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ABSTRACT

Computation is often described in abstract and idealized terms. In this setting, the details
of the computer can be neglected: different models of computation are interchangeable for
a cost which is at most polynomial in the size of the task at hand. The situation is more
complicated for computers composed of imperfect components which are liable to introduce
errors into the computation. Early work by John von Neumann showed that computers
composed of imperfect components could be used to simulate perfect computation with
high probability through the introduction of redundancy at the hardware level, i.e. they
could be made fault-tolerant if certain conditions were met. These conditions, however,
depend crucially on the details of noisy computational primitives; while the principles of
fault-tolerance remain—store and manipulate data redundantly and perform error correction
throughout—the constructions must be designed bespoke to the primitives at hand. In this
thesis, we present examples of fault-tolerance in less conventional models of computation
and investigate cases in which hardware-level fault-tolerant design may be more efficient in
spite of the requisite redundancy.

First, we develop new fault-tolerance results in unconventional models of classical and
quantum computation. In particular, we study a model of formula-based computation over
larger alphabets subject to symmetric noise; and show that performing computation with
large alphabet majority gates results in strictly larger nominal thresholds than achievable
using Boolean majority gates. We then move away from a formula-based architecture to
study large-alphabet computation based on feed-forward artificial neural networks subject
to analog noise. Using the biologically-inspired grid code, we show that fault-tolerant neu-
ral network-based computation can be achieved. Then, we envision quantum computation
composed of subroutines—rather than gates—developing a method for the error correction
of noisy quantum subroutines based on the quantum singular value transform.

Second, we seek a precise understanding when fault-tolerance is not only possible but
preferable. In certain cases, the choice between non-fault-tolerant and fault-tolerant designs
is clear: for classical computation, hardware-based fault-tolerance is rarely used due to
existence of cheap and reliable transistors; in quantum computation, fault-tolerance appears
to be the most economical route towards large-scale computation owing to the difficulty
of reliably manipulating quantum information. The trade-off may not be as clear in less
conventional models of computation. We make a detailed accounting of the resources required
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to achieve fault-tolerance in a simple setting which allows us to precisely delineate a regime
in which hardware-level fault-tolerance is preferred despite the requisite redundancy.

Lastly, we discuss some connections between the study of fault-tolerance and information
theory. In particular, we argue that an algorithm we developed for noisy compression can be
understood to be finding optimal encodings over noisy channel and is therefore helpful for
designing good encodings of data for fault-tolerant computation. This is followed by a review
of upper bounds on the fault-tolerant threshold based on information theoretic arguments.
We suggest that new measures of information are needed if existing upper bounds are to be
improved for circuits, and propose a high-level template for this work.

We end with a reflection on the term “organism” and a discussion of the implications of
this collection of results.

Thesis supervisor: Isaac L. Chuang
Title: Professor of Physics
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Chapter 1

Introduction

Computation is often described in abstract terms, as a mathematical operation accomplished

through a sequence of idealized operations and subroutines. In reality, this abstract descrip-

tion must first be encoded into physical degrees of freedom, made to undergo a dynamical

process, and subsequently decoded. Often, these carefully choreographed dynamics occur in

systems composed of large numbers of imperfect components. For modern computers, this

complex dynamical process occurs in a substrate comprised of tens of billions of transistors.

In quantum computers, the subject of much active research, mathematical procedures are

mapped onto dynamical systems comprised of tens to thousands of quantum mechanical

objects. More abstractly, our bodies, which continually make decisions based upon a stream

of external stimuli are reliant on the coordination of tens of trillions of cells. More abstractly

still, the value of financial instruments is determined collectively through the emergent com-

putation effected by hundreds of millions of market participants. In these last two examples,

while the information processing is not being performed by computers of any conventional

description, they are undoubtedly performing computation of a less conventional sort. Three

questions motivate the scope of this thesis:

(Q1) When can arbitrarily complicated mathematical procedures be na-

tively and fault-tolerantly encoded in the dynamics of less conven-
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tional models of computation?

(Q2) When is fault-tolerance not merely possible but desirable?

(Q3) What connections exist between fault-tolerance and information the-

ory?

While there is a large body of work addressing these questions in more standard circuit-based

models of computation, relatively little is known about fault-tolerance in other systems that

perform noisy information processing. Often, these less conventional models of information

processing—such as those emergent in biological systems—are precisely those that would

benefit from fault-tolerant design due to high native error rates; and as models of noisy

information processing are rarely perfectly interchangeable, it is necessary to develop an

understanding of fault-tolerance tailored to the computational primitives at hand, i.e. at the

hardware-level. In our quest to explore fault-tolerance as a property of systems that perform

information processing more generally, some of which bear little resemblance to what one

might conventionally consider to be a computer, we refer to general information processing

systems composed of noisy components as reliable organisms1.

1.1 On the synthesis of reliable classical organisms

The first exposition on this topic dates back to a lecture series by John von Neumann titled

“Probabalistic logics and the synthesis of reliable organisms from unreliable components”

[Neu56], in which von Neumann remarked at the robustness of information processing in

biological systems subject to noise. As a proxy for biological systems, von Neumann chose

to study noisy automata which functioned in a manner similar to the mathematical model of

the neuron developed by McCulloch and Pitts [MP43]. In more modern parlance, the noisy

automaton of von Neumann is best described as a noisy Boolean circuit. von Neumann
1It is from von Neumann that we borrow the term “reliable organism” [Neu56].
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considered building reliable computations from different basic gate sets, arriving at a key

observation: the probability of error in the circuit can be bounded by a constant in a

manner independent of computation depth by encoding data in an error correcting code

and interleaving computation with error correction as long as the basic components erred

with a probability below some threshold. While techniques and thresholds depend on the

specifics of the basic components chosen, this observation is the essence of all positive fault-

tolerance results to date.

Since von Neumann’s initial work, positive results have been tightened for the special

case of the Boolean formula, i.e. circuits with fan-out 1 for different gate sets. The first tight

results for 3-input gates are due to Hajek and Weller in 1991 [HW91]. This was followed by

tight results for 2-input gates by Evans and Pippenger in 1998 [EP98], which proved more

difficult to obtain due to the lack of an error correcting 2-input majority gate. Evans and

Schulman extended the positive results of Hajek and Weller to all gates sets of odd fan-in in

2003 [ES03]. Furthermore, these formula-based positive thresholds are conjectured to hold for

the more general class of fault-tolerant circuits. While these works paint a nearly definitive

picture of fault-tolerance in the Boolean circuit model of computation, fault-tolerance in

larger alphabet models of computation and those not based on circuits have received little

attention.

In Chapter 2, we expand on the body of positive results through the study fault-tolerance

in less conventional models of classical computation (Q1). In an attempt to remain true to

von Neumann’s initial conception of a reliable organism, we do this with an eye towards

the study of reliable biologically-inspired models. Noting that there are few naturally oc-

curring two-state, i.e. Boolean, systems, we focus on fault-tolerant computation over larger

alphabets. We study two models of fault-tolerance over larger alphabets: the first is a

generalization of past fault-tolerance literature to computation based on larger alphabet

circuits, and the second assumes a neural network model of computation. Despite the rel-

atively straightforward substitutions, we encounter qualitatively interesting differences in
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both cases.

1.2 On the synthesis of reliable quantum organisms

As progress was being made on the theory of classical fault-tolerance in the 1980s, a new fron-

tier for computation began to emerge with the suggestion that some mathematical problems

may admit more efficient solutions if mapped to quantum, rather than classical, dynam-

ics [Deu85; Fey85]. Interest in quantum computers was further heightened in the following

decade as more concrete examples of this quantum advantage were discovered [Sho94; Gro96].

At the same time, it became clear that if these algorithms were to be realized experimentally,

methods for the practical control and manipulation of quantum degrees of freedom needed

to be improved substantially.

The requirement for precision was relaxed significantly by Shor in 1996 with the pro-

posal of a scheme for quantum fault-tolerance [Sho96] and subsequent improvements by

Aharonov et al. [AB97]. Today, quantum fault-tolerance is an active area of research, with

experimental research striving for more perfect quantum control, and theoretical research

focused on developing fault-tolerant constructions with higher tolerance for imperfection.

The convergence of the experimental and theoretical approaches appear vital to the promise

of large-scale quantum computation [Pre98; KLZ98; Ter15; CTV17]. In contrast, hardware-

level fault-tolerance has largely been eschewed in favor of error correction and error detection

at the software-level in classical computers. This is largely a result of the overwhelming reli-

ability of modern transistor technology, which by some estimates have soft error rates of the

order of 10−21 errors per operation [WA08]. It is for these reasons that recent fault-tolerance

results have focused on quantum models of computation.

More specifically, the focus has been on fault-tolerance in the quantum circuit model

of computation [Deu89]. As with its classical counterpart, quantum circuit-based fault-

tolerance works through the construction of a more perfect effective logical circuit using noisy
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physical gates and degrees of freedom [CTV17]. However, provably equivalent alternatives

to the quantum circuit model have been proposed, including those based on measurement

[RBB03; Bri+09], the quantum adiabatic theorem [Far+00; Far+01; AL18], and quantum

walks [Lov+10; CGW13] among others. One problem for many of these other models of

quantum computation is that it is less clear how they can be made fault-tolerant. Of course,

one can embed these models in a fault-tolerant circuit-based quantum computer, but there

are advantages to studying error correction that is native to these models. For one, native

error correction schemes may prove easier to implement in the near term. Additionally,

native error correction may eventually be used in conjunction with quantum circuit-based

error correction.

In Chapter 3, we study a model of quantum computation composed from noisy sub-

routines which departs significantly from the traditional circuit-based fault-tolerance, with

redundancy in time rather than (Hilbert) space (Q1). This is motivated by recent work

on the quantum signal processing (QSP) subroutine and its generalization, the quantum

singular value transform [Gil+19], which has been observed to capture many of the known

speedups attributable to quantum processing [Mar+21]. In this way, the QSVT may be seen

as the basis for a new model of quantum computation with favorable semantic properties

[RC23]: instead of a quantum computation being composed of simple noisy gates, we can

imagine the computation composed of quantum subroutines. In keeping with our program

of studying error correction and fault-tolerance in less standard models of computation, we

develop a deeper understanding of the propagation of gate-level errors to the level of the

subroutine; in doing so, we develop an error reduction procedure that is native to QSP.

1.3 On the efficiency of reliable organisms

We have so far addressed the first question posed, that of when fault-tolerance is possible

in less conventional computational models, with many examples in the affirmative. We now
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turn to the second question: the cost of fault-tolerance (Q2). In other words, we would like

to study when fault-tolerance is not only possible, but desirable.

It was noticed by von Neumann [Neu56] that an essential feature of the interleaved

construction was that a fault-tolerant circuit required a larger number of basic units and

necessarily proceeded slower than a non-fault-tolerant circuit. Both of these factors con-

tribute to what we term the overhead required to maintain fault-tolerance and have been

features of all subsequent fault-tolerant constructions: classical [HW91; EP98; ES03] and

quantum [Sho96; AB97; CTV17]. This overhead has been shown to be an essential fea-

ture of fault-tolerance itself: first, for noisy classical formulas by Pippenger [Pip88], later

by Feder for noisy classical circuits [Fed89], and later by Kempe et al. for noisy quantum

circuits [Kem+08].

To sketch the origin of this overhead, consider the goal of building a reliable organism with

some bounded overall error rate. Without fault-tolerance, the accuracy of each component

of the computation must scale in inverse proportion to the total number of components—

for simplicity here, we assume that errors occur independently and the failure of any single

component results in an erroneous final result. This comes at the cost of some resource, as a

price often has to be paid to increase the reliability of each basic component. Fault-tolerance

lifts the accuracy requirement from one that is inversely proportional to the number of basic

components to one that is constant as long as it falls below a fixed threshold. Within

this fault-tolerant regime, we may reduce the rate of logical error through increased use

of redundancy. However, as we have seen, maintaining the system in this fault-tolerant

regime comes at its own cost: this is the overhead with which we are concerned. In both

approaches—the fault-tolerant and the non-fault-tolerant—reliability comes at a cost. The

question of which approach is preferred can be answered with a careful analysis of the fault-

tolerance overhead.

The question of when hardware-level fault-tolerance is preferred to non-fault-tolerant ones

has already been implicitly answered in the case of classical and quantum computation; while
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modern classical computers do not use hardware-level fault-tolerance, proposed quantum

computers rely heavily on fault-tolerant techniques. This is a result of the relative difficulty

in constructing a reliable classical gate compared with the difficulty in constructing a reliable

quantum gate. We can attempt to navigate this trade-off in cases where the choice is less

clear. Previous attempts to perform a fine-grained comparison of non-fault-tolerant to fault-

tolerant constructions by Thaker et al. [Tha+05; Tha+08] and Impens [Imp04] used a

recursive fault-tolerant design in which overhead scaling is polylogarithmic and constants

are difficult to obtain owing to the fact that the size of the resulting fault-tolerant circuits

grow exponentially with the level of recursion.

In Chapter 4, we perform a precise accounting of the cost of fault-tolerance in a non-

recursive fault-tolerance scheme allowing us to more precisely determine scenarios where the

fault-tolerant construction is more efficient (Q2). Notably, in our model which uses an error

correction circuit based on a locally correctable error correction code, our overhead cost is

strictly logarithmic. This work can be seen both as a prescription of when fault-tolerant

design may be preferable, and taking a broader view, may be understood to describe when

fault-tolerance may naturally emerge, i.e. as the result of a preference for efficiency.

1.4 On the relationship between information theory and

fault-tolerance

Though von Neumann sought a thermodynamical treatment of noisy information processing

in the manner developed by Shannon for noisy communication in the years prior [Sha48],

the original lecture series fell short of this goal by his own admission [Neu56]. The con-

nections to Shannon’s information theory have been strengthened in the ensuing decades.

Perhaps the most straightforward extension can be found in a 1963 monograph by Wino-

grad and Cowan [WC63], who defined a “computation capacity,” in analogy with Shannon’s

channel capacity. More recently, a line of argument using information-theoretic quantities
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lead to negative fault-tolerance results which provided non-constructive upper bounds on

fault-tolerance thresholds. Broadly, these non-constructive arguments focus on tracking a

quantity that is provably monotonic in depth in a noisy formula or circuit. This line of

argument can be traced back to Pippenger in 1988 who showed the monotonicity of an

information-theoretic quantity to provide non-trivial upper bounds on fault-tolerant formu-

las [Pip88]; this was soon extended for more general circuits by Feder in 1989 [Fed89], and

further improved by Evans and Schulman in 1999 [ES99]. Due to their generality, such

information-theoretic monotones have since found applicability in a large number of settings

including information flow in biological networks, probabilistic cellular automata, and in the

analysis of statistical mechanical phase transitions among others—a recent thesis by Makur

provides a comprehensive review of such techniques [Mak19].

In Chapter 5, we study another connection between noisy computation and informa-

tion theory (Q3). While in previous chapters we have considered simple error correcting

codes subject to symmetric noise, in this work, we consider the problem of efficiently en-

coding a random variable through an arbitrary noisy channel. Motivated by recent effective

information-theoretic descriptions of neural networks [Sax+19], we consider a particular

quantification of efficiency and noise known as the Deterministic Information Bottleneck

[SS17]. We develop a tool for finding these optimal encodings, i.e. Pareto-optimal encod-

ings, which may be used to design error correcting codes tailored to arbitrary noise channels.

We conclude Chapter 5 with a review of existing negative fault-tolerance results which are

based on information theoretic bounds. While we do not present any new results, by distilling

existing upper bounds on fault-tolerance thresholds into their key conceptual components,

we suggest a path towards new tight fault-tolerance upper bounds on circuits.
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Figure 1.1: Roadmap of the thesis and correspondence between Chapters and (Q1–3).

1.5 Roadmap

This thesis is composed of a collection of results motivated by the guiding philosophy that

noisy computation, broadly construed, can be made more perfect through hardware-level

fault-tolerant design, and is guided by the three questions (Q1–3) set out at the beginning

of the introduction. The overall structure of the thesis is sketched in Fig. 1.1.

In Chapter 2, we describe fault-tolerance results for two new large alphabet models of

computation.

The first of which considers formula-based computation over larger alphabets of size

q > 2. We show that for logical alphabets of size ℓ = q the threshold for denoising with q-ary

majority gates subject to q-ary symmetric noise with error probability ε is strictly larger than

that possible in the Boolean case, and is possible as long as signals remain distinguishable,

i.e. ϵ < (q− 1)/q, in the limit of large fan-in k →∞. Interestingly, we observe the existence

of multiple ‘phase transitions’ in the error correction procedure which are not present in the

previously considered Boolean models. We also provide an example where ℓ < q, showing

that reliable Boolean computation can be performed using 2-input ternary logic gates subject

to symmetric ternary noise of strength ε < 1/6 by using the additional alphabet element
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for error signaling. The existence of this denoising threshold requires the use of a proof

technique based on a novel monotone which is satisfied in the fault-tolerant regime.

The second demonstrates an alternate path towards large alphabet fault-tolerance in a

neural network based architecture. In this demonstration, we numerically study analog error

correction code known as the grid code which has been observed in the mammalian cortex.

We show that it is possible to both perform error correction and perform computation on

data encoded in this grid code assuming access to primitives resembling neurons in artificial

neural networks.

In Chapter 3, we take a brief detour from the more straightforward application of von

Neumann’s construction to describe a new method for correcting systematic errors in the

recent quantum singular value transformation subroutine for quantum algorithms. Here, we

consider a model of QSP with generic perturbative noise in the signal processing basis, and

present a novel diagrammatic notation useful for analyzing such errors. To demonstrate our

technique, we study a specific coherent error, that of under- or over-rotation of the signal

processing operator parameterized by ϵ≪ 1. For this coherent error model, it is shown that

while Pauli Z-errors are not recoverable without additional resources, Pauli X and Y errors

can be arbitrarily suppressed by coherently appending a noisy ‘recovery QSP’ without the use

of additional resources or ancillas. Furthermore, through a careful accounting of errors using

our diagrammatic tools, we provide an upper- and lower-bound on the length of this recovery

QSP operator. We anticipate that the perturbative technique and the diagrammatic notation

proposed here will facilitate future study of generic noise in QSP and quantum algorithms.

In Chapter 4, we address the question of when fault-tolerance may be preferred, i.e. as

it provides a more economical route to reliability when compared with a naive construction.

We present a general framework to account for this overhead cost in fault-tolerance schemes

based on constant-depth error correction circuits; this accounting is used to compare fault-

tolerant to non-fault-tolerant approaches for computation in the limit of small logical error

rates. We determine explicit boundaries at which fault-tolerant designs become more efficient
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than designs that achieve comparable reliability through direct consumption of resources. We

find that the fault-tolerant construction is always preferred when high reliability is required

in cases where the resources required to construct a basic unit grows faster than log(1/ϵ)

asymptotically for small ϵ. In addition to suggesting when hardware-level fault-tolerance

may be preferred, our result suggests that certain selection pressures may favor principles of

fault-tolerance in systems that perform emergent information processing.

Finally, in Chapter 5, we discuss connection between fault-tolerance results and informa-

tion theory in two parts.

In the first part, we use an information theoretic objective to move beyond simple sym-

metric error channels and develop a tool for finding optimal error correcting codes tailored to

arbitrary noise channels. We define optimality information-theoretically in the sense of the

Deterministic Information Bottleneck, which can equivalently be understood as a clustering

algorithm. At the heart of the problem is a trade-off between the fidelity and size of the

learned representation. Our goal is to map out and study the Pareto frontier that quantifies

this trade-off. We focus on the optimization of the DIB objective over the space of hard

clusterings. We present an algorithm for mapping out the Pareto frontier of the DIB trade-

off that is also applicable to other two-objective clustering problems and use our algorithm

to map the DIB frontier of a number of compression tasks. For example, we consider the

channel that maps each character of the Latin alphabet to the next in a body of natural

English text. This is clearly a noisy channel, as the next letter cannot in general be predicted

with certainty. Our algorithm addresses the problem of how to best group these letters in

order to preserve as much information as possible when acted on by this channel, and can

be used to design error correcting codes over the channel.

In the second part, we review existing negative fault-tolerance results and place them

in context. We point towards point towards new promising directions for improved fault-

tolerance upper bounds on circuits based on novel measures of information. In addition,

we review connections between fault-tolerance and related problems such as the problem of
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maintaining a signal in a graph of noisy relays, and connections to statistical physics.

Finally we provide some concluding remarks in Chapter 6. Though the work in this thesis

merely provides glimpses into what may be considered a theory of fault-tolerant information

processing, it is the author’s belief that a such a theory would be a worthwhile endeavor.

This may be especially true in the case of less conventional models of computations; for

example in systems that perform information processing in an emergent manner where the

noise of individual components cannot be inexpensively reduced.

1.5.1 Bibliographical note

The work described in Chapters 2 to 5 have been included nearly verbatim from published or

otherwise submitted papers. Since these papers were written in collaboration with coauthors,

in the interest of transparency, we detail the specific contributions of the author.
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was on the fault-tolerance in larger alphabet formula-based computation. This paper was
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Matthew Ho proposed the error correction gate for the case of ℓ = 2, q = 3 and wrote the

majority of that section in discussions with the author. All of this was done in collabo-

ration and with helpful feedback from Isaac Chuang. The second, based on [Zlo+22], was

on fault-tolerance in larger alphabet neural network based computation. This paper was

initially proposed by the author who suggested the use of grid codes to combat analog noise.

Alexander Zlokapa designed the fault-tolerant computation scheme and decoder circuit, per-

formed the theoretical and numerical analysis of the model, and performed the majority of

the writing related to the fault-tolerant neural network. John Martyn performed the analysis

and the majority of the writing related to the model synaptic error. The overall project was

performed with feedback and suggestions from the senior authors: Ila Fiete, Max Tegmark,

and Isaac Chuang.

Chapter 3 draws from two published or submitted works. The first, based on [Tan+23a],
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was on error correction at the algorithm level. This paper was written primarily by the

author in constant discussion with the coauthors Yuan Liu, Minh Tran, and Isaac Chuang

who initially suggested the term “algorithm level error correction (ALEC)”. The second,

based on [Tan+23b], provided a more detailed analysis of the first result. The author proved

the main technical theorems, performed numerical analysis, and performed the majority of

the writing. Again, all of these tasks were done through constant discussion with the same

coauthors.

Chapter 4 draws from [TC23]. This was initially conceptualized by the author who

performed the technical analysis and performed the majority of the writing. All of this was

done in collaboration and with helpful feedback from Isaac Chuang.

Chapter 5 draws from [TTC22]. The project was initially proposed by Max Tegmark as a

generalization of [TW19]. The author designed the algorithms, proved theorems, performed

numerics, and performed the majority of the writing. All of this was done in collaboration

and with helpful feedback from both Max Tegmark and Isaac Chuang.
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Chapter 2

Fault-tolerance in classical models of

computation

While the study of fault-tolerance was initially motivated by the understanding of robustness

of information processing in biological systems [Neu56], the work up until now has focused on

the study of noisy Boolean circuit-based models of computation. In keeping with the theme

of studying fault-tolerance in unconventional models of computation (Q1), this Chapter

focuses on fault-tolerance results in classical models of computation that go beyond Boolean

circuits. As idealized binary systems rarely exist in nature, we choose to study examples of

noisy models of computation over larger alphabets. In addition to the choice of alphabet

size, we must also make choices in regard to the basic components, the method of composing

these basic components, and the model of noise. We note that while the larger alphabet does

not confer any additional computation power over Boolean logic in the noiseless setting, with

one being easily simulated by the other, the introduction of noise makes this reduction less

straightforward.

In Section 2.11, in an attempt to isolate the effect of increasing alphabet size such that

we can nominally compare threshold rates with prior work, we maintain the formula-based
1This has appeared as “On reliable computation over larger alphabets," by Andrew K. Tan, Matthew Ho,

and Isaac L. Chuang in arXiv preprint arXiv:2306.13262 (2023) [THC23].
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model of composition and consider the analogous model of symmetric noise. This work

illustrates that nominal error rates can be strictly improved for computation over larger

alphabets using large alphabet majority gates. We also investigate the alternative, that of

reducing a large alphabet system into one that is Boolean; in this case, we use elements of the

physical alphabet for error signaling—again showing that noisy large alphabet computation

cannot be trivially reduced to noisy Boolean computation. In Section 2.22, we adopt a more

biologically-inspired model of noisy computation based on noisy artificial neural networks.

In this case the basic components are artificial neurons with a standard ReLU non-linearity

composed in feed-forward neural networks. Neurons are subject to analog additive Gaussian

noise which motivates the encoding of data in a biologically-inspired error correcting code.

Using the von Neumann construction we again demonstrate fault-tolerance native to this

less conventional model of computation.

2.1 Positive results for formula-based computation over

larger alphabets

2.1.1 Introduction

The problem of performing computation with noisy components was first studied by von

Neumann in 1952 [Neu56]. Motivated by understanding the robustness of information pro-

cessing in biological systems, he proposed a toy model of Boolean computation using noisy

circuits in which Boolean-valued functions were computed through composition of basic gates

with bounded fan-in. Interestingly, von Neumann showed that this model admitted a fault-

tolerant regime: for circuits with noise parameterized by strength ε, there exists a threshold

β for which noisy circuits composed of gates subject to error ε < β could simulate a noiseless
2This has appeared as “Biological error correction codes generate fault-tolerant neural networks,” by

Alexander Zlokapa, Andrew K. Tan, John M. Martyn, Ila R. Fiete, Max Tegmark, and Isaac L. Chuang in
arXiv preprint arXiv:2202.12887 (2022) [Zlo+22].
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circuit of size N to precision εL with a modest overhead of polylog(N/εL) in the number

of gates [NC10]. The key observation made by von Neumann was that by encoding data

in an error correcting code and interleaving computation with error correction, the error

of the Boolean circuit’s output could be bounded away from 1/2 in a manner independent

of circuit depth; such a circuit computes a function reliably, in a way which can be made

mathematically precise. The positive result of [Neu56] has since been elegantly tightened for

formulas (i.e. circuits of fan-out one) [HW91; EP98; ES03], as summarized in Table 2.1. De-

spite the use of formulas, a qualitatively different setting than circuits, these positive results

for formulas nonetheless follow the essence of von Neumann’s original construction, whose

hallmark is the interleaving of distinct computation and error correction stages.

Given a model of noisy computation, i.e. a set of elementary operations over a finite

alphabet along with a specification of the error process, we distill the von Neumann con-

struction for noisy formula-based fault-tolerance into the following two-step process:

1. Show that a given denoising operation (e.g. majority) has ℓ ≥ 2 stable

fixed-points in the probability simplex over the physical alphabet up

to ε < β′ where ε parameterizes the error model: each fixed-point

along with its basin of attraction under this denoising operation, is

associated with a logical state.

2. Exhibit a set of gates capable of performing operations on the logical

states, maintaining their outputs in the correct basins of attraction

for ε < β ≤ β′.

We call β′ the denoising threshold of this particular construction, and β its computation

threshold.

Though von Neumann’s original analysis was limited to the toy model of noisy Boolean

circuits, inspired by biological systems, he left open the possibility for reliable computation

over non-binary alphabets, which have found renewed interest in certain modern computa-
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tional models. Specifically, multivalued logic [Smi81; Smi88] has recently been studied both

for providing more natural embeddings for certain computational problems [EFR74; SKR95;

Dub99; Rin14], and for admitting efficient implementations in new materials [MON89;

Dub99; JKC21]. More recently still, multi-level quantum systems, i.e. qudits, have been

shown to offer promising avenues (beyond qubits) for fault-tolerant quantum information

processing [BRS17; Wan+20].

Motivated by moving beyond Boolean alphabets, we make initial steps towards extending

formal positive fault-tolerance results using the von Neumann construction for computation

over larger alphabets. Formally, we define an alphabet of size q > 2 to be the set [q] ≡

{0, 1, . . . , q − 1}; and we refer to elements of the alphabet set, either physical or logical,

as characters. A number of qualitative differences emerge in the study of larger alphabet

fault-tolerance, with two specific opportunities (and matching challenges) arising.

First is the opportunity allowed by larger alphabets to recover from higher error rates,

compared with the case for a binary alphabet. This is due to the simple fact that any

particular error is increasingly less likely to overwhelm the signal as q grows. However, it is

not manifest that such error correctability extends to allow reliable computation over larger

alphabets for gates with bounded fan-in.

Second, when q > 2, logical computation may be performed without using the entire

alphabet — in other words, the logical alphabet size ℓ can be strictly smaller than the

physical alphabet size q. As a result, members of the physical alphabet that are not part

of the logical alphabet can be used to signal that an error has occurred. Whether this

opportunity for “error signaling” can improve fault-tolerance thresholds, however, has never

before been rigorously established.

Here, we perform an analysis of the thresholds for reliable computation using gates subject

to q-ary symmetric noise of strength ε, i.e. where an error occurs with probability ε, leaving

the output in any of the q−1 erroneous states with equal probability. We study computation

over physical alphabets of size q > 2 using the two step von Neumann construction. We

38



Table 2.1: Overview of positive fault-tolerance results for gates subject to q-ary symmetric noise. The first
positive results were shown for circuits by von Neumann, who analyzed computation with both {maj-[2,
3],nand} and {nand} gate sets [Neu56]. These results were subsequently tightened: first for the {maj-[2,
3],nand} gate set by Hajek and Weller [HW91], and for the more challenging fan-in 2 gate set {nand} by
Evans and Pippenger [EP98]. Evans and Schulman demonstrated tight thresholds for {maj-[2, k],xnand}, k
odd [ES03].

Denoising Gate Denoising Threshold Computation Gate(s) Computation Threshold Reference
maj-[2, 3] 1/6 nand ≈ 0.0073 [Neu56]
nand - nand1 ≈ 0.0107 [Neu56]
maj-[2, 3] 1/6 xnand 1/6 [HW91]2

nand (3−
√
7)/4 nand (3−

√
7)/4 [EP98]2

maj-[2, k], k odd 1
2
− 2k−2

/︂
k
(︁
k−1
k−1
2

)︁
xnand 1

2
− 2k−2

/︂
k
(︁
k−1
k−1
2

)︁
[ES03]2

maj-[q, k], k odd q−1
q

C[q,k]−1
C[q,k] addq, mulq q−1

q
C[q,k]−1
C[q,k] Section 2.1.33

maj-[q, 3], q prime q−1
q(q+1)

addq, mulq q−1
q(q+1)

Section 2.1.3
den 1/6 enand2 1/6 Section 2.1.4
1 Result is for circuits.
2 Universal for binary computation.
3 Computation threshold is asymptotic for k →∞ but conjectured to hold generally.

consider two main settings: one where ℓ = q, and one for which ℓ < q. For the first setting,

where computation is performed with the logical alphabet being the same size as the physical

alphabet:

• We generalize the results of Evans and Schulman [ES03] to q > 2

alphabets. In particular, we find that the denoising threshold with

q-ary majority gates subject to q-ary symmetric noise of strength ε

is improved over larger physical alphabet sizes (Lemma 8, in Sec-

tion 2.1.3).

• We show that the set of functions generalizing the Boolean xor over

larger alphabets can be reliably computed up to the previously shown

denoising threshold (Theorem 1, in Section 2.1.3).

• We show that reliable universal computation is possible up to (q −

1)/q asymptotically as k → ∞, and is possible up to the previously

shown denoising threshold for finite fan-in k = 3 and q prime in

Section 2.1.3).
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For the second setting, in which computation is performed with a subset of the available

physical alphabet such that some of the physical alphabet can be employed to signal errors

and help with denoising:

• We define error signaling protocols for ℓ < q and employ these to

demonstrate that denoising of two logical states over a physical ternary

alphabet using 2-input gates subject to ternary symmetric noise is

possible for ε < 1/6 (Lemma 14, in Section 2.1.4.).

• Using error signaling we prove that universal Boolean (ℓ = 2) com-

putation using 2-input gates subject to ternary symmetric noise is

possible up to the denoising threshold when using q = 3 (Theorem 2,

in Section 2.1.5).

We present these results beginning with definitions and framework in Section 2.1.2, followed

by the large-alphabet computation ℓ = q > 2 scenario in Section 2.1.3 and the embedded

Boolean computation ℓ < q scenario in Section 2.1.4. Possible extensions and concluding

observations are discussed in Section 2.1.6.

2.1.2 Definitions and framework

First, we make precise the set of functions that can be computed. Recall from the theory of

universal algebras:

Definition 1 (Clone). A clone is a set C of finitary operations such that

i) C is closed under composition.

ii) C contains all projection functions, i.e. fi ∈ C such that fi(X1, . . . , Xn) =

Xi.

The clones of Boolean functions have been completely classified by Post [Pos41], and

classifications exist for larger alphabets [Lau06]. Since clones are closed under composition,
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we are often interested in the clone’s generating set, i.e. a minimal set of gates capable

of computing all functions in the clone through composition. At one limit, we have the

complete clone:

Definition 2 (Universal q-ary computation). We say a particular set of gates is universal for

q-ary computation if the clone that it generates contains all n input functions f : [q]n → [q].

In the previous literature on Boolean computation, the 2-input nand gate [Neu56; EP98],

being itself universal, has been used both to perform computation as well as construct the

denoising operation. This becomes more complicated over larger alphabets, as certain non-

universal clones may admit larger thresholds (e.g. Section 2.1.4).

Additionally, in the setting of larger alphabets, a distinction can be made between the

physical and logical alphabets. Specifically, operating over a physical alphabet of size q,

we may in general choose a smaller number of logical states over which to perform reliable

computation through the use of error correction and error detection. We study an example

where the logical alphabet is strictly smaller than the physical alphabet in Section 2.1.4.

Next, we formalize the notion of reliable computation in the presence of noise.

Definition 3 (δ-reliability). Let f : [q]n → [q] be a q-ary function. We say a noisy circuit Fε

computes f δ-reliably if the probability of error over all inputs is at most δ, or equivalently

min
x1,...,xn∈[q]

Pr[Fε(x1, . . . , xn) = f(x1, . . . , xn)] ≥ 1− δ. (2.1)

For large alphabet computation (i.e. q > 2), a single parameter is no longer sufficient

to characterize the noise in general; however, we elect to focus on gates subject to q-ary

symmetric noise which is characterized by a single parameter:

Definition 4 (q-ary symmetric noise). We say a k-input gate over alphabet size q, g : [q]k →

[q] is ε-noisy, denoted gε, if for all inputs x1, . . . , xk ∈ [q], we have

∀y ∈ [q], y ̸= g(x1, . . . , xk) =⇒ Pr[g(x1, . . . , xk) = y] =
ε

q − 1
. (2.2)
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There are several reasons for this choice of error model. Firstly, it is both a natural

generalization of the binary symmetric noise studied in [Neu56; EP98; ES99; ES03], and the

polar opposite of binary symmetric noise which concentrates all errors on a single erroneous

element of the alphabet. On one hand, the property of maximally spreading out errors across

the alphabet is the best case noise in the sense that it results in the highest nominal denoising

and computation thresholds. On the other hand, symmetric noise is also the worst case noise

in the sense that, conditioned on an error having occurred, it provides no information about

the correct signal.

2.1.3 Large alphabet computation

In this Section, we analyze the threshold for reliable computation over larger alphabets

i.e. q > 2. Following the von Neumann construction, we first derive, in Section 2.1.3, the

denoising thresholds of a generalized majority gate, and then in Section 2.1.3 determine

the set of functions which can be reliably computed given these denoised inputs for large

k. Finally, in Section 2.1.3, we provide lower-bounds on the computation threshold for the

special case of k = 3 and q prime.

First, let us only consider inputs subject to q-ary symmetric noise:

Definition 5 (q-ary symmetric a-noisy encoding). We say a random variable X is an a-noisy

encoding of x̂ if

Pr[Xi = x] =

⎧⎪⎪⎨⎪⎪⎩
1− a, if x = x̂i

a
q−1

, otherwise
. (2.3)

Recovery threshold

For computation with ε-noisy gates, we find that the k-input majority gate over alphabet of

size q is the optimal denoising gate (in the maximum-likelihood sense) in the case where the

logical alphabet size ℓ = q. This generalized majority gate, maj-[q, k]: [q]k → [q], outputs

42



the mode of its inputs; ties are broken by choosing the value of the mode with the lowest

input index, resulting in a deterministic balanced gate.

Suppose that input X is subject to symmetric noise of strength a, then applying a

noiseless restoring gate to k independent copies, {Xi}ki=1, of the noisy signal yields an output

maj-[q, k]0(X1, . . . , Xk) with error

m
[q,k]
0 (a) ≡

k∑︂
ℓ=0

(︃
k

ℓ

)︃
c
[q,k]
ℓ (1− a)ℓak−ℓ, (2.4)

where c[q,k]ℓ ∈ [0, 1] denotes the fraction of assignments over an alphabet of size q to the

restoring gate taking k inputs, exactly ℓ of which are correct, resulting in an incorrect

output. Consider the limiting example of a binary alphabet: all assignments with ℓ < ⌊k/2⌋

(assuming k odd) and therefore

c
[2,k]
ℓ =

⎧⎪⎪⎨⎪⎪⎩
1, for ℓ < ⌊k

2
⌋

0, otherwise
. (2.5)

Over larger alphabets, a strict majority is not required for the plurality operation to succeed,

therefore allowing stronger denoising (i.e. c[q,k]ℓ < 1 for some ℓ < ⌊k/2⌋).

For an ε-noisy restoring gate, we have

m[q,k]
ε (a) =

(︃
1− ε

q − 1

)︃
m

[q,k]
0 (a) + ε

(︂
1−m[q,k]

0 (a)
)︂
. (2.6)

Remark 6 (Properties of c[q,k]ℓ ). Here, we take note of a few properties of c[q,k]ℓ .

1. When a majority of the inputs are correct, no assignment of the re-

maining inputs results in an error and therefore (assuming k odd)

c
[q,k]
ℓ = 0 for all ℓ > ⌊k/2⌋.
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Figure 2.1: Plot of denoising threshold, β, using the maj-[q, k] gate as a function of fan-in for
different alphabet sizes. The plotted threshold values are achieved for symmetrically noisy
inputs and are known to be tight for q = 2 [ES03]. In the large-k limit, denoising thresholds
approach (q − 1)/q.

2. Furthermore, if fewer than a 1/q fraction of inputs are correct, all

assignments of the remaining inputs results in error, therefore c[q,k]ℓ =

1 for ℓ < k/q.

3. Finally, c[q,k]ℓ+1 ≤ c
[q,k]
ℓ .

Remark 7 (Maximally mixed fixed-point). For all ε, the error rate has a fixed-point at

a = (q − 1)/q.

m
[q,k]
0

(︃
q − 1

q

)︃
=

1

qk

⌊k/2⌋∑︂
ℓ=0

(︃
k

ℓ

)︃
c
[q,k]
ℓ , (2.7)

=
q − 1

q
. (2.8)

The final equality is a consequence of the restoring gate being balanced and therefore must

output each value for exactly 1/q of the qk possible assignments of inputs. Examining

Eq. (2.6), we see that the fixed-point of a = (q − 1)/q is preserved for all ε.
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Lemma 8 (Lower-bound on maj-[q, k] denoising threshold). For q ≥ 2 and odd k, let

C [q,k] ≡ k

qk−1

⌊k/2⌋∑︂
ℓ=0

(︃
k − 1

ℓ

)︃
(c

[q,k]
ℓ − c[q,k]ℓ+1 )(q − 1)k−ℓ−1. (2.9)

If ε < q−1
q

C[q,k]−1
C[q,k] , the following hold:

i) a ∈ [0, q−1
q
) =⇒ ∃µ[q,k]

ε ∈ [0, q−1
q
) such that limn→∞m

[q,k]n
ε (a) =

µ
[q,k]
ε ; and

ii) a ∈ ( q−1
q
, 1] =⇒ ∃ν [q,k]ε ∈ ( q−1

q
, 1] such that limn→∞m

[q,k]n
ε (a) = ν

[q,k]
ε .

Proof. The function m
[q,k]
ε (a) has at most three fixed-points. We show that for all ε <

q−1
q

C[q,k]−1
C[q,k] , the fixed-point at a = (q − 1)/q given by Remark 7 is unstable.

Taking the derivative,

dm
[q,k]
0

da
=

d

da

⌊k/2⌋∑︂
ℓ=0

(︃
k

ℓ

)︃
c
[q,k]
ℓ (1− a)ℓak−ℓ, (2.10)

=

⌊k/2⌋∑︂
ℓ=0

(k − ℓ)
(︃
k

ℓ

)︃
c
[q,k]
ℓ (1− a)ℓak−ℓ−1 −

⌊k/2⌋∑︂
ℓ=0

ℓ

(︃
k

ℓ

)︃
c
[q,k]
ℓ (1− a)ℓ−1ak−ℓ, (2.11)

= k

⌊k/2⌋∑︂
ℓ=0

(︃
k − 1

ℓ

)︃
c
[q,k]
ℓ (1− a)ℓak−ℓ−1 − k

⌊k/2⌋−1∑︂
ℓ=0

(︃
k − 1

ℓ

)︃
c
[q,k]
ℓ+1 (1− a)ℓak−ℓ−1, (2.12)

= k

⌊k/2⌋∑︂
ℓ=0

(︃
k − 1

ℓ

)︃
(c

[q,k]
ℓ − c[q,k]ℓ+1 )(1− a)ℓak−ℓ−1. (2.13)

Taking another derivative,

d2m
[q,k]
0

da2
= k

d

da

⌊k/2⌋∑︂
ℓ=0

(︃
k − 1

ℓ

)︃
(c

[q,k]
ℓ − c[q,k]ℓ+1 )(1− a)ℓak−ℓ−1, (2.14)

= k(k − 1)

⌊k/2⌋∑︂
ℓ=0

(︃
k − 2

ℓ

)︃
(c

[q,k]
ℓ − 2c

[q,k]
ℓ+1 + c

[q,k]
ℓ+2 )(1− a)ℓak−ℓ−2. (2.15)
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As a result, m[q,k]
ε (a) = a has three distinct solutions so long as

dm
[q,k]
ε

da

⃓⃓⃓⃓
⃓
a=(q−1)/q

= 1. (2.16)

From Eq. (2.13),

dm
[q,k]
0

da

⃓⃓⃓⃓
⃓
a=(q−1)/q

=
k

qk−1

⌊k/2⌋∑︂
ℓ=0

(︃
k − 1

ℓ

)︃
(c

[q,k]
ℓ − c[q,k]ℓ+1 )(q − 1)k−ℓ−1,

= C [q,k].

(2.17)

Therefore,

dm
[q,k]
ε

da

⃓⃓⃓⃓
⃓
a=(q−1)/q

=

(︃
1− ε

q − 1

)︃
dm

[q,k]
0

da

⃓⃓⃓⃓
⃓
a=(q−1)/q

− ε dm
[q,k]
0

da

⃓⃓⃓⃓
⃓
a=(q−1)/q

, (2.18)

which shows that

ε <
q − 1

q

C [q,k] − 1

C [q,k]
=⇒ dm

[q,k]
0

da

⃓⃓⃓⃓
⃓
a=(q−1)/q

> 1, (2.19)

and thus the Lemma holds.

