑁

𝛿𝑠𝑡(𝑣) =
∑︁
𝑠,𝑡∈𝑁

𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡

(2.3)

Note that we take 0/0 = 0 by convention [16, 34].

Let us again consider node 5 from Fig. 2.4. Node 5 lies on the only shortest

path between nodes 4 and 6; this pair dependency contributes 1 to the betweenness

centrality of node 5. Node 5 lies on one out of two shortest paths between nodes 3

and 6; therefore this pair dependency contributes 1/2 to the betweenness centrality

of node 5. Node 5 lies on no other shortest paths, so its total betweenness centrality

is 1.5 as shown in Fig. 2.4.

For a more intuitive sense of betweenness centrality, consider the unweighted

graphs shown in Figure 2.5. Note that we have shaded the nodes black and gray

only to facilitate clearer discussion - the nodes are identical except for their connec-

tivity. Every pair of distinct source and target nodes in 2.5a contains either two black

nodes or one black node and one gray node. All shortest paths between black and

gray nodes have length 1 and therefore include only the source and target nodes. Be-

cause 𝜎𝑠𝑡(𝑠) = 𝜎𝑠𝑡(𝑡) = 0, these paths will not contribute to betweenness centralities

of nodes in the network. We therefore need only consider paths between two black
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(a) Graph where the gray
node clearly has the highest
betweenness centrality. Av-
erage inter-node distance is
1.67

(b) Same graph but with a
low betweenness centrality
(black) node removed. Av-
erage inter-node distance is
1.65

(c) Same graph but with
the high betweenness
centrality (gray) node re-
moved. Average inter-node
distance is 3

Figure 2.5: Example graphs. Nodes are shaded only for clarity.

nodes to calculate betweenness centrality values. For every pair of black nodes, the

shortest path between them either goes around the perimeter of the 11-gon or passes

through the center. If the black nodes are directly connected by a single edge, then

the path connecting them does not contribute to betweenness centralities of nodes in

the network. If the black nodes have exactly one black node between them, they have

two shortest paths: one path along the exterior black nodes of the 11-gon and one

path passing through the center gray node. If the black nodes are separated by more

than one black node, as is true for most pairs of black nodes, then the shortest path

between them passes through the gray node. Given that most of the shortest paths

between black nodes pass through the gray node, we should expect, correctly, that the

gray node has a much greater betweenness centrality than the black nodes. We can

see the effects of this by selectively removing nodes (and any adjacent edges) from the

network. In Figure 2.5a, the average distance between nodes is 1.67. In Figure 2.5b,

where one of the black nodes has been removed, the average distance between nodes

actually decreases to 1.65. In Figure 2.5c, where the gray node has been removed, the

average distance between nodes jumps to 3. Removing a low betweenness centrality

(black) node had a very small impact on average inter-node distance while removing

the high betweenness centrality (gray) node changed the average inter-node distance
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by nearly a factor of 2. Thus we see that betweenness centrality offers a quantitative

measure of a node’s importance to transport through the network.

The motivation for this long discussion of betweenness centrality is its connection

to one well motivated theory of nanowire network failure. It has been posited that

nanowire networks fail at high resistance bottlenecks in otherwise low resistance paths

[80]. Even for small networks, enumerating all possible paths is, in practice, impos-

sible because number of possible paths grows so quickly with the number of nodes1.

Betweenness centrality provides us with a calculable shortcut: high betweenness cen-

trality nanowires are those nanowire that tend to lie on the highest conductivity

(shortest) paths between other nanowires. Because of the highly unequal current

sharing among wires in silver nanowire networks [82], these paths and the nodes they

contain are a promising place to start applying our graph theoretic techniques to

silver nanowire networks. Using the notion of centrality, we will optimize simulatd

nanowire networks by strategically removing the least important wires, where impor-

tance is quantified in a variety of ways. An example of this procedure is shown in

Figure 2.7. Selectively removing nodes from a network is generally called an attack,

and the robustness of networks against attacks is frequently studied [53]. Previous

scholarship, however, tends to focus on removing nodes in order from most important

to least important [53, 51, 24] whereas we remove nodes in the reverse order: from

least important to most important. This process will highlight the merits of different

centralities and demonstrate that the semblant relevance of betweenness to nanowire

networks is firmly grounded in reality.

2.3 De-densifying Silver Nanowire Networks using

Betweenness-Based Centralities

To capture the properties of an MNW network, one must first create a virtual rep-

resentation of a network. The discussion of how to do this is largely borrowed from
1Possible paths grow as 𝒪(|𝑁 |!) for the complete graph with |𝑁 | being the number of nodes.

44



[87]. A simple method reported so far [70] for creating a virtual, square network of

length L is described below, and illustrated in Figure 6:

1. Randomly generate a set of (𝑥, 𝑦) pairs, which will serve as the nanowire mid-

points, a set of angles, which will determine the nanowire orientations, and a

set of nanowire lengths.

2. Create two wires of length L at the top and bottom (or left and right) of the

sample. These will serve as the electrodes through which current is injected

into or extracted out of the network.

3. Using the midpoints, angles, and nanowire lengths, calculate all points of in-

tersection between line segments. This can be done by testing all pairs of line

segments for intersection or, for more efficiency, using the Bentley-Ottmann

Line Sweep algorithm [11]. The intersections between line segments are junc-

tions between nanowires. Note that we use the terms junction and contact

interchangeably.

4. Represent the network as a linear system of resistors. First add contact re-

sistances at intersections between nanowires. Then, for each wire that has

multiple contacts, subdivide it into multiple segments such that each division

is equidistant from the nearest pair of contacts. The resistance of this internal

resistor should be 𝑅internal = 𝜌ℓ/𝐴 with 𝜌 being the electrical resistivity of the

nanowire, 𝐴 being the cross-sectional area, and ℓ being the distance along the

wire between the two nearest contacts. See the second panel of Figure 2.6 for a

representation of this step.

5. Apply a voltage/current to the electrodes and solve the linear system for the

potential of each wire and the current through each resistor. We have found

it easiest to formulate this problem in terms of admittances and admittance

matrices, but there are multiple ways to solve this system.

This approach presupposes several simplifications. First, the MNWs are assumed to

interpenetrate and to lie in the same plane. This approximation is less rough than it
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Figure 2.6: Diagram showing how a system of metal nanowires is mapped to the
equivalent circuit. 𝑅𝑖𝑛𝑡 denotes internal resistances and 𝑅𝐶 denotes contact resis-
tances. Figure taken from [87].
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may seem: in many optimized networks the nanowires do interpenetrate (or overlap)

significantly [56] and, furthermore, there is strong evidence that the assumption of in-

terpenetration does not significantly affect the density threshold for percolation [126].

The second simplification is that the nanowires are treated as cylinders of constant

diameter. This is done to allow for simple computation of the internal resistance

of nanowire segments. Third, the nanowires are usually treated as though they are

perfectly straight when, in reality, they can bend - sometimes considerably. Because

straight lines cross at most once, this assumption that the nanowires are straight

means that there can only be up to one contact between different nanowires. This,

in turn, allows us to represent the system as a graph. If the nanowires can curve and

are therefore able to cross more than once, the system must instead be represented

a MultiGraph (a graph in which there can be multiple edges between the same pair

of nodes). The final simplification is in the method by which contact resistances

are assigned to junctions between nanowires. In reality, the quality of electrical con-

tact between nanowires may depend on many factors—including contact area, angle,

separation, and contamination on nanowire surfaces—and there is some evidence to

suggest that such contacts may not even be ohmic without post-deposition optimiza-

tion treatments [69, 10].

In the vast majority of models, however, all inter-wire contacts are assumed to

have the same, ohmic contact resistance. Very little is understood about the mi-

crophysics governing electrical transport across MNW junctions. There is, however,

experimental work which suggests that when activating AgNW junctions via elec-

trical current, the majority of contact resistances lie between 0–50Ω with a median

value of 11Ω [10]. These experimental values make accurate simulation possible for

optimized networks even without a detailed understanding of the physics of junctions.

There are several common variations to the above simulation scheme. In some

studies contact resistances are neglected entirely [117, 76]. In others [43, 42], the

nanowires are not treated as idealized circuit components, but rather as 1D solids
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with resistance per unit length given by 𝜌/𝐴. Still, the framework described above,

especially the computational geometry, serves as the backbone of nearly all network-

scale nanowire electrical simulations. Of the many microscale knobs that can be

tuned to affect macroscale behavior, the nanowire density, length, orientation, diam-

eter, and contact resistance are most commonly adjusted.

We generate networks by modifying the procedure from [70] as described above

in [87]. Each simulated network is square with side length 100µm and with two

horizontal 100µm wires on the top and bottom serving as the cathode and anode

(see Figure 2.7). All networks start at approximately the same density. Nanowires

have length 10µm, diameter 0.15 µm, and are considered to interpenetrate wherever

they cross. Care must be taken when assigning junction resistances to the crossings

between nanowires. As mentioned before, there are rather few measurements of sin-

gle junction resistances in the literature. It is known, however, that the junction

resistance may vary over several orders of magnitude depending on whether and how

the network is optimized after deposition on the substrate [41, 52]. There have been

successful endeavors to impute average effective junction resistances in well-defined

films [84], but betweenness centrality is, in a sense, a measure of disorder. Therefore

assigning equal resistances to all junctions would introduce an artificial homogeneity

to our networks that confounds the behavior we seek to study. Instead, we choose to

draw junction resistances from the empirical distribution in [10], with a median value

of 11Ω and an interquartile range of 13Ω. This choice delivers physically reasonable

average resistance values while preserving the variability in junction resistance that

we expect in real nanowire networks. We account for internal resistance by subdivid-

ing nanowires into segments separated by internal resistors. The resistivity used to

compute these internal resistances is calculated according to [13] assuming a temper-

ature of 298.15K. Centralities are calculated using NetworkX [45] and circuits are

solved using Xyce [59].

All centrality measures are tested on the same set of 195 networks. This sample
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size brought the standard errors for resistance and figure of merit to below 5% at

all densities. The tested centrality measures, all of which are betweenness-based, are

defined in Equations 2.4-2.7 for a graph 𝐺 = (𝑁,𝐸) where 𝑁 is the set of nodes

and 𝐸 is the set of edges. Note that all of these definitions include normalization

factors outside the summation. These normalizations are included here for the sake

of completeness but are somewhat arbitrary and different authors have used different

conventions over time. Because these normalization constants have no effect on the

ordering of nodes within a single network by centrality value, they have no bearing

on our results.

Betweenness Centrality (Weighted and Unweighted)

𝐶𝐵(𝑣) =
2

(|𝑁 | − 1)(|𝑁 | − 2)

∑︁
𝑠,𝑡∈𝑁

𝛿𝑠𝑡(𝑣) (2.4)

First introduced in [7, 34], Equation 2.4 shows the standard betweenness centrality

multiplied by a normalization constant. This measure was originally conceived as a

way to quantify the degree of control over information flow that an individual might

have within a social network. The normalization in front scales values relative to the

maximum number of shortest paths that a node can lie on in a network with |𝑁 |

nodes. Because 𝑠− 𝑡 paths are not counted as different from 𝑡− 𝑠 paths, this number

is (|𝑁 | − 1)(|𝑁 | − 2)/2. This occurs on a star graph in which one central node is

the only neighbor of each other node in the network [34]. Betweenness centrality

has computational complexity 𝒪(|𝑁 ||𝐸|+ |𝑁 |2 log |𝑁 |) using the algorithm from [15].

The definition in Equation 2.4 is used for both weighted and unweighted graphs, the

only difference being in the calculation of each pair dependency 𝛿𝑠𝑡(𝑣). Betweenness

centrality treats all paths in all directions equally during the summation of pair

dependency 𝛿𝑠𝑡(𝑣). Our networks, though, lack rotational symmetry. Applying a

potential across the cathode and anode, which are shown in Figure 2.6 as electrodes

on the top and bottom of the network, destroys the two-fold rotational symmetry

the network would otherwise have. There is reason to expect, therefore, that paths

traveling in certain directions may be more important than others. For example, we
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might expect paths traveling between nodes at identical voltages to matter less than

paths traveling between nodes at very different voltages. Because the voltage tends

to decrease from top to bottom, paths traveling vertically may therefore be more

important than paths traveling horizontally. The centralities described in Equations

2.5-2.7 represent varying ways of accounting for this anisotropy.

Percolation Centrality

𝐶perc(𝑣) =
1

|𝑁 | − 2

∑︁
𝑠,𝑡∈𝑁

𝛿𝑠𝑡(𝑣)
𝑉 (𝑠)

[
∑︀

𝑤 𝑉 (𝑤)]− 𝑉 (𝑣)
(2.5)

First introduced in [93], Equation 2.5 shows the percolation centrality where 𝑉 (𝑥)

is the percolation state (in our case voltage) of the node 𝑥. 𝑉 is restricted to vary

between 0 and 1. Percolation centrality is normalized so the average path weight is 1.

Computational complexity is 𝒪(|𝑁 ||𝐸|+ |𝑁 |2 log |𝑁 |) using the algorithm from [15].

Percolation centrality was first introduced in the context of epidemiology [93] and is

useful when the states of nodes evolve in time. Aside from the choice of normalization,

percolation centrality differs from betweenness centrality only in the weight assigned

to each pair dependency, 𝛿𝑠𝑡(𝑣). The betweenness centrality has a unit weight for each

pair dependency whereas the percolation centrality weights the pair dependency by

the percolation state of the source node 𝑠. This gives more weight to paths starting

at nodes 𝑠 with higher percolation states. In our system voltage is the percolation

state, so percolation centrality weights as more central those nodes that tend to lie

on paths starting at higher potentials.

Current Weighted Centrality

𝐶curr(𝑣) =
1

𝐼sys(|𝑁 | − 2)

∑︁
𝑠,𝑡∈𝑁

𝛿𝑠𝑡(𝑣)
ramp [𝑉 (𝑠)− 𝑉 (𝑡)]

𝑅𝑠𝑡

(2.6)

Introduced in [116], Equation 2.6 defines the current weighted centrality. 𝐼sys is

the total current through the nanowire network; 𝑅𝑠𝑡 is the length (resistance) of the

shortest path from 𝑠 to 𝑡; the ramp function is defined as ramp[𝑥] = max(𝑥, 0). These

measures are very similar to the source and target dependent percolation centrality
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defined in [93] and have computational complexity 𝒪(|𝑁 |3). The pair dependency

weight in the current weighted centrality is equal to the current that would flow

through the 𝑠 − 𝑡 path if the path were electrically isolated with nodes 𝑠 and 𝑡

maintaining their current voltages. This measure attempts to rank as more central

those nodes lying on paths that carry large currents.

Electrode Centrality

𝐶elec(𝑣) =
1

(|𝑁 | − 1)(|𝑁 | − 2)

∑︁
𝑠∈𝑆,𝑡∈𝑇

𝛿𝑠𝑡(𝑣) (2.7)

Introduced in [116], Equation 2.7 defines the electrode centrality where 𝑆, 𝑇 ⊂ 𝑁

are the sets of nanowire nodes touching the cathode or anode respectively. Only

paths that flow down potential at every edge are considered. This measure, then,

only counts nodes that lie on a small number of high conductivity paths between the

electrodes. Note the normalization is divided by 2 relative to betweenness centrality

because the down-potential criterion is enforced by treating the graph as directed thus

doubling the maximum possible unnormalized betweenness centrality. This measure

is a variant of betweenness subset centrality [45]. The primary advantage of elec-

trode centrality is its speed: because we only need to consider shortest paths between

subsets of nodes, shortest path calculation and pair dependency accumulation are

accelerated dramatically. Technically this measure has the same asymptotic compu-

tational complexity as the betweenness centrality but the prefactors are considerably

smaller.

We test the ability of a particular centrality measure to de-densify by observing

the evolution of the network’s resistance and FOM as nanowires are removed in order

from lowest to highest centrality values. An example of this process is shown in Figs.

2.7a-2.7d. Note that betweenness centrality is defined for nodes and each nanowire

may contain many nodes. We consider the betweenness centrality of a nanowire to

be the maximum centrality among the nodes it contains.
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(a) Start density =
2.2

(b) Density = 1.5 (c) Density = 0.4 (d) Density = 0.041,
just before failure

Figure 2.7: Example network as nanowires are removed in order of increasing be-
tweenness centrality value. Densities expressed as multiples of 𝑛eff

𝑐 (see Equation 2.10
for definition).

