
Distributed Control and Information Exchange for
Improved Flight Autonomy of Hybrid Powertrain Drones

by

Miroslav Kosanic

B.S., University of Belgrade, 2019
M.Sc., University of Belgrade, 2020

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2024

© 2024 Miroslav Kosanic. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by: Miroslav Kosanic
Department of Electrical Engineering and Computer Science
May 17, 2024

Certified by: Marija Ilic
Adjunct Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by: Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students



2



Distributed Control and Information Exchange for Improved
Flight Autonomy of Hybrid Powertrain Drones

by

Miroslav Kosanic

Submitted to the Department of Electrical Engineering and Computer Science
on May 17, 2024 in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

ABSTRACT

This work addresses integrating mechanical dynamics and powertrain energy conver-
sion dynamics in Unmanned Aerial Vehicles (UAVs), focusing on hexacopters with hybrid
powertrains. The goal is to maximize fuel savings and achieve that through powertrain reg-
ulation. One of factors that influence optimal internal combustion engine (ICE) operation
is the passively managed battery, which should have the role of a fast supplementary power
source. When the powertrain faces disturbances, ICE efficiency may decrease. The question
is whether coordinated information exchange through distributed or decentralized control
of the battery can outperform centralized powertrain control, which treats the battery as a
disturbance in a component-isolated approach.

The core contributions of this thesis include developing a novel modeling approach that
integrates energy conversion dynamics with the mechanical dynamics of the drone. A second
contribution of the thesis estimates parameters of nonlinear dynamics, using flight-mission
data, and shows theoretical conditions for which the system exhibits time-scale separation.
Using an average-parameter model, a composite Linear Quadratic Regulator (LQR) policy
with predictive control was implemented and simulated during the cruise phase of flight
phase, achieving 4.5% fuel savings by recognizing battery disturbances. This result from
the centralized approach is compared to the thesis’s third contribution, distributed and
decentralized control of the battery, where the two differ as decentralized control is achieved
through the local information exchange, while distributed components can obtain needed
information from components that they are not directly connected.

Both approaches enable the increase of supplement power from the battery, reducing
the demand impact on the generator and ICE and saving fuel. The distributed control is
helping aggressively without proper coordination, ending up as non-cooperative control, as
it doesn’t have information on what is the power that the generator needs. Decentralized
approach receives the information of supplement power, and as coordination is embedded
in this information coming from the generator, and achieves cooperative control. For the
fully charged battery during the cruise phase of the flight, distributed saved approximately
34.56% of the initial fuel, while decentralized control saved 50.05% of the initial fuel in the
reservoir.

Thesis supervisor: Marija Ilic
Title: Adjunct Professor of Electrical Engineering and Computer Science
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Introduction

The primary challenge in the broader application of multirotor unmanned aerial vehicles
(UAVs), is their limited range and endurance. This issue is prevalent in the multi-rotors
compared to ground vehicles or fixed-wing aircraft, primarily due to the specifics of energy
demand. Multi-rotors consume significantly more energy to maintain flight, reducing their
operational duration and range. This limitation becomes a focal point in applications re-
quiring extended flight times 1.1 and distances, making the efficient management of energy
through advanced control strategies like the ones investigated in this thesis, practically im-
portant. By focusing on connecting modules that operate internally under different physical
laws, the hybrid hexacopter drone can be viewed as a multi-domain energy conversion system.
This work has a goal of improving fuel savings, but at the same time guaranteeing stability,
and uninterrupted set-point tracking, thus addressing a key barrier in the deployment of
multirotor UAVs in various scenarios.

There is a growing need for innovative approaches that can enhance UAV flight autonomy.
Hybrid drones demand more sophisticated control and planning mechanisms to enhance
operational efficiency and extend flight duration. The motivation for this research stems
from a mix of different factors and objectives

1. Technological Advancements: Complexities introduced in hybrid drone energy
management operations add new challenges. Addressing these challenges requires re-
thinking existing control and mission planning approaches.

2. Operational Reliability and Efficiency: Reliability amidst disturbances conse-
quently necessitates distributed control mechanisms to ensure efficient and extended
operations under varying weather conditions.

3. Extension of Flight Time: Central to this research is the goal of extending the
flight time of hybrid drones through better modeling, prediction, and distributed fuel
control methods, drawing parallels to the efficient planning/allocation and hierarchical
control of resources at different timescales in renewable energy systems.
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Figure 1.1: A comparison of power and energy density of fuel cell, batteries and other energy
sources used to power drones [1]

4. Environmental Considerations: The pursuit of environmentally conscious approaches
in UAV operations. Incorporating energy-efficient strategies in drone flight missions
contributes to broader environmental goals, by reducing the inefficient use of the fuel
engine.

1.1 State-of-the-Art Methods

Under the imperative for extended and efficient flight missions the drone transportation
sector has evolved from traditional electric drones towards hybrid powertrains. This shift is
to be primarily attributed to the still significant disparity in cost-efficiency between battery
density and power as seen in Fig. 1.1.

1.1.1 Hybrid Terrestrial Vehicles

The progress in the domain of hybrid terrestrial vehicles showcases a considerable level of
maturity. An expansive range of literature, denoted by references delves into the realm of
optimal control algorithms specifically tailored for Hybrid Electric Vehicles (HEVs). Parallels
can be drawn as similar problems exist within industrial and military drone applications,
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but these approaches are not directly transferable to UAVs due to fundamental differences
outlined in [2]. These differences necessitate modifications in methods to accommodate for
the significant size difference between HEVs and UAVs, different system operating conditions,
and disturbances. From an operational standpoint, the requirements of UAVs and HEVs are
different thus a need for rapid decision-making in system response that operates on the scale
of seconds. For instance, UAVs require the capability to handle sudden surges in power
demand, which is distinct from the demands faced by HEVs as their design and region of
operation are quite unaffected by disturbances. Additionally, while HEVs can regenerate
some battery charge through braking, UAVs lack this feature and must adopt alternative
charging methods or prematurely end the flight mission if energy resources are not optimized
subject to mission goals.

1.1.2 Battery Powered Drones

There are numerous proposed algorithms for energy-efficient route planning for Unmanned
Aerial Vehicles (UAVs) with batteries as the energy source. Despite this, a significant num-
ber of these studies overlook a detailed performance evaluation incorporating the battery
dynamics. In [3], an energy-aware algorithm is introduced that aims to reduce the total
energy consumption of the specific drone configuration. Their algorithm is based on mini-
mizing an objective function that calculates the drone’s energy use under various operating
conditions through measurements of the absorbed current and the supply voltage and in
turn, controls the drone’s optimal speed. Similarly, in paper [4] the challenge of finding a
minimum-energy path considering the power drawn by the actuators is addressed. This is
achieved by optimizing the angular acceleration of a quadrotor’s rotors. However, neither
study takes into account the electrical energy source. A study [5] delves into the perfor-
mance of different Lithium Polymer (LiPo) batteries and a comparison is performed for
static equations for the battery endurance and experimental data. The research here focuses
on four static battery models that consider battery runtime, incorporating aspects like the
capacity rate effect and Peukert’s law. Their empirical findings highlight a discrepancy when
compared to the theoretical predictions of these four models.

In [6] paper, a mathematical model of a hexacopter is derived using Newton-Euler for-
malism. Using feedback linearization and sliding mode controllers aim is to stabilize the
attitude while also tracking the yaw and altitude trajectories of the hexacopter. The result
section compares performances, in terms of perturbation rejection, energy consumption, and
parameter uncertainties. There was no explicit modeling of the powertrain. A study that in-
cludes both fixed-wing and multirotor types, a battery State of Charge (SOC) based altitude

15



control mechanism is explored in [7]. This approach utilizes a battery model based on the
equivalent electrical circuit methodology specifically for Lithium Polymer (LiPo) batteries.
Additionally, the study establishes a relationship between the applied thrust of the UAV and
its battery SOC. Adjacently, [8] examines route optimization for drone delivery services. The
power model proposed in this study, however, primarily accounts for the battery’s changing
weight along with the payload. Similarly, [9] proposes a model aimed at minimizing the
delivery time for a specified number of packages. This model includes considerations of bat-
tery performance, but predominantly from the perspective of service duration rather than
detailed battery dynamics. In summary, to the best of our knowledge [10] takes into account
battery dynamics and establishes a battery-aware model for an accurate energy analysis of
the electrically powered drone energy consumption. This line of work’s primary concern is
energy consumption dependence on distance, and energy consumption dependence on the
SOC of the battery while providing accurate SOC estimation.

1.1.3 Hybrid Powered Drones

In the line of work related to hybrid drones [11] is proposing an energy management strategy
for hybrid fuel cell/battery-based drones which reduces fuel consumption by 5.1%, extends
battery lifespan, and increases autonomy duration. This paper does not explore energy
efficiency considering fuel cell/battery dynamics.

In literature, a significant shortcoming of all hybrid models is their lack of modeling the
dynamics of internal combustion engines (ICE). Specifically, they operate under the pre-
sumption that the engine has enough fuel for the flight mission. This assumption, however,
overlooks the complex reality. In practice, an ICE’s efficiency varies depending on several
factors, including its operational state, such as engine temperature and load conditions.
Moreover, the relationship between the demanded power output, ICE’s efficiency, and the
weather conditions has a significant effect on fuel usage. Consequently, overlooking anal-
ysis of the ICE’s performance could lead to inaccuracies in predictions about the vehicle’s
operational duration or range. This is analogous to not modeling battery dynamics [12].
This modeling oversight is particularly crucial when precise knowledge of fuel dynamics and
engine efficiency is vital for maximizing drone flight time and distance performance and
minimizing environmental impact through fuel savings.
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1.2 Thesis Outline

Introduction in Chapter 1 sets the stage by reviewing state-of-the-art methods in hybrid vehi-
cle technologies, with a brief focus on hybrid terrestrial vehicles and battery drones, to finally
introduce hybrid drones. The review identifies the research gap in the modeling and control
approaches of hybrid powertrains of UAVs. Chapter 2 delves briefly into the architecture
and aerodynamic modeling of hybrid drones, highlighting the impact of drag. The chapter
extends into comprehensive drone mechanical dynamics modeling, covering reference frames,
translational and rotational dynamics, and a component model of drone dynamics. Addi-
tionally, it delves into the ICE and fuel flow model, focusing on energy conversion dynamics
and power transmission efficiency. The chapter concludes by articulating the problem state-
ment and research objectives. Chapter 3 discusses dynamic model parameter estimation,
data-informed parameter upper bounds estimation, and joint state-parameter estimation
using the Kalman Filter framework. Focusing on disturbance awareness in terms of fuel
reservoir implicit control, Chapter 4 explores the singular perturbation decomposition of the
lateral-fuel flow model and presents near-optimal composite powertrain regulation policies.
It also discusses the implementation of a disturbance-aware composite policy. The fifth
chapter introduces aggregate energy state-space modeling, interactive information exchange,
and two control approaches, distributed and decentralized. Part of the chapter discusses the
integration and relationship of physical, information exchange, and control layers in hybrid
powertrain systems. Chapter 6 presents numerical results, summarizing findings from pa-
rameter estimation, and the simulation of composite near-optimal regulation policies. It also
showcases the results of distributed and decentralized battery regulation, consolidating the
thesis’ final contribution into practical recommendations. In the last chapter 7, a summary
is given with future research directions.
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Problem formulation

This chapter of the thesis first introduces the components of the hybrid powertrain. Such
powertrain is most commonly the interconnection of electric motors, electric batteries, and
generator, ICE. The battery system provides rapid response and precise control of electric
power supplemented to satisfy mechanical system demand and is combined with the robust
energy capacity of ICE, to optimize in-flight maneuverability and endurance.

2.1 Hybrid drones Architecture

Hybrid multirotor systems represent a significant leap in aerial technology, combining the
agility and precision of electric power with the endurance and robustness of fuel-based sys-
tems. This integration has led to the development of more versatile, efficient, and capable
multirotor drones, suitable for a wide range of applications, from aerial photography and sur-
veying to cargo delivery and emergency response operations. Among these developments, the
integration of hybrid propulsion systems in multi-rotors has emerged as a pivotal innovation,
enhancing the performance and efficiency of UAVs.

