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ABSTRACT

Models resistant to adversarial perturbations are stable around the neighbourhoods of
input images, such that small changes, known as adversarial attacks, cannot dramatically
change the prediction. Currently, this stability is obtained with Adversarial Training, which
directly teaches models to be robust by training on the perturbed examples themselves. In
this work, we show the surprisingly similar performance of instead regularizing the model
input-gradients of un-perturbed examples only.

Regularizing the input-gradient norm is commonly believed to be significantly worse than
Adversarial Training. Our experiments determine that the performance of Gradient Norm
critically depends on the smoothness of the activation functions of the model, and is in
fact highly peformant on modern vision transformers that natively use smooth GeLU over
piecewise linear ReLUs. On ImageNet-1K, Gradient Norm regularization achieves more than
90% of the performance of state-of-the-art Adversarial Training with PGD-3 (52% vs. 56%)
with 60% of the training time and without complex inner-maximization.

Further experiments shed light on additional properties relating model robustness and
input-gradients of unperturbed images, such as asymmetric color statistics. Suprisingly, we
also show significant adversarial robustness may be obtained by simply conditioning gradients
to focus on image edges, without explicit regularization of the norm.

Thesis supervisor: Antonio Torralba
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Deep neural networks have become the gold standard for computer vision tasks. Yet they
are also extremely brittle. Adversarial examples [1] are small manipulations to input images
that can cause highly-performant models to fail catastrophically. For example, the accuracy
of an ImageNet deep classifier drops from 84% to 0% under such attacks, even though the
perturbed images look identical to humans.

To safely deploy these models in critical tasks such as medicine or autonomous vehicles,
extensive research has been devoted to making robust models that are invariant to these
small perturbations. The current foremost paradigm for obtaining robust models in practice
has been Adversarial Training [2], which trains models in a minimax fashion, optimizing
classification losses over the attack-perturbed images. This approach is effective (yielding
60% robust accuracy under attack), but is also extremely computationally expensive, taking
3.92× wallclock time per training iteration compared to normal training. Therefore, it is
important to seek properties of robust models that can be optimized much more efficiently.

In this work, we analyze the fundamental differences between robust and non-robust
models from the perspective of loss-input gradients :

∇xL := ∇xLCE(fθ(x), y)︸ ︷︷ ︸
loss-input gradient of model fθ on example x with groundtruth class y

, (1.1)

where LCE is the cross entropy loss. The quantity ∇xL is related to the first-order Taylor
expansion of model loss. It is known that a smaller Gradient Norm ∇xL is correlated
to model smoothness and thus robustness [5], [6]. Figure 1.1 highlights the substantial
visual differences between the loss-input gradients of vulnerable and robust models of the
same architecture. Such differences reveal the regions of the image that the model uses to
make predictions. Notably, the gradients for robust models are much more image-like. In
robust models, the gradients are generally focused on the edges of input images, and in fact,
have much smaller magnitudes (Table 4.1). In this thesis, we question if these properties
contribute to robustness, or are simply irrelevant byproducts.

Previous research showed that simply regularizing ∇xL only yielded limited robustness
compared to Adversarial Training [7], the current state of the art. We revisit this regularized
training objective, and find it very effective on model architectures that use smooth activation
functions, including modern vision transformer architectures [8]. In contrast to prior beliefs,
our results show that more than 90% of robustness (compared to the state of the art) can be
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Figure 1.1: Comparison of loss-input gradients of non-robust and robust models across ar-
chitectures for a set of images. Non-robust models taken from timm [3]. Adversarial training
is from the work of Liu et al . [4]. Gradient norm regularization done with the objective in
Equation (4.1) and with the same recipe as adversarial training otherwise. As can be seen,
a model can be easily identified as vulnerable or robust simply by looking at clean input
gradients. Gradients of robust models (adversarial training and gradient norm regulariza-
tion) highly resemble the input images, and look visually similar to each other to the human
eye. By contrast, gradients of vulnerable models are noise-like, bearing apparently little
resemblance to each other or the input images.

obtained by simply regularizing input gradients. Alternatively, enforcing gradients to focus
on image edges also yields non-trivial robustness gains. We argue that input gradients ∇xL
is an important quantity in both understanding and improving robustness of deep neural
networks.

In summary, our contributions are as follows:

1. Showing that close to state-of-the-art robustness on ImageNet may be achieved by
regularizing the norm of natural input gradients

2. That the effectiveness of such approaches critically depends on the smoothness of

16



activation functions

3. And additionally showing how regularizing the direction of the gradients to focus on
image edges, independently of the norm, can also significantly increase robustness,
providing evidence towards showing that perceptual alignment induces robustness.
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Chapter 2

Related works

Adversarial examples. Szegedy et al . [1] first identified the existence of adversarial ex-
amples, small perturbations imperceptible to humans but that completely fool networks.
Since then, extensive researches have been conducted on the subject of adversarial exam-
ples, both on defending against such attacks [9]–[18], as well as stronger attacks [19]–[24],
developing into a race between between attackers and defenders.

