Regulation of human sex-linked homologs *DDX3X* and *DDX3Y* and phenotypic consequences

by Shruthi Rengarajan

B.A., Biochemistry & Molecular Biology Boston University, 2016 M.A., Biotechnology Boston University, 2016

Submitted to the Department of Biology in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Biology

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2024

©2024 Shruthi Rengarajan. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license to exercise any and all rights under copyright, including to reproduce, preserve, distribute and publicly display copies of the thesis, or release the thesis under an open-access license.

Author	Shruthi Rengarajan
	Department of Biology
	March 28, 2024
Certified by	David C. Page
	Professor of Biology
	Member, Whitehead Institute
	Investigator, Howard Hughes Medical Institute
	Thesis Supervisor
Accepted by	Mary Gehring
	Associate Professor of Biology
	Member, Whitehead Institute
	Director, Biology Graduate Committee

Regulation of human sex-linked homologs *DDX3X* and *DDX3Y* and phenotypic consequences

by Shruthi Rengarajan

Submitted to the Department of Biology on March 28th, 2024 in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Biology

ABSTRACT

The X-linked gene *DDX3X* and its Y-linked homolog *DDX3Y* comprise one of 17 gene pairs retained on the human X and Y chromosomes during their evolution from ordinary autosomes; both genes are widely expressed in human tissues. Mutations of *DDX3X* and *DDX3Y* result in a wide range of sex-dependent phenotypes, necessitating the study of their regulation.

In this thesis, we show that *DDX3X* is extraordinarily dosage-sensitive, and that perturbation of either *DDX3X* or *DDX3Y* expression is buffered -- by negative cross-regulation of *DDX3X* and *DDX3Y* in 46,XY cells, and by negative auto-regulation of *DDX3X* in 46,XX cells. In 46,XY cells, knockdown of either *DDX3X* or *DDX3Y* by CRISPRi causes transcript levels of the homologous gene to rise. In 46,XX cells, chemical inhibition of DDX3X protein activity elicits an increase in *DDX3X* transcript levels. This regulation is mediated through mRNA stability and buffers total levels of *DDX3X* and *DDX3Y* protein in human cells. Our findings indicate that gene regulatory mechanisms present on ancestral autosomes were retained and modified during the 200-million-year evolution of the human sex chromosomes.

This regulation has key consequences for human diseases. We re-analyzed data from the Cancer Dependency Map to identify genetic dependencies on the broadly expressed regulators on the Y chromosome. We find that *DDX3Y* is required for the survival of a set of cancer cell lines that present with loss-of-function mutations in *DDX3X*, uncovering a novel dependency in male tumors. Altogether, this work identifies a regulatory mechanism on the human sex chromosomes that has important consequences for human disease.

Thesis Supervisor: David C. Page Title: Professor of Biology

Acknowledgements

This thesis would not have been possible without contributions from many people. Firstly, I would like to thank my advisor David Page, for his endless optimism and insights into scientific presentation and writing. Thank you to Winston, Jason, Nikolai and Erik for your contributions to this thesis, particularly the Slavov lab for being excellent collaborators and their patience in teaching me proteomics. Thank you to members of the Page lab for their advice and support over the years. I could not have asked for a more collaborative and thoughtful group of colleagues and I am grateful to each and every one of you. I would like to acknowledge Adrianna San Roman and Jennifer Hughes for their rigorous feedback and knowledge, Susan Tocio and Jorge Adarme for keeping the lab running and Hannah Harris for being a constant source of humor and support.

Thank you to my committee members Dave Bartel and Matt Vander Heiden for their useful suggestions and for keeping me on track, as well as all the members of the Bartel lab who have shared reagents and advice. I would also like to thank Kathy Liu for her time and expertise as my external committee member. Thank you to my former advisors Miguel Rivera and John Celenza for their scientific mentorship of many years.

Thank you to so many friends for keeping me sane and being the best support system: Amrita, Charmi, Ellen, Farah, Laurel, Talya, Teresa. Thank you to Dia and Elizabeth for being the only roommates I could have spent these years with and for listening to me vent and practice presentations. Thank you to all my family scattered throughout the globe for their well wishes. Thank you to Vijay for being my confidante, advocate and proofreader; this would not be possible without you. And finally, thank you to my parents for 29 years of faith and support; I'm forever grateful.

TABLE OF CONTENTS:

METHODS

REFERENCES

ABSTRACT	3
ACKNOWLEDGEMENTS	4
Chapter 1. Introduction	9
EVOLUTION OF THE MAMMALIAN SEX CHROMOSOMES	11
HOMOLOGOUS GENES ON THE X and Y CHROMOSOMES	13
Gene Content on the Y chromosome Dosage Compensation on the X chromosome	
DDX3X & DDX3Y: FUNCTION, CONSERVATION & PHENOTYPES	16
DDX3X Function	
Similarities & Differences with DDX3Y	
Conservation & Orthologs	
Phenotypic consequences of perturbation	
REFERENCES	24
Chapter 2. Post-transcriptional cross- and auto-regulation buffer expression	on
of the human RNA helicases DDX3X and DDX3Y	29
ABSTRACT	30
INTRODUCTION	31
RESULTS	33
DISCUSSION	49
METHODS	52
REFERENCES	59
SUPPLEMENTAL FIGURES AND TABLES	63
Chapter 3. Y chromosome-encoded regulators are essential in cancer ce	ll lines
	95
ABSTRACT	96
BACKGROUND	97
RESULTS & DISCUSSION	98

103

SUPPLEMENTAL FIGURES AND TABLES	107
Chapter 4. Conclusions	127
CONCLUSIONS & FUTURE DIRECTIONS	128
REFERENCES	135

List of Figures

Chapter 2

Figure 1. *DDX3X* is highly dosage sensitive and expressed broadly among human tissues

Figure 2. *DDX3X* and *DDX3Y* expression is negatively responsive to, respectively, Y and X chromosome copy number

Figure 3. *DDX3X* and *DDX3Y* each respond directly to perturbations in the other's expression

Figure 4. Increased expression of *DDX3X* fully compensates, at transcript and protein levels, for knockdown of *DDX3Y*, but the inverse is not true

Figure 5. DDX3X is negatively auto-regulated in 46,XX cells

Figure 6. *DDX3X* mRNA stability is regulated

Figure 7. Gene regulatory mechanisms of X-Y gene pairs were preserved during sex chromosome evolution

Chapter 3

Figure 1. Genetic dependencies of Depmap cell lines on Y chromosome regulators

Figure 2. Characterization of cell lines with DDX3Y dependencies

List of Tables

Chapter 2.

Table 1: Dosage-sensitivity of human X-Y pair genes across therian mammalian lineages.

Chapter 3.

Chapter 1: Introduction In mammals, sex determination is achieved by sex chromosome constitution: Typical females have two X chromosomes and typical males have one X and one Y chromosome in their cells. Specifically, it is a gene on the Y chromosome that determines gonadal sex (Koopman et al., 1991). The expression of Y-linked transcription factor *Sry* activates a signaling cascade in the early embryo leading to testis development in males (Sekido & Lovell-Badge, 2009). In females, the X chromosomes are present in two distinct epigenetic configurations, the 'active' X (Xa) and the 'inactive' X (Xi). Xa is transcriptionally active and expresses most of its genetic content, approximately 800 genes. Conversely, Xi is marked by closed chromatin and limited gene expression; only 25% of X-encoded genes are expressed from Xi (Lyon, 1962; San Roman et al., 2023). The X and Y chromosomes are largely non-recombining except for a small pseudoautosomal region (Skaletsky et al., 2003) and the difference in X and Y content represents the largest source of genetic variation in the human population.

X and Y differentiation is the result of Y-chromosome gene loss over the course of sex chromosome evolution. While the present-day X chromosome retains 98% of its ancestral gene content, the Y has only retained about 3% (Skaletsky et al., 2003). These surviving genes are essential for male viability or fertility. This includes a class of genes known as 'X-Y pairs', homologous genes on the sex chromosomes that are highly dosage-sensitive and haploinsufficient (Bellott et al., 2014). These critical homologs are broadly expressed throughout the human body and encode key

regulators of cellular function, and potential differences in their function and regulation represent an exciting avenue to study sex differences that are chromosomal in origin. What are the mechanisms by which these genes give rise to sex differences in health and disease? How can we understand their regulation in XX and XY individuals? These are the questions this thesis aims to answer by focusing on *DDX3X* and *DDX3Y*, a highly conserved, essential X-Y homologous pair.

In this introduction, I will first describe the evolutionary history of the X and Y chromosomes to explain the origin and significance of the X-Y gene pairs. I will then describe *DDX3X* and *DDX3Y* in detail, highlighting their protein function and deep conservation, including the breadth of DDX3 homologs. This will also include a summary of the current studies on the similarities and differences between DDX3X and DDX3Y. Moreover, I will highlight several phenotypes associated with mutation and overexpression of *DDX3X* and *DDX3Y* and how they present in a sex-dependent manner, providing insight into their critical roles across the human body. Currently, there are no studies on the regulation of these genes, which could be critical to understand the sex differential phenotypes caused by changes in *DDX3X* and *DDX3Y*, as well as their contribution to human phenotypes, will be the subjects of Chapters 2 and 3.

EVOLUTION OF THE MAMMALIAN SEX CHROMOSOMES

Evolution from autosomes

The mammalian sex chromosomes evolved from an ordinary pair of autosomes over the past 200 million years. This began with the acquisition of a sex-determining gene on one of the chromosomes (Ohno, 1967). In mammals, this is *Sry* on the Y chromosome. Recombination was then suppressed between the two chromosomes resulting in differentiation of the homologous chromosomes. This was caused by a series of at least four inversions on the Y chromosome, leading to loss of recombination outside the pseudoautosomal ends. There are four evolutionary strata corresponding to these events, where gene order of the X chromosome genes is unperturbed (Lahn & Page, 1999). The resulting present-day Y chromosome only recombines with the X in the pseudoautosomal region, identical sequences on the tip of the sex chromosomes. These regions are crucial for proper alignment of the X and Y chromosomes during male meiosis (Burgoyne et al., 1992). Outside of these regions, gene content on the X (Non-pseudoautosomal X: NPX) and the Y (Non-pseudoautosomal Y: NPY) are diverged. The X chromosome has retained 98% of its ancestral genes while the Y has retained only 3%, as inferred from comparison to avian genomes where ancestral genes are autosomal (Bellott et al., 2010; Ross et al., 2005; Skaletsky et al., 2003).

While the X chromosome is able to recombine in mammalian females, the absence of a recombination partner led to the genetic decay of the Y chromosome. The Y chromosome behaves as one recombination unit, and this mode of inheritance reduces selection efficiency. There are several hypotheses to explain gene decay on

the Y. One of them is genetic 'hitchhiking,' where deleterious mutations that lead to erosion are brought along with beneficial mutations at other loci (Rice, 1987). Conversely, beneficial mutations could be lost due to their association with deleterious alleles, termed 'background selection' (Charlesworth et al., 1993). As the Y chromosome has a small effective population size (there are three X chromosomes for every Y in the population), it is also susceptible to the 'Muller's Ratchet' hypothesis (Muller, 1964). As the Y chromosome gains deleterious mutations, genetic drift and the absence of recombination leads to the loss of the least mutated Y chromosome, and the constant accumulation of mutations (Engelstädter, 2008). Previous work has argued that complete Y decay will lead to the extinction of the chromosome (Graves, 2006). However, genomic sequencing of multiple mammalian Y chromosomes demonstrates that the gene content on the mammalian Y has reached relative stability. Human Y chromosomes have lost very few genes since diverging from other primate lineages as well as more distant lineages, such as bull and mouse (Hughes et al., 2012, 2020).

HOMOLOGOUS GENES ON THE X and Y CHROMOSOMES

Gene content on the Y chromosome

The relative stability of the Y chromosome suggests that the remaining Y-linked genes have been preserved by selection for male fertility and viability. Indeed, the majority of 45, X embryos (missing a second sex chromosome) are inviable, and the presence of a Y chromosome is sufficient to confer viability (Hook & Warburton, 1983). What are the genes that are preserved on the Y? Sequencing of the NPY region revealed that the gene content on the Y is broadly split into three categories: 1. Genes that reside in large amplicons that are comprised of palindromes and tandem repeats ('Ampliconic'), 2. Genes that reside in a region nearly identical to the X chromosome resulting from an evolutionarily recent transposition event in the human lineage ('X-transposed) and 3. Genes that are homologous to the X-chromosome but not identical, marking them as ancestral ('X-degenerate') (Skaletsky et al., 2003).

The X-transposed region is largely depleted for functional genes, and the genes in the ampliconic region differ greatly from the X-degenerate genes. Ampliconic genes are expressed exclusively in the testis and many are involved in spermatogenesis, demonstrating their role in male fertility. In contrast, the X-degenerate genes (henceforth referred to as 'X-Y pairs') are expressed throughout the human body in males and have broad regulatory functions, making them candidates for conferring male viability. Indeed, it is argued that dosage-sensitivity is key to the survival of these genes: they are critical regulators of cellular processes like transcription, translation and signaling (Bellott et al., 2014). Effectively, two copies of such genes are expressed in XY males, resulting in maintenance of ancestral dosage (assuming functional equivalence between the X-Y pairs). But how is this dosage maintained in XX females?

Dosage compensation on the X chromosome

All species with chromosomal sex determination have a homogametic (e.g. XX or ZZ) and heterogametic (e.g. XY or ZW) sex, thus necessitating the development of strategies for dosage compensation between the sexes. Different dosage compensation strategies have developed independently. These strategies include upregulating Xlinked genes in XY males, as in *D. melanogaster*, and downregulating the X chromosomes in XX females, as in *C. elegans* (Disteche, 2012). In mammals, dosage compensation occurs through random X-inactivation, a cell-autonomous process where a single X chromosome is epigenetically inactivated in each cell of an XX female. The X-inactivation hypothesis was first put forth by Ohno who observed the presence of the highly heterochromatinized X in female cells (Barr & Bertram, 1949; Ohno, 1967). Mary Lyon further hypothesized that this condensation corresponded to the suppression of expression, equalizing the dosage of X chromosome genes in males and females (Lyon, 1962). This process involves the expression of *Xist*, a long non-coding RNA that coats the Xi, as well as the recruitment of repressive chromatin factors (Brown et al., 1991).

But what happens to the expression of genes with widely expressed and functionally coherent Y homologs? The X homologs of X-Y pair genes, along with a handful of other genes, are expressed from Xi, despite the widespread epigenetic silencing of the chromosome (Lahn & Page, 1997). This process varies among species, while only 3% of X chromosome genes are expressed from the mouse Xi, approximately 25% of human X genes are expressed from Xi (Berletch et al., 2011; San

Roman et al., 2023). Sometimes referred to as 'escape' from X-inactivation, the precise mechanism of this gene-by-gene dosage compensation strategy is as yet not defined. Regardless, it enables both alleles of dosage-sensitive regulators to be expressed in XX females, ensuring female viability and matching the expression from X-Y pair genes in XY males.

However, there could be differences in 1) the function of the X vs Y encoded protein, 2) the regulation of the X vs Y homolog or 3) the regulation of the X homolog in XX cells vs the X-Y gene pair in XY cells. Any of these scenarios would result in a sex difference between XX females and XY males. The dosage sensitivity and broad function of these homologs also implies that even subtle differences in expression or function could result in genome-wide changes to the transcriptome/translatome, resulting in phenotypic changes. In this thesis, I elucidate one example of such a phenomenon, resulting from the study of *DDX3X* and *DDX3Y* regulation.

DDX3X and DDX3Y: FUNCTION, CONSERVATION and PHENOTYPES

DDX3X function

DDX3X and DDX3Y belong to a class of RNA-binding proteins known as DEAD or DEAH box helicases. While members of the family perform diverse cellular functions, most of the proteins can hydrolyze ATP to bind and remodel RNA. As a result, they all contain an RNA binding and ATPase domain as well as a highly conserved helicase core including the Asp-Glu-Ala-Asp/His catalytic center from which they derive their name (Rosner & Rinkevich, 2007). The proteins largely have unstructured N and C-termini, often associated with their localization and/or oligomerization.

DDX3X works as a cooperative dimer to unwind double-stranded RNA duplexes. It binds to the sugar-phosphate backbone of double-stranded RNAs that have singlestranded regions 3' of the duplex. It is then able to unwind such duplexes in an ATPdependent manner (Song & Ji, 2019). The duplex is first locally destabilized upon ATP binding; dissociation and enzyme recycling occur upon ATP hydrolysis. DDX3X is particularly effective at unwinding long, complex RNA structures using iterative cycles of binding and dissociation. This function is primarily studied in translation initiation; DDX3X is a key part of the pre-initiation scanning complex (Soto-Rifo & Ohlmann, 2013). It is responsible for unwinding 5' UTR RNA structure prior to the start codon, promoting the translation of genes with structurally complex UTRs. Indeed, knockdown of DDX3X abrogates the translational efficiency of hundreds of mRNAs with long and GC-rich 5' UTRs (Calviello et al., 2021). DDX3X directly binds these UTRs as well as thousands of other mRNAs. While the role of DDX3X binding at genes with noncomplex UTRs is not yet fully characterized, recent work suggests that this binding might lead to mRNA destabilization (Jowhar et al., 2023). DDX3X has also been associated with stress granule assembly, spliceosome activity, nuclear export and viral response. I discuss these secondary functions below.

DDX3X has been affinity purified with components of the spliceosome as well as spliced mRNPs in vivo. It is strongly associated with many core proteins of the exonjunction complex, such as Y1F and Magoh. It appears to be dispensable for global mRNA splicing and knockdown of *DDX3X* does not interfere with proper splicing in reporter assays (Soto-Rifo & Ohlmann, 2013). *DDX3X* knockdown does change the ratio of *KLF4* splicing isoforms in breast cancer cells, suggesting a limited role in the splicing of select genes (Cannizzaro et al., 2018). DDX3X also strongly associates with mRNA and protein nuclear export factors such as NXF1 and CRM1 (Fröhlich et al., 2016). As DDX3X is mostly cytoplasmic and has a critical role in translation, this could suggest a role for DDX3X in post-transcriptional mRNA export. However, knockdowns of *DDX3X* show that it does not affect the global nuclear to cytoplasmic ratios of mRNAs; it is not essential for the vast majority of nuclear export (Lai et al., 2008).

DDX3X is a core component of stress granules, which sequester specific mRNPs to achieve a stress-induced translational activation and repression program. Genetic or chemical inhibition of DDX3X disrupts the assembly and disassembly of these granules suggesting that the enzymatic activity of this protein is key for proper cellular stress response (Cui et al., 2020). The relatively unstructured N-and C-termini of DDX3X undergo the liquid-liquid phase separation that allow for this sequestration (Valentin-Vega et al., 2016). In macrophages, sequestered vs free DDX3X levels serve as a 'live-or-die' checkpoint by balancing the stress response vs the cell-death response (Samir et al., 2019). DDX3X is also essential to activate the Interferon signaling pathway

through *Infb* transcription. It is an essential co-factor of the TBK1/IKK transcription factor complex in promoting *Infb* transcription and is associated with the *Infb* promoter. DDX3X can also repress the activity of the E-cadherin promoter, though the mechanism of this process is not well-understood (Soulat et al., 2008; Wu et al., 2014).

Similarities and differences with DDX3Y

While the majority of functional work on these proteins focuses on DDX3X, there have been few insights into the molecular functions of DDX3Y. I summarize this work here and compare and contrast DDX3X and DDX3Y function. The X- and Y-encoded proteins are 91% identical at the amino acid level (Lahn & Page, 1997). While they have significantly diverged in their N- and C-terminal regions, the RNA binding, ATPase and helicase domains are largely conserved.

Early experiments showed that DDX3Y is functionally interchangeable with DDX3X *in vitro* in ensuring cell viability (Sekiguchi et al., 2004). More recent work has shown that the proteins have partially overlapping functions. They bind similar mRNAs in vivo and have similar effects on translation initiation in exogenous expression experiments, lending further evidence to their interchangeability (Venkataramanan et al., 2021). However, the proteins have different in-vitro affinities for double-stranded RNA. DDX3Y binds RNA less tightly than DDX3X and displays slower duplex unwinding (Owens et al., 2022). While these subtle differences may be overcome by exogenous

overexpression experiments, they may have consequences at cellular concentrations. The two proteins also have differing capacities for stress granule formation and translational repression; the unstructured regions of DDX3Y are able to form more rigid liquid condensates, potentially leading to differences in how the two homologs activate the stress response (Shen et al., 2022).

Conservation and orthologs

DDX3X is highly conserved, with orthologs in mammals, flies, worms, and yeast. *DDX3X* and *DDX3Y* are maintained as an X-Y pair across all lineages of eutherian mammals for which we have high quality sequence, confirming their haploinsufficiency. In other lineages, *DDX3* orthologs are autosomal and have similarly essential functions in RNA metabolism. The C. elegans ortholog *Laf*-1 is essential for germ-line development. LAF-1 is expressed most highly in embryos, where it promotes P-granule formation, but is expressed at all developmental stages (Elbaum-Garfinkle et al., 2015). In *D. melanogaster*, the *DDX3* ortholog *Belle* is an essential translation factor. Complete loss-of-function (LOF) mutations of *Belle* result in embryonic lethality while hypomorphs are sterile, consistent with high dosage-sensitivity across lineages (Johnstone et al., 2005). Indeed, even the yeast ortholog *Ded1* is essential and is a key translation initiation factor. In contrast with human DDX3X, Ded1 regulates the translation of most mRNAs, while DDX3X aids in the translation of hundreds of complex mRNAs (Sharma et al., 2017). There are also *DDX3Y*-specific paralogs in rodent lineages, as a result of retrotransposition from the Y chromosome. While many of these genes are pseudogenes and do not show protein activity, some, like rat *PL10*, have developed testis-specific expression and may play a role in the male reproductive tract (Chang & Liu, 2010).

Phenotypic consequences of perturbation

The deep conservation of *DDX3X* and its essentiality/haploinsufficiency in many lineages suggests that perturbations to *DDX3X* and/or *DDX3Y* might be deleterious in humans. Indeed, human *DDX3X* and *DDX3Y* mutations are associated with several disorders.

Germline mutations in *DDX3X* vs *DDX3Y* cause starkly different phenotypes in males. Rare germline mutations of *DDX3X* cause a neurodevelopmental disorder ('DDX3X syndrome') in males; only 5 such males have been identified (Kellaris et al., 2018; Nicola et al., 2019). Meanwhile, germline deletions of *DDX3Y*, encompassing what is termed the 'Azoospermia Factor a (AZFa)' region, have only been reported in cases of male infertility; these men present with azoospermia, or complete spermatogenic failure (Sun et al., 2000). This difference is also seen with somatic LOF mutations. *DDX3X* mutations drive many male-biased lymphomas, melanomas, medulloblastomas and leukemias (Brandimarte et al., 2014; Gong et al., 2021; Patmore et al., 2020; Phung et al., 2019). However, *DDX3Y* somatic mutations have not been

identified as drivers in human cancers. There are conflicting reports that several cancers might be marked by *DDX3X* or *DDX3Y* over-expression (He et al., 2018).

DDX3X mutations present differently in males vs females. Females with *DDX3X* syndrome have de novo mutations that completely ablate *DDX3X* helicase function (Snijders Blok et al., 2015). No males with these mutations have been reported, suggesting embryonic lethality in XY individuals. The aforementioned males with this syndrome inherit a hypomorphic allele from an unaffected mother. This suggests that all mutations result in better outcomes in females, which have a second copy of *DDX3X*.

Why do *DDX3X* mutations manifest phenotypically differently in females vs males? Why are there such stark differences in the phenotypic consequences of *DDX3X* and *DDX3Y* mutations in males? These questions have been difficult to answer due to the lack of scholarship about the relationship between the homologs. While *DDX3Y* is expressed throughout the human body in males, it has primarily been studied for its role in spermatogenesis. This is a result of early work that suggested that DDX3Y protein expression was restricted to the testis. However, recent studies have contradicted that theory and demonstrated robust DDX3Y protein expression in non-reproductive tissues (Godfrey et al., 2020). Still, there have been few studies of DDX3Y function and no studies of *DDX3X* and *DDX3Y* regulation.

This introduction highlights the importance of studying an evolutionary unique class of genes and summarizes the multi-functional roles of DDX3X and DDX3Y in the

cell. In Chapter 2, I describe my studies of *DDX3X* and *DDX3Y* regulation and uncover post-transcriptional auto- and cross-regulation that buffers changes to their expression. This regulation may underpin the sex differences in phenotypes I have described above. In Chapter 3, I ask if this regulatory phenomenon gives rise to previously unidentified gene dependencies in XY cancer cell lines. I find that cells with damaging *DDX3X* mutations become reliant on *DDX3Y* to survive, highlighting *DDX3Y* as a candidate druggable target in XY cancers. Finally, I suggest that studying the X-Y pair genes may serve in both identifying deeply conserved gene regulatory schemes and provide insight into the mechanisms behind sex-specific and sex-biased human phenotypes.

References

- Bellott, D. W., Hughes, J. F., Skaletsky, H., Brown, L. G., Pyntikova, T., Cho, T.-J., Koutseva, N., Zaghlul, S., Graves, T., Rock, S., Kremitzki, C., Fulton, R. S., Dugan, S., Ding, Y., Morton, D., Khan, Z., Lewis, L., Buhay, C., Wang, Q., ... Page, D. C. (2014). Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. *Nature*, *508*(7497), 494–499. https://doi.org/10.1038/nature13206
- Bellott, D. W., Skaletsky, H., Pyntikova, T., Mardis, E. R., Graves, T., Kremitzki, C., Brown, L. G., Rozen, S., Warren, W. C., Wilson, R. K., & Page, D. C. (2010). Convergent evolution of chicken Z and human X chromosomes by expansion and gene acquisition. *Nature*, *466*(7306), 612–616. https://doi.org/10.1038/nature09172
- Berletch, J. B., Yang, F., Xu, J., Carrel, L., & Disteche, C. M. (2011). Genes that escape from X inactivation. *Human Genetics*, *130*(2), 237–245. https://doi.org/10.1007/s00439-011-1011-z
- Brandimarte, L., La Starza, R., Gianfelici, V., Barba, G., Pierini, V., Di Giacomo, D., Cools, J., Elia, L., Vitale, A., Luciano, L., Bardi, A., Chiaretti, S., Matteucci, C., Specchia, G., & Mecucci, C. (2014). DDX3X-MLLT10 fusion in adults with NOTCH1 positive T-cell acute lymphoblastic leukemia. *Haematologica*, *99*(5), 64–66. https://doi.org/10.3324/haematol.2013.101725
- Brown, C. J., Ballabio, A., Rupert, J. L., Lafreniere, R. G., Grompe, M., Tonlorenzi, R., & Willard, H. F. (1991). A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. *Nature*, *349*(6304), 38–44. https://doi.org/10.1038/349038a0
- Burgoyne, P. S., Mahadevaiah, S. K., Sutcliffe, M. J., & Palmer, S. J. (1992). Fertility in mice requires X-Y pairing and a Y-chromosomal "spermiogenesis" gene mapping to the long arm. *Cell*, 71(3), 391–398. https://doi.org/10.1016/0092-8674(92)90509-b
- Calviello, L., Venkataramanan, S., Rogowski, K. J., Wyler, E., Wilkins, K., Tejura, M., Thai, B., Krol, J., Filipowicz, W., Landthaler, M., & Floor, S. N. (2021). DDX3 depletion represses translation of mRNAs with complex 5' UTRs. *Nucleic Acids Research*, *49*(9), 5336–5350. https://doi.org/10.1093/nar/gkab287
- Cannizzaro, E., Bannister, A. J., Han, N., Alendar, A., & Kouzarides, T. (2018). DDX3X RNA helicase affects breast cancer cell cycle progression by regulating expression of KLF4. *FEBS Letters*, *592*(13), 2308–2322. https://doi.org/10.1002/1873-3468.13106
- Chang, T.-C., & Liu, W.-S. (2010). The molecular evolution of PL10 homologs. *BMC Evolutionary Biology*, *10*, 127. https://doi.org/10.1186/1471-2148-10-127
- Charlesworth, B., Morgan, M. T., & Charlesworth, D. (1993). The effect of deleterious mutations on neutral molecular variation. *Genetics*, *134*(4), 1289–1303. https://doi.org/10.1093/genetics/134.4.1289
- Cui, B. C., Sikirzhytski, V., Aksenova, M., Lucius, M. D., Levon, G. H., Mack, Z. T., Pollack, C., Odhiambo, D., Broude, E., Lizarraga, S. B., Wyatt, M. D., & Shtutman, M. (2020). Pharmacological inhibition of DEAD-Box RNA Helicase 3 attenuates stress granule assembly. *Biochemical Pharmacology*, *182*, 114280. https://doi.org/10.1016/j.bcp.2020.114280
- Disteche, C. M. (2012). Dosage Compensation of the Sex Chromosomes. *Annual Review of Genetics*, *46*, 537–560. https://doi.org/10.1146/annurev-genet-110711-155454
- Elbaum-Garfinkle, S., Kim, Y., Szczepaniak, K., Chen, C. C.-H., Eckmann, C. R., Myong, S., & Brangwynne, C. P. (2015). The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. *Proceedings of the*

National Academy of Sciences of the United States of America, *112*(23), 7189–7194. https://doi.org/10.1073/pnas.1504822112