By setting q = 2 in Lemma 8 and using Eq. (2.5), we recover the Boolean denoising

result of [ES03]. Furthermore, in the case of computation over the Boolean alphabet, this

bound is tight; we note however that this is not necessarily true for q > 2, in which case

stable fixed-points exist above the threshold of Lemma 8, but denoising is no longer possible

for the full range a ∈ [0, (q − 1)/q) as the fixed-point corresponding to a maximally mixed

((q − 1)/q)-noisy fixed-point becomes stable. We will refer to the threshold of Lemma 8 as

the denoising threshold, or more specifically, the point of transcritical bifurcation; this is in

contrast with the ultimate saddle-node bifurcation after which point only one stable fixed-

point remains (see Fig. 2.2). The positive results for various alphabet sizes q and fan-ins k

are shown in Fig. 2.1.

We now generalize our denoising result to all input distributions (i.e. beyond q-ary
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Figure 2.2: Diagram showing stable (solid lines) and unstable (dashed lines) fixed-points
of the ε-noisy maj-[3, 3] gate for symmetrically a-noisy inputs. Note that at the denoising
lower-bound of ε = 1/6 (Lemma 8) corresponds to a transcritical bifurcation, at which point
the qualitative structure of the fixed-points changes, with the central (2/3)-noisy fixed-point
becoming stable. Two stable fixed-points persist until the ultimate saddle-node bifurcation
at ε = 2/11, corresponding to a discontinuous phase transition.

symmetric noise). Our approach is to analyze denoising as a discrete-time dynamical system.

First, we specify a categorical distribution over a q-ary alphabet as a point in the simplex

∆q =

{︄
p⃗ ∈ Rq

⃓⃓⃓⃓
⃓pi ≥ 0,

q∑︂
i=1

pi = 1

}︄
⊂ Rq. (2.20)

For independent and identically distributed (i.i.d.) q-ary input random variables X with

distribution parameterized by vector p⃗ ∈ ∆q, denote its output Yε = maj-[q, k](X1, . . . , Xk)

with distribution parameterized by q⃗ ∈ ∆q. Denote the map from input distributions to out-

put distributionsM[q,k] : ∆q → ∆q such thatM(p⃗) = q⃗, where we have omitted superscript

[q, k] for brevity.

In this picture, the fixed-points of Lemma 8 correspond to points χ⃗(i) ∈ ∆q such that

χ⃗
(i)
i = 1− νε and χ⃗(i)

j = νε/(q− 1) for j ̸= i, where again superscripts of [q, k] and subscripts

of ε have been omitted.

Further, let us denote by R(i) ⊂ ∆q, the regions in the probability simplex decoding to

logical character i. Denoising using the maj-[q, k] gate, we will show that it makes sense to
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define the regions as follows:

R(i) = {p⃗ ∈ ∆q | ∀j ∈ [q] \ {i}, pi − pj > 0} . (2.21)

That is, R(i) corresponds to the region in the probability simplex over q elements, ∆q, where

symbol i ∈ [q] is the most likely character.

Our goal is to show that below the denoising threshold, all points in R(i)
0 flow towards

their respective fixed-points χ⃗(i) under repeated iteration of the mapM.

Lemma 9 (All points in R(i) approach χ⃗(i) upon repeated iteration ofM). For q ≥ 2, k ≥ 3,

and ε below threshold, all points p⃗ ∈ R(i) satisfy

lim
n→∞

Mn(p⃗) = χ⃗(i). (2.22)

Proof. Without loss of generality, consider a q-ary random variable with distribution p⃗ ∈ R(0)
0

with elements in sorted order (i.e. i > j =⇒ pi ≥ pj). After one application of the map

M, we have p′⃗ =M(p⃗).

Note that p′0 is a convex combination of convex functions of the form

pk00 p
k1
1 . . . p

kq−1

q−1 , (2.23)

and is therefore itself jointly convex in p1, . . . , pq and for fixed p0 is maximized at the bound-

ary pi = (1 − p0)/(q − 1) for all i > 0. Intuitively, for fixed p0, the minimum chance of

confusion, and therefore maximum amplification, is achieved when all erroneous inputs are

equally likely. As a result, the probability of error after denoising α′ ≡ 1− p′0 is minimized

for the case of symmetric noise studied in Lemma 8,

α′ ≥ m[q,k]
ε (1− p0). (2.24)
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Figure 2.3: Streamlines of the vector field M̄ε(x, y) − (x, y) for various values of ε in the
region R̄(2) — result is symmetric for R̄(0) and R̄(1) — along with stable fixed-points (square
markers). Note that the fixed-point at the transcritical bifurcation (Lemma 8) ε = 1/6 is
(1/3)-noisy (third plot). Between the transcritical bifurcation and saddle-node bifurcation
(i.e. 1/6 < ε < 2/11), denoising is still possible for a strict subset of the original region
R̄(2) (fourth plot) owing to the emergence of a fourth stable fixed-point at the center of the
simplex.

We can devise a complementary bound by noticing that, for fixed gap δ1 ≡ p0 − p1, the

gap δ1 is also convex in the region R(0) since p0 > p1. Here, note that δ′1 is minimized for

symmetrically noisy inputs pi = (1 − p0)/(q − 1) for all i > 0. As a result, the gap after

denoising is minimized for

δ′1 = p′0 − p′1 ≥ (1−m[q,k]
ε (1− p0))−

m
[q,k]
ε (1− p0)
q − 1

, (2.25)

=⇒ α′ = 1− p′0 ≤ m[q,k]
ε (1− p0)−

(︄
p′1 −

m
[q,k]
ε (1− p0)
q − 1

)︄
. (2.26)

Together, the bounds Eq. (2.26) and Eq. (2.24) along with the result for symmetrically noisy

inputs of Lemma 8, gives the desired result.

For visualization purposes, and for consistency with Section 2.1.4, we introduce a trans-

formed set of coordinates for ∆3, defined by

x =

√
3

4
(p1 − p0), and y =

3

4

(︃
p0 + p1 −

2

3

)︃
. (2.27)

We will denote the action of the transformation using barred variables M̄ε, and the cor-
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responding logical regions R̄(i). Note that, in these coordinates, the origin x = y = 0

corresponds to the maximally mixed probability distribution (1/3, 1/3, 1/3), and the level

curves of the coordinate p2 are horizontal lines. A visualization of the denoising dynamics is

shown for q = k = 3 in Fig. 2.3.

Computation threshold

First, we consider the class of operations that may be performed using only gates that

preserve the symmetric noise of Definition 4 and show that such gates have the property

that they can be computed up to the ultimate threshold of (q − 1)/q for all k ≥ 2. While

this class of operations is not itself universal, it may be augmented to a universal set using

gates which can be computed reliably up to threshold (q − 1)/q asymptotically as k →∞.

Definition 10 (Symmetric noise preserving gates). Let {Xi}ki=1 be independent, but not

necessarily identically distributed, ai-noisy encodings of {x̂i}ki=q.

A gate g : [q]k → [q] is said to be symmetric noise preserving (SNP), if the output

Y = g(X1, . . . , Xn), (2.28)

is a-noisy where a is a function only of {ai}ki=1.

Note that since the matrix for q-ary symmetric channel of Definition 5 is invertible for

ε < (q−1)/q, this property holds independent of ε and therefore nothing is lost by considering

noiseless gates.

Lemma 11 (SNP gates are not universal for q > 2). The clone of symmetric noise preserving

gates is not universal for alphabet of size q > 2.

Proof. Let g be a k-input SNP gate. Then for all indices 1 ≤ i ≤ k, and all choices c⃗ = (cj)j ̸=i,

the restricted function gc⃗,i : [q]→ [q],

gc⃗,i(x) ≡ g(c1, . . . , ci−1, x, ci+1, ck), (2.29)
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must either be a constant function or a bijection.

To see this, suppose there is a function g which does not satisfy Eq. (2.29) for some i

and c⃗. Consider inputs Xj which are 0-noisy encodings of x̂j = cj for all j ̸= i; and Xi an

(ai > 0)-noisy encoding of x̂i. Further let ĝ = gc⃗,i(x̂i). Since gc⃗,i is neither constant nor a

bijection, for q > 2 there are y, y′ ∈ [q] \ ĝ such that Pr[G = y] = 0 and Pr[G = y′] > 0.

Therefore G = g(X1, . . . , Xk) is not a a-noisy.

Furthermore, the set of SNP functions is closed under composition and therefore forms a

clone. Therefore any functions computed using only SNP gates must satisfy Eq. (2.29), and

therefore SNP gates are not universal for q-ary computation.

If we place additional constraints on the inputs, there may exist larger sets of gates that

preserve symmetric noise. The denoising gate of Section 2.1.3, is a notable example which

does not satisfy the conditions of Lemma 13 but nevertheless preserves symmetric noise for

identically distributed inputs.

We now consider the following class of functions that generalize the Boolean xor over

larger alphabets:

Definition 12 (Pseudo-additive functions). A k-input q-ary function g is called pseudo-

additive (PA) if it can be written in the following form:

g(x1, . . . , xk) =
k∑︂
i=1

σi(xi) (mod q), (2.30)

where each σi : [q]→ [q] is either constant function or a bijection.

Note that the set of pseudo-additive functions is closed under composition and therefore

forms a clone. Additionally, we show that they preserve symmetric noise.

Lemma 13 (PA ⊂ SNP). A k-input q-ary pseudo-additive function is symmetric noise

preserving.
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Proof. First, we show that this condition is sufficient. Let Gr ≡
∑︁r

i=1 σi(Xi) (mod q) and

ĝr ≡
∑︁r

i=1 σi(x̂i) (mod q). First we show that this condition is sufficient for unary gates g.

If the function is constant, then Pr[g(X1) = y] = δy,ĝ1 and is trivially b-noisy with b = 0. If

the function is a surjection, then

Pr[g(X1) = y] =

⎧⎪⎪⎨⎪⎪⎩
1− a1, if y = ĝ1

a1
q−1

, otherwise
, (2.31)

and is b-noisy with b = a1.

We proceed by induction on k. Suppose the Lemma holds for k-input functions giving a

b-noisy output.

Pr[Gk+1 = y] = Pr[Gk + σk+1(Xk+1) = y (mod q)] =

Pr[Gk + σk+1(Xk+1) = y (mod q)|Gk = ĝk, Xk+1 = x̂k+1] Pr[Gk = ĝk] Pr[Xk+1 = x̂k+1]+

Pr[Gk + σk+1(Xk+1) = y (mod q)|Gk ̸= ĝk, Xk+1 = x̂k+1] Pr[Gk ̸= ĝk] Pr[Xk+1 = x̂k+1]+

Pr[Gk + σk+1(Xk+1) = y (mod q)|Gk = ĝk, Xk+1 ̸= x̂k+1] Pr[Gk = ĝk] Pr[Xk+1 ̸= x̂k+1]+

Pr[Gk + σk+1(Xk+1) = y (mod q)|Gk ̸= ĝk, Xk+1 ̸= x̂k+1] Pr[Gk ̸= ĝk] Pr[Xk+1 ̸= x̂k+1],

(2.32)

= δyĝk+1
(1− ak+1)(1− b) +

1− δyĝk+1

q − 1
(ak+1 + b− 2ab) +

q − 2 + δyĝk+1

(q − 1)2
ak+1b, (2.33)

where the second equality is an application of the chain rule of probability; and the third

equality makes use of assumptions that Gk and σk+1(Xk+1) are b-noisy and ak+1-noisy (or

0-noisy if σk+1 is constant) respectively, as well as the fact that modular addition randomizes

equally among all elements of the alphabet.
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We then have

Pr[Gk+1 = y] =

⎧⎪⎪⎨⎪⎪⎩
(1− ak+1)(1− b) + ak+1b

q−1
, if y = ĝk+1

ak+1+b−2ak+1b

q−1
+ (q−2)ak+1b

(q−1)2
otherwise

, (2.34)

and is therefore symmetric noise preserving i.e. PA ⊆ SNP.

Comparing with Definition 10, we see that for q > 3, the containment is strict.

Theorem 1. Pseudo-additive functions can be reliably computed up to the denoising thresh-

old.

Proof. First, we show that the pseudo-additive functions can be reliably for all error rates

up to the maximally fixed-point ε < (q − 1)/q.

Let σε : [q] → [q] denote an ε-noisy permutation gate or constant gate and X be an

a-noisy encoding of x̂. If σ is a constant gate, then its output is always ε-noisy and therefore

the output can be denoised up to the maximally mixed fixed-point. Therefore we focus on

the case of a permutation σ, in which case σε(X) is a b-noisy encoding of σ0(x̂), where

b = ε+

[︃
1−

(︃
q

q − 1

)︃
ε

]︃
a. (2.35)

Therefore for all q ≥ 2,

a <
q − 1

q
=⇒ b <

q − 1

q
. (2.36)

Therefore the permutation gate can reliably compute up to the denoising threshold.

Next, consider the ε-noisy modular addition gate add(q)
ε (x1, x2) = x1 + x2 mod q. If its

inputs Xi are ai-noisy encodings of x̂i for i ∈ {1, 2}, then add(q)
ε (X1, X2) is b′-noisy with

b′ = ε+
(a1(q − 1) + (1− a1)a2q − a2)(q(1− ε)− 1)

(q − 1)2
. (2.37)
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Therefore for all q ≥ 2,

a1 <
q − 1

q
, and a2 <

q − 1

q
=⇒ b′ <

q − 1

q
. (2.38)

The set of gates {σ,addq} generates the clone of PA functions, and therefore the clone of

PA functions can be reliably computed to the maximally mixed fixed-point for all k.

Notably, the clone of PA functions can be reliably computed as long as its inputs are

a-noisy for any a ∈ [0, q−1
q
). This is in contrast to the case of universal computation over

Boolean alphabets, in which reliable computation requires input noise to be fine-tuned to be

near the denoiser fixed-points and making inputs less noisy adversarially can actually make

reliable computing impossible [ES03; Ung10]. This fine-tuned input noise also happens to

be required for our later result of Theorem 2.

While the set of SNP gates are not themselves universal (Lemma 11), they can be aug-

mented into a universal set using a general 2-input operation over alphabet q [Lau06]. Natu-

rally, all such operations can be reliably computed up to the ultimate threshold of (q− 1)/q

as k → ∞; for example, by using redundant inputs to perform native error correction (in

the spirit of the xnand for q = 2). Thus reliable universal computation can be achieved up

to threshold nearing (q − 1)/q for large k.

Example k = 3 and q prime

In addition to the asymptotic result argued in Section 2.1.3, we show that the denoising

threshold may be achieved for finite k. In fact, we demonstrate that for k = 3 and q prime,

reliable universal computation can be achieved up to the denoising lower-bound of Lemma 8.

First, we find

c
[q,3]
0 = 1, c

[q,3]
1 = 1− q − 2

3(q − 1)
, c

[q,3]
2 = 0, and c

[q,3]
3 = 0. (2.39)
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This gives a denoising threshold lower-bound of

C [q,3] =
q + 1

q
=⇒ β[q,3] ≥ q − 1

q

C [q,3] − 1

C [q,3]
=

q − 1

q(q + 1)
. (2.40)

Substituting the coefficients from Eq. (2.39) into Eq. (2.6), we find that at the transcritical

bifurcation, the outputs are (1/q)-noisy. As an aside, a similar calculation shows that the

saddle-node bifurcation occurs for k = 3 at

ε =
q − 1

5q − 4
, (2.41)

with (1/2)-noisy outputs, which can be seen as the ultimate denoising threshold.

To obtain a lower-bound for the computation threshold, consider augmenting the PA

gates with the modular multiplication operation operating on the first two inputs:

mulqε(X1, . . . , Xk) = X1 ×X2 (mod q). (2.42)

To see this, note that the most likely error is that the output of two non-zero elements

is mistaken for ‘0.’ For symmetrically noisy a-noisy inputs and prime q,

pcorrect = (1− a)2 + q − 2

(q − 1)2
a2, (2.43)

p0 =

(︃
a

q − 1

)︃2

+ 2

(︃
a

q − 1

)︃(︃
1− a

q − 1

)︃
, (2.44)

where, in calculating these probabilities, we have used the fact that all elements in [q] have

inverses for q prime. We find that pcorrect > p0 requires a < 1− 1/
√
q.

Taken together with the error rate of the denoising operation from above, we find that for

prime q and k ≥ 3, reliable universal computation is achievable up to the denoising transition

of Lemma 8. Notably, this is a consequence of the fact that the denoiser fixed-points do not

approach the maximally mixed point at the point of the transcritical bifurcation, as in Fig. 2.2
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for the q = 3 case. This is in stark contrast with the previously studied Boolean case (q = 2).

Practically, this offers some advantages: instead of requiring a uniquely designed gate such

as the xnand to achieve the optimal computation threshold, for k = 3 and q prime, the

standard modular multiplication operation can be reliably computed up to the transcritical

bifurcation.

2.1.4 Universal Boolean computation using error signaling

In this Section, we design a set of gates for performing universal Boolean computation, show-

ing that we can improve on the fault-tolerance threshold given in [EP98] if we add a third

alphabet character to perform error signaling. We show that over a ternary alphabet under

symmetric noise, we can achieve fault-tolerant computation whenever ε < 1/6. Again we

proceed using the von Neumann construction by analyzing a denoising gate (Section 2.1.4)

followed by a computation gate (Section 2.1.5) that is sufficient for universal Boolean com-

putation over the logical alphabet. Throughout this section, we assume that ε < 1/6.

Denoising threshold

Consider a denoising gate den : [3]2 → [3] with truth table given in Table 2.2, which performs

denoising for two logical states over a ternary alphabet, encoded using the physical alphabet

characters ‘0’ and ‘1’. The third physical alphabet character, ‘2’, can be understood as an

error flag, while the first two physical alphabet characters constitute the logical alphabet.

This den gate is designed to be used to combine multiple redundant computations to correct

for any possible errors. Therefore, we can think of this gate as having realizations from two

independent and identically distributed random variables as input, where the mode of the

random variable is the value the inputs would take if no errors occurred in the computation.

We would like the denoising gate to output this “correct” value as often as possible. If both

inputs to the gate are the same member of the logical alphabet, then it is most likely that

both inputs are correct and therefore the gate should output the value of the inputs, while
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if the inputs are differing members of the logical alphabet we output a ‘2’ as it is equally

likely that an error has occurred for each of the inputs. If one input is a ‘2’ while the other

is a member of the logical alphabet, we output the input that is a member of the logical

alphabet, as it is more likely than not that the latter input is correct. Finally, if both inputs

are ‘2’s, we output a ‘2’ as we do not have any information about which member of the

logical alphabet is correct.

x y den(x,y)
0 0 0
0 1 2
0 2 0
1 1 1
1 2 1
2 2 2

Table 2.2: Truth table for a balanced denoising gate den for binary computation over a
ternary alphabet. Note that den is symmetric, i.e. den(x, y) = den(y, x).

We characterize the behavior of repeatedly applying den to a random variable with

probability distribution p over the alphabet {0, 1, 2}. We parameterize the probability dis-

tribution over a ternary-valued random variable X with the tuple (p0, p1) as follows:

⎛⎜⎜⎜⎜⎝
Pr[X = 0]

Pr[X = 1]

Pr[X = 2]

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
p0

p1

1− p0 − p1

⎞⎟⎟⎟⎟⎠ . (2.45)

Let denε denote an ε-noisy version of den. Then for two identical and independently

distributed random variables X1 and X2 with distribution given by (p0, p1), the distribution

of denε(X1, X2) is given by the vector-valued function

Dε(p0, p1) ≡

⎛⎜⎝Pr[D(X1, X2) = 0]

Pr[D(X1, X2) = 1]

⎞⎟⎠ =

⎛⎜⎝(︁1− 3ε
2

)︁
(2− p0 − 2p1)p0 +

ε
2(︁

1− 3ε
2

)︁
(2− 2p0 − p1)p1 + ε

2

⎞⎟⎠ . (2.46)
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Figure 2.4: Streamlines of the vector field D̄ε(x, y) − (x, y) for various values of ξ showing
the y nullcline (dashed black line), stable fixed-points (x±, y±) (square markers), and line
separating logical states (dashed grey line).

Lemma 14. Given a random variable with an initial probability distribution (p0, p1, 1−p0−

p1) over (0, 1, 2), we observe that

lim
n→∞

Dnε (p0, p1) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(︁
1
3
, 1
3

)︁
if p0 = p1,(︂

(1−3ε)+∆

1− 3ε
2

, (1−3ε)−∆

1− 3ε
2

)︂
if p0 > p1,(︂

(1−3ε)−∆

1− 3ε
2

, (1−3ε)+∆

1− 3ε
2

)︂
if p0 < p1,

(2.47)

where ∆ =
√︁

(1− 6ε)(1− 2ε).

Proof. It is straightforward to verify that the limit distributions described above correspond

to fixed-points of Dε, and that they are the only fixed-points within the allowable region.

We first consider the case when p0 = p1 = p. By induction, any number of applications

of den will maintain equality in the first and second arguments as

Dε(p, p) =

⎛⎜⎝p′
p′

⎞⎟⎠ , (2.48)

where p′ =
(︁
1− 3ε

2

)︁
(2− 3p)p+ ε

2
.
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Now note that for 0 < ε ≤ 1/6 and p ∈ [0, 1/2),

⃓⃓⃓⃓
p′ − 1

3

⃓⃓⃓⃓
=

⃓⃓⃓⃓(︃
1− 3ε

2

)︃
(2− 3p)p+

ε

2
− 1

3

⃓⃓⃓⃓
,

=

⃓⃓⃓⃓
⃓3
(︃
1− 3ε

2

)︃(︃
p− 1

3

)︃2
⃓⃓⃓⃓
⃓,

=

⃓⃓⃓⃓
3

(︃
1− 3ε

2

)︃(︃
p− 1

3

)︃⃓⃓⃓⃓⃓⃓⃓⃓
p− 1

3

⃓⃓⃓⃓
,

<

⃓⃓⃓⃓
p− 1

3

⃓⃓⃓⃓
.

(2.49)

Therefore, repeated iteration results in convergence to 1/3. We conclude that limn→∞Dnε (p, p) =

(1/3, 1/3) for all p ∈ [0, 1/2].

Next, we make use of the parameterization of Eq. (2.27). In these coordinates, the action

of the denoising gate is

D̄ε(x, y) ≡ (ξ + 3)

⎛⎜⎝x(1−y)
3

x2−y2
2

⎞⎟⎠ , (2.50)

where ξ = 1 − 6ε. We consider the dynamics of probability distributions over the ternary

alphabet under repeated application of Eq. (2.50) with sequences {(xi, yi)}∞i=0, such that

(xi+1, yi+1) = D̄ε(xi, yi). These discrete dynamics can be more easily visualized using a

continuous approximation by plotting the streamlines of the vector field D̄ε(x, y)− (x, y) as

in Fig. 2.4.

Our original problem is equivalent to showing that all points (x0, y0) in the regions

R(0) =

{︄
(x, y)

⃓⃓⃓⃓
⃓−
√
3

4
≤ x < 0,−1

2
≤ y ≤ 1

4
, 0 ≤ 1 + 2

√
3x+ 2y

}︄
, (2.51)

R(1) =

{︄
(x, y)

⃓⃓⃓⃓
⃓0 < x ≤

√
3

4
,−1

2
≤ y ≤ 1

4
, 0 ≤ 1− 2

√
3x+ 2y

}︄
, (2.52)
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converge to their respective fixed-points,

(︁
x(0), y(0)

)︁
=

(︄
−
√︁
ξ(ξ + 2)

ξ + 3
,

ξ

ξ + 3

)︄
, and

(︁
x(1), y(1)

)︁
=

(︄√︁
ξ(ξ + 2)

ξ + 3
,

ξ

ξ + 3

)︄
,

(2.53)

for 0 ≤ ξ < 1.

We focus on the case p0 < p1 =⇒ (x0, y0) ∈ R(1), with (x0, y0) ∈ R(0) following

analogously. First, note that x > 0 is preserved under iteration of Eq. (2.50), and therefore

(x0, y0) ∈ R(1) implies that for all i > 0, (xi, yi) ∈ R(1). One may verify using cylindrical

algebraic decomposition that the following is a Lyapunov function for the dynamics:

Vξ(x, y) =
(︁
(ξ + 3)2x2 − (ξ + 2)(ξ + 3)y

)︁2
+
(︁
(ξ + 3)2x2 − ξ(ξ + 2)

)︁2
. (2.54)

That is, for all i ≥ 0, Vξ(xi+1, yi+1) ≤ Vξ(xi, yi), and the function is strictly minimized at

(x(1), y(1)) for all points in R(1).

Lemma 14 shows that denoising is possible for ε < 1/6, and allow us to associate prob-

ability distributions over the physical alphabet in the regions R(0), R(1) with the logical 0

and 1 state respectively.

2.1.5 Computation threshold

Next, we show that universal computation is possible up to this threshold of ε < 1/6 by

providing a universal computation gate that is compatible with the denoising gate den. We

need to design a computation gate that is universal for binary computation over a ternary

alphabet. Because the nand gate is universal over a binary alphabet, we will design a

balanced ternary gate whose behavior when applied to the fixed-points given in Lemma 14

is analogous to the behavior of a nand gate.

To design this gate, we first note that the restriction of the gate to the logical alphabet

{0, 1} should be the nand gate. It remains to assign outputs for cases when one or both
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inputs are 2. In order to keep the gate balanced, we therefore must assign the output 2 when

both inputs are 2, and need to determine whether to assign an output of 0 or 2 when one

input is a 0 or a 1 and the other is a 2.

Consider the enand gate, a generalization of the binary nand gate to a ternary alphabet

where one element is used for error signaling. This gate has a truth table given in Table 2.3.

x y enand(x,y)
0 0 1
0 1 1
0 2 2
1 1 0
1 2 0
2 2 2

Table 2.3: Truth table for a universal enand for binary computation over a ternary alphabet.
Note that enand is symmetric, i.e. enand(x, y) = enand(y, x).

We verify that this gate applied to the fixed-points given in Lemma 14 behaves analo-

gously to a nand gate acting on the corresponding elements of the logical alphabet.

Theorem 2. For (k = 2)-input gates over an alphabet of size q = 3, reliable universal

computation subject to ε-noisy symmetric noise is possible for ε < 1/6.

Proof. We associate the logical values {0, 1} to the distributions

P0 =

⎛⎜⎜⎜⎜⎝
p+

p−

1− p+ − p−

⎞⎟⎟⎟⎟⎠ , and P1 =

⎛⎜⎜⎜⎜⎝
p−

p+

1− p+ − p−

⎞⎟⎟⎟⎟⎠ , (2.55)

where

p± =
(1− 3ε)±∆

1− 3ε
2

, ∆ =
√︁

(1− 6ε)(1− 2ε). (2.56)

Note that we are able to prepare states arbitrarily close to P0 and P1 through repeated

denoising via Lemma 14.
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Once again, we parameterize distributions over the ternary alphabet by using the proba-

bilities corresponding to the two members of the logical alphabet, and let Gε : (Pin,0, Pin,1) ↦→

Pout denote the function mapping input probability distributions to output probability dis-

tributions under the ε-noisy enand gate; further, we let G(0)ε and G(1)ε denote the respec-

tive probabilities of the output being in the 0 or 1 state. For the computation under the

enand gate to be successful, given inputs from {P0, P1}, the output must land in the appro-

priate half of the simplex, that is, for inputs u, v ∈ {0, 1}, Gε(Pu, Pv) ∈ R(nand(u,v)), or more

specifically

G(0)ε (P0, P0) < G(1)ε (P0, P0), (2.57a)

G(0)ε (P0, P1) < G(1)ε (P0, P1), (2.57b)

G(0)ε (P1, P0) < G(1)ε (P1, P0), (2.57c)

G(0)ε (P1, P1) > G(1)ε (P1, P1), (2.57d)

thus implementing the binary nand gate. We find that

Gε(P0, P0) =

(︃
1− 3ε−∆

2− 3ε
,
1 + ∆ + ε(−4 + 6ε− 3∆)

2− 3ε

)︃
, (2.58a)

Gε(P0, P1) =

(︃
1 + 4ε− 1

1− 3ε
2

,
1

1− 3ε
2

− 6ε

)︃
, (2.58b)

Gε(P1, P0) =

(︃
1 + 4ε− 1

1− 3ε
2

,
1

1− 3ε
2

− 6ε

)︃
, (2.58c)

Gε(P1, P1) =

(︃
1− 3ε+∆

2− 3ε
,
1−∆+ ε(−4 + 6ε+ 3∆)

2− 3ε

)︃
. (2.58d)

We observe that the second and third inequalities of Eq. (2.57) hold since

1

1− 3ε
2

− 6ε−
(︃
1 + 4ε− 1

1− 3ε
2

)︃
=

1− 17ε
2

+ 15ε2

1− 3ε
2

,

=
(1− 6ε)(1− 5ε

2
)

1− 3ε
2

> 0.

(2.59)
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For the first inequality of Eq. (2.57),

1 + ∆ + ε(−4 + 6ε− 3∆)

2− 3ε
− 1− 3ε−∆

2− 3ε
=
ε(6ε− 1) + ∆− 3ε∆

2

1− 3ε
2

,

= ∆− ε(1− 6ε)

1− 3ε
2

,

(2.60)

and so the inequality is equivalent to

∆2 −
(︃
ε(1− 6ε)

1− 3ε
2

)︃2

=
(1− 6ε) (1− 5ε+ 16ε2 − 3ε3)(︁

1− 3ε
2

)︁2 > 0, (2.61)

which is true on the interval
[︁
0, 1

6

)︁
. The final inequality follows by a similar argument.

Since Gε is a continuous function of the input probability distributions, we have that

for any ε < 1/6 there exists some sufficiently small ball around the fixed-points of Dε such

that enand can be used to perform computation. Alternating enand gates and sufficiently

many den gates therefore allows arbitrary computation to be performed for ε < 1/6.

2.1.6 Concluding remarks

In this paper, we extended a number of positive results for reliable Boolean (q = 2) compu-

tation to the setting of alphabets of size q > 2.

In Section 2.1.3, we provided a generalization of the results of Evans and Schulman [ES03]

for alphabets of size q > 2, showing a positive result for the reliable computation. Notably,

we find that reliable universal computation is possible up to ε < (q − 1)/q as k →∞ using

q-ary majority gates. While this result applies only in the case of q-ary symmetric noise,

we note that similar asymptotic arguments apply to generic models of i.i.d. gate noise over

alphabets of size q. For example, suppose that the probability of maintaining the correct

logical state is 1 − ϵ and the probability of the most likely erroneous state is cϵ for some

c > 0. Then the asymptotic k →∞ threshold occurs at the point where the two equal, i.e.

ϵ = 1/(1+c), which is maximized in the case of symmetric noise c = 1/(q−1). General results
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for finite k depend on the existence of a properly adapted majority gate and computation

gate. In the case of q-ary symmetric noise, we showed positive computation results for finite

fan-in k = 3 and q prime up to the transcritical bifurcation (Lemma 8). We conjecture that

reliable computation is possible up to the transcritical bifurcation for all k odd and q prime

using q-ary majority gates. Interestingly, and in contrast with the Boolean case [ES03],

distinguishable stable fixed-points exist past the transcritical bifurcation (see the q = k = 3

example in Figs. 2.2 and 2.3), leading to the possibility of reliable computation beyond the

lower-bound of Lemma 8, though a redefinition of the logical regions in ∆q is required.

In Section 2.1.4, we extended the work of Evans and Pippenger [EP98] for computation

using 2-input gates, showing that universal computation is possible for ε < 1/6 using error

signaling. We would also like to highlight a conceptual difference in the way fault-tolerance

comes about for the model of Boolean computation over a ternary alphabet in Section 2.1.4.

The den (Table 2.2) and enand (Table 2.3) gates in effect use the third element of the

physical alphabet as an error flag, signaling uncertainty to subsequent gates, resulting in a

nearly two-fold increase compared to the analogous result over Boolean alphabets [EP98].

The use of this third alphabet character is reminiscent of the usage of flag qubits [CR20]

and space-time codes [Got22], where similar error signaling mechanisms are used to achieve

quantum fault-tolerance. There are many extensions to the error signaling construction

developed in this paper that would be interesting to explore. It is also interesting to study

the optimal logical alphabet size for a given error model over the physical alphabet, and how

to design error signaling gates to achieve optimal threshold error rates—it is likely that such

gates using a logical Boolean alphabet would allow a higher fault-tolerance threshold than

the q-ary majority gates under the same noise model.

Finally, while increasing the physical alphabet size under the q-ary symmetric noise model

increases the threshold error rate—for example, the result of Section 2.1.4 shows that reliable

Boolean computation is possible for ε < β = 1/6, nearly double the nominal threshold for

standard Boolean computation [HW91; EP98]. However, we are not advocating generically
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for performing computation over larger alphabets as nominal error rates are not strictly

comparable between different alphabet sizes. Since all errors are equally likely by definition

under the symmetric noise model, signals are distinguishable for ε < (q − 1)/q; and since

distinguishability is sufficient for reliable computation as k → ∞, computation over larger

physical alphabets is afforded a natural advantage under the assumption of symmetric noise.

In practice, error rates need to grounded in the utilization of some resource [Imp04; Tha+05;

Tha+08; TC23]; for example, one could compare the energy required to implement an ε-

noisy binary circuit with that required to implement an ε-noisy ternary circuit. The limit

of large q and large k, for which our results yield the most favorable nominal thresholds,

comes at the cost of significant resource requirements which need to be taken into account

in practice. The comparison of error rates across different physical alphabet sizes presents

an interesting opportunity for future work.

2.2 Biological computation and neural networks

2.2.1 Introduction

Early in the development of computer science, it was unknown if unreliable hardware would

make the construction of reliable computers impossible. Whenever a component failed, the

resulting error had to be corrected by additional components that were themselves likely

to fail. Inspired by ideas from error correction, the notion of fault-tolerant computation

resolved this issue in standard frameworks of classical and quantum computation [Neu16;

Pip85; HW91; EP98; ES99; GQF05; Sho96]. In these settings, every computation is eval-

uated by a sequence of faulty components such as Boolean gates (e.g., and, or, not).

If each component’s probability of failure falls below a sharp threshold, a strict criterion

defining fault-tolerant computation is provably satisfied: computations of any length can be

performed with arbitrarily low error. It is also worth noting that the distinction between

error correction and fault-tolerance is vital here: while error correction uses noiseless gates
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Figure 2.5: Schematic comparison of error correction and fault-tolerance. While error cor-
rection uses noiseless gates to correct errors (red crosses), fault-tolerance must use faulty
gates to generate reliable output. Note that errors on states in the fault-tolerant setup can
be rewritten as errors on gates, i.e., faulty wires do not have to be directly considered.

to correct errors on a state, fault-tolerant computation only has access to faulty gates. We

depict this distinction in Fig. 2.5.

In artificial intelligence, it is unresolved [TG17] if neural networks exposed to noise can

satisfy an analogous criterion of fault-tolerance. That is, taking a noisy neuron as the funda-

mental component of computation, can any neural network be executed to arbitrary accuracy

when the noise strength falls below a threshold? A similar question crops up in neuroscience,

where observations of the mammalian brain have shown that neural representations are pro-

tected against noise by error correction codes [Haf+05; FBB08; SF11], yet it is unknown if

such codes are powerful enough to protect computations to achieve arbitrarily small error.

We resolve both open questions in artificial intelligence and neuroscience by demonstrat-

ing fault-tolerant neural computation via carefully constructed error correction codes. This

success hinges on generalizations of traditional fault-tolerance in Boolean formulas, as well

as a modification of a biologically-observed error correction code known as the grid code.

Beyond the analytic results proven here, we also provide a numerical estimate of the fault-

tolerance threshold and show that naturally existing noisy biological neurons lie within the

fault-tolerant regime.
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Making the notion of fault-tolerance more precise, we begin by examining von Neumann’s

original result for fault-tolerant Boolean formulas, which perform universal computation

using formulas of Boolean gates [Neu16]. In this setting, one considers access to physical

gates, which are erroneous and fail (i.e. output the incorrect bit) with some fixed probability

p. In a fault-tolerant construction, each gate in the original error-free formula is replaced

by a logical gate composed of many physical gates. The logical gate is built with error

correction such as the repetition code: data is repeated in bundles of three and majority

voting determines the outcome. Despite the voting itself being performed by faulty physical

gates, von Neumann showed via a recursive repetition code that a fault-tolerant Boolean

formula can be constructed if the failure probability p falls below some threshold p0. As

Boolean gates suffer discrete errors, we will refer to the fault-tolerance of Boolean formulas

as digital fault-tolerance, which is formally defined as follows:

Digital Fault-Tolerance. A Boolean formula containing N (error-free) gates

can be simulated with probability of error at most ϵ using O(Npolylog(N/ϵ))

faulty gates. Each gate may fail with probability p for p < p0, where p0 is

independent of N and independent of the noiseless formula depth.

In general, the value of p0 depends on the model of computation under study [Pip85; HW91;

EP98; ES99; GQF05]; for example, Ref. [EP98] demonstrated a noise threshold for reliable

computation of p0 = (3 −
√
7)/4 ≈ 0.09 for Boolean formulas constructed from 2-input

nand formulas, which are sufficient for universal computation.

The digital setting of traditional fault-tolerance strongly contrasts the analog computa-

tion paradigm of neuroscience and machine learning, where neurons operate using continuous

rather than discrete values. Here, we consider two biologically-motivated sources of error.

The first is (1) synaptic failure, where a connection between neurons is dropped [SW94;

HSM93]; this may be modelled by having the neuron output 0 with some fixed probability

p. This is in essence a discrete error (the connection is either present or it is not) and may

be satisfactorily treated by an extension of von Neumann’s construction. The second source
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of error is (2) analog noise afflicting the output of a neuron [SK93]; this may be modelled

as additive Gaussian noise with standard deviation σ. This second type of error is more

pernicious and will require specialized treatment via the grid code mentioned above.

To formalize the analog setting of computation, we adopt the framework of artificial neu-

ral networks [MP43], which are universal approximators of continuous functions [HSW89]

and have experienced wide success in applications resembling cognitive tasks [LBH15]. The

resilience of artificial neural networks to errors has been limited primarily to demonstrations

of robustness to weight perturbations or other noise, and hardware fault-tolerance in neu-

romorphic computing [NSY92; EG17; Liu+19; SC90; NSY92; Ruc+89], without considering

biologically-motivated noise nor addressing the formal notion of fault-tolerance analogous to

digital fault-tolerance defined above.

We will ultimately prove the following result by using grid-code-based error-correcting

mechanisms to achieve fault-tolerant neural computation:

Neural Network Fault-Tolerance. A Boolean formula of N (error-free) gates

can be simulated by a neural network with probability of error at most ϵ using

only faulty neurons. Each synapse entering a neuron fails with probability p; the

output of each neuron is subject to additive Gaussian noise with mean zero and

standard deviation σ; a neuron admits at most a fixed number of synapses. There

exist nonzero thresholds p0 and σ0 such that if p < p0 and σ < σ0, simulating the

formula requires O(Npolylog(N/ϵ)) faulty neurons.

In the spirit of previous fault-tolerance results [Neu56; EP98; ES03], the core of our proof is

the construction of a logical neuron from a configuration of noisy physical neurons.

An outline of this work is as follows. In Section 2.2.2, we first provide a brief review

of digital fault-tolerance and then demonstrate how this construction may be adapted to

design neural networks that are robust against synaptic failure. This is followed by the

design of a neuron that is robust to additive Gaussian noise by encoding data in the grid

code in Section 2.2.3; here we also demonstrate how error correction and computation may
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be achieved using a noisy neural network. We then showcase our fault-tolerant construction

by designing a reliable circuit using our logical neuron subject to both modes of noise in

Section 2.2.4, thereby proving our statement of neural network fault-tolerance. Finally, we

provide some concluding remarks including a discussion of the biological plausibility of our

assumptions in Section 2.2.5.

2.2.2 Fault-tolerance against digital errors

First, we provide a review of concatenated fault-tolerance results in digital circuits (Sec-

tion 2.2.2). This is followed by a demonstration of an analogous technique for constructing

neural networks that are robust against synaptic failure (Section 2.2.2).

Fault-tolerant Boolean circuits

Bundle of 
size 

Partition into
3 bundles
of size

Figure 2.6: The recursive concatenation scheme, based on a ternary repetition code, used
to construct a logical nand gate at concatenation level ℓ + 1 (denoted nand(ℓ+1)

p ) from
logical nand gates at concatenation level ℓ, with the base case nand(0)

p = nandp. The
gates denoted MAJ(ℓ)

p indicate a majority voting operation built from nand(ℓ)
p gates, whose

explicit construction is illustrated in the inset.

The original construction of a fault-tolerant Boolean gate was initially proposed in

Ref. [Neu16] and more rigorously discussed in Ref. [WC63]. We begin by presenting an

adaptation of this construction via a recursive concatenation of repetition codes. To best

explain this scheme, let us consider a Boolean gate B, with associated function B(x) that
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accepts as input a string of bits x and outputs a single bit (for instance, B = nand and

B(x0, x1) = nand(x0, x1) = ¬(x0 ∨ x1)). Let us also consider its faulty counterpart Bp that

fails (i.e. outputs the incorrect bit) with probability p. We would like to construct a fault-

tolerant version of Bp whose error can be decreased arbitrarily for p < p0 for some threhsold

p0.

This is achieved by devising a recursive concatenation scheme wherein a logical B gate is

constructed from physical B gates, these being the faulty Bp gates. In particular, a logical B

gate at concatenation level-ℓ, which we denote by B(ℓ)
p , is recursively defined by a mapping

of logical B gates at concatenation level ℓ − 1 (i.e. B(ℓ−1)
p ), with the base case B(0)

p = Bp.

In this mapping, B(ℓ)
p is defined as a repetition code acting on multiple outputs of B(ℓ−1)

p ,

such that the error suffered by B(ℓ)
p is less than that of B(ℓ−1)

p for p < p0. Thus, increasing ℓ

decreases the error arbitrarily.

In his seminal work on fault-tolerance [Neu16], von Neumann employed a ternary repe-

tition code, in which a logical bit is encoded as a bundle of physical bits. At concatenation

level ℓ, each bundle consists of 3ℓ physical bits, and its corresponding logical bit may be

decoded as the majority of its physical bits. For instance, the bundle 110 encodes the logical

bit 1 at concatenation level ℓ = 1. In this manner, the inputs and outputs to B
(ℓ)
p (x) are

bundles of size 3ℓ, and the output is correct if its physical bits decode to the correct logical

bit.

The recursive mapping from B
(ℓ)
p to B

(ℓ+1)
p is defined by this ternary repetition code:

the inputs to B(ℓ+1)
p are each linearly partitioned into three smaller bundles, which are then

copied and sent through nine B(ℓ)
p gates in parallel to generate nine independent outputs. To

correct errors in these nine outputs, they are then split into three groups of threes, each of

which is passed through a (faulty) majority voting gate, and the three resulting outputs are

recombined to represent the final output of B(ℓ+1)
p . The majority voting gate is constructed

from B
(ℓ)
p gates, and hence is also imperfect; its explicit construction depends on the Boolean

gate of interest and influences the fault-tolerance threshold. In general, the fewer the gates

70



in the majority gate, the larger the threshold.

For clarity, we depict this fault-tolerance construction applied to a nand gate in Fig. 2.6.

The specific arrangement of the wires fed into the majority voting gates is chosen is to pre-

vent error propagation and produce a nonzero threshold. Not all arrangements will yield

a nonzero threshold in the limit ℓ → ∞; von Neumann’s original presentation even sug-

gests randomly permuting these wires. Numerics indicate that this particular construction

produces a threshold p0 ≈ 2.36%.

