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ABSTRACT

Recent work in imitation learning has shown that having an expert controller that is
both suitably smooth and stable enables much stronger guarantees on the performance of the
approximating learned controller. Constructing such smoothed expert controllers for arbitrary
systems remains challenging, especially in the presence of input and state constraints. We
show how such a smoothed expert can be designed for a general class of systems using a
log-barrier-based relaxation of a standard Model Predictive Control (MPC) optimization
problem. Our principal theoretical contributions include (1) demonstrating that the Jacobian
of the barrier MPC controller can be written as a convex combination of pieces arising from
the explicit MPC formulation, (2) bounding the Hessian of the barrier MPC as a function
of the strength of the barrier function, and (3) presenting new results in both matrix and
convex analysis for computing perturbed adjugate matrices and a tight (up to constant) lower
bound on the distance of a solution with a self-concordant-barrier to the constraint set. We
consider randomized smoothing as a point of comparison and show empirically that, unlike
randomized smoothing, barrier MPC yields better performance while guaranteeing constraint
satisfaction.
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Chapter 1

Introduction

1.1 Motivation and Background

Imitation learning has emerged as a powerful tool in machine learning, enabling agents to

learn complex behaviors by mimicking expert demonstrations acquired either from a human

demonstrator or a policy computed offline [Pom88; RSB09; ACN10; RGB11]. Despite its

significant success, imitation learning suffers from a compounding error problem: successive

evaluations of the approximate policy accumulate error, resulting in out-of-distribution

failures [Pom88]. Recent results in imitation learning [PZTM22; TRZM22; BJPST24] have

identified smoothness (i.e. the derivative being Lipschitz) and stability of the expert as two key

properties that circumvent this issue, thereby allowing for end-to-end performance guarantees

for the final learned controller.

In this work, our focus is on enabling such guarantees when the expert being imitated is a

Model Predictive Controller (MPC), a powerful class of control algorithms based on solving an

optimization problem over a receding prediction horizon [AZ12]. In some cases, the solution

to this multiparametric optimization problem, known as the explicit MPC representation

[BMDP02], can be pre-computed. For our setup — linear systems with polytopic constraints

— the optimal control input is a piecewise affine function of the state. However, the number of
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these pieces may grow exponentially with the time horizon and the state and input dimensions,

making pre-computing and storing such a representation impractical in high dimensions.

While the approximation of MPC policies has garnered significant attention in prior

works [Mor20; CSA+18; AMMHJ23], they are principally concerned with approximating the

non-smooth explicit MPC with a neural network approximator and introduce schemes for

enforcing stability under the learned policy. In contrast, we first construct a smoothed version

of the expert and then apply stronger theoretical results derived from imitation of a smooth,

stabilizing expert.

In this work, we demonstrate—both theoretically and empirically—that a log-barrier

formulation of the underlying MPC optimization yields similar smoothness properties to

its randomized-soothing-based counterpart while being easy to compute and satisfying the

constraints of the original MPC. Our barrier MPC formulation replaces the constraints in

the MPC optimization problem with “soft constraints” using the log-barrier (cf. Chapter 3).

We show that, in conjunction with a black-box imitation learning algorithm, this enables

end-to-end guarantees on the performance of the learned policy.

1.2 Review of Literature

There has been considerable prior work on both imitation learning and barrier MPC. We will

discuss both below, and contrast them with our work.

Imitation learning attempts to mimic a policy by using demonstrations from an expert to

learn an imitator policy. Previous advances in imitation learning [RB10; RGB11; LLFDG17]

have generally focused on new data-collection techniques to prevent distribution shift. This

approach, which includes widely-used algorithms such as DAGGER [RGB11] and DART

[LLFDG17], consists of alternating between learning an approximate policy, rolling out new

trajectories under the approximate policy, and then labeling the additional trajectories by

evaluating the expert policy. This approach has the significant drawback that both the

12



expert and environment must be continuously queried. Recent work, known as Taylor Series

Imitation Learning (TaSIL) [PZTM22], overcomes these limitations. Instead of leveraging

interactive rollouts to build theoretical guarantees, TaSIL leverages control-theoretic stability

properties and expert smoothness to achieve high-probability guarantees from purely offline

data. For imitating model predictive controllers, it is generally easier to query the controller

and its corresponding derivatives than to collect more demonstration trajectories (as this may

require physical hardware), making the offline setting more realistic. The TaSIL framework

has also been extended in several other contexts to reason about multi-task imitation

learning [ZKL+23], as well as stochastic policies [BJPST24]. As previously mentioned, the

approximation of explicit MPC policies has previously been studied [Mor20; CSA+18;

AMMHJ23], but prior work has tried to enforce the stability of the learned policy post-

training, whereas we directly inherit the stability properties of the original MPC. Our

presentation of the imitation learning problem and analysis in Section 3.4 builds on the TaSIL

analysis framework, extended with novel smoothness bounds and known stability properties

of barrier MPC.

The use of barriers to solve convex optimization problems generally has a long history,

stretching back to Dikin [Dik67a] and Karmarkar [Kar84]. This class of methods, known

as interior-point methods, solve constrained convex programs by adding a weighted barrier

function to the cost, ensuring strict feasibility of the resulting solution. The weight on the

barrier is gradually reduced until the objective is within the desired error tolerance of the

original program. Interior-point methods were among the first efficient polynomial time

methods and remain widely in use today [Wri05]. A notion of what constitutes a suitable

barrier function, known as a self-concordant-barrier, was later developed by Nesterov and

Nemirovskii [NN94]. We use the notion of self-concordance in many of our results (see

Definition 3.0.1). For further treatment of interior point programming, we refer the reader

to [Nes+18]. Our use case of barriers differs from that in interior point methods. Whereas

interior point methods continuously reduce the barrier weight, we wish to fix the barrier
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weight away from zero and study the properties of the resulting solution. As a result, the

standard duality gap analysis of self-concordant barriers, which bounds the suboptimality

of the objective in terms of barrier weight, is insufficient. Namely, we are interested in both

upper and lower bounding the solution approximation error (rather than the duality gap), in

addition to understanding the second-order smoothness properties of how the solution varies

with barrier strength.

Barrier-based methods for model predictive control [WH04; FE13; FE14; FE15a; FE16;

PFDS20] have been extensively studied in the literature. However, prior work in barrier MPC

has focused on satisfying particular safety or stability properties. Barrier MPC was first

introduced by Wills and Heath [WH04], who show asymptotic stability of barrier MPC under

an appropriately chosen ellipsoidal terminal constraint set. Additional work by Feller and

Ebenbauer [FE15b] extends these results to show a more general exponential input-to-state

stability property, using only properties of the terminal cost and for arbitrary constraint sets.

Barrier-based methods have been used in other contexts for MPC, including as control-barrier

functions for safety-critical control applications [ZZS21; WZ22]. Our work is orthogonal, yet

complementary, to these directions. Our main result concerns the smoothness properties of

quadratic programs (QPs) with respect to a problem parameter, where the cost and constraint

set vary linearly with said parameter. In the context of barrier MPC, this sheds light on the

smoothness properties of the control policy, an aspect that prior work does not explore.

1.3 Our Contributions

We separate our results into three categories: (1) theoretically optimal smoothness-to-error

tradeoff bounds, (2) smoothness and approximation results for barrier MPC, and (3) general

results for matrix analysis and interior point methods. We useO(·) to denote that dependencies

on other parameters have been suppressed.
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Optimal Error to Smoothness Tradeoff. These results concern the smoothest possible

approximation for a function with discontinuous gradients. In particular, we show that

any smooth approximation of such a function which is O(ϵ) close everywhere must have

a smoothness constant (Lipschitzness of the gradient) of at least O(1/ϵ). We note that

randomized smoothing (convolution with a smoothing kernel) is optimal in this sense, but

not well-suited for controls applications as it does not preserve the stability properties of the

underlying controller. This motivates our central question: is it possible to smooth a function

while matching the optimal error-to-smoothness tradeoff and preserving properties such as

stability and constraints?

Log-Barrier MPC. Our main result is that log-barrier-based MPC is an optimal smoother

along some direction and outperforms randomized smoothing for controls tasks. For a given

MPC, let u⋆ be the solution of the explicit MPC, and let uη be the solution of the barrier-MPC

formulation, with η being the weight applied to the barrier. Then, our main results for barrier

MPC are as follows.

Our first result (Theorem 3.1.1) establishes that the distance of uη from u⋆ is bounded by

O(√η). While O(√η) is a tight upper bound for arbitrary directions, Theorem 3.1.2 shows

that there exists a direction a (independent of η or choice of barrier) along which the error

a⊤(uη − u⋆) is both upper and lower bounded by O(
√
η + d2 − d), where d is the distance

of the unconstrained solution to the constraint polytope under an appropriate metric. We

further show (Theorem 3.2.2) that the Jacobian of the log-barrier solution can be written as

a convex combination of the Jacobian of the solution of the explicit MPC. In particular, this

shows that the rate of change of uη with respect to x0 is bounded independent of the weight η

applied to the log barrier. We then provide in Theorem 3.3.1 a bound of O(1/(
√
η + d2 − d))

on the spectral norm of the Hessian of uη with respect to x0. In particular, we note that this

matches the O(
√
η + d2 − d) directional error bound, meaning that barrier MPC acts locally

like an optimal smoother along this direction. We demonstrate through experiments that
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barrier MPC outperforms randomized smoothing, affirming the merits of more sophisticated,

controls-aware smoothing techniques.

Interior Point Optimization. A crucial technical component in obtaining our upper

bound on the smoothness is a novel lower bound on the residual of the solution to a problem

using a self-concordant barrier. Intuitively, the nature of the barrier function already suggests

that the solution to a problem with a barrier function in the objective cannot be too close to

the boundary of the constraint set. However, prior to our work (Theorem A.2.10), there does

not seem to be an explicit lower bound quantifying this minimum residual. Furthermore, our

smoothing analysis demonstrates that the lower bound we present is tight up to constants.

We believe this result could have applications in optimization theory as well.
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Chapter 2

Preliminaries

2.1 Notation

We first state our notation and setup that we use throughout. The notation ∥ · ∥ refers to the

ℓ2 norm ∥ · ∥2 for vectors and, by extension, to the spectral norm (largest singular value) for

square matrices and higher-order tensors. Unless transposed, all vectors are column vectors.

We use uppercase boldfaced letters for matrices and lowercase boldfaced letters for vectors.

For a vector x, we use Diag(x) for the diagonal matrix with the entries of x along its diagonal.

We use [n] for the set {1, 2, . . . , n}. Given a matrix M ∈ Rn×n and σ ∈ {0, 1}n, we denote by

[M]σ the principal submatrix of M corresponding to the rows and columns i for which σi = 1.

We use M−1
σ to denote the matrix obtained by first computing the inverse of the matrix [M]σ

and then appropriately padding it with zeroes so that the resulting matrix M−1
σ has the same

size as M. Similarly, we define adj(M)σ to be the matrix obtained by first computing the

adjugate (the transpose of the cofactor matrix) of [M]σ and then appropriately padding it

with zeroes so that adj(M)σ has the same size as M. Lastly, O(·) denotes expressions where

dependencies on other constants have been suppressed.
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2.2 Problem Setup

We consider constrained discrete-time linear dynamical systems of the form,

xt+1 = Axt +But, xt ∈ Xt,ut ∈ Ut, (2.2.1)

with state xt ∈ Rdx and control-input ut ∈ Rdu indexed by time step t, and state and input

maps A ∈ Rdx×dx , B ∈ Rdx×du . The sets Xt and Ut, respectively, are the compact convex

state and input constraint sets given by the polytopes,

Xt := {x ∈ Rdx | Axtx ≤ bx}, Ut := {u ∈ Rdu | Autu ≤ bu},

where Axt ∈ Rkx×dx , Aut ∈ Rku×dx , bxt ∈ Rkx , and but ∈ Rku . We use Ax ∈ R(T ·kx)×dx ,Au ∈

R(T ·ku)×du ,bx ∈ RT ·kx ,bu ∈ RT ·ku to denote the stacked constraints for the entire x1:T and

u0:T−1 sequences. A constraint f(x) ≤ 0 is said to be “active” at y if f(y) = 0. For notational

convenience, we overload φ to compactly denote the vector of constraint residuals for a state

x and input u as well as for the sequences x1:T and u0:T−1:

φt(xt,ut−1) :=

 bxt −Axtxt

but−1 −Aut−1ut−1

 , φ(x0,u0:T−1) :=


φ1(x1,u0)

...

φ(xT ,uT−1)

 . (2.2.2)

We consider deterministic state-feedback control policies which we denote by π : X → U for

appropriate sets X and U . In general, we use π⋆ to refer to the expert policy and π̂ to refer

to its learned approximation for the purpose of imitation learning.