Hybrid multirotor drones are designed to overcome the limitations inherent in purely
electrical or fuel-based systems. This comes with added dynamics and control complexities.
The primary goal of the aircraft power supply system in multi-rotors is to deliver ample elec-
trical power for satisfactory in-flight dynamic performance, including efficient maneuvering
capabilities, as well as sustained power output to maintain flight for a prescribed duration.
Conventionally, purely electric propulsion systems, predominantly utilizing batteries for en-
ergy storage and power supply, have been the standard in multirotor aircraft. These systems
are characterized by their rapid response time and precise thrust control. However, they are
also limited by relatively short flight times and extended recharging periods.

To mitigate these drawbacks, hybrid propulsion systems have been introduced. A hybrid
propulsion system in a multirotor vehicle typically consists of at least two synergistic energy
sources that collectively contribute to the total power generated within the aircraft’s power-
train. This system is designed to ensure efficient energy utilization and optimal performance
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Figure 2.1: Powertrain system power flow

under different external conditions. The power generated by the primary source, like Internal
Combustion Engines (ICE), is fed through a power converter and then directed to a common
power bus. Similarly, the secondary power source usually the battery, also feeds into this
common bus. Additionally, this system facilitates energy transfer between the primary and
secondary sources during periods of excess energy.

The design of hybrid multirotor systems allows for different powertrain configurations,
including series, parallel, series-parallel, and more complex topologies, each offering distinct
advantages and tailored to specific operational requirements. The most common elements
in a hybrid system for the multirotor include propellers, electric motors connected through
either fixed or variable gear ratio mechanical transmissions, and power converters. These
converters can be supplied by a range of sources, such as electrochemical batteries, electricity
generators driven by ICE, and in some cases, Photo Voltage (PV) panels and fuel cells. In
systems where the power supply is based on a combination of ICE, electrical generator, and
battery energy storage, the energy sources are typically the chemical energy of a fuel (like
gasoline or methanol) and the electrochemical energy from battery cells. Our system, Harris
drone, is one instance of such a system.

The integration of battery energy storage in hybrid systems is particularly advantageous
due to its reaction speed and the ability to control output voltage and current through DC-
DC power converters. Additional components of such systems include couplings, fuel tanks
for the ICE-based generator set, and controllers for the propeller drive electric motors. The
main advantage of combining electric propulsion with an ICE-based generator, supplemented
by battery energy storage, lies in the ability to achieve rapid response from the propulsion
of electric motor drives. This feature allows for significant flexibility in the overall control
system of the drone. At the same time, the hybrid system leverages the substantial energy
capacity of the ICE, thereby improving flight endurance. The question arises, as to how
well the system handles the disturbance and in doing so, how efficiently in terms of fuel
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consumption.

2.2 Aerodynamic Modeling

The dynamics of the hexacopter are influenced by several key forces and torques. Thrust
force is the force that propels the hexacopter forward and upward, generated by the rotors.
It is essential for overcoming the weight of the vehicle and any aerodynamic drag, enabling
the hexacopter to hover, climb, and move horizontally. Drag force opposes the motion of the
hexacopter through the air, caused by air resistance, and tends to slow down the vehicle.
The amount of drag experienced by the hexacopter is influenced by its design, including its
shape and surface characteristics. Drag torque is a rotational force arising due to drag on the
spinning rotors, affecting the rotational stability and control of the hexacopter, especially
when changing direction or speed. Similarly, thrust torque is a rotational force associated
with the generation of thrust by the rotors, playing a role in the hexacopter’s ability to
maneuver and maintain stability during flight.

Thrust Force

The ability of a hexacopter to maintain stability and maneuver is fundamentally linked
to its ability to generate sufficient thrust. In the body-fixed frame of the hexacopter, the
total thrust force is a cumulative result of the contributions from each of the rotors. This
relationship is expressed as follows:

Tthrust =
6∑
i=1

Ti =
6∑
i=1

kthrustω
2
i e3 (2.1)

In Equation (2.1), Tthrust represents the total thrust force generated by all rotors Fig. 2.2
(Ti, ∀i ∈ {1, . . . , 6}), measured in Newtons [N]. The thrust coefficient, denoted as kthrust,
is a key parameter determined by the characteristics of the propeller and motor, and it is
measured in Newtons per square radian [N/rad2]. The term ωi refers to the angular velocity
of the i-th rotor, measured in radians per second (rad/s). At the same time, e3 is the unit
vector along the hexacopter’s vertical axis, pointing upwards. The thrust coefficient, kthrust,
is important as it defines the relationship between the rotor speed and the generated force.
It varies based on several factors, including the propeller’s diameter, its pitch angle, and the
motor’s efficiency. Generally, higher values of kthrust indicate a greater generation of thrust
force for a given rotor speed. This relationship is central to understanding how changes
in rotor dynamics can directly impact the hexacopter’s lift and maneuvering capabilities.
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For instance, adjusting the rotor speed can modulate the thrust force, allowing for better
control over the hexacopter’s vertical and horizontal movements. This control is essential for
performing precise aerial maneuvers, maintaining stability in varied atmospheric conditions,
and achieving efficient flight dynamics in terms of both energy consumption and aerodynamic
performance.

Drag Force

Drag force is the aerodynamic resistance encountered by a hexacopter as it moves through
the air, opposing the direction of motion and acting to slow down the drone. This force is
critical in determining the hexacopter’s performance, as it directly impacts the drone’s speed
and energy efficiency. As was experimentally explored each axis is affected by the drag force
to a certain degree. The drag force is quantified by the equation:

Fdrag,i =
1

2
ρv2iCD,iAi (2.2)

where i ∈ {x, y, z}, ρ represents the air density [kg/m3], v is the relative speed of the drone to
the wind speed or otherwise called airspeed [m/s] along i-th axis, CD,i is the drag coefficient
which depends on the hexacopter’s shape and surface properties, and Ai is the reference area
along i-th axis [m2].

The problem of Eq. 2.2 is to find the reference area and the drag coefficient. Depending
on the regime determined based on the velocity of the drone, there are two lumped models
described in the literature [13], derived from empirical findings that approximate 2.2:

• from 0− 6m/s linear drag where Fdrag,i = bvi

• from 8− 12m/s quadratic drag where Fdrag,i = bv2i

Drag Torque

Drag torque is a rotational force arising from aerodynamic resistance acting on the spinning
rotors of the hexacopter. It opposes the rotation of the rotors and plays a significant role in
the vehicle’s stability and control, particularly during maneuvers involving rapid directional
or speed changes. The following equation describes the drag torque:

τdrag = kdragω
2
i (2.3)

In this equation, kdrag is the drag torque coefficient, which is influenced by the rotor design
and airfoil characteristics. The term ωi represents the angular velocity of the i-th rotor
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(in rad/s). This torque is crucial in the overall dynamics of the hexacopter, affecting its
rotational stability.

Importance of Thrust in Canceling Drag Effects

Drag thrust refers to the part of the total thrust force that is generated to oppose and
overcome the drag force, playing a vital role in maintaining the hexacopter’s forward motion
and stability. This component becomes particularly important in high-speed flights or windy
conditions. The relationship between drag thrust and drag force is given by:

Fdrag, thrust = Fdrag (2.4)

This equation highlights the direct relationship between drag thrust and drag force, indicat-
ing that a significant portion of the thrust generated by the hexacopter is used to counteract
the effects of drag.

The presence of drag force and drag torque significantly impacts the dynamics of a hexa-
copter. Drag force reduces the acceleration and speed, necessitating an increase in thrust to
maintain desired velocities. Drag torque can affect the hexacopter’s attitude stability, requir-
ing control adjustments to maintain desired orientations. Additionally, increased drag leads
to higher energy consumption, as more power is needed to overcome aerodynamic resistance
and maintain speed or altitude. Minimizing drag is a complex optimization task that can
enhance the hexacopter’s performance and efficiency. Strategies for drag reduction include
streamlining the hexacopter’s body shape and optimizing rotor designs to significantly lower
the drag coefficient. Managing velocity by operating at lower relative speeds can effectively
reduce the drag force quadratically, leading to improved energy efficiency. Furthermore,
flight path optimization, such as avoiding strong headwinds, tailwinds crosswinds, and wind
gusts, can effectively lessen the impact of drag on flight dynamics.

2.3 Drone Dynamics Modeling

The hexacopter features six rotors, each positioned at the terminal point of the drone body
frame. This design facilitates six degrees of freedom, which consist of three translational
and an equal number of rotational motions. Two distinct coordinate systems are utilized to
comprehensively characterize the hexarotor’s dynamics, as depicted in Figure 2.2. These are
the Earth-fixed frame, denoted as E, and the body-fixed frame, with a subscript B.
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Figure 2.2: Reference frames and hexacopter representation

2.3.1 Reference Frames

Depending on the use, aerial vehicle dynamics define the body-fixed frame and the Earth-
fixed frame.

The Earth-fixed reference frame (EFRF), often referred to as the inertial frame or global
frame, is a coordinate system that is fixed relative to the Earth. This frame is typically
used to describe the position and velocity of the drone, such as its latitude, longitude, and
altitude. The axes of the earth frame are usually defined concerning the Earth’s surface,
with one axis pointing towards true north, another pointing towards east, and the third axis
perpendicular to the Earth’s surface, pointing upwards.

The body-fixed reference frame (BFRF), is a coordinate system that is fixed relative
to the drone itself. Coordinate system moves and rotates with the drone. The axes of
the body frame are typically aligned with the drone’s principal axes, forward (nose of the
drone), right (wingtip direction), and down (perpendicular to the wings, pointing towards
the Earth). The body frame will be used to analyze the drone’s movements (roll, pitch,
yaw), forces, and moments acting directly on it.

For tasks involving navigation and path planning, the EFRF is commonly selected due
to its global perspective and stability. In contrast, when addressing attitude control and
stabilization, the BFRF is typically the preferred choice, as it directly relates to the drone’s
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orientation and movements. For more complex operations such as executing advanced ma-
neuvers and navigating around obstacles, a synergistic approach that integrates both the
EFRF and BFRF is often necessary. Control algorithms employ a blend of these two ref-
erence frames, the Earth-fixed and body-fixed perspectives, to ensure comprehensive and
adaptable control of the drone. This integration is essential for optimizing navigation, main-
taining stability, and enhancing maneuverability across diverse flight conditions.

For modeling and control purposes, it’s often more practical to use the body frame. This
is because, in the body frame, the equations of motion are usually simpler and more intuitive
to understand and manipulate, especially when dealing with rotational dynamics and forces
like thrust, drag, and lift that act directly on the drone.

2.3.2 Translational Dynamics

In the body reference frame, the translational dynamics of the hexacopter are interpreted
through the lens of internal forces and movements. This frame is attached to the hexacopter
itself, rotating and translating with it. The equation of motion, derived from Newton’s
second law in this frame, is given by:

mb̈ = Fgravity + Fthrust + Fdrag (2.5)

Here, m denotes the hexacopter’s mass (kg), and b = [x,y, z] is its body-centric position
vector (m). The force Fgravity represents the gravitational influence in the body frame, while
Fthrust and Fdrag are the thrust and drag forces, respectively, relative to the hexacopter’s
axes (N).

This body frame-based formulation is crucial for understanding and controlling the hex-
acopter’s flight dynamics. It directly links the hexacopter’s propulsion system and aerody-
namic characteristics with its translational behavior, facilitating precise maneuvering and
stability in aerial operations. By modulating the rotors’ output, pilots can navigate effi-
ciently, adapting to the dynamics of flight as experienced from the hexacopter’s frame of
reference.

2.3.3 Rotational Dynamics

The rotational dynamics of the hexacopter, on the other hand, are dictated by Euler’s
equation. This equation establishes a relationship between the hexacopter’s angular velocity
ω and the torques acting upon it. Expressed mathematically, the rotational dynamics can
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be represented as:
Iω̇ + ω × (Iω) = τthrust + τdrag (2.6)

Here, I is the hexacopter’s inertia tensor, reflecting its mass distribution and its inherent re-
sistance to changes in rotational motion (kg m2). The angular velocity vector ω = [ϕ̇, θ̇, ψ̇]

(rad/s) describes the hexacopter’s rotational speed and direction. The torques τthrust and
τdrag, represent the total torques generated by the rotors and the aerodynamic drag torque
acting on the hexacopter, respectively. These torques are crucial in determining the hex-
acopter’s ability to perform complex maneuvers such as turns and pitch adjustments. By
adjusting the differential speeds of the rotors, the pilot can induce controlled rotations around
various axes, enhancing the hexacopter’s agility and responsiveness.

