
Towards Secure Machine Learning Acceleration: Threats
and Defenses Across Algorithms, Architecture, and

Circuits

by

Kyungmi Lee
B.S., Seoul National University, 2018

S.M., Massachusetts Institute of Technology, 2020

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2024

© 2024 Kyungmi Lee. This work is licensed under a CC BY-NC-ND 4.0 license.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by: Kyungmi Lee
Department of Electrical Engineering and Computer Science
May 17, 2024

Certified by: Anantha P. Chandrakasan
Vannevar Bush Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by: Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Studies

https://creativecommons.org/licenses/by-nc-nd/4.0/

2

Towards Secure Machine Learning Acceleration: Threats and
Defenses Across Algorithms, Architecture, and Circuits

by

Kyungmi Lee

Submitted to the Department of Electrical Engineering and Computer Science
on May 17, 2024 in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

ABSTRACT

As deep neural networks (DNNs) are widely adopted for high-stakes applications that
process sensitive private data and make critical decisions, security concerns about user data
and DNN models are growing. In particular, hardware-level vulnerabilities can be exploited
to undermine the confidentiality and integrity required for those applications. However, con-
ventional hardware designs for DNN acceleration largely focus on improving the throughput,
energy-efficiency, and area-efficiency, while the hardware-level security solutions are signifi-
cantly less well understood.

This thesis investigates the memory security for DNN accelerators, where the off-chip
main memory cannot be trusted. The first part of this thesis illustrates the vulnerability
of sparse DNNs to fault injections on their model parameters. It presents SparseBFA, an
algorithm to identify the most vulnerable bits among the model parameters of a sparse
DNN. SparseBFA shows that a victim DNN is highly susceptible to a few bit flips in the
coordinates of sparse weight matrices, less than 0.00005% of the total memory footprint for
its parameters.

Second, this thesis proposes SecureLoop, a design space exploration framework for se-
cure DNN accelerators that support a trusted execution environment (TEE). Cryptographic
operations are tightly coupled with the data movement pattern in secure DNN accelerators,
complicating the mapping of DNN workloads. SecureLoop addresses this mapping challenge
by using an analytical model to describe the impact of authentication block assignments and
a simulated annealing algorithm to perform cross-layer optimizations. The optimal map-
ping identified by SecureLoop is up to 33% faster and 50% better in energy-delay product
compared to conventional mapping algorithms.

Finally, this thesis demonstrates the implementation of a secure DNN accelerator target-
ing resource-constrained edge and mobile devices. This design addresses the implementation-
level challenges of supporting a TEE and achieves a low overhead of less than 4% performance
slowdown, 16.5% more energy consumption per each multiply-and-accumulate operation, and
8.1% of the accelerator area.

Thesis supervisor: Anantha P. Chandrakasan
Title: Vannevar Bush Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I am truly grateful to the many people who supported me throughout my Ph.D. journey.
First and foremost, I would like to thank my advisor, Prof. Anantha P. Chandrakasan, for

all his advice and support. Prof. Chandrakasan introduced me to the exciting research area
of security and machine learning, encouraged me to work on important research problems,
helped me tackle challenges in the research process, and taught me to present my research
effectively. I thank Prof. Chandrakasan for being an amazing advisor and mentor and
always being patient and nice. I was fortunate to join Prof. Chandrakasan’s research group
six years ago, which provided a collaborative and supportive environment throughout my
Ph.D. journey.

Next, I am very grateful to Prof. Mengjia Yan and Prof. Joel S. Emer for being on my
thesis committee and also being amazing collaborators. They provided valuable discussions
for the second contribution of this thesis and provided detailed feedback on manuscripts
and presentations. I really appreciate Prof. Yan and Prof. Emer for taking their time and
sharing even more feedback and discussions for my thesis. I also thank Prof. Yan for being
on my RQE committee and providing many insights on hardware security. I learned a lot
from Prof. Emer on hardware architecture for deep learning as well, as a student for his
course and later as a teaching assistant.

I would like to acknowledge the Korea Foundation for Advanced Studies, MIT Jacobs
Presidential Fellowship, and Siebel Scholars Program for financial support. The projects
in this thesis are sponsored by Samsung Electronics and Facebook in part, and the TSMC
University Shuttle Program supported the chip fabrication. I thank all these sponsors for
generously supporting my research.

Moreover, I thank Prof. Vivienne Sze for all her help. I took two of her courses on digital
circuits and hardware architecture for deep learning, both of which provided a thorough
understanding of hardware design and machine learning. I thank her for giving me an
opportunity to be a teaching assistant for the hardware architecture for deep learning course.
Also, I thank Prof. Sze for being my RQE committee chair and taking the time to provide
feedback on my research.

I would also like to thank my graduate counselor, Prof. Jae S. Lim, for guiding me
through the graduate program and following up on my progress.

I thank Dr. Saurav Maji, Dr. Donghyeon Han, and Gaurab Das for being my collab-
orators. Thanks to Dr. Maji, I could explore the physical side-channel and fault-injection
vulnerabilities of a DNN accelerator. Dr. Han and Gaurab provided valuable discussions and
help in implementing a secure DNN accelerator supporting a trusted execution environment
in silicon. Also, I thank Dr. Alex Ji for the digital process flow setup and sharing resources

5

for the chip design and FPGA implementations.
I am grateful to have had amazing labmates throughout the past six years. My labmates

provided an intellectually motivating and friendly environment. I thank my past and present
labmates, Preet, Sirma, Wanyeong, Utsav, Mohamed, Alex, Taehoon, Miaorong, Saurav,
Aya, Ray, Rishabh, Vipasha, Jongchan, So-yoon, Kaustav, Maitreyi, Yeseul, Eunseok, Deniz,
Zoey, Saebyeok, Adam, Patricia, Mingran, Dimple, Mohith, Donghyeon, Sarina, Jaehong,
Seoyoon, Aylin, Jaeyoung, Gloria, Joanna, Haripriya, Young-hwa, Burcin, and Vincent.

I thank our past and present lab administrators, Margaret Flaherty, Jessie-Leigh Thomas,
and Katey Provost for all their support with logistics and administrative work. I also
thank Yuvie Cjapi for scheduling all meetings and my defense. Furthermore, Prof. Leslie
Kolodziejski, Janet Fisher, Alicia Duarte, Meredith Bittrich, and other staff of the EECS
graduate office provided immense support for my Ph.D. program.

I thank all my friends who made my Ph.D. experience more enjoyable. In particular,
I would like to thank my partner, Gilhyun Ryou, for being my best friend throughout my
Ph.D. journey.

Finally, I am really grateful to my parents for their unconditional love and support
throughout my life. They taught me important life lessons and made me who I am today.
Thank you so much for everything.

6

Contents

Title page 1

Abstract 3

Acknowledgments 5

List of Figures 11

List of Tables 15

1 Introduction 17
1.1 Motivation . 17

1.1.1 Necessity for Security in AI Applications 17
1.1.2 Importance of Hardware Security . 19
1.1.3 Necessity for Secure Hardware Accelerator for AI 20

1.2 Thesis Contributions . 21
1.2.1 Attacking Sparse Deep Neural Networks with the Worst-case Bit Flips

in the Connections . 21
1.2.2 Design Space Exploration of Secure DNN Accelerators 22
1.2.3 Secure Off-chip Memory Interface for Neural Engines 23

2 Background 25
2.1 Computations in Deep Neural Networks . 25
2.2 Hardware Support for Deep Neural Networks 28
2.3 Off-chip Memory Vulnerabilities . 32

3 Attacking Deep Neural Networks with the Worst-case Bit Flips 35
3.1 Background . 36

3.1.1 Bit Flip Attacks . 36
3.1.2 Pruning and Sparsity in Deep Neural Networks 37

3.2 Sparsity as a New Vulnerability . 39
3.2.1 Problem Definition and Notation . 40
3.2.2 Threat Model . 41
3.2.3 Algorithm: SparseBFA . 42

3.3 Attack Results . 47
3.3.1 Sensitivity to Sparsity . 48

7

3.4 Summary . 49

4 Design Space Exploration of Secure Deep Neural Network Accelerators 51
4.1 Background . 52

4.1.1 TEE for DNN Accelerators . 52
4.1.2 Design Space Exploration . 56

4.2 Challenges of Secure DNN Accelerators . 57
4.2.1 Overhead of Cryptographic Engines 58
4.2.2 Authentication Block Assignment . 59

4.3 Mapping for Secure Accelerators . 63
4.3.1 A Model for Cryptographic Operations 64
4.3.2 Optimal Authentication Block Assignment 65
4.3.3 Cross-layer Fine Tuning . 75

4.4 Evaluation of the Mapping Algorithm . 80
4.5 Impacts of Architecture Configurations . 85

4.5.1 Cryptographic Engine . 85
4.5.2 Processing Elements Array . 86
4.5.3 On-chip SRAM . 87
4.5.4 Area vs. Performance Trade-off . 88
4.5.5 Discussions on Other Design Aspects 89

4.6 Summary . 90

5 Secure Off-chip Memory Interface for Deep Neural Network Inference Ac-
celerators 93
5.1 Secure DNN Accelerator Architecture Overview 94

5.1.1 Challenges . 95
5.2 Secure Off-chip Memory Interface . 97

5.2.1 Managing Nonces . 99
5.2.2 Authentication Blocks . 100
5.2.3 Memory Map and Transpose Problem 103
5.2.4 Lightweight Cryptography . 106
5.2.5 Putting Together . 108

5.3 Cryptographic Engine Throughput Requirement and Fused-layer Processing 110
5.3.1 Hardware Support for Fused-layer Processing 112

5.4 Results . 116
5.4.1 Baseline DNN Accelerator Architecture 117
5.4.2 Comparison with SecureLoop . 120
5.4.3 Implementation Results . 123

5.5 Related Work . 125
5.6 Summary . 126

6 Conclusion 129
6.1 Summary of Contributions . 129
6.2 Future Work . 131

8

A Artifact for SecureLoop 135

References 139

9

10

List of Figures

2.1 Examples of linear tensor operations widely used in DNNs. 26
2.2 Examples of special funtions applied to a tensor. 27
2.3 DNNs have multiple layers, where each layer is typically composed of a linear

tensor operation followed by a nonlinear activation function. 28
2.4 A DNN accelerator design can be conceptually described using a roofline

model to capture the performance depending on the memory access and a
loopnest to specify the actual computations. 29

2.5 Off-chip memory components like DRAM can be exposed to several hardware-
level attacks. 32

3.1 A sparse tensor can be represented with a sparse matrix format, that separtely
stores the nonzero values and the coordinates of those values. In this example,
a sparse weight tensor is stored using a coordinate list (COO) format. 38

3.2 (a) When an attacker flips a bit in the coordinates representing the location of
nonzero weights, the connection between neurons is rewired. (b) SparseBFA
aims to find the minimal number of bit flips in the coordinates to degrade the
performance of DNNs. In this example, the object detection model [89] that
originally predicts both a person and a horse correctly loses its performance
after 30 bit flips found by SparseBFA, and wrongly predicts that a chair is
present in the image (from PASCAL-VOC [90]). 39

3.3 Accuracy of the ResNet50 model as bits in the coordinate list are flipped
using different approximation methods for SparseBFA. RandomFlip, which
induces random bit flips similar to soft errors, is reported as a baseline. All
experiments are repeated five times, and we report means. 45

3.4 Accuracy of the Conv4FC2 models trained on CIFAR-10 with different spar-
sity as the number of bit flips found by SparseBFA-Taylor increases. We
report the mean of five trials. 49

4.1 A cryptographic engine supporting AES-GCM, a widely used authenticated
encryption protocol. 53

4.2 The tradeoff space for AES implementations. 55
4.3 The same piece of data is used as ofmap of one layer (a) and as ifmap of

the next layer (b) and the two layers use different tiling configurations. (c)
shows that redundant reads are introduced when using the data as ifmap but
assigning Authblock following ofmap’s tiling organization. 60

11

4.4 Compare ifmap tiles for two different accelerators, one that directly supports
CONV (a), and the other that computes matrix multiplications after convert-
ing CONV using im2col (b). 61

4.5 Overview of the search engine for mappings in SecureLoop. 63
4.6 Examples of different AuthBlock assignments and their corresponding hash

reads and redundant reads overhead. (a) reassembles the cross-layer depen-
dency example discussed in Section 4.2.2. (b)-(f) describes 5 different authen-
tication block assignment strategies. Each AuthBlock is marked with solid
blue lines and the corresponding caption describes the AuthBlock orientation
and size. 66

4.7 Mathematical formulation of counting redundant reads for a given AuthBlock
assignment. 69

4.8 Even when two tiles have mismatches in multiple dimensions (two here), they
can be boiled down to the example in Fig. 4.7 with maximum one authenti-
cation block miscounted. 73

4.9 The amount of off-chip traffic incurred for accessing tilej in Fig. 4.7(a) when
varying the AuthBlock orientation and size. 75

4.10 Improvement in latency (speedup) when using simulated annealing for differ-
ent values of k, compared to when only the top-1 loopnest mapping for each
layer. 79

4.11 Impacts of mapping algorithms on performance and off-chip traffic. 82
4.12 Left: Roofline model for accelerators using different mapping algorithms.

White markers represent the unsecure baseline, and colored markers repre-
sent secure accelerators. Right: Roofline model zoomed in to show different
mapping algorithms for the MobilenetV2 workload. 84

4.13 Slowdown over the unsecure baseline design and the area overhead of secure
accelerators varying in their cryptographic engine configurations. 85

4.14 Latency for secure accelerator designs varying in their number of PEs. 86
4.15 Latency of designs varying in the size of on-chip SRAM buffer. 87
4.16 The area vs. performance trade-off of secure accelerator designs. Points high-

lighted with red edges indicate the Pareto front of this trade-off curve. 88

5.1 Overview of secure DNN accelerators supporting a TEE showing the necessary
functionalities for a off-chip memory interface. 95

5.2 Constructing a unique nonce requires the address and the timestamp. 98
5.3 A simple 1-dimensional example to visualize the authentication-block-based

off-chip memory access control. 100
5.4 Introducing a transpose buffer can reduce the stalls due to the SRAM write

operation. In this example, a transpose buffer that can hold two columns can
initiate SRAM write for every two decryptions, reducing the stall cycles to
two cycles per two decryptions (instead of only one decryption). 104

12

5.5 The trade-off between the effective cryptographic engine bandwidth consid-
ering the stalls from transposed writes (y-axis) and the size of the transpose
buffer (B) representing the number of words that can be written in paral-
lel (x-axis). Different lines represent cryptographic engines with the baseline
throughput stated in the legend. 105

5.6 Cryptographic operations for each authentication block using ASCON-128a.
Here we depict the encryption of plaintext data to generate ciphertext data.
The decryption of ciphertext data can be done similarly. IV refers to an
initialization vector as defined in [110]. 106

5.7 A block diagram of the secure off-chip memory interface supporting 1) the
off-chip address tracking based on authentication blocks, 2) authenticated
encryption on the off-chip data, and 3) alignment of the decrypted data with
the on-chip SRAM address map. 108

5.8 Two matrix multiplications in a self-attention module are often memory-bound
due to the large intermediate tensor (QK). This QK tensor is the output of
the first matrix multiplication, and serves as the input to the second matrix
multiplication. 110

5.9 The hardware implementation of softmax requires several element-wise and
reduction operations. We denote the input tensor to the softmax module in
blue, the output tensor in red, element-wise operations in gray, and reduction
operations across the entire vector in orange. The floating-point input tensor
is first converted to fixed-point numbers. Then, the tensor is normalized by
subtracting the maximum value. The exponentiation is performed using a
look-up table (LUT). Finally, the inverse of the sum of the exponentials is
multiplied with each element to generate the output tensor. 111

5.10 (a) A comparator unit can take multiple elements (Smax = 4 in this example),
and return the maximum value among those elements in a single cycle. How-
ever, the critical path delay increases as more elements have to be compared
in a single cycle. (b) Multiple Pmax comparator units can operate in parallel.
Then, in a single cycle, Pmax × Smax elements can be compared to generate
Pmax results. (c) The maximum value among n elements can be found across
multiple stages. 113

5.11 The error of approximating the exponential operation with a look-up table
using fixed-point references. 115

5.12 The baseline DNN accelerator design used for evaluation. 117
5.13 Architecture constraints for each workload showing the parallel and temporal

factors. These constraints are used to identify the mapping for the baseline
architecture. Notations follow Fig. 2.1. 118

5.14 A workload used to evaluate the performance of SecureLoop and the cycle-
accurate RTL simulation. We consider an input tensor that has dependency
on the previous layer’s output tensor. 119

5.15 Comparing the performance estimated by SecureLoop and measured by the
cycle-accurate RTL implementation of the secure accelerator designs. 121

5.16 (a) The performance overhead of using the secure TEE mode. (b) The area
breakdown of a secure DNN accelerator design. 123

13

14

List of Tables

3.1 Summary of the characteristics of DNNs and the number of bit flips found
by SparseBFA-Taylor required to reach the target accuracy level. We report
sparsity, the total number of bits (when the model parameters are stored
using COO, assuming that the values are nonlinearly-quantized using 4-bits
for CIFAR-10/TinyImageNet and 6-bits for PASCAL-VOC), and the original
accuracy of the models, along with the number of bit flips. All SparseBFA
experiments are repeated 5 times with different random seeds, and we report
means and standard deviations for the number of bit flips. 47

4.1 Summary of different mapping algorithms. 81
4.2 Specifications of AES and Galois-field multiplier (GFMult) used to construct

an AES-GCM engine. 85

5.1 The specification of a workload used to compare SecureLoop and the RTL
implementation . 119

5.2 Design parameters of a secure DNN accelerator implementation 122
5.3 The power and energy per each MAC operation for the unsecure normal mode

and the secure TEE mode. 123
5.4 Performance and specification of a fabricated design of a secure DNN accelerator125

15

16

Chapter 1

Introduction

Recent years have witnessed a rapid growth in artificial intelligence (AI), driven by successes

of deep learning. AI is widely adopted for chat bots [1], virtual assistance for computer

programming [2], search engines [3], image and video generation [4], design automation tools

for semiconductor chip designs [5], autonomous driving [6], and drug discovery [7]. Following

this widespread adoption of AI in consumer products and critical applications, ensuring the

security of AI is becoming increasingly important. The goal of this thesis is to understand the

security vulnerabilities of AI applications across the technology stack of algorithms, hardware

architecture, and circuits, and to provide a defense solution without significant overhead to

the system. In this chapter, we outline the necessity for secure hardware acceleration for AI

applications and the key contributions of this thesis.

1.1 Motivation

1.1.1 Necessity for Security in AI Applications

Security has three important properties: confidentiality, integrity, and availability [8]. In

this section, we illustrate how each of these three pillars has direct connections with AI

applications.

17

First, confidentiality requires that the data should be kept private and not be accessed by

unauthorized users. In the context of AI, confidentiality is crucial for applications handling

sensitive user information, such as medical imaging for diagnosing diseases [9]. The user

input data, which is the private health information of patients in those applications, should

not be disclosed and can be protected under the regulations (e.g., the Health Insurance

Portability and Accountability Act (HIPAA) [10]). This user data privacy can become even

more important in the future, in light of recent regulations like the European Union’s General

Data Protection Regulation (GDPR) [11]. Furthermore, confidentiality is also applicable to

the model parameters of deep neural networks (DNNs), which are core algorithms in many

AI applications. Training a DNN can require large proprietary datasets and resources (e.g.,

it is claimed that the training process of GPT-4, a popular large language model, costs more

than $100 million [12]; training large foundation models is becoming more expensive [13]),

and the leak of model parameters can be detrimental to intellectual property rights of AI

service providers.

Second, integrity stipulates that the data should not be improperly perturbed. Integrity is

crucial for AI to deliver trustworthy decisions to its users, by guaranteeing that the data user

requested for processing and the model parameters are authentic. Recent work demonstrated

the vulnerability of DNNs to small adversarial perturbations both in their input data [14]–

[16] and their model parameters [17], [18], and to soft errors arising from reliability issues [19].

For example, a few bit flips in the model parameters of a DNN can result in the complete

degradation of performance [17], [18] or wrong classification to a particular output desired

by an adversary [20]. Therefore, ensuring that both the data and the model parameters are

unperturbed and intact is important.

Finally, availability means that the data should be reliably available to valid and autho-

rized requests. For AI applications, availability can be undermined when an adversary wages

denial-of-service attacks, which can prevent valid users from accessing the applications. Such

a scenario can be dangerous for applications with real-time constraints.

18

These security concerns often prevent the adoption of AI applications. For example, the

United States House of Representatives banned using Microsoft Copilot [21] due to data

confidentiality issues. Security concerns are also manifest in a recent industry survey. In one

recent report [22], security was the top concern for the infrastructure hosting AI applications,

ahead of cost, for industry respondents.

Therefore, securing AI applications from potential sources of confidentiality, integrity,

and availability breaches is necessary for AI to be adopted for important missions and for

enhancing public trust.

1.1.2 Importance of Hardware Security

Security vulnerabilities can exist across multiple levels of the technology stack supporting

AI. Among them, hardware architecture and physical layer vulnerabilities are particularly

pernicious. First, unlike software-level vulnerabilities that can be readily fixed, hardware-

level vulnerabilities are difficult to patch after the fabrication of the physical hardware.

Second, hardware-level vulnerabilities are often not a result of flaws in architecture or

implementations. For example, micro-architectural side-channels arise from the sharing of

resources (e.g., caches), which is intended by design and not a flaw in itself [23], [24]. Many

physical-layer side-channels exploit the inherent characteristics of electronic circuits, such as

the dependency of power consumption on the data [25]–[27]. In memory elements, such as

DRAM, vulnerabilities are tied to the physical properties of the memory cells, including the

data remanence property [28] and the interference between closely positioned cells [29]. Thus,

we cannot easily remove the source of hardware-level vulnerabilities to provide a defense, as

they are inherent or intended features.

Finally, providing a defense to hardware-level vulnerabilities can be “costly”. Typically,

adding support for security trade-offs performance (e.g., applications will run slower), energy

(e.g., in battery-operated devices, shorter battery life), and area (e.g., the cost for fabrication

increases). However, these trade-offs can be intolerable to users and applications. For ex-

19

ample, performance slowdown can be critical for applications running in real-time especially

if the resulting latency exceeds the real-time constraint. Also, the willingness to accept

performance loss gets significantly more expensive for a larger amount of slowdown (e.g.,

30%) [30]. For mobile and edge devices, area and energy overhead can be concerning since

they are battery-operated and sometimes target low-end cost-sensitive markets. Therefore,

while security is critical in AI applications, support for security has to be economic, making

the problem more challenging.

1.1.3 Necessity for Secure Hardware Accelerator for AI

Securing AI applications against hardware-level vulnerabilities can be done in many ways.

However, we aim for a small hardware root of trust for providing a defense. For the hardware

accelerators for DNNs, our goal is to reduce the root of trust to the accelerators themselves,

instead of relying on other third-party hardware or software stacks.

First, we note that relying on third-party hardware for security has several downsides.

Extending the root of trust to many hardware components manufactured by different ven-

dors has a composability problem. Several hardware components should be coordinated well

to guarantee security without exposing a new attack surface, which can be difficult. Also,

memory components like DRAM generally lack computing capability, and engineering mem-

ory components to support security can be challenging. For example, with some exceptions

for recent High Bandwidth Memory (HBM) and 2.5/3D integration, general DRAM lacks

compute capacity and cannot perform complex operations required for supporting security.

Therefore, reducing the root of trust to the processor itself and removing dependencies on

third-party hardware components is beneficial for security and practical implementation.

Another benefit of a small hardware root of trust is that it does not rely on software

stacks, and does not require algorithms to be modified to support security. For example, the

training process for DNNs can be modified such that DNNs can recover from faults or detect

faults using algorithms carefully tailored for this defense capability [31]–[34] However, these

20

algorithm-level defenses often depend on a DNN-specific or an attack-specific characteristic,

and they can turn out to be ad-hoc solutions. Considering that the training process for DNNs

is expensive and time-consuming, relying on algorithms to provide security can be unscalable

as well. A hardware-oriented solution is more general compared to these algorithm-level

patches.

1.2 Thesis Contributions

This thesis focuses on hardware-level vulnerabilities of the off-chip memory for DNN ac-

celerators. The goal of this thesis is to understand the significance of those vulnerabilities

and to propose a secure DNN accelerator that supports confidentiality and integrity with

low overheads. This thesis has three contributions, addressing the topics at the algorithm-,

architecture-, and circuit-level. We briefly introduce the key motivations and the summary

for each contribution.

1.2.1 Attacking Sparse Deep Neural Networks with the Worst-case

Bit Flips in the Connections

First, we investigate the significance of fault injection attacks in sparse DNNs. Fault injection

attacks in the off-chip DRAM, such as rowhammer attacks [29], [35], can induce bit flips in

the model parameters of a victim DNN. However, there are billions of bits in a victim

DNN, and most of the bit flips can be benign without causing a significant degradation in

the model prediction. Thus, hardware-level vulnerabilities alone cannot visibly disturb the

victim applications if they do not know which bits to attack.

In this work, we propose a search algorithm that identifies the most critical bit flips for

DNNs with fine-grained sparsity in weight tensors. This algorithm leverages the characteris-

tic of a compressed format used to store sparse tensors. It finds a small set of bits (i.e., 1 in

2 million bits or less than 0.00005% of total bits) that cause a significant accuracy drop in a

21

victim DNN. Therefore, the algorithm’s characteristics can make exploiting hardware-level

vulnerabilities easier.

This work was published at IEEE International Conference on Acoustics, Speech, and

Signal Processing in 2022, and Chapter 3 is based on this publication [36].

1.2.2 Design Space Exploration of Secure DNN Accelerators

In the second contribution, we present a framework for design space exploration of secure

DNN accelerators. Several hardware-level vulnerabilities of the off-chip memory and attacks

exploiting those vulnerabilities targeting AI applications [17], [18], [28], [29], including our

first contribution, motivate securing DNN accelerators from the untrusted off-chip memory.

A trusted execution environment (TEE) can be an appealing defense solution, where all

off-chip data traffic is encrypted and authenticated using a cryptographic primitive [37]–[39].

However, the cost of supporting a TEE in DNN accelerators can be elusive. DNN accel-

erators have a large design space, targeting diverse deployment environments from resource-

constrained edge devices to high-performance data centers [40]–[44]. Also, there are diverse

design choices for hardware support for cryptographic operations as well, with different per-

formance, energy, and area trade-offs [45]–[50]. Thus, the cost of securing one accelerator

design cannot be easily generalized to other designs with distinct performance goals and

area/energy budgets.

We propose SecureLoop, a design space exploration framework for secure DNN acceler-

ators, to systematically understand the cost of supporting a TEE in diverse designs. At the

core of SecureLoop is the search algorithm for identifying the optimal mapping for a given

DNN workload and a design specification. We illustrate the unique challenges for developing

this mapping algorithm, arising from the granularity of data accesses, and provide two key

techniques to overcome these challenges. Using our mapping algorithm, we show the area

vs. performance trade-off for secure DNN accelerators and provide design insights.

This work was published at IEEE/ACM International Symposium on Microarchitecture

22

in 2023, and Chapter 4 is based on this publication [51].

1.2.3 Secure Off-chip Memory Interface for Neural Engines

Finally, we implement a DNN accelerator with a secure off-chip memory interface supporting

a TEE. This security support has a low overhead of less than 4% performance slowdown,

16.5% more energy consumption per each multiply-and-accumulate operation, and 8.1% of

the accelerator area, demonstrating that off-chip memory security can be practically achieved

for DNN accelerators targeting mobile and edge devices.

For this final contribution, we implement the design in silicon. This circuit-level imple-

mentation provides a fine-grained understanding of overhead, such as the control logic for

security features, compared to the software performance simulation of SecureLoop. Also,

the impact of implementation-level decisions (i.e., the same architecture specification can be

implemented in different manners) can be measured with this fine-grained implementation.

Lastly, the software simulation can be validated using the hardware implementation results.

When there are gaps between the software simulation and the actual implementation, those

gaps can benefit the future development of simulations to improve their accuracy.

23

24

Chapter 2

Background

2.1 Computations in Deep Neural Networks

From the perspective of computation, DNNs are composed of multiple tensor algebra oper-

ations. Examples of widely used tensor algebra operations in a DNN include matrix-vector

multiplications, matrix-matrix multiplications, and convolutions (Fig. 2.1). These operations

take two tensors as operands, perform multiplications and/or summations across certain di-

mensions in those tensors, and produce a new tensor as an output. For example, a batched

matrix multiplication (Fig. 2.1a) takes two input tensors, each with N×A×C and N×C×B

elements, and produces an output tensor with N × A × B elements. This computation re-

quires one row in the input tensor 1 and one column in the input tensor 2 to be multiplied

element-wise, then reduced using accumulation to generate a single output element. Note

that a domain-specific language like Einsum [52], [53] can succinctly capture these tensor

algebra operations, and popular software libraries for machine learning support Einsum to

represent tensor algebra operations [54], [55].

Other than these linear tensor algebra operations, DNNs often require special functions

to be applied to a tensor. For example, activation functions like ReLU and softmax are

applied to a tensor to add non-linearity. Also, pooling operations that compute a maximum

25

(a) Batched matrix-matrix multiplication. Two input tensors, each a batch of 2-dimensional matri-
ces, are multiplied to generate the output tensor.

(b) Batched matrix-vector multiplication. A weight matrix is multiplied with a batch of 1-
dimensional input vectors to generate a batch of output vectors.

(c) 2-dimensional convolution. A 4-dimensional weight tensor is applied to a 3-dimensional input
tensor to generate a 3-dimensional output tensor.

Figure 2.1: Examples of linear tensor operations widely used in DNNs.

26

(a) A pointwise nonlinear activation function, ReLU, applied to a tensor

(b) A reduction operation, MaxPool, is applied over a window of elements to generate a smaller
output tensor

(c) A reduction operation can be applied to the entire dimension of a tensor, such as in Softmax

Figure 2.2: Examples of special funtions applied to a tensor.

or average value over a window of elements are applied to reduce the intermediate tensor

sizes [56]. These special functions can be element-wise operations (e.g., ReLU) or require

reduction over the entire dimension (e.g., softmax).

These tensor operations and special functions can be composed to build a complex com-

putation graph for DNNs. For example, convolutional neural networks widely used for

computer vision applications stack multiple 2-dimensional convolutions, and non-linear acti-

vation functions, followed by the final matrix-vector multiplication [57]–[62]. A self-attention

module in Transformer models first projects the input tensor to three intermediate tensors

using matrix-vector multiplication, then computes matrix-matrix multiplication over these

intermediate tensors followed by a softmax activation function [63]–[65].

Often, a ‘layer’ in a DNN refers to one linear tensor algebra operation followed by a non-

linear activation function (e.g., one 2-dimensional convolution followed by a ReLU activation)

27

Figure 2.3: DNNs have multiple layers, where each layer is typically composed of a linear
tensor operation followed by a nonlinear activation function.

(Fig. 2.3). This terminology is typically used to describe an algorithmic motivation of a

DNN, where a DNN can be thought of as stacking multiple layers of neurons that perform

a transformation on their inputs (e.g., multi-layer perceptrons) [56]. Since linear tensor

operations with no intermediate non-linearity can be folded together as a single linear tensor

operation, we refer to a ‘layer’ as one linear tensor operation followed by a nonlinearity in

this thesis.

