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ABSTRACT

Interactive visualizations are powerful tools for Exploratory Data Analysis (EDA), but
how do they affect the observations analysts make about their data? We conducted a qual-
itative experiment with 13 professional data scientists analyzing two datasets with Jupyter
notebooks, collecting a rich dataset of interaction traces and think-aloud utterances. By
qualitatively coding participant utterances, we introduce a formalism that describes EDA
as a sequence of analysis states, where each state is comprised of either a representation an
analyst constructed (e.g., the output of a data frame, an interactive visualization, etc.) or
an observation the analyst made with a representation (e.g., about missing data, the rela-
tionship between variables, etc.). By applying our formalism to our dataset, we are able to
identify that interactive visualizations, on average, lead to earlier and more complex insights
about relationships between dataset attributes compared to static visualizations. Moreover,
by calculating metrics such as revisiting count and representational diversity, we are able to
uncover that some representations serve more as as "planning aids" during EDA rather than
tools strictly for hypothesis-answering. We show how these measures helped identify other
patterns of analysis behavior, such as the "80-20 rule", where a small subset of representa-
tions drove the majority of observations. Based on these findings, we offer design guidelines
for interactive exploratory analysis tooling and reflect on future directions for studying the
role that visualizations play in EDA.

Thesis supervisor: Arvind Satyanarayan
Title: Professor of Electrical Engineering and Computer Science

3



4



Acknowledgments

I am deeply grateful to my advisor, Dr. Arvind Satyanarayan, whose brilliance and gen-
tleness have shaped my journey as a researcher. Arvind, you inspire me not only through
your exceptional intellectual contributions but also through your compassionate approach to
research. When I’ve faced difficulties, your advice to "be gentle with myself" reminds me
that research is a marathon, not a sprint, and that self-compassion is a necessity, not just a
nice-to-have. I feel lucky to be your advisee, and I’m looking forward to the work we will do
together.

I owe a debt of gratitude to my family, whose unrelenting support has been crucial in my
pursuit of research. I am particularly blessed to have parents whose dedication to achieving
their own goals has instilled in me a strong ambition. Mom and Dad, your efforts to provide
a nurturing environment for me have left an indelible mark on my character. To my sister
Rachel, words fall short of expressing how profoundly you have influenced my life. Your
support and love have been my constants in this ever-changing journey.

I extend my thanks to my collaborators—the MIT Vis group, Miriah, Alex, Carolina,
Amy, and Evan. You all have sparked my interest in visualization and supported my transi-
tion from biology to computer science. You have shown me that visualization isn’t just the
coolest work you can do, but also that it attracts some of the best people.

I would also like to express my thanks to my friends and the broader community here
in Boston. While there are too many individuals to name, I want to highlight the commu-
nity organizations that have made Boston feel like home. A special thank you to Stonewall
Sports, where I found an incredible group of friends through dodgeball and kickball leagues.
Additionally, I am grateful for the warm welcome and invigorating early morning workouts
at the MIT Rowing Club. My appreciation also extends to my Unitarian Universalist congre-
gation and the Cambridge Insight Sangha, both of which have been instrumental in helping
me cultivate a spiritual practice to hold me steady.

This thesis was made possible through the support of the NSF Graduate Research Fel-
lowship Award 2141064 and the NSF CAREER Grant 1942659.

5



6



Biographical Sketch

Dylan Wootton is a PhD student at the Massachusetts Institute of Technology (MIT) in the
Computer Science Artificial Intelligence Laboratory. Under the supervision of Dr. Arvind
Satyanarayan, Dylan’s research aims to enhance the effectiveness of data communication
through the design of interactive data visualizations. His work notably incorporates princi-
ples from cognitive science and anthropology to study effectiveness of interactive interfaces.

Previous to MIT, he was a software engineer for Microsoft where he built data analyt-
ics systems and conducted visualization research at the University of Utah. His work in
data visualization has received numerous honors including academic conference awards and
grants from National Geographic and the National Science Foundation Graduate Research
Fellowship Program.

7



8



Contents

Title page 1

Abstract 3

Acknowledgments 5

Biographical Sketch 7

List of Figures 11

1 Introduction 13

2 Related Work 15

3 Methods 17
3.0.1 Study Design, Procedure, and Participants . . . . . . . . . . . . . . . 17
3.0.2 Controlling for Library Expertise with Altair Express . . . . . . . . . 18
3.0.3 Data Analysis Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 A Formal Description of EDA Sessions 21

5 Characterizing Analyst Utterances 27
5.0.1 Temporal Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.0.2 Sequential Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Characterizing Representations and Usage 31
6.0.1 Temporality, Diversity, and Velocity . . . . . . . . . . . . . . . . . . . 31
6.0.2 Hover Patterns and Observations . . . . . . . . . . . . . . . . . . . . 32
6.0.3 An Interactive Draw Towards Complexity . . . . . . . . . . . . . . . 35
6.0.4 Patterns of Broad Analysis Space Exploration . . . . . . . . . . . . . 36
6.0.5 Thinking in the Language of Interaction . . . . . . . . . . . . . . . . 38

7 Discussion and Future Work 41
7.0.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.0.2 Implications for EDA Tool Design . . . . . . . . . . . . . . . . . . . . 42
7.0.3 Towards Richer Methods for Studying Interactive Analysis as Situated

Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

9



References 45

10



List of Figures

4.1 A formal definition of EDA sessions in terms of analysis states that comprise
either a representation alone (e.g., a visualization, dataframe output, etc.)
or an observation made with one or more representations. Italics indicates
terminal symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Utterances are structured as a 2-level hierarchy, with the highest level codes
(Dataset, Variable, Relationship, Process) describing the general topic of an
utterance, and lower level detail codes delineating the utterance’s content
more precisely. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Example of Ada’s analysis session encoded in our formalism. For clarity, we
have omitted some levels of nesting for the formal description of this example 25

5.1 Frequency of high-level utterances categories over time across static and in-
teractive charts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Left, transition matrix of sequential utterances; Right, happiness data tran-
sition matrix by Condition [Interactive, Static]. (1) The diagonal transi-
tions represent repeated utterances of the same semantic type. (2) The large
amount of Distribution Shape utterances after a Missing Data utterance,
show how univariate profilers prompted consideration of missing data at a col-
umn instead of a row level view. (3) The Variable Gap, whereby participants
inside of the interactive condition with the happiness dataset tended to skip
over distribution characterization. . . . . . . . . . . . . . . . . . . . . . . . 29

6.1 Left: Representation creation over time. Right: Heatmap of the number of
times different Visualizations were used to make an Observation, according to
UtteranceType. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.2 Scatterplot of computed representationDiversity and representationalVelocity
for each analysis session. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.3 Average revisitCount and count of Plan of Action utterances by Representa-
tion. Representations are colored by whether or not it is an all-attribute repre-
sentation. Representations to the left are typically one-off question-answering
tools whereas representations to the right are frequently revisited when decid-
ing analysis paths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

11



6.4 Left: Numbers of Utterances between static and interactive versions of the
profiler and scatterplot visualizations. The most common interaction tech-
niques used for these representations were cross-filter brushes, tooltips, and
filtering sliders. Right: Comparison of which data types were discussed in ut-
terances in static vs. interactive visualizations. The plot indicates that there
is a steep rise in multivariate relationship utterances in interactive visualizations 36

6.5 Stripplot of % of total unique Observations visited per analysis session, broken
down by high level type and colored by Analysis Condition (Interactive or
Static). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

12



Chapter 1

Introduction

The research literature widely considers interaction to play a central role in effective visual-
ization for exploratory data analysis (EDA) [1], [2] because it supports a “dialogue between
the analyst and the data” [3]. Recent empirical results, however, suggest a less clear pic-
ture. For instance, Mosca et al. found that adding interactivity to static visualizations does
not improve participants’ accuracy in Bayesian reasoning tasks [4] while Theis et al. found
no significant difference in participants’ error rates when working with interactive or static
visualizations of uncertainty [5]. And, through a contextual inquiry with professional data
scientists, Batch & Elmqvist identify a gap where interactive visualization is primarily used
to communicate results at the end of an analysis, rather than as a medium for conducting
the analysis itself [6].

We hypothesize two diagnoses for these discordant bodies of results. First, much of
the work demonstrating the value of interactive visualization in EDA is conducted within
systems purpose-built to support this activity (e.g., Tableau [6], Voyager [7], VisTrails [8],
among others [9]). As a result, participants are not able to “opt out” of the modality and
conduct their analysis through other means (e.g., via code). Second, although existing ap-
proaches largely recognize that analysis is a situated activity—that is, it involves human
analysts working in a particular context, making observations with various representations
of data —thus far, these methods often focus on one aspect of this behavior rather than
synthesizing across it. For instance, thematic analyses have usefully been used to identify
patterns of analytic behaviors [9], but it can be difficult to describe how these patterns man-
ifest with particular interactive representations. On the other hand, quantitative approaches
(e.g., interaction telemetry and provenance [7], [10]) capture detailed information about
how analysts use particular representations but, without bringing qualitative approaches to
bear, can have trouble disambiguating observations — for instance, does hovering over a vi-
sualization indicate hesitation, gesticulation, or hypothesis testing? Recent “insight”-based
approaches [11] have come perhaps the closest to capturing the richness of analytic activ-
ity, but are presently focused on a narrow band of activity: quantitative insights arrived at
through data transformation.

To more deeply study how choices of data representations (including interactive visu-
alizations) affects EDA, we conducted a qualitative experiment [12] with 13 data science
professionals using Jupyter notebooks. Participants were asked to complete two analysis
tasks: the first with a lightweight library for authoring static visualizations, followed by a
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second with an extended library including interactive visualizations. Given their widespread
use, Jupyter notebooks afford a more real-world context to study analytic behavior and,
critically, do not presuppose the value of interactive visualization. Thus, across both tasks,
participants were free to forego visualization and interaction altogether, and simply author
Python code using any third-party libraries they wished.