2.3.4 Component Model of Drone Dynamics

The following equations represent the 6DOF (six degrees of freedom) dynamics of the drone,
described in the body reference frame:

mẍ = Fx − Fdragx (2.7)

mÿ = Fy − Fdragy (2.8)

mz̈ = Fz −mg − Fdragz (2.9)

Ixϕ̈ = τϕ − (θ̇ψ̇(Iy − Iz)) (2.10)

Iyθ̈ = τθ − (ϕ̇ψ̇(Iz − Ix)) (2.11)

Izψ̈ = τψ − (ϕ̇θ̇(Ix − Iy)) (2.12)

In these equations ẍ, ÿ, z̈ represent the accelerations along the drone’s body-fixed axes
(x, y, z). Fx is the thrust force component along x-axis, while Fy and Flift are the components
along y-axis and z-axis, respectively. Fdragx , Fdragy , Fdragz are the drag forces experienced
along each axis. ϕ̈, θ̈, ψ̈ denote the rotational accelerations around the roll, pitch, and yaw
axes of the drone. τϕ, τθ, τψ are the torques about these axes. Ix, Iy, Iz are the moments of
inertia about the roll, pitch, and yaw axes.

Fx = Tthrust(cos(θ) cos(ψ) + sin(ϕ) sin(θ) sin(ψ)) (2.13)

Fy = Tthrust(cos(θ) sin(ψ)− sin(ϕ) sin(θ) cos(ψ)) (2.14)

Fz = Tthrust(cos(ϕ) sin(θ)) (2.15)
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Here, Tthrust represents the total thrust generated by all rotors. The angles θ (pitch), ϕ
(roll), and ψ (yaw) are used to calculate how this total thrust vector is oriented concerning
the drone’s body frame. These equations assume that the total thrust vector is initially
aligned with the drone’s vertical axis and that pitch, roll, and yaw movements tilt this
vector accordingly. This representation simplifies the model by not considering the individual
thrusts and orientations of each rotor, but instead, it focuses on how the overall orientation
of the drone (as determined by yaw, roll, and pitch) affects the direction of the total thrust
force. This is a common approach in many control systems for drones, as the emphasis is on
controlling the overall position and orientation of the drone.

2.4 ICE and Fuel Flow Model

This section delves into the complexities of modeling the Internal Combustion Engine (ICE)
for hybrid multirotors. Tellegen’s general multi-domain power theorem [14] provides a frame-
work for understanding the interplay between different energy domains within the hybrid
system. Under the assumption of minimal losses and instantaneous energy conversion, this
theorem tells us that the power flowing from the chemical domain (fuel) must be equivalent
to the power in the mechanical domain (engine output) and ultimately, the electrical do-
main used to power the motors. This principle guides the modeling of the hybrid powertrain,
ensuring energy conservation and consistency across its components.

Figure 2.3: Modeling of hybrid powertrain through power flow and Tellegens’ theorem

2.4.1 Chemical Power and Efficiency in ICE

The goal of energy conversion is to understand the balance between fuel consumption, me-
chanical power output, and the inherent inefficiencies of the internal combustion process.
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Modeling of Internal Combustion Engine (ICE), particularly for UAV applications, can
be done through understanding the power exchanges along the way of the power flow as can
be seen in Fig. 2.1. Conversion of the chemical to mechanical power is captured through
the relationship as in Eq. 2.16, which links the engine torque Te measured in [Nm] and
the chemical power Pc measured in [W ], factoring in the engine’s efficiency η. This effi-
ciency, a function of various parameters, plays an important role in determining the engine’s
performance. The balance equation is

wTe = η(·)Pc = η(·)ḟHLV (2.16)

where w denotes the engine speed rad/s, ḟ represents the fuel mass flow rate in the units
of [kg/s], and HLV is the lower heating value of the fuel [J/kg]. The efficiency η(·), not
explicitly specified, is influenced by factors such as engine load, fuel type, and environmental
conditions. An affine approximation of this efficiency is utilized as

Te = eHLV ḟ/w − Tloss (2.17)

where e represents the engine’s inherent thermodynamic efficiency and Tloss accounts for
internal engine losses. This establishes a linear relationship with a constant term between
the torque and fuel mass per cycle and is particularly effective in highlighting the trend of
decreasing efficiency at lower torque levels. The term eHLV ḟ/w in Equation (2.17) symbol-
izes the theoretical torque, assuming complete conversion of chemical energy to mechanical
energy. However, the actual torque is reduced by Tloss, which quantifies the internal engine
losses. These losses include factors such as friction, heat dissipation, and inefficiencies in the
fuel combustion process, but also the disturbances from interconnection.

While the affine approximation simplifies the complex relationship between efficiency,
torque, and fuel consumption, it is generally accurate for modeling ICE behavior in UAVs,
offering a good approximation approach to understanding engine dynamics.

2.4.2 Fuel Flow Model

The connection between fuel flow rate and rotor power, which ultimately leads to thrust is
now derived. This derivation is made under the assumptions of the minimal electrical and
mechanical losses approach for real power exchange between systems, as outlined in [15],
and under the application of Tellegen’s theorem to maintain the balance of real power at
ports within the context of UAV dynamics. This analysis takes into account the efficiency
and losses in various components while ensuring that the sum of power inputs and outputs
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in the system remains equal. Given the equation for engine torque

Te = eHLV ḟ/w − Tloss (2.18)

and assuming negligible Tloss, the equation simplifies to:

Te = eHLV ḟ/w (2.19)

Now, consider the connection between engine torque Te and the power output of the engine
Pe. The power output can be defined as:

Pe = Te × w = Pel (2.20)

Substituting Eq. (2.19) into Eq. (2.20) it follows

Pel = vi = κ(·)(Pe + Pb) = (eHLV ḟ/w)× w = eHLV ḟ (2.21)

where Pb is the battery power, while the whole equation represents the total mechanical
power output of the engine based on the fuel flow rate ḟ that is converted to electrical power
which will be connected to the power provided to the mechanical subsystem.

Under the assumption of minimal electrical losses, the power used by the rotors is almost
equal to the mechanical power output of the engine. If Pmech represents the power used by
the rotors, with each i representing translational axis of the drone, then

Pmech ≈
∑
i

ψiFivi = ζ(·)Pel (2.22)

Thus, combining Eq. (2.22) and Eq. (2.21), a connection between the fuel flow rate ḟ , the
power generated by the mechanical translational axes and the battery power is established
and one can write ∑

i

ψiFivi − ηPb = keHLV ḟ (2.23)

or

ḟ =
−
∑

i ψiFivi − ηPb
keHLV

= −αFxvx − βFyvy (2.24)

The minuses are present as the power is a demand proportional to the needed force that
moves the drone along each axis with a certain velocity. This equation represents how the
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fuel flow rate ḟ is ultimately influenced by the thrust generated by the rotors of a UAV,
assuming minimal losses in the powertrain and electrical systems, and using the principles
of Tellegen’s theorem.

In addition to the relationship described above, fuel flow dynamics can be further ex-
tended to account for internal dynamics lag. The lag factor, denoted as − 1

Tf
· f , represents

the time delay or internal dynamics associated with fuel flow. When considering this lag,
the modified equation connecting the fuel flow rate ḟ to the thrust generated by the rotors
becomes:

ḟ = −α(·)Fxvx − β(·)Fyvy − γ(·)Pb −
1

Tf
f (2.25)

Here, − 1
Tf

· f represents the internal dynamics time constant of the fuel flow, and it affects
the rate of change of fuel flow over time. Coefficients α(·), β(·), and γ(·) have a meaning of
the power transmission coefficients (accumulated system inefficiencies) along the power flow
of the power train. From now the brackets will be dropped such that α, β, γ.

2.5 Problem Statement

The objective of this research is to address a challenge in the dynamics modeling of drones,
focusing on the connection between drone powertrain and mechanical subsystems under
varying operational conditions. The thesis aim is to develop a holistic nonlinear model, that
effectively captures powertrain dynamics and the mechanical subsystem dynamics. This
model aims to account for the effects of varying aerodynamic disturbances, such as drag, but
mainly the effects of downstream load on upstream energy sources and the coordination of
energy sources between themselves as the interaction with the interconnected system. This
integration should significantly enhance the understanding of UAV performance across a
range of flight conditions. As the model is nonlinear, there is a question of linearization that
can be circumvented if one projects onto linear state-space, which then asks for interactive
aggregate energy-state modeling. This model captures the first and second-order effects
of energy conversion, accounting for transients between interconnected components. It is
important to highlight under which assumptions, for which components are equations valid,
and at which sampling rates. This is important for understanding interconnection stability
and the effect of components on each other over time.

Assumptions: The modeling of the powertrain’s energy dynamics in the hybrid UAV
operates under several key assumptions to streamline the analysis. Firstly, energy conversion
within the system is assumed to be instantaneous, meaning that no component, other than
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Figure 2.4: Power distribution along the mechanical axis during cruise phase of flight

the fuel reservoir, stores energy. This includes the fuel engine, generator, and mechanical
subsystem. The battery is to be assumed to have the initial charge at the beginning of the
drone’s cruise period at the constant height and is capable of dynamically redistributing
current to meet the powertrain’s immediate needs. The battery is assumed to be an inter-
face that can provide needed power but the discharge rate and stored energy of the battery
capacity have physical limits. Additionally, the mechanical subsystem is designed with negli-
gible inertia, allowing the rotors to change rotation direction quickly, thereby assuming zero
stored energy. The slow dynamics of the fuel reservoir imply that its second-order energy
stored energy dynamics effects are negligible. Furthermore, the battery is characterized as
a fast process relative to the generator and it’s acting passively. Due to a sampling time of
∆T = 0.1 seconds, transients within the system are averaged, obscuring the interactiveness
of the components during simulations and operational analysis.

Problem: The dynamics of the hybrid powertrain of UAVs, particularly hexacopters, are
complex and influenced by multiple interacting factors such as fuel flow dynamics, battery
charging/discharging cycles, and downstream load demand. Current drones often fail to
integrate these aspects holistically as by their manufacturing design, each component is made
to operate robustly in the prescribed ranges leading to the suboptimal performance in varying
operational conditions. This thesis explores a gap in the systematic modeling of powertrain
dynamics, comparing and challenging the centralized control approach against distributed
and decentralized control through information exchange between components. The systems
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Figure 2.5: Current of the generator and battery during the cruise phase of flight

view of the interconnected powertrain with its integrated control and flight dynamics control
is important from the standpoint of optimizing for fuel savings and improved operational
stability under diverse flight conditions. The mentioned component design propagates to
control through centralized information collection and requires high gain controllers of each
component which potentially can destabilize the system. This approach is thus constraining
and is challenged by the distributed and decentralized control of components.

Coming from the data, a hypothesis is that suboptimal operation of the generator and
then consequently the engine propagates to inefficient use of the fuel. Such premise comes
from the hypothesis that lateral dynamics Fig. 2.4 impact the regulation of the powertrain
under the passive operation of the battery component. The model that captures both pro-
cesses is initially formulated in a centralized manner as a state-space model that includes
lateral position x and y, lateral speed vx and vy, and fuel flow f , with the battery power
viewed as a disturbance from the perspective of the powertrain. The model equations are
defined as follows:
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Figure 2.6: Voltage of the generator and battery during the cruise phase of flight

ẋ = vx, x(0) = x0 (2.26)

ẏ = vy, y(0) = y0 (2.27)

v̇x =
1

m
Fx −

bx
m
vx, vx(0) = vx,0 (2.28)

v̇y =
1

m
Fy −

by
m
vy, vy(0) = vy,0 (2.29)

ḟ = −αFxvx − βFyvy − γPb −
1

Tf
f, f(0) = f0 (2.30)

This modeling will be addressed from another perspective later in Section 5.1 where
interactive energy-state space will be introduced, as this modeling framework doesn’t require
linearization.

2.5.1 Research Objectives

Building on the identified challenges in hybrid UAV dynamics, this thesis aims to:

• Develop a holistic model that captures the dynamics of the powertrain energy conver-
sion with the mechanical subsystem dynamics, enhancing operational efficiency and
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thus the saved fuel

• Estimate average model parameters as the system is of the class of the time-varying
systems and approximate the upper-bound of the parameters to confirm the existence
of time-scale separation

• Implement and simulate the system using the centralized composite control strategy
that near-optimally manages energy consumption and responds adaptively to battery
disturbances

• Implement and simulate distributed and decentralized control with interactive infor-
mation flow, and compare achieved fuel savings. The goal is to optimize the current
discharge distribution of the battery and reduce the demand on the generator, as cur-
rently seen in Fig. 2.5
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Data-Informed Parameter Estimation

3.1 Dynamic Model Parameter Estimation

Parameter estimation for ordinary differential equation (ODE) models is a challenging task
across various scientific and engineering disciplines [16]. The objective is to determine the
parameter values that best fit a model to an observed dataset, typically by minimizing the
difference between the model predictions and the data. Among the various approaches, the
least squares method is extensively utilized due to its robustness and optimal guarantees.

