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ABSTRACT

Multi-objective optimization problems are widespread in scientific, engineering, and design
fields, necessitating a balance of trade-offs between conflicting objectives. These objectives
often represent black-box functions, which are costly and time-consuming to evaluate. Multi-
objective Bayesian optimization (MOBO) offers a valuable approach to guide the search for
optimal solutions. To enhance efficiency, batch evaluations are employed to test multiple
samples simultaneously, aiming to further reduce evaluation times. However, in scenarios in-
volving varying evaluation times, standard batch strategies often lead to suboptimal resource
utilization and inefficiencies. Asynchronous evaluations emerge as a promising solution to
optimize resource usage under these conditions.

Despite their potential, there has been no prior work or method specifically tailored to
address asynchronous evaluations within the MOBO framework. To bridge this critical gap,
this thesis proposes a comprehensive adaptation and analysis of existing Bayesian optimiza-
tion methods for asynchronous MOBO scenarios. It also introduces a novel selection strategy,
α-HVI, empirically validated through tests on both synthetic and real-world functions.

Thesis supervisor: Mina Konaković Luković
Title: Assistant Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

In the realms of science and engineering, the pursuit of optimal solutions is a common yet

complex challenge. These solutions often need to be derived for black-box functions, which

are complex systems or processes. Evaluating these functions is typically costly and time-

consuming, which limits the feasible number of experiments. Recently, there has been a

significant shift towards using computational methods to enhance the experimental design

process, aiming for more effective results.

One method that has gained significant importance in addressing this challenge is Bayesian

optimization (BO). BO’s effectiveness lies in two key aspects: first, it uses a cost-efficient

surrogate model to represent the underlying black-box functions based on existing experi-

mental data; second, it employs an acquisition function to navigate the design space and

balance the exploration-exploitation trade-off.

Moreover, many problems involve the simultaneous optimization of conflicting objectives.

Multi-objective Bayesian optimization (MOBO) extends BO’s capabilities to address this

challenge efficiently. Applications of such approaches are seen in diverse fields, including

robot design [1], development of new materials [2][3], drug discovery [4], and hyperparameter

tuning for machine learning models [5].

In many real-world experiments, batch evaluations, which involve assessing multiple so-

15



lutions simultaneously, can help reduce the time and cost of the optimization process. How-

ever, these evaluations or tests may take varying amounts of time to complete, such as in

scenarios where different simulations or physical experiments have different runtimes. For

instance, in aerospace engineering, aerodynamic optimization techniques can lead to varying

simulation times depending on airfoil design and conditions [6]; in chemical engineering, the

optimization of distillation processes can extend simulation durations due to the complexities

of chemical interactions [7]; in computational biology, the time needed for protein folding

simulations varies with the complexity of the proteins involved [8]. These examples highlight

the necessity for flexible optimization strategies that can adapt to the varying computational

demands of different tasks.

Traditional synchronous batch settings require waiting until all evaluations within a batch

are finished before initiating a new batch. This waiting period can lead to suboptimal

resource utilization and extended overall optimization durations.

To address this issue, asynchronous evaluations can be employed, where as soon as one

evaluation is completed, the next one is promptly initiated. This approach optimizes resource

usage and expedites the optimization process by minimizing idle times and aligning resource

allocation more effectively with task completion.

In this work, we delve into asynchronous MOBO, an area that has received limited

attention in previous literature. To the best of our knowledge, no previous published work

has specifically tailored or extensively studied asynchronous evaluations within the MOBO

framework.

The key contributions of this thesis can be summarized as follows:

• We adapt existing BO and MOBO methods to effectively address asynchronous MOBO

problems. This adaptation process enables us to assess and benchmark performance

in this setting.

• We introduce α-HVI, a novel selection strategy founded on the hypervolume improve-

ment metric. This approach takes into account both prediction and uncertainty values

16



for points under evaluation with yet unknown objective values.

• We conduct thorough evaluations using both synthetic and real-world test functions,

applying both the adapted methods and our proposed approach.
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Chapter 2

Preliminaries

2.1 Multi-objective optimization

Multi-objective optimization (MOO) involves optimization problems defined over a contin-

uous d dimensional design space X ⊂ Rd, where the goal is to simultaneously minimize a

set of m ≥ 2 objective functions f1, . . . , fm : X → R [9]. We represent the vector of all

objectives as f(x) = (f1(x), . . . , fm(x)), where x ∈ X is a vector of input variables. The

performance space is an m-dimensional image of X , denoted as f(X ) ⊂ Rm.