Training robust models. Adversarial Training emerged as the strongest paradigm to-
wards training robust models in practice [2], [4], [25]–[27]. It is a complex bi-level algorithm,
where at each iteration we generate a strong attack (via iterative optimization) and train
the network to classify it correctly. In practice, such approaches, including the accelerated
single-step Fast Gradient Sign Method (FGSM), require tuning many hyper-parameters and
can be difficult to train [27]–[30]. Alternative approaches attempted to regularize models
to have small input gradient norms [5]–[7], [31]–[34]. Despite strong theoretical arguments,
no previous works have shown competitive performance on ImageNet from such regulariza-
tions. As far as we know, our work is the first to show its strong perfomance on modern
architectures, and pinpoints activation function smoothness as the deciding factor of its
effectiveness.

Perceptually aligned gradients. Previous works noted that robust models tend to have
perceptually aligned gradients, i.e., class gradients ∇xfθ(x)yt that align with human percep-
tion [35]–[37] (see also Figure 1.1). In this work, we analyze the reverse implication, and
ask: do perceptually aligned gradients imply robustness? The work of [38] aligned model
class gradients ∇xfθ(x)yt with several notions of class-representative images (defined via real
images and generative models), and observed improved robustness on small datasets, but
only small benefits on TinyImageNet. Our thesis shows that simply aligning gradients to
image edges yields much stronger robustness gains on the more challenging full ImageNet-1k.
In addition to perceptual alignment, we also highlight several other properties that separate
gradients of robust and non-robust models.

19
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Chapter 3

Experimental settings

3.1 Dataset

In this thesis, we will work with the challenging ImageNet-1K [39] dataset for all experiments.
In addition to being a difficult task, the high 224x224 resolution images of ImageNet will
lend us great visualization ability, improving capacity for analysis.

3.2 Architecture

We will use the current state-of-the-art architecture for Adversarial Robustness on ImageNet,
Swin Transformers [8], albeit in base size. We will also start from a standard pre-trained
checkpoint from timm [3] in all experiments to reduce computational expense from 300 to 100
epochs per full training run (roughly 3 weeks to 1 week reduction on 8 V100 GPUs). From
the work of Liu et al . [4] we know the impact of using pre-trained initializations and base
size models is measurable but qualitatively equivalent, so we argue it is a sufficiently strong
setting for our experiments. When analysing the effect of architectural choices in Section 4.3,
we will run experiments on ResNet50’s [40] to allow for more extensive ablations, due to the
aforementioned computational cost of training transformers.

3.3 Adversarial Training skyline and training recipe

We will use the work of Liu et al . [4], the current state-of-the-art for L∞ robust accuracy
on ImageNet, both as a skyline to compare performance as well as for their strong training
recipes. Unless otherwise stated, as per the work of Liu et al . [4] all training recipes for
Swin Transformers last 100 epochs, and use standard training tricks and augmentations like
RandAugment [41], [42], mixup with label smoothing and random erasing [43], the AdamW
optimizer with weight decay [44], and model averaging [45]–[47]. Recipes used for ResNets
are equivalent but halved in length. The full recipe details for all experiments are included
in the supplementary material, and we will publicly release the code.

21



3.4 Attack benchmark

We will use AutoAttack-L∞ [24] with perturbation strength ϵ = 4 for all main robustness
evaluations following the Robustbench standard [48]. To evaluate robustness for a dense set
of perturbations strengths ϵ, we will use the PGD100 attack. We use the code and test set
of Liu et al . [4] for robustness evaluations in order to have comparable results to theirs.

22



Chapter 4

Regularizing gradient norm leads to
robust models on modern architectures

4.1 Robust gradients have small L1 norm

Mathematically, a function stable to perturbations of the input has a small gradient w.r.t.
the input. Empirically, it has been observed that adversarial robustness (obtained with
adversarial training) [11] correlates with small gradient norm [5]. As we can see in Table 4.1,
this continues to hold with state-of-the-art robust transformers. The expected L1 norm
of the loss-input gradient ∇xL := ∇xLCE(fθ(x, y)1 is more than two orders of magnitude
smaller for robust models than for their non-robust counterparts of the same architecture.
Furthermore, fixing the models and taking expectations over inputs conditioning on PGD10
attack success, the gradient is much smaller when the attack fails than when it succeeds (last
two columns of Table 4.1).

Despite the large amounts of theoretical and empirical evidence supporting low norms
for robustness, the results of extensive previous work studying low gradient norms as a
regularizer [5]–[7], [31]–[34] have so far been either inconclusive, or non-performant on large
datasets like ImageNet. In the following section, we show how a simplified version of the
gradient norm L1 penalty, trained through double back-propagation [49], is within 5% of the
state-of-the-art on adversarial robustness on ImageNet despite seeing only natural examples,
showing how small gradients have a larger driving role in robustness than previously thought.