The least squares approach to parameter estimation in ODE models involves minimizing
the sum of the squares of the differences between observed values and those predicted by the
model:

min
θ

n∑
k=1

(yk − f(xk, uk; θ))
2 (3.1)

where yk are the observed data points at times k∆T , f(x(t), u(t); θ) represents the continuous
model predictions parameterized by θ, system input u(t) at discrete k-th time moment k∆T
when measurement was sampled, and n is the number of data points sampled during the
evolution of the system.

Most parameters in dynamic systems cannot be directly measured and could be estimated
through correlations between parameters and errors in state variables. This situation is
similar to that of state variables that are not directly observed but can be estimated from
the measurements of other state variables that are connected to them. If there is a significant
error covariance between the observed variables and a particular parameter, this indicates
that the parameter strongly influences the observed variables. In such cases, the parameter
can be effectively estimated from these observations. When a parameter can be reliably
estimated in this manner, it is referred to as being identifiable.

General description of the model system, given by a set of first-order differential equations
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with parameters

ẋ1(t) = f1(t, x1(t), x2(t), . . . , xn(t), u(t); θ1, . . . , θm) (3.2)

ẋ2(t) = f2(t, x1(t), x2(t), . . . , xn(t), u(t); θ1, . . . , θm) (3.3)
...

ẋn(t) = fn(t, x1(t), x2(t), . . . , xn(t)u(t); θ1, . . . , θm) (3.4)

In vector notation, the system can be written as

ẋ(t) = f(t, x(t), u(t); θ) (3.5)

The parameter vector θ ∈ Rm contains all parameters of both the system and the mea-
surement function. The observed state x(t) ∈ Rn cannot be measured directly; instead,
what is observed is the quantity y(t), which is related to x(t) through a smooth measure-
ment function plus some independent random errors η(t). Measurements are performed at
discrete times, typically at uniform intervals. This setup can be described more succinctly
by introducing a measurement equation:

yt = G(xt, u(t), θ) + ηt (3.6)

resulting in a multivariate time series yti(i = 1, . . . , N). The challenge then becomes to
estimate both the states x(t) at any desired time and the parameters θ, framing this as a
dynamical system identification problem [17].

The problem can be formulated as follows, where given a n-dimensional time series yk
(for k = 1, 2, . . . , N) and the model functions described in Eqs. (3.5) and (3.6), the task is to
estimate the states xk for any given time k∆T and the parameters θ. However, before delving
deeper into the identification methods, it is crucial to consider the practical limitations
imposed by the availability of data. Specifically, understanding the bounds of our parameters
becomes essential when one is faced with limited data and domain knowledge of the system,
a common scenario in many cyber-physical systems.

3.2 Data-Informed Parameter Upper Bounds Estimation

An important aspect of most cyber-physical systems is that the domain of the system is
bounded because of physical constraints. This means that both the states and parameters
have to be within certain limits defined by the physical capabilities and safety requirements
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of the system, applicable to both offline and online analysis First, a known results are
introduced, by stating the Extremum Value Theorem and known extension of the Picard-
Lindelof theorem that combined guarantees the solution of a perturbed system is unique and
exists.

Theorem 1: Assume that K is a compact subset of Rn, and that f : K → R is
continuous. Then, the set {f(x) : x ∈ K} is compact, and there exist x+ and x− in K such
that

f(x+) = sup{f(x) : x ∈ K}

f(x−) = inf{f(x) : x ∈ K}

When there exists x+ as in the equation above, one can say that f attains its supremum,
and when there exists x−, one can say that f attains its infimum [18].

This theorem guarantees that a continuous function on a compact domain is bounded
and attains its bounds within that interval.

Theorem 2 Let G = D×[t0, T ]×(0, ε0], where D ⊂ Rn is an compact subset of Euclidian
space. Consider the differential equation

ẋ = f(x, t, ε) (3.7)

One is interested in solutions x of this equation with initial value x(t0) = x0. Let D = {x ∈
Rn | ∥x − a∥ < d}, inducing G and f : G → Rn. If one assume that f is continuously
differentiable on G then the initial value problem has a unique solution x which exists for
t ≤ t0 + inf(T, d/M) where M = supG∥f∥sup.

Condition that the function is differentiable establishes the existence of derivatives. Con-
tinuity implies the finite value of the derivative according to the Extreme Value Theorem,
as a continuous function on a compact domain must have be bounded. In cyber-physical
system variables of interest can’t "jump" instantaneously due to the laws of physics. This
provides continuity, but for compactness to be satisfied, a system has to have predefined
operational constraints which guide the experiment. If these two conditions are satisfied,
then one can extend previous theorems naturally to define the notion of upper-bound of
system parameters.

The general form of the multi-scale quasi-linear system is given by:

dxf
dt

= g(xf , xs, u, t) (3.8)

dxs
dt

= ϵf(xf , xs, u, t) (3.9)
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where xf ∈ Kxf , xs ∈ Kxs , and u ∈ Ku, with Kxf , Kxs , and Ku being compact subsets of
their respective Euclidean spaces. The functions are defined as g : Kxf ×Kxs×Ku×R → Kxs

and f : Kxf ×Kxs ×Ku× [t0, T ] → Kxf . Fast states xf and slow states xs evolve on different
temporal scales, with the small parameter ϵ influencing the rate of change of xs to be much
slower than that of xf , thus defining the time-scale separation.

Lemma 1: Given the system structure like as in Eqs. (3.8)-(3.9) with xf ∈ Kxf ,
xs ∈ Kxs , and u ∈ Ku, ϵ > 0 small, and g, f continuously differentiable. If there exists δ > 0

such that for ∥xf−xf,eq∥ < δ and ∥xs−xs,eq∥ < δ, where (xf,eq, xs,eq) is an equilibrium point,
then the system exhibits time-separability between xf and xs dynamics for t0 ≤ t ≤ T .

Proof : Let us analyze the growth-order asymptotics of the system at some arbitrary
time tk. Assume that system distance to equilibrium is bounded as O(∥∆x1∥) ≤ O(1),
O(∥∆x2∥) ≤ O(1), O(∥∆u∥) ≤ O(1), then:

O(∥∆xks∥) ≈ ϵ[∥Fxf∥+ ∥Fxs∥+ ∥Fu∥]O(1)

≤ ϵ[∥Fx∥+ ∥Fz∥+ ∥Fu∥]O(1)

O(∥∆xkf∥) ≈ [∥Gxf∥+ ∥Gxs∥+ ∥Gu∥]O(1)

≤ [∥Gx1∥+ ∥Gx2∥+ ∥Gu∥]O(1)

By ensuring O(∥Fx1∥) ≤ O(ϵ−2), O(∥Fx2∥) ≤ O(ϵ−2), and O(∥Fu∥) ≤ O(ϵ−2) along with
O(∥Gx1∥) ≤ O(1), O(∥Gx2∥) ≤ O(1), and O(∥Gu∥) ≤ O(1) one can establish bounds that
imply time-separability.

Lemma 1 provides the sufficient conditions for the time-separability of the system. It
specifies that if the system’s state variables are sufficiently close to an equilibrium point
and if the system’s dynamics are continuously differentiable, then the system exhibits time-
separability. This lemma essentially tells us that under these conditions, it’s possible to
separately analyze the fast and slow dynamics of the system, which means that subsystems
are time-scale separable.

Lemma 2: Consider the system of Eqs. (3.8)-(3.9) exhibiting time-separability. Assume
g, f are continuously differentiable in a neighborhood of an equilibrium point (xf,eq, xs,eq).
Then, for t0 ≤ t ≤ T and every (xf , xs, u) sufficiently close to (xf,eq, xs,eq, ueq), there exist
constants Cg, Cf > 0 such that

∥∇g(xf , xs, u, t)∥ ≤ Cg

∥∇f(xf , xs, u, t)∥ ≤ Cf

where ∇g and ∇f represent the Jacobian matrices of g and f , respectively, and ∥ · ∥ denotes

37



an appropriate matrix norm.
Proof : Similarly to Lemma 1 proof there is

O(∥∆xks∥) ≤ ϵ[∥Fx∥+ ∥Fz∥+ ∥Fu∥]O(1)

O(∥∆xkf∥) ≤ [∥Gx1∥+ ∥Gx2∥+ ∥Gu∥]O(1)

It follows that the system’s time-separability O(∥∆xk1∥) ≈ O(1) and O(∥∆xk2∥) ≈ O(ϵ)

implies upper-bounds on Jacobians.
Lemma 2, implies that if the system exhibits time-separability, then the Jacobian matrices

of the system (derived from g and f) have finite upper bounds when sufficiently close to the
equilibrium. Bounded Jacobians near an equilibrium point imply that the system’s response
to perturbations is limited. It builds on the time-separability established by Lemma 1 and
provides additional structure to the system’s behavior near equilibrium.

Theorem 3: Given the multiscale system described by Eqs. (3.8)-(3.9), assume the sys-
tem is sufficiently close to an equilibrium state. Then, the system exhibits time-separability
if and only if the system dynamics are continuously differentiable with respect to their re-
spective variables.

Proof: Follows directly from proofs of Lemma 1 and Lemma 2.
This theorem established that the bounded Jacobian matrices of the system Eqs. (3.8-

3.9) are necessary and sufficient conditions for the time-separability. The specific bounds
on the Jacobian matrices in the problem of parameter estimation can be seen through the
understanding of the rate of change of the data which implies that the parameters of the
system that explains the data, are bounded.

It’s important to note that the interval for observing the slow system’s variability must
be of order ∆ts = O(ϵ−1), where ϵ is a previously established small parameter indicating the
separation of time scales. Conversely, the fast scale’s observational interval, ∆tz, must be
shorter, ∆tz ≤ ∆ts, and typically set as ∆ts = K∆tf with K ∈ N, ensuring simultaneous
observation of both scales at every ∆ts interval.

3.3 Kalman Filter Joint State-Parameter Estimation

In the context of dynamic models parameters can either be constant or vary over time. To
estimate unknown parameters alongside the system’s state variables, one can use the Kalman
Filter (KF) framework. This is a standard method for white-box models and the system
parameters can be viewed as temporal quasi-static. The assumption is that parameters
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change negligibly over the timescale of interest, which can be mathematically expressed as

dp

dt
≈ 0 (3.10)

Kalman Filter inherently operates in discrete time and relies on discrete data measure-
ments. The state-space representation of the system is augmented to include these param-
eters as additional states. This augmentation allows us to apply the KF for joint state and
parameter estimation, and the augmented state vector at any discrete time step k is given
by

xa,k =

[
xk

pk

]
(3.11)

where xk represents the state variables such as position, velocity, etc., denoted xk = [xk, vx,k, . . . ]
T ,

and pk consists of the parameters such as mass, drag coefficient, etc., pk = [m, bx, Tf , . . . ]
T .

The index k indicates the time step in the discrete model.
Given the estimated augmented state x̂a,k and the corresponding covariance P̂k, the

Kalman Filter updates these estimates using the linear system and measurement models at
each time step. The KF algorithm comprises two main steps: prediction and update. The
prediction phase projects the current state estimate and covariance forward in time

x−
a,k+1 = Fkx̂a,k +Bkuk (3.12)

P−
k+1 = FkP̂kF

T
k +Qk (3.13)

where Fk is the state transition matrix representing the system dynamics, Bk is the control
input matrix, uk is the control input, and Qk is the process noise covariance matrix. When
a new measurement yk+1 is received, the measurement update is given by

Sk+1 = Hk+1P
−
k+1H

T
k+1 +Rk+1 (3.14)

Kk+1 = P−
k+1H

T
k+1S

−1
k+1 (3.15)

x̂a,k+1 = x−
a,k+1 +Kk+1(yk+1 −Hk+1x

−
a,k+1) (3.16)

P̂k+1 = (I −Kk+1Hk+1)P
−
k+1 (3.17)

where Hk+1 is the observation matrix relating the state to the measurement, Rk+1 is the
measurement noise covariance matrix, and I is the identity matrix.