In particular, our principal choice of π⋆ in this paper is an MPC with quadratic cost

and linear constraints. The MPC policy is obtained by solving the following minimization
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problem over future actions u := u0:T−1 with quadratic cost in u and states x := x1:T :

minimizeu V (x0,u) :=
∑T

t=1 x⊤
t Qtxt +

∑T−1
t=0 u⊤

t Rtut

subject to xt+1 := Axt +But,

xT ∈ XT ,u0 ∈ U0,

xt ∈ Xt,ut ∈ Ut, ∀t ∈ [T − 1],

(2.2.3)

where Qt and Rt−1 are positive definite for all t ∈ [T ]. For a given state x, the corresponding

input πmpc of the MPC is:

πmpc(x) := argmin
u0

min
u1:T−1

V (x,u0:T−1), (2.2.4)

where the minimization taken is over the feasible set defined in Problem 2.2.3. Note that

πmpc is well-defined, as V (x0,u) has a unique global minimum in u for all feasible x0 due

to strong convexity of V .

2.3 Explicit Solution to MPC

Explicit MPC [BMDP02] rewrites Problem 2.2.4 as a multi-parametric quadratic program

with linear inequality constraints and solves it for every possible combination of active

constraints, building an analytical solution to the control problem. Following the standard

derivation (see [BMDP02, Section 4] and [BBM17, Chapter 11]), we rewrite Problem 2.2.4 as

the optimization problem, in variable u := u0:T−1 ∈ RT ·du , as described below:

minimizeu V(x0,u) := 1
2u

⊤Hu− x⊤
0 Fu

subject to Gu ≤ w+Px0,

(2.3.1)
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with matrices H ∈ RT ·du×T ·du , F ∈ Rdx×T ·du , G ∈ Rm×T ·du , and P ∈ Rm×dx , and vector

w ∈ Rm, all given by

H = R0:T−1 + B̂⊤Q1:T B̂, F = −2Â⊤Q1:T B̂,

G =

 Au

AxB̂

 , P =

 0

−AxÂ

 , w =

bu

bx

 ,
where Q1:T and R0:T−1 are block diagonal with Q1, . . . ,QT and R0, . . . ,RT−1 on the diagonal,

and B̂ and Â are

Â =



A

A2

...

AT


, B̂ =



B 0 . . . 0

AB B . . . 0
... ... . . . ...

AT−1B AT−2B . . . B


so that x1:T = Âx0 + B̂u. We assume that the constraint polytope in Problem 2.3.1 contains

a ball of radius r and is contained inside an origin-centered ball of radius R. As a consequence

of the assumption that the problem variable is bounded in a ball of radius R, the objective

in Problem 2.3.1 is LV -Lipschitz for some constant LV that depends on R and the operator

norms of the cost matrices. We now state the solution to Problem 2.3.1 [AB09] and later (in

Theorem 3.2.2) show how it appears in the smoothness of the barrier MPC solution.

Lemma 2.3.1. Given a feasible initial state x, let σ(x) ∈ {0, 1}m denote the indicator

of active constraints for Problem 2.3.1, with σi(x) = 1 iff the ith constraint is active. For

σ ∈ {0, 1}m, let Pσ = {x|σ(x) = σ} be the set of initial states x for which the solution has

active constraints determined by σ. Then for x0 ∈ Pσ, the solution u of Problem 2.3.1 is

expressed as u = Kσx0 + kσ, where Kσ and kσ are defined as:

Kσ := H−1[F⊤ −G⊤(GH−1G⊤)−1
σ (GH−1F⊤ −P)],

kσ := H−1G⊤(GH−1G⊤)†σw.
(2.3.2)

We omit the proof of Lemma 2.3.1 since it is standard (see, e.g., [BMDP02, Theorem 2]).
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Figure 2.1: The explicit MPC controller for A =
[
1 1
0 1

]
, B =

[
0
1

]
, Q = I, R = 0.01, T = 10 with the constraints ∥x∥∞ ≤

10, |u| ≤ 1. For this simple 2-dimensional system there are 261 Kσ . The pieces have been uniformly colored such that it is easier
to see the boundaries of the individual pieces. See Figure 3.2 for a complete visualization of the policy.

Based on this lemma, one may pre-compute an efficient lookup structure mapping x ∈ Pσ to

Kσ, kσ. However, since every combination of active constraints may potentially yield a unique

feedback law, the number of pieces to be computed may grow exponentially in the problem

dimension or time horizon. For instance, even the simple two-dimensional toy system in

Figure 2.1 has 261 pieces. In high dimensions or over long time horizons, merely enumerating

all pieces of the explicit MPC may be computationally intractable.

This observation motivates us to consider a learning-based approach. In the spirit of

imitation learning discussed in Chapter 1, we approximate explicit MPC using a polynomial

number of sample trajectories, collected offline. We introduce this framework next.

2.4 Motivating Smoothness: Imitation Learning Frame-

works

In this section, we instantiate the imitation learning framework to motivate our approach in

the later sections. We specifically consider the Taylor series imitation learning framework of
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[PZTM22], which gives high-probability guarantees on the quality of an approximation, as

we introduce below.

2.4.1 Taylor Series Imitation Learning

We now formally introduce the setting for imitation learning considered in this paper. Suppose

we are given an expert controller π⋆, a policy class Π, a distribution of initial conditions D,

and N sample trajectories {x(i)
0:K−1}Ni=1 of length K generated by π⋆, with {x(i)

0 }Ni=1 sampled

i.i.d from D. Our goal is to find an approximate policy π̂ ∈ Π such that given a suitably small

accuracy parameter ϵ, the closed-loop states x̂t and x⋆
t induced by π̂ and π⋆, respectively,

satisfy, with high probability over x0 ∼ D,

∥x̂t − x⋆
t ∥ ≤ ϵ,∀t > 0.

This is formalized in Fact 2.4.6. To understand the sufficient conditions for such ag guarantee,

we now introduce a few definitions.

We first assume through Assumption 2.4.1 that π̂ has been chosen by a black-box

supervised imitation learning algorithm which, given the input data, produces a π̂ ∈ Π such

that, with high probability over the distribution induced by D, the policy and its Jacobian

are close to the expert.

Assumption 2.4.1. For some δ ∈ (0, 1), ϵ0 > 0, ϵ1 > 0 and given N trajectories {x(i)
0:K−1}

(N)
i=1

of length K with x0 sampled i.i.d. from D and rolled out under π⋆, the learned approximating

policy π̂ satisfies:

Px0∼D

[
sup
k≥0

∥π̂(xk)− π⋆(xk)∥ ≤ ϵ0/N ∧ sup
k≥0

∥∥∥∥∥∂π̂∂x (xk)−
∂π⋆

∂x
(xk)

∥∥∥∥∥ ≤ ϵ1/N

]
≥ 1− δ.

For instance, as shown in [PZTM22], Assumption 2.4.1 holds for π̂ chosen as an empirical

risk minimizer from a class of twice differentiable parametric functions with ℓ2-bounded
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parameters, e.g. dense neural networks with smooth activation functions and trained with ℓ2

weight regularization. We refer the reader to [PZTM22; TRZM22] for other possible examples

of Π. Note the above definition requires only generalization on the state distribution induced

by the expert, rather than the distribution induced by the learned policy, as in [AMMHJ23;

CSA+18].

Next, we define a weaker variant of the standard incremental input-to-state stability (δISS)

[VR20] and assume, in Assumption 2.4.3, that this property holds for the expert policy.

We use K to denote the class of functions [0, a) → [0,∞) which are zero at x = 0 and are

monotonically increasing.

Definition 2.4.2 (Locally Incrementally Input-to-State Stabilizing Policy, cf. [PZTM22]).

Let τ > 0 and γ ∈ K. Consider any initial condition x0 ∈ X and bounded sequence of

input perturbations {∆t}t>0 such that ∥∆∥∞ < τ . Let xt+1 = f(xt, π(xt)), x0 = x0 be the

nominal trajectory, and xt+1 = f(xt, π(x)t +∆t) be the perturbed trajectory. We say that π is

(τ, γ)-locally-incrementally input-to-state stabilizing if,

∥xt − xt∥ ≤ γ ·max
k<t

∥∆k∥, ∀ t ≥ 0.

Assumption 2.4.3. The expert policy π⋆ is (τ, γ)-locally incrementally stabilizing.

As noted in [PZTM22], local incremental input-to-state stability (local δISS) is a much

weaker criterion than even just regular incremental input-to-state stability (δISS), as local

δISS uses the same initial condition and considers only bounded input perturbations. We

will later show in Section 3.4 that under mild assumptions even input-to-state stabilizing

policies (Definition 3.4.1) are also locally δ-ISS (Lemma 3.4.2). There is considerable prior

work demonstrating that ISS holds under mild conditions for both the explicit MPC and

the barrier-based MPC under consideration in this paper [PFDS20]. We refer the reader to

[ZM11] for more details.

Having established some preliminaries for stability, we now move on to the smoothness

property we consider.
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Definition 2.4.4 (Smoothness). We say that an MPC policy π is (L0, L1)-smooth if for all

x,y ∈ X ,

∥π(x)− π(y)∥ ≤ L0∥x− y∥,∥∥∥∥∥∂π∂x (x)− ∂π

∂x
(y)

∥∥∥∥∥ ≤ L1∥x− y∥.

Assumption 2.4.5. The expert policy π⋆ and the learned policy π̂ are both (L0, L1)-smooth.

At a high level, by assuming smoothness of the expert and the learned policy, we can

implicitly ensure that the learned policy captures the stability of the expert in a neighborhood

around the data distribution. If the expert or learned policy were to be only piecewise smooth,

a transition from one piece to another in the expert, which is not replicated by the learned

policy, could lead to unstable closed-loop behavior.

Having stated all the necessary assumptions, we are now ready to state below the main

export of this section, guaranteeing closeness of the learned and expert policies.

Fact 2.4.6 (cf. [PZTM22], Corollary A.1). Provided π⋆, π̂ are (L0, L1)-smooth, (τ, γ)-locally

incrementally stable, and π̂ satisfies Assumption 2.4.1 with δ > 0 and N sufficiently large

such that ϵ0
N

≤ min{ 1
16γ2L1

, 1
16γ ,

τ
8γ} and ϵ1

N
≤ 1

4γ , then with probability 1− δ for x0 ∼ D, we

have

∥x̂t − x⋆
t ∥ ≤ 8γϵ0

N
∀t ≥ 0.

The upshot of this result is that to match the trajectory of the MPC policy π⋆ with high

probability, provided π⋆ is (L0, L1)-smooth, we need to match the Jacobian and value of

π⋆ on only a fixed, finite number of points to get strong guarantees. This is in contrast to

prior work such as [Mor20; KL20; CSA+18] on approximating explicit MPC, which require

sampling new control inputs during training (in a reinforcement learning-like fashion) or

post-training verification of the stability properties of the network.

However, as noted in Chapter 1, these strong guarantees require a smooth expert controller.

We investigate two approaches for smoothing πmpc: randomized smoothing and barrier MPC.
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We begin by first considering what constitutes an "optimal" smoothing approach in terms of

the smallest possible Hessian norm for a given level of approximation error.

2.4.2 Optimal Smoothing

We begin by considering the properties of a general smoothing algorithm. For simplicity for

this section we consider smoothing functions of the form f : R → R, although we note that

that this analysis can easily be extended to f : Rn → Rm by considering arbitrary paths

R → Rn and projections Rm → R. This motivates the following definition of a smoothing

algorithm:

Definition 2.4.7 (ϵ-Smoothing Algorithm). Let ϵ > 0. An ϵ-smoothing algorithm S for

a function class F is a map S : F → C1 where C1 is the class of functions R → R with

continuous derivatives. Furthermore S satisfies,

sup
x

∥S(f)− f(x)∥ ≤ ϵ ∀f ∈ F .

Analogously, we define a general smoothing algorithm as a map that can yield a smooth

approximation for arbitrary choice of small ϵ.

Definition 2.4.8 (Smoothing Algorithm). A general smoothing algorithm S for a function

class F is a map S : [0, a)×F → C1 for a > 0 where S(ϵ, ·) is an ϵ-smoothing algorithm.

We begin by showing that for any ϵ-smoothing algorithm S for the class of L-Lipschitz

functions (which we denote by LL), there exists f ∈ LL such that the derivative of g := S(f)

has Lipschitz constant at least O(1
ϵ
). A simple example of such a function is given by the

scaled absolute value function f(x) = C|x|.

Lemma 2.4.9. Let S be any ϵ-smoothing algorithm S : LL → C1 for L, ϵ > 0 and let

f(x) := L|x|, g(x) := S(f). Then there exists x, y ∈ R such that,

|∇g(x)−∇g(y)| ≥ L2

9ϵ |x− y|.
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Proof. Consider the value of g(x) at x = −3ϵ
L
, 0, 3ϵ

L
. Since S is an ϵ-smoothing algorithm

and f(−3ϵ
L
) = f(3ϵ

L
) = 3ϵ and f(0) = 0, we can conclude that g(−3ϵ

L
), g(3ϵ

L
) ≥ 2ϵ, g(0) ≤ ϵ.