We define the network’s resistance as the series resistance between the cathode

and anode. For the FOM calculation, we treat the series resistance between the cath-

ode and anode as equal to the sheet resistance, although this is only strictly true for

homogeneous materials. A single trial consists of removing nodes from a network, in

the order dictated by a given centrality measure, until the next node removal would

render the anode unreachable from the cathode. When the cathode and anode are

thus disconnected, we say that a network has failed.

It is worth noting that the removal of a node may affect the centralities of other

nodes in the network. We calculate the centrality values of a network’s nodes only once

- before any nodes have been removed - and use these values for the duration of the

simulation. As nodes are removed, then, our centrality values become less accurate.

Our results demonstrate that even with this approximation we can successfully de-

densify networks to well below the percolation threshold while preserving much of

their conductivity.

Transparency calculations are carried out using the formalism developed in [60]

where the transparency is given as

𝑇 = 𝑒−𝑛s𝐶ext (2.8)

where 𝑛s is the number of nanowires per unit area and 𝐶ext is the extinction cross sec-
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tion for a silver nanowire assuming Mie scattering [96]. Nanowires are approximated

as infinite cylinders - we calculate scattering per unit length. We assume normally

incident light propagating through vacuum with wavelength 550 nm. We take silver’s

refractive index at 550 nm to be 0.055+3.32𝑖 [120] and the surrounding air’s refractive

index to be 1 [22]. An explicit calculation is shown in Appendix A.1.

Fig 2.8 shows the evolution of network sheet resistance and FOM, averaged across

195 networks, as nanowires are removed from lowest to highest centrality for each

of the centralities in Equations 2.4-2.7. The plots also includes the behavior or an

“Optimal” network comprising a regularly spaced grid of wires at the given density.

The expression for the resistance of this optimal system is shown in Equations 2.9

where 𝐿 is the network side length, ℓ is the wire length, ⟨𝑅𝑐⟩ is the mean of the

empirical contact resistance distribution from [10], and 𝑅𝑤 is the internal resistance

for a single nanowire. This expression arises by creating a square grid network where

the sum all nanowire lengths is equal to the sum of all nanowire lengths in the random

network at the same density, as shown in Figure 2.9. A derivation of Equation 2.9 is

shown in Appendix A.3.

𝑅optimal = 2
𝐿
ℓ
𝑅𝑤 +

(︀
𝐿
ℓ
+ 1
)︀
⟨𝑅𝑐⟩

𝑛𝑠𝐿ℓ
(2.9)

For each centrality measure, we plot its evolution from the average starting density of

roughly 2.2 until the highest density at which a network has failed. Figure 2.10 shows,

for each centrality, the distributions of densities at which the resistance doubles and

at which networks fail. Densities in Figures 2.8 and 2.10 are all measured relative

to the effective percolation threshold, 𝑛eff
𝑐 , which is the size dependent density at

which there is a 50% chance of a cluster connecting the cathode and anode in a finite

network. The effective percolation threshold is found empirically in [70] to be

𝑛eff
𝑐 =

5.63726

ℓ2
+

1

ℓ𝐿
+

5.5

𝐿2
(2.10)

where 𝐿 is the network side length and ℓ is wire length.
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Figure 2.8: The evolution of Sheet Resistance and Figure of Merit (FOM), averaged
over 195 networks, as density is decreased by removing nodes in order from lowest to
highest centrality value for each of the centrality measures in Equations 2.4-2.7. As a
reference, we also show the behavior predicted by percolation theory and the behavior
of the “Optimal” square grid network with resistance values given by Equations 2.9.
Standard errors are comparable in size to line thickness and are therefore omitted.

Percolation theory predicts that, slightly above the effective percolation threshold,

the resistance scales as

𝑅 ∝ (𝑛𝑠 − 𝑛eff
𝑐 )−𝛾 (2.11)

with 𝛾 being a positive constant. We would therefore expect network resistance to di-

verge around the effective percolation threshold (𝑛𝑠/𝑛
eff
𝑐 = 1). However, the resistance

plot in Figure 2.8 shows that all networks in which nodes are removed in increasing

order of centrality show finite resistance well below the percolation threshold. This is
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Figure 2.9: Two nanowire networks, one random (left) and one square grid (right).
The cumulative length of nanowires in each network is equal, as are their areas, giving
them equal density. In our formalism, then, they would have the same transparency
and differences in the figure of merit arise purely from differences in electrical resis-
tance.

because, while percolation theory assumes a random network, networks optimized by

removal of low centrality nodes are decidedly non-random. A similar plot of haze as a

function of resistance, using the formalism developed in [60], is included as Appendix

A.2. Furthermore, the distributions shown in Figure 2.10 show that networks fail

at densities considerably lower than 1; the median failure density for all centralities

tested is less than 14% of the effective percolation threshold. These data suggest

that betweenness centrality, percolation centrality, current weighted centrality, and

electrode centrality arrive at roughly the same densities before causing failure, but

electrode centrality is slightly less effective than the other centrality measures at pre-

serving low resistance along the way.

The figure of merit trajectories, however, are considerably different. All FOMs

initially increase slightly during the first removals of nanowires - this is caused by the

initial removal of nanowires that degrade transparency without contributing mean-

ingfully to conductivity. Beyond this initial improvement, the electrode centrality

FOM decreases while the others increase. The electrode centrality FOM trajectory,

although it starts off worse than all others, eventually reaches the highest figure of

merit shown on the FOM plot. While this might seem to suggest that electrode

centrality is the most promising of the measures discussed here, our approximation

that series resistance equals sheet resistance very likely breaks down at this density.
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Figure 2.10: Violin plot showing the distributions of densities at which resistance
doubles (white) or networks fail (grey) as nodes are removed in order from lowest
to highest centrality value for each of the centrality measures in Equations 2.4-2.7.
Dashed lines show quartiles.

Looking at Figure 2.7c we can see that, at a comparable density, the network is not

just inhomogeneous but far from even approximate homogeneity. Furthermore, the

figure of merit defined in Equation 1.1 is not comprehensive - most practical applica-

tions for TEs demand low resistance and, for sufficiently high resistances, there is no

amount of transparency that can compensate. Thus we would better served to focus

on the earlier stages of evolution where the resistance is quite low and the material

is more homogeneous. In this density regime, the electrode centrality underperforms

the other measures.

At this point, our choice of a regular square grid network as “optimal” merits a bit

of further scrutiny. There is no method of de-densifying a random nanowire network

that could possibly reach the performance of the square grid network because de-

densification cannot change the positions or orientations of nanowires to make a grid.

Instead, it would make more sense to compare betweenness based de-densification

to another strategy based on node removal. It would be technically possible to find

the perfect de-densification scheme by a brute force search, but the scaling behavior
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of this problem makes this approach extremely impractical. In a nanowire network

containing 𝑁 wires, there are 𝑁 ! possible ways to remove the wires one by one.

However, the properties of this system are not path dependent - a network in which

nodes {1, 2, 3} have been removed has the same properties regardless of the order

in which those nodes were removed. This reduces the computational complexity

considerably. To find the highest possible FOM achievable by node removal, we need

only enumerate all possible states without regard for how these states are reached. We

can uniquely identify a state by the collection of nanowires that have been removed.

Therefore the number of possible states that can be reached by removing 𝑘 of the 𝑁

nanowires is simply the number of ways to choose 𝑘 items out of a larger collection

of 𝑁 items, i.e.
(︀
𝑁
𝑘

)︀
. If we define 𝑆 as the number of possible states we have

𝑆 =
𝑁∑︁
𝑘=0

(︂
𝑁

𝑘

)︂
= 2𝑁 (2.12)

where the final equality results from the binomial theorem. Our simulated networks

contain thousands of nanowires, so if we set 𝑁 = 1000 we get 𝑆 = 21000 ≈ 10300.

Let us put this in more concrete terms. As of June 2023, the top ten fastest

supercomputers in the world have a combined peak speed of 3675.79PFLOPS. If

we assume that enumerating a state and calculating its transparency and resistance

requires only a single floating point operation (a gross underestimate) and that we

could use the entire combined computing power of these top ten supercomputers, this

process would take us roughly 10274 years. As a comparison, age of the observable

universe is roughly 13.8× 109 years.

As it happens, problems which scale in this manner are actually relatively easy to

find in computer science. As a result, there has been considerable research concerning

how to optimize an objective on such a large decision space. One such method is

Monte Carlo Tree Search [23] also known as MCTS. MCTS samples a decision tree

and uses statistics to make informed estimates of the likely rewards of given actions.
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Figure 2.11: Evolution of the transparent conductor figure of merit (FOM) as nodes
are removed from the network according to a strategy produced by Monte Carlo Tree
Search. This data averages behavior over 50 trials on 25µm square networks.

MCTS, combined with deep neural networks, is responsible for the recent dramatic

improvements in AI gameplay achieved by AlphaZero in Chess and Shogi [108] as well

as the game of Go [1]. Even without neural networks, though, MCTS represents a

powerful optimization scheme for systems with well defined rules that are nonetheless

computationally challenging. With this in mind, we can use MCTS as a technique

for finding the set of removed nodes that maximizes the FOM of a given simulated

nanowire network. A good general reference for this technique is [17]. The details of

our particular implementation are discussed in Appendix A.5.

Figure 2.11 shows the evolution of the TCE figure of merit as nodes are removed

according to a strategy produced by Monte Carlo Tree Search. Also shown are the

evolution of FOM as nodes are removed in increasing order of betweenness central-

ity, and the evolution of FOM predicted by percolation theory. In Figure 2.8, the

gap between the betweenness centrality trajectory and the “optimal” trajectory is
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significant. If we take the MCTS trajectory to be a more realistic optimum for the

reasons discussed in paragraphs bove, we see here that betweenness centrality based

de-densification performs very nearly as well as the optimal strategy. This indicates

that betweenness centrality does indeed do a good job of identifying those nodes that

are important to conduction.

In this chapter we have considered four betweenness-based centrality measures and

examined their abilities to de-densify simulated nanowire networks while preserving

high conductivity. Two of these centrality measures, current weighted centrality and

electrode centrality, introduced in my previous work [116], were specifically designed

to account for the asymmetry inherent in nanowire networks under electrical bias.

In general, the betweenness-based de-densification methods work reasonably well,

achieving FOM improvements from 16.1% to 29.7% relative to the start. This success

is not entirely surprising. The number of contacts a nanowire makes with neighboring

nanowires (assuming all are straight) is Poisson distributed [50]. This means that, if

we neglect internal resistance, nanowire networks have Poisson degree2 distributions.

Erdös-Renyi (ER) [31] networks also have poisson degree distributions for sufficiently

large numbers of nodes [6]. Because attacks that remove nodes in order from highest

to lowest betweenness centrality have been shown to degrade ER networks faster than

random removal [53], it is reasonable to expect the removing nodes in order from low-

est to highest centrality would degrade networks more slowly than random removal

and therefore more slowly than percolation theory as well.

Although these results are not terribly surprising, the analysis shows interest-

ing merits. As previously mentioned, attacks are a common tool to investigate the

vulnerabilities of networks [53, 51, 24]. However, among networks where conductiv-

ity is a desirable property, we know of no example of an attack improving the network.

In terms of improving the network, standard betweenness centrality and current

2The degree of a node is the number adjacent edges
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weighted centrality appear to be the best measures as they achieve the highest fig-

ures of merit at almost all densities. Current weighted centrality considers network

topology and the network’s electrical state while betweenness centrality considers

only network topology - it is therefore surprising that the two measures perform so

similarly. The networks modified by current weighted centrality reach a maximum

average figure of merit of 107 (70% of the theoretical optimum) and the networks

modified by betweenness centrality reach a maximum average figure of merit of 105

(68% of the theoretical optimum). The improved performance of current weighted

centrality comes at a cost though: the algorithm for calculating current weighted

centrality is almost identical to that for calculating target dependent percolation cen-

trality [93] and therefore runs in 𝒪 (|𝑁 |3) time whereas the algorithm for calculating

betweenness centrality on a weighted graph runs in 𝒪 (|𝑁 ||𝐸|+ |𝑁 |2 ln |𝑁 |) time [15].

Because betweenness centrality performs so similarly to current weighted centrality

but is considerably cheaper to calculate, betweeness centrality seems the most promis-

ing measure for future study.

While it is impractical to suggest that nanowire meshes should be optimized at

industrial scale by removing individual nanowires, there are clear and promising next

steps for extracting general design principles and integrating simulations with exper-

iments. Using the resistivity calculations from [13] and the contact resistances from

[10], we can calculate betweenness centrality values for real nanowire networks simply

by analyzing images. By identifying regions that tend to contain high betweenness

centrality nanowires, we may be able to achieve a higher FOM by density patterning

during nanowire depositon. Furthermore, it has been posited that hot spots arising

from Joule heating are most likely to form in high resistance regions of otherwise

highly conductive pathways [80] and betweenness centrality is a natural candidate to

identify these regions. By imaging nanowire networks before and after electrically

induced thermal failure and calculating betweenness centralities from these images,

we could connect position, betweenness centrality, and probability of failure. This is

exactly the strategy we pursue in the following chapter. Selectively depositing extra
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nanowires in the regions most likely to fail could harden nanowire networks against

electrically induced thermal failure and thus obviate a significant obstacle to their

widespread adoption as TEs [87]. In addition, we could reproduce the simulations

performed here on real nanowire networks by using a FIB or high dose SEM to sever

those wires that are deemed to have the lowest betweenness centrality. Repeating

this process and taking sheet resistance measurements along the way would allow

us to confirm the trend of finite sheet resistance well below the percolation thresh-

old. Betweenness centrality and other betweenness-based centrality measures, then,

show great promise in the rational design of nanowire networks. Furthermore, the

mathematical tools discussed here are quite general. By removing low betweenness

centrality nanowires, we were removing network components whose contribution to

performance was not worth their cost to transparency. Networks in which perfor-

mance comes at a cost are quite ubiquitous. To name just one example, consider

a cell phone company. By identifying the cell towers with the lowest betweenness

centralities, one could also identify those towers that could be decommissioned to

cut costs while inflicting the least damage on cell coverage. Our optimization scheme,

then, shows great promise for application to any network in which performance comes

at a price.

61



62



Chapter 3

Joining Computation with

Experiment

Because most indium is used in the production of ITO, alternative TCEs can obviate

present supply problems by replacing ITO wherever possible and, in so doing, in-

crease the availability of indium for those applications in which it cannot be replaced.

Networks of metallic nanowires, especially of silver nanowires, have the capacity to

replace ITO in many applications and, because these meshes are mechanically flex-

ible, they can be used in applications where ITO cannot. The primary obstacle

to more widespread adoption of this promising nanomaterial is stability: meshes of

silver nanowires generally do not last as long as ITO. Silver nanowire networks fail

from spheroidization, electromigration, chemical corrosion, or a combinations of these

factors which can all be accelerated by the high temperatures to which TCEs are reg-

ularly subjected [87].

A great deal of research focuses on combating the electrothermal and chemical in-

stabilities that plague nanowire networks [87, 77, 19, 133, 79, 5, 67, 44, 62] and identi-

fying the operating conditions that tend to make these materials fail [119, 20, 19, 61].

Of the aforementioned causes of failure, electrothermal failures are especially impor-

tant because all nanowire-based TCEs are expected to carry current by definition

and therefore will also generate some heat. The dominant microscale mechanisms
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Figure 3.1: A causal graph showing the drivers and mechanisms of nanowire failure
under typical operating conditions.

of electrothermal failure are electromigration and spheroidization. Present literature

suggests electromigration is not typically observed in full silver nanowire networks,

especially when in contact with a substrate of low thermal conductivity [87]. The

absence of evidence of electromigration is not, however, proof that electromigration

does not occur. For single silver nanowires on the other hand, there is strong evidence

that electromigration dominates failure in vacuum under electrical bias [132]. There

are two good explanations for this inconsistency. First, nanowire networks contain

contacts between nanowires and these play a crucial role in failure dynamics [88].

