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ABSTRACT

While 2D diffusion models generate realistic, high-detail images, 3D shape generation
methods like Score Distillation Sampling (SDS) built on these 2D diffusion models produce
cartoon-like, over-smoothed shapes. To help explain this discrepancy, in this paper we prove
that the image guidance used in Score Distillation can be understood as the velocity field of a
2D denoising generative process, up to the choice of a noise term. In particular, after a change
of variables, SDS resembles a high-variance version of Denoising Diffusion Implicit Models
(DDIM) with a differently-sampled noise term: SDS introduces noise i.i.d. randomly at each
step, while DDIM infers it from the previous noise predictions. This excessive variance can
lead to over-smoothing and prevent the algorithm from generating realistic outputs. We show
that a better noise approximation can be recovered by inverting DDIM in each SDS update
step.This modification makes SDS’s generative process for 2D images identical to DDIM,
up to our change of variables. In 3D, it removes over-smoothing, preserves higher-frequency
detail, and brings the generation quality closer to that of 2D samplers. Experimentally,
our method achieves better or similar 3D generation quality compared to other works that
improve SDS, all without training additional neural networks or 3D supervision. Our findings
bridge the gap between 2D and 3D asset generation.

Thesis supervisor: Justin Solomon
Title: Professor of Electrical Engineering and Computer Science

Thesis supervisor: Vincent Sitzmann
Title: Professor of Electrical Engineering and Computer Science

3



4



Acknowledgments

I would like to thank my supervisor prof. Justin Solomon for the continuous guidance during
my Master years at MIT, for his support of my research interests and a great example of how
research should be done. Big thank you to my co-supervisor prof. Vincent Sitzmann with
whom we regularly have fruitful brainstorming sessions, and who helps my research stay on
track with a valuable feedback. I am grateful to the entire Meta Reality Labs research team
in Pittsburgh, PA. My internship there served provided me with a basis of my understanding
of the field, and in particular, to Timur Bagautdinov, my internship mentor and a friend,
with whom we kept regular discussion of the project. Thank you to Haitz Sáez de Ocáriz
Borde for the productive conversations and the help with experimental setup of this work.
Furthermore, I would like to thank Kristjan Greenewald, Vitor Campagnolo Guizilini and
Lingxiao Li for valuable advise during the work on this project. Finally, my biggest thanks to
my family, friends and close people, who unconditionally supported me in the hardest times.

The MIT Geometric Data Processing group acknowledges the generous support of the
Toyota–CSAIL Joint Research Center.

5



6



Contents

Title page 1

Abstract 3

Acknowledgments 5

1 Introduction 9

2 Related work 13

3 Background 15

4 Linking SDS to DDIM 17
4.1 Discrepancy in image sampling. . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Why not use DDIM as guidance? . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Evolution of x0(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 Reparametrizing DDIM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5 Continuous perspective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.6 SDS as a special case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Guiding 3D Generation with Ancestral Sampling 21
5.1 DDIM Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Experiments 25
6.1 3D Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2 Ablation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7 Conclusion, Limitations, and Future Work 31

A Appendix 33
A.1 Suggested Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
A.2 ODE derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
A.3 Out of distribution view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

References 37

7



8



Chapter 1

Introduction

Image generative modeling saw drastic quality improvement with the advent of text-to-image
diffusion models [1] trained on billion-scale datasets [2] and large parameter counts [3]. From
a short text prompt, these models generate photorealistic images, with strong zero-shot
generalization to new classes of objects [4]. Efficient training methods for image data,
combined with Internet-scale datasets, enabled the development of these generalizable models.
However, applying similar techniques to domains where huge datasets are scarce, such as 3D
shape generation, remains challenging.

The coherency and photorealism of images produced by state-of-the-art 2D generative
models, however, suggests that these models do understand some 3D structure, motivating
methods like Score Distillation Sampling (SDS) [5], [6], which optimize 3D representations (e.g.,
NeRFs [7], InstantNGPs [8] or Gaussian Splattings [9], [10]) using queries to a 2D generative
model [11]. In every iteration, SDS renders the current state of the 3D representation
from a random viewpoint, adds noise to the result, and then denoises it using the pre-
trained 2D diffusion model conditioned on a prompt. The difference between the added
and predicted noise is used as a gradient-style update on the rendered images, which is
propagated to the parameters of the 3D model. The underlying 3D representation helps make
the generated images view-consistent, and the 2D model guides individual views towards a
learned distribution of realistic images.

In practice, however, as was noted in previous works [12]–[14], SDS often produces 3D
representations with over-saturated colors and over-smoothed textures (see fig. 2.1 d), not
matching the quality of the underlying 2D model. Existing approaches tackling this problem
improve quality at the cost of expensive re-training or fine-tuning of the image diffusion
model [12], complex multi-stage handling of 3D representations, like mesh extraction and
texture fine-tuning [12], [15]–[17] , or tweaking the SDS guidance [13], [14].

