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ABSTRACT

In many complex sequential decision-making tasks, there is often no known explicit re-
ward function, and the only information available is human demonstrations and feedback
data. To infer and shape the underlying reward function from this data, two key method-
ologies have emerged: inverse reinforcement learning (IRL) and reinforcement learning from
human feedback (RLHF). Despite the successful application of these reward learning tech-
niques across a wide range of tasks, a significant gap between theory and practice persists.
This work aims to bridge this gap by introducing a novel linear programming (LP) framework
tailored for offline IRL and RLHF.

Most previous work in reward learning has employed the maximum likelihood estimation
(MLE) approach, relying on prior knowledge or assumptions about decision or preference
models. However, such dependencies can lead to robustness issues, particularly when there
is a mismatch between the presupposed models and actual human behavior. In response to
these challenges, recent research has shifted toward recovering a feasible reward set, a gen-
eral set of rewards where the expert policy is optimal. In line with this evolving perspective,
we focus on estimating the feasible reward set in an offline context. Utilizing pre-collected
trajectories without online exploration, our framework estimates a feasible reward set from
the primal-dual optimality conditions of a suitably designed LP, and offers an optimality
guarantee with provable sample efficiency. One notable feature of our LP framework is the
convexity of the resulting solution set, which facilitates the alignment of reward functions
with human feedback, such as pairwise trajectory comparison data, while maintaining com-
putational tractability and sample efficiency. Through analytical examples and numerical
experiments, we demonstrate that our framework has the potential to outperform the con-
ventional MLE approach.
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Chapter 1

Introduction

In many complex sequential decision-making tasks, the explicit reward function is often

unknown, and the only available information is human (or expert) demonstration or feed-

back data. To infer and shape the underlying reward function from this data, two key

methodologies have been developed: inverse reinforcement learning (IRL) and reinforcement

learning from human feedback (RLHF, also known as preference-based reinforcement learn-

ing). These reward learning techniques have been successfully applied to a wide range of

tasks, including games [MacGlashan et al., 2017, Christiano et al., 2017, Ibarz et al., 2018],

robotics [Finn et al., 2016, Brown et al., 2019, Shin et al., 2023], and language models [Ziegler

et al., 2019, Stiennon et al., 2020, Wu et al., 2021, Ouyang et al., 2022, Liu et al., 2023].

Particularly in the recent drastic development of large language models (LLMs), RLHF has

played a crucial role in fine-tuning models to better align with human preferences [Ouyang

et al., 2022]. However, despite the notable empirical success of IRL and RLHF algorithms,

a significant gap remains in their theoretical analysis, limiting our ability to guarantee their

reliability. This gap can be attributed to two factors. First, modeling human preferences

and decision-making processes is inherently complex, as they can be subjective, inconsistent,

and context-dependent. Second, real-world tasks often involve high-dimensional state and

action spaces, as well as intricate reward structures, which can be difficult to model and
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analyze theoretically. To bridge this gap between theory and practice, this work proposes a

novel theoretical framework for offline IRL and RLHF.

1.1 Inverse Reinforcement Learning

IRL aims to infer a reward function that aligns with an expert behavior from demonstra-

tions [Ng et al., 2000, Abbeel and Ng, 2004]. Typical IRL algorithms employ a bi-level

optimization framework within the context of maximum likelihood estimation (MLE). Con-

sider the standard notations for a tabular infinite-horizon discounted Markov decision process

(MDP). Let θ denote a reward function parameter we aim to optimize, and πe denote an

expert policy. Then, IRL can be formulated as the following bi-level optimization prob-

lem [Zeng et al., 2022]:

max
θ

L(θ) := Eτ∼πe

[
∞∑
h=0

γh log (P (sh+1|sh, ah)πθ(ah|sh))

]

s.t. πθ ∈ argmax
π

[
∞∑
h=0

γhrθ(sh, ah)

] (1.1)

In the above formulation, the inner optimization evaluates the policy πθ based on the current

reward parameter θ, while the outer optimization updates this parameter θ to better match

observed expert behavior τ ∼ πe by maximizing the discounted log-likelihood function L(θ).

This MLE framework have been extensively explored in the literature [Ziebart et al., 2008,

Wulfmeier et al., 2015, Zhou et al., 2017, Zeng et al., 2022, 2023]. The finite-time convergence

of the reward parameter θ to a stationary solution has been shown in both online [Zeng et al.,

2022] and offline [Zeng et al., 2023] settings, where the entropy-regularized MDP model is

assumed for expert behavior to enhance the convexity of the problem.
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1.2 Reinforcement Learning from Human Feedback

RLHF typically has a two-step process. In the first step, a dataset of human preferences,

given by pairwise or K-wise comparisons, is used to align the reward model. The second

step involves using RL algorithms to find a policy that maximizes the aligned reward. This

work focuses on the first step, i.e. aligning the reward function given preference data, under

a discounted MDP setting. To be more precise, we assume that the preference data is

generated by human evaluators who compare two finite-horizon trajectories (sampled from

the environment and some unknown policies) and select the one they prefer. Our goal is

then to align the reward function with this pairwise preference data. Note that the core

difference between IRL and RLHF lies in the type of data employed: IRL utilizes human

demonstration data, while RLHF leverages human preference data.

Despite the growing interest in RLHF, only a few works in the literature provide theoret-

ical guarantees with a finite sample complexity bound. Most existing approaches adopt an

MLE framework, assuming that human evaluators follow a presupposed preference model,

such as the Bradley-Terry-Luce (BTL) model. Let θ denote a reward parameter, and (τ 1, τ 2)

be a queried trajectory pair. The BTL model assumes that the probability of preferring τ 1

over τ 2 follows the Bernoulli distribution:

P(τ 1 > τ 2) =
exp(rθ(τ

1))

exp(rθ(τ 1)) + exp(rθ(τ 2))
. (1.2)

Here, rθ(τ i) denotes the discounted cumulative reward of the trajectory τ i under the reward

model rθ. The reward parameter θ is then tuned to maximize the log-likelihood of the

preference data collected from a data distribution µ [Christiano et al., 2017]:

max
θ

L(θ) := E(τ1,τ2)∼µ

[
log

(
exp(rθ(τ

1))1{τ1>τ2} + exp(rθ(τ
2))1{τ2>τ1}

exp(rθ(τ 1)) + exp(rθ(τ 2))

)]
(1.3)

Offline RLHF aims to learn a reward function from a fixed dataset of human preferences
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without requiring further interactions with the environment or human evaluators. Recently,

a few offline RLHF algorithms have been proposed with optimality guarantees by adopting

a pessimistic mechanism from offline RL theory [Zhu et al., 2023, Zhan et al., 2023, Li et al.,

2023]. After optimizing the reward parameter under the MLE framework, they define a

confidence set around the optimized parameter and solve a robust optimization problem to

identify the policy that maximizes the worst-case reward within this set. This approach

allows for bounding the sub-optimality gap between the optimal and the obtained policy

with a finite sample complexity.

1.3 Limitations of MLE in IRL and RLHF

While the MLE-based approach offers a solid theoretical framework for both IRL and RLHF,

it comes with unavoidable limitations. Particularly in IRL, bi-level optimization algorithms

face computational challenges due to their nested-loop structures, where each inner opti-

mization problem is an RL problem as in (1.1). In addition, MLE-based algorithms rely on

a specific decision-making or preference model they employ. For example, the IRL algorithm

proposed by [Zeng et al., 2022] learns the reward function that aligns with an expert policy,

which is assumed to be an optimal softmax policy. Furthermore, RLHF algorithms (e.g. [Zhu

et al., 2023, Zhan et al., 2023]) assume a preference model for human evaluator as discussed

above, which might not fully capture the complex and diverse nature of real-world human

preferences. Consequently, their optimality guarantees might be compromised if there exists

a mismatch between actual human preferences and the model in use.

To illustrate this point, we provide a simple example. Consider a bandit problem with a

single state s and two actions a1 and a2, where the expert policy is defined as πe(a1|s) = 1

and πe(a2|s) = 0. In a real-world application, certain actions might be restricted in specific

states due to safety concerns. For instance, action a2 might be unsafe or undesirable in

state s leading to the expert consistently choosing a1. Optimizing the reward parameter
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θ using MLE under the softmax policy model (i.e., the BTL model) for πe will cause the

parameter to diverge, with rθ(s, a1) → +∞ or rθ(s, a2) → −∞. This demonstrates that

a mismatch between the theoretical model and the practical model can cause MLE-based

algorithms to fail to converge. We will explore this issue further through analytical examples

and experimental results later.

1.4 Feasible Reward Set Estimation

In response to these challenges inherent in MLE frameworks, recent research has shifted

focus from estimating a single reward function (under a presupposed model) to recovering a

feasible reward set, a set of rewards under which the expert policy is optimal, defined as

R := {r | πe is optimal under r}. (1.4)

In an IRL setting, the true values of the transition dynamics and the expert policy, πe, are

unknown; consequently, the ground truth R is also unknown. The goal is to estimate the set

R from samples (whether state-action pairs or trajectories) to obtain a set R̂ that closely

approximates R.

Notably, [Metelli et al., 2021, 2023] estimated the feasible reward set from finite-horizon

Bellman equations and provided sample complexity bounds associated with estimation er-

rors. However, their algorithm requires a generative model of state transition probabilities.

This requirement is mitigated in [Lindner et al., 2022] by adopting an efficient exploration

policy for sampling trajectories, though it remains in an online setting. More recently, and

concurrent with our work, [Zhao et al., 2023] introduced the first offline algorithm with

a theoretical guarantee. They introduce a pessimistic mechanism to address the issue of

non-uniform data coverage, penalizing state-action pairs with low visitation frequency. Nev-

ertheless, these penalty functions are nonlinear and non-convex, resulting in a non-convex

reward set. This could limit flexibility for applications, especially when selecting a specific
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reward function within the obtained set.