We collected a rich corpus of participants’ think-aloud utterances alongside log-telemetry
data of their notebook activity, and conducted a mixed-methods analysis that joined quali-
tative content analysis [12] with quantitative analysis of interaction traces. We express our
mixed-methods analysis through a novel formalism that describes EDA sessions as a sequence
of analysis states. Each analysis state is either the representation an analyst constructed
(e.g., the output of a dataframe, or an interactive visualization), or an observation an ana-
lyst made (i.e., an utterance they issued about one or more representations). We identified
15 distinct types of utterances, grouped into four categories: dataset utterances about its
size or orientation, or whether there was any missing data; variable utterances about its
distribution or outliers; relationship utterances that expressed concepts including strength,
directionality, and clustering; and process utterances that described intended analysis steps,
or commented about meta characteristics about a representation.

Our mixed-methods analysis, and resultant formalism, reveals that observations follow
distinct temporal patterns during EDA (§ 5.1). Analysts tend to address dataset-level meta-
data early on, while variable distributions and relationship insights occur throughout the
analysis. Notably, interactive visualization accelerate relationship utterances, with these
statements occurring 15% earlier than under the static condition. In analyzing representa-
tion telemetry (§ 6.0.2), we define a series of quantitative metrics including revisit count, or
the total number of times a participant hovered over a representation; output velocity, or the
number of representation instances created per unit time; and, representational diversity, or
the number of unique representation types created during an analysis.

We use these metrics to investigate patterns of broad exploration, revealing why certain
participants are able to achieve broad coverage during their EDA (section 6.0.4). Finally, by
bridging think-aloud utterances and representation telemetry, our formalism helps uncover
patterns in representation usage such as the 80-20 rule of representation use (section 6.0.2)
and the propensity to use all-attribute representations as aids to plan their analyses (section
6.0.2).

Taken together, our work contributes to calls for "deepening [the] theoretical foundation"
of exploratory data analysis [13].
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Chapter 2

Related Work

Over the past decade, studies of Exploratory Data Analysis (EDA) have sought to understand
visualization use in analysis contexts [7], [9], [14]–[20]. To study the open and iterative nature
of EDA these studies leverage a wide diversity of methodological approaches.

Interviews and Surveys: Interviews have been a primary tool to study data scientist
workflows. Kandel et al. conducted foundational work understanding the stages of data
science work [21]. They interviewed data scientists across various enterprise organizations
outlining five key job responsibilities: discovery, profiling, data wrangling, modeling, and
reporting. These elements are central to data science activities. Further refining this under-
standing, Wongsuphasawat et al. conducted interviews that revealed a more detailed set of
16 analytic behaviors, such as converting data formats and examining bivariate plots, pro-
viding a set of commonly complete tasks in data scientist’s workflows [22]. Interviews also
enable researchers to investigates attitudes towards particular EDA tools, such as Batch’s
[6] work to understand the "Interactive Visualization Gap" in EDA.

Furthermore, when conducting empirical studies, surveys are used to follow up an ex-
ploratory analysis session [16]–[18]. Most commonly, surveys include questionnaires like the
NASA-TLX[23] for understanding subjective workload during a task [18] or Likert scale
questions to elicit preference using a particular tool [16], [17].

Interaction Traces Recording interaction logs of system use is a common method to
characterize an analysts EDA. We refer to [24] for a full classification of the ways that
interaction traces are analyzed to inform visualization systems and discuss major uses here.

Interaction traces used from demonstrating feature usage [7], [16], [17] to characterizing
more complex patterns of action sequences [10]. Interaction logs have also been used to create
metrics to assess exploratory behavior with particular visualization systems and reveal how
user characteristics influence exploratory patterns [25]. Often, interaction traces are used
in conjunction with other characterization strategies. For example, they are often used in
Attribute methods to demonstrate when a particular set of attributes is "considered" ranging
from hovering over particular visualizations [7] to visualization creation in tableau [15].

Attribute Methods Attribute based methods operationalize EDA in terms of the num-
ber of attribute sets that are explored [7], [15], [16], [26]. The most recent use of attribute
characterization was by Battle and Heer to create analysis search trees showcasing ex-
ploratory behavior during Exploratory Visual Analysis, a subset of EDA [15]. Such an
approach defines depth in terms of the length of the longest search branch (maximum num-
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ber of attributes encoded in a visualization) and breadth in terms of the number of leaf nodes
in an analysis search tree (the number of attribute set branches explored). Operationalizing
EDA in this way revealed particular attribute sets that appeared to be key "analysis-states"
during participant analyses. Such models also found that exploration in tableau is primarily
depth oriented.

Thematic Analysis: Thematic analysis approaches seek to identifying occurrences of
broad behavioral patterns[9], [19], [27] of participant use of a tool. We find these approaches
typically involve participants thinking aloud in order interpret the meanings of behaviors
given their context. For example, Kale et al. [9] investigated the effect of a exploratory tool
that enables model-checking through a within subjects comparison with data analysts. Using
thematic analysis, they characterize how the patterns of analysis shifted when the model-
checking functionality was introduced. Such observations revealed that this functionality
"structure participants’ thinking around one or two long chains of operations" giving rich
classifications of the analysis behavior. Thematic analysis does not seek to characterize the
content of entire analysis session, choosing instead to focus more on larger themes that were
observed during exploration.

Insight Methods The closest approach to our work is that of insight methods [28].
Insight methods seek to identify the insights made by a participant during an EDA, often by
employing a think-aloud process [27], [28] or eliciting insights as a part of open-ended free
responses [29]. This unstructured data is then extracting into individual units of analysis.
The units are then coded based on their semantic content– such as Generalization or Hy-
pothesis [30]. At this individual unit level, additional coding passes can be done to extract
additional information from the insights, such as if they are broadening or deepening [16]
or whether they are factually correct [31]. Using these coded utterances, existing methods
then often aggregate these insights across entire analysis session, computing metrics such as
time-to-first insight and total number of insights [20], [27], [28], [30], [31].

We differentiate our approach from previous insight methods through the use of qualita-
tive content analysis to record both what is said and what interface features were used to
make such utterance. By explicitly linking the Observation to the Representation used to
make it. As a result, we can compute aggregated information about insights during analysis
conditions 5 but also investigate how insights are formed using particular representations
( §6.0.1). This approach lets us investigate the role of specific visualizations on the EDA
process, such as how analysts make 80% of their utterances from 20% of their representations
( §6.0.2). They also cannot illuminate how insights differ between interactive and static visu-
alizations when they are used within a single analysis session ( §6.0.3). Additionally, our use
of qualitative content analysis allows us to capture a wider, more nuanced range of insights,
revealing how specific visualizations trigger particular types of observations ( §6.1).
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Chapter 3

Methods

Our study design was driven by our motivating research question: How might interactive
visualizations affect behavior during exploratory data analysis in computational
notebooks? This inquiry is both descriptive and comparative. We wish to describe how
data scientists conduct analyses (the steps taken, representational choices, and inferences
made) and to compare how these behaviors unfold with static vs. interactive visualizations.
Thus we adopted a hybrid design, combining task observation and semi-structured interviews
situated in the structure of a repeated-measures experiment: an approach described in the
mixed methods literature as a qualitative experiment [12].

3.0.1 Study Design, Procedure, and Participants

Our independent variable is representation interactivity with two levels: static and in-
teractive. We use a repeated-measures (i.e. within-subjects) structure where we measure
participant behavior in two tasks (static, interactive), and with two datasets that are coun-
terbalanced in their assignment across the two tasks. Note that we did not counterbalance
static/interactive task order because the interactive features necessarily built upon knowledge
of the static visualizations. Participant engaged in a 90-minute (recorded) video-conference
divided into four parts. The lead author acted as interviewer and began with introductions
and informed consent, before facilitating two EDA Sessions followed by an interview.

Each EDA Session began with an introduction of the (static/interactive) features of the
visualization library (Features Intro), followed an opportunity for the participant to explore
the new APIs via sample code (Features Tutorial). Next, participants were given a notebook
with a dataset and scenario for an Analysis Task, and asked to complete an exploratory
analysis in approximately 25 minutes while sharing their thoughts aloud as if they were
explaining their work to a junior colleague. The structure of the Static tasks were identical.
The dataset was counterbalanced across participants. Each session concluded with a semi-
structured interview and debrief where participants offered feedback on the visualization
library, and were asked about their experience with static and interactive visualizations,
and how they conduct exploratory analyses as a part of their occupation. We recruited
16 participants through social media, personal networks, and crowdwork platforms. Two
participants were involved in pilot studies to refine data collection procedures. Of the 16
participants who completed the study, three were excluded due to either incomprehensible
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think-aloud responses, or an insufficient level of Python proficiency. Our resultant pool
comprised 13 participants: 4 women, 8 men, and one person who identified as non-binary;
participant ages ranged between 27 and 41 years (average age 31). All participants regularly
conducted exploratory data analysis using Jupyter notebooks as part of their occupation.
Their most common job title was Data Scientist (5), followed by PhD Candidate (3), Software
Developer (2), Data Analyst (1), Economist (1), and Statistician (1).

3.0.2 Controlling for Library Expertise with Altair Express

For our research question, while participants were free to use any third-party Python package
as part of their data analysis, it was important that they all used the same visualization
library in order to facilitate comparisons between participants’ behaviors. However, this
introduces a confound: participants’ existing familiarity and expertise with visualization
packages. To control for their prior expertise, we opted to develop a novel visualization
package to establish a common baseline of relative novelty for all participants.

Our library, called Altair Express (ALX)1 is a Python-based visualization package that
offers a high-level declarative API for specifying interactive visualizations. In contrast to
the composable approach of the existing Altair visualization package (and its underlying
grammar Vega-Lite [32]), ALX instead provides a typology of visualizations and interaction
techniques—an approach we chose to reduce specification friction analysts might face during
EDA. We surveyed existing Python-based chart typologies (e.g., Plotly Express, seaborn,
etc.) and implemented the set of statistical charts we hypothesized to be most relevant
to EDA including: barplot, countplot, hist, jointplot, lineplot, heatmap, pairplot,
profile, scatterplot, and stripplot.

ALX’s interaction typology is defined in terms of effect-action pairs: an effect is the
change to the data or encodings that occurs when a user performs an interaction (e.g., show-
ing a tooltip, zooming into a region, etc.); an action is the event that triggers the interaction
(e.g., clicking, brushing, etc.). ALX’s interaction typology comprises: highlight_brush,
filter_brush, tooltip_hover, pan_zoom, filter_slider, filter_type, highlight_color,
and highlight_point.