As an alternative to engineering-based solutions to the challenges with SDS, in this paper
we re-analyze the vanilla SDS algorithm to understand the underlying source of these artifacts.
Our key insight is that the SDS update rule can be seen as a step along an approximation
of the DDIM velocity field. In particular, we derive Score Distillation from DDIM with a
change of variables to the space of single-step denoised images. Under our change of variables,
SDS updates are nearly identical to DDIM updates, apart from one difference: while DDIM
samples noise conditionally on the predictions in the previous timestep, SDS resamples
random noise i.i.d. in every iteration. This resampling breaks the denoising trajectory for

9
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Figure 1.1: Overview. In each training iteration, we render a random view of the current
3D shape, run DDIM inversion up to the current noise level t, and denoise the image with a
pre-trained diffusion model for noise level t− τ . We optimize the 3D shape with the denoised
image as a target for the rendered view.

each independent view and introduces excessive variance. Our perspective unifies DDIM
and SDS and helps explain why SDS can produce blurry and over-saturated results: the
variance-boosting effect of noisy guidance is usually mitigated with high CFG values to reduce
sample diversity at the cost of over-saturation [18].

Based on our analysis, we propose an alternative score distillation algorithm, closing the
gap to DDIM. In particular, we regress the conditional noise sample required for consistency
of the denoising trajectories by inverting DDIM on each step of score distillation (fig. 1.1).
Empirically, this modification yields 3D objects with high-quality colors and textures consistent
with the underlying 2D diffusion model, without any expensive fine-tuning or modifications
to the neural network. Moreover, for 2D generation, our method closely approximates DDIM
for image generation while preserving the iterative, incremental generation schedule of SDS
(fig. 2.1).

Our key contributions are as follows:

• We prove that guidance for each view in the SDS algorithm is a simplified re-parameterization
of DDIM sampling: vanilla SDS samples random noise at each step, while DDIM keeps
the trajectories consistent with previously-predicted noise.

• We show that replacing the problematic random sampling in SDS with a DDIM inversion
process improves generation quality, closing the quality gap to samples from the 2D
model and demonstrating competitive performance to state-of-the-art 3D generation.

• In a systematic evaluation study we compare our method with current state-of-the-
art score distillation methods both qualitatively and quantitatively and show that it
achieves similar or better generation quality, all while not requiring training additional
neural netowrks, or multiple stages of generation.

10
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Figure 1.2: Left: Evolution of different variables of Score Distillation in time. On the top
row we depict how noised images x(t) evolve in 2D generation, in the middle we present
the evolution of a NeRF in 3D generation, and in the bottom we show how the single step
denoised variable x0(t) changes with t. Right: Each step of DDIM is a short step towards
single step denoised image. This can be seen as a step to x0(t) and a step back to the noised
image. We reorder the vectors in this process to obtain a process on x0(t).
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Chapter 2

Related work

a) DDIM b) 2D SDS c) 2D ours d) 3D SDS e) 3D ours

Figure 2.1: Score Distillation Sampling (SDS) builds 3D shapes from 2D images generated
by a diffusion model like DDIM. While DDIM produces high-quality images (a, CFG=7.5),
the same diffusion model, when used to generate a 2D image with SDS, yields a blurry result
(b, CFG=7.5); in 3D, the method yields over-saturated and simplified shapes (d, CFG=100).
By replacing the noise term in SDS to agree with DDIM in the 2D case, our algorithm better
matches the quality of the diffusion model in 2D (c, CFG=7.5) and significantly improves 3D
generation (e, CFG=7.5).

Distilling 2D generative models into 3D assets. Score Distillation was first intro-
duced by works like Dreamfusion (SDS) [5], Score Jacobian Chaining [6], and Magic3D [15].
The key idea is to use a frozen diffusion model trained only on 2D images and “distill” it into
3D assets. A volumetric representation of the current shape is rendered from a random view,
perturbed with a random noise sample, and denoised with the diffusion model; then, the
difference between added and predicted noise is used as guidance to improve the rendering.
These works, however, suffer from over-smoothing and lack of detail. Usually a high value of
classifier free guidance (CFG) [19] is used to reduce the variance of the results, at the cost of
over-saturation [18].

ProlificDreamer [12] generates sharp, detailed results with standard CFG values and
without over-saturation. The key is to overfit a second diffusion model to specifically denoise
the current 3D shape. Fine-tuning the second model, however, is cumbersome and requires
additional hyperparameters. It also remains unclear why this change should be effective
theoretically. Some further improve on ProlificDreamer’s results or try to explain its behavior.
SteinDreamer [20], for example, hypothesizes that ProlificDreamer’s improvements come from
variance reduction of the sampling procedure.

13



Other papers propose heuristics that improve SDS pipelines. For example, [13], [21]
decompose the guidance terms and speculate about their relative importance. Empirically,
visual quality can be improved by suppressing the denoising term with negative prompts [13]
or highlighting the classification term [21]. Other works [12], [15]–[17] use multi-stage
optimization: they first train a volumetric representation and then extract a mesh or voxel
grid to fine-tune geometry and texture. HiFA [14] uses a pretrained mono-depth estimation
network, time annealing, supervision in latent space, kernel smoothing, and z-variance
regularization to improve quality of single-stage NeRF generation.

Rather than improving SDS by augmenting its pipeline, in this work we prove that
Score Distillation is a high-variance version of a 2D denoising process, suggesting a simple
modification to the SDS formulas that significantly improves 3D generation.

3D generation by training on multi-view data. Recent advancements in 3D
generation leverage multi-view data or training on 3D data. Zero123 [22] and MVDream [23]
introduce diffusion models that generate consistent multi-view images from text. A 3D
radiance field is then obtained via score distillation. Video generative models can be fine-
tuned on videos of camera tracks around 3D objects, similarly yielding a model that samples
multi-view consistent images that can be used to train a 3D radience field [24], [25]. Diffusion
with Forward Models [26] and Viewset Diffusion [27] directly train a 3D generative model
from 2D image observations.

