
Peer-to-Peer Group Communication
for City-Scale Mesh Networks

by

William A. Sussman
Bachelor of Science, Yale University (2021)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2024

© 2024 William A. Sussman. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by: William A. Sussman
Department of Electrical Engineering and Computer Science
May 17, 2024

Certified by: Hari Balakrishnan
Fujitsu Professor of Computer Science and Artificial Intelligence
Thesis Supervisor

Accepted by: Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Peer-to-Peer Group Communication
for City-Scale Mesh Networks

by

William A. Sussman

Submitted to the Department of Electrical Engineering and Computer Science
on May 17, 2024 in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

ABSTRACT

The Internet has become extremely centralized. The benefits of centralization have thus
far outweighed the drawbacks, but users today are much more concerned about privacy, and
reachability is increasingly threatened by natural disasters, political repression, cyberattacks,
and human error. CityMesh provides an answer to this problem, constructing a decentralized
mesh network out of wireless access points. To test our unicast routing protocol, we built
a discrete-event network simulator using SimPy. However, we make several simplifying
assumptions, and unicast is not sufficient for many applications. In this thesis, I show
that our simulator nevertheless achieves 67.4% correlation with real data that we collected,
and I generalize our simulator for multicast. Specifically, I compose our unicast primitive
into multicast trees using three different topologies, and surprisingly find that Steiner trees
perform worse than minimum spanning trees on average.

Thesis supervisor: Hari Balakrishnan
Title: Fujitsu Professor of Computer Science and Artificial Intelligence

3

4

Acknowledgments

My advisor, Hari, has been very patient with me. It has been an honor to work with him
and Manya Ghobadi on this project, alongside James Lynch, Chenning Li, and Charlie Liu.
I had a helpful conversation with David Karger, and my undergraduate advisor, Wenjun Hu,
provided invaluable feedback. On a personal note, MIT Hillel has been a reliable source of
support, and I can always count on my friends and family. Thank you all.

5

6

Contents

Title page 1

Abstract 3

Acknowledgments 5

List of Figures 9

1 Introduction 11

2 Related Work 13
2.1 Peer-to-Peer . 13
2.2 Group Communication . 13
2.3 City-Scale Mesh Networks . 13

3 Simulator 15
3.1 Measurement Setup . 15
3.2 Results . 20

4 Multicast 23
4.1 Star Graph . 23
4.2 Minimum Spanning Tree . 23
4.3 Steiner Tree . 23
4.4 Experimental Setup . 23
4.5 Results . 24

5 Conclusion 27

References 29

7

8

List of Figures

3.1 Measurement setup. 16
3.2 Downtown route. 17
3.3 River route. 18
3.4 Cityblock route. 19
3.5 Distribution of measured signal strengths. 20
3.6 Real vs. simulated number of MAC addresses in fingerprint. 21
3.7 Number of MAC addresses as a function of distance traveled. 22

4.1 Effect of scaling on average total buildings (semi-log). 24
4.2 Effect of scaling on average tree size (semi-log). 25
4.3 Effect of scaling on average buildings per route (semi-log). 25
4.4 Minimum spanning tree and Steiner tree for the same 4 destinations. 26

9

10

Chapter 1

Introduction

The Internet was supposed to be decentralized. Today, it is more centralized than ever:
Google alone has nine services with over 1 billion users, including YouTube (2.1 billion),
Gmail (1.8 billion), and Drive (1 billion) [1]. Meta owns Facebook (3 billion), WhatsApp
(2 billion), Instagram (2 billion), and Messenger (979 million) [2]. Fundamentally, each of
these applications has a central server for all its clients; an application may be sharded across
many physical servers and datacenters, but it is still logically centralized.

For example: When <userA> sends an email to <userB>@gmail.com, the email is not
sent directly to <userB>. Instead, the email is sent to gmail.com, and <userB> downloads a
copy. This centralized architecture has benefits and drawbacks. On one hand, <userB> can
download a copy onto many devices, or lose all copies without losing the email, and Google
is responsible for maintaining the server (including security). On the other hand, Google
can read all of <userB>’s emails, and if gmail.com is down or unreachable by <userA> or
<userB>, then email will not work.