To be more specific, in the practical applications of reward learning, estimating the

feasible reward set is not enough; we need to select a single reward function within the

estimated feasible reward set to use. Unfortunately, this is not a trivial problem due to

existence of degenerate reward functions in the feasible reward set. If we randomly select

one reward r from R, it is possible that r is excessively smooth, resulting in many unwanted

policies being optimal under r. Such degenerate reward functions, though theoretically

feasible, are practically undesirable as they fail to separate the expert policy πe from others.

For instance, consider the trivial reward r0 := 0. r0 is contained in R since πe is optimal

under r0. However, since any arbitrary policy is also optimal under r0, the reward function

r0 is not practically useful. It is preferable to find a reward, r ∈ R, such that the expected

reward of the expert policy πe is higher than that of most other policies. As we will present

later, such an r can be obtained by solving an optimization problem, maxr∈R̂ f(r), where

the objective function f is given by a linear function. Therefore, if the estimated R̂ is

convex, then the reward selection problem will be a convex optimization problem and, thus,

tractable.

1.5 LP Framework in Offline RL

Motivated by the above reasons, we aim to obtain a convex estimate of a feasible reward set

in an offline setting. To achieve this, we leverage recent advancements in the LP framework

within the domain of offline RL. A fundamental challenge in offline RL is the so-called

distribution shift, a mismatch between the distribution of offline data and the distribution

of the target policy [Fujimoto et al., 2019, Kumar et al., 2020]. To address this issue, earlier

offline RL algorithms [Munos and Szepesvári, 2008, Chen and Jiang, 2019, Zhang et al.,

2021] required dataset to fully cover state distributions induced by all policies, which is often

impractical in real-world scenarios. Recent advancements in the literature have mitigated

16



this requirement from full coverage to a more feasible single policy coverage, by employing

a pessimistic mechanism that conservatively selects the value function or model within an

uncertainty set.

To be more specific, the pessimistic approach incorporates an uncertainty quantifier as

the penalty function in the value iteration algorithm [Jin et al., 2021, Rashidinejad et al.,

2021]. These algorithms find a conservative policy by penalizing the value function of the

state-action pair with high uncertainty. Another approach is to find a policy that maximizes

the worst-case performance under the uncertainty set [Xie et al., 2021, Uehara and Sun, 2021,

Chen and Jiang, 2022]. This can be formulated as a max-min optimization problem, such

as maxπ minP∈P v
π
P , where P denotes the transition dynamics, P represents the uncertainty

set of transition dynamics, and vπP is the expected cumulative reward under dynamics P and

the policy π. However, these pessimistic approaches often introduce intractable non-convex

optimization problems, due to the penalty function and the uncertainty set, which are often

non-convex.

In the latest research, a series of works [Zhan et al., 2022, Rashidinejad et al., 2022,

Ozdaglar et al., 2023] have introduced LP-based methods that relax data coverage assump-

tions and provide tractable algorithms suitable for function approximation by introducing

convex formulations. Specifically, [Ozdaglar et al., 2023] achieves an optimal sample com-

plexity bound under partial data coverage and general function approximation, by properly

relaxing constraints in the LP formulation of MDP.

1.6 Summary of Contributions

Given the success of LP-based approaches in offline RL, investigating how it could address

non-convexity and non-uniform data coverage issues in offline IRL presents a promising

research direction. One notable advantage of LP is its flexibility in addressing intrinsic chal-

lenges in reward learning, such as avoiding undesirable degenerate solutions. We demonstrate
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that a polyhedral estimate of the feasible reward set, provided by LP, offers efficient ways to

identify a non-degenerate reward function. For example, it allows to select a reward func-

tion that maximizes the reward gap between the expert policy and suboptimal policies (e.g.,

uniform policy) over the solution set. We also highlight LP’s suitability for function approx-

imation, primarily due to its linear structure, which can further reduce the solution set and

computational complexity. Furthermore, the LP framework enables the integration of extra

information. As a notable example, we show that RLHF data can be incorporated by simply

adding linear constraints, maintaining computational tractability and sample efficiency.

Our main contributions can be summarized as follows:

• We present an LP formulation for offline IRL that directly estimates the feasible reward

set by the primal-dual optimality conditions in an empirical LP formulation of Markov

decision process (MDP) (Section 3.1).

• In Theorem 1, the optimality of the estimated reward set is provided such that any

reward function within this set ensures the expert policy is Õ(
√

|S||A|/N)-suboptimal,

under appropriate data coverage assumption.

• In offline RLHF, we align reward functions with pairwise trajectory comparison data

using linear constraints (Section 4.1). In Theorem 2, we provide the generalization

guarantee of the estimated reward function for unseen trajectory pairs.

• We address the potential degeneracy issue in reward learning (Section 3.3) and propose

a unified framework that effectively combine IRL and RLHF to mitigate the degeneracy

(Section 4.4).

• The proposed LP algorithm and the MLE algorithms in the literature are compared

through numerical experiments (Chapter 5). We also provide an analytical example in

offline RLHF, where MLE algorithm fails, while our LP approach succeeds to identify

the optimal policy (Appendix A.4)
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1.7 Additional Related Work

LP and Duality Approach in IRL. One of the foundational works in IRL [Ng et al.,

2000] introduced the concept of characterizing a set of reward functions for which a given

policy is optimal using an LP formulation. This idea has been further developed in subse-

quent literature [Metelli et al., 2021, Lindner et al., 2022, Metelli et al., 2023, Zhao et al.,

2023], as outlined in the introduction. Recently proposed practical offline imitation learning

(IL) algorithms, including ValueDICE [Kostrikov et al., 2019], IQ-Learn [Garg et al., 2021],

OPIRL [Hoshino et al., 2022], and ReCOIL [Sikchi et al., 2023b], address an occupancy

matching problem that minimizes the statistical divergence between the learner and the

expert distribution. These algorithms exploit the duality of the LP formulation to obtain

tractable algorithms, as extensively discussed in [Sikchi et al., 2023b]. Despite the practical

success of these algorithms, the resulting reward function and policy depend on the model

in use, and they lack theoretical performance guarantees, such as provable sample efficiency.

To this end, our work aims to design the LP framework with two distinctive features: (i)

model-independent reward set estimation that maintains its convex structure for enhanced

applicability, and (ii) theoretical performance guarantees, including a provable error bound

with finite sample complexity under non-uniform data coverage.

RLHF without Preference Model Assumption. In offline RLHF, we impose a margin-

based constraint on the solution set, which allows for the alignment of reward functions

with preference data without assuming any preference models of human evaluators. The

concept of employing a margin constraint originated in the early imitation learning literature.

Specifically, maximum margin planning (MMP) [Ratliff et al., 2006, 2009] estimates the

reward function such that the expert policy achieves a higher expected reward than all other

policies by imposing a margin constraint in the reward optimization problem. Recently,
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[Sikchi et al., 2023a] introduced Rank-Game, a two-player game formulation between a policy

agent, which optimizes the policy given a reward function, and a reward agent, which aligns

the reward function with offline pairwise preference data. Their algorithm is model-free, as

the reward agent minimizes ranking loss without relying on a specific preference model. A

unification of demonstration and preference data is also proposed in their work, similar to

our approach in the LP framework.
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Chapter 2

Preliminaries

2.1 Markov Decision Process (MDP)

We first revisit the standard notations for a tabular infinite-horizon discounted Markov

decision process (MDP). An MDP M is represented as a tuple M = (S,A, P, γ, µ0, r),

where S and A represent finite state and action spaces, P : (S,A) 7→ ∆(S) denotes the

transition probability function, γ ∈ (0, 1) represents the discount factor, and µ0 ∈ ∆(S) is

the initial state distribution. The reward function r(s, a) : S × A 7→ [−1, 1] indicates the

reward received for taking the action a in state s.

The primary objective in MDP is to identify a stochastic policy π : S 7→ ∆(A) that

maximizes the expected cumulative reward: Eπ[
∑∞

h=0 γ
hr(sh, ah)|s0 ∼ µ0]. We define vπ(s)

as the expected total discounted reward received when initiating from state s and following π,

such that vπ(s) := Eπ
[∑∞

h=0 γ
hr(sh, ah) | s0 = s

]
. Then, the optimal policy π∗ maximizing

the expected reward and its corresponding value function v∗ := vπ
∗ are related by the

Bellman equation

v∗(s) = max
a∈A

{
r(s, a) + γ

∑
s′∈S

P (s′|s, a)v∗(s′)

}
, (2.1)

which holds for any s ∈ S. It is well-established that v∗ can be determined by solving the
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following linear programming (LP) as outlined in [Puterman, 2014]:

min
v∈R|S|

(1− γ)µ⊤
0 v s.t. M⊤v − r ≥ 0. (2.2)

The matrix M ∈ R|S|2|A| is defined as M(s′, (s, a)) := 1{s′=s} − γP (s′|s, a), where 1{s′=s}

denotes the indicator function for the case {s′ = s}. Throughout this work, we treat the

above LP as the primal LP, and v as the primal optimization variable. Then, the dual LP

is expressed as

max
d∈R|S||A|

r⊤d s.t. Md = (1− γ)µ0, d ≥ 0. (2.3)

The dual variable d, often interpreted as an occupancy measure or a discounted state-action

visitation frequency in RL literature, is related to a policy π by

dπ(s, a) = (1− γ)
∞∑
h=0

γhP π
µ0
(sh = s, ah = a). (2.4)

Here, P π
µ0
(sh = s, ah = a) represents the probability of (sh, ah) = (s, a), given s0 ∼ µ0 and

ah′ ∼ π(sh′) for all h′ ≥ 0. The dependence on γ and µ0 is omitted in the notation dπ for

simplicity. A more detailed relationship between π and dπ can be found in [Puterman, 2014].