Using the + operator, visualization and interaction types can be composed together. For
instance, alx.highlight_brush() + alx.scatterplot(data, x=’Weight’, y=’Horsepower’)
produces a scatterplot of the Weight and Horsepower of cars; users can brush the scatter-
plot highlighting selected points in blue and dimming the rest to gray. Using +, users can
add multiple interaction techniques to a single visualization, or concatenate multiple static
and/or interactive visualizations together to produce a custom dashboard. ALX implements
these interactive visualizations via Vega-Lite [32].

Finally, besides its specification language, ALX implements a handful of features de-
signed to address limitations researchers have identified of using interactive visualizations in
computational notebooks [6], [17]. For example, with ALX, analysts can “copy-and-paste”
with an interaction technique in order to extract the underlying selection: when a selection
is made— for instance, by clicking on a point, dragging a slider, or brushing—the analyst

1The name was chosen to mirror the relationship between Plotly and Plotly Express. That is, Altair :
Altair Express :: Plotly : Plotly Express.

18



can press control + c on their keyboard to copy the pandas query necessary to select the
data. This query can then be pasted into the subsequent cells in the notebook to filter down
to the selected data for further investigation or charting.

3.0.3 Data Analysis Procedure

We applied an inductive content analysis [33], [34] to the rich stream of video and think-
aloud data our participants produced. We split transcripts of the video recordings into
discretized units of meaning we call utterances. And, using participants’ screenshare, mouse
gestures, and linguistic prosody, we additionally coded what representations participants
used in the process of making a particular utterance. We limited the scope of our coding to
only include the Analysis Tasks —thus, we excluded utterances participants made when they
were familiarizing themselves with ALX’s features, debugging, or during the post-interview.

The first and second authors followed an inductive process consistent with the application
of grounded theory in HCI [33], [35] to develop a codebook for categorizing participants’
utterances. This processes involved eight iterations of independent coding centered on: (1)
developing structure, (2) aligning criteria, and (3) reconciling discrepancies. In the final
round of reconciliation, the first and second authors independently coded a random sample
of 100 utterances, to calculate an Inter-Rater Reliability (IRR) measure of Krippendorf’s
α = 0.85.2

2Krippendorf’s alpha is the recommended IRR metric for multi-code structures where more than one can
can be applied to one observation. Using a more generous alternative we calculate reliability of (Observed
Agreement=0.87). In both cases our IRR passes normative thresholds of reliability [36].
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Chapter 4

A Formal Description of EDA Sessions

We express the results of our mixed-methods analysis through the formal description shown
in Figure 4.1. We find an EDA session progresses through a sequence of analysis States. Each
State can either be a standalone Representation (e.g., a visualization, dataframe printout,
etc.) or be a verbal Observation that an analyst makes about a particular Representation.
For each representation, we collect a variety of Telemetry data but our analysis focuses
only on HoverWindows (i.e., time spans of when a participant hovered over a given repre-
sentation)—we leave other abstractions that can be derived from telemetry data to future
work.

Observations more richly associate Representations with the verbal Utterances—we sep-
arately code for RepresentationalUsage to be able to distinguish observations made with
static representations from those made with interactive representations, but where the in-
teraction was not used to make the observation. We use the term Utterance rather than
insight or inference to indicate that, even with the context of the participant’s screenshare,
mouse gestures, and linguistic prosody, we cannot precisely determine the participant’s state
of knowledge. Thus, we work to interpret as much of each utterance’s semantic content as
possible via our qualitative coding procedure. As Figure 4.2 shows, this procedure yielded
16 types of Utterances spread across four categories: utterances about the overall Dataset
including its size, orientation, quality, provenance, and metadata; utterances about individ-
ual Variables including about the distribution of data values (e.g., mix, max, outliers) and
the shape of this distribution; utterances about Relationships between variables including
whether any relationship exists and, if so, what form, strength, and direction this relation-
ship takes; and, finally, utterances about the overall analytic Process including statements
about intended next steps or remarks about representations that are not about depicted
data.

We find this formalism offers us unique affordances when applied to analyze EDA activ-
ity. Consider the following vignette which is inspired by behavior we witnessed our study
participants engage in:

Ada, a professional data analyst, is tasked with investigating a customer purchase be-
havior dataset that includes customer age, purchase history, product categories, and
a customer satisfaction rating (scaled 0-10). Ada creates a data profiler, a multiview
visualization with concatenated univariate histograms. While examining the distribu-
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tions, she spots missing values for satisfaction ratings. Using a crossfilter interaction,
she brushes over this region of missing data and observes a slight shift towards a higher
average customer age. Intrigued, Ada hypothesizes that older customers might be less
likely to provide satisfaction ratings, and creates a scatterplot of satisfaction ratings vs.
customer age. This scatterplot reveals that there is indeed a cluster of older customers
with missing ratings data. Ada isolates this cluster with a brush, and examines the as-
sociated customer details in a table, noting that a significant portion of these customers
purchased products in a specific product category.

Using attribute-based metrics [7], [15], we might view Ada’s EDA as a three-step process:
analyzing all attributes with the profiler; then analyzing age and rating specifically with the
scatterplot; and finally, returning to all attributes with the data table. While helpful, this
approach makes it difficult to identify that Ada did not ever actually analyze particular
attributes (e.g., purchase history) despite their inclusion in certain representations (i.e., the
profiler and data table). Moreover, by being representation-agnostic, attribute-centric met-
rics treat the profiler and data table as functionally equivalent and, as a result, miss nuance
around the different ways Ada used these two views— for instance, that she brushed the pro-
filer view to reveal a relationship between age and satisfaction versus examining the table
in a more record-by-record fashion. These issues are compounded when applying attribute-
centric metrics to analyze interactive visualization as the space of possible observations is
greatly expanded [37].

Task- and some insight-based methods often do not account for representation either.
As a result, they ignore analytic expressions that are not verbalized and instead latently
conveyed via the representation—that is, the act of making a chart is intrinsically an inquiry,
even if it is not used to make an observation out loud. Moreover, depending on the granularity
of task/insight codes, these methods may miss important nuance in Ada’s activity. For
instance, with the protocol followed by Zgraggen et al. [31], one might label Ada’s analysis
as a series of Distribution Shape insights followed by two Correlation insights—a strategy
that collapses insights about “clusters” and “correlations” together. More recent insight-
based approaches, such as the formalism developed by Battle & Ottley [38], begin to address
many of these shortcomings— for instance, they formalize an AnalyticKnowledgeNode to
encompass data relationships and transformations. While this method would be able to
capture much of Ada’s activity (e.g., interactive brushing as issuing a series of data queries),
it is focused only on describing the quantitative insights a participant might make about a
dataset.

In contrast, our formalism separately records the representations Ada constructed, the
utterances she verbalized, and links the two sets together as a series of observations. Thus,
according our formalism, Ada’s analysis session would be represented as in figure 4.3.

As we see, our formalism better reflects the situated nature of EDA— that observations
(or tasks or insights) occur with representations, and that non-verbalized representations
can play important roles in an analysis session. As a result, our formalism is able to surface
a different set of patterns in analyst behavior than traditional methods including detecting
usage rates of visualization types (§ ??), identifying a visualization’s role within analysis
planning (§ 6.0.2), and revealing the 80-20 rule of EDA (§ 6.0.2).
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Figure 4.1: A formal definition of EDA sessions in terms of analysis states that comprise
either a representation alone (e.g., a visualization, dataframe output, etc.) or an observation
made with one or more representations. Italics indicates terminal symbols.23



Figure 4.2: Utterances are structured as a 2-level hierarchy, with the highest level codes
(Dataset, Variable, Relationship, Process) describing the general topic of an utterance, and
lower level detail codes delineating the utterance’s content more precisely.
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Figure 4.3: Example of Ada’s analysis session encoded in our formalism. For clarity, we have
omitted some levels of nesting for the formal description of this example
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Figure 5.1: Frequency of high-level utterances categories over time across static and inter-
active charts.

Chapter 5

Characterizing Analyst Utterances

In this section, we report the temporal and sequential patterns we identified with participant
Observations.
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5.0.1 Temporal Patterns

As the area charts in Figure 5.1 and Figure 4.2 show, we find that while analysts’ processes
align in aggregate with traditional, linear EDA models (from dataset exploration to indi-
vidual variable analysis and then relationship exploration [21]), the analysis process is both
more fluid and sensitive to interactivity than rigid interpretations of those models would
suggest. To examine analyst processes, we calculated the median moment through the anal-
ysis session (expressed as a percentage) in which analysts made Observations across our four
UtteranceTypes: Dataset (13.43%), Variable (25.60%), Relationship (56.86%), and Process
(40.18%).

In particular, interactive EDA sessions prompted earlier observations about Relationships
in the data (IQR 28%-75% through a session) compared to static EDAs (IQR 43%-85%).
We hypothesize that the use of interactive profilers, featuring cross-filterable univariate his-
tograms, encouraged analysts to explore relationships sooner. Our subsequent findings of
analysts switching from static to interactive profilers (§ 6.0.3) support this: many participants
shifted from Variable to Relationship utterances almost immediately upon encountering the
interactive profiler. This finding opens questions about whether the affordances (or pres-
ence!) of interactive profilers enables bypassing distribution analysis, and whether we can
articulate the tradeoffs of such process changes. More broadly, the presence of relationship
utterances across both static and interactive EDA sessions suggests that analysts are will-
ing, perhaps even eager, to explore Relationships before fully developing a mental model of
individual Variables.

5.0.2 Sequential Transitions

During their analyses participants made seven different types of utterances on average. Look-
ing at the sequential transitions between utterances reveals a number of common analysis
motifs [9].

Tour-Driven Exploration (Fig 5.2-1): Frequent self-transitions between similar utter-
ance types (e.g., multiple consecutive utterances focused on Relationship strength) suggests
that analysts often adopt a systematic “touring” approach during EDA. This finding aligns
with concepts of univariate and bivariate tours Lux, [9], where analysts methodically ex-
plore specific aspects of individual Variables and their Relationships. However, we observed
self-transitions extending beyond Relationship analysis to include utterances about Missing
Data and Variable Metadata. This suggests that “touring” behaviors are broader than
previously described [9].