As the nand gate is universal for Boolean computation, this construction enables arbi-

trarily accurate computation of any Boolean function from faulty nand gates if the failure

probability p lies below the threshold p0. Moreover, for p < p0, the logical error suffered

decreases doubly-exponentially with increasing ℓ, while the circuit size grows only exponen-

tially with ℓ. Hence, achieving a desired error ϵ requires overhead O(polylog(1/ϵ)) by the

usual arguments for concatenation codes (see e.g. the fault-tolerance threshold theorem of

Ref. [NC10]).

Moreover, for a circuit of N gates, an overall error of ϵ could be achieved by demanding

individual gate errors ϵ/N as per the union bound. Inserting this desired error rate into the

above polylogarithmic overhead, we find a total gate count O(Npolylog(N/ϵ)), in accordance

with the digital fault-tolerance theorem discussed in Section 2.2.1.

Fault-tolerant neural networks for synaptic failure

The above fault tolerant construction may be adapted to devise a fault-tolerant neural net-

work that is robust against synaptic failure, as this is in essence a discrete error. To illustrate

this, let us consider a neural network constructed from rectified linear unit (ReLU) activation

functions, where ReLU(x) = max(0, x) on real inputs x. In this case, synaptic failure may
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be modeled by replacing each ReLU with a faulty ReLU that fails with probability p, i.e.,

ReLUp(x) ≡

⎧⎪⎪⎨⎪⎪⎩
ReLU(x) with probability 1− p

0 with probability p.
(2.62)

Like von Neumann’s error model for Boolean gates, the output of this faulty ReLU is incorrect

with some probability, and thus its errors may be corrected by employing a concatenated

repetition code.

The aim is to construct a fault-tolerant ReLU activation function, which is equivalent to

a fault-tolerant neuron. We will employ a concatenated ternary repetition code analogous

to that presented above, replacing the logical Boolean gates with logical ReLU’s. However,

there is one important distinction in our construction: as inputs and outputs are now analog

instead of binary, we will interpret the logical value carried by a bundle as the median of

its values rather than the majority. Accordingly, the majority voting gate in the original

repetition code is replaced by a median gate, which will appropriately correct errors that

occur in a bundle. With this modification noted, we illustrate the complete recursive scheme

in Fig. 2.7a; here, it is shown how to construct a logical ReLU at concatenation level ℓ + 1

(denoted ReLU(ℓ+1)
p ) from logical ReLU’s at concatenation level ℓ (denoted ReLU(ℓ)

p ), with

the usual base case ReLU(0)
p = ReLUp.

What remains is to construct the median operation out of ReLU’s. At concatenation level

ℓ, we are interested in computing the median of three bundles, each of size 3ℓ. Denoting

this quantity as m = Med(ℓ)
p (a, b, c), where a, b, c represent each bundle, it may be computed
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with the following network of depth three:

x = ReLU(ℓ)
p (a− b), (2.63a)

y = ReLU(ℓ)
p (−a+ c+ x), (2.63b)

z = ReLU(ℓ)
p (b− c+ x), (2.63c)

m = ReLU(ℓ)
p (a+ b− c+ y − z). (2.63d)

While the final ReLU is not strictly necessary for the computation of the median, it is

included to prevent error propagation and achieve fault-tolerance. As a result, this median

works only on positive inputs, but this is admissible as the output of ReLUℓ
p (which is input

into the median) is necessarily non-negative. We also note that expressing this median

construction as a neural network requires skip connections to perform its computation.

We visualize the performance of this fault-tolerance construction in Fig. 2.7 by plotting

the pseudothresholds : where the error probability at concatenation level ℓ intersects that

of ℓ = 0. Plotting these for increasing levels of concatenation indicates a convergence to

the threshold p0 ≈ 3.72%. Therefore, this construction ultimately produces a fault-tolerant

ReLU neuron, protected against synaptic failure for p < p0. And by an argument analogous

to the digital fault-tolerance of Boolean circuits, achieving a desired error ϵ requires overhead

O(polylog(1/ϵ)). Using the argument presented at the end of Section 2.2.2, this translates

to an overhead O(Npolylog(N/ϵ)) for a circuit of N gates, thus achieving neural-network

fault-tolerance (excluding Gaussian noise) as presented in Section 2.2.1.

2.2.3 Fault-tolerance against analog errors

While a simple adaptation of fault-tolerant constructions on noisy Boolean circuits yields a

neural network that is robust to synaptic failure, the treatment of additive Gaussian noise

proves more difficult. In particular, the repetition-based scheme of von Neumann fails for

Gaussian noise with nonzero standard deviation σ: unlike the exponential suppression found
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A

B

Figure 2.7: (A) The recursive concatenation scheme of digital fault-tolerance is extended to
construct a logical ReLU at concatenation level ℓ + 1 from logical ReLUs at level ℓ. Note
how the fault-tolerant ReLU is a generalization of the fault tolerant NAND gate in Fig. 2.6.
The gates denoted Med(ℓ)

p indicate a median operation that is composed of ReLU(ℓ)
p ’s and

used to correct errors; its explicit construction is presented in Eq. (2.63). This construction
ultimately generates a logical neuron for a fault-tolerant neural network in the presence of
synaptic failure. (B) The logical error probability of ReLU(ℓ)

p (x) on random inputs x ∈ [−1, 1]
as determined by numerical simulation. The pseudothresholds (red crosses) occur when the
error probability intersects that of ℓ = 0; they converge exponentially to the threshold
p0 ≈ 3.72% (vertical black line) with increasing ℓ.
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for digital errors, repeating N neurons in the presence of analog noise only reduces analog

noise to σ/
√
N . Hence the requisite circuit size scales as O(1/ϵ2), which does not achieve

the O(polylog(1/ϵ)) performance desired by the neural network fault-tolerance theorem.

Instead, we turn to an analog error correction code: the grid code. Unlike the repetition

code, the grid code achieves exponentially small error at asymptotically finite information

rates, saturating the Shannon bound [Gob65] and allowing effective error correction against

Gaussian neural spiking noise [SF11] (see Appendix A.1 for a more detailed discussion).

We start with a brief overview of the grid code and its properties in Section 2.2.3. Next,

we detail the construction of an error correcting procedure using noisy neurons in Sec-

tion 2.2.3. Finally, we describe in Section 2.2.3 how the logical signal may be manipulated in

a manner that allows for universal approximation and analyze its error threshold assuming

a distribution of logical neural weights.

Overview of the grid code

We first provide a brief, self-contained exposition of the original grid code results of Refs.

[Haf+05; FBB08; SF11]. These works study the entorhinal cortex in mammals and show

that lattice neural firing patterns may correspond to a special encoding of the mammal’s

position (in 2D space), known as the grid code. In the grid code, a particular coordinate

(say x or y in 2D space) takes values from a discrete set {xk} of S possible values that lie

within a fixed interval [0, X).

The encoding of each possible value xk is modeled by a set of phases

Enc [xk] ≡
{︃
e(xk)

λj
mod 1

}︃M
j=1

, (2.64)

which is defined over M relatively prime integers {λj}Mj=1, referred to as moduli [Haf+05;

FBB08], and a function e(x) referred to as the encoding function. The choice of relatively

prime moduli ensures, by consequence of the Chinese Remainder Theorem, that all x ∈
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[0,
∏︁M

j=1 λj) are encoded into distinct codewords. Restricting our domain as above, with

X ≪ ∏︁M
j=1 λj, allows the remaining phase space to be used for error correction. Moreover,

in the original grid code, the encoding function e(x) is chosen to be the identity. Here, we will

instead perform neural network computations by selecting e(x) to implement an activation

function; we will let e(x) be an arbitrary function for now, and specify it later. In general,

we denote the vector of M phases produced by the encoder as ϕ ≡ Enc [xk] = {ϕj}. As a

visual aid, an exemplary firing pattern of the grid code, as well as its moduli, is illustrated

in Fig. 2.8a.

To maintain the favorable error-correcting properties of the grid code, the xk’s are chosen

to satisfy xk ≪ X, and the minimum spacing between codewords ∆x ≡ mink ̸=j |xk − xj| is

chosen such that maxj λj ≪ ∆x. More generally, when the encoding function e(x) is not the

identity function, the same condition must be upheld for ∆x given by mini ̸=j |e(xi)− e(xj)|

such that e(xi) ̸= e(xj).

In the limit maxj λj ≪ X for X ≪ ∏︁M
j=1 λj, the codeword ϕ encoding a randomly

sampled xk∗ ∈ {xk} is well-approximated as being drawn from a uniform distribution (ϕj ∼

U(0, 1)) [SF11]. We visualize this fact in Fig. 2.8b by plotting the phases of an example grid

code. This property provides a sensitive encoding that changes significantly if the input is

slightly perturbed. Since each codeword consists of a vector of phases {ϕj} with the period of

each ϕj determined by λj, decoding corresponds to the constructive interference of summed

phases to yield the correct decoded position, as depicted in Fig. 2.8c.

An ideal decoder Dec [ϕ] would perform maximum likelihood estimation (MLE) to recover

the most probable value xk∗ given a codeword ϕ. For ease of presentation, we modify the

original biologically inspired neural decoder that approximates MLE [SF11] to a simpler but

functionally equivalent form; this form will be more easily implemented by a neural network

later in this work. Given phases ϕ = {ϕj}, we will recover the true position xk∗ by the MLE

decoder

Dec [ϕ] ≡ argmax
xk

M∑︂
j=1

cos

[︃
2π

(︃
xk
λj
− ϕj

)︃]︃
. (2.65)
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Figure 2.8: (A) Biological setting of the grid code. Neuron firings form a hexagonal lattice
with different spacings λj, with lattice sites corresponding to physical locations of an an-
imal in the lab. (B) Example encoding performed by the grid code over M = 15 moduli
{λ1, . . . , λ15}. Observe that these phases are well-approximated as being drawn uniformly
at random, in accordance with the formalism of the grid code. (C) Example decoding of
phases representing x = 0.5. The possible decodings allowed by a given phase (indicated by
a unique color for each λj) are periodic. Each decoded phase is subject to Gaussian noise
(inset). Since the phases constructively add at the true decoded value, maximum likelihood
estimation selects the value with the highest signal.
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To see that this procedure is indeed performing maximum likelihood estimation, observe

that if xk∗ is known to belong to a discrete set of values {xk}, then the estimated decoding

x̂ is given by maximizing the conditional probability

x̂ = argmax
xk

Pr(ϕ|xk). (2.66)

Assuming that the encoding Enc [xk] is distributed in the codespace according to a spherical

Gaussian with variance s2, the likelihood function is a wrapped normal distribution

Pr(ϕ|xk) ∝
M∏︂
j=1

exp

(︃
− 1

2s2
∥Enc [xk]j − ϕj∥2

)︃
, (2.67)

where ∥ϕ∥ ≡ min{|ϕ|, 1 − |ϕ|} denotes the distance between phases. In the limit of s ≪ 1,

the likelihood function is well approximated by the more tractable circular normal function

Pr(ϕ|xk) ∝
M∏︂
j=1

exp

(︃
1

2πs2
cos

[︃
2π

(︃
xk
λj
− ϕj

)︃]︃)︃
. (2.68)

Comparing Eq. (2.68) to Eq. (2.65), we see that the decoding scheme of Eq. (2.65) is indeed

maximizing the likelihood.

Lastly, to more intuitively understand the grid code, note that because the M phases

ϕj fall between 0 and 1, the coding space is the unit hypercube [0, 1]M ; due to the unit

modulo, the coding space satisfies periodic boundary conditions and thus corresponds to the

M -torus. The coding line [0, X) is thus a set of parallel line segments in the hypercube. In

general, error correction codes may be described as a hypersphere packing problem: each

codeword corresponds to an origin of a sphere in a high-dimensional space, and errors that

fall within the radius of the sphere are correctable to the true codeword. Here, the grid

code is a hypersphere packing problem in the M − 1 dimensional hyperplane perpendicular

to the coding line segments. Under this formalism, we arrive at a scaling of the minimum

distance between line segments with the number of phases for fixed X of dmin = Θ(
√
M)
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[SF11], denoting an asymptotic bound on dmin from both above and below. Our choice of

λ ≪ ∆x ensures that each Enc [xi] lies within a different line segment and is therefore also

separated by at least dmin, and consequently any perturbation in the phase space less than

dmin/2 is correctable using the maximum likelihood decoder.

The fault-tolerant logical neuron

Let us now use the grid code to present and analyze the construction of a fault-tolerant

neuron. We assume an error model where Gaussian noise ξ ∼ N (0, σ) is added to the

output of each neuron, representing the noise associated with neural spikes in a biological

setting. We note that we do not account synaptic failures at this stage, as the grid code is

only tailored to analog noise; later in Section 2.2.4, we address both additive Gaussian noise

and synaptic failure.

Focusing on a single neuron in a larger neural network, we take the number of neurons

connected from the previous layer to be m0. As in the presentation of the grid code, each

neuron carries a value that is guaranteed to belong to a discrete set of S values, which we

parameterize here as {xk = k∆x} for k = 0, . . . , S−1, such that (S−1)∆x < X for some X.

The M relatively prime moduli must satisfy λj ≪ X ≪ ∏︁M
j=1 λj, and thus the codewords

are uniformly distributed for random xk∗ .

We however introduce the following modification to the underlying grid code. While the

typical grid code assumes a range of values xk ∈ [0, X), here we will take advantage of the

periodicity of the grid code due to the periodicity of the phases (as these are evaluated modulo

1), and introduce a smaller range of values [0, X ′) to which the encoding function e(x) may

output. That is, the encoding function e(x) is chosen such that encoded values e(xk) exist

in a condensed space [0, X ′) for some X ′ < X, while fully decoded values xk can still exist in

the larger space [0, X). A vanilla grid codes with identity encoding function e(xk) = xk has

X ′ = X; here, we will select e(xk) to be a non-identity function withX ′ < X, which will assist

in building logical activation functions and thus performing neural network computation.
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Moreover, to remain consistent with the usual requirement that λj ≪ X ≪∏︁M
j=1 λj, we will

also demand λj ≪ X ′ ≪∏︁M
j=1 λj.

Turning now to the construction of our fault-tolerant neuron, we incorporate the tradi-

tional principles of fault tolerance: we perform computations in the codespace to protect

against errors, and interleave each computation between encoding and decoding steps that

correct errors and ensure that computation remains in the protected codespace. In the

language of the grid code, this means performing computations on the phases ϕ, these com-

putations corresponding to the application of weights and biases followed by an activation

function.

The general construction of the logical neuron is presented in Fig. 2.9a. This depicts

a logical neuron decomposed into physical neurons, with time advancing to the right. The

number of inputs to the physical neurons is unrestricted, and hence this construction has an

unbounded fan-in.

In the illustration, a previous layer of logical neurons passes to the logical neuron a set of

encoded phase vectors, which we denote as θ(i) = [θ
(i)
1 , ..., θ

(i)
M ] for the M -dimensional phase

vector of the ith logical input neuron. Assuming that inputs to the network are all encoded

in the same grid code, each input phase vector θ(i) encodes a quantity that lies in [0, X ′) in

the decoded space.

The logical neuron itself consists of three stages: (1) the logical weights, (2) the decoder,

and (3) the encoder. First, (1) the logical weights correspond to the weights of the error-

free neuron that one seeks to apply; we denote these by {ai}m0
i=1 for each of the m0 (logical)

neurons of the previous layer. As depicted in the figure, the logical weights are each repeated

M times and then applied to the inputs θ(i), mapping directly from grid code phases to grid

code phases.

Second, (2) the decoder performs error correction via maximum likelihood estimation

(MLE) as described in Section 2.2.3. The key observation is that the structure of the grid

code allows MLE to be approximated by a neural network. This is achieved using sine
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and cosine activation functions with appropriately chosen weights, the combination of which

implements the MLE decoding scheme of Eq. (2.65) and also imposes the periodicity of

the resulting phase encoding. The particular choice of weights, denoted W sin
ik and W cos

ik , is

explained and justified in the following section. Moreover, the decoder does not return to

the original [0, X ′) space; instead, it outputs a value in the larger space [0, X), allowing

the application of logical weights to decode to valid values. At the end of the decoding

step, we are left with one-hot encoding representing the correct value xk ∈ [0, X) with high

probability due to the robustness of the maximum likelihood estimate.

Lastly, (3) the encoder serves two roles: it re-encodes back into the codespace, and it also

performs the computation via the application of a logical activation function (e.g., ReLU).

Explicitly, the weights W enc
ki are chosen such that this stage projects the one-hot representa-

tion of some xk back to its appropriate codeword. The specific choice of weights also applies

the logical activation function through a chosen encoding function e(xk), ultimately return-

ing to the space [0, X ′). The choice of weights W enc
ki and encoding function e(x) for various

activation functions are presented in the following sections.

Neural network implementation of reliable computation

Let us now analyze the performance of the logical neuron in the fault-tolerant setting, where

every physical neuron is subjected to noise. We will ultimately derive an analytical expression

for the number of physical neurons needed to build a logical neuron with logical error at most

ϵ.

To streamline our presentation, we begin by looking at the encoder stage. Accounting

now for the additive Gaussian noise ξ ∼ N (0, σ) suffered by the physical neurons, the encoder

of Eq. (2.64) becomes ˜︃Enc [xk] = {︃ϕ̃j = e(xk)

λj
+ ξ mod 1

}︃
, (2.69)

for i.i.d. ξ ∼ N (0, σ) sampled for each phase ϕ̃j. The decoder in the logical neuron uses

only two layers (see Fig. 2.9a). The first layer multiplies each phase ϕj by a weight 2π; the
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Figure 2.9: (A) Logical neuron decomposed into physical neurons to achieve fault-tolerance in
the presence of analog noise. The neuron receives encoded neural outputs from the previous
layer and performs a computation with time advancing to the right. The logical weights ai
are applied in the codespace, and the decoder recovers xk by performing error correction. The
encoder (red) performs a logical activation function (e.g., ReLU) using appropriate weights
and encodes back to the codespace. (B) The logical ReLU encoding function e(xi) used in
the encoder (Eq. (2.74)) for X ′ = X/2. This function is effectively a ReLU repeated over
X/X ′ = 2 periods; the construction allows the fault-tolerant neural network to implement
the standard ReLU activation function.
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second layer uses sine and cosine activation functions to compute sin(2πϕj) and cos(2πϕj),

and then multiplies them by weights W sin
jk and W cos

jk , respectively. We select these weights

to be W sin
jk = sin

(︂
2π xk

λj

)︂
and W cos

jk = cos
(︂
2π xk

λj

)︂
.

Upon applying a decoding, any error is ‘reset’ if the decoding ˜︃Dec [︂ϕ̃]︂ is successful, such

that the logical neuron will not propagate any additional error into future computations.

Evaluating all noise contributions, we have

Dec
[︂
ϕ̃
]︂
= argmax

k
f(k), (2.70)

f(k) ≡ ξ +
M∑︂
j=1

[f1(j, k) + f2(j, k)] , (2.71)

where

f1(j, k) = sin

(︃
2π
xk
λj

)︃[︂
sin
(︂
2πϕ̃j

)︂
+ ξ
]︂
, (2.72)

f2(j, k) = cos

(︃
2π
xk
λj

)︃[︂
cos
(︂
2πϕ̃j

)︂
+ ξ
]︂
, (2.73)

and as usual each ξ is sampled i.i.d.

Suppose that the correct neuron value corresponds to k = k∗, i.e. the value xk∗ is

encoded in the phases. For the decoder to identify the correct neuron via a threshold cutoff,

we require f(k = k∗) > f(k ̸= k∗) for all k. If the mean of the correct neuron is greater than

the mean of each incorrect neuron, a threshold will exist to distinguish the correct decoding

from incorrect decodings in expectation. We use this insight to gain an analytical scaling for

the number of physical neurons needed to construct a logical neuron with logical error ϵ.

The key observation is that in the noiseless limit, the phases ϕj are given by ϕj =

xk∗/λj mod 1. At k = k∗, the elements in the sum of Eq. (2.70) constructively add as

f1(j, k
∗) + f2(j, k

∗) ≈ 1 for each j and thus f(k = k∗) has a non-zero mean. On the other

hand, for all k ̸= k∗, the neural network weights are sine or cosine of a uniformly distributed

random variable and the terms in the sum destructively interfere leaving f(k ̸= k∗) ≈ 0 on
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average.

To make the scaling argument precise for computation, we need to characterize the noise

in Eq. (2.70), which requires assumptions to be made about the statistical properties of

the noise and logical weights. With this in mind, we make the following assumptions. In

order to maintain properties of modular arithmetic, we restrict the logical weights to integer

values ai ∈ Z such that
∑︁

i |ai| ≤ X/X ′. We also assume that the logical weights ai are

approximately normally distributed from a Gaussian distribution with standard deviation

α. Additionally, we take both the number of moduli M and the number of neurons m0

connected from the previous layer to be much larger than one, allowing application of the

central limit theorem.

For exemplary purposes, we will select ReLU as the logical activation function of the log-

ical neuron; other activation functions may be implemented analogously. A ReLU activation

function may be implemented by the encoding function

e(xi) =

⎧⎪⎪⎨⎪⎪⎩
0 (xi mod X ′) < X ′/2

(xi −X ′/2) mod X ′ (xi mod X ′) ≥ X ′/2,

(2.74)

which behaves like a periodic ReLU. We depict this encoding function in Fig. 2.9b. This

function corresponds to choosing weights on the physical neurons W enc
ij = e(xi)

λj
mod 1.

The above analysis can now be made explicit to demonstrate the fault-tolerant prop-

erties of the logical neuron. Looking at the logical weights stage, the m0 logical neu-

rons from the previous layer connected to the logical neuron are represented by codewords

Enc
[︁
x(1)
]︁
, . . . ,Enc

[︁
x(m0)

]︁
, i.e. Enc

[︁
x(i)
]︁
= θ(i). Therefore, the application of the logical

weights must map from the m0 ×M neurons in {Enc [xi]} to a single set of phases {ϕj}

such that our activation function (ReLU as we’ve chosen) is applied after decoding and re-

encoding, as per the order of operations in the logical neuron. By assigning weights Wij = ai

from θ
(i)
j to ϕj (as illustrated in the ‘Logical weights’ layer in Fig. 2.9a) with a linear ac-
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tivation function and bias −X′

λj

∑︁
i:ai<0 ai, we obtain the following phases in the absence of

noise:

ϕj =

(︄
m0∑︂
i=1

aiθ
(i)
j

)︄
−
(︄
X ′

λj

m0∑︂
i:ai<0

ai

)︄
. (2.75)

Factoring in noise now, let us denote a noisy encoding by phases θ̃
(i)

j . Each of the S neu-

rons over the discretized decoded space have noise ξ, and each is multiplied by approximately

uniformly distributed weights due to the phases over the moduli. Applying the central limit

theorem to
∑︁S

i=1 uξ for u ∼ U(0, 1), we find this equivalent to noise with mean zero noise

and variance σ2 · S/3. Adding this noise of the codespace neuron to the noise acquired from

the physical neuron, we find θ̃
(i)

j = θ
(i)
j + ξ + ζ for ζ ∼ N (0, σ

√︁
S/3). Inserting noise in

Eq. (2.75), we have

ϕ̃j =

[︄
m0∑︂
i=1

aiθ̃
(i)

j

]︄
−
(︄
X ′

λj

∑︂
i:ai<0

ai

)︄
+ ξ,

= ϕj + ξ +

m0∑︂
i=1

ai(ξ + ζ).

(2.76)

Applying the central limit theorem to the last term
∑︁m0

i=1 ai(ξ + ζ), we find that its mean

vanishes while its variance is 1
3
Sm0α

2σ2 in the large-S limit (having already applied the

central limit theorem to S).

We can now formalize the above argument that correct decoding requires f(k = k∗) >

f(k ̸= k∗). To simplify notation, we introduce the variable β ≡ 4π2(1 + Sm0α
2/3). By

applying the error correction analysis (Eq. (2.70)) to the phases after a step of computation

(Eq. (2.75)) again in large M regime, we find that the true decoding after application of the

logical neuron is distributed as

f(k = k∗) ∼ N
(︄
Me−βσ

2/2,

√︄
M

(︃
1

2
+

1

2
e−2βσ2 − e−βσ2 + σ2

)︃
+ σ2

)︄
, (2.77)
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while the incorrect decoding is centered at zero:

f(k ̸= k∗) ∼ N
(︄
0,

√︄
M

(︃
1

2
+ σ2

)︃
+ σ2

)︄
, (2.78)

where both distributions are seen to have standard deviations O(
√
M). Upper-bounding the

maximum element drawn from the distribution of f(k ̸= k∗) out of S draws using Jensen’s

inequality and a union bound, we find that

fmax(k ̸= k∗) ≡ E[max draw of f(k ̸= k∗)],

≤
√︁

[M(1 + 2σ2) + 2σ2] logS.

(2.79)

Finally, to determine if argmaxk returns a value other than k∗, we compute the probability

that this exceeds f(k = k∗):

Pr[logical neuron fails] = Pr[f(k = k∗) < fmax(k ̸= k∗)],

≤ 1

2
erfc

[︄
e−βσ

2/2M −
√︁

[M(1 + 2σ2) + 2σ2] logS√︁
M (1 + e−2βσ2 − 2e−βσ2 + 2σ2) + 2σ2

]︄
.

(2.80)

This error probability is the logical error, which we seek to upper bound by ϵ. Expanding in

small ϵ and taking M,βσ2 ≫ 1, we find that the number of moduli required to bound the

logical error by ϵ scales is

M(ϵ) ≈ log(1/ϵ)
[︂
eβσ

2

(1 + 2σ2) + e−βσ
2 − 2

]︂
,

≈ eβσ
2

(1 + 2σ2) log (1/ϵ) = O(eβσ
2

log(1/ϵ)),

(2.81)

where β is the aforementioned constant independent of the noise or error correction overhead.

The O(eβσ2
) dependence on σ originates from the constructive interference of the grid code:

noisy phases for the true decoding contribute to a neuron with mean activation Me−βσ
2/2,

while the incorrect decoding yields a mean activation of zero. Although the noise produces

neural activations of variance O(σ
√
M), there always exists sufficiently large M to identify
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the correct decoding.

Note that the number of physical neurons in the logical neuron scales linearly in the

number of moduli, as per its structure in Fig. 2.9a). Hence, a fault-tolerant neural network

can be constructed under the presence of arbitrarily large additive Gaussian noise using

O(eβσ
2
log(1/ϵ)) physical neurons for a constant β. For a network of N neurons, this trans-

lates to O(eβσ2
Npolylog(N/ϵ)) physical neurons as per the argument of Section 2.2.2. This

result is in agreement with the neural network fault-tolerance theorem of Section 2.2.1 (ex-

cluding synaptic failure, which we address in Section 2.2.4), and also mirrors known results

in digital fault-tolerance [ES03].

2.2.4 Reliable circuits from the fault-tolerant neuron

The fault-tolerant neural network presented above is a universal approximator of continuous

functions due to the use of a ReLU activation function. In this Section, we demonstrate the

flexibility of the fault-tolerant neural network construction by building Boolean circuits from

fault-tolerant neural networks and providing evidence of their reliability. In Section 2.2.4, we

numerically verify the predictions of Section 2.2.3 by simulating the code size requirement

to implement a two-bit Boolean multiplication circuit constructed from neurons subject to

additive Gaussian noise. In Section 2.2.4, we combine the constructions of Section 2.2.2

and Section 2.2.3 to provide analytic and numerical evidence of the robustness of our fault-

tolerant neural network against both additive Gaussian noise and synaptic failure. Finally,

in Section 2.2.4, we move towards more biological code parameters by studying the more

biologically realistic scenario where moduli are encoded redundantly.

Reliability in the presence of Gaussian noise

Building on the fault-tolerant neural network of Section 2.2.3, a natural extension of this

framework to Boolean gates emerges if additional encoding functions are introduced. In

particular, as computations are done in the encoding step of the fault-tolerant neuron in
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Figure 2.10: (A) Encoding functions e(xk) that induce appropriate logical activation func-
tions to implement common Boolean gates. All logical weights {ai} are set to unity when
implementing a Boolean gate. (B) Fault-tolerant neural network implementation of the
two-bit multiplication circuit. In the inset, we illustrate the two-bit multiplication circuit
decomposed into six and gates (orange) and two xor gates (green). In the neural network
implementation thereof, two 2-bit binary numbers b0b1 and b′0b′1 (using the 0 index to denote
the least significant bit) are one-hot encoded (as per Eqs. (2.82) and (2.83)) as input to the
noisy neural network. The output c0c1c2c3 yields the product of the two numbers, and can
achieve arbitrarily small error by increasing the number of moduli (M = 5 moduli illus-
trated). The grid code corrects Gaussian noise via the decoder (blue lines); neural encoders
evaluate and gates (orange outline) and xor gates (green outline) to perform computation
using appropriate encoder activation functions (shown in A); additional decoders and en-
coders are used to generate error-corrected copies of neural states (black). (C) Numerical
simulation of the number of neurons required to perform two-bit multiplication with logical
error probability ϵ in the presence of Gaussian noise of variance σ2. The fit confirms the
analytic scaling O(eaσ2

N log(N/ϵ)) of Eq. (2.81).

Section 2.2.3, special encoding functions can be used to implement and, or, not, xor,

and nand operations, among other Boolean gates. We illustrate these encoding functions

in Fig. 2.10a, whose specific construction we discuss next. Afterwards, we will use these

Boolean gate constructions to enable a fault-tolerant neural implementation of a multiplier

circuit. Because these constructions use the fault-tolerant neuron of Section 2.2.3, they are

robust against Gaussian noise only; we account both Gaussian noise and synaptic failure in

Section 2.2.4.

To formalize this construction, define two logical input bits A,B ∈ {0, a}, interpreting 0

as False and a as True. Letting ∆x = a, the decoder Dec [ϕ] will only decode to the set of
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variables {x1 = 0, x2 = a, x3 = 2a}. For notational convenience, we define codeword vectors

ϕa ≡
{︃
ϕj =

a

λj
mod 1

}︃
, (2.82)

ϕ0 ≡
{︃
ϕj =

0

λj
mod 1

}︃
. (2.83)

Beginning with a not gate, define the not encoder Enc¬ [x1] = ϕa and Enc¬ [x2] =

Enc¬ [x3] = ϕ0. As before, this corresponds to a neural network with weights given by the

codeword vectors. To compute ¬A, we simply compute Enc¬ [Dec [A]], which applies error

correction and re-encode into the codespace with a notcomputation.

To implement and and or gates, we require an additional layer of unity weights, produc-

ing the value ϕi = θAi +θ
B
i for input phases corresponding to bits A and B. Applying the de-

coder will give either 0, a or 2a based on the cases (A,B) ∈ {(0, 0)}, {(a, 0), (0, a)} or {(a, a)}

respectively. The and encoder is given by Enc∧ [x1] = Enc∧ [x2] = ϕ0 and Enc∧ [x3] = ϕa,

and the or encoder is given by Enc∨ [x1] = ϕ0 and Enc∨ [x2] = Enc∨ [x3] = ϕa.

Likewise the xor encoder is given by Enc⊕ [x1] = Enc⊕ [x3] = ϕ0 and Enc⊕ [x2] = ϕa,

and the nand encoder by Enc∧̄[x1] = Enc∧̄[x2] = ϕa and Enc∧̄[x3] = ϕ0. These Boolean

gates furnish a universal gate set, from which arbitrary Boolean circuits, and thus arbitrary

computations, may be achieved in a fault-tolerant manner. As per the results of Section 2.2.3,

a fault-tolerant neural network assembled of these neural-Boolean gates satisfies the neural

network fault-tolerance theorem (excluding synaptic failure) with O
(︂
eO(σ2) log(1/ϵ)

)︂
physi-

cal neurons.

As an application of these neural-Boolean gates, we use them to implement a fault-

tolerant two-bit multiplier. In this construction, the individual Boolean gates of the two-bit

multiplier circuit are replaced with their corresponding neural-Boolean gates. We depict this

circuit in Fig. 2.10b. Here, the neural network takes in two 2-bit binary numbers b0b1 and

b′0b
′
1 and outputs their product, suffering an error that can be decreased arbitrarily error by

increasing the number of moduli. For this neural two-bit multiplier, we numerically estimate

89



the circuit size required to achieve a logical error rate ϵ with respect to the Gaussian noise

strength σ2. The results are shown in Fig. 2.10c and are in good agreement with the analytic

prediction of Eq. (2.81).

Reliability in the presence of Gaussian noise and synaptic failure

Next, we study fault-tolerance with respect to both modes of noise: synaptic failure and

additive Gaussian noise. Here, we consider a fault-tolerant neural nand gate, which sim-

plifies analysis as it is alone sufficient for universal Boolean computation. By comparing

the nand encoding function of Fig. 2.10a and the ReLU encoding function of Fig. 2.9b,

we see that the nand encoding function is the opposite of the ReLU encoding function.

Hence, we can transfer over the Gaussian noise analysis of Section 2.2.3 to the setting of the

neural nand gate, with the modification that we choose 0 to correspond to the True state

and a to the False state. This makes the ReLU encoding function equivalent to the direct

implementation of a nand gate.

Repeating the noisy logical neuron analysis of Eq. (2.77), but now with logical weights

ai = 1 and three decoder neurons, i.e. S = 3, as per the neural nand gate construction, we

find

fnand(k
∗) ∼ N

(︄
M · e

−6π2σ2
erf6(
√
2πσ)

29π3σ6
,

√︄
M

(︃
1

2
+ σ2 − ζ

)︃
+ σ2

)︄
, (2.84)

for

ζ =
e−12π2σ2

erf12
(︁√

2πσ
)︁
− 4π3σ6e−24π2σ2

erf6
(︁
2
√
2πσ

)︁
218π6σ12

. (2.85)

However, Eq. (2.78) remains unchanged, i.e.

fnand(k ̸= k∗) ∼ N
(︄
0,

√︄
M

(︃
1

2
+ σ2

)︃
+ σ2

)︄
. (2.86)

Repeating a similar analysis to estimate Pr[fnand(k
∗) < fnand(k ̸= k∗)] yields the number of

90



moduli

M(ϵ) ≈ 218π6e12π
2σ2
σ12 (4σ2 + 1) log

(︁
3
ϵ

)︁
erf12

(︁√
2πσ

)︁ ,

= O
(︂
eβσ

2

log(1/ϵ)
)︂
,

(2.87)

consistent with the results of Section 2.2.3.

To also account for synaptic failure with probability p, we must modify Eqs. (2.84)

and (2.86) to include the possibility of this discrete mode of noise. While a functional synapse

with additive Gaussian noise returns value y+ξ, a synaptic failure returns value 0. A careful

treatment of synaptic failure is provided in Appendix A.2, the result of which is a new set of

distributions f ′
nand(k ̸= k∗) and f ′

nand(k = k∗) which depend on both the strength of Gaussian

errors σ and on the probability of synaptic failures p. As with Eqs. (2.84) and (2.86),

f ′
nand(k ̸= k∗) is centered at zero with standard deviation O(

√
M), and f ′

nand(k = k∗) is

centered at O(M) with standard deviation O(
√
M).

In order to proceed, we must take a more careful treatment of the activation function

required for the error correction step of the logical neuron. In a biological discussion of the

grid code, winner-take-all dynamics are often used to describe the decoding process [SF11],

i.e. it is assumed that the only neuron activated is that representing the decoded value with

the largest signal, as per maximum likelihood decoding approach discussed in Section 2.2.3.

This decoding approach implicitly assumes communication between the decoding neurons,

e.g. through an argmax-type non-linearity. However, for transparency in the treatment of

noise, we demonstrate how a local step activation function, parameterized by a cutoff c, can

replace winner-take-all dynamics with a simpler decoder.

Because the separation of means of the correct and incorrect decoding distributions scales

as O(M) compared to their standard deviations which scale as O(
√
M), an appropriate choice

of threshold c is sufficient to distinguish between the two distributions with high probability

(for large M). Since there are three decoding neurons, a correct decoding requires the correct
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neuron sampled from f ′
nand(k = k∗) to exceed c and the two incorrect neurons sampled from

f ′
nand(k ̸= k∗) to lie below c. Evaluating such probabilities is straightforward due to f ′

nand(k)

being normally distributed in both cases. The probability that the logical nand neuron

succeeds is given by 1 − ϵ(σ, p), where ϵ(σ, p) is an error rate that depends on both the

strength of Gaussian errors σ and the probability of synaptic failures p. A more detailed

analysis of ϵ(σ, p), including its explicit expression, is provided in Appendix A.2.

To obtain a fault-tolerance threshold from this quantity, we apply the result of Evans

and Pippenger [EP98] for fault-tolerant Boolean formulas built from nand gates. Evans

and Pippenger present a construction for that Boolean formulas built from nand gates that

achieves fault-tolerance if and only if the nand probability of failure is below ϵ0 = (3−
√
7)/4.

We appeal to this bound to prove fault tolerance of neural nand gates, which is equivalent to

placing the grid code inside the code of Evans and Pippenger. While their nand construction

only considers errors as bit flips – i.e., an error is triggered if a gate that should return

0 returns a 1, and vice versa – errors in the neural nand gate are biased. This occurs

because synaptic failures bias neurons towards zero output; if all neurons fail, the neural

nand defaults to 0. However, biased errors are strictly easier to correct than unbiased

errors, and thus the threshold of Evans and Pippenger serves as an appropriate lower bound.

To ensure the lower bound is applied correctly, we report the error rate of the neural nand in

a manner that counts zero output forced by synaptic failure as an error.

We use both this bound and the expression for ϵ(σ, p) (see Appendix A.2) to analytically

determine a fault-tolerance threshold for p and σ at M = 105 moduli. We analytically plot

the neural nand failure probability ϵ(σ, p) in Fig. 2.11a, as well as a contour (the dashed

line) corresponding to the logical error being equal to the aforementioned threshold ϵ0 =

(3−
√
7)/4. This plot indicates a region of σ, p with logical error ϵ(σ, p) < ϵ0, within which

fault-tolerant computation is achievable, and a sharp transition to a region with ϵ(σ, p) > ϵ0

in which this fault-tolerant construction does not hold. In aggregate then, by appealing to

the universality of the nand gate, we have that for sufficiently small σ < σ0 and p < p0
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(where σ0 and p0 may be determined by the contour of Fig. 2.11a), our fault-tolerant neuron

may achieve fault-tolerant computation with polylogarithmic overhead, thus achieving neural

network fault-tolerance as introduced in Section 2.2.1.

Concatenating grid code on top of repetition code

Above, we constructed a neural nand that uses M moduli, where each modulus is stored

without redundancy. While our constructions above have assumed M = 105, the grid cells in

the mammalian cortex contain far fewer moduli, i.e. M ∼ 10 [FBB08]. However, in the bio-

logical setting, each modulus is itself encoded redundantly, with R ∼ 103 to 104 repetitions

of each modulus [FBB08]. This effectively concatenates the grid code on top of a repetition

code, which provides another means by which to decrease the strength of the additive Gaus-

sian noise. Roughly speaking, the central limit theorem reduces the variance σ2 to σ2/R,

which can drastically reduce the number of moduli required to suppress noise (Fig. 2.10c).

To move towards a more biologically feasible setting, we examine a concatenation of the grid

code on top of a repetition code. To develop a precise construction, this requires a couple

modifications to the above neural nand gate.

Considering the logical neuron in Fig. 2.9a, the main modification is to replace each

phase with R copies of the phase. Each successive layer then averages over the repetitions

of the previous layer, correcting for the synaptic failure probability. For example, consider

the neural nand gate with R copies of the first phase {θ(1)1,i }Ri=1 and R copies of the second

phase {θ(2)1,i }Ri=1. In the absence of the repetition code, the phase ϕ1 would be computed as

ϕ1 = θ
(1)
1 + θ

(1)
2 as the neural nand gate uses logical weights equal to 1. With the repetition

code and a synaptic failure probability p, we instead choose

ϕ1,j =
1

R
× 1

1− p
R∑︂
i=1

θ
(1)
1,i + θ

(2)
1,i , (2.88)

which may be implemented by selecting weights 1
R
× 1

1−p , where the factor 1
1−p accommodates

93



B

A

Figure 2.11: (A) The logical error of a neural nand gate using only the grid code. Also
plotted is an analytical fault-tolerance threshold corresponding to nand error probability
ϵ0 ≈ 0.09 required to achieve an arbitrarily low logical error using the optimal nand fault-
tolerance construction of Ref. [EP98]. The region in blue supports fault-tolerant compu-
tation, while the region in red suffers faulty computation. (B) Logical error of a neural
implementation of the nand gate using the grid code (M = 10 moduli) concatenated with
a repetition code (R = 3000 repetitions). Notably, the fault-tolerant regime where the error
falls below ϵ0 ≈ 0.09 (blue) encompasses biological error rates (white cross).
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for synaptic failure. This ensures that i.i.d. sampling of the Gaussian noise over R repetitions

will reduce the variance from σ2 to σ2/R.

The only remaining modification is to use a step function in the encoder to perform a

majority vote over repetitions in the final layer. The goal is to ensure that the character

of the noise remains the same after decoding, i.e. the noise after error correction should

be describable as a combination of logical bit flips and continuous Gaussian noise. As

in Section 2.2.4, consider a set of three three codewords x1 = 0, x2 = a, and x3 = 2a,

interpreting x1 as False and x2 as True. In the previously studied construction where R = 1,

the outputs of the error corrected nand gate corresponding to ϕj are simply multiplied by

weights 1/λj, 1/λj, and 0 respectively (see Eqs. (2.82) and (2.83) and Fig. 2.10a). In addition

to rescaling by 1
1−p to account for synaptic failures, we include an extra discretization step

in the encoding stage of error correction (as in Fig. 2.9a). This is accomplished by choosing

e(xk) to be a step function in the encoder of Eq. (2.69). If x1 is recovered by the decoder, we

re-encode e(x1) = 0; and if x2 is recovered by the decoder, we re-encode e(x2) = a/(1− p).

Since the weight associated with x3 is zero, the decoding neuron corresponding to x3 is not

connected to the following layer of neurons.

We conduct numerical experiments on this neural nand gate with redundantly encoded

moduli, using M = 10 moduli and R = 3 × 103 repetitions to remain in the biologically

relevant regime. As before, errors are biased due to synaptic failure setting neurons to zero;

hence, the threshold of Evans and Pippenger places a lower bound on the true threshold of

the neural nand, where zero output incurred by synaptic failure is appropriately counted

as a logical error. Since the central limit theorem performs poorly on the small number

of moduli M = 10 here, an analytic approximation like that for ϵ(σ, p) (Eq. (A.7)) does

not exactly hold. Instead, we numerically estimate the threshold as the contour where the

logical nand error crosses the Evans and Pippenger threshold ϵ0 = (3−
√
7)/4 ≈ 0.09. We

showcase results in Fig. 2.11b, with the threshold contour depicted as the white boundary

separating the blue region (which represents fault-tolerant computation) and the red region
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(which represents faulty computation). This indicates approximate thresholds σ0 ≈ 1.4

and p0 ≈ 0.7. Notably, the fault-tolerant regime encompasses the observed biological error

rates (depicted as a white cross) of σ ≈ 0.5 (given a mean of approximately 0.5, due to

random outputs in [0, 1]) and p ≈ 0.5 [SW94; HSM93; SK93], thus suggesting that the

grid code augmented with a repetition code suffices to enable reliable computation in faulty

organisms.