4.2 Regularizing for small gradient norms

Works in the literature studying gradient norm regularization have presented numerous for-
mulations with differing details, such as optimizing Jacobian gradients [7], [31], [32], reg-
ularizing gradients of both natural and adversarial examples [7], or regularizing through a
discrete scheme [33]. In this work, we study the effect of the cleanest formulation possible
of the objective, as presented in equation 4 of [5] and optimized in [6], which we restate in
Equation (4.1)

LGradNorm(x, y) = λCELCE(fθ(x), y) + λGN
ϵ

σ
∇xLCE(fθ(x), y))1 (4.1)
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Table 4.1: Accuracy, robustness, and gradient norm statistics on 10k ImageNet validation
images for publicly available vulnerable and robust models from timm [3] and robustbench
[48] respectively. The quantities Standard, AA, and PGD10 refer to clean accuracy, and Au-
toAttack and PGD10 robust accuracy respectively. The quantities E[L1| ] and E[L1| ] are
the conditional expectations of the loss input-gradient L1 norm conditioned on the PGD10
attack failing and succeeding respectively.

Accuracy Gradient Norm

Architecture Training Standard AA PGD10 E[L1] E[L1| ] E[L1| ]

Resnet-50 Std. (He et al .) 76.35 00.00 00.66 273.4139 115.6848 274.4619
Adv. (Salman et al .) 63.99 34.96 39.97 1.7784 0.3684 2.7172

Swin-B Std. (Liu et al .) 84.84 00.00 02.77 147.8595 23.6523 151.3980
Adv. (Liu et al .) 76.86 56.16 59.27 1.1708 0.3437 2.3742

Swin-L Std. (Liu et al .) 86.13 00.00 02.12 113.6367 15.7218 115.7575
Adv. (Liu et al .) 78.53 59.56 61.27 1.4062 0.3036 3.1503

Table 4.2: Robustness of a Swin Transformer trained with gradient norm regularization
compared to natural training and state-of-the-art adversarial training on AutoAttack-L∞.
Adversarial training performed from pretrained timm [3] checkpoint using the recipe of [4].

Clean AutoAttack-L∞

Method - ϵ = 1 ϵ = 2 ϵ = 4

Natural Training 84.19 00.00 00.00 00.00
Grad. Norm (λCE = 0.8, λGN = 1.2) 77.78 72.04 66.20 51.58
Adv. Train. (PGD-3, ϵ = 4) 77.20 72.46 67.38 56.12

where LCE is the cross-entropy loss, ϵ = 4 is the adversarial strength, σ = 0.225 is the
standard deviation used for normalization on ImageNet, and λCE, λGN are weighing hyper-
parameters set 0.8 and 1.2 respectively.

As we can see Table 4.2, training on the above objective yields a highly competitive model
despite the costraints of seeing only natural examples and having 60% of the computational
budget. On AutoAttack L∞ with ϵ = 4, the standard benchmark for ImageNet [48], gradient
norm regularization obtains 51.58% robust performance compared to the 56.12% obtained
by state-of-the-art adversarial training (also starting from a pretrained checkpoint) [4]. For
smaller epsilons, the gap shrinks to 1.18% and 0.42% for ϵ of 2 and 1 respectively, though
it may be possible that the gap would be larger if the Adversarial Training was performed
with a lower ϵ than 4.

More interestingly, we also evaluate behaviour for higher values of ϵ. In Figure 4.1, we plot
robust performance on PGD100 for a dense ϵ interval from 0 to 16. As we can see, while the
gap to adversarial training grows larger as a function of the adversarial strength ϵ, it is always
less than 10%. Additionally, for ϵ < 12, accuracy is always two orders of magnitude above
chance. This is an incredibly surprising result: despite gradient norm regularization working
on only natural examples, without even random uniform perturbations [27], it remains strong
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Table 4.3: Computational cost per batch comparison between natural training, adversarial
training, and gradient norm regularization. Theoretical cost measured in number of network
passes per batch, and empirical cost measured in seconds per batch. Experiments conducted
on the same set of 8 V100 GPUs without mixed precision. Averages and standard deviations
reported for the average batch time over three separate runs.

Method # passes Rel. to Adv. Train. Empirical cost (s) Rel to Adv. Train.

Nat. Train. 2 0.250 0.749 ± 0.00216 0.255
Grad. Norm. 5 0.625 1.848 ± 0.01108 0.628
Adv. Train. (PGD-3) 8 1.000 2.943 ± 0.00141 1.000

even for very large ϵ.
This showcases both the strong bias towards smoothness endowed by modern architec-

tural choices, as well as the strong robustness driving effect of small gradient norms. Table 4.3
displays computational cost comparisons between natural and adversarial training compared
to gradient norm regularization. Roughly speaking, it means that for smooth swin trans-
formers, adversarial training with PGD-3 is expending 40% of its computational budget
improving results by 5.1% accuracy points, or about an 8.8% relative increase. Similarly,
minimizing the loss input-gradient L1 norm is responsible for 92% of state-of-the-art robust
accuracy.

In the following section, we empirically show the drastic effect of smooth non-linearities
on the performance of gradient norm regularization, even on smaller architectures such as
ResNets.