Since objectives often conflict with each other, optimal solutions often form a set rather

than a single solution. These optimal solutions constitute the Pareto set, denoted as Ps ⊂ X

in the design space, and the corresponding images in the performance space form the Pareto

front, represented as Pf = f(Ps) ⊂ Rm. More specifically, a point x∗ ∈ Ps achieves Pareto

optimality when there is no other point x ∈ X satisfying fi(x
∗) ≥ fi(x) for all i and

fi(x
∗) > fi(x) for at least one i.

2.1.1 Hypervolume indicator

The hypervolume indicator [10] serves as a widely adopted metric for assessing the quality

of an approximated Pareto front in MOO. The hypervolume H(Pf ) can be understood as a
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measure that evaluates the region within an m-dimensional performance space covered by a

Pareto front approximation Pf with respect to a reference point r ∈ Rm. This hypervolume

H(Pf ) is defined as:

H(Pf ) =

∫
Rm

1H(Pf )(z) dz, (2.1)

where H(Pf ) represents the set z ∈ Z that satisfy the condition: ∃ 1 ≤ i ≤ |Pf | : r ⪯

z ⪯ Pf (i) where Pf (i) denotes the i-th solution within the Pareto front Pf , ⪯ serves as

the relational operator indicating objective dominance, and 1 is as a Dirac delta function

resulting in a value of 1 if z ∈ H(Pf ) and 0 otherwise.

A higher hypervolume indicates that the Pareto front approximation Pf offers a better

representation of the true Pareto front.

Hypervolume improvement

To quantify the extent of this improvement when a set of new n points P = p1, . . . ,pn ⊂ Rm

is introduced to the existing Pareto front approximation Pf , the concept of hypervolume

improvement (HVI) is employed. Figure 2.1 illustrates this metric, which measures the

increase in hypervolume resulting from the addition of these new points. HVI is defined as:

HV I(P,Pf ) = H(Pf ∪ P )−H(Pf ). (2.2)

2.2 Bayesian optimization

Many optimization problems involve the search for a global optimal solution within the realm

of a black-box function f : X ⊂ Rd → R. These functions are often expensive to evaluate,

lacking an analytical form or known derivatives, and the number of function evaluations that

can be conducted is limited.

In such scenarios, Bayesian optimization (BO) emerges as an effective solution by adeptly

20



Figure 2.1: Illustration of hypervolume improvement in a two-objective performance space.
The hypervolume of evaluated points f(x1), f(x2), f(x3) and f(x4)with respect to the reference
point r is shaded in blue. The hypervolume improvement achieved by adding points p1 and
p2 is shaded in green.

managing the trade-off between exploration (sampling from new and uncertain areas) and

exploitation (intensive probing of promising regions to maximize performance).

2.2.1 Surrogate model

The surrogate model is a pivotal component in BO, serving as an approximation of the

unknown objective function f . In this context, the Gaussian Process (GP) is a commonly

employed surrogate model [11].

A GP over a space X is a random process X → R characterized by a mean function

µ : X → R and a kernel function κ : X ×X → R. If a function f is sampled from GP(µ, κ),

then f(x) is distributed normally f(x) ∼ N (µ(x), κ(x,x)) for a finite set of inputs x ∈ X .

The next step involves training a GP posterior to refine the initial model. This can

be accomplished by maximizing the log marginal likelihood, log p(y|x, θ), on the available

dataset {X, Y }, where θ represents the the kernel function parameters. The resulting GP

posterior distribution is defined as f(x) ∼ N (µ(x),Σ(x)), with the mean function µ(x) =

21



m(x)+kK−1Y and covariance function Σ(x) = k(x,x)−kK−1kT , where k = k(x, X) and

K = k(X,X).

2.2.2 Acquisition function

The acquisition function f̃(x) is used to select the next point for evaluation. It plays a vital

role in guiding the optimization process by balancing the exploration-exploitation trade-

off. In the context of single-objective optimization, several popular acquisition functions

are commonly employed, such as Expected Improvement (EI) [12], Lower Confidence Bound

(LCB) [13], Probability of Improvement (PI) [14], or Thompson Sampling (TS) [15].