- Engelstädter, J. (2008). Muller's Ratchet and the Degeneration of Y Chromosomes: A Simulation Study. *Genetics*, *180*(2), 957–967. https://doi.org/10.1534/genetics.108.092379
- Fröhlich, A., Rojas-Araya, B., Pereira-Montecinos, C., Dellarossa, A., Toro-Ascuy, D., Prades-Pérez, Y., García-de-Gracia, F., Garcés-Alday, A., Rubilar, P. S., Valiente-Echeverría, F., Ohlmann, T., & Soto-Rifo, R. (2016). DEAD-box RNA helicase DDX3 connects CRM1-dependent nuclear export and translation of the HIV-1 unspliced mRNA through its N-terminal domain. *Biochimica Et Biophysica Acta*, *1859*(5), 719–730. https://doi.org/10.1016/j.bbagrm.2016.03.009
- Godfrey, A. K., Naqvi, S., Chmátal, L., Chick, J. M., Mitchell, R. N., Gygi, S. P., Skaletsky, H., & Page, D. C. (2020). Quantitative analysis of Y-Chromosome gene expression across 36 human tissues. *Genome Research*, *30*(6), 860–873. https://doi.org/10.1101/gr.261248.120
- Gong, C., Krupka, J. A., Gao, J., Grigoropoulos, N. F., Giotopoulos, G., Asby, R., Screen, M., Usheva, Z., Cucco, F., Barrans, S., Painter, D., Zaini, N. B. M., Haupl, B., Bornelöv, S., Ruiz De Los Mozos, I., Meng, W., Zhou, P., Blain, A. E., Forde, S., ... Hodson, D. J. (2021). Sequential inverse dysregulation of the RNA helicases DDX3X and DDX3Y facilitates MYC-driven lymphomagenesis. *Molecular Cell*, *81*(19), 4059-4075.e11. https://doi.org/10.1016/j.molcel.2021.07.041
- Graves, J. A. M. (2006). Sex chromosome specialization and degeneration in mammals. *Cell*, *124*(5), 901–914. https://doi.org/10.1016/j.cell.2006.02.024
- He, Y., Zhang, D., Yang, Y., Wang, X., Zhao, X., Zhang, P., Zhu, H., Xu, N., & Liang, S. (2018). A double-edged function of DDX3, as an oncogene or tumor suppressor, in cancer progression (Review). *Oncology Reports*, *39*(3), 883–892. https://doi.org/10.3892/or.2018.6203
- Hook, E. B., & Warburton, D. (1983). The distribution of chromosomal genotypes associated with Turner's syndrome: Livebirth prevalence rates and evidence for diminished fetal mortality and severity in genotypes associated with structural X abnormalities or mosaicism. *Human Genetics*, 64(1), 24–27. https://doi.org/10.1007/BF00289473
- Hughes, J. F., Skaletsky, H., Brown, L. G., Pyntikova, T., Graves, T., Fulton, R. S., Dugan, S., Ding, Y., Buhay, C. J., Kremitzki, C., Wang, Q., Shen, H., Holder, M., Villasana, D., Nazareth, L. V., Cree, A., Courtney, L., Veizer, J., Kotkiewicz, H., ... Page, D. C. (2012). Strict evolutionary conservation followed rapid gene loss on human and rhesus Y chromosomes. *Nature*, *483*(7387), 82–86. https://doi.org/10.1038/nature10843
- Hughes, J. F., Skaletsky, H., Pyntikova, T., Koutseva, N., Raudsepp, T., Brown, L. G., Bellott, D. W., Cho, T.-J., Dugan-Rocha, S., Khan, Z., Kremitzki, C., Fronick, C., Graves-Lindsay, T. A., Fulton, L., Warren, W. C., Wilson, R. K., Owens, E., Womack, J. E., Murphy, W. J., ... Page, D. C. (2020). Sequence analysis in Bos taurus reveals pervasiveness of X-Y arms races in mammalian lineages. *Genome Research*, *30*(12), 1716–1726. https://doi.org/10.1101/gr.269902.120
- Johnstone, O., Deuring, R., Bock, R., Linder, P., Fuller, M. T., & Lasko, P. (2005). Belle is a *Drosophila* DEAD-box protein required for viability and in the germ line. *Developmental Biology*, *277*(1), 92–101. https://doi.org/10.1016/j.ydbio.2004.09.009
- Jowhar, Z., Xu, A., Venkataramanan, S., Dossena, F., Hoye, M. L., Silver, D. L., Floor, S. N., & Calviello, L. (2023). A ubiquitous GC content signature underlies multimodal mRNA regulation by DDX3X. *bioRxiv*, 2023.05.11.540322. https://doi.org/10.1101/2023.05.11.540322

- Kellaris, G., Khan, K., Baig, S. M., Tsai, I.-C., Zamora, F. M., Ruggieri, P., Natowicz, M. R., & Katsanis, N. (2018). A hypomorphic inherited pathogenic variant in DDX3X causes male intellectual disability with additional neurodevelopmental and neurodegenerative features. *Human Genomics*, *12*(1), 11. https://doi.org/10.1186/s40246-018-0141-y
- Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P., & Lovell-Badge, R. (1991). Male development of chromosomally female mice transgenic for Sry. *Nature*, 351(6322), 117– 121. https://doi.org/10.1038/351117a0
- Lahn, B. T., & Page, D. C. (1997). Functional coherence of the human Y chromosome. *Science* (*New York, N.Y.*), *278*(5338), 675–680. https://doi.org/10.1126/science.278.5338.675
- Lahn, B. T., & Page, D. C. (1999). Four evolutionary strata on the human X chromosome. Science (New York, N.Y.), 286(5441), 964–967. https://doi.org/10.1126/science.286.5441.964
- Lai, M.-C., Lee, Y.-H. W., & Tarn, W.-Y. (2008). The DEAD-Box RNA Helicase DDX3 Associates with Export Messenger Ribonucleoproteins as well asTip-associated Protein and Participates in Translational Control. *Molecular Biology of the Cell*, *19*(9), 3847– 3858. https://doi.org/10.1091/mbc.E07-12-1264
- Lyon, M. F. (1962). Sex Chromatin and Gene Action in the Mammalian X-Chromosome. *American Journal of Human Genetics*, *14*(2), 135–148.
- Muller, H. J. (1964). THE RELATION OF RECOMBINATION TO MUTATIONAL ADVANCE. *Mutation Research*, *106*, 2–9. https://doi.org/10.1016/0027-5107(64)90047-8
- Nicola, P., Blackburn, P. R., Rasmussen, K. J., Bertsch, N. L., Klee, E. W., Hasadsri, L., Pichurin, P. N., Rankin, J., Raymond, F. L., DDD Study, & Clayton-Smith, J. (2019). De novo DDX3X missense variants in males appear viable and contribute to syndromic intellectual disability. *American Journal of Medical Genetics. Part A*, *179*(4), 570–578. https://doi.org/10.1002/ajmg.a.61061
- Ohno, S. (1967). Sex Chromosomes and Sex-Linked Genes (Vol. 1). Springer. https://doi.org/10.1007/978-3-642-88178-7
- Owens, M. C., Yanas, A., Shen, H., Zhang, C., & Liu, K. F. (2022). Biochemical Characterization of the Sexually Dimorphic Helicases DDX3X and DDX3Y. *The FASEB Journal*, *36*(S1). https://doi.org/10.1096/fasebj.2022.36.S1.R3383
- Patmore, D. M., Jassim, A., Nathan, E., Gilbertson, R. J., Tahan, D., Hoffmann, N., Tong, Y., Smith, K. S., Kanneganti, T.-D., Suzuki, H., Taylor, M. D., Northcott, P., & Gilbertson, R. J. (2020). DDX3X Suppresses the Susceptibility of Hindbrain Lineages to Medulloblastoma. *Developmental Cell*, *54*(4), 455-470.e5. https://doi.org/10.1016/j.devcel.2020.05.027
- Phung, B., Cieśla, M., Sanna, A., Guzzi, N., Beneventi, G., Cao Thi Ngoc, P., Lauss, M., Cabrita, R., Cordero, E., Bosch, A., Rosengren, F., Häkkinen, J., Griewank, K., Paschen, A., Harbst, K., Olsson, H., Ingvar, C., Carneiro, A., Tsao, H., ... Jönsson, G. (2019). The X-Linked DDX3X RNA Helicase Dictates Translation Reprogramming and Metastasis in Melanoma. *Cell Reports*, *27*(12), 3573-3586.e7. https://doi.org/10.1016/j.celrep.2019.05.069
- Rice, W. R. (1987). Genetic hitchhiking and the evolution of reduced genetic activity of the Y sex chromosome. *Genetics*, *116*(1), 161–167. https://doi.org/10.1093/genetics/116.1.161
- Rosner, A., & Rinkevich, B. (2007). The DDX3 subfamily of the DEAD box helicases: Divergent roles as unveiled by studying different organisms and in vitro assays. *Current Medicinal Chemistry*, *14*(23), 2517–2525. https://doi.org/10.2174/092986707782023677
- Ross, M. T., Grafham, D. V., Coffey, A. J., Scherer, S., McLay, K., Muzny, D., Platzer, M., Howell, G. R., Burrows, C., Bird, C. P., Frankish, A., Lovell, F. L., Howe, K. L., Ashurst, J. L., Fulton, R. S., Sudbrak, R., Wen, G., Jones, M. C., Hurles, M. E., ... Bentley, D. R.

(2005). The DNA sequence of the human X chromosome. *Nature*, *434*(7031), 325–337. https://doi.org/10.1038/nature03440

- Samir, P., Kesavardhana, S., Patmore, D. M., Gingras, S., Malireddi, R. K. S., Karki, R., Guy, C. S., Briard, B., Place, D. E., Bhattacharya, A., Sharma, B. R., Nourse, A., King, S. V., Pitre, A., Burton, A. R., Pelletier, S., Gilbertson, R. J., & Kanneganti, T.-D. (2019). DDX3X acts as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome. *Nature*, *573*(7775), 590–594. https://doi.org/10.1038/s41586-019-1551-2
- San Roman, A. K., Godfrey, A. K., Skaletsky, H., Bellott, D. W., Groff, A. F., Harris, H. L., Blanton, L. V., Hughes, J. F., Brown, L., Phou, S., Buscetta, A., Kruszka, P., Banks, N., Dutra, A., Pak, E., Lasutschinkow, P. C., Keen, C., Davis, S. M., Tartaglia, N. R., ... Page, D. C. (2023). The human inactive X chromosome modulates expression of the active X chromosome. *Cell Genomics*, *3*(2), 100259. https://doi.org/10.1016/j.xgen.2023.100259
- Sekido, R., & Lovell-Badge, R. (2009). Sex determination and SRY: Down to a wink and a nudge? *Trends in Genetics: TIG, 25*(1), 19–29. https://doi.org/10.1016/j.tig.2008.10.008
- Sekiguchi, T., Iida, H., Fukumura, J., & Nishimoto, T. (2004). Human DDX3Y, the Y-encoded isoform of RNA helicase DDX3, rescues a hamster temperature-sensitive ET24 mutant cell line with a DDX3X mutation. *Experimental Cell Research*, *300*(1), 213–222. https://doi.org/10.1016/j.yexcr.2004.07.005
- Sharma, D., Putnam, A. A., & Jankowsky, E. (2017). Biochemical Differences and Similarities between the DEAD-Box Helicase Orthologs DDX3X and Ded1p. *Journal of Molecular Biology*, *429*(23), 3730–3742. https://doi.org/10.1016/j.jmb.2017.10.008
- Shen, H., Yanas, A., Owens, M. C., Zhang, C., Fritsch, C., Fare, C. M., Copley, K. E., Shorter, J., Goldman, Y. E., & Liu, K. F. (2022). Sexually dimorphic RNA helicases DDX3X and DDX3Y differentially regulate RNA metabolism through phase separation. *Molecular Cell*, 82(14), 2588-2603.e9. https://doi.org/10.1016/j.molcel.2022.04.022
- Skaletsky, H., Kuroda-Kawaguchi, T., Minx, P. J., Cordum, H. S., Hillier, L., Brown, L. G., Repping, S., Pyntikova, T., Ali, J., Bieri, T., Chinwalla, A., Delehaunty, A., Delehaunty, K., Du, H., Fewell, G., Fulton, L., Fulton, R., Graves, T., Hou, S.-F., ... Page, D. C. (2003). The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. *Nature*, *423*(6942), 825–837. https://doi.org/10.1038/nature01722
- Snijders Blok, L., Madsen, E., Juusola, J., Gilissen, C., Baralle, D., Reijnders, M. R. F., Venselaar, H., Helsmoortel, C., Cho, M. T., Hoischen, A., Vissers, L. E. L. M., Koemans, T. S., Wissink-Lindhout, W., Eichler, E. E., Romano, C., Van Esch, H., Stumpel, C., Vreeburg, M., Smeets, E., ... Kleefstra, T. (2015). Mutations in DDX3X Are a Common Cause of Unexplained Intellectual Disability with Gender-Specific Effects on Wnt Signaling. *American Journal of Human Genetics*, *97*(2), 343–352. https://doi.org/10.1016/j.ajhg.2015.07.004
- Song, H., & Ji, X. (2019). The mechanism of RNA duplex recognition and unwinding by DEADbox helicase DDX3X. *Nature Communications*, *10*, 3085. https://doi.org/10.1038/s41467-019-11083-2
- Soto-Rifo, R., & Ohlmann, T. (2013). The role of the DEAD-box RNA helicase DDX3 in mRNA metabolism. *Wiley Interdisciplinary Reviews. RNA*, *4*(4), 369–385. https://doi.org/10.1002/wrna.1165
- Soulat, D., Bürckstümmer, T., Westermayer, S., Goncalves, A., Bauch, A., Stefanovic, A., Hantschel, O., Bennett, K. L., Decker, T., & Superti-Furga, G. (2008). The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response. *The EMBO Journal*, *27*(15), 2135–2146. https://doi.org/10.1038/emboj.2008.126

- Sun, C., Skaletsky, H., Rozen, S., Gromoll, J., Nieschlag, E., Oates, R., & Page, D. C. (2000). Deletion of azoospermia factor a (AZFa) region of human Y chromosome caused by recombination between HERV15 proviruses. *Human Molecular Genetics*, *9*(15), 2291– 2296. https://doi.org/10.1093/oxfordjournals.hmg.a018920
- Valentin-Vega, Y. A., Wang, Y.-D., Parker, M., Patmore, D. M., Kanagaraj, A., Moore, J., Rusch, M., Finkelstein, D., Ellison, D. W., Gilbertson, R. J., Zhang, J., Kim, H. J., & Taylor, J. P. (2016). Cancer-associated DDX3X mutations drive stress granule assembly and impair global translation. *Scientific Reports*, *6*, 25996. https://doi.org/10.1038/srep25996
- Venkataramanan, S., Gadek, M., Calviello, L., Wilkins, K., & Floor, S. N. (2021). DDX3X and DDX3Y are redundant in protein synthesis. *RNA (New York, N.Y.)*, 27(12), 1577–1588. https://doi.org/10.1261/rna.078926.121
- Wu, D.-W., Lee, M.-C., Wang, J., Chen, C.-Y., Cheng, Y.-W., & Lee, H. (2014). DDX3 loss by p53 inactivation promotes tumor malignancy via the MDM2/Slug/E-cadherin pathway and poor patient outcome in non-small-cell lung cancer. *Oncogene*, *33*(12), 1515–1526. https://doi.org/10.1038/onc.2013.107

Chapter 2

Post-transcriptional cross- and auto-regulation buffer expression of the human RNA helicases *DDX3X* and *DDX3Y*

Shruthi Rengarajan^{1,2}, Jason Derks³, Daniel W. Bellott¹, Nikolai Slavov³, David C. Page^{1,2,4}

Affiliations:

1. Whitehead Institute, Cambridge, MA 02142, USA

2. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

3. Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA, USA

4. Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA

Author contributions:

S.R., N.S and D.C.P designed the experiments. S.R. and J.D. performed the experiments. S.R, D.W.B., and J.D., performed computational analyses. S.R. and D.C.P. wrote the manuscript with edits from N.S. and J.D.

Abstract

The Y-linked gene DDX3Y and its X-linked homolog DDX3X survived the evolution of the human sex chromosomes from ordinary autosomes. DDX3X encodes a multifunctional RNA helicase, with mutations causing developmental disorders and cancers. We find that DDX3X is extraordinarily dosage-sensitive and that perturbation of either DDX3X or DDX3Y expression is buffered -- by negative cross-regulation of DDX3X and DDX3Y in 46,XY cells, and by negative auto-regulation of DDX3X in 46,XX cells. Studying cells of individuals with sex chromosome aneuploidy, we find that when the number of Y chromosomes increases, DDX3X transcript levels fall; conversely, when the number of X chromosomes increases, DDX3Y transcript levels fall. In 46,XY cells, CRISPRi knockdown of either DDX3X or DDX3Y causes transcript levels of the homologous gene to rise. In 46,XX cells, chemical inhibition of DDX3X protein activity elicits an increase in DDX3X transcript levels. DDX3X-DDX3Y cross-regulation is mediated through mRNA destabilization – as shown by metabolic labeling of newly transcribed RNA -- and buffers total levels of DDX3X and DDX3Y protein in human cells. We infer that posttranscriptional auto-regulation of the ancestral (autosomal) DDX3 gene transmuted into auto- and cross-regulation of DDX3X and DDX3Y as these sex-linked genes evolved from ordinary alleles of their autosomal precursor.

Introduction

DDX3X and DDX3Y are homologous but non-identical genes on the human X and Y chromosomes (Lahn & Page, 1997). They encode pleiotropic RNA helicases implicated in multiple aspects of RNA metabolism, including stability, splicing, export, translation, and stress response (Soto-Rifo & Ohlmann, 2013). DDX3X is highly conserved, with orthologs in mammals, flies, worms, and yeast (Elbaum-Garfinkle et al., 2015; Johnstone et al., 2005; Sharma et al., 2017). Human DDX3X mutations are associated with several neurodevelopmental disorders and cancers (Snijders Blok et al., 2015; Valentin-Vega et al., 2016). DDX3X is expressed throughout the body from the "inactive" X chromosome (Xi) in females as well as from the "active" X chromosome (Xa) in males and females (Lahn & Page, 1997; Tukiainen et al., 2017). While DDX3Y is also ubiquitously expressed (from the Y chromosome) in males (Godfrey et al., 2020), it has primarily been studied for its role in spermatogenesis (Ramathal et al., 2015). The X-and Y-encoded proteins are 91% identical at the amino acid level (Lahn & Page, 1997). While they have significantly diverged in their N- and C-terminal regions, the RNA binding and helicase domains are largely conserved (Rosner & Rinkevich, 2007). Early experiments showed that DDX3Y was functionally interchangeable with DDX3X in vitro (Sekiguchi et al., 2004). More recent work has shown that the proteins have partially overlapping functions, with similar effects on protein synthesis (Venkataramanan et al., 2021) but differing capacities for stress granule formation and translational repression (Shen et al., 2022; Venkataramanan et al., 2021).

DDX3X and DDX3Y constitute one of 17 gene pairs on the human X and Y chromosomes that survived the chromosomes' evolution from two ordinary pairs of autosomes during the past 200 million years. A series of inversions suppressed crossing over between the X and Y chromosomes outside of a diminishing pseudoautosomal region (PAR), exposing the non-pseudoautosomal bulk of the Y chromosome to genetic decay (Lahn & Page, 1999). While the human X chromosome retains 98% of the genes present on the ancestral autosomes, only 3% remain on the human Y chromosome (Bellott et al., 2014). The surviving Y chromosome genes were preserved by selection to maintain the ancestral dosage of regulators of key cellular processes. As a group, these gene pairs are broadly expressed and highly dosagesensitive. Among this select group of X-Y gene pairs, DDX3X and DDX3Y are the only pair with starkly different developmental phenotypes reported with loss of function mutations. Males with DDX3X mutations are extremely rare and present with a disorder that causes neurodevelopmental, behavioral and cardiac phenotypes (Kellaris et al., 2018). Conversely, males with germline deletions of DDX3Y suffer from spermatogenic failure but are otherwise healthy (Sun et al., 2000). We reasoned that control of DDX3X and DDX3Y dosage might be especially crucial to understand this difference and sought to identify mechanisms that regulate DDX3X and DDX3Y levels.

Here we report that *DDX3X* and *DDX3Y* are extraordinarily dosage sensitive, even when compared with other human X-Y gene pairs. Their dosage is buffered by post-transcriptional cross-regulation in 46,XY cells, while *DDX3X* is post-

transcriptionally auto-regulated in 46,XX cells, consistent with this regulatory mechanism having been present on and preserved from the ancestral autosomes that evolved to become the human sex chromosomes.

Results

DDX3X and *DDX3Y* are especially dosage-sensitive compared to genes with a similar evolutionary trajectory

We first asked if *DDX3X* and *DDX3Y* are more dosage-sensitive than other human X-Y gene pairs. For each of the 17 gene pairs, we tallied whether dosage sensitivity had necessitated 1) expression from Xi in human females and 2) maintenance of a Y-homolog across males of diverse species -- both features of highly dosage-sensitive genes (Bellott et al., 2014). We addressed the first point by re-analyzing Xi expression data recently generated from cultured human cells (San Roman et al., 2023).

For each Y-homolog, we asked if the gene is conserved across 15 therian (placental mammalian) species where high-quality, contiguous sequence assemblies of the sex chromosomes are available. Specifically, for each Y-homolog we calculated a phylogenetic branch length – the sum of all branch lengths connecting species where the gene is present, and thus a measure of the gene's longevity on therian Y chromosomes. We also calculated survival fraction – the ratio of phylogenetic branch length to maximum possible branch length (Bellott & Page, 2021).

Among X-Y gene pairs, those with the highest dosage sensitivity should be expressed from Xi in females and be long-lived and universally retained on the Y chromosome across species, *i.e.*, have a survival fraction of 1. We find that, among the 17 human X-Y gene pairs, only *DDX3X(Y)*, *KDM6A(UTY)*, and *ZFX(Y)* are expressed from Xi in human females and retain a Y-homolog in all 15 eutherian species examined

(Table 1).

Table 1: Dosage-sensitivity of human X-Y pair genes across therian mammalian lineages. Xi expression is indicated for X-homologs, and survival fraction and branch length are calculated for the corresponding Y-homologs. Genes are sorted first by Xi expression, then by Y-homolog survival fraction, and finally by Y-homolog branch length.

Gene	Xi Expression	Y-homolog	Survival Fraction	Branch Length (MY)
DDX3X	Yes	DDX3Y	1.00	662.840
KDM6A	Yes	UTY	1.00	662.840
ZFX	Yes	ZFY	1.00	662.840
NLGN4X	Yes	NLGN4Y	1.00	140.340
USP9X	Yes	USP9Y	0.990	656.140
PRKX	Yes	PRKY	0.851	74.180
EIF1AX	Yes	EIF1AY	0.833	551.940
KDM5C	Yes	KDM5D	0.831	686.840
TXLNG	Yes	TXLNGY	0.664	440.040
RPS4X	Yes	RPS4Y	0.355	342.940
SOX3	No	SRY	1.000	966.840
RBMX	No	RBMY	0.943	911.840
HSFX1	No	HSFY1	0.834	806.040
TSPYL2	No	TSPY	0.776	641.940
AMELX	No	AMELY	0.685	453.740
TBL1X	No	TBL1Y	0.644	90.440
TMSB4X	No	TMSB4Y	0.465	308.040

We further profiled the sensitivity of DDX3X to dosage changes using two metrics: 1) P_{CT} scores, which measure the evolutionary conservation of microRNA

targeting sites in a gene's 3' UTR (Friedman et al., 2009), and 2) LOEUF values, the ratio of observed to expected loss-of-function variants in a gene in human populations (Karczewski et al., 2020). High conservation of miRNA targeting sites in a gene's 3' UTR implies sensitivity to over-expression (Naqvi et al., 2018), while a low LOEUF value demonstrates sensitivity to loss of function. For all non-PAR genes on the human X chromosome (San Roman et al., 2023), we calculated percentile ranks according to each of these two metrics, from most constrained (high percentile) to least constrained (low percentile). Among X-Y pair genes expressed from Xi, *DDX3X* has the highest combined sensitivity to over-expression and loss of function, implying that its level of expression is especially constrained (Fig. 1A).

Fig 1: *DDX3X* is highly dosage sensitive and expressed broadly among human tissues. A) Among human X-Y pair genes, *DDX3X* ranks highest in combined sensitivity to over-expression (as judged by PCT percentile among all X-chromosome genes) and under-expression (as judged by LOEUF percentile among all X-chromosome genes). B) *DDX3X* and C) *DDX3Y* and their chicken ortholog display the highest expression breadth among, respectively, the X and Y members of human X-Y gene pairs.

We also assessed whether *DDX3X* and *DDX3Y* are expressed more broadly across the body than other X-Y gene pairs – another feature of highly dosage-sensitive genes (Bellott et al., 2014) – and if this breadth was present ancestrally. The ancestral state of sex-linked genes can be inferred from analyses of birds such as chickens, where the orthologs of human sex chromosomal genes are found on autosomes 1 and
4 (Bellott et al., 2010). For each gene pair for which expression data was available in humans (GTEx, 2017) and chickens (Bellott et al., 2014; Merkin et al., 2012), we measured how broadly the chicken gene and human gene pair were expressed across the body's various tissues. *DDX3X*, *DDX3Y*, and their autosomal chicken ortholog display the highest combined expression breadth across the two species, suggesting that their dosage is critical throughout the body (Fig. 1B, 1C).

DDX3X and *DDX3Y* transcript levels fall as, respectively, Y-chromosome and X-chromosome copy numbers rise

To identify mechanisms that regulate *DDX3X* and *DDX3Y* expression in human cells, we re-analyzed RNA-sequencing data from primary skin fibroblasts of human donors with sex chromosome aneuploidies (San Roman et al., 2023). We first assessed *DDX3X* and *DDX3Y* transcript levels in cells with a single X chromosome and increasing numbers of Y chromosomes. As expected, *DDX3Y* transcript levels rise with increasing numbers of Y chromosomes. However, *DDX3X* expression from the single X chromosome falls significantly (Fig. 2A, B). Conversely, in cells with a single Y chromosome and increasing numbers of X chromosomes, *DDX3X* transcript levels rise, as expected given its expression from both Xa and Xi. However, *DDX3Y* expression from the single Y chromosome falls significantly (Fig 2C, D).

Fig. 2: DDX3X and DDX3Y expression is negatively responsive to, respectively, Y and X chromosome copy number. Scatterplots show DDX3X and DDX3Y transcript levels in cultured fibroblasts with the indicated sex chromosome constitutions. Each point represents a primary fibroblast culture from one individual. A,B) DDX3Y transcript levels are significantly elevated and DDX3X transcript levels significantly reduced in fibroblasts with multiple Y chromosomes. C,D) DDX3X transcript levels are significantly elevated and DDX3Y transcript levels significantly reduced in fibroblasts with multiple X chromosomes. R values and statistical significance calculated using Pearson correlation.

We asked whether this inverse relationship is common across all X-Y gene pairs, or is a special feature of *DDX3X* and *DDX3Y*. For each X-Y pair gene, we obtained values for the change in its transcript levels per extra Xi, and the change in its transcript levels per extra Y chromosome (San Roman et al., 2023). In both fibroblasts and lymphoblastoid cell lines (LCLs), *DDX3X* transcript levels fall significantly as Y chromosome copy number increases; conversely, *DDX3Y* transcript levels fall as X chromosome copy number increases (Table S1). This response is not observed with other X-Y pair genes; it is unique to *DDX3X* and *DDX3Y* (Table S1).

We considered the possibility that these decreases in *DDX3X* and *DDX3Y* transcript levels in response to changes in sex chromosome copy number might reflect a general cellular response to aneuploidy. To test this, we examined LCLs from individuals with trisomy 21. We observed no change in *DDX3X* or *DDX3Y* transcript levels in response to chromosome 21 copy number (Fig S1). We conclude that *DDX3X* and *DDX3Y* transcript levels are inversely related to Chr Y and Chr X copy number, respectively.

Perturbing DDX3X elicits a response in DDX3Y, and vice versa

We asked whether these effects of altering sex chromosome copy number are due to changes in *DDX3X* and *DDX3Y* expression. We examined naturally occurring mutations that affect *DDX3X* or *DDX3Y* expression as well as experimental knockdowns to capture the effects of perturbing *DDX3X* and *DDX3Y* transcript levels.

First, we quantified *DDX3X* transcripts in LCLs from azoospermic (infertile) males with *AZFa* micro-deletions. *AZFa* micro-deletions result from homologous recombination between endogenous retroviral elements on the human Y chromosome, and they remove the *DDX3Y* and *USP9Y* genes without affecting other genes (Fig. 3A) (Sun et al., 2000). We found that *DDX3X* transcript levels were significantly higher in LCLs from *AZFa*-deleted males compared to males with intact Y chromosomes (Fig. 3B). To test whether *DDX3X* transcript levels are elevated upon deletion of other Y-chromosome regions, we profiled LCLs from XY individuals whose Y-chromosomes retain *DDX3Y* but are missing several other genes, including the sex determining gene *SRY* (Schiebel et al., 1997). *DDX3X* transcript levels were unaltered in these individuals (Fig. S2),

demonstrating that *DDX3X* levels are elevated specifically in response to *DDX3Y* deletion.

Fig. 3: *DDX3X* and *DDX3Y* each respond directly to perturbations in the other's expression. A) Schematic diagram of naturally occurring human Y-chromosome (AZFa) micro-deletion of *DDX3Y* and *USP9Y*. B) *DDX3X* transcript levels are significantly higher in *AZFa*-deleted 46,XY LCLs compared to Y-chromosome-intact 46,XY LCLs. Each point represents a sample from one individual. Statistical significance determined by Mann Whitney- U test, *** p < 0.0001, * p < 0.05 C) CRISPRi-mediated knockdown of *DDX3Y* using two independent gRNAs in three unrelated 46,XY fibroblast cultures results in significantly elevated *DDX3X* transcript levels. Conversely, *DDX3X* knockdown results in significantly elevated *DDX3Y* transcript levels. D) Re-analysis of CRISPRi knockdown of *ZFX* or *ZFY* (San Roman et al., 2023) demonstrates that knockdown of either gene does not result in significant elevation of the homolog's transcripts. Statistical significance determined by ANOVA, ** p < 0.001.

We then used CRISPRi to target DDX3X or DDX3Y for knockdown in primary 46,XY fibroblasts. DDX3X transcript levels rose significantly upon knockdown of DDX3Y (DDX3Y KD), and DDX3Y transcript levels responded in reciprocal fashion to DDX3X KD (Fig. 3C). This negative cross-regulation across X and Y homologs was specific to DDX3X and DDX3Y, as CRISPRi knockdowns of ZFX and ZFY, another broadly expressed, dosage-sensitive X-Y gene pair, did not show this pattern (Fig. 3D) (San Roman et al., 2023). We validated these findings in an independent dataset, the Cancer Cell Line Encyclopedia (CCLE), which catalogs mutational and expression data from hundreds of cancer cell lines (Ghandi et al., 2019). There we identified 491 different XY cell lines that retained the Y chromosome, and among these a set of 11 lines that harbored loss of function mutations in DDX3X (Table S2). DDX3Y transcript levels are significantly higher in these 11 cell lines compared to lines where DDX3X is presumed intact (Fig. S3). Thus, knockdowns or loss of function in either DDX3X or DDX3Y are consistently buffered by compensatory increases in the homolog's expression, demonstrating that *DDX3X* and *DDX3Y* are negatively cross-regulated.

Taken together, these three approaches show that *DDX3X* and *DDX3Y* are negatively cross-regulated in multiple cell types: in LCLs, in primary fibroblasts, and in cancer cell lines originating from five different tissues (Table S2), demonstrating that this is a general, global response independent of tissue type or disease state. This model readily explains compensatory increases in *DDX3Y* transcript levels that other investigators have observed 1) in *DDX3X*-mutant lymphomas, where it was interpreted as an oncogenic adaptation (Gong et al., 2021) and 2) in mouse models of *DDX3X*

syndrome and medulloblastoma (Gong et al., 2021; Hoye et al., 2022; Patmore et al., 2020). We conclude that negative cross-regulation of *DDX3X* and *DDX3Y* occurs in many if not all somatic tissues and cell types, in both humans and mice.

Negative cross-regulation of DDX3X buffers total levels of DDX3X and DDX3Y

We hypothesized that negative cross-regulation of *DDX3X* and *DDX3Y* serves to maintain the combined expression of the two genes in a narrow range, buffering total transcript levels against changes in gene dosage. To test this, we summed transcript levels for the two genes in our knockdown models and observed that, in the setting of *DDX3Y* knockdown, the increase in *DDX3X* transcript levels fully compensates and maintains the summed transcript levels of *DDX3Y* and *DDX3Y* at control levels (Fig. 4A). However, in the setting of *DDX3X* knockdown – a larger perturbation -- the increase in *DDX3Y* transcript levels does not fully compensate. We confirmed these results at the protein level using a mass-spectrometry framework that enables sensitive protein quantification by multiplexing peptides and samples (Derks et al., 2022). To

Fig 4: Increased expression of DDX3X fully compensates, at transcript and protein levels, for knockdown of DDX3Y, but the inverse is not true. A) Stacked bar graph showing summed TPM of DDX3X and DDX3Y in CRISPRi knockdowns using two independent gRNAs in three independent 46,XY fibroblast cultures. Statistical significance calculated by ANOVA, ** p < 0.001. B) Bar graph showing abundance of shared DDX3X and DDX3Y peptides in CRISPRi knockdowns with three technical replicates in two independent 46.XY fibroblast cultures. C) Differential gene expression analysis of control vs DDX3X knockdown reveals significant expression changes in 397 target genes across the genome, including DDX3X and DDX3Y. Genes with p < 0.05 (after multiple hypothesis correction) indicated in blue, with exception of DDX3X (in orange) and DDX3Y (in purple). D) Differential gene expression analysis of control vs DDX3Y knockdown reveals only six genes, including DDX3X and DDX3Y, that change significantly.

