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ABSTRACT

Large language models (LLMs) have achieved impressive performance on various natural
language tasks. However, their massive computational and memory requirements hinder
widespread deployment. Additionally, deploying them on extensive inputs presents efficiency
and accuracy challenges. This proposal introduces two techniques to enable efficient and
accurate quantization and streaming deployment of LLMs, facilitating their application in
real-world systems with limited resources. First, we develop SmoothQuant, an accurate
post-training 8-bit quantization method of both weights and activations in LLMs up to
530B parameters. By smoothing outliers in activations, SmoothQuant enables the use of
efficient INT8 kernels on all matrix multiplications with negligible accuracy loss. Second,
we present StreamingLLM, enabling LLMs to handle arbitrarily long text sequences using
a fixed memory budget. It exploits “attention sinks” in LLMs to stably anchor attention
computation on lengthy contexts. Experiments show StreamingLLM can model over 4 million
tokens with up to 22x speedup compared to recomputation baselines. Together, these two
techniques can significantly reduce the computational and memory costs of large language
models, increasing their accessibility for practical usage.
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Chapter 1

Introduction

Large language models (LLMs) are becoming increasingly essential across a variety of natural
language processing applications such as dialog systems, document summarization, code
completion, and question answering [1]–[14]. However, deploying these models is costly and
energy-consuming due to their massive size. For example, the GPT-3 [15] model contains 175
billion parameters, which will consume at least 350GB of memory to store and run in FP16,
requiring 8×48GB A6000 GPUs or 5×80GB A100 GPUs just for inference. Due to the huge
computation and communication overhead, the inference latency may also be unacceptable
to real-world applications.

1.1 Quantization Challenges in LLMs

Quantization is a promising way to reduce the cost of LLMs [16], [17]. By quantizing the
weights and activations with low-bit integers, we can reduce GPU memory requirements, in
size and bandwidth, and accelerate compute-intensive operations (i.e., GEMM∗ in linear layers,
BMM† in attention). For instance, INT8 quantization of weights and activations can halve the
GPU memory usage and nearly double the throughput of matrix multiplications compared
to FP16.

However, unlike CNN models or smaller transformer models like BERT [18], the activations
of LLMs are difficult to quantize. When we scale up LLMs beyond 6.7B parameters, systematic
outliers with large magnitude will emerge in activations [16], leading to large quantization
errors and accuracy degradation. ZeroQuant [17] applies dynamic per-token activation
quantization and group-wise weight quantization (defined in Figure 3.1 Sec. 3.1). It can be
implemented efficiently and delivers good accuracy for GPT-3-350M and GPT-J-6B. However,
it cannot maintain the accuracy for the large OPT model with 175 billion parameters (see
Section 3.4.2).

LLM.int8() [16] addresses that accuracy issue by further introducing a mixed-precision
decomposition (i.e., it keeps outliers in FP16 and uses INT8 for the other activations).
However, it is hard to implement the decomposition efficiently on hardware accelerators.
Therefore, deriving an efficient, hardware-friendly, and preferably training-free quantization

∗General matrix multiply
†Batch matrix multiply

15



Figure 1.1. The model size of large language models is developing at a faster pace than the
GPU memory in recent years, leading to a big gap between the supply and demand for memory.
Quantization and model compression techniques can help bridge the gap.

scheme for LLMs that would use INT8 for all the compute-intensive operations remains an
open challenge.

We propose SmoothQuant, an accurate and efficient post-training quantization (PTQ)
solution for LLMs. SmoothQuant relies on a key observation: even if activations are much
harder to quantize than weights due to the presence of outliers [16], different tokens exhibit
similar variations across their channels.

Based on this observation, SmoothQuant offline migrates the quantization difficulty from
activations to weights (Figure 1.2). SmoothQuant proposes a mathematically equivalent
per-channel scaling transformation that significantly smooths the magnitude across the
channels, making the model quantization-friendly. Since SmoothQuant is compatible with
various quantization schemes, we implement three efficiency levels of quantization settings
for SmoothQuant (see Table 3.2, O1-O3).

Experiments show that SmoothQuant is hardware-efficient: it can maintain the perfor-
mance of OPT-175B [19], BLOOM-176B [20], GLM-130B [21], and MT-NLG 530B [22],
leading to up to 1.51× speed up and 1.96× memory saving on PyTorch. SmoothQuant is
easy to implement. We integrate SmoothQuant into FasterTransformer, the state-of-the-art
transformer serving framework, achieving up to 1.56× speedup and halving the memory usage
compared with FP16. Remarkably, SmoothQuant allows serving large models like OPT-175B
using only half the number of GPUs compared to FP16 while being faster and enabling the
serving of a 530B model within one 8-GPU node. Our work democratizes the use of LLMs
by offering a turnkey solution to reduce the serving cost.
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Figure 1.2. SmoothQuant’s intuition: the activation X is hard to quantize because outliers stretch
the quantization range, leaving few effective bits for most values. We migrate the scale variance
from activations to weights W during offline to reduce the quantization difficulty of activations. The
smoothed activation X̂ and the adjusted weight Ŵ are both easy to quantize.

1.2 StreamingLLM for Infinite-Length Inputs

Large Language Models (LLMs) [1]–[6] are becoming ubiquitous, powering many natural
language processing applications such as dialog systems [7]–[9], document summarization [10],
[11], code completion [12], [13] and question answering [14]. To unleash the full potential of
pretrained LLMs, they should be able to efficiently and accurately perform long sequence
generation. For example, an ideal ChatBot assistant can stably work over the content of
recent day-long conversations. However, it is very challenging for LLMs to generalize to
longer sequence lengths than they have been pretrained on, e.g., 4K for Llama-2 [6].

The reason is that LLMs are constrained by the attention window during pre-training.
Despite substantial efforts to expand this window size [23]–[25] and improve training [26], [27]
and inference [28]–[32] efficiency for lengthy inputs, the acceptable sequence length remains
intrinsically finite, which doesn’t allow persistent deployments.

In this thesis, we first introduce the concept of LLM streaming applications and ask the
question:

Can we deploy an LLM for infinite-length inputs without sacrificing efficiency and
performance?

When applying LLMs for infinite input streams, two primary challenges arise:

1. During the decoding stage, Transformer-based LLMs cache the Key and Value states
(KV) of all previous tokens, as illustrated in Figure 1.3 (a), which can lead to excessive
memory usage and increasing decoding latency [28].

17



(a) Dense Attention

⋯
T cached tokens

Current Token

(c) Sliding Window  
w/ Re-computation

L re-computed 
tokens

⋯previous tokens 
are truncated

O(T2) O(TL2)PPL: 5641 PPL: 5.43
Has poor efficiency and 

performance on long text.

(b) Window Attention

⋯
L cached 
tokens

⋯
T-L evicted 

tokens

O(TL) PPL: 5158
Breaks when initial 
tokens are evicted.

Has to re-compute cache 
for each incoming token.

(d) StreamingLLM (ours)

Attention Sink

⋯
L cached 
tokens

⋯
evicted 
tokens

O(TL) PPL: 5.40
Can perform efficient and stable 
language modeling on long texts.

Figure 1.3. Illustration of StreamingLLM vs. existing methods. The language model,
pre-trained on texts of length L, predicts the T th token (T ≫ L). (a) Dense Attention has O(T 2)
time complexity and an increasing cache size. Its performance decreases when the text length exceeds
the pre-training text length. (b) Window Attention caches the most recent L tokens’ KV. While
efficient in inference, performance declines sharply once the starting tokens’ keys and values are
evicted. (c) Sliding Window with Re-computation rebuilds the KV states from the L recent tokens
for each new token. While it performs well on long texts, its O(TL2) complexity, stemming from
quadratic attention in context re-computation, makes it considerably slow. (d) StreamingLLM keeps
the attention sink (several initial tokens) for stable attention computation, combined with the recent
tokens. It’s efficient and offers stable performance on extended texts. Perplexities are measured
using the Llama-2-13B model on the first book (65K tokens) in the PG-19 test set.

2. Existing models have limited length extrapolation abilities, i.e., their performance
degrades [23], [33] when the sequence length goes beyond the attention window size set
during pre-training.

An intuitive approach, known as window attention [34] (Figure 1.3 b), maintains only a
fixed-size sliding window on the KV states of most recent tokens. Although it ensures constant
memory usage and decoding speed after the cache is initially filled, the model collapses once
the sequence length exceeds the cache size, i.e., even just evicting the KV of the first token,
as illustrated in Figure 4.1. Another strategy is the sliding window with re-computation
(shown in Figure 1.3 c), which rebuilds the KV states of recent tokens for each generated
token. While it offers strong performance, this approach is significantly slower due to the
computation of quadratic attention within its window, making this method impractical for
real-world streaming applications.