2.2 Offline IRL: Learning from Expert Trajectories

While RL learns a policy to maximize rewards in a given environment, IRL aims to infer the

underlying reward function that drives observed behavior. In the standard IRL setting, a

single expert agent collects trajectory (roll-out) samples, and the reward function is recovered

from these samples. We denote the true expert policy and corresponding occupancy measure

as πe and de, respectively, where de is defined as de := dπe . Our objective is to learn a reward

function r such that the occupancy measure de is (near) optimal, utilizing the offline dataset

gathered from the expert policy πe.

In offline setting, the true values of the expert policy πe and the transition probability P
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are unknown. Instead, we have access to a static, pre-collected dataset DIRL composed of N

independent and identically distributed (i.i.d.) trajectory samples:

DIRL = {τn = (sn0 , a
n
0 , s

n
1 , . . . , s

n
H−1, a

n
H−1, s

n
H)}Nn=1. (2.5)

Note that the sampling distribution is fully determined by µ0, P , and πe. Let Nh(s, a) and

Nh(s, a, s
′) be the counts of n satisfying (snh, a

n
h) = (s, a) and (snh, a

n
h, s

n
h+1) = (s, a, s′) in the

dataset, respectively. Using these counts, we estimate the occupancy measure de as follows:

d̂e(s, a) = (1− γ)
1

N

H−1∑
h=0

γhNh(s, a) ∀(s, a) ∈ S × A. (2.6)

Using this empirical estimate d̂e, we aim to develop an LP formulation that identifies a

reward function which ensures the optimality of de with an acceptable level of error.

2.3 Offline RLHF: Learning from Pairwise Trajectory Com-

parisons

We extend our LP framework to address the offline RLHF problem. Our primary objective

is to derive a reward function that is aligned with pairwise trajectory comparison data,

provided by human evaluators. We denote each comparison query as qn, with the index

n ranging from 1 to Nq. Each query comprises a pair of trajectories, such that τn,1 =

(sn,10 , an,10 , . . . , sn,1H−1, a
n,1
H−1, s

n,1
H ) and τn,2 = (sn,20 , an,20 , . . . , sn,2H−1, a

n,2
H−1, s

n,2
H ). We assume τn,1

and τn,2 are sampled i.i.d. according to the sampling distribution µHF. In each query, a

human evaluator is presented with both trajectories and asked to select the one they prefer.

We denote the event where trajectory τn,1 is preferred over τn,2 by the variable yn = 1, and

conversely, yn = 2 indicates the event where τn,2 is favored over τn,1. The human feedback

dataset is then represented by DHF = {(τn,1, τn,2, yn)}Nq

n=1.
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Given the dataset DHF, we design an LP formulation to identify a reward function r that

aligns well with DHF. Notably, this LP approach is purely data-driven, relying solely on

the observed comparisons without assuming any specific preference model associated with

human evaluators. This aspect distinguishes it from previous MLE algorithms for offline

RLHF. The detailed comparison will be elaborated in a later section.
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Chapter 3

Offline Inverse Reinforcement Learning

3.1 LP Formulation of Offline IRL

Recall the dual LP formulation of MDP presented in the previous section:

max
d∈R|S||A|

r⊤d s.t. Md = (1− γ)µ0, d ≥ 0. (3.1)

IRL aims to find a feasible reward function r such that the expert occupancy measure de is

an optimal solution to the above dual LP. As the feasible reward function is not unique, we

define the feasible reward set as follows:

R = {r ∈ [−1, 1]|S||A| | de is optimal to (3.1)} (3.2)

In the offline setting, recovering the ground-truth R is challenging since we only have access

to the empirical estimate of de and the transition matrix P . Consequently, our goal is to

recover an estimate of R in which de is a near-optimal solution to (3.1) for any r in this

estimated set.
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Marginal importance sampling. The primary challenge in offline RL and IRL is the

non-uniform coverage of the offline dataset. To address this issue, we adopt the marginal

importance sampling (MIS) framework in the literature [Nachum et al., 2019, Lee et al.,

2021], which considers the scaled version of LP. First, we define the optimization variable

wd ∈ R|S||A| as

wd(s, a) :=


d(s,a)
de(s,a)

if de(s, a) > 0,

0 if de(s, a) = 0.

(3.3)

wd is a scaled dual variable, which represents the ratio between the target d and the expert

de. The expert optimization variable is denoted by we := wde , which satisfies we(s, a) =

1{de(s,a)>0} for all (s, a) ∈ S × A by the definition of wd. Note that our algorithm will not

require information about which state-action pairs have zero visitation frequency under πe

(i.e., de(s, a) = 0), since it will automatically set the reward to zero, i.e. r(s, a) = 0, if

d̂e(s, a) = 0.

Next, we define u ∈ R|S||A| and K ∈ R|S|2|A| as

u(s, a) := r(s, a)de(s, a),

K(s′, (s, a)) := de(s, a)1{s=s′} − γd′e(s, a, s
′),

(3.4)

where d′e(s, a, s′) := de(s, a)P (s
′|s, a) for any (s, a, s′). In this MIS framework, u and K

correspond to r and P , respectively. The following lemma shows this relationship clearly

(see Lemma 1 in [Ozdaglar et al., 2023] for the proof).

Lemma 1. r⊤d = u⊤wd and Md = Kwd hold for any d ∈ R|S||A|.

Empirical LP formulation. By Lemma 1, the dual LP can be written with u, w, and K

as follows:

max
w∈R|S||A|

u⊤w s.t. Kw = (1− γ)µ0, w ≥ 0. (3.5)
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We omit the subscript d in wd for ease of notation. In the above LP formulation, our

objective is to identify the set of u for which we is optimal. However, in the offline setting,

the true values of K and de remain unknown. Therefore, our goal shifts towards constructing

an empirical version of this LP. We first define the empirical estimate of u as uD(s, a) :=

r(s, a)d̂e(s, a) for all (s, a) ∈ S×A, and replace the objective function u⊤w with u⊤Dw. Next,

we introduce KD ∈ R|S|2|A|, an empirical estimate of K, defined as:

KD(s
′, (s, a)) := d̂e(s, a)1{s=s′} − γd̂′e(s, a, s

′), (3.6)

where for any (s, a, s′) ∈ S × A× S,

d̂′e(s, a, s
′) := (1− γ)

1

N

H−1∑
h=0

γhNh(s, a, s
′). (3.7)

However, directly substituting the empirical estimate KD for K in the equality constraint

Kw = (1− γ)µ0 can be problematic, as it may cause the target variable we being infeasible.

Therefore, we opt to relax the equality constraint to an inequality constraint.

Let X = [x1, · · · , xNX
] ∈ R|S|×Nx be a coefficient matrix for the relaxation, where

∥xi∥∞ ≤ 1 for all i ∈ {1, . . . , Nx}. Let ϵx ∈ RNx be a parameter that controls the level

of relaxation. Then, we replace the equality constraint Kw = (1 − γ)µ0 with the relaxed

inequality constraint X⊤(KDw − (1 − γ)µ0) ≤ ϵx. One applicable choice of the coefficient

matrix X would be a matrix that contains all 2|S| binary (sign) vectors [±1,±1, . . . ,±1] in

its columns. Then, the inequality constraint is equivalent to the L1 norm constraint, i.e.

∥KDw − (1− γ)µ0∥1 ≤ ϵx.

With this relaxation, the empirical version of the dual LP can be expressed as

max
w∈R|S||A|

u⊤Dw

s.t. X⊤(KDw − (1− γ)µ0) ≤ ϵx, w ≥ 0.

(3.8)
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Additionally, the dual of (3.8) can be expressed as

min
v∈RNx

(1− γ)µ⊤
0Xv + ϵ⊤x v

s.t. K⊤
DXv ≥ uD, v ≥ 0,

(3.9)

where v is an optimization variable.

Feasible reward set estimation. Under the empirical LP formulations, our goal is to

estimate the set of u such that we is (near) optimal to (3.8). Consider the primal-dual

optimality conditions of (v, w) under a reward function u:

(Primal feasibility) : K⊤
DXv ≥ u, v ≥ 0,

(Dual feasibility) : X⊤(KDw − (1− γ)µ0) ≤ ϵx, w ≥ 0,

(Zero duality gap) : (1− γ)µ⊤
0Xv + ϵ⊤x v = u⊤w.

(3.10)

w is dual-optimal under u if and only if the above optimality conditions hold with some v.

Consequently, the feasible reward set can be estimated by identifying (u, v) pairs for

which (u, v, we) satisfies (3.10). Here, we further relax the zero duality gap condition with

the slack parameter ϵg ≥ 0 for two reasons. First, the true reward might not satisfy this

equality constraint due to errors in empirical estimation of de and K. Second, we are also

interested in the reward such that πe is near-optimal. Therefore, we consider the following

polyhedron as an estimate of the feasible reward set:

R̂IRL(ϵg) := {(u, v) | (1− γ)µ⊤
0Xv + ϵ⊤x v − u⊤1 ≤ ϵg︸ ︷︷ ︸

(i)

, K⊤
DXv ≥ u, v ≥ 0︸ ︷︷ ︸

(ii)

, −d̂e ≤ u ≤ d̂e︸ ︷︷ ︸
(iii)

}.

(3.11)

The constraint (i) denotes the upper bound on the duality gap, where ϵg is used as the

parameter. (ii) represents primal feasibility condition and (iii) bounds the reward r to the

range [−1, 1]. The vector 1 (vector of all ones) is used instead of we in (i), since u⊤1 = u⊤we
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holds by the definition of u and we. Note that the dual feasibility condition is not required

in R̂IRL(ϵg) because it is a condition for the constant value we.