4.3 Smooth activation functions make gradient norm reg-
ularization effective

The formulation of the gradient norm objective in Equation (4.1) is extremely similar to
that of previous works [6], [7], [32], [33], so why are results so different now? As was
openly discussed by previous works [5], [33], ReLU networks are non-smooth i.e. they have
non-differentiable gradients. While they raised concerns regarding the effect of these non-
differentiable gradients on gradient norm regularization, they did not conduct tests to mea-
sure the size of this effect, which we perform in this section.

We set up the following controlled comparison. First, we take a pre-trained ResNet-50
[3] and replace all the ReLU non-linearities with smooth GeLUs and SiLUs [50]. This change
causes clean accuracy to decrease to 0%, so we finetune over three epochs. For consistency,
we also finetune the ResNet-50 with ReLUs with the same recipe and seed. Next, we make
a copy of each network and train each copy on the same recipe (a halved version of the
recipe used for transformers), with both adversarial training with PGD-3 and gradient norm
regularization. Throughout all the trainings we keep the batch-normalizations in evaluation
mode in order to isolate the effect of the non-linearity. The evaluations on L∞-AutoAttack
are shown on Table 4.4. We show validation accuracies as functions of epoch in Figure 4.3.
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Table 4.4: Clean and L∞-AutoAttack accuracy for ResNets with ReLU, GeLU, and SiLU
non-linearities trained with both Adversarial Training and GradNorm for 50 epochs using a
shortened version of the Adversarial Transformer recipe of [4].

Method Accuracy

Training Non-linearity Standard AutoAttack-L∞

GradNorm
ReLU 16.94 6.82
GeLU 60.34 30.00
SiLU 61.84 30.58

1-4
Adv. Train.

ReLU 59.46 31.60
GeLU 59.34 32.64
SiLU 60.58 33.40

As we can see in Table 4.4 and Figure 4.3, the ResNet with ReLU is completely incapable
of properly fitting the objective at the appropriate strength, with clean performance sharply
decaying and robust performance barely increasing, compared to the ResNet with GeLU,
despite training on the same recipe with the same regularization objective and weights. In
contrast, the gradient norm regularized GeLU ResNet displays similar convergence behaviour
to the adversarially trained model, obtaining extremely similar final clean and robust accu-
racies.

The work of [51] conducted a similar analysis for Adversarial Training, observing small
increases in performance from using smooth non-linearities. As we can see from Table 4.4, for
Gradient Norm regularization the effect is more than 20 times larger: robust performance on
AutoAttack with adversarial training increases by 1%, while for gradient norm the increase
is roughly 23%. In essence, the gradient norm regularization objective minimizes a penalty
on the gradients of the network; since for ReLU networks the latter is non-differentiable,
Taylor’s theorem does not necessarily hold on the gradient loss, so there is no guarantee that
gradient descent will work.

Additionally, we found the usage of adaptive optimizers like Adam [52], as well as a
relatively small warm-up learning rate of 10−5, to be extremely important. Especially at
the beginning, the size of the norm of the gradient changes drastically; using a non-adaptive
optimizer or too high a learning rate also causes performance to similarly crash, even on
smooth networks, for the regularization weights required to reach performance comparable
to adversarial training. This may have been another reason behind the lack of conclusive
success of previous works.

In Figure 4.2, we visualize PGD10 perturbations of the same vulnerable and robust
models in Figure 1.1. Similarly as in Figure 1.1, obvious visual differences exist between the
perturbations of vulnerable and robust models.

4.4 Properties of robust gradients beyond small L1 norm

In this section, we compare and contrast gradients from adversarially trained models with
those obtained through gradient norm regularization. What is present in the former and not
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the latter? We briefly provide an interesting finding in that direction.
Figure 4.4 plots the distribution of the absolute values of gradients across 128 images.

In Figure 4.4.a, we see that adversarially trained gradients have much smaller small values
than gradient norm regularized gradients. The distribution for the later tapers off at 10−9,
while the former has a bump between 10−11 and 10−10. Even more interestingly, plotting
red Figure 4.4.b, green Figure 4.4.c, and blue channels Figure 4.4.d individually, we observe
that the difference observed in Figure 4.4.a is almost entirely due to the green channel of the
gradients. This asymmetric role of the green channel is unique to adversarial training across
the three models. It’s possible this may be due to the special role that the green channel
plays in image coding, such as sampling using Bayer filters [53].
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Figure 4.1: Robust accuracy vs epsilon for the PGD100 attack on ImageNet for Swin Trans-
former trained on Gradient Norm Regularization and state-of-the-art Adversarial Training.
Gradient Norm Regularization achieves slightly better accuracy on clean images (ϵ = 0) and
good robust performance (ϵ > 0), despite seeing only natural examples and having 60% of
the computational cost of Adversarial Training with PGD-3.
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Figure 4.2: Comparison of PGD10 L∞ (ϵ=4) perturbations of non-robust and robust models
across architectures for a set of images (same as in Figure 1.1). As with clean input gradi-
ents, models can again be easily identified as vulnerable or robust simply by looking at the
perturbations. Perturbations coming from robust models (adversarial training and gradient
norm regularization) highly resemble the input images, though the visual similarity has de-
creased w.r.t. the input gradients. Perturbations originating from vulnerable models are now
even more noise-like, with the exception of images with very flat backgrounds, potentially
because the gradient may oscillate around zero in those areas.
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Figure 4.3: Clean and PGD10 (ϵ = 4) robust accuracy vs epoch for ResNet50 with ReLU and
GeLU trained with Adversarial Training and Gradient Norm Regularization. We observe how
the ReLU ResNet is not capable of handling the regularization objective at the appropriate
strength.