To understand the failure of window attention, we find an interesting phenomenon of
autoregressive LLMs: a surprisingly large amount of attention score is allocated to the
initial tokens, irrespective of their relevance to the language modeling task, as visualized
in Figure 1.4. We term these tokens “attention sinks". Despite their lack of semantic
significance, they collect significant attention scores. We attribute the reason to the Softmax
operation, which requires attention scores to sum up to one for all contextual tokens. Thus,
even when the current query does not have a strong match in many previous tokens, the
model still needs to allocate these unneeded attention values somewhere so it sums up to
one. The reason behind initial tokens as sink tokens is intuitive: initial tokens are visible to
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Figure 1.4. Visualization of the average attention logits in Llama-2-7B over 256 sentences, each
with a length of 16. Observations include: (1) The attention maps in the first two layers (layers
0 and 1) exhibit the "local" pattern, with recent tokens receiving more attention. (2) Beyond the
bottom two layers, the model heavily attends to the initial token across all layers and heads.

almost all subsequent tokens because of the autoregressive language modeling nature, making
them more readily trained to serve as attention sinks.

Based on the above insights, we propose StreamingLLM, a simple and efficient framework
that enables LLMs trained with a finite attention window to work on text of infinite length
without fine-tuning. StreamingLLM exploits the fact that attention sinks have high attention
values, and preserving them can maintain the attention score distribution close to normal.
Therefore, StreamingLLM simply keeps the attention sink tokens’ KV (with just 4 initial
tokens sufficing) together with the sliding window’s KV to anchor the attention computation
and stabilize the model’s performance. With StreamingLLM, models including Llama-2-[7,
13, 70]B, MPT-[7, 30]B, Falcon-[7, 40]B, and Pythia-[2.9,6.9,12]B can reliably model 4 million
tokens, and potentially even more. Compared with the only viable baseline, sliding window
with recomputation, StreamingLLM achieves up to 22.2× speedup, realizing the streaming
use of LLMs.

Furthermore, we confirm our attention sink hypothesis and demonstrate that language
models can be pre-trained to require only a single attention sink token for streaming deploy-
ment. Specifically, we suggest that an extra learnable token at the beginning of all training
samples can serve as a designated attention sink. By pre-training 160 million parameter
language models from scratch, we demonstrate that adding this single sink token preserves
the model’s performance in streaming cases. This stands in contrast to vanilla models, which
necessitate the reintroduction of multiple initial tokens as attention sinks to achieve the same
performance level.

Finally, we emphasize that StreamingLLM efficiently generates coherent text from tokens
within the KV cache without extending the LLMs’ context length. It suits continuous opera-
tion needs with minimal memory use and past data reliance. Additionally, StreamingLLM
can complement context extension methods to increase the attendable recent context.

Together, SmoothQuant and StreamingLLM are complementary strategies aimed at
democratizing the use of LLMs by reducing deployment costs and enabling continuous,
real-time applications with potentially infinite inputs. These innovations pave the way for
broader and more effective deployment of LLM technologies in diverse real-world scenarios.
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Chapter 2

Background and Related Work

2.1 Large Language Models

Pre-trained language models have achieved remarkable performance on various benchmarks
by scaling up. GPT-3 [2] is the first LLM beyond 100B parameters and achieves impressive
few-shot/zero-shot learning results. Later works [22], [35]–[37] continue to push the frontier of
scaling, going beyond 500B parameters. However, as the language model gets larger, serving
such models for inference becomes expensive and challenging. In this work, we show that
our proposed method can quantize the three largest, openly available LLMs: OPT-175B [19],
BLOOM-176B [20], and GLM-130B [21], and even MT-NLG 530B [22] to reduce the memory
cost and accelerate inference.

2.2 Model Quantization

Quantization is an effective method for reducing the model size and accelerating inference.
It proves to be effective for various convolutional neural networks (CNNs) [38]–[42] and
transformers [43]–[47]. Weight equalization [40] and channel splitting [48] reduce quantization
error by suppressing the outliers in weights. However, these techniques cannot address the
activation outliers, which are the major quantization bottleneck for LLMs [16].

2.3 Quantization of Large Language Models

GPTQ [49] applies quantization only to weights but not activations. ZeroQuant [17] and
nuQmm [50] use a per-token and group-wise quantization scheme for LLMs, which requires
customized CUDA kernels. Their largest evaluated models are 20B and 2.7B, respectively,
and fail to maintain the performance of LLMs like OPT-175B. LLM.int8() [16] uses mixed
INT8/FP16 decomposition to address the activation outliers. However, such implementation
leads to large latency overhead, which can be even slower than FP16 inference. Outlier
Suppression [51] uses the non-scaling LayerNorm and token-wise clipping to deal with the
activation outliers. However, it only succeeds on small language models such as BERT [18]
and BART [52] and fails to maintain the accuracy for LLMs (Table 3.4). Our algorithm
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preserves the performance of LLMs (up to 176B, the largest open-source LLM we can find)
with an efficient per-tensor, static quantization scheme without retraining, allowing us to use
off-the-shelf INT8 GEMM to achieve high hardware efficiency.

2.4 Applying LLMs to Lengthy Texts

Extensive research has been done on applying LLMs to lengthy texts, with three main areas
of focus: Length Extrapolation, Context Window Extension, and Improving LLMs’
Utilization of Long Text. While seemingly related, it’s worth noting that progress in
one direction doesn’t necessarily lead to progress in the other. For example, extending the
context size of LLMs doesn’t improve the model’s performance beyond the context size, and
neither approach ensures effective use of the long context. Our StreamingLLM framework
primarily lies in the first category, where LLMs are applied to text significantly exceeding the
pre-training window size, potentially even of infinite length. We do not expand the attention
window size of LLMs or enhance the model’s memory and usage on long texts. The last two
categories are orthogonal to our focus and could be integrated with our techniques.

2.4.1 Length Extrapolation

Length extrapolation aims to enable language models trained on shorter texts to handle
longer ones during testing. A predominant avenue of research targets the development of
relative position encoding methods for Transformer models, enabling them to function beyond
their training window. One such initiative is Rotary Position Embeddings (RoPE) [53], which
transforms the queries and keys in every attention layer for relative position integration.
Despite its promise, subsequent research [23], [33] indicated its underperformance on text that
exceeds the training window. Another approach, ALiBi [33], biases the query-key attention
scores based on their distance, thereby introducing relative positional information. While
this exhibited improved extrapolation, our tests on MPT models highlighted a breakdown
when the text length was vastly greater than the training length. Current methodologies,
however, have yet to achieve infinite length extrapolation, causing no existing LLMs to fit for
streaming applications.

2.4.2 Context Window Extension

Context Window Extension centers on expanding the LLMs’ context window, enabling
the processing of more tokens in one forward pass. A primary line of work addresses the
training efficiency problem. Given the attention to computation’s quadratic complexity during
training, developing a long-context LLM is both a computational and memory challenge.
Solutions have ranged from system-focused optimizations like FlashAttention [26], [27], which
accelerates attention computation and reduces memory footprint, to approximate attention
methods [34], [54]–[56] that trade model quality for efficiency. Recently, there has been a
surge of work on extending pre-trained LLMs with RoPE [23]–[25], [57], involving position
interpolation and fine-tuning. However, all the aforementioned techniques only extend LLMs’
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context window to a limited extent, which falls short of StreamingLLM’s primary concern of
handling limitless inputs.

2.4.3 Improving LLMs’ Utilization of Long Text

Improving LLMs’ Utilization of Long Text optimizes LLMs to better capture and employ the
content within the context rather than merely taking them as inputs. As highlighted by [58]
and [59], success in the previously mentioned two directions does not necessarily translate
to competent utilization of lengthy contexts. Addressing this effective usage of prolonged
contexts within LLMs is still a challenge. Our work concentrates on stably harnessing the
most recent tokens, enabling the seamless streaming application of LLMs.
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Chapter 3

SmoothQuant: Accurate and Efficient
Post-Training Quantization for Large
Language Models

3.1 Preliminaries of Quantization in Neural Networks

Quantization maps a high-precision value into discrete levels. We study integer uniform
quantization [39] (specifically INT8) for better hardware support and efficiency. The quanti-
zation process can be expressed as:

X̄INT8 = ⌈X
FP16

∆
⌋, ∆ =

max(|X|)
2N−1 − 1

, (3.1)

where X is the floating-point tensor, X̄ is the quantized counterpart, ∆ is the quantization
step size, ⌈·⌋ is the rounding function, and N is the number of bits (8 in our case). Here we
assume the tensor is symmetric at 0 for simplicity; the discussion is similar for asymmetric
cases (e.g., after ReLU) by adding a zero-point [39].

Such quantizer uses the maximum absolute value to calculate ∆ so that it preserves the
outliers in activation, which are found to be important for accuracy [16]. We can calculate ∆
offline with the activations of some calibration samples, what we call static quantization.
We can also use the runtime statistics of activations to get ∆, what we call dynamic
quantization. As shown in Figure 3.1, quantization has different granularity levels. The
per-tensor quantization uses a single step size for the entire matrix. We can further
enable finer-grained quantization by using different quantization step sizes for activations
associated with each token (per-token quantization) or each output channel of weights
(per-channel quantization). A coarse-grained version of per-channel quantization is to use
different quantization steps for different channel groups, called group-wise quantization [17],
[43].