While these methods excel at generating multi-view consistent, plausible 3D objects, they
depend on multi-view data with known camera trajectories, limiting them to synthetic or
small bundle-adjusted 3D datasets. We instead focus on methods that require only single-view
training images.

14



Chapter 3

Background

Diffusion models. Denoising Diffusion Implicit Models (DDIM) generate images using
diffusion [28]–[30]. After training the denoiser ϵtθ and freezing its weights θ, the denoising
process can be seen as an ODE on rescaled noisy images x̄(t) = x(t)/

√
α(t). For a prompt y

and current time step t ∈ [0, 1], the denoising process satisfies:

dx̄(t)

dt
= ϵtθ

(√
α(t)x̄(t), y

)dσ(t)
dt

, (3.1)

where x̄(1) is sampled from a Gaussian distribution, σ(t) =
√

1− α(t)/
√
α(t), and α(t)

are scaling factors. When discretized with forward Euler, this equation yields the following
update to transition from step t to a less noisy step t− τ < t:

x̄(t− τ) = x̄(t) + ϵtθ
(√

α(t)x̄(t), y
)
[σ(t− τ)− σ(t)] . (3.2)

The DDIM update ODE can also be integrated in reverse direction to estimate x̄(t) for any
t ∈ [0, 1] from a clean image x0 = x̄(0).

Classifier-free guidance. Classifier-free guidance (CFG) [19] provides high-quality
conditional samples without gradients from auxilary models [31]. CFG modifies the noise
prediction ϵ̂tθ (score function) by linearly combining conditional and unconditional predictions:

ϵtθ
(
x(t), y

)
= ϵ̂tθ(x(t),∅) + γ ·

(
ϵ̂tθ(x(t), y)− ϵ̂tθ(x(t),∅)

)
, (3.3)

where the guidance scale γ is a scalar, with γ = 0 corresponding to unconditional sampling
and γ = 1 to conditional. In practice, larger values γ > 1 are necessary to obtain high-quality
samples at a cost of reduced diversity and extreme over-saturation (fig. 3.1). For the rest of
the paper we will be using the modified CFG version of the denoiser ϵtθ

(
x(t), y

)
.

Score distillation. Diffusion models efficiently generate images and can learn to represent
common objects from arbitrary angles [32] and with varying lighting [5] when trained on
large datasets. Capitalizing on this success, Score Distillation Sampling (SDS) [5] distills a
pre-trained and fixed diffusion model ϵtθ to produce a 3D asset. In practice, the 3D shape is
usually parameterized by a NeRF [7], InstantNGP [8] or Gaussian Splatting [9]. Multiple
works additionally extract an explicit representation for further optimization [12], [15]–[17].
We use InstantNGP [8] to balance between speed and ease of optimization.

15



Prompt – “colored photograph of an old man”
 
1.CFG Value 5. 10. 30. 100.

Figure 3.1: The effect of different CFG values on the quality of 2D generation via StableDif-
fusion 2.1 [1]. For the small values, the model tends to ignore certain words in the prompt.
For high values, the images get over-saturated.

Denote the parameters of a differentiable 3D shape representation by ψ ∈ Rd and
differentiable rendering by a function g(ψ, c) : Rd × C → RN×N that returns an image
given camera parameters c ∈ C. Intuitively, in each iteration, SDS samples c, renders the
corresponding (image) view g(ψ, c), perturbs it with ϵ ∼ N (0, I) to level t ∼ [0, 1], and
denoises it with ϵtθ; the difference between the true and predicted noise is propagated to the
parameters of the volume. More formally, after sampling the camera view c and randomly
drawing a time t, SDS renders the volume and adds Gaussian noise ϵ to obtain a noisy image

x(t) =
√
α(t)g(ψ, c) +

√
1− α(t)ϵ.

Then, SDS updates the volume by using the following gradient(-like) direction to update its
parameters ψ:

∇ψLSDS = Et,ϵ,cσ(t)
[
ϵtθ
(
x(t), y

)
− ϵ
] ∂g
∂ψ

. (3.4)

This update rule may not correspond to the true gradient of a function; there are many
hypotheses about its effectiveness [5], [13], [20], [21]. In this work, we prove that the above
process can be seen as a high-variance version of DDIM after a change of variables.

16



Chapter 4

Linking SDS to DDIM

4.1 Discrepancy in image sampling.

Beyond the lack of formal justification of eq. (3.4), in practice SDS results are over-saturated
and miss detail for high CFG values or are blurry for low CFG values. To illustrate
this phenomenon, fig. 2.1 shows a simple experiment, inspired by [12]: We replace the
volumetric representation in eq. (3.4) with an image g2D(ψ2D, c) := ψ2D ∈ RN×N . In this
case, SDS becomes an image generation algorithm comparable to other sampling algorithms
like DDIM [33]. Even in this 2D setting, SDS fails to generate sharp details, while DDIM
with the same underlying diffusion model produces photorealistic results, motivating our
derivation below.

4.2 Why not use DDIM as guidance?

Given the experiment above, a natural question to ask is if it is possible to directly combine
DDIM’s update direction from eq. (3.1) with the SDS guidance in eq. (3.4) to update the
3D representation. The problem with this approach lies in the discrepancy between the
training data of the denoising model and the images generated by rendering the current 3D
representation. More specifically, the denoising network expects an image with a certain level
of noise corresponding to time t as defined by the forward (noising) diffusion process, whereas
renderings of 3D representations g(ψ, c) evolve from a blurry cloud to a well-defined sample
(fig. 1.2).