Column- vs. Row-Centric Missingness (Fig 5.2-2): The most common transition
between utterances types was moving from Missing Data to Distribution Shape. The
design of profilers presented missing data alongside the columns data distribution subtly
promotes a column-centric view of missingness. However, as a counter-example, P10 investi-
gated missingness as a characteristic of individual data records (rows), skipping the profiler
entirely. Visualizing the missingness per record on a scatterplot, he commented “... most of
the rows have no missing columns, and then they progressively have more and more. So I
guess, depending on what the analysis we’re gonna do is, we may or may not exclude data
points.” This approach affords thinking about a different set of causes for missingness in the
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Figure 5.2: Left, transition matrix of sequential utterances; Right, happiness data transition
matrix by Condition [Interactive, Static]. (1) The diagonal transitions represent repeated
utterances of the same semantic type. (2) The large amount of Distribution Shape utter-
ances after a Missing Data utterance, show how univariate profilers prompted consideration
of missing data at a column instead of a row level view. (3) The Variable Gap, whereby par-
ticipants inside of the interactive condition with the happiness dataset tended to skip over
distribution characterization.
data generation process and raises a design question: how might we design profile represen-
tations that encourage both column-level and row-level consideration of missing data?

The “Variable Gap” and Interactive Profilers (Fig 5.2-3): In the happiness dataset,
many participants skipped characterizing Variables, instead immediately focusing on Rela-
tionships. This caused a Variable Gap between conditions, visible in the transition matrices.
This shift in focus often coincided with the use of interactive profilers. For example, par-
ticipant P5 initially followed a variable-first pattern in her static analysis, narrating out 6
distributional utterances about her variables using the profiler. Upon beginning her inter-
active analysis, she immediately began making relationship utterances by cross filtering on
the profiler view (see § 6.0.3 for more information).
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Chapter 6

Characterizing Representations and
Usage

We now turn to describing which Representations were constructed, and how Representa-
tionUsage impacted Observations.

6.0.1 Temporality, Diversity, and Velocity

Across all Sessions our participants constructed a total of 1169 Outputs and, on average,
an individual analyst constructed 44 different outputs. The most common output was the
execution of an arbitrary piece of Python code, followed by Visualizations. Looking at when
participants made these outputs (Fig. 6.1-left) reveals interesting temporal patterns. Code
cells were used most frequently near the beginning and end of analysis sessions and often
involved functions that checked the measure of central tendancy of attributes. Starting ap-
proximately 15% of the way through their sessions, participants began to switch to favoring
visualizations— these representations were then used to form the bulk of their subsequent
observations. Based on this data, we compute two metrics of representation construction:
representationDiversity, which is the number of unique representations constructed in an
analysis session; and, representationVelocity, or the rate at which representations were con-
structed over course of an analysis session. As Figure 6.1 shows, these metrics are moderately
correlated (Pearson’s r = 0.47); we discuss their role within analysis sessions in a subsequent
section (§ 6.0.4).

Examining the intersection of ChartTypes and Observations (Fig. 6.1(right)) reveals ex-
pected and surprising usage patterns. For instance, unsurprisingly, scatterplots were most
frequently used to make utterances about Relationships while profiler views helped partic-
ipants make Variable utterances. However, as this heatmap shows, participants would fre-
quently use charts beyond their intended purposes or in ways that break with best practice.
For instance, Variable utterances constituted only 42% of observations made with profiler
views—even though, ostensibly, this is the core purpose of a columnar distribution of data
values. Similarly, in contrast to visualization theory and visualization recommender systems,
which emphasize perceptual effectiveness, participant P9, a data science instructor, specifi-
cally created a representation she called a “spaghetti plot” —a line chart with 180 different
series overplotted. Ahead of creating the chart she commented “It’s going to be a bad idea”,
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Figure 6.1: Left: Representation creation over time. Right: Heatmap of the number of times
different Visualizations were used to make an Observation, according to UtteranceType.

but persisted precisely because she wanted to ensure that the plot itself was ineffective, as a
gut check.

6.0.2 Hover Patterns and Observations

We can also connect Representations and Observations through Telemetry data, by calculat-
ing two metrics: hoverTime, the total time an analyst spent hovering over a representation;
and, revisitCount, or the number of times an analyst hovered over a particular representation.

The ’80-20 Rule’: Why Some Visualizations Matter More

Our analysis reveals a 80-20 threshold in how participants use representations during EDA.
The top 20% of most frequently hovered representations (top-20 ) accounted for 79% of total
hoverTime and 75% of observations. Representations in the top-20 had hover durations of
at least 30 seconds and an average of 2.8 Observations each, indicating deep engagement.
In contrast, the bottom 80% of representations (bottom-80 ) saw significantly less use, with
an average of just 0.2 observations per representation. We identify two key differences
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Figure 6.2: Scatterplot of computed representationDiversity and representationalVelocity for
each analysis session.
between these two sets that sheds light on analyst preferences: the ability to encode multiple
attributes simultaneously, and the role of interactivity.

Representations displaying information about multiple variables simultaneously (e.g.,
profilers, correlation heatmaps, pairplots) were more common within the top-20. These
all-attribute representations made up only 2% of the bottom-80 but constituted 22% of the
top-20, an 11X increase. Analysts engaged with these visualizations through the “touring”
behaviors we previously described in § 5.0.2, systematically exploring them and comment-
ing on different variable combinations approximately every 5-15 seconds. This is underlined
by the longest average hover times observed for all-attribute visualizations (67 seconds for
profiles, 75 seconds for heatmaps, and 169 seconds for pairplots). Similarly, we see a marked
decrease in hoverTime with Code Cells used for quick statistical checks (from 48% of the
bottom-80 to 9% of top-20, averaging 4.9 seconds of hovering per representation).

Interactive visualizations were more prevalent within the top-20 (24% of the top-20 vs.
16% of the bottom-80 ). Analysts particularly favored the highlight_brush as it enabled
cross-linking data subsets across multiple charts. This technique was used in over 56% of
interactive representations in the top-20, compared to 37% in the bottom-80 Similarly, the
filter_brush technique, which filters out all non-selected data marks from view, was used
in 30% of the interactive scatterplots found within the bottom-80. However, filter_brush
went to 2% in the top-20, a likely side effect of filtering obscuring important context in
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Figure 6.3: Average revisitCount and count of Plan of Action utterances by Represen-
tation. Representations are colored by whether or not it is an all-attribute representation.
Representations to the left are typically one-off question-answering tools whereas represen-
tations to the right are frequently revisited when deciding analysis paths.

standalone charts.
Finally, pan_zoom interactions, was the second most popular interaction technique in

bottom-80 – present in over 31% of interactive representations. However, declined to just 18%
in the top-20. Analysts consistently struggled to find effective use for pan-zoom interactions,
suggesting a lack of intuition for how this technique could enhance their analysis workflows.
Out of the 16 instances in which pan-zoom was used, we observed only one instance where it
successfully uncovered an insight that would have been difficult to obtain otherwise. In this
case, participant P10 zoomed into a dense, overplotted region of a scatterplot to gain more
resolution, and was able to reveal a pattern in the depicted data. However, even this success
story was marred by discomfort—P10 added pan-zoom to a set of horizontally arranged
scatterplots that shared a common y-axis; thus, the coordinated scrolling of all scatterplots
made him feel disoriented, prompting him to request “can we turn that off?”

All-Attribute Visualizations Aid Planning

As Figure 6.3 shows, high revisitCounts (over 10 times) indicate that a representation serves
as an process planning tool, aiding analysts in orienting themselves and preparing their next
actions. For example, participant P5 created a correlation heatmap to identify the most
strongly correlated attributes within her dataset. She frequently returned to this visualiza-
tion, using it as a guide for selecting specific attributes to investigate further: “let’s look
at the one that is most positively correlated, which seems to be log GDP per capita. So
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I’ll start with that variable”. This led her to generate scatterplots and custom dashboards
for deeper exploration. This approach proved effective, leading to 23 observations. Such
action-planning is not restricted to only visual all-attribute representations—participants
frequently revisited data frame outputs (including df.describe, df.info, and simply the
tabular preview output) to formulate their plans. For instance, P11 read through the indi-
vidual values of a dataframe printout, commenting: “Of course, we cannot say for the whole
thing [based on just the shown rows]. So my strategy will be like going through each of the
variable here, and do the summary statistic.” Looking across all Observations tuples in our
dataset, all-attribute representations are associated with Plan of Action utterances at a
rate of 5x more than other representations.

6.0.3 An Interactive Draw Towards Complexity

When using interactive visualizations, we observed shifts in the types and number of at-
tributes that analysts considered. An attribute addition behavior appears prominently in
analysts who are progressively exploring data relationships of escalating complexity, mov-
ing utterances from univariate distributions to bivariate relationships, and further morphing
into multivariate analyses. For example, in the static condition participant P5 used the
profiler visualization to analyze the univariate distributions of her columns, making 6 ut-
terances about their distributions. At the beginning of the interactive session, she created
an interactive version of the profiler visualization, and immediately began using it to ana-
lyze relationships—brushing on the chart to examine a target population and generating 6
new utterances about that population’s relationship to variables. This pattern of behavior
persisted across datasets for other participants (Fig. 6.4 (left)).

We also observed shifts in behavior prompted by filtering interactions in scatterplot
(Fig. 6.4 (right)). Prior to the interactive session, we observed participants discussing bi-
variate relationships using scatterplots; however, when interaction was added, their utter-
ances tended to focus on the multivariate relationships. Multiple participants used brushes
to extract subsets from data clusters and pursued analysis paths to differentiate that clus-
ter from the rest of the data. Another case of this was the use of the filter_slider, an
interaction technique which filters the chart to only the data value present in a particular
value on a slider query widget. The shift we observe between these interactive and static
charts presents the allure of interactive representations, seemingly pulling analysts towards
investigating more complicated relationships even when those interactions are not actively
being used.