For a linear layer in Transformers [60] Y = X ·W,Y ∈ RT×Co ,X ∈ RT×Ci ,W ∈ RCi×Co ,
where T is the number of tokens, Ci is the input channel, and Co is the output channel (see
Figure 3.1, we omit the batch dimension for simplicity), we can reduce the storage by half
compared to FP16 by quantizing the weights to INT8. However, to speed up the inference,
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Figure 3.1. Definition of per-tensor, per-token, and per-channel quantization. Per-tensor quantiza-
tion is the most efficient to implement. For vector-wise quantization to efficiently utilize the INT8
GEMM kernels, we can only use scaling factors from the outer dimensions (i.e., token dimension T and
out channel dimension Co) but not inner dimension (i.e., in channel dimension Ci).

we need to quantize both weights and activations into INT8 (i.e., W8A8) to utilize the integer
kernels (e.g., INT8 GEMM), which are supported by a wide range of hardware (e.g., NVIDIA
GPUs, Intel CPUs, Qualcomm DSPs, etc.).

3.2 Review of Quantization Difficulty

LLMs are notoriously difficult to quantize due to the outliers in the activations [16], [47],
[51]. We first review the difficulties of activation quantization and look for a pattern amongst
outliers. We visualize the input activations and the weights of a linear layer that has a
large quantization error in Figure 3.2 (left). We can find several patterns that motivate our
method:

1. Activations are harder to quantize than weights. The weight distribution is
quite uniform and flat, which is easy to quantize. Previous work has shown that quantizing
the weights of LLMs with INT8 or even with INT4 does not degrade accuracy [16], [17], [21],
which echoes our observation.

2. Outliers make activation quantization difficult. The scale of outliers in activations
is ∼ 100× larger than most of the activation values. In the case of per-tensor quantization
(Equation 3.1), the large outliers dominate the maximum magnitude measurement, leading
to low effective quantization bits/levels (Figure 1.2) for non-outlier channels: suppose the
maximum magnitude of channel i is mi, and the maximum value of the whole matrix is
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Figure 3.2. Magnitude of the input activations and weights of a linear layer in OPT-13B before
and after SmoothQuant. Observations: (1) there are a few channels in the original activation map
whose magnitudes are very large (greater than 70); (2) the variance in one activation channel is
small; (3) the original weight distribution is flat and uniform. SmoothQuant migrates the outlier
channels from activation to weight. In the end, the outliers in the activation are greatly smoothed
while the weight is still pretty smooth and flat.

Table 3.1. Among different activation quantization schemes, only per-channel quantization [47]
preserves the accuracy, but it is not compatible (marked in gray) with INT8 GEMM kernels. We report
the average accuracy on WinoGrande, HellaSwag, PIQA, and LAMBADA.

Model size (OPT-) 6.7B 13B 30B 66B 175B

FP16 64.9% 65.6% 67.9% 69.5% 71.6%

INT8 per-tensor 39.9% 33.0% 32.8% 33.1% 32.3%
INT8 per-token 42.5% 33.0% 33.1% 32.9% 31.7%
INT8 per-channel 64.8% 65.6% 68.0% 69.4% 71.4%

m, the effective quantization levels of channel i is 28 ·mi/m. For non-outlier channels, the
effective quantization levels would be very small (2-3), leading to large quantization errors.

3. Outliers persist in fixed channels. Outliers appear in a small fraction of the
channels. If one channel has an outlier, it persistently appears in all tokens (Figure 3.2,
red). The variance amongst the channels for a given token is large (the activations in some
channels are very large, but most are small), but the variance between the magnitudes of
a given channel across tokens is small (outlier channels are consistently large). Due to
the persistence of outliers and the small variance inside each channel, if we could perform
per-channel quantization [47] of the activation (i.e., using a different quantization step for each
channel), the quantization error would be much smaller compared to per-tensor quantization,
while per-token quantization helps little. In Table 3.1, we verify the assumption that simulated
per-channel activation quantization successfully bridges the accuracy with the FP16 baseline,
which echos the findings of Bondarenko, Nagel, and Blankevoort.

However, per-channel activation quantization does not map well to hardware-accelerated
GEMM kernels, that rely on a sequence of operations executed at a high throughput (e.g.,
Tensor Core MMAs) and do not tolerate the insertion of instructions with a lower throughput
(e.g., conversions or CUDA Core FMAs) in that sequence. In those kernels, scaling can only
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Figure 3.3. SmoothQuant’s precision mapping for a Transformer block. All compute-intensive
operators like linear layers and batched matmul (BMMs) use INT8 arithmetic.

be performed along the outer dimensions of the matrix multiplication (i.e., token dimension of
activations T , output channel dimension of weights Co, see Figure 3.1), which can be applied
after the matrix multiplication finishes:

Y = diag(∆FP16
X ) · (X̄INT8 · W̄INT8) · diag(∆FP16

W ) (3.2)

Therefore, previous works all use per-token activation quantization for linear layers [16], [17],
although they cannot address the difficulty of activation quantization (only slightly better
than per-tensor).

3.3 SmoothQuant

Instead of per-channel activation quantization (which is infeasible), we propose to “smooth”
the input activation by dividing it by a per-channel smoothing factor s ∈ RCi . To keep the
mathematical equivalence of a linear layer, we scale the weights accordingly in the reversed
direction:

Y = (Xdiag(s)−1) · (diag(s)W) = X̂Ŵ (3.3)

Considering input X is usually produced from previous linear operations (e.g., linear layers,
layer norms, etc.), we can easily fuse the smoothing factor into previous layers’ parameters
offline, which doe not incur kernel call overhead from an extra scaling. For some other cases,
when the input is from a residual add, we can add an extra scaling to the residual branch
similar to [51].

Migrate the quantization difficulty from activations to weights. We aim to choose
a per-channel smoothing factor s such that X̂ = Xdiag(s)−1 is easy to quantize. To reduce
the quantization error, we should increase the effective quantization bits for all the channels.
The total effective quantization bits would be largest when all the channels have the same
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Figure 3.4. Main idea of SmoothQuant when α is 0.5. The smoothing factor s is obtained on
calibration samples and the entire transformation is performed offline. At runtime, the activations
are smooth without scaling.

maximum magnitude. Therefore, a straight-forward choice is sj = max(|Xj|), j = 1, 2, ..., Ci,
where j corresponds to j-th input channel. This choice ensures that after the division, all the
activation channels will have the same maximum value, which is easy to quantize. Note that
the range of activations is dynamic; it varies for different input samples. Here, we estimate
the scale of activations channels using calibration samples from the pre-training dataset [39].
However, this formula pushes all the quantization difficulties to the weights. We find that,
in this case, the quantization errors would be large for the weights (outlier channels are
migrated to weights now), leading to a large accuracy degradation (see Figure 3.8). On the
other hand, we can also push all the quantization difficulty from weights to activations by
choosing sj = 1/max(|Wj|). Similarly, the model performance is bad due to the activation
quantization errors. Therefore, we need to split the quantization difficulty between weights
and activations so that they are both easy to quantize.

Here we introduce a hyper-parameter, migration strength α, to control how much difficulty
we want to migrate from activation to weights, using the following equation:

sj = max(|Xj|)α/max(|Wj|)1−α (3.4)

We find that for most of the models, e.g., all OPT [19] and BLOOM [20] models, α = 0.5
is a well-balanced point to evenly split the quantization difficulty, especially when we are
using the same quantizer for weights and activations (e.g., per-tensor, static quantization).
The formula ensures that the weights and activations at the corresponding channel share a
similar maximum value, thus sharing the same quantization difficulty. Figure 3.4 illustrates
the smoothing transformation when we take α = 0.5. For some other models where activation
outliers are more significant (e.g., GLM-130B [21] has ∼30% outliers, which are more difficult
for activation quantization), we can choose a larger α to migrate more quantization difficulty
to weights (like 0.75).

Applying SmoothQuant to Transformer blocks. Linear layers take up most of the
parameters and computation of LLM models. By default, we perform scale smoothing for
the input activations of self-attention and feed-forward layers and quantize all linear layers
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Table 3.2. Quantization setting of the baselines and SmoothQuant. All weight and activations use
INT8 representations unless specified. For SmoothQuant, the efficiency improves from O1 to O3
(i.e., lower latency).

Method Weight Activation

W8A8 per-tensor per-tensor dynamic
ZeroQuant group-wise per-token dynamic
LLM.int8() per-channel per-token dynamic+FP16
Outlier Suppression per-tensor per-tensor static

SmoothQuant-O1 per-tensor per-token dynamic
SmoothQuant-O2 per-tensor per-tensor dynamic
SmoothQuant-O3 per-tensor per-tensor static

with W8A8. We also quantize BMM operators in the attention computation. We design a
quantization flow for transformer blocks in Figure 3.3. We quantize the inputs and weights
of compute-heavy operators like linear layers and BMM in attention layers with INT8, while
keeping the activation as FP16 for other lightweight element-wise operations like ReLU,
Softmax, and LayerNorm. Such a design helps us to balance accuracy and inference efficiency.