Given these results, we predicted that the incomplete compensation of summed DDX3X + DDX3Y protein levels seen with the *DDX3X* KD would result in genome-wide gene expression changes, while such changes would not occur with the *DDX3Y* KD. Indeed, the *DDX3X* KD significantly altered the expression of 379 genes (Fig. 4C), while

the *DDX3Y* KD significantly altered the expression of only six genes genome-wide, indicating nearly complete compensation through elevated *DDX3X* expression (Fig. 4D). The *DDX3X* knockdown has far-reaching consequences because of the limited ability of *DDX3Y* to compensate for diminished *DDX3X* expression.

We then asked whether negative cross-regulation of *DDX3X* and *DDX3Y* contributes to the genome-wide gene expression changes observed in individuals with sex chromosome aneuploidies. We found no significant overlap between 1) the set of genes responsive to increasing numbers of X chromosomes in the aneuploidy dataset (San Roman et al., 2023) and 2) the set of genes differentially expressed in our *DDX3X* KD (Fig. S4A). Unlike *ZFX*, which drives a large portion of the genome-wide response to X-chromosome copy number (San Roman et al., 2023), the elevated *DDX3X* expression observed with addition of Xi does not drive significant gene expression changes in the aneuploid lines. Indeed, the increase in summed *DDX3X* and *DDX3Y* transcript levels per additional sex chromosome (X or Y) is more modest than that of similarly constrained X-Y pairs (Fig. S4B,C,D), suggesting that *DDX3X* and *DDX3Y* are not major drivers of gene expression changes associated with sex chromosome aneuploidy.

DDX3X is auto-regulated in 46,XX cells

We hypothesized that negative cross-regulation of the *DDX3X-DDX3Y* gene pair evolved from an earlier system of negative auto-regulation in the autosomal ancestor of

this X-Y pair. Indeed, the yeast ortholog of DDX3X (Ded1) appears to be negatively auto-regulated (Silvia Marina, 2015). If negative cross-regulation in human XY cells evolved from negative auto-regulation, we might expect to observe negative autoregulation of DDX3X in human XX cells. We set out to test for this, and, if present, whether it might be unique among the 17 human NPX genes with NPY homologs. For each X-Y pair gene where informative SNPs could be identified, we obtained its allelic ratio (AR), the ratio of Xi- and Xa-derived transcripts (San Roman et al., 2023). For each gene, we then compared its AR value to its ΔE_X value, the increment of change in a gene's expression per additional X, relative to Xa (San Roman et al., 2023). If an Xlinked gene's expression from Xi and Xa are independent and additive, then the gene's AR should approximate its ΔE_x —and we found this to be true for all other NPX genes with NPY homologs. To the contrary, while DDX3X has an AR of 0.55 in LCLs and 0.42 in fibroblasts, it has a significantly lower ΔE_X of 0.26 in LCLs and 0.16 in fibroblasts (Fig. 5A). In other words, while Xi contributes 55% or 42% as many transcripts as Xa does, DDX3X transcript levels increase by only 26% or 16% with each additional Xi. This strongly suggests that DDX3X is negatively auto-regulated in the absence of DDX3Y.

Fig 5: *DDX3X* is negatively auto-regulated in 46,XX cells. A) *DDX3X* 's allelic ratio (AR) is significantly higher than its ΔE_X value in LCLs, setting it apart it from all other Xi/Xa/Y-expressed X-Y pair genes, whose AR values approximate their ΔE_X values. B) *DDX3X* transcript levels (by qPCR) in 46,XX fibroblasts are significantly elevated in a dose-responsive manner upon treatment with DDX3 inhibitor RK-33. Statistical significance determined by one-sided t-test on delta Ct values. Error bars indicate standard deviation of three technical replicates. * p <0.05, *** p < 0.001.

Moreover, we hypothesized that chemical inhibition of DDX3X protein activity could lead to increased *DDX3X* transcript levels. We directly perturbed *DDX3X* in XX fibroblasts using RK-33, a competitive inhibitor of DDX3X that binds its ATP-binding cleft and disrupts helicase function (Bol et al., 2015). Indeed, *DDX3X* transcript levels were significantly elevated, in a dose-dependent manner, in cells treated with RK-33 (Fig 5B). Increasing duration of RK-33 treatment also increased *DDX3X* transcript levels in a time-dependent manner (Fig S5). Together, these findings demonstrate that *DDX3X* transcript levels are negatively auto-regulated in XX cells.

In theory, our observations concerning auto- and cross-regulation could be explained by independent, parallel evolution of negative cross-regulation of *DDX3Y* by

DDX3X, and of *DDX3X* by *DDX3Y*, but this seems implausibly unlikely, especially given the absence of sexual recombination as an evolutionary enabler in the case of *DDX3Y*. A simpler hypothesis is that reciprocal cross-regulation of *DDX3X* and *DDX3Y* derives directly from a negative, post-transcriptional auto-regulatory mechanism that governed the ancestral (autosomal) *DDX3* gene. We conclude that this regulatory scheme was present in the *DDX3* gene in our amniote ancestors before the autosome carrying *DDX3* became part of today's mammalian sex chromosomes.

DDX3X response is mediated by mRNA stability

DDX3X encodes an RNA-binding protein known to bind its own transcripts (Van Nostrand et al., 2020). In yeast, the *DDX3* ortholog *Ded1* is negatively auto-regulated and this regulation is dependent on its 3'UTR, (Silvia Marina, 2015) indicating that *Ded1* mRNA stability is being modulated. We reasoned that the negative cross-regulation we observed between *DDX3X* and *DDX3Y* may involve mRNA stability. If *DDX3Y* destabilizes *DDX3X* transcripts, we would expect the half-life of *DDX3X* transcripts to decrease in response to increasing *DDX3Y* dosage. We tested this prediction by labeling nascent mRNAs in 46,XY and 49,XYYYY LCLs with 5-EU and sequencing these populations at discrete intervals to quantify mRNA half-life (Fig 6A). We calculated the ratio of nascent mRNA/ total mRNA normalized to steady-state levels, across time points, and observed a striking difference in *DDX3X* mRNA half-life between the two conditions. *DDX3X* mRNAs were 3-fold less stable in 49,XYYYY cells,

(Fig 6B) implying that DDX3Y directly or indirectly destabilizes *DDX3X* mRNAs, reducing the steady state levels of *DDX3X* transcripts. This result persists upon shortening 5EU labeling time (Fig. S5B). *DDX3X* steady state levels are lower in 49,XYYYY samples as predicted (Fig S5A).

Fig 6: *DDX3X* mRNA stability is regulated. A) Schematic of experiment to determine half-lives of mRNAs. 46,XY and 49,XYYYY LCLs were incubated with 5-ethyl uridine to obtain nascent mRNAs. B) *DDX3X* is destabilized at least 3-fold in 49,XYYYY vs 46,XY LCLs.

Overall, these results support a model where ancestral (autosomal) DDX3 destabilized

its own transcripts to negatively auto-regulate its expression, foreshadowing the ability

of mammalian DDX3X and DDX3Y to destabilize their own and each other's transcripts

(Fig 7).

Fig 7: Coding sequences and gene regulatory mechanisms of X-Y gene pairs were preserved during sex chromosome evolution. The auto- and cross-regulation of *DDX3X* and *DDX3Y* likely originated from the auto-regulation of ancestral *DDX3*. Studies of other X-Y gene pairs such as *ZFX-ZFY* and *EIF1AX-EIF1AY* suggest that on a gene-by-gene basis, regulatory mechanisms also persist on the human X- and Y-chromosomes from the ancestral autosome.

Discussion:

DDX3X and DDX3Y are encoded by X- and Y-linked homologs and perform critical

cellular roles in RNA metabolism (Soto-Rifo & Ohlmann, 2013). We report that DDX3X

is negatively auto-regulated (Fig. 5) and that DDX3X and DDX3Y are negatively cross-

regulated (Fig. 3). We also find that DDX3X transcript stability is modulated to achieve

this regulation (Fig 6). These findings shed new light on the mechanisms by which

dosage-sensitive genes on the sex chromosomes are regulated.

Gene regulatory mechanisms: preservation and modification during human sex

chromosome evolution

We reasoned that such tight delimiting of *DDX3* gene expression likely pre-dated the divergence of the homologous genes *DDX3X* and *DDX3Y* on the sex chromosomes, supported by the auto- and cross-regulation of *DDX3X* and *DDX3Y* we observe in humans, and previous evidence of cross-regulation in mouse models (Hoye et al., 2022; Patmore et al., 2020). Strikingly, there is evidence that *Ded1*, the yeast ortholog of *DDX3X*, is similarly auto-regulated (Silvia Marina, 2015) suggesting that *DDX3X* regulation may be conserved over 1.3 billion years since the common ancestor of yeast and humans (Kumar et al., 2022). These data indicate that DDX3X's pre-existing gene regulatory mechanisms on the ancestral autosome were maintained on the human X and Y chromosomes (Fig 7), albeit with differences in the steady state transcript level of *DDX3X* and *DDX3Y* over at least 200 million years of evolution.

The ancestral origins of gene regulatory mechanisms on the sex chromosomes can also be seen in recent work studying other X-Y gene pairs. *ZFX* and *ZFY* dosage have similar genome-wide effects in LCLs and fibroblasts (San Roman et al., 2023), suggesting that their transcriptional networks have been preserved during sex chromosome evolution. However, the effects of *ZFX* are more potent than *ZFY* in knockdown studies, indicating a source of genome-wide sex differences (San Roman et al., 2023). Studies of miRNA sites provide further evidence for inferring the ancestral origin of X-Y gene pair regulatory elements; miRNA sites on avian Z-W chromosomes have been preserved on human sex chromosomes (Naqvi et al., 2018). *EIF1AX*, a key component of translation initiation, has retained a miR-1 site that is disrupted in *EIF1AY*, leading to 2-fold up-regulation of the Y-homolog in heart tissues (Godfrey et al., 2020).

Similarly, preservation of *DDX3X* and *DDX3Y* cross-regulation along with the differences in their steady state levels may underpin human disease phenotypes.

Implications for genetic disorders of DDX3X and DDX3Y in humans

Constitutional (germline) mutations in *DDX3X* and *DDX3Y* cause radically different phenotypes. In human males, reports of constitutional mutations in *DDX3X* are exceedingly rare; these are typically missense alleles that only partially reduce DDX3X protein function but nonetheless cause a neurodevelopmental disorder ('*DDX3X* syndrome') (Kellaris et al., 2018). By contrast, de novo deletions of the entire *DDX3Y* gene (so-called *AZFa* deletions) cause spermatogenic failure and thereby infertility but otherwise have no reported impact on somatic development, function, or health (Sun et al., 2000). As *DDX3X* accounts for the bulk of total *DDX3* expression in the male brain (Godfrey et al., 2020), we propose that elevated *DDX3X* transcript levels compensate for the absence of *DDX3Y* in the brain and other somatic tissues in *AZFa*-deleted males (Fig 4A,B), explaining why males with germline *DDX3Y* deletions display no neurodevelopmental consequences. In testicular germ cells, where *DDX3Y* predominates (Ramathal et al., 2015), DDX3X cannot compensate for the loss of *DDX3Y*, leading to azoospermia and male infertility.

Meanwhile, somatic loss-of-function mutations in *DDX3X* drive many malebiased lymphomas, medulloblastomas, and leukemias (Brandimarte et al., 2014; Gong et al., 2021; Patmore et al., 2020). The male bias is consistent with incomplete

compensation; *DDX3Y* levels are increased in *DDX3X* mutant cancer cell lines (Fig S3) but this increase is not sufficient to replace the larger contribution of *DDX3X* to their combined expression level. Unlike *DDX3X*, *DDX3Y* somatic mutations have not been identified as drivers in human cancers, suggesting that somatic loss of *DDX3Y* is fully compensated for by increased *DDX3X* levels.

Closing

While *DDX3X* and *DDX3Y* are a unique instance of X-Y gene pair cross-regulation, the preservation of this complex regulatory scheme implies the maintenance of ancestral gene regulatory mechanisms for other X-Y gene pairs such as *KDM6A/UTY* and *USP9X/USP9Y*, which demonstrate moderately high dosage sensitivity (Fig 1) and are associated with developmental disorders (Homann et al, 2014., Lederer et al 2012). Overall, this study demonstrates how studies of regulatory conservation can be used to understand and treat disorders caused by mutations of X-Y gene pairs.

Methods

Analysis of total branch length and survival fraction: For each gene, total branch length and survival fraction values in therian species were obtained from Bellott & Page (Bellott & Page, 2021). To obtain a gene's total branch length, all branch lengths in the most parsimonious tree connecting all species where the gene is present are summed from the last common ancestor. The survival fraction is the observed total branch length

divided by the maximum possible branch length. Survival fractions range from 0 (lost in all lineages) to 1 (retained in every lineage).

Analysis of constraint metrics: We downloaded LOEUF (loss-of-function

observed/expected upper fraction) scores from gnomAD

(v2.1.1.lof_metris.by_gene.txt;https://gnomad.broadinstitute.org/) and only used scores with a minimum of 10 expected LoF variants. For sensitivity to an increase in gene dosage, we used the per-gene average probability of conserved miRNA targeting scores (PCT) (Friedman et al.,2009). For each metric, we computed a percentile rank score, from most constrained to least constrained (San Roman et al., 2023).

Calculation of expression breadth: Human expression breadth was calculated from GTEx v8 using male samples. For each gene, expression breadth was calculated using TPM values as follows: Sum of expression across tissues/(Maximum expression in a tissue * Number of tissues). For each X-Y gene pair, expression breath values for the X-homolog and Y-homolog were averaged to generate a mean score. Chicken expression breadth values were obtained from Bellott et al using data from Merkin et al. (Bellott et al., 2010; Merkin et al., 2012).

Aneuploidy data: RNA-sequencing data from cultured cells of individuals with sex chromosome aneuploidy (San Roman et al., 2023) were downloaded from https://doi.org/10.1016/j.xgen.2023.100259.

Cell Culture: All LCLs were cultured in complete RPMI at 37C. Fibroblasts were cultured in high-glucose DMEM (Gibco), 20% FBS, L-Glutamine (MP Biomedicals), MEM Non-Essential Amino Acids (Gibco), 100 IU/ml Penicillin/Streptomycin (Lonza)).

CRISPRi: Three independent, unrelated 46,XY fibroblast cultures stably expressing a nuclease-dead Cas9 fused with a repressive KRAB domain (dCas9-KRAB) were obtained from Adrianna San Roman. gRNAs for control (intergenic), *DDX3X*, and *DDX3Y* were chosen from the human CRISPRi v2 library (Horlbeck et al., 2016) and cloned into the sgOpti lentiviral expression vector. Viral particles were generated and frozen as described in San Roman et al. Guide sequences were as follows:

Control 1: GACATATAAGAGGTTCCCCG

Control 2: AACGGCGGATTGACCGTAAT

DDX3X #1: GTCCCGTGAGAGGGCCTTCG

DDX3X #2: GCCCGGGACGAGCACAATGG

DDX3Y #1: GTTCGGTCTCACACCTACAG

DDX3Y #2: GAGTACTGGGCCTCACGCAA

Control and *DDX3X*- or *DDX3Y*-targeting gRNAs were transduced into the stablyexpressing dCas9-KRAB fibroblasts, and cells were selected using 2 ug/mL puromycin (Sigma) beginning 24 h post infection. Cells were washed once with PBS and collected 72 h post infection. RNA was extracted with the RNeasy Mini Kit (Qiagen). RNA sequencing libraries were prepared using the KAPA mRNA HyperPrep Kit V2 (Roche). Paired-end 100x100 bp sequencing was performed on a NovaSeq 6000 (Illumina). Reads were pseudoaligned with kallisto and imported into R using tximport. Differential gene expression analysis was performed using DESeq2 (Love et al., 2014). RNAsequencing data from *ZFX* and *ZFY* knock-down experiments (San Roman et al., 2023) were downloaded from dbGaP Study Accession: phs002481.v2.p1.

Treatment with RK-33: 46,XX fibroblast cultures were treated with 0, 1, 2, 5, or 10 μ M RK-33 in DMSO for 24 h. For the time course, they were treated with 2 μ M RK-33 for 0, 1, 2, 4, or 24 h.

qPCR: Cells were washed once with PBS and collected 72 h post treatment. RNA was extracted with the RNeasy Mini Kit (Qiagen) and cDNAs prepared with Super-Script Vilo Master Mix (Thermo Fisher). *DDX3X* levels were quantified by qPCR using Fast Sybr Green Master Mix (Thermo Fisher). Primers for *DDX3X* and reference gene *ACTB* were as follows:

DDX3X F: GTGGAAGTGGATCAAGGGGA

DDX3X R: TGATTTGTCACACCAGCGAC

ACTB F: CACCAACTGGGACGACAT

ACTB R: ACAGCCTGGATAGCAACG

Analysis of Cancer Cell Line Expression dataset: Expression and mutation data for cancer cell lines were downloaded from the DepMap 22Q2 release

(https://depmap.org/portal/download/all/). Analysis was restricted to 46,XY cells by applying a log2TPM filter of > 0.2 *DDX3Y*, > 0.2 *RPS4Y*, < 2 *XIST*.

Sample preparation for mass spectrometry: Samples were prepared for proteomic analysis by mPOP (Minimal Proteomic Sample Preparation) as described in Specht et al (Specht et al., 2018). Briefly, cells were resuspended in MS-grade water and frozen. They were then heated and lysed. Proteins were reduced and treated with Trypsin Gold (Promega). The peptide abundance of each sample was measured and each sample was labeled with non-isobaric mass tags, mTRAQ $\Delta 0$, $\Delta 4$, or $\Delta 8$ (SciEx: 4440015, 4427698, 4427700) following the manufacturer's instructions. Reactions were quenched and pooled as a 3-plex with relative mass offsets of $\Delta 0$, $\Delta 4$, and $\Delta 8$.

Mass Spectrometry data acquisition: mTRAQ-labeled peptide sets were separated by reversed-phase UHPLC in 1 μ l injections by a Dionex UltiMate 3000 using a 25 cm × 75 μ m lonOpticks Aurora Series UHPLC column (AUR2-25075C18A). Buffer A was 0.1% formic acid in MS-grade water. Buffer B was 80% acetonitrile (ACN) with 0.1% formic acid, mixed in MS-grade water. The gradient was as follows: 4% Buffer B (minutes 0–11.5), 4–7% Buffer B (minutes 11.5–12), 7–32% Buffer B (minutes 12–75), 32–95% Buffer B (minutes 75–77), 95% Buffer B (minutes 77–80), 95–4% Buffer B (minutes 80–80.1), and 4% Buffer B until minute 95. The flowrate was 200 nL/min throughout. Mass spectrometry data were acquired using a DIA method which utilizes frequent MS1-scans for quantitation, as previously described (Derks et al., 2022).

Mass spectrometry data analysis: Raw plexDIA data were processed with DIA-NN (version 1.8.1 beta 16) (Demichev et al., 2019) using the following settings and additional commands: {--window 1}, {--mass-acc 10.0}, {--mass-acc-ms1 5}, {-- reanalyse}, {--rt-profiling}, {--peak-height}, {--fixed-mod mTRAQ, 140.0949630177, nK}, {--channels mTRAQ,0,nK,0:0; mTRAQ,4,nK,4.0070994:4.0070994; mTRAQ,8,nK,8.0141988132:8.0141988132}, {--peak-translation}, {--original-mods}, {-- report-lib-info}, {--ms1-isotope-quant}, {--mass-acc-quant 5.0}.

The resulting data were filtered at 1% FDR for precursors and protein-groups. Precursors were further filtered for Translated.Q.Value < 0.01. MaxLFQ (Cox et al., 2014) was used to perform protein-group-level quantification for all samples. Each protein-group was normalized to the mean value in each LC-MS run, as each LC-MS run contained three technical replicates from each of the three conditions (control, *DDX3X* knockdown, and *DDX3Y* knockdown). Each sample was then normalized to its own respective median protein group value to account for differences in absolute protein abundances between samples. Finally, each protein-group was normalized to the mean value of the protein-group across all samples, for each cell-line. For each cell line, batch-correction was performed using Combat (Leek et al., 2012) with missing data imputed with a kNN algorithm (k=3), to correct biases produced by using different mass-tag offsets (e.g. Δ 0, Δ 4, and Δ 8).

5-EU labeling and cell collection: LCLs were thawed and allowed to grow in T175 flasks. Cells were split with fresh LCL media and 5EU (Jena Bioscience) was added to a final concentration of 400 μ M. Cells were collected 0, 0.5,1, 1.5, and 2, 3.5 and 7 h later, washed with PBS and pelleted prior to addition of TRIzol (Thermo Fisher Scientific) reagent. Cells were snap-frozen at ⁻ 80 C. RNA was precipitated with isopropanol and 1ng of 5-EU EGFP positive control was added.

Biotinylation and pulldown: Biotinylation and pulldown were performed as described (Kingston & Bartel, 2019). Briefly, biotin was attached to metabolically labeled RNAs in a 10 μ L reaction protected from light. The reaction was quenched and RNA precipitated. RNA was then incubated with blocked and pre-washed streptavidin bead slurry. Beads were washed once more and RNA was eluted with TCEP (tris(2-carboxyethyl)) phosphine) and water. RNA was precipitated and libraries were then prepared using the SMART-Seq v4 Ultra Low Input RNA kit and sequenced on a NovaSeq 6000. Input RNAs were also sequenced to measure total RNA. TPMs were normalized to 5-EU positive EGFP spike-in. The normalized fraction of nascent/total *DDX3X* mRNA was fit to the equation $y = \alpha/\beta * 1 - e^{\beta/t}$ to obtain β (half-life).

Statistical Methods: Various statistical tests were used to calculate p values as indicated in the methods section, figure legends, or text, where appropriate. Results were considered statistically significant when p < 0.05 or FDR < 0.05 when multiple

hypothesis correction was applied, unless stated otherwise. All statistics were calculated using R software, version 4.2.1 or Prism, version 9.4.1 unless stated otherwise.

Data Access: Original code for the analyses in this paper is deposited at https://github.com/shruthi3195/DDX3X_SR_2023. Raw reads for sequencing data were deposited at NCBI and can be accessed at dbGaP Study Accession: phs002481.v3.p1.

Acknowledgements: We thank members of the Page lab for advice, J. Adarme and S. Tocio for laboratory support, and A.K. San Roman and J. Hughes for comments on the manuscript . We thank the Whitehead Institute Genome Technology Core for advice and library preparation & sequencing. We thank Caitlin Rausch for illustration. Patient samples used to generate LCLs from *Azfa* donors are from Dr. R.A. Oates and Dr. S. Silber. Supported by the Howard Hughes Medical Institute, the Whitehead Institute, and philanthropic gifts from Brit and Alexander d'Arbeloff, Arthur W. and Carol Tobin Brill, Matthew Brill, Charles Ellis, the Barakett Foundation, the Howard P. Colhoun Foundation, and the Seedling Foundation.

References

- Bellott, D. W., Hughes, J. F., Skaletsky, H., Brown, L. G., Pyntikova, T., Cho, T. J., Koutseva, N., Zaghlul, S., Graves, T., Rock, S., Kremitzki, C., Fulton, R. S., Dugan, S., Ding, Y., Morton, D., Khan, Z., Lewis, L., Buhay, C., Wang, Q., . . . Page, D. C. (2014). Mammalian y chromosomes retain widely expressed dosage-sensitive regulators. *Nature* 508, 494-499. https://doi.org/10.1038/nature13206
- Bellott, D. W., & Page, D. C. (2021). Dosage-sensitive functions in embryonic development drove the survival of genes on sex-specific chromosomes in snakes, birds, and mammals. *Genome Research*, *31*(198).
- Bellott, D. W., Skaletsky, H., Pyntikova, T., Mardis, E. R., Graves, T., Kremitzki, C., Brown, L. G., Rozen, S., Warren, W. C., Wilson, R. K., & Page, D. C. (2010). Convergent evolution of chicken Z and human X chromosomes by expansion and gene acquisition. *Nature 466*, 612-616. <u>https://doi.org/10.1038/nature09172</u>
- Bol, G. M., Vesuna, F., Xie, M., Zeng, J., Aziz, K., Gandhi, K., Levine, A., Irving, A., Korz, D., Tantravedi, S., Heerma van Voss, M. R., Gabreilson, K., Bordt, E. A., Polster, B. M., Cope, L., van der Groep, P., Kondaskar, A., Rudek, M. A., Hosmane, R. S., . . . Raman, V. (2015). Targeting DDX3 with a small molecule inhibitor for

lung cancer therapy. EMBO Molecular Medicine.

- Brandimarte, L., La Starza, R., Gianfelici, V., Barba, G., Pierini, V., Di Giacomo, D., Cools, J., Elia, L., Vitale, A., Luciano, L., Bardi, A., Chiaretti, S., Matteucci, C., Specchia, G., & Mecucci, C. (2014). DDX3X-MLLT10 fusion in adults with NOTCH1 positive T-cell acute lymphoblastic leukemia. *Hematologica*, *99*. <u>https://doi.org/10.3324/haematol.2013.101725</u>
- Cox, J., Hein, M. Y., Luber, C. A., Paron, I., Nagaraj, N., & Mann, M. (2014). Accurate proteomewide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. *Molecular & Cellular Protemics*, *13*, 2513–2526.
- Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S., & Ralser, M. (2019). DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. *Nature Methods*(17), 41-44.
- Derks, J., Leduc, A., Wallmann, G., Huffman, R. G., Willetts, M., Khan, S., Specht, H., Ralser, M., Demichev, V., & Slavov, N. (2022). Increasing the throughput of sensitive proteomics by plexDIA. *Nature Biotechnology*, *41*, 50-59.
- Elbaum-Garfinkle, S., Kim, Y., Szczepaniak, K., Chen, C. C. H., Eckmann, C. R., Myong, S., & Brangwynne, C. P. (2015). The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. *PNAS*, *112*, 7189-7194. <u>https://doi.org/10.1073/pnas.1504822112</u>
- Friedman, R. C., Farh, K. K. H., Burge, C. B., & Bartel, D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. *Genome Research*, 19, 92-105. <u>https://doi.org/10.1101/gr.082701.108</u>
- Ghandi, M., Huang, F. W., Jané-Valbuena, J., Lo, C. C., McDonald, E. R., Barretina, J., Gelfand, E. T., Bielski, C. M., Li, H., Hu, K., Andreev-Drakhlin, A. Y., Kim, J., Hess, J. M., Haas, B. J., Aguet, F., Weir, B. A., Rothberg, M. V., Paolella, B. R., Lawrence, M. S., . . . Sellers, W. R. (2019). Next-generation characterization of the Cancer Cell Line Encyclopedia. *Nature*, *569*, 503-508. <u>https://doi.org/10.1038/s41586-019-1186-3</u>
- Godfrey, A. K., Naqvi, S., Chmatal, L., Chick, J. M., Mitchell, R. N., Gygi, S. P., Skaletsky, H., & Page, D. C. (2020). Quantitative analysis of Y-Chromosome gene expression across 36 human tissues. *Genome Research*.
- Gong, C., Krupka, J. A., Gao, J., Grigoropoulos, N. F., Screen, M., Usheva, Z., Cucco, F., Barrans, S., Painter, D., Mohammad Zaini, N., Haupl, r., Bornelo, S., Ruiz De Los Mozos, I., Meng, W., Zhou, P., Blain, A. E., Forde, S., Matthews, J., Tan Guet Khim, M., . . . Hodson, D. J.

(2021). Sequential inverse dysregulation of the RNA helicases DDX3X and DDX3Y facilitates MYC-driven lymphomagenesis. *Molecular Cell*.

GTEx. (2017). Genetic effects on gene expression across human tissues

- Horlbeck, M. A., Gilbert, L. A., Villatla, J. E., Adamson, B., Pak, R. A., Chen, Y., Fields, A. P., Yon Park, C., Corn, J. E., Kampmann, M., & Weissman, J. S. (2016). Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. *eLife*, 5.
- Hoye, M. L., Calviello, L., Poff, A. J., Ejimogu, N.-E., Newman, C. R., Montgomery, M. D., Ou Jianhong, Floor, S. N., & Silver, D. N. (2022). Aberrant cortical development is driven by impaired cell cycle and translational control in a DDX3X syndrome model. *eLife*.
- Johnstone, O., Deuring, R., Bock, R., Linder, P., Fuller, M. T., & Lasko, P. (2005). Belle is a Drosophila DEAD-box protein required for viability and in the germ line. *Developmental Biology*, *277*, 92-101. <u>https://doi.org/10.1016/j.ydbio.2004.09.009</u>
- Karczewski, K. J., Francioli, L. C., Tiao, G., Cummings, B. B., Alföldi, J., Wang, Q., Collins, R. L., Laricchia, K. M., Ganna, A., Birnbaum, D. P., Gauthier, L. D., Brand, H., Solomonson, M., Watts, N. A., Rhodes, D., Singer-Berk, M., England, E. M., Seaby, E. G., Kosmicki, J. A., . . . Xavier, R. J. (2020). The mutational constraint spectrum quantified from variation in 141,456 humans. *Nature*, *581*, 434-443. <u>https://doi.org/10.1038/s41586-020-2308-7</u>
- Kellaris, G., Khan, K., Baig, S. M., Tsai, I. C., Zamora, F. M., Ruggieri, P., Natowicz, M. R., & Katsanis, N. (2018). A hypomorphic inherited pathogenic variant in DDX3X causes male intellectual disability with additional neurodevelopmental and neurodegenerative features. *Human Genomics*, 12. <u>https://doi.org/10.1186/s40246-018-0141-y</u>
- Kingston, E. R., & Bartel, D. P. (2019). Global analyses of the dynamics of mammalian microRNA metabolism. *Genome Research*, *29*, 1777-1790.
- Kumar, S., Suleski, M., Craig, J. M., Kasprowicz, A. E., Sanderford, M., Li, M., Stecher, G., & Hedges, B. S. (2022). TimeTree 5: An Expanded Resource for Species Divergence Times. *Molecular Biology and Evolution*, 39(8).
- Lahn, B. T., & Page, D. C. (1997). Functional Coherence of theHuman Y Chromosome. *Science*, *278*(5338), 675-678.
- Lahn, B. T., & Page, D. C. (1999). Four evolutionary strata on the human X chromosome. *Science*, *286*, 5441.
- Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E., & Storey, J. D. (2012). The sva package for removing batch effects and other unwanted variation in high-throughput experiments. *Bioinformatics*, 28(6), 882-883.
- Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biology*.
- Merkin, J., Russell, C., Chen, P., Burge, C. B., & (2012). Evolutionary dynamics of gene and isoform regulation in mammalian tissues. *Science*, *338*, 1593-1599. <u>https://doi.org/10.1126/science.1228186</u>
- Naqvi, S., Bellott, D. W., Lin, K. S., & Page, D. C. (2018). Conserved microRNA targeting reveals preexisting gene dosage sensitivities that shaped amniote sex chromosome evolution. *Genome Research*, *28*(474).
- Patmore, D. M., Jassim, A., Nathan, E., Gilbertson, R. J., Tahan, D., Hoffmann, N., Tong, Y., Smith, K. S., Kanneganti, T. D., Suzuki, H., Taylor, M. D., Northcott, P., & Gilbertson, R. J. (2020).
 DDX3X Suppresses the Susceptibility of Hindbrain Lineages to Medulloblastoma.
 Developmental Cell, 54, 455-470.e455. <u>https://doi.org/10.1016/j.devcel.2020.05.027</u>
- Ramathal, C., Angulo, B., Sukhwani, M., Cui, J., Durruthy-Durruthy, J., Fang, F., Schanes, P., Turek,
 P. J., Orwing, K. E., & Reijo Pera, R. (2015). DDX3Y gene rescue of a Y chromosome AZFa deletion restores germ cell formation and transcriptional programs. *Nature Scientific Reports*.
- Rosner, A., & Rinkevich, B. (2007). The DDX3 Subfamily of the DEAD Box Helicases: Divergent Roles as Unveiled by Studying Different Organisms and In Vitro Assays. *Current Medicinal Chemistry*, 14, 2517-2525.