The benefits of centralization have thus far outweighed the drawbacks. But this is chang-
ing. Users today are much more concerned about privacy, and reachability is increasingly
threatened by natural disasters, political repression, cyberattacks, and human error.

CityMesh provides an answer to this problem. By leveraging the density of wireless
access points (APs) in cities, we can construct a decentralized mesh network for peer-to-peer
communication. <userA> would send email directly to <userB>’s mailbox at <buildingB>,
rather than gmail.com. <userB> can query <buildingB> remotely, enabling mobility. We
assume that user addresses are exchanged out-of-band, obviating the need for a location
service.

To test our unicast routing protocol, we built a discrete-event network simulator using
SimPy. However, we make several simplifying assumptions. In Chapter 3, I show that our
simulator nevertheless achieves 67.4% correlation with real data that we collected.

Additionally, unicast is not sufficient for many applications, such as group chat and
social media. Group communication requires multicast. In Chapter 4, I compose our unicast
primitive into multicast trees using three different topologies: star, minimum spanning tree
(MST), and Steiner tree. Conventional wisdom suggests that Steiner would outperform
MST, but surprisingly I found that Steiner performs worse than MST on average.

I begin with a discussion of related work in Chapter 2.

11

12

Chapter 2

Related Work

This thesis touches on three broad topics: peer-to-peer, group communication, and city-scale
mesh networks.

2.1 Peer-to-Peer

Much has been written about peer-to-peer applications such as Napster, Gnutella, FastTrack,
and BitTorrent. A survey can be found in [3]; interestingly, Skype used to be peer-to-peer
but has since moved to the cloud. CityMesh differs from these applications because it is not
an overlay on top of IP.

2.2 Group Communication

Multicast is also a well-studied problem. Despite proposals like SRM [4], RMTP [5], MTCP [6],
and PGMCC [7], network-layer multicast has not been embraced. As a result, application-
layer multicast protocols have been developed, such as Narada [8], Yoid [9], HMTP [10],
NICE [11], Scribe [12], and CAN Multicast [13]. A survey can be found in [14].These would
be interesting to implement in CityMesh; for simplicity, however, I focus on basic tree algo-
rithms.

2.3 City-Scale Mesh Networks

Greedy routing is very scalable, but gets stuck at dead ends. One solution is GPSR [15],
which recovers by routing around the perimeter of the local region using a right-hand rule.
Geographic Source Routing [16] is the most similar to CityMesh, computing the shortest
path through a map.

Roofnet [17] was one of the first mesh networks deployed at city-scale. Like CityMesh,
it uses shortest-path source routing, but its goal is to route to Internet gateways.

13

14

Chapter 3

Simulator

Ideally we would build CityMesh using the real APs in a city, but since we do not have
access to these APs, we turn to simulation. Existing discrete-event network simulators such
as ns-3 [18] are more sophisticated than we need for our initial exploration, so we built
our own simple simulator using SimPy. In particular, we make the following simplifying
assumptions:

• The number of APs in a building is proportional to the building footprint area. This
ignores building height; our model is 2D.

• Every building has at least one AP.

• APs are spread uniformly within each building footprint.

• Two APs can communicate bidirectionally if and only if they are within a global con-
stant distance. This ignores wireless effects.

We download building footprints from OpenStreetMap (OSM) [19]. For each building
footprint, we multiply the area by the global parameter ap_density to get the number
of APs in the building, and place them randomly within the footprint. For example, if
ap_density = 0.005 APs/m2, then a building with 1,000 square meters will be assigned 5
APs. All building are assigned at least one AP. Each AP can communicate with other APs
within tx_range meters.