3.2 Optimality Guarantee for Offline IRL

In this section, we analyze the statistical error involved in the estimate R̂IRL of the feasible

reward set R. Before presenting the main results, we address the data coverage issue in our

setting. In offline RL, distribution mismatch between the target policy and the behavior

policy causes the inaccurate policy evaluation, and the concentrability-type assumption is

required for an optimality guarantee. In offline IRL, since the behavior policy is identical to

the expert policy, the reward estimation can be inaccurate for state-actions pairs where the

occupancy measure de(s, a) is small. We address this issue by defining the confident set of

occupancy measures.

Confidence set. The confidence set if defined as the intersection of a set of valid occupancy

measure (under MDP M) and an L∞ norm ball with radius B:

DB :=
{
d ∈ R|S||A|

+ |Md = (1− γ)µ0, ∥wd∥∞ ≤ B
}
. (3.12)

The radius B ≥ 1 is a parameter that controls the conservativeness of the algorithm.

The set DB includes all possible occupancy measures d if B ≥ d−1
min, where

dmin := min
(s,a)∈S×A: de(s,a)̸=0

de(s, a), (3.13)

since wd(s, a) ≤ d−1
min for any d ∈ ∆(S × A) and (s, a) ∈ S × A by the definition of wd (3.3).

In this case, optimality over the set DB implies global optimality.

It is worth highlighting that setting B = d−1
min yields results comparable to those in recent

works [Metelli et al., 2023, Zhao et al., 2023]. The error bounds in these works depend on
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the constant π−1
min, defined as

πmin := min
(s,a)∈S×A: πe(a|s) ̸=0

πe(a|s). (3.14)

Under a fixed µ0, the value of B = d−1
min is upper bounded by (constant) × π−1

min, by the

following inequality:

dmin = de(s
′, a′) = πe(a

′|s′)
∑
a∈A

de(s
′, a) ≥ (1− γ)µ0(s

′)πmin, (3.15)

where (s′, a′) ∈ S×A is a state-action pair that achieves the minimum in dmin. Thus, setting

B = d−1
min can provide error bounds comparable to those in other works while ensuring global

optimality.

Our goal is to establish the optimality of de within the confidence set DB. The proof

comprises two distinct steps. Firstly, we establish that wd̃ is feasible to the dual empirical

LP (3.8) with high probability for any d̃ ∈ DB, under appropriate level of relaxation ϵx. Next,

we show that we has a (nearly) higher objective than wd̃ with high probability since we has a

small duality gap. In the following lemma, we prove that for any d̃ ∈ DB, corresponding wd̃

is a feasible solution to the empirical LP with high probability under appropriate relaxation

level ϵx in the constraint.

Lemma 2. In dual empirical LP (3.8), let

ϵx =

(
B(1 + γ)γH +B(1 + γ)(1− γH)

√
2|S||A|
N

log
2Nx

δ

)
1, (3.16)

where δ > 0. Then, for any d̃ ∈ DB, wd̃ is feasible to (3.8) with probability at least 1− δ
2|S||A| .

Proof. See Appendix A.1.

From the above Lemma, we establish the optimality guarantee in the following theorem.

Specifically, in words, under the reward function r recovered from the set (3.11), we show that
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de is an Õ(
√
|S||A|/N)-suboptimal solution over the confidence set DB with high probability.

Theorem 1. Suppose (uD, vD) ∈ R̂IRL(ϵg), with the relaxation level ϵx specified in Lemma 2.

Let r satisfy

r(s, a) =
uD(s, a)

d̂e(s, a)
(3.17)

for all (s, a) ∈ S × A, following the convention 0/0 = 0. Then, we have

P(r⊤de ≥ r⊤d̃− ϵ, ∀d̃ ∈ DB) ≥ 1− 3δ, (3.18)

where

ϵ = ϵg + (1 +B)γH + (1− γH)

√
2

N
log

1

δ
+B(1− γH)

√
2|S||A|
N

log
2

δ
. (3.19)

Proof. See Appendix A.2.

Sample complexity analysis. The proposed solution set achieves the Õ(B(1− γH)×√
|S||A|/N) sample complexity bound with additional error terms ϵg and (1 + B)γH . Note

that the parameter ϵg can be set to ϵg = Õ(1/
√
N) to match the sample complexity. The

term (1 + B)γH diminishes exponentially with the horizon of the collected trajectory data,

which underscores the requirement for long-horizon data to ensure accurate estimation. To

the best of our knowledge, besides our work, [Zeng et al., 2023] is the only other study

that offers an optimality guarantee for the offline IRL problem under a discounted MDP,

with a sample complexity of Õ(1/
√
N). However, as their algorithm is based on a bi-level

optimization approach and their error bound is given for the log-likelihood function, a direct

comparison of their result with ours is not feasible.

Trade-off between optimality and feasibility. In our formulation, there exists a trade-

off between the optimality of the policy and the feasibility of the reward function, which is

modulated by the parameter ϵg. The duality gap bound, denoted as ϵg, adjusts the size

31



of the solution set R̂IRL(ϵg); this set expands with an increase in ϵg. ϵg can be reduced to

0 without causing infeasibility, as the set R̂IRL(ϵg) is always non-empty due to the trivial

solution (u, v) = (0, 0). A smaller value of ϵg enhances the optimality of the expert policy πe,

as stated in Theorem 1. However, excessively reducing ϵg can lead to overly greedy choices,

resulting in trivial or degenerate solutions. The impact of varying ϵg is demonstrated through

numerical experiments in Section 5.

Function approximation. The proposed LP formulation is well-suited for function ap-

proximation (parameterization), which allows us to reduce both the computational cost and

the size (dimension) of the solution set. Consider the parameterization of the variable (u, v)

as (uθ, vθ), where θ represents a parameter within the parameter space Θ ⊂ Rk, which we

aim to explore. If there exists a θ ∈ Θ such that (uθ, vθ) ∈ R̂IRL(ϵg), then the optimality

guarantee provided in Theorem 1 is preserved for the reward function recovered from uθ,

while the computational complexity of the LP can be reduced to a polynomial in k, down

from |S||A|. It is important to note that this formulation remains a linear (or convex) pro-

gram under linear (or convex) parameterization. If non-convex function approximation is

employed for high-dimensional or continuous state-action spaces, an efficient algorithm for

solving the proposed optimization may be required; however, such an extension is beyond

the scope of this work, and we defer this to future research.

Comparison to pessimism-based approach. The concurrent work by [Zhao et al.,

2023] proposed an offline IRL algorithm for finite-horizon MDPs with comparable sample

complexity, based on pessimistic value iteration. To be specific, they recover the mapping

from the value and advantage functions to reward functions through Bellman iterations under

estimated state transition probabilities. Though a direct comparison is limited since our

work is developed for infinite-horizon discounted MDPs, there are some common structures

between their algorithm and ours. Specifically, the value and advantage functions in their

work can be considered as the primal optimization variable and the slack in the primal
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feasibility constraint in our formulation.

Nevertheless, there are differences between the resulting reward functions from their

algorithm and ours. To address the uncertainty caused by non-uniform data coverage in

the offline setting, they penalize the reward on uncertain state-action pairs that are less

visited in the dataset. Such a pessimism-based reward estimation framework provides strong

theoretical optimality guarantees, such as finite sample complexity bounds, similar to our

approach. However, in contrast to our solution set, which is a polyhedron, the use of a

nonlinear and non-convex penalty function in their reward model leads to a solution set that

is also nonlinear and non-convex. This distinction makes our algorithm more flexible for any

extension, such as function approximation and the integration of additional information..

3.3 Degeneracy Issue in Reward Learning

In the practical applications of reward learning, estimating the feasible reward set is not

enough; we need to select a single reward function within the estimated feasible reward set

to use. This is not a trivial problem due to existence of degenerate reward functions in

the feasible reward set. Degenerate reward functions (e.g. r = 0), though theoretically

feasible, are practically undesirable as they fail to separate the expert policy πe from others.

In our solution set R̂IRL(ϵg) (3.11), degeneracy in the feasibility constraint K⊤
DXv ≥ u is

critical. If equality holds for some state-action pairs such that (K⊤
DXv − u)(s, a) = 0, then

the complementary slackness condition will not be violated by changing the value of we(s, a),

meaning that we may not be uniquely optimal. We suggest a simple and tractable method

to obtain a non-degenerate reward function in R̂IRL(ϵg).

Utilizing suboptimal trajectory samples. A straightforward approach to obtain a non-

degenerate solution is utilizing a suboptimal policy πsub. To be specific, we directly maximize

the expected reward gap between the expert policy πe and the suboptimal πsub. A viable

example of πsub is a uniformly random policy such as πsub(a|s) = 1
|A| ∀(s, a) ∈ S×A, because
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this policy is unlikely to be optimal unless the expected rewards are uniform over all actions.

To maximize the reward gap, we sample suboptimal trajectories with πsub and estimate the

occupancy measure of πsub as d̂sub, using the sampling and estimation methods discussed

previously. Then, we maximize the empirical mean of the reward gap as per the following

LP:

max
r,u,v

r⊤(d̂e − d̂sub)

s.t. (u, v) ∈ R̂IRL(ϵg), u = d̂e ◦ r.
(3.20)

Here, ◦ denotes the element-wise (Hadamard) product. The numerical experiments in Sec-

tion 5 demonstrate that the above formulation efficiently recovers a non-degenerate reward

function with only a small number of suboptimal trajectory samples.
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Chapter 4

Offline Reinforcement Learning from

Human Feedback

4.1 LP Formulation of Offline RLHF

In this section, we extend our LP framework to address offline RLHF problem. As discussed

in Section 2.3, our focus is on minimizing the error associated with the reward r and the

human feedback data DHF. We begin by representing the cumulative reward of each trajec-

tory τn,i (i = 1, 2) in the dataset DHF as a linear function of the reward r. Specifically, the

cumulative reward from the trajectory τn,i can be expressed as r(τn,i) = r⊤ψn,i, where each

vector ψn,i ∈ R|S||A| can be mapped from the trajectory τn,i by

ψn,i(s, a) :=
H−1∑
h=0

γh1{sn,i
h =s,an,i

h =a}, (4.1)

for any (s, a) ∈ S×A. Following this, we define the error in the single data point (τn,1, τn,2, yn)

associated with the reward function r as

L(τn,1, τn,2, yn; r) := r⊤(ψn,2 − ψn,1)1{yn=1} + r⊤(ψn,1 − ψn,2)1{yn=2}. (4.2)
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Note that naively minimizing the average or maximum error over queries might often

lead to degenerate reward functions. This is because human evaluators sometimes provide

conflicting feedback, such as yn = 1 when r⊤ψn,2 > r⊤ψn,1, due to their stochasticity. Under

conflicting comparison data, minimizing L may result in degenerate solutions such as r = 0.