3.4 Experimental Results

3.4.1 Setups

Baselines. We compare with four baselines in the INT8 post-training quantization setting,
i.e., without re-training of the model parameters: W8A8 naive quantization, ZeroQuant [17],
LLM.int8() [16], and Outlier Suppression [51]. Since SmoothQuant is orthogonal to the
quantization schemes, we provide gradually aggressive and efficient quantization levels from
O1 to O3. The detailed quantization schemes of the baselines and SmoothQuant are shown
in Table 3.2.

Models and datasets. We choose three families of LLMs to evaluate SmoothQuant:
OPT [19], BLOOM [20], and GLM-130B [21]. We use seven zero-shot evaluation tasks:
LAMBADA [61], HellaSwag [62], PIQA [63], WinoGrande [64], OpenBookQA [65], RTE [66],
COPA [67], and one language modeling dataset WikiText [68] to evaluate the OPT and
BLOOM models. We use MMLU [69], MNLI [70], QNLI [66] and LAMBADA to evaluate the
GLM-130B model because some of the aforementioned benchmarks appear in the training
set of GLM-130B. We use lm-eval-harness∗ to evaluate OPT and BLOOM models, and
GLM-130B’s official repo† for its own evaluation. Finally, we scale up our method to MT-NLG
530B [22] and for the first time enable the serving of a >500B model within a single node.
Note that we focus on the relative performance change before and after quantization but not
the absolute value.

∗https://github.com/EleutherAI/lm-evaluation-harness
†https://github.com/THUDM/GLM-130B
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Table 3.3. SmoothQuant maintains the accuracy of OPT-175B model after INT8 quantization,
even with the most aggressive and most efficient O3 setting (Table 3.2). We extensively benchmark
the performance on 7 zero-shot benchmarks (by reporting the average accuracy) and 1 language
modeling benchmark (perplexity). *For ZeroQuant, we also tried leaving the input activation of
self-attention in FP16 and quantizing the rest to INT8, which is their solution to the GPT-NeoX-20B.
However, this does not solve the accuracy degradation of OPT-175B.

OPT-175B LMBD HS PIQA WNGD OBQA RTE COPA Avg↑ WikiText↓
FP16 74.7% 59.3% 79.7% 72.6% 34.0% 59.9% 88.0% 66.9% 10.99

W8A8 0.0% 25.6% 53.4% 50.3% 14.0% 49.5% 56.0% 35.5% 93080
ZeroQuant 0.0%* 26.0% 51.7% 49.3% 17.8% 50.9% 55.0% 35.8% 84648
LLM.int8() 74.7% 59.2% 79.7% 72.1% 34.2% 60.3% 87.0% 66.7% 11.10
Outlier Suppression 0.00% 25.8% 52.5% 48.6% 16.6% 53.4% 55.0% 36.0% 96151

SmoothQuant-O1 74.7% 59.2% 79.7% 71.2% 33.4% 58.1% 89.0% 66.5% 11.11
SmoothQuant-O2 75.0% 59.0% 79.2% 71.2% 33.0% 59.6% 88.0% 66.4% 11.14
SmoothQuant-O3 74.6% 58.9% 79.7% 71.2% 33.4% 59.9% 90.0% 66.8% 11.17

Activation smoothing. The migration strength α = 0.5 is a general sweet spot for all
the OPT and BLOOM models, and α = 0.75 for GLM-130B since its activations are more
difficult to quantize [21]. We get a suitable α by running a quick grid search on a subset of the
Pile [71] validation set. To get the statistics of activations, we calibrate the smoothing factors
and the static quantization step sizes once with 512 random sentences from the pre-training
dataset Pile, and apply the same smoothed and quantized model for all downstream tasks. In
this way, we can benchmark the generality and zero-shot performance of the quantized LLMs.

Implementation. We implement SmoothQuant with two backends: (1) PyTorch Hugging-
face‡ for the proof of concept, and (2) FasterTransformer§, as an example of a high-performance
framework used in production environments. In both PyTorch Huggingface and FasterTrans-
former frameworks, we implement INT8 linear modules and the batched matrix multiplication
(BMM) function with CUTLASS INT8 GEMM kernels. We simply replace the original floating
point (FP16) linear modules and the bmm function with our INT8 kernels as the INT8 model.

3.4.2 Accurate Quantization

Results of OPT-175B. SmoothQuant can handle the quantization of very large LLMs,
whose activations are more difficult to quantize. We study quantization on OPT-175B. As
shown in Table 3.3, SmoothQuant can match the FP16 accuracy on all evaluation datasets
with all quantization schemes. LLM.int8() can match the floating point accuracy because
they use floating-point values to represent outliers, which leads to a large latency overhead
(Table 3.11). The W8A8, ZeroQuant, and Outlier Suppression baselines produce nearly
random results, indicating that naively quantizing the activation of LLMs will destroy the
performance.

‡https://github.com/huggingface/transformers
§https://github.com/NVIDIA/FasterTransformer
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Table 3.4. SmoothQuant works for different LLMs. We can quantize the 3 largest, openly available
LLM models into INT8 without degrading the accuracy. For OPT-175B and BLOOM-176B, we
show the average accuracy on WinoGrande, HellaSwag, PIQA, and LAMBADA. For GLM-130B we
show the average accuracy on LAMBADA, MMLU, MNLI, and QNLI. *Accuracy is not column-wise
comparable due to different datasets.

Method OPT-175B BLOOM-176B GLM-130B*

FP16 71.6% 68.2% 73.8%

W8A8 32.3% 64.2% 26.9%
ZeroQuant 31.7% 67.4% 26.7%
LLM.int8() 71.4% 68.0% 73.8%
Outlier Suppression 31.7% 54.1% 63.5%

SmoothQuant-O1 71.2% 68.3% 73.7%
SmoothQuant-O2 71.1% 68.4% 72.5%
SmoothQuant-O3 71.1% 67.4% 72.8%

Results of different LLMs. SmoothQuant can be applied to various LLM designs.
In Table 3.4, we show SmoothQuant can quantize all existing open LLMs beyond 100B
parameters. Compared with the OPT-175B model, the BLOOM-176B model is easier to
quantize: none of the baselines completely destroys the model; even the naive W8A8 per-
tensor dynamic quantization only degrades the accuracy by 4%. The O1 and O2 levels of
SmoothQuant successfully maintain the floating point accuracy, while the O3 level (per-tensor
static) degrades the average accuracy by 0.8%, which we attribute to the discrepancy between
the statically collected statistics and the real evaluation samples’ activation statistics. On the
contrary, the GLM-130B model is more difficult to quantize (which echos [21]). Nonetheless,
SmoothQuant-O1 can match the FP16 accuracy, while SmoothQuant-O3 only degrades the
accuracy by 1%, which significantly outperforms the baselines. Note that we clip the top 2%
tokens when calibrating the static quantization step sizes for GLM-130B following [51]. Note
that different model/training designs have different quantization difficulties, which we hope
will inspire future research.

Results on LLMs of different sizes. SmoothQuant works not only for very large LLMs
beyond 100B parameters, but it also works consistently for smaller LLMs. In Figure 3.5, we
show that SmoothQuant can work on all scales of OPT models, matching the FP16 accuracy
with INT8 quantization.

Results on Instruction-Tuned LLM Shown in Table 3.5, SmoothQuant also works
on instruction-tuned LLMs. We test SmoothQuant on the OPT-IML-30B model using
the WikiText-2 and LAMBADA datasets. Our results show that SmoothQuant success-
fully preserves model accuracy with W8A8 quantization, whereas the baselines fail to do
so. SmoothQuant is a general method designed to balance the quantization difficulty for
Transformer models. As the architecture of instruction-tuned LLMs is not fundamentally
different from vanilla LLMs, and their pre-training processes are very similar, SmoothQuant
is applicable to instruction-tuned LLMs as well.
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Figure 3.5. SmoothQuant-O3 (the most efficient setting, defined in Table 3.2) preserves the
accuracy of OPT models across different scales when quantized to INT8. LLM.int8() requires mixed
precision and suffers from slowing down.

Table 3.5. SmoothQuant’s performance on the OPT-IML model.

OPT-IML-30B LAMBADA ↑ WikiText ↓

FP16 69.12% 14.26

W8A8 4.21% 576.53
ZeroQuant 5.12% 455.12
LLM.int8() 69.14% 14.27
Outlier Suppression 0.00% 9485.62

SmoothQuant-O3 69.77% 14.37

Table 3.6. SmoothQuant can enable lossless W8A8 quantization for LLaMA models [5]. Results are
perplexities on the WikiText-2 dataset with a sequence length of 512. We used per-token activation
quantization and α=0.8 for SmoothQuant.

Wiki PPL↓ 7B 13B 30B 65B

FP16 11.51 10.05 7.53 6.17
W8A8 SmoothQuant 11.56 10.08 7.56 6.20
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Table 3.7. SmoothQuant can enable lossless W8A8 quantization for Llama-2 [6], Falcon [72],
Mistral [73], and Mixtral [74] models. Results are perplexities on the WikiText-2 dataset with
a sequence length of 2048. We used per-token activation quantization and per-channel weight
quantization for SmoothQuant.