3.1 Measurement Setup

We measured real APs along several bike routes in Boston and Cambridge, and compared the
real results with the simulated results. Data was collected using a WiFi Pineapple [20] in a
backpack while biking, as shown in Figure 3.1. The bike routes are shown in Figures 3.2–3.4;
we focus on the downtown dataset (Fig. 3.2) because it is the largest and most heterogeneous.
At each sampling point, a GPS device recorded the location, and the Pineapple recorded a
“fingerprint” of MAC addresses, similar to VTrack [21].

15

Figure 3.1: Measurement setup.

16

327 328 329 330 331
x (km)

4690.0

4690.5

4691.0

4691.5

4692.0

4692.5

4693.0

y
(k

m
)

simulated APs
measurement points

Figure 3.2: Downtown route.

17

324 325 326 327 328 329 330
x (km)

4690.5

4691.0

4691.5

4692.0

4692.5

4693.0

4693.5

4694.0

y
(k

m
)

simulated APs
measurement points

Figure 3.3: River route.

18

327.5 328.0 328.5 329.0 329.5 330.0
x (km)

4690.4

4690.6

4690.8

4691.0

4691.2

4691.4

4691.6

4691.8

y
(k

m
)

simulated APs
measurement points

Figure 3.4: Cityblock route.

19

90 80 70 60 50 40 30
Signal Strength (dB)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Figure 3.5: Distribution of measured signal strengths.

3.2 Results

At first, the correlation is poor. For example, with ap_density = 0.001 APs/m2 and
tx_range = 55 m, the correlation is 43.0% (Fig. 3.6a). However, most of the real APs
have weak signal strengths; more than 90% of the measured signal strengths were below
−60 dB (Fig. 3.5). Instead of improving the simulator, we can improve our interpretation of
reality!

Applying a minimum strength to the real data significantly improves the correlation.
With min_strength = −60 dB, the same parameterization yields a correlation of 67.4%
(Fig. 3.6b). This was the highest correlation encountered during a parameter sweep. There-
fore, we set ap_density and tx_range to 0.001 APs/m2 and 55 m, respectively.

Perhaps even more compelling is the number of MAC addresses as a function of distance
traveled (Fig. 3.7). Filtering alters the shape of the real data, resulting in a closer match to
the simulated data.

20

0 100 200 300 400 500
Real number of MAC addresses in fingerprint

0

100

200

300

400

500

Si
m

ul
at

ed
 n

um
be

r o
f M

AC
 a

dd
re

ss
es

 in
 fi

ng
er

pr
in

t

(a) Unfiltered. Correlation = 43.0%.

0 20 40 60 80 100 120
Real number of MAC addresses in fingerprint

0

20

40

60

80

100

120

Si
m

ul
at

ed
 n

um
be

r o
f M

AC
 a

dd
re

ss
es

 in
 fi

ng
er

pr
in

t

(b) Filtered. Correlation = 67.4%.

Figure 3.6: Real vs. simulated number of MAC addresses in fingerprint.

21

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Distance (km)

0

200

400

600

800
Nu

m
be

r o
f M

AC
 a

dd
re

ss
es

 in
 fi

ng
er

pr
in

t
real
sim

(a) Unfiltered. Correlation = 43.0%.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Distance (km)

0

20

40

60

80

100

120

140

160

Nu
m

be
r o

f M
AC

 a
dd

re
ss

es
 in

 fi
ng

er
pr

in
t

real
sim

(b) Filtered. Correlation = 67.4%.

Figure 3.7: Number of MAC addresses as a function of distance traveled.

22

Chapter 4

Multicast

Group communication is essential for many applications. Users often send one email to many
addresses, one text message to many members of a group chat, or one post to many followers
on social media. The key question is how to construct a tree connecting the terminals (source
+ destinations).

4.1 Star Graph

A naive solution is to unicast from the source for all destinations, forming a star graph. This
barely qualifies as a multicast tree; it is included only as a baseline in Figure 4.1.