This implies that g(3ϵ
L
)− g(0) ≥ ϵ and g(0)− g(−3ϵ

L
) ≤ −ϵ. By Rolle’s theorem, there exists

y ∈ [−3ϵ
L
, 0], x ∈ [0, 3ϵ

L
] such that,

∇g(y) ≤ −L3 ,∇g(x) ≥
L

3 .

Note that |x− y| ≤ 6ϵ
L
or equivalently that L2

9ϵ |x− y| ≤ 2L
3 . We conclude that,

|∇g(x)−∇g(y)| ≥ 2L
3 ≥ L2

9ϵ |x− y|.

This completes the proof.

The above result suggests an inherent tradeoff between the approximation error ϵ and the

Lipschitzness of the derivative of the smoothed function. Using intuition from Lemma 2.4.9,

we state a more general bound for arbitrary, piecewise twice differentiable functions where

the derivatives at the piece boundaries do not match.

Theorem 2.4.10. Let f : R → R be a function with piecewise continuous derivative. Let

c ∈ R be a point such that limx→c− ∇f(x) = a and limx→c+ ∇f(x) = b where a ≠ b (i.e. the

derivative is discontinuous). Then for sufficiently small ϵ and any ϵ-smoothing algorithm S,

we have that for g := S(f) there exists x, y such that,

|∇g(x)−∇g(y)| ≥ |a− b|2

144ϵ |x− y|.

Proof. WLOG we can shift f such that c = 0, f(0) = 0. Similarly, we can also subtract

off (a+b)
2 x from both f and g as well as potentially perform the transformation f(x) →

f(−x), g(x) → g(−x) such that limx→0− ∇f(x) = − |a−b|
2 and limx→0+ ∇f(x) = |a−b|

2 . Let

d := |a−b|
2 .

Since f has piecewise continuous derivative, by definition there exists some radius δ > 0

around 0 such that f is differentiable on (−δ, 0) and (0, δ) and that∇f(x) ≤ −d
2 for x ∈ (−δ, 0)
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and ∇f(x) ≥ d
2 for x ∈ (0, δ). We can therefore lower bound

f(x) ≥ −d2x ∀x ∈ (−δ, 0), f(x) ≥ d

2x ∀x ∈ (0, δ)

Similar to Lemma 2.4.9, we note that for ϵ ≤ d
6δ, f(

6ϵ
d
), f(6ϵ

d
) > 3ϵ. Since f(0) = 0, g(0) ≤ ϵ

and therefore g(0) − g(6ϵ
d
) < −ϵ, g(6ϵ

d
) − g(0) ≥ ϵ. Therefore for some x, y ∈ R such that

|x− y| ≤ 12ϵ
d
, we have that,

|∇g(x)−∇g(y)| ≥ d

3 ≥ d2

36ϵ |x− y| = |a− b|2

144ϵ |x− y|.

This completes the proof.

The above result suggests that the derivative of an ϵ-smoothed function has a Lipschitz

constant lower bounded by the square of the "discontinuity" in the derivatives times the

inverse of the largest approximation error. If the smoothed function is twice differentiable,

this is equivalent to a lower bound on the Hessian.

Guided by the above results, we now state our definition for an "optimal smoothing"

algorithm, which is a smoothing algorithm such that the above bound is tight, up to a

constant. For simplicity, we define optimal smoothing only for L-Lipschitz functions, although

this definition could be extended to other function classes.

Definition 2.4.11. A smoothing algorithm S : R × F → C1 for a function class F is

worst-case optimal up to a constant if there exists C > 0 such that, for any sufficiently small

ϵ > 0, L > 0, and L-Lipschitz function f ∈ LL ⊂ F , the following inequality holds with

g := S(ϵ, f),

∥∇g(x)−∇g(y)∥ ≤ C
L2

ϵ
∥x− y∥.

Note that, by the above lemmas, an algorithm satisfying Definition 2.4.11 yields smoothed

functions where the bound on the hessian which is at most a constant factor worse than the

best possible bound for Lipschitz functions. Since the explicit model predictive control policy
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is always Lipschitz, for our purposes we will simply refer to smoothing algorithms satisfying

Definition 2.4.11 as "optimal smoothers."

In the next two sections, we answer the question of whether an optimal smoothing

algorithm can preserve the stability of an explicit MPC controller. We will show that while

randomized smoothing is an optimal smoother, there exist systems for which randomized

smoothing does not preserve the stability of the system. We will then introduce barrier MPC

and prove that there exists a direction along which barrier MPC is an optimal smoother.

2.4.3 First Approach: Randomized Smoothing

We first consider randomized smoothing (see, e.g., [DBW12]) as a baseline approach for

smoothing π⋆. Here, the imitator is learned with a loss function that randomly samples with

noise drawn from a chosen probability distribution in order to smooth the policy, effectively

convolving the controller with a smoothing kernel. This approach corresponds to the following

controller.

Definition 2.4.12 (Randomized Smoothed MPC). Given a control policy πmpc of the

form Problem 2.2.4, a desired zero-mean noise distribution P, and magnitude σ > 0, the

randomized-smoothing based MPC is defined as:

πrs(x) := Ew∼P [πmpc(x + σw)].

The distribution P in Definition 2.4.12 is usually chosen such that the following guarantees

on error and smoothness hold.

Fact 2.4.13 (cf. [DBW12], Appendix E, Lemma 7-9). Let L be the Lipschitz constant of πmpc.

For each of P ∈ {Unif(Bℓ2(1)),Unif(Bℓ∞(1)), N (0, I)}, there exist constants C0, C1 > 0 that
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depend on dx such that,

∥πrs(x)− πmpc(x)∥ ≤ C0σ ∀x ∈ X ,

∥∇πrs(x)−∇πrs(y)∥ ≤ C1L
2

σ
∥x− y∥ ∀x,y ∈ X .

This implies that randomized smoothing is an optimal smoother for the given choices of P.

However, using randomized smoothing to obtain a smoothed policy has three key disad-

vantages: (1) the expectation Ew∼P [πmpc(x + ϵw)] is evaluated via sampling, which means

the expert policy must be continuously re-evaluated during training in order to guarantee

convergence to the smoothed policy. (2) smoothing in this manner may cause πrs to violate

state constraints. (3) simply smoothing the policy may not preserve the stability of πmpc.

Problems (2) and (3) ultimately arise as a result of randomized smoothing oversmoothing

the underlying controller. Consider the following example:

Example 2.4.14. Consider the system f(xt, ut) = 1.5x + ut and control policy given by

π⋆(x) = min(max(−x,−1), 1). Note that π⋆ is asymptotically exponentially stabilizing for

x0 ∈ [−1, 1]. We can see that for choices of P above, as σ → ∞, πrs(x) → 0 for all x. We

can conclude that πrs does not stabilize the system for large σ.

Ideally we would more aggressively smooth discontinuities that do not affect stability

or constraint guarantees. This requires a smoothing technique that is aware of when more

aggressive control inputs are being taken in order to more quickly stabilize versus in order to

preserve constraint guarantees. As we shall show, barrier MPC is precisely such a method, and

is both quick to compute while guaranteeing state constraints satisfaction. In the next section,

we define barrier MPC and calculate bounds on the approximation error and smoothness of

the resulting controller.
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Chapter 3

Our Approach to Smoothing: Barrier

MPC

Having described the guarantees obtained via randomized smoothing, we now consider

smoothing via barrier functions. We begin by defining the notion of self-concordant barrier

[NN94], upon which we base our analysis.

Definition 3.0.1 ([NN94]). A convex, thrice differentiable function φ : Q 7→ R is a ν-self-

concordant barrier on an open convex set Q ⊆ Rn if the following conditions hold.

(i) For all sequences xi ∈ Q converging to the boundary of Q, we have limi→∞ φ(xi) → ∞.

(ii) For all x ∈ Q and h ∈ Rn, we have the bound |D3f(x)[h,h,h]| ≤ 2(D2f(x)[h,h])3/2,

where Dkf(x)[h1, . . . ,hk] is the k-th derivative of f at x along directions h1, . . . ,hk,

(iii) For all x ∈ Q, we have ∇f(x)⊤(∇2f(x))−1∇f(x) ≤ ν. The parameter ν satisfies ν ≥ 1.

The self-concordance property essentially says that locally, the Hessian does not change

too fast — it has therefore proven extremely useful in interior-point methods to design fast

algorithms for (constrained) convex programming [Dik67b; Kar84] and has also found use

in model-predictive control [WH04; FE13; FE14; FE15a; FE16] in order to ensure strict

feasibility of the control inputs.
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In this work we consider barrier MPC as a naturally smooth alternative to randomized

smoothing of Problem 2.2.4. In barrier MPC, the inequality constraints occurring in the

optimal control problem are eliminated by incorporating them into the cost function via

suitably scaled barrier terms. We principally consider the log-barrier, which turns a constraint

f(x) ≥ 0 into the term −η log(f(x)) in the minimization objective, where η is the weight of

the barrier, and is the standard choice of barrier on polytopes [NN94].

Concretely, starting from our MPC reformulation in Problem 2.3.1, the barrier MPC we

work with is defined as follows.

Definition 3.0.2 (Barrier MPC). Given an MPC as in Problem 2.3.1 with associated matrices

H ∈ RT ·du×T ·du ,F ∈ Rdx×T ·du, and weight η > 0, the barrier MPC is defined by minimizing,

over the input sequence u ∈ RT ·du, the cost,

Vη(x0,u) := 1
2u

⊤Hu− x⊤
0 Fu− η

[
1⊤ log(φ(x0,u))− d⊤u

]
, (3.0.1)

where φ(x0,u) = Px0 +w−Gu ∈ Rm is the (vector) residual of constraints for x0 and u,

and the vector d is set to d := ∇u
∑m

i=1 log(φi(0,u))|u=0. We denote by uη(x0) the minimizer

of Problem 3.0.1 for a given x0 and by πη
mpc(x) := argminu0 minu1:T−1 Vη(x,u) the associated

control policy.

Some remarks are in order. First, the choice of d in Definition 3.0.2 is made so as to

ensure that argminuη Vη(0,uη) = 0, i.e. that πη
mpc satisfies πη

mpc(0) = πmpc(0) = 0, which is

a necessary condition for the controller to be stabilizing at the origin. Further, note that

∥d∥2 is a constant by construction, a fact that turns out to be useful in Theorem 3.3.1.

Secondly, the technical assumptions about the constraint polytope in Problem 2.3.1

containing a full-dimensional ball of radius r and being contained inside a ball of radius R

around some point are both inherited by Problem 3.0.1.

The main export of this chapter is Theorem 3.3.1, which bounds the norm of the Hessian

of uη with respect to x0 and Theorem 3.4.4, which states our end-to-end result for barrier

MPC. However, we will first begin by analyzing the approximation error.
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3.1 Error Bound for Barrier MPC

To kick off our analysis of the barrier MPC, we first give the following upper bound on

the distance between the optimal solution of Problem 3.0.1 and that of explicit MPC in

Problem 2.3.1. Our result is based on standard techniques to analyze the sub-optimality gap

in interior-point methods and crucially uses the strong convexity of our quadratic cost in

Problem 3.0.1.

Theorem 3.1.1. Suppose that uη and u⋆ are, respectively, the optimizers of Problem 3.0.1

and Problem 2.3.1. Then we have the following bound in terms of the barrier parameter η in

Problem 3.0.1:

∥uη − u⋆∥ ≤ O(√η).

Proof. In this proof, we use K for the constraint polytope of Problem 2.3.1. First, Lemma A.2.3

shows that the recentered log-barrier φK in Problem 3.0.1 is also a self-concordant barrier

with some self-concordance parameter ν. Since uη = argminu q(u) + ηφK(u), where q is the

quadratic cost function of Problem 3.0.1 and φK the recentered log-barrier on K, we have by

first-order optimality:

∇q(uη) = −η∇φK(uη). (3.1.1)

Denote by α the strong convexity parameter of the cost function in Problem 3.0.1 and by ν

the self-concordance parameter of the barrier φK. Then,

{q(uη)− q(u⋆)}+ 1
2α∥u

η − u⋆∥2 ≤ ∇q(uη)⊤(uη − u⋆) = η · ∇φK(uη)⊤(u⋆ − uη) ≤ ην,

where the first step is by α-strong convexity of q, the second step uses Equation (3.1.1),

and the final step applies Fact A.2.1 at the points uη and u⋆. Since both q(uη)− q(u⋆) and
1
2α∥u

η − u⋆∥2 are positive, we can bound the latter by ην. Finally, note that ν ≥ 1 to finish

the proof.
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We note that the above bound of O(√η) holds for arbitrary directions and x0. However,

provided that u⋆ ̸= K0x0 (where K0 is the gain associated with the origin piece of the explicit

MPC, i.e. the solution is not in the interior of the constraint set), we can show that there

exists a direction (independent of η of the choice of barrier) along which the error scales with

O(η/∥u⋆ −K0x0∥) for small η.