By iteratively applying these predictions and updating equations, the Kalman Filter
provides real-time optimal estimation of the linear system’s state and parameters, refining
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its estimates with each new measurement and the system’s known dynamics.
To accommodate nonlinearities in the system dynamics or the measurement model, the

Extended Kalman Filter (EKF) is employed. The EKF linearizes the system around the
current state estimate at each time step. The dynamics and measurement functions are
denoted as f(xa,k,uk) and h(xa,k), respectively. The prediction equations for the EKF are

x−
a,k+1 = f(x̂a,k,uk)

P−
k+1 = FkP̂kF

T
k +Qk

where Fk = ∂f
∂xa

∣∣∣∣
x̂a,k

is the Jacobian of the dynamics function. Upon receiving a new mea-

surement yk+1, the update equations are

Sk+1 = Hk+1P
−
k+1H

T
k+1 +Rk+1

Kk+1 = P−
k+1H

T
k+1S

−1
k+1

x̂a,k+1 = x−
a,k+1 +Kk+1(yk+1 − h(x−

a,k+1))

P̂k+1 = (I −Kk+1Hk+1)P
−
k+1

where Hk+1 =
∂h
∂xa

∣∣∣∣
x−
a,k+1

is the Jacobian of the measurement function.

Based on the previously introduced joint state-parameter estimation, system Eqs. (2.26)-
(2.30) is rewritten as follows

ẋaug =



vx

vy
1
m
ux − bx

m
vx

1
m
uy − by

m
vy

−αFxvx − βFyvy − γPb − 1
Tf
f

0

0

0

0

0

0

0



(3.18)
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The augmented state vector includes not only the states but also the parameters that
are assumed to be constant (or vary slowly compared to states):

xaug =
[
x, y, vx, vy, f,m, bx, by, α, β, γ, Tf

]T
(3.19)

Given the presence of time-scale separation in the equation for ḟ , where vx and vy enter
as constants (v̄x and v̄y), the bilinear part of the system linearizes around the operating point
at a slower timescale. Nevertheless, the parameters are now the part of augmented states,
so EKF is used as Eq. (3.18) needs to be linearized. The vector of measurable states from
drone flight mission data is:

ymeasure =
[
x, y, vx, vy, f

]T
(3.20)

The EKF is used to estimate the states and consequently parameters by predicting the
next state based on the current state and the dynamics function. The update of the state
prediction is based of new measurements, which in turn refines parameter estimates.
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Disturbance-Aware Policy for Fuel
Efficient Flight Mission

Time-critical systems have to adhere to timing constraints, which if not satisfied can lead
to system and operation failure. In the pursuit of efficiency, especially in time-critical sys-
tems affected by disturbances, the theme of near-optimal composite control remains one of
the central topics in control theory [19]-[20]. Drones as such systems have to manage and
guarantee strict time requirements to ensure system stability, safety, and reliability. This
section outlines the methodology for decomposing singularly perturbed linear systems and
discusses modifications to the online policy computed using the Linear-Quadratic Regulator
(LQR) in the presence of disturbances.

4.1 Singular Perturbation Decomposition of the Lateral-

Fuel Flow Model

Similarly to [20], consider a singularly perturbed linear time-invariant system

ẋ1 = A11x1 + A12x2 +B1u, (4.1)

ϵẋ2 = A21x1 + A22x2 +B2u, (4.2)

y = C1x1 + C2x2, (4.3)

where ϵ is a small positive scalar, the state x is formed by the Rn1 and Rn2 vectors x1, x2,
the control u is an Rm vector and the output y a Rk vector.

The system of Eqs. (4.1-4.3) is characterized by a two-time-scale property, with n1

eigenvalues of small magnitude O(1) and n2 eigenvalues having large magnitude O(1/ϵ).
Before achieving a bifurcation of slow and fast dynamics, system Eq. (4.1) undergoes an
approximate decomposition into a slow subsystem comprising n1 small eigenvalues and a fast
subsystem with n2 large eigenvalues. Within an asymptotically stable regime, the system’s
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transient behavior is predominantly governed by the fast modes associated with the large
eigenvalues. After the transient phase, these modes become negligible, and the system’s
dynamics are predominantly attributed to the slow modes. An assumption of infinitely fast
modes, i.e., ϵ → 0 in Eq. (4.1), essentially cancels their influence, thus simplifying system
Eq. (4.1) to

ẋ1 = A11x1 + A12x̄2 +B1u, x1(0) = x̄10 (4.4)

0 = A21x1 + A22x̄2 +B2u (4.5)

ȳ = C1x1 + C2x̄2 (4.6)

Overbar denotes the slow part of all respective variables when ϵ = 0. Under assumption of
A22 to be invertible, x̄2 is expressed as

x̄2 = −A−1
22 (A21x̄1 +B2ū) (4.7)

Substituting into (2), the slow subsystem of (1) is thus defined as:

ẋs = A0xs +B0us, xs(0) = x1,0 (4.8)

ys = C0xs +D0us (4.9)

where xs = x̄1, ys = ȳ1, us = ū and

A0 = A11 − A12A
−1
22 A21, B0 = B1 − A12A

−1
22 B2,

C0 = C1 − C2A
−1
22 A21, D0 = −C2A

−1
22 B2.

To obtain the fast subsystem, the assumption is that the slow variables remain invari-
ant during transients of the fast subsystem, implying ˙̄x2 = 0 and x1 = x̄, are constant.
Integrating these conditions into Eqs. 4.2 and 4.3, one obtains

ϵẋf = A22xf +B2uf , xf (0) = x2,0 − x̄2(0) (4.10)

yf = C2xf (4.11)

where xf = x2 − x̄2, uf = u− ū, and yf = y − ȳ and thus, defining the fast subsystem.
As the state variables of system Eqs. (2.26)-(2.30) are fully observable, one can see com-

ing from the data difference in magnitude of change of state variables. An analysis of the
dynamic behavior of a system will focus on the consecutive state magnitude change and
the corresponding volatility. Volatility is defined here as the standard deviation of the first
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difference of each variable of the states over the measured time period. It represents the
average rate at which each variable’s rate of change fluctuates over the entire trajectory.
Volatility quantifies the average variability of the rate of change 4.2 and indicates the rela-
tive change of each variable over time. The Fig. 4.1 supports time-scale separation as one
can see how consecutive state magnitude changes. This is computed as the absolute dif-
ferences between the consecutive data points, to highlight moments where significant shifts
in dynamics occur. The results indicate that vx and vy exhibit higher volatility and more
frequent and pronounced spikes in their changes compared to f , suggesting faster and more
reactive dynamics. Conversely, f displays lower volatility and fewer spikes, indicating slower
dynamics and a more gradual response to system changes.

Figure 4.1: Consecutive Rate of Change of States

Under the influence of df (t) which is a battery-bound disturbance |df (t)| ≤ D, ∀t ≤ T ,
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Figure 4.2: Comparison of Dynamics Speed Based on Rate of Change Variability

where T is the time horizon of the flight. The system (2.26)-(2.30) can be rewritten as

ẋ = vx, x(0) = x0 (4.12)

ẏ = vy, y(0) = y0 (4.13)

v̇x =
1

m
ux −

bx
m
vx, vx(0) = vx,0 (4.14)

v̇y =
1

m
uy −

by
m
vy, vy(0) = vy,0 (4.15)

ḟ = −αuxvx − βuyvy − γdf −
1

Tf
f f(0) = f0 (4.16)

For the system 4.12-4.15 due to the time-scale separation, one can observe that the slow
subsystem becomes a linear model as ϵ → 0 as from the fast subsystem (4.12)-(4.15) it
follows

vx =
ux
bx

(4.17)

vy =
uy
by

(4.18)

as the timescale becomes stretched O(t/ϵ) → O(τ) due the property of the timescale sepa-
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ration. Based on previous data based argument on separate timescale dynamics

ḟ︸︷︷︸
ẋ1

= − 1

Tf︸︷︷︸
A11

f +
[
αv̄x βv̄y

]
︸ ︷︷ ︸

B1

[
ux

uy

]
− γdf , f(0) = f0 (4.19)

[
v̇x

v̇y

]
︸︷︷ ︸
ẋ2

=

[
− bx
m

0

0 − by
m

]
︸ ︷︷ ︸

A22

[
vx

vy

]
+

[
1
m

0

0 1
m

]
︸ ︷︷ ︸

B2

[
ux

uy

]
,

[
vx(0)

vy(0)

]
=

[
vx,0 − vx

vy,0 − vy

]
(4.20)

 fvx
vy


︸ ︷︷ ︸

y

=

10
0


︸︷︷︸
C1

[
f
]
+

0 0

0 1

0 1


︸ ︷︷ ︸

C2

[
vx

vy

]
(4.21)

where Eqs. (2.26)-(2.27) can be obtained from x2 subsystem through integration. The system
Eqs. (4.19)-(4.21) can now be timescale separated, where A12 = A21 = 0. Disturbance in
(4.19) can be transformed as input. From here on, as there is no coupling between x1 and
x2 the slow dynamics of the system can be rewritten as xs = f :

ẋs = A0f +B0us − γdf , xs(0) = x1,0 (4.22)

ys = C0xs +D0us (4.23)

and and D0 = 0. Meanwhile, fast dynamics xf = [vx vy]
T is

ϵẋf = A22xf +B2uf , xf (0) = x2,0 − x2(0) (4.24)

yf = C2xf (4.25)

where ϵ is the system mass m.

4.2 Near-Optimal Composite Powertrain Regulation

The optimal state regulator problem for system Eqs. (4.12)-(4.15) and its respective cost
function or performance index, that is to be minimized

J =
1

2

∫ ∞

0

(y⊤y + u⊤Ru) dt (4.26)

s.t. Eq. 4.1− 4.3 (4.27)

46



is after timescale decomposition divided into two separate regulation problems corresponding
to the slow and fast subsystems. By extracting two quadratic performance indices from J , one
tailored to the dynamics of the slow subsystem as shown in Eqs. (4.28), and the other subject
to the fast subsystem dynamics as in Eqs. (4.33), a solution from two separate regulation
problems can be established. These are referred to as the slow dynamics subsystem problem
and the fast dynamics subsystem problem. The optimal control solutions us and uf for
each subsystem lead to the formation of a composite control uc = us + uf , designed for
implementation on the original system (4.12)-(4.15). The results and performance of this
composite regulation will be shown in the Chapter 5.4.

Slow Dynamics Problem

The problem is to find us to minimize

Js =
1

2

∫ ∞

0

(yTs Qsys + uTs Rsus) dt, (4.28)

s.t. Eqs. 4.22− 4.23 (4.29)

for the slow subsystem Eq. (4.22)-(4.23) where both Qs, Rs are positive semi-definite.
Regarding xs and us, cost function (4.28) becomes

Js =
1

2

∫ ∞

0

[
xTs C

T
0 QsC0xs + 2uTsD

T
0 C0xs + uTs R0us

]
dt, (4.30)

where R0 = Rs +DT
0D0.

From [21] it follows that us is equal to

us = −R−1
0 (D0C0 +B0Ks)xs (4.31)

where Ks is a positive semidefinite stabilizing solution of LQ problem Eq. (4.28)

Ks = lqr(A0, B0, Qs, Rs) (4.32)
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Fast Dynamics Problem

For the fast dynamics problem, the objective is to find uf to minimize

Jf =
1

2

∫ ∞

0

(yTf Qfyf + uTfRfuf ), dt (4.33)

s.t. Eqs. (4.24) − (4.25) (4.34)

where both Qf , Rf are positive semi-definite and for the linearized fast subsystem Eqs. (4.24-
4.25) dynamics of the optimal control uf is

uf = −R−1B2Kfxf (4.35)

where Kf is the positive semidefinite stabilizing solution of minimization of Eq. 4.33

Ks = lqr(A22, B2, Qf , Rf ) (4.36)

Control Algorithm Pseudo-Code

As is outlined in psuedo-code of Alg. 1, there is a set of predefined parameters that includes
R > 0, As, Af , Bs, Bf , Qs, and Qf . These parameters are important in shaping the
system’s dynamics and establishing control objectives. The control depends on iteratively
solving for the control inputs us(t) and uf (t), corresponding to the slow and fast subsystems.
This iterative process involves the minimization of the respective cost functions Js and Jf .
These cost functions, 4.28 and 4.33, are subject to the continuous dynamics of the system,
described by Eqs. (4.22-4.23) and Eqs. (4.24-4.25), accordingly. Upon obtaining the optimal
control inputs us(t) and uf (t), the algorithm sums them and generates composite control
uc(t) = us(t) + uf (t). This control is then applied to the original system Eqs. (4.1-4.3),
enabling computationally simplified management of the system’s multi-rate dynamics. The
states xs and xf and the cost functions Js and Jf are updated continuously to ensure that
the control inputs are optimally aligned with the evolving state of the system. The algorithm
proceeds until it reaches the end of the specified time horizon, resulting in the trajectory of
optimized uc(t) that balances the regulation of both the slow and fast system dynamics.