Model Method PPL α

Llama-2-7B FP16 5.474
W8A8 SQ 5.515 0.85

Llama-2-13B FP16 4.950
W8A8 SQ 4.929 0.85

Llama-2-70B FP16 3.320
W8A8 SQ 3.359 0.9

Falcon-7B FP16 6.590
W8A8 SQ 6.629 0.6

Falcon-40B FP16 5.228
W8A8 SQ 5.255 0.7

Mistral-7B FP16 5.253
W8A8 SQ 5.277 0.8

Mixtral-8x7B FP16 3.842
W8A8 SQ 3.893 0.8

Results on LLaMA models. LLaMA models are new open languange models with
superior performance [5]. Through initial experiments, we find LLaMA models generally have
less severe activation outlier issues compared to models like OPT and BLOOM. Nonetheless,
SmoothQuant still works quite well for LLaMA models. We provide some initial results of
LLaMA W8A8 quantization in Table 3.6. SmoothQuant enables W8A8 quantization at a
negligible performance degradation.

Results on Llama-2, Falcon, Mistral, and Mixtral models. We apply SmoothQuant
on several more recent LLMs using diverse architectures, such as Llama-2 [6], Falcon [72], Mis-
tral [73], and Mixtral [74]—notably, the Mixtral model is a Mixture of Experts (MoE) model.
The results, detailed in Table 3.7, demonstrate that SmoothQuant enables W8A8 quantization
while maintaining performance with minimal loss across these varied architectures.

3.4.3 Speedup and Memory Saving

In this section, we show the measured speedup and memory saving of SmoothQuant-O3
integrated into PyTorch and FasterTransformer.

Context-stage: PyTorch Implementation. We measure the end-to-end latency of
generating all hidden states for a batch of 4 sentences in one pass, i.e., the context stage
latency. We record the (aggregated) peak GPU memory usage in this process. We only
compare SmoothQuant with LLM.int8() because it is the only existing quantization method

34



La
te

nc
y 

(m
s)

0

125

250

375

500

128 256 512 1024

328

138
7445

449

247
177151

373

168

82
43

FP16 LLM.int8() SmoothQuant

M
em

or
y 

(G
B

)

0

4

8

12

16

OPT-6.7B
128 256 512 1024

8.7
7.26.86.6

9.6
7.87.16.8

15.6
13.713.012.7

0

200

400

600

800

128 256 512 1024

545

223
11263

708

371

237190

643

296

153
84

0

8

15

23

30

OPT-13B
128 256 512 1024

15.513.612.912.6
16.9

14.313.312.8

28.5
25.924.924.4

0

400

800

1200

1600

128 256 512 1024

1064

458
228136

1288

655

388
276

1403

660

343
190

0

18

35

53

70

OPT-30B
128 256 512 1024

33.330.429.328.9
35.731.630.029.1

63.159.057.356.6

icml short

0

100

200

300

400

128 256 512

223

112
63

371

237
190

296

153

84

0
7

13
20
26

128 256 512

13.612.912.6 14.313.312.8

25.924.924.4

0

175

350

525

700

128 256 512

458

228
136

655

388
276

660

343

190

0
15
30
45
60

128 256 512

30.429.328.9 31.630.029.1

59.057.356.6

La
te

nc
y 

(m
s)

M
em

or
y 

(G
B

)

OPT-13B OPT-30B

Figure 3.6. The PyTorch implementation of SmoothQuant-O3 achieves up to 1.51× speedup and
1.96× memory saving for OPT models on a single NVIDIA A100-80GB GPU, while LLM.int8()
slows down the inference in most cases.

that can preserve LLM accuracy at all scales. Due to the lack of support for model parallelism
in Huggingface, we only measure SmoothQuant’s performance on a single GPU for the PyTorch
implementation, so we choose OPT-6.7B, OPT-13B, and OPT-30B for evaluation. In the
FasterTransformer library, SmoothQuant can seamlessly work with Tensor Parallelism [75]
algorithm, so we test SmoothQuant on OPT-13B, OPT-30B, OPT-66B, and OPT-175B for
both single and multi-GPU benchmarks. All our experiments are conducted on NVIDIA
A100 80GB GPU servers.

In Figure 3.6, we show the inference latency and peak memory usage based on the PyTorch
implementation. SmoothQuant is consistently faster than the FP16 baseline, getting a 1.51x
speedup on OPT-30B when the sequence length is 256. We also see a trend that the larger the
model, the more significant the acceleration. On the other hand, LLM.int8() is almost always
slower than the FP16 baseline, which is due to the large overhead of the mixed-precision
activation representation. In terms of memory, SmoothQuant and LLM.int8() can all nearly
halve the memory usage of the FP16 model, while SmoothQuant saves slightly more memory
because it uses fully INT8 GEMMs.

Context-stage: FasterTransformer Implementation. As shown in Figure 3.7 (top),
compared to FasterTransformer’s FP16 implementation of OPT, SmoothQuant-O3 can further
reduce the execution latency of OPT-13B and OPT-30B by up to 1.56× when using a single
GPU. This is challenging since FasterTransformer is already more than 3× faster compared
to the PyTorch implementation for OPT-30B. Remarkably, for bigger models that have to
be distributed across multiple GPUs, SmoothQuant achieves similar or even better latency
using only half the number of GPUs (1 GPU instead of 2 for OPT-66B, 4 GPUs instead of 8
for OPT-175B). This could greatly lower the cost of serving LLMs. The amount of memory
needed when using SmoothQuant-O3 in FasterTransformer is reduced by a factor of almost
2×, as shown on Figure 3.7 (bottom).
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Figure 3.7. Inference latency (top) and memory usage (bottom) of the FasterTransformer im-
plementation on NVIDIA A100-80GB GPUs. For smaller models, the latency can be significantly
reduced with SmoothQuant-O3 by up to 1.56x compared to FP16. For the bigger models (OPT-66B
and 175B), we can achieve similar or even faster inference using only half number of GPUs. Memory
footprint is almost halved compared to FP16.

Table 3.8. SmoothQuant’s performance in the decoding stage.

BS SeqLen Latency (ms) Memory (GB)

FP16 Ours Speedup (↑) FP16 Ours Saving (↑)

OPT-30B (1 GPU)
1 512 422 314 1.35× 57 30 1.91×
1 1024 559 440 1.27× 58 31 1.87×
16 512 2488 1753 1.42× 69 44 1.59×
16 1024 OOM 3947 - OOM 61 -

OPT-175B (8 GPUs)
1 512 426 359 1.19× 44 23 1.87×
1 1024 571 475 1.20× 44 24 1.85×
16 512 2212 1628 1.36× 50 30 1.67×
16 1024 4133 3231 1.28× 56 37 1.52×

Decoding-stage. In Table 3.8, we show SmoothQuant can significantly accelerate the
autoregressive decoding stage of LLMs. SmoothQuant constantly reduces the per-token
decoding latency compared to FP16 (up to 1.42x speedup). Additionally, SmoothQuant
halves the memory footprints for LLM inference, enabling the deployment of LLMs at a
significantly lower cost.

Table 3.9. SmoothQuant can quantize MT-NLG 530B to W8A8 with negligible accuracy loss.

LAMBADA HellaSwag PIQA WinoGrande Average

FP16 76.6% 62.1% 81.0% 72.9% 73.1%
INT8 77.2% 60.4% 80.7% 74.1% 73.1%
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Table 3.10. When serving MT-NLG 530B, SmoothQuant can reduce the memory by half at a
similar latency using half number of GPUs, which allows serving the 530B model within a single
node.

SeqLen Prec. #GPUs Latency Memory

128 FP16 16 232ms 1040GB
INT8 8 253ms 527GB

256 FP16 16 451ms 1054GB
INT8 8 434ms 533GB

512 FP16 16 838ms 1068GB
INT8 8 839ms 545GB

1024 FP16 16 1707ms 1095GB
INT8 8 1689ms 570GB

Table 3.11. GPU Latency (ms) of different quantization schemes. The coarser the quantization
scheme (from per-token to per-tensor, dynamic to static, O1 to O3, defined in Table 3.2), the
lower the latency. SmoothQuant achieves lower latency compared to FP16 under all settings, while
LLM.int8() is mostly slower. The batch size is 4.

Model OPT-13B OPT-30B

Sequence Length 256 512 256 512

FP16 152.6 296.3 343.0 659.9
LLM.int8() 237.1 371.5 387.9 654.9

SmoothQuant-O1 124.5 243.3 246.7 490.7
SmoothQuant-O2 120.5 235.1 240.2 478.3
SmoothQuant-O3 112.1 223.1 227.6 458.4

3.4.4 Scaling Up: 530B Model Within a Single Node

We can further scale up SmoothQuant beyond 500B-level models, enabling efficient and
accurate W8A8 quantization of MT-NLG 530B [22]. As shown in Table 3.9 and 3.10,
SmoothQuant enables W8A8 quantization of the 530B model at a negligible accuracy loss.
The reduced model size allows us to serve the model using half number of the GPUs (16 to
8) at a similar latency, enabling the serving of a >500B model within a single node (8×A100
80GB GPUs).