Theorem 3.1.2. Suppose that uη and u⋆ are, respectively, the optimizers of Problem 3.0.1

and Problem 2.3.1. Consider the case where u⋆ ̸= K0x0, for K0 = H−1F⊤, i.e. K0x0 is the

solution to the unconstrained problem. Let a = H(u⋆−K0x0)/∥H(u⋆−K0x0)∥. Then we have

the following upper and lower bounds in terms of the barrier parameter η in Problem 3.0.1:

a⊤(uη − u⋆) ≤ 1
2

(√
4mη
α1

+ ∥u⋆ −K0x0∥2H − ∥u⋆ −K0x0∥H
)
,

r

R
min

{
1√
m

(√
η

α2
+ ∥u⋆ −K0x0∥2H − ∥u⋆ −K0x0∥H

)
,

r

2m+ 4
√
m

}
≤ a⊤(uη − u⋆),

where m is the number of constraints and α1I ⪯ H ⪯ α2I.

Proof. This is a direct application of Theorem A.2.10, a result we prove for general ν-self-

concordant barriers, using ν = m, the self-concordant barrier parameter of our log barrier.

Since by Theorem 2.4.10, the spectral norm of the hessian of uη is lower-bounded

by O(1/ϵ) for O(ϵ) error around a discontinuity, the upper and lower error bounds of

Theorem 3.1.2 suggests the tightest-possible upper bound on the hessian that could be

shown (and which would demonstrate barrier MPC is an optimal smoother along the a

direction) is O
(
1/
[√

η + ∥u⋆ −K0x0∥2 − ∥u⋆ −K0x0∥
])
. This bound is later established

in Theorem 3.3.1.

The above bound highlights that barrier MPC smooths in a manner which is shaped by

problem constraints, unlike randomized smoothing, which generally smooths isotropically.

Namely, note that the direction a is the direction of the gradient of the objective at u⋆, which

is a combination the directions of active constraints at u⋆. This is indicative of barrier MPC

smoothing less aggressively along directions associated with active constraints.
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3.2 First-Derivative Bound for the Barrier MPC

To prove our main result on the spectral norm of the Hessian, Theorem 3.3.1, we first establish

the following technical lemma bounding the first derivative of uη with respect to x0. This result

may be of independent interest, as it formulates the Jacobian of the log-barrier smoothed

solution as a convex combination of derivatives associated with sets of active constraints from

the original MPC problem. Our proof starts with the first-order optimality condition for uη

and obtains the desired simplification by applying the Sherman-Morrison-Woodbury identity

(Fact A.1.3).

Lemma 3.2.1. Consider Problem 3.0.1 with associated cost matrices H and F defined

therein. Let Φ := Diag(φ(x0,uη(x0))) be the diagonal matrix constructed via the (vector)

residual φ(x0,uη(x0)) = Px0 +w−Gu ∈ Rm. Then, the solution uη to the barrier MPC in

Problem 3.0.1 evolves as

∂uη

∂x0
= H−1[F⊤ −G⊤(GH−1G⊤ + η−1Φ2)−1(GH−1F⊤ −P)].

Proof. We first state the following first-order optimality condition for Problem 3.0.1:

Huη(x0)− F⊤x0 + η
m∑
i=1

(
gi

φi(x0,uη(x0))
+ di

)
= 0.

Differentiating with respect to x0 and rearranging yields

∂uη

∂x0
= (H+ ηG⊤Φ−2G)−1(F⊤ + ηG⊤Φ−2P). (3.2.1)

For the rest of the proof, we introduce the notation S = GH−1G⊤ + η−1Φ2. Then, we

have by applying the Sherman-Morrison-Woodbury identity (Fact A.1.3) to the inverse in

Equation (3.2.1) that

(H+ ηG⊤Φ−2G)−1 = H−1 −H−1G⊤S−1GH−1,
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which simplifies our expression in Equation (3.2.1) to

∂uη

∂x0
= (H−1 −H−1G⊤S−1GH−1) · (F⊤ + ηG⊤Φ−2P)

= H−1F⊤ −H−1G⊤S−1GH−1F⊤ + (H−1 −H−1G⊤S−1GH−1) · ηG⊤Φ−2P︸ ︷︷ ︸
Term 1

. (3.2.2)

We now show that “Term 1” may be simplified as follows.

(H−1 −H−1G⊤S−1GH−1) · ηG⊤Φ−2P = H−1G⊤S−1P. (3.2.3)

Once this is done, the claim is finished, since plugging the right-hand side from Equation (3.2.3)

into “Term 1” from Equation (3.2.2) gives exactly the claimed expression in the statement

of the lemma. Therefore, we now prove Equation (3.2.3). To this end, we observe that by

factoring out H−1G⊤ from the left and ηΦ−2P from the right, we may re-write the left-hand

side in Equation (3.2.3) as

(H−1 −H−1G⊤S−1GH−1) · ηG⊤Φ−2P = H−1G⊤(I− S−1GH−1G⊤) · ηΦ−2P

= H−1G⊤S−1 · (S−GH−1G⊤) · ηΦ−2 ·P

= H−1G⊤S−1P,

where the last step is by using our definition of S and cancelling η−1Φ2 with ηΦ−2.

Equipped with Lemma 3.2.1, we are now ready to state Theorem 3.2.2, where we connect

the rates of evolution of the solution Equation (2.3.2) to the constrained MPC and that of

the barrier MPC (from Lemma 3.2.1). Put simply, Theorem 3.2.2 tells us that solving barrier

MPC implicitly interpolates between a potentially exponential number of affine pieces from

the original explicit MPC problem. This important connection helps us get a handle on the

smoothness of barrier MPC as the rate at which this interpolation changes. The starting

point for our proof for this result is the expression for ∂uη

∂x0
from Lemma 3.2.1. To simplify this

expression to be η-independent, we crucially use our linear algebraic result (Lemma A.1.8)

on products of the form L · adj(LL⊤)σ for which det(LL⊤)σ = 0.
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Theorem 3.2.2. Consider the setup in Problem 3.0.1 with associated cost matrices H and

F, constraint matrices P and G, and barrier parameter η, all defined therein. We define the

following quantities.

(i) For any σ ∈ {0, 1}m, define the matrix Kσ = H−1[F⊤ −G⊤(GH−1G⊤)−1
σ (GH−1F⊤ −

P)], which, recall, in Lemma 2.3.1 describes the solution u to the constrained MPC.

(ii) Recall from Problem 3.0.1 the residual φ(x0,u) = Px0 + w − Gu ∈ Rm. Here, we

denote the by φ := φ(x0,u). For any φ and σ = {0, 1}m, define the scaling factor

hσ = det([GH−1G⊤]σ)
∏m

i=1(η−1φ2
i )1−σi .

(iii) We split the set σ ∈ {0, 1}m into the following two sets:

S :=
{
σ ∈ {0, 1}m | det([GH−1G⊤]σ) > 0

}
,

S∁ :=
{
σ ∈ {0, 1}m | det([GH−1G⊤]σ) = 0

}
.

Then the rate of evolution of the solution uη to the barrier MPC (in Lemma 3.2.1) is connected

to that of the constrained MPC (in Equation (2.3.2)) as follows:

∂uη

∂x0
= 1∑

σ∈S hσ

∑
σ∈S

hσKσ.

Proof. Let Φ := Diag(φ). Then from Lemma 3.2.1, we have the following expression for ∂uη

∂x0
:

∂uη

∂x0
= H−1[F⊤ −G⊤(GH−1G⊤ + η−1Φ2)−1(GH−1F⊤ −P)].

We now split G⊤(GH−1G⊤ + η−1Φ2) above into the following two components via

Lemma A.1.12.

G⊤(GH−1G⊤+η−1Φ2)−1 = 1
h

∑
σ∈S

hσ ·G⊤(GH−1G⊤)−1
σ +

∑
σ∈S∁

cσ ·G⊤ adj(GH−1G⊤)σ

 ,
where cσ := ∏m

i=1(η−1φ2
i )1−σi and h := ∑

σ∈S hσ. By definition of S∁, the second sum in the

preceding equation comprises those terms for which det(GH−1G⊤)σ = 0. We now invoke

Lemma A.1.11, which states that G⊤ adj(GH−1G⊤)σ = 0 for all σ ∈ S∁. Consequently, we

may express ∂uη

∂x0
in terms of only the first set of terms in the preceding equation (zeroing out
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the second set of terms):

∂uη

∂x0
= 1∑

σ hσ

∑
σ∈S

hσH−1[F⊤ −G⊤(GH−1G⊤)−1
σ (GH−1F⊤ −P)] = 1∑

σ hσ

∑
σ∈S

hσKσ.

where we plugged in Equation (2.3.2) in the final step, thus concluding the proof.

The above theorem immediately implies that
∥∥∥∂uη

∂x0

∥∥∥ is bounded from above as follows.

Notably, this independence of the Lipschitz constant of uη from η demonstrates that the

log-barrier does not worsen the Lipschitz constant of the controller, only changing the

interpolation between the different pieces.

Corollary 3.2.3. In the setting of Theorem 3.2.2, we have,∥∥∥∥∥∂uη

∂x0

∥∥∥∥∥ ≤ L := max
σ∈S

∥Kσ∥.

Proof. From Theorem 3.2.2, we can conclude that ∂uη

∂x0
lies in the convex hull of {Kσ}σ∈S,

and note that |S| <∞.

3.3 Our Main Result: Smoothness Bound for the Bar-

rier MPC

We are now ready to state our main result, which effectively shows that uη (and hence

πη
mpc) satisfies the conditions of Assumption 2.4.5. Our proof of Theorem 3.3.1 starts with

Lemma 3.2.1 and computes another derivative. To get an upper bound on the operator norm of

the Hessian so obtained, our proof then crucially hinges on Lemma A.2.8 and Theorem A.2.10,

which provide explicit lower bounds on residuals when minimizing a quadratic cost plus a

self-concordant barrier over a polytope, a result we believe to be of independent interest to

the optimization community.

Theorem 3.3.1. Consider the setting of Problem 3.0.1 with associated cost matrices H and F,

constraint matrices P and G, barrier parameter η, number of constraints m, the recentering
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vector d, and the solution uη, all defined therein. We define the following quantities.

(i) Denote by L the Lipschitz constant of uη from Corollary 3.2.3.

(ii) We split the set σ ∈ {0, 1}m into the following two sets:

S :=
{
σ ∈ {0, 1}m | det([GH−1G⊤]σ) > 0

}
,

S∁ :=
{
σ ∈ {0, 1}m | det([GH−1G⊤]σ) = 0

}
.

(iii) For σ ∈ S define the parameter C := maxσ∈S ∥2H−1G⊤(GH−1G⊤)†σ∥.

(iv) Denote by r, R, and LV the inner radius, outer radius, and Lipschitz constant, respec-

tively, associated with Problem 3.0.1.

(v) Define the residual lower bound,

resl.b. = min
{

1√
ν

(√
η

λmax(H) + ∥u⋆ −K0x0∥2H − ∥u⋆ −K0x0∥H
)
,

r

2ν + 4
√
ν

}
,

(3.3.1)

with ν = 20(m + R2∥d∥2) and K0x0 := H−1F⊤x0, the solution to the unconstrained

minimization of the quadratic objective. We denote ∥u∥H :=
√
u⊤Hu.

Then, the Hessian of uη with respect to x0 is bounded by:∥∥∥∥∥∂2uη

∂x2
0

∥∥∥∥∥ ≤ C

resl.b.
(∥P∥+ ∥G∥L)2.

where ∥ · ∥ denotes the spectral norm of the ∂2uη

∂x2
0
third-order tensor.

Proof. From Lemma 3.2.1, we have the following expression for ∂uη

∂x0
evaluated at a particular

x0:

∂uη

∂x0
(x0) = H−1[F⊤ −G⊤(GH−1G⊤ + η−1Φ(x0)2)−1(GH−1F⊤ −P)],

where Φ(x0) := Diag(Px0 −w+Guη(x0)). Let y ∈ Rdx be an arbitrary unit-norm vector,

and define the univariate function

M(t) := GH−1G⊤ + η−1Φ(t)2
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where we overload Φ as Φ(t) := Diag(P(x0 + ty)−w+Guη(x0 + ty)), the residual along the

path t 7→ x0 + ty. We therefore have the following expression for ∂uη

∂x0
evaluated at x0 + ty:

∂uη

∂x0
(x0 + ty) = H−1[F⊤ −G⊤M(t)−1(GH−1F⊤ −P)].