- San Roman, A. K., Godfrey, A. K., Skaletsky, H., Bellott, D. W., Groff, A. F., Harris, H. L., Blanton, L. V., Hughes, J. F., Brown, L., Phou, S., Buscetta, A., Kruszka, P., Banks, N., Dutra, A., Pak, E., Lasutschinkow, P. C., Keen, C., Davis, S. M., Tartaglia, N. R., . . . Page, D. C. (2023). The human inactive X chromosome modulates expression of the active X chromosome. *Cell Genomics*, *3*, 100259. <u>https://doi.org/10.1016/j.xgen.2023.100259</u>
- San Roman, A. K., Skaletsky, H., Godfrey, A. K., Bokil, N. V., Teitz, L., Singh, I., Blanton, L. V.,
 Bellott, D. W., Pyntikova, T., Lange, J., Koutseva, N., Hughes, J. F., Brown, L., Phou, S.,
 Buscetta, A., Kruszka, P., Banks, N., Dutra, A., Pak, E., . . . Page, D. C. (2023). The human Y and inactive X chromosomes similarly modulate autosomal gene expression. *BiorXiv*.
- Schiebel, K., Winkelmann, M., Mertz, A., Xu, X., Page, D. C., Weil, D., Petit, C., & Rappold, G. A. (1997). Abnormal XY interchange between a novel isolated protein kinase gene, PRKY, and its homologue, PRKX, accounts for one third of all (Y+)XX males and (Y-)XY females. *Human Molecular Genetics*, 6.
- Sekiguchi, T., Iida, H., Fukumara, J., & Nishimoto, T. (2004). Human DDX3Y, the Y-encoded isoform of RNA helicase DDX3, rescues a hamster temperature-sensitive ET24 mutant cell line with a DDX3X mutation. *Experimental Cell Research*, *300*(1), 213-222.
- Sharma, D., Putnam, A. A., & Jankowsky, E. (2017). Biochemical Differences and Similarities between the DEAD-Box Helicase Orthologs DDX3X and Ded1p. *Journal of Molecular Biology*, *429*, 3730-3742. <u>https://doi.org/10.1016/j.jmb.2017.10.008</u>
- Shen, H., Yanas, A., Owens, M. C., Zhang, C., Fritsch, C., Fare, C. M., Copley, K. E., Shorter, J., Goldman, Y. E., & Liu, K. F. (2022). Sexually dimorphic RNA helicases DDX3X and DDX3Y differentially regulate RNA metabolism through phase separation. *Molecular Cell*, 82(14), 2588-2603.
- Silvia Marina, D. (2015). A synthetic approach to study function and expression of the Saccharomyces cerevisiae RNA helicase Ded1 ETH Zurich]. <u>https://doi.org/10.3929/ethz-a-010603399</u>
- Snijders Blok, L., Madsen, E., Juusola, J., Gilissen, C., Baralle, D., Reijnders, M. R. F., Venselaar, H., Helsmoortel, C., Cho, M. T., Hoischen, A., Vissers, L. E. L. M., Koemans, T. S., Wissink-Lindhout, W., Eichler, E. E., Romano, C., Van Esch, H., Stumpel, C., Vreeburg, M., Smeets, E., . . . Kleefstra, T. (2015). Mutations in DDX3X Are a Common Cause of Unexplained Intellectual Disability with Gender-Specific Effects on Wnt Signaling. *American Journal of Human Genetics*, *97*, 343-352. https://doi.org/10.1016/j.ajhg.2015.07.004
- Soto-Rifo, R., & Ohlmann, T. (2013). The role of the DEAD-box RNA helicase DDX3 in mRNA metabolism. *Wiley interdisciplenary reviews. RNA*, *4*, 369-385. https://doi.org/10.1002/wrna.1165
- Specht, H., Harmange, G., Perlman, D. H., Emmott, E., Niziolek, Z., Budnik, B., & Slavov, N. (2018). Automated sample preparation for high-throughput single-cell proteomics. *BiorXiv*.
- Sun, C., Skaletsky, H., Rozen, S., Gromoll, J., Nieschlag, E., Oates, R., & Page, D. C. (2000). Deletion of azoospermia factor a (AZFa) region of human Y chromosome caused by recombination between HERV15 proviruses. *Human Molecular Genetics*, *9*, 2291-2296. <u>http://ftp.genome.washington.edu/RM/</u>
- Tukiainen, T., Villani, A.-C., Yen, A., Rivas, M. A., Marshall, J. L., Satija, R., Aguirre, M., Gauthier, L.,
 Fleharty, M., Kirby, A., Cummings, B. B., Castel, S. E., Karczewski, K. J., Aguet, F., Byrnes,
 A., Consortium, G., Laapalainen, T., Regev, A., Ardlie, K. G., . . . MacArthur, D. G. (2017).
 Landscape of X chromosome inactivation across human tissues. *Nature*(550), 244-248.
- Valentin-Vega, Y. A., Wang, Y. D., Parker, M., Patmore, D. M., Kanagaraj, A., Moore, J., Rusch, M., Finkelstein, D., Ellison, D. W., Gilbertson, R. J., Zhang, J., Kim, H. J., & Taylor, J. P. (2016). Cancer-associated DDX3X mutations drive stress granule assembly and impair global translation. *Nature Scientific Reports*, 6. <u>https://doi.org/10.1038/srep25996</u>
- Van Nostrand, E. L., Freese, P., Pratt, G. A., Wang, X., Wei, X., Xiao, R., Blue, S. M., Chen, J.-Y., Cody, N. A. L., Dominguez, D., Olson, S., Sundararaman, B., Zhan, L., Bazile, C., Philip

Benoit Bouvrette, L., Bergalet, J., Duff, M. O., Garcia, K. E., Gelboin-Burkhart, C., . . . Yeo, G. W. (2020). A large-scale binding and functional map of human RNA-binding proteins. *Nature*(583), 711-719.

Venkataramanan, S., Gadek, M., Calviello, L., Wilkins, K., & Floor, S. N. (2021). DDX3X and DDX3Y are redundant in protein synthesis. *RNA*.

SUPPLEMENTARY MATERIAL

Expression of the human sex-linked RNA helicases *DDX3X* and *DDX3Y* is buffered by post-transcriptional auto- and cross-regulation

Shruthi Rengarajan, Jason Derks, Daniel W. Bellott, Nikolai Slavov, David C. Page

SUPPLEMENTARY FIGURES Pg. 64

SUPPLEMENTARY TABLES Pg. 68

SUPPLEMENTARY FIGURES

Supplemental Figure S1: Chromosome 21 copy number does not affect *DDX3X* or *DDX3Y* levels. Each point represents a lymphoblastoid cell line from one XX or XY individual with either 2 or 3 copies of chromosome 21 demonstrating that A) *DDX3X* and B) *DDX3Y* levels don't respond to aneuploidy. Statistical significance was determined by Mann Whitney- U test.

Supplementary Figure S2: *DDX3X* levels are unchanged in cells with other Y chromosome abnormalities. A) Abnormal recombination between *PRKX* and *PRKY* results in a X-Y translocation and deletion of the Y chromosome which leaves DDX3Y intact. B) LCLs derived from individuals with *PRKX-PRKY* translocations have the same levels of *DDX3X* transcripts as WT XY individuals. Statistical significance was determined by Mann Whitney- U test.

Supplementary Figure S3: *DDX3Y* transcripts are higher in XY cancer cell lines with damaging *DDX3X* mutations. 480 DDX3X intact XY lines and 11 DDX3X damaged XY lines are plotted. Statistical significance was determined by one tailed t-test, **p < 0.05

Supplementary Figure S4: *DDX3X* and *DDX3Y* levels are not major contributors to gene expression changes in sex chromosome aneuploidy. A) There is no overlap between genes that are differentially expressed upon *DDX3X* KD in XY fibroblasts and those that respond to X-chromosome dosage in fibroblasts with X chromosome aneuploidies. Hypergeometric test was used to assess statistical significance. B) The increase in the total expression of *DDX3X* + *DDX3Y* with sex chromosome copy number is buffered compared to similarly constrained X-Y pair genes *ZFX/ZFY* (C) and *KDM6A/UTY* (D).

Supplementary Figure S5: *DDX3X* transcript levels (by qPCR) in XX fibroblasts are significantly elevated when treated with 2μ M DDX3 inhibitor RK-33, proportional to duration of treatment. Statistical significance was determined by one-sided t-test on delta Ct values. Error bars indicate standard deviation of three technical replicates. * = p <0.05, *** = p < 0.001.

Supplementary Figure S6: A) *DDX3Y* levels are elevated and *DDX3X* levels are decreased in XYYYY LCLs compared to XY LCLs. B) *DDX3X* remains destabilized 3-fold in XYYYY LCLs when labeled for up to 7 hours. Normalized fraction of nascent/total *DDX3X* mRNA were fit to the equation $y = \alpha/\beta * 1-e^{\beta/t}$ to obtain β (half-life)

SUPPLEMENTAL TABLES

Table S1: Change in gene expression of X and Y homologs per additional Y or X chromosome respectively, in fibroblasts and LCLs. Genes are sorted by adjusted p value.

Fibroblast	Gene	Change per Y Chr	Adjusted p value
	DDX3X	-0.1325	4.21E-06
	PRKX	-0.0964	0.2351
	ZFX	-0.0801	0.2743
	KDM6A	-0.028	0.5569
	USP9X	-0.0455	0.5831
	KDM5C	0.0225	0.8089
	EIF1AX	-0.0079	0.9671
	Gene	Change per X Chr	Adjusted p value
	DDX3Y	-0.1318	0.1743
	ZFY	-0.0667	0.6812
	USP9Y	0.0483	0.706
	PRKY	0.0445	0.706
	KDM5D	0.0429	0.706
	UTY	-0.039	0.706
	EIF1AY	0.0358	0.706
LCL	Gene	Change per Y Chr	Adjusted p value
	DDX3X	-0.1089	9.21E-04
	ZFX	-0.0928	0.0517
	PRKX	-0.072	0.3306
	USP9X	-0.0343	0.4446
	KDM6A	0.0141	0.8804
	EIF1AX	-0.003	0.9259
	KDM5C	0.0045	0.9697
	Gene	Change per X Chr	Adjusted p value
	DDX3Y	-0.0796	0.0768
	KDM5D	0.1095	0.231
	USP9Y	0.0641	0.3028
	EIF1AY	-0.0312	0.4497
	ZFY	-0.0292	0.4497
	PRKY	-0.0198	0.7594
	UTY	-0.0128	0.7594

DepMap ID	Cell Line	Tumor type	Tissue of origin	DDX3X Mutation
ACH-	WSUDLCL2	Burkitt Lymphoma	Lymphoid	p.V657fs
000534				
ACH-	MM127	Melanoma	Skin	p.R292*
001563				
ACH-	TL1	Burkitt Lymphoma	Lymphoid	p.S410fs
002055				
ACH-	RAJI	Burkitt Lymphoma	Lymphoid	p.P297P
000654				
ACH-	NP5	Diffuse Glioma	CNS/Brain	p.M391T
001610				
ACH-	KARPAS384	Adult T-Cell Leukemia/Lymphoma	T-Cell	p.R46*
001097				
ACH-	BL70	Burkitt Lymphoma	Lymphoid	p.Y343*
000402				
ACH-	DOHH2	Diffuse Large B-Cell Lymphoma	Lymphoid	_
000056				
ACH-	PECAPJ15	Oral Cavity Squamous Cell Carcinoma	Head and Neck	pQ477*
000619				
ACH-	OCILY7	Diffuse Large B-Cell Lymphoma	Lymphoid	_
001617				
ACH-	NCIH1648	Lung Adenocarcinoma	Lung	pE196fs
000766				

Table S2: List of CCLE cell lines annotated with DDX3X loss of function

Table S3: LOEUF and PCT scores for X homologs of X-Y pair genes. Genes are ordered bycombined LOEUF and PCT score.

Gene	LOEUF	LOEUF X rank	Pct	PCT X rank	Combined Score
DDX3X	0.118	92.89	0.338	97.38	134.5786629
KDM6A	0.161	84.08	0.379	98.15	129.2395795
USP9X	0.051	99.61	0.186	81.82	128.9056418
TXLNG	0.158	85.26	0.284	93.99	126.8991241
KDM5C	0.166	83.03	0.245	90.76	123.009587
ZFX	0.16	84.61	0.16	75.65	113.4979057

NLGN4X	0.249	64.34	0.135	71.96	96.52915207
PRKX	0.895	14.74	0.074	56.39	58.28464378

Table S4: Expression breadth scores for human X-Y pair genes and their chicken orthologs.Genes are ordered by combined expression breadth.

Gene	Chicken Breadth	Human X Breadth	Combined Breadth
DDX3X	0.730304257	0.471391844	0.869226425
ZFX	0.5212655	0.546732732	0.755403469
USP9X	0.414073276	0.556244707	0.693444195
TBL1X	0.586347148	0.355482986	0.685690259
TXLNG	0.32053212	0.517916258	0.609079708
KDM6A	0.255477286	0.459713152	0.52593234
PRKX	0.217633361	0.208370734	0.301301581
NLGN4X	0.176577057	0.239367661	0.297449717
Y homolog	Chicken Breadth	Human Y Breadth	Combined Breadth
Y homolog DDX3Y	Chicken Breadth 0.730304257	Human Y Breadth 0.479998852	Combined Breadth 0.873924027
Y homolog DDX3Y ZFY	Chicken Breadth 0.730304257 0.5212655	Human Y Breadth 0.479998852 0.523221583	Combined Breadth 0.873924027 0.738565194
Y homolog DDX3Y ZFY TBL1Y	Chicken Breadth 0.730304257 0.5212655 0.586347148	Human Y Breadth 0.479998852 0.523221583 0.355482986	Combined Breadth 0.873924027 0.738565194 0.685690259
Y homolog DDX3Y ZFY TBL1Y USP9Y	Chicken Breadth 0.730304257 0.5212655 0.586347148 0.414073276	Human Y Breadth 0.479998852 0.523221583 0.355482986 0.465701179	Combined Breadth 0.873924027 0.738565194 0.685690259 0.623164718
Y homolog DDX3Y ZFY TBL1Y USP9Y UTY	Chicken Breadth 0.730304257 0.5212655 0.586347148 0.414073276 0.255477286	Human Y Breadth 0.479998852 0.523221583 0.355482986 0.465701179 0.49371075	Combined Breadth 0.873924027 0.738565194 0.685690259 0.623164718 0.555894728
Y homolog DDX3Y ZFY TBL1Y USP9Y UTY NLGN4Y	Chicken Breadth 0.730304257 0.5212655 0.586347148 0.414073276 0.255477286 0.176577057	Human Y Breadth 0.479998852 0.523221583 0.355482986 0.465701179 0.49371075 0.448771995	Combined Breadth 0.873924027 0.738565194 0.685690259 0.623164718 0.555894728 0.482261092
Y homolog DDX3Y ZFY TBL1Y USP9Y UTY NLGN4Y TXLNGY	Chicken Breadth 0.730304257 0.5212655 0.586347148 0.414073276 0.255477286 0.176577057 0.32053212	Human Y Breadth 0.479998852 0.523221583 0.355482986 0.465701179 0.49371075 0.448771995 0.339798978	Combined Breadth 0.873924027 0.738565194 0.685690259 0.623164718 0.555894728 0.482261092 0.467123309

Table S5: DDX3X and DDX3Y expression from filtered XY CCLE cell lines

XY Cell Line	DDX3X Damage (1 = Yes)		DDX3X log2 TPM	DDX3Y log 2 TPM
ACH-000534		1	6.248496886	4.865423978
ACH-001563		1	3.537296067	5.09000653
ACH-002055		1	4.06091205	5.628190335
ACH-000654		1	7.640751056	6.451705665
ACH-001610		1	7.184379486	5.032982417
ACH-001097		1	2.049630768	4.00270252
ACH-000402		1	4.367371066	5.878234879
ACH-000056		1	6.637349411	5.487357715
ACH-000619		1	6.200849575	3.861955364
ACH-001617		1	4.764473551	5.341630009

	1	5.325530332	5.192588722
ACH-000267	0	6.798828178	4.986410935
ACH-000750	0	6.715344295	0.214124805
ACH-000544	0	4.788685711	1.847996907
ACH-000045	0	5.626439137	5.262282806
ACH-000774	0	6.721235931	4.438292852
ACH-000892	0	6.982195024	5.838447593
ACH-001648	0	5.746850183	4.437627248
ACH-000948	0	6.738767837	5.241077458
ACH-000883	0	7.376689765	5.549361133
ACH-000479	0	7.168922782	5.785812075
ACH-000005	0	6.713420885	7.175225173
ACH-000130	0	7.252854626	6.285217246
ACH-000765	0	7.12649799	5.634012356
ACH-000836	0	6.895181422	3.336283388
ACH-001385	0	5.140369671	4.50589093
ACH-001454	0	6.012792122	3.365972428
ACH-001685	0	6.607034346	5.221103725
ACH-000120	0	7.303963356	6.515226746
ACH-000659	0	6.543341212	6.801417366
ACH-000904	0	7.931742144	5.67468662
ACH-001560	0	7.301861967	4.947198584
ACH-000452	0	6.989593185	0.443606651
ACH-000953	0	7.707497182	5.324810603
ACH-001634	0	4.842476063	3.583759754
ACH-000365	0	6.465648026	4.985955755
ACH-001818	0	6.048541366	4.216454865
ACH-000317	0	6.075104722	5.396433531
ACH-000508	0	7.7524141	0.250961574
ACH-001164	0	5.66448284	4.100977648
ACH-000859	0	8.155324229	0.344828497
ACH-000577	0	6.619853147	5.63284983
ACH-000167	0	6.841218374	0.201633861
ACH-000514	0	7.771423441	5.239168879
ACH-000151	0	7.198101209	5.956289027
ACH-000955	0	7.204473331	5.324450605
ACH-000611	0	7.130724991	0.22650853
ACH-000997	0	7.631540867	5.577730931
ACH-001412	0	7.09244003	2.657640005
ACH-000446	0	6.494575617	6.109151579
ACH-001407	0	7.198985184	5.671859468

ACH-002018	0	6.07489072	4.642123916
ACH-000095	0	6.713420885	5.8928767
ACH-000172	0	6.738632747	6.044612693
ACH-000335	0	7.082042565	5.758356483
ACH-000067	0	7.412612185	5.479295243
ACH-000238	0	5.884109451	4.882643049
ACH-000907	0	6.482686971	4.234194723
ACH-000336	0	6.07317756	0.713695815
ACH-000115	0	6.98436149	5.226893814
ACH-000760	0	6.698079537	1.599317794
ACH-000257	0	7.196233261	5.99095486
ACH-001532	0	5.98208091	4.819668183
ACH-000512	0	6.695854658	5.001802243
ACH-000608	0	7.496494307	0.367371066
ACH-000545	0	7.16651461	0.659924558
ACH-000252	0	6.675815931	5.11727946
ACH-000122	0	7.443358004	0.333423734
ACH-000208	0	6.615298579	5.819923596
ACH-001570	0	5.854494418	4.499527024
ACH-000253	0	7.275472718	4.135042286
ACH-000028	0	6.83541884	0.389566812
ACH-000648	0	6.675392543	5.455820365
ACH-000386	0	7.126394738	6.107897062
ACH-000822	0	6.839329782	5.559185866
ACH-000803	0	7.536441505	0.321928095
ACH-000128	0	7.046141782	4.780835002
ACH-000716	0	6.95419631	5.57500972
ACH-000664	0	7.775116404	4.392317423
ACH-000893	0	7.274913895	5.755688777
ACH-000126	0	6.442445929	5.994353437
ACH-000249	0	6.844737144	4.742006211
ACH-000742	0	6.726422541	4.252476214
ACH-000976	0	6.413966352	3.367371066
ACH-000974	0	7.521207816	0.201633861
ACH-001751	0	6.560256398	5.126394738
ACH-001270	0	6.661635602	4.542877099
ACH-000533	0	6.575614878	5.928370323
ACH-000269	0	6.94204526	4.630521963
ACH-001528	0	6.420212891	5.402585758
ACH-000078	0	6.268284667	6.847370601
ACH-000752	0	7.077777073	5.165107985
ACH-000868	0	6.39694722	3.03562391
------------	---	-------------	-------------
ACH-000027	0	7.180505944	6.718772592
ACH-001338	0	6.920888742	5.220329955
ACH-001807	0	6.262094845	3.773996325
ACH-001229	0	5.605553595	5.165510018
ACH-001303	0	5.641256999	3.839959587
ACH-000316	0	7.380157992	6.004501392
ACH-000786	0	4.152183419	5.942983598
ACH-000756	0	7.065873847	5.504620392
ACH-000913	0	8.021146554	0.214124805
ACH-000436	0	6.151168794	5.813268142
ACH-000343	0	8.021535249	0.831877241
ACH-001999	0	5.749534268	4.712045449
ACH-000559	0	7.523953939	0.286881148
ACH-000131	0	7.120393416	4.472487771
ACH-000054	0	7.05126333	6.069745124
ACH-000154	0	7.437960088	6.049630768
ACH-000839	0	5.785027362	3.809414444
ACH-000815	0	7.03683298	0.23878686
ACH-001142	0	6.628190335	4.980939266
ACH-000499	0	7.069208067	6.769771739
ACH-000070	0	6.363521544	4.801158656
ACH-000726	0	7.131136719	0.454175893
ACH-000498	0	6.522306893	5.509379149
ACH-000778	0	7.015582312	5.276496666
ACH-000622	0	7.447331233	0.250961574
ACH-000558	0	6.893968869	5.788685711
ACH-000065	0	6.582706527	5.443606651
ACH-000495	0	6.938638658	0.23878686
ACH-000706	0	7.141391916	5.240314329
ACH-001347	0	6.429113779	3.388189537
ACH-000084	0	7.70120248	6.263410059
ACH-000999	0	6.963705307	5.49441561
ACH-000284	0	7.315602457	5.410069692
ACH-000757	0	8.999323578	3.109360559
ACH-000241	0	7.256255873	6.377644358
ACH-001997	0	6.689997971	3.496973581
ACH-001134	0	3.812498225	5.051372102
ACH-001557	0	7.167217409	5.13093087
ACH-000041	0	7.423914268	6.325350433
ACH-000206	0	7.001239284	5.972233124

ACH-000429	0	5.674404154	5.083213368
ACH-001562	0	7.421307468	5.663629259
ACH-000074	0	6.837438715	7.169524197
ACH-000063	0	6.991408467	5.483815777
ACH-000387	0	6.745237332	7.91336816
ACH-000649	0	7.267161218	6.158256229
ACH-000437	0	7.379378367	5.865423978
ACH-000214	0	6.738902914	4.946262984
ACH-000255	0	7.520186495	0.389566812
ACH-000221	0	7.216163813	0.23878686
ACH-000245	0	6.921126849	5.558573776
ACH-000158	0	6.664056113	6.279657007
ACH-000787	0	6.434294618	5.870857864
ACH-001745	0	6.400196342	4.762348816
ACH-000340	0	7.083319758	6.010332283
ACH-000399	0	6.829595899	6.792725233
ACH-000549	0	7.062316027	4.993221467
ACH-000891	0	7.095397023	5.088735246
ACH-000307	0	7.102238194	4.956985925
ACH-000656	0	6.436794812	0.201633861
ACH-002014	0	6.157245867	2.22650853
ACH-000439	0	5.778471434	4.526694846
ACH-000728	0	7.045268215	2.09423607
ACH-000723	0	5.833143096	4.361768359
ACH-000053	0	7.12722055	5.194165869
ACH-000421	0	7.291216754	0.847996907
ACH-000882	0	6.73403214	5.697106574
ACH-001737	0	6.413627929	5.60940039
ACH-000312	0	7.059723	6.020591095
ACH-000981	0	6.781884235	5.608809243
ACH-000530	0	7.854182707	2.606442228
ACH-001430	0	7.008428622	5.406672716
ACH-000261	0	7.148629106	0.23878686
ACH-000938	0	6.849999259	6.388361768
ACH-001414	0	5.98208091	5.087038457
ACH-000518	0	6.693486957	6.607774152
ACH-001688	0	4.371558863	3.835924074
ACH-000964	0	6.751276249	6.0725346
ACH-000615	0	6.676380255	0.22650853
ACH-000165	0	7.000563443	5.539158811
ACH-000707	0	7.078524445	5.627315001

ACH-001863	0	6.818262608	4.553360503
ACH-001197	0	6.520422249	6.315240153
ACH-000698	0	7.781031791	0.214124805
ACH-000396	0	7.594473905	5.116447936
ACH-001841	0	6.59812696	3.061776198
ACH-000354	0	6.104965605	0.201633861
ACH-001190	0	7.07734983	6.061992154
ACH-000371	0	6.689019541	4.292781749
ACH-000770	0	6.628919374	5.545041683
ACH-000661	0	7.031990609	6.205548911
ACH-000458	0	7.798569004	4.185866545
ACH-000338	0	7.517590658	0.23878686
ACH-000218	0	6.840840853	5.122672719
ACH-000632	0	7.6121313	4.933100475
ACH-000420	0	7.477920131	1.475084883
ACH-000833	0	6.520107902	3.087462841
ACH-000062	0	7.743959212	6.154818109
ACH-000914	0	7.584737062	6.30833903
ACH-000677	0	7.533018186	0.378511623
ACH-000652	0	7.121533517	0.411426246
ACH-001568	0	4.399171094	3.837943242
ACH-000801	0	6.846117173	5.747924416
ACH-001605	0	6.700717133	4.14404637
ACH-000951	0	6.800641097	5.267161218
ACH-001977	0	7.010108453	4.403267722
ACH-000671	0	6.721099189	5.593652558
ACH-001959	0	7.692580633	4.916476644
ACH-000080	0	6.409221197	6.186857067
ACH-000522	0	6.189231549	0.22650853
ACH-002045	0	6.090641752	5.664198369
ACH-002065	0	7.325530332	5.390942773
ACH-000368	0	6.965668864	4.773468928
ACH-001649	0	5.815063017	4.507160349
ACH-000703	0	7.215581534	4.975905274
ACH-001415	0	7.405652061	3.078951341
ACH-000575	0	6.959074601	5.364572432
ACH-001200	0	6.487357715	6.057883449
ACH-000853	0	6.754085782	6.299208018
ACH-000546	0	6.417515003	0.411426246
ACH-001845	0	6.507160349	4.181897643
ACH-000486	0	5.928607199	0.378511623

0	6.753551055	1.66448284
0	6.599020177	4.10349764
0	6.019924261	5.882887553
0	6.700300991	5.741466986
0	7.362645218	5.473137488
0	7.825785627	0.263034406
0	7.38663853	0.22650853
0	5.87774425	4.909773104
0	6.388706169	4.891419187
0	6.301587647	5.657068301
0	7.254083779	6.164102412
0	6.485587833	6.151371776
0	6.651195236	5.143230135
0	7.391372492	5.499845887
0	5.070389328	3.334854269
0	7.010891706	5.595145568
0	6.87835751	6.5360529
0	6.872705657	6.23476954
0	6.242030802	5.001351893
0	7.089476964	5.878480131
0	7.08182959	6.432458385
0	6.229780167	4.709290636
0	7.443275112	6.439290681
0	6.61205756	1.280956314
0	6.733625498	4.546585829
0	5.125981654	1.570462931
0	6.475571321	4.880195729
0	5.886062338	4.64038956
0	6.85586515	4.333423734
0	6.867402306	4.460742564
0	5.538538164	5.279099802
0	7.585112774	5.767654798
0	7.264911693	6.273329387
0	5.66732447	0.454175893
0	7.190713617	5.867402306
0	7.001914808	4.142413438
0	6.823621998	5.087462841
0	7.385948658	4.806839582
0	6.374517881	4.741466986
0	7.181400762	5.444600814
0	6.978424465	0.298658316
		0 6.753551055 0 6.599020177 0 6.019924261 0 7.362645218 0 7.825785627 0 7.38663853 0 7.38663853 0 5.87774425 0 6.388706169 0 6.301587647 0 6.301587647 0 6.485587833 0 6.651195236 0 7.391372492 0 5.070389328 0 7.010891706 0 6.87835751 0 6.872705657 0 6.242030802 0 7.089476964 0 7.089475912 0 6.229780167 0 7.443275112 0 6.61205756 0 6.733625498 0 5.125981654 0 6.85586515 0 6.85786515 0 6.8578512774 0 7.585112774 0

ACH-000971	0	7.83586093	4.609991295
ACH-000290	0	7.287804709	5.463360886
ACH-000655	0	6.792074462	3.349082146
ACH-000190	0	6.129076903	6.403608584
ACH-001035	0	6.499048598	5.666756592
ACH-000600	0	6.443109313	5.230356745
ACH-000995	0	6.405141463	3.986410935
ACH-001533	0	4.459431619	4.072963272
ACH-001982	0	6.71259578	4.969472865
ACH-001329	0	6.862699341	4.754887502
ACH-001524	0	7.459267667	4.125981654
ACH-001036	0	7.193870285	4.848497755
ACH-000543	0	6.809671678	4.893847558
ACH-000638	0	6.916237768	3.255500733
ACH-000101	0	7.312610723	5.590961241
ACH-000240	0	6.996275749	5.719457275
ACH-000511	0	7.337265086	0.201633861
ACH-001673	0	6.301221805	5.945326777
ACH-001228	0	6.607922067	3.792855352
ACH-000829	0	6.96474517	6.037821465
ACH-000389	0	6.968205979	5.82858081
ACH-000616	0	7.655494946	5.842224613
ACH-000767	0	7.991861931	4.517275693
ACH-001339	0	6.206135253	5.146492307
ACH-000650	0	7.03496399	5.687060688
ACH-001310	0	6.797012978	5.642412773
ACH-000277	0	7.178316272	0.214124805
ACH-000873	0	6.757823336	4.936873462
ACH-000427	0	6.682432841	5.266786541
ACH-000954	0	7.727852401	0.35614381
ACH-000604	0	5.765799923	0.201633861
ACH-000088	0	7.422653501	6.060263599
ACH-000459	0	6.838321521	5.876271361
ACH-000813	0	6.412104045	3.742006211
ACH-000743	0	7.025693274	4.605849867
ACH-000612	0	7.263691734	7.005512273
ACH-000227	0	7.15035658	5.837691
ACH-000289	0	6.385431037	5.001351893
ACH-000469	0	7.245552706	0.298658316
ACH-001603	0	6.258141996	4.778208576
ACH-000614	0	6.764340847	4.758622982