For linear tensor operations, the operands to one layer can be the output of its previous

layer or a ‘weight’ tensor that represents the learnable parameters in a DNN. A weight

tensor is fixed during the inference, and it has no dependency on other tensor data in a

computation graph for a DNN. However, when an input operand is the output of a previous

tensor operation, it creates a sequential (or ‘cross-layer’) dependency in a computation graph.

2.2 Hardware Support for Deep Neural Networks

DNNs have a large number of parameters (i.e., the size of ‘weight’ tensors) and the total

number of computations (i.e., floating-point multiplications and additions) required to get

the final output is also large. Meanwhile, many of the computations in tensor operations

can be parallelized. For example, consider matrix-vector multiplication. Each element in its

output tensor can be viewed as an inner product of the input tensor and one row in the weight

tensor, and each element can be computed in parallel as there is no dependency between

28

(a) An example DNN accelerator with a
three-level memory hierarchy (DRAM,
on-chip SRAM, and PE registers)

(b) A roofline model illustrating the re-
lationship between the memory access
and the computation

(c) A loopnest describing the mapping of a DNN workload,
where the tiling strategy, datatypes kept at each memory
hierarchy, parallelization, and the computation order are de-
scribed

Figure 2.4: A DNN accelerator design can be conceptually described using a roofline model
to capture the performance depending on the memory access and a loopnest to specify the
actual computations.

29

the elements. Such parallelisms are key to accelerating the computing of DNNs. Among

commercially available hardware, Graphical Processing Units (GPUs) are widely adopted

for this purpose [57]. However, there have been an increasing number of efforts in designing

domain-specific accelerators for DNNs, both in academia [40]–[42] and industry [44]. While

these domain-specific accelerators have limited capacity for general-purpose computing like

GPUs, they optimize the data movement and computation for tensor operations in DNNs

and improve the performance and energy of computing.

Domain-specific DNN accelerators tackle the data- and compute-intensive nature of

DNNs with efficient memory hierarchy and parallelism. Fig. 2.4(a) shows an example ac-

celerator design. It has multiple processing elements that have multiply-and-accumulate

arithmetic units and registers for holding the operands and results. These processing ele-

ments form a spatial array that can operate in parallel for computations.

While the size of this processing element array determines the maximum parallelism that

can be achieved by a design, memory plays a critical role in the overall performance and

energy. In this example, there are three different types of memory elements: an off-chip

DRAM, an on-chip buffer, and registers at each processing element. They have different

characteristics in their throughput, latency, energy, and area: the off-chip DRAM has the

largest capacity per area, but has high latency and energy per access, whereas the registers are

fast to access but are limited in their area-efficiency. As a result, different memory elements

form a hierarchy, and an accelerator design aims to minimize the energy and improve the

throughput by carefully coordinating the data movement across the memory hierarchy [40],

[66].

Note that the bandwidth of memory elements can limit the data supply to the processing

element array, preventing the design from achieving the maximum possible performance.

This relationship between the memory elements and the processing elements can be concisely

captured by a roofline model [67] (Fig. 2.4(b)). The x-axis and the y-axis of a roofline

model represent the number of operations per byte of data (i.e., computational intensity)

30

and the performance measured as the number of operations per second, respectively. The

slanted line represents the ‘memory-bound’ region, where the data supply rate limits the

accelerator from utilizing all processing elements. The horizontal line shows the ‘compute-

bound’ region, where the data is sufficiently provided but the size of the processing element

array itself limits the performance. Therefore, it is important to balance the parallelism with

the memory hierarchy: if the computational intensity cannot be easily increased to fall in the

compute-bound region, increasing the size of the processing element array will not improve

the performance.

Tensor algebra operations in DNNs are mapped to the memory hierarchy and the pro-

cessing element array of the DNN accelerators. There can be several different ways a tensor

algebra operation can be actually performed in a DNN accelerator, including how tensors

are partitioned to be stored at each memory level and how the computations are sched-

uled temporally [40], [52], [66]. Mappings refer to these different ways of performing the

actual computation, and determining the optimal mapping for a given DNN workload and a

DNN accelerator architecture can be thought of as ‘compiling’ a program in general-purpose

computing [66].

A mapping can be concisely described using a nested for-loops (Fig. 2.4(c)). The process-

ing element array will compute several arithmetic operations in parallel. Then, different data

will be supplied to the processing element array across time, and the memory hierarchy will

coordinate this data movement. This spatial and temporal coordination of data is described

as a nested for-loop (Fig. 2.4(c)), where the parallel for-loops describe the computations

that are spatially parallelized over the processing elements and the for-loops at each memory

level describe the tiling of the tensors and the order of computation. Here we note that tiles

are the basic granularity of data movement in the memory hierarchy of a DNN accelerator,

where tiles are small partitions of tensors to enhance data reuse.

31

Figure 2.5: Off-chip memory components like DRAM can be exposed to several hardware-
level attacks.

2.3 Off-chip Memory Vulnerabilities

This thesis focuses on hardware-level vulnerabilities of the off-chip memory components,

especially DRAM. Modern DNNs have large memory footprints, and not all of the data

can be stored in on-chip structures like global buffers or caches. Thus, the off-chip DRAM

is necessary for computing large DNNs, and it acts as a main memory for the hardware

accelerator.

However, compared to the on-chip structures, the off-chip memory components are ex-

posed to potential threats (Fig. 2.5). First, the bus connecting the hardware accelerator and

the off-chip memory can be monitored by an adversary. This bus-snooping attack can recover

the memory traffic, including the data itself and the metadata such as addresses and request

types for the off-chip memory access. Second, the data stored in DRAM can be exposed

to an adversary exploiting cold-boot attacks [28]. Although DRAM is a volatile memory,

meaning that it requires a power supply to keep the data, the data can be readable for a short

period even after it is powered off. Using this data remanence property, cold-boot attacks

recover the data stored in DRAM by rebooting the victim hardware system and dumping

the memory content [68]. Third, the data stored in DRAM can be perturbed, undermining

data integrity. [35] proposed a rowhammer attack following an observation that repeatedly

accessing a row in DRAM causes bit flips in its neighboring row. The interference between

neighboring rows can cause a predictable bit flip pattern, and the attack could evade the

32

error-correcting mechanisms of DRAM [29].

These vulnerabilities of DRAM can be detrimental to the confidentiality and integrity of

AI applications. Recent work [17], [18] showed that a rowhammer attack can be practically

used to induce bit flips in the model parameters of a DNN. Also, successful cold-boot attacks

will read out the weight and intermediate tensors of a victim DNN if they are stored in

DRAM.

33

34

Chapter 3

Attacking Deep Neural Networks with

the Worst-case Bit Flips

Off-chip DRAM is susceptible to fault injection attacks, such as Rowhammer [29], [35], that

can flip values stored in its bit cells. As a result, the weight tensors of a DNN stored in

the off-chip DRAM can be affected, and the integrity of AI applications can be undermined.

However, many bit flips in the weight tensors can be benign and do not change the prediction

of the victim DNN. Thus, for an adversary to successfully exploit DRAM vulnerabilities to

mislead the prediction of a DNN, an adversary needs to understand which bits in the weight

tensors are critical, or one has to inject a large number of faults into DRAM.

This chapter proposes an algorithm to identify the critical bits in weight tensors of a

DNN, especially for a DNN optimized for low memory footprint in edge applications using

model compression techniques [69], [70]. Those critical bits can be the target of fault injection

attacks, and this algorithm shows that the characteristics of DNNs can make the hardware-

level attack easier. This algorithm can be also used to reveal the worst-case behavior of

DNNs under bit flips (i.e., bit flips are not only caused by fault injection attacks but can be

induced by soft errors inherent to DRAM).

35

3.1 Background

3.1.1 Bit Flip Attacks

Fault Injection Attacks

Several fault injection attacks that exploit hardware-level vulnerabilities of DRAM have been

proposed. Notably, rowhammer [29], [35] exploits the electromagnetic interference between

physically close rows in DRAM to induce bit flips. This interference allows rowhammer

to predictably cause bit flips in a victim row in DRAM when an adversary has access to

the neighboring rows of the victim. Rowhammer repeatedly accesses the neighboring rows,

such as requesting multiple reads to those rows. While using rowhammer requires a careful

templating of DRAM to characterize the vulnerable bit cells and memory massaging to lead

the processor to allocate the victim data to the desired bit cells, many works demonstrated

that rowhammer can be practically utilized to wage privilege escalation attacks where an

adversary can gain the root access of the processor [71].

Furthermore, if an adversary has physical access to the hardware, more direct sources

of fault injection can be used. For example, simple timing and voltage glitches can be

used to disturb the memory operations [72], [73], although their precision may be limited.

Also, electromagnetic pulses can be injected, and precise bit flips might be induced for high-

resolution pulses (e.g., pulses have high spatial and temporal resolution to target the desired

component) [74]–[76]. Even for lower-resolution pulses, such indiscriminate faults can be still

used to cause an abnormal execution pattern [77]. Finally, laser attacks cause precise bit

flips, although they require high-cost setup [78].

Attacking DNNs with Fault Injection

Recent work showed how these fault injection methods can be used to attack DNNs. [18]

showed that even a single bit flip can be detrimental for DNNs using floating-point number

36

representations for their weight tensors. In particular, they found that the most significant

exponent bit in a floating-point number can be critical, as this bit flip causes a significant

change in the value. Their analysis showed that 40-50% of total parameters in weight tensors

can cause more than 10% drop in the accuracy of a DNN when a single bit in their floating-

point representations is flipped.

On the other hand, quantized weight tensors that use fixed point representations have a

smaller dynamic range compared to floating point numbers. Consequently, indiscriminately

flipping the most significant bit (MSB) of weights does not cause detrimental degradation

of performance for DNNs [18]. However, [17] proposed a gradient-based search algorithm to

attack quantized DNNs, and showed that only 2-24 bit flips are required to cause the accuracy

of the victim DNN to drop to the random-guess level. This gradient-based algorithm requires

an adversary to know the exact weight tensors (i.e., the white-box attack scenario where an

adversary possesses knowledge of the victim model) and can be applied to many open-sourced

DNN models [79].

Finally, [18], [80] demonstrated that rowhammer can be practically applied to induce

the desired bit flips in an actual hardware system. For example, [80] showed that their

rowhammer attack requires less than 100 seconds to flip 10-20 bits identified by the gradient-

based search algorithm.

3.1.2 Pruning and Sparsity in Deep Neural Networks

Weight Pruning

Pruning has been proposed as a method to reduce the memory footprint of weight ten-

sors [69], [70]. Pruning eliminates weights with less importance and sets those weights to

zero, inducing sparsity in weight tensors. Several pruning algorithms have been proposed,

with different approaches to quantifying the importance of weights and the pattern of spar-

sity. For example, [69] used the magnitude of weights as the importance and set the weights

37

Figure 3.1: A sparse tensor can be represented with a sparse matrix format, that separtely
stores the nonzero values and the coordinates of those values. In this example, a sparse
weight tensor is stored using a coordinate list (COO) format.

with a small magnitude to zero. This method results in fine-grained unstructured sparsity

in weight tensors. Other algorithms proposed using the first-order Taylor’s expansion term,

the second-order derivatives, and the first-order derivatives (gradients) as the importance

metric [81]–[84]. Also, several works proposed structured sparsity considering the hardware

support for sparse tensor operations [85], [86].

Sparse Matrix Format

Sparse tensors can be compactly represented using sparse matrix formats [87], [88]. Instead of

storing the elements in a sparse tensor contiguously including zero values, as in general dense

tensors, sparse matrix formats separate the information about the nonzero values and the

location of those values in the matrix. For example, the coordinate list (COO) (also known

as coordinate-payload) format stores the list of nonzero values in a tensor and a separate

list of their corresponding coordinates (Fig. 3.1). Different formats, such as the compressed

sparse column (CSC) and compressed sparse row (CSR), further compress the coordinates

in certain dimensions in a tensor. These sparse matrix formats reduce the memory footprint

of tensors with a high sparsity level (i.e., if the tensor has a low level of sparsity, then the

38

(a) Visualizing how a bit flip in the coordinates affects a
DNN

(b) Predictions of the object detection model are degraded
by SparseBFA

Figure 3.2: (a) When an attacker flips a bit in the coordinates representing the location of
nonzero weights, the connection between neurons is rewired. (b) SparseBFA aims to find the
minimal number of bit flips in the coordinates to degrade the performance of DNNs. In this
example, the object detection model [89] that originally predicts both a person and a horse
correctly loses its performance after 30 bit flips found by SparseBFA, and wrongly predicts
that a chair is present in the image (from PASCAL-VOC [90]).

coordinate information will only add additional storage overhead).

3.2 Sparsity as a New Vulnerability

Sparse DNNs have a unique source of vulnerability when their weight tensors are stored

using sparse matrix formats. These formats explicitly store the coordinates of nonzero weight

elements. When the coordinates are corrupted by fault injection attacks, the flipped bits

will rewire the connections between the neurons (Fig. 3.2) instead of changing the values of

weights directly. Therefore, the connections in sparse DNNs can be the target of attack, in

addition to the values that have been previously considered in prior work [17], [18].

This section outlines the search algorithm, SparseBFA, for attacking the coordinates of

39

the sparse tensors representing the weights of a victim DNN. Similar to quantized DNNs

with fixed point representations that require gradient-based search instead of indiscriminate

bit flips [17], random bit flips do not significantly affect the accuracy of a victim sparse DNN.

To efficiently and effectively identify the vulnerable bits, SparseBFA employs gradient-based

search with heuristics to reduce the search space considering the characteristics of bit flips

on the coordinates.

3.2.1 Problem Definition and Notation

Our goal is to find the smallest number of bits in the coordinates of nonzero elements of a

sparse DNN f(·) such that flipping those bits results in a large degradation of performance.

Suppose f(·) is parameterized with Θ = {Wi}Li=1 (ignoring biases for simplicity), where Wi

represents the weight tensor of the ith layer in f(·), and its weight matrices/tensors are stored

using sparse matrix formats, such as COO or CSC. Although we will be using COO when

explaining our algorithm, note that different sparse matrix formats are interchangeable [87],

[88] and the analysis we provide is applicable to the other formats without much modification.

We denote the list of nonzero values for the ith weight matrix Wi as Vi, and the list of the

coordinates corresponding to those nonzero values as Ci as in Fig. 3.2. The jth element in Ci

(denoted as Ci[j]) represents a coordinate as a d-tuple of nc-bit unsigned integers, where d

is the dimension of Wi (e.g., 4 for weight tensors in 2-dimensional convolution layers). Also,

Ci[j][k][n] indicates the nth bit in the kth dimension of the coordinate Ci[j], and its value

will be either 0 or 1. Note that we can specify a specific bit in the coordinates using four

variables, i (layer), j (element index), k (dimension), and n (bit).

We denote the loss of a DNN given input samples x and the corresponding ground truth

targets t as l(f(x; Θ), t). This loss can be a cross-entropy loss for the classification tasks

or multi-box loss [89] for the object detection tasks. Furthermore, we assume that f(·) is

generated by iteratively pruning a dense DNN to have the sparsity of r ∈ [0, 1] for each layer,

where r represents the proportion of zero values in the weight tensor, and that nonlinear

40

quantization is applied for the value of weights [70].

Putting these notations together, we want to identify a set of bits specified as

((i1, j1, k1, n1), (i2, j2, k2, n2), ..., (iM , jM , kM , nM)) that maximally degrades the performance

of a victim DNN when flipped. Specifically, we want to minimize M while achieving

Accuracy(f(·,ΘM)) < Random guess (3.1)

where Θ
flip(i1,j1,k1,n1)−−−−−−−−→ Θ1 → · · · flip(iM ,jM ,kM ,nM)−−−−−−−−−−−→ ΘM (3.2)

such that the final accuracy of a victim DNN is below the random guess level (i.e., the

baseline accuracy achieved without any training) for the dataset this DNN has been trained,

such as 10% accuracy for a 10-way classification task.

3.2.2 Threat Model

Throughout this chapter, we assume that an adversary has full knowledge of the weight

tensors of a victim DNN, including the sparse matrix formats storing those tensors. Further-

more, an adversary requires a partial knowledge of the training dataset on which a victim

DNN has been trained, although it does not need to know the entire dataset. For example,

SparseBFA used 128 training samples for CIFAR-10 [91] and TinyImageNet [92] dataset,

accounting for only 0.256% and 0.128% of the training dataset.

Once an adversary identifies the target bits using SparseBFA, we assume that an ad-

versary can induce precise bit flips using fault injection methods discussed in Section 3.1.1,

such as Rowhammer [29], [35]. For example, if the victim process running inference using

the victim DNN is co-located with an adversary’s process in the datacenter, an adversary

can wage Rowhammer using techniques proposed in [18], [80].

41

Algorithm 1 SparseBFA for the COO format
1: m← 0
2: while m < M do ▷ M : the maximum number of iterations
3: loss_dict← ∅
4: for i ∈ SL do
5: Ci, Vi ← convert_sparse(Wi)
6: Sj ← get_candidates_index(Ci)
7: for j ∈ Sj do
8: for k ← 0, d do
9: for n← 0, nc do

10: C⋆
i ← Ci

11: C⋆
i [j][k][n]← 1− C⋆

i [j][k][n]
12: if is_valid(C⋆

i) then
13: W ⋆

i ← reconstruct(C⋆
i , Vi)

14: Θ⋆ ← Θ \ {Wi} ∪ {W ⋆
i }

15: loss← l(f(x; Θ⋆), t)
16: loss_dict[(i, j, k, n)]← loss
17: (im, jm, km, nm)← get_max_key(loss_dict)
18: Cim , Vim ← convert_sparse(Wim)
19: Cim [jm][km][nm]← 1− Cim [jm][km][nm]
20: Wim ← reconstruct(Cim , Vim)
21: m← m+ 1

3.2.3 Algorithm: SparseBFA

We propose the SparseBFA algorithm, which iteratively searches for a bit in the coordinate

lists of f(·) that results in the largest increase of the loss using a small number of samples

(x, t). In each iteration, SparseBFA checks every possible valid bit flip for the selected

elements in the coordinate lists and evaluates the loss for each bit flip by forward-propagating

the samples.

This idea is outlined in Algorithm 1. First, SparseBFA visits each layer whose index is

in SL, a set of indices of layers that are to be attacked (e.g., if all layers are considered,

SL = {1, . . . , L}). After converting the weight matrix Wi to the coordinate list Ci and

the value list Vi, the Get_Candidates_Index function returns Sj, the indices of the selected

elements in Ci. Then, for each selected element Ci[j], SparseBFA checks all d×nc possible bit

flips for their validity, that is, whether the flipped coordinate list C⋆
i satisfies the properties

of the sparse matrix format used, such as no overlapping coordinates in C⋆
i . For example, a

42

bit flip that results in rewiring to an already existing connection will be considered invalid as

it can cause an attack to be detected due to the abnormal sparse matrix format. Then, for

all valid bit flips, SparseBFA evaluates the loss for valid bit flips. Finally, after evaluating

all candidates in Sj, SparseBFA will choose a single bit that results in the maximum loss.

The complexity of SparseBFA is determined by the Get_Candidates_Index function: for

example, if this function returns every index of Ci, then the algorithm becomes an exhaustive

search. Alternatively, the complexity can be reduced if this function proposes only a few

candidates by approximating the importance of each element in Ci, although the flipped bit

might not maximally increase the loss. We present both the exhaustive search method and

the approximation method and analyze their effectiveness and computational complexity in

the following section.

Exhaustive Search Method

An important characteristic of our problem that distinguishes SparseBFA from the prior

work on bit flip attacks is that it is a combinatorial optimization problem since the bit

flips in the coordinate lists ‘rewire’ the connections between neurons. Thus, we cannot

directly adopt the previous BFA algorithms, such as [17] developed for linearly-quantized

dense DNNs, that used gradient ascent to determine the candidate bits. For example, in

linearly-quantized DNNs, the impact of a bit flip on the nth bit of a weight element w can

be approximated as :
∂l

∂wn

=
∂l

∂w

∂w

∂wn

= wg × 2n (3.3)

where wn denotes the nth bit of w and wg denotes the gradient computed for this element.

However, this relationship does not hold for rewiring, and a bit flip in the coordinates cannot

be directly linked to the gradient information of each weight. Instead, we first start with an

exhaustive search to solve our problem, which can find the optimal bit flip in each iteration.

We apply an exhaustive search for a layer with a relatively small weight tensor, such as

the first convolutional layer of DNNs. That is, we check every nonzero weight in this layer

43

and evaluate every possible valid bit flip on the coordinates of the nonzero weights. We

find that even a single bit flip in the coordinate list can be detrimental. For example, an

exhaustive search can find a single bit in the coordinate list of the first convolutional layer

of a ResNet50 [60] model, which is trained to classify the TinyImageNet dataset with top-1

accuracy of 60%, that results in an accuracy drop to almost random-guess level (< 1%) when

it is flipped.

While this experiment can be a proof-of-concept for the effectiveness of bit flip attacks

on the coordinates, an exhaustive search cannot be extended to more general layers with

larger weight tensor sizes due to its prohibitive computational complexity. Suppose the

weight tensor of the ith layer in a victim DNN, Wi, is a d-dimensional tensor with the size

N1 × N2 × · · · × Nd. Then, an exhaustive search needs to check all r ·
∏d

k=1Nk nonzero

elements, where 0 ≤ r ≤ 1 represents the ratio of nonzero elements in the weight tensor.

For each nonzero element, we need to check all bits in the coordinate representing its lo-

cation, meaning
∑d

k=1 log(Nk) bits need to be checked since the minimum number of bits

to represent a coordinate is proportional to log(Nk) for each dimension k. As a result, to-

tal r · (
∏d

k=1 Nk)(
∑d

k=1 log(Nk)) forward-propagations are required for an exhaustive search.

This motivates us to develop an approximation method that chooses Sj to be a small sub-

set of indices such that the complexity can be reduced to |Sj| ·
∑d

k=1 log(Nk), making the

computation scales logarithmically with the size of a tensor.

Approximation Methods

A simple approximation method can randomly sample Sj so that different subsets of nonzero

coordinates can be checked at each iteration (SparseBFA-RandomSubset). If the number

of iterations is sufficiently large, then this random sampling will visit almost all nonzero

coordinates, approximating the behavior of an exhaustive search. However, there is a trade-

off between the size of a subset Sj to be visited and the number of iterations, and this method

might not find the smallest number of bit flips.

44

Figure 3.3: Accuracy of the ResNet50 model as bits in the coordinate list are flipped using
different approximation methods for SparseBFA. RandomFlip, which induces random bit
flips similar to soft errors, is reported as a baseline. All experiments are repeated five times,
and we report means.

To overcome this challenge, we investigate other approximation methods that utilize the

characteristics of bit flips in the coordinate lists. Recall that bit flips in the coordinate result

in the rewiring of connections (Fig. 3.2). The rewiring can be broken down into two separate

steps: first, the previously nonzero weight corresponding to the flipped coordinate will be set

to zero, similar to that weight being ‘pruned’ away; second, the connection is reintroduced

elsewhere. Therefore, the impact of the rewiring will be the combination of pruning away

an existing connection, which is determined by choosing Sj (Line 6 in Algorithm 1) and

reintroducing the connection to elsewhere, which is determined by the inner-loop in the

search algorithm (Line 8-16).

We want to approximate the process of identifying Sj and considering the characteristic

that it is similar to pruning, one approach can be estimating the importance of each nonzero

weight similar to weight pruning and choosing Sj as indices of the coordinates with high

importance. We examine two importance metrics from pruning literature: 1) the magnitude

of values |w| [69] (SparseBFA-Magnitude), and 2) the first-order term in Taylor’s expansion

|w · ∂l
∂w
| [81] for each nonzero weight w (SparseBFA-Taylor). The first approach is widely

used for inducing unstructured sparsity in weight tensors and was shown to be effective

45

for removing less important weights when combined with fine tuning [69]. While the second

approach requires back-propagation for evaluating the importance, it is more mathematically

intuitive to interpret based on Taylor’s expansion, since it directly measures the first-order

difference between the perturbed function and the original function:

f(x; Θ + ∆Θ) ≈ f(x; Θ) + ∆Θ
∂f(x; Θ)

∂Θ
+ · · · (3.4)

Finally, we also investigate using the gradients | ∂l
∂w
| to estimate importance as in [17]

(SparseBFA-Gradient). Here the assumption is that the importance of nonzero weights can

be measured similarly to the weights in dense DNNs where the previous bit flip attacks

succeeded by using this gradient information.

Fig. 3.3 shows the effectiveness of four approximation methods. For the ResNet50 model,

which we analyzed for the exhaustive search method in Section 3.2.3, we measure how its

accuracy changes as the bits in the coordinate lists are flipped using different approximation

methods. For this experiment, we set SL = {2, . . . , L − 1}, excluding the first and the last

layer from the attack (otherwise a single bit flip at the first layer alone can degrade accuracy

to the random-guess level), and set |Sj| = 5.

First, observe that random bit flips without SparseBFA, similar to bit flips that can be

induced by soft errors, do not significantly affect the accuracy. However, SparseBFA with

any of the approximation methods successfully identifies < 30 bit flips that result in the

complete degradation of the performance of the victim DNN, with an accuracy of less than

1%. Second, SparseBFA-RandomSubset requires the most number of bit flips to reach the 1%

accuracy, showing that the other three approximation methods estimating the importance

of weights are effective compared to this random sampling method. Finally, we find that

SparseBFA-Taylor provides the best attack with an average of 11.8 bit flips to reach less

than 1% accuracy. Since the goal of using these approximation methods is to identify the

most important nonzero weights, without the consideration for fine-tuning or retraining as

46

Dataset Model Sparsity Total Bits Original
Accuracy

Target
Accuracy

Bits Flipped to Reach Target

All Except First, Last

CIFAR-10
(Classification)

Conv4FC2 1 98.66% 14.26M 86.83%
< 11%

1.4 (±0.55) 3.0 (±1.87)
WideResNet [93] 94.37% 8.34M 93.14% 1.0 (±0) 12.8 (±2.17)
MobileNetV2 [61] 94.37% 12.98M 90.06% 6.8 (±2.68) 8.8 (±2.17)

TinyImageNet
(Classification)

ResNet50 [60] 94.37% 36.50M 60.18% < 1%
(Top-1)

3.2 (±4.38) 11.8 (±3.11)
MobileNetV2 [61] 92.50% 17.73M 43.88% 1.4 (±0.89) 2.8 (±0.45)

PASCAL-VOC
(Detection) SSD300 [89] 82.20% 137.38M 0.70 mAP 2 < 0.10mAP 34.2 (±3.42) -

1 4 convolutional layers followed by 2 linear layers. Batch normalization is used for the convolutional layers.
2 Note that the SSD300 model is not finetuned after quantization of the weight values. We report mean
average precision (mAP) by randomly sampling 1000 images from PASCAL-VOC 2007 test dataset.

Table 3.1: Summary of the characteristics of DNNs and the number of bit flips found by
SparseBFA-Taylor required to reach the target accuracy level. We report sparsity, the total
number of bits (when the model parameters are stored using COO, assuming that the values
are nonlinearly-quantized using 4-bits for CIFAR-10/TinyImageNet and 6-bits for PASCAL-
VOC), and the original accuracy of the models, along with the number of bit flips. All
SparseBFA experiments are repeated 5 times with different random seeds, and we report
means and standard deviations for the number of bit flips.

in the pruning literature, the first-order Taylor expansion term can be more effective than

other proxies like the magnitude of the gradient.

3.3 Attack Results

In this section, we demonstrate the vulnerability of sparse DNNs with diverse architectures

and datasets to SparseBFA. Table 3.1 shows the number of bit flips required to degrade

the performance of each sparse DNN to the target accuracy level (e.g., random guess level

for classification tasks). We use SparseBFA-Taylor as the attack algorithm with |Sj| = 5,

meaning that at each iteration SparseBFA chooses top-5 nonzero weights with the largest

first-order Taylor expansion term to search for the bit flip. Also, SparseBFA uses randomly

sampled inputs (x, t) from the training dataset to run forward and backward propagation

required to evaluate the bit flip candidates. The size of these input samples is 128 for

CIFAR-10 [91] and TinyImageNet [92] dataset, and 32 for PASCAL-VOC dataset [90]. We

evaluate 6 different DNN models with different model architectures, levels of sparsity, and

47

tasks. We also note the size of the weight tensors for each DNN model when they are stored

using the COO format. We repeat all experiments 5 times to account for the stochasticity

of SparseBFA due to random sampling of inputs and report the mean and the variance in

Table 3.1.

First, we find that flipping only 0.00005% of total bits (1 in 2 million bits) can be

detrimental to various DNNs. For example, the accuracy of the five DNNs for the image

classification task decreases to the random-guess level with 1 ∼ 15 bit flips in all trials.

Therefore, SparseBFA can be a practical threat considering that a similar number of bit

flips can be successfully induced using Rowhammer in prior work [80]. In particular, the

coordinate information in sparse tensors can be a valid target for an adversary, and the

defense schemes for sparse DNNs should consider that the vulnerability against bit flip

attacks is not limited to the values of the weights themselves.

Second, we observe that the first and the last layers are more sensitive to bit flips com-

pared to intermediate layers. When the first and the last layers are not attacked, the number

of bit flips to reach the target performance level increases by 1.3 ∼ 12.8 times compared to

when all layers are attacked. Also, for the SSD300 model trained on the PASCAL-VOC

dataset, SparseBFA cannot reach the target performance level within 50 bit flips when ex-

cluding the first and the last layers from the attack. Thus, a simple scheme to improve the

robustness of sparse DNNs can protect at least the first and the last layers with security

measures, such as more frequent refresh of DRAM rows to prevent RowHammer [29], or

using a secure processor [94] during inference for those layers.

3.3.1 Sensitivity to Sparsity

We examine the relationship between sparsity and the vulnerability of DNNs to SparseBFA.

Fig. 3.4 shows how the accuracy of the Conv4FC2 models with different sparsity levels

changes as the number of bit flips increases. SparseBFA-Taylor is applied to all layers except

the first and the last layers with |Sj| = 5, the same as our previous setup. We find that

48

Figure 3.4: Accuracy of the Conv4FC2 models trained on CIFAR-10 with different sparsity
as the number of bit flips found by SparseBFA-Taylor increases. We report the mean of five
trials.

the models with higher sparsity are more vulnerable to bit flips: the accuracy of the model

with 99% sparsity drops to below 11% with fewer than 5 bit flips, whereas the model with

76% sparsity still retains 55% accuracy even after 50 bit flips. One explanation for this

trend is that there are fewer bit flips satisfying the Is_Valid function for denser models,

thus limiting the feasible rewiring. Furthermore, as denser models have more redundancy, a

single rewiring might not be as detrimental as in sparser models. Overall, this relationship

manifests the trade-off between efficiency achieved with high sparsity and vulnerability to

SparseBFA.

3.4 Summary

In this chapter, we present SparseBFA, an algorithm that identifies the most vulnerable bits

in the coordinates of a sparse DNN whose weight tensors are stored using sparse matrix

formats. SparseBFA can efficiently and effectively identify a small number of bits, less than

0.00005% of the total memory footprint, that results in a huge degradation of performance

when perturbed. These vulnerable bits can be the target of fault injection attacks [18],

[29], [35], [80] when they are stored in the off-chip DRAM. SparseBFA illustrates that the

49

algorithmic characteristics of a DNN can be exploited to enable hardware-level attacks.