(a) (b) (c) (d)(d)

Figure 4.4: Distribution of absolute value of gradients over 128 images for (a) all channels
(b) the red channel (c) the green channel and (d) the blue channel. In (a), we see adversarial
gradients have a significantly fatter left tail; essentially, the small values are much lower.
From looking at the channel-specifcic plots (b),(c), and (d), we observe that most of this
difference is owed to the green channel: the small values of the green channel of adversarially
trained gradients are very small. This asymmetric behaviour is missing from both naturally
trained and gradient norm regularized models.
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Chapter 5

Aligning gradient to image edges
improves robustness

We also evaluate properties common to both adversarially trained and gradient norm regu-
larized models. Despite highlighting the same object [35], [36], [54], the saliency maps (the
per-pixel maximum absolute value of the class input-gradients) of vulnerable and robust
models display significantly opposite correlations with the image edges, as seen visually in
Figure 5.1 and numerically in Table 5.1.

The image edges, also known as the oriented energy of the image, are calculated using
Sobel filters [55]; in simple terms, horizontal and vertical derivatives are calculated using a
convolution, squared, and finally added to obtain a measure of the amount of local change
at each pixel.

In Table 5.1, we report the log-log correlation between both the saliency map and the
loss input-gradient absolute value with the oriented energy of the input. For the naturally
trained model, both values are significantly negative at around -0.45, for both robust models,
they are significantly positive at around +0.56.

In Figure 5.1, we visualize this similarity between saliency maps and image edges (i.e.,
oriented energy), and show the correlation between log saliency map and log oriented energy
plots for each pixel. We observe strong positive correlation for robust models, and weaker
negative correlations for non-robust models.

A natural question that arises is wether this property is merely a consequence of robust-
ness, or actually induces robust behaviour. We find that, to a signficant extent, it is actually
the latter. We first tried to optimize cosine similarity between the loss-input gradient (∇xL))
and oriented energy directly. However, optimization did not converge. Instead, we obtain
significant results by aligning class gradients (∇xfθ(x)yt , i.e., the gradient of target-class logit
w.r.t. input), following [35] who regularize this quantity in a different fashion. Additionally,
sampling the class according to the probabilites of the model, rather than always using the
target class, marginally but measurably improved results. This final form of the regularizer
is the following:

Ledge(x, y) := Lcos(∇xfθ(x)t, |gu ∗ x|2 + |gv ∗ x|2) (5.1)

t ∼ softmax(fθ(x)/0.5) (5.2)
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Figure 5.1: Scatter plots of log gradient magnitude vs log oriented energy for a non-robust
and robust Swin Transformer. Oriented energy is calculated as edge(x) = |gu ∗x|2+ |gv ∗x|2,
where ∗ denotes the convolution operation, and gu, gv denote Gaussian horizontal and vertical
derivative filters respectively. Oriented energy is clamped at 1e-3 to eliminate extremely low
outliers. Saliency maps are clipped to percentile 0.95 for visualization purposes only.
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Table 5.1: Average and standard deviation of log saliency map magnitude vs log oriented
energy Pearson correlation across 10000 validation images of ImageNet. We observe a sig-
nificant positive correlation of +0.56 between the saliency map of the robust model and the
oriented energy of the input, showing that the majority of the gradient content is located at
the edges of the image. By contrast, the significant negative correlation of −0.45 between
the saliency maps of vulnerable vanilla models and the oriented energy of the input show
that the majority of the gradient is located at the flat regions of the image. Moreover, we
believe these values undersell the relationship as the edges are naively calculated and high-
light irrelevant objects that will have zero gradient content. Oriented energy calculated as
edge(x) = |gu ∗ x|2 + |gv ∗ x|2, where ∗ denotes the convolution operation, and gu, gv denote
Gaussian horizontal and vertical derivative filters respectively.

Accuracy Pearson corr. of log w/ log oriented energy

Training Clean AutoAttack Saliency map |∇xLCE(fθ(x), y)|

Natural 84.19 00.00 −0.4510± (0.1467) −0.4428± (0.1498)
Gradient Norm 77.78 51.58 +0.5627± (0.1640) +0.5679± (0.1647)
Adversarial (PGD-3) 77.20 56.16 +0.5627± (0.1569) +0.5692± (0.1569)
1-5 Edge regularization 76.80 35.02 +0.6055± (0.1644) +0.3882± (0.2020)

where Lcos is the cosine similarity loss, ∇xfθ(x)y is the gradient of the label logit with re-
spect to the input, softmax(fθ(x)/0.5) is the probability distribution defined by the model
outputs with a temperature of 0.5, ∗ denotes 2D convolution, and gu, gv denote gaussian
horizontal and vertical derivative filters respectively. Note that unlike gradient norm regu-
larization, Equation (5.1) does nothing to a-priori regularize the norm of the gradients, only
the direction.