The control is calculated based of continuous dynamics with discrete time step ∆T which
will be chosen depending on the sampling time of the measurements yf .
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Algorithm 1 Near-Optimal Composite Regulation in Discrete Time
1: Initialize parameters: As, Af , Bs, Bf , Qs, Qf , Rs, Rf

2: Initialize: xs0, xf0, Js = Jf = 0, t = 0
3: while t < T do
4: Solve for discrete control us[k] optimizing

Js =
1
2

∑∞
k=0(ys[k]

⊤Qsys[k] + us[k]
⊤Rus[k])∆T

subject to xs[k + 1] = Asxs[k] +Bsus[k]
5: Solve for discrete control uf [k] optimizing

Jf =
1
2

∑∞
k=0(yf [k]

⊤Qfyf [k] + uf [k]
⊤Ruf [k])∆T

subject to xf [k + 1] = Afxf [k] +Bfuf [k]
6: Form composite control uc[k] = us[k] + uf [k]
7: Apply uc[k] to the original system, updating states xs[k + 1], xf [k + 1] for the next

step
8: Increment t by a time-step ∆T
9: end while

10: Output: Optimized composite control policy uc[k] over discrete intervals from 0 to T

4.3 Disturbance Aware Composite Policy

The disturbance doesn’t show up in the fast subsystem and for the slow subsystem, as it is
affected by a battery disturbance, the slow control us = [ux,s, uy,s]

T can be either blind or
aware of such disturbance. The fast system computed control uf = [ux,f , uy,f ]

T will always
be blind towards battery disturbance. In this section I’ll introduce how one can compute
disturbance aware control following on the recent research findings.

Suppose, like in [22] that each of the previously defined linearly invariant slow and fast
subsystems Eqs. (4.8)-(4.11) can be discretized and in the following LTI form

xt+1 = Axt +But + dt, t = 0, 1, . . . , T − 1, (4.37)

where A ∈ Rn×n is system state and B ∈ Rn×m is system input matrix, xt ∈ Rn is the system
state and ut ∈ Rm is the control input, while dt ∈ Rn is an external disturbance, and T is the
time horizon over which the system is controlled. Thefocus is on the situations where the
disturbances dt are sparse dt ̸= 0 if and only if t ∈ D, for some index set D = {t1, t2, . . . , t|D|},
where |D| denotes the set cardinality of D. The nonzero disturbances are given by dk = wk,
k ∈ 1, . . . , |D|, and are bounded in ℓ2 norm by ∥wk∥ ≤ W ∀k.

The objective of online policy is to minimize the cost

E
d0,...,dT−1

(
xTTQTxT +

T−1∑
t=0

xTt Qxt + uTt Rut

)
(4.38)
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where QT , Q ∈ Rn×n are positive semi-definite and R ∈ Rm×m is positive definite matrix.
When disturbances are disregarded d = 0,∀t ∈ [t0, T ], the conventional LQR control

policy assumes a disturbance-free environment, a simplification that may not be aligned
with reality. Our assumption is that disturbances d are independent with a zero mean. The
optimal disturbance-free policy becomes an LQR controller [23] of the form ut = −Ktxt, for
t = [0 . . . T ), where

Kt = (B⊤Pt+1B +R)−1B⊤Pt+1A (4.39)

and the sequence Pt arises from solving the discrete-time Riccati equation

Pt = A⊤ (Pt+1 − Pt+1B(B⊤Pt+1B +R)−1B⊤Pt+1

)
A+Q (4.40)

with PT = QT .
Moving to a scenario where the optimal policy knows the disturbance dt, the structure of

optimal control is modified following the recent result [24]. Under the assumption that the
control has complete knowledge (or reliably can predict) of all disturbances d(t), ∀t ∈ [t0, T ],
the optimal policy and cost have the following structure

u∗t = −Ktxt − (B⊤Pt+1B +R)−1

×B⊤(Pt+1dt+1 +
1

2
vt+1), (4.41)

Vt(x) = x⊤Ptx+ v⊤t x+ qt, (4.42)

vt = 2A⊤Stdt + A⊤StP
−1
t+1vt+1, (4.43)

qt = qt+1 + d⊤t St+1dt + v⊤t+1P
−1
t+1Stdt

− 1

4
v⊤t+1B(B⊤Pt+1B +R)−1B⊤vt+1, (4.44)

St := Pt+1 − Pt+1B(B⊤Pt+1B +R)−1B⊤Pt+1, (4.45)

where Vt(x) represents the cost-to-go of a state x at time t, and vt ∈ Rn, qt ∈ R are
recurrences that depend only on the noise dt and are initialized to vT = 0, qT = 0. The opti-
mal control is determined by the optimal online policy action and a second term depending
exclusively on future disturbances.

Control Algorithm Pseudo-Code

The algorithm 2 which optimizes system performance under stochastic disturbances and inte-
grates the dynamics of the altitude-fuel flow system. The algorithm begins with the system’s
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initial state x(0) and employs a predictive function d(vz(t), vw(t)) for anticipating wind dis-
turbances, essential for disturbance-aware control strategies. This predictive approach allows
the algorithm to proactively adjust to environmental changes. At each step, the algorithm
resolves a discrete-time optimization problem within the moving horizon [t, t +∆t], aiming
to minimize the objective function defined by:

t+∆t∑
τ=t

(
x(τ)⊤Qx(τ) + u(τ)⊤Ru(τ)

)
∆t,

which balances system performance against energy conservation through optimal state regu-
lation and control effort. The predictive modeling of disturbances is critical for a responsive
and adaptive control system. Upon computing the optimal control u∗(t), the control is ap-
plied to the system, advancing the timeframe by ∆t. The control law is continuously updated
through this iterative process. The procedure culminates in the generation of an optimal
control trajectory u∗(t) over the period [0, T ).

Algorithm 2 Near-Optimal Composite Regulation with Disturbance Awareness
1: Initialize parameters: As, Af , Bs, Bf , Qs, Qf , Rs, Rf

2: Initialize: xs0, xf0, Js = Jf = 0, t = 0, dt = 0
3: while t < T do
4: Predict and update battery disturbance dt for the slow subsystem
5: Solve for discrete control us[k] optimizing:

Js =
1

2

t+∆T∑
k=t

(
ys[k]

⊤Qsys[k] + us[k]
⊤Rus[k]

)
subject to xs[k + 1] = Asxs[k] +Bsus[k] + dt

6: For the fast subsystem, solve for discrete control uf [k] optimizing:

Jf =
1

2

t+∆T∑
k=t

(
yf [k]

⊤Qfyf [k] + uf [k]
⊤Ruf [k]

)
subject to xf [k + 1] = Afxf [k] +Bfuf [k]

7: Form composite control uc[k] = us[k] + uf [k]
8: Apply uc[k] to the original system, updating states xs[k + 1], xf [k + 1] for the next

step
9: Increment t by a time-step ∆T

10: end while
11: Output: Optimized composite control trajectory uc[k] over discrete intervals from 0 to

T
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Decentralized Information Exchange for
Improved Fuel Savings

5.1 Modular Energy Modeling of Interconnected Systems

In modeling interconnected systems, it is necessary to use a framework that supports both
detailed local analysis and provides a holistic system understanding. This approach is par-
ticularly appealing in systems like hybrid powertrain drones, where different power sources,
loads, and energy conversions must be controlled at the same time. Previous research ([14],
[25]) has emphasized the benefits of an energy-based modular modeling approach, which
allows for dynamic simulation and control through local interactions within subsystems and
across the system as a whole or essentially through tearing, zooming, and linking [26]. Unlike
models that often decouple information exchange effects from control signals, the interac-
tive information exchange is modeled maintaining the interconnection of the system without
this simplification, providing a more intuitive and comprehensive representation of system
behavior.

5.1.1 Integrated Physical, Information, and Control Layers in Energy-

Efficient Hybrid Powertrain Systems

The hybrid drone powertrain system consists of different multi-domain physical subsystems.
This complex interconnected system integrates a fuel reservoir, a fuel engine, and a generator
with a battery, and each component can be viewed through the lens of physical, information
exchange, and control layers. Each layer can be considered in isolation and as components
shouldn’t be viewed separately, these layers, particularly information and control shouldn’t
be separated. An accurate representation of each subsystem model is important for opti-
mizing powertrain energy efficiency and improving drone performance without destabilizing
other components through interconnected interactions [27].
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Physical Layer

The hybrid drone powertrain system’s physical layer comprises physical interconnected com-
ponents, Fig. 2.1, that are controlled indirectly by control signals that come from FCU.
At its foundation is the fuel reservoir, which supplies the fuel engine with a consistent fuel
flow to convert chemical energy into mechanical power, ensuring sustained operation. This
mechanical power drives a generator that converts it to electrical energy. The generator,
which typically produces three-phase AC, requires an inverter to convert this output into
DC suitable for powering other components. Part of this power from the inverter is directed
to the battery system, which stores electrical energy and manages charge-discharge cycles,
supplementing power to the powertrain when necessary to maintain optimal state-of-charge
levels under various flight conditions. Simultaneously, power electronics coordinate energy
flow between the generator, battery, and electric motor, ensuring efficient power distribution
and conversion while adhering to control policies. This interconnected system works cohe-
sively to achieve efficient power output, providing thrust power via the powertrain main bus
while adjusting dynamically to real-time flight demands.

Information Exchange Layer

Another interpretation of the hybrid drone powertrain system is that the physical layer
functions as a network of locally connected information flows, where each component contin-
uously exchanges "data" with physically connected neighbors. What is meant by the "data"
is the real power and rate of change of reactive power computed through the physical variable
at the interface of each component. The fuel reservoir directly influences the fuel engine by
providing a steady supply of fuel which can be interpreted as the flow of real power and rate
of change of generalized reactive power, ensuring the engine can convert chemical energy
into mechanical power. The fuel engine, in turn, provides demand power flow and rate of
reactive power to the reservoir in which the information feedback on fuel consumption rates
has been created, which then helps regulate the reservoir’s output. The fuel engine drives
the generator, and both components exchange power flows and rate of power on mechanical
power input and electrical power output, influencing each other’s performance. The genera-
tor, which generates three-phase AC, interfaces with an inverter to convert its output to DC.
This inverter manages information exchange with the generator to ensure stable conversion
while also providing real power and rate of reactive power to downstream components. The
battery system receives the physical information from the generator, storing it while simul-
taneously exchanging information with the generator and power electronics to coordinate
charge-discharge cycles. This allows the battery to supplement power to the powertrain,
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influencing generator operations by providing power and change of reactive power on opti-
mal energy storage levels. Power electronics plays a critical role in directing energy flows
between the generator, battery, and electric motor, facilitating efficient power distribution.
This electronic system collects and distributes information across the powertrain, ensuring
that control signals accurately reflect real-time power needs and that the system maintains
a balanced operation. In this way, the powertrain system achieves efficient, adaptive energy
output, with each component continuously adjusting its operations based on information
received from neighboring subsystems.

Control Layer

In the hybrid drone powertrain system’s control layer, the information flow operates under a
unidirectional, hierarchical framework, where each downstream component sends signals that
reflect needed power. These signals propagate upstream, finally reaching the fuel reservoir,
which implicitly responds to the linear combination of downstream power demand. This
hierarchical communication pattern causes each component to regulate itself against others,
potentially leading to non-cooperative control as components try to counteract disturbances
stemming from other components. From Fig. 2.1, the fuel reservoir supplies the ICE with a
steady flow of fuel to maintain a stable mechanical power output. The fuel engine receives
power setpoint from the downstream generator and adjusts its operations accordingly to
meet those demands. The generator, driven by the ICE, produces electrical power based
on the demand set by the inverter, which converts the generator’s AC output into a stable
DC supply. This DC supply serves the battery system, which manages its charge-discharge
cycles and signals upstream components about optimal power levels needed to supplement
the powertrain efficiently. Throughout this process, each subsystem seeks to maintain its
operational integrity while minimizing the effects of disturbances from other components.
For instance, the generator might reject fluctuations in mechanical input by dynamically
regulating its AC output or the battery system might limit discharging under certain con-
ditions to maintain the desired state of charge. In this way, the powertrain control layer
promotes self-regulation of each subsystem, with each striving to fulfill power requirements
while preventing destabilization due to external interactions. Due to this system view, they
can’t achieve true cooperation and maximize efficiency. One approach to achieve system-
wide maximum efficiency is proposed in this work by embedding control information into
interaction variables that are bidirectionally exchanged.
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5.2 Decentralized Interactive Flow of Information

Interaction variables were first introduced in [28]. Their use is well described in [14] and
[29]. These variables preserve the structural richness essential for system control and sta-
bility analysis [30] and are the function of local variables. Each component within the
interconnected system communicates through a designated interaction port, where interac-
tions are classified either as outputs (’out’) from internal energy conversions or as inputs
(’in’) from external system interactions. This distinction becomes critical when components
are interconnected as it accounts for the causality and improves ways to analyze and control
complex interconnected systems. At certain time scales it is important to take into account
the impact of the flow of information in the real-time critical systems.