3.4.5 Ablation Study

Quantization schemes. Table 3.11 shows the inference latency of different quantization
schemes based on our PyTorch implementation. We can see that the coarser the quantization
granularity (from O1 to O3), the lower the latency. And static quantization can significantly
accelerate inference compared with dynamic quantization because we no longer need to
calculate the quantization step sizes at runtime. SmoothQuant is faster than FP16 baseline
under all settings, while LLM.int8() is usually slower. We recommend using a coarser scheme
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Figure 3.8. A suitable migration strength α (sweet spot) makes both activations and weights easy
to quantize. If the α is too large, weights will be hard to quantize; if too small, activations will be
hard to quantize.

if the accuracy permits.

Migration strength. We need to find a suitable migration strength α (see Equation 3.4)
to balance the quantization difficulty of weights and activations. We ablate the effect of
different α’s on OPT-175B with LAMBADA in Figure 3.8. When α is too small (<0.4),
the activations are hard to quantize; when α is too large (>0.6), the weights will be hard
to quantize. Only when we choose α from the sweet spot region (0.4-0.6) can we get small
quantization errors for both weights and activations, and maintain the model performance
after quantization.
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Chapter 4

StreamingLLM: Efficient Streaming
Language Models with Attention Sinks

4.1 The Failure of Window Attention and Attention Sinks

While the window attention technique offers efficiency during inference, it results in an
exceedingly high language modeling perplexity. Consequently, the model’s performance is
unsuitable for deployment in streaming applications. In this section, we use the concept of
attention sink to explain the failure of window attention, serving as the inspiration behind
StreamingLLM.

Identifying the Point of Perplexity Surge. Figure 4.1 shows the perplexity of language
modeling on a 20K token text. It is evident that perplexity spikes when the text length
surpasses the cache size, led by the exclusion of initial tokens. This suggests that the initial
tokens, regardless of their distance from the predicted tokens, are crucial for maintaining the
stability of LLMs.

Why do LLMs break when removing initial tokens’ KV? We visualize attention
maps from all layers and heads of the Llama-2-7B and models in Figure 1.4. We find that,

Dense Attention Window Attention Sliding Window 

w/ Re-computation StreamingLLM

Dense Attention Window Attention StreamingLLM
Figure 4.1. Language modeling perplexity on texts with 20K tokens across various LLM. Ob-
servations reveal consistent trends: (1) Dense attention fails once the input length surpasses the
pre-training attention window size. (2) Window attention collapses once the input length exceeds the
cache size, i.e., the initial tokens are evicted. (3) StreamingLLM demonstrates stable performance,
with its perplexity nearly matching that of the sliding window with re-computation baseline.
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beyond the bottom two layers, the model consistently focuses on the initial tokens across all
layers and heads. The implication is clear: removing these initial tokens’ KV will remove a
considerable portion of the denominator in the SoftMax function (Equation 4.1) in attention
computation. This alteration leads to a significant shift in the distribution of attention scores
away from what would be expected in normal inference settings.

SoftMax(x)i =
exi

ex1 +
∑N

j=2 e
xj

, x1 ≫ xj, j ∈ 2, . . . , N (4.1)

There are two possible explanations for the importance of the initial tokens in language
modeling: (1) Either their semantics are crucial, or (2) the model learns a bias towards
their absolute position. To distinguish between these possibilities, we conduct experiments
(Table 4.1), wherein the first four tokens are substituted with the linebreak token “\n". The
observations indicate that the model still significantly emphasizes these initial linebreak
tokens. Furthermore, reintroducing them restores the language modeling perplexity to levels
comparable to having the original initial tokens. This suggests that the absolute position of
the starting tokens, rather than their semantic value, holds greater significance.

LLMs attend to Initial Tokens as Attention Sinks. To explain why the model
disproportionately focuses on initial tokens—regardless of their semantic relevance to language
modeling, we introduce the concept of “attention sink". The nature of the SoftMax function
(Equation 4.1) prevents all attended tokens from having zero values. This requires aggregating
some information from other tokens across all heads in all layers, even if the current embedding
has sufficient self-contained information for its prediction. Consequently, the model tends to
dump unnecessary attention values to specific tokens. A similar observation has been made in
the realm of quantization outliers [29], [76], leading to the proposal of SoftMax-Off-by-One [77]
as a potential remedy.
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Table 4.1. Window attention has
poor performance on long text. The
perplexity is restored when we rein-
troduce the initial four tokens along-
side the recent 1020 tokens (4+1020).
Substituting the original four initial
tokens with linebreak tokens “\n"
(4"\n"+1020) achieves comparable
perplexity restoration. Cache config
x+y denotes adding x initial tokens
with y recent tokens. Perplexities are
measured on the first book (65K to-
kens) in the PG19 test set.

Llama-2-13B PPL (↓)

0 + 1024 (Window) 5158.07
4 + 1020 5.40
4"\n"+1020 5.60

Table 4.2. Effects of reintroduced initial token numbers
on StreamingLLM. (1) Window attention (0+y) has a
drastic increase in perplexity. (2) Introducing one or
two initial tokens doesn’t fully restore model perplexity,
showing that the model doesn’t solely use the first token
as the attention sink. (3) Introducing four initial tokens
generally suffices; further additions have diminishing
returns. Cache config x+y denotes adding x initial tokens
to y recent tokens. Perplexities are evaluated on 400K
tokens in the concatenated PG19 test set.

Cache Config 0+2048 1+2047 2+2046 4+2044 8+2040

Falcon-7B 17.90 12.12 12.12 12.12 12.12
MPT-7B 460.29 14.99 15.00 14.99 14.98
Pythia-12B 21.62 11.95 12.09 12.09 12.02

Cache Config 0+4096 1+4095 2+4094 4+4092 8+4088

Llama-2-7B 3359.95 11.88 10.51 9.59 9.54

Why do various autoregressive LLMs, such as Llama-2, MPT, Falcon, and Pythia, consistently
focus on initial tokens as their attention sinks, rather than other tokens? Our explanation is
straightforward: Due to the sequential nature of autoregressive language modeling, initial
tokens are visible to all subsequent tokens, while later tokens are only visible to a limited set
of subsequent tokens. As a result, initial tokens are more easily trained to serve as attention
sinks, capturing unnecessary attention.

We’ve noted that LLMs are typically trained to utilize multiple initial tokens as attention
sinks rather than just one. As illustrated in Figure 4.2, the introduction of four initial tokens,
as attention sinks, suffices to restore the LLM’s performance. In contrast, adding just one or
two doesn’t achieve full recovery. We believe this pattern emerges because these models didn’t
include a consistent starting token across all input samples during pre-training. Although
Llama-2 does prefix each paragraph with a “<s>" token, it’s applied before text chunking,
resulting in a mostly random token occupying the zeroth position. This lack of a uniform
starting token leads the model to use several initial tokens as attention sinks. We hypothesize
that by incorporating a stable learnable token at the start of all training samples, it could
singularly act as a committed attention sink, eliminating the need for multiple initial tokens
to ensure consistent streaming. We will validate this hypothesis in Section 4.3.

4.2 Rolling KV Cache with Attention Sinks

To enable LLM streaming in already trained LLMs, we propose a straightforward method
that can recover window attention’s perplexity without any model finetuning. Alongside the
current sliding window tokens, we reintroduce a few starting tokens’ KV in the attention
computation. The KV cache in StreamingLLM can be conceptually divided into two parts,
as illustrated in Figure 4.2: (1) Attention sinks (four initial tokens) stabilize the attention
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Figure 4.2. The KV cache of StreamingLLM.

Table 4.3. Comparison of vanilla attention with prepending a zero token and a learnable sink token
during pre-training. To ensure stable streaming perplexity, the vanilla model requires several initial
tokens. While Zero Sink shows a slight improvement, it still needs other initial tokens. Conversely,
the model trained with a learnable Sink Token shows stable streaming perplexity with only the sink
token added. Cache config x+y denotes adding x initial tokens with y recent tokens. Perplexity is
evaluated on the first sample in the PG19 test set.

Cache Config 0+1024 1+1023 2+1022 4+1020

Vanilla 27.87 18.49 18.05 18.05
Zero Sink 29214 19.90 18.27 18.01
Learnable Sink 1235 18.01 18.01 18.02

computation; 2) Rolling KV Cache retains the most recent tokens, crucial for language
modeling. StreamingLLM’ design is versatile and can be seamlessly incorporated into any
autoregressive language model that employs relative positional encoding, such as RoPE [53]
and ALiBi [33].

When determining the relative distance and adding positional information to tokens,
StreamingLLM focuses on positions within the cache rather than those in the original text.
This distinction is crucial for StreamingLLM’s performance. For instance, if the current cache
(Figure 4.2) has tokens [0, 1, 2, 3, 6, 7, 8] and is in the process of decoding the 9th token, the
positions assigned are [0, 1, 2, 3, 4, 5, 6, 7], rather than the positions in the original text,
which would be [0, 1, 2, 3, 6, 7, 8, 9].