Specifically, SparseBFA presents three key contributions. First, we show that sparse

DNNs that store weight tensors using sparse matrix formats can be vulnerable to bit flips

in their coordinates (encoding the location of nonzero weights). This new source of vulner-

ability implies that the tensors using sparse matrix formats should protect the coordinate

information for security, in addition to the nonzero values. Second, we address the chal-

lenge of identifying the most vulnerable bits in the coordinates by combining the exhaustive

search with the approximation techniques to identify the most important nonzero weights

in a sparse DNN. Bit flips on the coordinates rewire the connections between the neurons,

hence they have a combinatorial nature that cannot be easily modeled with prior work on bit

flips on the values of dense models [17], [80]. Finally, SparseBFA affects diverse sparse DNNs

trained on different tasks. In particular, DNNs with a high level of sparsity can be heav-

ily affected by bit flips induced by SparseBFA, showing the trade-off between the efficiency

achieved by pruning and the robustness against fault injection attacks.

50

Chapter 4

Design Space Exploration of Secure

Deep Neural Network Accelerators

From Chapter 3, we discussed how hardware-level vulnerabilities in the off-chip memory

could be exploited to undermine the trustworthiness of DNNs. Providing a defense for the

vulnerable off-chip memory can be critical for applications that process sensitive user infor-

mation or make high-stakes decisions. In particular, a hardware solution can be beneficial

in multiple ways. First, a hardware solution does not require algorithms and software stack

to be modified, thus providing general protection regardless of algorithms. Second, a hard-

ware solution reduces the root-of-trust to the secure hardware itself, not relying on any

software-level details to provide security.

A trusted execution environment (TEE) is an appealing solution to provide security

to the vulnerable off-chip memory. With a TEE, the off-chip data accesses are protected

with cryptographic encryption and authentication, such that an adversary cannot recover

the actual data and tamper with the data without being noticed. For general-purpose

computing, there have been extensive research efforts in supporting TEEs [94]–[99], including

the commercialized solutions by major chip vendors and various open-source solutions from

academia, such as Intel SGX [100] and Keystone [39].

51

However, supporting a TEE for custom-designed DNN accelerators differs from general-

purpose computing. First, DNNs are data-intensive applications, where the tensors associ-

ated with DNN models and their intermediate tensors can exceed gigabytes of data. Second,

DNN accelerators have different off-chip data access patterns from general-purpose proces-

sors. Finally, there is a rich diversity of custom designs for DNN accelerators, ranging from

those targeting high-performance data centers to those deployed in resource-constrained edge

devcies [40]–[44], and the overhead associated with supporting a TEE in one design cannot

be easily transferred to another design.

In this chapter, we provide a systematic approach to understanding the cost of supporting

a TEE in custom-designed DNN accelerators. We address the unique challenges associated

with combining cryptographic operations with the data movement pattern of DNN acceler-

ators. Then, we propose SecureLoop, a design space exploration framework for secure DNN

accelerators equipped with a hardware engine for cryptography and supporting a TEE. This

chapter provides insights into the architecture design of secure DNN accelerators with pro-

tection for vulnerable off-chip memory.

4.1 Background

4.1.1 TEE for DNN Accelerators

Security Assumptions

We consider both the confidentiality and integrity of data stored in the off-chip DRAM.

That is, the data stored in the off-chip DRAM should not be available to an unauthorized

adversary, and bit flips in the data should be detected before the data is supplied for the

computation. A TEE assumes that the on-chip structure, such as the on-chip memory

hierarchy including SRAM and registers and the on-chip computation operations, is secure

and trusted. However, it does not trust any off-chip components, and every communication

52

Figure 4.1: A cryptographic engine supporting AES-GCM, a widely used authenticated
encryption protocol.

with the off-chip memory will be encrypted and authenticated using cryptographic primitives.

Note that this assumption excludes attacks on the on-chip structure, such as the physical

side-channel and fault injection attacks [25]–[27], [73], [77].

Memory Encryption and Authentication

Authenticated encryption is a cryptographic primitive that simultaneously encrypts the data

for confidentiality and generates the hash for a block of data for integrity. An authenticated

encryption scheme takes a plaintext, a secret key, and an encryption seed as inputs, and

computes a ciphertext and a hash. Fig. 4.1 depicts the interface of a cryptographic engine

that implements such a scheme with an explicit annotation on where each type of data is

located. The hash is stored off-chip and is used to verify the integrity of the ciphertext.

The encryption seed is composed of a counter, the address of the data, and a randomly

generated initialization vector. The counter serves as a version number for the data and

is incremented every time the accelerator generates a new version of the data. Since DNN

accelerators typically use explicit data orchestration [101] and the accelerators have full

knowledge of the version number, recent works [102]–[104] propose to track the counter using

on-chip structures or the host CPU. Therefore, we assume the counters can be computed and

accessing them does not incur complicated off-chip accesses. Finally, note that the security

of authenticated encryption relies on the secret key used for cryptographic operations. If an

53

adversary knows the secret key, an adversary can recover the plaintext and compute fake yet

valid hashes for the perturbed data. Thus, the secret key is stored on-chip, typically using a

special register for holding the key throughout the session until the key has to be updated.

All datatypes in a DNN (i.e., weights, input feature maps (ifmap), and output feature

maps (ofmap)) are in plaintext when they are stored and processed on-chip. When ofmaps

or intermediate partial sums are generated and need to be written back to the DRAM, the

cryptographic engine computes the ciphertext and hash corresponding to the data. When

the data is fetched in the opposite direction, the accelerator retrieves the ciphertext data

along with its associated hash from the DRAM and feeds both into the cryptographic engine.

The cryptographic engine validates the integrity of the ciphertext data against its hash and

decrypts the data before supplying it to the on-chip components.

AES-GCM There are several standardized protocols for authenticated encryption, and

among them, AES-GCM (Galois Counter Mode) has been widely used for its appealing char-

acteristics in performance [96], [97]. As shown in Fig. 4.1, an AES-GCM block is primarily

composed of an AES engine and a Galois-field multiplier. In the counter mode encryption,

the encryption seed is fed into the AES engine to generate a one-time pad. Then, this one-

time pad is XOR-ed with plaintext to obtain ciphertext, and vice versa. Note that AES

is a block cipher, meaning that it operates over a fixed datapath size (e.g., 128 bits). The

Galois-field multiplication is applied over multiple ciphertexts to generate a fixed-length hash

for integrity verification.

There are several hardware implementations of AES-GCM with diverse performance and

area characteristics. For example, Fig. 4.2 compares the AES hardware accelerator imple-

mentations published between 2001-2018 in circuits literature [45]–[50]. It shows a clear

trade-off between performance and area, where performance is measured by the average la-

tency of encrypting/decrypting a 128-bit block (y-axis) and the area is counted by the number

of equivalent gates to fairly compare among different technologies (x-axis). Note that AES-

54

101

Area (kGates)

100

101

102

Av
g.

 C
yc

le
s p

er
 B

lo
ck

Banerjee-2019
Banerjee-2017-Parallel

Satoh-2001

Hamalainen-2006-Power

Hamalainen-2006-Area

Hamalainen-2006-Speed

Mathew-2011

Mathew-2015
Zhang-2016

Banerjee-2017-Pipeline

Figure 4.2: The tradeoff space for AES implementations.

GCM can be supported without a dedicated cryptographic engine in general-purpose CPUs.

However, we focus on the hardware engine for AES-GCM here as DNN accelerators might

not be equipped with a CPU that can compute cryptographic operations with sufficiently

high throughput.

Replay Attack in DNN Accelerators

While cryptographic authenticated encryption can guarantee data confidentiality and in-

tegrity, one intricate problem is with replay attacks. An adversary can dump both the

encrypted data and their hashes and replay this dumped data in later cycles. Since the

replayed data has valid hashes, authenticated encryption alone cannot detect this attack.

Thus, counter (i.e., timestamp of the data) information is added to the encryption seed for

AES, and the correctness of counters guarantees protection against replay attacks. This

counter management has been the primary focus of optimizing TEEs for general-purpose

computing in prior work [95]–[99], and the major source of overhead for supporting TEEs.

55

However, DNN accelerators can leverage their structured and pre-determined data access

patterns to compute the counters [102], [104], instead of storing them and managing their

correctness. Therefore, as we discussed in Section 4.1.1, we assume that off-chip data accesses

in secure DNN accelerators do not incur complicated memory accesses.

4.1.2 Design Space Exploration

DNN accelerators are designed to exploit substantial data reuse within tensor algebra oper-

ations. Note that while the maximum performance is determined by the accelerator design

(e.g., the roofline model), the mapping of a DNN workload to the accelerator design deter-

mines the actual performance and energy efficiency. A mapping describes how the compu-

tation and data movement are temporally and spatially mapped to hardware resources and

can be formulated using a nested for-loop called “loopnest” [52].

Prior work acknowledges that the search space for mappings is large, and efficiently

searching for the optimal mapping (i.e., small latency with low energy consumption) presents

a research challenge [52], [105]–[109]. Several methodologies have been proposed. For exam-

ple, Timeloop [52] used brute-force search over all possible loopnests and supported approxi-

mate methods like random pruning to reduce the search time. CoSA [105], on the other hand,

formulated the search problem as a constrained-optimization problem that can be solved us-

ing integer programming techniques. Furthermore, other search algorithms proposed to use

machine learning, such as [108], [109], to identify the optimal mapping.

The goal of this paper is to augment these design space exploration tools for DNN ac-

celerators with the capability to take data encryption and authentication into account and

find the optimal mappings for secure DNN accelerators.

56

4.2 Challenges of Secure DNN Accelerators

Prior work on customizing TEE solutions for DNN accelerators [102]–[104] leveraged the

structured and predetermined data access data access patterns of DNN accelerators and

derived a coordination plan between data movement and cryptographic operations As a

result, the cryptographic operations and the data movement in DNN accelerators become

closely coupled.

Recall that secure DNN accelerators need to include on-chip cryptographic engines that

perform encryption and authentication operations. To ensure data integrity, a cryptographic

hash is introduced that is associated with each block of data (called an authentication block)

and is used to verify the integrity of the data before performing any computation on it. For

data confidentiality, this process requires the decryption of data flowing from DRAM to

on-chip buffers and the encryption of data flowing in the opposite direction. When fetching

a unit of data from DRAM to on-chip buffers, we need to fetch the whole authentication

block containing this unit of data with its corresponding hash. Upon writing the data back

to DRAM, a new hash needs to be computed based on the whole block of data and written

back together with the data. The cryptographic operations described above introduce extra

on-chip computation and additional off-chip memory accesses.

There is an important yet unexplored research challenge in the search space for mappings

considering the impact of cryptographic operations. The challenge arises when the authenti-

cation block is not fully aligned with the tiling of data (tiles are the unit for data movement

between memory levels in DNN accelerators). Such misalignment of the authentication block

and the tiles leads to fetching redundant data for the purpose of performing cryptographic

authentication rather than DNN computation.

This challenge is further exacerbated by cross-layer dependency among the layers in a

DNN. Specifically, the output feature map of one layer is used as the input feature map

to the next layer, and hashes will be computed and associated with fixed authentication

57

blocks when the output feature map is generated. Since tile assignment is done indepen-

dently for consecutive layers in traditional DNN mapping, misalignment in tiling between

one layer’s output feature map and the next layer’s input feature map introduces additional

challenges for assigning authentication blocks. Furthermore, cross-layer dependency due to

authentication blocks also implies that the mappings of consecutive layers are intertwined,

exponentially increasing the search space for mappings.

In addition to the challenges associated with optimal mapping, there is another challenge

due to the diversity of DNN accelerator designs. The overhead of cryptographic engines,

such as their area, energy, and power, can be significant for certain designs targeting edge

and embedded platforms. Moreover, cryptographic engines have rich design space of their

own as we discussed in Section 4.1.1.

In this section, we analyze these challenges in detail. First, we point out that a crypto-

graphic engine, which is often considered a low-cost add-on to a predefined DNN accelerator

in prior work [102]–[104], can pose significant overhead to different designs. Second, we point

out that authentication block assignments introduce a significant amount of complexity to

our scheduling search space that our tool needs to navigate.

4.2.1 Overhead of Cryptographic Engines

Existing work on designing secure DNN accelerators [102]–[104] overlooks the fact that cryp-

tographic engines can pose non-trivial overhead to the performance, energy, and area of the

accelerator design and significantly shift the optimal design choices. As shown in Fig. 4.2, ex-

isting cryptographic engines do not achieve area efficiency while attaining high performance

at the same time. To make the point clearer, consider the DNN accelerators that target low-

power and resource-constrained embedded platforms and IoT devices, such as Eyeriss [40]

and other designs [42], [43]. To augment these accelerators with cryptographic engines to

support a TEE, for example, we can use one AES-GCM engine that handles encryption and

authentication for each datatype (i.e., ifmap, ofmap, and weight) as in [104]. When each

58

AES-GCM engine is composed of a fully-pipelined AES engine and a single-cycle Galois-field

multiplier [49], this configuration requires 416.7kGates in area, approximately 35% of the

logic gates in Eyeriss [40], incurring extensive area overhead.

We note that prior work [102]–[104] only considered solutions for power-hungry accelera-

tors, such as TPU [44], with large silicon area (e.g., > 100mm2), and those design choices are

not transferable to low-power and energy-efficient accelerators. Furthermore, the throughput

of cryptographic engines has a non-trivial impact on the loopnest scheduling. As crypto-

graphic operations, such as encryption/decryption and authentication, accompany off-chip

accesses, the supply of off-chip data to a DNN accelerator can be throttled by cryptographic

engines if they have insufficient throughput. So far, we have shown that cryptographic en-

gines complicate the design space of secure DNN accelerators. Our tool, SecureLoop, strives

to perform a holistic assessment of the overhead due to cryptographic engines.

4.2.2 Authentication Block Assignment

Authentication block assignment is a critical challenge for our design space exploration tool,

as it extensively complicates the scheduling for secure DNN accelerators. Recall from Sec-

tion 4.1.1, to perform memory authentication, a hash is computed for each block of off-chip

data to verify its integrity. We call the unit of data that a hash is associated with an

authentication block, or AuthBlock for short.

In prior work [102], [103], an authentication block is assigned using a strategy we refer to

as “tile-as-an-AuthBlock ”. Specifically, in DNN accelerators, data is grouped into tiles, and

off-chip access is performed at the granularity of a tile. The size of the tile can be chosen to

optimize for data reuse. The “tile-as-an-AuthBlock” strategy assigns authentication blocks

to exactly match each datatype’s tile organization.

59

(a) (b) (c)

Figure 4.3: The same piece of data is used as ofmap of one layer (a) and as ifmap of the
next layer (b) and the two layers use different tiling configurations. (c) shows that redundant
reads are introduced when using the data as ifmap but assigning Authblock following ofmap’s
tiling organization.

Cross-layer Dependency

“Tile-as-an-AuthBlock", as a simple strategy, optimizes for minimizing the amount of hash

reads for an individual DNN layer. However, it can incur unforeseen overhead due to cross-

layer dependency. Cross-layer dependency arises from the characteristic of a DNN that the

output feature map (denoted as ofmap) of one layer serves as the input feature map (denoted

as ifmap) of the next layer. Fig. 4.3 provides an example to illustrate how such a dependency

complicates the data traffic due to the AuthBlocks.

Consider a piece of data, when served as ofmap, the tiling strategy divides the data into

1 × 3 tiles. When served as ifmap, the tiling strategy divides the data into 2 × 2 tiles. We

are running into a situation where we need to find an AuthBlock assignment strategy for

the same piece of data that will be accessed by the accelerator with distinct patterns. If

we follow the “tile-as-an-AuthBlock” strategy as in prior work, when assigning AuthBlock

according to the ofmap tiles, we end up with a significant amount of redundant accesses

when the data is served as ifmap. As shown in Fig. 4.3(c), when the accelerator fetches the

first ifmap tile for DNN computation, it is forced to fetch the whole AuthBlock 1 and 2,

60

(a) Directly computing CONV can result in “halos” (overlaps) between tiles.

(b) Converting ifmap with im2col generates a larger matrix that has duplicated
data, and tiles do not overlap.

Figure 4.4: Compare ifmap tiles for two different accelerators, one that directly supports
CONV (a), and the other that computes matrix multiplications after converting CONV using
im2col (b).

doubling the off-chip traffic.

One workaround to reduce the redundant data accesses is to allow two different Auth-

Block assignments for the same piece of data, which require a potentially high-cost “rehash”

operation. Specifically, the AuthBlock assignment of the data was first optimized for ofmap

access patterns (e.g., using “tile-as-an-AuthBlock”). Before the data is used as ifmap, the

accelerator reads the data into the accelerator, fully decrypts the data, and re-assigns hashes

based on a different AuthBlock organization that is optimized for ifmap access patterns.

Rehashing introduces extra delays and off-chip traffic, degrading the performance overall.

Thus, to avoid rehashing, we aim to find the unified AuthBlock assignment considering

different tiling strategies for one layer’s ofmap and the next layer’s ifmap.

61

Halos

Another problem that the “tile-as-an-AuthBlock” strategy faces is for convolution accelera-

tors that directly perform CONV layers, instead of converting them to matrix multiplications

using im2col. Fig. 4.4 compares how tiles are organized for the two different types of ac-

celerators. Fig. 4.4(a) shows that, due to coarse-grained tiling, the accelerators dedicated

to convolutions can have overlaps between tiles, especially in the ifmap datatype. We refer

to the overlapping region as a “halo” throughout this paper. However, in Fig. 4.4(b), in the

matrix multiplication case, each element exclusively belongs to one tile and there does not

exist any overlap between tiles.

The existence of halos makes “tile-as-an-AuthBlock” an unappealing strategy. If we allow

two AuthBlocks to share the overlapping data, we are forced to duplicate the halo data

by encrypting and authenticating the data at least twice using different encryption seeds,

which are composed of different counters, addresses, and initialization vectors. As a result,

both the off-chip traffic and the memory footprint overhead are increased. Alternatively,

not duplicating the halo data can result in large redundant reads if some AuthBlocks span

across both the non-overlapping data and the halo data in one tile. In SecureLoop, we aim

to search for the AuthBlock assignment to minimize the additional off-chip traffic caused by

halos.

Goal of AuthBlock Assignment

To summarize, the AuthBlock assignment poses a critical challenge in identifying the optimal

mapping for secure DNN accelerators, primarily for two reasons. First, the misalignment

between AuthBlocks and data tiles, caused by cross-layer dependency or halos, leads to

redundant data fetches for cryptographic authentication rather than DNN computation.

Second, cross-layer dependency due to the AuthBlock assignment implies that the loopnest

of two layers becomes fundamentally intertwined. There might be a loopnest mapping for

one layer that is not optimal on its own, but results in better overall performance when it is

62

Figure 4.5: Overview of the search engine for mappings in SecureLoop.

considered together with its next layer.

Our design space exploration tool, SecureLoop, aims to search for the optimal AuthBlock

assignment strategy to reduce off-chip traffic and maintain high performance. We consider

the impacts of both the size and the orientation of the AuthBlocks and examine how they

affect the additional off-chip traffic. In addition, we consider cross-layer dependency directly

from the loopnest mapping level and search for mappings that optimize for global perfor-

mance rather than a single-layer performance. In Section 4.4, we demonstrate that using an

optimal AuthBlock assignment and performing the cross-layer optimization can provide 3-

33% faster schedules and reduce the additional off-chip traffic from cryptographic operations

by 37-94% compared to the “tile-as-an-AuthBlock” strategy.

4.3 Mapping for Secure Accelerators

We present SecureLoop, a design space exploration tool that is equipped with a search engine

for optimal mappings (Fig. 4.5) for secure DNN accelerators.

First, we introduce a simple model to estimate the performance and energy overhead

of various cryptographic engines. The estimated cost is used to properly configure the

architecture parameters, such as the off-chip bandwidth, of the existing loopnest mapping

63

algorithms. This approach is general enough to be compatible with a broad range of existing

loopenst mapping algorithms, such as Timeloop [52] and CoSA [105].

Second, we design a methodology to search for optimal authentication block assignment

that takes both the size and the orientation of AuthBlocks into consideration. The key

research challenge is that counting the amount of extra off-chip traffic caused by integrity

verification via detailed simulation has scalability issues and cannot cope with a large search

space. The approach that we take to address this scalability issue is to formulate the counting

problem as a mathematical linear congruence problem and solve it efficiently.

Finally, we design a cross-layer fine-tuning stage to optimize both the loopnest mapping

and authentication block assignment strategy for cross-layer dependencies. The research

challenge here is that the search space is amplified exponentially when we consider multiple

layers together, especially for DNN workloads with a large number of layers, such as Mo-

bilenetV2 [61]. We use simulated annealing by heuristically defining neighboring loopnest

configurations and search for the final schedule.

4.3.1 A Model for Cryptographic Operations

In the first step, we aim to identify the loopnest for secure DNN accelerators by leveraging

the existing DNN loopnest mapping algorithms. When we exclude the complexity that arises

from the authentication block assignment (Section 4.2.2), such as the additional off-chip data

traffic due to the misalignment of tiles, the difference between a secure DNN accelerator and

a traditional accelerator is the extra cryptographic operations performed by the augmented

cryptographic engine. Thus, the DNN loopnest mappers have to be modified to account for

those cryptographic operations. We adopt a simple and integrable solution that models the

cryptographic operations as an additional constraint upon the off-chip DRAM bandwidth

and access energy, instead of intrusively modifying the internals of the existing mappers.

Given that each piece of off-chip data access needs to go through both the DRAM interface

and the cryptographic engine, the slower component among the two limits the bandwidth.

64

Thus, the effective data supply rate from the accelerator’s perspective will be the minimum

of the memory bandwidth and the cryptographic engine bandwidth. We replace the original

DRAM memory bandwidth with this effective bandwidth for loopnest mappers. For exam-

ple, Timeloop [52] directly uses the memory bandwidth when determining the number of

cycles required for data transfer, and CoSA [105] can adjust the weighting parameter of its

objective function reflecting the cost of data traffic. When the effective bandwidth is lower

than the original DRAM bandwidth (i.e., the cryptographic engine has lower bandwidth),

the mappers will prefer loopnests with a lower amount of off-chip data traffic (i.e., with higher

computational intensity) although they might have lower PE utilization rate compared to the

originally optimal loopnest. Such an approach is highly compatible with loopnest mappers

whose internals may vary significantly. Besides, this approach is in line with the assump-

tion common among existing search tools, that is, different hardware components on the

DNN accelerator are appropriately pipelined with negligible pipelining overhead (e.g., using

techniques such as double-buffering or buffets [101]).

4.3.2 Optimal Authentication Block Assignment

In the second step of our mapping algorithm, we aim to determine an optimal authentication

block assignment strategy that can minimize the additional off-chip traffic caused by data

authentication, and thus minimize the extra overall performance overhead. This step requires

performing an exhaustive search over all feasible AuthBlock sizes and orientations for each

layer and datatype (i.e., weight, ifmap, and ofmap). Such a search poses a serious scalability

issue, which we address with a mathematical formulation of the problem.

The Search Space of Authentication Blocks

We start by describing what the search space for authentication block assignment looks like.

Given the nature of the memory authentication operation, it introduces additional off-

chip memory accesses, classified into two categories. First, extra accesses to fetch the hashes.

65

(a) Cross-layer Dependency (b) tile-as-an-AuthBlock (c) horizontal, size: 1

(d) horizontal, size: 2 (e) vertical, size: 3 (f) vertical, size: 6

Figure 4.6: Examples of different AuthBlock assignments and their corresponding hash reads
and redundant reads overhead. (a) reassembles the cross-layer dependency example discussed
in Section 4.2.2. (b)-(f) describes 5 different authentication block assignment strategies.
Each AuthBlock is marked with solid blue lines and the corresponding caption describes the
AuthBlock orientation and size.

Second, extra accesses to fetch the data that is not needed for the actual DNN computation,

but is needed for integrity verification because it lies within the same authentication block

as the data used by the accelerator. We distinguish the two types of overhead as hash reads

and redundant reads respectively.

There exists a non-trivial search space for authentication block assignment because both

the size and orientation of the authentication block affect the off-chip traffic overhead. We

provide examples in Fig. 4.6 to illustrate the search space and highlight the trade-off between

hash reads and redundant reads with different AuthBlock assignments. In each figure, we

highlight the first ifmap tile in orange, mark each authentication block with solid blue lines,

66

and we list the hash reads and redundant reads at the bottom of each assignment.

In Fig. 4.6(a) and (b), the example reassembles the cross-layer dependency case described

in Section 4.2.2, where the AuthBlock is assigned according to the ofmap tiling. Since there

are two AuthBlocks in total, the hash reads overhead is low. However, large redundant reads

are incurred as all data belonging to AuthBlock 1 and 2 has to be fetched when accessing

the first tile.

Fig. 4.6(c) and (d) compare two cases of using a horizontal AuthBlock with varied size.

In (c), it is an extreme case where the AuthBlock size is 1, meaning each element is assigned

with a hash, resulting in high hash reads overhead with zero redundant reads. In (d), when

we increase the AuthBlock size from 1 to 2, the hash reads are reduced by half, but we start

to have redundant reads because some of the AuthBlocks span across the boundary of the

first tile. These two cases clearly demonstrate the impact of the size of AuthBlocks. When

the AuthBlock size increases, the hash reads decrease, but the redundant reads can increase.

To further complicate the space, the orientation of the AuthBlock also matters. Fig. 4.6(e)

shows vertical AuthBlocks with a size of 3. This strategy happens to be an ideal strategy,

because every AuthBlock resides exactly within the first ifmap tile, leading to no redundant

reads. Meanwhile, since the AuthBlock size is 3, it has 1/3 of the hash reads overhead

compared to the horizontal size-1 strategy shown in Fig. 4.6(c). However, if we increase the

size of the vertical AuthBlock to 6 in Fig. 4.6(f), the amount of redundant reads increases.

In summary, both the orientation and size of an AuthBlock affect the off-chip traffic

overhead. To identify the optimal AuthBlock assignment, we can perform an exhaustive

search over all feasible AuthBlock orientations and sizes. However, evaluating the additional

off-chip traffic with a cycle-accurate simulation with the exact off-chip request sequence is

unscalable considering the large search space for AuthBlocks. To overcome this issue, we

present an analytical approach using a mathematical formulation of counting the additional

off-chip traffic.

Also, we note that an AuthBlock assignment also affects the total number of crypto-

67

graphic operations. The number of encryptions (for data write) and decryptions (for data

read) will be proportional to the sum of baseline reads and redundant reads. When authenti-

cation requires different computations (e.g., Galois-field multiplication) for each 128-bit data

(or the datapath size of a cryptographic engine), the number of such computations will be

also proportional to the sum of baseline reads and redundant reads. If there are additional

computations required to generate a hash tag at the start or end of authentication process

(e.g., initialization or finalization step in some authenticated encryption algorithms [110]),

the number of this additional computation will be proportional to the number of hash reads.

Thus, minimizing the additional off-chip traffic can also generally reduce the total number

of cryptographic operations.

Mathematical Formulation

We now describe the mathematical formulation of the AuthBlock search process. Note

that we discussed two cases where redundant reads occur in Section 4.2.2: 1) cross-layer

dependency, and 2) halos. This mathematical formulation can be applied to both cases.

Problem In both cases, we are given a piece of tensor data and tile organizations associated

with this data. For example, in the case of cross-layer dependency, we are given two tile

organizations, one for the ofmap tiles and the other for the ifmap tiles, and there are overlaps

between two different tile organizations. In the case of halos, we are given the ifmap tile

organizations, and there are overlaps between different tiles in the same tile organization.

We want to calculate the number of redundant reads and hash reads for each AuthBlock

assignment, specified by the orientation and the size of AuthBlocks. Since each time an

AuthBlock is accessed, all the elements in that AuthBlock need to be fetched together along

with the hash associated with this AuthBlock, we can reduce the problem to counting the

number of AuthBlocks that overlap with each tile loaded to the accelerator.

68

(a) An example of a mismatch between the tilei and the tilej .

(b) Three conditions for an AuthBlock to lie in the intersection of the tilei and the tilej from the
above example.

Figure 4.7: Mathematical formulation of counting redundant reads for a given AuthBlock
assignment.

Conditions to Determine Overlap Consider an example shown in Fig. 4.7(a). This

example shows a 2-dimensional tensor (i.e., matrix) with two overlapping tiles, called tilei

and tilej. For illustration purposes, assuming the two tiles have the same height, h, and

different widths, denoted as wi and wj. Let’s consider the case when we assign horizontal

AuthBlocks to fully cover tilei so that no redundant access is needed when accessing tilei.

Note that this assumption is a natural scenario when tilei is an ofmap tile since hashes will

be computed as the ofmap is generated. These AuthBlocks may not fully align with the

boundary of tilej (e.g., an ifmap tile corresponding to the same tensor). Thus, if we want

to calculate the additional off-chip traffic incurred when loading tilej, we need to handle the

case when the AuthBlocks cross the boundary of tilej to count all overlapping AuthBlocks.

The AuthBlocks can overlap with tilej in three conditions, as shown in Fig. 4.7(b). The

first and second conditions are straightforward, where either the right edge or the left edge

of an AuthBlock lies within tilej. The third condition is when an AuthBlock wraps around

tilej, and both of its edges are in tilei.

We can translate these three conditions into mathematical formulas. We label the left

69

edge of an AuthBlock as (Lx, Ly), where Lx is the row (height) index of an AuthBlock in tilei,

and Ly is the column (width) index. Similarly, we can label the right edge of an AuthBlock

as (Rx, Ry). Then, the first two conditions can be expressed as:

wi − wj ≤ Rx < wi (4.1)

wi − wj ≤ Lx < wi (4.2)

When the size of the AuthBlock is smaller than wi, we can express the third condition as:

Lx < wi − wj ∧ Rx < wi − wj ∧ Rx < Lx (4.3)

Note that if the size of the AuthBlock is equal to or larger than wi, then it results in entire

tilei to be fetched when loading tilej, with the same amount of redundant reads and a

potentially larger amount of hash reads as the tile-as-an-AuthBlock strategy. Thus, for the

search process, we only have to consider the AuthBlock size smaller than wi.

Linear Congruence For horizontal AuthBlocks in Fig. 4.7, each AuthBlock has a height

of 1 and a width of u (u < wi). Then, the left and right edges of the k-th AuthBlock in tilei

can be derived as:

Lk
x = (u× k) mod wi (4.4)

Lk
y = ⌊

u× k

wi

⌋ (4.5)

Rk
x = (u× k + (u− 1)) mod wi (4.6)

Rk
y = ⌊u× k + (u− 1)

wi

⌋ (4.7)

70

Then, we can plug these equations into the three conditions described above. For example,

plugging Eq. (4.4) into Eq. (4.2) gives:

wi − wj ≤ u× k < wi mod wi (4.8)

u× k ≡ wi − wj, wi − wj + 1, · · · , wi − 1 mod wi (4.9)

Suppose we want to count how many AuthBlocks in tilei satisfy the second condition.

This problem is then equivalent to counting how many ks (0 ≤ k < ⌈h×wi

u
⌉) satisfy the linear

congruence equation in Eq. (4.9). Note that this equation uses modular arithmetic, where

a ≡ b(mod c) means that the remainder of a divided by c and the remainder of b divided by

c are equal.