Optimizing the above quantity turns out to be slightly more difficult, requiring 128 epochs
to converge. However, as we can see in row 4 of Table 5.1, this edge regularization is sufficient
to obtain significant robustness on AutoAttack L∞, obtaining 35.02% robust accuracy, a
relative performance of 60% compared to the current state of the art via Adversarial Training
[4]. While not at the level of models regularized purposefully for robustness, this serves
as significant evidence to support our hypothesis. Moreover, the true value of the result
may lie in the following: it is much easier to conceptualize devising an architecture that
natively focuses on edges than one that has low gradient norm or is resistant to arbitrary
perturbations. That is, the success of edge regularization could potentially provide a start
towards a structurally robust architecture i.e. one that displays adversarial robustness even
when trained normally. We leave this direction to future work.
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Chapter 6

Conclusion

What properties of input gradients characterize model robustness? In our work we find that,
on architectures with smooth non-linearities, cleanly minimizing the L1 norm of the loss
input gradients achieves close to state-of-the-art robust performance, despite never training
on perturbed examples. This implies that (1) model robustness is significantly characteriz-
able by behaviour on natural inputs, and (2) architectural changes like non-linearity choice
may drastically change the effectiveness of alternate approaches towards robustness. We also
find an additional characterization of robust gradients based on image edges, independent
of norm, that achieves 60% performance of state-of-the-art. While numerically weaker than
the gradient norm result, the implications are still potentially significant. Specifically, it pro-
vides a possible hint towards a naturally robust architecture that, through natively enforcing
dependence only on the edge regions of the image, is resistant to perturbations despite being
naturally trained.

6.1 Limitations

Though we indirectly evaluate the effectiveness on ResNet50, most of our main experiments
including performance comparisons to the state-of-the-art are limited to swin transformers.
Additionally, there is yet still a gap between Gradient Norm Regularization and Adversarial
Training that we do not characterize.

6.2 Broader impact

Deep neural networks have become the gold standard for computer vision tasks, but are
also extremely brittle. To this, advances in understanding of model robustness are highly
important towards the adoption of deep neural networks in safety critical tasks.

35



36



Appendix A

Second-Order Analysis

The main text focuses on analyses of first-order statistics involving input-gradients. In
this section, we provide additional analyses focusing on second-order behaviors, following
previous work [56]–[61]. In particular:

• Appendix A.1 measures the geometry statistics introduced by Srinivas et al . [57].

• Appendix A.2 measures the local linearity error of Rocamora et al . [56].

• Appendix A.3 measures loss L, L1 gradient norm |∇L|1, and normalized curvature
|∇2L|2
|∇L|2 [57] as we move in the attack direction.

In contrast to previous works on smaller datasets, our analyses focus on large-scale models
trained on ImageNet.

A.1 Geometry statistics

Table A.1 plots average and standard deviation of the geometry statistics introduced by
Srinivas et al . [57]: the loss-input gradient L2 norm |∇L|2, the loss-input hessian spectral
norm |∇2L|2, and the normalized curvature CL := |∇2L|2

|∇L|2 .
Standard deviations are very high due to a high variability in scale across examples, which

we think is a feature unique to ImageNet as this was not observed by Srinivas et al ., though
it could also be due to the much larger transformer model. Hence, we plot the distribution
of curvature across examples in log scale in Figure A.1.

As we can see, robust training leads to a decrease in normalized curvature of over three
orders of magnitude w.r.t. natural training; hessian spectral norms drop by more than six,
while gradient L2 norms by around two. Between the two robust models, all geometry statis-
tic averages are surprisingly very similar, with the normalized curvature of the adversarially
trained model actually being slightly higher. However, we also observe that the standard de-
viation of gradient and hessian norm are significantly higher for gradient norm regularization,
despite normalized curvature standard deviation being lower; this means that gradient and
hessian norms vary on the same examples, such that normalized curvature remains small.
Through visual examination of Figure A.1.b, we see that the curvature distribution is also
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Table A.1: Geometry statistics as presented in Srinivas et al . [57]. Due to the high varia-
tion of the statistic scale across images standard deviations are very high, especially for the
natural model. Hence, we also show the distribution of the curvature in Figure A.1. Robust
training (both gradient norm regularization and adversarial training) leads to an improve-
ment in normalized curvature of over three orders of magnitude w.r.t. to natural training.
Surprisingly, amongst the two robust models adversarial training has the highest curvature,
though the numbers are quite close. Statistics calculated over 3200 ImageNet validation
images.