0	6.344650989	0.411426246
0	6.910252963	5.676662335
0	7.059723	3.407352751
0	6.754219433	5.054848477
0	6.685519722	5.996840648
0	7.00495076	5.848247353
0	7.08236197	4.211790976
0	7.792009369	6.159871337
0	5.766330131	4.027684877
0	6.940401698	4.862451391
0	7.133604623	5.9795681
0	7.317955218	5.510329019
0	6.808127587	4.751142325
0	6.715618859	5.113950482
0	7.156335937	6.287065907
0	7.003264909	5.742275748
0	5.719731057	0.201633861
0	6.498250868	5.869377924
0	6.813909425	5.593652558
0	6.11997861	5.057016965
0	7.747924416	3.532316959
0	6.561173365	6.041549645
0	6.591709333	0.201633861
0	5.391973883	2.575312331
0	7.117487266	6.141800612
0	6.587515014	4.669593751
0	6.067165427	5.935459748
0	7.138118178	4.969472865
0	7.185866545	5.811471031
0	7.199966742	4.712045449
0	6.490890979	0.263034406
0	5.913607512	2.166715445
0	6.904604518	5.64096791
0	6.478324711	4.207892852
0	6.760620161	4.638073837
0	7.45112867	5.54225805
0	5.852498299	3.301587647
0	7.143026004	5.533563348
0	7.177718511	6.112491636
0	6.590961241	5.242221395
0	6.225737653	1.077242999
		0 6.344650989 0 6.910252963 0 7.059723 0 6.754219433 0 6.685519722 0 7.00495076 0 7.08236197 0 7.792009369 0 5.766330131 0 6.940401698 0 7.133604623 0 7.133604623 0 7.133604623 0 7.133604623 0 7.133604623 0 7.137955218 0 6.715618859 0 7.003264909 0 7.19731057 0 6.498250868 0 6.813909425 0 6.51173365 0 6.591709333 0 7.117487266 0 6.587515014 0 6.67165427 0 7.138118178 0 7.185866545 0 7.199966742 0 6.706020161 0 7.478324711 0 6.760620161 0

ACH-000135	0	6.705010253	5.622637567
ACH-000292	0	7.243745235	5.739578112
ACH-000401	0	6.304145941	6.06091205
ACH-000562	0	6.590362488	4.991861931
ACH-000321	0	5.875042803	6.150762744
ACH-000334	0	7.014355293	5.879950768
ACH-001699	0	5.845991771	3.198494154
ACH-000966	0	7.299391206	0.378511623
ACH-001346	0	6.323370069	5.106432078
ACH-000799	0	6.318678374	5.43496176
ACH-000980	0	8.022256832	0.23878686
ACH-000125	0	7.468501862	6.670160514
ACH-001059	0	6.830229967	6.128664587
ACH-000464	0	6.609991295	5.09085343
ACH-000472	0	5.92552477	2.711494907
ACH-000550	0	6.714657657	5.610286657
ACH-000346	0	6.861459166	5.543495883
ACH-000588	0	6.793245639	4.663913842
ACH-000234	0	7.17602351	5.820178962
ACH-000817	0	6.493134922	4.793895883
ACH-001848	0	5.618238656	3.473786912
ACH-000773	0	7.4325419	4.596338864
ACH-000788	0	6.898450233	5.723558561
ACH-000251	0	6.776498832	5.77452353
ACH-000987	0	6.889473543	5.706530553
ACH-000641	0	7.616769366	5.909293086
ACH-000854	0	6.196134881	5.737416366
ACH-000140	0	6.938168151	5.532940288
ACH-002800	0	6.593503172	5.404971224
ACH-000949	0	6.823112437	0.622930351
ACH-000623	0	6.819540461	5.569551851
ACH-000405	0	6.6043679	5.495375381
ACH-000682	0	7.055390905	4.875780063
ACH-000170	0	6.702934532	6.1278396
ACH-001509	0	5.618532334	2.9202933
ACH-000634	0	7.243650042	5.63314055
ACH-000105	0	7.097926773	5.486714373
ACH-000232	0	7.135965742	5.075960413
ACH-001378	0	3.521050737	2.744161096
ACH-001129	0	6.405822221	5.131754091
ACH-000068	0	6.771753554	5.153400028

ACH-000762	0	6.23476954	0.344828497
ACH-000571	0	6.825404046	3.234194723
ACH-000960	0	7.263785614	0.201633861
ACH-000984	0	7.511752654	0.464668267
ACH-000858	0	5.932155684	0.23878686
ACH-000867	0	6.646450706	6.086401646
ACH-000288	0	7.219458967	0.201633861
ACH-000525	0	7.002027365	6.155627816
ACH-000538	0	7.240886714	6.081936082
ACH-000819	0	7.091065078	6.034523875
ACH-000502	0	6.604664415	0.286881148
ACH-002080	0	6.333065878	2.757023247
ACH-000198	0	6.628044483	5.523875551
ACH-000645	0	6.555049213	5.081936082
ACH-001707	0	4.893362211	3.607626221
ACH-000905	0	7.214416269	2.974529312
ACH-000096	0	7.569703738	6.005399988
ACH-001622	0	5.411765185	4.032982417
ACH-000359	0	6.798180154	6.222263604
ACH-001992	0	7.057233635	5.464668267
ACH-001386	0	7.284014345	5.561020578
ACH-000516	0	7.859534786	4.616475329
ACH-000583	0	7.107583262	5.745775149
ACH-000477	0	6.794155898	4.837438715
ACH-001494	0	5.227664073	3.781359714
ACH-001239	0	7.151879107	0.495695163
ACH-000242	0	7.374343989	4.998646839
ACH-001289	0	7.289004456	5.318316841
ACH-000004	0	6.305970521	6.728600811
ACH-000156	0	7.626512146	3.753818443
ACH-000332	0	7.246408087	5.440952198
ACH-001569	0	5.403949364	4.59275601
ACH-000681	0	7.759089238	5.458447627
ACH-000826	0	6.969933275	0.82374936
ACH-001496	0	6.819029455	4.841973119
ACH-001574	0	4.078097423	3.941106311
ACH-000254	0	6.075318693	4.915998852
ACH-000484	0	6.439290681	5.668743189
ACH-000548	0	6.499048598	5.356495988
ACH-001647	0	6.412442825	4.614709844
ACH-000959	0	7.375387027	5.920055055

ACH-001530	0	6.890081838	4.919340082
ACH-001050	0	6.970738639	5.439955517
ACH-000113	0	6.428611418	5.751945682
ACH-000917	0	7.010108453	0.40053793
ACH-000146	0	6.577126661	6.088735246
ACH-000055	0	6.967514481	5.484138131
ACH-000040	0	7.273702369	5.236492618
ACH-002461	0	6.017921908	4.312519967
ACH-000092	0	7.106850796	6.317412614
ACH-001567	0	5.770829046	4.782408565
ACH-000330	0	7.132988043	0.23878686
ACH-000942	0	6.591709333	6.344828497
ACH-000738	0	7.528336893	0.695993813
ACH-000166	0	6.308156975	6.568336182
ACH-000313	0	6.80464733	5.814550423
ACH-000451	0	6.694044413	6.312338439
ACH-001061	0	6.758622982	4.587964989
ACH-001054	0	6.543341212	4.790772038
ACH-001366	0	6.274448044	4.761817143
ACH-000211	0	7.673768403	0.23878686
ACH-000373	0	6.789207575	3.54225805
ACH-000152	0	6.880195729	5.394033895
ACH-000627	0	7.178216662	4.595145568
ACH-000810	0	6.96127604	6.010779839
ACH-000935	0	5.925049965	0.263034406
ACH-000457	0	6.460906348	0.23878686
ACH-001277	0	6.593652558	4.820689561
ACH-000695	0	6.562547724	5.444600814
ACH-000789	0	7.097189387	5.231893162
ACH-001038	0	7.081083929	5.369466484
ACH-001016	0	7.433543714	5.478648295
ACH-001450	0	7.054305845	5.097189387
ACH-000670	0	6.445263208	6.349966747
ACH-000843	0	6.916118315	5.491853096
ACH-001750	0	6.837438715	5.484138131
ACH-000591	0	7.1017131	6.278356528
ACH-000952	0	7.18814373	5.06436554
ACH-000162	0	7.740725224	6.262658655
ACH-000159	0	7.216551869	6.006298024
ACH-001522	0	7.143842354	5.09085343
ACH-000367	0	7.344473459	5.851998837

ACH-000586	0	8.058749412	5.4747605
ACH-000991	0	7.60932651	0.464668267
ACH-000220	0	7.70887696	6.128252152
ACH-000447	0	7.664625055	0.321928095
ACH-000827	0	6.752882366	4.568032105
ACH-001196	0	6.661493093	5.376776572
ACH-001520	0	4.547203025	3.642701572
ACH-000968	0	6.128870759	4.061776198
ACH-000077	0	6.947549278	6.628481994
ACH-001549	0	6.354557947	4.587364991
ACH-000072	0	6.376602952	7.858664869
ACH-000483	0	7.236588285	5.695158678
ACH-000825	0	6.280028357	0.201633861
ACH-000161	0	6.605553595	4.877253454
ACH-000741	0	6.9175511	0.321928095
ACH-000358	0	7.509062386	5.85224859
ACH-000075	0	7.05126333	1.298658316
ACH-000553	0	6.68846014	5.078951341
ACH-000181	0	6.553053253	5.873813198
ACH-002659	0	6.484621527	1.622930351
ACH-001453	0	6.791944272	4.673556424
ACH-000739	0	6.422064766	5.501439145
ACH-000388	0	5.653919873	5.358607249
ACH-000860	0	7.143026004	4.750070486
ACH-000319	0	7.514359007	6.582254908
ACH-000455	0	6.932155684	6.425761401
ACH-001711	0	6.403608584	5.297191417
ACH-001529	0	6.794935663	4.151371776
ACH-000493	0	7.512068826	5.781097381
ACH-000341	0	6.931801228	6.09212285

Table S6: Normalized abundance of peptides that are common to DDX3X & DDX3Y

	R1	R2	R3	R4	R5	R6
Control	1.09127177	1.08166782	1.03229697	1.1682261	1.09425885	1.1015297
DDX3XKD	0.8820274	0.84627154	0.8895345	0.82010613	0.80777338	0.84994896
DDX3YKD	1.04069377	1.09574025	1.08388533	1.07434965	1.10609464	1.06136908

Table S7: DESeq2 output of significantly differentially expressed genes upon DDX3Xknockdown. Significance is determined by adjusted p value < 0.05.</td>

baseMean	log2FoldChange	lfcSE	stat	pvalue	padj
----------	----------------	-------	------	--------	------

DDX3X	14898.473	-3.411	0.297	-11.484	1.592E-30	2.239E-26
PARP6	1036.253	0.479	0.054	8.905	5.321E-19	3.743E-15
DLG5	7252.634	0.231	0.031	7.385	1.521E-13	7.132E-10
TCFL5	957.737	-0.298	0.041	-7.180	6.953E-13	2.446E-09
IRAK1	6181.261	0.570	0.082	6.967	3.234E-12	9.100E-09
ERLEC1	11229.619	-0.308	0.044	-6.922	4.441E-12	1.041E-08
PLCD3	3685.770	0.440	0.068	6.495	8.309E-11	1.670E-07
PRKRA	2423.253	0.257	0.041	6.320	2.620E-10	4.608E-07
RUBCN	2174.268	0.342	0.057	6.033	1.606E-09	2.054E-06
SETD3	5093.532	0.255	0.042	6.039	1.548E-09	2.054E-06
ZMYND19	627.915	0.360	0.061	5.911	3.408E-09	3.996E-06
TRIM8	7854.255	0.402	0.069	5.822	5.821E-09	6.101E-06
ZNF703	3579.195	0.528	0.091	5.815	6.071E-09	6.101E-06
BAG1	1162.234	0.493	0.087	5.682	1.333E-08	1.123E-05
RAPGEF1	3970.699	0.405	0.071	5.679	1.353E-08	1.123E-05
TCF20	2307.297	0.284	0.050	5.679	1.356E-08	1.123E-05
RUNX3	444.205	0.414	0.075	5.488	4.068E-08	3.180E-05
PHC1	884.522	0.374	0.069	5.451	5.004E-08	3.706E-05
SLC25A43	3205.496	0.190	0.035	5.439	5.348E-08	3.763E-05
UBAC1	1682.791	0.225	0.042	5.362	8.224E-08	5.510E-05
МАРЗКЗ	4507.077	0.234	0.044	5.331	9.766E-08	5.808E-05
MGST1	5273.417	-0.262	0.049	-5.328	9.907E-08	5.808E-05
TCF3	2699.991	0.332	0.063	5.267	1.388E-07	7.509E-05
МАРКАРК	8199.483	0.253	0.048	5.232	1.674E-07	8.215E-05
2						
SDCCAG3	1651.691	0.294	0.056	5.230	1.693E-07	8.215E-05
SHB	1541.163	0.272	0.052	5.243	1.578E-07	8.215E-05
ΙΤΡΚ1	2312.786	0.331	0.064	5.168	2.368E-07	1.075E-04
MON1B	2417.502	-0.167	0.032	-5.171	2.327E-07	1.075E-04
ANAPC5	7715.387	0.192	0.038	5.093	3.533E-07	1.554E-04
ARCN1	33084.931	-0.158	0.031	-5.055	4.294E-07	1.831E-04
MAZ	6687.960	0.290	0.057	5.049	4.446E-07	1.840E-04
LINC01420	2011.874	-0.264	0.053	-5.034	4.815E-07	1.936E-04
FAM53B	924.893	0.434	0.087	5.015	5.312E-07	2.076E-04
ZBTB42	130.355	0.570	0.116	4.927	8.340E-07	3.088E-04
ZNF592	3014.298	0.264	0.054	4.932	8.125E-07	3.088E-04
CSRNP2	2734.160	0.192	0.039	4.890	1.006E-06	3.629E-04
FAM219B	2503.299	0.233	0.048	4.867	1.135E-06	3.983E-04
PLEKHO1	1618.110	0.341	0.070	4.862	1.161E-06	3.983E-04
RAB7B	557.174	-0.331	0.068	-4.856	1.198E-06	4.014E-04
CD63	68122.511	-0.202	0.042	-4.809	1.517E-06	4.673E-04

KCMF1	4941.495	0.245	0.051	4.807	1.528E-06	4.673E-04
PLCG1	3644.730	0.220	0.046	4.799	1.594E-06	4.673E-04
RPS6KC1	3417.535	0.157	0.033	4.809	1.517E-06	4.673E-04
TEAD2	1348.081	0.225	0.047	4.820	1.438E-06	4.673E-04
ZNF496	840.073	0.334	0.070	4.800	1.584E-06	4.673E-04
PLCB3	3227.973	0.255	0.053	4.789	1.672E-06	4.740E-04
TIMM8A	450.206	0.294	0.061	4.788	1.685E-06	4.740E-04
FAHD1	2143.229	0.246	0.052	4.766	1.881E-06	5.191E-04
GHITM	10300.856	-0.151	0.032	-4.699	2.617E-06	7.081E-04
AGO2	6020.721	0.311	0.066	4.686	2.779E-06	7.110E-04
DGKD	649.197	0.323	0.069	4.688	2.753E-06	7.110E-04
PRICKLE4	120.187	0.482	0.103	4.690	2.736E-06	7.110E-04
CREBRF	1851.340	-0.282	0.060	-4.663	3.123E-06	7.709E-04
<i>KIAA1147</i>	636.678	0.301	0.064	4.665	3.084E-06	7.709E-04
COPB2	29774.683	-0.166	0.036	-4.640	3.486E-06	8.191E-04
GIT1	2078.965	0.440	0.095	4.637	3.539E-06	8.191E-04
ITPR3	3826.796	0.433	0.093	4.633	3.599E-06	8.191E-04
WNK4	3686.667	0.288	0.062	4.641	3.472E-06	8.191E-04
ZNF618	2062.280	0.242	0.052	4.633	3.610E-06	8.191E-04
CTNND1	23077.280	-0.115	0.025	-4.613	3.974E-06	8.876E-04
GABARAP	11134.970	-0.178	0.039	-4.608	4.061E-06	8.928E-04
MGST3	5289.065	-0.180	0.039	-4.593	4.379E-06	9.478E-04
TNFRSF10	18922.180	0.342	0.075	4.588	4.472E-06	9.534E-04
D						
DAZAP1	3025.025	0.173	0.038	4.584	4.568E-06	9.593E-04
GATAD2A	5566.275	0.347	0.076	4.569	4.896E-06	1.013E-03
ETS1	7031.563	0.265	0.058	4.561	5.096E-06	1.039E-03
SPAG7	1749.665	-0.138	0.030	-4.552	5.317E-06	1.054E-03
USP31	677.582	0.419	0.092	4.547	5.437E-06	1.062E-03
KRTAP1-5	2973.425	-0.618	0.136	-4.531	5.883E-06	1.123E-03
RFNG	1688.438	0.436	0.096	4.530	5.906E-06	1.123E-03
SAMD1	2103.051	0.230	0.051	4.509	6.505E-06	1.220E-03
MORF4L1	28028.860	-0.185	0.041	-4.505	6.645E-06	1.230E-03
AAAS	1459.628	-0.214	0.048	-4.448	8.656E-06	1.542E-03
DVL1	4585.184	0.660	0.149	4.440	8.977E-06	1.579E-03
PLEKHM2	5544.373	0.277	0.063	4.428	9.497E-06	1.650E-03
AP3D1	14032.809	0.192	0.043	4.422	9.792E-06	1.680E-03
ZNF74	208.919	0.390	0.088	4.406	1.052E-05	1.783E-03
CDR2L	4347.768	0.358	0.081	4.398	1.092E-05	1.808E-03
HYOU1	8724.941	0.190	0.043	4.398	1.091E-05	1.808E-03
SERINC2	3423.428	-0.248	0.056	-4.387	1.152E-05	1.884E-03

EPRS	23398.834	-0.144	0.033	-4.383	1.173E-05	1.897E-03
MTMR12	2392.374	0.243	0.056	4.359	1.305E-05	2.062E-03
SENP2	3555.594	0.155	0.036	4.361	1.295E-05	2.062E-03
POFUT1	7043.627	0.132	0.030	4.350	1.359E-05	2.101E-03
RAD51D	742.997	0.355	0.082	4.313	1.614E-05	2.469E-03
MICALL1	3112.260	0.333	0.077	4.300	1.707E-05	2.582E-03
HMBS	793.504	0.323	0.075	4.290	1.790E-05	2.679E-03
PKN1	6270.278	0.373	0.087	4.278	1.890E-05	2.799E-03
RNF19B	758.983	0.217	0.051	4.268	1.969E-05	2.857E-03
BRPF3	2765.488	0.170	0.040	4.226	2.381E-05	3.317E-03
MFHAS1	718.927	0.422	0.100	4.227	2.373E-05	3.317E-03
BTBD6	3069.288	0.322	0.077	4.210	2.559E-05	3.530E-03
FBXO17	1127.315	0.290	0.069	4.186	2.844E-05	3.818E-03
GTF2IRD1	899.028	0.278	0.066	4.189	2.800E-05	3.818E-03
TMED8	2070.881	0.182	0.043	4.185	2.849E-05	3.818E-03
CERK	6260.885	0.222	0.053	4.182	2.893E-05	3.840E-03
ABHD6	629.659	0.245	0.059	4.164	3.131E-05	4.089E-03
IQCE	1851.848	0.208	0.050	4.163	3.139E-05	4.089E-03
GPX8	22910.342	-0.213	0.052	-4.130	3.627E-05	4.640E-03
PPP1R26	746.976	0.359	0.087	4.130	3.623E-05	4.640E-03
CDK16	6143.801	0.183	0.044	4.119	3.800E-05	4.817E-03
MTA1	2398.876	0.222	0.054	4.117	3.847E-05	4.832E-03
BAG2	6435.615	-0.284	0.069	-4.113	3.910E-05	4.868E-03
PRKAR2A	7521.342	0.219	0.053	4.107	4.007E-05	4.905E-03
RAB3GAP1	12882.719	-0.156	0.038	-4.107	4.009E-05	4.905E-03
CREB3L1	20068.518	-0.185	0.045	-4.100	4.130E-05	5.010E-03
HIST1H2B	799.495	-0.270	0.066	-4.095	4.230E-05	5.087E-03
D						
KDELR2	39561.303	-0.134	0.033	-4.082	4.474E-05	5.334E-03
UBE2H	11857.315	-0.252	0.062	-4.077	4.568E-05	5.401E-03
ATP6V1E1	8440.182	-0.125	0.031	-4.058	4.955E-05	5.809E-03
CEP170B	4336.611	0.284	0.070	4.050	5.115E-05	5.851E-03
DUSP7	1861.287	0.276	0.068	4.053	5.048E-05	5.851E-03
LSM11	387.097	0.314	0.078	4.051	5.107E-05	5.851E-03
ANO8	418.186	0.415	0.103	4.047	5.196E-05	5.895E-03
STARD10	384.169	0.358	0.089	4.030	5.585E-05	6.237E-03
МСМЗАР	6175.466	0.196	0.049	4.024	5.725E-05	6.258E-03
PTGFR	1428.093	-0.365	0.091	-4.025	5.709E-05	6.258E-03
SYNE1	12398.416	-0.250	0.062	-4.022	5.782E-05	6.258E-03
SHANK3	240.178	0.409	0.102	4.015	5.937E-05	6.376E-03
CHMP2A	3700.699	-0.260	0.065	-3.994	6.510E-05	6.939E-03

FDFT1	5454.299	-0.152	0.038	-3.984	6.764E-05	7.156E-03
HIST1H4H	544.842	-0.270	0.068	-3.966	7.314E-05	7.622E-03
PABPC1L	88.367	0.551	0.139	3.966	7.307E-05	7.622E-03
AADAT	406.657	0.260	0.066	3.953	7.714E-05	7.865E-03
ABHD4	2111.898	-0.211	0.053	-3.954	7.693E-05	7.865E-03
HIVEP3	990.404	0.381	0.096	3.956	7.619E-05	7.865E-03
NCK2	1494.815	0.256	0.065	3.950	7.818E-05	7.914E-03
ABCC9	3851.629	-0.231	0.059	-3.943	8.045E-05	8.085E-03
NUDT18	420.857	-0.298	0.076	-3.938	8.224E-05	8.206E-03
SGPL1	2380.479	0.167	0.042	3.934	8.344E-05	8.267E-03
CLK3	1490.841	-0.177	0.045	-3.928	8.565E-05	8.427E-03
CAT	4340.164	-0.131	0.033	-3.924	8.706E-05	8.485E-03
GOLPH3L	1990.804	-0.189	0.048	-3.923	8.744E-05	8.485E-03
KCNK2	10463.281	-0.158	0.041	-3.904	9.450E-05	9.107E-03
SLC7A1	21582.848	0.272	0.070	3.895	9.809E-05	9.388E-03
EPHB4	1814.502	0.225	0.058	3.893	9.920E-05	9.423E-03
ZNF274	999.787	0.192	0.049	3.889	1.005E-04	9.423E-03
RIT1	2272.419	-0.179	0.046	-3.877	1.057E-04	9.848E-03
GARS	27038.900	-0.152	0.039	-3.871	1.082E-04	9.894E-03
KHSRP	6559.052	0.152	0.039	3.872	1.078E-04	9.894E-03
ZKSCAN1	8993.789	-0.197	0.051	-3.871	1.083E-04	9.894E-03
KIAA0196	5039.951	-0.154	0.040	-3.863	1.121E-04	9.920E-03
MMP14	40005.655	0.225	0.058	3.866	1.104E-04	9.920E-03
WBP2	3210.200	-0.174	0.045	-3.865	1.110E-04	9.920E-03
ZBTB38	14726.921	-0.160	0.041	-3.863	1.119E-04	9.920E-03
CCDC85C	1332.051	0.407	0.105	3.858	1.142E-04	1.005E-02
TBC1D1	3797.415	0.307	0.080	3.851	1.176E-04	1.027E-02
DGKQ	775.252	0.409	0.106	3.842	1.218E-04	1.051E-02
GBF1	12788.291	-0.094	0.025	-3.844	1.212E-04	1.051E-02
CACNB3	993.681	0.288	0.075	3.840	1.232E-04	1.052E-02
DYNLRB1	7456.410	-0.141	0.037	-3.838	1.241E-04	1.052E-02
EPN1	7286.726	0.301	0.079	3.839	1.237E-04	1.052E-02
CAMSAP1	3096.465	0.242	0.063	3.827	1.299E-04	1.082E-02
IFFO2	2146.582	0.148	0.039	3.828	1.293E-04	1.082E-02
ATP5E	8151.648	-0.266	0.070	-3.812	1.377E-04	1.126E-02
IRF2	941.689	-0.274	0.072	-3.814	1.367E-04	1.126E-02
PDGFC	9770.930	-0.160	0.042	-3.812	1.376E-04	1.126E-02
RBPMS	3022.308	-0.284	0.075	-3.808	1.401E-04	1.140E-02
SOX12	1774.488	0.198	0.052	3.806	1.412E-04	1.142E-02
PRR13	4730.575	-0.148	0.039	-3.788	1.520E-04	1.222E-02
GTF3A	4203.605	0.159	0.042	3.776	1.597E-04	1.277E-02

IFNGR2	4025.030	-0.165	0.044	-3.772	1.616E-04	1.285E-02
ARSJ	6156.395	-0.187	0.050	-3.768	1.645E-04	1.300E-02
NSF	6970.648	-0.149	0.040	-3.763	1.679E-04	1.313E-02
TAF10	1800.407	-0.195	0.052	-3.764	1.674E-04	1.313E-02
PTPRF	9226.105	0.154	0.041	3.760	1.702E-04	1.323E-02
MINK1	7589.883	0.137	0.036	3.753	1.746E-04	1.345E-02
VPS72	1792.170	-0.160	0.043	-3.753	1.749E-04	1.345E-02
AMZ2	4115.813	-0.169	0.045	-3.748	1.786E-04	1.365E-02
SGMS2	5069.612	-0.226	0.060	-3.746	1.800E-04	1.369E-02
CCNH	1651.593	-0.178	0.048	-3.735	1.876E-04	1.389E-02
EPHB1	233.946	0.714	0.191	3.736	1.867E-04	1.389E-02
NSMF	1649.142	0.259	0.069	3.735	1.876E-04	1.389E-02
ZFYVE9	4216.755	0.147	0.039	3.738	1.858E-04	1.389E-02
ACAT2	970.763	-0.271	0.073	-3.720	1.993E-04	1.457E-02
ANXA4	7116.245	-0.155	0.042	-3.719	1.998E-04	1.457E-02
МҮРОР	509.872	0.259	0.070	3.722	1.980E-04	1.457E-02
FBXW2	6594.163	0.100	0.027	3.713	2.047E-04	1.485E-02
SERINC3	20828.996	-0.135	0.036	-3.712	2.058E-04	1.485E-02
HSBP1L1	294.543	0.290	0.078	3.708	2.092E-04	1.486E-02
RBMS2	9788.836	-0.230	0.062	-3.709	2.082E-04	1.486E-02
SLC35B3	2886.136	-0.168	0.045	-3.709	2.077E-04	1.486E-02
COPZ1	7214.860	-0.138	0.037	-3.701	2.151E-04	1.505E-02
HIST1H2AC	3542.890	-0.329	0.089	-3.701	2.145E-04	1.505E-02
LRRC2	1068.705	-0.260	0.070	-3.703	2.134E-04	1.505E-02
MAN2A1	7404.676	0.161	0.044	3.699	2.160E-04	1.505E-02
AVEN	1648.643	0.198	0.054	3.695	2.198E-04	1.524E-02
VPS52	2725.968	-0.136	0.037	-3.691	2.234E-04	1.541E-02
POLR3E	1045.289	0.233	0.063	3.686	2.277E-04	1.563E-02
BLVRA	1837.236	-0.140	0.038	-3.684	2.292E-04	1.565E-02
PNO1	1611.612	0.176	0.048	3.678	2.354E-04	1.592E-02
FCF1	3480.164	-0.112	0.031	-3.673	2.399E-04	1.615E-02
HIRIP3	405.924	-0.299	0.081	-3.671	2.415E-04	1.618E-02
CCDC127	2159.887	-0.149	0.041	-3.667	2.451E-04	1.634E-02
NFIC	14695.869	-0.197	0.054	-3.666	2.464E-04	1.635E-02
LRRK1	1819.182	0.211	0.058	3.660	2.524E-04	1.667E-02
ZZEF1	4822.443	0.190	0.052	3.654	2.583E-04	1.699E-02
ANKS6	1168.097	0.275	0.075	3.651	2.608E-04	1.707E-02
B4GALT4	3231.938	-0.181	0.050	-3.650	2.626E-04	1.711E-02
TAPBP	6657.141	0.109	0.030	3.648	2.642E-04	1.713E-02
СНКА	356.027	0.259	0.071	3.634	2.788E-04	1.799E-02
BRI3BP	993.530	0.282	0.078	3.633	2.805E-04	1.801E-02

C2orf88	142.294	0.439	0.121	3.628	2.855E-04	1.801E-02
MAN2A2	2664.403	0.199	0.055	3.629	2.846E-04	1.801E-02
POGK	4073.162	0.115	0.032	3.628	2.853E-04	1.801E-02
PTDSS1	4880.744	0.295	0.081	3.631	2.828E-04	1.801E-02
MLLT6	1922.946	0.220	0.061	3.625	2.886E-04	1.805E-02
SHC1	24835.512	-0.157	0.043	-3.626	2.874E-04	1.805E-02
UBA2	5562.043	0.188	0.052	3.621	2.935E-04	1.827E-02
HOXA9	1299.158	-0.159	0.044	-3.617	2.982E-04	1.840E-02
ZNF558	739.995	0.216	0.060	3.617	2.978E-04	1.840E-02
ALG13	1034.357	-0.282	0.078	-3.615	3.007E-04	1.848E-02
C11orf95	1975.123	0.266	0.074	3.610	3.057E-04	1.870E-02
PCNT	2039.038	0.197	0.055	3.604	3.136E-04	1.910E-02
ETFDH	1704.993	-0.238	0.066	-3.602	3.152E-04	1.912E-02
SLC25A37	1378.784	0.228	0.063	3.601	3.166E-04	1.912E-02
VSIG10	925.715	0.252	0.070	3.598	3.206E-04	1.928E-02
UBE2V1	15555.392	-0.151	0.042	-3.597	3.221E-04	1.929E-02
GFPT1	18072.105	-0.174	0.048	-3.593	3.273E-04	1.952E-02
RPS27L	10302.534	-0.167	0.047	-3.585	3.369E-04	2.000E-02
PSMC2	6258.134	-0.140	0.039	-3.582	3.415E-04	2.019E-02
PTPN14	29006.445	0.175	0.049	3.575	3.499E-04	2.051E-02
MICU1	5616.677	-0.109	0.031	-3.570	3.564E-04	2.081E-02
ARL1	10357.524	-0.204	0.057	-3.566	3.631E-04	2.102E-02
GORASP2	14499.015	-0.163	0.046	-3.566	3.629E-04	2.102E-02
AKT1	10593.548	0.195	0.055	3.563	3.670E-04	2.116E-02
KLHL12	2532.303	0.123	0.035	3.559	3.720E-04	2.136E-02
MTX2	1788.348	-0.135	0.038	-3.547	3.894E-04	2.205E-02
ТМСОЗ	10795.588	-0.135	0.038	-3.547	3.902E-04	2.205E-02
TMEM251	299.829	0.287	0.081	3.548	3.876E-04	2.205E-02
MRPL43	1950.766	-0.148	0.042	-3.532	4.118E-04	2.306E-02
STRAP	12939.178	-0.140	0.040	-3.531	4.146E-04	2.306E-02
TRMO	398.243	-0.277	0.078	-3.532	4.126E-04	2.306E-02
SYT11	7170.403	-0.192	0.054	-3.527	4.201E-04	2.327E-02
EDF1	9634.125	-0.150	0.042	-3.526	4.222E-04	2.329E-02
MLEC	22992.607	0.124	0.035	3.523	4.259E-04	2.341E-02
KIFC3	1647.248	0.314	0.089	3.521	4.306E-04	2.348E-02
WDR48	2935.489	-0.155	0.044	-3.521	4.302E-04	2.348E-02
PCGF2	2015.922	-0.192	0.055	-3.516	4.385E-04	2.382E-02
TRAFD1	2156.292	-0.144	0.041	-3.513	4.430E-04	2.398E-02
CRABP2	5469.956	-0.403	0.115	-3.510	4.481E-04	2.416E-02
CTNNA1	37570.013	-0.104	0.030	-3.509	4.500E-04	2.416E-02
ALG3	1614.331	-0.171	0.049	-3.508	4.523E-04	2.420E-02