However, attribute addition behavior was not observed equally across data types. On
average, our participants used interactive visualizations for multivariate (often all continuous
variables) and continuous x continuous bivariate relationships (Fig. 6.4 (right)). However
we note the overall patterns are most salient at the aggregate level and the participant
level contains sparsity in the utterances made for each participant for a given data type.
Thus while we chose to report the results to fully describe the behavior that we saw, such
descriptions warrant additional investigations to understand the role that interaction may
play in drawing analyst hypotheses towards more multivariate and complex relationships
and if such patterns exist over longer periods of time.
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Figure 6.4: Left: Numbers of Utterances between static and interactive versions of the profiler
and scatterplot visualizations. The most common interaction techniques used for these
representations were cross-filter brushes, tooltips, and filtering sliders. Right: Comparison
of which data types were discussed in utterances in static vs. interactive visualizations. The
plot indicates that there is a steep rise in multivariate relationship utterances in interactive
visualizations

6.0.4 Patterns of Broad Analysis Space Exploration

Previous studies of EDA offered characterization of analysis sessions based on the number of
attributes analysts reasoned about [7], [15]. We extend this type of analysis, applying it to
our definition of State which encompasses the Representations analysts constructed, and how
RepresentationUsage affects Observations analysts made. Follow Battle et al.’s method [15],
we created binary histograms that represent whether or not our participants made a par-
ticular observation (e.g. observed the relationship between happiness and GDP). Using the
total count of observations made by our participants, we can compute for each participant
what percent of total states visited, allowing us to rank our participants by the breadth of
exploration. For example, participant P9, a data science instructor, made the most exten-
sive Dataset observations across both static and interactive conditions (Fig. 6.5 (1)). These
observations occurred as P9 began each of her analysis sessions with a variable metadata
tour: systematically going through each attribute in the data dictionary, spending time dis-
cussing what the variable meant and her opinions on its usefulness. Similarly, we observe
the 5 participants who made the most Variable utterances (Fig. 6.5 (2)) did so in the static
condition using profile visualizations.
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Figure 6.5: Stripplot of % of total unique Observations visited per analysis session, broken
down by high level type and colored by Analysis Condition (Interactive or Static).

In contrast, approaches for exploring a broad set of Relationship observations (Fig. 6.5 (3))
reveals a diverse set of strategies. To investigate these patterns of exploration, we created
attribute co-occurance heatmaps (Fig. ??) to “fingerprint” and explain these strategies:

P8: Parameterized Search. Driven by a clear goal and an aversion to “mindless”
exploration, P8 adopted a systematic, iterative approach reminiscent of a parameterized
search through Representations and Encodings. She explored the analysis space by cy-
cling through which attributes were mapped to encodings (e.g., scatterplot(y=happiness,
x=column[index])), methodically investigating potential relationships between each at-
tribute and the outcome variable. When she encountered specific patterns of interest, she
then modified her scatterplot, adding interactions such as brushes and tooltips to investigate
outliers and subsets. The resultant fingerprint visualization depicts a focused analysis cen-
tered around the outcome variable, with some targeted off-diagonal probes into the country,
investigated using tooltips and brushes.

P3: Iterative Deepening. P3’s approach was guided by emergent patterns in the
data, resembling an iterative deepening search that is commonly used in graph traversal and
game-playing algorithms. He generated scatterplots based on his intuition about interesting
variable relationships, largely ignoring the outcome variable at the outset. This is reflected
in his focus on predictor variables, evident in his thumbprint visualization. Upon noticing
clusters within a plot, he investigated their characteristics, iterating through both inter-
action and encodings (adding tooltips, brushes and color encodings) to identify potential
explanatory variables. This behavior is captured in his high representationalVelocity and
representationDiversity (each the highest out of all 26 analyses as shown in 6.2), suggesting
he wasn’t wedded to a single visualization type but rather explored various options to gain
deeper insights. This iterative deepening process ultimately led to a scattered thumbprint
reflecting his serendipitous journey through attribute space, driven by unexpected findings.

P6: Heuristic-Guided Best First Search. P6 combined a methodical foundation
with a responsive, opportunistic approach characteristic of best-first search [cite BestFS].
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This approach prioritizes exploring the most promising nodes (observation-analysis states)
within a search space based on a pre-defined heuristic. P6’s analysis mirrored this approach.
Her initial bivariate exploration using a cross-filtered profile set the stage for a more targeted
investigation guided by a correlation heatmap. She guided her search through the correlation
of attributes with her outcome variable, revisiting the correlation matrix 35 times during
her analysis showcasing a high revisitCount. After locating a variable to investigate she
would conduct a multivariate analysis using a custom interactive dashboard (made of a
scatterplot, profile, and countplot). This approach is reflected in her high revisit count, which
captured the number of times she revisited the correlation matrix. This strategy produced
a cohesive analysis that investigated both direct predictors and potential confounders of
the outcome variable, as evidenced by her targeted analysis along the bottom row and off-
diagonal considerations in her thumbprint visualization.

6.0.5 Thinking in the Language of Interaction

In interaction design, perceived affordances [39] signal the operations a user believes are
possible within an interface. Well-designed affordances establish interaction dynamics—
the rules governing how users interact with the interface. Our study revealed that data
scientists reasoned about these dynamics to generate new analytical hypotheses. In other
words, they translated “the language of interaction” into novel analytical questions. As
participant P8 described: “My thought of intersecting High GDP and High Life-Expectancy
[countries] happened precisely because there was interaction... I was thinking, ’Oh I wonder if
multi-select works’... That is actually what led me to think, ’Oh this would also be interesting
on an analytical level.” ’. Later she commented that such an insight “would not have occurred
to me if not for the fact I was working with an interactive visualization.”

Participant P6’s insights emerged from a similar process of experimentation. Having
successfully used ALX’s copy-and-paste technique to paste filters between charts, he began
to consider the broader possibilities this interaction technique offered for filtering his current
visualization. While browsing other charts, he stumbled upon a bar plot showing the count
of records over time. Intrigued, he initially tested if the copy-and-paste mechanic would
function in this context. However, a spark ignited: rather than a simple test of function,
he realized it would be more insightful to filter on the most recent years of data. This act
of guided experimentation, prompted by the affordances of the interaction design (rather
than performing the interaction itself and observing any updates), led him to discover an
unexpected trend in life expectancy over time.

These examples suggest that interactive features play a more generative role in analysis
than typically acknowledged. While the literature often emphasizes interactions as a means
to complete specific tasks, our observations reveal that rules instantiated during interaction
design may be reasoned about to inform hypotheses that emerge. First, it makes potential
suggestions for interaction design– how do we reify the constraints and rules of interaction
dynamics, and in doing so how do different designs impact the reasoning about these rules?
Secondly, studies of interaction should also investigate these topics. Rather than simply
investigating the impact that visual cues do to influence interaction usage, [40], studies
should also investigate how different cues shape how analysts talk about how interaction
might be used. By recognizing the interplay between interaction mechanics and analytical
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cognition, we can pave the way for tools that more effectively partner with the analyst during
the discovery process.
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Chapter 7

Discussion and Future Work

In this paper, we conducted a qualitative experiment to richly characterize the situated na-
ture of EDA. Through a mixed-methods analysis of participant utterances and telemetry
data, we developed a formal description of EDA sessions as comprising a sequence of repre-
sentation constructions or observations. We also record which observations are derived from
which representations. We use our formalism to express a dataset of 26 analysis sessions
conducted by 13 data science professionals. Our results reveal usage patterns of interactive
visualizations like attribute-addition or reasoning in the language of interaction. Beyond
interaction, our results reveal that analysts tend to have a small subset of representations
that they use most frequently – a sort of 80-20 rule for EDA. Finally, using our formalism
we showcase how metrics like revisitCount, representationalDiversity, and representation-
alVelocity can be used to understand why certain participants have broad coverage during
EDA.

7.0.1 Limitations

Although our approach has yielded useful insights about how data science professionals
analyze data, we note that studying EDA in a laboratory context poses some inherent limi-
tations. For example, think-aloud protocols may artificially structure thought processes that
are more fluid in unobserved settings (e.g., participants may prioritize tasks that are easier
to articulate and overlook more complex tasks) [41]. However, in comparison to post hoc
reflections, thinking aloud provided in situ insights that captured important nuance, and
aligns with approaches used in other studies [42].

Moreover, the 25-minute time limit per analysis may have limited the range of analyses
participants chose to engage in. This time limit follows the design of prior visualization
studies [7], [15], [17], and reflects a delicate balance in study design: longer sessions risk
reducing engagement and may limit participation to only those who can allocate a prolonged
period of time outside of their daily work. Research has shown that data scientists often
encounter time-sensitive tasks in their work[22] and, in practice, we did not abruptly cut
participants off. Thus, on average, participants took 29-minutes to complete an analysis.

Finally, being forced to use a new visualization library inevitably presented challenges to
our users (and ALX’s interactive capabilities may have also contributed a novelty effect if a
participant was more used to constructing only static visualizations as part of their regular
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work). We sought to mitigate these effects in two ways. First, we allocated 20-minutes of
the overall study to demonstrations and tutorials of the library. Second, ALX was intention-
ally designed as a visualization and interaction typology (as opposed to a more composable
grammar) to minimize specification difficulty—with the terms of the two typologies de-
signed to mirror common visualization and interaction design patterns. Our participants
indicated that they use several of these patterns frequently. Perhaps more importantly, we
argue that our approach of introducing a new visualization library brings the advantage of
controlling for participant expertise: they did not bring any prior tool-specific habits that
would have confounded our ability to compare their analysis sessions. Nevertheless, these
analysis sessions reflect a “first-use study” commonly found in studies of EDA activity [7],
[9], [17], [31].

7.0.2 Implications for EDA Tool Design

Our results suggest several opportunities for interactive visualization tooling to better sup-
port EDA. For instance, several of our participants engaged touring to systematically explore
the data (§ 5.0.2). Yet, existing tools provide poor support for such activity, largely leav-
ing analysts to drive interactions based on their priors and hypotheses they may wish to
answer. Akin to visualization recommender systems [43], novel EDA tooling might instead
leverage nascent grammars [44] to systematically enumerate the space of hypotheses that
can be interactively reached with a given visualization, and proactively suggest particular
analysis paths. By leveraging information scent [45], such tools could help analysts think
more deeply in the language of interaction (§ 6.0.5)— that is, even if an analyst did not
adopt a suggestion for an interactive path, the suggestion itself may prompt them to think
in different ways.