In this work we use LCB, which selects the next evaluation point based on the lower

confidence bound, a representation of the likely lower limit of the true objective function:

LCB(x) = µ(x)−β1/2σ(x), where µ(x) is the mean predicted value, σ(x) is the correspond-

ing standard deviation, and β is a hyperparameter controlling the exploration-exploitation

trade-off.

2.3 Multi-objective Bayesian optimization

In Multi-objective Bayesian optimization (MOBO), two common approaches are used to

handle problems with multiple conflicting objectives.

The first approach consists on using cheap acquisition functions (e.g., EI, LCB, PI, TS) for

each objective function. These acquisition functions optimize individual unknown objectives

independently. Following that, a population-based multi-objective evolutionary algorithm

(e.g., NSGA-II [16], MOEA/D [17]) is employed to identify a set of candidate points C

representing Pareto-optimal solutions, considering objective trade-offs. Then, a candidate

point x ∈ C is selected for evaluation using a chosen selection strategy. This strategy may

involve metrics such as HVI or uncertainty-based selection [18].

The second approach consolidates all objectives into a single acquisition function. A well-
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known example of this is Expected Hypervolume Improvement (EHVI) [19], which selects the

next evaluation point that maximizes the expected increase in hypervolume over the current

Pareto front approximation.

2.4 Synchronous vs. Asynchronous Evaluations

In the context of batch optimization, we employ a set of N parallel workers represented

as w ∈ N. When working in the synchronous setting, we wait until all evaluations are

completed before proceeding to optimize or send the next batch to evaluate. In contrast,

in the asynchronous setting, we dispatch the next evaluation as soon as one evaluation is

completed. Consequently, there are data points currently undergoing evaluation for which

their respective objective values are yet unknown. We have b ≤ w ∈ N evaluations in

progress which are commonly referred to as busy points, denoted as q1, q2, ..., qb forming a

set Q ⊂ X .

Figure 2.2 shows a comparison of synchronous and asynchronous batch evaluations. As it

can be observed, asynchronous batch evaluations more efficiently utilizes resources, allowing

for a greater number of evaluations within the same timeframe compared to synchronous

batch evaluations.
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Figure 2.2: Comparison of synchronous and asynchronous batch BO with N = 3 workers.
Blue bars represent evaluation times and red bars represent waiting times.
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Chapter 3

Related Work

To the best of our knowledge, there is no previous work specifically tailored to handle asyn-

chronous evaluations in the context of MOBO. In this section, we introduce relevant prior

work on asynchronous BO and batch MOBO. Given the absence of prior research in asyn-

chronous MOBO, we delve into various strategies to extend and adapt the methods presented

in this section to effectively handle asynchronicity in MOBO, which are described in Chapter

4.

3.1 Thompson Sampling

Thompson Sampling (TS) [15] is a probabilistic method used in sequential decision-making

processes which operates by sampling potential solutions according to the posterior prob-

ability that they are optimal. Specifically, at each step t + 1, the solution xt+1 is drawn

from the posterior distribution px(·|Dt), where Dt = {(xi, f(xi))}ti=1 represents the dataset

of evaluations completed up to step t.

The work of [20] extends single-objective TS to the asynchronous domain, introducing

Asynchronous TS (Asy-TS). This variant leverages the inherent randomness of TS to ensure

diversity in solution selection during asynchronous evaluations.

In the context of MOO, Thompson Sampling Efficient Multi-objective Optimization
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(TSEMO) [21] utilizes TS independently for each objective in conjunction with the HV

metric and NSGA-II to effectively conduct MOBO.

3.2 Kriging Believer

Kriging Believer (KB) [22] incorporates point hallucination, assuming that busy points have

the surrogate’s posterior mean value. This assumption is applied prior to fitting the new

surrogate model. KB is applicable in both single and multi-objective BO.

3.3 Local Penalization and Hard Local Penalization

Local Penalization (LP) [23] was initially introduced as a batch single-objective BO algorithm

and later extended to the asynchronous setting [24]. The method relies on emulating the

sequential evaluation setting, where upon obtaining experimental results for an input, it is

generally expected that the acquisition function will decrease in the neighborhood around

that point. This is achieved by defining a new penalized acquisition function f̃ ′(x), which

is the original acquisition function f̃(x) multiplied by penalization terms centered at each

batch or busy points q ∈ Q.