4.3 Evolution of x0(t).

Instead of seeing DDIM as a denoising process defined on noisy images x(t), we consider it as
a process defined on a different variable:

x0(t) = x̄(t)− σ(t)ϵtθ
(
x(t), y

)
. (4.1)

In words, x0(t) is the noisy image at time t denoised with a single step of noise prediction.
Empirically, the evolution of x0(t) is similar to the evolution of g(ψ, c)—from a blurry sample

17



“a DSLR photo of a 
white fluffy cat”

“pumpkin head zombie, skinny, 
highly detailed, photorealistic”

“bagel filled with cream 
cheese and lox”

“photograph of a black 
leather backpack” “a DSLR photo of Cthulhu”

“a DSLR photo of an old 
man”

Figure 4.1: Examples of multiple views of 3D objects generated by from our model.

to a well-defined, sharp sample. We visually compare the two processes in fig. 1.2. This
similarity motivates us to rewrite eq. (3.1) in terms of x0(t), and to understand SDS as
applying similar updates to the 3D representation. Thus we demonstrate that SDS guidance
approximates DDIM’s evolution of x0(t). In particular, the velocity field determining the
time evolution of x0(t) images under DDIM gets used as a gradient for each rendering of the
volumetric representation in SDS.

4.4 Reparametrizing DDIM.

Figure 1.2 shows schematically how the DDIM update—defined on x̄(t)—alternates between
denoising to obtain x0(t) and adding noise to get a cleaner image x̄(t− τ). We can rearrange
the equations to reorder the steps, first adding noise to x0(t) and then denoising it to estimate
x0(t− τ).

Consider neighboring time points t and t− τ < t in discretized DDIM eq. (3.2) (lower time
corresponds to less noise). We rewrite eq. (3.2) using the definition of x0(t) from eq. (4.1) to
find

x0(t− τ) = x0(t)− σ(t− τ)
[
ϵt−τθ

(
x(t− τ), y

)
− ϵtθ

(
x(t), y

)]
, (4.2)

which is consistent with the intuition behind SDS: improving an image involves perturbing
the current image and then denoising it with a better noise estimate. We cannot directly

18



apply eq. (4.2) to SDS in the 3D case, since it still depends on x(t); if we think of x0(t)
as similar to a rendering of the current 3D representation from a single camera angle, it is
unclear how to obtain a consistent set of preimages x(t) at each step of 3D generation. From
eq. (4.1), however, x(t) should satisfy the following fixed point equation:

x(t) =
√
α(t)x0(t) +

√
1− α(t)ϵtθ

(
x(t), y

)
, (4.3)

or rewritten in terms of noise ϵ = [x(t)−
√
α(t)x0(t)]/

√
1− α(t):

ϵ = ϵtθ
(√

αx0(t) +
√

1− α(t)ϵ, y
)
. (4.4)

Define κt
(
x0(t)

)
= ϵ as a solution of this equation given x0(t). Then, we can write:

ϵtθ
(
x(t), y

)
= κt

(
x0(t)

)
x(t− τ) =

√
α(t− τ)x0(t) +

√
1− α(t− τ)κt

(
x0(t)

)
.

(4.5)

Thus eq. (4.2) turns into:

x0(t−τ) = x0(t)−σ(t−τ)
[
ϵt−τθ

( x0 noised with κt to t− τ︷ ︸︸ ︷√
α(t− τ)x0(t) +

√
1− α(t− τ)κt

(
x0(t)

)
, y
)︸ ︷︷ ︸

predicted noise

− κt
(
x0(t)

)︸ ︷︷ ︸
noise sample κt

]
.

(4.6)
If one had access to κt

(
x0(t)

)
, eq. (4.6) would turn into a discrete update rule that

simulates DDIM and directs images toward the conditional distribution learnt by the diffusion
model. Moreover, we can already see that the structure of eq. (4.6) is very similar to the
SDS update rule in eq. (3.4). Note that the update direction in eq. (4.6) is the same as in
the SDS update rule in eq. (3.4), whereas κt plays the role of the random noise sample ϵ. We
could use it as a guidance for the 3D generative process in SDS by replacing ϵ in eq. (3.4)
with κt(x0(t)). In practice, however, it is hard to solve eq. (4.4), as ϵtθ is high-dimensional and
nonlinear. Below we show that a naïve approximation replacing κt with a Gaussian yields
SDS, and we will propose alternatives that are more faithful to the derivation above.

4.5 Continuous perspective.

Our derivation above manipulates the time-stepping procedure of DDIM, but a similar
argument applies to the ODE version of the method. One can obtain an alternative form of
eq. (4.6) by reparametrizing the ODE eq. (3.1) as:

dx0(t)

dt
= −σ(t) d

dt
ϵ
(t)
θ

(
x0(t) + σ(t)κt(x0(t)), y

)
. (4.7)

Details are provided in the appendix A.2. This ODE is a velocity field that projects a starting
image to a conditional distribution learned by the diffusion model. Discretizing this equation
leads to eq. (4.6).
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4.6 SDS as a special case.

From eq. (4.6), to get a cleaner image, we need to bring the current image to time t with noise
sample κt, denoise the obtained image, and then subtract the difference between added and
predicted noise from the initial image. A coarse approximation of κ uses i.i.d. random noise
κtSDS(x0(t)) ∼ N (0, I), matching the forward process by which diffusion adds noise. This
choice of κtSDS precisely matches the update rule eq. (4.6) to the SDS guidance in eq. (3.4).