2.2.5 Concluding remarks

In this work, we have demonstrated fault-tolerant constructions for neural networks subject

to synaptic failure (Section 2.2.2) and additive Gaussian noise (Section 2.2.3). While synap-

tic failure is a digital error and may be treated with a traditional repetition code, Gaussian

noise represents an analog error, which we treat using the more sophisticated grid code that

emerged from studies of the mammalian cortex. We have further used these constructions

to build neural networks that can reliably implement any Boolean formula in the presence

of both errors modes (Section 2.2.4). In particular, for sufficiently small synaptic failure

probability p < p0 and Gaussian noise standard deviation σ < σ0, our construction en-

ables the computation of arbitrary Boolean formulas (and thus arbitrary computation) with

only polylogarithmic overhead, thus achieving neural network fault-tolerance as introduced

in Section 2.2.1. These results ultimately describe a phase transition from faulty neural

computation into fault-tolerant neural computation.

Our analyses only place a lower bound on the fault-tolerance threshold of neural compu-

tation; a more effective neural fault-tolerant construction may be exist. In particular, while

the neural network fault-tolerance theorem is phrased in terms of digital Boolean gates com-

posed of analog neurons, the fault-tolerant neural network size requirement of Section 2.2.3

(Eq. (2.81) to be precise) holds for a general construction of neural networks with Gaussian-

distributed weights. This standard form of artificial neural networks provides a more direct

analog approach to computation without introducing logical digital gates, and it may ulti-
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mately realize a more efficient path towards a threshold for the fault-tolerant phase of neural

computation.

Framed against the slowing pace of Moore’s Law and increasingly prohibitive energy

costs of deep learning [Bro+20; JEP+21], the remarkable efficiency of biological compu-

tation places central importance on a deep understanding of noisy analog systems. The

brain is a canonical example of a noisy analog system that is more energy-efficient than

traditional faultless computation. By demonstrating the existence of fault-tolerant neural

networks, our work provides a concrete path towards leveraging the favorable properties of

such analog neural networks in a neuromorphic setting [Ind+11; Ess+16; Wan+18]. These

results may also find use in novel hardware for machine learning acceleration, such as opti-

cal computing [McM23] and thermodynamic computing [Con+19], which may achieve more

resource-efficient computations at the expense of increased error. In aggregate, our findings

are suggestive of the power of naturally occurring error-correcting mechanisms: while the

presence of fault-tolerant computation in the brain remains uncertain without experimental

verification, we conclude that observed neural error correction codes are sufficient to achieve

arbitrarily reliable computation.
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Chapter 3

Fault-tolerance in quantum models of

computation

While the study of fault-tolerance in classical computation is largely a theoretical exercise

with little bearing on the state of the practice, hardware-level fault-tolerance is considered

a crucial component of quantum computer architectures and is a central thrust of modern

quantum computing research [CTV17]. Most quantum fault-tolerance research focuses on

designing reliable quantum circuits subject to noise at the gate-level. Recent work theoretical

work has on the quantum singular value transformation subroutine has improved our un-

derstanding of how more complicated subroutines may be constructed [Gil+19], potentially

providing an alternative way to synthesize quantum computations.

Again in keeping with the theme of studying models of error correction and fault-tolerant

design native to less conventional models of computation (Q1), we envision a fault-tolerant

computer composed of subroutines—rather than simple gates. To that end, we study an error

error correction scheme native to the quantum signal processing subroutine. We show that

certain systematic errors in quantum signal processing can be mitigated through redundancy

in time. We also rigorously discuss the limitations of such an error correction scheme without

access to additional resources. Though not a full hardware-level fault-tolerance scheme per se,
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our technique may be used in conjunction with traditional quantum circuit-based approaches

to achieve fault-tolerance. The introduction of Section 3.11, provides an overview of an error

correction scheme that works at the level of the algorithm. The remainder of the Chapter2

expands on the technical results and presents analysis in a novel diagrammatic notation for

the analysis of noisy quantum signal processing operators.

3.1 Introduction

Quantum signal processing (QSP) [LYC16; LC19] and its generalization, the quantum singu-

lar value transform (QSVT), have provided a framework unifying many important quantum

algorithms [Gil+19; Mar+21]. Under this framework, Grover’s search [Gro97; Gro98], the

quantum Fourier transform [Cop02]—the basis of Shor’s factoring algorithm [Sho94]—and

quantum simulation algorithms [CW12; Chi+21; LC17; Mar+21; Ber+15] are all described

by interleaving sequences of block-encoded signal rotations and single-qubit signal processing

rotations.

However, unless the QSVT operators are constructed on top of a fault-tolerant quantum

computer [Sho96; AB97; KLZ98; Pre98; Kit03], inherent experimental noise in quantum

devices limits the length of realizable QSP and QSVT sequences. Even with a fault-tolerant

quantum computer, errors may still arise due to inherent approximations and truncation

made in constructing the block-encoding of the subsystem of interest [CV20a; CV22]. These

observations lead to an important question: how does one correct errors in a typical QSVT

sequence? Of course one may employ existing gate-level error correction methods to every

gate in a QSVT circuit, but the unifying perspective of representing quantum operations as

polynomial transformations offers an entirely new possibility for studying error correction at
1This has appeared as “Error correction of quantum algorithms: arbitrarily accurate recovery of noisy

quantum signal processing,” by Andrew K. Tan, Yuan Liu, Minh C. Tran, and Isaac L. Chuang in arXiv
preprint arXiv:2301.08542 (2023) [Tan+23a].

2This has appeared as “Perturbative model of noisy quantum signal processing,” by Andrew K. Tan, Yuan
Liu, Minh C. Tran, and Isaac L. Chuang in Phys. Rev. A 107, 042429 (2023) [Tan+23b].
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the level of the algorithm.

To motivate the study of error correction at the algorithm-level, we introduce a noise

model for QSP describing a generic perturbative noise on the signal processing operation.

Our companion paper [Tan+23a] expands on the concept of algorithm-level error correction,

using the specific coherent error of Section 3.4 as an example, and provides numerical results

including an application to a modified Grover’s fixed point amplification algorithm. Here

we provide a full derivation of the results stated in [Tan+23a] using a novel diagrammatic

notation, and introduce a broader class of errors where this notation is useful. This general

error model has the advantage of being able to additionally capture incoherent errors.

The rest of the paper is organized as follows. In Section 3.2, we review the QSP frame-

work for quantum algorithms, introduce our general error model, and setup some useful

nomenclature. In Section 3.3, we introduce our diagrammatic notation. To demonstrate

the utility of our diagrammatic notation, we introduce a specific model of coherent error in

Section 3.4 using the notation to construct a scheme for error recovery. We conclude the

paper with a discussion of incoherent errors and directions for future work in Section 3.5.

3.2 Preliminaries

We start in Section 3.2.1 with a brief review of QSP and with a specification of the conven-

tional choices made in this paper. This is followed in Section 3.2.2 with the introduction of

our model of signal processing noise. Finally, we define the error channel in Section 3.2.3 and

introduce notation for the perturbative decomposition of its Kraus operators in Section 3.2.4.

3.2.1 Quantum Signal Processing

A number of conventions exist in the literature surrounding QSP primarily differing in the

choice of bases and signal operators. We specify our choices below, which correspond to the

‘Wx’ convention of [Mar+21].
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A length-d QSP operator is parameterized by phases ϕ⃗ = (ϕ0, . . . , ϕd) ∈ Rd+1,

U0(θ; ϕ⃗) = QSP(θ; ϕ⃗) ≡ eiϕ0Z
d∏︂
j=1

W (θ)eiϕjZ , (3.1)

where the signal operator is a rotation in the X-basis

W (θ) ≡ eiθX =

⎛⎜⎝ cos θ i sin θ

i sin θ cos θ

⎞⎟⎠ , (3.2)

and X, Y , and Z are the Pauli matrices. The subscript 0 on U0 is used to indicate that the

QSP is noiseless. A general length-d QSP sequence takes the form

U0(θ; ϕ⃗) =

⎛⎜⎝ P (a) iQ(a)
√
1− a2

iQ∗(a)
√
1− a2 P ∗(a)

⎞⎟⎠ , (3.3)

where a ≡ cos θ and P,Q ∈ C[a] are polynomials such that [Gil+19, Theorem 4]:

(i) deg(P ) ≤ d and deg(Q) ≤ d− 1;

(ii) P has parity-(d mod 2) and Q has parity-(d− 1 mod 2);

(iii) ∀a ∈ [−1, 1] : |P (a)|2 + (1− a)2|Q(a)|2 = 1.

We write U = JPU , QUK as a shorthand for Eq. (3.3), dropping the subscripts when the

QSP unitary is clear by context.

3.2.2 Noise model

We consider a generic noise in the signal processing basis. For length-d QSP with signal

processing rotations indexed by 0 ≤ j ≤ d, the error of a single signal processing rotation j

is characterized by a set of Kraus operators {N (j,ij)
ϵ } for ij ∈ {1, . . . ,Mj} where Mj is the

number of Kraus operators describing the channel at site j. In this work, we only consider
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Figure 3.1: Tensor diagram depicting the result of (a) a noiseless and (b) a noisy length-d
QSP operator parameterized by phases ϕ0, . . . , ϕd ∈ R on input state ρ. The noise on the
signal processing rotations is characterized by Kraus operators N (j,ij)

ϵ for 0 ≤ j ≤ d and
is contracted over Kraus operator index ij. In anticipation of the notation of Section 3.3,
we use circles to denote signal processing rotations and squares to denote signal rotations;
additionally, pentagons are used to denote Kraus operators and rectangles are used for
density matrices.
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errors in the signal processing basis with Kraus operators of the the form

N (j,ij)
ϵ = w(j,ij)

ϵ (ϕj)I + iz(j,ij)ϵ (ϕj)Z, (3.4)

for complex functions w(j,ij)
ϵ and z(j,ij)ϵ satisfying the completeness condition

∑︁
ij
N

(j,ij)†
ϵ N

(j,ij)
ϵ =

I for all j.

Note that in general, we allow the Kraus operators to depend on ϕj, but they are as-

sumed to be independent of θ. Further, to allow a perturbative analysis, we assume each

Kraus operator also depends on a parameter ϵ ≪ 1, and that all N (j,ij)
ϵ approach a value

proportional to identity as ϵ→ 0.

Given input ρ, such a noisy QSP produces output state

ρ′ϵ =
∑︂
i0,...,id

(︄
eiϕ0ZN (0,i0)

ϵ

d∏︂
j=1

W (θ)eiϕjZN (j,ij)
ϵ

)︄†

ρ

(︄
eiϕ0ZN (0,i0)

ϵ

d∏︂
j=1

W (θ)eiϕjZN (j,ij)
ϵ

)︄
, (3.5)

which is depicted in Fig. 3.1.

3.2.3 Error channel

We express the result of applying the entire noisy QSP sequence as a channel

Uϵ(θ; ϕ⃗)(ρ) = ρ′ϵ, (3.6)

with Kraus operators

M (i0,...,id)
ϵ = eiϕ0ZN (0,i0)

ϵ

d∏︂
j=1

W (θ)eiϕjZN (j,ij)
ϵ . (3.7)

In order to isolate the effect of the error, we define the error channel that produces
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erroneous state ρ′ϵ from the ideal result ρ′0

Eϵ(ρ′0) = Eϵ(U †
0ρU0) ≡ ρ′ϵ. (3.8)

Combining Eqs. (3.6) to (3.8), we find that the error channel can be written with Kraus

operators

E(i0,...,id)
ϵ = U †

0e
iϕ0ZN (0,i0)

ϵ

d∏︂
j=1

W (θ)eiϕjZN (j,ij)
ϵ . (3.9)

The error channel has the benefit of being nearly the identity channel in the perturbative

regime; that is as ϵ→ 0, we have E → id. As a result, all of its its Kraus operators approach

a value proportional to the identity matrix, and we can write its Kraus operators in the form

α(i0,...,id)I + ϵA(i0,...,id) +O(ϵ2), (3.10)

for α ∈ R where A is an operator of the form:

Definition 15 (Standard form, first-order). We say an operator A is in first-order stan-

dard form of degree-2d if it is written as a weighted sum over QSP operators generated by

conjugation of ei
π
2
Z

A = βd ×QSP(θ; (−ϕd − π/2,−ϕd−1, . . . ,−ϕ2,−ϕ1, π, ϕ1, ϕ2, . . . , ϕd−1, ϕd))

+ βd−1 ×QSP(θ; (−ϕd − π/2,−ϕd−1, . . . ,−ϕ2, π, ϕ2, . . . , ϕd−1, ϕd))

+ . . .

+ β1 ×QSP(θ; (−ϕd − π/2, π, ϕd))

+ β0 ×QSP(θ; (π/2)).

(3.11)

where βi ∈ R and ϕi ∈ R.

The component QSPs in the sum of Definition 15 take on a special form:
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Definition 16 (Error component, first-order). Let U be length-d QSP operator parameter-

ized by real phases (ϕ0, . . . , ϕd). Then a length-2r QSP V with 1 ≤ r ≤ d is said to be a

first-order error component of QSP U if it can be written in the following form:

V = QSP(θ; (−ϕd − π/2, . . . ,−ϕd−r+1, π, ϕd−r+1, . . . , ϕd)). (3.12)

Furthermore, it is assumed that no ϕi for i < d is a half-integer multiple of π; otherwise,

we can perform elision to simplify the diagram.

A generic error channel Kraus operator is depicted in Fig. 3.1 using the notation of

Section 3.3.

3.2.4 Canonical profile

It will often be useful to write an operator in the basis of Pauli matrices. The coordinates

of noisy QSP operators in the Pauli basis will generically be polynomials of cos θ.

Certain operators, such as the Kraus operators of noisy QSP error channels subject to

noise of the form in Eq. (3.4), can be written in a special form. We say that an operator Uϵ(θ)

admits a canonical expansion if we can write Uϵ = wϵ(θ)I + i[xϵ(θ)X + yϵ(θ)Y + zϵ(θ)Z], for

functions wϵ, xϵ, yϵ, zϵ of the form

wϵ(θ) = cos2 θ
∞∑︂
k=0

ϵk
∞∑︂

j=−1

P(0,k)
j cos2j(θ), (3.13a)

xϵ(θ) = sin(2θ)
∞∑︂
k=0

ϵk
∞∑︂
j=0

P(x,k)
j cos2j(θ), (3.13b)

yϵ(θ) = sin(2θ)
∞∑︂
k=0

ϵk
∞∑︂
j=0

P(y,k)
j cos2j(θ), (3.13c)

zϵ(θ) = cos2 θ
∞∑︂
k=0

ϵk
∞∑︂

j=−1

P(z,k)
j cos2j(θ), (3.13d)

and P(σ,k)
j ∈ R for all σ ∈ {0, x, y, z} and j, k ∈ Z. We call P the canonical profile of Uϵ. For
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convenience, we allow j ∈ Z and define P(x,k)
j = P(y,k)

j = P(z,k)
j−1 = 0 for all j < 0 and k.

Our parameterization, particularly the choice of factoring out sin(2θ) from the X and

Y components, cos2 θ from the Z component, and starting the sum of the Z component

at j = −1, is tailored to the diagrams which appear in the Kraus operators of QSP error

channels (we leave the proof of this to Appendix B.1). Note that for unitary Uϵ, the functions

satisfy the following completeness relationship wϵ(θ)
2 + xϵ(θ)

2 + yϵ(θ)
2 + zϵ(θ)

2 = 1 which

holds for all θ and ϵ.

3.3 Diagrammatic notation

In this Section, we develop a diagrammatic notation for visualizing quantum signal processing

unitaries and demonstrate their utility for reasoning about the Kraus operators of noisy QSP

channels.

First, we prove a number of results to motivate the notation and provide a number of

basic manipulations.

For QSP U of length-d parameterized by ϕ⃗ ≡ (ϕ0, . . . , ϕd), we will use notation ϕ⃗i:j to

denote the sub-sequence (ϕi, . . . , ϕj), and U (j) to denote the length-j QSP parameterized by

ϕ⃗0:j.

Lemma 17 (Unit steps). Let U0 = JP,QK be a length-d QSP unitary and k = deg(P ) ≤ d.

The unitary U ′
0 = U0e

iϕ0ZWeiϕ1Z = JP ′, Q′K is a length-(d + 1) QSP unitary with either

deg(P ′) = k − 1 or deg(P ′) = k + 1.

Proof. Computing the product, we find

P ′(a) = ei(ϕ0+ϕ1)
(︁
aP (a)−

(︁
1− a2

)︁
Q(a)e−2iϕ0

)︁
. (3.14)

Since deg(P ) = k by assumption and deg(Q) = k − 1, it must be that deg(P ′) ≤ k + 1.

Next, we prove that deg(P ′) ≥ k−1 by contradiction. Assume that deg(P ′) = w < k−1.
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We can then iterate our construction above choosing U ′′
0 = U ′

0e
−i(ϕ1−π

2
)ZWe−i(ϕ0−

π
2
)Z and,

by the above argument, we have deg(P ′′) ≤ w + 1 < k. But we have chosen the additional

phases such that U ′′
0 = U0I0 where I0 = QSP(θ; (ϕ0, π/2,−ϕ0+π/2)) is an unbiased operator,

i.e. I0 = I. Therefore, deg(P ′′) = k. This is a contradiction and so it must be that

deg(P ′) ≥ k − 1.

Furthermore, we have that deg(P ′) ̸= k by parity constraints. Therefore, the Lemma

follows.

Definition 18 (QSP degree peak). Let R be an unbiased QSP sequence of length d ≥ 2

parameterized by (ϕ0, . . . , ϕd) ∈ Rd+1. Suppose for some 0 < i < d we have deg (PR(i)) = r+1

and deg (PR(i−1)) = deg (PR(i+1)) = r. We will call position i a degree peak of R.

Lemma 19 (QSP elision). Let R be a QSP operator of length d ≥ 2 parameterized by

(ϕ0, . . . , ϕd). Position i is a degree peak of R if and only if ϕi = π
(︁
n+ 1

2

)︁
for some n ∈ Z.

Additionally, R is equivalent to a length-(d− 2) QSP parameterized by phases

(ϕ0, . . . , ϕi−2, ϕi−1 + ϕi + ϕi+1, ϕi+2, . . . , ϕd). (3.15)

We refer to this transformation as QSP elision.

Proof. Writing out the product, we find the following relationship between QSP polynomials

of R(i−1) and R(i):

PR(i) = aei(ϕi−1+ϕi)(PR(i−1) + e−2iϕi−1QR(i−1)) + Θ(ar−1). (3.16)

By assumption deg(PR(i)) = r+1 and therefore deg(PR(i−1) + e−2iϕi−1QR(i−1)) = deg(PR(i))−

1 = r.

Writing out the product for R(i+1), we find

PR(i+1) = 2a2 cos(ϕi)e
i(ϕi−1+ϕi+1)(PR(i−1) + e−2iϕi−1QR(i−1)) + Θ(ar). (3.17)
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Looking at the equation above and comparing with the PR(i) we find that if deg(PR(i+1)) = r,

it must be that cos(ϕi) = 0 or equivalently ϕi = π
(︁
n+ 1

2

)︁
for some n ∈ Z. The converse is

also true.

Assuming ϕi = π(n+ 1
2
), we find,

PR(i+1) = ei(ϕi−1+ϕi+ϕi+1)PR(i−1) , (3.18)

This transformation is equivalent to a Z-rotation by ϕi−1 + ϕi + ϕi+1 (a length-0 QSP). We

can therefore elide the original QSP sequence by replacing the three phases ϕi−1, ϕi, and

ϕi+1 with a single phase ϕi−1 + ϕi + ϕi+1, thus proving the Lemma.

A number of useful corollaries follow from Lemma 19 including the construction of inverse

QSP operators.

Corollary 20 (Inverse QSPs). Let U be length-d QSP operator parameterized by phases

(ϕ0, . . . , ϕd). The length-d QSP U ′ parameterized by (−ϕd + π
2
,−ϕd−1, . . . ,−ϕ1,−ϕ0 − π

2
) is

the inverse QSP sequence in the sense that UU ′ = U ′U = I.

Additionally, Lemma 19 gives us the following uniqueness result for QSP parameteriza-

tion:

Corollary 21 (Uniqueness of QSP parameterization). Let U = QSP(θ; ϕ⃗) be a length-d

QSP and let V = QSP(θ; ψ⃗) be a length-d′ QSP. Further assume such that no phase ϕi, ψj

is a half-integer multiple of π. Then U = eiχV for some global phase χ ∈ [0, 2π) if and only

if d = d′ and for all 0 ≤ i ≤ d, ψi − ϕi = πni for some ni ∈ Z. Furthermore, either χ = 0 or

χ = π.

Proof. The ⇐= direction is a straightforward consequence of eiπZ = −I and so we focus

on =⇒ .

Since by assumption, neither ϕ⃗ nor ψ⃗ contain a half-integer multiple of π, Lemma 19

implies that neither contain any degree peaks and therefore deg(PU) = d and deg(PV ) = d′.
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As a result, the QSP unitaries must be of the same length U = V =⇒ PU = PV =⇒

deg(PU) = deg(PV ) =⇒ d = d′. We can therefore limit our consideration to the case of

d = d′.

Now we show that the phases must be equivalent up to an integer multiple of π inductively.

First consider the case where d = 0. In this case, U = eiχV =⇒ eiϕ0Z = eiχeiψ0Z =⇒ ϕ0 =

ψ0 + πn0 for some n0 ∈ Z; furthermore, χ = 0 for n0 even and χ = π for n0 odd. Thus the

Lemma is satisfied for d = 0.

Assuming the Lemma for QSP unitaries of length-d, we show that it holds for QSP

unitaries of length-(d + 1). Consider QSPs U = QSP(θ; ϕ⃗) and V = QSP(θ; ψ⃗) each of

length-(d + 1) satisfying the conditions of the Lemma. Given that U = V , we reduce U to

a length-d QSP by right-multiplying both sides by a QSP inverse (Corollary 20) of its final

signal processing step (Weiϕd+1Z)−1 = e−i(ϕd+1−π
2
)ZWe−i

π
2
Z . The result is

U = V, (3.19)

=⇒ QSP(θ; ϕ⃗0:d+1) = QSP(θ; ψ⃗0:d+1), (3.20)

=⇒ QSP(θ; ϕ⃗0:d+1)e
−i(ϕd+1−π

2
)ZWe−i

π
2
Z = QSP(θ; ψ⃗0:d+1)e

−i(ϕd+1−π
2
)ZWe−i

π
2
Z , (3.21)

=⇒ QSP(θ; ϕ⃗0:d) = QSP(θ; {ψ0, . . . , ψd, ψd+1 − ϕd+1 + π/2,−π/2}). (3.22)

On the left-hand side of the final equation is a QSP unitary of degree-d; by the inductive

hypothesis, it must be the case that the QSP unitary on the right-hand side, which is of

length-(d + 2), is also of degree-d. This is only possible if we can perform elision at the

next-to-last position. By Lemma 19 this requires ψd+1 − ϕd+1 +
π
2
= π(nd+1 +

1
2
) for some

nd+1 ∈ Z which implies ψd+1 − ϕd+1 = nd+1π. Furthermore, we find χ ∈ {0, π} again by

noting that eiπZ = −I. Thus proving the inductive step ϕd+1 − ψd+1 = 2πmd+1 and by

extension, the Lemma.

We can summarize the results of this section using a concise diagrammatic notation. An

example of such a plot is given in Section 3.3 and has several notable features:
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Figure 3.2: Visualization of (a) a length-5 QSP sequence parameterized by (ϕ0, · · · , ϕ5) and
(b) its length-3 elided form by the result of Lemma 19. We will refer to such plots in general
as QSP degree plots, often omitting the vertical axis labels to improve legibility.

• Arbitrary Z-rotations are represented by open circles, and we use

open triangles to plot QSP phases that are a half-integer multiple of

π to distinguish degree-peaks.

• Markers with solid fill are used to indicate additional rotations by π/2.

Markers with checkerboard fill are used to indicate ϵ-noisy rotations.

• Signal operators are represented by solid lines.

• The vertical axis is used to plot the degree of the polynomial PU(i) at

position i;

• By Lemma 17, each layer of signal processing either increases or de-

creases the degree of the polynomial Pi(a) = ⟨0|U(θ, ϕ⃗0:i) |0⟩ by ex-

actly one.

• Finally, Lemma 19 provides us with a way of simplifying QSP di-

agrams with degree-peaks through elision. This is depicted in Sec-

tion 3.3.

A more involved application of elision can be found in Fig. 3.3, where the diagram-

matic notation is used to represent a Kraus operator (Eq. (3.10)) of the error channel of
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Figure 3.3: QSP degree diagram decomposition of generic error channel Kraus operator for
a length-d QSP parameterized by phases ϕ0, . . . , ϕd ∈ R in our noise model for α ∈ R and
all βj ∈ R.

Section 3.2.3.

3.4 A model of coherent error

We consider a model of coherent errors to demonstrate the utility of the notation for reasoning

about error correction.

In this error model, we assume that the signal processing operators under- or over-rotate

by a fixed multiplicative factor ϵ: ϕ ↦→ ϕ(1 + ϵ) for all ϕ. While ϵ is unknown a priori,

we assume that it is constant throughout the application of the sequence and that it is

small, ϵ ≪ 1, so that we may expand errors in orders of ϵ. In this case, the error can be

characterized by a single Kraus operator

N (j,1)
ϵ = eiϵϕjZ , (3.23)

at each site 0 ≤ j ≤ d. Such an error may be due to imperfections on the hardware control

and is akin to models systematic errors which are mitigated using composite pulses [BHC04;

LYC14; Lev86].

Using the notation developed in Section 3.3, we first perform a perturbative analysis of
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both the error channel under this model (Section 3.4.1) and the error channel of possible

recovery operations (Section 3.4.2). Next, we show that the most general form of recovery is

impossible without additional resources (Section 3.4.3). Working around this constraint, we

show that a weaker form of recovery is possible and provide an explicit construction along

with an upperbound on the length of the recovered operator (Section 3.4.4). Finally, allowing

an additional assumption, we argue a lowerbound on the length of recovered operator which

is tight for first-order recovery (Section 3.4.6).

This Section complements our companion paper [Tan+23a], providing the full derivation

of stated results using the notation introduced in Section 3.3. The numbering of Theo-

rems in this Section is consistent with that in [Tan+23a]: Theorems 3 to 6 correspond to

Theorems 1 to 4 in [Tan+23a].

3.4.1 A perturbative analysis of the error channel

For this simple model of coherent errors, the QSP error channel can be characterized by

a single unitary Kraus operator which we call its error operator Eϵ ≡ U †
0Uϵ (we call the

canonical profile of Eϵ the error profile).

We now perform a perturbative analysis of the error operator under this noise model.

Expanding a noisy Z-rotation in orders of ϵ,

eiϕ(1+ϵ)Z = eiϕZ
∞∑︂
k=0

ϵkϕkei
πk
2
Z . (3.24)

Substituting into Eq. (3.1), we obtain

Uϵ(θ; ϕ⃗) = QSPϵ(θ; ϕ⃗) ≡
(︄
eiϕ0Z

∞∑︂
k0=0

ϵk0ϕk0ei
π
2
k0Z

)︄
d∏︂
j=1

⎡⎣W (θ)

⎛⎝eiϕjZ ∞∑︂
kj=0

ϵkjϕkjei
π
2
kjZ

⎞⎠⎤⎦.
(3.25)
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Figure 3.4: Diagrammatic representation of an error operator for a length-3 QSP parameter-
ized by ϕi ∈ R. (a) Error operator Eϵ = U †

0Uϵ. Checkerboard fill indicates ϵ-noisy rotations
(note the peak phase is only partially noisy). (b) Analysis of one term in the first-order
perturbative expansion of the error operator corresponding to an over-rotation error of the
ϕ1 phase and elided form. The location of π

2
over-rotation errors is marked by filled markers.

(c) Expansion of the error operator showing all diagrams to first-order with corresponding
weights.

Rewriting in orders of ϵ,

Uϵ(θ; ϕ⃗) = U0 + ϵ
(︁
ϕ0e

i(ϕ0+
π
2
)ZWeiϕ1ZW . . .WeiϕdZ

+ϕ1e
iϕ0ZWei(ϕ1+

π
2
)ZW . . .WeiϕdZ

+ . . .

+ϕde
iϕ0ZWeiϕ1ZW . . .Wei(ϕd+

π
2
)Z
)︁

+O(ϵ2).

(3.26)

The first-order term is a sum of d+ 1 QSP unitaries, each a copy of the noiseless QSP with

a π/2 over-rotation at location j weighted by ϕj for each index j. Likewise, the kth-order

term is a sum of (d + 1)k QSP unitaries corresponding to all possible ways to to insert k

over-rotations by π
2

(including multiple over-rotations at the same index).

To obtain the error operator Eϵ, we left-multiply by U †
0 which can be written as a noiseless
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QSP per the construction of Corollary 20. Each of these sequences can be simplified using

repeated application of Lemma 19. To first-order, the result is

Eϵ = I + ϵ (ϕ0 ×QSP(θ; (−ϕd − π/2,−ϕd−1, . . . ,−ϕ2,−ϕ1, π, ϕ1, ϕ2, . . . , ϕd−1, ϕd))

+ϕ1 ×QSP(θ; (−ϕd − π/2,−ϕd−1, . . . ,−ϕ2, π, ϕ2, . . . , ϕd−1, ϕd))

+ . . .

+ϕd−1 ×QSP(θ; (−ϕd − π/2, π, ϕd))

+ϕd ×QSP(θ; (π/2))) +O(ϵ2).

(3.27)

Note that the first-order expansion in Eq. (3.27) consists of a weighted sum of even length

QSP unitaries of a special form, which we generalize in Definition 15. Analogous calculations

show that, the higher-order terms in the expansion are likewise weighted sums over QSP

unitaries of even length. Therefore by Corollary 41, the error operator Eϵ admits a canonical

expansion.

An example in diagrammatic form is provided for a general length-3 QSP in Fig. 3.4.

3.4.2 A perturbative analysis of recovery operators

Given a noisy QSP Uϵ, we seek a recovery operator Rϵ, itself a noisy QSP operator, such that

their product is UϵRϵ is ‘less noisy’ in a sense that will be defined precisely in Section 3.4.4.

Since our recovery operation should leave the state unchanged (up to a global phase) as

ϵ→ 0, we define the natural class of degree-0 operators and perform a perturbative analysis

using the diagrammatic notation of Section 3.3.

Definition 22 (Degree-0 operator). We call a QSP unitary Uϵ degree-0 to order k ≥ 1 if it

can be written

Uϵ = ei(z0+z1ϵ+O(ϵ2))Z+iϵk[(x+O(ϵ))X+(y+O(ϵ))Y ], (3.28)

for some real x, y, z1 independent of ϵ but possibly functions of θ, and z0 ∈ R. Additionally,

we call any QSP operator satisfying Eq. (3.28) for some k ≥ 1 degree-0. Equivalently, a QSP
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Figure 3.5: Diagrammatic analysis of an irreducible degree-0 QSP parameterized by χ = 0,
ηi ∈ R andm ∈ Z (compare with Fig. 3.4). (a) Diagrammatic representation of an irreducible
degree-0 QSP Rϵ. A detailed analysis is performed for over-rotation errors occurring at select
locations (labels 1–3) corresponding to errors at degree-2 (dashed line). Checkerboard fill
indicates ϵ-noisy rotations. (b) Analysis of diagrams resulting from over-rotation errors at
locations labeled in previous sub-figure after elision. The location of π

2
over-rotation errors

is marked by filled markers. (c) Expansion of the recovery operator showing all diagrams to
first-order with corresponding weights. Notice that weights are integer multiples of π/2.

operator Uϵ is degree-0 if U0 = eiz0Z for some z0 ∈ R.

Definition 23 (Unbiased operator). We call a QSP unitary Uϵ unbiased to order k ≥ 1 if it

is degree-0 and U0 = I.

To this end, we study the properties of degree-0 QSP operators, and in particular, the

properties of their irreducible building blocks:

Definition 24. A degree-0 QSP unitary of length d is called irreducible if deg(P (i)) > 0 for

all 0 < i < d; otherwise a degree-0 QSP is called reducible.

We start with the generic form of a degree-0 length-2 QSP unitary. Due to the Lemma 17,

all degree-0 QSP unitaries of length-2 are irreducible. Further, the following is a consequence

of Lemma 19:
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Corollary 25. A length-2 sequence QSP(θ; (ϕ0, ϕ1, ϕ2)) is degree-0 if and only if

ϕ0 = χ+

(︃
ϕ+ π

(︃
2m+ n+

1

2

)︃)︃
, (3.29)

ϕ1 = π

(︃
n+

1

2

)︃
, (3.30)

ϕ2 = ϕ, (3.31)

for some ϕ, χ ∈ R and n,m ∈ Z.

We can extend degree-0 QSP operations through the following operation:

Definition 26 (The conjugation super-operator). Given η ∈ R and m,n ∈ Z, we use Cm,n,η
to denote the super-operator that maps a length-d sequence QSP(θ; ϕ⃗) to

Cm,n,ηQSP(θ; ϕ⃗) ≡ e−i(η+π(2m+n+ 1
2
))ZWeiπ(n+

1
2
)ZQSP(θ; ϕ⃗)WeiηZ , (3.32)

which is a length-(d+2) QSP sequence with phase angles −(η+ π(2m+ n+ 1
2
)), π(n+ 1

2
) +

ϕ0, ϕ1, . . . , ϕd, and η.

Note that the irreducible length-2 degree-0 QSP of Corollary 25 can be written as

QSP(θ; (ϕ0, ϕ1, ϕ2)) = eiχZCm,n,ϕI. (3.33)

The conjugation Cm,n,η super-operator appears naturally in our analysis of the error

operator and subsequent construction of the recovery sequence. The effect of conjugation on

an operator’s canonical profile is detailed in Remark 43.

The conjugation operation is unique in the following sense:

Lemma 27 (Decomposition of irreducible degree-0 QSP unitary). An irreducible degree-0

QSP sequence R of length d ≥ 2 parameterized by phases ϕ⃗ ∈ Rd+1 can be written as

R = eiχZCm,n,ϕdR′ for some χ ∈ R and m,n ∈ Z, and unbiased QSP R′ of length-(d− 2).
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Proof. If d = 2, then R = eiχZCm,n,ϕ2I for some χ ∈ R and m,n ∈ Z by Corollary 25.

For d > 2, we proceed by repeated application of the QSP elision operation (Lemma 19),

each time reducing the length of R by 2. In particular, since the unbiased QSP R is irre-

ducible, it has a degree peak at location 2 ≤ i ≤ d − 2. Performing elision about position

i, we are left with the length-(d − 2) irreducible degree-0 QSP sequence. Notably, neither

phases ϕ0 nor ϕd are affected by performing elision at location 2 ≤ i ≤ d−2. After (d/2−1)

elision steps, we are left with a length-2 QSP parameterized by QSP(θ; (ϕ0,
∑︁d−1

i=1 ϕi, ϕd)),

where by Lemma 19, we have that

d−1∑︂
i=1

ϕi = π

(︃
n+

1

2

)︃
, (3.34)

for some n ∈ Z.

Therefore QSP(θ, ϕ⃗1:d−1) = eiπ(n+
1
2
)Z or equivalently e−iπ(n+

1
2
)ZQSP(θ, ϕ⃗1:d−1) = I. Thus

we can rewrite the original QSP in the desired form R = eiχZCm,n,ϕdR′ for χ ∈ R and unbiased

length-(d− 2) QSP R′ ≡ QSP(θ; (ϕ1 − π(n+ 1
2
), ϕ2, . . . , ϕd−1)) proving the Lemma.

A degree-0 operator is a rotated version of its own error operator. Therefore Rϵ can be

written a form similar to that of Definition 15. We aim to show that for the case of degree-0

Rϵ, these weights are additionally integer multiples of π
2

save for the degree-0 term.

First, consider the case of irreducible degree-0 QSP R = QSP(θ; (ϕ0, . . . , ϕd)). Consider

the contributions to the first-order error from over-rotations at the first and last positions

(i.e. assume for now errors do not affect positions 0 < i < d). By Lemma 27 we can write

irreducible

R = eiχZCm,n,ϕdR′ = eiϕ0ZWeiπ(n+
1
2
)R′WeiϕdZ , (3.35)

for R′ unbiased χ ∈ R and m,n ∈ Z. Over-rotation at the first and last positions occur at

degree-0 and therefore both produce an degree-0 error term equivalent to ei(χ+
π
2
)Z and the

overall weight of the degree-0 diagram is ϕ0 + ϕd = χ− π
2
(4m+ 2n+ 1). The same analysis

holds for the unbiased R′, however ϕi+ϕd−i must be an integer multiple of π/2 for 0 < i < d
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by Lemma 19, and therefore the error diagram must have weight that is a integer multiple

of π/2. Furthermore, the weights are preserved by the linearity of error profile to first-order

under conjugation and product. Thus, the same holds for higher degree error diagrams.

Now consider a general degree-0 QSP R decomposed into r constituent irreducible com-

ponents,

R = eiχ1ZJ (1)eiχ2ZJ (2) . . . eiχrZJ (r), (3.36)

where χ1, . . . , χr ∈ R, and each J (j) is an irreducible unbiased QSP. We can in general write

an degree-0 QSP Rϵ up to first-order in ϵ as follows:

Rϵ = eiχZ

[︄
I +

(︄∑︂
i

cie
iπ
2
Z +

π

2

∑︂
i

diUi

)︄
+O(ϵ2)

]︄
, (3.37)

for χ = χ1+ · · ·+χr, ci ∈ R, di ∈ Z and QSP unitaries Ui of even length. Additionally, each

Ui is of the form

Ui = Cmi,d,ni,d,ηi,d . . . Cmi,1,ni,1,ηi,1e
iπ
2 . (3.38)

A diagrammatic analysis is provided for an example length-8 irreducible degree-0 QSP

in Fig. 3.5.

3.4.3 Z-error is not correctable in general

A natural question to ask is how one should define recovery and if it is possible, given access

only to such noisy signal processing rotations. First, we show the impossibility of the most

general form of error correction:

Theorem 3 (No correction of Z-error). Let Uϵ be a length-d noisy QSP unitary parameterized

by (ϕ0, . . . , ϕd) ∈ Rd+1. For general phases ϕi, no noisy QSP unitary U ′
ϵ exists such that for

any k ≥ 1, for all states |ψ⟩,

|⟨ψ|U ′
ϵ|ψ⟩|2 = |⟨ψ|U0|ψ⟩|2 +O(ϵk+1). (3.39)
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The condition given by Eq. (3.39) of Theorem 3 is equivalent to requiring

U ′
ϵ = U0e

iχeiϵ
k+1(xX+yY+zZ+O(ϵ)), (3.40)

for some global phase χ ∈ R and x, y, and z functions of θ.

We continue with a few results needed in our proof of the impossibility result.

Lemma 28 (Bottom-degree term of degree-0 QSP). Let Uϵ be a degree-0 QSP with U0 = eiχZ

for χ ∈ R (as required by Eq. (3.40)). Then the bottom-degree Z term in its error profile P

to first-order in ϵ is

P(z,1)
−1 = (χ+mπ) cosχ, (3.41)

for some m ∈ Z.

Proof. The expansion of a general degree-0 QSP U to first-order is given by Eq. (3.37).

Remark 43 gives us the lowest degree Z coefficients in the canonical expansion of each

constituent diagram: the contribution to the lowest degree Z term is given by the bottom-

left component of a product of the B matrices of Eq. (B.9), which for all degree ≥ 2 diagrams

is 1 and for the degree-0 diagram ei
π
2
Z is−1. After a careful accounting of the weights, we find

that the sum from all diagrams to this lowest degree term is χ+mπ for m ∈ Z. Finally, the

overall eiχZ rotation of the first-order term in Eq. (3.37) results in an overall multiplicative

factor of cosχ on the expansion by Remark 42. Together, this results in R(z,1)
−1 of the form

required by the Lemma.

We are now ready to prove Theorem 3.

Proof. First we show that we cannot fully recover a noisy length-0 QSP Uϵ ≡ eiϕ0(1+ϵ)Z

to first-order for general ϕ0 ∈ R. For full recovery, the QSP must satisfy Eq. (3.40), and

therefore either U ′
0 = eiϕ0Z or U ′

0 = ei(ϕ0+π)Z = −eiϕ0Z ; therefore it U ′ must be a degree-

0 QSP. We see immediately that its bottom-degree term, given by Lemma 28, cannot be

corrected in general (i.e. unless ϕ0 is an integer multiple of π/2).
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Now we generalize the result for QSPs of length d > 0. For contradiction, suppose

that there exists an error correction function EC : Rd+1 → Rd′+1 for some d′ > d that is

capable of mapping an arbitrary length-d QSP sequence to one that is corrected to first-

order. That is, suppose for any ϕ⃗ ∈ Rd+1 parameterizing QSP Uϵ = QSPϵ(θ, ϕ⃗) we have

ψ⃗ = EC(ϕ⃗) and U ′
ϵ = QSPϵ(θ, ψ⃗) satisfying Eq. (3.40). We can simulate a length-0 QSP

operator QSP(θ, (ϕ0)) by appending a recovered length-d QSP and a recovered version of its

inverse (Corollary 20). For concreteness, we can choose phases ϕ⃗1, ϕ⃗2 ∈ Rd+1,

ϕ⃗1 = (−π/2, 0, . . . , 0, π/2), (3.42)

ϕ⃗2 = (0, . . . , 0, ϕ0). (3.43)

Let Rϵ = QSPϵ(θ, ϕ⃗1) and Sϵ = QSPϵ(θ, ϕ⃗2). Further let ψ⃗1 = EC(ϕ⃗1), ψ⃗2 = EC(ϕ⃗2), and

R′
ϵ = QSPϵ(θ, ψ⃗1) and S ′

ϵ = QSPϵ(θ, ψ⃗2). Note that by construction R0S0 = eiϕ0Z as desired

and therefore R′
0S

′
0 = eiϕ0Z . Further, if both R′

ϵ and S ′
ϵ satisfy Eq. (3.40) for k ≥ 1, then

resulting length-2d′ QSP R′
ϵS

′
ϵ will also be fully corrected to order k. This contradicts our

original result for d = 0 and therefore EC cannot exist for any d ≥ 0 thus proving the

Theorem.

3.4.4 First-order recovery

In light of the impossibility result presented in Section 3.4.3, we shift our attention to XY

error recovery. We show that it is possible to perform this restricted form of recovery and

make use of the tools developed in Section 3.4.2 to provide a general construction for XY

recovery operators:

Theorem 4 (Recoverability). Given any noisy QSP operator Uϵ(θ) of length d and an integer

k ≥ 1, there exists a recovery sequence Rϵ(θ) satisfying

|⟨0|UϵRϵ|0⟩|2 = |⟨0|U0|0⟩|2 +O(ϵk+1), (3.44)
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Figure 3.6: Diagrammatic representations of the XY -equivalence of counter-rotated dia-
grams.

for all θ.

The condition given by Eq. (3.44) of Theorem 4 is equivalent to requiring

U ′
ϵ = U0e

i(χ+O(ϵ))Z+ϵk+1((x+O(ϵ))X+(y+O(ϵ))Y ), (3.45)

for some χ ∈ R, and x, y, and z functions of θ.

We make the following definition in light of Eq. (3.45):

Definition 29 (XY -equivalence). We say that two operators U = w(θ)I+i[x(θ)X + y(θ)Y + z(θ)Z]

and V = w′(θ)I + i[x′(θ)X + y′(θ)Y + z′(θ)Z] are XY -equivalent if x(θ) = x′(θ) and y(θ) =

y′(θ). We denote this U ∼ V .