To address this issue, we allows for a slack in the error L by introducing a parameter ϵr ∈ R,

which controls the size of the solution set. Specifically, we define the solution set R̂HF as

follows:

R̂HF(ϵr) := {r | L(τn,1, τn,2, yn; r) ≤ ϵr ∀n = 1, 2, . . . , Nq, r ∈ [−1, 1]|S||A|}. (4.3)

Under this adjustable solution set, if we have additional information, we could also apply

the strategy discussed in the previous section for identifying non-degenerate solutions: max-

imizing the reward gap between the expert trajectories and the suboptimal trajectories.

4.2 Robustness of LP Framework

In this section, we discuss the robustness of the proposed LP framework compared to MLE

framework, with respect to the different preference models of human evaluators. One advan-

tage of the proposed LP method is its robustness to different human evaluator preference

models, in contrast to MLE-based algorithms. When the human evaluator deviates from

the preference model assumed in MLE, the true reward parameter may diverge from the

parameter space. However, the LP approach is not subject to this limitation.

We first introduce the MLE framework in offline RLHF. Consider the reward parameteri-

zation rθ, where θ ∈ Θ is a parameter and Θ ⊂ Rk is a parameter space we aim to search the

optimal parameter. Then, the standard MLE framework can be illustrated as maximizing

36



the log-likelihood function as follows:

θ̂MLE ∈ argmax
θ∈Θ

Nq∑
n=1

log
(
Φ
(
−L(τn,1, τn,2, yn; rθ)

))
. (4.4)

Our LP framework finds the reward parameter in the solution set, such that θ̂LP ∈ {θ ∈ Θ |

rθ ∈ R̂HF(ϵr)}. Under the estimated reward parameters, we obtain the policy maximizing

the reward function as follows:

π̂LP ∈ argmax
π

Es∼dπ [rθ̂LP
(s, π(s))], π̂MLE ∈ argmax

π
Es∼dπ [rθ̂MLE

(s, π(s))]. (4.5)

Pessimistic MLE. Recent works in offline RLHF, such as those by [Zhan et al., 2023, Zhu

et al., 2023] have adapted the concept of pessimism from offline RL theory to address the

data coverage issue. Specifically, these studies define a confidence set for the reward function

and solve robust optimization problem to identify the policy that maximizes the worst-case

reward within this set. For example, [Zhu et al., 2023] uses a semi-norm ∥ · ∥Σ+λI as a metric

for constructing the confidence set, where Σ represents the covariance of the comparison

data and λ > 0 is a conservativeness parameter, such that

DPE =
{
θ ∈ Θ | ∥θ − θ̂MLE∥Σ+λI ≤ f(N, k, δ, λ)

}
. (4.6)

Then, the policy is optimized for the worst-case parameter in DPE, such that

π̂PE ∈ argmax
π

min
θ∈DPE

Es∼dπ [rθ(s, π(s))]. (4.7)

[Zhu et al., 2023] prove that the true parameter θ∗ exists in this confidence set with high

probability as the number of sample increases, which enables them to provide an optimality

guarantee.

However, the MLE-based algorithms require an assumption that a human evaluator fol-

37



lows a specific preference model, and the true reward parameter corresponding to the model

should lie in the parameter space, such that θ∗ ∈ Θ, where Θ must be bounded. Such

realizability assumption can easily be violated in practice, when the true preference model

deviates from the model used in algorithm. For instance, if the BTL model is assumed but

the human evaluator follows the greedy policy, the true parameters diverge to +∞ or −∞,

which violates the assumption that θ∗ ∈ Θ. To illustrate these points, we provide a simple

bandit problem that both MLE and pessimistic MLE fail but LP succeeds to recover the

optimal policy.

Proposition 1. For any δ > 0, there exists a linear bandit and a sampling distribution µHF

such that

π̂LP = π∗, π̂MLE ̸= π∗, and π̂PE ̸= π∗

hold with probability at least 1− δ.

Proof. See Appendix A.4.

4.3 Generalization Guarantee for Offline RLHF

Recent works in offline RLHF, such as [Zhu et al., 2023, Zhan et al., 2023], have proposed

a pessimistic MLE algorithm and provided an error bound between the estimated and the

true reward function of the supposed preference model. Our LP method does not offer an

optimality guarantee in the same way as these works, as it obtains a set of reward functions

without assuming a specific preference model. Instead, we analyze the generalization prop-

erty of the obtained reward functions by examining how r ∈ R̂HF(ϵr) aligns with unseen

trajectory pairs sampled from µHF.

We first introduce the probabilistic preference model for a human evaluator generating

feedback data. We emphasize that our proposed method is not dependent on this model; we

introduce it to analyze a generalization property. Suppose that y ∈ {1, 2} is sampled from
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a Bernoulli distribution with the probabilistic model P(y = 1 | τ 1, τ 2) = Φ(r⊤true(ψ
1 − ψ2)),

where Φ : R 7→ [0, 1] is a monotonically non-decreasing function satisfying Φ(x)+Φ(−x) = 1

for all x ∈ R. Φ represents the preference model of the evaluator, based on their personal

reward function rtrue. For example, if Φ is a sigmoid function, i.e. Φ(x) = 1/(1 + e−x), then

the above probabilistic model is reduced to the Bradley-Terry-Luce (BTL) model [Christiano

et al., 2017]. In the following theorem, we provide a generalization guarantee of any reward

functions r contained in the estimated solution set R̂HF(ϵr). Specifically, for a random

(unseen) trajectory pair (τ 1, τ 2) sampled from the sampling distribution µHF and the human

feedback y sampled from the preference model Φ, we prove that the error L(τ 1, τ 2, y; r) is

bounded by ϵr with high probability.

Theorem 2. Suppose r ∈ R̂HF(ϵr) and the human feedback data (τ 1, τ 2, y) is sampled i.i.d.

from the joint distribution (µHF,Φ). Then, for any δ ∈ (0, 1),

P
(
L(τ 1, τ 2, y; r) ≥ ϵr

)
≤

√
1

2Nq

log
1

δ
(4.8)

holds with probability at least 1− δ.

Proof. See Appendix A.3.

Note that a trade-off between optimality and feasibility exists in R̂HF(ϵr) with respect

to the parameter ϵr, similar to R̂IRL(ϵg) in offline IRL. Specifically, while it is preferable

to set the parameter ϵr as small as possible to avoid overly relaxing the RLHF constraint,

excessively reducing ϵr can lead to feasibility issues. In practice, if any prior knowledge about

the preference model Φ is available, this information can guide the selection of ϵr. If no such

information is available, ϵr can be determined experimentally by starting with a large value

and gradually reducing it until the reward set becomes trivial or infeasible.

In the following proposition, the existence of rtrue in the set R̂RLHF(ϵr) is discussed with

respect to the value of ϵr. More precisely, we claim that rtrue ∈ R̂HF with high probability if

ϵr exceeds certain value. This result guides how to set the parameter ϵr.
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Proposition 2. Suppose the human feedback data (τ 1, τ 2, y) is sampled i.i.d. from the joint

distribution (µHF,Φ) with the true reward function rtrue. If Φ(−ϵr) ≤ δ
2Nq

, then P(rtrue ∈

R̂HF(ϵr)) ≥ 1− δ holds for any δ ∈ (0, 1).

Proof. See Appendix A.5.

4.4 Integration of IRL and RLHF

Finally, our LP framework facilitates the integration of two types of expert data: IRL (trajec-

tories collected from the expert policy) and RLHF (pairwise trajectory comparisons). This is

a unique feature of our LP framework, one that remains unexplored in the MLE framework.

We propose to recover the reward function r from the intersection of two sets R̂IRL(ϵg) and

R̂HF(ϵr) such that

R̂IRL-HF(ϵg, ϵr) = {(r, u, v) | (u, v) ∈ R̂IRL(ϵg), r ∈ R̂HF(ϵr), u = d̂e ◦ r}. (4.9)

In this combined formulation, the IRL constraint (u, v) ∈ R̂IRL(ϵg) provides the optimality

guarantee of the expert policy, while the RLHF constraint r ∈ R̂HF(ϵr) reduces the solution

set and mitigates degeneracy by imposing additional constraints.