20



Chapter 5

Guiding 3D Generation with Ancestral
Sampling

5.1 DDIM Inversion

As we have shown, SDS follows the velocity field of reparametrized DDIM in eq. (4.6),
when κt(x0(t)) is randomly sampled in each step. Our derivation, however, suggests that
κtSDS(x0(t)) could be improved by bringing it closer to a solution of the fixed-point equation
in eq. (4.4). Indeed, randomly sampling κtSDS as in Dreamfusion yields excessive variance and
blurry results for standard CFG values, while using higher CFG values leads to over-saturation
and lack of detail. On the other hand, solving eq. (4.6) exactly is challenging due to its high
dimensionality and nonlinear nature.

To improve our prediction of κt we propose to invert DDIM by integrating its ODE
in eq. (3.1) in reverse, that is, solving the ODE with the t direction evolving backwards
relative to eq. (3.1) (from images to noise). This process approximates but is not identical to
the exact solution of kappa: the fixed-point solution of eq. (4.6) attempts to invert a single
large step of DDIM, while running the ODE in reverse inverts the entire DDIM trajectory.
In section 6.2 we ablate other choices for κt and conclude that inverting DDIM offers the
best approximation quality among the studied alternatives.

As we can see, in eq. (4.6), the added noise inverts eq. (4.4) up to noise level t, however,
the denoising step happens in slightly lower time t− τ . Intuitively τ controls the effective step
size in the denoising (or image improvement) process. To accommodate this, we maintain
a global time variable t that linearly decays for all the views. Then, on each update step
we run DDIM inversion up to t + τ . Here τ is a small constant that regulates the size of
the denoising step in eq. (4.6). In practice, we did not find the algorithm to be particularly
sensitive to this constant.

Figure 5.1 shows the effect of inferring the noise via DDIM inversion instead of sampling
it randomly. The special structure of the improved κt results in more consistent single-step
generations and produces intricate features of the rendering at much earlier times. When
inverted and not randomly sampled, the noise appears ’in the right place’ of the volume: in
SDS the noise covers the whole view, including the background, whereas in ours the noise
is concentrated on the meaningful part of the 3D shape. This leads to more geometrically
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1.0 0.8 0.6 0.4 0.2 1.0 0.8 0.6 0.4 0.2

Score Distillation Sampling Distillation Sampling via DDIM Inversion

Figure 5.1: Comparison of intermediate variables in SDS and Ours for different timesteps t.
Starting with a rendering of a 3D shape we demonstrate how each algorithm perturbs it (x(t)
variable on the top row) and how it is denoised with a single step of diffusion (x0(t) variable
on the bottom row). The prompt used is “Pumpkin head zombie, skinny, highly detailed,
photorealistic, side view”.

and time coherent x0(t) predictions even for large t values, which is not the case for SDS.
The reduced variance drastically increases sharpness and the level detail of the generations.
Moreover, it allows to reduce CFG value of generation γfwd to the standard 7.5 and thus
avoid over-saturation. Another interesting finding in our work is that DDIM inversion works
the best, when the reverse integration is performed with negative CFG γinv = −γfwd = −7.5.
We perform a detailed ablation study of the CFG values in section 6.2.

Algorithm 1 Original Dreamfusion algorithm
procedure Dreamfusion(y)

for i in range(n_iters) do
t← Uniform(0, 1)
c← Uniform(C)
ϵ← Normal(0, I)
xt ←

√
α(t)g(ψ, c) +

√
1− α(t)ϵ

∇ψLSDS = σ(t)
[
ϵ
(t)
θ (xt, y)− ϵ

]
∂g
∂ψ

Backpropagate ∇ψLSDS
SGD update on ψ

end for
end procedure

Algorithm 2 Suggested algorithm
procedure Ours(y)

for i in range(n_iters) do
t← 1− i/n_iters
c← Uniform(C)
ϵ← κt+τ (x0(t))
xt ←

√
α(t)g(ψ, c) +

√
1− α(t)ϵ

∇ψLSDS = σ(t)
[
ϵ
(t)
θ (xt, y)− ϵ

]
∂g
∂ψ

Backpropagate ∇ψLSDS
SGD update on ψ

end for
end procedure

Figure 5.2: Comparison of the original SDS algorithm and our proposed changes.

The overview of our method is presented in fig. 1.1. We provide more details about the
inversion algorithm in section 6.2.

22



5.2 Implementation Details

Geometry regularization. Reducing the variance of the guidance allows us to use smaller
CFG values. We use γ = 7.5, which is standard for 2D generation. As in fig. 3.1, when
operating with smaller CFG values, the diffusion model tends to ignore certain parts of the
prompts, like “colored” for γ < 10 in this particular case.

Dreamfusion [23] augments prompts with information about the direction of the view to
avoid the Janus problem, wherein the model tends to produce frontal views all around the
shape due to its bias for these views, as they were more dominant in the training data. Since
our algorithm allows to reduce the CFG to the standard value of 7.5, the diffusion model
begins to ignore the view augmentation prompting =due to the aforementioned phenomenon,
yielding a stronger Janus problem compared to Dreamfusion; we see the same behavior for
other baselines that reduce CFG. To tackle this problem, we use Perpendicular Negative
Prompting [32] and add a small entropy term ∼ N (0, 0.3σ(t)I) to the inverted noise to reduce
mode-seeking behavior as in [34].