Second, electromigration and spheroidization are both mediated by surface diffusion

which may behave differently outside a vacuum [87]. The question of which failure

mechanism dominates in full nanowire networks is further complicated by the highly

coupled causal chain that leads to electromigration and spheroidization, as shown in

Figure 3.1. In typical silver nanowire networks under electrothermal stress, everything

begins with current (top left of Figure 3.1). If nanowire diameters are small, current

can yield high current densities which in turn cause electromigration and failure. But

current also dissipates power in the form of joule heating and can therefore lead to

high temperatures. This can lead to high temperatures which are believed to be the

primary driver of spheroidization. High temperatures also increase surface diffusivity

[88] thus accelerating both spheroidization and electromigration.
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It is also not well understood why specific regions of nanowire networks fail while

others remain intact. With the goal of identifying the dominant electrothermal fail-

ure mechanism and better understanding the spatial dynamics of failure in nanowire

networks under realistic operating conditions, we perform a combined computational

and experimental analysis. First we fabricate physical nanowire network samples

that are small enough to be computationally tractable but large enough to display

the complex network dynamics present in macroscale systems. We then construct

in silico graph models of these networks based on SEM images, subject the physical

samples to a voltage ramp until resistance diverges, and re-image the networks to see

which specific elements have been destroyed. This allows us to test hypotheses about

nanowire failure in graph theoretic terms.

This is motivated by previous work in Chapter 2 and [116] in which we have shown

that that betweenness centrality can identify components of simulated nanowire net-

works that are disproportionately important to conduction. Given that high cen-

trality paths tend to carry more current, it is reasonable to expect that they might

be more likely to fail as well, since current ultimately drives both electromigration

and spheroidization. Specifically, we examine whether betweenness centrality and

related measures can be used to predict the specific locations of nanowire network

electrothermal failures. By taking careful experimental measurements and creating

simulated graphs corresponding to each experimental sample, we can infer values of

betweenness centrality, percolation centrality, power dissipated by joule heating, and

current to test their predictive ability and identify dominant failure modes. In doing

so, we aim to develop a better understanding of the interplay between network-scale

and local effects as they relate to failure. All source data from this study will be made

available to the broader community of nanomaterial engineers.

Going from real nanowire networks to high fidelity in silico representations com-

patible with the aforementioned calculations imposes several constraints on our exper-
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imental samples. First, the areal number density of nanowires must be high enough

to achieve percolation but low enough that individual nanowires can still be identified

in the visual field during microscopy. The percolation threshold, for our purposes,

can be defined as the areal number density at which there is a 50% chance that a

conductive path exists from one side of the network to the other (i.e. between a volt-

age source and ground located on opposite sides of a sample). This critical density

𝑛𝑐 takes the form

𝑛𝑐 =
5.63726

ℓ2
(3.1)

where ℓ is the length of the nanowire [92, 75], although this only holds asymptoti-

cally as the size of the sample approaches infinity. For finite samples, the threshold

increases as the sample size decreases [70], as discused in Chapter 2. At the length

scales typical of commercial nanowires, a 1mm2 sample at the percolation threshold

will contain thousands - and possibly tens of thousands, of nanowires. This would

make image analysis extremely time consuming and therefore sub-mm samples are

required. At this scale, though, the increased percolation threshold becomes relevant

and, at the low densities necessary for imaging, there is a reasonable likelihood that a

given sample will not percolate. Furthermore, it is quite difficult to precisely control

the areal density of nanowires with drop casting. It therefore becomes necessary to

fabricate a large number of samples to ensure that at least some are percolating. In

summary, this experimental design requires a large number of sub-millimeter scale

networks with areal densities of nanowires that are neither too high nor too low. A

procedure for fabricating samples that satisfy these constraints, is detailed in Figure

3.2 and a description of the samples themselves is shown in Figure

Each isolated nanowire network on the slide is imaged via SEM and then sub-

jected to a voltage ramp on a probe station at a rate of 1Vmin−1 until it fails. This

process is shown in Figure 3.3. The data collected during the voltage ramp (time,

current, voltage, resistance) make it extremely clear when failure occurs as the re-

sistance increases by at least three orders of magnitude within a single time step of
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(a) (b) (c)

(d) (e) (f)

Figure 3.2: (3.2a) Fabrication begins with a 2 cm by 2 cm glass slide. (3.2b) Electron
beam evaporation of 200 nm thick layer of silver onto glass with 10 nm chromium
adhesion layer. (3.2c) A laser scribe set to maximum raster spacing scans in the 𝑦
direction to ablate away the silver creating insulating channels in which the glass is
exposed. Channels are roughly ≈100µm wide. (3.2d) The silver nanowire suspension
(aqueous Ag120 from ACS Material, 120 nm diameter, 30–50 µm length) is drop cast
onto the slide and dried. (3.2e) The laser scribe scans again but this time cutting
in the �̂� direction. This removes both the evaporated silver and the silver nanowires
thus creating insulating boundaries between adjacent rows of samples. (3.2f) The
laser scribe scans once more in the 𝑦 direction to create insulating boundaries between
adjacent columns of samples. Repeated laser scribing causes the glass to crack in many
instances, and thermally annealing the sample after laser scribing causes the glass to
crack reliably. Therefore no usable samples were thermally annealed and, as a result,
the contacts in these usable samples are unlikely to have sintered. To ameliorate the
problem of the cracking glass, the laser was defocused in the third batch of samples to
spread radiant energy over a larger area. This resulted in slightly smaller samples in
the third batch. In some cases on this third batch, the final laser scribing step caused
a substantial portion of the nanowires on the sample to spheroidize thus destroying
conductivity between the electrodes. In these cases, additional nanowires were drop
cast onto the slide and the third scribing step was repeated with a razor blade rather
than the laser.
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(a) Diagram of probe station setup

(b) Image taken through probe station optical micro-
scope

Figure 3.3: Diagram (3.3a) and microscope image (3.3b) of the probe station setup.
Note that each sample (example enclosed by red dotted line) is a region that was
scribed in the first laser step and is now bounded on the left and right electrode pads
and on the top and bottom an insulating glass channel.
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1 s. As shown in the closeup of Figure 3.3, the positive and negative probe tips are

placed on the evaporated silver electrode pads to the left and right of the sample.

While the probe tips certainly come into contact with some nanowires in addition to

the evaporated electrode pads, we assume that conduction through these peripheral

nanowires is negligible compared to the conduction through the electrode pads and

that, therefore, the vast majority of the current flowing through the sample region

goes from probe tip to electrode pad to nanowire sample to other electrode pad to

other probe tip. After failure, the sample is imaged again via SEM.

Image analysis begins by manually overlaying the pre-ramp and post-ramp images

to match scale, position, and orientation. Quantitative size information is extracted

from scalebars. The overlaid images are then annotated by manually tracing over

each nanowire on an iPad. The goal of this tracing is to reconstruct the network as it

was before the voltage ramp. Each trace is treated as an instance segmentation mask

for an individual wire. The traces are processed as shown in Figure 3.4. First, using

scikit-image [121], each mask is skeletonized. The skeletonization process can turn

kinks in the original mask into dangling ends that distort the original geometry (see

Figures 3.4a-3.4b). To circumvent this problem, the skeleton is converted into a re-

gion adjacency graph (RAG) in which adjacent pixels are treated as connected nodes.

By finding the shortest path connecting the periphery1 we can not only eliminate any

fictitious dangling branches but also get an ordered list of the pixels making up the

segment. A subset of these pixels are selected and used as the points of a linestring2

which serves as a simplified, 1-dimensional representation of the nanowire.

Each linestring then becomes a node in a multigraph (a graph in which multi-

ple edges can exist between the same pair of nodes) and edges between nodes occur

wherever distinct linestrings cross. A multigraph is necessary because real nanowires

can curve and therefore can intersect more than once as opposed to the straight rods

that are usually used in simulations. Using the nominal diameter of the nanowires

1In some graph 𝐺 = (𝑁,𝐸), let 𝑑(𝑠, 𝑡) be the length of the shortest path between nodes 𝑠, 𝑡 ∈ 𝑁 .
The periphery of 𝐺 is the pair of nodes {𝑠, 𝑡} for which 𝑑(𝑠, 𝑡) takes its maximum value.

2A sequence of points and the line segments connecting them
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(a) Original
mask

(b) Skeleton (c) RAG (d) Anchors (e) Simplified
linestring

(f) Simplified
linestring over
original mask

Figure 3.4: Illustration of the conversion of a manual trace to 1-dimensional curve.
(3.4a) the original, manually traced wire mask. (3.4b) the skeleton of the wire mask.
(3.4c) the region adjacency graph (RAG) made from the skeleton. The nodes con-
necting the periphery (see footnote 1 on page 69) are shown in red and other nodes in
blue. (3.4d) a subset of the nodes on the peripheral path used to simplify the shape.
(3.4e) the simplified shape of the nanowire. (3.4f) simplified shape superimposed on
the original mask to demonstrate that the original geometry has been faithfully pre-
served.
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(120 nm) we can subdivide our linestrings and assign internal resistances as edges

where appropriate - we use the same scheme detailed in [87, 116] and calculate in-

ternal resistivities (including the effects of surface scattering) according to [13]. This

process ensures that our model can now be described as a graph rather than a multi-

graph because the way in which we assign internal resistances guarantees that no two

segments will cross more than once. We assume that all contacts between nanowires

have the same resistance and find this value by requiring that the calculated series

resistance of each computerized network matches the measured series resistance of the

corresponding physical network. This is done by decomposing the series resistance

𝑅𝑠 into the sum of contributions from internal resistance 𝛼 and contact resistances

at nanowire contacts 𝛽𝑅𝑐:

𝑅𝑠 = 𝛼 + 𝛽𝑅𝑐 (3.2)

where 𝛼, 𝛽 are unique to the individual network and 𝑅𝑐 is the per contact resistance

chosen for the simulated network. Varying the chosen value of 𝑅𝑐 and solving the

simulated circuit allows us to extrapolate values of 𝛼, 𝛽 and solve for the 𝑅𝑐 that

produces the experimentally measured 𝑅𝑠 [84].

In general, we identify failures by examining each nanowire in the images before

and after the voltage ramp. In one case, sample 2B-11, the pre-ramp images were

lost. To compensate for this, we developed explicit criteria to identify failed segments

that function for both complete and incomplete image data. The complexity of these

rules demonstrates the difficulty in this undertaking: the details we seek to observe

are very small and image noise or unclean samples can greatly hamper analysis. To

explain our criteria clearly, it is useful to define a set of symbolic logical functions

that take a region 𝑥 as argument and return True or False depending on whether the

associated statement is true or false of 𝑥. Using these definitions, stated in Table 3.1,

we can write our logical failure function 𝐹 (𝑥) in Equation 3.3. When 𝐹 (𝑥) is True,
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𝐴(𝑥) = In the pre-ramp images, ≥ 95% confidence that the
nanowires in region 𝑥 are clearly intact. If there are
no pre-ramp images, this is False.

𝐵(𝑥) = In the pre-ramp images, the nanowires in region 𝑥 have
some imaging artifacts but≥ 75% confidence that they
are intact. If there are no pre-ramp images, this is
False.

𝐶(𝑥) = In the post-ramp images, there are no visible
nanowires in region 𝑥.

𝐷(𝑥) = In the post-ramp images, the regions surrounding 𝑥
contain a mix of intact and failed nanowires indicating
that any failed segments failed from joule heating and
not from the laser scribing.

𝐸(𝑥) = In the post-ramp images, region 𝑥 contains multiple
regularly spaced spheroidized silver particles on a path
connecting parallel tips of nearby nanowire segments.
If pre-ramp images exist, they must show this region
as intact.

𝐹 (𝑥) = Region 𝑥 has failed.

Table 3.1: Logical functions used to define failure criteria
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𝑅𝑠 [ Ω ] 𝑅𝑐 [ Ω ] Density Area [ µm2 ]
Batch Sample

2BM 03 6.40e+03 6.36e+04 5.09 2.55e+04
05 8.24e+02 5.06e+03 6.38 1.92e+04
11 2.90e+03 3.69e+04 7.27 2.02e+04

3B 01 2.69e+01 2.45e+01 8.12 5.95e+03

Table 3.2: 𝑅𝑠 is the measured two-probe resistance. 𝑅𝑐 is the imputed average
effective contact resistance. The density is expressed as a multiple of the percolation
threshold assuming that wires are 40 µm long.

region 𝑥 has failed, and when 𝐹 (𝑥) is False, region 𝑥 is intact.

𝐹 (𝑥) =
(︁
𝐴(𝑥) and 𝐶(𝑥)

)︁
or
(︁
𝐵(𝑥) and 𝐶(𝑥) and 𝐷(𝑥)

)︁
or
(︁
𝐶(𝑥) and 𝐷(𝑥) and 𝐸(𝑥)

)︁
(3.3)

Failed regions are marked manually with a stylus on an iPad. Regions identifying

failed segments and failed contacts are annotated separately. With the digital net-

work thus constructed and failures identified, we proceed to statistical and graph

theoretic analyses to elucidate failure dynamics.

Out of 28 of fabricated samples, 19 proved to be percolating. Of these 19 perco-

lating samples, only 5 had density and image quality suitable for analysis. Of these 5

suitable samples, one yielded an imputed value of 𝑅𝑐 < 0 which suggests the presence

of a non-visible short rendering this network inappropriate for analysis. Table 3.2

shows the properties of the remaining four networks before the voltage ramp. The

first thing to notice in Table 3.2 is that the imputed average effective contact resis-

tance, 𝑅𝑐, of 3B-01 is at least two orders of magnitude smaller than all values of 𝑅𝑐

from batch 2BM. We attribute this to differences in the quality of contacts between

nanowires and the electrode pads. In batch 3B, the laser was slightly defocused; this

destroyed percolation by causing many of the nanowires to spheroidize but it also

likely optimized the contacts between the remaining nanowires and the evaporated

silver electrodes. Therefore when the second dose of nanowires was deposited, they
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could make good electrical contacts with the preexisting nanowires which already had

good electrical contacts with the electrodes. The defocusing of the laser also explains

why sample 3B-01 is roughly one quarter the area of the samples from batch 2BM

(the size of the beam determines the size of the channels between samples and larger

channels means smaller samples).

The failures identified in our four samples are listed in Table 3.3 for both nanowire

segments and contacts between nanowire segments. In all cases, the identified failures

were not nearly sufficient to cause the observed total network failure. This shows that

a substantial number of destroyed circuit elements are not identifiable in the SEM

images. There are several possible explanations for this. First, we know that failure

occurs preferentially at the contacts between wires [87]. The 3D nature of the sam-

ple, with nanowires tending to touch either on top of or beneath each other, could

make these failures very hard to see. At the contact between two nanowires, it would

be possible for the bottom wire to disconnect only in the region directly below the

top wire while the top nanowire remains largely unchanged. This change, although it

would increase the system’s total resistance, would be undetectable via SEM imaging.

It is also possible for a nanowire to undergo only partial morphological evolution that

results in the formation of a narrow neck. If the neck is sufficiently small, this could

be undetectable or appear as noise in an SEM image even though it might effectively

zero out conduction through the neck.

The small number of identified failures, especially the very small number of identi-

fiable failed contacts, requires merging the data from all samples to obtain meaningful

statistics. However, as mentioned before, many centrality measures are ill suited to

be compared between different networks. Therefore we scale all attributes of interest

such that, on each network, each attribute’s maximum value is 1 and minimum value

is 0.

In our previous analysis of various measures of node importance, we have con-
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(a) Before voltage ramp (b) After voltage ramp (c) Extracted geometry

(d) Equivalent graph

Figure 3.5: Sample 3B-01 during various steps of testing and analysis. Figures
3.5a,3.5b show the sample before and after the voltage ramp, respectively. Figure
3.5c shows the geometric objects extracted from the before and after ramp images.
Figure 3.5d shows the graph corresponding to the network before the ramp. Positions
in 3.5d roughly correspond to the positions in 3.5c when rotated 90∘ clockwise.

75



Nanowire Segment Contact
Intact Failed Intact Failed

Batch Sample

2BM 03 10,944 82 5,678 24
05 12,273 49 6,348 11
11 16,084 31 8,310 7

3B 01 5,425 15 2,766 2
Total 44,726 177 23,102 44

Table 3.3: Number of visible failures of nanowire segments and inter-nanowire con-
tacts. Note that each nanowire may be divided into multiple segments. A segment is
marked as failed if any portion of it has failed.

sidered betweenness centrality and percolation centrality among many others. The

self propagating nature of thermal cracks suggests that another measure of node im-

portance known as eigenvector centrality [68] may be relevant to failure. We know

that local failures cause current redirections which can in turn cause more failures.