Similarly, we can solve Eq. (4.1) and Eq. (4.3) for u and k, and the final linear congruence

problem summarizing all three conditions is:

u× k ≡ min(wi − wj − u+ 1, 0), · · · , wi − 1 (mod wi) (4.10)

Then the number of AuthBlocks overlapping with tilej is the number of ks satisfying the

above equation. Therefore, we can convert the problem of counting overlapping AuthBlocks

with a tile of our interest into a mathematical linear congruence problem that can be solved

analytically without any cycle-level simulations.

A linear congruence problem in a format a×x ≡ b mod c can be solved efficiently using the

extended Euclidean algorithm. The solver needs to find the greatest common denominator

of a and c, which can be done in the logarithmic time of min(a, c). Eq. (4.10) requires at

most wi linear congruences to be solved. Thus, counting the overlapping AuthBlocks for

a single tile can be done in a log-linear time of wi. This analytical approach enables an

exhaustive search over all feasible orientations and sizes, resolving the scalability issue with

the simulation approach.

71

Generalization While we used a horizontal AuthBlock assignment and 2-dimensional tiles

with the same height to illustrate the algorithm, this methodology is general enough to be

applicable to vertical AuthBlock assignments and for higher-dimensional tiles with arbitrary

overlapping patterns. First, consider a vertical AuthBlock assignment. We can apply the

same analysis but with a different relationship between u and Lx, Ly, Rx, Ry. Essentially, the

x-y coordinates will be transposed:

Lk
x = ⌊u× k

h
⌋ (4.11)

Lk
y = (u× k) mod h (4.12)

Rk
x = ⌊u× k + (u− 1)

h
⌋ (4.13)

Rk
y = (u× k + (u− 1)) mod h (4.14)

Consider the second condition in Eq. (4.2). Plugging the new Lk
x results in:

wi − wj ≤ ⌊
u× k

h
⌋ < wi (4.15)

(wi − wj)× h ≤ ⌊u× k

h
⌋ × h < wi × h (4.16)

Since ⌊u×k
h
⌋ × h = u× k − (u · k mod h) ≤ u× k, the left-hand inequality becomes

(wi − wj)× h ≤ u× k (4.17)

Also, we know that u× k < h× wi, hence the second condition boils down to:

(wi − wj)× h ≤ u× k < wi × h (4.18)

Note that this can be thought of as using Eq. (4.8) for a reshaped matrix, where the original

2-dimensional matrix is flattened in a column-major manner resulting in a matrix with a

height of 1 and a width of h× wi.

72

Figure 4.8: Even when two tiles have mismatches in multiple dimensions (two here), they
can be boiled down to the example in Fig. 4.7 with maximum one authentication block
miscounted.

More generally, consider n-dimensional tiles with a mismatch across a single dimension,

n⋆ (e.g., width dimension in Fig. 4.7(a)). For simplicity of notation, we will assign num-

bers to denote dimensions: for a 2-dimensional matrix, dimension 0 refers to the height

(row) dimension, and dimension 1 refers to the width (column) dimension. Similarly, for a

3-dimensional tensor, dimensions 0, 1, and 2 refer to the channel, height, and width dimen-

sions, respectively. The AuthBlock orientation can be thought of as a permutation of these

dimensions: in a 2-dimensional example, the horizontal orientation can be expressed as (1, 0)

(traverse through the width first, then, move to the next row), while the vertical orientation

is (0, 1). Suppose the AuthBlock orientation for n-dimensional tiles is (p1, · · · , pn) where

pi ∈ [0, · · · , n− 1] for all is. There will be an index j with pj = n⋆ that corresponds to the

mismatching dimension. Then, for dimensions i ≤ j, we can flatten them together and treat

them as the equivalence of the ‘width’ in Fig. 4.7(a). Dimensions i > j can be also flat-

tened together and treated as the equivalence of the ‘height’. Therefore, this mathematical

approach can be generalized to higher-dimensional tiles.

Finally, we can also apply this approach when the tiles have mismatches in multiple

dimensions, by reducing the tiles such that only a single mismatching dimension has to

be considered. Fig. 4.8 shows 2-dimensional tiles that have mismatches in both the height

73

and width dimensions. For a horizontal AuthBlock orientation, we can ignore the upper

hi− hj rows and only consider a smaller tile with the height of hj and the width of wi. This

reduction only results in at most one AuthBlock miscounting at the horizontal boundary of

tilej. Similarly, we can ignore the left wi−wj columns for a vertical AuthBlock orientation.

Intuitive Optimizations to Reduce Search Time In the case of a vertical AuthBlock

orientation for Fig. 4.7(a), observe that there is at most a single AuthBlock that partially

intersects with tilej. This AuthBlock will be at the boundary of where tilej starts. Thus,

the problem of counting redundant reads and hash reads can be further reduced using this

property. The first ⌊h×(wi−wj)

u
⌋ AuthBlocks in tilei will not overlap with tilej at all. The

number of additional reads when loading tilej can be broken down into:

redundant reads = (h× (wi − wj)) mod u (4.19)

hash reads = ⌈(h× (wi − wj)) mod u+ h× wj

u
⌉ (4.20)

Also, when there is only a single dimension where tiles mismatch, generally it is optimal

to set the AuthBlock orientation to visit that dimension lastly (e.g., use vertical orientation

in Fig. 4.7(a)). Then, combined with the above-mentioned simplification, the optimal Au-

thBlock assignment can be boiled down to solving which value of u will minimize the sum

of Eq. (4.19) and Eq. (4.20).

Example of Analysis Results

In Fig. 4.9, we visualize the search space of the AuthBlock assignment. The example follows

the setup in Fig. 4.7(a) by setting h = 30, wi = 30, and wj = 20. We then sweep the

AuthBlock size u from 1 to 30 for the horizontal orientation (note that u > 30 will result in

the same redundant reads as the “tile-as-an-AuthBlock”), and from 1 to 900 for the vertical

orientation, where the upper bound means using the full tile as an AuthBlock, to see how

these variations affect the overall off-chip traffic when accessing the misaligned tile.

74

0 5 10 15 20 25 30
Authentication Block Size (# elements)

0

10000

20000

30000

40000

Of
f-c

hi
p

Tr
af

fic
 (b

its
)

Horizontal

redundant tag total

0 100 200 300 400
Authentication Block Size (# elements)

0

2000

4000

6000

8000
Vertical

Figure 4.9: The amount of off-chip traffic incurred for accessing tilej in Fig. 4.7(a) when
varying the AuthBlock orientation and size.

In both figures, we observe an inversely proportional relationship between the AuthBlock

size and the amount of hash reads. When we use horizontal AuthBlocks, we observe that

the overall trend between the redundant reads and the AuthBlock size is a positive linear

relationship, but there exist several distinguishable local valleys. We observe the optimal

assignment choice is to set u = 10, which hits a local minimal value of the redundant

reads, and meanwhile incurs a moderate level of hash reads overhead. When using vertical

AuthBlocks, the trade-off space is rather irregular. Since the two tiles in Fig. 4.7(a) have the

same height, we periodically observe zero redundant reads whenever the AuthBlock size is a

factor of h×(wi−wj) = 300. Using an exhaustive search, we identify the optimal AuthBlock

size is 300.

4.3.3 Cross-layer Fine Tuning

So far, we derived the loopnest mappings in the first step for each individual layer in a DNN,

then identified the optimal AuthBlock assignment based on the tiling organization defined

by the loopnest mappings in the second step. However, the resulting mapping for secure

DNN accelerators (i.e., loopnest mappings and AuthBlock assignments) may not be the

global optimum considering the cross-layer dependency. For example, there can be loopnests

for two dependent layers that are not optimal for each individual layer without considering

75

the AuthBlocks, but result in better overall performance when both layers are considered

together with the AuthBlock assignment. In the final step in our search algorithm, we

directly consider this cross-layer dependency from the loopnest mapping level to find the

globally optimal solution.

Challenges

Conventional mapping algorithms for DNN accelerators usually search for the optimal map-

ping for each layer independently. This is a natural assumption in the conventional setting,

as each layer is executed sequentially and in-order in many cases, except for recent fused-

layer processing techniques [111]. Furthermore, since each layer is independent of other

layers for the purpose of mapping, the search space for mapping algorithms can be simpli-

fied. However, these mapping algorithms cannot be easily adapted to consider the influence

of cryptographic operations with cross-layer dependency.

The main challenge is the exponential increase in the search space when multiple layers

have to be searched jointly. Suppose the ith layer in a DNN has total si candidate loop-

nests. For brute-force search algorithms [52], [106], [107] that want to jointly search n layers

(layers 1, 2, · · · , n), this means that the search space becomes
∏n

i=1 si. The computational

complexity imposed by joint search can be prohibitive, especially for deep models with a

large number of layers [60], [61].

Alternatively, optimization-based techniques are difficult to adapt due to the AuthBlock

assignment. For example, the mathematics behind optimization techniques often require the

constraints and the objective functions to be convex or linear [105], while the mathematical

formulation for the AuthBlock assignment (Section 4.3.2) cannot be easily reduced to a

closed-form nor be guaranteed to be convex.

Orthogonal to our case, there is recent work on jointly searching the mappings for multiple

layers in the context of fused-layer processing [111]. These efforts tackle an orthogonal

problem of fused-layer processing that aims to buffer the intermediate tensors to reduce the

76

off-chip memory traffic for conventional DNN accelerators. In our case, the goal is to combine

the impact of AuthBlock assignments with the mapping algorithm. Therefore, while these

efforts are promising, they are orthogonal to the unique challenges of secure accelerators.

Search Using Simulated Annealing

We propose to use simulated annealing, a metaheuristic algorithm, to overcome the challenge

of the large search space of cross-layer dependency. Simulated annealing is a probabilistic

method for solving an optimization problem over a large search space. Although it does not

guarantee the solution is optimal, it can efficiently search for a solution to a complex problem

where the objective function and the constraints are not well-defined (or even unknown).

Thus, simulated annealing can be used on top of the loopnest mapper and the AuthBlock

assignment, without having to formulate these two previous steps into mathematically well-

defined closed-form formulas.

Simulated annealing starts from an initial state, then iteratively searches for the neighbors

of the current state and probabilistically decides whether to move on to the neighboring new

state. The probability of moving is determined by a parameter called temperature, and

the difference in the cost of the current and the new state. The temperature is gradually

decreased throughout the iterations, such that suboptimal yet diverse states can be explored

in the earlier iterations, while the best solutions can be fine-tuned in the later iterations.

Algorithm 2 describes our adaptation of a simulated annealing algorithm for the cross-

layer fine-tuning. We denote L◦
i as the optimal loopnest mapping of the i-th layer found from

the first step without considering cross-layer dependency. Our algorithm attempts to identify

a set of loopnests (L1, · · · , Ln) that results in better performance compared to (L◦
1, · · · , L◦

n)

when n layers are considered altogether with the AuthBlock assignment.

The algorithm starts by initializing the current set of loopnests as (L◦
1, · · · , L◦

n) and

calculates its cost using the performance model and the optimal AuthBlock assignment

(lines 1-2). Then, for each iteration, the algorithm randomly selects one layer i and a

77

Algorithm 2 Pseudocode for step 3: simulated annealing
1: L1, ...Ln ← L◦

1, ..., L
◦
n

2: cost← PerfModel(L1, ..., Ln)
3: t← Tinit ▷ initialize temperature
4: for n← 1, ..., N do
5: i← random(1, ..., n)
6: L′

i ← GetNeighbor(Li)
7: cost′ ← PerfModel(L1, ..., L

′
i, ..., Ln)

8: cost_diff = cost− cost′

9: if exp cost_diff
t

> random.uniform(0, 1) then
10: Li ← L′

i ▷ probabilistic accept the new schedule
11: cost← cost′

12: t← GetTemperature(t, n, Tinit, Tfinal)

neighbor loopnest L′
i (line 6) for that layer. Observe that the key component of this algorithm

is a heuristic involved in proposing a neighbor (the GetNeighbor function). Generically,

neighbors can be defined as states with a small distance from the original state. However,

there is no natural metric for measuring the ‘distance’ between two loopnests. We use the

per-layer performance as the similarity metric. Specifically, we obtain top-k best loopnest

mappings per layer from the first stage loopnest mapper, and the GetNeighbor function

randomly samples among these k different loopnests to get a neighbor. When searching

among k possible mappings for each layer, the search space has kn distinct combinations to

be explored in a limited number of simulated annealing iterations.

This choice has two key benefits. First, although the cross-layer dependency affects the

global performance, still the individual layer performance is a key contributor to the global

performance. For example, a per-layer loopnest mapping that results in low utilization of

the PE array or excessive off-chip memory traffic is less likely to be a globally optimal

solution anyway. Therefore, the top-k best neighbor set is an intuitive choice considering

the importance of the per-layer performance. Second, obtaining top-k best loopnests only

requires minor modifications to the conventional mappers like Timeloop [52]. This choice is

thus highly compatible with the existing conventional mappers.

However, we also note this choice can result in less diverse candidate sets for the loopnest

78

1 2 3 4 5 6 7 8 9 10
k

0

2

4

6

8

Sp
ee

du
p

(%
)

1000 iterations
5000 iterations

Figure 4.10: Improvement in latency (speedup) when using simulated annealing for different
values of k, compared to when only the top-1 loopnest mapping for each layer.

mappings since the top-k best loopnests can have similar tiling strategies. Increasing k can

be one potential method to consider more diverse loopnest candidates (k ≫ 10), although

at the cost of more iterations for simulated annealing to be converged.

The new mapping that replaces the loopnest mapping of the i-th layer with L′
i is proba-

bilistically accepted (lines 9-12), and the temperature is decreased linearly (line 13).

Impact of Search Hyperparameters There are two key hyperparameters in Algo-

rithm 2, the total number of iterations N and the size of the neighbor set k. We examine

how these hyperparameters affect the search results. We demonstrate the performance im-

provement when the simulated annealing method is used with different values of k and N in

Fig. 4.10. The numbers are for an architecture derived from Eyeriss [40] with a cryptographic

engine with an energy-efficient AES-GCM implementation from [49] (detailed specifications

in Table 4.2) running a MobilenetV2 [61] workload.

Increasing k from 1 to 2 can improve the overall performance by about 5%. However,

further increasing k results in a slower performance improvement, and the improvement stalls

around the point when k = 6. Considering that a larger k does not always result in better

speedup but can substantially increase the search space size, we set k = 6 for subsequent

experiments. Also, the number of iterations directly affects the search time, and we use 1000

iterations as a default setup to trade off the quality of results and the search time.

79

Handling Post-processing Operations We also need to consider post-processing opera-

tions that follow the intensive tensor algebra operations. Post-processing operations include

non-linear activation functions, normalization, and pooling operations. Cross-layer depen-

dency due to the intermediate tensors has to consider these post-processing operations. There

are two types of post-processing operations.

First, some post-processing operations can be performed on-the-fly while the ofmap is

being generated or while the ifmap is being loaded. These operations can be ‘folded’ with

the tensor algebra operations, and we do not have to consider them separately. As a result,

we should consider cross-layer dependency the same as when these operations do not exist.

Examples of these operations are Batch Normalization [112], ReLU activation function, and

adding zero pads. Note that if an accelerator design supports more complex operations

on-the-fly with special functional units, those operations will also fall into this category.

Meanwhile, some other post-processing operations cannot be performed on-the-fly. For

example, pooling operations and concatenation/addition of several feature maps for residual

connections can be in this category depending on an accelerator design. These operations

require a separate computation step and inevitably trigger rehashing. Thus, the cross-layer

dependency problem due to AuthBlock assignment is not applicable for layers with these

post-processing operations. As such, given a full DNN workload, we divide them into multiple

segments based on the existence of the second type of post-processing operations and apply

the AuthBlock assignment and the cross-layer fine-tuning within each segment.

4.4 Evaluation of the Mapping Algorithm

In this section, we present the effect of the mapping algorithms on the performance of a

secure DNN accelerator. As a loopnest mapper for the first step, we use Timeloop [52].

We add an extension for Timeloop such that the top-k loopnests can be returned for each

layer. The second and third steps, the AuthBlock assignment and cross-layer fine-tuning are

80

Table 4.1: Summary of different mapping algorithms.

Mapping
Algorithm

Loopnest
Mapper AuthBlock Cross-layer

Fine Tune?
Crypt-Tile-Single Crypt-Aware Tile-as-an-AuthBlock N
Crypt-Opt-Single Crypt-Aware Optimal-AuthBlock N
Crypt-Opt-Cross Crypt-Aware Optimal-AuthBlock Fine Tune

implemented to accept the loopnest mappings from the first step as inputs and generate the

final loopnest mapping for each layer and the AuthBlock assignments. The performance is

estimated using a simulator with an analytical approach that uses the action counts for each

hardware component to estimate the number of cycles and the energy consumption. For a

DNN accelerator, we can use Timeloop’s model mode with Accelergy [113] to estimate the

performance. For cryptographic engines, we calculate action counts for AES engines (for en-

cryption) and Galois-field multiplier (for authentication) and estimate the performance using

the reported throughput and energy consumption of AES-GCM designs in the literature [48],

[49].

As a baseline algorithm, we consider Crypt-Tile-Single, which indicates that it uses

Timeloop with the effective bandwidth and energy for the off-chip accesses reflecting the

cryptographic operations, the “tile-as-an-AuthBlock" assignment strategy, and does not

consider cross-layer dependency. We note that supplying the proper bandwidth and energy

parameters to Timeloop is crucial to prevent sub-optimal loopnests degrading the baseline

performance, especially when the cryptographic engine has lower throughput compared to

the off-chip memory. We then add the second and third steps one by one, with the most

optimized version denoted as Crypt-Opt-Cross with both the optimal AuthBlock assignment

and the cross-layer search enabled.

Base Configuration for Evaluation We consider diverse DNN accelerator designs in the

following experiments derived from a base configuration. As the base configuration, we use

a spatial DNN accelerator with multiple processing elements (PEs), where each PE has an

ALU and a small local memory, operating in parallel and organized as a 2-dimensional array

81

0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d
La

te
nc

y

1.44 1.40 1.39

AlexNet

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2.37 2.28 2.25

ResNet18

0.0

2.5

5.0

7.5

10.0

12.5

15.0 14.77

10.35 9.86

MobilenetV2

Crypt-Tile-Single Crypt-Opt-Single Crypt-Opt-Cross

(a) Performance overhead using different mapping algorithms, measured by the number of cycles
normalized to the unsecure baseline accelerator.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ad
di

tio
na

l
 O

ff-
ch

ip
 Tr

af
fic

 (b
its

)

1e7

0

2

4

6

8
1e7

0.0

0.5

1.0

1.5

2.0

1e8

Rehash Redundant Hash

(b) The additional off-chip traffic along with its breakdown into hash reads, redundant reads, and
rehashing traffic for different mapping algorithms.

Figure 4.11: Impacts of mapping algorithms on performance and off-chip traffic.

of shape X×Y . The base configuration has an on-chip SRAM buffer, and the data movement

can be described by its dataflow. We set the base configuration to use the row-stationary

dataflow from [40], 14× 12 PEs, and 131kB on-chip global buffer.

Furthermore, the secure accelerator uses an area-efficient parallel AES-GCM Implemen-

tation [49], [50] as its cryptographic engine, with one AES-GCM engine per each datatype.

For the off-chip DRAM access, we assume LPDDR4 with a bandwidth of 64B per cycle.

Finally, Accelergy [113] is used to estimate the energy and area of each component on the

DNN accelerator, assuming 40/45nm technology it natively supports. For the cryptographic

engines, we normalize the gate-equivalent area reported in the literature to 40nm technology

to get their area [48], [49], and use the power and energy reported in [49].

Results Fig. 4.11(a) shows the slowdown in secure accelerators, i.e., the number of cycles

to process a workload normalized to that of baseline (unsecure) accelerators. Fig. 4.11(b)

shows the additional off-chip traffic incurred by cryptographic operations for each mapping

82

algorithm. We examine three workloads with varying numbers of layers and characteristics:

AlexNet [57], ResNet18 [60], and MobilenetV2 [61]. These workloads are mainly composed

of 2-dimensional convolutions, and note that we only consider the first 5 layers of AlexNet

that are convolutions.

First, our optimal AuthBlock assignment strategy reduces the additional off-chip traffic

across all three DNN workloads compared to the “tile-as-an-AuthBlock” assignment. The

benefit comes from two factors: 1) rehashing operations are not necessary between dependent

layers as the AuthBlocks are assigned by considering the mismatches between their tiling

strategies, and 2) both redundant reads and hash reads are minimized without having to

rehash or duplicate some data. Also, this step reduces the slowdown by up to 29.9% compared

to Crypt-Tile-Single as well. These two factors affect deeper workloads more significantly,

and the benefit of the AuthBlock assignment is most visible in MobilenetV2.

Second, cross-layer fine-tuning of our scheduling primarily improves the performance for

a deep workload like MobilenetV2 with an additional 3.3% improvement on top of Crypt-

Opt-Single. Simulated annealing involves stochasticity when choosing a neighbor, and the

performance gain from this step can vary due to randomness. From 5 independent runs for

simulated annealing, we observe that the slowdown for MobilenetV2 with Crypt-Opt-Cross

can vary from 9.76 to 9.99 with the standard deviation of 0.08, and Fig. 4.11(a) reports the

mean value. This step does not significantly affect the performance on a shallower workload

like AlexNet, where the opportunity for cross-layer optimization is limited. Nevertheless, it

is worth noting that this step reduces the additional off-chip traffic due to redundant reads

and hash reads (excluding rehashing-related traffic) by 32.6% and 16.0% even for AlexNet

and ResNet18. Overall, our scheduler results in a schedule that is up to 33.2% faster and

50.2% better in EDP compared to the baseline Crypt-Tile-Single.

Roofline Model We can also use the roofline model [67] to intuitively reason about the

impact of scheduling algorithms (Fig. 4.12). In the left of Fig. 4.12, the roofline model de-

83

100 101 102

Computational Intensity (FLOP/byte)
100

101

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

AlexNet
ResNet18
MobilenetV2

100 101 102

Computational Intensity (FLOP/byte)
100

101

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

Crypt-Tile-Single Crypt-Opt-Single

Crypt-Opt-Cross

Unsecure (w/o crypt)

Figure 4.12: Left: Roofline model for accelerators using different mapping algorithms. White
markers represent the unsecure baseline, and colored markers represent secure accelerators.
Right: Roofline model zoomed in to show different mapping algorithms for the MobilenetV2
workload.

scribes the performance (y-axis) of each DNN workload, as a function of the computational

intensity (x-axis). The computational intensity is measured by the number of operations

(e.g., multiplication and addition) per byte of DRAM traffic, and performance is measured

by the number of operations per second, assuming a 100MHz clock. There are two solid

lines illustrating the maximum possible performance: the horizontal solid line is determined

by the number of PEs that can operate in parallel, and the slanted solid line represents

the performance limited by the off-chip memory bandwidth. The dotted slant line is based

on the effective off-chip bandwidth of a secure DNN accelerator constrained by its crypto-

graphic engine, assuming a single parallel AES-GCM engine processes every off-chip data

transfer (in actual designs, each datatype has its own dedicated cryptographic engine, and

the performance can be higher than this effective line). We can observe that the workloads

were in the compute-bound region for the unsecure baseline accelerator, but throttling from

the cryptographic engine pushes the workloads to be in the effectively memory-bound region

in secure accelerators. The right part of Fig. 4.12 zooms in to show the different mapping

algorithms for the MobilenetV2 workload, and shows that each step in our mapper improves

the performance by finding mappings with higher computational intensity.

84

Table 4.2: Specifications of AES and Galois-field multiplier (GFMult) used to construct an
AES-GCM engine.

Architecture AES GFMult

Cycle Area
(kGates)

Energy
(pJ) Cycle Area

(kGates)
Energy
(pJ)

Pipelined 1 78.8 165.1 1 60.1 57.7
Parallel 11 9.2 194.6 8 9.7 82.4
Serial 336 3.0 768 128 3.3 345.6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

No
rm

al
ize

d
La

te
nc

y

AlexNet

0.0

0.5

1.0

1.5

2.0

ResNet18

0

2

4

6

8

10
MobilenetV2

Parallel x 1
Parallel x 5

Pipelined x 1
Parllel x 10

Serial x 30
Pipelined x 2

10

20

30

40

50

60

10

20

30

40

50

60

10

20

30

40

50

60

Ar
ea

 o
ve

rh
ea

d
(%

)

Figure 4.13: Slowdown over the unsecure baseline design and the area overhead of secure
accelerators varying in their cryptographic engine configurations.

4.5 Impacts of Architecture Configurations

In this section, we show the performance of diverse secure DNN accelerator designs, that

vary in the choice of cryptographic engines, the number of PEs, and the size of the on-chip

global buffer.

4.5.1 Cryptographic Engine

We evaluate the impact of different cryptographic engine configurations, varying in their

AES-GCM engine architecture and counts, on the area overhead and the performance. We

use three different AES-GCM engine implementations, summarized in Table 4.2. These

designs have distinct characteristics in the area-throughput trade-off, with the fully-pipelined

design supporting high throughput but large area overhead, whereas the serial design has

85

14x12 14x24 28x24
0

1

2

3

4

5

6
#C

yc
le

s

1e6 AlexNet

14x12 14x24 28x24
0.0

0.5

1.0

1.5

2.0

2.5

1e7 ResNet18

14x12 14x24 28x24
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
1e7 MobilenetV2

Unsecure Baseline Pipelined AES-GCM Parallel AES-GCM

Figure 4.14: Latency for secure accelerator designs varying in their number of PEs.

low area overhead and low throughput. The parallel design is in between two other designs,

with medium throughput and area overhead.

We use the same accelerator architecture as in Section 4.4 and use the Crypt-Opt-Cross

mapping algorithm. Fig. 4.13 compares the slowdown over the unsecure baseline design for

each workload and the area overhead for each configuration. We find that similar performance

can be obtained by configurations with very different area overhead. For example, the

configuration with 30× serial AES-GCM engines has similar performance to the one with 1×

parallel AES-GCM engine, although they have 10× difference in the area overhead. Thus,

the scalability of area-efficient yet low-throughput AES-GCM engines can be problematic

for DNN accelerators, and often using a moderate number of higher-throughput AES-GCM

engines is a better design choice.

4.5.2 Processing Elements Array

We examine accelerator designs varying the number of PEs in the base configuration. We

consider two cryptographic engine configurations, 1× pipelined AES-GCM engine, and 1×

parallel AES-GCM engine. Fig. 4.14 shows the evaluation result for different PE organiza-

tions 14× 12, 14× 24, and 28× 24. The number of PEs determines the maximum possible

performance of the accelerator if the memory bandwidth is sufficient, and this trend is well

manifest for the unsecure baseline accelerators (the latency decreases almost by half as the

86

16kB 32kB 131kB
0

1

2

3

4

5

6

7

8

#C
yc

le
s

1e6 AlexNet

16kB 32kB 131kB
0.0

0.5

1.0

1.5

2.0

2.5

3.0

1e7 ResNet18

16kB 32kB 131kB
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

1e7 MobilenetV2

Unsecure Baseline Pipelined AES-GCM Parallel AES-GCM

Figure 4.15: Latency of designs varying in the size of on-chip SRAM buffer.

number of PEs is doubled). However, since secure accelerators can be effectively bounded

by the supply of decrypted data, the benefit of increasing the PE array size is not apparent

for the design with a parallel AES-GCM engine. Thus, the performance of secure acceler-

ators cannot be improved by more PEs unless the cryptographic engine throughput is also

increased.

4.5.3 On-chip SRAM

The size of the on-chip SRAM buffer limits the maximum tile size for the ifmap and ofmap

for the row-stationary dataflow architecture we used. In Fig. 4.15, we examine the effect

of different buffer sizes (131kB, 32kB, and 16kB) on secure accelerators while other design

parameters are fixed. As we scale down the buffer size, the size of tiles between the off-chip

and the on-chip buffer decreases, often resulting in larger off-chip traffic. For the unsecure

baseline accelerators, larger off-chip traffic is not problematic because they have sufficient

off-chip memory bandwidth. However, it can further throttle the secure accelerators with

limited encryption/decryption bandwidth, thus leading to longer latency for small buffer

sizes.

87

2 3 4 5
Area (mm2)

2

4

6

8

#C
yc

le
s

1e6

PE 14x12
PE 14x24
PE 28x24

Pipelined
Parallel/Serial

GLB 131kB
GLB 32kB
GLB 16kB

Figure 4.16: The area vs. performance trade-off of secure accelerator designs. Points high-
lighted with red edges indicate the Pareto front of this trade-off curve.

4.5.4 Area vs. Performance Trade-off

Finally, we plot the area vs. latency (for the AlexNet workload) trade-off curve for several

designs we have discussed so far in Fig. 4.16. We also derive the Pareto front of this trade-

off curve and observe the characteristics of the optimal and suboptimal points. First, the

designs with a small on-chip buffer size but with a high throughput cryptographic engine (i.e.,

pipelined AES-GCM engines) are often optimal. As we observed in Fig. 4.15, performance is

not degraded much if the cryptographic engine provides sufficient throughput even if we scale

down the buffer size. Thus, dedicating more area to the cryptographic engine by reducing the

on-chip buffer size can provide a good trade-off for the row-stationary design we considered

in this section.

Besides, the designs with larger PE array sizes (e.g., 14 × 24 or more) but with a low

throughput cryptographic engine result in suboptimal points. This observation agrees with

Fig. 4.14 that the benefit of having higher parallelism cannot be achieved when cryptographic

engines are the bottleneck.

88

4.5.5 Discussions on Other Design Aspects

DRAM Technologies Higher off-chip memory bandwidth does not necessarily improve

the performance of secure DNN accelerators when the effective off-chip bandwidth is limited

by the cryptographic engine. For example, increasing the DRAM throughput to 128B/cycle

does not change the latency and energy of secure DNN accelerators for the AlexNet workload.

Thus, in order for secure DNN accelerators to fully utilize high memory bandwidth, the

throughput of cryptographic engines should be improved as well.

However, the energy for the off-chip access can be affected by the DRAM technology

even when secure DNN accelerators are throttled by the cryptographic engine. For example,

using the HBM2 technology that has lower energy per access compared to LPDDR4, the

energy for both the unsecured baseline and the secure accelerators decreases, although the

latency is not affected.

TEE Entry/Exit Entering a TEE and exiting from it can affect the performance when the

full system is considered end-to-end. Previous works that examined the end-to-end overhead

of supporting a TEE for accelerators [104] showed that the initial transfer of DNN weights

to the accelerator context is the major source of latency for the entry. We note that this

transfer latency might not vary significantly across different accelerator architecture, as the

transfer is determined by the model parameter size and the host CPU. Furthermore, when

an accelerator is serving multiple inference requests using the same DNN, this initial transfer

cost of model parameters can be negligible compared to the overall execution time. Thus, we

expect that TEE entries/exits do not significantly affect the optimal design of secure DNN

accelerators.

89

4.6 Summary

In this chapter, we present SecureLoop, a design space exploration framework for secure

DNN accelerators supporting a TEE. Due to cryptographic authentication, a secure DNN

accelerator accesses the off-chip memory using authentication blocks as the basic granularity.

As a result, the authentication block assignment determines the off-chip memory access

pattern and the overhead associated with cryptographic operations.

We first analyze the challenges for determining the optimal authentication block assign-

ment. We note that the entire tile cannot be simply assigned as one authentication block,

due to the cross-layer dependency in DNNs. While one layer’s input feature map is gen-

erated as its previous layer’s output feature map, and they are the same tensor data, the

tiling strategy for each layer can be different. Thus, assigning the entire output feature map

tile as an authentication block can result in significant additional off-chip traffic and more

cryptographic operations.