Figure 5.3: In the hollow face illusion,
generated views tend to be concave or
flat. We combat this behavior with a
simple convexity loss that biases the
generation towards convex shapes.

Another common issue in Score Distillation is the
hollow face illusion [35] (fig. 5.3). To address this, we
add a simple loss favoring convex shapes over concave
ones. In particular, we use a normal map extracted
from the current volume as described in the original
SDS work [5]. We calculate the sine between adjacent
normals (moving from left to right and from top to bot-
tom) and penalize it to be as negative as possible. We
activate this loss for the first 40% of the training steps
with weight αconvexity = 0.1 to break the symmetry.

System details. We implement our algorithm in
threestudio [36] on top of SDS [5]. We use Stable
Diffusion 2.1 [1] as the underlying diffusion model. For volumetric representation we follow
the implementation of Dreamfusion and use InstantNGP [8]. Instead of randomly sampling
time t as in SDS, we maintain a global parameter t that linearly decays from 1 to 0.2 (we
found that lower time values do not significantly contibute to the generation quality). Next,
for each step renders a 512× 512 random view and infers κt+τ by running DDIM inversion
for int(10t) steps. We sample τ ∼ U(0, 1

30
). We use NVIDIA A6000 GPUs and run each

generation for 10k steps with learning rate of 10−2, which takes approximately 2 wall-clock
hours per shape generation.
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Chapter 6

Experiments

6.1 3D Generation

We demonstrate the high-fidelity 3D shapes generated with our algorithm in fig. 4.1.
Qualitative comparisons. For evaluation we adopt a protocol similar to previous

works [12], [13]. We compare 3D generation quality with the results reported in their
respective works in fig. 6.1. For the baselines we chose: Dreamfusion [5] as the work we
build on top of, Noise Free Score Distillation [13] that suggests to use negative prompts in
SDS, ProlificDreamer [12] that adopts additional fine-tuning stages and trains a separate
neural network to denoise the current 3D shape, and HiFA [14] that suggests a series of
improvements such as additional supervision in the latent space, NeRF regularization, and
depth supervision with a separate mono-depth estimation network. As can be seen from the
figures, relating SDS with ancestral sampling by inverting DDIM allows to achieve similar or
better results compared with other state-of-the-art methods.

Quantitative comparison. We follow previous works [5], [20], [21] to quantitatively
evaluate generation quality of our algorithm. In table 6.1 we provide the CLIP score [37]
to measure prompt-generation alignment. We use the torchmetrics [38] package and the
ViT-B/16 model [39]. We also include CLIP Image Quality Assessment (IQA) [40] to measure
quality (“Good photo.” vs “Bad photo.”), sharpness (“Sharp photo.” vs “Blurry photo.”), and
realism (“Real photo.” vs “Abstract photo.”) of the generations. For each method we run
generations on 43 prompts and sample 50 views around the generated objects. For baselines
that include multiple stages we run only the first one for a fair comparison with ours. In the
table we also report the percentage of generations that run out-of-memory or generate an
empty volume as ’Diverged’. Additionally we provide average run time and VRAM usage
for readers’ reference. For the VRAM column we at first take the maximum usage of the
GPU’s memory within each run and then average the obtained values. As a lot of baselines
are not open-source, we use their implementation in threestudio [36] for all the baselines.
Our approach significantly outperforms SDS and shows better or similar results compared to
other state-of-the-art methods, while offering a simple fix to SDS and not requiring additional
supervision or multiple stages of training.
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Dreamfusion NFSD HiFA Ours Images with DDIMProlificDreamer

Figure 6.1: Comparison of 3D generation with other methods using reported results from the
respective papers. The prompts are “A 3D model of an adorable cottage with a thatched
roof” and “A car made out of sushi”. On the right side we provide 2D images generated with
the same diffusion model via DDIM for reference.

Table 6.1: Quantitative comparisons to baselines for text-to-3D generation, evaluated by
CLIP Score, CLIP IQA and FID metrics. We report scores based on mean and standard
deviation across 50 views

Method CLIP Score (↑) CLIP IQA (%) ↑ Diverged (%) ↓ Time VRAM

“quality” “sharpness” “real”

SDS [5], 10k steps 29.81± 2.49 76± 6.6 99± 1.2 98± 2.4 18.6 66min 6.2GB
VSD [12], 25k steps 33.31± 2.39 77± 6.7 98± 1.3 96± 4.4 23.2 334min 47.9GB
ESD [34], 25k steps 32.79± 2.15 77± 7.2 98± 1.2 97± 2.7 14.0 331min 46.8GB
HIFA [14], 25k steps 32.80± 2.35 81± 6.5 98± 1.5 97± 1.2 4.7 235min 46.4GB
Ours, 10k steps 33.47± 2.49 82± 6.3 98± 1.3 97± 1.2 4.7 119min 39.2GB

6.2 Ablation

Proposed improvements. Figure 6.2 provides the ablation of the major proposed im-
provements. Starting from the setting of Dreamfusion [5] with CFG 7.5 we step by step add:
increased resolution of NeRF rendering (from 64× 64 to 512× 512), annealing linear schedule
on t, and, our core contribution – inference of the noise with DDIM inversion. The results
clearly demonstrate that the main difference in quality comes from the inferred noise sample,
while other improvements unlock its full potential.