4.2 Minimum Spanning Tree

I construct a complete graph G = (V,E), where V is the set of terminals, and the weight of
each edge e = (u, v) ∈ E is the cost of the weighted shortest path between u and v in the
building graph. The minimum spanning tree of G is the multicast tree.

4.3 Steiner Tree

Steiner tree is similar to minimum spanning tree, except any building can be a Steiner point.
According to conventional wisdom, Steiner tree should be better than minimum spanning
tree. I use the Mehlhorn algorithm to compute the Steiner tree.

4.4 Experimental Setup

Let k be the number of destinations. For each k in a geometric sequence, I generate 100
random pairs (s, {t1, ..., tk}), and for each pair I generate a star graph, a minimum spanning
tree, and a Steiner tree. Each data point in Figures 4.1–4.3 is an average of 100 pairs, with
error bars showing ±1 standard deviation.

23

1 2 4 8 16
Number of Destinations

0

250

500

750

1000

1250

1500

1750

2000
Av

er
ag

e
To

ta
l B

ui
ld

in
gs

Star
MST
Steiner

Figure 4.1: Effect of scaling on average total buildings (semi-log).

4.5 Results

As the number of destinations increases, the average total buildings increases (Fig. 4.1).
MST and Steiner perform about the same, and much better than star.

Steiner trees are large even for unicast (k = 1), and get worse as the number of destina-
tions increases (Fig. 4.2). This is because the Steiner algorithm selects many Steiner points
along each route; the more destinations, the more routes, and the more Steiner points. By
contrast, minimum spanning trees are small and scale well. This difference is illustrated in
Figure 4.4; the Steiner tree in Figure 4.4b is much more dense than the minimum spanning
tree in Figure 4.4a for the same 4 destinations.

As the number of destinations increases, the average buildings per route decreases for
MST while Steiner remains flat (Fig. 4.3). Shorter route length is not necessarily better;
very short routes do not benefit from compression, while very long routes remain long after
compression.

There is a tradeoff between the average tree size (Fig. 4.2) and the average buildings
per route (Fig. 4.3). As the tree gets more dense, the number of routes (the denominator)
increases, but the number of buildings (the numerator) does not change, so the buildings
per route decreases. In CityMesh, we prefer small trees, since the tree must be stored in the
packet. Therefore, MST is better than Steiner for CityMesh.

24

1 2 4 8 16
Number of Destinations

0

100

200

300

400

500

600
Av

er
ag

e
Tr

ee
 S

ize
MST
Steiner

Figure 4.2: Effect of scaling on average tree size (semi-log).

1 2 4 8 16
Number of Destinations

0

25

50

75

100

125

150

Av
er

ag
e

Bu
ild

in
gs

 p
er

 R
ou

te

MST
Steiner

Figure 4.3: Effect of scaling on average buildings per route (semi-log).

25

(a) Minimum spanning tree.

(b) Steiner tree.

Figure 4.4: Minimum spanning tree and Steiner tree for the same 4 destinations.

26

Chapter 5

Conclusion

Although CityMesh is a long way from replacing the centralized Internet, our initial steps
are encouraging. We made several simplifying assumptions, yet I was able to show that our
simulator nevertheless achieves 67.4% correlation with real data that we collected. Then,
I composed our unicast primitive into multicast trees using three different topologies, and
surprisingly found that Steiner trees perform worse than minimum spanning trees on average.

The takeaway is not that Steiner trees are bad; rather, minimum spanning trees are
surprisingly good, and Steiner trees are similar but with higher overhead.

One idea to improve the performance of Steiner trees is to constrain the Steiner points
so that many fewer are selected. Another possibility is to penalize the overhead in the edge
weights. These remain future work.

We are just beginning, but peer-to-peer group communication in CityMesh promises to
enable decentralized multicast applications.

27

28

References

[1] B. Buchanan, Google has 9 products with over 1 billion users - how effectively is it
monetizing those hours? https://01core.substack.com/p/google-has-9-products-with-
over-1, 2022.