Stand-alone Interactive Model of a Component

The general unified energy-based aggregate model distinguishes between the incoming and
outgoing interaction variables, as previously stated, and the dynamical interaction model in
its general form is expressed as

Ėi = −Ei
τi

+ Pri + Pui + Pmi
= pi (5.1)

ṗi = 4Eti + 2Q̇Ci
− Q̇ri − Q̇ui − Q̇mi

(5.2)

where Ei, pi, ṗi is stored energy, rate of change of stored energy, and acceleration of stored
energy. The variable Eti is the stored energy in tangent space and τi is the time-constant
of stored energy related to component internal dissipation. Real powers Pri , Pui , Pmi

are
interface port power, input power, and internal disturbance measured real power. General-
ized reactive rate of change of powers Q̇Ci

, Q̇ri , Q̇ui , Q̇mi
are generalized internal capacitive

element power, interface port power, input power, and internal disturbance measured rate
of change of generalized reactive power.

Denoting the aggregate dynamical energy variables as

xz,i =

[
Ei

pi

]T
,

and the interactions with the rest of the system at local control ports, disturbance ports,
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and the interconnection interface as

żui =

[
Pui
Q̇ui

]T
, żmi

=

[
Pmi

Q̇mi

]T
, żri =

[
Pri
Q̇ri

]T
,

respectively, one can see that the aggregate energy space model is linear in energy space
variables. Aggregate interaction model in vector form is rewritten as

ẋz,i = Az,ixz,i +BtEt,i +Bz(żri + żui + żmi
) (5.3)

where
Bt =

[
0 4
]
, Bz =

[
1 − 1

]
are consistent for any component, and the matrix

Az,i =

[
0 −1/τi

0 0

]

depends only on the time constant. Finally, the model state-space formulation is as follows

ẋz,i = Az,ixz,i +BtEt,i +Bz(ż
r,out
i + żmi + żui ), xz,i(0) = zz,i0 (5.4)

The model’s closed-loop formulation simplifies to

ẋz,i = Az,icl xz,i +BtEt,i +Bz ż
i
r,out, xz,i(0) = zz,i0 (5.5)

The closed loop creates a change in the time constant τi influenced by the internal control
logic.

The component is shown in Fig. 5.1 with the aggregate model layer and a conventional in-
ternal component dynamics layer. The lower-layer models compute the outgoing interaction
variables żr,out

i , which will then be used by the upper-layer energy dynamics of the compo-
nent. The incoming interaction variables from the grid, żr,ini , are processed by the lower-layer
models to evaluate the extended state trajectories [xi, ri], given their initial conditions [14]
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Figure 5.1: The interactive stand-alone model of a closed-loop component i

Dynamics at the Interaction Ports

At the interaction ports, where the effort variable is ri and the flow variable is wri ( and
based on [14] definitions 2.5 and 2.6), one can define

Ṗ r,in
i = ri

dwri
dt

+ wri
dri
dt

(5.6)

Q̇r,in
i = ri

dwri
dt

− wri
dri
dt

(5.7)

If the flow variable is effectively the port state variable, the dynamics of the voltage can be
linked to incoming disturbances żr,ini as:

dri
dt

=
1

2wri
(Ṗ r,in

i − Q̇r,in
i ) (5.8)

Alternatively, if the effort variable is a port state variable, the dynamics of current at the
interface can be expressed by switching the negative sign in the above equation to a positive.
This adjustment is essential as it allows the model to incorporate dynamic port inputs, thus
acknowledging the time-varying nature of incoming interactions with the rest of the system.
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Information exchange and control

The outgoing interaction variables, which result from internal energy conversion processes
and interact with neighboring components, are formally defined as

żr,out
i =

[∫ t
0
Ṗ r,out
i (s)ds

Q̇r,out
i (t)

]
(5.9)

where each component of interaction variable is computed as

P r,out
i = pi − P u

i − Pm
i + Eiτi (5.10)

Qr,out
i =

∫ t

0

(
−ṗi − Q̇u

i − Q̇m
i + 4Et,i

)
dt (5.11)

Based of definition of interaction variable [30], their computation can be abstracted by the
following mapping

żr,out
i = ϕz,i(xi, ẋi, ui, u̇i,mi, ṁi) (5.12)

Outgoing Interaction Variables for Components with Internal "Capacitive" Prop-
erty

The definitions in Eq. 5.11 apply to purely "inductive" subsystems. In the context of
systems theory, particularly in multi-domain scenarios, inductive and capacitive elements
can be understood through the concepts of effort and flow variables. Inductive elements are
characterized by their relationship between flow variables (like current in electrical systems
or velocity in mechanical systems) and the accumulation of an effort variable (like voltage
across an inductor or force in a mass). Inductance, therefore, symbolizes a resistance to
changes in flow. Capacitive elements, on the other hand, are characterized by their direct
storage of an effort variable which then influences the flow variable. Capacitance in a system
represents the capacity to store potential (like electrical charge in capacitors or displacement
in springs), and it directly responds to changes in effort variables. For subsystems containing
both inductive and capacitive elements, the outgoing interaction variable element of reactive
power rate is computed as

Qr,out
i =

∫ t

0

(
−ṗi − Q̇u

i − Q̇m
i + 4Et,i + 2Q̇c

i

)
dt (5.13)

Here, Qc
i represents the reactive power absorption of capacitive components within compo-

nent i.
In multi-domain systems, concepts of "inductive" and "capacitive" elements extend be-
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yond electrical to include mechanical, thermal, and other types of energy storage and trans-
formation systems. As an instance, a spring can be seen as a mechanical capacitor and a
mass as a mechanical inductor. The interplay between these elements, as they send and
receive energy or information through interaction variables, defines the dynamic behavior of
complex systems.

Incoming Interaction Variables

The incoming interaction variables, which depend on the connection of the component with
the rest of the system, are denoted as:

żr,ini =

[
P r,in
i

Q̇r,in
i

]
(5.14)

These are defined based on change of the effort and flow variables due to interconnection
interaction with component port

P r,in
i = riw

i
r (5.15)

Qr,in
i =

∫ t

0

(
ri
dwri
dt

− dri
dt
wri

)
dt (5.16)

Here, ri is the port input as defined in the conventional space model, and wir is the associated
dual variable, which is a subset of the local state variables.

The distinction between incoming and outgoing interaction variables is important for
constructing interconnected interactive models.

5.3 Interactive Energy-Based Interconnection Model

This section elaborates on the interactive energy-based interconnection model, integrating
real and reactive power rate vectors from all components in the system:

żr,out
P = [. . . , P r,out

i , . . . , P r,out
j , . . .]T (5.17)

żr,out
Q = [. . . , Q̇r,out

i , . . . , Q̇r,out
j , . . .]T (5.18)

Similarly, the incoming interaction variables are defined as vectors żPin and żQin. Each outgoing
interaction variable is computed individually by its respective component, while incoming
interaction variables result from the system interconnection. The dynamical interconnection
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relations in the E − P space are given by:

żr,inP = Lz ż
r,out
P (5.19)

żr,inQ = Lz ż
r,out
Q (5.20)

where the elements of Lz are Lzij = −1 if components i and j are directly connected,
otherwise zero. This forms a non-singular sparse matrix preserving the system’s structure.
For a single component, the relation simplifies to:

żr,ini = −
∑
j∈Ci

żr,out
j (5.21)

where Ci denotes the set of neighboring components of component i. This results in a
higher-layer interconnected system model described by the following ODE’s in aggregated
interactive energy E − P space for N connected components

ẋz,i = Az,icl xz,i +BtEt,i +Bz ż
i
r,out, xz,i(0) = zz,i0 ∀i ∈ N (5.22)

żPr,out = L−1
z żPr,in (5.23)

żQr,out = L−1
z żQr,in (5.24)

Interactive interconnected model Eqs. (5.22)-(5.24), which is formed from a set of linear
ODEs, provides several advantages. The model’s linearity facilitates system-wide control
and scalability, and it dynamically computes the outgoing interaction variables at each time
instant. The model does not require the system to reach an equilibrium state for effective
operation. Unlike DAE models, this ODE form does not require additional conditions to
resolve algebraic singularities, provided that the graph connectivity ensures the existence
of L−1

z . The directness of the ODEs also implies a causal relationship between variables
as changes in one layer directly affect the outgoing variables, following a predictable cause-
and-effect behavior between the neighboring components. This inherent causality simplifies
system analysis and control design because each subsystem’s response to perturbations is
more easily traceable.

Although each subsystem interacts with others bidirectionally, the causal relationships
between them are achieved through unidirectional information flow at a given time instant.
This predictable cause-and-effect scheme means that changes in one component at time t
affect other connected components at time t, simplifying control and analysis. In practice,
while information is exchanged bidirectionally between subsystems, the propagation of ef-
fects is predictable and traceable, allowing for the identification and isolation of potential
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disturbances or faults. This combination of linearity, predictable causality, and the absence
of algebraic singularities makes Eqs. (5.22)-(5.24) ODE model robust and efficient tool for
multi-layered aggregated system control.

(a) Unidirectional control and information layer exchange

(b) Bidirectional control and information layer interactive exchange

Figure 5.2: Two different paradigms of information exchange

5.4 Distributed Information Exchange Battery Regula-

tion

From the modeling framework of energy state-space immediately follows a distributed in-
formation exchange. From there the choice of nature of control is a consequence. The
two control approaches introduced, are distributed and decentralized, both designed for the
battery following the notation from Fig. 5.2b.
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Distributed Battery Control for Powertrain Regulation

Distributed control of the battery within the powertrain regulation framework refers to
the power flow management supplemented by the battery using local but also information
that is not directly and locally observable information e.g. component A is not directly
connected to component B but they can exchange information. Under the assumption that
the battery is the interface constrained by the initial state of charge and without internally
stored energy conversion the bidirectional information exchange from the Fig. 5.2b becomes
the unidirectional real power exchange. Given the problem of maximizing fuel savings and
with the energy state-space modeling approach, the optimization problem is formulated to
maximize the total power output P2 and based on notation from the Fig. 5.2b

max
β

N∑
k=0

P2[k]

subject to the power output relationship

P out
2 [k] = P out

4 [k]− βkP
out
3 [k]

and the energy constraint over the operation period

N∑
k=0

P2[k]∆T ≤ Etot
2

where βk is the control variable within the bounds:

βk ∈ [0, 1]

This can be written more compactly as

max
β

N∑
k=0

P2[k] (5.25)

s.t. P out
2 [k] = P out

4 [k]− βkP
out
3 [k] (5.26)

N∑
k=0

P2[k]∆T ≤ Etot
2 (5.27)

βk ∈ [0, 1] (5.28)
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Here, Etot
3 represents the total energy available from the battery, which can be calculated

based on the battery’s capacity in [mAh], interface voltage, and the period over which the
battery is used.

In this control scheme, the battery system actively adjusts the discharge of the current
based on the demands of the UAV’s flight conditions and power produced from the generator.
The regulation is solely based on anticipated power demand and generator output power
without the knowledge of what would be the "best" for the generator or the powertrain
behavior. This makes the control of the battery to be non-cooperative as it is trying to
maximize its participation but without the knowledge of what would be the best for the
other components namely the generator and ICE. Direct input on transients from this change
of battery behavior on the powertrain’s current state, as it is assumed that transients are
instantaneous due to the same sampling time of each component (sampling period effectively
smooths any transients that could’ve been captured from the evolution of the powertrain
components at different rates of their internal processes).