We provide an explicit construction using unbiased recovery operators (i.e. R0 = I). An

upperbound on the length of the recovery operator Rϵ will be a corollary of our construction:

Theorem 5 (Upper bound on recovery length). Given any noisy QSP operator Uϵ(θ) of

length d with c distinct phases (up to factors of 2π) and an integer k ≥ 1, there exists a

recovery sequence Rϵ(θ) satisfying

|⟨0|UϵRϵ|0⟩|2 = |⟨0|U0|0⟩|2 +O(ϵk+1), (3.46)

for all θ. Furthermore, there exists a QSP operator satisfying the above with length at most

O(2kck(k+1)/2d).
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To show Theorem 4, we provide an explicit construction for Rϵ.

The irreducible components of our recovery operator will be length-2r recovery operators

constructed by conjugating the identity operator. We make use of an integral degree of

freedom, namely the freedom to over-rotate by factors of 2π,

QSPϵ(θ; (−ϕd − π/2,−ϕd−1, . . . ,− ϕd−r+1, π/2, ϕd−r+1 + 2πmd−r+1, . . . , ϕd + 2πmd)) =

I + ϵ
(︂
−nπ

2
×QSP(θ; (π/2))

+ 2πmd ×QSP(θ; (−ϕd − π/2, π, ϕd)))

+ 2πmd−1 ×QSP(θ; (−ϕd − π/2,−ϕd−1, π, ϕd−1, ϕd)))

...

+
nπ

2
×QSP(θ; (−ϕd − π/2, . . . ,−ϕd−r+1, π, ϕd−r+1, . . . , ϕd))

)︂
+O(ϵ2).

(3.47)

for some n ∈ Z and mi ∈ Z to be specified later.

There is a striking similarity between the error operator expansion in Eq. (3.27) and the

recovery component of Eq. (3.47) which are visualized in Fig. 3.4 and Fig. 3.5 respectively.

We take advantage of this fact to construct our recovery operator.

To be concrete, consider a noisy QSP Uϵ = QSP(θ; (ϕ0, . . . , ϕd)). Its error operator Eϵ

to first-order can be decomposed into a sum of even-length QSPs from length 0, 2, . . . , 2d

(Eq. (3.27)). The length-2r diagram is in general is

ϕd−r ×QSP(θ; (−ϕd − π/2, . . . ,−ϕd−r+1, π, ϕd−r+1, . . . , ϕd)). (3.48)

The length-2r recovery operator of the form in Eq. (3.47) can be chosen to match this by

setting all mi = 0. Since canonical profiles add to leading-order Remark 46, we can simply

add an additional π/2 shift added to the final phase ϕd ↦→ ϕd + π to negate the X and Y
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components of the recovery operator at first-order: this can be verified using Remark 42.

The only remaining challenge is to match the ϕd−r weight of the degree-2r term in

Eq. (3.48). Here we make use of the following trigonometric identity

⎛⎜⎝ sin(η + δ)

− cos(η + δ)

⎞⎟⎠+

⎛⎜⎝ sin(η − δ)

− cos(η − δ)

⎞⎟⎠ = 2 cos(δ)

⎛⎜⎝ sin(η)

− cos(η)

⎞⎟⎠ . (3.49)

By duplicating the length-2r sequence in Eq. (3.47) and counter-rotating each copy by an

amount δ/2, we can construct a sequence that is XY -equivalent to a re-scaled version of

the original (shown diagrammatically in Fig. 3.6). To fully cancel the length-2r diagram in

Eq. (3.48), we append two length-2r recovery QSPs

C0,n,ϕd+π/2±δC0,n,ϕd−1
. . . C0,n,ϕd−r+1

I, (3.50)

choosing n ∈ Z such that there is a solution to δ = 1
2
cos−1

(︂
ϕd−r

nπ

)︂
. This can be verified using

Remark 42 and is represented diagrammatically in Fig. 3.6).

In summary, we have canceled the degree-2r diagram using a length-4r QSP operator.

We repeat this for each diagram of length-2r in the first-order expansion of the error operator

for r ∈ {2, 4, . . . , 2d}; the length-0 term contributes only to the Z component of the error,

which can be ignored. Overall, the recovery of each diagram takes a length Θ(r) QSP and

we need to correct Θ(d) diagrams, resulting in a final recovery operator of length Θ(d2).

For a generic length-d QSP with all phases distinct, we cannot do better using this

method, as we still need to perform counter-rotation d times. But for a length-d QSP

operator with c distinct phases, we can group diagrams that are scaled by the same amount;

each group can be corrected using a single length-2r diagram by appropriately choosing mi

and n. Overall, if there are c distinct phases, there will be c distinct groups, each requiring

a separate counter-rotated diagram of length Θ(d). Note that we consider phases to be

equivalent if they differ by an integer multiple of 2π as these can be matched within the
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same group by an appropriate choice of mi and n. Thus the overall complexity using this

scheme yields the improved Θ(cd) for QSP diagrams with high phase degeneracy. As an

example, the first-order recovery phases for the special case of a QSP with one unique phase

are provided in Remark 53. This shows Theorems 4 and 5 for k = 1.

3.4.5 Sketch of recovery procedure

We now provide a high-level summary of the first-order recovery construction of the preceding

sections and sketch out the proof of Theorems 4 and 5 for k > 1.

Expanding the error operator in orders of ϵ, we find that the contribution at each or-

der can be written as a sum of QSP operators: the first-order components are of the form

Definition 16. A similar expansion shows that irreducible degree-0 operators (Definition 24)

can be expanded in a similar form except for the fact that the coefficients in a degree-0

operator’s first-order expansion must be integer multiples of π/2 whereas the coefficients

in the expansion of error operators are unconstrained. These expansions are shown dia-

grammatically for error operators in Fig. 3.4 and irreducible degree-0 operators in Fig. 3.5.

A first-order recovery operator satisfying Eq. (3.45) can be constructed by concatenating

irreducible degree-0 operators making use of the counter-rotation trick of Eq. (3.49) for con-

tinuous rescaling. One counter-rotation is required for each unique phase in the original

QSP with each counter-rotated unit a QSP of length Θ(d). Generically this gives an Θ(d2)

first-order recovery procedure, but special cases, i.e. QSPs with high phase degeneracies can

admit shorter recovery operators. A QSP with c unique phases can be recovered to first-

order with a recovery operator of length Θ(cd). Grover’s algorithm is a notable example of

a QSP with high phase degeneracy (see Remark 53).

Subsequent recovery occurs order-by-order, making use of the additive property of leading-

order terms (Remark 46). The higher-order expansions of both error and recovery operators

can be written in terms of the generalized error components of Definition 49 (up to XY -

equivalence). Higher-order recovery units are defined in Remark 51 in analogy with the
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Figure 3.7: Diagrammatic representation of one anti-conjugation by step in the proof of
Theorem 6 for a length-d QSP. The left-hand side depicts the first-order error terms and
the right-hand side depicts a proposed set of recovery diagrams. Only the highest two
degree terms in each sequence are shown as lower-degree diagrams cannot interfere assuming
sufficiently large d and f(a) = O(1). The anti-conjugation by C−1

0,ϕd
decreases the degree all

terms of the error operator by 2 (save for degree-0 term which does not affect the analysis);
in order for the right-hand side to match, it must be that ηi,d = ϕd for all recovery diagrams
i.

irreducible unbiased operators of Eq. (3.47) used for first-order recovery. The fact that we

use unbiased operators for recovery places additional constraints on the coefficients of the

recover operator’s expansion which may be overcome through repetition of recovery units

and judicious application of the counter-rotation trick. The key bottleneck in the required

length of the recovery sequence is again the number of required counter-rotations, which ulti-

mately yields the result of Theorem 5. A more detailed analysis of the higher-order recovery

construction is left to Appendix B.2.

3.4.6 Lower bound

We now show that, given an additional assumption, the length of our recovery sequence for

first-order recovery is asymptotically optimal.
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Theorem 6 (Lower bound on recovery length). There exists a length-d QSP sequence Uϵ

such that for any XY recovery QSP Rϵ of order k ≥ 1 satisfying

U †
0UϵRϵ = I + ϵf(a)ei

π
2
Z +O(ϵ2), (3.51)

for function f(a) = O(a0), Rϵ has length Ω(d2).

The assumption on the first-order Z component in Theorem 6 (i.e. f(a) = O(a0)) is

required for technical reasons, but can also be seen as a desire to limit the complexity of the

recovery sequence. While we conjecture that this assumption can be removed, it is important

to point out that the condition for XY recovery (Eq. (3.45)) does not itself place any limits

on f(a); and, in fact, neither the recovery construction of Section 3.4.4 nor the construction

of Appendix B.3 presented satisfy this requirement, instead having f(a) = Ω(d).

First we introduce the inverse of the conjugation super-operator of Definition 26. We

denote this operation C−1
0,η such that C−1

n,η ◦ Cm,n,η = id for all η ∈ R and m,n ∈ Z. Additional

details can be found in Remark 45.

Lemma 30 (Two error components cannot be combined, first-order). Let U and V be

first-order error components of degree-2r (i.e. of the form Definition 49 with all bi = 0),

parameterized by ϕd−r+1, . . . , ϕd and ψd−r+1, . . . , ψd respectively. Their weighted sum, αU +

βV for α, β ∈ R can be written as scaled single error component if and only if ψi− ϕi = niπ

for ni ∈ Z for all d− r + 1 ≤ i ≤ d.

Proof. The ⇐= direction follows directly from the fact that eiπZ = −I. For the =⇒

direction, consider that error components are QSP operators and therefore must be unitary.

Therefore, we must have for some c ∈ R,

(αU + βV )(αU + βV )† = (α2 + β2)I + αβ(UV † + V U †),

= (α2 + β2)I − αβ(UV + V U),

= cI,

(3.52)
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where we have used the fact that first-order error components are unitary as well as anti-

Hermitian (i.e. V −1 = V † = −V ).

Since U and V are of form Definition 49, their canonical expansions P and P ′ have

P(0,1)
j = P ′(0,1)

j = 0 for all j by Remark 43. Thus, in order for the final equality in Eq. (3.52)

to hold, we must have UV = V U = ±I or equivalently U † = −U = ±V . The result holds

by application of Corollary 21.

We are now ready to prove Theorem 6.

Proof. Let Uϵ = QSP(θ; (ϕ0, . . . , ϕd)) be a noisy QSP of length d > 1 QSP with error operator

Eϵ and Rϵ any recovery sequence satisfying Eq. (3.44) for k ≥ 1.

From Eq. (3.37), we see that each error component scaled by an independent real-value

requires a separate irreducible recovery sequence of length Θ(d). To prove the Theorem, we

show that generically Ω(d) independently scaled error components are required. We argue

that to approximate the first-order error operator of Eq. (3.27), we need as sequence of

degree 2d, 2(d− 1), 2(d− 2), . . . error components. In fact, given the restrictive condition of

f(a) = O(a0), the only approximation is one that identical to the error operator up to the π

degrees of freedom allowed by Corollary 21.

Assume that we have found an approximation to first-order for an error operator of

degree-(2d). We proceed inductively, for the first Θ(d) diagrams by anti-conjugating thereby

reducing the error operator to one of degree-(2(d− 1)), neglecting the lowest-degree terms.

Consider the first-order error terms of both Eϵ and Rϵ written in the form Definition 15.

Anti-conjugating the error C−1
0,ϕd

Eϵ, results in all contributing diagrams decreasing in order

by two (save for the degree-0 diagram) as the outermost phases of each diagram can be

elided (Lemma 19). Therefore anti-conjugating the recovery operator C−1
0,ϕd

Rϵ must likewise

result in a two degree reduction. One step of the procedure is depicted in Fig. 3.7. Since by

assumption, the difference in the Z-component is f(a) = O(a0), it cannot interfere with the

top two degree diagrams for sufficiently large d; and the two highest-degree diagrams in R
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must have outermost phase ϕd and be scaled by ϕ0 and ϕ1 respectively as in Eϵ. This can be

seen by using Remark 45 and Lemma 30. We can iterate this procedure Θ(d) times, before

f(a) = O(a0) becomes relevant, each time requiring outermost phase of ϕd−r+1 with scaling

by ϕr−1.

Thus the top Θ(d) degree diagrams in the recovery operator must be identical to that

in the error operator. If all ϕi distinct, Θ(d) independently scaled error components are

required, each of length Θ(d). Thus showing the lower bound of Ω(d2) for general length-d

QSPs.

QSPs with phase degeneracies are able to circumvent this lower bound as in Theorem 5.

This motivates the exploration of families of polynomials that can be generated (or approx-

imated) by QSPs with o(d) unique phases.

3.5 Concluding remarks

We have introduced a model of perturbative noise in the signal processing basis of QSP,

and provided a set of diagrammatic tools useful for reasoning about such noise. The utility

of these techniques are demonstrated by application to a model of coherent noise, that of

a multiplicative under- or over- rotation, where we have developed and analyzed a novel

method of ancilla-free recovery. We now discuss some directions for future work.

Strengthening the lower bound for the coherent error model.— Comparing Theorem 5 to

Theorem 6 reveals that our construction is optimal for k = 1. However, our lower bound is

independent of k and is therefore loose for k > 1 and presents a direction for future work. An

important limitation of our current construction is the recursive construction of higher-order

recovery unitaries (Remark 51) which requires a doubling in length for each order in k. It

remains an open question whether an order-k unbiased sequence can be constructed using

sub-exponential resources.

Closing these gaps between the upper and lower bounds has an important implication for
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Figure 3.8: Example Kraus operator for the error channel of a noisy QSP with phase damping
at each site. The diagram corresponds to the Kraus operator with a phase flip at site i and
j only with 0 ≤ i < j ≤ d.

quantum computation, given that even the O(d2) scaling in our construction for first-order

error correction would negate all quantum advantage (quadratic speedup) in most fixed-point

quantum unstructured search [YLC14].

Incoherent errors.— The study of coherent errors has the benefit that one unitary Kraus

operator is sufficient to describe both the noisy signal processing rotation and the QSP error

channel; however, our formalism can also be applied to models of incoherent error. One

significant limitation in the incoherent case is that the number of such Kraus operators

grows exponentially with d.

In the case of incoherent noise, each Kraus operator of the error channel, rather than the

error operator of Section 3.4.1, can be written in the form of Definition 15. As an example,

consider the noisy signal processing rotation corresponding to the phase damping channel

with two Kraus operators

N (j,1)
ϵ =

√
1− ϵI, (3.53a)

N (j,2)
ϵ =

√
ϵZ, (3.53b)

at each site 0 ≤ j ≤ d. An example Kraus operator of the error channel is shown diagram-

matically in Fig. 3.8.

While it is already technically challenging to construct recovery sequences given the

simple coherent error model that we consider, it is absolutely crucial in the future to analyze
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the recovery sequence in the presence of an extensive source of random errors. These random

errors typically introduce entropy into the quantum circuit and often arise in various quantum

algorithms and physical devices.

Generalizing the diagrammatic notation.— To allow more complicated error sources, in-

cluding errors in the signal basis, we anticipate further development of the diagrammatic

perturbative expansion used in the present work as a formal tool to analyze error propaga-

tion in QSP. We hope such diagrammatic tools can serve as a complimentary picture to aid

in future development of noisy QSP recovery strategies.

Combining with standard quantum error correction (QEC).— Whereas standard QEC

techniques work by moving entropy into ancillary Hilbert spaces [Pre98; KL97; Alb+18],

one can view our construction as rotating errors into the Z-component. The inability to

correct Z-component of error proves a limitation of our method, as the Z-error can be

important for situations when the QSP sequence need to be coherently concatenated with

another quantum circuit [Mar+23]. However, our ancilla-free recovery technique can be

concatenated with a standard QEC code to remove the remaining errors. For example, for

incoherent errors, it may be possible to find a recovery channel that effectively standardizes

the error channel e.g. transforming the error channel into a phase damping channel; this

can then be concatenated with standard QEC codes tailored for phase damping errors. One

can envision a combination of our ancilla-free recovery technique with standard QEC codes

would provide a tunable trade-off between the required number of ancilla and gate depth.
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Chapter 4

Resource savings from fault-tolerance

As previously discussed, there is a significant disparity of interest in classical versus quantum

fault-tolerance results. One obvious reason for this is the difference in the currently achievable

physical error rates in these cases. An alternate framing is the following: is is much cheaper

to build a physically reliable classical gate than a physically reliable quantum gate. While

the laws of physics do not preclude the possibility of building a nearly perfect quantum gate,

those studying new ways to design fault-tolerant quantum systems are making an implicit

calculation that it will be cheaper to build a fault-tolerant quantum computer than to make

a sufficiently perfect quantum gate. Similar reasoning may be applied to fault-tolerant

classical computation. While the balance appears clearly in the favor of non-fault-tolerant

design in modern transistor-based logic, this may not be the case generically for novel lower-

power designs [Sha+08; Sha+18] or alternate architectures [CV16; CV20b]. This line of

research also has implications on fault-tolerance and reliability in emergent models of classical

information processing, such as the observation of error correcting codes in mammalian brains

[SF11].

Following this line of reasoning, we turn to the second motivating question of this thesis

(Q2): the cost of fault-tolerance. We would like to understand not only when fault-tolerant

design is possible but also when it is desirable. We propose the study of the resource
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cost of fault-tolerance as one potential route towards an answer—here we take a resource

to be anything that is both desirable and scarce. In this Chapter1, we provide a careful

accounting of resource utilization in von Neumann’s original fault-tolerant construction.

We present a general framework to account for this overhead cost in order to effectively

compare fault-tolerant to non-fault-tolerant approaches for computation, in the limit of small

logical error rates. Using this detailed accounting, we determine explicit boundaries at which

fault-tolerant designs become more efficient than designs that achieve comparable reliability

through direct consumption of resources. In particular, we show that hardware-level fault-

tolerance is always preferred when the resource cost grows faster than log(1/ϵ) asymptotically

for small ϵ.

4.1 Introduction

Motivation and related work— While fault-tolerance is an interesting theoretical exercise, one

may wonder if it is of practical relevance: why bother with the additional complexity required

to design a fault-tolerant circuit, when one can simply build a more perfect gate? It is true

that for standard transistor-based logic gates have such low physical error rates [SPW09]

that one is often better served using lightweight error detection methods at the software-

level rather than implementing full hardware-level fault-tolerance. However, for low-power

and nano-scale semiconductor devices, we are approaching a point where increased noise

and statistical variations in manufacturing have lead some to call for new, more robust,

computational paradigms [Sha+08; Sha+18]. Inspiringly, Chatterjee and Varshney [CV16;

CV20b] applied the negative fault-tolerance results of [ES99] to place bounds on the energy-

reliability trade-offs allowed for nano-scale circuits and deep feed-forward neural networks.

Their approach provides insightful scaling results, but to make these ideas useful for practical

computational systems, the theory of fault-tolerance bounds must become constructive.
1This has appeared as “Resource savings from fault-tolerant circuit design,” by Andrew K. Tan and Isaac

L. Chuang in arXiv preprint arXiv:2311.02132 (2023) [TC23].

134



Suppose that instead of perfect computation, the goal is to offer some specific level

of reliability. This is increasingly a desirable systems engineering goal for computation,

particularly when algorithmic outputs are probabilistic or the problem is inherently non-

deterministic, e.g. as often is the case in machine learning. Fault-tolerance constructions

can offer such an engineering trade-off: by increasing the size of the code, a computation can

be performed by a noisy computer to arbitrary precision using polylogarithmic overhead in

the number of gates [Neu56; Pip88; Fed89; EP98; ES99; NC10]. Importantly, fault-tolerance

need not just be used to obtain a vanishingly small error rate; the desired error rate can

be dialed in by changing the amount of redundancy employed. And moreover, the resource

cost for fault-tolerance may come in many forms, not just the energy consumed, but also the

space or time required. Thus, given the in-principle relatively modest, (poly)logarithmic,

overhead required by fault-tolerant designs [Neu56; NC10], it seems natural to wonder if

there are constructive approaches to show whether fault-tolerance may actually provide net

savings for a broad class of resource–reliability trade-offs.

Thaker et al. [Tha+05; Tha+08] showed that in principle fault-tolerant constructions

based on recursive triple modular redundancy may be more resource efficient than their non-

fault-tolerant counterparts. Impens [Imp04] studied the same recursive construction as a way

to trade resources for reliability, i.e. reliability as a fungible resource, and showed that fault-

tolerant constructions may be more resource-efficient than their non-fault-tolerant counter-

parts if the computational primitive follows certain reliability–resource trade-offs. While

similar to this work in spirit, both Thaker et al. and Impens use a recursive concatenation-

based fault-tolerant design in which overhead scaling is polylogarithmic and constants are

difficult to obtain owing to the fact that the size of the resulting fault-tolerant circuits grow

exponentially with the level of recursion.

Our approach builds on this body of prior work, and goes further by employing a con-

structive fault-tolerant procedure which allows precise overhead estimates with no unbounded

constants. Our construction allows the overhead to be separated into three main compo-
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nents: the first contribution is due to the code size requirement to attain the desired level

of certainty, effectively a concentration bound; the second contribution is from the num-

ber of gates required to the error correcting circuit; and finally, a third contribution comes

from the statistical dependence in a circuit’s outputs, which depends on the details of the

circuit’s connectivity. We use a fault-tolerant construction based on fixed-depth error cor-

rection circuits in which overhead is logarithmic, thus simplifying the analysis compared

with the recursive construction used by Thaker et al. and Impens. Our fixed-depth model

allows us to numerically estimate constant factors required to determine the point at which

fault-tolerant designs become more efficient than designs that achieve comparable reliability

through direct consumption of resources.

Roadmap— The rest of the paper is organized as follows. First, we formalize the notion of

a constant-depth fault-tolerant construction. Focusing on the simplest, depth-2 construction,

we perform a careful analysis of the asymptotic overhead in the number of gates (Section 4.2).

We find an overhead that is logarithmic in the overhead of desired reliability and numerically

determine the constant factors. This is followed by the introduction of the asymptotic

resource–reliability trade-off (Section 4.3). Here we find three qualitatively different cases

and determine the regions of design space in which the fault-tolerant construction may be

more resource efficient. Finally, we discuss potential avenues to further improve the fault-

tolerant overhead and speculate on abstract models of computation where our results may

provide insights (Section 4.4).

4.2 Fault-tolerance number overhead

First, we review a few basics of circuit-based fault-tolerance. In the most commonly studied

scenario [Neu56], we are given a set of Boolean gates subject to some noise—these are the

basic units of our computation. For our purposes, we will assume that a noisy gate behaves

as an ideal gate save for a probability ϵP that its output is flipped; for simplicity, we assume
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additionally that all basic gates are subject to the same level of noise ϵP, and that the noise is

independent. The goal is to build a logical unit using a number of basic gates which acts on

encoded data such that its errs with error probability ϵL. Exactly how such a fault-tolerant

logical unit may be constructed, and exactly what it means for it to make an error will be

discussed later. What is important, however, is that in addition to the overhead introduced

by building these logical units, these logical units only remain reliable up for ϵP < ϵ∗ where ϵ∗

is a threshold. Note that while we call ϵ∗ the threshold, for our fault-tolerant constructions

ϵ∗ may more accurately be described a pseudothreshold, with the threshold being reserved

for the limiting pseudothreshold [Svo+05]. To summarize our notation:

• ϵP is the physical error rate of a basic unit;

• ϵL is the error rate of a logical unit; and,

• ϵ∗ is the fault-tolerance pseudothreshold.

In general, we have ϵL ≪ ϵP < ϵ∗.

There are two ways one might go about designing a circuit using faulty components to

achieve a target logical error rate ϵL in light of the existence of fault-tolerant constructions.

In the first, i.e. the non-fault-tolerant route, we may simply elect to work with higher

fidelity gates, choosing physical error rate ϵP = ϵL. Alternatively, we may use a fault-

tolerant construction, allowing us to choose to operate with gates at an intermediate error

rate ϵP ∈ (ϵL, ϵ
∗), where ϵ∗ is the pseudothreshold of our fault-tolerant construction. The

resource cost of the two routes is generally very different, and our goal will be to accurately

model these costs so that the two routes may be compared quantitatively.

Next, we formalize the concept a fault-tolerant circuit construction. For the purposes of

our discussion we make the following definition:

Definition 31 (Circuit). A circuit is a triple C = (G,L,K, F ) where

• L is a set of labels ℓ;

• K is a set of positive integers indexed by elements of L, kℓ ∈ Z+;

• G is a directed acyclic graph with vertices V and edges E where each
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vertex is associated with a label ℓ ∈ L, and furthermore each vertex

with label ℓ has either in-degree kℓ or in-degree 0; and,

• F is a set of Boolean functions indexed by elements of L, Fℓ : {0, 1}kℓ →

{0, 1}.

Vertices with in-degree 0 inputs, and those with out-degree 0 are called outputs.

We can associate with each label ℓ ∈ L in our definition with a type of gate with specified

fan-in kℓ; each vertex in graph G then represents a gate with edges describing connectivity.

Vertices with in-degree 0 are assumed to take a number of input wires dependent on the

gate type and vertices with out-degree 0 are gates that provide a single output bit for each

assignment of input wires.

Using our formal definition of a circuit, we turn to formalizing the fault-tolerant con-

struction.

Definition 32 (Fault-tolerant circuit construction). Let C = (G,L,K, F ) be a circuit.

Further let Rn = (en, dn) for n ∈ Z+ be a [n, 1] error correcting block with encoder

en : {0, 1} → {0, 1}n and decoder dn : {0, 1}n → {0, 1}. For a fixed gate set, a fault-

tolerant construction FT n over code Rn is specified by a family of operators that maps each

vertex v of type ℓ in the graph G to a circuit Cv, i.e. FT(ℓ)
n : v ↦→ Cv, for n ∈ Z+ and all

ℓ ∈ L satisfying the following properties:

i) The circuit F(ℓ)
n (v) = Cv can be written Cv = (Gv, L,K, F ), i.e. using

the set of gates as C;

ii) Cv has exactly kℓ bundles of inputs each of size n, and one size-n

bundle output;

iii) for all n, the depth of circuit Cv is bounded by some constant D ∈ Z+;

iv) if all signals within the input bundles are set to en(xi), i ∈ {1, . . . , kℓ},

the outputs of Cv satisfies truth table Fℓ ◦ dn;

v) if input signals are subject to noise of strength ∆ and the outputs of

each gate are subject to noise ϵP, the output bundle Cv must amplify
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the signal for some non-empty range of ∆ up to some pseudothresh-

old ϵ∗ > 0 for all n > n0 ∈ Z+ (amplification formally defined in

[SWH20]); and,

vi) in this amplification region, the probability of a logical error ϵL (i.e.

a mismatch between the decoded output and desired truth table) as

n→∞ satisfies ϵL ∼ e−θ(n).

Given the family of operations Fn, one may derive an equivalent fault-tolerant by replacing

each vertex using FTn and connecting input and output bundles according to G. In general,

a randomizing permutation may need to be applied to input or output bundles in order to

minimize dependence between wires when gates are applied in sequence.

We denote by FT n(C) the fault-tolerant circuit derived from C using this procedure.

Note that requirement Definition 32iii excludes the concatenation-based approaches to

fault-tolerance employed, for example in [NC10; Imp04; Svo+05; Tha+05]. This is being

deliberately done, in order to separate the width and depth components of the fault-tolerant

construction discussed in Section 4.2.1. In the nomenclature of this paper, each level of

the concatenation-based approach is equivalent to the choice of a different error correction

architecture (see Remark 35).

Also, while Definition 32 allows data to be encoded in a general error correcting code, for

the purposes of our discussion, we will consider following fault-tolerant construction based

on the [n, 1] repetition code and depth-2 majority circuit for error correction:

Remark 33 (Depth-2 fault-tolerant construction). Consider the construction studied by

[Neu56; EP98; Ung07] using 2-input nand gates, i.e. L = {nand} and knand = 2. Our

operator FT(nand)
n replaces each nand gate in the original circuit with n nand gates. These

n nand gates are then followed by 2n gates used for error correction. If we label each gate

by a tuple (l, i) for layer l ∈ {1, 2} and index i ∈ {0, . . . , n − 1}, the construction connects

(l, i) to the output of gates (l − 1, i) and (l − 1, i − 1 mod n); where (0, i) denotes the ith

input wire. The error correction component of this construction is depicted in Fig. 4.1.
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Figure 4.1: Error correcting depth-2 majority (a) formula, and (b) an equivalent circuit for
the repetition code of size n = 5. In both cases, the circuit is shown on the left, with the
induced Bayesian network depicted on the right (squares representing input wires, and circles
representing computed wires). The computation path of one output wire is highlighted in
black throughout with the rest of the circuit in grey.

We discuss the properties of depth-2 construction of Remark 33 in Sections 4.2.2 and 4.2.3.

Equipped with FT n, we are able to convert any circuit into an equivalent fault-tolerant

circuit. The subject of the remainder of this paper will be a careful accounting of the

resources required to target a logical error rate using this construction. Assuming that the

resource utilization of a circuit is proportional to the number of basic units of which the

circuit is comprised, the number of basic units required by the fault-tolerant circuit is of

central importance.

We define the number overhead (or equivalently the gate overhead for circuit-based mod-

els of computation) to be the number of additional basic components required by FT n(C)

when compared with C. For the remainder of this Section, we turn our focus to the asymp-

totics of this number overhead in terms of the number of basic units required to achieve a

desired logical error rate, specifically the constants in the exponent of Definition 32vi. The

resource overhead required for fault-tolerance can be calculated given the number overhead

and the resource–reliability trade-off for the basic unit and will be the subject of Section 4.3.

4.2.1 Scaling arguments

For our analysis, we separate the overhead into three components. The first is due to the

required code size, i.e. its ‘width’ overhead, which depends on the target error rate ϵL, and
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the error rate of the individual output wires ϵ. The second, the ‘depth’ overhead, is related

to the fraction of layers dedicated to error correction and is dependent on the operating

operating point ϵP and a fiducial error rate ∆ ∈ (0, 1/2); in other words, if r denotes the

number of wires in the repetition code of size n in the 1 state, a logical 1 is encoded if

r > n(1 − ∆), a logical 0 is encoded if r < n∆, and otherwise the signal is considered

erroneous. In the fault-tolerant regime, we have that the probability of error in any wire can

be maintained ∆ < 1
2
− Ω(1) independently of circuit depth. The final component is due to

an effective reduction of code size due to statistical dependencies in the output of circuits

which is absent in the case of formulas.

Width overhead— A key property of fault-tolerance is that a constant, depth-independent

logical error rate is maintained by interleaving computation with layers dedicated to error

correction. In order to accomplish this, the data must be encoded in an error correcting code

throughout the computation. Increasing the size of this code is the key to reducing logical

errors and is the width overhead. Since the logical error rate is suppressed by eΘ(d), where

d is the distance of the code. From a simple concentration bound, we find that it suffices to

choose a code of distance

d(ϵ, ϵL) = Θ

(︃
log

(︃
1

ϵL

)︃)︃
. (4.1)

Assuming the use of a linear-distance code, this implies a width overhead of Θ(log(1/ϵL)). In

the fault-tolerance setting, we must account both for errors introduced during computation

and in the process of error correction and thus the hidden constant factor in Eq. (4.1) is in

general also dependent on ϵP and ∆. In general, we write the width overhead as n(ϵL; ϵP,∆).

One may object to the fact that in the fault-tolerant construction, the inputs and outputs

of the computation are encoded in a bundles of n wires, and not strictly comparable to

that of the non-fault-tolerant construction. While this is true, we may assume that we

have access to a perfect (or otherwise highly reliable) encoder and decoder which we may

invoke respectively at the beginning and end of the computation. The use of these idealized

encoders and decoders is simply a constant cost which contributes negligibly to the overall
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resource cost in the limit of long computations, which is the primary concern of fault-tolerant

constructions.

Depth overhead— For any error correction construction satisfying Definition 32, there is

a range of physical error rates, i.e. ϵP < ϵ∗, and fiducial rates ∆, which can be tolerated.

In general, we may choose an ϵP and ∆ so long as it is within the ranges allowable by the

error correcting circuit. In practice, ϵP is chosen by physical constraints (i.e. to minimize

resource overhead), and ∆ is chosen to minimize the previously discussed width overhead.

By Definition 32iii, the error correcting circuit has constant a depth D independent of code

size, and D is precisely the depth overhead.

Dependency overhead— Finally, since a circuit’s outputs are in general statistically depen-

dent, the width overhead may need to be scaled to appropriately counteract that dependence,

We characterize the degree to which the error correcting circuits are independent by a factor

χ, which we call the independency (or equivalently the dependency χ−1). In order for a

family of error correcting circuits to be valid for a fault-tolerant construction, it must be

that χ > 0. This is possible since, by Definition 32, the family of error correcting circuits is

comprised of gates of constant fan-in and constant depth which effectively limits the possible

dependency of the circuit’s outputs—of course this assume non-pathological wiring which

we will discuss in Section 4.2.3.

This constant χ is in general difficult to estimate as it depends on the specifics of the

circuit construction, which becomes exponentially (with the number of wires in the circuit)

to calculate exactly. In order to numerically estimate χ, we represent a noisy circuit as a

Bayesian network where each wire is represented by a node, and a directed edge connects

input wires to output wires of each gate; an example using the error correcting formula of

[EP98] and equivalent error correcting circuit of [Neu56], along with their induced Bayesian

network representations is depicted in Fig. 4.1. Using this Bayesian network, we are able to

estimate a circuit’s performance to high precision and estimate its asymptotic behavior.

In the following, we seek an estimate of the coefficient hidden in Eq. (4.1) (for small
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Figure 4.2: Output error rate fϵP (∆) (on the left y-axis) as a function input error rate ∆
for ϵP = 0.5% from Eq. (4.2) compared to the y = ∆ line (solid black) for different error
correction circuit constructions. The leading term in the code size n(ϵL; ϵP ,∆), the coefficient
of log(1/ϵL) in Eq. (4.5), is shown on the right-hand y-axis and plotted with blue lines, using
the same x-axis. Its minima for the depth-2 and depth-4 majority formulas are marked (solid
grey vertical lines). For the depth-2 majority formula (Remark 33) this gives a minimum
required code size of n ≈ 279 log(1/ϵL), and for the depth-4 majority formula (Remark 34)
this gives a minimum required code size of n ≈ 11.4 log(1/ϵL).

ϵL), and an estimate of χ for the fault-tolerant construction using 2-input nand gates of

Remark 33.

4.2.2 Formulas

We start with the simpler case of formulas for which outputs are independent. In the case of

formulas, the Bayesian network takes the form of a directed tree and each node is required

to have out-degree 1 (except for the output(s) with out-degree 0), the roots of all disjoint

sub-trees are independent conditioned on their ancestors. Thus the analysis is simplified by

the independence of the output wires.

Following von Neumann’s construction [Neu56], given 4n independent copies of each

signal X and Y , one performs the nand gate 4n times and takes the majority using the

configuration of Fig. 4.1. Assuming each input wire errs with probability at most ∆, the
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output wire errs with probability bounded by

fϵP(∆) = 1− ϵP + (2ϵP − 1)
(︁
(2ϵP − 1)((∆− 2)∆(2ϵP − 1) + ϵP)

2 − ϵP + 1
)︁2
. (4.2)

For large n, we can approximate the binomial distributed output with a normal distribution

as a result of the central limit theorem. Given the independence of the output wires, we

have

ϵL(n; ϵP,∆) = Pr

[︄
Z ≥ √n

(︄
∆− fϵP(∆)√︁

fϵP(∆)(1− fϵP(∆))

)︄]︄
, (4.3)

where Z is a standard normal random variable, ∆ ∈ (0, 1/2) is a fiducial error rate, and we

have dropped the subscript ϵP for convenience. Using Eq. (4.3), we find in the limit of large

n,

ϵL =

[︃
fϵP(∆)(1− fϵP(∆))

∆− fϵP(∆)

1√
2πn

+O
(︂
n− 3

2

)︂]︃
exp

(︃
− n(∆− fϵP(∆))2

2fϵP(∆)(1− fϵP(∆))

)︃
, (4.4)

giving a code size,

n(ϵL; ϵP,∆) =
2fϵP(∆)(1− fϵP(∆))

(fϵP(∆)−∆)2
log

(︃
1

ϵL

)︃
+O

(︃
log log

(︃
1

ϵL

)︃)︃
. (4.5)

In practice, for a given architecture and ϵP, one chooses ∆ in order to maximize the

coefficient of
√
n in Eq. (4.3). For this fault-tolerant construction with output error rate

bounded by Eq. (4.2), we find a pseudothreshold of ϵ∗ ≈ 1.077%. Given a physical error

rate below this threshold, we may choose an operating point between the fixed-points of

Eq. (4.2). As an example, for ϵP ≈ 0.5%, these fixed points occur around ∆ ≈ 1.81% and

∆ ≈ 13.2%; and we find from Eq. (4.3) an optimal fiducial rate of ∆ ≈ 5.80% as shown in

Fig. 4.2 which implies a required code size of n ≈ 279 log(1/ϵL). Further note that in this

fault-tolerant construction, two of every three layers are dedicated to error correction, i.e.

the depth overhead is D = 2.
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Remark 34 (Larger error correcting formulas). In general, the pseudothreshold may be

improved by increasing the size of the error correcting circuit.

For the example of computing with 2-input nand gates, the majority operation can

be constructed using full binary trees of even depth D ≥ 2; for code size n, this formula

representation requires n(2D − 1) gates. The depth-4 majority formula has an increased

pseudothreshold of ϵ∗ ≈ 2.515%, strictly greater than that of the depth-2 majority gate.

In addition to the increased threshold, the larger majority formula also has different fixed

points and a different optimal fiducial rate. For example, for ϵP = 0.5%, the depth-4 formula

reduces input errors on expectation for fiducials between ∆ ≈ 1.55% and ∆ ≈ 25.4%, with

optimal performance for ∆ ≈ 10.4%.

While the analysis of formulas is easier and provides insight into the fault-tolerant con-

struction, it is not suitable for implementation as the number of required gates grows expo-

nentially with depth: since sub-formulas must be duplicated each time its result is required

in order to maintain the fan-out 1 condition. More realistically, by allowing larger fan-out,

we can ‘fold’ this formula representation into a more general circuit.

4.2.3 Circuits

As previously discussed, the analysis for circuits is complicated by the fact that outputs

are no longer necessarily independent. In addition to the width and depth overheads, the

independency χ ∈ (0, 1] contributes to the asymptotic number overhead of a fault-tolerant

circuit. Intuitively, since output wires are no longer independent, logical error rates are

higher than in equivalent formulas which by definition have χ = 1.

From Definition 32iii, error correcting circuits are of constant depth, and therefore output

wires are dependent only on constant number of input wires as depicted in Fig. 4.1 (this is our

main reason for including requirement iii, and excluding concatenation-based constructions).

Therefore the same asymptotic scaling n = Θ(log(1/ϵL)) holds as in the case with formulas

but with a smaller effective code size neff ≡ χn, where we call the constant χ ∈ (0, 1]
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Figure 4.3: The effective code size for formulas and circuits for the fault-tolerant construction
of Remark 33 and Remark 35 operating subject to physical error rate ϵP = 0.5% and at their
optimal fiducial point. The slope of the formula (solid) line is 1 and the fitted lines for the
D = 2 (dashed) and D = 4 circuits (dotted). We find neff ≈ 0.47n and neff ≈ 0.34n for the
depth-2 and depth-4 error correction circuits respectively.

146



Figure 4.4: The code size required to achieve a target logical error rate ϵL for odd n at
ϵP = 0.5% for different majority circuit constructions at their respective optimal fiducial
point. The code size required using the majority formula (solid) is n ≈ 642 log10(1/ϵL), for
the depth-2 majority circuit (dashed) code size is n ≈ 1360 log10(1/ϵL), and for the depth-4
majority circuit (dotted) the code size is n ≈ 1880 log10(1/ϵL). Also plotted is von Neumann’s
approximation for a similar formula-based error correction scheme with the same physical
error rate and slightly different choice of fiducial ∆ = 7.0% [Neu56, Section 10.5.2].
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(Definition 32vi precludes χ = 0). In the case of the depth-2 nand tree majority circuit,

output wires are dependent on at most 4 input wires and therefore χ ≥ 1/4. Use belief

propagation to numerically approximate error rates using the induced Bayesian network

representation (see Fig. 4.1), we find an independency of χ ≈ 0.47 for the depth-2 error

correction circuit (see Fig. 4.3). In general χ is dependent on the error correction circuit and

choice of fiducial ∆.

Of course, larger error correcting circuits, beyond the depth-2 construction of Remark 33,

can also be used to perform error correction in a fault-tolerant construction. We provide a

discussion of such circuits below:

Remark 35 (Larger error correcting circuits). The majority formulas of Remark 34 can be

‘wrapped’ into depth-D majority circuits using nD nand gates. For optimal performance, a

path should connect each output gate to the maximal number, i.e. 2D, of distinct input wires

(for simplicity assume n ≥ 2D). If we label each gate by a tuple (ℓ, i) for layer ℓ ∈ {1, . . . , D}

and index i ∈ {0, . . . , n− 1}, one such construction is to connect gate (ℓ, i) to the output of

gates (ℓ− 1, i) and (ℓ− 1, i− 2ℓ−1 mod n); where (0, i) denotes the ith input wire.

As with the depth-2 case (Remark 33), larger majority circuits are less effective at error

correction than their formula counterparts due to the dependence of the output signals.

Numerics show an independency of ξ ≈ 0.34 for depth-4 circuits operating at ϵP = 0.5% at

the optimal fiducial rate.

It is widely conjectured, though not rigorously proven, that the pseudothreshold of such

a circuit approaches the Evans–Pippenger rate of ϵEP = (3 −
√
7)/4 ≈ 0.08856 as we take

D →∞ [Neu56; EP98; Ung07].

Note that there are other ways to fold the formulas into circuits which may result in

poor performance. For example, imagine that all outputs were made dependent on the

same 2D inputs independently of n. In this case, we will find that increasing the code size

does not decrease the error and χ = 0. This is true despite the fact that it shares the

same unfolded formula representation as the construction described above. Though this is
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a pathological example, one may find that some reasonable circuit constructions result in

lower independency.

Notice that each computation gate in the non-fault-tolerant circuit is repeated n(ϵL; ϵP,∆)

times in the fault-tolerant circuit, and followed by an error correction circuit of size D ×

n(ϵL; ϵP,∆). Therefore, for fixed ϵP, the gate overhead is

η#(ϵL; ϵP,∆, D, χ) =
1

χ
(D + 1)n(ϵL; ϵP,∆), (4.6)

where we use η# to denote the overhead in the number of gates. When a particular error

correction construction is assumed, we may drop explicit dependence on the variables to the

right of the semicolon in the arguments of η# and n, i.e. D, χ, ϵP, and ∆.

To summarize, the asymptotic number overhead of a fault-tolerant circuit can be decon-

structed into three contributions:

• the width or code size overhead n(ϵL; ϵP,∆), which can be obtained

through the analysis of its equivalent formula representation;

• the depth overhead, i.e. the constant in Definition 32iii; and,

• the dependency overhead χ−1, which is a function of how the formula

is ‘folded’ into a circuit, and can be obtained by numerical means

(e.g. using belief propagation or Monte Carlo sampling).