The penalizer ψ is built assuming that the function satisfies the Lipschitz continuity

condition. A spherical region S(rj, q) is then considered, centered around q. The radius

rj is determined using the Lipschitz continuity property, ensuring that the optimum f(x∗)

does not lie inside the spherical region S(rj, q). It is important to note that this radius rj is

stochastic due to f being modeled by a GP.

[23] define the LP penalizer ψLP as the probability that a point x ∈ X does not lie inside

S(rj, q). ψLP possesses several properties, including that the penalization region shrinks

as the the expected value for f(q) gets close to the global optimum or when the Lipschitz

constant L increases. [24] argue that, on top of those properties, the extent of penalization

should increase as x gets closer to q, with f̃(x) = 0 if f̃(q) ≥ 0,∀x ∈ X to avoid redundant
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sampling, and thus propose an alternative penalizer ψHLP . For more details please refer to

[23] and [24].

3.4 Highly Parallelizable Pareto Optimization

Highly Parallelizable Pareto Optimization (HIPPO) [25] is a penalization approach for the

batch synchronous MOBO scenario, which is integrated into the EHVI acquisition function.

[25] argue that, because distant parts of the input domain might correspond to the same

area of the Pareto front, diversity in the input space may not achieve diversity along the

Pareto front. Therefore, the proposed penalizer ψHIPPO is based on the performance space

distances, i.e. candidate points are penalized based on how close their predictive objectives

are in the performance space to batch selected points.

Particularly, HIPPO considers the Mahalanobis distance between candidate and batch

points to build ψHIPPO , which for independent GPs is reduced to the L2 norm normalized

by the standard deviation. Similar as LP and HLP, the penalized acquisition function f̃ ′(x),

is the original acquisition function f̃EHV I(x) multiplied by penalization terms at each batch

point q ∈ Q. For more details, we refer the reader to [25].

3.5 Diversity-Guided Efficient Multi-Objective Optimiza-

tion

Diversity-Guided Efficient Multi-Objective Optimization (DGEMO) [26] is specifically de-

signed for the synchronous batch MOBO domain. This method integrates both the design

and performance spaces by utilizing Karush–Kuhn–Tucker (KKT) conditions. DGEMO

categorizes candidate points into diversity regions to optimize the exploration-exploitation

balance. DGEMO then selects one point from each region family to include in the batch,

based on their expected HVI metric.
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Chapter 4

Asynchronous MOBO

4.1 Adaptation of Prior Work to Asynchronous MOBO

4.1.1 Thompson Sampling

To adapt the Asy-TS method for asynchronous MOBO, we directly extend the principles

of TSEMO to the asynchronous setting. In this adaptation, we employ the TS acquisition

function independently for each objective and conduct MOO using NSGA-II. The next eval-

uation point is selected from the set of candidate points C by maximizing the hypervolume

improvement metric:

xnext = argmax
x∈C

{
H(f̃(x) ∪ Pf −H(Pf )

}
(4.1)

Notably, as discussed in [20] we take advantage of the intrinsic randomness within TS

and completely disregard busy points throughout the asynchronous optimization process.

4.1.2 Kriging Believer

To implement KB for asynchronous MOBO, we initially fit the surrogate model with the

evaluated dataset up to t evaluations Dt = {(xi, f(xi))}ti=1 to obtain the posterior mean
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values for busy points. Next, we update the surrogate model using both the evaluated

dataset Dt and the predictions for busy points {(qi,µ(qi))}bi=1}, and we use this updated

model for optimization. We employ independent acquisition functions for each objective and

leverage the NSGA-II algorithm to generate a set of candidate points C. We select the next

evaluation point based on maximizing the HVI metric within C as described in Eq. 4.1.

4.1.3 Local Penalization and Hard Local Penalization

To adapt the single-objective penalization methods LP and HLP for asynchronous MOBO,

we initiate the process by defining penalization regions for each objective. These regions

are based on the best observed values within the evaluated dataset Dt, and we estimate

a global Lipschitz constant for each objective following the methodology outlined in the

original LP paper [23]. For each busy point q ∈ Q, we then independently apply LP or HLP

penalization to each objective. The penalized acquisition functions are utilized in conjunction

with the NSGA-II to generate a set of candidate points C. The selection of the next point

for evaluation is determined by maximizing the HVI metric, as described in Eq. 4.1.