To overcome this challenge, we propose a search algorithm for determining the optimal

authentication block size and orientation. We show the problem of measuring the additional

off-chip traffic depending on the authentication block assignment can be formulated as a

mathematical problem, which can be efficiently solved. With this analytical approach, we

can run an exhaustive search over all possible sizes and orientations of authentication blocks

to identify the optimal one. We show that the optimal authentication block assignment can

provide up to 30% performance improvement over assigning tiles as authentication blocks.

Next, we present an approach reflecting the impact of the authentication block assignment

from the loopnest mapping stage. We generate the top-k best loopnest mappings for each

layer in a DNN and use simulated annealing over those mappings to identify the global

optimum considering the authentication block assignment. This cross-layer fine-tuning step

provides up to 3% additional performance improvement.

Using the mapping algorithm of SecureLoop, we can evaluate the performance of a secure

90

DNN accelerator design more fairly. We present case studies on the design space exploration

of secure DNN accelerators, varying the size of the PE array, the on-chip buffer, and the

cryptographic engine design.

SecureLoop is the first to integrate security into the design space exploration of DNN ac-

celerators and addresses several challenges with developing a mapping algorithm considering

cryptographic operations. Furthermore, SecureLoop can provide a systematic evaluation of

the cost associated with supporting a TEE in diverse DNN accelerator designs.

91

92

Chapter 5

Secure Off-chip Memory Interface for

Deep Neural Network Inference

Accelerators

In this chapter, we present an implementation of a secure DNN accelerator supporting a

trusted execution environment (TEE) in silicon. From this implementation, we strive to

achieve three objectives. First, we can verify the performance simulation result provided by

SecureLoop (Chapter 4) using the cycle-accurate RTL simulation developed for this imple-

mentation. Second, we can understand the impact of implementation-level decisions, such as

the control logic for cryptographic engines, which are difficult to capture from the high-level

simulations. Finally, we demonstrate specific design choices tailored for resource-constrained

edge devices, such as lightweight cryptography and layer fusion, showing that a TEE can

be supported at a reasonable cost of < 4% performance slowdown, 16.5% more energy con-

sumption, and 8.1% of the accelerator core area.

93

5.1 Secure DNN Accelerator Architecture Overview

Recall that secure DNN accelerators require every off-chip data traffic for input, weight, and

output tensors to be encrypted and authenticated using a cryptographic primitive. This

feature translated into two architecture-level differences from conventional DNN accelera-

tors. First, the accelerator has to be equipped with hardware support for cryptographic

operations. Second, the granularity of off-chip data access becomes authentication blocks,

not tiles, changing the amount of off-chip traffic and mapping considerations. These two

differences were key motivations for SecureLoop, a design space exploration framework for

secure accelerators we presented in Chapter 4.

However, as a high-level performance simulator, SecureLoop evaluates the performance

of a secure DNN accelerator design relying on key assumptions on its behavior. For the

latency evaluation, SecureLoop assumes that the off-chip data transfer, cryptographic oper-

ations, and the actual DNN accelerator computations work in parallel with proper pipelining

between the hardware units and double-buffering for the data access. Also, the latency for

each hardware unit is evaluated based on the action counts, such as how many encryption

operations are required for a DNN workload and how many bytes of data have to be loaded

into the buffer. While these assumptions are in line with prior work on DNN accelerators

and simulators [40], [52], the implementation of these functionalities ultimately determines

the actual performance. Therefore, the implementation of a secure DNN accelerator can

validate the assumptions of the performance simulator and demonstrate the actual overhead

of secure designs.

Furthermore, there are unique challenges in the implementation in order to minimize the

overhead of supporting a TEE. In this section, we outline the implementation-level challenges

and design choices for secure off-chip memory interfaces in DNN accelerators.

94

Figure 5.1: Overview of secure DNN accelerators supporting a TEE showing the necessary
functionalities for a off-chip memory interface.

5.1.1 Challenges

Cryptographic Engine for Supporting a TEE

The first type of challenge arises from the difference in the control logic for the off-chip

memory interface in secure DNN accelerators. Fig. 5.1 shows the block diagram of the off-

chip memory control unit of a secure DNN accelerator. First, note that the granularity of

the off-chip data request is authentication blocks, not regular tiles, since all data in one

authentication block has to be fetched to compute the hash tag and verify the integrity.

The memory control logic has to first translate the tile information to the dependent au-

thentication blocks, and then track the addresses based on the authentication blocks. Then,

when the data is fetched and decrypted, the control logic has to identify which elements

are ‘redundant’ (i.e., data only required for authentication, not the actual computation) and

drop those elements when writing to the global buffer.

Compared to conventional DNN accelerators where the off-chip memory control can be

easily done with counters (e.g., increment the counter registers by a fixed amount until the

counter reaches the tile size), the authentication-block-based control logic has to support

additional operations described above. Our implementation aims to minimize the over-

head from these additional operations to the off-chip memory control logic, such that the

authentication-block-based control does not defeat the benefit of minimizing the additional

95

off-chip traffic by optimizing the authentication block assignment.

Second, the global buffer memory map (i.e., the bank, row, and column information

representing how each element in a tensor is stored in the buffer) and the authentication

block orientation can misalign. For example, suppose a global buffer memory map requires

one row in a 2-dimensional matrix to be stored in the same address so that all data in one

row can be supplied in parallel for the computation. However, if the authentication blocks

for this matrix are assigned in a column-major manner, the decrypted data cannot be written

to the global buffer in a single cycle. Instead, the data has to be written in a transposed

manner across multiple cycles.

This transpose problem increases the latency of data transfer in secure DNN accelerators.

While one solution can be only allowing the authentication block orientation that matches

the memory map constraints, it can result in a sub-optimal authentication block assignment

increasing the redundant reads. Thus, our implementation aims to ‘hide’ this additional

latency by leveraging the characteristics of the cryptographic operations, enabling a flexible

authentication block assignment and good performance.

Resource-constrained Environment

The second type of challenge for our implementation is related to the resource-constrained

environment for edge and mobile devices. Edge and mobile devices have limited area, power,

and energy budget, hence the secure DNN accelerator has to be more conscious of the cost

of security.

The large source of area overhead in secure accelerators is the cryptographic engine.

For example, a widely-used authenticated encryption algorithm like AES-GCM can pose a

significant area vs. performance trade-off for small accelerator designs as we described in

Chapter 4. While AES is a standardized and well-validated cipher, an AES engine with suffi-

ciently high throughput that does not throttle the off-chip data supply to a DNN accelerator

can have a large area overhead. Thus, the overhead from the cryptographic engine itself can

96

be challenging for a resource-constrained environment.

In our implementation, we reduce the overhead from cryptographic engines by adopting

a recent lightweight cryptography algorithm [110] developed for edge and mobile devices,

instead of using the conventional AES-GCM algorithm. This choice enables a better area

vs. performance trade-off for secure accelerators while providing a sufficient level of security

for DNN workloads.

Another challenge is different cryptographic engine throughput requirements depending

on the workload characteristics. Compute-bound workloads, such as convolutions popu-

larly used for image processing applications, require a relatively low throughput for off-chip

data transfer, and using an area-efficient cryptographic engine can be acceptable. How-

ever, memory-bound workloads, such as matrix multiplications and self-attention modules

in Transformer models [63], [64], [114], require much higher off-chip data transfer through-

put and a low throughput cryptographic engine can significantly slow down the accelerator

performance. Therefore, a cryptographic engine design tailored for one type of workload can

be suboptimal for the other. For a resource-constrained accelerator, over-provisioning cryp-

tographic engines for memory-bound workloads can incur large area overhead not acceptable

for the overall design cost.

We aim to overcome this challenge by leveraging layer fusion [115], [116] that can convert

memory-bound workloads to effectively compute-bound workloads. A key observation is that

the widely-used memory-bound workloads like self-attention modules [63], [64], [114] have

large memory footprints due to the intermediate activation tensors whose data traffic can be

eliminated with layer fusion.

5.2 Secure Off-chip Memory Interface

In this section, we describe the implementation of the secure off-chip memory interface

for DNN accelerators supporting a TEE. The configuration for a secure DNN accelerator

97

Figure 5.2: Constructing a unique nonce requires the address and the timestamp.

includes information for a DNN workload, a loopnest mapping specifying the tiling strategy

and the computation order, and authentication block assignments specifying the size and

orientation of authentication blocks for each datatype. Given this configuration, the main

controller of an accelerator tracks the current and next tile information for each datatype.

The tiles at the DRAM level are used for the off-chip data requests. From the tile information

provided by the main controller, the off-chip memory interface handles the address tracking

and generation for data requests and transfers the data between the accelerator and the

off-chip memory.

Our secure off-chip memory interface implementation has four key contributions, ad-

dressing the challenges described in Section 5.1.1 and providing support for a TEE. First, we

describe the nonce and counter management, which are essential to guarantee the security of

cryptographic operations. Second, the authentication-block-based control logic is efficiently

implemented with a small area and latency overhead compared to the conventional tile-based

control logic. Third, we show that the transpose problem can be resolved by interleaving

the data write operations with the cryptographic engine’s internal operations and by adding

a small transpose buffer. Finally, we adopt a recent NIST-standardized lightweight authen-

ticated encryption algorithm, ASCON [110], as a core cryptographic engine to reduce the

area overhead.

98

5.2.1 Managing Nonces

In many widely-used authenticated encryption algorithms, such as AES-GCM and ASCON,

a key and a cryptographic nonce (i.e., numbers that are only used once) are required for

the initialization. A secret key is always kept on-chip in a special register that other non-

cryptographic operations cannot access, and the same key is used throughout the entire

session (i.e., a user requests processing of a certain DNN workload). A cryptographic nonce

has to be unique for every different authenticated encryption to guarantee the security of

cryptographic primitives. The same nonce should not be repeated to encrypt different data

using the same key. The secrecy of the key and the uniqueness of the (key, nonce) pair are

crucial for security.

A nonce can be designed to be unique for every encryption by tracking the address

and the timestamp for the data (Fig. 5.2). The timestamp is updated when the data in

a particular address has to be updated and the corresponding nonce is different from the

previous version. In secure DNN accelerators, the address can simply be the logical DRAM

address or determined by the tile and authentication block information. For example, if

the initialization has to be performed for each authentication block, the address field of the

nonce can be uniquely determined by a layer id (e.g., which layer in a DNN workload is

being processed), a datatype (e.g., input, weight, or output tensor), a tile id (e.g., which tile

in a tensor), and an authentication block id (e.g., which authentication block within a tile).

The timestamp has to be updated when the data in a specific address is updated. Weight

tensors are read-only and never updated during the inference unless the run-time fine-tuning

is used, and the timestamp can be fixed to a single value when entering the TEE mode.

Input and output tensors change for each request (e.g., the number of input data a user has

requested for processing so far). Output tensors can be updated multiple times if partial

intermediate tensors have to be written back to the off-chip memory when processing a

single layer. While input tensors are read-only for a single layer, they are dependent on the

99

Figure 5.3: A simple 1-dimensional example to visualize the authentication-block-based off-
chip memory access control.

previous layer’s output tensors. Thus, the timestamp for input and output tensors has to

keep two fields: a request id and a counter.

A request id can be easily tracked with a counter that is only updated when the processing

of the entire DNN workload on the current input data is completed. A counter tracks the

number of updates for a specific authentication block within an output tile. Note that in

DNN accelerators, this update can be pre-determined by the loopnest mapping, without

having to store counters separately [102], [104]. Overall, managing nonces can be achieved

with a single counter tracking a request id, and the tile and authentication block information

computed from the loopnest mapping and the cryptographic configuration.

5.2.2 Authentication Blocks

As we described earlier, the previous layer’s output tensor is used as the current layer’s

input tensor. This cross-layer dependency results in the misalignment of authentication

blocks, which are assigned when generating the output tensor, and the tiles in the input

tensor (Chapter 4). Therefore, when loading an input tile, the off-chip memory interface

has to identify all dependent authentication blocks of this tile, and load all data in those

authentication blocks.

This authentication-block-based control is described in Algorithm 3 and Fig. 5.3. For

simplicity, we explain this algorithm for a 1-dimensional tensor (i.e., a vector) here. The

100

Algorithm 3 Tracking off-chip data requests based on authentication blocks
Input: Input tile id t, Input tile size si
Input: Output tile size so, Output tile authentication block size sa ≤ so

▷ Determine the start and end indices of the requested input tile
1: Input tile start index istart ← t× si
2: Input tile end index iend ← (t+ 1)× si

▷ Determine the dependent output tiles
3: x1 ← ⌊ istartso

⌋ ▷ The leftmost dependent output tile
4: y1 ← istart%so
5: x2 ← ⌊ iend

so
⌋ ▷ The rightmost dependent output tile

6: y2 ← iend%so
▷ Determine the dependent authentication blocks

7: a1 ← ⌊y1sa ⌋ ▷ The leftmost authentication block in the leftmost dependent output tile
8: a2 ← ⌊y2sa ⌋ ▷ The rightmost authentication block in the rightmost dependent output tile

▷ Tracking addresses
9: for output tile id to ∈ [x1, · · · , x2] do ▷ Iterate through the dependent output tiles

▷ Determine the dependent authentication blocks in this output tile
10: if to = x1 then
11: astart ← a1
12: else
13: astart ← 0

14: if to = x2 then
15: aend ← a2
16: else
17: aend ← ⌈ sosa ⌉

▷ Iterate through the dependent authentication blocks
18: for authentication block id a ∈ [astart, · · · , aend] do
19: for k ∈ [0, sa) do ▷ Iterate through each element in an authentication block
20: icurr ← to × so + a× sa + k
21: if istart ≤ icurr < iend then
22: write_data_to_sram
23: else
24: drop_redundant_read

101

authentication blocks are assigned as a ‘sub-tile’ of an output tensor tile. However, note

that this algorithm can be extended to higher-dimensional tensors.

The control logic takes an input tensor tile id, an input tensor tile size, the previous

layer’s output tensor tile size, and the authentication block size as input, and returns the

address sequence, which is used for the off-chip memory requests and tracking the received

data, and the data that will be written to the accelerator’s memory hierarchy. First, the

start and the end indices of an input tensor tile is computed using an input tensor tile id and

its size (Algorithm 3 line 1-2). Next, for this input tensor tile, we identify all its dependent

output tensor tiles by dividing the start and the end indices by the size of the output tensor

tile (line 3-6). Since tiles are continuous (i.e., all elements between their start and end indices

belong to a tile), only computing for the two edges of a tile is sufficient. The remainder of

the previous division is further used to identify the authentication blocks within the tiles. In

the first tile (leftmost), the remainder is divided by the authentication block size, and the

quotient indicates the starting authentication block id within this output tensor tile (line 7).

For the last tile (rightmost), the quotient indicates the last authentication block id within

the tile (line 8).

Using the dependent output tile ids and the authentication block ids with each tile, we

can generate the address sequence with for-loops. The first counter tracks the dependent

tile ids (line 9) and the second counter tracks the authentication blocks within each tile (line

10). Note that the authentication block start and end indices can be different for the first

and the last dependent output tensor tile. When the off-chip memory returns the data for

the requested address and the cryptographic engine completes decryption, we determine if

this data is ‘redundant read’ (i.e., data only needed for authentication, not for the actual

computation), we drop the data (line 20-24). This last step can be determined by comparing

the start index of an input tensor tile with the start index of the first authentication block,

and similarly for the last authentication block.

Compared to the conventional off-chip memory control, the authentication-block-based

102

control requires some additional cycles and hardware resources to compute the dependent

output tiles and authentication blocks. For example, using two integer dividers, line 3-6

will take a single cycle. For the address sequence generation, this control logic requires

one additional for-loop to track the authentication blocks within each output tensor tile,

resulting in an additional counter. However, the area overhead is limited to a few dividers,

counters, and comparators, and configuring the dependent authentication blocks (line 1-8)

has to be performed only once per each input tensor tile, limiting the latency overhead to just

a few additional cycles. Therefore, the authentication-block-based control can be efficiently

supported for DNN accelerators, and the flexible authentication block assignment (i.e., not

simply assigning the entire tile as an authentication block) can reduce the overhead for the

off-chip data access and cryptographic operations without incurring a significant overhead

to the control logic.

5.2.3 Memory Map and Transpose Problem

In the high-level abstraction, the transpose problem can pose a significant overhead as it

can limit the on-chip global buffer data write to just one word per cycle in the worst case.

Consider a block cipher that performs encryption and decryption on a 128-bit block of data.

For a word size of 16-bit, the worst-case latency for writing this cipher block to the global

buffer is 8 cycles.

A closer look at the implementation of the cryptographic engine and the data write

operations provides opportunities to reduce this overhead by ‘hiding’ the latency and using

a small buffer. When an encrypted cipher block is received, a cryptographic engine has to

update its internal state before accepting the next cipher block. For example, a counter-

mode AES will require several cycles to generate the one-time pad for the next cipher block.

Interleaving the writing of the decrypted data with this internal state update can hide the

worst-case latency of the transpose problem. In our example, if the internal state update

requires more than 8 cycles, the latency can be completely hidden by interleaving.

103

Figure 5.4: Introducing a transpose buffer can reduce the stalls due to the SRAM write
operation. In this example, a transpose buffer that can hold two columns can initiate SRAM
write for every two decryptions, reducing the stall cycles to two cycles per two decryptions
(instead of only one decryption).

104

0 5 10 15 20 25 30
Transpose Buffer Size (B)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ef
fe

ct
iv

e
Cr

yp
tE

ng
in

e
Th

ro
ug

hp
ut

4.00 words / cycle
2.00 words / cycle
1.33 words / cycle
1.00 words / cycle
0.80 words / cycle

Figure 5.5: The trade-off between the effective cryptographic engine bandwidth considering
the stalls from transposed writes (y-axis) and the size of the transpose buffer (B) represent-
ing the number of words that can be written in parallel (x-axis). Different lines represent
cryptographic engines with the baseline throughput stated in the legend.

However, if the cryptographic engine throughput is higher and the internal state update

can be done in less than 8 cycles, the latency cannot be fully hidden and the next data

decryption has to be stalled until the current data is fully transferred to the on-chip buffer.

Here the transpose problem limits the effective throughput of cryptographic engines.

To alleviate this problem, we introduce a small transpose buffer that temporarily stores

decrypted data before initiating write to the global buffer. Suppose a buffer can store two

cipher blocks (256-bits or 32B). Since two elements can be written to the same row in the

global buffer, the data write can be initiated for every two decryptions instead of one. Then,

the stall will only happen every two rounds of decryptions, improving the cryptographic

engine throughput (Fig. 5.4).

More generally, suppose one cipher block has Nw words (e.g., 8 words for a 128-bit block

and a 16-bit word size) and the internal state update requires k cycles. If a transpose buffer

can store Nw ×B words where B words can be written in parallel to the global buffer, then

the effective cryptographic engine throughput becomes:

throughput =


Nw

k
for k ≥ Nw

Nw

k+Nw−k
B

for k < Nw

(5.1)

105

Figure 5.6: Cryptographic operations for each authentication block using ASCON-128a.
Here we depict the encryption of plaintext data to generate ciphertext data. The decryption
of ciphertext data can be done similarly. IV refers to an initialization vector as defined in
[110].

For the case when Nw = 8, Fig. 5.5 shows the relationship between the throughput of a cryp-

tographic engine and the size of a transpose buffer. We can observe that as a transpose buffer

capacity increases, the throughput converges to the ideal cryptographic engine throughput

when the transpose problem does not exist. In practical implementation, a designer can

choose the desired throughput and area trade-off point. Thus, the transpose problem of the

cryptographic engine can be solved with a small transpose buffer and careful interleaving of

operations, without having to provide any specialized memory design for transpose [117].

5.2.4 Lightweight Cryptography

In many prior work for a TEE, Advanced Encryption Standard (AES) [118] is used as a

cryptographic encryption algorithm [94], [96], [97]. AES can be a good fit for general-purpose

processors especially when an instruction set architecture provides dedicated instructions for

AES [119] and the latency of encryptions/decryptions can be hidden with the counter mode

operation [96].

106

However, domain-specific DNN accelerators have differences from those of general-

purpose processors. First, hardware support for cryptographic operations should be im-

plemented for a TEE in DNN accelerators, and the cost (i.e., area, energy, power) of this

hardware cryptographic engine can be significant for edge accelerator designs. In AES,

the non-linear substitution operations involving Galois-field arithmetic can be expensive in

hardware and pose a significant performance vs. area trade-off for a small DNN accelera-

tor design as we discussed in Chapter 4. Thus, a cryptographic primitive with better area,

power, and energy efficiency can be a better alternative for DNN accelerators. Second, the

off-chip data access for DNN accelerators is generally throughput-sensitive not necessarily

latency-sensitive, as the latency can be hidden with double-buffering and pre-determined

explicit data orchestration, reducing the benefit of the counter-mode AES.

In this implementation, we adopt ASCON (more specifically, ASCON-128a variant) as a

cryptographic primitive for authenticated encryption [110], which has a simple design (e.g.,

bitwise operations and rotations) and comparable security guarantee to AES. Furthermore,

ASCON has been recently selected as a standard for NIST Lightweight Cryptography [120],

showing its future potential to be widely adopted for edge applications.

Fig. 5.6 shows the operations required to encrypt and generate a hash tag for each

authentication block. For each authentication block, ASCON takes a unique (key, nonce)

pair to initialize its state. A key is fixed throughout one session and a nonce is determined

based on the authentication block information (Section 5.2.1). Once the initialization step

is completed (note that we do not use associated data field), ASCON processes each 128-

bit plaintext (for encryption) or ciphertext (for decryption) block by XOR-ing the given

data with its internal state and updating its own internal state afterward. When it finishes

updating its own state, ASCON can accept the next 128-bit block of data. When all data

in an authentication block has been processed, ASCON generates a hash tag.

The initialization, data processing, and tag generation in ASCON all rely on the same

permutation operation, but with different numbers of rounds. Here, the latency of an ASCON

107

Figure 5.7: A block diagram of the secure off-chip memory interface supporting 1) the off-
chip address tracking based on authentication blocks, 2) authenticated encryption on the
off-chip data, and 3) alignment of the decrypted data with the on-chip SRAM address map.

cryptographic engine depends on how many permutation rounds can be processed in a single

clock cycle. In order to reduce the latency and increase the throughput, the combinatorial

logic should implement the unrolled permutation rounds with more logic gates.

5.2.5 Putting Together

Fig. 5.7 shows the design of our secure off-chip memory interface for input tensors. First,

from the tile id requested by the main controller of a DNN accelerator, our interface computes

the dependent previous layer tile information (i.e., each tile in an input tensor has dependent

tiles in the previous layer’s output tensor) and the authentication block information (i.e.,

which authentication blocks in each dependent output tile are relevant). The nonce can be

generated using the tile and authentication block information (Section 5.2.1), and addresses

for the off-chip accesses can be tracked using one additional counter for authentication block

(Section 5.2.2).

The ASCON cryptographic engine decrypts the data that is available in the data FIFO

only when 1) the data FIFO is not empty, 2) the initialization step is completed when the

108

nonce is changed (i.e., moving to the next authentication block), 3) its internal state update

is completed, and 4) the transpose buffer is not full. The decrypted data is pushed to the

transpose buffer, and the transpose buffer initiates the on-chip SRAM write when it is full or

when the current authentication block is finished. We compute the SRAM address and the

bit-level write enable control signal for each write operation, and the redundant data can be

dropped using this enable signal. When the entire authentication block has been processed,

the cryptographic engine computes a hash tag. If the computed tag does not match the

fetched tag from the off-chip memory, this interface module will flag the authentication

failure and reset a DNN accelerator processing.

Note that the effective data supply rate to a DNN accelerator is determined by three

factors: 1) the baseline off-chip data bandwidth determining how fast the data FIFO can

be filled, 2) the cryptographic engine throughput affecting how fast decryption can be done,

and 3) the transpose buffer size deciding the effective SRAM write bandwidth (only when

the authentication block orientation requires transposed write). The slowest of these three

components will throttle the data supply.

Finally, although we showed the interface module for input tensors, this design can be

applied to weight tensors and output tensors with modifications. Since weight tensors do not

have the cross-layer dependency problem, the dependency computation and the transpose

buffer can be eliminated. For output tensors, the data direction has to be reversed (encryp-

tion instead of decryption). If we limit authentication blocks to be sub-tiles of each tensor in

an output tensor, authentication blocks can be easily tracked with a counter in the address

tracking module, and the transpose buffer can be replaced by a simple data FIFO between

the interface module and a DNN accelerator.

109

Figure 5.8: Two matrix multiplications in a self-attention module are often memory-bound
due to the large intermediate tensor (QK). This QK tensor is the output of the first matrix
multiplication, and serves as the input to the second matrix multiplication.

5.3 Cryptographic Engine Throughput Requirement and

Fused-layer Processing

To reduce the overhead for memory-bound workloads, we adopt fused-layer processing as a

workaround to convert memory-bound workloads to effectively compute-bound workloads.

Fused-layer processing can help reduce (or completely eliminate) the off-chip data movement

of intermediate activation tensors between two layers in a DNN [111], [115], [116], [121].

When a workload is memory-bound due to large intermediate tensors, as in the case of

two batched matrix-matrix multiplications in a self-attention module (Fig. 5.8), fused-layer

processing can change the workload to be effectively compute-bound. Fused-layer processing

has been well investigated in prior work for accelerating a self-attention module in GPUs [115]

and domain-specific accelerators [116]. For secure DNN accelerators, fused-layer processing

can bring the additional benefit of reducing the overhead of cryptographic engines since

low-throughput and area-efficient cryptographic engines can be used for compute-bound

workloads.

110

Figure 5.9: The hardware implementation of softmax requires several element-wise and re-
duction operations. We denote the input tensor to the softmax module in blue, the output
tensor in red, element-wise operations in gray, and reduction operations across the entire
vector in orange. The floating-point input tensor is first converted to fixed-point numbers.
Then, the tensor is normalized by subtracting the maximum value. The exponentiation is
performed using a look-up table (LUT). Finally, the inverse of the sum of the exponentials
is multiplied with each element to generate the output tensor.

111

5.3.1 Hardware Support for Fused-layer Processing

Softmax Module

In order to support fused-layer processing targeting a self-attention module, an accelerator

has to support on-chip softmax operations. For a one-dimensional vector x = [x1, x2, · · · , xn],

softmax generates a vector with the same size y = [y1, y2, · · · , yn] where

yi =
expxi∑n
j=1 expxj

(5.2)

Softmax involves exponentiation and summation over the entire vector, both of which can be

costly in hardware. Thus, hardware support for softmax incurs non-trivial overhead [122]–

[129].

We outline the hardware implementation of softmax in Fig. 5.9 when the input vector

uses half-precision 16-bit floating point numbers. First, instead of computing the exponential

of floating point numbers, we convert the input vector to fixed point numbers (‘typecast’).

Note that a floating point number has three fields to represent the actual numerical value:

sign, exponent, and fraction. The fraction field of a floating point number can be simply

shifted by the exponent field to generate a fixed point number, while the sign is preserved.

Typecasting thus can be done efficiently with a linear shifter in hardware. Multiple type-

casting modules can work in parallel to reduce the latency for this step, and we denote the

number of parallelism as Ptype. Then this typecasting step takes ⌈ n
Ptype
⌉ cycles.

Next, the vector is normalized by subtracting the maximum value from each element in

the vector. Identifying the maximum value only requires the comparator. However, sequen-

tially comparing each element will take a total of n cycles. Alternatively, multiple elements

(Smax) can be compared in a single cycle (serially with a combinatorial logic), although Smax

will be limited by the critical path delay (Fig. 5.10a). We can use multiple comparators in

parallel as well (Pmax), where each comparator unit takes Smax elements and produces one

112

(a) (b)

(c)

Figure 5.10: (a) A comparator unit can take multiple elements (Smax = 4 in this example),
and return the maximum value among those elements in a single cycle. However, the critical
path delay increases as more elements have to be compared in a single cycle. (b) Multiple
Pmax comparator units can operate in parallel. Then, in a single cycle, Pmax×Smax elements
can be compared to generate Pmax results. (c) The maximum value among n elements can
be found across multiple stages.

113

element as an output (Fig. 5.10b). Since identifying the maximum value requires reduction

over the entire vector, comparison operations require multiple stages. In the first stage, the

comparator units operate on an input vector across ⌈ n
Smax×Pmax

⌉ cycles to generate ⌈ n
Smax
⌉

intermediate elements (Fig. 5.10c). Then, in the second stage, the comparator units operate

on these intermediate elements over ⌈ n
S2

max×Pmax
⌉ cycles. The stages are repeated until we

have a single maximum value. In this scheme, the maximum element of an input vector can

be identified within (ignoring the ceiling for simplicity)

n

Smax × Pmax
+

n

S2
max × Pmax

+ · · ·+ 1 ≤ n

Pmax

1

Smax − 1
(5.3)

cycles.

Subtracting this maximum value from each element in a vector is an element-wise opera-

tion, which can be simply performed using a fixed-point subtractor. When Psub subtractors

can operate in parallel, this subtraction operation will simply take ⌈ n
Psub
⌉ cycles similar to

the typecasting step.

Since we subtracted the maximum value in the normalization step, each element is now

distributed in a range (−∞, 0]. Now, we want to take an exponential of each element, and

normalization helps to limit the output of the exponentiation to (0, 1]. A look-up table (LUT)

is commonly used to efficiently implement the exponentiation in hardware [127], [129], and

we also adopt this approach. A LUT stores a 16-bit floating point value of the exponentiation

result for each fixed-point reference point. We limit the range of LUT reference points to

(−8, 0], and any input values lesser than −8 will result in 0 output for the exponentiation.

The approximation error depends on how fine-grained the fixed-point reference points

are. A simple approach to building a LUT can use a fixed interval to generate the reference

points. For example, a fixed interval of 1
8

for a range of (−8, 0] will result in 64 reference

points. Using a smaller interval, such as 1
64

, can be more accurate but has a larger LUT size

with 512 reference points. However, note that the error is larger for an input value closer

114

5 4 3 2 1 0
Input Value

0.00

0.02

0.04

0.06

0.08

0.10

Er
ro

r

3, 3 (LUT: 64)
3, 4 (LUT: 128)
3, 5 (LUT: 256)
3, 6 (LUT: 512)
Nonlinear LUT (LUT: 160)

Figure 5.11: The error of approximating the exponential operation with a look-up table
using fixed-point references.

to 0 in this fixed interval scheme, whereas smaller input values closer to −8 will only have

a small error, due to the characteristic of an exponential function. Thus, instead of using

a fixed interval for the LUT reference points, we use different interval values to balance the

approximation error and the LUT size [127]. Our scheme uses an interval of 1
64

for (−1, 0],
1
32

for (−2,−1], 1
16

for (−4,−2], and 1
8

for (−8,−4]. The total number of reference points is

64 + 32 + 16× 2 + 8× 4 = 160. Fig. 5.11 shows the error of approximating an exponential

function using a LUT with fixed-point reference points. Our approach to LUT achieves low

approximation error, with a maximum of 0.014 for inputs in the (−8, 0] range, matching that

of a much larger LUT using a total 512 reference points with a fixed interval of 1
64

. When

Plut input elements can look up this LUT at the same time, then the number of cycles for

the exponentiation step will be ⌈ n
Plut
⌉.