It is reasonable, then, to suppose that a nanowire node’s tendency to fail depends on

its neighbors’ tendency to fail and the strength of the connection to each neighbor.

Defining 𝑥𝑖 to be the tendency of node 𝑖 to fail, we can express this as

𝑥𝑖 =
1

𝜆

∑︁
𝑗∈𝑁

𝑎𝑖𝑗𝑥𝑗 (3.4)

where 𝜆−1 is a normalization constant and 𝑎𝑖𝑗 is the conductance between nanowires

𝑖 and 𝑗. Note that, because the vast majority of pairs of wires do not intersect, the

vast majority of conductances 𝑎𝑖𝑗 are zero. Rewriting equation 3.4 in matrix form

and multiplying both sides by 𝜆, the cause of the name eigenvector centrality becomes

clear

𝜆
⇀
x =

↼⇀

A
⇀
x (3.5)

where
↼⇀

A is the matrix of elements 𝑎𝑖𝑗 (also known as the adjacency matrix for a

graph with conductances as edge weights) and 𝜆, which was previously called a nor-

malization constant, can now be clearly identified as an eigenvalue. Note that, for
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Equation 3.5 to be soluble, we must only consider strongly connected graphs. For

our purposes, we only include the elements of the percolating cluster in 𝐴 and we

define the eigenvector centrality of all other nodes not in the percolating cluster to be

zero. Equation 3.5 has many solutions. Given the requirement of strong connectivity,

the matrix 𝐴 is guaranteed to be irreducible which, by the Perron-Frobenius theo-

rem [91, 36] ensures that the eigenvalue of largest magnitude will be real and have

a corresponding eigenvector that can be chosen to have strictly positive components.

The components of this strictly positive eigenvector are taken to be the eigenvector

centrality values of the nodes in the graph.

For nanowire segments, the extracted values of betweenness centrality, percola-

tion centrality, eigenvector centrality, current, and power are shown in Figure 3.6.

We include values of current and power dissipated by joule heating to compare our

graph theoretic tools against more conventional physical analysis. Nanowire segments

correspond to nodes in a graph. Because power and current are ill-defined for a node,

we take the node’s power and current to be half the respective sums of power or

current through adjacent resistors. The vertical axis on the left of Figure 3.6 de-

tails the attribute being calculated. The horizontal axis shows all values normalized

such that, within a given sample, the minimum value of each attribute is 0 and the

maximum value of each attribute is 1. The color coding, shown in the legend in the

top right, distinguishes between values of failed vs. intact segment samples. The

right side of each plot shows 𝑝 and 𝑡 values comparing the failed vs. intact sam-

ple means as calculated by Welch’s 𝑡-test [125, 25, 26]. The 𝑝-value indicates the

probability that the difference between intact and failed sample means is the result

of pure chance. The 𝑡-value indicates the size of the difference between intact and

failed sample means relative to the size of variation within each sample. Interpreting

the top row of data in Figure 3.6, for example, we could say that the betweenness

centrality of failed nanowire segments is greater than that of intact nanowire seg-

ments. The 𝑝-value, which is roughly 0.0005, indicates a very small probability that

this difference in betweenness centrality arises from pure chance. This analysis of the
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Figure 3.6: Mean attribute values for intact and failed nanowire segments. Vertical
axis on left labels the attribute value being displayed in that row. Values on horizontal
axis are normalized such that, for each attribute within each network, the minimum
attribute value is 0 and the maximum is 1.

betweenness centrality of nanowire segments is consistent with our predictions: we

expected high betweenness centrality nodes to be more likely to fail. The percolation

centrality of nanowire segments shows a similar pattern: the mean value of perco-

lation centrality on the failed sample is meaningfully higher than that of the intact

sample. Furthermore, the 𝑡-value for percolation centrality is higher than that of be-

tweenness centrality. Recall that percolation centrality weights paths by the voltage

of the starting node. This suggests that including electrical information in our graph

theoretic analysis may strengthen the ability of centrality-based measures to predict

failure.

Eigenvector centrality, which is not derived from considerations of betweenness,

requires special attention. The data from Figure 3.6 show reasonable with reasonable

confidence (𝑝 = 0.0018) that low values of eigenvector centrality of nanowire segments

are associated with higher probability of failure, but the miniscule size of most values

give reason for caution. Recall that the eigenvector centrality of each node is calcu-

lated by finding the dominant eigenvector of the graph’s adjacency matrix, as shown
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in Equation 3.5. We perform this calculation in NetworkX [45], which uses power

iteration. The procedure terminates when

||
⇀

b𝑘 −
⇀

b𝑘−1|| ≤ 10−6 (3.6)

where
⇀

b𝑘 s the approximate dominant eigenvector yielded by the 𝑘th iteration. For

our (unnormalized) eigenvector centrality values, though, there are only a total of 35

nanowire segments with eigenvector centrality greater than our tolerance of 10−6. Of

course, this tolerance is specified for the whole vector, not for individual components.

To get a rough sense of the precision for individual components, we assume that

this error will be evenly distributed over all components. If the eigenvector has 𝑁

components, we would expect the per component precision ∆𝑏 to satisfy⎯⎸⎸⎷ 𝑁∑︁
𝑖

(∆𝑏)2 =
√︀

𝑁(∆𝑏)2 ≤ 10−6 (3.7)

This inequality yields an approximate precision of ∆𝑏 ≤ 10−6/
√
𝑁 for each nodal

value of eigenvector centrality. Calculating these approximate precisions for each

sample, we find that each sample has only 12 nodes with eigenvector centralities that

are greater than the per node precision of that sample. Values smaller than the pre-

cision should not be used for analysis. Therefore, while it is certainly possible that

eigenvector centrality has something to say about failure of nanowire segments, we

consider this data insufficient to imply any conclusion with confidence.

The current and power data for nanowire segments, shown in Figure 3.6, show

an even stronger pattern than betweenness centrality and percolation centrality. The

𝑡-values for current and power are larger than those of the graph theoretic measures

and the 𝑝-values for current and power are smaller than those for the graph theoretic

measures. This suggests that, while our graph theoretic measures are applicable here,

they may not be as descriptive as a more conventional circuit analysis.
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Figure 3.7: Mean attribute values for intact and failed contacts between nanowire
segments. Vertical axis on left labels the attribute value being displayed in that row.
Values on horizontal axis are normalized such that, for each attribute within each
network, the minimum attribute value is 0 and the maximum is 1.

For contacts between nanowire segments, the extracted values of betweenness

centrality, current, and power are shown in Figure 3.7. Contacts are represented as

edges in our graph. Calculating the betweenness centrality of an edge is identical

to calculating the betweenness centrality of node, except that we consider whether

shortest paths traverse a given edge rather than a given node. The definition of node

𝑣’s betweenness centrality, shown in Equation 2.3, could be modified to describe the

betweenness centrality of some edge 𝑒 by simply making the substitution 𝑣 → 𝑒, as

shown in the equation below.

𝐶𝐵(𝑒) =
∑︁
𝑠,𝑡∈𝑁

𝛿𝑠𝑡(𝑒) (3.8)

The betweenness centrality of edge 𝑒 is obtained by summing, for all possible source

and target nodes 𝑠 and 𝑡, the fraction of shortest paths from 𝑠 to 𝑡 that pass through

edge 𝑒. Figure 3.7 does not include percolation centrality or eigenvector centrality

because these are not defined for edges. The axes and normalization conventions of

Figure 3.7 are otherwise identical to those of Figure 3.6.

The betweenness centrality of failed vs intact contacts have 𝑝 = 0.68 and 𝑡 = 0.4.

The 𝑡-value being less than one is particularly important: this indicates that the dif-

80



ference between these means is smaller than the variation within each sample. This

renders the betweenness centrality of failed and intact contacts statistically indistin-

guishable. This is marked departure from the results for segments where betweenness

centrality and percolation centrality both had statistically significant differences in

means between failed and intact samples. The results for current and power in con-

tacts, on the other hand, mirror those for segments: the current and power through

failed contacts are statistically significantly larger than the current through intact

contacts, although the case is stronger for current (𝑝 = 1.4 × 10−5) than it is for

power (𝑝 = 4.8 × 10−3). This cements the observation made regarding the nanowire

segment data shown in Figure 3.6: while the betweenness-based graph theoretic mea-

sures we have tested do appear to be connected to failure, they do not perform as

well as conventional physical analysis.

The final point to make with respect to Figures 3.6-3.7 is that, for both nanowire

segments and contacts, the 𝑡-values for current are greater than the 𝑡-values for power.

This suggests that current may be a better predictor of failure than power. To test

this, we will perform a logistic regression on current and power for both nanowire

segments and contacts.

Logistic regression is a technique used to map from numerical values to binary

categorical outcomes. We begin by assuming that probability of failure for a single

network element is given by

𝑝 =
1

1 + exp
[︁
−

⇀

B · ⇀x
]︁ (3.9)

where
⇀

B is a vector of coefficients and
⇀
x is a vector of the network element’s attribute

values. If the component 𝐵𝑖 is positive, this indicates that 𝑝 increases as attribute

𝑥𝑖 increases. If the component 𝐵𝑖 is negative, this indicates that 𝑝 decreases as 𝑥𝑖

increases. Note that we can also write 𝑝 as a function of a binary variable 𝑦 which
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equals 1 for failure and 0 for remaining intact.

𝑝(𝑦 |⇀x) = 𝑦

1 + exp
[︁
−

⇀

B · ⇀x
]︁ + 1− 𝑦

1 + exp
[︁
−

⇀

B · ⇀x
]︁ (3.10)

We define
⇀
x𝑖 to be the attributes (current and power) of network component 𝑖. We

define 𝑦𝑖 to be the status (failed = 0, intact = 1) of network component 𝑖. We obtain

the values of the coefficients
⇀

B by maximizing the likelihood 𝐿 shown in Equation

3.11.

𝐿
(︁
{⇀x𝑖}, {𝑦𝑖}

)︁
=
∏︁
𝑖

𝑝(𝑦𝑖 |
⇀
x𝑖) (3.11)

In practice, this optimization is usually done on the (negative) log-likelihood since

this converts a product into a sum and thereby greatly simplifies calculations.

We perform separate regressions for nanowire segments and for contacts. Before

discussing the extracted coefficient values, it behooves us to discuss the performance

of these regressors. We show confusion matrices in Figure 3.8 as a measure of this

performance. The horizontal axes in the confusion matrices show the label predicted

by the regression. The vertical axes show the true label (label observed in images).

Each matrix has four quadrants. Starting in the upper left corner and moving clock-

wise, these quantrants are: correctly labeled as intact, incorrectly labeled as failed,

correctly labeled as failed, and incorrectly labeled as intact. The number in each

quadrant corresponds to the number of elements in that category. The 177 in the

bottom left of the nanowire segments confusion matrix indicates that the regressor

looked at the attributes of 177 failed segments and erroneously predicted they would

remain intact. Out of 44 failed contacts, our regressor predicted zero failures of any

kind. This is a result of a gargantuan class imbalance: there are at least 250 times

more intact network components than failed network components. This biases the

model to predict that most elements will remain intact. In fact, the model can achieve

a very high likelihood by treating failure probability as strictly zero. Taken together,
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Figure 3.8: Confusion matrices for logistic regressions performed separately on
nanowire segment data and contact data.

Nanowire Segments Contacts

Coefficients Current 3.5 18
Power 3.3 -25

Likelihoods 𝐿fit 0.98 0.99
𝐿null 0.97 0.99

Table 3.4: Regression coefficients and likelihoods for a logistic regression to predict
failures. Failed components are class 1 and intact components are class 0 so positive
coefficients indicate that high values of the listed attribute increase probability of
failure. 𝐿fit is the likelihood of the best fit and 𝐿null is the likelihood of the null
hypothesis (that there is a single, constant failure probability).

these factors mean that our regressions are not predictive, but the extracted coeffi-

cients can absolutely still show trends and patterns.

Coefficients and likelihoods for our logistic regression are shown in Table 3.4. Note

that the likelihoods of our fits are very close to the likelihoods of the null hypotheses

because of the aforementioned class imbalance. Recall that a positive coefficient

means that an increase in the corresponding attribute value will increase the prob-

ability of failure. For nanowire segments, current and power have coefficients of 3.5

and 3.3 respectively. This is consistent with our understanding of failure as discussed
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in Figure 3.1. Power drives high temperatures which accelerates both spheroidization

and electromigration by increasing surface diffusivity. Further, power is ultimately

driven by current so, while current is the primary driver electromigration, it also has

an impact on spheroidization. For the contacts between nanowire segments, current

appears to increase failure probability while power decreases failure probability. This

result is somewhat surprising given the highly coupled nature of current and power.

We must, however, be cautious about over-interpreting the results of this analysis.

We performed our logistic regression using Scikit-Learn [90] with neither regulariza-

tion nor class weighting, but statistical models can be quite sensitive to these types

of parameters that are chosen by the user. If the opposing signs of the current and

power coefficients are the result of a statistical fluke, we should not infer anything

from them. To ensure that these results show a meaningful trend, we have performed

our regression with a few other sets of input parameters (regularization and/or class

weighting) and have shown the results in Appendix A.6. In two out of the three new

test cases, the current and power coefficients for contacts still have opposite signs.

In the third new test case, the current coefficient for contacts is 2.5 while the power

coefficient for contacts is 0.36. While this last regression does not support the conclu-

sion that joule heating protects contacts, this regression and all others still strongly

support the argument that current is much more important in causing contact failure

than is power. One alternate explanation of this pattern is that we are simply observ-

ing the effect that high temperatures have on un-optimized contacts in our network.

Figure 3.9 shows the time evolution of the resistance of our four samples during

their voltage ramps. Recall that thermal annealing is a common step in the fabri-

cation of nanowire networks. The thermal annealing step sinters contacts between

nanowires and thereby increases their conductance by several orders of magnitude.

This process is often referred to as junction optimization. With this in mind, we have

grouped the samples into two categories. The samples on left (Figure 3.9a) begin at

some finite resistance and then have their resistance slowly increase before it diverges.

This resistance evolution is consistent with these networks having most of their inter-
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(a) Samples in which contacts were opti-
mized before ramp

(b) Samples in which contacts are optimiz-
ing during ramp

Figure 3.9: Time evolution of resistance for each sample. Voltage is ramped at rate
of 1 V per minute until resistance explodes.
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Nanowire Segments Contacts

Pre-Optimized Coefficients Current 3.8 31
Power 0.41 -47

Optimizing Coefficients Current 4.3 14
Power 4.2 -19

Table 3.5: Results of logistic regression on pre-optimized samples (from Fig. 3.9a)
and optimizing samples (from Fig. 3.9b).

nanowire contacts already optimized before the voltage ramp begins. This means that

resistance changes are primarily driven by failures. The samples on the right (Figure

3.9b) begin at some finite resistance and then see their resistance slowly decrease

until it suddenly reverses and diverges. This resistance evolution is consistent with

these networks having inter-nanowire contacts optimize during the voltage ramp. It

is entirely possible that network elements are being destroyed during the ramp as well

but, because the total resistance is decreasing, the contact optimization is clearly the

dominant effect. Eventually, though, an avalanch of failure occurs and the resistance

diverges. It is possible that the regression coefficients for contacts in Table 3.4, which

suggest current driving failure and power preventing failure, are being biased by the

contact optimization occurring in Figure 3.9b. To account for this, we now perform

separate regressions on the pre-optimized (2BM 05, 3B 01) and optimizing (2BM 03,

2BM 11) samples.

The results of these regressions are shown in Table 3.5. For both the pre-optimized

and optimizing contacts, current has a positive coefficient and power has a negative

coefficient. Surprisingly, the data from the samples that were optimizing during the

ramp was not biasing the power coefficient to be more negative - in fact the opposite

is true. The power coefficient for the optimizing samples is actually greater than

the one for the pre-optimized samples. The trend we observe with current appearing

to increase failure probability while power appears to decrease failure probability is

therefore certainly not a result of junction optimization that occurs during the voltage

ramp.
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Figure 3.10: A causal graph showing the drivers and mechanisms of silver nanowire
failure under typical operating conditions.