Then by differentiating M(t)−1 and applying the chain rule, we get,

d

dt

(
∂uη

∂x0
(x0 + ty)

)
=H−1G⊤M(t)−1dM(t)

dt
M(t)−1(GH−1F⊤ −P)

= 2H−1G⊤M(t)−1
(
dΦ(t)
dt

η−1Φ(t)
)
M(t)−1(GH−1F⊤ −P)

= 2H−1G⊤M(t)−1dΦ(t)
dt

(ηGH−1G⊤Φ−1(t) + Φ(t))−1(GH−1F⊤ −P)

= 2H−1G⊤M(t)−1dΦ(t)
dt

· (ηΦ(t)−1GH−1G⊤Φ(t)−1 + I)−1Φ(t)−1(GH−1F⊤ −P),

where the third and fourth steps factor out Φ(t) from the right and left, respectively. We now

bound groups of terms of the product on the right-hand side and then finish the bound by

submultiplicativity of the spectral norm. First, since M(t) is a sum of a square matrix and a

positive diagonal matrix, we may apply Lemma A.1.12 to express G⊤M(t)−1 as follows with

appropriate hσ and cσ:

G⊤M(t)−1 = 1∑
σ∈S hσ

∑
σ∈S

hσG⊤(GH−1G⊤)†σ +
∑
σ∈S∁

cσG⊤ adj(GH−1G⊤)σ

 . (3.3.2)

Now note that for σ ∈ S∁, we have det(GH−1G⊤)σ = 0. We may then invoke Lemma A.1.11

to infer that for σ ∈ S∁, we have G⊤ adj(GH−1G⊤)σ = 0. As a result, the second term on the

right-hand side of Equation (3.3.2) vanishes, thereby affording us the following simplification:

∥2H−1G⊤M(t)−1∥ =
∥∥∥∥∥ 1∑

σ∈S hσ

∑
σ∈S

2hσH−1G⊤(GH−1G⊤)†σ
∥∥∥∥∥

≤ C := max
σ∈S

∥2H−1G⊤(GH−1G⊤)†σ∥,

where the second equality follows via Hölder’s inequality. Next, from the definition of Φ, we
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have that dΦ
dt

= P+G
(
∂uη

∂x0
(x0 + ty)y

)
. By the triangle inequality, the Lipschitzness L of uη

(from Corollary 3.2.3), and the fact that y is unit norm, we have∥∥∥∥∥dΦdt
∥∥∥∥∥ ≤ ∥P∥+ ∥G∥

∥∥∥∥∥∂uη

∂x0

∥∥∥∥∥ ≤ ∥P∥+ ∥G∥L.

To bound ∥(ηΦ−1GH−1G⊤Φ−1+I)−1Φ−1∥, we first note that because ηΦ−1GH−1G⊤Φ−1 ⪰ 0,

we have (ηΦ−1GH−1G⊤Φ−1 + I)−1 ⪯ I, which in turn implies that ∥(ηΦ−1GH−1G⊤Φ−1 +

I)−1∥ ≤ 1. Then, by submultiplicativity of the spectral norm, we have

∥(ηΦ−1GH−1G⊤Φ−1 + I)−1Φ−1∥ ≤ ∥Φ−1∥ ≤ 1
mini∈[m] φi

.

We may then plug in the lower bound on mini∈[m] φi from Theorem A.2.10 that uses ν =

20(m+R2∥d∥2), the self-concordance parameter (computed via Lemma A.2.3) of the recentered

log-barrier in Problem 3.0.1. Finally, recognizing H−1F⊤ as Kσ from Equation (2.3.2) (with

σ = 0m) yields

∥GH−1F⊤ −P∥ = ∥GK0 −P∥ ≤ ∥P∥+ ∥G∥L.

Combining all the bounds obtained above, we may then finish the proof.

Thus, Theorem 3.3.1 establishes bounds analogous to those in Fact 2.4.13 for randomized

smoothing, demonstrating that the Jacobian of the smoothed expert policy is sufficiently

Lipschitz. Indeed, in this case our result is stronger, showing that the Jacobian is differentiable

and the Hessian tensor is bounded. This theoretically validates the core proposition of our

paper: the barrier MPC policy in Problem 3.0.1 is suitably smooth, and therefore the

guarantees in Section 2.4 hold.

We now briefly revisit our learning guarantees, applied to specifically to log-barrier MPC,

before we demonstrate the efficacy of barrier MPC in experiments.
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3.4 Learning Guarantees for Barrier MPC

We now revisit the learning guarantees discussed in Section 2.4, adapted specifically for a

barrier MPC expert.

We begin by considering the stability properties of barrier MPC and note that since we

are only interested in establishing that ∥x̂− x⋆∥ ≤ ϵ and we consider MPC controllers which

stabilize to the origin, we can relax our incremental input-to-state stability requirements to

simply input-to-state stability with minimal assumptions. Definition 3.4.1 introduces the

weaker input-to-state stability property and Lemma 3.4.2 shows that ISS policies are locally

δISS. We then observe that there is considerable prior work showing that ISS holds under

minimal assumptions for barrier MPC, meaning Assumption 2.4.3 is satisfied for barrier MPC.

Below we use KL to denote the class of functions which are class K in the first argument

(monotonically increasing and zero at zero) and monotonically decreasing in the second.

Definition 3.4.1 (Input to State Stability, [Kha02]). A system xt+1 = f(xt,ut) is input-to-

state stable (equiv. a controller π is input-to-state stabilizing for xt+1 = f(xt, π(xt) + ut)) if

there exists B ∈ KL and γ ∈ K such that,

∥xt∥ ≤ β(∥x0∥, t) + γ(∥u∥∞) ∀t ≥ 0.

Lemma 3.4.2. Let π be an L-lipschitz controller which is input-to-state stabilizing for the

dynamics xt+1 = Axt + But with some gains B ∈ KL, γ ∈ K. Define B−1(ϵ) such that

B(∥x0∥,B−1
Bx
(ϵ)) ≤ ϵ for ∥x0∥ ≤ Bx. As B ∈ KL, we know that B−1

Bx
exists and is montonically

decreasing in ϵ. Define the gain,

v(ϵ) := min
{
γ−1(ϵ/2), ϵ · (1 + ∥A∥+ (1 + L)∥B∥)−β−1(ϵ/4)

}
.

Then π is incrementally input-to-state stabilizing with gain γ′ := v−1 ∈ K, i.e. for ∥u∥∞ ≤ v(ϵ)

we have that ∥xt−x̄t∥ ≤ ϵ where xt+1 = f(xt, π(xt)+ut) and x̄t+1 = f(x̄t, π(xt)) with x̄0 = x0.
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Note that over a horizon of length K, we have,

γ′(∥u∥∞) ≤ max{2γ(∥u∥∞), (1 + ∥A∥+ (1 + L)∥B∥)K∥u∥∞}.

Proof. We first show that γ′ ∈ K. Since γ ∈ K, γ−1 ∈ K. Furthermore, as B−1 is monotonically

decreasing, C−B−1(ϵ) is monotonically non-decreasing in ϵ for C ≥ 1 and ϵ ·C−B−1(ϵ) ∈ K. Since

v is the minimum of two class K gains, it follows that v ∈ K and therefore γ′ := v−1 ∈ K.

We now prove that π is incrementally input-to-state stabilizing with gain γ′ := v−1. Fix

any ϵ > 0. WTS that for ∥u∥∞ ≤ v(ϵ), ∥x − x̄∥∞ ≤ ϵ. First, consider t ≤ β−1(ϵ/4). Note

that,

∥xt+1 − x̄t+1∥ ≤ (∥A∥+ ∥B∥L)∥xt − x̄t∥+ ∥B∥ · ∥u∥∞.

By telescoping we can write,

∥xt − x̄t∥ ≤ (1 + ∥A∥+ (1 + L)∥B∥)t · ∥u∥∞ . (3.4.1)

We then use that t ≤ β−1(ϵ/4) and that ∥u∥∞ ≤ v(ϵ) ≤ ϵ(1 + ∥A∥+ (1 + L)∥B∥)−β−1(ϵ/4).

Combining with Equation (3.4.1), we get ∥xt − x̄t∥ ≤ ϵ.

We now consider the case t ≥ β−1(ϵ/4). Here we use the input-to-state stability of π,

∥xt − x̄t∥ ≤ ∥xt∥+ ∥x̄t∥ ≤ 2β(∥x0∥, t) + γ(∥u∥∞)

≤ 2β(∥x0∥, β−1(ϵ/4)) + γ(γ−1(ϵ/2))

≤ ϵ

2 + ϵ

2 ≤ ϵ.

This concludes the proof.

Assumption 3.4.3. The barrier MPC controller πη
mpc in Definition 3.0.2 is input-to-state

stabilizing such that, by Lemma 3.4.2, is it incrementally input-to-state stablizing over t ≤ K

for some with linear gain function γ.

For stabilzable systems and proper choices of cost function and constraints, we note

that barrier MPC is ISS, and therefore locally δISS. See [PFDS20; FE14] for treatment
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on the input-to-state stability properties of barrier MPC. This shows that πη
mpc satisfies

Assumption 2.4.3.

We now state our end-to-end learning guarantee, an extension of Fact 2.4.6.

Theorem 3.4.4. Let πη
mpc be a barrier MPC as in Definition 3.0.2 that satisfies Assump-

tion 3.4.3 such that it is (τ, γ)-locally-δISS for linear gain γ over a horizon length K and

maximum perturbation of κ. Let L be as defined in Corollary 3.2.3 and overload γ to denote

the constant associated with γ(·). Let m be the number of constraints and r, R be the radii

associated with the constraint polytope in Definition 3.0.2.

Assume that ∥x0∥ ≤ Bx and let π̂ be chosen such that, for some ϵ0, ϵ1 > 0 and given N

sample trajectories of length K under πη
mpc from an initial condition distribution D,

Px0∼D

[
sup

0≤k≤K
∥π̂(xk)− πη

mpc(xk)∥ ≤ ϵ0/N

∧ sup
0≤k≤K

∥∥∥∥∥∂π̂∂x (xk)−
∂πη

mpc

∂x
(xk)

∥∥∥∥∥ ≤ ϵ1/N

]
≥ 1− δ.

Then, provided that N ≥ O(1)ϵ0γ2(1+L)2Rr max
{
LBx

η
, r
2m+4

√
m

}
, N ≥ ϵ0γmax{16, 8/τ}, and

N ≥ 4γϵ1, it follows that,

∥x̂t − xη
t ∥ ≤ 8γϵ0

N
∀ 0 ≤ t ≤ K.

Proof. This is an application of Fact 2.4.6, combined with our L1 smoothness bound on the

Hessian, where,

L1 ≤ O(1) (1 + L)2
r
R
min{ η

LBx
, r
2m+4

√
m
}
≤ O(1)(1 + L)2R

r
max

{
LBx

η
,
2m+ 4

√
m

r

}
.

The bound on L1 follows from Theorem 3.3.1 and noting that ∥K0x0 − u⋆∥ ≤ 2LBx in

Equation (3.3.1). This yields that resl.b. ≥ O(1)min{η/LBx, r/(2m+ 4
√
m)}. Plugging resl.b.

into Theorem 3.3.1 yields the above bound on L1. Substitution of this result into Fact 2.4.6

proves the final statement.

The above theorem concludes our theoretical analysis of imitation learning with barrier
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MPC. Due to the smoothness analysis we have performed, we note that Theorem 3.4.4’s

principal assumption is closed-loop incremental stability under πη
mpc, and that the smoothness

requirement has been removed.

We now confirm the efficacy of learning barrier MPC over randomized smoothing via

experiments.
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Figure 3.1: Left: The imitation error maxt ∥x̂− x⋆∥ for the trained MLP over 5 seeds, as a function of the expert smoothness for
both randomized smoothing and log-barrier MPC. Center, Right: The L0 (gradient norm) and L1 (hessian norm) smoothness of
π⋆ as a function of the smoothing parameter.

3.5 Empirical Comparison of Imitation Learning of

Smoothed MPC Policies

Experimental Setup. We compare barrier MPC with randomized smoothing for the same

double integrator system visualized in Figure 2.1. The dynamics are given by,

A =

1 1

0 1

 ,B =

0
1


with costs Qt = I, Rt = 0.01I, and horizon length T = 10 in addition to the constraints

∥x∥∞ ≤ 10, ∥u∥∞ ≤ 1 chosen for Definition 3.0.2. Feasible initial conditions were chosen

uniformly at random. This is the same setup as in [AMMHJ23].

We sample N ∈ [20, 50] trajectories of length K = 20 using πη
mpc and πrs and smoothing

parameters η and σ ranging from 10−4 to 103 and 10−4 to 20, respectively. We use P = N (0, I)

for the randomized smoothing distribution. For each parameter set, we trained a 4-layer

multi-layer perceptron (MLP) using GELU activations [HG16] to ensure smoothness of Π.

We used AdamW [LH18] with a learning rate of 3 · 10−4 and weight decay of 10−3 in order to

ensure boundedness of the weights (see [PZTM22]).

Results In Figure 3.1, we visualize the smoothness properties of the chosen expert π⋆ of each

method (either πη
mpc or πrs) across the choices of η, σ. We note that for small Hessian norms,
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Figure 3.2: Visualizations of the log-barrier MPC control policy and several trajectories for the same system as Figure 2.1 and
Figure 3.1 across different choices of η.

barrier MPC has larger gradient norm ∥∇π⋆∥. This shows how πη
mpc prevents oversmoothing

in comparison to πrs: whereas randomized smoothing reduces ∥∇2π⋆∥ by essentially flattening

the function, πη
mpc achieves equally smooth functions while still maintaining control of the

system. This effect can also be seen in Figure 3.2, where we visualize the barrier MPC controller

for different choices of η and show that even for very large choices of η we successfully stabilize

to the origin.