After we obtain the exponential values, we have to compute the sum across the entire

vector. Similar to how we computed the maximum value across the vector, we can use Psum

parallel adders, where each adder takes two floating-point numbers. Then, the number of

cycles to generate the sum is limited to n
Psum

. We then use a single floating-point inverter

that computes the inverse of the sum in a single cycle.

Finally, this inverted sum will be multiplied with the exponential values using floating-

115

point multipliers to generate the final output values. This multiplication is an element-

wise operation, and the number of cycles for this step will be ⌈ n
Pmult
⌉ when there are Pmult

multipliers operating in parallel.

Combining all steps for softmax computation, we can obtain the total number of cycles

required for a vector with n elements:

#cyclessoftmax = ⌈ n

Ptype
⌉+ n

Pmax

1

Smax − 1
+ ⌈ n

Psub
⌉+ ⌈ n

Plut
⌉+ n

Psum
+ 1 + ⌈ n

Pmult
⌉ (5.4)

For fused-layer processing to be advantageous over writing the intermediate tensor to the

off-chip and reading it back, this total number of cycles should be smaller than the latency

for writing and reading a vector with n elements to the off-chip. If there are Nw words in

a single encryption/decryption block and a cryptographic engine takes k cycles per block,

then

#cyclessoftmax < 2× n

Nw

× k (5.5)

Thus, a designer can choose the parallelization factors for each step in the softmax module

to meet this latency constraint, while keeping the area overhead below the budget.

5.4 Results

In this section, we present the implementation result of a secure DNN accelerator equipped

with a secure off-chip memory interface. First, we describe the baseline unsecure DNN accel-

erator architecture in Section 5.4.1 that will be used for evaluation throughout this section.

Then, we validate the performance of a secure DNN accelerator estimated by SecureLoop, a

design space exploration framework we presented in Chapter 4. Finally, we present a secure

DNN accelerator design with a small overhead over the baseline design, demonstrating that

off-chip memory security can be practically achieved even for edge accelerators.

116

Figure 5.12: The baseline DNN accelerator design used for evaluation.

5.4.1 Baseline DNN Accelerator Architecture

Fig. 5.12 shows the baseline DNN accelerator architecture. It has a 2-dimensional spa-

tial array of processing elements that perform multiply-and-accumulate operations for half-

precision floating-point numbers. We adopt output-stationary (OS) dataflow [40], where each

processing element (PE) holds an output (or a partial sum) element, and different pairs of an

input element and a weight element are supplied to a PE each cycle. When the computation

finishes for each output element (i.e., all multiply-and-accumulation operations required to

generate an output or a partial sum element are completed), the outputs are written to the

output buffer. Typically, the outputs are written back to the off-chip main memory, and the

output buffer will request the off-chip writes. Note that the off-chip write can support both

the row-major and column-major read-out directions of the PE array.

This baseline design has a simple three-level memory hierarchy of the off-chip main

memory, the on-chip global buffers (IOMEM and WMEM), and the register of each PE. The

off-chip main memory holds the entire input, weight, and output tensors for a workload.

IOMEM and WMEM hold a tile of an input tensor and a weight tensor, respectively. They

supply data to the PE array in a multi-cast manner, where one element in an input tile is

multi-casted to one row of the PE array, and one element in a weight tile is multi-casted to

one column of the PE array. IOMEM and WMEM are implemented as a bank of multiple

117

(a) Conv2D

(b) Batched matrix-vector
multiplication

(c) Batched matrix-matrix
multiplication

Figure 5.13: Architecture constraints for each workload showing the parallel and temporal
factors. These constraints are used to identify the mapping for the baseline architecture.
Notations follow Fig. 2.1.

small SRAMs. We support an option to either double-buffer the current and the next tiles

by allocating half the bank for each tile or simply single-buffer the current tile by using all

the banks.

When fused-layer processing has to be supported, the output buffer writes the first layer

outputs to IOMEM instead of the off-chip memory. If softmax operations have to be per-

formed before moving on to the second layer, the softmax module reads the data from

IOMEM, computes softmax, and re-writes the data back to IOMEM.

This baseline architecture can support diverse workloads with a high PE array utilization

rate. Fig. 5.13 shows the architectural constraints for the loopnest, including the paralleliza-

tion factors, for each workload type. For a 2-dimensional convolutional layer (Conv2D), the

output channel is parallelized across the x-direction such that WMEM can supply weight

elements for different output channels in parallel, and the width (column) dimension of the

output tensor is parallelized across the y-direction. For a batched matrix-vector multiplica-

tion, the output dimension is parallelized across the x-direction similar to a Conv2D, whereas

the batch is parallelized across the y-direction. Finally, for a batched matrix-matrix multi-

plication, the height (row) dimension and the width (column) dimension of the output tensor

are parallelized across the y-direction and the x-direction, respectively.

118

Table 5.1: The specification of a workload used to compare SecureLoop and the RTL imple-
mentation

N M C P/H Q/W R S Stride Padding
Size 1 64 64 32/32 32/32 3 3 1 1

Figure 5.14: A workload used to evaluate the performance of SecureLoop and the cycle-
accurate RTL simulation. We consider an input tensor that has dependency on the previous
layer’s output tensor.

The main controller of the accelerator core tracks the current and next input, weight, and

output tile information following the loopnest mapping provided by the configuration. When

a new input or weight tile is needed, IOMEM or WMEM will request off-chip data reads.

When the computation for one output tile (the output elements computed in parallel in the

PE array) is completed, the output buffer will request off-chip data writes as we explained

above, unless fused-layer processing is used.

Overall, this baseline architecture is simple yet versatile for various workloads. However,

we also note its downsides. In order to fully utilize the X × Y PE array, WMEM has the

capacity to hold Y × C × R × S elements for a Conv2D workload, Y × C elements for

a batched matrix-vector multiplication, and Y × C elements for a batched matrix-matrix

multiplication. When WMEM has insufficient capacity and can only hold M3× C ×R× S

elements where M3 < Y for a Conv2D workload, then only M3
Y

of the PE array will be

utilized. Alternatively, one can tile across C,R, or S dimension at the IOMEM level or the

DRAM level and fully utilize the PE array with M3 = Y , at the cost of increased off-chip

traffic for the partial sums. Thus, the size of WMEM has to be carefully chosen for the

typical workloads this accelerator aims to support.

119

5.4.2 Comparison with SecureLoop

Our secure off-chip memory interface can be augmented on this baseline architecture, where

the interface handles off-chip memory reads and writes with support for a TEE. We first

compare the performance of a secure DNN accelerator estimated by SecureLoop (Chapter 4)

and the actual RTL implementation result. This comparison helps validating the intuitions

of SecureLoop that the authentication block assignment has a significant impact on the

performance.

We set a baseline DNN accelerator design to use 16 × 16 PEs, 131kB IOMEM, 131kB

WMEM, and DRAM bandwidth of a maximum 16B/cycle for reads and 8B/cycle for writes.

For a cryptographic engine, we examine three designs with different throughputs: ‘ASCON

1’ which processes one permutation round per cycle with a 32B transpose buffer, ‘ASCON

2’ which processes two permutation rounds per cycle with a 128B transpose buffer, and

‘ASCON 4’ that processes four permutation rounds per cycle with a 128B transpose buffer.

Note that a cryptographic engine design that processes a higher number of rounds per cycle

has higher throughput. SecureLoop requires the throughput of a cryptographic engine to be

given as an average number of cycles to encrypt/decrypt a 128-bit block and any additional

cycles required per authentication block to generate (initialize and finalize) a hash tag. This

information can be obtained from the RTL implementation of a cryptographic engine.

We consider a Conv2D workload specified in Table 5.1. We assume that the input tensor

of this workload has a dependency on its previous layer’s output tensor, where the output

tensor tiles have a size of 16 × 1 × 16 and equally divide the tensor (Fig. 5.14). Then, the

authentication blocks will be assigned as ‘sub-tiles’ of the output tensor tiles. The input

tensor tiles defined by the loopnest mapping on this workload have a size of 64 × 17 × 17

excluding the padding.

The dependency between the input tensor tiles and the output tensor tiles can incur many

redundant reads. For example, assigning the entire output tensor tile as an authentication

120

Unsecure Tile
ASCON 1

Opt Unsecure Tile
ASCON 2

Opt Unsecure Tile
ASCON 4

Opt
0

100000

200000

300000

400000

500000

#C
yc

le
s

SecureLoop
RTL

Figure 5.15: Comparing the performance estimated by SecureLoop and measured by the
cycle-accurate RTL implementation of the secure accelerator designs.

block (the ‘tile-as-an-AuthBlock’ strategy in Section 4.2.2) requires fetching 4×17×2 output

tensor tiles in total, resulting in redundant reads of (4×17×2)× (16×16)− (64×17×17) =

16320 elements and (4 × 17 × 2) = 136 tag reads for every input tensor tile. The optimal

assignment strategy identified by SecureLoop uses a smaller authentication block with a size

of 16×1×4. This smaller authentication block reduces the redundant reads to 3264 elements

although it increases the tag reads to 340 for every input tensor tile.

Fig. 5.15 shows the performance of the unsecure baseline architecture (normal mode op-

eration without a TEE; ‘Unsecure’), the secure mode using the ‘tile-as-an-AuthBlock’ strat-

egy, (‘Tile’) and the secure mode using the optimal authentication block assignment (‘Opt’).

First, SecureLoop closely estimates the performance of the actual RTL implementation, al-

though it generally underestimates the latency. As we discussed in Section 5.1, SecureLoop

estimates the latency by taking the maximum of the cycles required for off-chip data transfer,

cryptographic operations, and PE computations. However, in the actual implementation,

the latency of loading the first input and weight tensor tile cannot be hidden even with

the perfect double-buffering. For example, for the ‘ASCON 1’ configuration, this first tile

transfer can take 12% of the latency for the ‘Opt’ scenario. Subtracting this latency, the

121

Table 5.2: Design parameters of a secure DNN accelerator implementation

Component Design Parameters
PE 8× 8, Floating-point 16-bit MAC

IOMEM 131kB: 16 512× 128 SRAMs
WMEM 131kB: 8 1024× 128 SRAMs

Softmax

Ptype = 16
Smax = 4, Pmax = 4
Psub = 4
Plut = 16
Psum = 16
Pmult = 16

Output Buffer 128B
Input CryptEngine ASCON-4, 128B TB

Weight CryptEngine ASCON-4, No TB required
Output CryptEngine ASCON-4, No TB required

performance estimate of SecureLoop differs by less than 5% from the RTL implementation

results.

The remaining errors in the performance estimation of SecureLoop can arise from multiple

sources. For a high-throughput cryptographic engine, stalls from the transpose problem

cannot be completely removed using a small transpose buffer. Those stall cycles are not

modeled in SecureLoop, and they can contribute to this error. Also, we assume that the

zero-padding to an input tensor is handled on-chip, requiring a small number of cycles to

write zero-padded elements to the SRAM buffer in the actual implementation.

Second, the benefit of using the optimal authentication block assignment is well shown in

the actual RTL implementation results. Compared to the ‘tile-as-an-AuthBlock’ strategy, the

optimal authentication block assignment identified by the mapping algorithm of SecureLoop

reduces the slowdown by 63%, 53%, and 51% for the ‘ASCON 1’, ‘ASCON 2’, and ‘ASCON

4’ configurations, respectively. Therefore, the authentication block assignment is critical to

the performance of secure DNN accelerators, and supporting the off-chip memory interface

with the authentication-block-based control is essential.

122

conv-first conv-second linear matmul-softmax
fused

0

1

2

3

Pe
rfo

rm
an

ce
 O

ve
rh

ea
d

(%
)

(a)

Crypt
Overhead8.1%

SRAM

55.6%

PE

3.9%

Softmax

6.2%

Core Control

26.2%

Core area: 0.92mm2

5.7%
11.9%

13.5%

68.9%

Overhead breakdown

AddrConfig
Output CE
Weight CE
Input CE

(b)

Figure 5.16: (a) The performance overhead of using the secure TEE mode. (b) The area
breakdown of a secure DNN accelerator design.

Table 5.3: The power and energy per each MAC operation for the unsecure normal mode
and the secure TEE mode.

Power (mW) Energy/MAC (pJ) Overhead
Normal 35.29 2.76 -
TEE 41.13 3.21 16.5%

5.4.3 Implementation Results

We show the hardware implementation result of a secure DNN accelerator design specified

in Table 5.2. Our design is synthesized using TSMC 28nm HPC+ CMOS technology and

Cadence Genus Synthesis Solution. Fig. 5.16a shows the performance overhead measured

as the number of cycles required for processing each workload when using the secure TEE

mode normalized by that for when using the unseure normal mode. We measure the per-

formance for four representative workloads: conv-first (Conv2D) assumes no cross-layer

dependency for an input tensor and uses the ‘tile-as-an-AuthBlock’ strategy, conv-second

(Conv2D) is the workload described in Section 5.4.2 and uses the optimal authentication

block identified by SecureLoop, linear (batched matrix-vector multiplication) with a suffi-

ciently large batch size to fully utilize the PE array, and matmul-softmax-fused that has

two batched matrix-matrix multiplications with softmax between those two (Fig. 5.8) and

uses fused-layer processing. The performance overhead is less than 4% for all these four

workloads in the secure TEE mode.

123

Next, we measure the power and energy consumption when operating at 200MHz fre-

quency and 0.81V voltage (Table 5.3). We measure the power when the accelerator is process-

ing a workload with all PEs active, in order to understand its peak power consumption. For

the normal mode, we report the power excluding the power consumed by the cryptographic

engines. The secure TEE mode consumes 16.5% more power.

Finally, we report the area breakdown of the secure accelerator design (Fig. 5.16b). The

core area of this design is 0.92mm2. The overhead for supporting a TEE accounts for 8.1% of

this core area. The largest source of this overhead (68.9%) is the input cryptographic engine

since cross-layer dependency affects input tensors and the authentication-block-based control

logic (Section 5.2.2) has to be supported. The weight and output cryptographic engine does

not have to support cross-layer dependency (i.e., weight tensors are unique for each layer

and authentication blocks can be assigned as ‘sub-tiles’ of output tensors), and they result

in a smaller overhead of 13.5% and 11.9%. Lastly, the logic required for computing the

dependent output tiles and authentication blocks takes less than 5.7% of this overhead.

Overall, this implementation results show that a TEE can be supported with a low

overhead of < 4% performance slowdown, 16.5% more energy consumption per each MAC

operation, and 8.1% of the core area for a DNN accelerator targeting resource-constrained

edge devices.

Post-route Results

We also fabricate a simpler design of a secure DNN accelerator (without support for pipelin-

ing between the modules, including double-buffering) using TSMC 28nm HPC+ CMOS

technology. Table 5.4 summarizes the post-route specification of the fabricated design using

Cadence Innovus Implementation System. Table 5.4 reports power consumption when all

PEs are active (full PE utilization), measured at the worst-case corner of 0.81V. The de-

sign operates at 167MHz (i.e., 6ns clock period) at this worst-case corner, verified with the

SDF-annotated timing checks. As this simpler implementation does not pipeline the off-chip

124

Table 5.4: Performance and specification of a fabricated design of a secure DNN accelerator

Chip Specification
Technology TSMC 28nm HPC+ CMOS
Logic Area 1274k (2-input NAND equivalent)
SRAM 262kB
Power 33.74mW @ 167MHz, 0.81V
PE 64 Half-precision (16-bit) floating-point MAC
Cipher Ascon-128a
Misc. No double-buffering / pipeline support

memory access and the on-chip computation, it takes longer cycles to complete processing

but has lower power consumption compared to the pipelined design.

5.5 Related Work

There has been a significant research effort in designing a TEE for general-purpose

CPUs [95]–[99], [130] and GPUs [131]–[133]. However, extending support for a TEE to

DNN accelerators only recently started to be actively investigated [102]–[104], [134]. An

important optimization for DNN accelerators is that the timestamp (i.e., also known as a

counter or a version number) management can be simplified using the structured and pre-

determined data access pattern of DNN accelerators, removing the overhead for managing

a tree-structure for the timestamps [102], [104]. Thus, the main source of overhead for

supporting a TEE in DNN accelerators boils down to the cryptographic operations on all

off-chip data traffic and different off-chip data access patterns arising from the authentication

operations (Chapter 4).

Prior work on supporting a TEE in DNN accelerators demonstrated and benchmarked

the design using a combination of high-level performance simulators (also Chapter 4), cycle-

accurate simulators, and a partial RTL implementation of certain modules [103], [104], [134].

While these simulation and modeling approaches provide valuable insights into the high-

level architecture and overhead of supporting a TEE, they lack in detailed understanding of

implementation-level challenges (Section 5.1.1). Also, prior work mainly focused on a cloud

125

environment where cryptographic operations required for a secure DNN accelerator can be

performed by a onboard CPU [134] or a substantial number of cryptographic engines can be

implemented in parallel without a significant overhead to the system [102], [104]. However,

these assumptions on the compute capability for cryptographic operations cannot be applied

to resource-constrained edge and mobile devices. This chapter provides several techniques

and solutions for supporting a TEE in resource-constrained environments and demonstrates

the design in silicon.

Recent circuit-level implementations of DNN accelerators support memory encryption

although they do not support a full TEE functionality [135]–[139]. For example, [135]–[137]

used lightweight cryptography algorithms or standard AES for encrypting weight tensors.

Other work leverages a simple XOR operation to encrypt weight tensors [139]. While these

implementations illustrate the model parameter encryption is feasible at reasonable hardware

overhead for DNN accelerators, they do not extend their support for authenticated encryption

on all tensors (including the intermediate tensors that are the core problem due to the cross-

layer dependency).

Some implementations [136] also support the authentication of weight tensors to detect

unintended bit flips. However, [136] relies on a non-cryptographic authentication algorithm

to reduce the complexity of loading the hash tags, thus lacking a strong theoretical secu-

rity guarantee of cryptographic primitives. Also, such authentication protocols are only

supported for weight tensors, leaving out the intermediate tensors required for a full TEE

functionality.

5.6 Summary

In this chapter, we present the hardware implementation of a secure DNN accelerator sup-

porting a TEE, specifically targeting resource-constrained edge and mobile devices. We show

that support for a TEE can be implemented with a low overhead of < 4% performance slow-

126

down, 16.5% more energy consumption per multiply-and-accumulate operation, and 8.1%

of the accelerator core area. We present both the post-synthesis and post-route simulation

results in this chapter.

First, we address the implementation-level challenges of a TEE. Since the granularity

of the off-chip data access is an authentication block for a TEE mode operation, the tile

information that a DNN accelerator requests for data access should be translated to the au-

thentication block information. The implementation of this translation module only requires

basic algebra operations. Furthermore, the received data should be aligned before they can

be written to the on-chip SRAM of a DNN accelerator, such that redundant reads can be

dropped and the data can be written according to the SRAM address map requirements. We

adopt a transpose buffer to resolve the bottleneck in the effective SRAM write bandwidth.

Second, we adopt two techniques for achieving a low overhead for resource-constrained

devices. In order to reduce the overhead of a cryptographic engine, we adopt ASCON, a

lightweight cryptography standard, to perform authenticated encryption. Moreover, we ex-

ploit fused-layer processing to convert memory-bound workloads like a self-attention module

in Transformers to compute-bound workloads, such that a low-throughput yet resource-

efficient cryptographic engine can be used without incurring the performance overhead.

Fused-layer processing for a self-attention module requires on-chip support for softmax op-

erations.

Finally, we validate the SecureLoop’s performance estimation using the RTL simulation

of this implementation. SecureLoop closely estimates the performance of the actual imple-

mentation, where the estimation error is due to the initial tile transfer and the transpose

problem. This comparison validates SecureLoop’s insight on the impact of authentication

block assignment on the performance of a secure DNN accelerator.

127

128

Chapter 6

Conclusion

6.1 Summary of Contributions

As DNNs are increasingly adopted for critical applications, security concerns for DNNs are

becoming important. This thesis investigates the hardware-level vulnerabilities associated

with the off-chip DRAM that acts as a main memory for DNN accelerators. This thesis has

the following contributions:

• Illustrates the vulnerability of sparse DNNs to a small number of bit flips

in their weight tensors. In Chapter 3, we present SparseBFA, an algorithm that

identifies the most critical bits in the coordinates of the weight tensors that are stored

using sparse matrix formats. SparseBFA can identify less than 0.00005% of total bits

in a sparse DNN that result in complete degradation of performance when they are

flipped. It exploits the characteristic of a sparse matrix format that a bit flip in the

coordinates ‘rewires’ the connection between neurons (i.e., changes the location of the

affected nonzero weight). Using SparseBFA, an adversary can identify the target bits

and wage fault injection attacks to the off-chip DRAM that stores those bits. Thus,

we show that the algorithmic characteristics can enable exploiting the hardware-level

vulnerabilities more easily.

129

• Provides a design space exploration framework for secure DNN accelera-

tors supporting a TEE. As a defense solution against untrusted off-chip memory,

a TEE can be adopted. However, a TEE requires authenticated encryption on all

off-chip data traffic and changes the off-chip memory access pattern of a DNN acceler-

ator. Furthermore, adding support for cryptographic operations adds hardware costs

such as energy and area. In order to systematically analyze the impact of supporting

a TEE in the performance, energy, and area of a DNN accelerator, we develop Se-

cureLoop (Chapter 4), a design space exploration framework. The mapping algorithm

of SecureLoop identifies the optimal authentication block assignment, such that the

additional off-chip traffic due to authentication can be minimized. Also, it enables the

joint search of loopnest mappings across multiple layers, such that the impact of the

authentication block assignment can be considered from the loopnest mapping stage.

This mapping algorithm allows up to 33% faster and 50% better in EDP compared to

the baseline mapping algorithm that simply assigns the entire tile as an authentication

block. Using SecureLoop, we showcase design space exploration examples for secure

DNN accelerators, with sweeps over the PE array size, the on-chip buffer size, and the

cryptographic engine configurations.

• Demonstrates a secure DNN accelerator supporting a TEE can be imple-

mented with a low overhead in silicon. Our implementation of a secure DNN

accelerator in Chapter 5 has < 4% performance slowdown and 16.5% more energy con-

sumption per multiply-and-accumulate operation compared to the normal unsecure

mode operation. Also, the area overhead of security support is 8.1% of the accelerator

area. This result illustrates that a TEE that provides both confidentiality and integrity

for the off-chip memory can be implemented at a low overhead even for accelerators

targeting resource-constrained environments with limited energy and area budget.

• Presents a comparison of the performance simulation result and the actual

130

implementation. As a high-level performance simulator, SecureLoop estimates the

performance relying on a few key assumptions. We compare the performance of a se-

cure DNN accelerator estimated by SecureLoop and the actual RTL implementation

result. We observe that SecureLoop closely estimates the actual performance when

the first tile transfer is accounted for (i.e., the latency for transferring the first tile in

each layer cannot be hidden even when using double-buffering), where the key source

of difference is the impact of the transpose problem (Section 5.2.3). This compari-

son also validates the key motivation for SecureLoop that the authentication block

assignment has a significant impact on the performance of a secure DNN accelerator.

Furthermore, the difference between the simulation and the actual result illustrates

how future performance simulators can improve their estimation.

6.2 Future Work

There are many potential future works related to security and machine learning acceleration.

• Stronger attacks with fewer assumptions. SparseBFA requires an adversary

to have full knowledge about its victim DNN. While this white-box assumption can

be applied to many scenarios using open-source DNN models or when an adversary

has other capabilities to obtain model parameters [140]–[144], it cannot be applied to

other scenarios where a victim uses closed-source proprietary DNN models. A stronger

attack assuming black-box or gray-box scenarios can reveal vulnerabilities even for

those closed-source models.

• Extending design space exploration of secure DNN accelerators. Current

SecureLoop assumes that a DNN accelerator supports dense tensor operations and

processes each layer individually. However, there is rich work on sparse tensor algebra

acceleration [145]–[148]. Sparsity can create a unique challenge for the authentication

block assignment since the tiles can have different shapes depending on the sparsity

131

pattern [149]. Furthermore, depending on the tiling strategy employed by a sparse

accelerator design [149], the assumption that counters can be computed using the

regular and pre-determined access pattern can be challenged. Thus, supporting a

TEE for sparse accelerators requires different challenges to be addressed.

Fused-layer processing can benefit secure DNN accelerators since it reduces the amount

of off-chip traffic. This characteristic was exploited in Chapter 5 to support a TEE for

memory-bound workloads efficiently. More generally, a design space exploration frame-

work supporting fused-layer processing [111] can be used to generate tiling strategies,

and SecureLoop can operate on top of those tiling strategies to determine the optimal

authentication block assignment.

• On-line mapping. When determining the optimal authentication block assignment

using SecureLoop, we assume that this mapping process is done off-line for a fixed DNN

workload and a secure DNN accelerator architecture. This scenario is adequate for the

off-line design space exploration when a designer is evaluating diverse designs or when a

workload is fixed during the deployment. However, some deployment scenarios might

require an ability to adapt to different resource allocations, such as when multiple

tenants are sharing an accelerator [150]–[152]. On-line mapping algorithms for secure

DNN accelerators can require faster optimization methods other than an exhaustive

search and simulated annealing we used for SecureLoop. Alternatively, if there are a

few representative usage patterns (e.g., resource allocation scenarios), one can generate

multiple candidate mappings off-line and choose the most adequate one on-line.

• “Caching” redundant reads. In this thesis, redundant reads due to the misalign-

ment of tiles and authentication blocks are considered to be dropped after decryption

and authentication operations are completed. When the on-chip buffer utilization has

to be maximized, this assumption is valid as we do not want to allocate the buffer space

132

for redundant reads. However, in some cases where the buffer has sufficient empty ca-

pacity and redundant reads belong to the tiles that will be used in the near future, it

might be more beneficial to keep redundant reads on-chip. If this “caching” is allowed,

then redundant reads are no longer a source of overhead and can be simply consid-

ered as baseline traffic. Supporting this caching requires modification to SecureLoop

such that it can determine if caching is feasible given the loopnest mapping and the

authentication block assignment. It also requires modification to the control logic of

the secure off-chip memory interface to support caching.

• Scaling support for a TEE. DRAM technologies are advancing rapidly to provide

high bandwidth for AI applications [153], [154]. Fully utilizing this high bandwidth

while supporting a TEE requires cryptographic engines to provide sufficiently high

throughput. However, such high-performance cryptographic engines can incur large

hardware overhead. Thus, scaling support for a TEE for future DRAM technologies can

be challenging yet important. Furthermore, advances in large foundational models [1],

[64] show that the memory footprints of such models can exceed the DRAM capacity,

requiring the data to be stored at the persistent storage. Thus, extending a TEE to

consider the travel between the DRAM and the disk can be essential for those large

models.

• Heterogeneous system. In this thesis, we considered a standalone DNN accel-

erator when discussing a TEE. However, in many cases, DNN accelerators will work

together with a host CPU, GPU, and other accelerators in a heterogeneous system.

Furthermore, some operations in a DNN can be more efficiently done at a CPU (e.g.,

special functions including sigmoid, exponentiation, etc.). Thus, designing a TEE

solution considering that some operations might be performed by a CPU and other

components is important.

• Secret key and attestation. The security guarantee of a secure DNN accelerator

133

relies on the secrecy of a key used for authenticated encryption. While this thesis

did not cover how these private secret keys are set up, there are several techniques

to provide these secret keys, including physically unclonable functions [137], [155]–

[159] and public-key cryptography for key exchange [160]. These techniques can be

integrated with the secure off-chip memory interface proposed in this thesis to complete

support for a TEE in the future.

• Physical-layer security. A key assumption for a TEE in this thesis is that the

on-chip structures are trusted and secure. However, this assumption can be challenged

when an adversary has physical access to a DNN accelerator. Then, an adversary

can leverage physical side-channel attacks [25]–[27], [143], [161] and fault injection

attacks [72], [73], [77] to undermine the on-chip structures. For a scenario where an

adversary has physical access, providing defenses against these physical-layer attacks

can be important.

134

Appendix A

Artifact for SecureLoop

Our artifact provides the source code of SecureLoop, the template/example archi-

tecture and workload descriptions, and other utility functions. We provide the

top-level testbench as a Jupyter notebook (workspace/run_all.ipynb) and a script

(workspace/scripts/fig11.sh) that runs all three steps of our scheduling algorithm to

generate the stats (latency, energy, off-chip traffic) for secure DNN accelerators. Running

the notebook reproduces the results in Fig. 4.11 of SecureLoop (Chapter 4). We use a docker

environment to manage all dependencies necessary to run our artifact. Our artifact requires

an x86-64 machine and 15GB of disk space for docker support.

Artifact check-list (meta-information)

• Algorithm: Scheduling of secure DNN accelerators with cryptographic engines

• Program: Python3

• Run-time environment: Dockerfile

• Hardware: x86-64 machine

• Output: Plots and stats (csv) generated from the Jupyter notebook

135

• Experiments: Comparison of different scheduling algorithms (latency, additional off-chip

traffic due to cryptographic operations) for various DNN workloads

• How much disk space required (approximately)?: 15GB

• How much time is needed to prepare workflow (approximately)?: 30 minutes if

pulling docker image using the provided docker-compose.yaml.template file. 2 hours if

building docker images from the sources.

• How much time is needed to complete experiments (approximately)?: 3 hours

for running all three DNN workloads (AlexNet, ResNet18, MobilenetV2) on a default DNN

accelerator architecture setup

• Publicly available?: Yes, available at https://github.com/kyungmi-lee/SecureLoop-

MICRO2023Artifact

• Code licenses (if publicly available)?: MIT

• Archived (provide DOI)?: 10.5281/zenodo.8329657

Description

How to access

The artifact including the source code for SecureLoop, the Jupyter notebooks, and the

scripts that run experiments is available at https://github.com/kyungmi-lee/SecureLoop-

MICRO2023Artifact.

Installation

We provide a docker image that provides the necessary infrastructure. The installation

process involves installing a docker app, then pulling a docker image using the provided

docker-compose.yaml.template file. We also provide an option to build docker images

136

https://github.com/kyungmi-lee/SecureLoop-MICRO2023Artifact
https://github.com/kyungmi-lee/SecureLoop-MICRO2023Artifact

using the sources instead of pulling the pre-built image. Please check README.md with the

artifact repository for installation and setup.

Experiment workflow

The experiment workflow is outlined in the Jupyter notebook workspace/run_all.ipynb.

First, the DNN accelerator / cryptographic engine architecture and a DNN workload are de-

fined. Then, the notebook goes through all three steps in our scheduling algorithm (loopnest

scheduling, authentication block assignment, and simulated annealing for joint-layer search).

Finally, it generates plots in Fig. 4.11 comparing different scheduling algorithms.

Alternatively, a user can run a script workspace/scripts/fig11.sh in a terminal, and

the necessary scheduling and evaluation codes are executed for three workloads in Fig. 4.11.

The plots can be generated by a shorter Jupyter notebook workspace/plot_figures.ipynb

once the script is finished.

Evaluation and expected results

For each DNN workload, the notebook generates two plots to compare different schedul-

ing algorithms: 1) performance overhead in the normalized latency (Fig. 4.11(a)), and 2)

additional off-chip traffic due to cryptographic operations (Fig. 4.11(b)). Different DNN

workloads can be chosen by commenting in/out workload definitions in the notebook. The

generated plots for each workload should match those in Fig. 4.11. However, note that the

scheduling algorithm involves random processes (e.g., simulated annealing randomly chooses

which layer and loopnest mapping to use at each iteration), and the result might not exactly

match the numbers in Fig. 4.11. Nevertheless, the result should be close (e.g., for Mo-

bilenetV2, performance overhead for Crypt-Opt-Cross can vary between 9.70 to 9.99, while

the number in Fig. 4.11 is 9.86; for AlexNet and ResNet18, the results only deviate by <

0.01), and the general trend between different scheduling algorithms should be the same.