4.1.4 Highly Parallelizable Pareto Optimization

When adapting the HIPPO-EHVI method for asynchronous MOBO, we integrate busy points

into the model as if they were part of a synchronously selected batch. This integration

involves applying the HIPPO penalization technique to these points q ∈ Q. After penalizing

the busy points, we use the standard EHVI acquisition function to determine the most

promising candidate for the next evaluation.

4.1.5 Diversity-Guided Efficient Multi-Objective Optimization

Our primary focus when adapting DGEMO for asynchronous scenarios centers on the final

stage of the MOBO pipeline, where candidate points are categorized into diversity families.
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We obtain the surrogate model’s posterior mean for both candidate and busy points and

determine the candidate point with the closest Euclidean distance within the surrogate’s

posterior space for each busy point. Subsequently, we cluster the busy points into the same

family as this nearest candidate point. We then continue with the DGEMO selection process

following the procedures outlined in the original paper.

4.2 Proposed method: α-HVI

In this section, we present our proposed method for addressing asynchronous evaluations

within the MOBO framework, which primarily focuses on the choice of the acquisition func-

tion and the final selection stage of the pipeline.

To begin, we fit the GP surrogate model using the dataset of evaluations Dt. Following

this, we employ the LCB acquisition function, independently for each of the objectives.

The selection of LCB is motivated by our aim to consider uncertainty, and this acquisition

function allows us to control the degree of uncertainty we wish to incorporate. We then

employ the NSGA-II multi-objective optimizer to generate a set of candidate points C.

For the final selection within C, we propose a novel variant of the HVI metric, α-HVI,

where we include the acquisition values of busy points together with the current evaluated

Pareto front:

α-HV I(x,Q,Pf ) = H(f̃(x) ∪ Pf ∪ f̃(Q))−H(Pf ∪ f̃(Q)) (4.2)

Therefore, we select the next point for evaluation xnext:

xnext = argmax
x∈C

{α-HV I(x,Q,Pf )} (4.3)

α-HVI metric is founded on three essential considerations: uncertainty, diversity and

batch size awareness.
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4.2.1 Uncertainty

α-HVI recognizes the significance of considering not only the performance predictions of our

busy points and candidate points, but also the associated uncertainties. This consideration

of uncertainty aligns with the well-known principle of optimism in the face of uncertainty

[27] in sequential decision-making. This principle claims that exploring areas with higher

uncertainty may increase the likelihood of discovering optimal solutions. We achieve this by

incorporating the acquisition values f̃(x) and f̃(Q) into the HV calculation in α-HVI. This

enables us to account for uncertainties and make informed decisions that balance predicted

performance and uncertainty levels across the Pareto front.

4.2.2 Diversity

Our aim is to avoid selecting points with performance predictions that closely mimic those

of busy points. When we actively explore a specific region on the Pareto front, we intention-

ally refrain from sampling in the immediate vicinity of that performance region to ensure

that the selected candidate points provide valuable and diverse information. This deliber-

ate avoidance of busy regions is essential for maintaining diversity and effectiveness in our

selection process. α-HVI represents an enhancement over HVI, which also avoids sampling

near explored regions but does not incorporate uncertainty into its selection process.

By introducing f̃(Q) into α-HVI, we simultaneously account for both performance im-

provement and uncertainty. This approach actively discourages the selection of candidate

points lying in close proximity to these busy regions due to their expected minimal contribu-

tion to HV, while promoting diversity by encouraging sampling in further locations, leading

to achieving a widely spread-out Pareto front.

Diversity in the Pareto front is crucial because it ensures that we explore a broader range

of trade-offs and objective values, leading to a more comprehensive understanding of the

problem space.
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4.2.3 Batch size awareness

We incorporate awareness of the number of workers into our approach. Our goal is to

comprehensively cover as much of the Pareto front as possible, factoring in the available

number of workers. α-HVI ensures that we make the best use of our resources, adapting to

the dynamics of the batch size. In the calculation of the HV in Eq. 4.2, we consider the Q set

with b elements, inherently accounting for the number of workers. This optimization of our

selection strategy allows us to efficiently explore the Pareto front while effectively utilizing

the available evaluation points.
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Chapter 5

Experimental Evaluation

We now compare our proposed method, α-HVI, with the methods we previously adapted,

using both synthetic test functions and real-world benchmark problems.