Relatedly, we found our participants’ use of visualizations as action planning aids (§ 6.0.2)
striking. In computational notebooks, where visualizations are linearly presented, several
participants were willing to pay a “scrolling tax” to reach these representations. While some
research systems have explored mechanisms for making such representations more readily
available (e.g., B2 stitches a visual analytics dashbaord alongside a traditional linear note-
book view [17]), our results suggest a wider opportunity. In particular, while the research
literature has identified the merit of overview+detail or focus+context techniques, few visual-
ization libraries support them out-of-the-box. When they do, these techniques are supported
in relatively limited ways (e.g., when panning/zooming a scatterplot or map). Our results
suggest the need for more generalized support for wayfinding—especially to coordinate mul-
tiple separate visualizations. Here, we find the interaction snapshots developed by Yifan Wu
et al. particularly promising [46].

Finally, the prevalance of Process utterances throughout the analysis sessions illustrates
that participants engage in a level of metacognition—that is, thinking about their own
thinking. How might interactive visualization and visual analysis tooling better support
process reflections that seamlessly span visualization creation, interaction design, written
code, and statistical output? Drawing on research in distributed cognition [47], we imagine
that analysts might engage in valuable self-reflection when presented with displays of their
analysis histories. Recent systems such as Lumos [48] have begun to explore this prospect,
and we believe there is a rich research space to explore here [49]. For example, what consti-
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tutes a significant point in the analytical journey for retrospective purposes? Our formalism
suggests that Observations and Representation creation are such key moments, but analysts
may believe otherwise when reflecting on their own activity.

7.0.3 Towards Richer Methods for Studying Interactive Analysis as
Situated Activity

Our work was motivated by a desire to study interaction as situated activity —that is, involv-
ing human analysts working in a particular context, externalizing their cognition through
visual representations, and interactively making observations with them. While valuable, we
believe this paper takes only an initial step towards this approach. To complement recent
work that looks to scale-up our ability to study interaction (e.g., through benchmarks [50]
and novel systems [10], [51]), we advocate for methods that allow us to study it more closely.

We find methods from sociolinguistics and linguistic anthropology used to analyze in-
terpersonal interaction particularly compelling. For instance, discourse and conversational
analysis [52] involves a meticulous examination of conversation transcripts, and has been used
by researchers to make fundamental linguistic discoveries such as turn-taking [52]. While
visualization researchers are beginning to draw on such linguistic theories to inform interac-
tion design guidelines [53], we believe there is a ripe opportunity to adapt them for analyzing
interactive behavior as well. For instance, the development of a specialized notation system
was particularly crucial to the success of conversational analysis—allowing researchers to
annotate linguistic features such as prosody, tone, pitch, pauses, and gaze. What would an
equivalent notation for analyzing interaction look like? Similarly, systems for conversational
analysis enable flexible definitions of analytic units and abstractions. In contrast, existing
interaction provenance systems [54] largely follow a dichotomy of either low-level event logs
(e.g., mouse movements, clicks, etc.) or high-level semantically meaningful events (e.g., fil-
ter, explore, etc.)— future systems must grapple with how to support more fluid analysis
between these levels. Finally, as our study demonstrates, to “closely read” interactive behav-
ior requires capturing a rich multimodal data streams. Simply concatenating and visually
linking these streams together risks introducing ambiguities in understand the precise se-
quences and potential causal relationships between measures. Rather, akin to systems like
ChronoViz [55], we envision future systems offering richer juxtapositions of this multimodal
data.

43



44



References

[1] J. Heer and B. Shneiderman, “Interactive dynamics for visual analysis,” en, Communi-
cations of the ACM, vol. 55, no. 4, pp. 45–54, Apr. 2012, issn: 0001-0782, 1557-7317.
doi: 10.1145/2133806.2133821. url: https://dl.acm.org/doi/10.1145/2133806.2133821
(visited on 07/05/2023).

[2] J. van Wijk, “The value of visualization,” in VIS 05. IEEE Visualization, 2005., Oct.
2005, pp. 79–86. doi: 10.1109/VISUAL.2005.1532781.

[3] J. Thomas and K. Cook, “Illuminating the Path: Research and Development Agenda
for Visual Analytics,” National Visualization and Analytics Center, Tech. Rep., 2005.

[4] A. Mosca, A. Ottley, and R. Chang, “Does Interaction Improve Bayesian Reasoning
with Visualization?” en, in Proceedings of the 2021 CHI Conference on Human Factors
in Computing Systems, Yokohama Japan: ACM, May 2021, pp. 1–14, isbn: 978-1-4503-
8096-6. doi: 10.1145/3411764.3445176. url: https://dl.acm.org/doi/10.1145/3411764.
3445176 (visited on 09/14/2023).

[5] S. Theis, C. Bröhl, M. Wille, P. Rasche, A. Mertens, E. Beauxis-Aussalet, L. Hardman,
and C. M. Schlick, “Ergonomic Considerations for the Design and the Evaluation of
Uncertain Data Visualizations,” en, in Human Interface and the Management of In-
formation: Information, Design and Interaction, S. Yamamoto, Ed., vol. 9734, Series
Title: Lecture Notes in Computer Science, Cham: Springer International Publishing,
2016, pp. 191–202, isbn: 978-3-319-40348-9 978-3-319-40349-6. doi: 10.1007/978-3-
319-40349-6_19. url: http://link.springer.com/10.1007/978-3-319-40349-6_19
(visited on 09/15/2023).

[6] A. Batch and N. Elmqvist, “The Interactive Visualization Gap in Initial Exploratory
Data Analysis,” en, IEEE Transactions on Visualization and Computer Graphics,
vol. 24, no. 1, pp. 278–287, Jan. 2018, issn: 1077-2626, 1941-0506, 2160-9306. doi:
10.1109/TVCG.2017.2743990. url: https://ieeexplore.ieee.org/document/8017577/
(visited on 12/01/2022).

[7] K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A. Anand, J. Mackinlay,
B. Howe, and J. Heer, “Voyager 2: Augmenting Visual Analysis with Partial View
Specifications,” en, in Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems, Denver Colorado USA: ACM, May 2017, pp. 2648–2659, isbn:
978-1-4503-4655-9. doi: 10.1145/3025453.3025768. url: https://dl.acm.org/doi/10.
1145/3025453.3025768 (visited on 02/28/2023).

45

https://doi.org/10.1145/2133806.2133821
https://dl.acm.org/doi/10.1145/2133806.2133821
https://doi.org/10.1109/VISUAL.2005.1532781
https://doi.org/10.1145/3411764.3445176
https://dl.acm.org/doi/10.1145/3411764.3445176
https://dl.acm.org/doi/10.1145/3411764.3445176
https://doi.org/10.1007/978-3-319-40349-6_19
https://doi.org/10.1007/978-3-319-40349-6_19
http://link.springer.com/10.1007/978-3-319-40349-6_19
https://doi.org/10.1109/TVCG.2017.2743990
https://ieeexplore.ieee.org/document/8017577/
https://doi.org/10.1145/3025453.3025768
https://dl.acm.org/doi/10.1145/3025453.3025768
https://dl.acm.org/doi/10.1145/3025453.3025768


[8] L. Bavoil, S. Callahan, P. Crossno, J. Freire, C. Scheidegger, C. Silva, and H. Vo,
“VisTrails: Enabling Interactive Multiple-View Visualizations,” en, in VIS 05. IEEE
Visualization, 2005., Minneapolis, MN, USA: IEEE, 2005, pp. 135–142, isbn: 978-0-
7803-9462-9. doi: 10.1109/VISUAL.2005.1532788. url: http://ieeexplore.ieee.org/
document/1532788/ (visited on 03/23/2024).

[9] A. Kale, Z. Guo, X. L. Qiao, J. Heer, and J. Hullman, EVM: Incorporating Model
Checking into Exploratory Visual Analysis, en, arXiv:2308.13024 [cs], Aug. 2023. url:
http://arxiv.org/abs/2308.13024 (visited on 12/02/2023).

[10] C. Nobre, D. Wootton, Z. Cutler, L. Harrison, H. Pfister, and A. Lex, “reVISit: Looking
Under the Hood of Interactive Visualization Studies,” en, in Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems, Yokohama Japan: ACM,
May 2021, pp. 1–13, isbn: 978-1-4503-8096-6. doi: 10.1145/3411764.3445382. url:
https://dl.acm.org/doi/10.1145/3411764.3445382 (visited on 09/17/2021).

[11] L. Battle and A. Ottley, What Exactly is an Insight? A Literature Review, arXiv:2307.06551
[cs], Jul. 2023. url: http://arxiv.org/abs/2307.06551 (visited on 09/15/2023).

[12] S. Robinson and A. L. Mendelson, “A Qualitative Experiment: Research on Medi-
ated Meaning Construction Using a Hybrid Approach,” en, Journal of Mixed Meth-
ods Research, vol. 6, no. 4, pp. 332–347, Oct. 2012, issn: 1558-6898. doi: 10.1177/
1558689812444789. url: https : / / doi . org / 10 . 1177 / 1558689812444789 (visited on
06/26/2023).

[13] J. Hullman and A. Gelman, “Designing for Interactive Exploratory Data Analysis
Requires Theories of Graphical Inference,” en, Harvard Data Science Review, Jul. 2021.
doi: 10.1162/99608f92.3ab8a587. url: https://hdsr.mitpress.mit.edu/pub/w075glo6
(visited on 10/19/2021).

[14] W. Epperson, V. Gorantla, D. Moritz, and A. Perer, “Dead or Alive: Continuous Data
Profiling for Interactive Data Science,” en, IEEE Transactions on Visualization and
Computer Graphics, pp. 1–11, 2023, issn: 1077-2626, 1941-0506, 2160-9306. doi: 10.
1109/TVCG.2023.3327367. url: https://ieeexplore.ieee.org/document/10301695/
(visited on 12/08/2023).

[15] L. Battle and J. Heer, “Characterizing Exploratory Visual Analysis: A Literature
Review and Evaluation of Analytic Provenance in Tableau,” en, Computer Graph-
ics Forum, vol. 38, no. 3, pp. 145–159, Jun. 2019, issn: 0167-7055, 1467-8659. doi:
10 .1111/cgf .13678. url: https ://onlinelibrary.wiley.com/doi/10 .1111/cgf .13678
(visited on 09/13/2023).

[16] A. Sarvghad, M. Tory, and N. Mahyar, “Visualizing Dimension Coverage to Support
Exploratory Analysis,” en, IEEE Transactions on Visualization and Computer Graph-
ics, vol. 23, no. 1, pp. 21–30, Jan. 2017, issn: 1077-2626. doi: 10.1109/TVCG.2016.
2598466. url: http://ieeexplore.ieee.org/document/7534787/ (visited on 03/23/2024).