Accuracy Geometry

Training Clean AutoAttack Ex∇L(x)2 Ex∇2L(x)2 ExCL(x)

Natural training 84.19 00.00 28.7± (93.8) 106 ± (107) 104 ± (105)
Gradient norm regularization 77.78 51.58 0.31± (0.67) 0.79± 3.25 2.15± (1.72)
Adversarial training (PGD-3) 77.20 56.16 0.31± (0.44) 0.75± 1.71 2.17± (1.83)

very similar across the two robust models. A possible explanation is that the gradient norm
regularized model overfits to the clean examples, and thus displays similar numbers to the
adversarially trained model despite its lower performance.

A.2 Local linearity error

As defined by Rocamora et al . in [56], the local linearity error optimizes the linearity of
the model w.r.t. uniformly distributed perturbations. We rewrite their objective in Equa-
tion (A.1)

Eα,η1,η2

[
|αL(x+ η1) + (1− α)L(x+ η2)− L(x+ αη1 + (1− α)η2)|2

]
(A.1)

α ∼ U(0, 1) η1, η2 ∼ U(−ϵ, ϵ) (A.2)

where ϵ = 4./255.
Table A.2 reports mean and standard deviation of the local linearity error across 10000

ImageNet validation images. As we can see, the two robust models have significantly smaller
local linearity errors by about two orders of magnitude compared to the naturally trained
model. Within the two robust models, adversarial training has lower average local linearity
error, consistent with its superior robustness.

A.3 Loss, L1 gradient norm, and normalized curvature
along attack direction

In this section, we measure how statistics change along the attack direction by linearly
interpolating between a clean and attacked input. While we use the relatively weak PGD-5
attack to reduce computational expense, as we can see in the legend of Figure A.3 that it is
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(a) (b)

Figure A.1: Distribution of normalized curvature [57] over 3200 ImageNet validation images,
(a) plots all three models and (b) plots just the robust models. Due to the high variation
in scale over images, the graph is plotted with the x-axis in log scale. In (a) we see robust
training (both gradient norm regularization and adversarial training) leads to an improve-
ment in normalized curvature of over three orders of magnitude w.r.t. to natural training.
Surprisingly, amongst the robust models adversarial training has the slightly higher average
curvature, though the distributions are so close they cannot be distinguished in the graph.

enough to clearly separate the three models in terms of robustness. The interpolated attack
is calculated as follows

x(ϵ) = x+
ϵ

4
(PGD-5ϵ=4(x)− x) (A.3)

Figure A.3.a1 plots average classification loss as function of interpolation ϵ for the three
models. As we can see, the loss of the naturally trained model quickly grows to worse-than-
random (6.9). Figure A.3.a2 zooms into the two robust models, where we observe two key
things: (1) adversarial training has higher loss very close to the origin but lower loss away,
and (2) despite their robustness loss still significantly increases as we move in the attack
direction.

Figure A.3.b1 and Figure A.3.b2 plots L1 loss-input gradient norm as a function of inter-
polation ϵ in the same manner, with similar conclusions. Despite having very similar gradient
norms at the origin, gradient norm regularization quickly becomes worse than adversarial
training away from the origin. Moreover, both models display a high increase in gradient
norm along the attack direction w.r.t. the value at the origin.

Figure A.3.c1 and Figure A.3.c2 plot normalized curvature. In this particular sample of
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Table A.2: Average and standard deviation of the local linearity error of Rocamora et al . [56].
Due to the high variation of the scale across images, standard deviations are larger than the
mean. Hence, we also report mean and standard deviation of the base 10 logarithm of the
error. We add 10−17 before computing log statistics for numerical stability. Robust training
(both gradient norm regularization and adversarial training) leads to an improvement in
local linearity error of two orders of magnitude w.r.t. to natural training. Within the robust
models, adversarial training has significantly lower local linearity error, reflecting its superior
robustness and second-order stability. Statistics calculated for 10000 ImageNet validation
images.

Accuracy Local linearity error

Training Clean AutoAttack linerr log10(linerr)

Natural Training 84.19 00.00 3.55e− 3± (2.69e− 2) −4.57± (1.63)
Gradient norm regularization 77.78 51.58 1.86e− 5± (1.65e− 4) −6.60± (1.43)
Adversarial training (PGD-3) 77.20 56.16 8.2e− 6± (5.08e− 5) −6.84± (1.48)

1000 images (and using less iterations when calculating hessian spectral norm), normalized
curvature at the origin is slightly higher for gradient norm regularization, though they are still
quite similar. However, as we step away from the origin in the attack direction, curvature
for gradient norm regularization spikes relative to adversarial training. This is consistent
with the relative increase in gradient norm w.r.t. the adversarially trained model seen in
Figure A.3.b2.