Extension to Continuous Feedback. If we can impose a strict reward gap between

two trajectories, then the RLHF constraint can mitigate degeneracy more effectively. For

instance, the constraint r(τ 1) ≥ r(τ 2)+δ eliminates degenerate solutions that satisfy r(τ 1) =

r(τ 2) from the solution set, if we can set a strict reward gap δ > 0 based on human feedback

data. To formalize this, we extend our approach to include the continuous feedback case,

wherein the feedback is given as a continuous variable, y ∈ [−1, 1], instead of the discrete

variable used in previous sections. Suppose that the cumulative distribution function (CDF)
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for y, given a query pair (τ 1, τ 2), can be expressed as:

P(y ≤ α | (τ 1, τ 2)) = Φ(α; r⊤true(ψ
1 − ψ2)) ∀α ∈ [−1, 1]. (4.10)

Specifically, Φ(·; r) : [−1, 1] 7→ [0, 1] is assumed to be a CDF for any r ∈ R, i.e. right-

continuous, monotonically non-decreasing, Φ(−1; r) = 0, and Φ(1; r) = 1. Furthermore, we

assume that Φ(α; ·) : R 7→ [0, 1] is monotonically non-increasing with respect to r to reflect a

preference in the pairwise comparison. Then, we enforce the reward gap to be greater than

c|y| by defining an error as

L′(τn,1, τn,2, yn; r) :=
(
cyn + r⊤(ψn,2 − ψn,1)

)
1{yn≥0} +

(
−cyn + r⊤(ψn,1 − ψn,2)

)
1{yn≤0},

(4.11)

where c > 0 is a scaling parameter. The solution set R̂CHF(ϵr) is then defined in the same

way with (4.3) using the error L′.

R̂CHF(ϵr) := {r | L′(τn,1, τn,2, yn; r) ≤ ϵr ∀n = 1, 2, . . . , Nq, r ∈ [−1, 1]|S||A|}. (4.12)

The reward function r is recovered within the intersection of two sets R̂IRL(ϵg) and R̂CHF(ϵr):

R̂IRL-CHF(ϵg, ϵr) = {(r, u, v) | (u, v) ∈ R̂IRL(ϵg), r ∈ R̂CHF(ϵr), u = d̂e ◦ r}. (4.13)

It is important to note that R̂IRL-CHF(ϵg, ϵr) can become infeasible if ϵg or ϵr is set too small,

due to the strict reward gap. Therefore, choosing proper values for ϵg and ϵr is crucial

to ensure the feasibility of the LP. The generalization guarantee also follows directly from

Theorem 2.

Corollary 1. Suppose r ∈ R̂CHF(ϵr) and the human feedback data (τ 1, τ 2, y) is sampled i.i.d.
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from the joint distribution (µHF,Φ). Then, for any δ ∈ (0, 1),

P
(
L′(τ 1, τ 2, y; r) ≥ ϵr

)
≤

√
1

2Nq

log
1

δ
(4.14)

holds with probability at least 1− δ.

Additionally, in the next section, we compare the effects of discrete and continuous human

feedback through numerical experiments.
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Chapter 5

Numerical Experiments

In this chapter, we demonstrate the performance of our LP algorithms through numerical

experiments, comparing them to MLE algorithms in the literature. We consider an MDP

with |S| = 10, |A| = 2, and γ = 0.95. In each experimental run, P and µ0 are randomly

selected. To introduce additional complexity to the problem, we have set the true rewards

to have similar values: rtrue(s, a1) = 1.0 and rtrue(s, a2) = 0.9 for all states s ∈ S. The per-

formance of each algorithm is assessed by measuring the proximity of an optimal occupancy

measure under the true reward rtrue and the estimated reward function r̂. Specifically, we

report ∥d∗(rtrue) − d∗(r̂)∥1, which represents the L1 error between the optimal occupancy

measures under rtrue and r̂. In each experiment, we sample N trajectories with a horizon of

H = 20 according to πe in IRL, and µHF in RLHF. For each sample size N , we conducted 200

experiments and reported the mean and standard deviation of the error. See Appendix A.6

for detailed parameters and algorithms used in the experiments.

5.1 Offline IRL

The left side of Figure 5.1 compares the errors associated with each IRL algorithm. The

results indicate that our LP-based algorithms generally outperform the bi-level optimization-

based MLE algorithm [Zeng et al., 2023], demonstrating that LP is more sample-efficient in
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Figure 5.1: L1 error in the optimal occupancy measure under an estimated reward function.
Left: Offline IRL algorithms; Right: Offline RLHF algorithms.

addressing ambiguity in the dynamics and the expert policy. The solution set with a smaller

relaxation level ϵg = 0.001/
√
N (LP-IRL-2) exhibits better performance than that with a

greater relaxation level ϵg = 0.01/
√
N (LP-IRL-1). This is consistent with the optimality-

feasibility trade-off discussed in Section 3.2. Additionally, the integration of IRL and RLHF

data leads to improved performance, as predicted. The use of continuous feedback (LP-

IRL-C) is even more effective than discrete feedback (LP-IRL-D) by facilitating stricter

constraints.

5.2 Offline RLHF

In numerical experiments for offline RLHF, the human feedback data is generated following

the greedy model. The right side of Figure 5.1 compares the reward function obtained from

LP (4.3) and the pessimistic MLE algorithm proposed by [Zhu et al., 2023] under the BTL

model. In the LP algorithm, the error decreases rapidly as the number of samples increases,

whereas the error in the MLE algorithm decreases more slowly. This result is consistent with

the discussion in Appendix A.4, suggesting that the MLE algorithm might be inefficient or

even fail if the human evaluator deviates from the assumed model, whereas LP does not.
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Chapter 6

Concluding Remarks

We have introduced a novel LP framework designed for offline IRL and RLHF. Our frame-

work possesses several salient features, including (i) tractability and sample efficiency with

an optimality guarantee, (ii) flexibility for extension due to its convex solution set, and (iii)

robustness against diverse decision models.

We believe our study opens up new avenues for research in the theories of offline reward

learning. It would be interesting to investigate efficient algorithms that adopt function

approximation with neural networks within the proposed framework, making it scalable to

high-dimensional or continuous state-action spaces. In the future, we also aim to extend our

framework to broader datasets, including those involving arbitrary sampling policies in IRL

and K-wise comparisons in RLHF. Additionally, we plan to investigate the transferability of

the estimated reward functions to similar environments.
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Appendix A

Omitted Proofs and Supporting Details

A.1 Proof of Lemma 2

For ease of notation, let δ′ = δ
2|S||A| . To show

P(X⊤(KDwd̃ − (1− γ)µ0) ≤ ϵx) ≥ 1− δ′, (A.1)

we divide our proof into two parts. First, for any column xi of X, we show that

x⊤i (KH −K)wd̃ ≤ (1 + γ)γHB (A.2)

holds for the matrix KH , which will be defined later. Next, we will prove that

x⊤i (KD −KH)wd̃ ≥ ϵxi − (1 + γ)γHB (A.3)

holds with probability less than δ′/Nx. Then, combining both inequalities yields x⊤i (KD −

K)wd̃ = x⊤i (KDwd̃ − (1 − γ)µ0) ≥ ϵxi holds with probability less than δ′/Nx, since Kwd̃ =

Md̃ = (1− γ)µ0 holds by d̃ ∈ DB. Applying union bound to all columns xi of X will lead to

the conclusion.
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To prove the first part, we first introduce the vector dHe ∈ R|S||A|, representing a finite-

horizon truncation of de up to the horizon H − 1:

dHe (s, a) := (1− γ)
H−1∑
h=0

γhP πe
µ0
(sh = s, ah = a) ∀(s, a) ∈ S × A. (A.4)

We also define the vector dP,He ∈ R|S|×|A|×|S| as the truncation of d′e as follows:

dP,He (s, a, s′) := (1− γ)
H−1∑
h=0

γhP πe
µ0
(sh = s, ah = a, sh+1 = s′) ∀(s, a, s′) ∈ S ×A× S. (A.5)

Then, we define the matrix KH ∈ R|S|2|A| using dHe and dP,He as follows:

KH(s
′, (s, a)) := dHe (s, a)1{s=s′} − γdP,He (s, a, s′) ∀(s, a, s′) ∈ S × A× S. (A.6)

Since KH can be considered as a finite-horizon truncation of K by its definition, only the

terms from h = H to ∞ remain in the matrix K −KH . Consequently, we get the following

inequalities that prove the first part:

|x⊤i (K −KH)wd̃| ≤
∑
s′∈S

|xi(s′)|
∞∑

h=H

(1− γ)γh
∑
a∈A

Pπe
µ0
(sh = s′, ah = a)wd̃(s

′, a)

+
∑
s′∈S

|xi(s′)|
∞∑

h=H

(1− γ)γh+1
∑

(s,a)∈S×A

Pπe
µ0
(sh = s, ah = a, sh+1 = s′)wd̃(s, a)

≤
∑
s′∈S

∞∑
h=H

(1− γ)γhPπe
µ0
(sh = s′)B +

∑
s′∈S

∞∑
h=H

(1− γ)γh+1Pπe
µ0
(sh+1 = s′)B

= γHB + γH+1B = (1 + γ)γHB.

(A.7)

The first inequality holds directly from the definitions ofK andKH , and the second inequality

results from the assumptions ∥xi∥∞ ≤ 1 and ∥wd̃∥∞ ≤ B. Then, we have x⊤i (KH −K)wd̃ ≤

(1 + γ)γHB.

For the second step, consider the following definition of the random variable z(τ) ∈ R,
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where τ represents the finite-horizon trajectory sample:

z(τ) :=
∑
s′∈S

xi(s
′)

∑
(s,a)∈S×A

wd̃(s, a)(1− γ)×
H−1∑
h=0

[
γh1{sh=s,ah=a} − γh+11{sh=s,ah=a,sh+1=s′}

]
.