S100A10	14132.105	-0.141	0.040	-3.505	4.565E-04	2.433E-02
ZFYVE27	985.459	0.270	0.077	3.503	4.603E-04	2.444E-02
FAM114A1	17413.752	-0.169	0.048	-3.497	4.705E-04	2.461E-02
SEMA3C	14354.327	-0.231	0.066	-3.499	4.666E-04	2.461E-02
SPG21	3764.401	0.132	0.038	3.499	4.671E-04	2.461E-02
NCOR2	17232.428	0.201	0.058	3.492	4.797E-04	2.490E-02
ZNF768	927.106	0.262	0.075	3.493	4.783E-04	2.490E-02
MOCOS	826.967	-0.230	0.066	-3.480	5.020E-04	2.587E-02
DNAJC3	10070.357	0.162	0.047	3.476	5.097E-04	2.610E-02
SUPT3H	347.086	-0.247	0.071	-3.475	5.101E-04	2.610E-02
ACAP3	1452.502	0.307	0.089	3.457	5.453E-04	2.770E-02
CDYL2	2159.002	0.287	0.083	3.453	5.547E-04	2.798E-02
NLGN1	2776.442	-0.255	0.074	-3.453	5.548E-04	2.798E-02
CDH10	429.629	-0.402	0.116	-3.451	5.576E-04	2.802E-02
FBXO3	2468.590	-0.148	0.043	-3.445	5.708E-04	2.858E-02
AP1G1	14561.316	-0.075	0.022	-3.442	5.770E-04	2.879E-02
B3GNT9	2831.734	-0.219	0.064	-3.439	5.839E-04	2.891E-02
ERRFI1	4275.687	0.466	0.135	3.438	5.857E-04	2.891E-02
LMNA	51639.659	-0.168	0.049	-3.438	5.853E-04	2.891E-02
ARNT	3735.062	-0.146	0.043	-3.433	5.967E-04	2.905E-02
LTBP1	26547.979	-0.170	0.050	-3.434	5.939E-04	2.905E-02
NPM3	492.456	0.276	0.080	3.434	5.952E-04	2.905E-02
WIPF1	6234.625	-0.152	0.044	-3.430	6.042E-04	2.932E-02
ZNF710	725.615	0.241	0.070	3.427	6.101E-04	2.950E-02
CYTH1	899.639	0.179	0.052	3.424	6.163E-04	2.966E-02
SMPDL3A	646.845	-0.285	0.083	-3.423	6.195E-04	2.966E-02
SSFA2	14086.185	0.221	0.065	3.423	6.198E-04	2.966E-02
CNOT8	3031.626	-0.148	0.043	-3.421	6.237E-04	2.975E-02
PRPH2	399.723	-0.331	0.097	-3.418	6.302E-04	2.986E-02
TOP1MT	464.030	0.223	0.065	3.418	6.302E-04	2.986E-02
CBLN3	165.226	-0.469	0.137	-3.416	6.352E-04	2.997E-02
ZC3H6	762.427	-0.312	0.091	-3.415	6.368E-04	2.997E-02
USP36	1945.322	0.236	0.069	3.414	6.393E-04	2.999E-02
PSD4	334.110	0.364	0.107	3.410	6.488E-04	3.033E-02
ZEB2	9506.064	-0.218	0.064	-3.406	6.590E-04	3.070E-02
MTMR4	2044.587	0.154	0.045	3.402	6.696E-04	3.102E-02
TMEM248	9177.249	-0.079	0.023	-3.401	6.702E-04	3.102E-02
FAM114A2	2179.011	-0.142	0.042	-3.398	6.789E-04	3.132E-02
НОХС6	2842.753	-0.189	0.056	-3.394	6.878E-04	3.163E-02
COG6	3677.468	-0.178	0.053	-3.393	6.907E-04	3.165E-02
TMEM260	1443.407	-0.213	0.063	-3.392	6.950E-04	3.175E-02

NTPCR	1595.970	-0.141	0.041	-3.390	6.989E-04	3.179E-02
SLC41A2	1111.975	-0.224	0.066	-3.389	7.004E-04	3.179E-02
SH3BGRL3	38481.086	-0.226	0.067	-3.388	7.040E-04	3.185E-02
BNIP3L	12952.881	-0.211	0.062	-3.386	7.100E-04	3.191E-02
ZNF318	2512.493	0.141	0.042	3.385	7.120E-04	3.191E-02
RBFOX2	14345.711	-0.089	0.026	-3.383	7.174E-04	3.204E-02
CTDSPL	2588.537	0.134	0.040	3.381	7.226E-04	3.207E-02
SMU1	4306.077	-0.090	0.026	-3.381	7.226E-04	3.207E-02
ATPIF1	3104.573	-0.176	0.052	-3.378	7.290E-04	3.215E-02
TXN2	2900.899	-0.114	0.034	-3.378	7.288E-04	3.215E-02
FHOD3	3111.112	0.239	0.071	3.370	7.511E-04	3.278E-02
ΚΙΤ	744.879	0.292	0.087	3.371	7.499E-04	3.278E-02
ZFP91	9276.858	0.133	0.040	3.372	7.460E-04	3.278E-02
KHNYN	2518.690	0.204	0.061	3.369	7.549E-04	3.278E-02
ARFGAP3	7504.763	-0.121	0.036	-3.366	7.624E-04	3.280E-02
СТЅК	1766.283	-0.246	0.073	-3.367	7.608E-04	3.280E-02
SEC24D	21505.830	-0.129	0.038	-3.367	7.595E-04	3.280E-02
CD68	7593.359	-0.259	0.077	-3.360	7.797E-04	3.325E-02
CRMP1	621.303	0.184	0.055	3.361	7.755E-04	3.325E-02
FARP1	17310.118	0.153	0.046	3.360	7.794E-04	3.325E-02
AIMP1	3449.723	-0.180	0.053	-3.359	7.828E-04	3.328E-02
CKAP4	74616.364	-0.133	0.040	-3.355	7.942E-04	3.341E-02
HIF1A	77205.026	-0.268	0.080	-3.354	7.955E-04	3.341E-02
MKRN1	4498.096	-0.113	0.034	-3.357	7.893E-04	3.341E-02
PAF1	3320.928	-0.215	0.064	-3.355	7.936E-04	3.341E-02
GPSM1	1994.614	0.267	0.080	3.353	8.004E-04	3.352E-02
TMEM263	14961.960	-0.248	0.074	-3.348	8.139E-04	3.398E-02
EDA2R	1776.682	-0.177	0.053	-3.345	8.241E-04	3.431E-02
CSNK1E	5671.119	0.193	0.058	3.339	8.417E-04	3.493E-02
CFAP20	1161.417	-0.161	0.048	-3.334	8.565E-04	3.544E-02
MORN2	563.235	-0.205	0.062	-3.327	8.778E-04	3.622E-02
MARCKSL1	1106.616	0.351	0.106	3.324	8.869E-04	3.636E-02
MFAP1	2741.662	-0.223	0.067	-3.323	8.891E-04	3.636E-02
PRRC1	9561.895	-0.215	0.065	-3.325	8.850E-04	3.636E-02
RBM7	2464.877	-0.268	0.081	-3.319	9.024E-04	3.679E-02
ARL3	2239.110	-0.185	0.056	-3.310	9.338E-04	3.786E-02
ETS2	1173.026	0.206	0.062	3.304	9.532E-04	3.854E-02
LDOC1	2336.918	-0.135	0.041	-3.301	9.639E-04	3.881E-02
NEDD8	6771.052	-0.091	0.028	-3.300	9.654E-04	3.881E-02
PSMD10	3023.756	-0.149	0.045	-3.295	9.834E-04	3.922E-02
TBC1D16	3514.421	0.281	0.085	3.296	9.797E-04	3.922E-02

TICRR	240.567	0.407	0.124	3.295	9.839E-04	3.922E-02
SYNRG	2795.153	-0.106	0.032	-3.292	9.954E-04	3.956E-02
COLGALT2	1113.445	0.458	0.139	3.291	9.989E-04	3.957E-02
NAV2	2754.180	0.294	0.089	3.289	1.004E-03	3.957E-02
PUM2	6176.780	-0.126	0.038	-3.290	1.002E-03	3.957E-02
IMMT	5582.112	-0.127	0.039	-3.284	1.022E-03	4.017E-02
BBIP1	656.587	-0.276	0.084	-3.282	1.032E-03	4.044E-02
MPV17	2001.258	-0.146	0.044	-3.281	1.035E-03	4.044E-02
DRAM1	6765.917	-0.176	0.054	-3.275	1.056E-03	4.116E-02
DMWD	2137.601	0.193	0.059	3.271	1.071E-03	4.162E-02
FAM101B	4358.021	0.298	0.091	3.270	1.076E-03	4.171E-02
GSTM4	461.245	-0.190	0.058	-3.269	1.080E-03	4.174E-02
SNUPN	1115.374	-0.155	0.047	-3.263	1.104E-03	4.243E-02
TMEM14A	1312.678	-0.153	0.047	-3.260	1.115E-03	4.261E-02
GJA1	10860.576	-0.260	0.080	-3.255	1.132E-03	4.318E-02
TMA7	5310.940	-0.144	0.044	-3.253	1.142E-03	4.342E-02
C19orf12	2001.963	0.200	0.062	3.250	1.155E-03	4.369E-02
ST3GAL1	5106.623	0.276	0.085	3.248	1.164E-03	4.377E-02
ZSCAN26	861.410	-0.184	0.057	-3.248	1.163E-03	4.377E-02
RNF135	801.661	0.225	0.069	3.245	1.175E-03	4.396E-02
TMEM120	1098.742	0.269	0.083	3.245	1.174E-03	4.396E-02
В						
PFN1	57803.402	-0.125	0.038	-3.242	1.185E-03	4.408E-02
PINX1	392.457	0.233	0.072	3.242	1.187E-03	4.408E-02
STX7	5047.023	-0.129	0.040	-3.243	1.182E-03	4.408E-02
<i>SLC22A15</i>	453.450	0.220	0.068	3.234	1.222E-03	4.512E-02
WHSC1	3230.022	0.361	0.112	3.232	1.231E-03	4.533E-02
MTRR	2291.936	-0.155	0.048	-3.229	1.243E-03	4.565E-02
ADCY3	3449.457	0.200	0.062	3.222	1.275E-03	4.659E-02
ANKIB1	10454.665	-0.159	0.050	-3.221	1.276E-03	4.659E-02
C3orf67	139.613	0.409	0.127	3.221	1.278E-03	4.659E-02
SENP8	294.098	-0.304	0.094	-3.219	1.287E-03	4.667E-02
MYL12B	40464.640	-0.154	0.048	-3.215	1.302E-03	4.699E-02
ZNF597	373.038	0.247	0.077	3.216	1.300E-03	4.699E-02
HIST2H4A	266.576	-0.739	0.230	-3.214	1.309E-03	4.712E-02
RNF166	398.884	0.268	0.083	3.212	1.318E-03	4.728E-02
SOCS7	1207.899	0.211	0.066	3.211	1.321E-03	4.728E-02
PPRC1	2923.872	0.155	0.048	3.210	1.329E-03	4.734E-02
DDX51	601.496	0.205	0.064	3.207	1.343E-03	4.753E-02
SUMO1	8010.159	-0.239	0.075	-3.208	1.339E-03	4.753E-02
UFSP2	1532.767	-0.170	0.053	-3.206	1.345E-03	4.753E-02

TXNDC11	3422.091	-0.116	0.036	-3.205	1.351E-03	4.765E-02
TMEM110	2240.705	0.137	0.043	3.197	1.388E-03	4.872E-02
LNPEP	6178.102	0.123	0.039	3.194	1.402E-03	4.896E-02
CTTNBP2N	8091.532	-0.211	0.066	-3.192	1.412E-03	4.919E-02
L						
COG1	2313.968	-0.136	0.043	-3.191	1.416E-03	4.921E-02
PPP1R3C	14369.752	-0.262	0.082	-3.190	1.425E-03	4.939E-02
ADAMTS4	623.243	0.243	0.076	3.188	1.431E-03	4.946E-02
RNF111	3984.200	-0.164	0.051	-3.187	1.437E-03	4.955E-02
MARCH6	11168.605	-0.099	0.031	-3.184	1.454E-03	4.987E-02
POM121	4194.894	0.152	0.048	3.182	1.460E-03	4.987E-02
SMIM14	5309.909	-0.303	0.095	-3.183	1.460E-03	4.987E-02
ZNF202	479.526	0.198	0.062	3.184	1.453E-03	4.987E-02
RUFY3	1511.116	0.147	0.046	3.181	1.467E-03	4.993E-02
TMEM50A	23453.582	-0.132	0.042	-3.180	1.473E-03	4.993E-02

Table S8: DESeq2 output of significantly differentially expressed genes upon DDX3Y knockdown. Significance is determined by adjusted p value < 0.05.

	baseMean	log2FoldChange	lfcSE	stat	pvalue	padj
DDX3Y	6452.045	-2.393	0.094	-25.553	5.046E-144	2.115E-139
PPP1R21	1373.113	-0.174	0.032	-5.434	5.518E-08	2.891E-04
TMEM154	997.563	-0.696	0.148	-4.720	2.360E-06	3.956E-03
POLR3G	255.766	-0.590	0.138	-4.290	1.789E-05	2.343E-02
HERC4	11286.374	-0.278	0.066	-4.216	2.483E-05	3.096E-02
SOCS6	3243.938	-0.193	0.046	-4.214	2.512E-05	3.096E-02

Table S9: Allelic ratio values and change in gene expression per extra Xi for X-homologs of X-Y pair genes.

Gene	AR	Change per X Chr
DDX3X	0.56870922	0.257
EIF1AX	0.36436038	0.511
KDM6A	0.77139428	0.829
PRKX	0.53241182	0.467
RPS4X	0.58405489	0.604
USP9X	0.09544748	0.137
ZFX	0.52802306	0.453

Table S10: Ct values for qPCR of RK-33 treatment dose response of XX fibroblasts.

Sample	Target	СТ	
Dose 0 Rep 1	АСТВ		17.342
Dose 0 Rep 2	ACTB		17.055
Dose 0 Rep 3	ACTB		17.090
Dose 1 Rep 1	АСТВ		17.136
Dose 1 Rep 2	АСТВ		17.096
Dose 1 Rep 3	АСТВ		16.836
Dose 2 Rep 1	ACTB		17.309
Dose 2 Rep 2	ACTB		17.354
Dose 2 Rep 3	ACTB		17.294
Dose 5 Rep 1	АСТВ		17.962
Dose 5 Rep 2	ACTB		17.796
Dose 5 Rep 3	ACTB		17.927
Dose 10 Rep 1	ACTB		19.191
Dose 10 Rep 2	ACTB		19.109
Dose 10 Rep 3	ACTB		19.132
Dose 0 Rep 1	DDX3X		21.953
Dose 0 Rep 2	DDX3X		21.749
Dose 0 Rep 3	DDX3X		21.732
Dose 1 Rep 1	DDX3X		21.969
Dose 1 Rep 2	DDX3X		21.710
Dose 1 Rep 3	DDX3X		21.597
Dose 2 Rep 1	DDX3X		21.503
Dose 2 Rep 2	DDX3X		21.449
Dose 2 Rep 3	DDX3X		21.561
Dose 5 Rep 1	DDX3X		21.136
Dose 5 Rep 2	DDX3X		20.985
Dose 5 Rep 3	DDX3X		20.995
Dose 10 Rep 1	DDX3X		21.165
Dose 10 Rep 2	DDX3X		20.992
Dose 10 Rep 3	DDX3X		20.852

 Table S11: Ct values for qPCR of RK-33 treatment time response of XX fibroblasts.

Sample	Target	СТ	
Time 0 Rep 1	ACTB		17.416
Time 0 Rep 2	ACTB		17.377
Time 0 Rep 3	ACTB		17.459
Time 1 Rep 1	ACTB		17.603

Time	1 Rep 2	ACTB	17.598
Time	1 Rep 3	ACTB	17.714
Time	2 Rep 1	ACTB	17.829
Time	2 Rep 2	ACTB	17.706
Time	2 Rep 3	ACTB	17.745
Time	4 Rep 1	ACTB	17.977
Time	4 Rep 2	ACTB	17.625
Time	4 Rep 3	ACTB	17.916
Time	24 Rep 1	ACTB	17.970
Time	24 Rep 2	ACTB	17.875
Time	24 Rep 3	ACTB	17.758
Time	0 Rep 1	DDX3X	21.675
Time	0 Rep 2	DDX3X	21.542
Time	0 Rep 3	DDX3X	21.704
Time	1 Rep 1	DDX3X	21.726
Time	1 Rep 2	DDX3X	21.615
Time	1 Rep 3	DDX3X	21.699
Time	2 Rep 1	DDX3X	21.823
Time	2 Rep 2	DDX3X	21.539
Time	2 Rep 3	DDX3X	21.634
Time	4 Rep 1	DDX3X	21.800
Time	4 Rep 2	DDX3X	21.838
Time	4 Rep 3	DDX3X	21.718
Time	24 Rep 1	DDX3X	21.545
Time	24 Rep 2	DDX3X	21.442
Time	24 Rep 3	DDX3X	21.255

Chapter 3

Y chromosome-encoded regulators are essential in cancer cell lines

Shruthi Rengarajan^{1,2}, Erik C. Owen^{1,3}, David C. Page^{1,2,4}

Affiliations:

1. Whitehead Institute, Cambridge, MA 02142, USA

2. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

3. Department of Computational & Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

4. Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA

Abstract

The Y chromosome, which encodes broadly expressed regulatory genes, has been systematically excluded from genome-wide screens of essentiality. Here we use functional genomics data from the Cancer Dependency Map to test the essentiality of eight Y-chromosomal genes and identify > 80 cell lines which require one or more of these genes for proliferation. Particularly, we note that *DDX3Y* is required for viability in 25 cancer cell lines, including solid tumors, lymphomas and leukemias. Most cancers that require *DDX3Y* present with loss-of-function mutations in the X-chromosome homolog, *DDX3X*, and have elevated *DDX3Y* expression compared to *DDX3X* WT cell lines, uncovering a novel dependency in male tumors.

Keywords: Short Report, Y chromosome, Sex Chromosomes, Essentiality, Cancer

Author Contributions

S.R., D.C.P designed the experiments. E.O. and S.R. performed computational analyses. S.R. and D.C.P. wrote the manuscript.

Background

The Cancer Dependency Map (Depmap) is a repository of high-throughput loss-offunction screens that identify genes essential for proliferation in thousands of cancer cell lines, combined with deep genomic and transcriptomic characterization of the lines (Cancer Cell Line Encyclopedia) (Dempster et al., 2021; Ghandi et al., 2019; Tsherniak et al., 2017). This source has yielded many insights into the genetic changes that contribute to tumorigenesis. The genes on the Y chromosome have long posed a problem for such screens; as these genes are only expressed from a single copy in cell lines with a Y chromosome, they require specialized analyses. Y chromosome genes are also thought to be dispensable outside the male reproductive tract, furthering their exclusion. However, the Y chromosome contains several broadly-expressed genes (Bellott et al., 2014), meriting their inclusion in genome-wide essentiality screens. Indeed, Y chromosome loss is common in cancers, making these dosage-sensitive regulators attractive tumor suppressor candidates (Forsberg et al., 2014). Recent work has shown that loss of Y drives tumor growth and severity in many cancer types (Abdel-Hafiz et al., 2023). Furthermore, the majority of cancers are male-biased in incidence and severity, and studying the role of Y chromosome genes in tumorigenesis could provide insight into how this bias arises (Lopes-Ramos et al., 2020).

The human X and Y chromosomes evolved from two ordinary pairs of autosomes over the past 200 million years (Ohno, 1967). Due to a series of inversions and the suppression of crossing over between the proto-X and Y chromosomes, the Y

97

chromosome was subject to large-scale genetic decay, such that only 3% of the genetic content remains (Skaletsky et al., 2003). The surviving Y chromosome genes were preserved by selection to maintain the ancestral dosage of regulators of key cellular processes, making them highly dosage-sensitive and necessary for male viability and cellular function (Bellott et al., 2014).

Here, we re-analyze these Y chromosome regulators in the Depmap dataset, identifying 81 novel genetic dependencies across a wide range of cancer cell types.

Results & Discussion

We first identified a subset of cell lines that contain a Y chromosome and do not have aberrant X inactivation, denoted ChrYPos (Fig S1, Table S1, Methods). These cells contain a single copy of the X chromosome. We also selected a control population of cell lines that did not contain Y chromosomes, denoted ChrYNeg (FigS1, Table S1). We evaluated all gRNAs for Y-encoded genes that were present in the AVANA guide library used by Depmap. We evaluated gRNAs for the following genes: *DDX3Y, USP9Y, EIF1AY, KDM5D, UTY, NLGN4Y, ZFY, RPS4Y*1. In our analyses, we only include gRNAs for Y-chromosome genes that do not also target their X-homologs (Table S2, Methods).

We identified 81 dependencies on Y-chromosome encoded regulators that are present in ChrYPos cells and not in ChrYNeg cells (Fig 1, Table S3). In particular,

98

DDX3Y, EIF1AY, ZFY or RPS4Y1 knockdown have large deleterious effects in a number of ChrYPos lines. Many of these genes encode components of the translation initiation and ribosomal complexes, suggesting that such complexes are especially important to the survival and proliferation of cancer cell lines. Conversely, we see fewer dependencies on *KDM5D*, *USP9Y*, *UTY* or *NLGN4Y*. These genes consist of histone demethylases, a peptidase and a membrane protein suggesting that chromatin remodeling and signaling genes on the Y chromosome are not as crucial for the proliferation of ChrYPos cell lines as genes involved in translation. Moreover, we do not see any differences in the dependencies of known autosomal regulators between the ChrYPos and ChrYNeg subsets, demonstrating that these dependencies are specific to the presence or absence of a Y chromosome. (Fig S2).

Among the Y chromosome regulators we profiled, *DDX3Y* loss had a deleterious effect in the largest number of cell lines. We identified 25 ChrYPos lines with a *DDX3Y* dependency (Fig 1). These cell lines spanned 13 cancer tissue types, with a slight enrichment for skin and lymphoid tissues, demonstrating that *DDX3Y* is essential in cancers across the body (Fig 2A). Interestingly, its X-chromosome homolog *DDX3X* is mutated in many cancer types; *DDX3X* loss-of-function (LOF) mutations are known drivers of lymphomas and leukemias (Brandimarte et al., 2014; Gong et al., 2021), and other cancer types, including melanomas and medulloblastomas present with deleterious *DDX3X* and *DDX3Y* negatively cross-regulate each other's expression levels and *DDX3Y* levels are elevated in cells with *DDX3X* mutations (Chapter 2). We

thus hypothesized that cell lines with *DDX3Y* dependencies reflected a *DDX3X-DDX3Y* interaction.

We asked if *DDX3Y* dependent lines were enriched for deleterious *DDX3X* mutations. We used PROVEAN (Protein Variation Effect Analyzer) (Choi et al., 2012) to analyze if a given *DDX3X* mutation was deleterious and 'damaging' to protein function; we then compared cell lines with these mutations to those with a dependency on *DDX3Y*. There was a significant overlap between cell lines with *DDX3X* damage and cell lines with *DDX3Y* dependency (Fig 2B). Meanwhile, cell lines without *DDX3Y* dependency showed no such overlap. We conclude that *DDX3X* LOF in ChrYPos cancer cell lines induces *DDX3Y* upregulation (Chapter 2), resulting in these cells becoming reliant on *DDX3Y* expression.

Fig 1: Genetic dependencies of Depmap cell lines on Y chromosome regulators. Histograms show the distribution of gene effect scores for eight Y encoded genes in ChrYPos lines (purple) and ChrYNeg lines (orange). A negative gene effect score indicates a negative fitness effect upon loss of the indicated gene.

Fig 2: Characterization of cell lines with *DDX3Y* dependencies. A) Tissue of origin distribution of *DDX3Y*-dependent cancer cell lines. B) Venn Diagram showing significant enrichment of cell lines with *DDX3Y* dependency and cell lines with damaging *DDX3X* mutations (ChrYpos). Statistical significance calculated using hypergeometric test.

This study highlights the role of Y chromosome regulators in the proliferation of cancer cells. Particularly, *DDX3Y* emerges as a key dependency in *DDX3X* mutant cancers, making it a candidate drug target in male lymphomas, leukemias, melanomas and medulloblastomas. The incorporation of these broadly expressed regulators in future cancer research projects, including tumor sequencing and CRISPR screening will improve our understanding of the male bias in cancer diagnoses and severity.

Methods

Filtering of cell lines: ChrYPos cells were filtered using a log2TPM filter of DDX3Y > 0.2, RPS4Y1 > 0.2, Xist < 2. ChrYNeg cells were filtered using a log2TPM filter of DDX3Y<= 0, RPS4Y1 <= 0.

Filtering of gRNAs: Y chromosome gRNAs were processed using CRISPRoff (https://rth.dk/resources/crispr/) (Alkan et al., 2018). gRNAs that had favorable free energy binding to X-homologs within one mismatch of the seed sequence were excluded. Valid Y chromosome gRNAs were mapped to the AvanaRawReadcounts file and checked for quality in the pDNA batches. These guide RNAs were concatenated to AvanaGuideMap DataFrame. The sequence map was created by filtering for sequences from the Avana library that passed the Chronos quality control workflow. The sequence map was then subdivided into subsets, for ChrYPos cells and ChrYNeg cells.

Chronos: Chronos was run as specified in <u>https://github.com/broadinstitute/chronos</u>. The chronos model was trained in a Conda environment containing the packages: 'crispr-chronos' (2.0.6), 'nvidia-cudnn-cu11' (8.5.0.163), and 'tensorflow-gpu' (2.12.1) along with other necessary dependencies. Clonal outgrowths were first NaN'd for each set of DataFrames and then quality control reports were generated for each cell line set. Positive and negative controls were added from 'AchillesCommonEssentialControls.csv' and 'AchillesNonessentialControls.csv' and then a Chronos model was trained for 501 epochs for each cell line set. A high-performance computer cluster with RTX-2080Ti GPUs and 64 GB of RAM was used for training the models.

Copy Number Correction: Gene Effects were scaled so the median score of all common essential genes = -1 and the median of all nonessential genes = 0. A custom copy number matrix was generated with estimates for genes in cells that were not subject to WGS. For ChrYPos cells, copy number was estimated using the following rules: Autosomal genes = 1.0, X or Y chromosomal genes = 0.5. For ChrYNeg cells, copy number was estimated using the following rules: Autosomal genes == 1.0, X chromosomal genes = 1.0. The copy number correction module in Chronos was run on each gene effect DataFrame to get the resultant scaled and copy-number corrected gene effect matrix that was used for downstream analysis.

Availability of data: All data is downloaded from the Depmap 23Q4 release at https://depmap.org/portal/download/all/. Original code is deposited at https://github.com/shruthi3195/YDependencyMap.