40



(a) (b)

Figure A.2: Distribution of local linearity error [56] over 10000 ImageNet validation images,
(a) plots all three models and (b) plots just the robust models. Due to the high variation
in scale over images, the graph is plotted with the x-axis in log scale. In (a) we see robust
training (both gradient norm regularization and adversarial training) leads to a visible left-
ward shift of the error distribution by about two orders of magnitude w.r.t. natural training.
Within the robust models, adversarial training has the lowest local linearity error. The error
distribution of adversarial training is shifted slightly to the left and has a much lower peak,
meaning that it has a greater number of images with very low local linearity error.
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(a.3) (b.3)

Figure A.3: Average loss (top), L1 gradient norm (middle), and normalized curvature (bot-
tom) [57] along the PGD-5 (ϵ = 4) attack direction. The left column (a) shows all three
models, where we see the extreme brittleness of natural training. The right column (b) zooms
into the two robust models. Despite their robustness, loss and gradient norm significantly in-
crease along the attack direction for both models. Comparing the two, L1 gradient norm and
curvature at the origin are similar, but gradient norm regularization has significantly higher
curvature slightly away from the origin, resulting in higher losses and gradient norms along
the attack direction. Statistics calculated on 1000 ImageNet validation examples. Power
iteration for the normalized curvature done with 2 iterations and initialized from gradients
in order to reduce computational cost.

42



Appendix B

Training details

We used the code of Liu et al . [4] as the basis for our experiments. The training configuration
used in our experiments is found below in yaml format.

B.1 ResNet50

B.2 Adversarial training (PGD-3)

Same as the transformer recipe of Liu et al . [4], but shortened to 50 epochs. Training done
in evaluation mode.

# optimizer parameters
opt: adamw
opt_eps: 1.0e-8
opt_betas: null
momentum: 0.9
weight_decay: 0.05
clip_grad: null
clip_mode: norm
layer_decay: null

# lr schedule
epochs: 50
sched: cosine
lrb: 1.25e-3
warmup_lr: 1.0e-6
min_lr: 1.0e-5
epoch_repeats: 0
start_epoch: null
decay_epochs: 15
warmup_epochs: 5
cooldown_epochs: 0
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patience_epochs: 0
decay_rate: 0.1

# dataset parameters
batch_size: 256

# augmentation
no_aug: False
color_jitter: 0.4
aa: rand-m9-mstd0.5-inc1
aug_repeats: 0
aug_splits: 0
jsd_loss: False
# random erase
reprob: 0.25
remode: pixel
recount: 1
resplit: False
mixup: 0.8
cutmix: 1.0
cutmix_minmax: null
mixup_prob: 1.0
mixup_switch_prob: 0.5
mixup_mode: batch
mixup_off_epoch: 0
smoothing: 0.1
train_interpolation: bicubic
# drop connection
drop: 0.0
drop_path: 0.0
drop_block: null

# ema
model_ema: True
model_ema_force_cpu: False
model_ema_decay: 0.9998

# adversarial training
attack_eps: 0.01568627450980392 # 4./255.
attack_it: 3
attack_step: 0.01045751633986928 # 8./255./3.

Additionally, the attack step is warmed up linearly over 5 epochs as per Liu et al . [4].
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B.2.1 Gradient Norm Regularization

Same as above, but changing adversarial training for gradient norm regularization with the
following weights.

# gradient norm regularization
ce_weight: 0.5
gradnorm_weight: 0.5

Additionally, gradnorm_weight is warmed up linearly over 5 epochs.

B.3 Swin Transformers

B.3.1 Adversarial Training (PGD-3)

Exactly the recipe of Liu et al . [4].

# optimizer parameters
opt: adamw
opt_eps: 1.0e-8
opt_betas: null
momentum: 0.9
weight_decay: 0.05
clip_grad: null
clip_mode: norm
layer_decay: null

# lr schedule
epochs: 100
sched: cosine
lrb: 1.25e-3
warmup_lr: 1.0e-6
min_lr: 1.0e-5
epoch_repeats: 0
start_epoch: null
decay_epochs: 30
warmup_epochs: 5
cooldown_epochs: 0
patience_epochs: 0
decay_rate: 0.1

# dataset parameters
batch_size: 512

# augmentation
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no_aug: False
color_jitter: 0.4
aa: rand-m9-mstd0.5-inc1
aug_repeats: 0
aug_splits: 0
jsd_loss: False
# random erase
reprob: 0.25
remode: pixel
recount: 1
resplit: False
mixup: 0.8
cutmix: 1.0
cutmix_minmax: null
mixup_prob: 1.0
mixup_switch_prob: 0.5
mixup_mode: batch
mixup_off_epoch: 0
smoothing: 0.1
train_interpolation: bicubic
# drop connection
drop: 0.0
drop_path: 0.0
drop_block: null

# ema
model_ema: True
model_ema_force_cpu: False
model_ema_decay: 0.9998

Additionally, the attack step is warmed up linearly over 5 epochs as per Liu et al . [4].

B.3.2 Gradient Norm Regularization

Same as above, except for changing adversarial training for gradient norm regularization
(see Equation (4.1)) with weights (λCE = 0.8, λGN = 1.2), a halving of the learning rate to
0.625e− 3, an increase in the batch size from 512 to 532, and an increase in the warm-up
learning rate from 1e− 6 to 1e− 5.

# lr schedule
lrb: 0.625e-3
warmup_lr: 1.0e-5

# dataset parameters
batch_size: 532
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# gradient norm regularization
ce_weight: 0.8
gradnorm_weight: 1.2

Additionally, gradnorm_weight is warmed up linearly over 5 epochs.
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