[2] Kepios, Global Social Media Statistics, https://datareportal.com/social-media-users,
2024.

[3] J. Li, “On peer-to-peer (P2P) content delivery,” 2008.

[4] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang, “A Reliable Multicast
Framework for Light-Weight Sessions and Application Level Framing,” IEEE/ACM
Transactions on Networking, 1997.

[5] J. C. Lin and S. Paul, “RMTP: A Reliable Multicast Transport Protocol,” in INFO-
COM, 1996.

[6] I. Rhee, N. Balaguru, and G. Rouskas, “MTCP: Scalable TCP-like Congestion Control
for Reliable Multicast,” Computer Networks, 2002.

[7] L. Rizzo, “pgmcc: a TCP-friendly single-rate multicast congestion control scheme,” in
SIGCOMM, 2000.

[8] Y. Chu, S. Rao, S. Seshan, and H. Zhang, “Enabling Conferencing Applications on the
Internet using an Overlay Muilticast Architecture,” in SIGCOMM, 2001.

[9] P. Francis, Yoid: Extending the Internet Multicast Architecture, https://www.icir.org/
yoid/docs/ycHtmlL/htmlRoot.html, 2000.

[10] B. Zhang, S. Jamin, and L. Zhang, “Host Multicast: A Framework for Delivering Mul-
ticast to End Users,” in INFOCOM, 2002.

[11] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable application layer mul-
ticast,” in SIGCOMM, 2002.

[12] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, “SCRIBE: A large-scale
and decentralized application-level multicast infrastructure,” IEEE Journal on Selected
Areas in Communications, 2002.

[13] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A Scalable Content-
Addressable Network,” in SIGCOMM, 2001.

[14] S. Banerjee and B. Bhattacharjee, “A Comparative Study of Application Layer Multi-
cast Protocols,” 2002.

29

https://01core.substack.com/p/google-has-9-products-with-over-1
https://01core.substack.com/p/google-has-9-products-with-over-1
https://datareportal.com/social-media-users
https://www.icir.org/yoid/docs/ycHtmlL/htmlRoot.html
https://www.icir.org/yoid/docs/ycHtmlL/htmlRoot.html

[15] B. Karp and H.-T. Kung, “GPSR: Greedy Perimeter Stateless Routing for Wireless
Networks,” in MobiCom, 2000.

[16] C. Lochert, H. Hartenstein, J. Tian, H. Fussler, D. Hermann, and M. Mauve, “A
Routing Strategy for Vehicular Ad Hoc Networks in City Environments,” in Intelligent
Vehicles Symposium, 2003.

[17] J. Bicket, D. Aguayo, S. Biswas, and R. Morris, “Architecture and Evaluation of an
Unplanned 802.11b Mesh Network,” in MobiCom, 2005.

[18] ns-3, ns-3 Network Simulator, https://www.nsnam.org/, 2024.

[19] OpenStreetMap, OpenStreetMap provides map data for thousands of websites, mobile
apps, and hardware devices, https://www.openstreetmap.org/about, 2024.

[20] Hak5, WiFi Pineapple, https://shop.hak5.org/products/wifi-pineapple, 2024.

[21] A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden, H. Balakrishnan, S. Toledo,
and J. Eriksson, “VTrack: Accurate, Energy-Aware Road Traffic Delay Estimation
Using Mobile Phones,” in SenSys, 2009.

30

https://www.nsnam.org/
https://www.openstreetmap.org/about
https://shop.hak5.org/products/wifi-pineapple

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	1 Introduction
	2 Related Work
	2.1 Peer-to-Peer
	2.2 Group Communication
	2.3 City-Scale Mesh Networks

	3 Simulator
	3.1 Measurement Setup
	3.2 Results

	4 Multicast
	4.1 Star Graph
	4.2 Minimum Spanning Tree
	4.3 Steiner Tree
	4.4 Experimental Setup
	4.5 Results

	5 Conclusion
	References