5.1 Benchmark problems

First, we conduct experiments on 6 synthetic multi-objective test functions including DTLZ-

2, DTLZ-6 [28], OKA-1, OKA-2 [29], VLMOP-2 [30], ZDT-3 [31], which are widely used in

previous literature. The experiments include problems with 2 objectives, and the number

of design variables varying from 2 to 6. Second, we adopt 6 real-world engineering design

problems which are: gear train design [32], welded beam design [33], four-bar truss design

[34], rocket injector design [35], simply I supported beam design [36], and disc brake design

[33].

In this section, we briefly introduce the properties of each problem, including the dimen-

sions of the design space X ⊂ Rd and performance space f(X ) ⊂ Rm and the reference points

we use for calculating the hypervolume indicator. To ensure fairness in our comparisons, we

employ a consistent reference point for all algorithms..

The problem descriptions for the 6 synthetic functions and the 6 real-world problems are

shown in Table 5.1 and Table 5.2 respectively. For all functions that can work with arbitrary
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dimensions, we use 6 variables and 2 objectives for consistency in testing.

Table 5.1: Description of synthetic functions.

Name d m r

DTLZ-2 [28] 6 2 (1.7435, 1.6819)
DTLZ-6 [28] 6 2 (5.7482, 5.6523)
OKA-1 [29] 2 2 (7.4051, 4.3608)
OKA-2 [29] 3 2 (3.1315, 4.6327)
VLMOP-2 [30] 2 2 (1.0, 1.0)
ZDT-3 [31] 6 2 (0.9699, 6.0236)

Table 5.2: Description of real-world problems.

Name d m r

Gear train design [32] 4 3 (18.0690, 60.0000, 2.1070)
Welded beam design [33] 4 3 (333.9087, 17561.6000, 425021.3810)
Four bar truss design [34] 4 2 (2947.9887, 0.0506)
Rocket injector design [35] 4 3 (1.0020, 1.2433, 1.0941)
Simply supported beam design [36] 4 2 (849.7118, 5.9956)
Disc brake design [33] 4 3 (8.4445, 8.9419, 1430.5745)

5.2 Algorithms and Implementation

We conducted a comprehensive analysis of the performance of the algorithms we adapted,

described in Section 4.1, alongside our proposed method. All algorithms, including our own

and except async-HIPPO, were implemented within the AutODEx [37] Python codebase,

which is built upon pymoo [38], a state-of-the-art Python framework for multi-objective

optimization.

In all experiments, we utilize a zero-mean GP surrogate model with a Matern-1/2 kernel.

We train the GP posterior to refine the prior model by maximizing the log marginal likelihood

on the available dataset.
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We perform 10 independent test runs with 10 different random seeds for each problem on

each algorithm. For each test run of one problem, we use the same initial set of samples for

every algorithm, which is generated by Latin hypercube sampling (LHS) [39] using a same

random seed. Particularly, we generate 20 initial samples and do a total of 200 evaluations.

To simulate asynchronicity in our experiments, we assign random evaluation times to

each experiment. These times are sampled from a half-normal distribution with a mean of

1 and a standard deviation of σ =
√
π/2.

5.3 Comparison metric

To evaluate the performance of different algorithms, we rely on the hypervolume indicator

[10], which is the most widely recognized metric for evaluating MOO problems [40]. We

monitor the increase of the hypervolume indicator 2.1.1 over the number of evaluations

performed. To ensure a fair comparison across all algorithms, we maintain a consistent

reference point and the same initial sample set for each.

5.4 Results and Discussion

The test problems we selected aim to assess the effectiveness of our method across a variety

of function characteristics including concave, convex, disconnected, and multimodal aspects,

as well as varying complexities in design and performance spaces. Our approach shows

consistent performance, compared to other algorithms that oscillate on different types of

problems.