46

https://doi.org/10.1109/VISUAL.2005.1532788
http://ieeexplore.ieee.org/document/1532788/
http://ieeexplore.ieee.org/document/1532788/
http://arxiv.org/abs/2308.13024
https://doi.org/10.1145/3411764.3445382
https://dl.acm.org/doi/10.1145/3411764.3445382
http://arxiv.org/abs/2307.06551
https://doi.org/10.1177/1558689812444789
https://doi.org/10.1177/1558689812444789
https://doi.org/10.1177/1558689812444789
https://doi.org/10.1162/99608f92.3ab8a587
https://hdsr.mitpress.mit.edu/pub/w075glo6
https://doi.org/10.1109/TVCG.2023.3327367
https://doi.org/10.1109/TVCG.2023.3327367
https://ieeexplore.ieee.org/document/10301695/
https://doi.org/10.1111/cgf.13678
https://onlinelibrary.wiley.com/doi/10.1111/cgf.13678
https://doi.org/10.1109/TVCG.2016.2598466
https://doi.org/10.1109/TVCG.2016.2598466
http://ieeexplore.ieee.org/document/7534787/


[17] Y. Wu, J. M. Hellerstein, and A. Satyanarayan, “B2: Bridging Code and Interactive
Visualization in Computational Notebooks,” en, in Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology, Virtual Event USA:
ACM, Oct. 2020, pp. 152–165, isbn: 978-1-4503-7514-6. doi: 10.1145/3379337.3415851.
url: https://dl.acm.org/doi/10.1145/3379337.3415851 (visited on 09/14/2023).

[18] K. Gadhave, Z. Cutler, and A. Lex, Persist: Persistent and Reusable Interactions in
Computational Notebooks, en, Dec. 2023. doi: 10 .31219/osf . io/9x8eq. url: https :
//osf.io/9x8eq (visited on 03/27/2024).

[19] X. Pu and M. Kay, “How Data Analysts Use a Visualization Grammar in Practice,” en,
in Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems,
Hamburg Germany: ACM, Apr. 2023, pp. 1–22, isbn: 978-1-4503-9421-5. doi: 10.1145/
3544548.3580837. url: https://dl.acm.org/doi/10.1145/3544548.3580837 (visited on
09/14/2023).

[20] H. Guo, S. R. Gomez, C. Ziemkiewicz, and D. H. Laidlaw, “A Case Study Using
Visualization Interaction Logs and Insight Metrics to Understand How Analysts Arrive
at Insights,” en, IEEE Transactions on Visualization and Computer Graphics, vol. 22,
no. 1, pp. 51–60, Jan. 2016, issn: 1077-2626. doi: 10.1109/TVCG.2015.2467613. url:
http://ieeexplore.ieee.org/document/7192662/ (visited on 03/24/2024).

[21] S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer, “Enterprise Data Analysis
and Visualization: An Interview Study,” en, IEEE Transactions on Visualization and
Computer Graphics, vol. 18, no. 12, pp. 2917–2926, Dec. 2012, issn: 1077-2626. doi:
10.1109/TVCG.2012.219. url: http://ieeexplore.ieee.org/document/6327298/ (visited
on 12/08/2023).

[22] K. Wongsuphasawat, Y. Liu, and J. Heer, Goals, Process, and Challenges of Ex-
ploratory Data Analysis: An Interview Study, arXiv:1911.00568 [cs], Nov. 2019. url:
http://arxiv.org/abs/1911.00568 (visited on 11/28/2023).

[23] S. G. Hart and L. E. Staveland, “Development of nasa-tlx (task load index): Results of
empirical and theoretical research,” Human mental workload, vol. 1, no. 3, pp. 139–183,
1988.

[24] K. Xu, A. Ottley, C. Walchshofer, M. Streit, R. Chang, and J. Wenskovitch, “Survey
on the Analysis of User Interactions and Visualization Provenance,” en, Open Science
Framework, preprint, Mar. 2020. doi: 10.31219/osf.io/jux76. url: https://osf.io/jux76
(visited on 05/23/2020).

[25] M. Feng, E. Peck, and L. Harrison, “Patterns and Pace: Quantifying Diverse Explo-
ration Behavior with Visualizations on the Web,” IEEE Transactions on Visualization
and Computer Graphics, vol. 25, no. 1, pp. 501–511, Jan. 2019, Conference Name:
IEEE Transactions on Visualization and Computer Graphics, issn: 1941-0506. doi:
10.1109/TVCG.2018.2865117.

47

https://doi.org/10.1145/3379337.3415851
https://dl.acm.org/doi/10.1145/3379337.3415851
https://doi.org/10.31219/osf.io/9x8eq
https://osf.io/9x8eq
https://osf.io/9x8eq
https://doi.org/10.1145/3544548.3580837
https://doi.org/10.1145/3544548.3580837
https://dl.acm.org/doi/10.1145/3544548.3580837
https://doi.org/10.1109/TVCG.2015.2467613
http://ieeexplore.ieee.org/document/7192662/
https://doi.org/10.1109/TVCG.2012.219
http://ieeexplore.ieee.org/document/6327298/
http://arxiv.org/abs/1911.00568
https://doi.org/10.31219/osf.io/jux76
https://osf.io/jux76
https://doi.org/10.1109/TVCG.2018.2865117


[26] S. S. Alam and R. Jianu, “Analyzing Eye-Tracking Information in Visualization and
Data Space: From Where on the Screen to What on the Screen,” IEEE Transactions
on Visualization and Computer Graphics, vol. 23, no. 5, pp. 1492–1505, May 2017,
Conference Name: IEEE Transactions on Visualization and Computer Graphics, issn:
1941-0506. doi: 10.1109/TVCG.2016.2535340.

[27] A. Boggust, B. Carter, and A. Satyanarayan, “Embedding Comparator: Visualizing
Differences in Global Structure and Local Neighborhoods via Small Multiples,” en, in
27th International Conference on Intelligent User Interfaces, Helsinki Finland: ACM,
Mar. 2022, pp. 746–766, isbn: 978-1-4503-9144-3. doi: 10.1145/3490099.3511122. url:
https://dl.acm.org/doi/10.1145/3490099.3511122 (visited on 03/31/2024).

[28] C. North, “Toward measuring visualization insight,” IEEE Computer Graphics and
Applications, vol. 26, no. 3, pp. 6–9, May 2006, Conference Name: IEEE Computer
Graphics and Applications, issn: 1558-1756. doi: 10.1109/MCG.2006.70.

[29] C. Nobre, D. Wootton, L. Harrison, and A. Lex, “Evaluating Multivariate Network
Visualization Techniques Using a Validated Design and Crowdsourcing Approach,” en,
in Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems,
Honolulu HI USA: ACM, Apr. 2020, pp. 1–12, isbn: 978-1-4503-6708-0. doi: 10.1145/
3313831.3376381. url: https://dl.acm.org/doi/10.1145/3313831.3376381 (visited on
09/14/2023).

[30] Z. Liu and J. Heer, “The Effects of Interactive Latency on Exploratory Visual Analy-
sis,” en, IEEE Transactions on Visualization and Computer Graphics, vol. 20, no. 12,
pp. 2122–2131, Dec. 2014, issn: 1077-2626. doi: 10.1109/TVCG.2014.2346452. url:
http://ieeexplore.ieee.org/document/6876022/ (visited on 03/31/2024).

[31] E. Zgraggen, Z. Zhao, R. Zeleznik, and T. Kraska, “Investigating the Effect of the
Multiple Comparisons Problem in Visual Analysis,” en, in Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems, Montreal QC Canada:
ACM, Apr. 2018, pp. 1–12, isbn: 978-1-4503-5620-6. doi: 10.1145/3173574.3174053.
url: https://dl.acm.org/doi/10.1145/3173574.3174053 (visited on 09/14/2023).

[32] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer, “Vega-Lite: A Grammar
of Interactive Graphics,” en, p. 10,

[33] H.-F. Hsieh and S. E. Shannon, “Three approaches to qualitative content analysis.,”
Qualitative health research, vol. 15, no. 9, pp. 1277–88, Nov. 2005, issn: 1049-7323. doi:
10.1177/1049732305276687. url: http://www.ncbi.nlm.nih.gov/pubmed/16204405
(visited on 05/24/2014).

[34] E. Marsh and M. White, “Content analysis: A flexible methodology,” Library trends,
vol. 55, no. 1, pp. 22–45, 2006, issn: 1559-0682. doi: 10.1353/lib.2006.0053. url:
http://muse.jhu.edu/content/crossref/journals/library_trends/v055/55.1white.html
(visited on 06/04/2014).

[35] M. Muller, “Curiosity, Creativity, and Surprise as Analytic Tools: Grounded Theory
Method,” en, in Ways of Knowing in HCI, J. S. Olson and W. A. Kellogg, Eds., New
York, NY: Springer, 2014, pp. 25–48, isbn: 978-1-4939-0378-8. url: https://doi.org/
10.1007/978-1-4939-0378-8_2 (visited on 09/11/2023).

48

https://doi.org/10.1109/TVCG.2016.2535340
https://doi.org/10.1145/3490099.3511122
https://dl.acm.org/doi/10.1145/3490099.3511122
https://doi.org/10.1109/MCG.2006.70
https://doi.org/10.1145/3313831.3376381
https://doi.org/10.1145/3313831.3376381
https://dl.acm.org/doi/10.1145/3313831.3376381
https://doi.org/10.1109/TVCG.2014.2346452
http://ieeexplore.ieee.org/document/6876022/
https://doi.org/10.1145/3173574.3174053
https://dl.acm.org/doi/10.1145/3173574.3174053
https://doi.org/10.1177/1049732305276687
http://www.ncbi.nlm.nih.gov/pubmed/16204405
https://doi.org/10.1353/lib.2006.0053
http://muse.jhu.edu/content/crossref/journals/library_trends/v055/55.1white.html
https://doi.org/10.1007/978-1-4939-0378-8_2
https://doi.org/10.1007/978-1-4939-0378-8_2


[36] M. Lombard, J. Snyder-Duch, and C. Bracken, “Practical resources for assessing and
reporting intercoder reliability in content analysis research projects,” no. 2002, pp. 1–
18, 2004. (visited on 06/06/2014).