For encoding like RoPE, we cache the Keys of tokens prior to introducing the rotary
transformation. Then, we apply position transformation to the keys in the rolling cache at
each decoding phase. On the other hand, integrating with ALiBi is more direct. Here, the
contiguous linear bias is applied instead of a ’jumping’ bias to the attention scores. This
method of assigning positional embedding within the cache is crucial to StreamingLLM’s
functionality, ensuring that the model operates efficiently even beyond its pre-training
attention window size.

4.3 Pre-Training LLMs with Attention Sinks

As elaborated in Section 4.1, a significant reason for the model’s excessive attention to
multiple initial tokens is the absence of a designated sink token to offload excessive attention
scores. Due to this, the model inadvertently uses globally visible tokens, primarily the initial
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ones, as attention sinks. A potential remedy can be the intentional inclusion of a global
trainable attention sink token, denoted as a “Sink Token”, which would serve as a repository
for unnecessary attention scores. Alternatively, replacing the conventional SoftMax function
with a variant like SoftMax-off-by-One [77],

SoftMax1(x)i =
exi

1 +
∑N

j=1 e
xj

, (4.2)

which does not require the attention scores on all contextual tokens to sum up to one, may
also be effective. Note that SoftMax1 is equivalent to prepending a token with an all-zero
Key and Value features in the attention computation. We denote this method as “Zero Sink”
to fit our framework.

For validation, we pre-train three language models with 160 million parameters from
scratch under identical settings. The first model utilizes the standard SoftMax attention
(Vanilla), the second replaced the regular attention mechanism with SoftMax1 (Zero Sink),
and one prepending a learnable placeholder token (Sink Token) in all training samples. As
shown in Table 4.3, while the zero sink alleviates the attention sink problem to some extent,
the model still relies on other initial tokens as attention sinks. Introducing a sink token
is highly effective in stabilizing the attention mechanism. Simply pairing this sink token
with recent tokens sufficiently anchors the model’s performance, and the resulting evaluation
perplexity is even marginally improved. Given these findings, we recommend training future
LLMs with a sink token in all samples to optimize streaming deployment.

4.4 Experimental Results

We evaluate StreamingLLM using four prominent recent model families: Llama-2 [6], MPT [78],
PyThia [79], and Falcon [80]. Notably, Llama-2, Falcon, and Pythia incorporate RoPE [53],
whereas MPT employs ALiBi [33] — two of the most influential position encoding techniques
in recent research. Our diverse model selection ensures the validity and robustness of our
findings. We benchmark StreamingLLM against established baselines such as dense attention,
window attention, and the sliding window approach with re-computation. In all subsequent
experiments with StreamingLLM, we default to using four initial tokens as attention sinks
unless stated otherwise.

4.4.1 Language Modeling on Long Texts Across LLM Families and
Scales

We firstly evaluate StreamingLLM’s language modeling perplexity using the concatenated
PG19 [81] test set, which contains 100 long books. For Llama-2 models, the cache size is
set at 2048, while for Falcon, Pythia, and MPT models, it’s set at 1024. This is half the
pre-training window size chosen to enhance visualization clarity.

Figure 4.1 illustrates that StreamingLLM can match the oracle baseline (sliding window
with re-computation) in terms of perplexity on texts spanning 20K tokens. Meanwhile, the
dense attention technique fails when the input length exceeds its pre-training window, and
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Figure 4.3. Language modeling perplexity of StreamingLLM on super long texts with 4 million
tokens across various LLM families and scales. The perplexity remains stable throughout. We
use the concatenated test set of PG19 (100 books) to perform language modeling, with perplexity
fluctuations due to book transitions.

the window attention technique struggles when the input length surpasses the cache size,
leading to the eviction of the initial tokens. In Figure 4.3, we further substantiate that
StreamingLLM can reliably handle exceptionally extended texts, encompassing more than
4 million tokens, across a spectrum of model families and scales. This includes Llama-2-
[7,13,70]B, Falcon-[7,40]B, Pythia-[2.8,6.9,12]B, and MPT-[7,30]B.

4.4.2 Results of Pre-Training with a Sink Token

To validate our suggestion that introducing a sink token to all pre-training samples improves
streaming LLMs, we trained two language models, each with 160 million parameters, under
identical conditions. While one model adhered to the original training settings, the other
incorporated a sink token at the start of every training sample. Our experiments employed
the Pythia-160M [79] codebase and followed its training recipe. We train the models on an
8xA6000 NVIDIA GPU server using the deduplicated Pile [82] dataset. Apart from reducing
the training batch size to 256, we retained all Pythia training configurations, including
learning rate schedules, model initialization, and dataset permutations. Both models were
trained for 143,000 steps.

Figure 4.4. Pre-training
loss curves of models w/ and
w/o sink tokens. Two mod-
els have a similar convergence
trend.

Table 4.4. Zero-shot accuracy (in %) across 7 NLP benchmarks,
including ARC-[Challenge, Easy], HellaSwag, LAMBADA, Open-
bookQA, PIQA, and Winogrande. The inclusion of a sink token
during pre-training doesn’t harm the model performance.

Methods ARC-c ARC-e HS LBD OBQA PIQA WG

Vanilla 18.6 45.2 29.4 39.6 16.0 62.2 50.1
+Sink Token 19.6 45.6 29.8 39.9 16.6 62.6 50.8

Convergence and Normal Model Performance. Including a sink token during pre-
training has no negative impact on model convergence and subsequent performance on a
range of NLP benchmarks. As depicted in Figure 4.4, models trained with a sink token
exhibit similar convergence dynamics compared to their vanilla counterparts. We evaluate
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Pre-Trained without Sink Token Pre-Trained with Sink Token

Layer 0 Head 0 Layer 2 Head 0 Layer 10 Head 0 Layer 0 Head 0 Layer 2 Head 0 Layer 10 Head 0

Figure 4.5. Visualization of average attention logits over 256 sentences, each 16 tokens long,
comparing models pre-trained without (left) and with (right) a sink token. Both maps show the
same layers and heads. Key observations: (1) Without a sink token, models show local attention in
lower layers and increased attention to initial tokens in deeper layers. (2) With a sink token, there is
clear attention directed at it across all layers, effectively collecting redundant attention. (3) With
the presence of the sink token, less attention is given to other initial tokens, supporting the benefit
of designating the sink token to enhance the streaming performance.

the two models on seven diverse NLP benchmarks, including ARC-[Challenge, Easy] [83],
HellaSwag [62], LAMBADA [61], OpenbookQA [65], PIQA [84], and Winogrande [64]. As
shown in Table 4.4, the model pre-trained with a sink token performs similarly to that trained
using the vanilla approach.

Streaming Performance. As illustrated in Table 4.3, the streaming perplexities differ
between models trained using traditional methods and those augmented with a sink token.
Remarkably, the vanilla model requires the addition of multiple tokens as attention sinks
to maintain stable streaming perplexity. In contrast, the model trained with a sink token
achieves satisfactory streaming performance using just the sink token.

Attention Visualization. Figure 4.5 contrasts attention maps for models pre-trained
with and without a sink token. The model without the sink token, similar to Llama-2-7B
(Figure 1.4), shows early-layer local attention and deeper-layer focus on initial tokens. In
contrast, models trained with a sink token consistently concentrate on the sink across layers
and heads, indicating an effective attention offloading mechanism. This strong focus on
the sink, with reduced attention to other initial tokens, explains the sink token’s efficacy in
enhancing model’s streaming performance.

4.4.3 Results on Streaming Question Answering with
Instruction-tuned Models

To show StreamingLLM’s real-world applicability, we emulate multi-round question-answering
using instruction-tuned LLMs, commonly used in real-world scenarios.

We first concatenate all question-answer pairs from the ARC-[Challenge, Easy] datasets,
feed the continuous stream to Llama-2-[7,13,70]B-Chat models, and assess model completions
at each answer position using an exact match criterion. As table 4.5 indicates, dense attention
results in Out-of-Memory (OOM) errors, showing it unsuitable for this setting. While
the window attention method works efficiently, it exhibits low accuracy due to random
outputs when the input length exceeds the cache size. Conversely, StreamingLLM excels
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Below is a record of lines I want you to remember. 
The REGISTER_CONTENT in line 0 is <8806> 
[omitting 9 lines…] 
The REGISTER_CONTENT in line 10 is <24879> 
[omitting 8 lines…] 
The REGISTER_CONTENT in line 20 is <45603> 
Query: The REGISTER_CONTENT in line 0 is 
The REGISTER_CONTENT in line 21 is <29189> 
[omitting 8 lines…] 
The REGISTER_CONTENT in line 30 is <1668> 
Query: The REGISTER_CONTENT in line 10 is 
The REGISTER_CONTENT in line 31 is <42569> 
[omitting 8 lines…] 
The REGISTER_CONTENT in line 40 is <34579> 
Query: The REGISTER_CONTENT in line 20 is 
[omitting remaining 5467 lines…]

Input Content

Desired Output
[“<8806>”, “<24879>”, “<45603>”, …]

Figure 4.6. The first sample in StreamEval.

by efficiently handling the streaming format, aligning with the one-shot, sample-by-sample
baseline accuracy.