In understanding the implications of the results of this regression, it is useful to re-

fer to the causal graph of failure discussed earlier in this chapter. For the convenience

of the reader, we show another copy of this diagram in Figure 3.10. Note that this

copy has a small addition, shown in red. The evidence we have accumulated suggests

that current tends to drive contact failure while power appears to delay or prevent

it. The most direct result of power dissipation via joule heating is high temperatures,

as we see in Figure 3.10. Taken together, these factors suggest that high tempera-

tures, much like power, decrease contact failure probability. Therefore, we infer that

the dominant pathway to contact failure be the top branch of Figure 3.10: Current

→ High Current Density → Electromigration → Failure. In other words, electro-

migration appears to dominate over spheroidization when it comes to the failure of

contacts between silver nanowires. All that said, the experimental observations [87]

tend to show visible evidence of spheroidization in failed networks. Contacts between

nanowires make up a very small portion of the area of a given silver nanowire network.

It is therefore possible that silver nanowire segments fail from spheroidization while

contacts fail from electromigration but, because of the size disparity between the two,

only the spheroidization is observed in post-failure imaging. There is, however, an-

other explanation that unifies our analysis with the existing literature. As depicted
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in red in Figure 3.10, electromigration could very well provide a crucial source of the

kinetic perturbations that initiate the process of spheroidization of contacts.

These results do not paint a particularly clear picture of the failure of silver

nanowire segments (as opposed to contacts). Depending on the regression param-

eters, either power or current may appear more important. The picture for contacts,

however, is very clear. At the very least, electromigration appears to far and away

dominate over spheroidization in the failure of contacts and there is strong but less

conclusive evidence that joule heating may actually protect against failure. Our re-

sults therefore indicate that the key to protecting against silver nanowire contact

failure is preventing electromigration. Given that silver nanowire network failure is

driven by contact failure, we should therefore also view preventing contact electromi-

gration as priority one in bringing these exciting materials closer to market.

3.1 Conclusions

We have created high fidelity in silico models of real silver nanowire networks and

used these models to elucidate failure dynamics. But the difficulty of identifying

failed network components in SEM images, and the resulting mammoth class imbal-

ance, make it challenging to precisely predict exactly which network elements will fail.

Nonetheless, this analysis bears much useful fruit. First, our methodology for image

extraction will be useful to other scientists studying collections of tubular structures

and, in particular, the RAG-based technique demonstrated in Figure 3.4 is an elegant

solution to the well known false branch problem of many skeletonization methods,

albeit with the caveat that it only works on structures with no true branches. Second,

we conclude that graph theoretic considerations alone appear to provide relatively lit-

tle new information about silver nanowire network failure dynamics. Graph theoretic

measures perform better the more physical information they include, but do not offer

any understanding beyond that provided by more traditional examinations of current

and joule heating. It was demonstrateed in [132] that, for single silver nanowires in
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vacuum under electrical bias, electromigration is far and away the dominant failure

mechanism. Our analysis suggests extends and modifies these results to contacts

between silver nanowires in networks operating under ambient conditions. We show

that, in a silver nanowire network under electrical bias, the failure of contacts between

nanowire segments is driven primarily by electromigration - either directly (ionic dis-

locations causing necking and eventual disconnection) or indirectly (ionic dislocations

providing the kinetic perturbations to initiate spheroidization). Further, the junction

data suggest that joule heating may tend to protect junctions rather than degrade

them. These last points illustrate the importance of combining experimental and

computational analysis. In experiments, it is well documented that an un-optimized

network can see significant conductivity gains by simply applying an electrical bias

and letting joule heating sinter network junctions [102]. But only by combining ex-

perimental measurements and high quality simulations of those measurements can

we reveal surprising behavior such as electromigration inducing spheroidization or

thermally activated junction protection The fact that temperature can mediate both

optimization and destruction means that, in future analysis, we must capture both

effects to accurately describe the failure dynamics. In conclusion, this work has devel-

oped novel methods for digitizing real nanowire networks, provided a unique dataset

to the nanomaterial engineering community, and extended some of our understanding

of the failure of isolated silver nanowires in vacuum to networks of silver nanowires

under ambient conditions.
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Chapter 4

From Images to Non-Planar Graphs

In our previous analysis, we treat nanowires as though they all have equal diameters.

In reality the diameters of these nanowires are variable and may have significant

impacts on both local resistances and current densities. Consider a nanowire of fixed

length 𝐿 with a fixed potential difference 𝑉 between its ends. The current density

through the nanowire is

𝐽 =
𝑉

𝑅𝐴
=

𝑉 𝐴
𝜌𝐿
𝐴
𝐴

=
1

𝜌

𝑉

𝐿
(4.1)

where 𝐴 is the nanowire’s cross-sectional area. Thus we have that 𝐽 ∝ 1
𝜌

where 𝑉/𝐿

fixes the constant of proportionality. Using the resistivity results from [13] and assum-

ing a fixed ratio 𝑉/𝐿, we have plotted the diameter dependence of 1/𝜌 and therefore

of 𝐽 in Figure 4.1. The data in Figure 4.1 show that differing wire diameters can

can yield meaningfully different current densities, an effect which is amplified by the

nonuniform distribution of current in real conductors.

The logical next step in solidifying our conclusions about the relative importance

of electromigration and spheroidization is therefore to include diameter information in

our analysis, but this information does not come cheaply. Developing automated ways

of accessing local diameter information is the subject of this final chapter of the thesis.
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Figure 4.1: Plot of reciprocal of resistivity (1/𝜌) as a function of diameter. To calcu-
late a numerical value of current density 𝐽 for a given nanowire one would multiply
𝑦 axis values by the voltage 𝑉 between nanowire tips and divide by the length 𝐿 of
the nanowire in µm.

The ideal process for analyzing our networks in a diameter depdendent way is

substantially similar to the process outlined in Chapter 3, except our masks must

highlight all or most of the pixels that make up each nanowire instead of simply

capturing the general shape. One can then extract diameter information from these

pixel maps relatively easily, for instance using a euclidean distance transform as done

in [35]. This segmentation is significantly more tedious than our previous method

if done manually. We proceed with a brief discussion of existing automatic image

segmentation techniques and their drawbacks. This discussion also motivated our

decision to use a semi-manual segmentation in the analysis of Chapter 3.

One of the best known tools for turning images into graphs is NEFI (Network

Extraction from Images) [27]. This software library is designed to be an end to end

solution; it can perform preprocessing, filtering, segmentation, and junction detec-

tion. NEFI would be ideal for our use case but for one requirement: NEFI only works

on planar graphs. A planar graph is a graph which, if embedded in a 2D plane with
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(a) The complete Kuratowski graph 𝐾5 (b) The complete bipartite Kuratowski
graph 𝐾3,3

Figure 4.2: Kuratowski subgraphs

nodes as points and edges as lines connecting those points, can be drawn such that

edges only cross at nodes. More formally, a graph can be said to be planar if and only

if it does not contain a subgraph that is a subdivision of the complete graph with

5 nodes 𝐾5 or the complete bipartite graph with 6 nodes 𝐾3,3, both shown in Fig-

ure 4.2. This result is known as Kuratowski’s theorem [65] and these subgraphs are

known as Kuratowski subgraphs after the first mathematician to publish the proof.

Because a graph only needs to contain a single Kuratowski subgraph subdivision to

be nonplanar, the probability of a graph being planar must decrease as the number

of nodes increases. To examine this in the context of our nanowire networks, we

can consider the graphs of nanowire networks without worrying about adding inter-

nal resistance because the graph of a nanowire network with internal resistances is a

subdivision of the graph of a nanowire network without internal resistances. In a sim-

ulation of 10,000 small nanowire networks with anywhere from 36-94 nanowires, only

200 proved to be planar (a planarity rate of 2%). Therefore, because the nanowire

networks examined in Chapter 3 contain 10-100 times more nanowires and nodes,

there is a very small chance that these networks are also planar. More generally, any

image processing routine that relies on planarity can be expected to fail much of the

time in extracting a graph from an image of a nanowire network.

An alternative strategy relies on recent advances in artificial neural networks to

perform image segmentation. Segmentation, in this context, is the term of art for
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(a) Original image (left) and semantic segmentation (center). White pixels in semantic
segmentation are labeled as “person” and black pixels are the background.

(b) Original image (left), semantic segmentation (center), and instance segmentation (right).
Note that in the semantic segmentation there is a large mass of undifferentiated pixels all
simply labeled as “person” whereas in the instance segmentation people are distinguished
from the background and distinguished from each other.

Figure 4.3: Images from PennFudan dataset [123]

mapping each pixel in an image to a label. Semantic segmentation maps each pixel

in an image to a class label. For example, suppose we are training a binary classifier

to identify which pixels in an image are part of a person. A semantic segmentation

is shown in Figure 4.3a. The color white indicates that given pixel has been assigned

the label “person” and the black color denotes everything that is not a person. In a

simple image with an uncrowded visual field, this semantic segmentation conveys all

the information we could plausibly want about the scene. If, however, we consider a

more visually crowded scene, such as the images in Figure 4.3b, we can see the limits

of semantic segmentation. While the semantic segmentation of Figure 4.3b does suc-

cessfully identify which pixels come from people and which pixels come from other

objects, there is a large undifferentiated mass of pixels in the center of the image cor-
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responding to multiple different overlapping people. Instance segmentation, shown

in the third panel of Figure 4.3b, successfully identifies people in the image and then

also distinguishes people from each other. Thus instance segmentation is a strictly

harder task than semantic segmentation because instance segmentation requires ac-

curate semantic segmentation and then adds additional computation on top of it.

Experimental images of nanowire networks are much more like the visually crowded

images of Figure 4.3b than the simpler images of Figure 4.3a: we have a large number

of overlapping and partially obscured nanowires. In order to extract a graph from a

nanowire image, individual nanowires must be distinguished from each other. There-

fore the task at hand calls for instance segmentation. The current gold standard in

instance segmentation is MaskRCNN (Mask Region Convolutional Neural Network)

[46]. As the image is fed through MaskRCNN, multiple rectangular regions of inter-

est (ROIs) are proposed. The final step of the network is prediction of a mask for

each possible class in each ROI and the parallel and decoupled prediction of the most

likely class for the ROI. Then, only the mask of the most likely class is returned. SEM

images of nanowire networks have several attributes that challenge this architecture.

First, nanowires are long and thin and therefore occupy a small poportion of the

area in any given image. In the correct ROI for a given nanowire, the pixels of that

nanowire contribute very little information to be used in the segmentation masking

[35]. Finally, SEM images of nanowire networks tend to be quite crowded with many

nanowires overlapping in nontrivial ways. In our particular case, we must add the dif-

ficulty that our nanowire images have significant imaging artifacts and large amounts

of particulates on the samples. Extensions of MaskRCNN such as FibeRCNN [35]

have been proposed to predict keypoints and widths of nanowire segments. Accurate

keypoint and width information would be sufficient for us to reconstruct equivalent

circuits of our network in a fully automated way, but FibeRCNN, while showing great

promise in segmenation of images containing separated fibers, does not perform well

in the analysis of densely overlapping fibers. The most serious problem, though, is

that training these models requires a significant quantity of correctly annotated im-
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ages which does not currently exist.

We propose and test a novel preprocessing routine that adds an extra channel of

local angle information to binarized grayscale images in the hopes that this technique

will allow existing algorithms to properly identify and distinguish tubelike structures

in a crowded visual field with a high degree of overlap. The first step in this process is

binarization (also known as thresholding) in which each pixel in the image is assigned

either 0 (background) or 1 (foreground). While the results of the local angle detec-

tion certainly depend on the output of this thresholding, the local angle detection

algorithm is independent of the choice of thresholding algorithm. Therefore, as there

is already significant literature discussing the merits of different thresholding tech-

niques (see [107] for example), we will not compare multiple thresholding techniques

and instead will simply state the thresholding method used where appropriate. We

now proceed to a discussion of the algorithm for local angle detection.

The algorithm we devise is quite similar to the well known Radon Transform[97]

which is used in modern tomographical imaging. The Radon Transform begins by

describing a grayscale image’s brightness 𝑓 as a function of position 𝑥, 𝑦. We use the

convention that a purely black region has 𝑓(𝑥, 𝑦) = 0 and a purely white region has

𝑓(𝑥, 𝑦) = 1 but other choices are possible. Define 𝑙𝜑,𝑠 to be a line with distance 𝑠

from a chosen origin and with a normal vector that makes an angle 𝜑 when measured

counterclockwise from the 𝑥-axis. We define our radon transform 𝑔 as the line integral

of 𝑓(𝑥, 𝑦) along the line 𝑙𝜑,𝑠

𝑔(𝜑, 𝑠) =

∫︁
𝑙𝜑,𝑠

𝑓(𝑥, 𝑦) d𝑙𝜑,𝑠 (4.2)

This operation transforms our function 𝑓 from the two dimensional space defined by

𝑥, 𝑦 to a new two dimensional space defined by 𝜑, 𝑠. We can evaluate 𝑔 at many values

of 𝜑 and 𝑠 obtain a new image as shown in Figure 4.4.

Using many of the same concepts, we can define a new algorithm that assigns
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(a) Original Image 𝑓(𝑥, 𝑦)

(b) Radon Transform 𝑔(𝜑, 𝑠) with 𝑠 on the horizontal
axis and 𝜑 on the vertical axis

Figure 4.4: Demonstration of the Radon Transform. In 4.4a the brightness represents
values of the function 𝑓(𝑥, 𝑦) and in 4.4b the brightness represents values of the
function 𝑔(𝜑, 𝑠). Images taken from Wikipedia.

some angle 𝜃 to each point (𝑥, 𝑦). We call this algorithm the Radon Local Angle

Transform. Once again, we define 𝑓(𝑥, 𝑦) to be image brightness at position 𝑥, 𝑦

but we now require that the function 𝑓 returns only 0 or 1. We will use the same

parameterization of lines so that 𝑙𝜑,𝑠 is a line with distance 𝑠 from the origin and

making an angle 𝜑 with the 𝑥 axis. We now reparametrize the line integral from

Equation 4.2 in terms of 𝑡 with 𝑥(𝑡) = 𝑥0− 𝑡 sin𝜑 and 𝑦(𝑡) = 𝑦0+ 𝑡 cos𝜑 where 𝑥0, 𝑦0

denote some chosen reference point on the line 𝑙𝜑,𝑠. With this parametrization we can

write

∫︁
𝑙𝜑,𝑠

𝑓(𝑥, 𝑦) d𝑙𝜑,𝑠 =

∫︁ ∞

−∞
𝑓 (𝑥(𝑡), 𝑦(𝑡))

√︃(︂
d𝑥

d𝑡

)︂2

+

(︂
d𝑦

d𝑡

)︂2

d𝑡 (4.3)

=

∫︁ ∞

−∞
𝑓(𝑥0 − 𝑡 sin𝜑, 𝑦0 + 𝑡 cos𝜑)

√︁
sin2 𝜑+ cos2 𝜑 d𝑡 (4.4)

=

∫︁ ∞

−∞
𝑓(𝑥0 − 𝑡 sin𝜑, 𝑦0 + 𝑡 cos𝜑) d𝑡 (4.5)

Define 𝐿𝜑,𝑠(𝑥0, 𝑦0) to be the maximum length that may be travelled from point 𝑥0, 𝑦0

in either direction along 𝑙𝜑,𝑠 without encountering any zero values. Note that this
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function is only defined if the line 𝑙𝜑,𝑠 actually passes through the point 𝑥0, 𝑦0. In

terms of the above integral, we may write 𝐿 as

𝐿𝜑,𝑠(𝑥, 𝑦) =

∫︁ 𝑏

𝑎

𝑓(𝑥0 − 𝑡 sin𝜑, 𝑦0 + 𝑡 cos𝜑) d𝑡 = 𝑏− 𝑎 (4.6)

where 𝑎, 𝑏 are chosen to satisfy

𝑓(𝑥(𝑎), 𝑦(𝑎)) = 0 and there is no 𝑡′ > 𝑎 such that 𝑓(𝑥(𝑡′), 𝑦(𝑡′)) = 0 (4.7)

𝑓(𝑥(𝑏), 𝑦(𝑏)) = 0 and there is no 𝑡′ < 𝑏 such that 𝑓(𝑥(𝑡′), 𝑦(𝑡′)) = 0 (4.8)

We now define the local angle of the point 𝑥0, 𝑦0 as the angle 𝜑 that maximizes

𝐿𝜑,𝑠(𝑥0, 𝑦0) and offset by 90∘ because the direction of travel along the line 𝑙𝜑,𝑠 is

actually perpendicular to the direction indicated by 𝜑:

𝜃(𝑥, 𝑦) = argmax
𝜑

[𝐿𝜑,𝑠(𝑥0, 𝑦0)]− 90 (4.9)

It is useful to visualize an example. Suppose we have a binarized image in which 1

valued pixels are shown in white and 0 valued pixels are shown in black. We assume

that all white pixels are nanowire and all black pixels are background1. An example

of a small region of such an image is shown in Figure 4.5a. We wish to assign a single

angle value to the pixel shown in blue in Figure 4.5b. To accomplish this, we begin

by extending a horizontal line to the left and right of this selected (blue) pixel as far

as it can go while remaining on the nanowire (i.e. while remaining on white pixels),

as shown in Figure 4.5c. As this line rotates (shown in Figure 4.5d), we imagine

its length expanding and contracting such that it is as long as it can be while still

remaining fully on the white pixels. For a series of angular values between 0 and

𝜋, we record both the angle and the length of this line. A sample of these lines are

1In general, 1 valued pixels should be nanowires, but there is a good degree of noise in real images
so some portions of nanowires are 0 valued and some portions of background are 1 valued.
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(a) (b) (c)

(d) (e) (f)

Figure 4.5: Pictorial description of a transform which we call the Radon Local Angle
Transform. The angle assigned to the pixel shown in blue in Figure 4.5b is the angle
that the red line of Figure 4.5f makes with the horizontal.

plotted in Figure 4.5e. We then identify the longest such line (highlighted in red in

Figure 4.5f). The angle that this longest line makes with the horizontal is the angle

assigned to the selected (blue) pixel.