One interesting phenomena is that the maximum gradient of πη
mpc begins decreasing much

earlier than πrs. This is due to the fact that πrs only smooths locally, meaning that if the

smoothing radius is sufficiently small, the gradient will not be affected. Meanwhile, πη
mpc is

always performing a global form of smoothing, so that even for small η the controller is being

smoothed everywhere.

In Figure 3.1, we also compare the trajectory error when imitating trajectories from

πrs,πη
mpc for equivalent levels of smoothness. We can see that for N = 20 and N = 50,

πη
mpc significantly outperforms πrs across all smoothness levels. This effect is particularly

pronounced in the very smooth regime, where imitating πrs proves unstable, leading to

extremely large imitation errors. Meanwhile, πη
mpc only performs better for higher levels

of smoothing. Overall, these experiments confirm our hypothesis: that barrier MPC is an

effective smoothing technique that outperforms randomized smoothing. This demonstrates

that not all smoothing techniques are equal for the purposes of imitation learning.
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3.6 Conclusion

This work shows that, for controls purposes, not all smoothing techniques are equivalent. We

compared two methods for smoothing MPC policies for linear systems: randomized smoothing

and barrier MPC. While we showed that both have theoretically optimal tradeoffs in terms

of approximation error to Hessian norm, barrier MPC is aware of the underlying control

problem. We show theoretically how this enables guarantees when learning barrier MPC and

demonstrate in a set of experiments on a simple system that this difference can manifest in

significantly improved performance of barrier MPC in comparison to a randomized smoothing

baseline.

The key machinery we introduce to bound the smoothness properties of barrier MPC

include novel bounds for general convex and quadratic optimization problems using self-

concordant barrier functions, which we believe may be of independent interest to the broader

optimization community.

Further development of the tools we present may yield techniques and guarantees for

smoothing nonlinear MPC policies or other challenging scenarios, i.e. smoothing policies based

on bi-level optimization using log-barriers. The development of better theoretical tools in

this domain is potentially of great consequence. We conclude with several concrete proposals

for future work:

1. While the optimal smoothing bound given in Theorem 2.4.10 suggests that the bound

on the spectral norm of ∂2uη

∂x2
0
(which is a third-order tensor) presented in Theorem 3.3.1

is tight by virtue of Theorem 3.1.2, a more careful analysis of the hessian of v⊤
i uη for

a basis {vi} may yield tighter bounds such that the dependence on η of the error of

v⊤
i uη matches the Hessian of v⊤

i uη, i.e. that barrier MPC smooths optimally along all

directions.

2. Generalization of our results to MPC with arbitrary self-concordant barriers. Many of our

results (notably our residual lower bound and directional error result, Theorem A.2.10)
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are for general ν-self-concordant barriers. However, our analysis of MPC itself extends

only to log-barrier-based MPC. It is unclear whether a result such as Theorem 3.2.2,

which shows that the Jacobian can be written as a convex combination of pieces relating

to the explicit MPC, can be developed for general self-concordant barriers.

3. Extension to nonlinear MPC. Many of these results may be applicable to barrier MPC

with nonlinear dynamics (e.g., systems with piecewise affine dynamics) or more complex

constraint sets. This could potentially be done by considering the appropriate local

linearizations.
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Appendix A

Proofs and Auxiliary Results

A.1 Technical Results in Matrix Analysis

We use the notation introduced in Section 2.2. Additionally, we use ei to denote the vector

with one at the ith coordinate and zeroes at the remaining coordinates. We first collect the

following relevant facts from matrix analysis before proving our technical results.

Fact A.1.1 (Definitions; [HJ12]). Given a square matrix A ∈ Rn×n, its (i, j)th minor Mi,j,

is defined as the determinant of the (n− 1)× (n− 1) matrix resulting from deleting row i and

column j of A. Next, the (i, j)th cofactor is defined to be the (i, j)th minor scaled by (−1)i+j:

Cij = (−1)i+jMi,j. (A.1.1)

We then define the cofactor matrix C ∈ Rn×n of A as the matrix of cofactors of all entries of

A, i.e., C = ((−1)i+jMi,j)1≤i,j≤n. The adjugate of A is the transpose of the cofactor matrix

C of A, and hence its (i, j)th entry may be expressed as:

adj(A)ij = (−1)i+jMj,i. (A.1.2)

In particular, if the matrix A is symmetric, then the (i, j)th minor equals the (j, i)th minor,
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implying

adj(A)ij = adj(A)ji for all i, j ∈ [n]. (A.1.3)

The minors of a matrix are also useful in computing its determinant. Specifically, the Laplace

expansion of a matrix A along its column j is given as:

det(A) =
n∑

i=1
(−1)i+jaijMi,j. (A.1.4)

Finally, the adjugate adj(A) also satisfies the following important property:

adj(A) ·A = A · adj(A) = det(A) · I. (A.1.5)

Fact A.1.2 (Matrix determinant lemma, [HJ12]). For any M, the determinant for a unit-rank

update may be expressed as:

det(M+ uv⊤) = det(M) + v⊤ adj(M)u. (A.1.6)

Fact A.1.3 (Sherman-Morrison-Woodbury identity). Given conformable matrices A,C,U,

and V such that A and C are invertible, we have

(A+UCV)−1 = A−1 −A−1U(C−1 +VA−1U)−1VA−1.

We crucially use the following expansion for determinants of perturbed matrices.

Fact A.1.4 (Theorem 2.3 of [IR08]). Let D and F be n× n complex matrices. Denote by

Fi1...ik the principal submatrix of order n− k obtained by deleting rows and columns i1 . . . ik

of the n× n matrix F. If D = Diag(δ1, . . . , δn), then

det(D+ F) = det(D) + det(F) + S1 + . . .+ Sn−1,

where

Sk :=
∑

1≤i1<...<ik≤n

δi1 . . . δikdet(Fi1...ik), for 1 ≤ k ≤ n− 1.

Lemma A.1.5 (Theorem 2.3 of [IR08]). Given A ∈ Rm×m as in Fact A.1.2, positive diagonal
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matrix Λ = Diag(λ) ∈ Rm×m, and Aσ denoting the principal submatrix formed by selecting

A’s rows and columns indexed by σ ∈ {0, 1}m, we have

det(A+Λ) =
∑

σ∈{0,1}n

(
m∏
i=1

λ1−σi
i

)
det(Aσ)

We now state and prove a technical result that we build upon to prove Lemma A.1.12, which

we in turn use in the proof of Theorem 3.2.2.

Lemma A.1.6. Consider a matrix A =

a b⊤

b D

 ∈ Rn×n, where D ∈ R(n−1)×(n−1) is a

symmetric matrix. Then the adjugate adj(A) may be expressed as follows:

adj(A) =

 det(D) −b⊤ adj(D)

− adj(D)b a · adj(D) +K

 ,
for some matrix K independent of a.

Proof. Let D̃ij be the (n − 2) × (n − 2) matrix obtained by deleting the ith row and jth

column of D. Let D̃j be the (n− 1)× (n− 2) matrix formed by removing the jth column of

D, and let b̃i ∈ R(n−2) be the vector obtained by deleting the ith coordinate of b. With this

notation in hand, we now compute some relevant cofactors.

First, observe that D is the matrix obtained by deleting the first row and column of A,

and hence this fact along with Equation (A.1.1) yields the (1, 1)th cofactor:

C1,1 = det(D).

Second, for some j > 0, observe that the matrix obtained by deleting the first row of A and

the (1 + j)th column of A is exactly the horizontal concatenation of b and D̃j. Applying

this observation in Equation (A.1.1) then gives the following expression for the (1, 1 + j)th
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cofactor:

C1,1+j = (−1)jdet
([

b D̃j

])
= (−1)j

n−1∑
i=1

bi(−1)i+1det(D̃ij)

= −
n−1∑
i=1

bi adj(D)ij

= −[b⊤ adj(D)]j,

where the second step is by using Equation (A.1.4) to expand det
([

b D̃j

])
along the

column vector b, and the third step is by Equation (A.1.2) and Equation (A.1.3), which

applies since D is assumed symmetric. Finally, to compute the (1 + i, 1 + j)th cofactor, we

first construct the matrix obtained by deleting the (1 + i)th row and (1 + j)th column of A.

Based on the notation we introduced above, this may be expressed as

 a b̃⊤
j

b̃i D̃ij

, from which

we have by Equation (A.1.1):

C1+i,1+j = (−1)i+jdet


 a b̃⊤

j

b̃i D̃ij


 , (A.1.7)

which we now simplify. To this end, we observe that

det


 a b̃⊤

j

b̃j D̃ij


 = det


a b̃⊤

j

0 D̃ij

+
 0

b̃j

 · e⊤1


= det


a b̃⊤

j

0 D̃ij


+ e⊤1 adj


a b̃⊤

j

0 D̃ij



 0

b̃j

 , (A.1.8)

where we used Fact A.1.2 in the second step. The first term in the right-hand side of the

preceding equation may be simplified to a · det(D̃ij). To simplify the second term, we first

observe that we wish to compute only the first row of adj


a b̃⊤

j

0 D̃ij


; to this end, we

introduce the notation that X := D̃ij and y = b̃j; we denote X̃ℓj to be the matrix obtained
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by deleting the ℓth row and jth column of X; we use X̃ℓ for the matrix obtained by deleting

the ℓth row of X. Now observe that for ℓ > 0, the (1 + ℓ)th entry of the desired first row may

be computed as follows:

adj


a b̃⊤

j

0 D̃ij




1,1+ℓ

= (−1)ℓdet

y⊤

X̃ℓ

 =
n−1∑
j=1

yj · (−1)ℓ+jdetX̃ℓj

=
n−1∑
j=1

yj · (adj X̃)jℓ = b̃⊤
j adj(D̃ij)eℓ,

where the first step is by expressing the (1, 1 + ℓ)th entry of the adjugate in question in terms

of its (1+ ℓ, 1)th minor (as per Equation (A.1.2)), the second step is by the Laplace expansion

of the determinant along its first row (analogous to Equation (A.1.4)), the third step is by

Equation (A.1.2), and the final step plugs back the newly introduced notation. Hence, we

have

e⊤1 adj


a b̃⊤

j

0 D̃ij


 =

[
a · det(D̃ij) b̃⊤

j adj(D̃ij)
]
. (A.1.9)

Multiplying the right-hand side of Equation (A.1.9) by

 0

b̃j

 and plugging the result back

into Equation (A.1.8) and eventually into Equation (A.1.7) then gives

C1+i,1+j = a · adj(D)ij + (−1)i+jb̃⊤
j adj(D̃ij)b̃j.

By mapping these cofactors back into the definition of the adjugate we want, one can then

conclude the proof, with K collecting all the (−1)i+jb̃⊤
i adj(Mij)b̃j terms.

Corollary A.1.7. Let A =

a b⊤

b D

 be a symmetric matrix. Then,

adj(A+ λe1e⊤1 ) = adj(A) + λ

0 0⊤

0 adj(D)


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Proof. First, observe that by applying Lemma A.1.6, we have

adj


a+ λ b⊤

b D


 =

 det(D) −b⊤ adj(D)

− adj(D)b (a+ λ) · adj(D) +K

 . (A.1.10)

Next, observe that based on the definition of A, the left-hand side of Equation (A.1.10)

is precisely adj(A + λe1e⊤1 ); based on the expression for adj(A) from Lemma A.1.6, the

right-hand side of Equation (A.1.10) may be split into adj(A) + λ

0 0

0 adj(D)

, as desired.
This concludes the proof.

Lemma A.1.8. Consider a matrix L ∈ Rm×n, and define the matrix A = LL⊤ ∈ Rm×m.

Suppose that det(A) = 0. Then, the following equation holds:

adj(A)L = 0.

To prove Lemma A.1.8, we use the following two technical results from matrix analysis.

Fact A.1.9 (Theorem 4.18, [Lau04]). Suppose A ∈ Rn×p and L ∈ Rn×m. Then AA†L = L

if and only if the range spaces R(L) and R(A) satisfy the inclusion R(L) ⊆ R(A).

Fact A.1.10 (Theorem 3.21, [Lau04]). Let L ∈ Rm×n. Then the range spaces R(L) and

R(LL⊤) satisfy the property R(L) = R(LL⊤).

Proof of Lemma A.1.8. We prove the claim by showing that

adj(A)L = [adj(A)A]A†L = 0,

where the last equality follows from the property that adj(A)A = det(A)I = 0. All that

remains is to prove that L = AA†L. By Fact A.1.9, this is true if and only if R(L) ⊆ R(A).

From Fact A.1.10, we know that this is true. This concludes the proof.

Lemma A.1.11. Given a binary vector σ ∈ {0, 1}m, matrix G ∈ Rm×n and matrix H ∈ Rn×n
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with the properties H ≻ 0 and det(GH−1G⊤)σ = 0, we have

G⊤ adj(GH−1G⊤)σ = 0.