Choice of κt(x). The key component of our algorithm is the choice of the function κt(x)
that infers the noise sample. In theory, κt(x) should be a solution of eq. (4.4), however, in
practice, it is hard to derive its exact solution. In this part we study different choices of κt(x)
and analyze the numerical error of each choice in eq. (4.4). We consider the following choices:

1. Random, re-sampled - κt(x) is noise randomly sampled on each new update step
from N (0, I) ;
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Figure 6.2: Ablation study of the proposed improvements
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Figure 6.3: The effect of different κt(x0(t)) choices on 3D generation quality.

2. Random, fixed - κt(x) is noise randomly sampled from N (0, I) once and fixed for
each iteration;

3. Fixed point iteration - since the optimal solution is a fixed point of eq. (4.4), we
initialize κt(x) to a random noise sample and run the fixed point iteration algorithm [41]
for 10 steps. In our experience, increasing the number of steps up to 200 does not
improve the reults.

4. SGD optimization - we attempt to regress κt(x) via gradient decent for 10 steps, also
initializing it to a random noise sample at the beginning.

5. DDIM inversion - finally, we run DDIM inversion for 10t (i.e. we need less steps
for smaller t) steps to time t. We use negative CFG γinversion = −7.5 for inversion and
positive γforward = 7.5 for forward inference.

We analyze all of the choices in terms of both, qualitative results in 3D generation
presented on the left side of fig. 6.3, and the error induced in fig. 6.3 (re-scaled to x0 variable
due to its ambiguity around 0), presented on the right side of fig. 6.3. Since re-sampled and
fixed noises produce the same erorr in eq. (4.4), they are represented with the same line on
the plot for clarity.

As can be seen, the regressed noise has a big impact on the final generations. Both
Fixed Point Iterations algorithms, and optimization via gradient descent fail to improve the
approximation of κt, while Fixed Point Iteration diverges. We speculate that this is due to the
high-dimensional and highly non-linear nature of the denoiser. On the other hand-side DDIM
inversion yields a reasonable approximation of κt and significantly improves 3D generation.

CFG value for inversion. Multiple works [42], [43] have reported that DDIM inversion
accumulates big numerical error for CFG value γ > 1. One of the interesting findings in this
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Figure 6.4: Comparison of different DDIM inversion strategies in 2D. Note that here we
compare the quality of inversion, i.e. the forward pass is the entire DDIM trajectory.
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Figure 6.5: Comparison of different DDIM inversion strategies. On the left we demonstrate
generation results for different strategies of using CFG values for denoising and inversion.
On the right side we provide a numerical error in eq. (4.4) enduced by the inferred noise.

work is that DDIM inversion for CFG γfwd > 1 can be adequately estimated by running the
inversion with negative CFG value γinv = −γfwd. As can be seen from fig. 6.4, when inverting
the entire DDIM trajectory, starting with a clean image, the best inversion strategy is to use
γinv = 1 and then regenerate the image by running DDIM trajectory with γfwd = 1. This
approach was suggested in [43] and inverts the image almost perfectly. Other approaches
introduce bias and derive only an approximation of the image on the forward pass.

In 3D, however, the story is different. In fig. 6.5 we compare different inversion strategies
both qualitatively and quantitatively. We can see that in terms of the numerical error, the
naive approach of γinv = γfwd = 7.5 yields the biggest bias, while the rest of the strategies
perform on par. As we can see from the qualitative results on the left, γinv = γfwd = 7.5
introduces too much numerical error and the generation process drifts to a random direction.
The best performing for inversion, combination of γinv = γfwd = 1 does not work for the
generation task. We explain this behaviour by the fact that in our previous experiment,
the original image in 2D already contains its class information. Inverting it with γinv = 1
encodes this class information into the noise and thus it does not need additional CFG on
the reconstruction step. In generation, however, the starting shape of the NeRF does not
contain any class information and thus needs bigger CFG on the forward pass. Introducing
it only on the forward pass with γinv = 1, γfwd = 7.5 solves the problem, and the algorithm
is able to generate the required 3D shape, however constant introduction of CFG on each
step over-saturates the image. Using γinv = −7.5, γfwd = 7.5, however, is able to cancel the
over-saturation bias and produce accurate 3D generations.
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Figure 6.6: Ablation study of the proposed algorithm’s performance based on the number of
inversion steps.

Number of steps needed for DDIM inversion. On fig. 6.6 we ablate the number of
steps needed for DDIM inversion. We conclude that n = 10 is the optimal choice that yields
both good generation quality and does not slow down the generation too much.
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Chapter 7

Conclusion, Limitations, and Future
Work

In this work we have studied the discrepancy between high-quality image generation of 2D
diffusion models and the blurry, often over-saturated results of Score Distillation Sampling
(SDS) built on top of these diffusion models to generate 3D assets. We show that image
guidance applied to each view of the 3D shape is in fact an approximation of a re-parametrized
DDIM process. The only difference lies in the used noise: SDS randomly samples it from a
Normal Gaussian i.i.d. on each iteration, while re-parametrized DDIM infers it conditionally
on the previous steps. Random sampling of the noise breaks generative trajectories of DDIM
and leads to over-smoothed results. We close the gap between the two algorithms and suggest
to infer the noise via DDIM inversion. Through extensive ablation studies we show that
DDIM inversion is an adequate approximation of the correct noise sample, and that simply
adding it to SDS significantly improves visual quality of 3D generations. We compare our
algorithm with other state-of-the-art 3D generations methods and prove that it achieves
similar or better results, all while not requiring extra 3D supervision, training of separate
diffusion models, or additional generation steps.