Ethics Declaration: The authors declare no conflicts of interest

References

- Abdel-Hafiz, H. A., Schafer, J. M., Chen, X., Xiao, T., Gauntner, T. D., Li, Z., & Theodorescu, D. (2023). Y chromosome loss in cancer drives growth by evasion of adaptive immunity. *Nature*, *619*(7970), 624–631. https://doi.org/10.1038/s41586-023-06234-x
- Alkan, F., Wenzel, A., Anthon, C., Havgaard, J. H., & Gorodkin, J. (2018). CRISPR-Cas9 offtargeting assessment with nucleic acid duplex energy parameters. *Genome Biology*, 19(1), 177. https://doi.org/10.1186/s13059-018-1534-x
- Bellott, D. W., Hughes, J. F., Skaletsky, H., Brown, L. G., Pyntikova, T., Cho, T.-J., Koutseva, N., Zaghlul, S., Graves, T., Rock, S., Kremitzki, C., Fulton, R. S., Dugan, S., Ding, Y., Morton, D., Khan, Z., Lewis, L., Buhay, C., Wang, Q., ... Page, D. C. (2014). Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. *Nature*, *508*(7497), 494–499. https://doi.org/10.1038/nature13206
- Brandimarte, L., La Starza, R., Gianfelici, V., Barba, G., Pierini, V., Di Giacomo, D., Cools, J., Elia, L., Vitale, A., Luciano, L., Bardi, A., Chiaretti, S., Matteucci, C., Specchia, G., & Mecucci, C. (2014). DDX3X-MLLT10 fusion in adults with NOTCH1 positive T-cell acute lymphoblastic leukemia. *Haematologica*, *99*(5), 64–66. https://doi.org/10.3324/haematol.2013.101725
- Choi, Y., Sims, G. E., Murphy, S., Miller, J. R., & Chan, A. P. (2012). Predicting the Functional Effect of Amino Acid Substitutions and Indels. *PLoS ONE*, *7*(10), e46688. https://doi.org/10.1371/journal.pone.0046688
- Dempster, J. M., Boyle, I., Vazquez, F., Root, D. E., Boehm, J. S., Hahn, W. C., Tsherniak, A., & McFarland, J. M. (2021). Chronos: A cell population dynamics model of CRISPR experiments that improves inference of gene fitness effects. *Genome Biology*, *22*(1), 343. https://doi.org/10.1186/s13059-021-02540-7
- Forsberg, L. A., Rasi, C., Malmqvist, N., Davies, H., Pasupulati, S., Pakalapati, G., Sandgren, J., de Ståhl, T. D., Zaghlool, A., Giedraitis, V., Lannfelt, L., Score, J., Cross, N. C. P., Absher, D., Janson, E. T., Lindgren, C. M., Morris, A. P., Ingelsson, E., Lind, L., & Dumanski, J. P. (2014). Mosaic loss of chromosome Y in peripheral blood is associated with shorter survival and higher risk of cancer. *Nature Genetics*, *46*(6), 624–628. https://doi.org/10.1038/ng.2966
- Ghandi, M., Huang, F. W., Jané-Valbuena, J., Kryukov, G. V., Lo, C. C., McDonald, E. R., Barretina, J., Gelfand, E. T., Bielski, C. M., Li, H., Hu, K., Andreev-Drakhlin, A. Y., Kim, J., Hess, J. M., Haas, B. J., Aguet, F., Weir, B. A., Rothberg, M. V., Paolella, B. R., ... Sellers, W. R. (2019). Next-generation characterization of the Cancer Cell Line Encyclopedia. *Nature*, *569*(7757), 503–508. https://doi.org/10.1038/s41586-019-1186-3
- Gong, C., Krupka, J. A., Gao, J., Grigoropoulos, N. F., Giotopoulos, G., Asby, R., Screen, M., Usheva, Z., Cucco, F., Barrans, S., Painter, D., Zaini, N. B. M., Haupl, B., Bornelöv, S., Ruiz De Los Mozos, I., Meng, W., Zhou, P., Blain, A. E., Forde, S., ... Hodson, D. J. (2021). Sequential inverse dysregulation of the RNA helicases DDX3X and DDX3Y facilitates MYC-driven lymphomagenesis. *Molecular Cell*, *81*(19), 4059-4075.e11. https://doi.org/10.1016/j.molcel.2021.07.041
- Lopes-Ramos, C. M., Quackenbush, J., & DeMeo, D. L. (2020). Genome-Wide Sex and Gender Differences in Cancer. *Frontiers in Oncology*, *10*, 597788. https://doi.org/10.3389/fonc.2020.597788
- Ohno, S. (1967). Sex Chromosomes and Sex-Linked Genes (Vol. 1). Springer. https://doi.org/10.1007/978-3-642-88178-7

- Patmore, D. M., Jassim, A., Nathan, E., Gilbertson, R. J., Tahan, D., Hoffmann, N., Tong, Y., Smith, K. S., Kanneganti, T.-D., Suzuki, H., Taylor, M. D., Northcott, P., & Gilbertson, R. J. (2020). DDX3X Suppresses the Susceptibility of Hindbrain Lineages to Medulloblastoma. *Developmental Cell*, *54*(4), 455-470.e5. https://doi.org/10.1016/j.devcel.2020.05.027
- Phung, B., Cieśla, M., Sanna, A., Guzzi, N., Beneventi, G., Cao Thi Ngoc, P., Lauss, M., Cabrita, R., Cordero, E., Bosch, A., Rosengren, F., Häkkinen, J., Griewank, K., Paschen, A., Harbst, K., Olsson, H., Ingvar, C., Carneiro, A., Tsao, H., ... Jönsson, G. (2019). The X-Linked DDX3X RNA Helicase Dictates Translation Reprogramming and Metastasis in Melanoma. *Cell Reports*, *27*(12), 3573-3586.e7. https://doi.org/10.1016/j.celrep.2019.05.069
- Skaletsky, H., Kuroda-Kawaguchi, T., Minx, P. J., Cordum, H. S., Hillier, L., Brown, L. G., Repping, S., Pyntikova, T., Ali, J., Bieri, T., Chinwalla, A., Delehaunty, A., Delehaunty, K., Du, H., Fewell, G., Fulton, L., Fulton, R., Graves, T., Hou, S.-F., ... Page, D. C. (2003). The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. *Nature*, *423*(6942), 825–837. https://doi.org/10.1038/nature01722
- Tsherniak, A., Vazquez, F., Montgomery, P. G., Weir, B. A., Kryukov, G., Cowley, G. S., Gill, S., Harrington, W. F., Pantel, S., Krill-Burger, J. M., Meyers, R. M., Ali, L., Goodale, A., Lee, Y., Jiang, G., Hsiao, J., Gerath, W. F. J., Howell, S., Merkel, E., ... Hahn, W. C. (2017). Defining a Cancer Dependency Map. *Cell*, *170*(3), 564-576.e16. https://doi.org/10.1016/j.cell.2017.06.010
- Valentin-Vega, Y. A., Wang, Y.-D., Parker, M., Patmore, D. M., Kanagaraj, A., Moore, J., Rusch, M., Finkelstein, D., Ellison, D. W., Gilbertson, R. J., Zhang, J., Kim, H. J., & Taylor, J. P. (2016). Cancer-associated DDX3X mutations drive stress granule assembly and impair global translation. *Scientific Reports*, *6*, 25996. https://doi.org/10.1038/srep25996

SUPPLEMENTARY MATERIAL

Y chromosome-encoded regulators are essential in a subset of XY cancer cell lines

Shruthi Rengarajan, Erik C. Owen, David C. Page

SUPPLEMENTARY FIGURES Pg. 108

SUPPLEMENTARY TABLES Pg. 109

SUPPLEMENTARY FIGURES

Fig S1. Expression filters for selecting Y bearing (ChrYPos) cells and non-Y bearing cells (ChrYNeg). ChrYPos cells are selected for high *DDX3Y* and *RPS4Y1* expression as well as low *Xist* expression (purple). ChrYNeg cells have no expression of *DDX3Y* & *RPS4Y1* (orange).

Fig S2: Genetic dependencies of Depmap cell lines on autosomal regulators. Histograms show the distribution of gene effect scores for 2 known autosomal regulators in ChrYPos lines (purple) and ChrYNeg lines (orange). There is no difference in the distribution of dependencies between ChrYPos and ChrYNeg lines.
SUPPLEMENTARY TABLES

Table S1: List of Y bearing (ChrYPos) cell lines

ModelID PatientID CellLineName ACH-000004 PT-q4K2cp HEL ACH-000005 PT-q4K2cp HEL 92.1.7 ACH-000007 PT-NOXwpH LS513 ACH-000015 PT-ffwajl NCI-H1581 ACH-000028 PT-viJKnw KPL-1 ACH-000036 PT-IIPs5J U343 ACH-000040 PT-5XnRfQ U-118 MG ACH-000041 PT-3yDaRJ RD-ES ACH-000045 PT-zb7Sx0 MV4-11 ACH-000053 PT-nECHHn KARPAS-299 ACH-000054 PT-cVfhmE HT-1080 ACH-000055 PT-xKYZGz D283 Med ACH-000067 PT-25yL7C Hs 683 ACH-000070 PT-0yrZJC 697 ACH-000074 PT-FJahu6 KU812 ACH-000075 PT-59c3mE U-87 MG ACH-000077 PT-brIUSU MJ ACH-000078 PT-Vot01h MHH-NB-11 ACH-000092 PT-GaubVg NCI-H2452 ACH-000095 PT-nsjOrX D341 Med ACH-000099 PT-JpfhsL SIMA ACH-000101 PT-6Sunyd **KE-37** ACH-000113 PT-OA9fna OCI-AML2 ACH-000115 PT-015HIH VCaP ACH-000118 PT-jYcdmK HUP-T3 ACH-000120 PT-6jhjWI CHP-212 ACH-000128 PT-mUWSlp LN-319 ACH-000133 PT-PvBEqK Hs 729 ACH-000146 PT-Sv45MF THP-1 ACH-000151 PT-t7KWtB JM1 ACH-000152 PT-DK2CQc M059K ACH-000159 PT-T2g8EU OS-RC-2 ACH-000161 PT-G4xjbZ **COR-L105** ACH-000190 PT-YCDBvf HD-MY-Z ACH-000198 PT-FYT6ze EOL-1 ACH-000206 PT-vEZ2Aw C8166 ACH-000209 PT-xTQ9GQ SNU-1079

ACH-000211	PT-5fvUg8	Daoy
ACH-000221	PT-7v9ThA	SNU-398
ACH-000227	PT-N9Xbr1	KP-N-YN
ACH-000232	PT-88IC1n	U-251 MG
ACH-000233	PT-zshCzw	DEL
ACH-000234	PT-A9d4DI	Caki-2
ACH-000238	PT-Kf5TA3	SCC-4
ACH-000251	PT-l5gD1h	NCI-H2887
ACH-000252	PT-XQHvQF	LS1034
ACH-000253	PT-BLAWID	COLO 201
ACH-000255	PT-cxJQjg	LMSU
ACH-000257	PT-7LsK3v	COR-L279
ACH-000261	PT-9jciof	RERF-LC-AI
ACH-000266	PT-UWtylo	SNU-213
ACH-000274	PT-QbMSjm	Hs 852.T
ACH-000277	PT-osxHUh	HCC1419
ACH-000288	PT-hgWgpg	BT-549
ACH-000290	PT-DzY90c	NCI-H209
ACH-000292	PT-x8fAhk	NCI-H841
ACH-000307	PT-rg0sYD	PK-1
ACH-000310	PT-2Urqss	IMR-32
ACH-000312	PT-k4Daz3	SK-N-BE(2)
ACH-000313	PT-Hd1kAu	KMRC-3
ACH-000316	PT-f7BtKr	SNU-886
ACH-000317	PT-ARX9yV	TUHR14TKB
ACH-000318	PT-8hgOdH	TE-10
ACH-000319	PT-5z2CJx	MPP 89
ACH-000326	PT-mEKuqA	JURL-MK1
ACH-000330	PT-ykXL80	EFM-19
ACH-000331	PT-ThvuiE	IST-MES2
ACH-000332	PT-Lio3jT	YAPC
ACH-000334	PT-mgfMcU	DB
ACH-000335	PT-MFqmhR	MSTO-211H
ACH-000336	PT-0F4qCF	OCI-AML3
ACH-000341	PT-I4N9IW	SK-N-FI
ACH-000343	PT-6ukZx4	NCI-H522
ACH-000346	PT-Qpiidf	JVM-3
ACH-000359	PT-qWqYVi	MG-63
ACH-000362	PT-H3wdRq	MOLM-13
ACH-000365	PT-I24dRR	SU-DHL-4
ACH-000368	PT-U0kXHW	SNU-1105
ACH-000370	PT-HHIjR4	SNU-626

ACH-000371 PT-B4jW32 RL TF-1 ACH-000387 PT-JUL0sC ACH-000389 PT-9RF4FI H4 J82 ACH-000396 PT-jGS2bl ACH-000401 PT-hf4hbl COLO-800 ACH-000402 PT-ieu86J BL-70 ACH-000403 PT-cabct5 NCI-H747 ACH-000405 PT-2VMIkL MEC-1 ACH-000415 PT-Typnjw BICR 6 ACH-000420 PT-zidwU2 SNU-449 ACH-000421 PT-M67oxD SW837 ACH-000422 PT-UjP297 SNU-475 ACH-000424 PT-BIG8te TC-71 ACH-000427 PT-e4bHZ8 NCI-N87 ACH-000436 PT-vvCo6J OCI-My7 ACH-000437 PT-uhtVUf SW 1088 ACH-000452 PT-xlsO4O TE-8 ACH-000455 PT-XOGcZJ LN-428 ACH-000458 PT-CfuEas CJM ACH-000459 PT-myAfV5 TUHR10TKB ACH-000463 PT-gfHIRD NCI-H460 ACH-000464 PT-3nLBts CAS-1 ACH-000466 PT-IGNIGv SNU-216 ACH-000469 PT-hzuTX4 YH-13 ACH-000472 PT-MxVfNi HSC-2 ACH-000477 PT-A0Pe6P Malme-3M ACH-000479 PT-hM3DN4 KNS-81 ACH-000483 PT-YTIYsu SNU-182 ACH-000484 PT-BHz6vU VMRC-RCW ACH-000486 PT-W6AZYO KU-19-19 ACH-000487 PT-fzbPlv F-36P ACH-000489 PT-EtFrRG SW1116 ACH-000493 PT-nNGWmg SNU-423 ACH-000495 PT-GcbNSr **TUHR4TKB** ACH-000499 PT-m8xCzo EW8 ACH-000502 PT-HGOuga TCC-PAN2 ACH-000511 PT-R4QjAn Calu-1 ACH-000512 PT-H09155 INA6 ACH-000514 PT-Jj10yy NCI-H1092 ACH-000516 PT-gEiUjw CAL-78 ACH-000518 PT-czsVU5 CAL-33 ACH-000522 PT-sPPqcj UM-UC-3

ACH-000525	PT-NNs10U	NCI-H2171
ACH-000532	PT-663aNr	SNU-61
ACH-000533	PT-x2jmX9	NCI-H2004 RT
ACH-000544	PT-SDTBu5	OE21
ACH-000545	PT-LSFu4z	VM-CUB1
ACH-000548	PT-p0K5QM	BHY
ACH-000549	PT-1JhWBd	SNU-1076
ACH-000550	PT-Wg8rkx	IGR-39
ACH-000559	PT-xljoai	NCI-H1836
ACH-000571	PT-dw7sni	T98G
ACH-000576	PT-EvS9IW	KMS-27
ACH-000577	PT-DNXpFr	JHH-2
ACH-000580	PT-Dlqu1U	C32
ACH-000588	PT-wXGfqR	KMS-26
ACH-000591	PT-8XX4Me	LN-235
ACH-000597	PT-XDzUk4	TTC-709
ACH-000604	PT-yTztZ0	KYO-1
ACH-000608	PT-lr2HyG	COV644
ACH-000614	PT-Zy2EsL	RVH-421
ACH-000616	PT-8WpAkT	Hs 746T
ACH-000619	PT-UF0NQM	PE/CA-PJ15
ACH-000622	PT-25ATIE	KNS-42
ACH-000623	PT-IIEy7t	SNU-201
ACH-000627	PT-Rd3J4D	LCLC-103H
ACH-000632	PT-CeiJLF	Hs 944.T
ACH-000634	PT-FYoibe	LN-340
ACH-000638	PT-xglezn	NCI-H441
ACH-000645	PT-igc1W1	JL-1
ACH-000648	PT-pVwyuS	NCI-H28
ACH-000649	PT-4QH2II	786-O
ACH-000652	PT-ETHfq8	SUIT-2
ACH-000654	PT-WEYO1e	Raji
ACH-000655	PT-ZQKvHU	SF268
ACH-000661	PT-VxRt2m	WM1799
ACH-000664	PT-jm7IYN	SU-DHL-1
ACH-000671	PT-TtIXsL	HuH-6
ACH-000677	PT-Z9x3iF	SW 1573
ACH-000681	PT-cqv92I	A549
ACH-000682	PT-Svdo1R	SNU-1066
ACH-000695	PT-WHXDvG	COR-L47
ACH-000698	PT-ERIBcq	DMS 53
ACH-000706	PT-srkn4o	EKVX

ACH-000716	PT-EhboSJ	TT2609-C02
ACH-000718	PT-8wDCNH	NCI-H2291
ACH-000734	PT-s6JoAb	JHH-5
ACH-000736	PT-2GXHBV	SNU-601
ACH-000738	PT-8oCN4x	GB-1
ACH-000739	PT-qL6HtY	Hep G2
ACH-000741	PT-iooYtf	U-BLC1
ACH-000747	PT-CmsNht	NCI-H1703
ACH-000748	PT-OexHxF	SJSA-1
ACH-000756	PT-cJo3y3	GI-1
ACH-000757	PT-kl5Cjl	A427
ACH-000760	PT-zboiLS	LNZ308
ACH-000762	PT-M2rHki	YD-38
ACH-000765	PT-mH5ckQ	WM983B
ACH-000766	PT-wZGKqJ	NCI-H1648
ACH-000767	PT-1nXRn7	NCI-H526
ACH-000770	PT-7N6azV	P31/FUJ
ACH-000773	PT-vEVB0H	Ki-JK
ACH-000774	PT-lbbkFm	RERF-LC-Ad2
ACH-000778	PT-XJviYz	HSC-3
ACH-000787	PT-w7dxuB	LXF-289
ACH-000788	PT-ZSJTWI	A2058
ACH-000799	PT-mZ69VI	Hs 695T
ACH-000801	PT-118hCi	Hs 936.T
ACH-000810	PT-1TshCj	SK-MEL-30
ACH-000817	PT-pWj35D	RPMI 8226
ACH-000819	PT-1DyLm0	LN-18
ACH-000822	PT-n2hnAf	SK-MEL-24
ACH-000827	PT-L3eOYW	WM793
ACH-000829	PT-h5fVs5	HuNS1
ACH-000833	PT-lbYOig	RH-30
ACH-000836	PT-ZS5SNw	YD-15
ACH-000837	PT-9eMhTl	NCI-H322
ACH-000839	PT-I3KIxJ	SCaBER
ACH-000843	PT-gQzNzd	HARA
ACH-000848	PT-WkfAGI	JHH-7
ACH-000853	PT-FGrsoV	NCI-H661
ACH-000858	PT-obWM4y	KNS-62
ACH-000859	PT-603OA3	HCC1954
ACH-000860	PT-W8OaFq	NCI-H358
ACH-000867	PT-3nyeTa	ChaGo-K-1
ACH-000873	PT-8iaWjG	KYSE-270

ACH-000882 PT-MRf5jM IGR-1 ACH-000896 PT-bDT6oy 647-V ACH-000905 PT-nC0LDL 5637 ACH-000907 PT-20TYLm SNU-349 ACH-000913 PT-6MnPg3 ESS-1 ACH-000914 PT-zrYGap ΗT ACH-000917 PT-2HckVI TE-4 ACH-000921 PT-jKAU6d NCI-H157-DM ACH-000932 PT-3F7Xgi SNU-1 ACH-000935 PT-snQqpb MDST8 ACH-000938 PT-rgsUoa NALM-6 ACH-000948 PT-VDIRwk 23132/87 ACH-000950 PT-6USEGU LoVo ACH-000953 PT-Zkuf8L SUP-T1 ACH-000959 PT-ulmNPq SNU-C4 ACH-000960 PT-N5YXV2 Reh ACH-000968 PT-z7yLU0 COLO 792 ACH-000974 PT-cqXnS7 SNG-M ACH-000975 PT-gNoIDb HCC2450 ACH-000976 PT-z66Tka HuCCT1 ACH-000977 PT-tY34fU LNCaP clone FGC ACH-000980 PT-DdDGB6 NCI-H1155 ACH-000984 PT-UZ2uk5 HEC-6 ACH-000995 PT-lj83Ht JURKAT ACH-001020 PT-WLHxY0 BT-16 ACH-001036 PT-XYdNvp CMK-11-5 ACH-001038 PT-Wd5HrW COG-E-352 ACH-001050 PT-30CR5P CW9019 ACH-001054 PT-HMzBz8 D458 ACH-001061 PT-i0VYNQ DLD-1 ACH-001129 PT-ei13Dz **MONO-MAC-1** ACH-001134 PT-YD7WB8 MYLA CCLF_PEDS_0003_T ACH-001164 PT-VJQa5v ACH-001190 PT-IHNbDy SK-MEL-2 ACH-001192 PT-MPUfgl SK-NEP-1 ACH-001196 PT-9a1vbV SMS-CTR ACH-001197 PT-3YIeN9 SMZ-1 ACH-001228 PT-k3C7C0 UPCI-SCC-152 UPCI-SCC-154 ACH-001229 PT-FRJzoR ACH-001232 PT-Qe9Gjx UW228 ACH-001239 PT-JAyPtz WM-266-4 ACH-001270 PT-isOde8 1273/99

ACH-001277	PT-yyLDZV	Yamato
ACH-001283	PT-yXtSGR	TC-106
ACH-001289	PT-773uN4	COG-AR-359
ACH-001303	PT-IFd9cu	NB-1643
ACH-001310	PT-1UiNjR	HA1E
ACH-001329	PT-tYbbCQ	ANGM-CSS
ACH-001338	PT-cvCz0R	CHP-134
ACH-001346	PT-VXDXrs	H103
ACH-001347	PT-C880aD	H157
ACH-001366	PT-jZHQTi	NGP
ACH-001385	PT-a3pn8l	RPMI 2650
ACH-001386	PT-hfsFlb	SCLC-22H
ACH-001407	PT-SuuJak	UM-UC-13
ACH-001412	PT-IRdqMO	UM-UC-10
ACH-001414	PT-8XYADU	UM-UC-6
ACH-001415	PT-gUUbZP	UM-UC7
ACH-001430	PT-uuajSv	TC138
ACH-001450	PT-wk0KRr	BLUE-1
ACH-001453	PT-plyNqk	BPH-1
ACH-001454	PT-LAy4cf	C10
ACH-001494	PT-KZb32w	EGI-1
ACH-001496	PT-YHsN9r	ESO26
ACH-001509	PT-jrbPZG	H357
ACH-001520	PT-vloZl6	HG-3
ACH-001522	PT-wEoiUI	HMY-1
ACH-001523	PT-ae7zps	HSC-1
ACH-001524	PT-hQHCaO	HSC-5
ACH-001528	PT-1Qm9m0	IHH-4
ACH-001529	PT-RI1Xeu	JAR
ACH-001530	PT-hB4ARO	JEG-3
ACH-001532	PT-IYnIVo	JMU-RTK-2
ACH-001533	PT-04HLfu	KARPAS 1718
ACH-001549	PT-QtHHhA	Lu-135
ACH-001556	PT-go6neE	Mero-25
ACH-001557	PT-LIQ4kC	Mero-41
ACH-001558	PT-WxXGiC	Mero-48a
ACH-001560	PT-B0HUMd	Mero-83
ACH-001562	PT-9C9m7Z	Mero-95
ACH-001563	PT-uwdvUG	MM127
ACH-001566	PT-4UAKiS	MM370
ACH-001567	PT-fN0pV5	MM383
ACH-001568	PT-QuhZbF	MM386

ACH-001570	PT-bKFeuG	MM426
ACH-001574	PT-H3wdRq	MOLM-14
ACH-001609	PT-OT2kJe	NP 3
ACH-001610	PT-WoVaBP	NP 5
ACH-001619	PT-X8PfQy	OCUG-1
ACH-001622	PT-D5Ft7E	Onda 7
ACH-001624	PT-dDtvIC	Onda 9
ACH-001634	PT-cBta1E	PGA-1
ACH-001647	PT-8Jr4Fd	SHI-1
ACH-001648	PT-F8MgcH	Shmac 4
ACH-001649	PT-iy858F	Shmac 5
ACH-001669	PT-ffpEbF	TANOUE
ACH-001673	PT-oSIXkO	TFK-1
ACH-001685	PT-A1mKo8	U-HO1
ACH-001688	PT-tocbjR	UM-RC-7
ACH-001699	PT-uhmv08	UPCI-SCC-131
ACH-001701	PT-CvPqts	UPCI-SCC-200
ACH-001707	PT-XqTIID	WA-OSEL
ACH-001711	PT-lzKK9W	PFSK-1
ACH-001737	PT-qdQICQ	CTV-1-DM
ACH-001740	PT-vvfjiZ	RH28
ACH-001745	PT-s7RWi4	RhJT
ACH-001750	PT-Hk36HO	TTC442
ACH-001796	PT-7RM5sK	95T1000
ACH-001814	PT-2XpRTn	OS252
ACH-001841	PT-wNrZ5J	ICC15
ACH-001848	PT-PUXC1Q	ICC8
ACH-001863	PT-VWXKPj	TKKK
ACH-001959	PT-x2cqmS	CC-LP-1
ACH-001973	PT-oJTeSY	MM485
ACH-001977	PT-YF5RFe	NO36
ACH-001982	PT-6BEu4D	NZM3
ACH-001990	PT-PCXcZ8	NZM7
ACH-001992	PT-nrQ0Fm	ONE58
ACH-001997	PT-jmmNcQ	ECC2
ACH-001999	PT-pmGuZF	950-5-BIK
ACH-002014	PT-5vJu3k	Mel270
ACH-002018	PT-5vJu3k	Omm2.5
ACH-002043	PT-gB4Jfi	Ca9-22
ACH-002044	PT-v9ccBc	HSQ-89
ACH-002045	PT-a3mx1w	HO-1-u-1
ACH-002048	PT-osIMHT	RMS-YM

```
      ACH-002077
      PT-qVbV4Q
      Lu-165

      ACH-002080
      PT-rlExpa
      TN-2

      ACH-002461
      PT-Zy2EsL
      RVH421 SKIN FV1

      ACH-002485
      PT-NJ3wbw
      MAVER-1

      ACH-002523
      PT-0yqjae
      SNU-739

      ACH-002533
      PT-wkGMuS
      SNU-482

      ACH-002659
      PT-btmPL5
      JVE-127

      ACH-002925
      PT-abxYPP
      UPMM3
```

 Table S2:
 List of non-Y bearing (ChrYNeg) cell lines

ModelID	PatientID	CellLineName
ACH-000029	PT-NdspH5	HCC-827-GR5
ACH-000093	PT-X8PfQy	Panc 05.04
ACH-000337	PT-0fXDWz	NCI-H3122
ACH-000556	PT-ahSjGm	SIHA
ACH-001029	PT-NX1XUV	CHLA-10
ACH-001098	PT-htpobl	KCI-MOH1
ACH-001145	PT-3doOpy	OC 316
ACH-001151	PT-u4FBpq	OVCAR-5
ACH-001163	PT-wOhyc6	CCLF_PEDS_0001_T
ACH-001172	PT-88IC1n	U-251 MG DM
ACH-001183	PT-ESM25t	RT112/84
ACH-001188	PT-ombRgU	SH-SY5Y
ACH-001301	PT-9ShVj5	COGN278
ACH-001334	PT-ERAmPK	C-4 I
ACH-001335	PT-ERAmPK	C-4 II
ACH-001367	PT-7QJIsM	NMB
ACH-001370	PT-rC8bwa	OCI-P5x
ACH-001388	PT-UklPiT	SUM-102PT
ACH-001389	PT-huyXeM	SUM-1315MO2
ACH-001392	PT-i9dYpA	SUM-185PE
ACH-001393	PT-Zd61pl	SUM-190PT
ACH-001396	PT-sYFvXw	SUM-52PE
ACH-001398	PT-Xr379n	SW 156
ACH-001400	PT-2KkY6l	SW 954
ACH-001403	PT-tuE0il	TO14
ACH-001418	PT-JGzDYG	UWB1.289
ACH-001419	PT-vA9Pcv	VP229
ACH-001421	PT-WBS2Hf	WERI-Rb-1
ACH-001422	PT-EhPRzn	WPE1-NA22

ACH-001442 PT-QwG6Ei A388 ACH-001443 PT-xji0Xg ASH-3 ACH-001451 PT-gPKmS2 BOKU ACH-001481 PT-GWiky5 CHLA-90 ACH-001495 PT-bHINin **EMTOKA** ACH-001498 PT-5d2l7D Farage ACH-001510 PT-8wgZXD H376 ACH-001511 PT-L1Obji H413 ACH-001513 PT-KwMOW6 HCA-1 ACH-001515 PT-4kA9XI HCS-2 ACH-001517 PT-YZF57N HEC-1 ACH-001518 PT-emUGGo HEC-116 ACH-001525 PT-GR4jOd HT-3 ACH-001526 PT-JCLa8x HuO9 ACH-001538 PT-LDOCPR KKU-213 ACH-001539 PT-FzFmMI KML-1 ACH-001543 PT-1EAB3W KOSC-2 ACH-001547 PT-xjKkQm LO68 ACH-001548 PT-TA4RrC LS ACH-001577 PT-wizE6v MUTZ-8 ACH-001607 PT-yeY4QM NOZ ACH-001616 PT-oQqqCS OCI-LY18 ACH-001618 PT-Oev2PO OCI-M2 ACH-001623 PT-QBDrgb Onda 8 ACH-001627 PT-a2ltr5 P4E6 ACH-001628 PT-i3tIXN PEA1 ACH-001630 PT-FMp5RI PEO1 ACH-001641 PT-4X1Phg SAT ACH-001651 PT-aKpEm3 SKG-I ACH-001652 PT-IwYShD SKG-II ACH-001653 PT-ZJjbcp SK-GT-2 ACH-001655 PT-yc0xLp SKN ACH-001670 PT-SJ98Vo TASK1 ACH-001674 PT-o4jARg TGW ACH-001677 PT-PFlyLY U-2904 ACH-001687 PT-V3AbhR UM-RC-3 ACH-001690 PT-uLUnir UPCI-SCC-026 ACH-001691 PT-km3C7x UPCI-SCC-029A ACH-001696 PT-YWwuRp UPCI-SCC-111 ACH-001698 PT-sxiEGA UPCI-SCC-116 VA-ES-BJ ACH-001702 PT-vslXtO ACH-001719 PT-I7kiMr OCI-C4P

ACH-001786	PT-LbUj3S	SNU-1544
ACH-001791	PT-IRwItD	LPS6
ACH-001793	PT-TTxLCZ	LPS27
ACH-001795	PT-jDDO2a	94T778
ACH-001799	PT-VjYY7b	LPS141
ACH-001802	PT-JmLeEs	LPS853
ACH-001804	PT-0IPf2W	LPS510
ACH-001819	PT-FVLPZS	MFM-223
ACH-001820	PT-UXPdpL	COLO 824
ACH-001834	PT-EXxLVu	ICC10
ACH-001835	PT-EXxLVu	ICC10-6
ACH-001836	PT-EXxLVu	ICC10-8
ACH-001839	PT-oAAltB	ICC13-7
ACH-001843	PT-c6a9E7	ICC3
ACH-001849	PT-mD4L5a	ICC9
ACH-001850	PT-rx5EvX	G415
ACH-001853	PT-0MsFyj	KMCH-1
ACH-001856	PT-E0gpbj	RBE
ACH-001857	PT-Sv5Y9u	SG231
ACH-001858	PT-hoMjwu	SSP-25
ACH-001861	PT-5pDw3E	TGBC1TKB
ACH-001862	PT-6N8kTd	TGBC52TKB
ACH-001864	PT-mhrkCC	YSCCC
ACH-001960	PT-9dwZW4	CC-SW-1
ACH-001961	PT-v333Dc	GB2
ACH-001970	PT-75oSJn	MM253
ACH-001991	PT-WTNLuu	NZOV9
ACH-001993	PT-22pOAT	NALM-16
ACH-002001	PT-3FxmoJ	A375 SKIN CJ1
ACH-002002	PT-3FxmoJ	A375 SKIN CJ2
ACH-002003	PT-3FxmoJ	A375 SKIN CJ3
ACH-002005	PT-4QtR2m	SK-MEL-19
ACH-002016	PT-MucJf6	Mel290
ACH-002019	PT-AOzYCt	HOKUG
ACH-002020	PT-3SrUkP	SKG-IIIa
ACH-002021	PT-UGz23U	T3M-3
ACH-002023	PT-hlvUsv	TGBC18TKB
ACH-002024	PT-2Stxl0	ECC4
ACH-002025	PT-mlVrGc	TT1TKB
ACH-002026	PT-cgXnS7	HHUA
ACH-002027	PT-vlwQtl	HOUA-I
ACH-002029	PT-rJXazG	SAS