137

Experiment customization

The DNN accelerator / cryptographic engine architecture in the notebook can be modified to

run design space exploration experiments. Running the scheduling algorithm as detailed in

the notebook also generates raw data and a csv file summarizing the stats inside the folder

workspace/designs/{design_name}/{design_version}. We provide a python script to

generate architecture configurations (workspace/generate_arch.py). Also, an additional

script workspace/scripts/fig14.sh illustrates how to configure the python scripts to eval-

uate architectures with different PE array shapes (Fig. 4.14).

138

References

[1] OpenAI, J. Achiam, S. Adler, et al., Gpt-4 technical report, 2024. arXiv: 2303.08774

[cs.CL].

[2] Github copilot. url: https://github.com/features/copilot.

[3] S. Ortiz, “The new ai-powered bing is now open to everyone - with some serious

upgrades,” ZDNet, May 2023.

[4] T. Brooks, B. Peebles, C. Holmes, et al., “Video generation models as world simula-

tors,” 2024. url: https://openai.com/research/video-generation-models-as-world-

simulators.

[5] A. Mirhoseini, A. Goldie, M. Yazgan, J. W. Jiang, E. Songhori, S. Wang, Y.-J. Lee,

E. Johnson, O. Pathak, A. Nazi, et al., “A graph placement methodology for fast chip

design,” Nature, vol. 594, no. 7862, pp. 207–212, 2021.

[6] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey of deep learning

techniques for autonomous driving,” Journal of field robotics, vol. 37, no. 3, pp. 362–

386, 2020.

[7] J. M. Jumper, R. Evans, A. Pritzel, et al., “Highly accurate protein structure pre-

diction with alphafold,” Nature, vol. 596, pp. 583–589, 2021. url: https : / / api .

semanticscholar.org/CorpusID:235959867.

139

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://github.com/features/copilot
https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators
https://api.semanticscholar.org/CorpusID:235959867
https://api.semanticscholar.org/CorpusID:235959867

[8] J. Cawthra, M. Ekstrom, L. Lusty, J. Sexton, J. Sweetnam, and A. Townsend, Data

integrity: Detecting and responding to ransomware and other destructive events, 2020.

url: https : / / www . nccoe . nist . gov / data - integrity - detecting - and - responding -

ransomware-and-other-destructive-events.

[9] F. Isensee, P. F. Jaeger, S. A. Kohl, J. Petersen, and K. H. Maier-Hein, “Nnu-net:

A self-configuring method for deep learning-based biomedical image segmentation,”

Nature methods, vol. 18, no. 2, pp. 203–211, 2021.

[10] The Health Insurance Portability and Accountability Act (HIPAA). U.S. Dept. of La-

bor, Employee Benefits Security Administration, 2004.

[11] General Data Protection Regulation. url: https://gdpr-info.eu/.

[12] W. Knight, “Openai’s ceo says the age of giant ai models is already over,” Wired, Apr.

2023. url: https://www.wired.com/story/openai-ceo-sam-altman-the-age-of-giant-

ai-models-is-already-over/.

[13] E. Strickland, “15 graphs that explain the state of ai in 2024: The ai index tracks the

generative ai boom, model costs, and responsible ai use,” IEEE Spectrum, Apr. 2024.

url: https://spectrum.ieee.org/ai-index-2024.

[14] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R.

Fergus, Intriguing properties of neural networks, 2013. arXiv: 1312.6199 [cs.CV].

[15] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning

models resistant to adversarial attacks,” arXiv preprint arXiv:1706.06083, 2017.

[16] K. Lee and A. P. Chandrakasan, “Understanding the energy vs. adversarial robustness

trade-off in deep neural networks,” IEEE Open Journal of Circuits and Systems, vol. 2,

pp. 843–855, 2021. doi: 10.1109/OJCAS.2021.3116244.

[17] A. S. Rakin, Z. He, and D. Fan, “Bit-flip attack: Crushing neural network with progres-

sive bit search,” in 2019 IEEE/CVF International Conference on Computer Vision

(ICCV), 2019, pp. 1211–1220. doi: 10.1109/ICCV.2019.00130.

140

https://www.nccoe.nist.gov/data-integrity-detecting-and-responding-ransomware-and-other-destructive-events
https://www.nccoe.nist.gov/data-integrity-detecting-and-responding-ransomware-and-other-destructive-events
https://gdpr-info.eu/
https://www.wired.com/story/openai-ceo-sam-altman-the-age-of-giant-ai-models-is-already-over/
https://www.wired.com/story/openai-ceo-sam-altman-the-age-of-giant-ai-models-is-already-over/
https://spectrum.ieee.org/ai-index-2024
https://arxiv.org/abs/1312.6199
https://doi.org/10.1109/OJCAS.2021.3116244
https://doi.org/10.1109/ICCV.2019.00130

[18] S. Hong, P. Frigo, Y. Kaya, C. Giuffrida, and T. Dumitraş, “Terminal brain damage:

Exposing the graceless degradation in deep neural networks under hardware fault

attacks,” in Proceedings of the 28th USENIX Conference on Security Symposium,

ser. SEC’19, Santa Clara, CA, USA: USENIX Association, 2019, pp. 497–514, isbn:

9781939133069.

[19] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and S. W.

Keckler, “Understanding error propagation in deep learning neural network (dnn) ac-

celerators and applications,” in Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, ser. SC ’17, Denver,

Colorado: Association for Computing Machinery, 2017, isbn: 9781450351140. doi:

10.1145/3126908.3126964. url: https://doi.org/10.1145/3126908.3126964.

[20] A. S. Rakin, Z. He, J. Li, F. Yao, C. Chakrabarti, and D. Fan, T-bfa: Targeted bit-flip

adversarial weight attack, 2021. arXiv: 2007.12336 [cs.LG].

[21] A. Solender and I. Fried, “Scoop: Congress bans staff use of microsoft’s ai copilot,”

Axios, Mar. 2024. url: https://www.axios.com/2024/03/29/congress-house-strict-

ban-microsoft-copilot-staffers.

[22] S. Crawford, S. Kesh, and M. M. Cangueiro, Ai for security, and security for ai:

Two aspects of a pivotal intersection. url: https://www.spglobal.com/en/research-

insights/featured/special-editorial/ai-for-security-and-security-for-ai-two-aspects-of-

a-pivotal-intersection.

[23] M. Lipp, M. Schwarz, D. Gruss, et al., “Meltdown: Reading kernel memory from

user space,” in 27th USENIX Security Symposium (USENIX Security 18), Baltimore,

MD: USENIX Association, Aug. 2018, pp. 973–990, isbn: 978-1-939133-04-5. url:

https://www.usenix.org/conference/usenixsecurity18/presentation/lipp.

141

https://doi.org/10.1145/3126908.3126964
https://doi.org/10.1145/3126908.3126964
https://arxiv.org/abs/2007.12336
https://www.axios.com/2024/03/29/congress-house-strict-ban-microsoft-copilot-staffers
https://www.axios.com/2024/03/29/congress-house-strict-ban-microsoft-copilot-staffers
https://www.spglobal.com/en/research-insights/featured/special-editorial/ai-for-security-and-security-for-ai-two-aspects-of-a-pivotal-intersection
https://www.spglobal.com/en/research-insights/featured/special-editorial/ai-for-security-and-security-for-ai-two-aspects-of-a-pivotal-intersection
https://www.spglobal.com/en/research-insights/featured/special-editorial/ai-for-security-and-security-for-ai-two-aspects-of-a-pivotal-intersection
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp

[24] P. Kocher, J. Horn, A. Fogh, et al., “Spectre attacks: Exploiting speculative execu-

tion,” in 2019 IEEE Symposium on Security and Privacy (SP), 2019, pp. 1–19. doi:

10.1109/SP.2019.00002.

[25] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances in Cryptol-

ogy—CRYPTO’99: 19th Annual International Cryptology Conference Santa Barbara,

California, USA, August 15–19, 1999 Proceedings 19, Springer, 1999, pp. 388–397.

[26] D. Brumley and D. Boneh, “Remote timing attacks are practical,” Computer Net-

works, vol. 48, no. 5, pp. 701–716, 2005, Web Security, issn: 1389-1286. doi: https:

//doi.org/10.1016/j.comnet.2005.01.010. url: https://www.sciencedirect.com/

science/article/pii/S1389128605000125.

[27] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The em side—channel(s),”

in Cryptographic Hardware and Embedded Systems - CHES 2002, B. S. Kaliski, ç. K.

Koç, and C. Paar, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 29–

45, isbn: 978-3-540-36400-9.

[28] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in memory,” in 2013

IEEE Symposium on Security and Privacy, 2013, pp. 48–62. doi: 10.1109/SP.2013.13.

[29] O. Mutlu and J. S. Kim, “Rowhammer: A retrospective,” Trans. Comp.-Aided Des.

Integ. Cir. Sys., vol. 39, no. 8, pp. 1555–1571, Aug. 2020, issn: 0278-0070. doi: 10.

1109/TCAD.2019.2915318. url: https://doi.org/10.1109/TCAD.2019.2915318.

[30] A. Hastings, L. Chilton, and S. Sethumadhavan, “How much is performance worth

to users?” In Proceedings of the 20th ACM International Conference on Computing

Frontiers, ser. CF ’23, Bologna, Italy: Association for Computing Machinery, 2023,

pp. 154–163, isbn: 9798400701405. doi: 10.1145/3587135.3592194. url: https://doi.

org/10.1145/3587135.3592194.

[31] J. Li, A. S. Rakin, Y. Xiong, L. Chang, Z. He, D. Fan, and C. Chakrabarti, “De-

fending bit-flip attack through dnn weight reconstruction,” in 2020 57th ACM/IEEE

142

https://doi.org/10.1109/SP.2019.00002
https://doi.org/https://doi.org/10.1016/j.comnet.2005.01.010
https://doi.org/https://doi.org/10.1016/j.comnet.2005.01.010
https://www.sciencedirect.com/science/article/pii/S1389128605000125
https://www.sciencedirect.com/science/article/pii/S1389128605000125
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1109/TCAD.2019.2915318
https://doi.org/10.1109/TCAD.2019.2915318
https://doi.org/10.1109/TCAD.2019.2915318
https://doi.org/10.1145/3587135.3592194
https://doi.org/10.1145/3587135.3592194
https://doi.org/10.1145/3587135.3592194

Design Automation Conference (DAC), 2020, pp. 1–6. doi: 10.1109/DAC18072.2020.

9218665.

[32] Q. Liu, W. Wen, and Y. Wang, “Concurrent weight encoding-based detection for bit-

flip attack on neural network accelerators,” in Proceedings of the 39th International

Conference on Computer-Aided Design, ser. ICCAD ’20, Virtual Event, USA: Asso-

ciation for Computing Machinery, 2020, isbn: 9781450380263. doi: 10.1145/3400302.

3415726. url: https://doi.org/10.1145/3400302.3415726.

[33] J. Wang, Z. Zhang, M. Wang, H. Qiu, T. Zhang, Q. Li, Z. Li, T. Wei, and C. Zhang,

“Aegis: Mitigating targeted bit-flip attacks against deep neural networks,” in 32nd

USENIX Security Symposium (USENIX Security 23), 2023, pp. 2329–2346.

[34] Q. Liu, J. Yin, W. Wen, C. Yang, and S. Sha, “NeuroPots: Realtime proactive de-

fense against Bit-Flip attacks in neural networks,” in 32nd USENIX Security Sym-

posium (USENIX Security 23), Anaheim, CA: USENIX Association, Aug. 2023,

pp. 6347–6364, isbn: 978-1-939133-37-3. url: https://www.usenix.org/conference/

usenixsecurity23/presentation/liu-qi.

[35] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and

O. Mutlu, “Flipping bits in memory without accessing them: An experimental study

of dram disturbance errors,” in 2014 ACM/IEEE 41st International Symposium on

Computer Architecture (ISCA), 2014, pp. 361–372. doi: 10.1109/ISCA.2014.6853210.

[36] K. Lee and A. P. Chandrakasan, “Sparsebfa: Attacking sparse deep neural networks

with the worst-case bit flips on coordinates,” in ICASSP 2022 - 2022 IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022,

pp. 4208–4212. doi: 10.1109/ICASSP43922.2022.9747337.

[37] “Software enabling for intel® tdx in support of tee-i/o,” Intel Corporation, Tech.

Rep., 2022.

143

https://doi.org/10.1109/DAC18072.2020.9218665
https://doi.org/10.1109/DAC18072.2020.9218665
https://doi.org/10.1145/3400302.3415726
https://doi.org/10.1145/3400302.3415726
https://doi.org/10.1145/3400302.3415726
https://www.usenix.org/conference/usenixsecurity23/presentation/liu-qi
https://www.usenix.org/conference/usenixsecurity23/presentation/liu-qi
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ICASSP43922.2022.9747337

[38] T. Alves and D. Felton, “Trustzone: Integrated hardware and software security,” Jan.

2004.

[39] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song, “Keystone: An open

framework for architecting trusted execution environments,” in Proceedings of the

Fifteenth European Conference on Computer Systems, ser. EuroSys ’20, Heraklion,

Greece: Association for Computing Machinery, 2020, isbn: 9781450368827. doi: 10.

1145/3342195.3387532. url: https://doi.org/10.1145/3342195.3387532.

[40] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for energy-efficient

dataflow for convolutional neural networks,” in 2016 ACM/IEEE 43rd Annual In-

ternational Symposium on Computer Architecture (ISCA), 2016, pp. 367–379. doi:

10.1109/ISCA.2016.40.

[41] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “Diannao:

A small-footprint high-throughput accelerator for ubiquitous machine-learning,” in

Proceedings of the 19th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, ser. ASPLOS ’14, Salt Lake City, Utah,

USA: Association for Computing Machinery, 2014, pp. 269–284, isbn: 9781450323055.

doi: 10.1145/2541940.2541967. url: https://doi.org/10.1145/2541940.2541967.

[42] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally, “Eie:

Efficient inference engine on compressed deep neural network,” in Proceedings of the

43rd International Symposium on Computer Architecture, ser. ISCA ’16, Seoul, Re-

public of Korea: IEEE Press, 2016, pp. 243–254, isbn: 9781467389471. doi: 10.1109/

ISCA.2016.30. url: https://doi.org/10.1109/ISCA.2016.30.

[43] B. Moons and M. Verhelst, “An energy-efficient precision-scalable convnet processor

in 40-nm cmos,” IEEE Journal of Solid-State Circuits, vol. 52, no. 4, pp. 903–914,

2017. doi: 10.1109/JSSC.2016.2636225.

144

https://doi.org/10.1145/3342195.3387532
https://doi.org/10.1145/3342195.3387532
https://doi.org/10.1145/3342195.3387532
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/JSSC.2016.2636225

[44] N. P. Jouppi, C. Young, N. Patil, et al., “In-datacenter performance analysis of a ten-

sor processing unit,” in Proceedings of the 44th Annual International Symposium on

Computer Architecture, ser. ISCA ’17, Toronto, ON, Canada: Association for Comput-

ing Machinery, 2017, pp. 1–12, isbn: 9781450348928. doi: 10.1145/3079856.3080246.

url: https://doi.org/10.1145/3079856.3080246.

[45] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “A compact rijndael hardware

architecture with s-box optimization,” in Advances in Cryptology — ASIACRYPT

2001, C. Boyd, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 239–

254, isbn: 978-3-540-45682-7.

[46] P. Hamalainen, T. Alho, M. Hannikainen, and T. Hamalainen, “Design and implemen-

tation of low-area and low-power aes encryption hardware core,” in 9th EUROMICRO

Conference on Digital System Design (DSD’06), 2006, pp. 577–583. doi: 10.1109/

DSD.2006.40.

[47] S. K. Mathew, F. Sheikh, M. Kounavis, S. Gueron, A. Agarwal, S. K. Hsu, H. Kaul,

M. A. Anders, and R. K. Krishnamurthy, “53 gbps native GF(24)2 composite-field

aes-encrypt/decrypt accelerator for content-protection in 45 nm high-performance

microprocessors,” IEEE Journal of Solid-State Circuits, vol. 46, no. 4, pp. 767–776,

2011. doi: 10.1109/JSSC.2011.2108131.

[48] Y. Zhang, K. Yang, M. Saligane, D. Blaauw, and D. Sylvester, “A compact 446 gbps/w

aes accelerator for mobile soc and iot in 40nm,” in 2016 IEEE Symposium on VLSI

Circuits (VLSI-Circuits), 2016, pp. 1–2. doi: 10.1109/VLSIC.2016.7573553.

[49] U. Banerjee, “Energy-efficient protocols and hardware architectures for transport layer

security,” M.S. thesis, Massachusetts Institute of Technology, 2017.

[50] U. Banerjee, A. Wright, C. Juvekar, M. Waller, Arvind, and A. P. Chandrakasan,

“An energy-efficient reconfigurable dtls cryptographic engine for securing internet-of-

145

https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1109/DSD.2006.40
https://doi.org/10.1109/DSD.2006.40
https://doi.org/10.1109/JSSC.2011.2108131
https://doi.org/10.1109/VLSIC.2016.7573553

things applications,” IEEE Journal of Solid-State Circuits, vol. 54, no. 8, pp. 2339–

2352, 2019. doi: 10.1109/JSSC.2019.2915203.

[51] K. Lee, M. Yan, J. Emer, and A. Chandrakasan, “Secureloop: Design space explo-

ration of secure dnn accelerators,” in Proceedings of the 56th Annual IEEE/ACM In-

ternational Symposium on Microarchitecture, ser. MICRO ’23, Toronto, ON, Canada:

Association for Computing Machinery, 2023, pp. 194–208, isbn: 9798400703294. doi:

10.1145/3613424.3614273. url: https://doi.org/10.1145/3613424.3614273.

[52] A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara, R. Venkate-

san, B. Khailany, S. W. Keckler, and J. Emer, “Timeloop: A systematic approach

to dnn accelerator evaluation,” in 2019 IEEE International Symposium on Perfor-

mance Analysis of Systems and Software (ISPASS), 2019, pp. 304–315. doi: 10.1109/

ISPASS.2019.00042.

[53] N. Nayak, T. O. Odemuyiwa, S. Ugare, C. Fletcher, M. Pellauer, and J. Emer, “Teaal:

A declarative framework for modeling sparse tensor accelerators,” in Proceedings of the

56th Annual IEEE/ACM International Symposium on Microarchitecture, ser. MICRO

’23, Toronto, ON, Canada: Association for Computing Machinery, 2023, pp. 1255–

1270, isbn: 9798400703294. doi: 10.1145/3613424.3623791. url: https://doi.org/10.

1145/3613424.3623791.

[54] A. Paszke, S. Gross, F. Massa, et al., Pytorch: An imperative style, high-performance

deep learning library, 2019. arXiv: 1912.01703 [cs.LG].

[55] C. R. Harris, K. J. Millman, S. J. van der Walt, et al., “Array programming with

NumPy,” Nature, vol. 585, no. 7825, pp. 357–362, Sep. 2020. doi: 10.1038/s41586-

020-2649-2. url: https://doi.org/10.1038/s41586-020-2649-2.

[56] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http:

//www.deeplearningbook.org.

146

https://doi.org/10.1109/JSSC.2019.2915203
https://doi.org/10.1145/3613424.3614273
https://doi.org/10.1145/3613424.3614273
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1145/3613424.3623791
https://doi.org/10.1145/3613424.3623791
https://doi.org/10.1145/3613424.3623791
https://arxiv.org/abs/1912.01703
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://www.deeplearningbook.org
http://www.deeplearningbook.org

[57] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in Neural Information Processing Sys-

tems, F. Pereira, C. Burges, L. Bottou, and K. Weinberger, Eds., vol. 25, Curran

Associates, Inc., 2012. url: https : / / proceedings . neurips . cc / paper / 2012 / file /

c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[58] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale im-

age recognition, 2015. arXiv: 1409.1556 [cs.CV].

[59] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-

houcke, and A. Rabinovich, Going deeper with convolutions, 2014. arXiv: 1409.4842

[cs.CV].

[60] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun.

2016. doi: 10.1109/cvpr.2016.90. url: http://dx.doi.org/10.1109/CVPR.2016.90.

[61] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, Mobilenetv2: Inverted

residuals and linear bottlenecks, 2019. arXiv: 1801.04381 [cs.CV].

[62] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You only look once: Unified,

real-time object detection, 2016. arXiv: 1506.02640 [cs.CV].

[63] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł.

Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural In-

formation Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,

R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30, Curran Associates,

Inc., 2017. url: https : / /proceedings . neurips . cc /paper_files /paper / 2017/file /

3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[64] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, Bert: Pre-training of deep bidi-

rectional transformers for language understanding, 2019. arXiv: 1810.04805 [cs.CL].

147

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.4842
https://doi.org/10.1109/cvpr.2016.90
http://dx.doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1506.02640
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/1810.04805

[65] T. B. Brown, B. Mann, N. Ryder, et al., Language models are few-shot learners, 2020.

arXiv: 2005.14165 [cs.CL].

[66] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of deep neural

networks: A tutorial and survey,” Proceedings of the IEEE, vol. 105, no. 12, pp. 2295–

2329, 2017. doi: 10.1109/JPROC.2017.2761740.

[67] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful visual perfor-

mance model for multicore architectures,” Commun. ACM, vol. 52, pp. 65–76, Apr.

2009. doi: 10.1145/1498765.1498785.

[68] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino,

A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest we remember: Cold boot

attacks on encryption keys,” in 17th USENIX Security Symposium (USENIX Security

08), San Jose, CA: USENIX Association, Jul. 2008. url: https://www.usenix.org/

conference/17th-usenix-security-symposium/lest-we-remember-cold-boot-attacks-

encryption-keys.

[69] S. Han, J. Pool, J. Tran, and W. J. Dally, Learning both weights and connections for

efficient neural networks, 2015. arXiv: 1506.02626 [cs.NE].

[70] S. Han, H. Mao, and W. J. Dally, Deep compression: Compressing deep neural net-

works with pruning, trained quantization and huffman coding, 2016. arXiv: 1510.00149

[cs.CV].

[71] M. Seaborn and T. Dullien, Exploiting the dram rowhammer bug to gain kernel priv-

ileges, Mar. 2015. url: https://googleprojectzero.blogspot.com/2015/03/exploiting-

dram-rowhammer-bug-to-gain.html.

[72] K. Gomina, J.-B. Rigaud, P. Gendrier, P. Candelier, and A. Tria, “Power supply glitch

attacks: Design and evaluation of detection circuits,” in 2014 IEEE International

Symposium on Hardware-Oriented Security and Trust (HOST), 2014, pp. 136–141.

doi: 10.1109/HST.2014.6855584.

148

https://arxiv.org/abs/2005.14165
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1145/1498765.1498785
https://www.usenix.org/conference/17th-usenix-security-symposium/lest-we-remember-cold-boot-attacks-encryption-keys
https://www.usenix.org/conference/17th-usenix-security-symposium/lest-we-remember-cold-boot-attacks-encryption-keys
https://www.usenix.org/conference/17th-usenix-security-symposium/lest-we-remember-cold-boot-attacks-encryption-keys
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1510.00149
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://doi.org/10.1109/HST.2014.6855584

[73] W. Liu, C.-H. Chang, F. Zhang, and X. Lou, “Imperceptible misclassification attack

on deep learning accelerator by glitch injection,” in 2020 57th ACM/IEEE Design Au-

tomation Conference (DAC), 2020, pp. 1–6. doi: 10.1109/DAC18072.2020.9218577.

[74] J.-M. Schmidt and M. Hutter, “Optical and em fault-attacks on crt-based rsa: Con-

crete results,” English, in Austrochip 2007, 15th Austrian Workhop on Microelec-

tronics, 11 October 2007, Graz, Austria, Proceedings, Austrochip 2007 ; Conference

date: 11-10-2007 Through 11-10-2007, Verlag der Technischen Universität Graz, 2007,

pp. 61–67, isbn: 978-3-902465-87-0.

[75] M. Dumont, M. Lisart, and P. Maurine, “Electromagnetic fault injection : How faults

occur,” in 2019 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC),

2019, pp. 9–16. doi: 10.1109/FDTC.2019.00010.

[76] Q. Liu, L. Guo, and H. Tang, “Fault model analysis of dram under electromagnetic

fault injection attack,” in 2023 Design, Automation & Test in Europe Conference &

Exhibition (DATE), 2023, pp. 1–6. doi: 10.23919/DATE56975.2023.10137146.

[77] A. Cui and R. Housley, “BADFET: Defeating modern secure boot using Second-

Order pulsed electromagnetic fault injection,” in 11th USENIX Workshop on Offensive

Technologies (WOOT 17), Vancouver, BC: USENIX Association, Aug. 2017. url:

https://www.usenix.org/conference/woot17/workshop-program/presentation/cui.

[78] X. Hou, J. Breier, D. Jap, L. Ma, S. Bhasin, and Y. Liu, “Physical security of deep

learning on edge devices: Comprehensive evaluation of fault injection attack vectors,”

Microelectronics Reliability, vol. 120, p. 114 116, 2021, issn: 0026-2714. doi: https:

//doi.org/10.1016/j.microrel.2021.114116. url: https://www.sciencedirect.com/

science/article/pii/S0026271421000822.

[79] T. Wolf, L. Debut, V. Sanh, et al., “Transformers: State-of-the-art natural language

processing,” in Proceedings of the 2020 Conference on Empirical Methods in Natural

Language Processing: System Demonstrations, Online: Association for Computational

149

https://doi.org/10.1109/DAC18072.2020.9218577
https://doi.org/10.1109/FDTC.2019.00010
https://doi.org/10.23919/DATE56975.2023.10137146
https://www.usenix.org/conference/woot17/workshop-program/presentation/cui
https://doi.org/https://doi.org/10.1016/j.microrel.2021.114116
https://doi.org/https://doi.org/10.1016/j.microrel.2021.114116
https://www.sciencedirect.com/science/article/pii/S0026271421000822
https://www.sciencedirect.com/science/article/pii/S0026271421000822

Linguistics, Oct. 2020, pp. 38–45. url: https://www.aclweb.org/anthology/2020.

emnlp-demos.6.

[80] F. Yao, A. S. Rakin, and D. Fan, “Deephammer: Depleting the intelligence of deep

neural networks through targeted chain of bit flips,” in 29th USENIX Security Sympo-

sium (USENIX Security 20), USENIX Association, Aug. 2020, pp. 1463–1480, isbn:

978-1-939133-17-5. url: https : / / www . usenix . org / conference / usenixsecurity20 /

presentation/yao.

[81] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning convolutional

neural networks for resource efficient inference,” arXiv preprint arXiv:1611.06440,

2016.

[82] Y. LeCun, J. Denker, and S. Solla, “Optimal brain damage,” in Advances in Neu-

ral Information Processing Systems, D. Touretzky, Ed., vol. 2, Morgan-Kaufmann,

1989. url: https : / / proceedings . neurips . cc / paper _ files / paper / 1989 / file /

6c9882bbac1c7093bd25041881277658-Paper.pdf.

[83] B. Hassibi, D. Stork, and G. Wolff, “Optimal brain surgeon and general network

pruning,” in IEEE International Conference on Neural Networks, 1993, 293–299 vol.1.

doi: 10.1109/ICNN.1993.298572.

[84] E. Karnin, “A simple procedure for pruning back-propagation trained neural net-

works,” IEEE Transactions on Neural Networks, vol. 1, no. 2, pp. 239–242, 1990. doi:

10.1109/72.80236.

[85] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters for efficient

convnets,” in International Conference on Learning Representations, 2017. url: https:

//openreview.net/forum?id=rJqFGTslg.

[86] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang, “Soft filter pruning for accelerating

deep convolutional neural networks,” arXiv preprint arXiv:1808.06866, 2018.

150

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.usenix.org/conference/usenixsecurity20/presentation/yao
https://www.usenix.org/conference/usenixsecurity20/presentation/yao
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://doi.org/10.1109/ICNN.1993.298572
https://doi.org/10.1109/72.80236
https://openreview.net/forum?id=rJqFGTslg
https://openreview.net/forum?id=rJqFGTslg

[87] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe, “The tensor algebra

compiler,” Proc. ACM Program. Lang., vol. 1, no. OOPSLA, Oct. 2017. doi: 10.1145/

3133901. url: https://doi.org/10.1145/3133901.

[88] W. Ahrens, T. F. Collin, R. Patel, K. Deeds, C. Hong, and S. Amarasinghe, Finch:

Sparse and structured array programming with control flow, 2024. arXiv: 2404.16730

[cs.MS].

[89] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “Ssd:

Single shot multibox detector,” Lecture Notes in Computer Science, pp. 21–37, 2016,

issn: 1611-3349. doi: 10.1007/978-3-319-46448-0_2. url: http://dx.doi.org/10.

1007/978-3-319-46448-0_2.

[90] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A.

Zisserman, “The pascal visual object classes challenge: A retrospective,” International

Journal of Computer Vision, vol. 111, no. 1, pp. 98–136, Jan. 2015.

[91] A. Krizhevsky, “Learning multiple layers of features from tiny images,” Tech. Rep.,

2009.

[92] O. Russakovsky, J. Deng, H. Su, et al., “ImageNet Large Scale Visual Recogni-

tion Challenge,” International Journal of Computer Vision (IJCV), vol. 115, no. 3,

pp. 211–252, 2015. doi: 10.1007/s11263-015-0816-y.

[93] S. Zagoruyko and N. Komodakis, Wide residual networks, 2016. arXiv: 1605.07146

[cs.CV].

[94] S. Gueron, A memory encryption engine suitable for general purpose processors, Cryp-

tology ePrint Archive, Report 2016/204, https://ia.cr/2016/204, 2016.

[95] B. Gassend, G. Suh, D. Clarke, M. van Dijk, and S. Devadas, “Caches and hash trees

for efficient memory integrity verification,” in The Ninth International Symposium on

High-Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings., 2003,

pp. 295–306. doi: 10.1109/HPCA.2003.1183547.

151

https://doi.org/10.1145/3133901
https://doi.org/10.1145/3133901
https://doi.org/10.1145/3133901
https://arxiv.org/abs/2404.16730
https://arxiv.org/abs/2404.16730
https://doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/s11263-015-0816-y
https://arxiv.org/abs/1605.07146
https://arxiv.org/abs/1605.07146
https://doi.org/10.1109/HPCA.2003.1183547

[96] C. Yan, D. Englender, M. Prvulovic, B. Rogers, and Y. Solihin, “Improving cost,

performance, and security of memory encryption and authentication,” in 33rd Inter-

national Symposium on Computer Architecture (ISCA’06), 2006, pp. 179–190. doi:

10.1109/ISCA.2006.22.

[97] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin, “Using address independent seed

encryption and bonsai merkle trees to make secure processors os- and performance-

friendly,” in 40th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO 2007), 2007, pp. 183–196. doi: 10.1109/MICRO.2007.16.