An implementation of this algorithm in pseudocode is shown in Algorithm 1 which

is based on the scikit-image [121, 99] implementation of the Radon Transform [97].

Note that in order to implement Algorithm 1 in practice, one must also define a zero-

padding operation so that the contents of the image may be rotated while allowing the

entire image to remain in frame. This therefore also requires an unpadding operation

be performed after the inverse rotation.

There are several desirable features of Algorithm 1. First, the precision of the

output can be tuned by using a finer-grained sequence of input angles {𝜃}, although

the finite resolution of the image sets a limit on the value of increasing angle sampling

beyond a certain point. Secondly, many of the operations here can be described in

terms of vector and matrix operations, such as indexing or rotation, and therefore

99



Algorithm 1 Radon Local Angle Transform Algorithm. Arguments are binary image
tensor 𝐹 of size (𝑚, 𝑛) and a sequence of angles {𝜃1, 𝜃2, ... 𝜃ℓ} = {𝜃}

function Rotate(𝐹 , 𝜃)
returns 𝐹 rotated by angle 𝜃 counter-clockwise about center, rounded to nearest
integer.

function RowContiguous(𝐹 )
𝐹 ′ ← 𝐹
For each row of pixels in 𝐹 ′, calculate the length of each contiguous sequence
of 1-valued pixels in this row. Replace the value of each 1-valued pixel in this
row of 𝐹 ′ with the length of the contiguous row sequence to which they belong.
Return 𝐹 ′

Declare 𝐿 as empty tensor of size (ℓ, 𝑚, 𝑛)
for all 𝜃𝑖 ∈ {𝜃} do

𝐺← Rotate(𝐹, −𝜃𝑖)
𝐺← RowContiguous(𝐺)
𝐺← Rotate(𝐺, 𝜃𝑖)

for all 𝜇 ∈ {1, 2, ...𝑚} do
for all 𝜈 ∈ {1, 2, ... 𝑛} do

𝐿𝑖𝜇𝜈 ← 𝐺𝜇𝜈

Declare 𝜑 as empty tensor of size (𝑚, 𝑛)
for all 𝜇 ∈ {1, 2, ...𝑚} do

for all 𝜈 ∈ {1, 2, ... 𝑛} do
𝑗 ← argmax𝑖(𝐿𝑖𝜇𝜈)
𝜑𝜇𝜈 ← 𝜃𝑗

return 𝜑

100



(a) Original Image (b) Binarized Image (c) Radon Local Angles

Figure 4.6: Demonstrating the Radon Local Angle Transform (RLAT) on a small
section of a real SEM image of a nanowire network. Figure 4.6b was binarized using
Otsu’s Method [107]. Figure 4.6c shows each pixel color coded by its angle as deter-
mined by the RLAT. All angles are measured counterclockwise from the horizontal.

this code should be compatible with many highly optimized numerical libraries. Fi-

nally, the calculation of each layer in 𝑉 is entirely independent, so this algorithm is

ripe for parallelism. It is worth noting that we can decrease the number of rotations

required to get a given resolution by defining a ColumnContiguous function and

then applying both RowContiguous and ColumnContiguous to each rotated

image, but results of the ColumnContiguous would correspond to measurements

for the angle 𝜃 + 𝜋/2 rather than 𝜃.

As a concrete example, we consider the Radon Local Angle Transform (henceforth

RLAT) of a small region of an SEM image of a nanowire network as shown in Figure

4.6. Figure 4.6a shows the original image. Figure 4.6b shows the result of binariza-

tion using Otsu’s method [107]. Figure 4.6c shows the results of the RLAT where

all angles are measured counterclockwise from horizontal and the color coding of a

pixel corresponds to the angle value assigned to that pixel. Even before any further

analysis, the results of the RLAT appear to have done a reasonable job of separat-

ing overlapping nanowires! Even discontiguous nanowires are colored consistently,
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suggesting that this approach may help overcome some of the difficulties of applying

MaskRCNN to crowded images.

Each pixel in Figure 4.6c can be uniquely described by a point
⇀
p = (𝑐, 𝑟, 𝜑) where

𝑐 is the column index (corresponding to its horizontal position), 𝑟 is its row index

(corresponding to its vertical position), and 𝜑 is its angle. We define a distance metric

𝑑 between any two pixels with points
⇀
p1 and

⇀
p2 as

𝑑(
⇀
p1,

⇀
p2) =

√︀
(𝑐1 − 𝑐2)2 + (𝑟1 − 𝑟2)2 +min ( |𝜑1 − 𝜑2|, 180− |𝜑1 − 𝜑2| ) (4.10)

The second term accounts for the fact that, since we are measuring angles using lines,

the angular distance can be no more than 90∘. In other words, a line with angle of

0∘ is indistinguishable from a line with angle of 180∘. With this metric, and therefore

a notion of closeness, defined, we can reframe our problem as one of data clustering:

we want to find the sets of points that belong to the same cluster (i.e. sets of pixels

that belong to the same nanowire). Before choosing a clustering algorithm, we note

that our clustering algorithm cannot just cluster points separated by small distances

- this would exclude points from the same nanowire with very similar angles if they

are separated by many rows and columns. The chosen clustering algorithm must also

be able to cluster points that are separated by large distances as long as they are

connected by a chain of other points with small distances between them. Finally, we

want to be able to exclude particulates and other objects that are not wire shaped, so

the clustering algorithm should have some way of identifying data points that should

be ignored. The algorithm known as DBSCAN [32, 104] (Density Based Spatial Clus-

tering of Applications with Noise) fits the bill quite nicely. DBSCAN, in addition to

clustering nearby core points together, also includes other points in the cluster if they

are reachable by traversing an unbroken chain of core points. The most important free

parameters of this algorithm are 𝑚 and 𝜀 which define a core point as a point with at

least 𝑚 other points within a distance 𝜀. DBSCAN then labels each data point with

some label from −1, 0, 2, ... where −1 indicates noise and the nonnegative integers
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Figure 4.7: Clean, low density image of region of nanowire network

represent different clusterings (each clustering should, ideally, identify all pixels in an

image belonging to a single nanowire). These nonnegative labels, when viewed as an

image rather than as datapoints, become our instance segmentation masks.

One challenge in implementing this is the large number of data points that re-

quire classification from a given image. For example, in the very clean and relatively

low density image shown in Figure 4.7, we have 𝑁 = 4.35𝐸4 nanowire pixels (and

therefore data points) which gives us 𝑁(𝑁 − 1)/2 = 9.46𝐸8 pairwise distances to

compute. In denser images, such as the ones produced by our most recent experi-

ments, the number of computations and memory required will further increase. To

circumvent this, we subdivide our images into a number of overlapping rectangles and

then apply DBSCAN to each rectangle individually. Rectangles are chosen such that

half of each rectangle’s width overlaps with its neighbors to the left and right and half
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of each rectangle’s height overlaps with its neighbors above and below. To restitch

our images together, we apply a a maximum weight matching algorithm [28, 37].

The matching algorithm requires a graph as input. To construct such a graph, we

first select two adjacent and overlapping rectangles. For clarity, we will refer to these

as the left rectangle and the right rectangle. All distinct masks contained in these

rectangles are added as nodes in a graph. We then add edges such that our graph

is bipartite: each node/mask from the left rectangle is connected to each node/mask

in the right rectangle (and vice versa) but nodes/masks that come from the same

rectangle are never connected. For a given edge connecting masks 𝑚1,𝑚2, the edge

weight is assigned to be the Intersection over Union (IoU) of the two masks. For our

purposes, the intersection is defined as the number of points in common between the

two masks and the union is defined as the number of points in either or both of the

masks. With the graph thus defined, our max weight matching algorithm restitches

nanowire instances across rectangle boundaries. For simplicity, we begin by restitch-

ing all rectangles in the same row and merging matched masks. We then apply the

same matching algorithm to adjacent and overlapping pairs of reconstructed row seg-

mentations.

As proof of concept, we will first test this algorithm on the extremely clean and

relatively low density image from Figure 4.7. Some examples of the segmentations

proposed by the combination of DBSCAN and the matching algorithm are shown in

Figure 4.8. To quantify the performance of the algorithm, we must first match each

predicted mask to a true mask. We achieve this result much as we stiched images to-

gether: we create a bipartite graph with one partition containing the predicted masks

and the other partition containing the true masks with edge weights as IoUs. The

correspondence between true and predicted masks is then produced by application

of the maximum weight matching algorithm. For each pair of matched masks, we
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(a) Successful Segmentation (b) Failed Segmentation

Figure 4.8: Examples of segmentations produced by the combination of DBSCAN
and the RLAT

quantify the performance of the algorithm by the Dice coefficient which is defined as

Dice =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(4.11)

where TP , FP, and FN stand for True Positive, False Positive, and False Negative.

True Positive is the number of pixels in both the true and predicted masks. False

Positive is the number of pixels in the predicted mask but not in the true mask. False

Negative is the number of pixels in the true mask but not in the predicted mask. Per-

fect segmentation gives a Dice coefficient of 1 and completely incorrect segmentation

(which can be achieved in many ways) gives a Dice coefficient of 0. Note that if a true

mask is not matched to a predicted mask then the Dice coefficient evaluates to zero.

In general, the algorithm performs decently, yielding a mean Dice coefficient of 0.72.

Examples of impressive and not-so-impressive segmentations are shown in Figure 4.8.

These successes and failures are typical of the rest of the segmentation: the combi-

nation of RLAT+DBSCAN can successfully segment straight or curved nanowires as

long as they do not intersect with other nanowires at a shallow angle, such as the

highlighted curve shown in Figure 4.8a.

This is, already, a significant milestone and it strongly suggests that this algo-

rithm is viable. With very little optimization, we have developed a straightforward
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and automated algorithm for accurate segmentation of complex images of overlapping

nanowires. In Figure 4.8b, we can see this algorithm’s weakness: we have a collection

of a nearly parallel and intersecting wires which are mistakenly identified as a single

wire. This pattern repeats itself in many of the mistaken mask predictions. These

failed masks pose a at least two problems. First, the geometry recovered from the

mask may not faithfully represent the underlying nanowire geometry. Second, and

perhaps more importantly, any nanowire pixels that are included in the wrong seg-

mentation are thereby excluded from the correct segmentation since DBSCAN assigns

data to mutually exclusive groups. This will lead to false distinctions between masks

that should actually refer to different parts of the same wire. We propose several pos-

sible explanations for the failure of RLAT+DBSCAN to distinguish between wires

intersecting at shallow angles.

It is possible that the RLAT+DBSCAN method is, in general, sound, but that hy-

perparameters (𝜀, 𝑚, and the size and shape of rectangular subsections) need to be op-

timized. Alternatively, is is possible that plausibly distinguishing between nanowires

that intersect at shallow angles is too complex to be achieved by RLAT+DBSCAN.

In this case, we would likely need to explore options using deep learning. Both

optimization of RLAT+DBSCAN hyperparameters and using deep learning would

require a large set of correctly annotated images of nanowire networks, but unfortu-

nately no such dataset exists. Were we to create such a dataset using simulations,

we would overcome one significant obstacles to using MaskRCNN, the deep learning

architecture that has proven most successful in instance segmentation. Recall that

MaskRCNN has been tested on structures such as nanowires before and been found

wanting. Nonetheless, we shall test if a sufficient quantity and complexity of training

images can overcome these previously found limitations. Therefore we now proceed

with a discussion creating this synthetic data.

A synthetic image and a real image are shown side by side in in Figure 4.9. The

pipeline generating each of these synthetic images can be broadly divided into two
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(a) (b)

Figure 4.9: Close up of real and synthetic image side by side. Readers are invited to
try to determine which is which.

Realimage:4.9b,Syntheticimage:4.9a

stages: (1) creating the underlying geometrical model and (2) turning that model

into a realistic image by adding imaging artifacts, particulates, noise, etc. We create

a geometrical model by generating a sequence of planar curves with similar shapes as

real nanowires. We use the measured distribution of nanowire lengths from Chapter

3 as input to draw simulated nanowire lengths from appropriate lognormal distribu-

tions. The trajectories of these simulated are curves are generated by imagining a

particle with random initial position and momentum undergoing a series of collisions

with other particles with random momenta and recording the initial particle’s posi-

tion after each collision. Collisions are separated by a fixed time 𝑡𝑠𝑒𝑝, chosen at the

time of data generation, that controls the curviness of the resulting wires (with higher

values of 𝑡𝑠𝑒𝑝 yielding straighter nanowires). Widths of these nanowires are drawn

from a distribution based on data from the supplier. We then generate an image from

this geometry using the geospatial analysis tools shapely[38] and GeoPandas[57]. We

then perform a series of noising operations to degrade image quality. Finally we use

PoresPy[39] to generate correlated noise that we use to create both particulates and

spatially correlated brightness variations.
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We generated a sythetic dataset of 16,000 images as described in detail in Ap-

pendix A.7. After image generation, we perform a thresholding and then perform the

RLAT on the thresholded image. To test the value of the RLAT, we train MaskR-

CNN on two different kinds of input data. In the first case, the input image has three

channels: a grayscale SEM-like image, the thresholded image, and RLAT image. In

the second case, the input image also has three channels but the first and last are

equal, so the channels are: a grayscale SEM-like image, the thresholded image, and

the grayscale SEM-like image. We use the same underlying data in both cases.

We begin training MaskRCNN using a training set of 1024 images and a validation

set of 256 images. We use a Resnet50 FPN backbone with weights pretrained on

COCO [78]. The hidden layer used for classification has a width of 256. Maximum

detections per image is set to 2000. We set our detector to have two possible classes

(nanowire and non-nanowire). We use FastRCNN to predict bounding boxes. AdamW

is the optimizer with learning rate scheduler and other hyperparameters as described

in [94]. The training progress of these models is shown in Figure 4.10. Unfortunately,

both samples here show evidence of almost immediate overfitting. The validation loss

decreases over about 10 epochs before it starts to increase. Further, the performance

of the model using the RLAT data as input appears to be a little bit worse than

the model without using the RLAT data. This throws into question the utility of the

RLAT as a preprocessing step for MaskRCNN. There is a possibility that the training

data set is too small to capture the the full heterogeneity possible in our synthetic

dataset, but the results do not change meaningfully when we incrase the training

data set size. Furthermore, when training a model on synthetic data, we must expect

some differences between the synthetic data and eventual target which is real data.