4.3 Fault-tolerance resource overhead

Having derived the number overhead (Eq. (4.6)) of the fault-tolerant construction of Re-

mark 33, we turn to its resource overhead. To this end, we introduce the notion of a

resource–reliability trade-off which associates a resource cost for each gate as a function of

the physical error rate. In order to formalize the problem, let W : (0, ϵ∗)→ R≥0 denote the

resource–reliability trade-off: W (ϵP) represents the resource cost of a single gate operating

with physical error rate ϵP.
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Using the resource–reliability trade-off in conjunction with the number overhead (Sec-

tion 4.2), we study the cases in which either the fault-tolerant or non-fault-tolerant con-

structions may be preferred in order to reduce overall resource utilization. While the specific

resources of interest are application-specific—e.g. power dissipation [Imp04; Tha+05; CV16;

CV20b], layout area [Imp04; Tha+05; Gad+06; Oat15] for transistor-based gates, or even

economic costs—we find general conclusions that depend only on the asymptotic behavior

of this resource–reliability trade-off in the low-error limit ϵ→ 0.

We make the physical assumption that W (ϵP) is monotonically non-increasing with re-

spect to ϵP: that is, a reduced physical error rate necessitates equal or larger resource ex-

penditure. With the resource–reliability function in hand, we can state our main asymptotic

result:

Remark 36 (Fault-tolerant overhead theorem). Suppose we have a fault-tolerant construc-

tion with number overhead η#(ϵL; ϵP,∆, D, χ), where ϵL is the target logical error rate and

ϵP, ∆, D, and χ are parameters of the fault-tolerant construction. In the limit of small logical

error rates ϵL → 0, the non-fault-tolerant construction is preferred for resource–reliability

trade-offs which are asymptotically W (ϵP) = o(log(1/ϵP)) as ϵP → 0. Conversely, in the

same small logical error rate limit, the fault-tolerant construction is preferred for resource–

reliability trade-offs which are asymptotically W (ϵP) = ω(log(1/ϵP)) as ϵP → 0.

Remark 36 is a statement about the low logical error rate asymptotics of the resource–

reliability trade-off; however, for most practical purposes it is sufficient to achieve a low, but

finite, logical error rate. For a sense of scale, a study estimated error rates of ∼ 10 errors per

billion hours of operation per gate in modern transistor-based logic [WA08]. Assuming such

gates perform 109 operations per second, this corresponds to a logical per gate error rate of

ϵL ≈ 3 × 10−21. In the subsequent analysis, we estimate the benefit of fault-tolerance (or

lack thereof) assuming values for the behavior of the resource–reliability trade-off required

to achieve logical error rates down to this level.

To further motivate the resource–reliability trade-off, W (ϵP), consider that the output
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of each gate is a bit x ∈ {0, 1} encoded in some real-valued physical degree of freedom

{−R,+R}, where R > 0 denotes the signal strength. Suppose the signal is corrupted

by noise e, which for our purposes will be a symmetric, zero mean random variable, so

that our overall signal is X± = ±R + e where e denotes an error term. We consider X±

to be correct if it lies on the correct side of 0, and therefore the physical error rate is

ϵP(R) = Pr[X+ < 0|R] = Pr[X− > 0|R]. Further assume that the noise e is i.i.d. at the

output of each gate, and that the resource utilization is proportional to W ∝ L.

This model allows us to relate the resource–reliability trade-off W (ϵP) to the distribution

of the noise e. For our setting of interest, the resource utilization in the limit of low logical

error rates, there are broadly three scenarios to consider: exponentially-tailed, light-tailed,

and heavy-tailed noise distribution. We discuss these cases in sequence below.

4.3.1 Exponentially-tailed noise distribution

First, consider the marginal case where the resource–reliability trade-off has the same asymp-

totic scaling as the number overhead, i.e. W (ϵP) = Θ(log(1/ϵP)). In our abstract model,

this would correspond to an error e with exponentially distributed tails so that as ϵP → 0 or

equivalently R≫ α, we have

ϵP ∼ C exp

(︃
−R
α

)︃
, (4.7)

for some constants α > 0 and C > 0.

In this case as ϵ→ 0,

W (ϵP) ∼ αA log

(︃
1

ϵP

)︃
, (4.8)

where A > 0 is a proportionality constant.

Combining the number overhead (Eq. (4.6)) and assuming exponentially-tailed resource–

reliability trade-off (Eq. (4.8)), we find the resource overhead as ϵL → 0 required for fault-
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Figure 4.5: Plot of the asymptotic fault-tolerance overhead in the ϵL → 0 limit for
exponentially-tailed resource functions as predicted by Eq. (4.9) for a fault-tolerant con-
struction based on the depth-2 majority circuit of Remark 33 and optimal fiducial ∆. The
region where the fault-tolerant construction is less resource intensive is marked (FT) and its
complement is marked (non-FT).
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tolerance to be

η(ϵL; ϵP,∆, D, χ) =
W (ϵP)

W (ϵL)
(D + 1)n(ϵL; ϵP,∆),

=

(︃
WP

αA

)︃(︃
2(D + 1)fϵP(∆)(1− fϵP(∆))

χ(fϵP(∆)−∆)2

)︃
,

(4.9)

where WP > 0 represents the resource utilization at finite physical error rate ϵ. As with

Eq. (4.6), when a particular error correction construction is assumed, we may drop explicit

dependence on the variables to the right of the semicolon in the arguments of η.

Note the fault-tolerance overhead as ϵL → 0 is independent of ϵL in this case of an

exponentially-tailed error function (or resource–reliability trade-off satisfying Eq. (4.8)). In

the case of exponentially-tailed errors, both increasing R and increasing the code size n

(assuming a linear distance code) suppress errors exponentially; and thus, which approach is

preferred to achieve a logical error rate ϵL → 0 depends on the specifics of both the resource–

reliability trade-off and the fault-tolerant construction. In Eq. (4.9) relevant terms have been

grouped into those that depend on the asymptotic behavior of the resource utilization model:

WP, α and A; and those that depend on the fault-tolerant circuit construction: ϵP, fϵP , ∆,

D, and χ. The overhead is plotted in Fig. 4.5. Regions are indicated where one construction,

i.e. fault-tolerant or non-fault-tolerant, is preferred.

4.3.2 Light-tailed resource function

In the case of light-tailed error distributions, i.e. those whose tails are super-exponential,

we will show that the non-fault-tolerant construction is always preferred as the target error

rate ϵL → 0. For simplicity, consider the case of an error distribution with a Gaussian tail.

For R ≥ 0,

ϵP(R) ∼
[︃

C√
2πR

+O

(︃
1

R3

)︃]︃
exp

(︃
− R

2

2σ2

)︃
, (4.10)

for constants C > 0 and σ > 0 as R→∞.
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Figure 4.6: Plot of the asymptotic fault-tolerance overhead in the ϵL → 0 limit for Gaussian-
tailed errors as predicted by Eq. (4.12) for a fault-tolerant construction based on the depth-2
majority circuit of Remark 33, optimal fiducial ∆, and with constants WP/

√
2σA = 2×10−4.

The region where η < 1 indicates the regions where the fault-tolerant construction is less
resource intensive is marked (FT) and its complement is marked (non-FT). It is possible
that no FT region exists for some settings of the constants WP/

√
2σA.
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In this case as ϵ→ 0,

W (ϵP) ∼
√
2σA erfc−1(2ϵP), (4.11)

where A > 0 is a proportionality constant.

Using the number overhead (Eq. (4.6)), we find the following expression for the overhead

in the case of a Gaussian-distributed error e,

ηGaussian(ϵL; ϵP,∆, D, χ) =

(︃
WP√

2σA erfc−1(2ϵL)

)︃(︃
2(D + 1)fϵP(∆)(1− fϵP(∆))

χ(fϵP(∆)−∆)2
log(1/ϵL)

)︃
,

(4.12)

where WP is the resource utilization at finite physical error rate ϵP.

From Eq. (4.12) we observe that in the ϵL → 0 limit, ηGaussian > 1, and therefore the

non-fault-tolerant construction is preferred. It is nonetheless possible that for some finite ϵL,

there exists a setting of ϵP where the fault-tolerant construction is more resource efficient in

this case as the efficiency at finite logical error rates depends on WP/
√
2σA, which depends

on resource utilization at finite physical error rates. One setting of parameters that admits

a region of fault-tolerant resource savings is shown in Fig. 4.6.

Light-tailed error distributions, can arise in a number of scenarios. Gaussian-distributed

noise may occur naturally as a result of the central limit theorem when noise sources are the

sum of many independent components. The fundamental physical limits on power dissipation

are themselves light-tailed resource–reliability trade-offs. Landauer famously argued that in

an idealized computer, the only dissipation necessary is proportional to the amount of logical

irreversibility [Lan61]; Fredkin and Toffoli subsequently showed that computations may be

designed to require only constant amounts of logical irreversibility [FT82]. Given a well

isolated system with idealized control of microscopic degrees of freedom, one would find a

resource–reliability trade-off such that limϵ→0W (ϵ) = C for some constant C (the primary

resource of concern in this case would likely not be power dissipation but rather the economic

cost of engineering such a system).

We note that while these results are for Gaussian-tailed noise, the qualitative result—
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Figure 4.7: Plot of the asymptotic fault-tolerance overhead in the ϵL → 0 limit for Pareto-
tailed errors as predicted by Eq. (4.15) for a fault-tolerant construction based on the depth-2
majority circuit of Remark 33, optimal fiducial ∆, γ = 2, and constants WP/Aβ = 3× 102.
The region where the fault-tolerant construction is less resource intensive is marked (FT)
and its complement is marked (non-FT). In this case of a heavy-tailed resource function,
the fault-tolerant construction is always preferred as the target error rate goes to zero.

namely that the non-fault-tolerant construction is preferred in the ϵL → 0 limit—hold as

long as the noise has super-exponential tails. This can be understood as physical error rates

may be suppressed through by increased resource utilization faster than the exponential

suppression of logical error rates using a linear-distance error correcting code.

4.3.3 Heavy-tailed resource function

In the case of heavy-tailed error distributions, i.e. those whose tails are sub-exponential, we

find that the fault-tolerant construction is always preferred as the target error rate ϵL → 0

(Remark 36). For simplicity, assume that the error e is distributed according to a symmetric
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Pareto distribution so that for R ≥ 0,

ϵP(R) =
1

2

(︃
β

β +R

)︃γ
, (4.13)

for some constants β > 0 and γ > 0.

In this case for ϵP → 0 we have,

W (ϵP) ∼ Aβ

(︃
1

(2ϵP)1/γ
− 1

)︃
, (4.14)

where A > 0 is again a proportionality constant.

Using the number overhead (Eq. (4.6)), we find the following expression for the overhead

in the case of a Pareto-tailed error e,

η(ϵL; ϵP,∆, D, χ)Pareto,γ =

(︃
WP

Aβ

(2ϵL)
1/γ

1− (2ϵL)1/γ

)︃(︃
2(D + 1)fϵP(∆)(1− fϵP(∆))

χ(fϵP(∆)−∆)2
log(1/ϵL)

)︃
,

(4.15)

where WP is again the resource utilization at finite physical error rate ϵP.

From Eq. (4.15) we observe that in the ϵL → 0 limit, ηPareto < 1, and therefore the

fault-tolerant construction is preferred. A representative plot of ηPareto is shown in Fig. 4.7.

There are a number of ways in which a heavy-tailed error distribution may arise. One ex-

ample discussed by Thaker et al. is the case where the resource of interest is of CMOS feature

sizes, where the salient resource is the feature area [Tha+05]. Cohen et al. demonstrated

experimentally that CMOS technology exposed to high levels of alpha radiation resulted in

a resource–reliability trade-off with asymptotically Pareto tails with γ ≈ 2.5 [Coh+99].

We note that while these results are for symmetric Pareto-distributed noise, the qualita-

tive result—namely that the fault-tolerant construction is preferred in the ϵL → 0 limit—hold

as long as the noise has sub-exponential tails. This can be understood as (sufficiently) in-

dependent repetitions of a calculation in this case suppress logical error rates exponentially,

faster than is achievable by increasing the resource utilization of individual gates under this
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resource–reliability trade-off.

4.4 Concluding remarks

We have devised a method to perform an asymptotic analysis of the number of additional

gates required by fault-tolerant constructions compared to the non-fault-tolerant circuits

from which they are derived. Using this accounting, we guide the design of resource-efficient

fault-tolerant circuits based on the resource–reliability trade-off of the basic unit.

In Section 4.2, we first formalized the notion of a fault-tolerant construction. Key to our

definition was the restriction to constant-depth error correcting circuits (Definition 32iii),

which is in contrast to the recursive concatenation-based approaches whose overheads have

previously been studied. In concatenation-based constructions, the fault-tolerant circuit is

constructed through recursive application of the FTn of Definition 32 at the level of the log-

ical gate [NC10; Imp04; Tha+05; Svo+05] — usually for fixed n, e.g. n = 3 in the recursive

triple modular redundancy constructions of [Imp04; Tha+05]. While the concatenation-

based approach is useful for the analysis of asymptotic thresholds through intermediate

pseudothreshold, e.g. using a flow-map model [Svo+05], it conflates what we have termed

the depth and width overheads since concatenation increases both simultaneously. For the

analysis at fixed and finite ϵP where we are satisfied to accept pseudothresholds (instead of

true asymptotic thresholds), we may fix the depth D of the error correcting circuit while

nonetheless increasing code size n thereby decreasing the logical error rate ϵL. This subtly

in Definition 32 allowed us to interpret the number overhead as coming from three dis-

tinct components: the width overhead, the depth overhead, and the dependency overhead

(Section 4.2.1). While the width and the depth overheads are most readily analyzed us-

ing fault-tolerant formulas (Section 4.2.2), the dependency overhead captures the deviation

from the formula resulting from the realities of the circuit model and was numerically es-

timated using inference techniques on the Bayesian networks induced by the noisy circuit
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(Section 4.2.3).

In Section 4.3, we formally introduced the resource–reliability trade-off and stated the

main asymptotic result (Remark 36) which depends crucially on the ϵP → 0 behavior of

the resource–reliability curve. We studied the regions in the fault-tolerant construction

parameter space in which fault-tolerance may be preferred based on assumptions about the

finite-ϵP behavior of the resource–reliability function. We show three qualitatively different

results: in the case where W (ϵP) = Θ(log(1/ϵP)), the existence of a region of fault-tolerant

resource savings is asymptotically independent of logical error rate ϵL and depends solely

on constant factors (Section 4.3.1); if W (ϵP) = o(log(1/ϵP)), the existence of a region of

fault-tolerant resource savings may be possible for relatively large values of ϵL depending

on finite-ϵP behavior (Section 4.3.2); and if W (ϵ) = ω(log(1/ϵ)), then the fault-tolerant

construction always preferred for sufficiently small ϵL (Section 4.3.3).

Beyond the repetition-code— The repetition code has been the subject of most inquiry

into classical fault-tolerant constructions, with little attention given to the study of other

codes [Neu56; HW91; Pip88; ES03]. This is in stark contrast with the study of fault-tolerant

models of quantum computation, where the development and analysis of new codes is a

primary research thrust [CTV17]. The repetition code has largely been unchallenged in

the classical setting in part due to matching negative results showing that the repetition

code is sufficient to yield the optimal threshold error rate for commonly studied gate sets

[EP98; ES03]. Furthermore, the repetition code’s simplicity yields both constant-depth

(transversal) logical operations and constant-depth error correction, both of which are all the

more important in the classical setting as no error-free computation is allowed; in contrast,

the typical setting for fault-tolerant quantum schemes assumes access to noiseless classical

computation. However, the analysis of fault-tolerance overheads, particularly the constant

factor analysis, may provide another way to compare fault-tolerant constructions in which

other codes may be more favorable than the repetition code.

Notably, our restriction to bounded depth error correction circuits also limits us to codes

159



which can be corrected locally, i.e. only observing a constant number of input wires [Yek+12].

This self-imposed restriction may be lifted by loosening Definition 32iii to allow the error

correcting circuit’s depth to grow with the code size at the cost of introducing ϵL-dependency

to the depth overhead and affecting the asymptotic result of Remark 36.

Fault-tolerance in other systems— Returning to the motivation for von Neumann’s origi-

nal work [Neu56]: biological systems perform noisy information processing and seems natural

to ask whether they take advantage from some form of fault-tolerance. While the highly-

structured von Neumann construction for fault-tolerance, i.e. alternation of computation

and error correction, may be unrealistic in most systems, general principles may hold and

may indeed be preferred due to more favorable resource efficiency or reliability. For example,

error correction mechanisms have been discovered in biology [For81; SF11; Bat19], and some

studies have looked into fault-tolerance of biologically-inspired network models of computa-

tion [Zlo+22]. Signatures of error correction and fault-tolerance have also been observed to

emerge in noisy Boolean networks made to undergo evolution-like dynamics [MFC23]. Given

the ubiquity of error correction in biology, might it be possible that there are also signatures

of fault-tolerance? Resource efficiency may be one way to probe the development of both

error correction and fault-tolerance in biological systems.

In addition to naturally occurring biological systems, there many engineered systems in

which information processing occurs in a distributed and networked manner, e.g. electronic

social networks and financial markets [Kir+08]. Information flow in these networks are

subject to noise and resource constraints. Furthermore, many of these systems, such as in

financial markets, the noise is often heavy-tailed [IIW15], which is precisely the scenario

where fault-tolerant design may be preferred. Again, the highly-structured von Neumann

construction for fault-tolerance may be unrealistic in these cases, but it may be the case that

principles of fault-tolerant design may provide resource savings in the design of complicated

networks.
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Chapter 5

Connections to information theory

From its inception, the theory of fault-tolerance has had many deep ties with the information

theory. Quantities such as computation capacity [WC63] have been defined in analogy with

Shannon’s channel capacity. More recently, information theoretic inequalities have been

the basis of upper bounds on fault-tolerance [ES99; Kem+08]. In this Chapter, we study

connections between fault-tolerance and information theory (Q3).

In Section 5.11, we study the problem of optimally designing an optimal encoding of

a message over a noisy channel. While in previous chapters we considered only simple

noise models, we now take on the task of encoding a random variable through an arbitrary

noisy channel. Suppose, for example, that we are given access to a noisy channel X → Y ,

where X and Y are discrete random variables. Our goal is to find encodings of X →

Z which are maximally preserved under the noisy channel subject to a constraint on the

information content in Z. We examine a particular quantification of this trade-off, the

Deterministic Information Bottleneck trade-off, which can be viewed as a noisy compression

algorithm. We apply our algorithm to a number of tasks: compressing the English alphabet,

extracting informative color classes from natural images, and compressing a group theory-

inspired dataset. Our algorithm extends previous work, being able to uncover convex regions
1This has appeared as “Pareto-optimal clustering with the primal deterministic information bottleneck,”

by Andrew K. Tan, Max Tegmark, and Isaac L. Chuang in Entropy (2022), 24, 771 [TTC22].
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of the trade-off frontier. We demonstrate how the full structure of this frontier may be useful

in the selection of a Pareto-optimal encoding.

In Section 5.2, we provide a review of existing upper bounds on fault-tolerance thresholds.

Existing results are placed in context based on the high-level structure of their arguments and

we review the results of Section 2.1 in this light. This Section is unpublished and contains no

new results and appears mainly as a collection thoughts regarding the construction of tight

negative results on fault-tolerance in circuits. The aim is to point towards the development

of a new class of information-like quantities—through the review of existing fault-tolerance

upper bounds—that are tailored to a particular model of noisy computation.

5.1 Pareto-optimal clustering

5.1.1 Introduction

Many important machine learning tasks can be cast as an optimization of two objectives

that are fundamentally in conflict: performance and parsimony. In an auto-encoder, this

trade-off is between the fidelity of the reconstruction and narrowness of the bottleneck. In

the rate-distortion setting, the quantities of interest are the distortion, as quantified by a

prescribed distortion function, and the captured information. For clustering, the trade-off

is between intra-cluster variation and the number of clusters. While these problems come

in many flavors—with different motivations, domains, objectives, and solutions—what is

common to all such multi-objective trade-offs is the existence of a Pareto frontier, repre-

senting the boundary separating feasible solutions from infeasible ones. In a two-objective

optimization problem, this boundary is generically a one-dimensional curve in the objective

plane, representing solutions to the trade-off where increasing performance along one axis

necessarily decreases performance along the other.

The shape of the frontier, at least locally, is important for model selection: prominent

corners on the frontier are often more robust to changes in the inputs and therefore corre-
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Figure 5.1: Comparison of the Lagrangian DIB (left) and primal DIB (right) frontiers dis-
covered by Algorithm 1 for the English alphabet compression task discussed in Section 5.1.3.
The shaded regions indicate the convex hull of the points found by the Pareto Mapper al-
gorithm. Clusterings inside the shaded region, while Pareto optimal, are not optimal in the
Lagrangian formulation.

spond to more desirable solutions. The global frontier can provide additional insights, such

as giving a sense of interesting scales in the objective function. Structure often exists at

multiple scales; for hierarchical clustering problems, these are the scales at which the data

naturally resolve. Unfortunately, much of this useful structure (see Fig. 5.1) is inaccessible to

optimizers of the more commonly studied convex relaxations of the trade-offs. Optimization

over discrete search spaces poses a particular difficulty to convex relaxed formulations, as

most points on the convex hull are not feasible solutions, and Pareto optimal solutions are

masked by the hull. While the optimization of the Lagrangian relaxation is often sufficient

for finding a point on or near the frontier, we, in contrast, seek to map out the entire frontier

of the trade-off and therefore choose to tackle the primal problem directly.

We focus on the general problem of the deterministic encoding of a discrete domain. For

a finite set of inputs, X, which we identify with the integers [X] ≡ {1, . . . , |X|}, we seek a

mapping to a set Z, where |Z| ≤ |X|. The search space is therefore the space of functions

f : [X]→ [Z], which we call “encodings” or equivalently, “hard clusterings”, where Z = f(X)

is interpreted as the number of the cluster to which X is assigned. We evaluate the encodings

using the Deterministic Information Bottleneck objective, but regardless of which objectives
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Algorithm 1 Pareto Mapper: ε-greedy agglomerative search
Input : Joint distribution X, Y ∼ pXY , and search parameter ε
Output : Approximate Pareto frontier P
1: procedure Pareto_mapper(pXY , ε)
2: Pareto set P = ∅ ▷ Initialize maintained Pareto set
3: Queue Q = ∅ ▷ Initialize search queue
4: Point p = (x =− H(pX), y = I(pX;Y ), f = id) ▷ Evaluate trivial clustering
5: P ← insert(p, P )
6: Q← enqueue(id, Q) ▷ Start with identity clustering id : [n]→ [n] where n = |X|
7: while Q is not ∅ do
8: f = dequeue(Q)
9: n = | range(f)|

10: for 0 < i < j < n do ▷ Loop over all pairs of output clusters of f
11: f ′ = ci,j ◦ f ▷ Merge clusters i, j output f
12: Point p = Point(x =− H(pf ′(X)), y = I(pf ′(X);Y ), f =f

′)
13: d = pareto_distance(p, P )
14: P ← pareto_add(p, P ) ▷ Keep track of point and clustering in Pareto set
15: with probability e−d/ε, Q← enqueue(f ′, Q)
16:

return P

are chosen, we will refer to all two-objective optimization problems over the space of such

functions f as “clustering problems”.

The goal of this paper is to motivate the study of the Pareto frontiers to primal clustering

problems and to present a practical method for their discovery.

Objectives and relation to prior work

We focus on the task of lossy compression, which is a trade-off between retaining the salient

features of a source and parsimony. Rate-distortion theory provides the theoretical underpin-

nings for studying lossy data compression of a source random variable X into a compressed

representation Z [CT06]. In this formalism, a distortion function quantifies the dissatis-

faction with a given encoding, which is balanced against the complexity of the compressed

representation as measured by I(Z;X). In the well-known Information Bottleneck (IB)

problem [TPB00], the goal is to preserve information about a target random variable Y

as measured by the mutual information I(Z;Y ); the IB can be viewed as a rate-distortion
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problem with the Kullback–Leibler divergence, DKL(pY |X ||pY |Z), serving as the measure of

distortion. In recent years, a number of similar bottlenecks have also been proposed inspired

by the IB problem [SS17; AF18; Fis20]. We focus on one of these bottlenecks known as the

Deterministic Information Bottleneck (DIB) [SS17].

The Deterministic Information Bottleneck

In the DIB problem, we are given random variables X and Y with joint probability mass

function (PMF) pXY , and we would like to maximize I(Z;Y ) subject to a constraint onH(Z).

As in [SS17], we further restrict ourselves to the compression of discrete domains, where X,

Y and Z are finite, discrete random variables. We note that DIB-optimal encodings are

deterministic encodings Z = f(X) [SS17], and we can therefore focus on searching through

the space of functions f : [X] → [Z], justifying the interpretation of DIB as a clustering

problem. Since the optimization is being performed over a discrete domain in this case,

not all points along the frontier are achievable. Nonetheless, we define the Pareto frontier

piecewise as the curve that takes on the minimum vertical value between any two adjacent

points on the frontier.

Formally, given pXY , the DIB problem seeks an encoding f ∗ : X → Z such that, Z∗ =

f ∗(X) maximizes the relevant information captured for a given entropy limit H∗:

f ∗
primal ≡ argmax

f :H[f(X)]≤H∗
I
(︁
Y ; f(X)

)︁
. (5.1)

We will refer to the constrained version of the DIB problem in Eq. (5.1) as the primal DIB

problem, to differentiate it from its more commonly studied Lagrangian form [SS17]:

f ∗
Lagrangian ≡ argmax

f
I
(︁
f(X);Y

)︁
− βH

(︁
f(X)

)︁
. (5.2)

In this form, which we call the Lagrangian DIB, a trade-off parameter β is used instead

of the entropy bound H∗ to parameterize f∗ and quantify the importance of memorization
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relative to parsimony. The Lagrangian relaxation has the benefit of removing the non-linear

constraint at the cost of optimizing a proxy to the original function, known as the DIB

Lagrangian, but it comes at the cost of being unable to access points off the convex hull

of the trade-off. We note that while we use the terminology ‘primal DIB’ to differentiate it

from its Lagrangian form, we do not study its ‘dual’ version in this paper.

Many algorithms have been proposed for optimizing the IB, and more recently, the DIB

objectives [HWD17]. An iterative method that generalizes the Blahut-Arimoto algorithm

was proposed alongside the IB [TPB00] and DIB [SS17] algorithms. For the hierarchical

clustering of finite, discrete random variables X and Y using the IB objective, both divi-

sive [PTL93] and agglomerative [ST99] methods have been studied. Relationships between

geometric clustering and information theoretic clustering can also be used to optimize the

IB objective in certain limits [Ban+05]. More recently, methods using neural network-based

variational bounds have been proposed [Ale+17]. However, despite the wealth of proposed

methods for optimizing the (D)IB, past authors [HWD17; TPB00; SS17; Ale+17; Sti20;

And+04] has focused only on the Lagrangian form of Eq. (5.2) and are therefore unable to

find convex portions of the frontier.

Frontiers of the DIB Lagrangian and primal DIB trade-offs are contrasted in Fig. 5.1, with

the shaded gray region indicating the shroud that the optimization of the Lagrangian relax-

ation places on the frontier (the particular frontier presented is discussed in Section 5.1.3).

Points within the shaded region are not accessible to the Lagrangian formulation of the

problem as they do not optimize the Lagrangian. We also note that while the determinicity

of solutions is a consequence of optimizing the Lagrangian DIB [SS17], the convex regions of

the primal DIB frontier is known to contain soft clusterings [KTV18; TW19]. In our work,

the restriction to hard clusterings can be seen as a part of the problem statement. Finally,

we adopt the convention of flipping the horizontal axis as in [TW19] which more closely

matches the usual interpretation of a Pareto frontier where points further up and to the

right are more desirable.
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Discrete Memoryless Channels

A closely related trade-off is that between I(Z;Y ) and the number of clusters |Z|, which

has been extensively studied in the literature on the compression of discrete memoryless

channels (DMCs) [KY14; ZK16; HWD17]. In Fig. 5.1 and the other frontier plots presented

in Section 5.1.3, the DMC optimal points are plotted as open circles. The DIB and DMC

trade-offs are similar enough that they are sometimes referred to interchangeably [HWD17]:

some previous proposals for solutions to the IB [ST99] are better described as solutions to the

DMC trade-off. We would like to make this distinction explicit, as we seek to demonstrate

the richness of the DIB frontier over that of the DMC frontier.

Pareto Front Learning

In recent work by Navon et al. [Nav+20], the authors define the problem of Pareto Front

Learning (PFL) as the task of discovering the Pareto frontier in a multi-objective optimiza-

tion problem, allowing for a model to be selected from the frontier at runtime. Recent

hypernetwork-based approaches to PFL [Nav+20; Lin+20] are promising being both scal-

able and in principle capable of discovering the entirety of the primal frontier. Although we

use a different approach, our work can be seen as an extension to the existing methods for

PFL to discrete search spaces. Our Pareto Mapper algorithm performs PFL for the task of

hard clustering, and our analysis provides evidence for the tractability of the PFL in this

setting.

We also note similarities to the problems of Multi-Task Learning and Multi-Objective

Optimization. The main difference between these tasks and the PFL setup is the ability to

select Pareto-optimal models at runtime. We direct the reader to [Nav+20], which provides

a more comprehensive overview of recent work on these related problems.
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Motivation and Objectives

Our work is, in spirit, a generalization of [TW19], which demonstrated a method for map-

ping out the primal DIB frontier for the special case of binary classification (i.e., |Y | = 2).

Although we deviate from their assumptions, assuming that X is discrete (rather than con-

tinuous in [TW19]), and being limited to deterministic encodings (rather than stochastic

ones in [TW19]), and thus our results are not strictly comparable, our goal of mapping out

the primal Pareto frontier is done in the same spirit.

The most immediate motivation for mapping out the primal Pareto frontier is that its

shape is useful for model selection: given multiple candidate solutions, each being near the

frontier, we would often like to be able to privilege one over the others. For example, one

typically favors the points that are the most robust to input noise, that is, those that are

most separated from their neighbors, appearing as concave corners in the frontier. For the

problem of geometric clustering with the Lagrangian DIB, the angle between piecewise linear

portions of its frontier, known as the “kink angle”, has been proposed as a criterion for model

selection [SS19]. Using the primal DIB frontier, we can use distance from the frontier as a

sharper criterion for model selection; this is particularly evident in the example discussed in

Section 5.1.3, where the most natural solutions are clearly prominent in the primal frontier

but have zero kink angle. The structure of this frontier also encodes useful information about

the data. For clustering, corners in this frontier often indicate scales of interests: those at

which the data best resolve into distinct clusters. Determining these scales is the goal of

hierarchical clustering.

Unlike the previously studied case of binary classification [TW19], no polynomial time

algorithm is known for finding optimal clusterings for general |Y | > 2 [ZK16]. Finding

an optimal solution to the DIB problem (i.e., one point near the frontier) is known to be

equivalent to k-means in certain limits [SB04; SS19], which is itself an NP-hard problem

[Awa+15]: mapping out the entirety of the frontier is no easier. More fundamentally, the

number of possible encoders is known to grow super-exponentially with |X|; therefore, it is
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not known whether we can even hope to store an entire DIB frontier in memory. Another

issue is that of the generalization of the frontier in the presence of sampling noise. Estimation

of mutual information and entropy for finite datasets is known to be a difficult problem with

many common estimators either being biased, having high variance, or both [NSB02; Pan03;

KSG04; NBR04; Poo+19]. This issue is of particular significance in our case as a noisy point

on the objective plane can mask other, potentially more desirable, clusterings.

It is these gaps in the optimization of DIB and DIB-like objectives that we seek to address.

Firstly, existing work on optimization concerns itself only with finding a point on or near the

frontier. These algorithms may be used to map out the Pareto frontier, but they need to be

run multiple times with special care taken in sampling the constraint in order to attain the

desired resolution of the frontier. Furthermore, we observe empirically that almost all of the

DIB Pareto frontier is in fact convex. The majority of the existing algorithms applicable to

DIB-like trade-offs optimize the Lagrangian DIB [Ale+17; SS17] and are therefore unable to

capture the complete structure of the DIB frontier. Existing agglomerative methods [ST99]

are implicitly solving for the related but distinct DMC frontier, which has much less structure

than the DIB frontier. Finally, existing methods have assumed access to the true distribution

pXY or otherwise used the maximum likelihood (ML) point estimators [SS17; TW19], which

are known to be biased and have high variance for entropy and mutual information, which

can have a significant effect on the makeup of the frontier.

Roadmap

The rest of this paper is organized as follows. In Section 5.1.2, we tackle the issue of finding

the Pareto frontier in practice by proposing a simple agglomerative algorithm capable of

mapping out the Pareto frontier in one pass (Section 5.1.2) and propose a modification

that can be used to select robust clusterings with quantified uncertainties from the frontier

when the sampling error is significant (Section 5.1.2). We then present our analytic and

experimental results in Section 5.1.3. In Section 5.1.3, we provide evidence for the sparsity
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of the Pareto frontier, giving hope that it is possible to efficiently study it in practice. To

demonstrate our algorithm and build intuition for the Pareto frontier structure, we apply

it to three different DIB optimization problems in Section 5.1.3: compressing the English

alphabet, extracting informative color classes from natural images, and discovering group–

theoretical structure. Finally, in Section 5.1.4, we discuss related results and directions for

future work.

5.1.2 Methods

We design our algorithm around two main requirements: firstly, we would like to be able to

optimize the primal objective of Eq. (5.1) directly, thereby allowing us to discover convex

portions of the frontier; secondly, we would like a method that records the entire frontier

in one pass rather than finding a single point with each run. While the task of finding the

exact Pareto frontier is expected to be hard in general, Theorem 7 applied to Example 39,

gives us hope that the size of the Pareto frontier grows at most polynomially with input

size |X|. As is often the case when dealing with the statistics of extreme values, we expect

that points near the frontier are rare and propose a pruned search technique with the hope

that significant portions of the search space can be pruned away in practice. In the spirit

of the probabilistic analysis provided above, we would like an algorithm that samples from

a distribution that favors near-optimal encoders, thereby accelerating the convergence of

our search. For this reason, we favor an agglomerative technique, with the intuition that

there are good encoders that can be derived from merging the output classes of other good

encoders. An agglomerative approach has the additional benefit of being able to record the

entire frontier in one pass. For these reasons, we propose an agglomerative pruned search

algorithm for mapping the Pareto frontier in Section 5.1.2. We also describe in Section 5.1.2

a modification of the algorithm that can be applied to situations where only a finite number

of samples are available.
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The Pareto Mapper

Our method, dubbed the Pareto Mapper (Algorithm 1), is a stochastic pruned agglomerative

search algorithm with a tunable parameter ϵ that controls the search depth. The algorithm

is initialized by enqueuing the identity encoder, f = id, into the search queue. At each

subsequent step (illustrated in Fig. 5.2), an encoder is dequeued. A set containing all of

the Pareto-optimal encoders thus far encountered is maintained as the algorithm proceeds.

All encoders that can be constructed by merging two of the given encoder’s output classes

(there are O(n2) of these) are evaluated against the frontier of encoders seen so far; we call

encoders derived this way child encoders. If a child encoder is a distance d from the current

frontier, we enqueue its children with probability e−d/ϵ and discard it otherwise, resulting

in a search over an effective length-scale ϵ from the frontier. The selection of ϵ tunes the

trade-off between accuracy and search time: ϵ = 0 corresponds to a greedy search that does

not evaluate sub-optimal encodings, and ϵ → ∞ corresponds to a brute-force search over

all possible encodings. As the search progresses, the Pareto frontier is refined, and we are

able to prune a larger majority of the proposed encoders. The output of our algorithm is

a Pareto set of all found Pareto optimal clusterings of the given trade-off. The Pareto
frontier at any given moment is stored in a data structure, called a Pareto set, which is a

list of point structures. A point structure, p, contains fields for both objectives p.x, p.y,

and optional fields for storing the uncertainties p.dx, p.dy and clustering function p.f. The

Pareto set is maintained so that the Pareto-optimality of a point can be checked against a

Pareto set of size m in Θ(logm) operations. Insertion into the data structure requires in the

worst case Θ(m) operations, which is optimal, as a new point could dominate Θ(m) existing

points necessitating their removal. We define the distance from the frontier as the minimum

Euclidean distance that a point would need to be displaced before it is Pareto-optimal, which

also requires in the worst case Θ(m) operations. A list of pairs (H(Z), I(Z;Y )), sorted by

its first index, provides a simple implementation of the Pareto set. The pseudocode for

important auxiliary functions such as pareto_add and pareto_distance is provided in
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Figure 5.2: Illustration of one step in the main loop of the Pareto Mapper (Algorithm 1)
mid-run. For pedagogical purposes, all possible encoders (filled gray circle) are plotted on
the objective plane. The Pareto optimal points searched so far are marked with open black
circles, and the region of the objective plane they dominate is shaded in gray. The black
arrows show neighboring encoders and newly enqueued encoders are marked by open blue
circles; encodings that are optimal with respect to the current frontier are enqueued with
certainty and sub-optimal encodings enqueued with probability e−d/ϵ, where d is the distance
from the frontier. Note that some Pareto optimal points are only accessible through sub-
optimal encoders (blue arrow).
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Figure 5.3: Scaling of computation time (left scale) and points searched (right scale) as a
function of (a) input size n at ϵ = 0, where we find compute time scales as O(nδ) and the
size of the Pareto set scales as O(nγ); (b) search parameter ϵ for randomly generated pXY of
fixed size.

Appendix C.2.

Although we have provided evidence for polynomial scaling of size of the Pareto set, it is

not obvious if the polynomial scaling of the Pareto set translates to the polynomial scaling

of our algorithm, which depends primarily on how quickly the search space can be pruned

away by evaluation against the Pareto frontier. To demonstrate the polynomial scaling of our

algorithm with n, we evaluate the performance of the Pareto Mapper on randomly generated

pXY . Since ϵ→∞ corresponds to a brute-force search, and therefore has no hope of having

polynomial runtime, we focus on the ϵ→ 0 case; we show later, in Section 5.1.3, that ϵ→ 0

is often sufficient to achieve good results. For Fig. 5.3a, we randomly sample pXY uniformly

over the simplex of dimension |X||Y | − 1 varying |X| with fixed |Y | = 30. We find that

the scaling is indeed polynomial. Comparing with the scaling of the size of the Pareto set

shown in Fig. 5.4b, we see that approximately O(n) points are searched for each point on the

Pareto frontier. While the computation time, empirically estimated to be Θ(n5.0), is limiting

in practice, we note that it is indeed polynomial, which is sufficient for our purposes.

We also evaluate the scaling of our algorithm with ϵ. Again, we randomly sample pXY

uniformly over the simplex of dimension |X||Y | − 1, this time fixing |X| = 11 and |Y | = 30,

with results plotted in Fig. 5.3b. We find that the relevant scale for distances is between
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Figure 5.4: Scaling of number of points on the Pareto frontier (a) as a function of N = |S|
for bivariate Gaussian distributed (U, V ) with specified correlation r ≡ σUV /σUσV , and (b)
for the DIB problem with input size n where we find |Pareto(S)| = O(nγ).

ϵ− ≈ 5 × 10−3 and ϵ+ ≈ 5 × 10−2; while the specifics of the characteristic range for ϵ

depends on the dataset, we empirically find that while ϵ+ remains constant, ϵ− decreases

as n increases. This is consistent with the fact that as n increases, the DIB plane becomes

denser, and the average separation between points decreases. This would suggest that there

is an n above which the runtime of the Pareto Mapper exhibits exponential scaling for any

ϵ > 0. In the absence of noise, one can run the Pareto Mapper at a number of different

values of ϵ evaluating precision and recall with respect to the combined frontier to evaluate

convergence (see Fig. 5.8b). We discuss how to set ϵ in the presence of noise due to sampling

in Section 5.1.3.

Robust Pareto Mapper

So far, we have assumed access to the true joint distribution pXY . Normally, in practice, we

are only provided samples from this distribution and must estimate both objective functions,

the mutual information I(Z;Y ) and entropy H(Z), from the empirical distribution p̂XY .

Despite the uncertainty in these estimates, we would like to find clusterings that are Pareto

optimal with respect to the true distribution. Here, we propose a number of modifications
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to Algorithm 1 that allow us to quantify our uncertainty about the frontier and thereby

produce a frontier that is robust to sampling noise. The modified algorithm, dubbed the

Robust Pareto Mapper (Algorithm 2), is described below.

Given samples from the joint distribution, we construct the empirical joint distribution

and run the Pareto Mapper (Algorithm 1) replacing the entropy and mutual information

functions with their respective estimators. We use the entropy estimator due to Nemenman,

Shafee, and Bialek (NSB) [NSB02], as it is a Bayesian estimator that provides not only a

point estimate but also provides some bearing on its uncertainty, although another suitable

estimator can be substituted. We find that our method works well even with point estimators,

in which case resampling techniques (e.g., bootstrapping) are used to obtain the uncertainty

in the estimate. After running the Pareto Mapper, points that are not significantly different

from other points in the Pareto set are removed. This filtering operation considers points

in order of ascending uncertainty, as measured by the product of its standard deviations in

H(Z), and I(Z;Y ). Subsequent points are added as long as they do not overlap with the

confidence interval in either H or I with a previously added point, and they are removed

otherwise. There is some discretion in choosing the confidence interval, which we have chosen

empirically to keep the discovered frontier robust between independent runs. This filtering

step is demonstrated in Section 5.1.3.

Algorithm 2 Robust Pareto Mapper: dealing with finite data
Input : Empirical joint distribution p̂XY , search parameter ε, and sample size S
Output : Approximate Pareto frontier P with uncertainties
1: procedure Robust_Pareto_Mapper(p̂XY , ε)
2: Pareto set P ← pareto_mapper(p̂XY , ϵ) ▷ Run pareto_mapper with

suitable estimators
3: Pareto set P ′ = ∅ ▷ Initialize set of robust encoders
4: for p ∈ P do ▷ This step can be skipped if an interval estimator is used above
5: (p.dx, p.dy)← resample(p, p̂XY ) ▷ Store uncertainty of points on frontier
6: for p ∈ P in ascending order of uncertainty do
7: if p is significantly different than all q ∈ P ′ then
8: P ′ ← pareto_add(p, P ′) ▷ Filter with preference for points with low

variance
return P ′
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5.1.3 Results

General properties of Pareto frontiers

Before introducing the specifics of the DIB problem, we would like to understand a few

general properties of the Pareto frontier. The most immediate challenge we face is the size

of our search space. For an input of size |X|, the number of points on the DMC frontier is

bounded by |X|, but there is no such limit on the DIB frontier. Given the combinatorial

growth of the number of possible clusterings with |X|, it is not immediately clear that it is

possible to list all of the points on the frontier, let alone find them. If we are to have any

chance at discovering and specifying the DIB frontier, it must be that DIB-optimal points

are sparse within the space of possible clusterings, where sparse is taken to mean that the

size of the frontier scales at most polynomially with the number of items to be compressed.

In this section, we provide sufficient conditions for the sparsity of the Pareto set in general

and present a number of illustrative examples. We then apply these scaling relationships to

the DIB search space and provide numerical evidence that the number of points grows only

polynomially with n ≡ |X| for most two-objective trade-off tasks.

Argument for the Sparsity of the Pareto Frontier— First, we will formally define a few

useful terms. Let S = {si⃗}Ni=1 be a sample of N independent and identically distributed

(i.i.d.) bivariate random variables representing points si⃗ = (Ui, Vi) in the Pareto plane.

Definition 37. A point (U, V ) ∈ S is maximal with respect to S, or equivalently called

Pareto-optimal, if ∀(Ui, Vi) ∈ S, ∃Vi > V =⇒ U > Ui. In other words, a point is maximal

with respect to S if there are no points in S both above and to its left.