[37] E. Jun, M. Birchfield, N. De Moura, J. Heer, and R. Just, “Hypothesis Formalization:
Empirical Findings, Software Limitations, and Design Implications,” en, ACM Trans-
actions on Computer-Human Interaction, vol. 29, no. 1, pp. 1–28, Feb. 2022, issn: 1073-
0516, 1557-7325. doi: 10.1145/3476980. url: https://dl.acm.org/doi/10.1145/3476980
(visited on 12/08/2023).

[38] L. Battle and A. Ottley, A Programmatic Definition of Visualization Insights, Objec-
tives, and Tasks, arXiv:2206.04767 [cs], Oct. 2022. url: http://arxiv.org/abs/2206.
04767 (visited on 09/14/2023).

[39] D. Norman, The Design Of Everyday Things, English, Revised edition. New York, New
York: Basic Books, Nov. 2013, isbn: 978-0-465-05065-9.

[40] J. Boy, L. Eveillard, F. Detienne, and J.-D. Fekete, “Suggested Interactivity: Seeking
Perceived Affordances for Information Visualization,” eng, IEEE transactions on visu-
alization and computer graphics, vol. 22, no. 1, pp. 639–648, Jan. 2016, issn: 1941-0506.
doi: 10.1109/TVCG.2015.2467201.

[41] S. Davies, “The Cognitive Psychology of Planning,” en, in Planning and problem solving
in well-defin ed domains, The Psychology Press, 2005, p. 43. url: https : / /www.
routledge . com /The - Cognitive - Psychology - of - Planning / Morris - Ward / p / book /
9780415646772 (visited on 12/08/2023).

[42] R. Arias-Hernandez, L. T. Kaastra, and B. Fisher, “Joint Action Theory and Pair
Analytics: In-vivo Studies of Cognition and Social Interaction in Collaborative Visual
Analytics,” en, Proceedings of the 33rd Annual Conference of the Cognitive Science
Society, 2011.

[43] U. I. D. Lab, Draco: Representing, Applying & Learning Visualization Design Guide-
lines, en, Library Catalog: medium.com, Oct. 2018. url: https : / / medium . com /
@uwdata / draco - representing - applying - learning - visualization - design - guidelines -
64ce20287e9d (visited on 04/18/2020).

[44] A. Suh, Y. Jiang, A. Mosca, E. Wu, and R. Chang, A Grammar for Hypothesis-Driven
Visual Analysis, arXiv:2204.14267 [cs], Apr. 2022. url: http://arxiv.org/abs/2204.
14267 (visited on 03/22/2023).

[45] W. Willett, J. Heer, and M. Agrawala, “Scented Widgets: Improving Navigation Cues
with Embedded Visualizations,” en, IEEE Transactions on Visualization and Com-
puter Graphics, vol. 13, no. 6, pp. 1129–1136, Nov. 2007, issn: 1077-2626. doi: 10.
1109/TVCG.2007.70589. url: http://ieeexplore.ieee.org/document/4376132/ (visited
on 03/26/2024).

[46] Y. Wu, R. Chang, J. M. Hellerstein, and E. Wu, Facilitating Exploration with Inter-
action Snapshots under High Latency, arXiv:1806.01499 [cs], Sep. 2020. url: http :
//arxiv.org/abs/1806.01499 (visited on 03/31/2024).

49

https://doi.org/10.1145/3476980
https://dl.acm.org/doi/10.1145/3476980
http://arxiv.org/abs/2206.04767
http://arxiv.org/abs/2206.04767
https://doi.org/10.1109/TVCG.2015.2467201
https://www.routledge.com/The-Cognitive-Psychology-of-Planning/Morris-Ward/p/book/9780415646772
https://www.routledge.com/The-Cognitive-Psychology-of-Planning/Morris-Ward/p/book/9780415646772
https://www.routledge.com/The-Cognitive-Psychology-of-Planning/Morris-Ward/p/book/9780415646772
https://medium.com/@uwdata/draco-representing-applying-learning-visualization-design-guidelines-64ce20287e9d
https://medium.com/@uwdata/draco-representing-applying-learning-visualization-design-guidelines-64ce20287e9d
https://medium.com/@uwdata/draco-representing-applying-learning-visualization-design-guidelines-64ce20287e9d
http://arxiv.org/abs/2204.14267
http://arxiv.org/abs/2204.14267
https://doi.org/10.1109/TVCG.2007.70589
https://doi.org/10.1109/TVCG.2007.70589
http://ieeexplore.ieee.org/document/4376132/
http://arxiv.org/abs/1806.01499
http://arxiv.org/abs/1806.01499


[47] W. C. Hill, J. D. Hollan, D. Wroblewski, and T. McCandless, “Edit wear and read
wear,” en, in Proceedings of the SIGCHI conference on Human factors in computing
systems - CHI ’92, Monterey, California, United States: ACM Press, 1992, pp. 3–9,
isbn: 978-0-89791-513-7. doi: 10.1145/142750.142751. url: http://portal.acm.org/
citation.cfm?doid=142750.142751 (visited on 01/24/2024).

[48] A. Narechania, A. Coscia, E. Wall, and A. Endert, “Lumos: Increasing Awareness of
Analytic Behavior during Visual Data Analysis,” IEEE Transactions on Visualization
and Computer Graphics, vol. 28, no. 1, pp. 1009–1018, Jan. 2022, arXiv:2108.02909
[cs], issn: 1077-2626, 1941-0506, 2160-9306. doi: 10.1109/TVCG.2021.3114827. url:
http://arxiv.org/abs/2108.02909 (visited on 03/31/2024).

[49] R. Peng and 2018, Simply Statistics: Divergent and Convergent Phases of Data Anal-
ysis. url: https://simplystatistics.org/posts/2018-09-14-divergent-and-convergent-
phases-of-data-analysis/ (visited on 03/26/2024).

[50] S. Gathani, S. Monadjemi, A. Ottley, and L. Battle, A Grammar-Based Approach for
Applying Visualization Taxonomies to Interaction Logs, arXiv:2201.03740 [cs], Apr.
2022. url: http://arxiv.org/abs/2201.03740 (visited on 03/24/2024).

[51] D. Dotan, P. Pinheiro-Chagas, F. A. Roumi, and S. Dehaene, “Track It to Crack
It: Dissecting Processing Stages with Finger Tracking,” English, Trends in Cognitive
Sciences, vol. 23, no. 12, pp. 1058–1070, Dec. 2019, Publisher: Elsevier, issn: 1364-
6613, 1879-307X. doi: 10.1016/j.tics.2019.10.002. url: https://www.cell.com/trends/
cognitive-sciences/abstract/S1364-6613(19)30237-2 (visited on 09/06/2021).

[52] H. Sacks, E. A. Schegloff, and G. Jefferson, “A Simplest Systematics for the Organi-
zation of Turn-Taking for Conversation,” Language, vol. 50, no. 4, pp. 696–735, 1974,
Publisher: Linguistic Society of America, issn: 0097-8507. doi: 10.2307/412243. url:
https://www.jstor.org/stable/412243 (visited on 03/29/2024).

[53] V. Setlur, M. Correll, A. Satyanarayan, and M. Tory, Heuristics for Supporting Co-
operative Dashboard Design, arXiv:2308.04514 [cs], Aug. 2023. url: http://arxiv.org/
abs/2308.04514 (visited on 09/05/2023).

[54] A. Lex, “Opportunities for Understanding Semantics of User Interactions,” in Workshop
– Machine Learning from User Interactions, Oct. 2021.

[55] A. Fouse, N. Weibel, E. Hutchins, and J. D. Hollan, “ChronoViz: A system for sup-
porting navigation of time-coded data,” en, in CHI ’11 Extended Abstracts on Human
Factors in Computing Systems, Vancouver BC Canada: ACM, May 2011, pp. 299–304,
isbn: 978-1-4503-0268-5. doi: 10.1145/1979742.1979706. url: https://dl.acm.org/
doi/10.1145/1979742.1979706 (visited on 03/30/2024).

MIT-thesis-template/mitthesis-sample

50

https://doi.org/10.1145/142750.142751
http://portal.acm.org/citation.cfm?doid=142750.142751
http://portal.acm.org/citation.cfm?doid=142750.142751
https://doi.org/10.1109/TVCG.2021.3114827
http://arxiv.org/abs/2108.02909
https://simplystatistics.org/posts/2018-09-14-divergent-and-convergent-phases-of-data-analysis/
https://simplystatistics.org/posts/2018-09-14-divergent-and-convergent-phases-of-data-analysis/
http://arxiv.org/abs/2201.03740
https://doi.org/10.1016/j.tics.2019.10.002
https://www.cell.com/trends/cognitive-sciences/abstract/S1364-6613(19)30237-2
https://www.cell.com/trends/cognitive-sciences/abstract/S1364-6613(19)30237-2
https://doi.org/10.2307/412243
https://www.jstor.org/stable/412243
http://arxiv.org/abs/2308.04514
http://arxiv.org/abs/2308.04514
https://doi.org/10.1145/1979742.1979706
https://dl.acm.org/doi/10.1145/1979742.1979706
https://dl.acm.org/doi/10.1145/1979742.1979706

	Title page
	Abstract
	Acknowledgments
	Biographical Sketch
	Table of Contents
	List of Figures
	1 Introduction
	2 Related Work
	3 Methods
	3.0.1 Study Design, Procedure, and Participants
	3.0.2 Controlling for Library Expertise with Altair Express
	3.0.3 Data Analysis Procedure

	4 A Formal Description of EDA Sessions
	5 Characterizing Analyst Utterances
	5.0.1 Temporal Patterns
	5.0.2 Sequential Transitions

	6 Characterizing Representations and Usage
	6.0.1 Temporality, Diversity, and Velocity
	6.0.2 Hover Patterns and Observations
	6.0.3 An Interactive Draw Towards Complexity
	6.0.4 Patterns of Broad Analysis Space Exploration
	6.0.5 Thinking in the Language of Interaction

	7 Discussion and Future Work
	7.0.1 Limitations
	7.0.2 Implications for EDA Tool Design
	7.0.3 Towards Richer Methods for Studying Interactive Analysis as Situated Activity

	References