(A.8)

Then, x⊤i KDwd̃ =
1
N

∑N
n=1 z(τ

n) holds, implying that x⊤i KDwd̃ is the empirical mean of the

random variable z(τ), derived fromN trajectory samples τn. Meanwhile, x⊤i KHwd̃ represents

the expected value of z(τ) over τ . Moreover, we can show that the random variable z(τ) has

a bounded range as follows:

|z(τ)| ≤ B(1− γ)
∑
s′∈S

∑
(s,a)∈S×A

H−1∑
h=0

[
γh1{sh=s,ah=a} + γh+11{sh=s,ah=a,sh+1=s′}

]
≤ B(1− γ)

(
1− γH

1− γ
+
γ − γH+1

1− γ

)
= B(1 + γ)(1− γH),

(A.9)

where we used the assumptions ∥xi∥∞ ≤ 1 and ∥wd̃∥∞ ≤ B in the first inequality. Therefore,

we can apply Hoeffding’s inequality as follows:

P
(
x⊤i (KD −KH)wd̃ ≥ ϵ

)
≤ exp

(
− Nϵ2

2B2(1 + γ)2(1− γH)2

)
∀ϵ ≥ 0. (A.10)

Let ϵ =
√

2B2(1+γ)2(1−γH)2

N
log Nx

δ′
and ϵxi = ϵ + (1 + γ)γHB. Then, the above inequality is

equivalent to

P
(
x⊤i (KD −KH)wd̃ ≥ ϵxi − (1 + γ)γHB

)
≤ δ′

Nx

. (A.11)

Plugging the inequality x⊤i (KH −K)wd̃ ≤ (1 + γ)γHB derived in the first part, we get

P
(
x⊤i (KD −KH)wd̃ + x⊤i (KH −K)wd̃ ≥ ϵxi

)
≤ P

(
x⊤i (KD −KH)wd̃ + (1 + γ)γHB ≥ ϵxi

)
≤ δ′

Nx

.
(A.12)

Thus, P
(
x⊤i (KD −K)wd̃ ≥ ϵxi

)
≤ δ′/Nx. Taking the union bound to all events over i =
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1, 2, . . . , Nx,

P
(
X⊤(KD −K)wd̃ ≥ ϵx

)
≤ δ′. (A.13)

Since Kwd̃ =Md̃ = (1− γ)µ0 by d̃ ∈ DB, the above inequality is equivalent to

P
(
X⊤(KDwd̃ − (1− γ)µ0) ≥ ϵx

)
≤ δ′, (A.14)

which completes the proof.

A.2 Proof of Theorem 1

The proof is comprised of three steps. In the first step, we employ a concentration bound

to establish a limit on the difference between u⊤1 and u⊤D1, ensuring that P(u⊤1 − u⊤D1 ≥

−ϵu1) ≥ 1−δ for a certain ϵu1. Next, from the feasibility of wd̃ proven by Lemma 2 and using

the optimality conditions in (3.11), we can show that P(u⊤D1 ≥ u⊤Dwd̃− ϵg, ∀d̃ ∈ DB) ≥ 1− δ

holds. The final step is to bound the difference between u⊤Dwd̃ and u⊤wd̃, showing that

P(u⊤Dwd̃ − u⊤wd̃ ≥ −ϵu2, ∀d̃ ∈ DB) ≥ 1− δ for a specific ϵu2. Combining these three results

with the union bound completes the proof.

We first prove that P(u⊤1−u⊤D1 ≥ −ϵu1) ≥ 1−δ holds if we let ϵu1 =
√

2(1−γH)2

N
log 1

δ
+γH .

Since u⊤1−u⊤D1 = r⊤de−r⊤d̂e = r⊤(de−dHe )+r⊤(dHe − d̂e), we bound two terms r⊤(de−dHe )

and r⊤(dHe − d̂e) separately. First, r⊤(de − dHe ) can be bounded as

|r⊤(de − dHe )| ≤ (1− γ)
∑

(s,a)∈S×A

|r(s, a)|
∞∑

h=H

γhP π
µ0
(sh = s, ah = a)

≤ (1− γ)
∑

(s,a)∈S×A

∞∑
h=H

γhP π
µ0
(sh = s, ah = a) = γH .

(A.15)
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Next, consider the random variable z′(τ) defined as

z′(τ) := (1− γ)
∑

(s,a)∈S×A

r(s, a)
H−1∑
h=0

γh1{sh=s,ah=a}, (A.16)

which represents the cumulative reward of τ multiplied by the constant (1−γ). According to

its definition, r⊤dHe is the expected value of z′(τ) over τ , while r⊤d̂e is the empirical mean of

z′(τ) derived from the samples (τ 1, τ 2, . . . , τN). Moreover, from its definition, we can easily

show that z′(τ) lies in the interval [−(1 − γH), 1 − γH ]. Thus, we can apply Hoeffding’s

inequality to bound the term r⊤(dHe − d̂e) as follows:

P(r⊤(dHe − d̂e) ≤ −ϵ) ≤ exp

(
−Nϵ2

2(1− γH)2

)
∀ϵ ≥ 0. (A.17)

Letting ϵ = ϵu1 − γH yields P(r⊤(dHe − d̂e) ≤ −ϵu1 + γH) ≤ δ. Then, adding two results

completes the first steps follows:

P(u⊤1− u⊤D1 ≤ −ϵu1) = P(r⊤(dHe − d̂e) + r⊤(de − dH) ≤ −ϵu1)

≤ P(r⊤(dHe − d̂e) ≤ −ϵu1 + γH) ≤ δ.

(A.18)

Next, by Lemma 2, wd̃ is a feasible solution to (3.8) with probability at least 1− δ
2|S||A| .

If wd̃ is a feasible solution to (3.8), then the following inequalities hold:

u⊤D1
(i)

≥ (1− γ)µ⊤
0XvD + ϵ⊤x vD − ϵg

(ii)

≥ w⊤
d̃
K⊤

DXvD − ϵg

(iii)

≥ w⊤
d̃
uD − ϵg

(A.19)

The inequality (i) holds by the duality gap constraint, (ii) holds because wd̃ is feasible to

(3.8), and (iii) holds by the feasibility constraint K⊤
DXvD ≥ uD and wd̃ ≥ 0. Therefore, we
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get

P(u⊤D1 ≥ u⊤Dwd̃ − ϵg) ≥ 1− δ

2|S||A| . (A.20)

We then take union bound over all extreme points of DB. Since DB has at most 2|S||A|

extreme points, we get

P(u⊤D1 ≥ u⊤Dwd̃ − ϵg, ∀d̃ ∈ DB) ≥ 1− δ. (A.21)

In addition, by similar steps to the first part of the proof, we can show that

P(u⊤Dwd̃ − u⊤wd̃ ≥ −ϵu2) ≥ 1− δ

2|S||A| , (A.22)

if we let ϵu2 = B
√

2(1−γH)2|S||A|
N

log 2
δ
+BγH . Taking union bound over all extreme points of

d̃ ∈ DB yields

P(u⊤Dwd̃ − u⊤wd̃ ≥ −ϵu2, ∀d̃ ∈ DB) ≥ 1− δ, (A.23)

Taking union bound to the above three cases and using u⊤1 = r⊤de and u⊤wd̃ = r⊤d̃ from

Lemma 1, the conclusion holds as

P(r⊤de ≥ r⊤d̃− ϵ, ∀d̃ ∈ DB) = P(u⊤1 ≥ u⊤wd̃ − ϵg − ϵu1 − ϵu2, ∀d̃ ∈ DB) ≥ 1− 3δ. (A.24)

A.3 Proof of Theorem 2

We first define the random variable

g(τ 1, τ 2, y) := 1{L(τ1,τ2,y;r)≥ϵr}(τ
1, τ 2, y), (A.25)
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where 1{L(τ1,τ2,y;r)≥ϵr}(τ
1, τ 2, y) is the indicator function for the event that an error exceeds

ϵr, i.e. L(τ 1, τ 2, y; r) ≥ ϵr. The expected value of g can be expressed as

ḡ = E(τ1,τ2,y)∼(µHF,Φ)[g(τ
1, τ 2, y)] = P(L(τ 1, τ 2, y; r) ≥ ϵr). (A.26)

From the assumption that r ∈ R̂HF(ϵr), the empirical mean of g is given by 0:

ĝ =
1

Nq

Nq∑
n=1

g(τn,1, τn,2, yn) = 0. (A.27)

From Hoeffding’s inequality, we have P(ĝ − ḡ ≤ −ϵ) ≤ e−2Nqϵ2 = δ if ϵ =
√

1
2Nq

log 1
δ
.

Therefore, ḡ ≤ ϵ holds with probability at least 1− δ, which completes the proof.

A.4 Proof of Proposition 1

Consider a linear bandit with a single state s and three actions a1, a2, and a3. We consider

the tabular setting such that rθ = [θ1, θ2, θ3], where θi denotes the reward for the action ai.

Suppose that human evaluators follow the deterministic (greedy) model, and the preference

order is given by a3 > a2 > a1, i.e. a3 is the most preferable and a1 is the least preferable

action.

We construct a sampling distribution such that both MLE and pessimistic MLE algo-

rithms in [Zhu et al., 2023] returns a wrong policy with high probability, while LP succeeds to

find an optimal policy. Specifically, if the pair (a1, a2) is sampled with a significantly higher

probability compared to the pair (a2, a3) in the queries, we show that {θ̂MLE}2 > {θ̂MLE}3

holds under the BTL model and the greedy evaluator. The MLE algorithm proposed in [Zhu

et al., 2023] estimate the reward parameter by solving

θ̂MLE ∈ argmax
θ∈Θ

N12

N
log

eθ2

eθ1 + eθ2
+
N23

N
log

eθ3

eθ2 + eθ3
+
N31

N
log

eθ3

eθ3 + eθ1
, (A.28)
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where Nij denotes the number of queries (ai, aj), N = N12 +N23 +N31, and Θ = {θ | 1⊤θ =

0, ∥θ∥2 ≤ 1}. We first prove the following lemma:

Lemma 3. Let θ∗ = [θ∗1, θ
∗
2, θ

∗
3] be an optimal solution to the following optimization problem:

max
θ∈Θ

J(θ1, θ2, θ3) = α log
eθ2

eθ1 + eθ2
+ β log

eθ3

eθ2 + eθ3
(A.29)

where α, β ∈ (0, 1). If α > 2e3β, then θ∗2 > θ∗3.