Proof. Without loss of generality, let G =

G1

G2

 where σi = 1 for the rows and columns

associated with G2. Then we may express GH−1G⊤ in terms of G1 and G2 as follows:

GH−1G⊤ =

G1H−1G⊤
1 G1H−1G⊤

2

G2H−1G⊤
1 G2H−1G⊤

2

 .
Based on the expansion above, observe that (GH−1G⊤)σ = G2H−1G⊤

2 . As a result, we may

express G⊤ adj(GH−1G⊤)σ, our matrix product of interest, as follows:

G⊤ adj(GH−1G⊤)σ =
[
G⊤

1 G⊤
2

] 0 0

0 adj(G2H−1G⊤
2 )

 =
[
0 G⊤

2 adj(G2H−1G⊤
2 )
]
.

All that remains is to show that G⊤
2 adj(G2H−1G⊤

2 ) = 0. To this end, we note that

G⊤
2 adj(G2H−1G⊤

2 ) = H1/2
[
H−1/2G⊤

2 adj(G2H−1/2H−1/2G⊤
2 )
]
= 0,

where the last equality follows immeditely by applying Lemma A.1.8.

Lemma A.1.12. For a positive semi-definite matrix A ∈ Rm×m, a diagonal matrix Λ =

Diag(λ), and the indicator vector σ ∈ {0, 1}m, define the following parameters:

(i) Scaling factor hσ = det(Aσ)
∏m

i=1 λ
1−σi
i ,

(ii) Normalizing factor h = ∑
σ∈{0,1}m hσ,

(iii) Adjugate scaling factor cσ = ∏m
i=1 λ

1−σi
i .

(iv) We split the set σ ∈ {0, 1}m into the following two sets:

S :=
{
σ ∈ {0, 1}m | det([GH−1G⊤]σ) > 0

}
S∁ :=

{
σ ∈ {0, 1}m | det([GH−1G⊤]σ) = 0

}
.

Assume that A+Λ is invertible. Then we have the following decomposition of (A+Λ)−1 in
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terms of inverses and adjugates of Aσ (the principal submatrices of A), with the adjugate or

inverse computed on the basis of whether or not det(Aσ) = 0, as follows:

(A+Λ)−1 =
∑
σ∈S

hσ
h
A−1

σ +
∑
σ∈S∁

cσ
h

adj(A)σ. (A.1.11)

Proof. We begin by proving the following simpler statement for cσ := ∏m
i=1 λ

1−σi
i :

adj(A+Λ) =
∑

σ∈{0,1}m
cσ adj(A)σ. (A.1.12)

Once this statement is proven, Equation (A.1.11) is implied by the following argument: Per

Fact A.1.4, we have that det(A+Λ) = ∑
σ∈{0,1}m hσ = h, so dividing throughout by h yields

(A+Λ)−1 on the left-hand side (by Equation (A.1.5)); the term ∑
σ∈{0,1}m

cσ
h
adj(A)σ may

be split into two sums of terms, one over those vectors σ ∈ {0, 1}m for which det(Aσ) = 0

and the second over those choices of σ ∈ {0, 1}m for which det(Aσ) ̸= 0. For terms such that

det(Aσ) ̸= 0, we have,

cσ adj(A)σ = cσdet([A]σ)
1

det([A]σ)
adj(A)σ = hσ · (A)−1

σ .

Hence, Equation (A.1.12), when divided by h, gives Equation (A.1.11), as desired. We

now prove Equation (A.1.12), proceeding via induction on nnz(Λ), the number of nonzero

entries in Λ.

Base case: When the number of non-zero entries nnz(Λ) = 0, by definition, Λ = Diag(0),

which implies that the left-hand side of Equation (A.1.12) is adj(A). Further, since by

definition, cσ = ∏m
i=1 λ

1−σi
i , for our choice of Λ = Diag(0), this gives the following expression:

cσ =


0 if σ ̸= 1 ,

1 if σ = 1 .
.

With this choice of cσ, the right-hand side of Equation (A.1.12) reduces to adj(A), which

matches the left-hand side of Equation (A.1.12), thus implying that in this base case, Equa-
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tion (A.1.12) is true.

Induction Step: Suppose Equation (A.1.12) holds for nnz(Λ) = k. We now show that

Equation (A.1.12) holds for nnz(Λ) = k + 1 as well with some scaling factor cσ. With-

out loss of generality, assume that λi ≠ 0 for i ∈ [k + 1]. Let Ã11 be the R(m−1)×(m−1)

matrix obtained by deleting the first row and first column of A. By expressing A +Λ as

(A+∑k+1
i=2 λieie⊤i ) + λ1e1e⊤1 , we may use Corollary A.1.7 to expand adj(A+Λ) as follows:

adj(A+Λ) = adj
(
A+

k+1∑
i=2

λieie⊤i

)
+ λ1

0 0⊤

0 adj
(
Ã11 +

∑k
i=1 λi+1ẽiẽ⊤i

)
 , (A.1.13)

where note that the ei ∈ Rm and ẽi ∈ Rm−1. We observe that both the terms on the right-

hand side have nnz(Λ) − 1 = k nonzero entries in their respective diagonal components.

Hence, by our assumption, the induction hypothesis is applicable; therefore, suppose that by

Equation (A.1.12),

adj(A+
ℓ∑

i=2
λieie⊤i ) =

∑
σ∈{0,1}m

ĉσ adj(A)σ,

adj(Ã11 +
ℓ−1∑
i=1

λi+1ẽiẽ⊤i ) =
∑

σ′∈{0,1}m−1

c̃σ′ adj(Ã11)σ′ ,

(A.1.14)

where, based on the diagonal components in each of the terms on the left-hand side, the scaling

factors on the respective right-hand sides are ĉσ = 0(1−σ1)∏m
i=2 λ

1−σi
i , and c̃σ′ = ∏m−1

i=1 λ
1−σ′

i
i+1 .

As a consequence of these definitions, we can re-write the terms in Equation (A.1.14) using

cσ as follows. First, observe that ĉσ = 0 when σ1 = 0 and ĉσ = cσ otherwise. This implies:

∑
σ∈{0,1}m

c̃σ adj(A)σ =
∑

σ∈{0,1}m,
σ1=1

cσ adj(A)σ. (A.1.15)

Next, observe that for the vector σ = [0;σ′] formed by concatenating zero with σ′, we have
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cσ = λ1c̃σ′ . This implies the following chain of equations:

λ1

0 0⊤

0 ∑
σ′∈{0,1}m−1 c̃σ′ adj(Ã11)σ′

 =
∑

σ′∈{0,1}m−1

λ1c̃σ′ adj(A)[ 0
σ′ ] =

∑
σ∈{0,1}m,

σ0=0

cσ adj(A)σ,

(A.1.16)

where in the first step, we used the fact that Ã11 is, by definition, the principal submatrix

of A obtained by deleting its first row and first column; the second step is by our prior

observation connecting cσ and c̃σ′ . Plugging the right-hand sides from Equation (A.1.14) into

that of Equation (A.1.13) and then applying Equation (A.1.15) and Equation (A.1.16) gives

adj (A+Λ) =
∑

σ∈{0,1}m
ĉσ adj(A)σ + λ1

0 0⊤

0 ∑
σ′∈{0,1}m−1 c̃σ′ adj(Ã11)σ′


=

∑
σ∈{0,1}m,

σ0=1

cσ adj(A)σ +
∑

σ∈{0,1}m,
σ0=0

cσ adj(A)σ

=
∑

σ∈{0,1}m
cσ adj(A)σ.

Thus, we have shown Equation (A.1.12) for nnz(Λ) = k+1, thereby completing the induction

and concluding the proof of Equation (A.1.12) and, consequently, of the stated lemma.

A.2 Technical Lemmas in Convex Analysis

Fact A.2.1 ([NN94]). Let Φ be a ν-self-concordant barrier. Then for any x ∈ dom(Φ) and

y ∈ cl(dom)(Φ),

∇Φ(x)⊤(y− x) ≤ ν.

Lemma A.2.2 ([GLP+24]). If f is a self-concordant barrier for a set K ⊆ B(0, R), then for

any x ∈ K, we have

∇2f(x) ⪰ 1
9R2 I.

Proof. For the sake of contradiction, suppose ∇2f ̸⪰ 1
9R2 I. This is equivalent to, for some
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x ∈ K and unit vector u,

(3Ru)⊤∇2f(x)(3Ru) < 1. (A.2.1)

Define the unit-radius Dikin ellipsoid around x as

Ex(x, 1) =
{
y : (y− x)⊤∇2f(x)(y− x) ≤ 1

}
.

Then, Inequality (A.2.1) is equivalent to the assertion that x + 3Ru ∈ Ex(x, 1). Because f

is self-concordant we have Ex(x, 1) ⊆ K (see, e.g., [NN94, Theorem 2.1.1]). This, combined

with x + 3Ru ∈ Ex(x, 1), implies x + 3Ru ∈ K. However, since K ⊆ B(0, R) and x ∈ K by

construction, the inclusion x + 3Ru ∈ K cannot hold for any unit vector u, which implies

that our initial assumption must be false, thus concluding the proof.

Lemma A.2.3 ([GLP+24]). If f is a ν-self-concordant barrier for a given convex set K then

g(x) = c⊤x + f(x) is a self-concordant barrier over K. Further, if K ⊆ B(0, R), then g has

self-concordance parameter at most

20(ν +R2∥c∥2).

Proof. Since ∇2g = ∇2f, we can conclude that g is also a self-concordant function. Since

K ⊆ B(0, R), Lemma A.2.2 applies, and we have ∇2f(x) ⪰ 1
9R2 I for all x ∈ K. Equivalently,

∇2f(x)−1 ⪯ 9R2I for all x ∈ K. (A.2.2)

The self-concordance parameter (see Definition 3.0.1) of g is:

∥∇g(x)∥2∇2g(x)−1 = ∥c+∇f(x)∥2∇2f(x)−1 ≤ 2∥c∥2∇2f(x)−1 + 2∥∇f(x)∥2∇2f(x)−1 , (A.2.3)

where the first step is by definition of self-concordance parameter of g. To finish the proof,

we recall that ∥c∥2∇2f(x)−1 ≤ 9R2∥c∥22 by Inequality (A.2.2), and ∥∇f(x)∥2∇2f(x)−1 ≤ ν by the

self-concordance parameter of f and put these bounds into Inequality (A.2.3).

Our main result is based on the following result from [ZLY23].
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Fact A.2.4 ([ZLY23], Theorem 2). Fix a vector c, a polytope K, and a point v. We assume

that the polytope K contains a full-dimensional ball of radius r. Let v⋆ = argminu∈K c⊤u. We

define, for c,

gap(v) = c⊤(v− v⋆). (A.2.4)

Further, define vη = argminv c⊤v + ηφK(v), where φK is a self-concordant barrier on K.

Then we have the following lower bound on this suboptimality gap evaluated at vη:

min
{
η

2 ,
r∥c∥

2ν + 4
√
ν

}
≤ gap(vη) = c⊤(vη − v⋆) ≤ ην. (A.2.5)

A.2.1 Warmup: One-Dimensional Optimization

We begin with a lemma on optimizing quadratics in one dimension to motivate our later

results for arbitrary polytopes in higher dimensions.

Lemma A.2.5. Let φ be a ν-self-concordant barrier over (0, r) and q be a convex function

such that ∇q(v) = 0 and 0 < m ≤ ∇2q(x) ≤M . Define,

xη := argmin
x
q(x) + ηφ(x).

Then,

min

1
2

√2η
M

+ v2 + v

 , r

2ν + 4
√
ν

 ≤ xη ≤ 1
2

√4ην
m

+ v2 + v

 . (A.2.6)

Proof. Let c := ∇q(xη). Note that we can equivalently write xη = argminx cx+ ηφ(x). Let

x⋆ := argminx∈(0,r) cx and x̃ := argminx φ(x). We note that xη must always be between x⋆

and x̃.

Case 1: v < x̃. Then v < xη < x̃, meaning c > 0 and therefore x⋆ = 0.
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Applying Fact A.2.4, we have:

min
{
η

2 ,
rc

2ν + 4
√
ν

}
≤ cxη ≤ ην.

Using that m(xη − v) ≤ c ≤M(x− v) we have,

min
{

η

2M ,
r(xη − v)
2ν + 4

√
ν

}
≤ (xη − v)xη

(xη − v)xη ≤ ην

m
.

Solving, η
2M ≤ (xη − v)xη ≤ νη

m
with the condition that xη > v, we have,

1
2

√2η
M

+ v2 + v

 ≤ xη ≤ 1
2

√4ην
m

+ v2 + v

 .
Combining with the minimum on the LHS bound, we arrive at,

min

1
2

√2η
M

+ v2 + v

 , r

2ν + 4
√
ν

 ≤ xη ≤ 1
2

√4ην
m

+ v2 + v

 .