5.4.1 Asynchronous comparison

We initiate our evaluation by focusing on the performance of our method alongside other

asynchronous MOBO algorithms in a fixed setup with 15 workers. The improvement in the
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hypervolume indicator throughout the course of 200 evaluations is shown in Figure 5.1

Figure 5.1: Comparison of various algorithms, including our α-HVI, across a suite of 6
real-world problems and 6 synthetic test functions. The experiments are conducted under
asynchronous conditions with 15 workers and involve up to 200 function evaluations, be-
ginning with an initial set of 20 samples drawn using LHS. The hypervolume indicator is
shown relative to the number of function evaluations. Each curve represents the average
outcome across 10 different random seeds, with variance indicated by the shaded regions.
Our approach, α-HVI, consistently demonstrates robust performance, often ranking as the
top performer in these tests.

Following this initial comparison, we extend our testing to include a broader range of

worker setups: 2, 5, 10, 15, and 30 workers. The results are presented in Figure 5.2 and

they are derived from a detailed comparative analysis where we evaluate the performance

of each algorithm across all test problems and for each random seed. Specifically, after
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conducting 200 evaluations for each combination of problem and seed, we identify which

method achieves the highest hypervolume indicator, designating it as the best performer for

that specific scenario.

Figure 5.2: Optimization performance summary in an asynchronous setting: Bar lengths
indicate the frequency with which each method surpasses others in terms of hypervolume
after 200 iterations. This analysis spans a total of 12 synthetic and real-world functions and
incorporates results from 10 different random seeds. The analysis assesses the performance
effects of varying batch sizes, with number of workers N set at 2, 5, 10, 15, 30. Notably,
the results also demonstrate that the effectiveness of our strategy, α-HVI, improves with an
increasing number of workers.

Discussion Next, we provide a detailed discussion of the performance of the adapted

baselines and α-HVI in the context of asynchronous MOBO evaluations. This discussion

focuses on understanding the strengths and weaknesses of each adapted method.

• Thompson Sampling: Multi-objective asynchronous TS inherits both the advantages

and disadvantages associated with the TS algorithm, particularly in terms of scalability

when applied to high-dimensional spaces. One notable advantage of TS is its natural

adaptability to the asynchronous MOBO settings, positioning it as a suitable choice

for such scenarios.

• Kriging Believer: KB relies on the predictions of the surrogate’s posterior and per-

forms particularly well in scenarios where uncertainty values are minimal and predic-

tions closely approximate the actual values.
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• Local Penalization and Hard Local Penalization: The weakness of LP and HLP

approaches stems from its reliance on definitions and techniques originally developed for

single-objective optimization, where the primary aim is to locate the global minimum.

Consequently, penalization regions are constructed with a sole focus on this purpose.

However, in the context of multi-objective optimization, the goal shifts from the inde-

pendent optimization of each objective to the identification of points along the Pareto

front. Consequently, this approach tends to generate solutions that cluster near the

elbows of the Pareto front, where objectives are optimized independently, rather than

effectively capturing the entire Pareto front. This can be observed in DTLZ2 problem’s

performance space plots in Figure 5.3.

• Highly Parallelizable Pareto Optimization: The EHVI-HIPPO combination is

particularly effective in DTLZ problems but its performance does not consistently

reach the same level of effectiveness across other types of problems, indicating some

limitations in its general applicability.

• Diversity-Guided Efficient Multi-Objective Optimization: The asynchronous

version of DGEMO excels in providing diverse Pareto fronts. Please refer to Figure

5.3 for performance space plot for DTLZ2 problem, showing a widespread discovery of

the front. DGEMO’s adaptability to the asynchronous setting is a promising feature,

making it well-suited for such scenarios.

• α-HVI: Our analysis of the HVI in Fig. 5.1 and rank plots in Fig. 5.2 highlights

the stability of our approach. For most of the problems, α-HVI consistently exhibits

comparable or superior performance, validating its efficacy in asynchronous MOBO

scenarios.

It is also worth noting that the performance of our approach increases with increasing

number of workers. We attribute this to one of our essential considerations: batch

size awareness. As the batch size increases, our selection strategy effectively allocates
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more workers along the front, ensuring a good spread. This optimization leads to more

uniform exploration and a better-discovered Pareto front, consequently resulting in a

higher HV metric.

Figure 5.3: Performance space plots of evaluated points by different algorithms on the stan-
dard DTLZ2 problem, represented in blue and orange.