The final algorithm, however, has multiple limitations that we plan to address in the
future. In this work we were focused on recovering the sampling quality of each view
individually, but 3D consistency between these view still remains challenging. In particular,
despite the proposed convexity loss, we still rarely observed that our algorithm can produce
flat or concave “billboards”. We envision that this problem can be solved with an external
depth or normals supervision with the advances of the foundational image models. Another
problem frequently reported across the field – content drift from one view to another of
the generated 3D shape. Since there was no 3D supervision whatsoever, there is little to
no communication between opposite views of the shape, which can lead to inconsistent 3D
assets (e.g. a cat that has two tails on different sides). This problem might potentially
be approached with stronger view conditioning, multi-view supervision, or the rising video
generation models that combine huge, diverse datasets and multi-view data. Finally, score
distillation is fundamentally capped by the performance of the underlying diffusion model
and it is hence prone to similar hallucinations famously present in the original generative
model (e.g. text and limbs anomalies). This also means that the algorithm inherits all the
biases of the 2D diffusion model and can produce skewed distributions.
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In conclusion, while our approach significantly improves the quality of 3D generation,
further research is necessary to address these limitations. Future work could explore incorpo-
rating external depth or normals supervision, enhancing view consistency, and mitigating
inherent biases and anomalies from the underlying diffusion models. By addressing these
challenges, we aim to achieve high-quality reliable 3D asset generation.
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Appendix A

Appendix

A.1 Suggested Algorithm

Algorithm 3 Our algorithm
Require:
ψ ∈ RN - parametrized 3D shape
C - set of cameras around the 3D shape
y - text prompt
g : RN × C→ Rn×n - differentiable renderer
ϵ
(t)
θ : Rn×n → Rn×n - trained diffusion model

Ensure: 3D shape ψ of y

procedure OURS(y)
for i in range(n_iters) do

t← 1− i/n_iters ▷ Use linear time anealing
c← Uniform(C) ▷ Sample camera
ϵ← κt+τ (x0(t)) ▷ Regress Noise via DDIM inversion
xt ←

√
α(t)g(ψ, c) +

√
1− α(t)ϵ ▷ Noise current rendering

∇ψLSDS = σ(t)
[
ϵ
(t)
θ (xt, y)− ϵ

]
∂g
∂ψ

▷ Calculate the SDS update rule
SGD update on ψ

end for
end procedure

A.2 ODE derivation

In this section we show that Dreamfusion is an approximation of re-parametrized DDIM from
the perspective of ODEs. To do the change of variable in eq. (3.1) to eq. (4.1) we need to
differentiate it with respect to t and express dx̄(t)

dt
. Direct differentiation gives us:
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dx0(t)

dt
=
dx̄(t)

dt
− ϵ(t)θ

(
x̄(t)√
σ(t)2 + 1

, y

)
dσ(t)

dt
− σ(t) d

dt
ϵ
(t)
θ

(
x̄(t)√
σ(t)2 + 1

, y

)
(A.1)

Now, expressing dx̄(t)
dt

and merging with eq. (3.1) we get:

ϵ
(t)
θ

(
x̄(t)√
σ(t)2 + 1

, y

)
dσ(t)

dt
=
dx0(t)

dt
+ϵ

(t)
θ

(
x̄(t)√
σ(t)2 + 1

, y

)
dσ(t)

dt
+σ(t)

d

dt
ϵtθ

(
x̄(t)√
σ(t)2 + 1

, y

)
(A.2)

dx0(t)

dt
= −σ(t) d

dt
ϵ
(t)
θ

(
x̄(t)√
σ(t)2 + 1

, y

)

= −σ(t) d
dt
ϵ
(t)
θ

(
x0(t) + σ(t)κt(x0(t))√

σ(t)2 + 1
, y

)

= −dκ
t

dt
(x0(t))

(A.3)

What gives us the DDIM’s ODE re-parametrized for x0(t).

A.3 Out of distribution view.

Here we provide an intuition why it is so important to regress the noise κ instead of randomly
sampling it. Lets look into the data that ϵ(θt) was trained on. For each particular t, the model
has seen only clean images with the corresponding amount of noise σ(t).

Let’s consider a “bad” image x̂0. Out goal is to use our updated ODE to improve it and
make it look more realistic. For t close to 1 the amount of noise is so big, that for any
image x̂0 its noisy version x̂0 + σ(t)ϵ looks indistinguishable from the training data of the
denoiser. This explains why we can successfully use diffusion models to correct
out-of-distribution images.

For small t, however, the noise levels might be not enough to hide the artifacts of x̂0, so
the image becomes out-of-distribution, and the predictions of the model become unreliable.
We believe, that if instead of randomly sampling ϵ like in Dreamfusion, we can find such a
noise sample, that under the same noise level t the artifacts of x̂0 will be hidden and it will be
in-distribution of the model. This effectively increases the ranges of t where the predictions of
the model are reliable and thus improves the generation quality. This intuition is illustrated
in fig. A.1.
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Figure A.1: For a training data point x0 we consider how an out-of-distribution image x̂0
is perceived by the trained diffusion model. The cones depict how the image gets noised -
notice that the cones meet at the bottom for the highest level of noise, however, for a big
portion of timesteps t, x̂0 stays out of distribution for the diffusion model.
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