Definition 38. For a set of points S ⊂ R2, the Pareto set Pareto(S) ⊆ S is the largest

subset of S such that all (U, V ) ∈ Pareto(S) are maximal with respect to S.

Now, we can state the main theorem of this section, which we prove in Appendix C.1.
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Theorem 7. Let S = {(Ui, Vi)}Ni=1 be a set of bivariate random variables drawn i.i.d. from

a distribution with Lipschitz continuous CDF F (u, v), and invertible marginal CDFs FU , FV .

Define the region

RN ≡
{︂
(u, v) ∈ [0, 1]× [0, 1] : u+ v − C(u, v) ≥ e−

1
N

}︂
, (5.3)

where C(u, v) denotes the copula of (Ui, Vi), which is the function that satisfies F (u, v) =

C(FU(u), FV (v)).

Then, if the Lebesgue measure of this region λ(RN) = Θ
(︂
ℓ(N)
N

)︂
as N → ∞, we have

E [|Pareto(S)|] = Θ(ℓ(N)).

Example 39. Let us consider the case of independent random variables with copula C(u, v) =

uv. Note that in this case, the level curves u+ v − C(u, v) = e−
1
N are given by v = e−

1
N −u
1−u .

We can then integrate to find the area of the region RN

λ(RN) = 1−
∫︂ e−

1
N

0

e−
1
N − u
1− u du = e−1/n

(︁
1− e1/n

)︁ (︁
log
(︁
1− e−1/n

)︁
− 1
)︁
. (5.4)

Expanding for large N , we find that λ(RN) =
logN
N

+O(N−1). We see that this satisfies the

conditions for Theorem 7 with ℓ(N) = logN , giving ES [|Pareto(S)|] = Θ(logN).

Additional examples can be found in Appendix C.1. Numerically, we see that for inde-

pendent random variables U and V , the predicted scaling holds even down to relatively small

N ; furthermore, the linear relationship also holds for correlated Gaussian random variables

U, V (Fig. 5.4a). The logarithmic sparsity of the Pareto frontier allows us to remain hopeful

that it is possible, at least in principle, to fully map out the DIB frontier for deterministic

encodings of discrete domains despite the super-exponential number of possible encoders.

Dependence on Number of Items |X|— The analysis above gives us hope that Pareto-

optimal points are generally polylogarithmically sparse in N ≡ |S|, i.e., |Pareto(S)| =

O((logN)γ). Of course, the scenario with which we are concerned is one where the random
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variables U = −H(Z) and V = I(Z;Y ); the randomness of U and V in this case comes

from the choice of encoder f : X → Z which, for convenience, we assume is drawn i.i.d.

from some distribution over the space of possible encodings. Note that conditioned on the

distribution of X and Y , the points (H(f(X)), I(f(X);Y )) are indeed independent, although

the agglomerative method we use to sample from the search space introduces dependence;

however, in our case, this dependence likely helps the convergence of the algorithm.

In the DIB problem, and clustering problems more generally, we define n ≡ |X| to be

the size of the input. The search space is over all possible encoders f : X → Z, which has

size N = B(n) where B(n) are the Bell numbers. Asymptotically, the Bell numbers grow

super-exponentially: lnB(n) ∼ n lnn−n ln lnn, making an exhaustive search for the frontier

intractable. We provide numerical evidence in Fig. 5.4b that the sparsity of the Pareto set

holds in this case, with its size scaling as O(poly(n)), or equivalently, O(polylog(N)). While

in the worst case, all Bn clusterings can be DIB-optimal (the case where (pXY )ij = diag(r⃗)

for ri drawn randomly from the (n−1)-dimensional simplex results in clusterings with strict

negative monotonic dependence on the DIB plane, and therefore all points are DIB-optimal,

see Appendix C.1), our experiments show that in practice, the size of the Pareto frontier

(and compute time) grows polynomially with the number of input classes n (Fig. 5.3), with

the degree of the polynomial depending on the details of the joint distribution p(x, y). This

result opens up the possibility of developing a tractable heuristic algorithm that maps out

the Pareto frontier, which we will explore in the remainder of this paper.

At the Pareto frontier: three vignettes

The purpose of this section is to demonstrate our algorithm and illustrate how the primal DIB

frontier can be used for model selection and to provide additional insights about the data. To

this end, we apply our algorithm to three different DIB optimization tasks: predicting each

character from its predecessor in the English text, predicting an object from its color, and

predicting the output of a group multiplication given its input. In all cases, the goal is to find
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a representation that retains as much predictive power as possible given a constraint on its

entropy. We will describe the creation of each dataset and motivate its study. For all three

tasks, we discuss the frontier discovered by our algorithm and highlight informative points

on it, many of which would be missed by other methods either because they are not DMC-

optimal or because they lie within convex regions of the frontier. For the task of predicting

the subsequent English character, we will also compare our algorithm to existing methods

including the Blahut–Arimoto algorithm, and a number of geometric clustering algorithms;

we will also use this example to demonstrate the Robust Pareto Mapper (Algorithm 2).

Compressing the English Alphabet

First, we consider the problem of compressing the English alphabet with the goal of preserv-

ing the information that a character provides about the subsequent character. In this case,

we collect 2 gram statistics from a large body of English text. Treating each character as a

random variable, our goal is to map each English character X into a compressed version Z

while retaining as much information as possible about the following character Y .

Our input dataset is a 27 × 27 matrix of bigram frequencies for the letters a–z and the

space character, which we denote “_” in the figures below. We computed this matrix from

the 100 Mb enwiki8 Wikipedia corpus after removing all symbols except letters and the space

character, removing diacritics, and making all letters lower-case.

The Pareto frontier is plotted in Fig. 5.5 and the points corresponding to some interesting

clusterings on the frontier are highlighted. We find that from 2 gram frequencies alone, the

DIB-optimal encodings naturally discover relevant linguistic features of the characters, such

as their grouping into vowels and consonants.

The DMC-optimal encoding corresponding to a cluster size of k = 2 is nearly balanced

(i.e., H(Z) = log2 2) and separates the space character and the vowels from most of the con-

sonants. However, in contrast to the binary classification case of |Y | = 2 studied in [TW19],

the DMC-optimal encodings are far from balanced (i.e., H(Z) ≈ log2(k)) for larger k. We
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Figure 5.5: The primal DIB frontier of the English alphabet is compressed to retain informa-
tion about the subsequent character. Points in the shaded gray region, indicating the convex
hull, are missed by optimization of the DIB Lagrangian. Encodings corresponding to inter-
esting features of the frontier are annotated, and DMC-optimal points are circled. Dotted
vertical lines mark the location of balanced clusters (i.e., H(Z) = log2 k for k ∈ {2, 3, . . .}),
and solid vertical lines correspond to the entropy of the DMC-optimal encodings. A sample
of encodings drawn uniformly at random for each |Z| is evaluated on the plane, illustrating
the large distance from the frontier for typical points in the search space. The color indicates
|Z|.
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note that on the DIB frontier, the most prominent corners are often not the DMC-optimal

points, which are circled. By looking at the corners and the DMC-optimal points near the

corners, which are annotated on the figure, we discover the reason for this: distinguishing

anomalous letters such as ‘q’ has an outsized effect on the overall information relative to its

entropy cost. These features are missed when looking only at DMC-optimal points, because

although the 2 gram statistics of ‘q’ are quite distinct (it is almost always followed by a

‘u’), it does not occur frequently enough to warrant its own cluster when our constraint is

cluster count rather than entropy. In other words, ‘q‘ is quite special and noteworthy, and

our Pareto plot reveals this while the traditional DMC or DIB plots do not.

The frontier is seen to reveal features at multiple scales, the most prominent corner

corresponding to the encoding that separates the space character, ‘_’, from the rest of the

alphabet, and the separation of the vowels from (most of the) consonants. The separation

of ‘q‘ often results in a corner of a smaller scale because it is so infrequent. These corners

indicate the natural scales for hierarchical clustering. We also note that a large majority

of the points, including those highlighted above, are below the convex hull (denoted by the

solid black line) and are therefore missed by algorithms that optimize the DIB Lagrangian.

A random sample of clusterings colored by |Z| is also plotted on the DIB plane in Fig. 5.5;

a sample for each value of |Z| = {1, . . . , |X|} is selected uniformly at random. We see that

there is a large separation between the typical clustering, sampled uniformly at random, and

the Pareto frontier, indicating that a pruned search based on the distance from the frontier,

such as the Pareto Mapper of Algorithm 1, is likely able to successfully prune away much

of the search space. A better theoretical understanding of the density could provide further

insights on how the runtime scales with ϵ.

We now compare the results of the Pareto Mapper (Algorithm 1) with other clustering

methods. We first use the Pareto Mapper with ϵ = 0 to derive a new dataset from the

original alphabet dataset (which has |X| = 27) by taking the |Z| = 10 clustering with the

highest mutual information. We are able to obtain a ground truth for this new dataset with
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Figure 5.6: Comparison of the Pareto Mapper and other classification algorithms with ground
truth for |X| = 10. The true Pareto frontier is calculated with a brute force search over all
B(10) = 115, 975 clusterings f .

|X| = 10 using a brute force search, against which we compare the other methods. These

methods are compared on the DIB plane in Fig. 5.6 and in tabular form in Table 5.1. Notably,

all the encodings found by the Blahut–Arimoto algorithm used in [TPB00; SS17] are DIB-

optimal, but as it optimizes the DIB Lagrangian, it is unable to discover the convex portions

of the frontier. We also compare our algorithm to geometric clustering methods where we

assign clusters pairwise distances according to the Jensen–Shannon distances between the

conditional distributions p(Y |X = xi). These methods perform poorly when compared on

the DIB plane for a number of reasons: firstly, some information is lost in translation to

a geometric clustering problem, since only pairwise distances are retained; secondly, the

clustering algorithms are focused on minimizing the number of clusters and are therefore

unable to find more than n points. Additionally, these geometric clustering algorithms,

while similar in spirit, are not directly optimizing the DIB objective.
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Table 5.1: Comparison of the performance of Algorithm 1 with other clustering algorithms.
Here, a true positive (TP) is a point that is correctly identified as being Pareto optimal by
a given method; false positives (FP) and false negatives (FN) are defined analogously.

Method Points TP FP FN Precision Recall

Ground truth (ϵ→∞) 94 94 0 0 1.00 1.00

Pareto Mapper (ϵ = 10−2) 94 94 0 0 1.00 1.00

Pareto Mapper (ϵ = 0) 91 88 3 6 0.97 0.94

Hierarchical (average) 10 7 3 87 0.70 0.07

Hierarchical (single) 10 10 0 84 1.00 0.11

Hierarchical (Ward) 10 7 3 87 0.70 0.07

k-means (JSD) 10 3 7 91 0.30 0.02

k-means (wJSD) 10 2 8 92 0.20 0.10

Blahut Arimoto 9 9 0 85 1.00 0.10

To demonstrate the Robust Pareto Mapper (Algorithm 2), we create a finite sample

n̂XY = sp̂XY from a multinomial distribution with parameter pXY and s trials. To quantify

the sample size in natural terms, we define the sampling ratio r ≡ s/2H(X,Y ). The results of

the Robust Pareto Mapper on the alphabet dataset for several sampling ratios are shown in

Fig. 5.7. We note that even for relatively low sampling ratios, the algorithm is able to extract

interesting information; it is able to quickly separate statistically distinct letters such as ‘q’

and identify groups of characters such as vowels. As the sampling ratio increases, the Robust

Pareto Mapper identifies a larger number of statistically significant clusterings (marked in

red) from the rest of the discovered frontier (marked in gray). It is also notable that uncer-

tainties in the entropy are typically lowest for encodings that split X into roughly equally

probably classes; that these clusters are preferred is most readily seen in the highlighted

clustering with H(Z) ≈ 1 in Fig. 5.7b. We can see from these plots that, especially for low

sampling ratios, the estimated frontier often lies above that of the true pXY (solid black line).

This is expected, as estimators for mutual information are often biased high. Despite this,
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Figure 5.7: The optimal frontier discovered by the Robust Pareto Mapper at various sam-
pling ratios. The points corresponding to robust clusterings selected by the algorithm are
highlighted in red, with the rest in gray. The true frontier is shown in solid black.

the true frontier is found to lie within our estimates when the variance of the estimators is

taken into account even for modest sampling ratios, as seen in the plot for r = 4.

Finally, we would like to comment on choosing the parameter ϵ in Algorithm 1 and Al-

gorithm 2 when working with limited sample sizes. The uncertainty in the frontier due to

finite sampling effects naturally sets a scale for choosing ϵ. Ideally, we want the two length

scales—that given by ϵ, and that due to the variance in the estimators—to be comparable.

This ensures that we are not wasting resources fitting sampling noise. Evaluating the perfor-

mance as a function of sample size and epsilon, we see that often, sample size is the limiting

factor even up to significant sampling ratios, and often, a small ϵ is often sufficient. This

is demonstrated in Fig. 5.8, where it can be seen that performance is good even with small

ϵ, and increasing ϵ does not result in a more accurate frontier until the sampling ratio is

greater than r ≈ 5× 104. In practice, determining the appropriate ϵ can be accomplished by

selecting different holdout sets, and running the algorithm at a given ϵ in each case; when

ϵ is chosen appropriately, the resulting Pareto frontier should not vary significantly between

the runs.
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Figure 5.8: Performance as a function of (a) sample size, and (b) ϵ. The precision and
recall are measured relative to the true frontier obtained by a brute force search on the true
distribution.

Naming the Colors of the Rainbow

Human languages often have a small set of colors to which words are assigned, and they

remarkably often settle on similar linguistic partitions of the color space despite cultural

and geographic boundaries [Two+21]. As our next example, we apply our method to the

problem of optimally allocating words to colors based on the statistics of natural images.

In order to cast this as a DIB-style learning problem, we consider the goal of being able

to identify objects in natural images based solely on color: the variable we would like to

predict, Y , is therefore the class of the object (e.g., apple or banana). The variable we would

like to compress, X, is the average color of the object. The Pareto-optimal classifiers are

those that, allotted limited memory for colorative adjectives, optimally draw the boundaries

to accomplish the task of identifying objects. We demonstrate some success in discovering

different color classes, relate it to those typically found in natural languages, and discuss

shortcomings of our method.

We create a dataset derived from the COCO dataset [Lin+14], which provides a corpus

of segmented natural images with 91 object classes. There are a number of challenges we

immediately face in the creation of this dataset, which require us to undertake a number
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of preprocessing steps. Firstly, using standard RGB color values, with 8 bits per channel,

leaves over 16 million color classes to cluster, which is not feasible using our technique.

Secondly, RGB values contain information that is not relevant to the task at hand, as they

vary with lighting and image exposure. Thus, we turn to the HSV color model and use only

the hue value (since hue is a circular quantity, we use circular statistics when discussing

means and variances), which we refer to as the color of the object from now on. This leaves

256 values which are further reduced by contiguous binning so that each bin has roughly

equal probability in order to maximize the entropy of X. After this preprocessing, we are

left with an input of size |X| = 30. Another challenge we face is that there are often cues

in addition to average color when performing object identification such as color variations,

shape, or contextual understanding of the scene; in order to obtain the cleanest results, we

retain only those classes that could reasonably be identified by color alone. Specifically, for

the roughly 800,000 image segments from the approximately 100,000 images we considered

in the COCO dataset, we calculate the average color of each segment and keep only the 40%

with the most uniform color as measured by the variance of the hue across the segment;

then, looking across classes, we keep only those that are relatively uniform on the average

color of its instances, keeping approximately the most uniform 20% of classes. We are left

with a dataset of approximately 80,000 objects across |Y | = 18 classes, predictably including

rather uniformly colored classes such as apples, bananas, and oranges. We chose these cutoff

percentiles heuristically to maximize the predictive power of our dataset while maintaining

a sizable number of examples.

The Pareto frontier for this dataset is shown in Fig. 5.9. A number of DMC-optimal

points are circled, and their respective color palettes are plotted below in descending order

of likelihood. First, we note that the overall amount of relevant information is quite low,

with a maximum I(X;Y ) ≈ 0.12, indicating that despite our preprocessing efforts, color is

not a strong predictor of object class. Unlike the other Pareto frontiers considered, there

are a few prominent corners in this frontier, which is a sign that there is no clear number of
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Figure 5.9: Pareto frontier of color data. A representative color patch for each cluster is
shown below select points sorted by likelihood. The saturation of the patch represents the
likelihood-weighted variance of the colors mapped to the class.

colors to best resolve the spectrum. For the first few DMC-optimal clusterings, the colors

fall broadly into reddish-purples, greens, and blues. This is somewhat consistent with the

observation that languages with limited major color terms often settle for one describing

warm colors and one describing colder colors [Two+21].

Overall, the results are not conclusive. We will address a few issues with our method and

discuss how it might be improved. Firstly, as noted by [Two+21], the colors present in human

languages often reflect a communicative need and therefore should be expected to depend

strongly on both the statistics of the images considered and also the prediction task at hand.

Since the COCO dataset was not designed for the purpose of learning colors, classes had color

outliers, despite our preprocessing efforts, which reduced the classification accuracy by color

alone. Using color as a predictor of the variety of an apple or as a predictor of the ripeness

of a banana might yield better results (see Fig. 5.10); indeed, these tasks might be more

reflective of the communicative requirements under which some human languages developed

[Two+21]. Due to the scarcity of relevant datasets, we have not attempted to address these

subtleties. Another issue, more fundamental to the DIB algorithm, is that DIB is not well

suited for the compression of domains of a continuous nature. The DIB trade-off naturally
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Figure 5.10: Examples of correctly (a, b) and incorrectly (c, d) identified apples; and correctly
(e, f) and incorrectly (g, h) identified bananas from the filtered COCO dataset using the
best discovered five-bin clustering.

favors a discrete domain, X, without a measure of similarity between objects in X. Unlike

the other examples considered, the space of colors is inherently continuous: there is some

notion of similarity between different hues. One weaknesses of the DIB trade-off is that

it does not respect this natural notion of closeness and it is as likely to map distant hues

together as it is ones that are close together. This is undesirable in the case of the color

dataset, as we would ideally like to map contiguous portions of the color space to the same

output. Other objectives, such as the IB or a multidimensional generalization of [TW19],

may be more suitable in cases where the domain is of a continuous nature.

Symmetric Compression of Groups

For our final example, we turn our attention to a group–theoretic toy example illustrating a

variation on the compression algorithm so far considered which we call “symmetric compres-

sion.” We consider a triplet of random variables (X1, X2, Y ), each taking on values in the

set G with the special property that G forms a group under the binary group operation ‘·’.

We could apply Algorithm 1 directly to this problem by setting X = (X1, X2), but this is

188



not ideal, as it does not make use of the structure we know the data to have and as a result

needlessly expands our search space. Instead, we make the slight modification, detailed in

Appendix C.3, where we apply the same clustering to both inputs, Z = (f(A), f(B)). We

would like to discover an encoding f that trades off the entropy of the encoding with the

ability to predict Y from (f(X1), f(X2)). We expect that the DIB frontier encodes informa-

tion about the subgroups of the group G, but we also expect to find points on the frontier

corresponding to near-subgroups of G.

We consider two distributions. The first consists of the sixteen integers that are co-

prime to 40, i.e., {1, 3, 7, 9, 11, 13, 17, 19, 21, 23, 27, 29, 31, 33, 37, 39}, which for a multiplica-

tive group module 40 denoted (Z/40Z)×. The second is the Pauli group G1, whose elements

are the sixteen 2× 2 matrices generated by the Pauli matrices under matrix multiplication:

they are the identity matrix I and Pauli matrices X, Y, Z, each multiplied by ±1 and ±i.

These groups are chosen as they both have order 16 but are otherwise quite different; notably,

(Z/40Z)× is abelian while G1 is not. The joint probability distribution is defined as follows

for each group G: we take (X1, X2) to be distributed uniformly over G2 and Y = X1 · X2.

The distribution pX1X2Y is given as input to the symmetric Pareto Mapper (Algorithm 6).

The resultant frontiers are shown in Fig. 5.11. As expected, the subgroups are readily

identified in both cases, as seen the in circled points on the frontier with entropy H(Z) = 1,

H(Z) = 2, and H(Z) = 3, corresponding to subgroups of size 2, 4, and 8, respectively.

In this example, we also see that the clusterings corresponding to the subgroups saturate

the feasibility bound of I(Z;Y ) = H(Z), indicating that at these points, all the information

captured in Z is relevant to Y . At these points, the encoding effectively identifies a subgroup

H ≤ G and retains information only about which of the |G|/|H| cosets an element belongs

to; as it retains the identity of the cosets of X1 and X2 in Z1 and Z2, it is able to identify the

coset of the output Y , thereby specifying Y to log2
|G|
|H| bits. These clearly desirable solutions

show up prominently in the primal DIB frontier, yet their prominence is not evident on the

frontier of the Lagrangian DIB—notably having zero kink angle as defined by [SS19].
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Figure 5.11: Discovered frontier of the (a) (Z/40Z)× group and (b) the non-abelian Pauli
group. Both groups have identical frontiers despite having different group structures.

In addition to the points corresponding to identified subgroups, a number of intermedi-

ary points have also been highlighted showing ‘near-subgroups’, where, allotted a slightly

larger entropy budget, the encoder can further split cosets apart in such a way that partial

information is retained. Interestingly, despite being very different groups, they have identical

Pareto frontiers. This is because they both have subgroups of the same cardinality, and the

entropy and relevant information of these encodings is agnostic to the group theoretic details

and concerns itself only with the ability to predict the result of the group operation.

5.1.4 Concluding remarks

We have presented the Pareto Mapper algorithm, which computes the optimal trade-off

between parsimony and performance for lossy data compression. By applying it to examples

involving linguistics, image colors and group theory, we have demonstrated the richness of

the DIB Pareto frontier that customarily lies hidden beneath the convex hull. Our English

alphabet example revealed features at multiple scales and examples of what the frontier

structure reveals about the data, and we demonstrated a modification to our algorithm
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that can aid model selection given significant sampling noise. Notably, we showed how

the prominence of a point on the primal frontier can be a sharper tool for model selection

than existing measures on the Lagrangian DIB frontier; for example, for our group theory

examples, it outperformed the kink-angle method for model selection, which only gave kink

angles of zero.

Our result helps shed light on recently observed phases transitions. Recent work has

shown that learning phase transitions can occur when optimizing two-objective trade-offs

including the (D)IB [AS18; Fis20; Wu+20; NS21] and β-VAEs [RV18]. In these cases, it

is found that the performance of the learned representation makes discontinuous jumps as

the trade-off parameter β is varied continuously. Such phase transitions can be readily

understood in terms of the primal Pareto frontier of the trade-off: methods that optimize

the Lagrangian DIB are only able to capture solutions on the convex hull of objective plane;

as the Pareto frontier is largely convex, methods that optimize the Lagrangian exhibit will

discontinuous jumps when the trade-off parameter β (which corresponds to the slope of a

tangent to the frontier) is varied. This is analogous to the way first-order phase transitions

in statistical physics arise, where it is the closely related Legendre–Fenchel dual that is

minimized.

We would like to emphasize that, going beyond the IB framework, our basic method

(Section 5.1.2) is generally applicable to a large class of two-objective optimization problems,

including general clustering problems. Specifically, our method can be adapted for two-

objective trade-offs with the following properties: a discrete search space; a frontier that,

for typical datasets, grows polynomially with the input size |X|; and a notion of relatedness

between objects in the search space (e.g., for the DIB problem, new encodings can be derived

from existing ones by merging its output classes), which allows for an agglomerative search.

The modification (Section 5.1.2) can also be adapted given suitable estimators for other

two-objective trade-offs.
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Outlook

There are many opportunities to further improve our results both conceptually and practi-

cally. To overcome the limitations we highlighted with our image color dataset, it will be

interesting to generalize our work and [TW19] to compressing continuous variables poten-

tially with trade-offs such as the IB. While our evidence for the polynomial scaling of the

size of the Pareto frontier is likewise applicable to other trade-offs of this sort, the runtime

of our algorithm depends heavily on how quickly the search space can be pruned away and

therefore is not guaranteed to be polynomial. Here, there is ample opportunity to tighten

our analysis of the algorithmic complexity of finding the DIB frontier and on the scaling of

generic Pareto frontiers.

Proofs aside, it will also be interesting to optimize the algorithm runtime beyond simply

showing that it is polynomial. Although we have demonstrated the polynomial scaling of our

algorithm for realistic datasets, the polynomial is of a high degree for our implementation,

placing limits of |X| ≤ 50 in practice. There are fundamental lower bounds on the runtime set

by the scaling of the Pareto set, which we have shown in Fig. 5.4b to be approximately O(n2.1)

for realistic datasets; however, there is likely to be some room for reducing the runtime by

sampling clusterings from a better distribution. Another opportunity for improvement is

increasing the speed at which a given point can be evaluated on the objective plane, which is

evidenced by the gap between the runtime, approximately O(n5.0), and the number of points

searched, O(n3.0) (Fig. 5.3a).

While our method is only applicable to trade-offs over discrete search spaces, the Pareto

frontier over continuous search spaces can also fail to be (strictly) concave. For example,

the inability for the Lagrangian formulation of the (D)IB to explore all points on the trade-

off has previously been studied in [KTV18]. They propose a modification to the (D)IB

Lagrangian that allows for the exploration of parts of the frontier that are not strictly

concave. An interesting direction for future work is to study whether a similar modification

to the Lagrangian can be used to discover the convex portions of similar trade-offs, including
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those over discrete spaces. Another direction for future work is to compare the primal DIB

frontier with solutions to the IB; while solutions to the DIB Lagrangian often perform well

on IB plane [SS17], it is an open question whether the solutions to the primal DIB perform

favorably. Finally, as pointed out by a helpful reviewer, the dual problem corresponding to

the primal problem of Eq. (5.1), being a convex optimization problem, is also an interesting

direction for future study.

We would also like to note that Pareto-pruned agglomerative search is a generic strat-

egy for mapping the Pareto frontiers of two-objective optimization problems over discrete

domains. The Pareto Mapper algorithm can also be extended to work in multi-objective set-

tings given an appropriate implementation Pareto set in higher dimensions. We conjecture

that the poly-logarithmic scaling of the Pareto set holds in higher dimensions as well. Ex-

tending this work to multi-objective optimization problems is another interesting direction

for future work.

In summary, multi-objective optimization problems over discrete search spaces arise natu-

rally in many fields from machine learning [SB04; TZ15; Ale+17; SS19; SS17; CS18; Sax+19]

to thermodynamics [Sti20] and neuroscience [BM10]. There will therefore be a multitude of

interesting use cases for further improved techniques that map these Pareto frontiers in full

detail, including concave parts that reveal interesting structure in the data.

5.2 Negative fault-tolerance results

The previous Chapters have focused on positive fault-tolerance results. These results are

based on constructive proofs following the highly structured von Neumann construction for

fault-tolerance. One may wonder, however, whether other fault-tolerance schemes may exist.

Of course, the space of possible circuit designs is vast; and furthermore, the analysis of prob-

abilistic circuits is complicated by the intractability of calculating marginal distributions—

formal constructive results as in [EP98; ES03] as well as our extension in Section 2.1 cir-
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Figure 5.12: Factor graph representation of (a) formulas and (b) circuits for input signal X
and wires Y1 and Y2 such that no path exists between Y1 and Y2.

cumvent this issue by working with formulas. Because of this, all known upper bounds are

argued indirectly by placing a bound on the propagation of signals at individual wires or gates

[Pip88; EP98; ES99; ES03; Ung07]. We will review these results and discuss opportunities

in this Section.

It is tempting to adopt the picture of information as a fluid that is flows from the inputs

of a circuit to its outputs with noise corresponding to the leaking of the fluid—here, we take

“information” to mean a general measure of correlation with an input signal X. Taking this

view, redundantly encoding signals and operating on them in a redundant manner, fault-

tolerant constructions allow us to build better effective pipes and junctures; and the fault-

tolerance threshold is precisely when the leaking of information can no longer be overcome

by increased redundancy. There are three main things that need to be quantified to turn

this intuition into a proof:

(P1) Quantify the amount of fluid, i.e. information about signal X, present

in a pipe.

(P2) Quantify the rate at which the pipes leak; and

(P3) Quantify the amount of fluid required at the output to achieve a

prescribed error rate.

This is a reasonable description in the case of formulas in particular, where the fluid combines

at junctures as expected. For instance, consider the quantification of information by mutual
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information. Let X be some signal and let Y1 and Y2 be random variables which are inputs

to a gate. Recalling the mutual information chain rule [CT06, Theorem 2.5.2], we find

I(Y1, Y2;X) = I(Y1;X) + I(Y2;X|Y1), (5.5)

= I(Y1;X) + I(Y2;X)− I(Y1;Y2;X), (5.6)

where I(Y1;Y2;X) ≡ I(Y2;X)− I(Y2;X|Y1) is sometimes called the interaction information.

For formulas, Y1 and Y2 are independent conditioned on X—see factor graph representation

of Fig. 5.12a—so that I(Y1;Y2;X) ≥ 0 and I(Y1, Y2;X) ≤ I(Y1;X) + I(Y2;X) as expected

for a fluid. Information, however, is a strange fluid in the sense that mutual information

I(Y1;Y2;X) can be negative when Y1 and Y2 jointly contain more information about X than

they do independently: the canonical example being that of random variables satisfying the

relationship Y2 = X ⊕ Y1. Similar behavior also occurs in other measures of information in

circuits where random variables have the general factorization of Fig. 5.12b. For this reason,

we must modify the picture of information combining at a juncture. A key observation of

Evans and Schulman was the replacement of (P1) with the alternative [ES99]:

(P1’) Quantify the amount of fluid, i.e. information about signal X, present

in any set of pipes.

Instead of adopting the intuition of the fluid being localized to any particular pipe, (P1’)

treats the fluid as a quantity that exists in a collection of random variables. It turns out

that this weaker picture is sufficient to prove negative fault-tolerance results [ES99].

In the remainder of this Section, we review existing negative results and discuss possibili-

ties for new monotones and their implications for fault-tolerant computation and beyond. In

our review, we use the modern treatment of the noisy circuit as a directed graphical model

and interpret results in the language of strong data processing inequalities (SDPIs) [PW17].

Adopting the notation of [PW17], let G = (V , E) denote the directed acyclic graph (DAG)

corresponding to a noisy circuit with q-ary random variables Yv at each vertex v ∈ V (for
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most of our review q = 2). Each vertex corresponds either to the output of a gate, or an

input or output of the circuit. Further, let pa(v) denote the parents of v. In general G

admits a topological ordering of vertices corresponding to dependencies in the computation;

for vertices V1, V2 ∈ V we use V1 > V2 to denote the fact that V1 does not depend on V2 in

the sense that there is no path from V1 to V2.

In Section 5.2.1, we provide a review of negative fault-tolerance results based on the

contraction of information at the wires which follows the prescription above. For formulas,

these results use (P1), (P2), and (P3); they can also be adopted to circuits using the weaker

(P1’). However, for both formulas and circuits, bounds based on information contraction at

the wires are unable to provide tight negative bounds on fault-tolerance thresholds.

In Section 5.2.2, we review sharp negative fault-tolerance results which require analysis

that is tailored to a set of gates. Here, we will introduce the alternative (P2’) to capture

information leaking at the gates. We interpret the negative results of [HW91; ES03] through

the three-step process of (P1), (P2’), and (P3); the same can be done for our large alphabet

positive results (Section 2.1) from which we can derive negative results which are tight

for our specific choice of denoising gates. We also discuss negative fault-tolerance results

based on the contraction of the lesser known extractable information [Ung10] and discuss

their relationship with the tight negative results of [HW91; ES03]. Unfortunately, as these

methods are based on (P1), their applicability is limited to formula-based computation.

Finally, we discuss opportunities to build upon these existing results with an eye towards

tight negative results for fault-tolerant circuit-based computation in Section 5.2.3.

5.2.1 Information contraction at the wires

First, we provide a brief review of negative fault-tolerance by Evans and Schulman [ES99]

where the information content is quantified by the mutual information and a negative fault-

tolerance result is derived via (P1’), (P2), and (P3). Recall that in our model, computation

is performed by noisy gates whose outputs are corrupted by binary symmetric noise.
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The first part of the recipe (P1’) involves the combination of information in a set of

random variables. In particular, a bound is placed on the information between the source

X and a set of wires V ⊂ V [ES99]. Using this approach, Evans and Schulman derive the

following bound [ES99, Lemma 2]

I(V ;X) ≤
∑︂

π from X to W

η|π|, (5.7)

where the sum is over all paths π from X to V ⊂ V in G, |π| denotes its length, and η

denotes the rate at which mutual information decays at each wire defined more precisely

below. The proof of Eq. (5.7) for the mutual information contraction coefficient relies on

the data processing inequality [CT06, Theorem 2.8.1] and chain rule [CT06, Theorem 2.5.2]

properties of mutual information. A related bound appears in [Pip88, Eq. 2] for formulas

which takes the view of (P1).

Continuing on to (P2), Evans and Schulman demonstration that mutual information

strictly decreases in the noisy binary symmetric channel [ES99]. Let X, Y and Z be Boolean

random variables admitting factorization X → Y → Z. If Z = BSCϵ(Y ), where BSCϵ

represents the binary symmetric channel with error parameter ϵ, then

I(X;Z) < ηI(X;Y ), (5.8)

where for ϵ > 0 =⇒ η < 1. The quantity η is known as the mutual information contraction

coefficient of the channel PZ|Y [PW17]; and results of the form Eq. (5.8) are known as strong

data processing inequalities. For the binary symmetric channel with error rate ϵ, Pippenger’s

proved η = (1−2ϵ) [Pip88] which was later tightened to η = (1−2ϵ)2 by Evans and Schulman

[ES99, Theorem 1].

Finally, (P3) is obtained using Fano’s inequality thereby obtaining the desired negative

fault-tolerance result [Pip88; ES99]. In particular, consider the case of a circuit that depends

essentially on one argument (i.e. there exists an assignment of all other inputs such that the
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output depends only on the unfixed argument). LetX denote the essential input variable and

Z denote the circuit output fixing all other inputs. In this case, we can view the computation

tree as a noisy communication channel and a direct application of Fano’s inequality [CT06,

Theorem 2.10.1] yields

1 +H2(δ) ≤ I(Fm;X), (5.9)

where H2 is the binary entropy. Combining Eqs. (5.7) to (5.9) gives a bound on the output

error rate as a function of the input error rate. Bounding the fan-in results in a bound on

the threshold error rate.

Bounds that are in essence applications of Eqs. (5.7) and (5.8) for different noisy channels

and different network topologies have proven remarkably useful for a number of different

applications including applications to phase transitions in Ising models, percolation, and

cellular automata among others [PW17; Mak19]. An unfortunate consequence of the gen-

eralizability of these information theoretic monotones is that they have so far been unable

to produce tight bounds for fault-tolerance thresholds for any specific set of gates. To un-

derstand the limitations of these mutual-information-based monotones, it is worth reviewing

the closely related problem of broadcasting on trees. In this problem, a signal X exists at

the root of a tree and at each time step is sent to vertices of increasing depth via independent

noisy channels; the goal is to reconstruct X from the signals at depth n. As n → ∞, the

probability that the reconstruction is correct has a sharp transition in the noise level. In

this case of Boolean random variables subject to binary symmetric error of strength on a

(k + 1)-regular tree ϵ, Evans et al. [Eva+00] proved a threshold of

ϵ <
1

2
− 1

2
√
k
. (5.10)

This is the same bound found by Evans and Schulman for the case of reliable computation

in k-input gates [ES99]. Furthermore, Eq. (5.10) is sharp for the problem of broadcasting on

trees [Eva+00]. Understanding the difference between these two problems in instructive for
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grasping the limitations of wire-based, i.e. those based on (P2), contraction bounds. The

task of broadcasting on trees is simpler than that of reliable computation since it concerns

itself only with the propagation of the signal whereas the computation task requires that

signals can be generically manipulated: therefore the threshold for broadcasting on trees

upper bounds that of reliable computation. In this sense, the wire-based contraction of

Eq. (5.8) does not capture the processing that occurs at the gate; the broadcasting tree

consists only of fan-in 1 gates that do not perform non-trivial processing. In fact, the bound

of [ES99] is agnostic to the particular gate set which proves to be a limitation if tight upper

bounds on fault-tolerance are to be desired.

5.2.2 Information contraction at the gates

As previously observed, negative fault-tolerance results will have to take into account the

noisy processing being performed at each gate. Instead of quantifying the loss of information

at the wires as in (P2), we should update the first part of the prescription to

(P2’) Quantify the rate at which the junctures leak.

Here, information does not necessarily mean mutual information, as it is generally not true

that mutual information will provide the tightest bounds. We use the term extractable

information2 to refer to any reasonable measure of correlations that provides a tight neg-

ative fault-tolerance bound; in particular, the signals should become indistinguishable as

extractable information goes to zero so that we may define (P3) in analogy with Eq. (5.9).

All known measures to date localize information to specific wires and therefore only apply to

formulas. The general recipe for the negative fault-tolerance results discussed in this Section

is (P1’), (P2), and (P3).

First, we review the tight negative results for reliable formula-based Boolean computation

with gates of odd fan-in k ≥ 3. The special case of k = 3 was first shown by Hajek and
2The term extractable information was first coined by Unger [Ung10].
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Weller [HW91] and subsequently generalized to all odd k ≥ 3 by Evans and Schulman [ES03].

We recast their negative result into the language of [Ung07]. Let Y1, . . . , Yk be the inputs to

some gate and W be its noisy output. In this case, the information that any wire Y carries

about X is quantified by the extractable information (P1), a possible definition of which is

EIES(Y ;X) = |Pr[Y = 0|X = 0]− Pr[Y = 0|X = 1]|, (5.11)

=
⃦⃦
PY |X=0 − PY |X=1

⃦⃦
TV, (5.12)

where X is some input signal, and ∥·∥TV denotes the total variation (TV) distance. Starting

with (P1’), the goal is to bound the extractable information contraction at each gate, i.e. to

find θ such that

EI(W ;X) ≤ θmax
j∈[k]
EI(Yj;X). (5.13)

Note that for a proper definition of θ we also need to maximize over distributions of X. The

essence of the proof of the negative result in [HW91; ES03] is that above the threshold error

rate, we have the strict inequality θ < 1 and the extractable information decays geometrically

with formula depth. Furthermore, this error rate is precisely the denoising threshold where

the two stable fixed-points merge. By assumption, the extractable information admits a

bound analogous to Fano’s inequality for mutual information thereby giving (P3), giving a

tight negative fault-tolerance result.

A more involved example is the original result of Unger [Ung07] which provides a tight

upper bound on reliable formula-based Boolean computation with gates of k = 2 using a

different definition of extractable information (P1)

EIUng(Y ;X) = q(Pr[Y = 0])×
⃦⃦
PY |X=0 − PY |X=1

⃦⃦
TV, (5.14)

200



where

q(a) =
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+

73

32
, (5.15)

is known as the potential function [Ung07, Eq. 3]. Unger needed to update the definition

of extractable information in the case of k = 2 as Eq. (5.13) does not provide a tight

bound in this case. We emphasize that extractable information is not unique, in fact Unger

subsequently shows that

q(a) =
1

(1− a)a+ (11− 4
√
7)/18

, (5.16)

[Ung10, Eq. 3] likewise provides a tight upper bound for the k = 2 case. Again it is possible

to show (P3) thereby proving the tight negative result.

Note that Eq. (5.13) can also be used to prove a negative fault-tolerance result in our

models of larger alphabet fault-tolerance. For example, the ultimate saddle-node bifurcation

in Section 2.1.3 is precisely the point where θ < 1. In the large alphabet case, though

this bound is tight for the q-ary majority gate, it is not clear whether computation can be

performed up to this point. As discussed in Section 2.1.3, the proof of fault-tolerance only

works up to the point of the transcritical bifurcation which is strictly below the saddle-node

bifurcation for q ≥ 3.

Another related approach is that by Polyanskiy and Wu [PW17], who have developed

a machinery for bounding the contraction coefficient η of a Bayesian network rather than

a single channel. For a set of wires V ⊂ V , the addition of a new wire W ∈ V such that

W > V yields the following bound on the contraction coefficient of the channel between X

and V ∪ {W} [PW17, Theorem 5]:

η(PV,W |X) ≤ ηWη(PV,pa(W )|X) + (1− ηW )η(PV |X), (5.17)
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where ηW ≡ η(PW |pa(W )). This effectively combines (P1’) and (P2’), with the earlier result

by Evans and Schulman (Eq. (5.7)) [ES99, Lemma 2] appears as a corollary of [PW17,

Theorem 5]. Notably, an exact analog of Eq. (5.17) holds for TV [PW17, Theorem 8] which

does not depend on the mutual information chain rule. The application of Eq. (5.17) (or its

equivalent for TV) for a specific set of gates could provide new insights for fault-tolerance

upper bounds.

Finally, it is also worth mentioning the result of [MMP19] on the problem of broadcasting

on random DAGs with noisy wires (rather than noisy gates). Unlike the broadcasting on

trees problem which we’ve previously discussed, the gates in this case necessarily handle

fan-in k > 1 and therefore need to perform non-trivial processing. When this processing is

done by majority gates with fan-in k ≥ 3, Makur et al. [MMP19, Theorem 1] prove that the

threshold coincides with the Evans and Schulman result for reliable computation by formulas

with the same fan-in [ES03]; the same authors [MMP19, Theorem 2] show that for fan-in 2 by

alternating and and or gates the broadcasting on DAGs threshold coincides with the Evans

and Pippenger [EP98] result reliable computation by formulas with the same fan-in. The

fact that the fixed-point structures coincide with those for fault-tolerant computation despite

slight differences in assumptions is interesting; however, a negative result for broadcasting

on random DAGs with logarithmic width remains an open problem [MMP19] (the bound

on fault-tolerant formulas gives a weaker negative result for DAGs with exponential width

[MMP19, Proposition 1, Part 2]).

5.2.3 Possible extensions and implications

We have developed a three-part template for the proof of negative fault-tolerance results.

In this Section, we have discussed the limitations of (P1) and (P2), and existing results

have been classified based on their approach (a summary is provided in Table 5.2). The

template has been left deliberately vague since it is not clear what information measure

will yield the best results. For example, while mutual information is a powerful measure of
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(P2) (P2’)
(P1) [Pip88] [EP98; ES03; Ung07]
(P1’) [ES99] ?

Table 5.2: An overview of negative fault-tolerance results based on whether information is
localized to specific wires (P1) or a set of wires (P1’); and whether information contraction
is bounded at the wires (P2) or at the gates (P2’). Results based on (P1) are applicable
only to formulas, and results based on (P2) do not provide tight bounds. Improvements to
existing upper bounds on reliable computation with circuits may be found in the bottom
right quadrant.

correlations with many useful properties (e.g. the data processing inequality [CT06, Theorem

2.8.1]), its generality can also be a weakness. In particular, correlations that are captured

by mutual information may not be accessible to organisms composed of noisy components

subject to fan-in constraints. In these cases, we need a different approach to quantifying

useful correlations. The use of a measure of correlation in deriving tight upper bounds on

fault-tolerance is a meaningful way to select a measure among the vast space of candidates.

Now we summarize some potentially promising applications for our template for negative

fault-tolerance results.

• One potential test for such results is in the bounding of Boolean fault-tolerance thresh-

olds for even fan-in k > 2 where the threshold error rate (or even the existence of such

a threshold) is unknown [ES03]. In particular, it may be instructive to develop a class

of Unger-like extractable information for even k > 2. Though the current results based

on extractable information use (P1) and are therefore limited to formulas, the method

is not obviously incompatible with the more general (P1’).