If MaskRCNN cannot generalize from the training set to the validation set - which

were both generated by the same algorithm using the same parameters - there is a

vanishingly small chance that it will generalize from training data to experimental

data. While it is true that MaskRCNN was trained for 27,000 epochs in previous
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(a) Loss without RLAT input (b) Loss with RLAT input

Figure 4.10: Training progress of MaskRCNN both with and without RLAT input
included in training data.

nanowire segmentation work [35], the validation loss is continuing to increase so there

is no reason to believe that further training would be beneficial.
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Chapter 5

Conclusion

Transparent conducting electrodes (TCEs) are ubiquitous in modern life: from air-

plane windshields to cell phone screens, they are everywhere. The dominant material

to make them, ITO, has several drawbacks. Networks of silver nanowires are among

the most promising candidates to replace ITO, but these networks are liable to recon-

figure themselves under electrothermal stress. This tendency toward reconfiguration

is an obstacle toward widespread adoption of silver nanowire networks as TCEs but

also, if it can be controlled, could serve as a platform for future nano-electronic en-

gineering. In this work, we have applied a wide array of computational, analytical,

and experimental tools to better understand how silver nanowire networks reconfigure

themselves under electrothermal stress.

In Chapter 2, we demonstrated that certain concepts from graph theory such as

betweenness centrality and other betweenness based measures of node importance

can be used to identify nanowires in a simulated network that are systematically less

important to conduction. By removing these wires, we can actually improve the TCE

figure of merit of these simulated networks. This shows a potential application of this

novel type of network attack to arbitrary networks: if the nodes in a network improve

flow but at some finite cost, removing low betweenness centrality nodes may actually

improve total efficiency of the network. Further, we demonstrated that Monte Carlo

Tree Search is extremely efficient at finding these nodes to remove. The power of
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these betweenness-based strategies lends creedence to the idea that high betweenness

centrality nodes may fail preferentially in a real network under electrothermal stress.

In Chapter 3 we test this theory. First we developed a method for fabricating a

large number of small, percolating silver nanowire networks. We then image the net-

works before and after subjecting them to electrothermal stress that destroys perco-

lation. Using a semi-automatic image segmentation algorithm, we extract equivalent

graphs from pre-ramp and post-ramp images and use these graphs to connect failure

with properties of the network elements that have failed. We find good evidence that

betweenness based centrality measures are correlated with a higher probability of fail-

ure but this correlation is not strong enough to be predictive. Furthermore, the graph

theoretic measures do not appear to be as correlated with failure as is the calculated

electrical current. The most valuable result here is that electromigration appears

to be the primary driver of failure of inter-nanowire contacts in silver nanowire net-

works. Electromigration drives contact failure either by causing failure directly or by

providing a crucial source of kinetic perturbations that initiate spheroidization.

In Chapter 4, we work to advance the state of the art in fully automated seg-

mentation of images of nanowire networks, a problem that lies at the intersection

of several hard problems in computer vision. We introduce a novel image analysis

routine, which we call the Radon Local Angle Transform or RLAT, that maps each

pixel in a binarized image to a direction. We demonstrate how this transform can

be used with an existing clustering algorithm, DBSCAN, to perform fully automatic

segmentation of very clean images of sparse nanowire networks but show that it fails

for more dense networks with a greater proportion of noise. To make further progress,

we generate a large number of synthetic images of nanowire networks with varying

degrees of noise, clutter, and distortion. We test the current state-of-the-art model for

instance segmentation, MaskRCNN, on these simulated images and find two results:

(1) the RLAT does not appear to aid MaskRCNN in this context and (2) MaskRCNN

shows an extreme inability to generalize - even failing to generalize between different

partitions of the same synthetic dataset.

112



For future researchers, the path forward is clear. First and foremost, this present

set of experiments should be reproduced with the goal of fabricating much cleaner

nanowire networks. A great deal of time and energy was spent developing tech-

niques to produce reliably sized and extremely small nanowire networks. Using the

recipes developed here, future researchers will have time to wash samples, ensure the

nanowire supply is reasonably free of particulates, and optimize SEM settings so re-

sultant images are cleaner. In addition, different SEMs were used for the pre-failure

and post-failure images. This introduces an unnecessary confounding variable in our

analysis. In our case, it was necessary to change because the images produced by

the first SEM were so grainy and time considerations precluded us from re-imaging

the samples before conducting the voltage ramp. Using the same SEM in all images

would provide a straightforward improvement in the quality of the results.

In terms of data analysis, the large simulated dataset we have produced here

should be used to refine the hyperparameters of the DBSCAN+RLAT algorithm in-

troduced here. Generating these images is computationally cheap, so new image pa-

rameters may be worth trying as well in the event that the current set of images does

not sufficiently resemble the experimental data. The utility1 function of this hyperpa-

rameter optimization should be the IoU metric between ground-truth segmentations

and the machine-produced segmentations (where target and prediction masks are

matched to each other using the maximum weight matching algorithm discussed in

Chapter 4). Assuming that future researchers are able to get the DBSCAN+RLAT

method to produce reliable segmentations, wire diameters can be retrieved by ap-

plying a euclidean distance transform2 to each instance mask. This transform is a

well-tested approach to extracting width information from tubelike structures [35].

There is also room to further test deep-learning approaches to the segmentation

1if a loss function is necessary instead, one could use the negative IoU
2A euclidean distance transform maps each nonzero pixel in a binary image to the distance from

that pixel to the nearest zero valued pixel
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of these highly cluttered images. To denoise the existing images, we suggest using a

binary classification tool such as a U-Net [100]. By treating the denoising operation

as a binary classification problem, we may achieve two goals the same time: removing

particulates and noise from the image (because they are regognized as non-nanowires)

and binarizing the image without using thresholding algorithms. Then one could feed

this clean, binarized image into MaskRCNN. In addition, novel variants of MaskR-

CNN have been introduced that use transformers and show improved performance,

so these should be tested as well.

In this work, we have provided a recipe for the future analysis of silver nanowire

network failure. We have shown the utility of both Monte Carlo Tree Search and

betweenness centrality as combinatorial optimization tools for pruning networks in

which the target property is maximum conductivity with the minimmum number of

nodes. The image analysis methods demonstrated here, especially the Radon Local

Angle Transform, are well-suited to analysis of any class of image containing pri-

marily tubular structures. We have provided evidence that the preponderance of

contact failures in silver nanowire networks under electrothermal stress are driven

either directly or indirectly by electromigration, and that therefore preventing elec-

tromigration should be a top priority in future devices. In doing so, we have pushed

networks of silver nanowires ever closer to widespread adoption.
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Chapter 6

Afterword

When people ask why I pursued a PhD in Physics, I tell the truth: I thought it would

be fun. This usually elicits some combination of guffaws and assertions that I am a

masochist. The truth is it was fun. There were of course setbacks and failures and

months in which I felt that I might just be the worst scientist to ever live. On average,

though, it was a great time. I consider myself very lucky to have had this opportunity.

At the behest of my committee, I include here a series of brief meditations on my

experiences during my PhD. I certainly hope these will guide some future scientist as

they begin their career but, given the typical readership of a PhD thesis, it’s much

more likely these memories will serve only as a letter to my future self. If the future

Dr. Trebach ever reads this, I hope he finds my words entertaining. Failing that, I

hope he does some serious reflection on how he lost his sense of humor.
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6.1 Read, Damnit!

Why spend a day in the library

when you can learn the same thing

by working in the laboratory for a

month?

Frank Henry Westheimer

Professor Westheimer was obviously being sarcastic when he delivered the above

quip, but it reveals something deep and true about research: there is much more joy

in discovering something for yourself than there is in reading about it in a journal.

Unfortunately, discovering everything for yourself is a terribly inefficient way to use

your time. I have probably learned this lesson a dozen times by now. Of course failed

experiments tend not to get published, so if you are trying something that doesn’t

work, there’s a good chance another scientist also knows it doesn’t work but couldn’t

find a journal to publish it. More often than not, though, I found myself learning

things twice. Once as the result of much toil and trouble and then again, much later,

gift-wrapped in someone else’s paper - a present I had never bothered to open. If you

are a young academic, building a reading habit is one of the best things you can do.

Now that I think about it, this actually holds for old academics too.

There are many corollaries to this lesson of “read before you leap.” One of the

best, in my opinion, is the understanding that review papers are invaluable when you

are starting something. Reviews are written for a (comparatively) general audience.

They usually include very helpful background; they tend to define jargon that would

elsewhere be used without explanation; and they typically contain references to many

seminal results in the field.

Of course you cannot spend all your time reading - to do research you must do

some original work of your own. But many scientists, absolutely including me, would

benefit from spending more time reading. There are giants among us; if our goal is
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to see further, we would be fools not to stand upon their shoulders.

6.2 The Seduction of Simplicity

If you have an idea that seems novel, easy, and promising ... no you don’t. If the idea

truly is easy and promising, it likely isn’t novel . If it the idea truly is novel and easy,

it might not be that valuable. And if an idea truly is promising and novel, you can

bet your bottom dollar that it is not easy. I doubt that this rule holds all the time,

but it’s certainly a good heuristic to keep in mind.

Based on my experiences, I think it is best to focus on finding things that are

promising and novel and assuming that everything will be hard to execute if you

want to do it well. Therefore you should try to choose projects that will require you

to learn skills you want to have. That way, even if the idea doesn’t pan out, you’ve

learned how to do something you care about.

6.3 Unsigned Stirling Numbers of the First Kind

Figure 6.1: The truest tweet ever twote. Permalink
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I expected, correctly, that I would not be the smartest person at MIT. I did not

expect, however, to so regularly feel so very stupid. I remember walking into a collo-

quium about the relevance of the p-adic numbers to string theory. The lecture washed

over me. It was a melange of phonemes, a sound salad. If there had not been others

in the room nodding and chuckling to themselves, I would not have believed it to be

language.

My point here is that there are a great many things to know, and you cannot hope

to know all of them. We do research because we want to learn and discover, so not

being able to know everything is quite unpleasant. I tried to comfort myself with the

notion that, by the time I graduated, I would know as much as these other people.

This was a bad strategy. While I was learning my colleagues were learning too. Even

worse, they were learning faster than me. Of course I (usually) didn’t begrudge my

friends for being so darn smart. I just wanted to be that smart too!

This line of thinking is a trap. I was actually told this multiple times during

my tenure here, but I suppose there are some mistakes you must make for yourself.

For me, the way out was to focus on myself. Rather than comparing myself to my

colleagues, I would compare myself today to myself yesterday. The goal is to become

a little bit better every day, at least on average. Making lists of bite-sized tasks

and checking them off greatly helped with this. That way, if I ever felt like I wasn’t

accomplishing anything, I could look through my pages and pages of checklists and

see hard evidence that I was working and learning and growing. This isn’t something

I’ve mastered - it’s hard to do when surrounded by such brilliant people. But being

around these people has certainly worth the trouble of keeping a list. So if you feel

like you aren’t accomplishing anything, really try to keep track of how you spend

your time. It’s very likely you aren’t giving yourself enough credit.
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Appendix A

A.1 Transparency Calculations

Transparency calculations are based on the formalism developed in [60]. Equations

A.5-A.6 are derived from the Mie scaterring solution for plane waves incident on

infinite cylinders [96].

𝑇 = 𝑒−𝑛𝑠𝐶ext (A.1)

𝐶ext =
1

2

(︀
𝐶⊥ + 𝐶‖

)︀
(A.2)

𝑇‖(𝜃) = 𝑎0 + 2
∞∑︁
1

𝑎𝑛 cos(𝑛𝜃) (A.3)

𝑇⊥(𝜃) = 𝑏0 + 2
∞∑︁
1

𝑏𝑛 cos(𝑛𝜃) (A.4)

119



𝐶‖ = Re
{︂
2𝜆ℓ

𝜋
𝑇‖(0)

}︂
= Re

{︃
2𝜆ℓ

𝜋

(︃
𝑎0 + 2

∞∑︁
𝑛=1

𝑎𝑛

)︃}︃
(A.5)

𝐶⊥ = Re
{︂
2𝜆ℓ

𝜋
𝑇⊥(0)

}︂
= Re

{︃
2𝜆ℓ

𝜋

(︃
𝑏0 + 2

∞∑︁
𝑛=1

𝑏𝑛

)︃}︃
(A.6)

𝑛𝑠 is the number density of nanowires in wires per square meter. The constants

𝐶⊥, 𝐶‖ are, respectively, the extinction cross sections for light polarized perpendicular

and parallel to the long axis of the wire while 𝐶ext is the average of these. ℓ is the

length of a single nanowire (10µm in our simulations). 𝑎𝑛 and 𝑏𝑛 are defined in

[96] (pg 276). Because we are considering the 𝑟 = 0 case (a homogeneous cylinder),

the expressions for 𝑎𝑛 and 𝑏𝑛 can be substantially simplified and are shown in Eqs.

A.7-A.8.

𝑎𝑛 =
𝐽𝑛(𝑥𝑟)𝐽

′
𝑛(𝑚𝑟𝑥𝑟)−𝑚𝑟𝐽

′
𝑛(𝑥𝑟)𝐽𝑛(𝑚𝑟𝑥𝑟)

𝐻𝑛(𝑥𝑟)𝐽 ′
𝑛(𝑚𝑟𝑥𝑟)−𝑚𝑟𝐻 ′

𝑛(𝑥𝑟)𝐽𝑛(𝑚𝑟𝑥𝑟)
(A.7)

𝑏𝑛 =
𝑚𝑟𝐽𝑛(𝑥𝑟)𝐽

′
𝑛(𝑚𝑟𝑥𝑟)− 𝐽 ′

𝑛(𝑥𝑟)𝐽𝑛(𝑚𝑟𝑥𝑟)

𝑚𝑟𝐻𝑛(𝑥𝑟)𝐽 ′
𝑛(𝑚𝑟𝑥𝑟)−𝐻 ′

𝑛(𝑥𝑟)𝐽𝑛(𝑚𝑟𝑥𝑟)
(A.8)

𝐽𝑛 are the Bessel functions of the first kind. 𝐻𝑛 are the Hankel functions of the first

kind. 𝑥𝑟 = 𝑘0𝑅 where 𝑘0 is the wavenumber of the incident radiation in surrounding

medium, which we treat as air, and 𝑅 is the radius of the cylinder (0.075µm in our

simulations). 𝑚𝑟 is the ratio of the wire’s refractive index to the surrounding medium’s

refractive index. Because the surrounding medium is air (refractive index = 1 [22]),

𝑚𝑟 is simply the refractive index of silver at 𝜆 = 550nm which is 𝑛 = 0.055 + 3.32𝑖

[120]. Using these values, we calculate

𝐶ext = 2.7 * 10−12m2 (A.9)
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A.2 Haze Calculations

Haze is defined as the proportion of transmitted light that is refracted at an angle

between 2.5∘ and 90∘ upon exiting the nanowire film. As defined in [60], the haze can

be calculated as

𝐻 =
𝐹12𝐹23(𝐶

90
2.5/(𝐶ext)

(︀
1− 𝑒−𝑛𝑠𝐶ext

)︀
𝐹12𝐹23𝐹31𝑒−𝑛𝑠𝐶ext + 𝐹12𝐹23(𝐶90

0 /(𝐶ext) (1− 𝑒−𝑛𝑠𝐶ext)
(A.10)

where

𝐶𝛼2
𝛼1 =

2𝜆ℓ

𝜋

∫︁ 𝜃2

𝜃1

1

2

(︀
𝐹‖31|𝑇‖(𝜃)|2 + 𝐹⊥31|𝑇⊥(𝜃)|2

)︀
sin(𝜃)𝑑𝜃 (A.11)

Our optical interfaces are labeled as

12 = air→ air

23 = air→ nanowire film

31 = nanowire film→ air

𝑇‖ and 𝑇⊥ are as defined in Eqs. A.5-A.6. The angle dependent fresnel transmission

terms are

𝐹‖31(𝜃) =
sin(2𝜃) sin(2𝛼)

sin2(𝜃 + 𝛼

𝐹⊥31(𝜃) =
sin(2𝜃) sin(2𝛼)

sin2(𝜃 + 𝛼) cos2(𝜃 − 𝛼)

with 𝜃 being the angle of propagation in the nanowire film and 𝛼 being the angle of

propagation in the air beyond the film. Note that 𝛼 and 𝜃 are related by Snell’s law.

𝐹𝑖𝑗 are the angle averaged Fresnel transmission terms at each optical interface

𝐹𝑖𝑗 =
4𝑛𝑖𝑛𝑗

(𝑛𝑖 + 𝑛𝑗)2
(A.12)
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Note that 𝐹12 = 1 and is only included for notational consistency with the source

material. Unlike in [60], we ignore the presence of a glass or PET substrate for

the nanowires when calculating transparency and haze. Note also that the index of

refraction 𝑛3 is the index of refraction of the film of nanowires, not of bulk silver.