Highlighting a more fitting scenario for StreamingLLM, we introduce a dataset, StreamEval,
inspired by the LongEval [59] benchmark. As depicted in Figure 4.6, diverging from LongEval’s
single query over a long-span setup, we query the model every 10 lines of new information. Each
query’s answer is consistently 20 lines prior, reflecting real-world instances where questions
typically pertain to recent information. As illustrated in Figure 4.7, LLMs employing
StreamingLLM maintain reasonable accuracy even as input lengths approach 120K tokens.
In contrast, both dense and window attention fail at the pre-training text length and the KV
cache size, respectively. Additionally, we utilize two context-extended models, LongChat-7b-
v1.5-32k [59] and Llama-2-7B-32K-Instruct [85], to show that StreamingLLM can complement

Table 4.5. Accuracy (in %) on the ARC-[Easy, Challenge] datasets. Questions were concatenated
and answered in a streaming manner to mimic a real-world chat setting. The dense baseline fails due to
Out-of-Memory (OOM) errors. Window attention has poor accuracy. StreamingLLM has comparable
results with the one-shot sample-by-sample baseline. Window attention and StreamingLLM use
cache sizes of 1024.

Model Llama-2-7B-Chat Llama-2-13B-Chat Llama-2-70B-Chat

Dataset Arc-E Arc-C Arc-E Arc-C Arc-E Arc-C

One-shot 71.25 53.16 78.16 63.31 91.29 78.50

Dense OOM
Window 3.58 1.39 0.25 0.34 0.12 0.32
StreamingLLM 71.34 55.03 80.89 65.61 91.37 80.20
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Dense Attention Window Attention Sliding Window 

w/ Re-computation StreamingLLM

Dense Attention Window Attention StreamingLLM

Figure 4.7. Performance on the StreamEval benchmark. Accuracies are averaged over 100 samples.

Table 4.6. Effects of cache size on StreamingLLM’s performance. Increasing the cache size in
StreamingLLM doesn’t consistently yield a decrease in perplexity, showing these models may not
fully utilize the provided context. Cache config x+y denotes adding x initial tokens with y recent
tokens. Perplexity is evaluated on 400K tokens in the concatenated PG19 test set.

Cache 4+252 4+508 4+1020 4+2044

Falcon-7B 13.61 12.84 12.34 12.84
MPT-7B 14.12 14.25 14.33 14.99
Pythia-12B 13.17 12.52 12.08 12.09

Cache 4+508 4+1020 4+2044 4+4092

Llama-2-7B 9.73 9.32 9.08 9.59

context extension techniques. Within StreamingLLM, context extension means broadening
the maximum cache size of streaming LLMs, enabling the capture of broader local information.

4.4.4 Ablation Studies

Numbers of Initial Tokens. In Table 4.2, we ablate the effect of adding varying numbers
of initial tokens with recent tokens on the streaming perplexity. The results show the
insufficiency of introducing merely one or two initial tokens, whereas a threshold of four
initial tokens appears enough, with subsequent additions contributing marginal effects. This
result justifies our choice of introducing 4 initial tokens as attention sinks in StreamingLLM.

Cache Sizes. In Table 4.6, we evaluate cache size’s impact on StreamingLLM’s perplexity.
Contrary to intuition, increasing the cache size doesn’t consistently lower the language
modeling perplexity. This inconsistency shows a potential limitation where these models
might not maximize the utility of the entire context they receive. Future research efforts
should target enhancing these models’ capabilities to utilize extensive contexts better.

4.4.5 Efficency Results

We benchmark StreamingLLM’s decoding latency and memory usage against the sliding
window with re-computation, which is the only baseline with acceptable quality. Both
methods are implemented using the Huggingface Transformers library [86] and tested on
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Figure 4.8. Comparison of per-token decoding latency and memory usage between the sliding
window approach with re-computation baseline and StreamingLLM, plotted against the cache size
(attention window size) on the X-axis. StreamingLLM delivers a remarkable speedup of up to 22.2×
per token and retains a memory footprint similar to the re-computation baseline.

a single NVIDIA A6000 GPU using the Llama-2-7B and Llama-2-13B models. As shown
in Figure 4.8, as the cache size increases, StreamingLLM’s decoding speed has a linear
growth. The sliding window with re-computation baseline has a quadratic rise in decoding
latency. Thus, StreamingLLM achieves an impressive speedup, reaching up to 22.2× per
token. Despite its reduced latency, StreamingLLM sustains a memory footprint consistent
with the re-computation baseline.
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Chapter 5

Conclusion

Large language models (LLMs) have demonstrated exceptional performance across various
natural language processing tasks. However, their deployment is both compute- and memory-
intensive, posing significant challenges for widespread and efficient use. This thesis has
explored two primary solutions to address these challenges: SmoothQuant and StreamingLLM.

5.1 SmoothQuant: Efficient Quantization for LLMs

Quantization is a proven method to reduce memory usage and accelerate inference in neural
networks. However, existing quantization methods for LLMs often struggle to maintain
accuracy and hardware efficiency simultaneously. We introduced SmoothQuant, a training-
free, accuracy-preserving, and general-purpose post-training quantization (PTQ) solution
designed to enable 8-bit weight, 8-bit activation (W8A8) quantization for LLMs.

SmoothQuant is based on the observation that while weights are relatively easy to quantize,
activations are not, primarily due to the presence of outliers. To address this, SmoothQuant
employs a mathematically equivalent transformation that migrates the quantization difficulty
from activations to weights, smoothing the activation outliers in the process. This enables
effective INT8 quantization for both weights and activations across all matrix multiplications
in LLMs, including models such as OPT, BLOOM, GLM, MT-NLG, Llama-1/2, Falcon,
Mistral, and Mixtral.

Our experimental results demonstrate that SmoothQuant achieves up to 1.56× speedup
and 2× memory reduction for LLMs, with negligible loss in accuracy. Moreover, SmoothQuant
allows the serving of a 530B parameter LLM within a single node, significantly reducing
hardware costs and making LLMs more accessible.

5.2 StreamingLLM: Enabling LLMs for Infinite-Length
Inputs

Deploying LLMs in streaming applications, such as multi-round dialogue systems where long
interactions are expected, presents additional challenges. These include extensive memory
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consumption due to caching previous tokens’ Key and Value states (KV) during decoding,
and the inability of popular LLMs to generalize beyond the training sequence length.

Window attention, which caches only the most recent KVs, seems a natural solution
but fails when text length exceeds the cache size. Through our research, we identified an
interesting phenomenon called attention sink, where initial tokens with high attention scores
act as sinks, recovering the performance of window attention despite their lack of semantic
importance.

Building on this insight, we developed StreamingLLM, an efficient framework that enables
LLMs trained with a finite-length attention window to handle infinite sequence lengths
without any fine-tuning. Our approach retains the KV states of a few initial tokens to
maintain stable performance. We demonstrated that StreamingLLM can enable models such
as Llama-2, MPT, Falcon, and Pythia to perform stable and efficient language modeling
with up to 4 million tokens and beyond. Additionally, introducing a placeholder token as a
dedicated attention sink during pre-training further enhances streaming deployment efficiency.

In streaming settings, StreamingLLM outperforms the sliding window recomputation
baseline by up to 22.2× speedup, showcasing its potential for real-world applications.

5.3 Research Impact

The advancements presented in SmoothQuant and StreamingLLM have significantly enhanced
the efficiency and applicability of large language models (LLMs), garnering notable impact in
both the research community and industry. SmoothQuant was accepted to the International
Conference on Machine Learning (ICML) 2023, while StreamingLLM was published at the
International Conference on Learning Representations (ICLR) 2024. Both works have received
positive feedback from researchers and practitioners, who have shown substantial interest in
adopting these techniques and pursuing further research.

As of the thesis submission date, SmoothQuant has been cited 295 times, and StreamingLLM
has been cited 97 times. SmoothQuant’s straightforward yet effective approach to handling
activation outliers has spurred further research on LLM quantization, particularly in address-
ing outliers [87]–[89]. StreamingLLM’s discovery of attention sinks has been recognized as a
universal phenomenon across various transformers [90], not only in language models but also
in vision-language models [91]. This concept has not only contributed to the acceleration and
compression of transformers [92]–[94], but has also deepened the theoretical understanding of
transformer operations [95], [96].

In industry, SmoothQuant has been integrated into NVIDIA’s FasterTransformer and
TensorRT-LLM, Intel’s Neural Compressor and Q8-Chat LLM. StreamingLLM has been
adopted by NVIDIA’s TensorRT-LLM, Intel’s Extension for Transformers, Huggingface’s
Transformers library, and MLC-LLM for enabling continuous chat on iPhone. Both projects
have been made available as open-source, with SmoothQuant receiving 1K GitHub stars and
StreamingLLM receiving 6.3K stars up to the submission date. StreamingLLM also garnered
significant media coverage, including articles in VentureBeat, MIT News, and The Daily
Beast.

By addressing the computational and memory challenges associated with LLMs, this
thesis paves the way for more accessible and efficient deployment of large language models
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across a variety of applications. This democratizes their use and enables broader innovation
in the field of artificial intelligence.
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