[98] M. Taassori, A. Shafiee, and R. Balasubramonian, “Vault: Reducing paging over-

heads in sgx with efficient integrity verification structures,” in Proceedings of the

Twenty-Third International Conference on Architectural Support for Programming

Languages and Operating Systems, ser. ASPLOS ’18, Williamsburg, VA, USA: As-

sociation for Computing Machinery, 2018, pp. 665–678, isbn: 9781450349116. doi:

10.1145/3173162.3177155. url: https://doi.org/10.1145/3173162.3177155.

[99] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, J. A. Joao, and M. K. Qureshi,

“Morphable counters: Enabling compact integrity trees for low-overhead secure memo-

ries,” in 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), 2018, pp. 416–427. doi: 10.1109/MICRO.2018.00041.

[100] V. Costan and S. Devadas, “Intel sgx explained,” Cryptology ePrint Archive, 2016.

[101] M. Pellauer, Y. S. Shao, J. Clemons, N. Crago, K. Hegde, R. Venkatesan, S. W. Keck-

ler, C. W. Fletcher, and J. Emer, “Buffets: An efficient and composable storage idiom

for explicit decoupled data orchestration,” in Proceedings of the Twenty-Fourth Inter-

national Conference on Architectural Support for Programming Languages and Op-

erating Systems, ser. ASPLOS ’19, Providence, RI, USA: Association for Computing

Machinery, 2019, pp. 137–151, isbn: 9781450362405. doi: 10.1145/3297858.3304025.

url: https://doi.org/10.1145/3297858.3304025.

152

https://doi.org/10.1109/ISCA.2006.22
https://doi.org/10.1109/MICRO.2007.16
https://doi.org/10.1145/3173162.3177155
https://doi.org/10.1145/3173162.3177155
https://doi.org/10.1109/MICRO.2018.00041
https://doi.org/10.1145/3297858.3304025
https://doi.org/10.1145/3297858.3304025

[102] W. Hua, M. Umar, Z. Zhang, and G. E. Suh, “Mgx: Near-zero overhead memory

protection for data-intensive accelerators,” in Proceedings of the 49th Annual Inter-

national Symposium on Computer Architecture, ser. ISCA ’22, New York, New York:

Association for Computing Machinery, 2022, pp. 726–741, isbn: 9781450386104. doi:

10.1145/3470496.3527418. url: https://doi.org/10.1145/3470496.3527418.

[103] W. Hua, M. Umar, Z. Zhang, and G. E. Suh, “Guardnn: Secure accelerator archi-

tecture for privacy-preserving deep learning,” in Proceedings of the 59th ACM/IEEE

Design Automation Conference, ser. DAC ’22, San Francisco, California: Association

for Computing Machinery, 2022, pp. 349–354, isbn: 9781450391429. doi: 10.1145/

3489517.3530439. url: https://doi.org/10.1145/3489517.3530439.

[104] S. Lee, J. Kim, S. Na, J. Park, and J. Huh, “Tnpu: Supporting trusted execution with

tree-less integrity protection for neural processing unit,” in 2022 IEEE International

Symposium on High-Performance Computer Architecture (HPCA), 2022, pp. 229–243.

doi: 10.1109/HPCA53966.2022.00025.

[105] Q. Huang, M. Kang, G. Dinh, T. Norell, A. Kalaiah, J. Demmel, J. Wawrzynek, and

Y. Shao, “Cosa: Scheduling by constrained optimization for spatial accelerators,” in

2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture

(ISCA), Los Alamitos, CA, USA: IEEE Computer Society, Jun. 2021, pp. 554–566.

doi: 10.1109/ISCA52012.2021.00050. url: https://doi.ieeecomputersociety.org/10.

1109/ISCA52012.2021.00050.

[106] P. Chatarasi, H. Kwon, A. Parashar, M. Pellauer, T. Krishna, and V. Sarkar, “Marvel:

A data-centric approach for mapping deep learning operators on spatial accelerators,”

ACM Trans. Archit. Code Optim., vol. 19, no. 1, Dec. 2021, issn: 1544-3566. doi:

10.1145/3485137. url: https://doi.org/10.1145/3485137.

[107] S. Dave, Y. Kim, S. Avancha, K. Lee, and A. Shrivastava, “Dmazerunner: Executing

perfectly nested loops on dataflow accelerators,” ACM Trans. Embed. Comput. Syst.,

153

https://doi.org/10.1145/3470496.3527418
https://doi.org/10.1145/3470496.3527418
https://doi.org/10.1145/3489517.3530439
https://doi.org/10.1145/3489517.3530439
https://doi.org/10.1145/3489517.3530439
https://doi.org/10.1109/HPCA53966.2022.00025
https://doi.org/10.1109/ISCA52012.2021.00050
https://doi.ieeecomputersociety.org/10.1109/ISCA52012.2021.00050
https://doi.ieeecomputersociety.org/10.1109/ISCA52012.2021.00050
https://doi.org/10.1145/3485137
https://doi.org/10.1145/3485137

vol. 18, no. 5s, Oct. 2019, issn: 1539-9087. doi: 10.1145/3358198. url: https://doi.

org/10.1145/3358198.

[108] K. Hegde, P.-A. Tsai, S. Huang, V. Chandra, A. Parashar, and C. W. Fletcher, “Mind

mappings: Enabling efficient algorithm-accelerator mapping space search,” ser. AS-

PLOS ’21, Virtual, USA: Association for Computing Machinery, 2021, pp. 943–958,

isbn: 9781450383172. doi: 10.1145/3445814.3446762. url: https://doi.org/10.1145/

3445814.3446762.

[109] S.-C. Kao and T. Krishna, “Gamma: Automating the hw mapping of dnn models on

accelerators via genetic algorithm,” in Proceedings of the 39th International Confer-

ence on Computer-Aided Design, ser. ICCAD ’20, Virtual Event, USA: Association for

Computing Machinery, 2020, isbn: 9781450380263. doi: 10.1145/3400302.3415639.

url: https://doi.org/10.1145/3400302.3415639.

[110] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer, “Ascon v1.2: Lightweight

authenticated encryption and hashing,” J. Cryptol., vol. 34, no. 3, p. 33, 2021. doi:

10.1007/S00145-021-09398-9. url: https://doi.org/10.1007/s00145-021-09398-9.

[111] A. Symons, L. Mei, S. Colleman, P. Houshmand, S. Karl, and M. Verhelst, Towards

heterogeneous multi-core accelerators exploiting fine-grained scheduling of layer-fused

deep neural networks, 2022. arXiv: 2212.10612 [cs.AR].

[112] S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by

reducing internal covariate shift, 2015. arXiv: 1502.03167 [cs.LG].

[113] Y. N. Wu, J. S. Emer, and V. Sze, “Accelergy: An architecture-level energy estimation

methodology for accelerator designs,” in 2019 IEEE/ACM International Conference

on Computer-Aided Design (ICCAD), 2019, pp. 1–8. doi: 10 .1109/ICCAD45719.

2019.8942149.

154

https://doi.org/10.1145/3358198
https://doi.org/10.1145/3358198
https://doi.org/10.1145/3358198
https://doi.org/10.1145/3445814.3446762
https://doi.org/10.1145/3445814.3446762
https://doi.org/10.1145/3445814.3446762
https://doi.org/10.1145/3400302.3415639
https://doi.org/10.1145/3400302.3415639
https://doi.org/10.1007/S00145-021-09398-9
https://doi.org/10.1007/s00145-021-09398-9
https://arxiv.org/abs/2212.10612
https://arxiv.org/abs/1502.03167
https://doi.org/10.1109/ICCAD45719.2019.8942149
https://doi.org/10.1109/ICCAD45719.2019.8942149

[114] S. Mehta and M. Rastegari, “Mobilevit: Light-weight, general-purpose, and mobile-

friendly vision transformer,” in International Conference on Learning Representa-

tions, 2022. url: https://openreview.net/forum?id=vh-0sUt8HlG.

[115] T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Ré, Flashattention: Fast and memory-

efficient exact attention with io-awareness, 2022. arXiv: 2205.14135 [cs.LG].

[116] S.-C. Kao, S. Subramanian, G. Agrawal, A. Yazdanbakhsh, and T. Krishna, “Flat: An

optimized dataflow for mitigating attention bottlenecks,” in Proceedings of the 28th

ACM International Conference on Architectural Support for Programming Languages

and Operating Systems, Volume 2, ser. ASPLOS 2023, Vancouver, BC, Canada: As-

sociation for Computing Machinery, 2023, pp. 295–310, isbn: 9781450399166. doi:

10.1145/3575693.3575747. url: https://doi.org/10.1145/3575693.3575747.

[117] J.-W. Su, X. Si, Y.-C. Chou, et al., “15.2 a 28nm 64kb inference-training two-way

transpose multibit 6t sram compute-in-memory macro for ai edge chips,” in 2020

IEEE International Solid-State Circuits Conference - (ISSCC), 2020, pp. 240–242.

doi: 10.1109/ISSCC19947.2020.9062949.

[118] M. Dworkin, E. Barker, J. Nechvatal, J. Foti, L. Bassham, E. Roback, and J. Dray,

Advanced encryption standard (aes), en, 2001-11-26 2001. doi: https://doi.org/10.

6028/NIST.FIPS.197.

[119] S. Gueron, May 2010. url: https : / /www . intel . com/content /dam/doc /white -

paper/advanced-encryption-standard-new-instructions-set-paper.pdf.

[120] C. Boutin, Nist selects ‘lightweight cryptography’ algorithms to protect small devices,

Feb. 2023. url: https://www.nist.gov/news- events/news/2023/02/nist- selects-

lightweight-cryptography-algorithms-protect-small-devices.

[121] K. Ueyoshi, I. A. Papistas, P. Houshmand, et al., “Diana: An end-to-end energy-

efficient digital and analog hybrid neural network soc,” in 2022 IEEE International

155

https://openreview.net/forum?id=vh-0sUt8HlG
https://arxiv.org/abs/2205.14135
https://doi.org/10.1145/3575693.3575747
https://doi.org/10.1145/3575693.3575747
https://doi.org/10.1109/ISSCC19947.2020.9062949
https://doi.org/https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/https://doi.org/10.6028/NIST.FIPS.197
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.nist.gov/news-events/news/2023/02/nist-selects-lightweight-cryptography-algorithms-protect-small-devices
https://www.nist.gov/news-events/news/2023/02/nist-selects-lightweight-cryptography-algorithms-protect-small-devices

Solid-State Circuits Conference (ISSCC), vol. 65, 2022, pp. 1–3. doi: 10 . 1109 /

ISSCC42614.2022.9731716.

[122] I. Kouretas and V. Paliouras, “Simplified hardware implementation of the softmax

activation function,” in 2019 8th International Conference on Modern Circuits and

Systems Technologies (MOCAST), 2019, pp. 1–4. doi: 10 . 1109/MOCAST . 2019 .

8741677.

[123] M. Wang, S. Lu, D. Zhu, J. Lin, and Z. Wang, “A high-speed and low-complexity archi-

tecture for softmax function in deep learning,” in 2018 IEEE Asia Pacific Conference

on Circuits and Systems (APCCAS), 2018, pp. 223–226. doi: 10.1109/APCCAS.

2018.8605654.

[124] Y. Gao, W. Liu, and F. Lombardi, “Design and implementation of an approximate

softmax layer for deep neural networks,” in 2020 IEEE International Symposium

on Circuits and Systems (ISCAS), 2020, pp. 1–5. doi: 10.1109/ISCAS45731.2020.

9180870.

[125] H. Chen, Z. Yu, J. Xu, L. Jiang, Z. Lu, Y. Fu, and L. Li, “Huicore: A generalized

hardware accelerator for complicated functions,” IEEE Transactions on Circuits and

Systems I: Regular Papers, vol. 69, no. 6, pp. 2463–2476, 2022. doi: 10.1109/TCSI.

2022.3152799.

[126] K. Chen, Y. Gao, H. Waris, W. Liu, and F. Lombardi, “Approximate softmax func-

tions for energy-efficient deep neural networks,” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 31, no. 1, pp. 4–16, 2023. doi: 10.1109/TVLSI.

2022.3224011.

[127] X. Dong, X. Zhu, and D. Ma, “Hardware implementation of softmax function based on

piecewise lut,” in 2019 IEEE International Workshop on Future Computing (IWOFC,

2019, pp. 1–3. doi: 10.1109/IWOFC48002.2019.9078446.

156

https://doi.org/10.1109/ISSCC42614.2022.9731716
https://doi.org/10.1109/ISSCC42614.2022.9731716
https://doi.org/10.1109/MOCAST.2019.8741677
https://doi.org/10.1109/MOCAST.2019.8741677
https://doi.org/10.1109/APCCAS.2018.8605654
https://doi.org/10.1109/APCCAS.2018.8605654
https://doi.org/10.1109/ISCAS45731.2020.9180870
https://doi.org/10.1109/ISCAS45731.2020.9180870
https://doi.org/10.1109/TCSI.2022.3152799
https://doi.org/10.1109/TCSI.2022.3152799
https://doi.org/10.1109/TVLSI.2022.3224011
https://doi.org/10.1109/TVLSI.2022.3224011
https://doi.org/10.1109/IWOFC48002.2019.9078446

[128] J. R. Stevens, R. Venkatesan, S. Dai, B. Khailany, and A. Raghunathan, “Softermax:

Hardware/software co-design of an efficient softmax for transformers,” in 2021 58th

ACM/IEEE Design Automation Conference (DAC), 2021, pp. 469–474. doi: 10.1109/

DAC18074.2021.9586134.

[129] Z. Wei, A. Arora, P. Patel, and L. John, “Design space exploration for softmax im-

plementations,” in 2020 IEEE 31st International Conference on Application-specific

Systems, Architectures and Processors (ASAP), 2020, pp. 45–52. doi: 10 . 1109 /

ASAP49362.2020.00017.

[130] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, and M. K. Qureshi, “Synergy:

Rethinking secure-memory design for error-correcting memories,” in 2018 IEEE In-

ternational Symposium on High Performance Computer Architecture (HPCA), 2018,

pp. 454–465. doi: 10.1109/HPCA.2018.00046.

[131] S. Volos, K. Vaswani, and R. Bruno, “Graviton: Trusted execution environments on

GPUs,” in 13th USENIX Symposium on Operating Systems Design and Implementa-

tion (OSDI 18), Carlsbad, CA: USENIX Association, Oct. 2018, pp. 681–696, isbn:

978-1-939133-08-3. url: https://www.usenix.org/conference/osdi18/presentation/

volos.

[132] R. Abdullah, H. Zhou, and A. Awad, “Plutus: Bandwidth-efficient memory security

for gpus,” in 2023 IEEE International Symposium on High-Performance Computer

Architecture (HPCA), 2023, pp. 543–555. doi: 10.1109/HPCA56546.2023.10071100.

[133] S. Na, J. Kim, S. Lee, and J. Huh, “Supporting secure multi-gpu computing with dy-

namic and batched metadata management,” in 2024 IEEE International Symposium

on High-Performance Computer Architecture (HPCA), Los Alamitos, CA, USA: IEEE

Computer Society, Mar. 2024, pp. 204–217. doi: 10.1109/HPCA57654.2024.00025.

url: https://doi.ieeecomputersociety.org/10.1109/HPCA57654.2024.00025.

157

https://doi.org/10.1109/DAC18074.2021.9586134
https://doi.org/10.1109/DAC18074.2021.9586134
https://doi.org/10.1109/ASAP49362.2020.00017
https://doi.org/10.1109/ASAP49362.2020.00017
https://doi.org/10.1109/HPCA.2018.00046
https://www.usenix.org/conference/osdi18/presentation/volos
https://www.usenix.org/conference/osdi18/presentation/volos
https://doi.org/10.1109/HPCA56546.2023.10071100
https://doi.org/10.1109/HPCA57654.2024.00025
https://doi.ieeecomputersociety.org/10.1109/HPCA57654.2024.00025

[134] A. Dhar, S. Sridhara, S. Shinde, S. Capkun, and R. Andri, Empowering data centers

for next generation trusted computing, 2022. arXiv: 2211.00306 [cs.CR].

[135] S. Maji, U. Banerjee, S. H. Fuller, and A. P. Chandrakasan, “A threshold

implementation-based neural network accelerator with power and electromagnetic

side-channel countermeasures,” IEEE Journal of Solid-State Circuits, vol. 58, no. 1,

pp. 141–154, 2023. doi: 10.1109/JSSC.2022.3215670.

[136] S. Maji, K. Lee, C. Gongye, Y. Fei, and A. P. Chandrakasan, “An energy-efficient neu-

ral network accelerator with improved resilience against fault attacks,” IEEE Journal

of Solid-State Circuits, pp. 1–11, 2024. doi: 10.1109/JSSC.2024.3374638.

[137] M. Ashok, S. Maji, X. Zhang, J. Cohn, and A. P. Chandrakasan, “A secure digital

in-memory compute (imc) macro with protections for side-channel and bus probing

attacks,” in 2024 IEEE Custom Integrated Circuits Conference, 2024.

[138] Q. Fang, L. Lin, H. Zhang, T. Wang, and M. Alioto, “Voltage scaling-agnostic coun-

teraction of side-channel neural net reverse engineering via machine learning com-

pensation and multi-level shuffling,” in 2023 IEEE Symposium on VLSI Technol-

ogy and Circuits (VLSI Technology and Circuits), 2023, pp. 1–2. doi: 10 . 23919/

VLSITechnologyandCir57934.2023.10185228.

[139] Y.-C. Chiu, C.-S. Yang, S.-H. Teng, et al., “A 22nm 4mb stt-mram data-encrypted

near-memory computation macro with a 192gb/s read-and-decryption bandwidth and

25.1-55.1tops/w 8b mac for ai operations,” in 2022 IEEE International Solid-State

Circuits Conference (ISSCC), vol. 65, 2022, pp. 178–180. doi: 10.1109/ISSCC42614.

2022.9731621.

[140] Y.-S. Won, S. Chatterjee, D. Jap, A. Basu, and S. Bhasin, “Deepfreeze: Cold boot

attacks and high fidelity model recovery on commercial edgeml device,” in 2021

IEEE/ACM International Conference On Computer Aided Design (ICCAD), 2021,

pp. 1–9. doi: 10.1109/ICCAD51958.2021.9643512.

158

https://arxiv.org/abs/2211.00306
https://doi.org/10.1109/JSSC.2022.3215670
https://doi.org/10.1109/JSSC.2024.3374638
https://doi.org/10.23919/VLSITechnologyandCir57934.2023.10185228
https://doi.org/10.23919/VLSITechnologyandCir57934.2023.10185228
https://doi.org/10.1109/ISSCC42614.2022.9731621
https://doi.org/10.1109/ISSCC42614.2022.9731621
https://doi.org/10.1109/ICCAD51958.2021.9643512

[141] L. Batina, S. Bhasin, D. Jap, and S. Picek, “CSI NN: Reverse engineering of neural

network architectures through electromagnetic side channel,” in 28th USENIX Se-

curity Symposium (USENIX Security 19), Santa Clara, CA: USENIX Association,

Aug. 2019, pp. 515–532, isbn: 978-1-939133-06-9. url: https ://www.usenix.org/

conference/usenixsecurity19/presentation/batina.

[142] C. Gongye, Y. Fei, and T. Wahl, “Reverse-engineering deep neural networks using

floating-point timing side-channels,” in 2020 57th ACM/IEEE Design Automation

Conference (DAC), 2020, pp. 1–6. doi: 10.1109/DAC18072.2020.9218707.

[143] S. Maji, U. Banerjee, and A. P. Chandrakasan, “Leaky nets: Recovering embed-

ded neural network models and inputs through simple power and timing side-

channels—attacks and defenses,” IEEE Internet of Things Journal, vol. 8, no. 15,

pp. 12 079–12 092, 2021. doi: 10.1109/JIOT.2021.3061314.

[144] X. Zhang, A. A. Ding, and Y. Fei, “Deep-learning model extraction through software-

based power side-channel,” in 2023 IEEE/ACM International Conference on Com-

puter Aided Design (ICCAD), 2023, pp. 1–9. doi: 10 . 1109 / ICCAD57390 . 2023 .

10323806.

[145] K. Hegde, H. Asghari-Moghaddam, M. Pellauer, N. Crago, A. Jaleel, E. Solomonik,

J. Emer, and C. W. Fletcher, “Extensor: An accelerator for sparse tensor algebra,” in

Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchi-

tecture, ser. MICRO ’52, Columbus, OH, USA: Association for Computing Machinery,

2019, pp. 319–333, isbn: 9781450369381. doi: 10.1145/3352460.3358275. url: https:

//doi.org/10.1145/3352460.3358275.

[146] G. Zhang, N. Attaluri, J. S. Emer, and D. Sanchez, “Gamma: Leveraging gustavson’s

algorithm to accelerate sparse matrix multiplication,” in Proceedings of the 26th ACM

International Conference on Architectural Support for Programming Languages and

Operating Systems, ser. ASPLOS ’21, Virtual, USA: Association for Computing Ma-

159

https://www.usenix.org/conference/usenixsecurity19/presentation/batina
https://www.usenix.org/conference/usenixsecurity19/presentation/batina
https://doi.org/10.1109/DAC18072.2020.9218707
https://doi.org/10.1109/JIOT.2021.3061314
https://doi.org/10.1109/ICCAD57390.2023.10323806
https://doi.org/10.1109/ICCAD57390.2023.10323806
https://doi.org/10.1145/3352460.3358275
https://doi.org/10.1145/3352460.3358275
https://doi.org/10.1145/3352460.3358275

chinery, 2021, pp. 687–701, isbn: 9781450383172. doi: 10 .1145/3445814.3446702.

url: https://doi.org/10.1145/3445814.3446702.

[147] S. Pal, J. Beaumont, D.-H. Park, A. Amarnath, S. Feng, C. Chakrabarti, H.-S. Kim,

D. Blaauw, T. Mudge, and R. Dreslinski, “Outerspace: An outer product based sparse

matrix multiplication accelerator,” in 2018 IEEE International Symposium on High

Performance Computer Architecture (HPCA), 2018, pp. 724–736. doi: 10 . 1109 /

HPCA.2018.00067.

[148] Y. N. Wu, P.-A. Tsai, A. Parashar, V. Sze, and J. S. Emer, “Sparseloop: An analytical

approach to sparse tensor accelerator modeling,” 2022 55th IEEE/ACM International

Symposium on Microarchitecture (MICRO), pp. 1377–1395, 2022. url: https://api.

semanticscholar.org/CorpusID:248721917.

[149] T. O. Odemuyiwa, H. Asghari-Moghaddam, M. Pellauer, et al., “Accelerating sparse

data orchestration via dynamic reflexive tiling,” in Proceedings of the 28th ACM Inter-

national Conference on Architectural Support for Programming Languages and Oper-

ating Systems, Volume 3, ser. ASPLOS 2023, Vancouver, BC, Canada: Association for

Computing Machinery, 2023, pp. 18–32, isbn: 9781450399180. doi: 10.1145/3582016.

3582064. url: https://doi.org/10.1145/3582016.3582064.

[150] S. Banerjee, S. Wei, P. Ramrakhyani, and M. Tiwari, “Triton: Software-defined threat

model for secure multi-tenant ml inference accelerators,” in Proceedings of the 12th

International Workshop on Hardware and Architectural Support for Security and Pri-

vacy, ser. HASP ’23, Toronto, Canada: Association for Computing Machinery, 2023,

pp. 19–28, isbn: 9798400716232. doi: 10.1145/3623652.3623672. url: https://doi.

org/10.1145/3623652.3623672.

[151] S. Kim, J. Zhao, K. Asanovic, B. Nikolic, and Y. S. Shao, “Aurora: Virtualized ac-

celerator orchestration for multi-tenant workloads,” in Proceedings of the 56th An-

nual IEEE/ACM International Symposium on Microarchitecture, ser. MICRO ’23,

160

https://doi.org/10.1145/3445814.3446702
https://doi.org/10.1145/3445814.3446702
https://doi.org/10.1109/HPCA.2018.00067
https://doi.org/10.1109/HPCA.2018.00067
https://api.semanticscholar.org/CorpusID:248721917
https://api.semanticscholar.org/CorpusID:248721917
https://doi.org/10.1145/3582016.3582064
https://doi.org/10.1145/3582016.3582064
https://doi.org/10.1145/3582016.3582064
https://doi.org/10.1145/3623652.3623672
https://doi.org/10.1145/3623652.3623672
https://doi.org/10.1145/3623652.3623672

Toronto, ON, Canada: Association for Computing Machinery, 2023, pp. 62–76, isbn:

9798400703294. doi: 10 . 1145/3613424 .3614280. url: https : //doi . org/10 .1145/

3613424.3614280.

[152] S. Ghodrati, B. H. Ahn, J. Kyung Kim, et al., “Planaria: Dynamic architecture fission

for spatial multi-tenant acceleration of deep neural networks,” in 2020 53rd Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), 2020, pp. 681–

697. doi: 10.1109/MICRO50266.2020.00062.

[153] SK, Hbm technology: The silent catalyst of the ai revolution, Jan. 2024. url: https:

//eng.sk.com/perspectives/hbm-technology-the-silent-catalyst-of-the-ai-revolution.

[154] Micron, Micron commences volume production of industry-leading hbm3e solution to

accelerate the growth of ai, Feb. 2024. url: https :// investors .micron.com/news-

releases / news - release - details /micron - commences - volume - production - industry -

leading-hbm3e.

[155] G. E. Suh and S. Devadas, “Physical unclonable functions for device authentication

and secret key generation,” in 2007 44th ACM/IEEE Design Automation Conference,

2007, pp. 9–14.

[156] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon physical random func-

tions,” in Proceedings of the 9th ACM Conference on Computer and Communications

Security, ser. CCS ’02, Washington, DC, USA: Association for Computing Machin-

ery, 2002, pp. 148–160, isbn: 1581136129. doi: 10.1145/586110.586132. url: https:

//doi.org/10.1145/586110.586132.

[157] R. Maes and I. Verbauwhede, “Physically unclonable functions: A study on the state

of the art and future research directions,” in Towards Hardware-Intrinsic Security:

Foundations and Practice, A.-R. Sadeghi and D. Naccache, Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2010, pp. 3–37, isbn: 978-3-642-14452-3. doi: 10.1007/

978-3-642-14452-3_1. url: https://doi.org/10.1007/978-3-642-14452-3_1.

161

https://doi.org/10.1145/3613424.3614280
https://doi.org/10.1145/3613424.3614280
https://doi.org/10.1145/3613424.3614280
https://doi.org/10.1109/MICRO50266.2020.00062
https://eng.sk.com/perspectives/hbm-technology-the-silent-catalyst-of-the-ai-revolution
https://eng.sk.com/perspectives/hbm-technology-the-silent-catalyst-of-the-ai-revolution
https://investors.micron.com/news-releases/news-release-details/micron-commences-volume-production-industry-leading-hbm3e
https://investors.micron.com/news-releases/news-release-details/micron-commences-volume-production-industry-leading-hbm3e
https://investors.micron.com/news-releases/news-release-details/micron-commences-volume-production-industry-leading-hbm3e
https://doi.org/10.1145/586110.586132
https://doi.org/10.1145/586110.586132
https://doi.org/10.1145/586110.586132
https://doi.org/10.1007/978-3-642-14452-3_1
https://doi.org/10.1007/978-3-642-14452-3_1
https://doi.org/10.1007/978-3-642-14452-3_1

[158] Y. Gao, S. F. Al-Sarawi, and D. Abbott, “Physical unclonable functions,” Nature

Electronics, vol. 3, no. 2, pp. 81–91, 2020.

[159] H. Sun, S. Maji, A. P. Chandrakasan, and B. Marelli, “Integrating biopolymer design

with physical unclonable functions for anticounterfeiting and product traceability in

agriculture,” Science Advances, vol. 9, no. 12, eadf1978, 2023. doi: 10.1126/sciadv.

adf1978. eprint: https://www.science.org/doi/pdf/10.1126/sciadv.adf1978. url:

https://www.science.org/doi/abs/10.1126/sciadv.adf1978.

[160] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Transactions

on Information Theory, vol. 22, no. 6, pp. 644–654, 1976. doi: 10.1109/TIT.1976.

1055638.

[161] S. Maji, K. Lee, and A. P. Chandrakasan, “Sparseleakynets: Classification prediction

attack over sparsity-aware embedded neural networks using timing side-channel in-

formation,” IEEE Computer Architecture Letters, pp. 1–4, 2024. doi: 10.1109/LCA.

2024.3397730.

162

https://doi.org/10.1126/sciadv.adf1978
https://doi.org/10.1126/sciadv.adf1978
https://www.science.org/doi/pdf/10.1126/sciadv.adf1978
https://www.science.org/doi/abs/10.1126/sciadv.adf1978
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/LCA.2024.3397730
https://doi.org/10.1109/LCA.2024.3397730

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.1.1 Necessity for Security in AI Applications
	1.1.2 Importance of Hardware Security
	1.1.3 Necessity for Secure Hardware Accelerator for AI

	1.2 Thesis Contributions
	1.2.1 Attacking Sparse Deep Neural Networks with the Worst-case Bit Flips in the Connections
	1.2.2 Design Space Exploration of Secure DNN Accelerators
	1.2.3 Secure Off-chip Memory Interface for Neural Engines

	2 Background
	2.1 Computations in Deep Neural Networks
	2.2 Hardware Support for Deep Neural Networks
	2.3 Off-chip Memory Vulnerabilities

	3 Attacking Deep Neural Networks with the Worst-case Bit Flips
	3.1 Background
	3.1.1 Bit Flip Attacks
	3.1.2 Pruning and Sparsity in Deep Neural Networks

	3.2 Sparsity as a New Vulnerability
	3.2.1 Problem Definition and Notation
	3.2.2 Threat Model
	3.2.3 Algorithm: SparseBFA

	3.3 Attack Results
	3.3.1 Sensitivity to Sparsity

	3.4 Summary

	4 Design Space Exploration of Secure Deep Neural Network Accelerators
	4.1 Background
	4.1.1 TEE for DNN Accelerators
	4.1.2 Design Space Exploration

	4.2 Challenges of Secure DNN Accelerators
	4.2.1 Overhead of Cryptographic Engines
	4.2.2 Authentication Block Assignment

	4.3 Mapping for Secure Accelerators
	4.3.1 A Model for Cryptographic Operations
	4.3.2 Optimal Authentication Block Assignment
	4.3.3 Cross-layer Fine Tuning

	4.4 Evaluation of the Mapping Algorithm
	4.5 Impacts of Architecture Configurations
	4.5.1 Cryptographic Engine
	4.5.2 Processing Elements Array
	4.5.3 On-chip SRAM
	4.5.4 Area vs. Performance Trade-off
	4.5.5 Discussions on Other Design Aspects

	4.6 Summary

	5 Secure Off-chip Memory Interface for Deep Neural Network Inference Accelerators
	5.1 Secure DNN Accelerator Architecture Overview
	5.1.1 Challenges

	5.2 Secure Off-chip Memory Interface
	5.2.1 Managing Nonces
	5.2.2 Authentication Blocks
	5.2.3 Memory Map and Transpose Problem
	5.2.4 Lightweight Cryptography
	5.2.5 Putting Together

	5.3 Cryptographic Engine Throughput Requirement and Fused-layer Processing
	5.3.1 Hardware Support for Fused-layer Processing

	5.4 Results
	5.4.1 Baseline DNN Accelerator Architecture
	5.4.2 Comparison with SecureLoop
	5.4.3 Implementation Results

	5.5 Related Work
	5.6 Summary

	6 Conclusion
	6.1 Summary of Contributions
	6.2 Future Work

	A Artifact for SecureLoop
	References