Because our networks comprise homogeneous wires, the haze is a pure and mono-

tonic function of nanowire areal density. For this reason, the plot of Haze vs Sheet

Resistance in Fig. 1.1 looks very similar to a rotated version of the plot of Sheet Re-

sistance vs Density included in the main paper. Plotting the haze vs density would

only show a single line, because all networks at the same density will have the same

haze using this method.
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Figure 1.1: Plot of Haze as a function of sheet resistance.
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A.3 Resistance of a Theoretically Optimal Network

In the following, we derive an expression for the resistance of an “optimal” network

of nanowires. Using this theoretical network, we can compare the performance of

real nanowire networks to the best possible performance at a given density. First,

consider some random network of nanowires with length ℓ that are deposited on a

square sample of side length 𝐿. Define 𝑁tot to be the total number of nanowires in

this random network.

Now consider the optimal network: a regularly spaced grid of nanowires. Each

nanowire has length ℓ. The substrate onto which the nanowires are deposited is a

square of side length 𝐿. The substrate has, on the top and bottom, long wires of

length 𝐿 that serve as the cathode and anode. Between the cathode and anode is

a regularly spaced grid of nanowires each of length ℓ < 𝐿. The number of vertical

nanowires required to span the sample is

𝑁span =
𝐿

ℓ
(A.13)

and the number of contacts between the vertical nanowires in this series (including

contacts with the electrodes) is

𝑁contacts =
𝐿

ℓ
+ 1 (A.14)

Let 𝑅𝑐 be the contact resistance at any junction between nanowires or between a

nanowire and an electrode. Let 𝑅𝑤 be the internal resistance of a single nanowire.

The series resistance of a single straight path spanning the distance from one electrode

to the other is the sum of the contributions from contact resistances and internal

resistances.

𝑅span = 𝑁span𝑅𝑤 +𝑁contacts𝑅𝑐 =
𝐿

ℓ
𝑅𝑤 +

(︂
𝐿

ℓ
+ 1

)︂
𝑅𝑐 (A.15)
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Assuming that the random and optimal networks are at the same density, the number

of nanowires in the random network (𝑁tot) will turn into 𝑁 tot
span spanning sets of

nanowiresin the optimal network.

𝑁 tot
span =

𝑁tot

𝑁span
=

𝑁tot

𝐿/ℓ
(A.16)

The spanning sets of nanowires will be both horizontal and vertical. Only the vertical

sets will contribute to conduction between the electrodes. Therefore the number

of spanning sets of nanowires that contribute to conduction is 𝑁 tot
span/2. As these

spanning sets are equivalent to resistors in parallel, we can say that the resistance

between the electrodes is

𝑅optimal =
𝑅span

𝑁 tot
span/2

(A.17)

=
2𝑅span

𝑁tot/(𝐿/ℓ)
(A.18)

=
2𝑅span

𝑁totℓ/𝐿
(A.19)

Note that the total number of wires 𝑁tot can also be expressed as the number density

of wires (𝑛𝑠) times the area of the sample: 𝑁tot = 𝑛𝑠𝐿
2 which yields

𝑅optimal =
2𝑅span

𝑛𝑠𝐿2ℓ/𝐿
(A.20)

= 2
𝑅span

𝑛𝑠𝐿ℓ
(A.21)

= 2
𝐿
ℓ
𝑅𝑤 +

(︀
𝐿
ℓ
+ 1
)︀
𝑅𝑐

𝑛𝑠𝐿ℓ
(A.22)

If we then take the contact resistance 𝑅𝑐 to be the average contact resistance ⟨𝑅𝑐⟩ at

junctions in our random network, we get

𝑅optimal = 2
𝐿
ℓ
𝑅𝑤 +

(︀
𝐿
ℓ
+ 1
)︀
⟨𝑅𝑐⟩

𝑛𝑠𝐿ℓ
(A.23)
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A.4 Correcting for Finite Size Effects

Formally, the percolation threshold is the density at which there is a 50% chance of

forming an infinite connected cluster of sticks. Dealing with finite networks requires

some modification of this definition. We define percolation as the existence of a cluster

of sticks that is connected to both the cathode and anode. Because our samples are

finite, we must rescale our percolation threshold. The standard expression for this

density in an infinite network is

𝑛𝑐 =
5.63726

ℓ2
(A.24)

Where 𝑛𝑐 is the critical density in wires per area and ℓ is the wire length [71]. Defining

𝐿 to be the side length of our square samples, we can get an expression for the rescaled,

effective percolation threshold using an empirical expression from [70].

𝑛eff
𝑐 =

5.63726

ℓ2
+

1

ℓ𝐿
+

5.5

𝐿2
(A.25)

We measure all densities in terms of the dimensionless parameter 𝛼 which represents

density divided by the critical density

𝛼 =
𝑛

𝑛eff
𝑐

=
𝑁𝑤/𝐿

2

5.63726
ℓ2

+ 1
ℓ𝐿

+ 5.5
𝐿2

=
𝑁𝑤

5.63726𝐿2/ℓ2 + 𝐿/ℓ+ 5.5
(A.26)

Where 𝑁𝑤 is the number of wires of length ℓ in the network. Because our nanowires

are subdivided, though, the number of nanowires in the network at any given time is

not obvious. To circumvent this, we multiply the numerator and denominator of the

above by ℓ2

𝛼 =
𝑁𝑤ℓ

2

5.63726𝐿2 + 𝐿ℓ+ 5.5ℓ2
(A.27)

Note that the term 𝑁𝑤ℓ is the number of wires times the length per wire and is

therefore equal to the total length of all wire segments on the sample, a quantity we
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call Σℓ.

𝛼 =
ℓΣℓ

5.63726𝐿2 + 𝐿ℓ+ 5.5ℓ2
(A.28)

With this expression, can measure the density of the network, relative to 𝑛eff
𝑐 , without

explicit reference to the number of wires present. With this rescaling, we must also

modify our expression giving the relationship between resistance and density near the

percolation threshold. With no rescaling, we have

𝑅𝑠 ∝ (𝑛− 𝑛𝑐)
−𝛾 (A.29)

To account for the finite size of our network, we convert this expression to be

𝑅𝑠 ∝ (𝑛− 𝑛eff
𝑐 )−𝛾 = 𝑛eff

𝑐

(︂
𝑛

𝑛eff
𝑐

− 1

)︂−𝛾

= 𝑛eff
𝑐 (𝛼− 1)−𝛾 (A.30)

which assumes that the critical exponent 𝛾 is unaffected by the network’s finite size.

Because 𝑛eff
𝑐 is a constant, it can simply be absorbed into the constant of proportion-

ality yielding

𝑅𝑠 ∝ (𝛼− 1)−𝛾 (A.31)

We fix the constant of proportionality by matching the theoretical resistance to the

simulated resistance at the starting (highest) density before any nodes are removed

𝛼0, and define 𝑅0 = 𝑅𝑠(𝛼0).

𝑅𝑠 = 𝐶(𝛼− 1)−𝛾 (A.32)

𝑅𝑠(𝛼0) = 𝑅0 = 𝐶(𝛼0 − 1)−𝛾 (A.33)
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𝐶 = 𝑅0(𝛼0 − 1)𝛾 (A.34)

𝑅𝑠 = 𝑅0

(︂
𝛼− 1

𝛼0 − 1

)︂−𝛾

(A.35)
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A.5 Monte Carlo Tree Search Implementation

We define actions and states here such that readers could reproduce this method by

reading this appendix and [17]. To understand how MCTS is applied, we first reframe

our problem as a Markov Decision Process defined by a set of states 𝑆 and a set of

actions 𝐴. Each state is a graph comprising a set of nodes 𝑁 representing nanowire

segments and a set of edges 𝐸 representing connections between these nanowire seg-

ments. Recall that each nanowire may contain multiple segments and therefore may

correspond to multiple nodes. Connected nodes that come from the same nanowire

are connected by internal edges. Connected nodes that come from different, inter-

secting nanowires are connected by contact edges.

We define the percolating cluster to be the cluster of nodes connected to current

source (cathode) and current sink (anode). We define a dangling end to be a nanowire

that is connected to exactly one other nanowire through a contact edge. Each possible

action 𝑎 involves the following

1. Select a node 𝑛 ∈ 𝑁 at random

2. Remove 𝑛 from the graph along with any other nodes that are part of the same

nanowire as 𝑛.1

3. While there are any remaining nodes that are not in the percolating cluster or or

remaining nodes in dangling ends, remove those nodes. Repeat this process until

there are no more dangling ends and all remaining nodes are in the percolating

cluster.

For some starting state 𝑠0, the full state space 𝑆 contains 𝑠0 as well as any other state

that can be reached from 𝑠0 by a sequence of actions. A state is defined as terminal
1Note that this strategy is actually somewhat problematic. Nanowires with many segments and

therefore many nodes will be chosen more frequently than other nanowires. Nanowires have many
segments because they intersect with many other nanowires. Therefore the nanowires that are
preferentially sampled are ones that are somewhat more likely to be important to conduction. This
likely artificially degrades the de-densification power of MCTS. In future work, scientists should
instead select nanowires at random, rather than individual segment nodes.
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if there is no longer a path connecting current source and current sink. The reward

function of a terminal state is the FOM of its parent state divided by 200. We divide

by 200 to ensure that reward values lie on the interval [0, 1] which is required for the

Upper Confidence Bound [17] to properly minimize regret.
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A.6 Regressions with Varying Model Parameters

Table A.1 shows the results of several logistic regressions on the same experimental

data trying to predict failure. The regressor treats failure as the positive outcome

(value 1) and remaining intact as the negative outcome (value 0), so a positive co-

efficient indicates that an increase in the associated attribute will increase failure

probability while a negative coefficient indicates that an increase in the associated

attribute will decrease failure probability. For a given class (0 or 1), balanced class

weighting is implemented as

𝑤𝑖 =
𝑁

2𝑁𝑖

(A.36)

where 𝑤𝑖 is the weight for class 𝑖, 𝑁 is the total number of samples, and 𝑁𝑖 is the

number of samples with a true label of 𝑖. L2 regularization is implemented with a

coefficient of 1, so this adds a term of
⇀

B ·
⇀

B to the negative log loss function during

optimization. The value of
⇀

B is defined in Equation 3.10.

Model Parameters Attribute Nanowire Segments Contacts

No class weighting, no
regularization

Current 3.5 18
Power 3.3 -25

Balanced class weighting,
no regularization

Current 4.7 22
Power 13 -32

No class weighting, L2
regularization

Current 3.3 2.5
Power 2.5 0.36

Balanced class weighting,
L2 regularization

Current 4.8 15
Power 11 -17

Table A.1: Logistic regression coefficients extracted from data in Chapter 3. First
row is reproduction of the regression results from Table 3.4
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Attribute Draw Frequency Distribution Units

Resolution Once per image 𝑈(2.58, 9) pixels/µm
Wire length / area Once per image 𝑈(0.44, 1.5) 1/µm

𝑠 Once per image 𝑈(0.33, 0.8) None
𝜇 Once per image 𝑈(−1.74,−1.69) µm
𝑌 Once per image 𝑈(6.57, 20.2) µm

Sample width 𝑤 Once per image 𝑈(40, 90) µm
Sample height ℎ Once per image 𝑈(50, 100) µm

Nanowire length 𝑙 Once per nanowire Eq. A.37 µm
Nanowire Diameter Once per nanowire 𝒩 (0.120, 0.02) µm
Number anchors 𝑛 Once per nanowire 𝑝𝑛 ∝ 1/𝑛, 2 ≤ 𝑛 ≤ 5 None

⇀
v𝜎 Once per image 𝑈(5, 15) µms−1

⇀
v 𝑛− 1 times per nanowire 𝒩

(︁⇀
0,

⇀
v𝜎

)︁
µms−1

𝑡− Once per image 𝑈(0.1, 1) s
𝑡+ Once per image 𝑈(2, 7) s
𝛼 Once per image 𝑈(1.1, 10) None

𝑡′ Once per nanowire
𝑒−𝑡′

1− 1/𝛼
None

Table A.2: Table of of properties used in generating synthetic data. In the distribution
column, 𝑈(𝑎, 𝑏) denotes the uniform distribution with support only between 𝑎 and 𝑏;
𝒩 (𝜇, 𝜎) indicates the normal distribution with mean 𝜇 and standard deviation 𝜎.

A.7 Synthetic Image Generation

As discussed in Chapter 4, the process of generating synthetic images can be broadly

divided into two stages: (1) creating the underlying geometrical model and (2) turning

that model into a realistic image by adding imaging artifacts, particulates, noise, etc.

A table of parameters and distributions used in generating the geometric model are

shown in Table A.2.

To ensure heterogeneity in our dataset, the values in the “Attribute” column are

drawn from the distribution in the “Distribution” column with frequency as indicated

in the “Draw Frequency” column. In the distribution column, 𝑈(𝑎, 𝑏) indicates the

uniform distribution with lower bound 𝑎 and upper bound 𝑏 while 𝒩 (𝜇, 𝜎) indicates

the normal distribution with mean 𝜇 and standard deviation 𝜎. As much as possible,

these values are informed by the experimental data collected in Chapter 3. The

bounds of the distributions for resolution, wire length per area, 𝑠, 𝜇, and 𝑌 are set
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with the distribution lower bounds equal to 0.85 times the experimentally observed

lower bounds and the upper bounds equal to 1.15 times the experimentally observed

upper bounds. The per sample values of 𝜇, 𝑌, 𝑠 are obtained by a maximum likelihood

fit of the lognormal distribution of Equation A.37 to the observed nanowire length

distributions for that sample.

𝑝(𝑙 | 𝑠, 𝜇, 𝑌 ) =
1

𝑠(𝑙 − 𝜇)
√
2𝜋

exp

(︃
ln2
(︀
𝑙−𝜇
𝑌

)︀
2𝑠2

)︃
(A.37)

The width and height of the sample are drawn from uniform ditribution with bounds

of 40–90 µm for width and 50–100µm for height. This yields synthetic images that

cover roughly half the area of our experimental images, but this is necessary because,

at typical resolutions, images of experimental size cannot fit on a GPU during MaskR-

CNN training. To create an image, nanowires are added individually according the

previously drawn parameters until the target density is reached (or exceeded). We

use wire length per area rather than number density of nanowires because our sample

is considerably smaller than a single nanowire. It is therefore somewhat undefined

exactly how to quantify a single nanowire. The notion of total nanowire length, how-

ever, does not suffer from this ambiguity and is also a suitable way of specifying

nanowire density.

The process of adding a single nanowire to the image begins with drawing a

target length 𝑙, a number of anchors 𝑛, an initial timestep 𝑡0, and an initial position

somewhere on the sample. The parameters 𝑙 and 𝑛 are drawn as described in Table

A.2. The value of 𝑡0 is set by

𝑡0 = 𝑡− + (𝑡+ − 𝑡0)

(︂
1− 𝑡′

ln𝛼

)︂
(A.38)

where 𝑡′, 𝑡−, 𝑡+ have been drawn as described in Table A.2. The initial position
⇀
r 0

is drawn from a uniform distribution covering the entire rectangular sample region.

The point
⇀
r 0 is the first of the 𝑛 anchor points. Then a sequence

⇀
v1,

⇀
v2, ...

⇀
v𝑛−1 of
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𝑛− 1 velocities are drawn from the distribution 𝒩 (
⇀

0,
⇀
v𝜎). We then iterate through

this sequence starting at the second velocity and setting
⇀
v𝑚 ←

⇀
v𝑚 +

⇀
v𝑚−1. These

velocities are then turned into the other 𝑛− 1 anchor points using the relations

⇀
r𝑚 =

⎧⎪⎨⎪⎩
⇀
r 0 if 𝑖 = 0

⇀
r𝑚−1 +

⇀
v𝑚𝑡0(1.1)

−𝑚

(A.39)

These anchor points are then splined into a curve using the scipy utility splprep

with 𝑘 = 𝑛 − 1 and represented by a sequence of 100 points obtained by evaluating

the spline. If the curve is longer than the drawn value of 𝑙, which is almost always

the case, the line is shortened by removing some points until its length is correct.

We add noise to the images using PoresPy [39]. We first add large scale, mostly

transparent, spatially correlated gaussian noise to simulate brightness fluctuations.

Then we add small scale, mostly opaque, spatially correlated gaussian noise to simu-

late particulates on the sample surface.
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