Decentralized Battery Control for Powertrain Regulation

The decentralized approach leverages local interactions between directly connected compo-
nents, where the generator, acting as an aggregator, adaptively determines what would be
the needed power from the other parts of the system, e.g. supplemental power needed from
the battery. This coordination ensures that additional power, under the assumption that the
battery is sufficiently charged, is supplied in the required amount and when the generator
requires support, enhancing the system’s responsiveness to fluctuating demands.

The core of this regulatory control is the dynamical demand power redistribution between
the generator and the battery based on a real-time operation where components interactively
exchange real power. Unlike distributed control, decentralized interactive aggregated reg-
ulation uses local information to determine how each component will interact with other
components. This exchange captures both the cause and effect of changing power set points
between components, facilitating a more adaptive response to unexpected disturbances or
sudden changes in flight conditions.

The optimization is still computed at the battery side, and the generator/engine serves
as the aggregator to send set points to the battery depending on the demand. Optimization
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is as follows

max
P2[k]

N∑
k=0

P2[k] (5.29)

subject to P2[k] ≤ Psup[k] ∀k (5.30)

P2[k] ≥ P out
2,min[k] ∀k (5.31)

N∑
k=0

P2[k] ·∆T ≤ Etot
2 (5.32)
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Numerical Results

This chapter presents the numerical results obtained from simulation experiments designed to
evaluate the performance of the proposed models and control strategies for hybrid powertrain
UAVs. The system is discretized with a timestep ∆T that corresponds to the sampling
time of measurements. For simulation purposes, between measurements, the Runge-Kutta
45 (RK45) method was used for more accurate integration of the differential equations.
However, for illustrative purposes, the following equations represent a simple Forward-Euler
discretization

xk+1 = xk +∆T · vx,k (6.1)

yk+1 = yk +∆T · vy,k (6.2)

vx,k+1 = vx,k +∆T

(
1

m
Fx,k −

bx
m
vx,k

)
(6.3)

vy,k+1 = vy,k +∆T

(
1

m
Fy,k −

by
m
vy,k

)
(6.4)

fk+1 = fk +∆T

(
−αFx,kvx,k − βFy,kvy,k − γPb,k −

1

Tf
fk

)
(6.5)

6.1 Parameter Estimation

This section’s results are based on the joint state-parameter estimation EKF method from
Chapter 2 on data-informed estimation. The average values of the estimated parameters from
Figs. 6.1-6.4 are shown in Tables 6.1-6.2. As the true values of parameters are not known,
the validation analysis of estimated parameters is left for future work. The average values
of the found parameters Table 6.1-6.2 were used for the composite near-optimal regulation
control task.
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Figure 6.1: Fast subsystem states estimates

Table 6.1: Fast Subsystem Parameters

Fast Subsystem Parameters
m [kg] bx [N·s/m] by [N·s/m]
17.4869 1.9072 0.7021

6.2 Composite Near-Optimal Regulation

In this section, the results of implementing composite near-optimal regulation policies are
detailed. The focus is on how these strategies enhance the UAV’s performance by optimizing
energy usage and improving dynamic response under the knowledge of disturbance. The
section shows the results of the use of the disturbance in near-optimal regulation, comparing
two LQR approaches with baseline unknown policy used in data collection to highlight
improvements in fuel savings.

For the parameters of the system given in Tables (6.1-6.2) a comparison is made, on the
fuel level at the end of the flight of two online LQR policies against the unknown policy
that was implemented during data collection experiments. The first of the two policies is the
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Figure 6.2: Fuel state estimate and fast subsystem estimated parameters

Table 6.2: Slow Subsystem Parameters

Slow Subsystem Parameters
α [l/sW] β [l/sW] γ [l/sW] Tf [1/s]
7.541e-6 2.289e-6 7.23e-4 398.2434

LQR without disturbance information, which is referred to as the "blind" and the second is
the "aware" LQR, as it has information about battery power disturbance on the fuel flow.
Time-scale separation is applied and discretization time-step is equal to the sampling rate
of ∆T = 0.1 s. Once the control is computed for each of the subsystems separately, using
Eqs. (4.8)-(4.11), separate controls are added and applied to the model of the whole system
Eqs. (4.12)-(4.16). As the LQR isn’t constrained, the constraints on the system evolution
are then based on the system maximum and minimum value of the rate of change of state
coming from the provided flight data.

Figure 5.1 shows the lateral drone trajectory in xy-plane during the cruise period of the
flight mission with an unknown control input. The trajectory is presented with red dashed
arrows that show the direction of the drone’s flight, portraying the drone’s movement over
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Figure 6.3: Slow subsystem estimated parameters

time. The green dot shows the starting and the blue dot ending point of the flight mission.
The trajectory contains loops and changes in direction, which implies complex maneuvers.
The path does not appear to be smooth, potentially indicating that the drone experienced
disturbances and that the lateral control policy was not optimized. Based on the hypothesis
that currently implemented drone control doesn’t optimize for fuel savings, figure 6.5 shows
how LQR control policies have more leftover fuel at the end of the flight compared to the
unknown policy. In Fig. 6.6 one can observe how optimal control saved approximately
3.5− 4.5% of the fuel level that the drone started the cruise phase of the flight, where range
depends on if it is blind or disturbance-aware policy, which as expected shows to be the best
fuel-saving policy.

These results show that different energy sources play a distinct role in the functioning
of a drone, and that battery effects seen as a disturbance from the standpoint of the fuel
reservoir-engine generator can be effectively managed to minimize fuel consumption. The
presence of fast and slow control, battery, and fuel engine facilitates the linearization of the
model, allowing for separate control computation through time-scale decomposition
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Figure 6.4: Trajectory of the drone in xy-plane under unknown lateral policy control during
the cruise phase of the flight mission

Figure 6.5: Reservoir fuel during the cruise phase of the flight mission

6.3 Distributed Battery Control for Powertrain Regula-

tion

Results of distributed information flow are shown, and how the supplemental powertrain
regulation affects then consequently fuel in the reservoir during the flight. Simulations are
conducted to test the hypothesis that a distributed control of the powertrain components
contributes to fuel savings through cooperative control.
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Figure 6.6: Leftover fuel in the reservoir at the end of the cruise phase comparison a) battery
blind policy b) battery aware policy

Figure 6.7: Ratio of battery participation β for different initial state-of-charge of battery
during the cruise part of the flight with distributed control

Simulation results indicate that the distributed control approach is quite aggressive in
reducing the load on the generator. The focus is on increasing the output power of the battery
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Figure 6.8: Shift of battery and generator current due to distributed control for different
initial state-of-charge of battery during the cruise part of the flight

at moments when the load stress is highest on the generator. Thus the power re-distribution
during non-standard operation scenarios, with insufficient battery charge, might lead to
suboptimal performance of the ICE. With the fully charged battery, distributed control at
the end of the cruise phase saves approximately 34.56% of initial fuel in the fuel reservoir.

In summary, distributed control offers simple implementation, but it handles unexpected
disturbances or drastic changes in flight conditions quite aggressively compared to decen-
tralized interactive control 6.11.

6.4 Decentralized Battery Control of Powertrain Regu-

lation

Results of decentralized information flow are shown, and how the powertrain regulation
affects consequently fuel during the flight. Simulations are conducted to test the hypothesis
that decentralized control of the powertrain components contributes to fuel savings through
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Figure 6.9: Distributed control fuel in the reservoir change during the cruise phase of the
flight

cooperative control.
Figure 6.10 was obtained during post-processing and serves as a comparison with 6.7 to

show how decentralized control changes the percentage of battery contribution in the total
demand.

The simulations show that the decentralized interactive approach not only reduces the
load on the generator but also smooths out its generation to ensure optimal generator perfor-
mance under diverse operational scenarios e.g. unexpected stress as shown in Fig. 2.5. The
generator/engine collects flows of nearby modules and computes the supplemental power
that the battery should provide to the powertrain. With its primary focus on having a
stable and efficient generator and thus ICE operation, to be able to achieve this, control
focuses on each horizon time step and proportionally supplements the power. The power
that the battery will supplement depends on the initial state of the charge of the battery as
can be seen in Fig. 6.11 . By aggregating and analyzing data from various components of
the UAV’s powertrain, each component adaptively adjusts to changes and thus the system
performs better in terms of the fuel usage compared to distributed control. In the situation
when the battery is fully charged and assuming that one can fully discharge the battery, as
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Figure 6.10: Ratio of battery participation β for different initial state-of-charge of battery
during the cruise part of the flight

can be seen on the last plot of the Fig. 6.12 at the end of the flight the leftover fuel is around
50.05% the initial volume of the reservoir fuel at the beginning of the cruise phase of the
flight.

The primary advantage of this interactive approach lies in its adaptive nature, which
allows for each component to decide on interaction with other locally connected components.
This makes the system overall more efficient. This enables UAV prolonged autonomy and
operational stability under unforeseen environmental factors. However, the complexity of
implementing this control can be increased compared to the distributed approach, requiring
adaptive algorithms for set point computation.
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Figure 6.11: Shift of battery and generator current due to decentralized control for different
initial state-of-charge of battery during the cruise part of the flight

Figure 6.12: Decentralized control fuel in the reservoir change during the cruise phase of the
flight
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Summary and Future Work

This thesis explored the integration of lateral tracking and powertrain regulation in hexa-
copter hybrid powertrain UAVs to maximize saved fuel. The work was motivated by ob-
serving the data and the question of how optimal ICE operation could be impacted by
the passively managed battery. Three different control approaches were compared, and the
problem of distributed information flow could outperform centralized information. The main
difference is how the control approach looks at each component in isolation or cooperation
with other components. Depending on the control context the component might treat other
components as the disturbance or as the cooperative component.

The core contributions of this thesis include the development of a novel modeling ap-
proach that integrates energy conversion dynamics with the mechanical dynamics of the
drone, estimated using flight-mission data. Additionally, the thesis has shown a data-
informed approach for nonlinear dynamics parameter estimation, which confirmed timescale
separation. Using the average-model parameters, a composite Linear Quadratic Regulator
(LQR) with predictive control was implemented, achieving 4.5% of fuel savings by recogniz-
ing and adjusting control policy to battery disturbances in a centralized setup.

Further analysis compared this centralized approach with two slightly different approaches,
first distributed and second decentralized information flow within the UAV powertrain. The
distributed approach facilitated supplement power from the battery, reducing the demand
on the generator and consequently ICE, but this control due to lack of coordination is
shown to be aggressive and overly trying to compensate the generator part of the load thus
becoming non-cooperative for the interconnected system. On the other hand, the decentral-
ized approach involved interactive, aggregated powertrain regulation where the aggregator
(generator/engine in Fig. 5.2b) determined the supplemental power needed from the bat-
tery, adapting to demand changes and reducing fuel usage through increased battery power
output. This approach’s effectiveness is in each component adaptive adjustment and coordi-
nation based on the local information exchange that depends on the direct local connections.
This enables components to decide for themselves how much real power they want and need
to exchange, thus facilitating true cooperation.
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In the simulation, the distributed control saved 34.56% of the initial amount of fuel in
the reservoir during the cruise phase with a fully charged battery, while the decentralized
control outperformed all other methods, reaching up to 50.05% fuel savings. Overall, this
thesis demonstrated that decentralized and distributed control approaches could significantly
enhance the operational efficiency of hybrid powertrain UAVs, providing robust solutions to
improve fuel economy and reduce the impact of disturbances on ICE performance.

In future work, the focus will be on the following two topics, which are currently work in
progress.

Trajectory Optimization in Energy-State Space

The current project is at the moment being extended to include a model for energy-efficient
trajectory optimization with a focus on formulating the UAV optimization problem in an
energy-state space framework. Also, in future work, the focus will shift towards explor-
ing the potential of energy state space in modeling disturbances outside of the powertrain.
Combined extended disturbance modeling is expected to provide the spatial understanding
of energy-efficient paths and accordingly optimize the drone movement based on mission
requirements under environment disturbances e.g. wind disturbance subject to linear energy
system dynamics.

Fail-Safe Communication Mechanisms

The question of fail-safe communication mechanisms in energy state space during critical
situations is an important aspect of the research which will delve into the mechanisms of
local communication, and fail-safe mechanisms within the energy state space, particularly
how different components of a decentralized system interact and contribute to the overall
energy efficiency in critical situations for the system. The work will explore strategies that
enable these components to independently respond to local disturbances while aligning with
the global control objectives, thereby enhancing the robustness and adaptability of the UAV
system.
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