Case 2: v ≥ x̃. Then x̃ ≤ xη ≤ v. Note that by applying Fact A.2.4 with c = 1 and

considering η → ∞, we can deduce that x̃ ≥ r
2ν+4

√
ν
. We can see that Equation (A.2.6) still

holds as,

min
{
1
2

(√
η

M
+ v2 + v

)
,

r

(2ν + 4
√
ν)

}
≤ r

2ν + 4
√
ν
≤ x̃ ≤ xη ≤ v ≤ 1

2

√4ην
m

+ v2 + v

 .

The above result shows that if the minimizer of a strongly convex cost lies outside of the

constraint set, we should expect to get a bound of the form O(
√
η + v2 − v), where v is the

distance to the constraint set.
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A.2.2 Upper Bounds on Approximation Error for Interior Point

Methods

Lemma A.2.6. Let K = {x : Ax ≥ b} be a polytope such that each of m rows of A is

normalized to the unit norm and φ be a ν-self-concordant barrier. Let xη := argminx
α
2 ∥x−

v∥2 + ηφ(x), x⋆ := argminx∈K
α
2 ∥x− v∥2. Then,

∥xη − x⋆∥ ≤
√
ην

α
.

Proof. We proceed similar to Theorem 3.1.1. Note that by α-strong-convexity of q(x) :=
α
2 ∥x− v∥2, we have that,

[∇q(xη)−∇q(x⋆)]⊤(xη − x⋆) ≥ m∥x− v∥2.

Note that from the optimality condition∇q(xη)+η∇φ(xη) = 0, and that∇q(x⋆)⊤[xη−x⋆] ≥ 0,

and by Fact A.2.1, it follows,

α∥xη − x⋆∥2 ≤ η∇φ(xη)[x⋆ − xη]−∇q(x⋆)⊤[x⋆ − x⋆] ≤ φ(xη)⊤[x⋆ − xη] ≤ ην.

Therefore we have that,

∥xη − x⋆∥ ≤
√
ην

α
.

Note that the above result can easily be generalized to α-strongly-convex functions.

In the next lemma, we show that we can make a similar bound along the gradient of the

cost function at x⋆:

Lemma A.2.7. Let K = {x : Ax ≥ b} be a polytope such that each of m rows of A

is normalized to the unit norm and φ be a ν-self-concordant barrier function. Let xη :=

argminx
α
2 ∥x − v∥2 + ηφ(x), x⋆ := argminx∈K

α
2 ∥x − v∥2. Assume that x⋆ ̸= v and let

a = x⋆−v
∥x⋆−v∥ . Then,
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0 ≤ a⊤(xη − x⋆) ≤ 1
2

√4ην
α

+ ∥x⋆ − v∥2 − ∥x⋆ − v∥

 .
Proof. Note that we can write:

∇q(xη) = α · a⊤(xη − x⋆)a + α · b⊤(xη − x⋆)b+∇q(x⋆),

where ∥b∥ = 1 and b ⊥ a. By Fact A.2.4 we have,

∇q(xη)⊤(xη − x⋆) ≤ ην.

Then it follows that

α · [a⊤(xη − x⋆)]2 + α[b⊤(xη − x⋆)]2 + α∥x⋆ − v∥ · a⊤(xη − x⋆) ≤ ην.

We can drop the α · [b⊤(xη − x⋆)]2 term and, as in Lemma A.2.5, solve for a⊤(xη − x⋆) to

arrive at our conclusion,

0 ≤ a⊤(xη − x⋆) ≤ 1
2

√4ην
α

+ ∥x⋆ − v∥2 − ∥x⋆ − v∥

 .

A.2.3 Lower Bounds on Residuals for Interior-Point Methods

Lemma A.2.8. Fix a polytope K, a convex function q, and a ν-self-concordant barrier

φ over K. Assume that the polytope K contains a full-dimensional ball of radius r and is

contained within a ball of radius R around some point x̄, i.e. B(x̄, r) ⊆ K ⊆ B(x̄, R). Let

xη := argmin q(x) + ηφ(x) for arbitrary η > 0,

B
(
xη,

r

R
min

{
η

2∥∇q(xη)∥ ,
r

2ν + 4
√
ν

})
⊂ K.

Proof. Let x̄ be the center of the r-radius ball contained within K. Consider the line passing

through x̄,xη given by S = {x̄t+ xη(1− t) : t} and let x1,x2 be the endpoints of K ∩ S. We
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will now show that,

min(∥xη − x1∥, ∥xη − x2∥) ≥ min
{

η

4∥∇q(xη)∥ ,
r

2ν + 4
√
ν

}
.

WLOG let x1 be such that ∇q(xη)⊤
(

x̄−x1
∥x̄−x1∥

)
≥ 0. Note that the analytic center along S

is contained within a ball of radius r
2ν+4

√
ν
and that xη must be further from x2 than the

analytic center, implying that ∥xη − x2∥ ≥ r
2ν+4

√
ν
.

We then parameterize S with ψ(t) = x1 + t x̄−x1
∥x̄−x1∥ . Note that ψ([0, 2r]) ⊂ K. Consider the

following optimization problem:

tη = argmin
t

∇q(xη)⊤
(

x̄− x1

∥x̄− x1∥

)
t+ ηφ(ψ(t)).

We picked x1 such that c := ∇q(xη)⊤
(

x̄−x̂
∥x̄−x̂∥

)
≥ 0. It follows that,

t⋆ := arg min
t,φ(t)∈K

c · t = 0.

We then apply Fact A.2.4 to the above one-dimensional optimization problem to conclude

that,

min
{

η

2∥∇q(xη)∥ ,
r

2ν + 4
√
ν

}
≤ min

{
η

2c,
r

2ν + 4
√
ν

}
≤ tη = ∥xη − x1∥.

Pick x̂ ∈ {x1,x2} such that xη lies along the segment between x̂ and x̄. Consider any direction

c, ∥c∥ = 1. We then argue by similarlity on the triangle x̂, x̄, x̄+ rc and note that ∥rc∥
∥x̄−x̂∥ ≤ r

R
.

Since min
{

η
2∥∇q(xη)∥ ,

r
2ν+4

√
ν

}
≤ ∥xη − x̂∥ ≤ ∥x̄− x̂∥, we know that,

xη + r

R
min

{
η

2∥∇q(xη)∥ ,
r

2ν + 4
√
ν

}
· c ∈ K.

Similar to Lemma A.2.7, we now adapt this to get a lower bound for isotropic quadratics.

Lemma A.2.9. Let K = {x : Ax ≥ b} be a polytope such that each of m rows of A is

normalized to the unit norm and φ be a ν-self-concordant barrier function. Assume there
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exists x̄ ∈ K such that B(x̄, r) ⊆ K ⊆ B(x̄, R) for some r, R > 0. Let xη := argminx
α
2 ∥x −

v∥2 + ηφ(x), x⋆ := argminx∈K
α
2 ∥x− v∥2. Then we know the following ball centered around

xη is contained within K.

B
(
xη,

r

R
min

{
1√
ν

(√
η

α
+ ∥x⋆ − v∥2 − ∥x⋆ − v∥

)
,

r

2ν + 4
√
ν

})
⊆ K.

Proof. To prove this we use Lemma A.2.8 and techniques similar to Lemma A.2.7. Note that,

∥∇q(xη)∥ = α∥xη − v∥

≤ α(∥xη − x⋆∥+ ∥x⋆ − v∥)

≤
√
α
√
ην + α∥x⋆ − v∥.

where the last inequality uses Lemma A.2.6. This implies that,

B
(
xη,

r

R
min

{
η

√
αη

√
ν + α∥x⋆ − v∥

,
r

2ν + 4
√
ν

})
⊆ K.

With some rearranging:

B

xη,
r

R
min

 1√
ν

η
α√

η
α
+ 1√

ν
∥x⋆ − v∥

,
r

2ν + 4
√
ν


 ⊆ K.

Observe that for any x > 0, y ∈ R, we have that,

√
x+ y2 − y = x√

x+ y2 + y
≤ x√

x+ y
.

Since ν > 1, η/α√
η/α+ 1√

ν
∥x⋆−v∥

≥ η/α√
η/α+α∥x⋆+v∥

≥
√

η
α
+ ∥x⋆ − v∥2 − ∥x⋆ − v∥.

B
(
xη,

r

R
min

{
1√
ν

(√
η

α
+ ∥x⋆ − v∥2 − ∥x⋆ − v∥

)
,

r

2ν + 4
√
ν

})
⊆ K.
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A.2.4 Consolidated Upper and Lower Bounds

We now collect Lemma A.2.7, and Lemma A.2.9, performing a change of basis to provide

bounds for arbitrary quadratic objective functions.

Theorem A.2.10. Let K = {x : Ax ≥ b} be a polytope such that each of m rows of A is

normalized to the unit norm and φ be a ν-self-concordant barrier over K. Assume there exists

x̄ ∈ K such that B(x̄, r) ⊆ K ⊆ B(x̄, R) for some r, R > 0. Let,

xη := argmin
x

1
2(x− v)⊤H(x− v) + ηφ(x),

x⋆ := argmin
x∈K

1
2(x− v)⊤H(x− v),

where mI ⪯ H ⪯MI . Then,

∥xη − x⋆∥ ≤
√
ην

m
,

0 ≤ a⊤(xη − x⋆) ≤ 1
2

√4ην
m

+ ∥x⋆ − v∥2H − ∥x⋆ − v∥H

 .
where the second inequality holds for a = H(x⋆−v)

∥H(x⋆−v)∥ if ∥x⋆ − v∥ > 0 and ∥x∥H =
√
x⊤Hx.

Furthermore,

B
(
xη,

r

R
min

{
1√
ν

(√
η

M
+ ∥x⋆ − v∥2H − ∥x⋆ − v∥H

)
,

r

2ν + 4
√
ν

})
⊆ K.

Note that this implies that, if a exists, since x⋆ is on the boundary of K

r

R
min

{
1√
ν

(√
η

M
+ ∥x⋆ − v∥2H − ∥x⋆ − v∥H

)
,

r

2ν + 4
√
ν

}
≤ a⊤(xη − x⋆).

Proof. For the upper bound we use the change of basis y = 1√
m
H1/2x, z = 1√

m
H1/2v. We

then have the optimization problem in y:

yη := argmin
y

m

2 ∥y− z∥2 + ηφ(y),

y⋆ := argmin
y∈K

m

2 ∥y− z∥2.
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By Lemma A.2.6, and Lemma A.2.7 we have that,

∥xη − x⋆∥ ≤ ∥yη − y⋆∥ ≤
√
ην

m
,

0 ≤ ã⊤(yη − y⋆) ≤ 1
2

√4ην
m

+ ∥y⋆ − z∥2 − ∥y⋆ − z∥

 .
where ã := y⋆−z

∥y⋆−z∥ . Let â := 1√
m
·H1/2ã. Since

√
m is the smallest singular value of H1/2, we

have that ∥â∥ ≥ 1. Let a = â/∥â∥ = H(x⋆−v)
∥H(x⋆−v)∥ . By substitution,

0 ≤ a⊤(xη − x⋆) ≤ â⊤(xη − x⋆) = ã⊤(yη − y⋆) ≤ 1
2

√4ην
m

+ ∥x⋆ − v∥2H − ∥x⋆ − v∥H

 .

This shows the first two bounds.

For the lower bound we use the change of basis y = 1√
M
H1/2x, z = 1√

M
H1/2v. We then have

the optimization problem in y:

yη := argmin
y

M

2 ∥y− z∥2 + ηφ(y),

y⋆ := argmin
y∈K

M

2 ∥y− z∥2.

Since ∥H1/2∥ ≤
√
M , the inverse transformation x =

√
MH−1/2y has σmin(

√
MH−1/2) ≥ 1,

meaning by Lemma A.2.9

B
(
xη,

r

R
min

{
1√
ν

(√
η

M
+ ∥x⋆ − v∥2H − ∥x⋆ − v∥H

)
,

r

2ν + 4
√
ν

})
⊆ K.

73


	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Motivation and Background
	1.2 Review of Literature
	1.3 Our Contributions

	2 Preliminaries
	2.1 Notation
	2.2 Problem Setup
	2.3 Explicit Solution to MPC
	2.4 Motivating Smoothness: Imitation Learning Frameworks
	2.4.1 Taylor Series Imitation Learning
	2.4.2 Optimal Smoothing
	2.4.3 First Approach: Randomized Smoothing


	3 Our Approach to Smoothing: Barrier MPC
	3.1 Error Bound for Barrier MPC
	3.2 First-Derivative Bound for the Barrier MPC
	3.3 Our Main Result: Smoothness Bound for the Barrier MPC
	3.4 Learning Guarantees for Barrier MPC
	3.5 Empirical Comparison of Imitation Learning of Smoothed MPC Policies
	3.6 Conclusion

	References
	A Proofs and Auxiliary Results
	A.1 Technical Results in Matrix Analysis
	A.2 Technical Lemmas in Convex Analysis
	A.2.1 Warmup: One-Dimensional Optimization
	A.2.2 Upper Bounds on Approximation Error for Interior Point Methods
	A.2.3 Lower Bounds on Residuals for Interior-Point Methods
	A.2.4 Consolidated Upper and Lower Bounds