ACH-002035	PT-5NWbnb	LCAM1
ACH-002039	PT-mXNlfw	PK-8
ACH-002040	PT-YbtlK5	HMV-II
ACH-002041	PT-PqWEZm	HOTHC
ACH-002042	PT-vhf9cn	T3M-5
ACH-002046	PT-SKC9qY	HTMMT
ACH-002051	PT-K31Xld	Lu-134-A
ACH-002059	PT-reOMOW	P30/OHK
ACH-002062	PT-2hETfh	SLVL
ACH-002066	PT-coZfvw	HS-Sch-2
ACH-002069	PT-3pqp8N	HS-Os-1
ACH-002070	PT-kM7sLu	HKBMM
ACH-002084	PT-Qsi22o	MMAc
ACH-002462	PT-ml8vcL	RPE1-ss48
ACH-002463	PT-ml8vcL	RPE1-ss77
ACH-002464	PT-ml8vcL	RPE1-ss6
ACH-002465	PT-ml8vcL	RPE1-ss119
ACH-002486	PT-pyZjZu	MES-OV
ACH-002510	PT-6g2PcW	M040416
ACH-002511	PT-il63∨t	M140325
ACH-002522	PT-7B82nW	SNU-2292
ACH-002524	PT-itoB60	SNU-251
ACH-002531	PT-GWa6kp	SNU-2535
ACH-002535	PT-W0h0s9	SNU-254
ACH-002647	PT-O1x5GT	CCC-5
ACH-002654	PT-anuBoi	JVE-015
ACH-002664	PT-FT4DA3	JVE-253
ACH-002669	PT-53ZOQS	KP-363T
ACH-002672	PT-yBID98	MAPAC-HS-77
ACH-002680	PT-UACtvx	170-MG-BA
ACH-002687	PT-VBCF1O	WM3772F
ACH-002693	PT-DyxJsT	S462
ACH-002710	PT-nQk25T	MPNST-724
ACH-002785	PT-6sPicj	NCC-LMS1-C1
ACH-002799	PT-qqzgSc	NCC-MPNST1-C1
ACH-002834	PT-EcUHFc	OS384
ACH-002847	PT-AFnHpd	YUHOIN
ACH-002922	PT-LKZDpW	SK-N-MM
ACH-002926	PT-vu5jnE	UPMD1

 Table S3:
 Valid Y chromosome gRNAs

guide	gene	geneid
GTATATATCTGACTCAGTAT	DDX3Y	8653
GCACCACCATAAACTACACA	DDX3Y	8653
TTTGGGTCTCGAGATTCTAG	DDX3Y	8653
ATTGGCTGTACAGATCTATG	DDX3Y	8653
CTGAACTCTGAAAAACAGAG	DDX3Y	8653
TCTTGGCAAGGTGTTCAGGA	ZFY 7404	
GCATGAGCAGCAAATTGATG	ZFY 7404	
CCCACACTCATCACATTCAA	ZFY 7404	
AGAAATGGATCCTTGTAAAG	ZFY 7404	
ACTCTGGTCAGAGCACCATG	UTY 7544	
GTCTCTAATCGACAACCACA	UTY 7544	
AATTCTTGCAGCAAGCGTAG	UTY 7544	
CTATTGTGTCTTCTCCCACG	KDM5D	8284
CCCCTTCCTGAAATCCCCAG	KDM5D	8284
GTGAAGGATGAGCAAAGTGG	KDM5D	8284
GCTTATCATCTTCATCCCCA	KDM5D	8284
GCTGAATTCCAAGACCCGCT	KDM5D	8284
TAAAGATTCCCAATGTGGAG	KDM5D	8284
CCTCTCCTCAGAGTATGCTC	EIF1AY	1964
AGAGGTTATGCCATATCAGA	EIF1AY	1964
ACAGCAGTACCTTTATTCTT	EIF1AY	1964
GAGTTGGTGTTTAAAGAGGA	EIF1AY	1964
TGATGCGGTGAACAGCAAAA	RPS4Y1	6192
CCTTGGTGTCATAGACCAGG	RPS4Y1	6192
TGCTGTTCACCGCATCACAG	RPS4Y1	6192
GACAGGTGAACATTTCCGCC	RPS4Y1	6192
CGCCTGGTCTATGACACCAA	RPS4Y1	6192
GTCCATCTCGAAAAAAACGT	USP9Y	8287
CCAAGTTCTATACCTAACAG	USP9Y	8287
TGTTAGGTATAGAACTTGGG	USP9Y	8287
TGAACCATGTTGCGTCCCCA	NLGN4Y	22829
GTTTAACATGACACAGACAG	NLGN4Y	22829
AGTTATCCACAGAAGAACAT	NLGN4Y	22829
ACTGGACCCAAGATCTCACT	NLGN4Y	22829

Table S3: Y-chromosome gene dependencies in ChrYPos cell lines

CCLE_	Index	DDX3Y	effect scores	ModelID	Cell Lir	ne	Lineage	e	
	Oncotre	ePrima	aryDisease	OncotreeSubt	уре	Sex			
1316	-1.9245	298	ACH-001563	MM127	Skin	Melano	ma	Melanoma	Male
762	-1.8910	60457	ACH-000766	NCIH1648	Lung	Non-Sn	nall Cel	I Lung Cancer	Lung
Adeno	carcinon	na	Male						

-1.303644931 ACH-000873 KYSE270 869 Esophagus/Stomach Esophageal Squamous Cell Carcinoma Esophageal Squamous Cell Carcinoma Male 650 -1.243418108 ACH-000654 RAJI Lymphoid Mature B-Cell Neoplasms Burkitt Lymphoma Male 363 -1.107296721 ACH-000365 SUDHL4 Lymphoid Mature B-Cell Neoplasms Diffuse Large B-Cell Lymphoma, NOS Male 806 -0.995114143 ACH-000810 SKMEL30 Skin Melanoma Cutaneous Melanoma Male 910 -0.993148677 ACH-000914 HT Lymphoid Mature B-Cell Neoplasms Diffuse Large B-Cell Lymphoma, NOS Male 400 -0.863814474 ACH-000402 BL70 Lymphoid Mature B-Cell Neoplasms Burkitt Lymphoma Male 1140 -0.436559666 ACH-001270 127399 Soft Tissue Synovial Sarcoma Synovial Sarcoma Male -0.415852141 ACH-000005 HEL9217 4 Myeloid Acute Myeloid Leukemia Acute Myeloid Leukemia Male Melanoma 1319 -0.396168725 ACH-001568 MM386 Skin Melanoma Male 474 -0.287498603 ACH-000477 MALME3M Skin Melanoma Melanoma Male 691 -0.275762648 ACH-000695 CORL47 Lung Neuroendocrine Tumor Small Lung Cell Lung Cancer Male 34 -0.225116768 ACH-000036 U343 CNS/Brain Diffuse Glioma Glioblastoma Male 368 -0.223060067 ACH-000370 SNU626 CNS/Brain **Diffuse Glioma** Glioblastoma Male 495 -0.215058828 ACH-000499 EW8 Bone Ewing Sarcoma Ewing Sarcoma Male 1265 -0.207373514 ACH-001496 ESO26Esophagus/Stomach Esophagogastric Adenocarcinoma Adenocarcinoma of the Gastroesophageal Junction Male -0.206723306 ACH-001566 MM370 1317 Skin Melanoma Melanoma Male 512 -0.205608574 ACH-000516 CAL78 Bone Chondrosarcoma Dedifferentiated Chondrosarcoma Male 1501 -0.197882837 ACH-002045 HO1U1 Head and Neck Head and Neck Squamous Cell Carcinoma Oral Cavity Squamous Cell Carcinoma Male 339 -0.19580058 ACH-000341 SKNFI Peripheral Nervous System Neuroblastoma Neuroblastoma Male 72 -0.189346805 ACH-000074 KU812 Myeloid Myeloproliferative Neoplasms Chronic Myeloid Leukemia, BCR-ABL1+ Male -0.188660872 ACH-001530 JEG3 Uterus Gestational Trophoblastic Disease 1289 Choriocarcinoma Male 844 -0.179531622 ACH-000848 JHH7 Liver Hepatocellular Carcinoma Hepatocellular Carcinoma Male

835-0.173052522ACH-000839SCABERBladder/Urinary Tract Bladder SquamousCell CarcinomaBladder Squamous Cell CarcinomaMale

CCLE Index ZFY effect scores ModelID StrippedCellLineName OncotreeLineage OncotreePrimarvDisease OncotreeSubtype Sex 1225 -0.295880723 ACH-001407 UMUC13 Bladder/Urinary Tract Bladder Urothelial Carcinoma Bladder Urothelial CarcinomaMale 360 -0.225082904 ACH-000362 MOLM13 Myeloid Acute Myeloid Leukemia Acute Myeloid Leukemia Male 1323 -0.207099594 ACH-001574 MOLM14 Myeloid Acute Myeloid Leukemia Acute Myeloid Leukemia Male -0.148030696 ACH-001707 WAOSEL 1394 Lymphoid Mature B-Cell Neoplasms Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma Male 752 -0.031223809 ACH-000756 GI1 **Diffuse Glioma** CNS/Brain Gliosarcoma Male -0.020130962 ACH-000977 LNCAPCLONEFGC Prostate 973 Prostate Prostate Adenocarcinoma Adenocarcinoma Male -0.012260616 ACH-000359 MG63 Bone OsteosarcomaOsteosarcomaMale 357 1408 0.000164366 ACH-001750 TTC442 Soft Tissue Rhabdomyosarcoma Embryonal Rhabdomyosarcoma Male 1280 0.00494738 ACH-001520 HG3 Lymphoid B-Lymphoblastic Leukemia/Lymphoma B-Lymphoblastic Leukemia/Lymphoma Male 385 0.017721334 ACH-000387 TF1 Myeloid Acute Myeloid Leukemia Acute Myeloid Leukemia Male 934 0.020121109 ACH-000938 NALM6 Lymphoid B-Lymphoblastic Leukemia/Lymphoma B-Lymphoblastic Leukemia/Lymphoma Male 90 0.022542487 ACH-000092 NCIH2452 Pleura Pleural Mesothelioma Pleural Mesothelioma, Biphasic TypeMale 434 0.023552218 ACH-000436 OCIMY7 Lymphoid Mature B-Cell Neoplasms Plasma Cell Myeloma Male 863 0.030127469 ACH-000867 CHAGOK1 Non-Small Cell Lung Cancer Non-Lung Small Cell Lung Cancer Male 399 0.036281167 ACH-000401 COLO800 Skin Melanoma Cutaneous Melanoma Male 1318 0.038829275 ACH-001567 MM383 Melanoma Melanoma Skin Male 1501 0.043414018 ACH-002045 HO1U1 Head and Neck Head and Neck Squamous Cell Carcinoma Oral Cavity Squamous Cell Carcinoma Male CCLE_Index EIF1AY effect scores ModeIID StrippedCellLineName OncotreeLineage OncotreePrimaryDisease OncotreeSubtype Sex 1316 -0.63632344 ACH-001563 MM127 Skin Melanoma Melanoma Male

615 -0.533739363 ACH-000619 PECAPJ15 Head and Neck Head and Neck Squamous Cell Carcinoma Oral Cavity Squamous Cell Carcinoma Male 1318 -0.521818087 ACH-001567 MM383 Skin Melanoma Melanoma Male 1422 -0.349662329 ACH-001814 OS252 Bone OsteosarcomaOsteosarcomaMale 1478 -0.349542362 ACH-002014 MEL270 Ocular Melanoma Eve Uveal Melanoma Male -0.286761298 ACH-000577 JHH2 Liver 573 Hepatocellular Carcinoma Hepatocellular Carcinoma Male 204 -0.228850413 ACH-000206 C8166 Lymphoid T-Lymphoblastic Leukemia/Lymphoma T-Lymphoblastic Leukemia/Lymphoma Male 425 -0.211269003 ACH-000427 NCIN87 Esophagus/Stomach Esophagogastric Adenocarcinoma Tubular Stomach Adenocarcinoma Male 1144 -0.182266099 ACH-001277 YAMATO Soft Tissue Synovial Sarcoma Synovial Sarcoma Male 630 -0.175800096 ACH-000634 LN340 CNS/Brain Diffuse Glioma Glioblastoma Male 250 -0.173188138 ACH-000252 LS1034 Bowel Colorectal Adenocarcinoma Colon Adenocarcinoma Male 512 -0.099305429 ACH-000516 CAL78 Bone Chondrosarcoma Dedifferentiated Chondrosarcoma Male 1405 -0.094947218 ACH-001740 RH28 Soft Tissue Rhabdomyosarcoma Alveolar Rhabdomyosarcoma Male 514 -0.087108951 ACH-000518 CAL33 Head and Neck Head and Neck Squamous Cell Carcinoma Oral Cavity Squamous Cell Carcinoma Male -0.080492495 ACH-000499 EW8 Bone Ewing Sarcoma 495 Ewing Sarcoma Male CCLE Index RPS4Y1 effect scoresModeIID StrippedCellLineName OncotreeLineage OncotreePrimaryDisease OncotreeSubtype Sex 1315 -1.330419862 ACH-001562 MERO95 Pleura Pleural Mesothelioma Pleural Mesothelioma, Epithelioid Type Male 1323 -0.842652147 ACH-001574 MOLM14 Myeloid Acute Myeloid Leukemia Acute Myeloid Leukemia Male 1240 -0.429620048 ACH-001430 TC138 Bone **Ewing Sarcoma** Ewing Sarcoma Male 434 -0.294429767 ACH-000436 OCIMY7 Lymphoid Mature B-Cell Neoplasms Plasma Cell Myeloma Male Undifferentiated 1100 -0.289810405 ACH-001164 CCLFPEDS0003T Soft Tissue Pleomorphic Sarcoma/Malignant Fibrous Histiocytoma/High-Grade Spindle Cell Sarcoma

Undifferentiated Pleomorphic Sarcoma/Malignant Fibrous Histiocytoma/High-Grade Spindle Cell Sarcoma Male

CCLE Index NLGN4Y effect scores ModelID StrippedCellLineName OncotreeLineage OncotreePrimaryDisease OncotreeSubtype Sex 4 -0.251767436 ACH-000005 HEL9217 Myeloid Acute Myeloid Leukemia Acute Myeloid Leukemia Male -0.128681864 ACH-000634 LN340 CNS/Brain Diffuse Glioma Glioblastoma 630 Male 425 -0.107961732 ACH-000427 NCIN87 Esophagus/Stomach Esophagogastric Adenocarcinoma Tubular Stomach Adenocarcinoma Male -0.101342933 ACH-000518 CAL33 Head and Neck 514 Head and Neck Squamous Cell Carcinoma Oral Cavity Squamous Cell Carcinoma Male 400 -0.081574621 ACH-000402 BL70 Lymphoid Mature B-Cell Neoplasms Burkitt Lymphoma Male 144 -0.063746023 ACH-000146 THP1 Myeloid Acute Myeloid Leukemia Acute Myeloid Leukemia Male -0.056642534 ACH-000077 MJ 75 Lymphoid Non-Hodgkin Lymphoma Mature T and NK Neoplasms Male CCLE Index KDM5D effect scores ModelID StrippedCellLineName OncotreePrimaryDisease OncotreeSubtype OncotreeLineage Sex 1396 -0.192954025 ACH-001711 PFSK1CNS/Brain Embryonal Tumor Primitive Neuroectodermal Tumor Male 1417 -0.102291418 ACH-001796 95T1000 Soft Tissue Liposarcoma Well-Differentiated Liposarcoma Male 1817 -0.08593682 ACH-002461 RVH421SKINFV1 Skin Melanoma Melanoma Male 1232 -0.030813076 ACH-001414 UMUC6 Bladder/Urinary Tract Bladder Urothelial Carcinoma Bladder Urothelial CarcinomaMale 1311 0.011298005 ACH-001558 MERO48A Pleura Pleural Mesothelioma Pleural Mesothelioma, Biphasic TypeMale CCLE Index UTY effect scores ModelID StrippedCellLineName OncotreeLineage OncotreePrimaryDisease OncotreeSubtype Sex 593 -0.59484115 ACH-000597 TTC709 Kidney Rhabdoid Cancer Rhabdoid CancerMale 1170 -0.559197644 ACH-001338 CHP134 Peripheral Nervous System Neuroblastoma Neuroblastoma Male -0.496499104 ACH-000459 TUHR10TKB Kidney Renal Cell Carcinoma Renal Clear 457 Cell Carcinoma Male 1478 -0.489816116 ACH-002014 MEL270 Eve Ocular Melanoma Uveal Melanoma Male 1144 -0.464449045 ACH-001277 YAMATO Soft Tissue Synovial Sarcoma Synovial Sarcoma Male

CCLE_Index USP9Y effect scores ModeIID StrippedCellLineName

OncotreeLineage OncotreePrimaryDisease OncotreeSubtype Sex

955 -0.338855911 ACH-000959 SNUC4 Bowel Colorectal Adenocarcinoma Colon Adenocarcinoma Male

394 -0.234101926 ACH-000396 J82 Bladder/Urinary Tract Bladder Urothelial Carcinoma Bladder Urothelial CarcinomaMale Chapter 4: Conclusions Prior to this work, much of the scholarship about *DDX3X* and *DDX3Y* have focused on DDX3X function and its many roles in cellular processes. Despite its equally widespread expression and functional interchangeability in cells (Sekiguchi et al., 2004; Venkataramanan et al., 2021), there are no studies of DDX3Y function or of *DDX3X/DDX3Y* regulation. Using perturbations of *DDX3X* and *DDX3Y* in human cells, we have found a conserved auto- and cross-regulatory program that buffers the expression of these genes. This work represents the first study of human *DDX3X* and *DDX3Y* regulation. In this chapter I will briefly summarize the findings from Chapter 2 and Chapter 3 and their implications for human phenotypes caused by mutations of both homologs. I will conclude by describing several avenues for future work.

Conclusions:

In Chapter 2, we first establish *DDX3X* as a highly dosage-sensitive gene among the X-Y pair genes. Firstly, it is expressed from Xi in human females and has a protein-coding Y homolog in every therian species sequenced, demonstrating its haploinsufficiency. Human *DDX3X* also ranks highly in population metrics; it has highly conserved miRNA targeting sites and is depleted for loss-of-function variants. *DDX3X* and *DDX3Y* retain broad expression from their ancestral autosomal progenitors, as inferred by the expression breadth of chicken *DDX3X*. These findings imply that mechanisms must exist to tightly control *DDX3X* and *DDX3Y* dosage. We show that human *DDX3X* or *DDX3Y* transcripts decrease linearly in cells with increasing Y and X chromosome copy number. We directly link this response to *DDX3X* and *DDX3Y* using natural deletions of the Y chromosome and CRISPRi knockdowns. *DDX3X* levels are elevated in cells with *DDX3Y* deletions, and both homologs increase following CRISPRi repression of their partner. Furthermore, this result holds in an independent dataset of cancer cell lines; *DDX3Y* transcripts are elevated in cells with *DDX3Y* transcripts are elevated in cells with *DDX3X* LOF mutations. In XY cells, *DDX3X* and *DDX3Y* cross-regulation buffers changes to total expression levels; upon *DDX3Y* knockdown, the upregulation of *DDX3X* fully maintains the summed expression of *DDX3X* and *DDX3Y* at control levels. However, the upregulation of *DDX3Y* is not sufficient to fully compensate for the larger impact of *DDX3X* knockdown. In XX cells, *DDX3X* transcripts are elevated in response to the inhibition of protein function, demonstrating that DDX3X can auto-regulate. Finally, we establish mRNA destabilization as the mechanism of the cross-regulation; *DDX3X* transcripts are destabilized in cells with many copies of *DDX3Y*.

In Chapter 3, we re-analyze functional genomics screens from the Cancer Dependency Map, incorporating Y-chromosome genes. We show that many Ychromosome regulators are essential in Y-bearing (ChrYPos) cell lines, identifying 81 novel genetic dependencies across a wide range of cancer cell types. We do not identify these dependencies in cells without Y chromosomes (ChrYNeg), and do not see differences in the essentiality of autosomal genes between the ChrYPos and ChrYNeg subsets. *DDX3Y* emerges as a key regulator, with 25 ChrYPos lines showing a strong

129

dependency on *DDX3Y* expression. We find that cell lines with *DDX3Y* dependencies are enriched for *DDX3X* mutant cancers, implicating the negative cross-regulation we discovered in Chapter 2. As only cells with *DDX3X* mutations are vulnerable to *DDX3Y* loss, this finding highlights *DDX3Y* as a candidate drug target in male lymphomas, leukemias, melanomas and medulloblastomas.

Future Directions:

The work described in Chapters 2 and 3 give rise to many questions that can be addressed by future studies. There are two broad directions: 1. Characterizing the mechanism of *DDX3X* and *DDX3Y* regulation and 2. Characterizing the phenotypic consequences of this regulation in health and disease, particularly in relation to biological sex. I will address these directions and speculate more broadly about the evolution of the sex chromosomes and the future of X-and Y-genes in biomedical research.

Biochemical mechanisms of DDX3X/DDX3Y auto- and cross-regulation

We establish that *DDX3X* mRNA is destabilized to achieve *DDX3X-DDX3Y* cross regulation. But what is the mechanism of this regulation? Does it involve direct binding and helicase activity of *DDX3X* and *DDX3Y* on their own transcripts, or are there intermediate genes that are necessary for this regulation? In this thesis, we

demonstrate cross-regulation in LCLs, fibroblasts and several cancer cell lines. *DDX3X-DDX3Y* cross regulation is also seen in published data from mouse brains and macrophages (Patmore et al., 2020; Szappanos et al., 2018). While it is possible that a secondary regulator is expressed alongside *DDX3X* and *DDX3Y* in many species and tissue types, the universality of this regulation and its deep conservation argues for direct regulation. Furthermore, this response is induced within two hours of perturbation (Chapter 2 Supplementary Information), lending further credence to a direct effect. CLIP experiments could be performed to determine if DDX3X and DDX3Y bind their own mRNAs. Current studies of DDX3X binding have only been performed in XX cells. Further disruption of putative DDX3X/DDX3Y binding sites can reveal if binding is necessary for regulation.

Sex differences in human phenotypes

While Chapter 2 offers an explanation for the different consequences of *DDX3X* vs *DDX3Y* mutations in males, it does not explain why females and males with DDX3X mutations are different phenotypically. Females with *DDX3X* mutations have *de novo* mutations on one allele that completely ablate DDX3X helicase function and this causes a severe intellectual disability in these individuals (*DDX3X* syndrome) (Snijders Blok et al., 2015). No males with these mutations have been reported, suggesting embryonic lethality in 46,XY individuals. Most males with *DDX3X* syndrome inherit a hypomorphic *DDX3X* allele from an unaffected mother (Kellaris et al., 2018). This

suggests that both types of mutations are better compensated for by DDX3X autoregulation in females than DDX3Y cross-regulation in males. One hypothesis to explain this observation comes from the cell-autonomous nature of X inactivation. As Xa expresses more DDX3X than Xi, the consequences of a deleterious DDX3X mutation can be offset if the X chromosome containing the mutant allele is preferentially inactivated in every cell, i.e. 'skewed' (Cotton et al., 2013). However, there is no skewing of X inactivation observed in girls with DDX3X syndrome (Snijders Blok et al., 2015) suggesting that the increase in DDX3X expression from Xa or Xi provides more robust compensation for DDX3X loss than an increase in DDX3Y expression. There is preliminary evidence from studies of allelic expression in other cell types; In XX LCLs, DDX3X is expressed from Xi at 55% of Xa levels, while in XY LCLs, DDX3Y is expressed at 30% of DDX3X levels (Godfrey et al., 2020; San Roman et al., 2023). Any extracellular functions of DDX3X in a heterozygous female brain could also potentially be rescued by upregulating DDX3X expression in cells with an intact copy on Xa. Studies of the developing brain will be needed to confirm this hypothesis.

DDX3X and DDX3Y regulation also has important implications for the phenotypes of sex chromosome aneuploidy. The summed levels of this pair increase less steeply with increasing sex chromosome copy number than that of similar gene pairs such as ZFX-ZFY and KDM6A-UTY. Additionally, the genes that change significantly upon DDX3X knockdown do not overlap with genes that respond to sex chromosome aneuploidy (Chapter 2 Supplementary Information). This is in contrast with

132

ZFX and *ZFY*, whose targets significantly overlap with sex chromosome responsive genes (Roman et al., 2024), implying that *DDX3X* and *DDX3Y* are not major contributors to gene expression changes in individuals with sex chromosome aneuploidies. This has important consequences for the study and treatment of individuals with Turner's syndrome and Klinefelter's syndrome, among others.

Inferring ancestral gene-regulatory mechanisms on the sex chromosomes

The presence of both *DDX3X* auto-regulation in XX cells and *DDX3X-DDX3Y* cross-regulation in XY cells suggests that this regulation predates the divergence of the sex chromosomes. Indeed, the yeast ortholog of *DDX3X, Ded1* is auto-regulated, suggesting that *DDX3X* regulation may be conserved over 1.3 billion years since the common ancestor of yeast and humans (Kumar et al., 2022; Ottoz, 2015). Studies of X-Y pair regulation may allow us to infer the ancestral state of gene regulatory mechanisms. The fossils of ancestral gene regulatory mechanisms on the sex chromosomes are seen in other studies of X-Y gene pairs. *ZFX* and *ZFY* dosage have similar genome-wide effects in LCLs and fibroblasts, suggesting that their transcriptional networks have been preserved during sex chromosome evolution (Roman et al., 2024). Similarly, miRNA sites on avian Z-W chromosomes have been preserved on human sex chromosomes (Naqvi et al., 2018). *EIF1AX*, a key component of translation initiation, has retained a miR-1 site that is disrupted in *EIF1AY*, leading to 2-fold up-regulation of the Y-homolog in heart tissues (Godfrey et al., 2020).

133

The role of X-Y pair genes in disease

The high dosage-sensitivity and conservation of X-Y gene pairs imply that they might play key roles in human diseases. However, sex chromosome genes, especially Y-chromosome genes, are frequently excluded from genomic studies, including genome-wide association studies, whole-exome sequencing and functional genomics screens. The study of these genes is crucial to identify sex differences in diseases, and their dosage-sensitivity and cellular functions merit their inclusion in future studies. As described in Chapter 3, inclusive studies can uncover new targets like *DDX3Y* in *DDX3X* mutant male cancers. Further study is also needed to investigate the structural differences between X- and Y-homologs so that protein-specific therapies can be developed, increasing our capacity for precision medicine.

References:

- Cotton, A. M., Ge, B., Light, N., Adoue, V., Pastinen, T., & Brown, C. J. (2013). Analysis of expressed SNPs identifies variable extents of expression from the human inactive X chromosome. *Genome Biology*, *14*(11), R122. https://doi.org/10.1186/gb-2013-14-11-r122
- Godfrey, A. K., Naqvi, S., Chmátal, L., Chick, J. M., Mitchell, R. N., Gygi, S. P., Skaletsky, H., & Page, D. C. (2020). Quantitative analysis of Y-Chromosome gene expression across 36 human tissues. *Genome Research*, *30*(6), 860–873. https://doi.org/10.1101/gr.261248.120
- Kellaris, G., Khan, K., Baig, S. M., Tsai, I.-C., Zamora, F. M., Ruggieri, P., Natowicz, M. R., & Katsanis, N. (2018). A hypomorphic inherited pathogenic variant in DDX3X causes male intellectual disability with additional neurodevelopmental and neurodegenerative features. *Human Genomics*, *12*(1), 11. https://doi.org/10.1186/s40246-018-0141-y
- Kumar, S., Suleski, M., Craig, J. M., Kasprowicz, A. E., Sanderford, M., Li, M., Stecher, G., & Hedges, S. B. (2022). TimeTree 5: An Expanded Resource for Species Divergence Times. *Molecular Biology and Evolution*, *39*(8), msac174. https://doi.org/10.1093/molbev/msac174
- Naqvi, S., Bellott, D. W., Lin, K. S., & Page, D. C. (2018). Conserved microRNA targeting reveals preexisting gene dosage sensitivities that shaped amniote sex chromosome evolution. *Genome Research*. https://doi.org/10.1101/gr.230433.117
- Ottoz, D. S. M. (2015). A synthetic approach to study function and expression of the Saccharomyces cerevisiae RNA helicase Ded1 [Doctoral Thesis, ETH Zurich]. https://doi.org/10.3929/ethz-a-010603399
- Patmore, D. M., Jassim, A., Nathan, E., Gilbertson, R. J., Tahan, D., Hoffmann, N., Tong, Y., Smith, K. S., Kanneganti, T.-D., Suzuki, H., Taylor, M. D., Northcott, P., & Gilbertson, R. J. (2020). DDX3X Suppresses the Susceptibility of Hindbrain Lineages to Medulloblastoma. *Developmental Cell*, *54*(4), 455-470.e5. https://doi.org/10.1016/j.devcel.2020.05.027
- Roman, A. K. S., Skaletsky, H., Godfrey, A. K., Bokil, N. V., Teitz, L., Singh, I., Blanton, L. V., Bellott, D. W., Pyntikova, T., Lange, J., Koutseva, N., Hughes, J. F., Brown, L., Phou, S., Buscetta, A., Kruszka, P., Banks, N., Dutra, A., Pak, E., ... Page, D. C. (2024). The human Y and inactive X chromosomes similarly modulate autosomal gene expression. *Cell Genomics*, 4(1). https://doi.org/10.1016/j.xgen.2023.100462
- San Roman, A. K., Godfrey, A. K., Skaletsky, H., Bellott, D. W., Groff, A. F., Harris, H. L., Blanton, L. V., Hughes, J. F., Brown, L., Phou, S., Buscetta, A., Kruszka, P., Banks, N., Dutra, A., Pak, E., Lasutschinkow, P. C., Keen, C., Davis, S. M., Tartaglia, N. R., ... Page, D. C. (2023). The human inactive X chromosome modulates expression of the active X chromosome. *Cell Genomics*, *3*(2), 100259. https://doi.org/10.1016/j.xgen.2023.100259
- Sekiguchi, T., Iida, H., Fukumura, J., & Nishimoto, T. (2004). Human DDX3Y, the Y-encoded isoform of RNA helicase DDX3, rescues a hamster temperature-sensitive ET24 mutant cell line with a DDX3X mutation. *Experimental Cell Research*, *300*(1), 213–222. https://doi.org/10.1016/j.yexcr.2004.07.005
- Snijders Blok, L., Madsen, E., Juusola, J., Gilissen, C., Baralle, D., Reijnders, M. R. F.,
 Venselaar, H., Helsmoortel, C., Cho, M. T., Hoischen, A., Vissers, L. E. L. M., Koemans,
 T. S., Wissink-Lindhout, W., Eichler, E. E., Romano, C., Van Esch, H., Stumpel, C.,
 Vreeburg, M., Smeets, E., ... Kleefstra, T. (2015). Mutations in DDX3X Are a Common

Cause of Unexplained Intellectual Disability with Gender-Specific Effects on Wnt Signaling. *American Journal of Human Genetics*, *97*(2), 343–352. https://doi.org/10.1016/j.ajhg.2015.07.004

- Szappanos, D., Tschismarov, R., Perlot, T., Westermayer, S., Fischer, K., Platanitis, E., Kallinger, F., Novatchkova, M., Lassnig, C., Müller, M., Sexl, V., Bennett, K. L., Foong-Sobis, M., Penninger, J. M., & Decker, T. (2018). The RNA helicase DDX3X is an essential mediator of innate antimicrobial immunity. *PLoS Pathogens*, *14*(11), e1007397. https://doi.org/10.1371/journal.ppat.1007397
- Venkataramanan, S., Gadek, M., Calviello, L., Wilkins, K., & Floor, S. N. (2021). DDX3X and DDX3Y are redundant in protein synthesis. *RNA (New York, N.Y.), 27*(12), 1577–1588. https://doi.org/10.1261/rna.078926.121