Ablation study We conducted an ablation study to evaluate the effectiveness of differ-

ent acquisition functions when integrated with our proposed selection strategy, as detailed

in 4.2. This study focused on comparing the LCB acquisition function, our primary choice,

with Expected Improvement (EI) and Probability of Improvement (PI). Due to the specific

nature of EI and PI acquisition functions, we utilized predictive mean values from the sur-
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rogate model instead of acquisition values for the hypervolume calculations. The results of

this comparison, illustrated in Figure 5.4, demonstrated that LCB led to more favorable

outcomes. The effectiveness of LCB is attributed to its consideration of both the mean and

variance in predictions during the selection stage, which is crucial for effectively balancing

exploration and exploitation in these optimization environments.

Figure 5.4: Ablation study comparing our algorithm, α-HVI, using the LCB acquisition
function with asynchronous methods employing PI and EI, across a suite of 6 real-world
problems and 6 synthetic test functions. These experiments were conducted under asyn-
chronous conditions with 15 workers, involving up to 200 function evaluations, starting with
an initial set of 20 samples generated via LHS. The hypervolume indicator is displayed rela-
tive to the number of function evaluations. Each curve represents the average outcome across
10 different random seeds, with variance indicated by the shaded regions. Our approach,
α-HVI using LCB, demonstrates superior and robust performance.

42



5.4.2 Synchronous comparison

We also conduct a comprehensive analysis by comparing our asynchronous α-HVI approach

with synchronous batch MOBO baselines, including DGEMO, TS-HVI, HIPPO-EHVI, and

synchronous batch LCB-HVI.

Figure 5.5 shows hypervolume plots with respect to time steps. These experiments are

conducted using 15 workers over a 300-time-unit duration, and the results are averaged over

10 different random seeds.

Discussion While DGEMO and HIPPO-EHVI are particularly effective in addressing

DTLZ problems, our asynchronous α-HVI method demonstrates consistently superior per-

formance across a broader range of problem contexts. This superior performance is attributed

to the α-HVI selection strategy and the inherent efficiency of asynchronous evaluations, which

allow for more evaluations to be conducted within the same timeframe.

It is also worth noting the comparison of our asynchronous α-HVI to its synchronous

counterpart using a naive LCB+HVI selection. Our asynchronous approach shows superior

performance in all comparisons with this synchronous method, as it is able to conduct more

evaluations and better allocate resources, resulting in more effectively explored Pareto fronts.
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Figure 5.5: Comparison of baseline synchronous evaluations with our asynchronous α-HVI
method on synthetic test functions and real-world problems. The experiments utilize 15
workers and are conducted over 300 time units. The hypervolume indicator is shown relative
to time. Each curve represents the average outcome across 10 different random seeds, with
variance indicated by the shaded regions.

44



Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we explored asynchronous multi-objective Bayesian optimization, an area that

has previously received limited attention in the literature. Initially, we adapted existing

methods to asynchronous MOBO scenarios. This adaptation not only facilitated bench-

marking the performance of these methods but also enabled a comprehensive assessment of

their functionality and efficiency under asynchronous conditions.

Additionally, we introduced a novel strategy, α-HVI, which is grounded in three essential

considerations: uncertainty, diversity of the Pareto front, and batch size awareness. This

strategy begins by fitting a Gaussian Process surrogate model using the dataset of eval-

uations, then applies the Lower Confidence Bound acquisition function independently for

each objective. It uses the NSGA-II optimizer to generate a set of candidate points, and

finally, makes the selection by leveraging a variant of the hypervolume improvement metric,

which we call α-HVI, that includes the acquisition values of points currently under evaluation

alongside the evaluated Pareto front. This straightforward yet effective method has proven

adept at managing the complexities of asynchronous MOBO. Through empirical evaluations

conducted on both synthetic and real-world test functions, α-HVI consistently demonstrated
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robust performance, often ranking among the top compared to other adapted methods.

6.2 Future work

The research presented in this thesis establishes a solid foundation for further investigation

and development within the field of asynchronous MOBO. Given the practical nature of the

problems addressed, characterized by multiple objectives and varying evaluation times, it

would be particularly beneficial to explore the integration of this methodology with other

practical techniques. For instance, incorporating constraint handling capabilities or multi-

fidelity modeling (a combination of high-accuracy, high-cost evaluations and lower-accuracy,

lower-cost evaluations) could extend the applicability of these methods to a broader range

of real-world scenarios.
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