Proof. Define the Lagrangian function L(θ1, θ2, θ3, λ1, λ2) = J(θ1, θ2, θ3) + λ1(1 − θ21 − θ22 −

θ23) + λ2(θ1 + θ2 + θ3). From the KKT conditions,

[
∂L
∂θ2

]
(θ∗,λ∗)

= α
eθ

∗
1

eθ
∗
1 + eθ

∗
2
− β

eθ
∗
2

eθ
∗
2 + eθ

∗
3
− 2λ∗1θ

∗
2 + λ∗2 = 0,[

∂L
∂θ3

]
(θ∗,λ∗)

= β
eθ

∗
2

eθ
∗
2 + eθ

∗
3
− 2λ∗1θ

∗
3 + λ∗2 = 0.

(A.30)

Subtracting both equations yields

α
eθ

∗
1

eθ
∗
1 + eθ

∗
2
− 2β

eθ
∗
2

eθ
∗
2 + eθ

∗
3
= 2λ∗1(θ

∗
2 − θ∗3). (A.31)

If α > 2e3β, we can show that the left hand side of the above equality must be greater than

0 as follows:

α
eθ

∗
1

eθ
∗
1 + eθ

∗
2
− 2β

eθ
∗
2

eθ
∗
2 + eθ

∗
3
> 2β

(
eθ

∗
1+3

eθ
∗
1 + eθ

∗
2
− eθ

∗
2

eθ
∗
2 + eθ

∗
3

)
= 2β

eθ
∗
1+θ∗2+3 + eθ

∗
1+θ∗3+3 − eθ

∗
1+θ∗2 − e2θ

∗
2

(eθ
∗
1 + eθ

∗
2 )(eθ

∗
2 + eθ

∗
3 )

= 2β
(eθ

∗
1+θ∗2+3 − eθ

∗
1+θ∗2 ) + (e3−θ∗2 − e2θ

∗
2 )

(eθ
∗
1 + eθ

∗
2 )(eθ

∗
2 + eθ

∗
3 )

> 0,

(A.32)

where the last inequality comes from θ∗2 ≤ 1. Then, the right hand side 2λ∗1(θ
∗
2 − θ∗3) must

be greater than zero as well. Since λ∗1 ≥ 0, we get θ∗2 > θ∗3.

By Lemma 3, there exist α, β ∈ (0, 1) such that if N12

N
≥ α, N23

N
≤ β, and N31 = 0, then
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{θ̂MLE}2 > {θ̂MLE}3. For any δ > 0, there exists a sampling distribution µHF satisfying

P(N12 ≥ αN, 1 ≤ N23 ≤ βN, N31 = 0) ≥ 1− δ. (A.33)

Then, under this sampling distribution µHF, π̂MLE(s) = a2 with probability at least 1 − δ,

while π∗(s) = a3.

Next, we consider the pessimistic MLE under µHF. The pessimistic MLE imposes higher

penalty on the reward function of state-action pairs that have less support in the data.

Therefore, intuitively, the penalty for the state a3 will be higher than a2, and thus, π̂PE(s) =

a2 will hold. We use the penalty function proposed in [Zhu et al., 2023] to confirm this.

Consider the covariance matrix

Σ =
1

N


N12 −N12 0

−N12 N12 +N23 −N23

0 −N23 N23

 . (A.34)

Then, the penalty function for a2 and a3 are computed as

ϕ2 = ∥[0, 1, 0]∥2(Σ+λI)−1 =
(N12 + λ)(N23 + λ)

|Σ + λI|
,

ϕ3 = ∥[0, 0, 1]∥2(Σ+λI)−1 =
(N12 + λ)(N12 +N23 + λ)−N2

12

|Σ + λI|
.

(A.35)

It is easy to show that ϕ3 ≥ ϕ2 for any λ ≥ 0. Then, the inequality

{θ̂MLE}2 − c∥ϕ2∥(Σ+λI)−1 > {θ̂MLE}3 − c∥ϕ3∥(Σ+λI)−1 (A.36)

holds for any constant c > 0, and thus, π̂PE chooses a2 as the best action. Therefore,

π̂PE ̸= π∗. Finally, since there exists at least one query of (a2, a3) (by N23 ≥ 1), we have

{θ̂LP}2 ≤ {θ̂LP}3 + ϵr. Let ϵr ≤ 0, we have π̂LP = π∗, which completes the proof.
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A.5 Proof of Proposition 2

By definition of the preference model, P(yn = 1 | r⊤true(ψ
n,2 − ψn,1) ≥ ϵr) ≤ Φ(−ϵr) holds for

all n = 1, 2, . . . , Nq. Then, we have

P(yn = 1, r⊤true(ψ
n,2 − ψn,1) ≥ ϵr)

= P(yn = 1 | r⊤true(ψ
n,2 − ψn,1) ≥ ϵr)P(r⊤true(ψ

n,2 − ψn,1) ≥ ϵr)

≤ Φ(−ϵr),

(A.37)

Similarly, P(yn = 2, r⊤true(ψ
n,1 − ψn,2) ≥ ϵr) ≤ 1− Φ(ϵr) = Φ(−ϵr). Therefore,

P(yn = 1, r⊤true(ψ
n,2 − ψn,1) ≥ ϵr) + P(yn = 2, r⊤true(ψ

n,1 − ψn,2) ≥ ϵr) ≤ 2Φ(−ϵr), (A.38)

We complete the proof by the union bound of two probabilities:

P(rtrue ∈ R̂HF(ϵr))

= 1− P(∃n s.t. yn = 1, r⊤true(ψ
n,2 − ψn,1))− P(∃n s.t. yn = 2, r⊤true(ψ

n,1 − ψn,2)

≥ 1−
Nq∑
n=1

[
P(yn = 1, r⊤true(ψ

n,2 − ψn,1) > ϵr) + P(yn = 2, r⊤true(ψ
n,1 − ψn,2) > ϵr)

]
≥ 1− 2NqΦ(−ϵr) ≥ 1− δ.

(A.39)

A.6 Detailed Experimental Setup

Environment setting and dataset. We consider an MDP with |S| = 10, |A| = 2, and

γ = 0.95. The initial state distribution µ0 and state transition probabilities P are randomly

selected for each experiment. Specifically, each element of µ0 and P is generated from a

uniform distribution in the range of [0, 1], and then scaled to form probability distributions.
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In each experimental run, we sample N trajectories with a horizon of H = 20. πe is used

for sampling trajectories in IRL, and the uniform policy (π(a|s) = 1/|A| ∀(s, a) ∈ S × A)

is employed for sampling queries (trajectory pairs) in RLHF.

Performance criteria. To introduce additional complexity to the problem, we have set

the true rewards to have similar values: rtrue(s, a1) = 1.0 and rtrue(s, a2) = 0.9 for all states

s ∈ S. The performance of each algorithm is then assessed by measuring the proximity of an

optimal occupancy measure under the true reward rtrue and the obtained reward function r̂.

Specifically, we report ∥d∗(rtrue)− d∗(r̂)∥1, the L1 error between the true optimal occupancy

measure d∗(rtrue) and the optimal occupancy measure d∗(r̂) under the estimated reward r̂.

This error falls within the range of 0 to 2, with a value of 0 indicating that the estimated

optimal policy is equivalent to the true optimal policy. For each sample size N , we conducted

200 experiments and reported the mean and standard deviation of the error.

Expert setting. In offline IRL, the expert policy for sampling trajectories is set to πe =

0.52 × π∗ + 0.48 × πr, where πr denotes a greedy policy that selects a suboptimal action.

This setting reflects that πe can deviate from π∗, particularly when all state-action pairs

have similar rewards. In offline RLHF, we consider two different types of human feedback:

discrete feedback y ∈ {1, 2} and continuous feedback y ∈ [−1, 1]. The discrete feedback is

generated according to the BTL model under the reward rtrue. The continuous feedback is

generated from the uniform distribution, in the range between 0 and 0.2× r⊤true(ψ
1 − ψ2).

Algorithm details. Table A.1 provides a detailed description of the algorithms used in

experiments. We employ a tabular setting for the reward function without any function

approximation. In LP-IRL-1 and LP-IRL-2, we assume that 2/3 of trajectories are sampled

from πe, and the remaining samples are obtained from the uniform policy to estimate d̂sub. In

LP-IRL-D and LP-IRL-C, we assume that 2/3 of trajectories are sampled from πe, and the

the remaining trajectories are sampled from the uniform policy to generate human feedback.
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Table A.1: Algorithm Details

Algorithms Description Parameters

MLE-IRL Bi-level optimization algorithm for offline IRL [Zeng
et al., 2023]

Step size = 0.01

LP-IRL-1 LP formulation of IRL (3.20) with a moderate ϵg ϵg = 0.01/
√
N

LP-IRL-2 LP formulation of IRL (3.20) with a tighter ϵg ϵg = 0.001/
√
N

LP-IRL-D Integration of IRL and RLHF with discrete feed-
back (4.9)

ϵg = 0.01/
√
N

ϵr = 0.01/
√
N

LP-IRL-C Integration of IRL and RLHF with continuous feed-
back (4.13)

ϵg = 0.1/
√
N

ϵr = 0.01/
√
N

MLE-HF Pessimistic MLE under the BTL model [Zhu et al., 2023] λ = 0.1, B = 1
LP-HF LP formulation of RLHF (4.3) ϵr = −0.01

In all LP-IRL algorithms, we use the L1 norm constraint for X, and we set δ = 0.1 and

B = 100. In MLE-HF and LP-HF, human feedback is given as discrete value following the

greedy model. In LP-HF, a reward function is selected from (4.3) by optimizing a dummy

objective function. For algorithm details of MLE-IRL and MLE-RLHF, please refer to [Zeng

et al., 2023] and [Zhu et al., 2023], respectively.
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