• Very little is known about fault-tolerance in larger alphabet models. For those that are

based on q-ary majority gates as in Section 2.1.3, it is unclear whether reliable compu-

tation is possible beyond the transcritical bifurcation. An answer to this problem may

also improve understanding of problem of broadcasting on trees for larger alphabets

and the Potts model on a tree for which the Evans and Schulman [ES99] bound is not

tight [Eva+00].
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• For large alphabet models which operate over a smaller logical alphabet as in Sec-

tion 2.1.4, existing measures of information are inadequate since they treat all alpha-

bet elements equally. For example, one may define an extractable information quantity

from the Lyapunov function of Eq. (2.54) for the case of Boolean computation over

symmetrically noisy ternary gates. Might there be some systematic way to obtain Lya-

punov functions of this sort for general gates? Again, the current analysis is limited to

formulas but the approach is not obviously incompatible (P1’).

• In addition to constraints on fan-in, certain applications may limit the set of available

gates. For example, in large alphabet computation subject to q-ary symmetric noise

(Section 2.1), though using gates with a logical Boolean alphabet as in Section 2.1.4

could lead to larger fault-tolerance thresholds, there may be a physical motivation for

considering q-ary majority gates instead . In such cases it is particularly important for

the measure of information to be tailored to the gate set at hand.

• The error models considered have been relatively simple so far. In addition to tailoring

measure of information towards a specific gate set, we may also consider more compli-

cated error models such as those in which the error parameter itself can vary [Ung10]

or can be gate dependent [SWH20].

• The problem of broadcasting on random DAGs may prove to be a simpler setting to

test new techniques. In particular, an upper bound on the broadcasting threshold for

DAGs of logarithmic width remains an open problem [MMP19] and may have a bearing

on fault-tolerance upper bounds.

While the correct measure of information is application dependent, it is likely that progress

towards these open problems following our fairly generic template will require (P1’), (P2’),

and (P3).
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Chapter 6

Concluding remarks

We conclude by reflecting on the definition of the organism in Section 6.1, and by providing

an outlook in Section 6.2.

6.1 Reflections on the organism

The term “organism” appears prominently in this thesis primarily as an allusion to von Neu-

mann’s lecture [Neu56] from which this thesis draws. As such, it is worth examining what von

Neumann meant by the term. From his vantage point in the 1950s, von Neumann motivates

his lecture by observing the recent (for him) synthesis of constructive logics and idealized

models of the nervous systems, i.e. electrical networks: citing work by Turing [Tur36] on the

former, and McCulloch–Pitts [MP43] on the latter. The concept of a computer, however,

was still taking shape. It was likely not until the decade prior, with the construction of

ENIAC in the 1940s, that computer came to refer to the general purpose digital variety with

which we are familiar [Wei61]. From our present point of view, it is no longer controversial

to describe the nervous systems of animals as performing computation. Indeed, the term has

become so familiar that many physicists would not take issue with describing the universe it-

self, or any subset thereof, as performing a large (quantum) computation. Deutsch provided

an exposition of this belief commonly called the strong Church–Turing thesis asserting that
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“every finitely realizable physical system can be perfectly simulated by a universal model

computing machine operating by finite means” [Deu85]. von Neumann, however, presented

his work seven decades ago, without the benefit of these more modern developments.

The organism according to von Neumann [Neu56]—

The terminology used in the following is taken from several fields of science;

neurology, electrical engineering, and mathematics furnish most of the words.

No attempt is made to be systematic in the application of terms, but it is hoped

that the meaning will be clear in every case. [...] Thus, in speaking of a neuron

we don’t mean the animal organ, but rather one of the basic components of our

network which resembles an animal neuron only superficially, and which might

equally well have been called an electrical relay.

In essence von Neumann’s “organ” is what today might be called a logic gate. It is

possible that, had von Neumann given his lecture in modern times, he may have used the

word “computer” in place of “organism.” However, von Neumann makes a point of not

providing a precise definition of the “organism.” Following in his footsteps, neither shall we.

Instead, we discuss several viable definitions of an organism: as an unconventional model

of computation, as an open system, and as a local factor graph. While the differences are

largely semantic, they provide different perspectives into fault-tolerance.

The organism as an unconventional model of computation— Though the word

computation has become—at least in some communities—synonymous with information pro-

cessing, the practicalities are that the overwhelming majority of practical general purpose

electronic computers are based on Boolean signals manipulated by gates with bounded fan-in.

This more restrictive and practical definition of a computer is what we term a “conventional

computer.” Our primary reason for using the term “organism” is to draw a contrast with

this conventional definition of a computer. For the purposes of this thesis, it may be most

accurate to define an organism as “anything that performs information processing using noisy

components and is not a Boolean circuit,” i.e. an unconventional model of computation.
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The organism as open system capable of general information processing—

An alternative interpretation, suggested by the author’s advisor, is that of an organism as

an open system. While computation typically assumes that components work noiselessly in

the sense that it has perfect control over its microstates, the organism exists in a thermal

bath and must contend with noise. In order to successfully accomplish its information

processing task, the organism must both redundantly encode and manipulate its logical

degrees of freedom. By this definition, computers as such are idealizations: both desktop

computers and mammalian brains are organisms since they operate as open systems at finite

temperature. Taking this view, the amount of redundancy and therefore the scale of such

organisms may then be seen as a consequence of the requirement for fault-tolerance; in this

case, the size of the organism can be viewed as being proportional to the size of a repetition

code, e.g. the number of atoms in a transistor, or the number of neurons employed in the

grid code. This is clear in the case of the size of the transistors in the integrated circuitry

for example where we are fast approaching a size limit for transistors, i.e. due to thermal

and quantum fluctuations, or manufacturing errors [Sha+08; Sha+18]. The size of biological

organisms and their components may in part be due to a selection pressure towards fault-

tolerance as well. For example, synaptic noise levels impact the optimal parameters of the

grid code.

The organism as a local factor graph— What is essential to both von Neumann’s

fault-tolerant organism and the fault-tolerant organisms presented in this thesis, is the fact

that they are composed of simple basic components subject to local noise; where simplicity is

taken here to be largely synonymous with having bounded fan-in and fan-out. The framework

of bounded degree probabilistic graphical models captures these essential features, namely

that the full joint distribution of the signals admits a local factorization (in this case, where

noise occurs at the gates, a local factor graph requires both bounded fan-in and fan-out). We

represent these graphical models using factor graphs: a representative example is shown in

Fig. 6.1a along with a Boolean circuit (potentially subject to independent gate-wise noise) in
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Figure 6.1: Different ways in which the factorization of Eq. (6.1) may arise. Shown are
the (a) factor graph, (b) a circuit, and (c) a spin system with dash-dotted lines indicating
coupling via local Hamiltonian terms.

Fig. 6.1b. Both examples correspond to joint distributions with the following factorization:

Pr(X) = Pr(X5|X3, X4) Pr(X4|X1, X2) Pr(X3|X0, X2) Pr(X2|X0, X1) Pr(X1) Pr(X0). (6.1)

The factor graph representation makes it easy to visualize the signals and their interactions.

For example, the factorization of Eq. (6.1) can arise from the following Hamiltonian with

Ising degrees of freedom σi = ±1,

H(σ) = Hg(σ3, σ4, σ5) +Hg(σ1, σ2, σ4) +Hg(σ0, σ2, σ3) +Hg(σ0, σ1, σ2) + h0σ0 + h1σ1, (6.2)

whereHg represents, in this case, a 3-local gate Hamiltonian, and h0 and h1 represent external

input fields. A representation of this Hamiltonian is depicted in Fig. 6.1c. Given such a factor

graph, fault-tolerance is then the ability to maintain and manipulate information across the

nodes.

This final representation, as a local factor graph, is the most general and captures essence

of fault-tolerance as property of large systems composed of locally interacting components,

i.e. the thermodynamic limit. It is for this reason that fault-tolerance results and their

techniques have found such broad application in the study of phase transitions in Ising

208



models, percolation, and noisy cellular automata among others [PW17; Mak19]. It describes

an interesting phase of matter, one that not only demonstrates long-range correlations, but

is also capable of performing general information processing. We conclude by discussing

some takeaways from the work described in the results presented in this thesis.

6.2 Outlook

We summarize key takeaways below and point towards new research directions:

Native hardware-level fault-tolerant design— While there is a comparatively defini-

tive understanding of fault-tolerance in Boolean-circuit-based computation subject to bit-flip

errors, there is little understanding of how to design fault-tolerant systems in other models.

It is clear from the examples of fault-tolerance in unconventional classical models of compu-

tation that the specifics of the constructions and their limitations depend crucially on the

noise model and primitives assumed (Chapter 2). Since all practical systems we use to per-

form information processing come with their own idiosyncrasies, so too must fault-tolerance

be tailored. We emphasize that this is not merely in the choice of a suitable error correcting

code—a fault-tolerant design must also take into account the implementation of the noisy

error correcting procedure as well as the implementation of the logical primitives. Further-

more, as with the design of an error corrected quantum subroutine (Chapter 3), we have

freedom to choose the noisy units with which our computation is synthesized. Though most

fault-tolerant constructions assume the application of error correction after every computa-

tion step, if error rates are sufficiently low, it may be more economical to treat the effective

errors at the level of the subroutine.

Resource efficiency as a design criterion— Though the choice between non-fault-

tolerant and fault-tolerant designs is clear in certain cases—in favor of non-fault-tolerant

design in classical computers, and in favor of fault-tolerance in quantum computers—the

choice may not be as clear generically. In our toy model (Chapter 4), we showed that
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whether fault-tolerance was preferred depended crucially on the resource–reliability trade-

offs of the computational primitives and the required level of reliability. As heavy-tailed

power-law error distributions are common in many systems, our results indicate that fault-

tolerant design may provide resource benefits in many cases. In addition to informing the

design of systems that perform information processing, this result might also suggest the

emergence of fault-tolerance in naturally occurring information processing systems, e.g. as

a result of selection pressures towards energy efficiency in biological organisms.

New measures of information— The power of mutual information as a general mea-

sure of correlations can be a limitation when one is trying to quantify the correlations that

are accessible to an organism with constrained processing power. A promising direction is

the development of new measures of information that are tailored to a particular model of

computation. However, the space of candidate measures of information is vast. The fault-

tolerance phase transition occurs when the circuit is no longer able to process information

and therefore information becomes in essence inaccessible; it seems natural to require that

a measure of information tailored to a noisy model of computation be capable of capturing

this fault-tolerant phase. In this sense the fault-tolerance threshold may be used to select an

appropriate measure of information. A more thorough discussion of this point can be found

in Section 5.2.

Clearly this thesis does not provide an overarching theory of a fault-tolerant organism,

nor does it does not attempt to point at what such a theory may look like. However, it is

the author’s hope that its components will motivate the further study in this rich field of

inquiry.

210



Appendix A

Appendix for Chapter 2

A.1 Comparison of repetition for discrete versus analog

fault-tolerance

While the repetition code is sufficient to arrive at digital fault-tolerance when subject to

digital errors, such as bit flips or synaptic failure, it is insufficient for analog computation

in the presence of additive Gaussian noise. Key to this is the O(polylog(1/ϵ)) scaling with

respect to the desired output error rate ϵ in the definition of fault-tolerance. For Boolean

(and more generally discrete) random variables, suffering from i.i.d. bit-flip errors at a rate

p < 1/2, a repetition code of size M reduces errors exponentially as ∼ pM . Given a target

error rate ϵ, it is sufficient to choose

M ∼ log 1
ϵ

log 1
p

. (A.1)

For a circuit of N gates, an overall error of ϵ could be achieved by demanding individual

gate errors ϵ/N as per the union bound. Inserting this desired error rate into Eq. (A.1),

and using results of the concatenation scheme described in Section 2.2.2, we find that this

translates to the desired O(Npolylog(N/ϵ)) scaling in the definition of fault-tolerance, so
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long as the error rate is below a threshold p0 that is dependent on the details of the error

correcting circuit.

For analog variables, the repetition code does not suppress errors strongly enough to

achieve this scaling. For additive Gaussian noise with standard deviation σ, a repetition

code of size M suppresses errors not exponentially in M , but only as ∼ σ/
√
M . For a target

standard deviation ϵ, the code size is required to scale as

M ∼
(︂σ
ϵ

)︂2
. (A.2)

Analog computation using the repetition code would require an asymptotic lower bound of

Ω(poly(1/ϵ)) resources, and thus does not meet our definition of fault-tolerance. In order to

achieve analog fault-tolerance, we must make use of a stronger error correction code, such

as the grid code utillzed in this work.

A.2 Detailed analysis of reliability in the presence of Gaus-

sian noise and synaptic failure

In this Appendix, we expand on the analysis in Section 2.2.4 for the fully general case that

takes into account both Gaussian errors and synaptic failure.

With the analysis for Gaussian failures worked out in Section 2.2.4, we proceed to con-

sider the effect of synaptic failure for each possible type of synapse in the logical neuron

of Fig. 2.9a. The goal is to find an upper bound on the probability that the logical nand fails,

corresponding to a lower bound on the threshold for synaptic failure.

First, considering the synapses from the decoder neurons xi to the new logical phases ϕ′
j

(i.e., the final layer of Fig. 2.9a), a failed synapse may originate from the correct decoder

neuron or an incorrect decoder neuron. We ignore the failed synapse from an incorrect

decoding, consistent with upper-bounding the failure probability. If the correct decoding
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fails, the encoded phase may not fire. In the application of logical weights to the logical

phase of the next neuron (i.e., the first layer of Fig. 2.9a), the synapse with a logical weight

ai may similarly fail. The two phenomena of a correct decoder synapse failing and a logical

weight synapse failing produce the same outcome: an input phase θ(1,2)i may fail. The effect

of only a single input phase (e.g. θ(1)i ) failing is different from the effect of both input phases

failing (i.e. θ(1)i and θ
(2)
i ). If one input phase fails, the logical phase ϕi assumes a uniformly

random value from 0 to 1. This has no impact on fnand(k ̸= k∗), but it reduces the mean

of fnand(k = k∗) by removing one of the moduli and requires adjustment of the standard

deviation by the inclusion of a random phase. If both input phases fail, the logical phase does

not fire. Hence, one of the moduli is removed from both fnand(k ̸= k∗) and fnand(k = k∗).

In total, 4Mp(1− p) single input phases are expected to fail and 2Mp2 double input phases

are expected to fail.

Next, consider the synapses into and out of the sin 2πϕi and cos 2πϕi neurons. Here, we

also find two cases: if there is a failure of a single sine or cosine, the original distribution must

be compensated by the remaining sine or cosine of the phase; if there is a failure of both,

the modulus is removed entirely. In expectation, 2Mp(1 − p) failures are expected for the

former effect (for each of sine and cosine), and 2Mp2 failures are expected for the latter. By

adding each of the failure modes independently, we place an upper bound on logical failure

due to double-counting failures that happen sequentially in the network.

To obtain f ′
nand(k ̸= k∗) and f ′

nand(k = k∗), we repeat the noisy logical neuron analysis

of Eqs. (2.77) and (2.78) for the neural nand construction including possibility of synaptic

failure detailed above. We make the same assumptions as for Eqs. (2.84) and (2.86), namely

logical weights ai = 1 and S = 3 decoder neurons as per the neural nand gate construction.

Assuming a large number of moduli M ≫ 1 and applying the central limit theorem, we
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obtain

f ′
nand(k = k∗) =

N
(︃
M · e

−6π2σ2
erf
(︁√

2πσ
)︁6

29π3σ6
· (2(p− 3)p+ 1),

√︃
σ2 − 1

2
M((2p(p+ 1)− 1) (2σ2 + 1)− ζ ′)

)︃
,

(A.3)

where

ζ ′ = 2−18π−6σ−12

[︄
(p(3p− 7) + 1)e−24π2σ2

(︃
e12π

2σ2

erf
(︂√

2πσ
)︂12
− 4π3σ6 erf

(︂
2
√
2πσ

)︂6)︃]︄
,

(A.4)

and

f ′
nand(k ̸= k∗) = N

(︃
0,

√︃
σ2 − 1

2
M(2p(p+ 1)− 1) (2σ2 + 1)

)︃
. (A.5)

Given Eqs. (A.3) and (A.5), we may evaluate the probability of successful decoding. As

explained in Section 2.2.4, we use a threshold non-linearity for decoding which is more bio-

logically plausible than the alternative winner-take-all dynamics due to its locality. Choos-

ing a threshold value of c, a correct decoding then requires the correct neuron sampled

from f ′
nand(k = k∗) (Eq. (A.3)) to exceed c and the two incorrect neurons sampled from

f ′
nand(k ̸= k∗) (Eq. (A.5)) to lie below c, i.e.

1− ϵ(c;σ, p) ≡ Pr[f ′
nand(k = k∗) > c]× Pr[f ′

nand(k ̸= k∗) < c]2. (A.6)
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Evaluated explicitly, we have

1− ϵ(c;σ, p) =

1

8

(︄
erf

(︄
c√︁

2σ2 −M(2p(p+ 1)− 1) (2σ2 + 1)

)︄
+ 1

)︄2

×

erfc

{︄(︃
29π3cσ6 − e−6π2σ2

M(2(p− 3)p+ 1) erf
(︂√

2πσ
)︂6)︃

/︃[︃
−
(︃
2M(p(3p− 7) + 1)e−24π2σ2

(︃
e12π

2σ2×

erf
(︂√

2πσ
)︂12
− 4π3σ6 erf

(︂
2
√
2πσ

)︂6)︃)︃
− 218π6σ12

(︁
M(2p(p+ 1)− 1)

(︁
2σ2 + 1

)︁
− 2σ2

)︁ ]︃1/2}︄
,

(A.7)

where the decoding step activation function cutoff c is obtained by maximizing the proba-

bility of success over all possible values of c. This results in the logical error rate ϵ(σ, p) ≡

minc ϵ(c;σ, p).

A.3 Comparison of discrete and analog thresholds for

formula-based computation

Finally, we analyze a simple analog model of Boolean formula-based fault-tolerant compu-

tation which establishes a baseline for comparing discrete and analog thresholds. This is

independent of neural computation, but rather serves as a pedagogical comparison of digital

and analog computation that allows analog Gaussian noise to be translated into the well-

known failure probability thresholds of [EP98] using 2-input nand gates. Accordingly, the

thresholds found below do not correspond to fault-tolerant neural network thresholds.

For the following analysis, we consider a binary alphabet encoded into real-valued signals

{−1, 1} corresponding to the Boolean 0 and 1 respectively. For convenience we define the

Boolean nand to operate on our alphabet, and therefore it can be viewed as a function
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Figure A.1: A comparison of the denoiser response derived from the two proposed analog
nand gates.

nand : {−1, 1} × {−1, 1} → {−1, 1}. There is considerable freedom in defining the analog

nand gate. We will choose to analyse the noise thresholds of two representative candidates,

dNAND and aNAND defined below, and argue that these are extremal in the sense that all

other reasonable definitions of the analog nand result thresholds intermediate to the ones

presented.

First, consider the dNAND defined as follows:

dNANDσ(x, y) ≡ nand(sgn(x), sgn(y)) + ξ, (A.8)

where nand is the noiseless Boolean nand defined above, and sgn is the sign function. One

can verify that a formula composed of dNAND gates works exactly a discrete nand with an

effective error rate ϵ = Pr[ξ ≥ 1]. Therefore denoising is successful as long as

1

2

[︃
1− erf

(︃
1

σ
√
2

)︃]︃
< ϵ0, (A.9)
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where ϵ0 = 3−
√
7

4
denotes the threshold of [EP98]. Numerically, we find a corresponding

analog threshold of σ < σ∗
d for σ∗

d ≈ 0.7409.

For comparison, consider the aNAND gate defined as follows:

aNANDσ(x, y) ≡
1− x− y − xy

2
+ ξ, (A.10)

where ξ ∼ N (0, σ2). Note that for σ = 0 the analog nand gate behaves as a noiseless nand.

In this notation, the balanced depth-2 binary tree denoiser used by [EP98] is written

Denoiseσ(x1, x2, x3, x4) = aNANDσ(aNANDσ(x1, x2), aNANDσ(x3, x4)). (A.11)

We would like to analyze the behavior of the denoiser for real-valued i.i.d. random variables

Xi with E[Xi] = x ∈ {−1, 1} and Var(Xi) = α2. Define Y ≡ Denoiseσ(X1, X2, X3, X4); note

that E[Y ] is a quartic polynomial in x plotted in Fig. A.1. One finds that the denoising

operation is unbiased (i.e. E[Y ] = x) and has variance that depends on x: for x = −1,

Var(Y ) =
1

64

(︁
α8 + 8α4

(︁
σ2 + 4

)︁
+ 16σ2

(︁
σ2 + 12

)︁)︁
, (A.12)

and for x = +1,

Var(Y ) =
1

64

(︁
α4 + 8α2 + 4σ2

)︁2
+ σ2. (A.13)

Denoising is successful if Var(Y ) < α2 for x ∈ {−1, 1}. As in the discrete case, for σ < σ′
a, the

denoiser has two fixed points, with the lower one being stable. At the denoising threshold, a

saddle-node bifurcation occurs and denosing is no longer possible. Numerically, we find the

denoising threshold for the aNAND to be at σ′
a ≈ 0.3929. For fault-tolerant computation,

we require not only that denoising can be done successfully, but that at least one step of

computation can be applied between denoising stages without exceeding the capacity of

our denoiser. In terms of the denoising fixed points, we require that a single aNAND gate

with input variances near the lower fixed point produces a resulting value that below the
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upper fixed point. The critical case is that where aNAND is given inputs of opposite value.

Numerically we find that computation is possible below σ∗
a ≈ 0.3385.

As in the discrete case, computation below threshold is possible with minimal overhead.

Since we are assuming a formula-based model of computation, the overhead in question

corresponds to an increase in depth. To arrive a rough estimate of the overhead required for

denoising, note that the distance between the upper and lower fixed points for gate noise σ

below threshold is Θ(σ∗
a
2 − σ2); additionally, each denoising step reduces the variance by a

factor 1−Θ(1). Therefore, we find a modest depth increase by factor

La = Θ

(︃
1

σ∗
a
2 − σ2

log

(︃
1

σ∗
a
2 − σ2

)︃)︃
, (A.14)

which establishes a fault-tolerance theorem for Boolean formulas composed of noisy analog

nand gates and is a similar form to the factor found by Evans and Pippenger [EP98] for the

case of computation with discrete nand gates.
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Appendix B

Appendix for Chapter 3

B.1 Additional results related to the canonical expansion

In this Appendix, we demonstrate a class of operators, namely linear combinations of noise-

less even-length QSP unitaries, that admit the canonical expansion of Section 3.2.4. This

class includes the diagrammatic components of QSP error channels Kraus operators studied

in this paper.

Remark 40 (QSP operators of even length exhibit canonical expansion). Let U0(θ) =

QSP(θ; ϕ⃗) be a noiseless QSP unitary of length-2d, then U0(θ) admits a canonical expansion

at zeroth order in ϵ. Additionally, P(σ,k)
j = 0 for all k > 0 and for k = 0 with σ ∈ {0, x, y, z},

and j ≥ d.

Proof. A QSP unitary of even length 2d can be written in the form Eq. (3.3) with polynomials

P,Q ∈ C[a] where P has degree at most 2d and is of even parity in cos θ; and Q has degree

at most 2d− 1 and is of odd parity [Gil+19]. Writing the polynomials as

P (cos θ) =
d∑︂
j=0

p2j cos
2j(θ), (B.1a)

Q(cos θ) =
d−1∑︂
j=0

q2j+1 cos
2j+1(θ), (B.1b)
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we have

w0(θ) = ℜ[P (cos θ)],

= cos2 θ
d−1∑︂
j=−1

ℜ[p2j] cos2j(θ),
(B.2a)

x0(θ) = sin θℜ[Q(cos θ)],

= sin(2θ)
d−1∑︂
j=0

1

2
ℜ[q2j+1] cos

2j(θ),
(B.2b)

y0(θ) = − sin θℑ[Q(cos θ)],

= − sin(2θ)
d−1∑︂
j=0

1

2
ℑ[q2j+1] cos

2j(θ),
(B.2c)

z0(θ) = ℑ[P (cos θ)],

= cos2 θ
d−1∑︂
j=−1

ℑ[p2j] cos2j(θ).
(B.2d)

This is of the desired form.

Since the transformation from an operator to its canonical profile is linear, we have the

following corollary:

Corollary 41 (Linear combinations of QSP operators of even length exhibit canonical ex-

pansion). If an operator A can be decomposed into

A =
∑︂
i

γiUi, (B.3)

for γi ∈ R and QSP unitaries Ui of even length (i.e. A can be written as a linear combination

of QSP unitaries of even length), then it admits a canonical expansion.

Next we show how the canonical expansion is transformed under Z-rotation and conjuga-

tion. It will often be convenient to represent a canonical profile P in vector form. Assuming
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P(k)
j = 0 for all j ≥ d, we can write the entire canonical profile as a vector in R4(d+1),

P⃗(k) ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎝

P⃗(k)

d−1

...

P⃗(k)

0

P⃗(k)

−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (B.4)

where the vector P⃗(k)

j ≡ (P(0,k),P(x,k)
j ,P(y,k)

j ,P(z,k)
j ).

Remark 42 (Canonical expansion of Z-rotation). Let Uϵ be an operator admitting canonical

expansion with vector form P⃗(k)
at order k ≥ 0. Then Vϵ = eiχ0ZUϵe

iχ1Z for χ0, χ1 ∈ R has

canonical profile at order k

P⃗(k)′

= Oz(χ0, χ1)P⃗
(k) ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Oz(χ0, χ1)

Oz(χ0, χ1)

Oz(χ0, χ1)

. . .

Oz(χ0, χ1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

P⃗(k)

d−1

...

P⃗(k)

0

P⃗(k)

−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

(B.5)

where Oz(χ0, χ1) ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎝

cos(χ0 + χ1) 0 0 − sin(χ0 + χ1)

0 cos(χ0 − χ1) sin(χ0 − χ1) 0

0 − sin(χ0 − χ1) cos(χ0 − χ1) 0

sin(χ0 + χ1) 0 0 cos(χ0 + χ1)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

(B.6)

We note several useful properties of the conjugation operation in the following remarks:

Remark 43 (Recurrence under conjugation, first-order). Given an unbiased operator Uϵ

with functions w, x, y, z in its canonical expansion, the corresponding functions of conjugated
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operator U ′
ϵ = Cm,n,ηUϵ are given by

⎛⎜⎜⎜⎜⎜⎜⎜⎝

w′

x′

y′

z′

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

cos2(θ) 0 0 0

0 cos(2η) − cos(2θ) sin(2η) cos2(θ) sin(2η)

0 sin(2η) cos(2θ) cos(2η) − cos2(θ) cos(2η)

0 0 4 sin2(θ) cos(2θ)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

w

x

y

z

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (B.7)

From Eq. (B.7), we can write the recurrence of the canonical profiles using vector form of

Eq. (B.4). Suppose there exists some d ≥ 0 such that the canonical profile of Uϵ satisfies

P(σ,1)
j = 0 for all j ≥ d, then recurrence of the canonical profile of U ′

ϵ satisfies

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P ′⃗ (1)

d

P ′⃗ (1)

d−1

...

P ′⃗ (1)

0

P ′⃗ (1)

−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A(η)

B(η) A(η)

B(η) A(η)

. . .

B(η) A(η)

B(η)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

P⃗(1)

d−1

...

P⃗(1)

0

P⃗(1)

−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (B.8)

where the matrix on the right-hand side is a block bidiagonal matrix of size 4(d+2)×4(d+1)
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with blocks

A(η) ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 −2 sin 2η sin 2η

0 0 2 cos 2η cos 2η

0 0 −4 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (B.9a)

and B(η) ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 cos 2η sin 2η 0

0 sin 2η − cos 2η 0

0 0 4 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (B.9b)

Remark 44 (Linearity of conjugation). Note that conjugation is linear. For operators U ,

V and coefficients α, β ∈ R,

Cm,n,η(αU + βV ) = αCm,n,ηU + βCm,n,ηV. (B.10)

Similarly, we can write the effect of anti-conjugation operation on the canonical profile:

Remark 45 (Recurrence under anti-conjugation, first-order). We can construct the inverse

to the conjugation operation using Corollary 20.

C−1
n,ηQSP(θ; ϕ⃗) ≡ eiπ(n+

1
2
)ZWeiηZQSP(θ; ϕ⃗)e−i(η+

π
2
)ZWei

π
2
Z , (B.11)

Let Uϵ be a degree-d operator with canonical expansion P , the canonical expansion of
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C−1
n,ηUϵ is given by P ′ of the form Eq. (B.8) with blocks

A(η) ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 −4 sin 2η −4 cos 2η −2

0 −2 sin 2η 2 cos 2η 1

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (B.12a)

and B(η) ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 −4 sin 2η 4 cos 2η 1

0 sin 2η − cos 2η 0

0 − cos 2η − sin 2η 0

1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (B.12b)

Remark 46 (Canonical profile of product of unbiased operators, leading-order). If Uϵ, Vϵ are

both unbiased to order k ≥ 1 with canonical profiles P and Q respectively, then Wϵ = UϵVϵ

is also unbiased to order k with an canonical profile R satisfying

R(σ,k)
j = P(σ,k)

j +Q(σ,k)
j , σ ∈ {x, y}, (B.13a)

R(σ,1)
j = P(σ,1)

j +Q(σ,1)
j , σ ∈ {0, z}, (B.13b)

for all j.

Remark 47 (Equivalence of expansions of unbiased operators to leading-order). Two dif-

ferent expansions in ϵ have been presented: the expansion in Remark 46 is performed in the

exponent (i.e. the expansion is in the Hermitian generator of the unitary operator), while

the canonical expansion is of the unitary operator itself. These expansions do not yield the

same expansion coefficients in general; however, for unbiased operators, the coefficients are

identical to the leading-order for k ≥ 1:

eiϵ(z+O(ϵ))Z+iϵk[(x+O(ϵ))X+(y+O(ϵ))Y ] = (1+O(ϵ2))I+iϵ(z+O(ϵ))Z+iϵk[(x+O(ϵ))X + (y +O(ϵ))Y ].

(B.14)
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Figure B.1: Diagrammatic representations of Remark 48 i.e. the XY -equivalence of conju-
gation by π/2.

As all of our analysis will be done recursively on the leading order, we will use these forms

interchangeably.

B.2 Proof of Theorems 4 and 5: Higher-order Component-

wise Recovery

In this Appendix, we generalize the first-order component-wise recovery construction of

Section 3.4.4 to all orders in k. First, we make the following observation which is useful for

simplifying higher-order operators:

Remark 48 (π/2-rotation identity). Let V ′ be a length-2r QSP operator parameterized by

phases

(−ϕd − π/2, . . . ,−ϕi + π/2, . . . ,−ϕd−r+1, π,

ϕd−r+1 + bd−r+1π/2, . . . , ϕi, . . . , ϕd + bdπ/2),

(B.15)

with ϕi ∈ R and bi ∈ {0, 1}. Using Remark 42 and Remark 43, we find that

V ′ ∼ −V, (B.16)
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for QSP operator V of the form Definition 49 parameterized by phases

(−ϕd − π/2, . . . ,−ϕi, . . . ,−ϕd−r+1, π,

ϕd−r+1 + bd−r+1π/2, . . . , ϕi + π/2, . . . , ϕd + bdπ/2).

(B.17)

This is shown diagrammatically for an example QSP in Fig. B.1.

The preceding remark motivates the following nomenclature useful in the analysis of the

Kraus operators of error and recovery channels to higher order in ϵ:

Definition 49 (Error component). Let U be length-d QSP operator parameterized by real

phases (ϕ0, . . . , ϕd). Then a length-2r QSP V with 1 ≤ r ≤ d is said to be an error component

of QSP U if it can be written in the following form:

V = QSP(θ;(−ϕd − π/2, . . . ,−ϕd−r+1, π,

ϕd−r+1 + bd−r+1π/2, . . . , ϕd + bdπ/2)),

(B.18)

where bi ∈ {0, 1}. Furthermore, it is assumed that no ϕi for i < d is a half-integer multiple

of π; otherwise, we can perform elision to simplify the diagram. This is a generalization of

Definition 16.

Definition 50 (Standard form, higher-order). To simplify the analysis of error and recovery

operators at any order, we generalize Definition 15 by writing the contribution at each order

as an XY -equivalent linear combination of diagrams of the form Definition 49. Note that

the first-order analysis presented in Section 3.4.1 is already in this form. For all higher-

orders, this can be accomplished using repeated application of Remark 48 and the identity

eiπZ = −I, keeping track of factors of −1.

Diagrams to order k = 3 are shown for a generic length-3 QSP in Fig. B.2.

Remark 51 (Constructing higher-order recovery sequences). Let Rϵ and R̄ϵ be kth-order
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Figure B.2: Diagrammatic representation of error terms for a representative length-3 QSP
parameterized by ϕi ∈ R at (a) order-1, (b) order-2, and c) order-3. To save space, we
have omitted phase labels in the expansions. Diagrams are understood to be in the form of
Definition 49 with open circles denoting bi = 0 and filled circles denoting bi = 1.
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Figure B.3: Diagrammatic analysis of expansions for representative recovery diagrams of (a)
order-1, (b) order-2, and (c) order-3. As in Fig. B.3, phase labels are omitted and diagrams
are understood to be in the form of Definition 49 with open circles denoting bi = 0 and filled
circles denoting bi = 1.
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unbiased sequences with canonical profiles R and R̄ respectively with

R(σ,k)
j = −R̄(σ,k)

j (σ = x, y, z), (B.19)

for all j, and

R(z,k)
j = R̄(z,k′)

j = 0, (B.20)

for all j for k′ < k.

Then the operator Sϵ ≡ RϵR̄ϵ with canonical profile S is an order-(k + 1) unbiased

sequence with

S(σ,k+1)
j = R(σ,k)

j + R̄(σ,k)
j (σ = x, y, z), (B.21)

for all j.

We can make use of the above observation to generate general higher-order recovery

sequences. For instance, to create a second-order recovery sequence, we may combine two

first-order sequences. In general, this requires careful choice of mi and n. Example recovery

sequences up to order-3 are shown in Fig. B.3.

Lemma 52 (Higher-order component-wise recovery). Let U (k−1)
ϵ be a noisy QSP unitary

XY recovered to order-(k − 1),

U (k−1)
ϵ = U0e

i(χ+O(ϵ))Z+ϵk((x+O(ϵ))X+(y+O(ϵ))Y ). (B.22)

If U (0)
ϵ is of length-d and with c unique phases (up to factors of 2π). Then, a recovery

sequence R(k) of length Θ(2kckd) exists to recover up to order-k,

U (k−1)
ϵ R(k) = U0e

i(χ+O(ϵ))Z+ϵk((x+O(ϵ))X+(y+O(ϵ))Y ). (B.23)

Proof. The result for higher-orders is similar to that for first-order recovery. The units of

recovery at order-k can be constructed using Remark 51 and are of length Θ(2kd) (example
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recovery units are shown in Fig. B.3).

As in the first-order case, we can correct groups of diagrams scaled by the same real

coefficient using each recovery unit. In general, each recovery unit may need to be repeated

a constant number of times with different values of mi and n in order to attain the desired

integral coefficients.

The main factor bounding recovery length is the number of distinct groups with different

real coefficients. The real coefficients at order-k consist of the k-tuples of the c distinct

phases, of which there are
(︁
c
k

)︁
= Θ(ck). Note that again we consider phases equivalent if

they differ only by an integer multiple of 2π as these require only a constant number of

additional recovery units.

Thus the recovery to order-k can be accomplished using a recovery sequence of length

Θ(2kckd).

We are now ready to prove Theorem 5, restated below, in full generality.

Theorem 5 (Upper bound on recovery length). Given any noisy QSP operator Uϵ(θ) of

length d with c distinct phases (up to factors of 2π) and an integer k ≥ 1, there exists a

recovery sequence Rϵ(θ) satisfying

|⟨0|UϵRϵ|0⟩|2 = |⟨0|U0|0⟩|2 +O(ϵk+1), (3.46)

for all θ. Furthermore, there exists a QSP operator satisfying the above with length at most

O(2kck(k+1)/2d).

Proof. Let Uϵ be a length-d QSP sequence with c unique phases with error operator Eϵ.

We perform recovery order-by-order so that we can make use of the additive property of

leading-order terms (Remark 46). At each order, from Eq. (3.45), it suffices to append a

sequence of relatively negative XY -equivalent diagrams. Recovery to first-order has been

shown in Section 3.4.4 with a sequence R(1)
ϵ of length Θ(cd).
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After appending the first-order recovery sequence, we have UϵR
(1)
ϵ , a length Θ(cd) QSP

sequence. The key to showing the desired scaling is to notice this sequence has large phase

redundancy: namely, the length Θ(cd) QSP sequence is parameterized by the same phases,

except for an additional Θ(c) new distinct phases used in the counter-rotation. Thus, by

Lemma 52, recovery to second-order can be accomplished using a recovery sequence of length

Θ(22 × c2 × cd) = Θ(22c3d). Recovery to order-k can be accomplished using a recovery

sequence a factor Θ(ck) longer than the previous order. Overall this construction requires a

length O(2kck(k+1)/2d) sequence, thus proving the Theorem.

We have Theorem 4, restated below, as a corollary.

Theorem 4 (Recoverability). Given any noisy QSP operator Uϵ(θ) of length d and an integer

k ≥ 1, there exists a recovery sequence Rϵ(θ) satisfying

|⟨0|UϵRϵ|0⟩|2 = |⟨0|U0|0⟩|2 +O(ϵk+1), (3.44)

for all θ.

Finally we note that the scaling of the recovery length in Theorem 5 shows that QSPs

with fewer unique phases require fewer resources for recovery. As an example, we provide an

explicit choice of recovery phases for a QSP with a single unique phase.

Remark 53 (Example for QSP with single unique phase.). Let Uϵ be a length-d QSP with

a single unique phase ϕ (e.g. Grover search). Using this construction, we can construct a

231



first-order recovery operator by choosing phases

η⃗1 = (−ϕ− π − δ,−ϕ, . . . ,−ϕ, π/2,

ϕ+ 2πm, . . . , ϕ+ 2πm, ϕ+ π/2 + δ),

(B.24a)

η⃗2 = (−ϕ− 4nπ − δ,−ϕ, . . . ,−ϕ, 4nπ − π/2,

ϕ+ 2πm, . . . , ϕ+ 2πm, ϕ+ π/2 + δ),

(B.24b)

η⃗3 = (−ϕ− π + δ,−ϕ, . . . ,−ϕ, π/2,

ϕ+ 2πm, . . . , ϕ+ 2πm, ϕ+ π/2− δ),
(B.24c)

η⃗4 = (−ϕ− 4nπ + δ,−ϕ, . . . ,−ϕ, 4nπ − π/2,

ϕ+ 2πm, . . . , ϕ+ 2πm, ϕ+ π/2− δ),
(B.24d)

with appropriate m,n ∈ Z and δ depending on ϕ. Note crucially that each “. . .” hides only

Θ(d) phases.

Letting V (1)
ϵ = QSP(θ; η⃗1), . . . , V

(4)
ϵ = QSP(θ; η⃗1), V

(1)
ϵ V

(2)
ϵ V

(3)
ϵ V

(4)
ϵ is a first-order recov-

ery sequence for Uϵ.

B.3 Alternate Proof of Theorem 4: Degree-wise Recov-

ery

In this Appendix, we present an alternate recovery construction for the coherent error model

in Section 3.4. Though this construction is exponentially less efficient, generating a length

Θ(2kd2
k
) sequence, we find that it is sufficiently different to be worth discussion. Fur-

thermore, despite being asymptotically worse, it can produce shorter recovery sequences in

practice due to the large constants hidden in Lemma 52. Whereas the construction presented

in performs recovery component-wise, here we perform recovery degree-wise.
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B.3.1 First-order

We now describe our construction of the recovery sequence that corrects the first-order error

in a QSP sequence. Given a faulty QSP sequence Uϵ, let Eϵ be its error operator and P

its error profile, it suffices by Eq. (3.45) to construct a recovery sequence Rϵ with an error

profile R satisfying

R(σ,1)
j = −P(σ,1)

j , (B.25)

for σ = x, y and for all j.

The construction of Rϵ is recursive. In the first iteration, we construct Rϵ that satisfies

Eq. (B.25) only at jmax, the largest j such that P(σ,1)
j ̸= 0 (σ = x, y). At the end of this

iteration, the appended QSP sequence has a modified error profile P ′ such that P ′(σ,0)
j = 0

for all j ≥ jmax, resulting in a lower jmax for the next iteration. Repeating this procedure

until P(σ,0)
j = 0 for all j, we arrive at the desired recovery sequence.

The building block for our recovery sequence is the conjugations in Eq. (B.34). The

following Lemma gives the error profile for QSP sequence that results from the conjugations.

Lemma 54 (Top-degree recovery term, first-order). Let R be the length-(2d) QSP sequence

resulting from d conjugations in Eq. (B.34) with m1 = · · · = md = 0 and n1 = · · · = nd = n.

Let R be the error profile of Rϵ. We have

⎛⎜⎜⎜⎜⎝
R(x,1)
d−1

R(y,1)
d−1

R(z,1)
d−1

⎞⎟⎟⎟⎟⎠ = π22d−3(2n+ 1)
d−1∏︂
j=1

cos2(ηj)

⎛⎜⎜⎜⎜⎝
sin(2ηd)

− cos(2ηd)

2

⎞⎟⎟⎟⎟⎠ . (B.26)

Proof. We prove Lemma 54 by induction. For d = 1, the error profile of the corresponding
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length-2 QSP satisfies Eq. (B.26):

⎛⎜⎜⎜⎜⎝
R(x,1)

0

R(y,1)
0

R(z,1)
0

⎞⎟⎟⎟⎟⎠ = π2−1(2n+ 1)

⎛⎜⎜⎜⎜⎝
sin(2η1)

− cos(2η1)

2

⎞⎟⎟⎟⎟⎠ . (B.27)

Suppose Lemma 54 holds for all length-2d sequences. We shall prove that it also holds for

all length-(2d+ 2) sequences.

Let R′ be a length-(2d+ 2) sequence satisfying the assumptions of Lemma 54 and R be

a length-2d sequence satisfying

R′ = C0,n,ηd+1
R. (B.28)

Let R′ and R be the error profiles of R′
ϵ and Rϵ, respectively. Using Eq. (B.7), we have

R′(x,0)
d = sin(2ηd+1)(R(z,0)

d−1 − 2R(y,0)
d−1 ), (B.29a)

R′(y,0)
d = − cos(2ηd+1)(R(z,0)

d−1 − 2R(y,0)
d−1 ), (B.29b)

R′(z,0)
d = 2(R(z,0)

d−1 − 2R(y,0)
d−1 ). (B.29c)

Applying Lemma 54 on R, we have

R(z,0)
d−1 − 2R(y,0)

d−1 = π22d−1(2n+ 1)
d∏︂
j=1

cos2(ηj). (B.30)

Therefore,

⎛⎜⎜⎜⎜⎝
R′(x,1)
d

R′(y,1)
d

R′(z,1)
d

⎞⎟⎟⎟⎟⎠ = π22d−1(2n+ 1)
d∏︂
j=1

cos2(ηj)

⎛⎜⎜⎜⎜⎝
sin(2ηd+1)

− cos(2ηd+1)

2

⎞⎟⎟⎟⎟⎠ , (B.31)

and Lemma 54 holds for R′. By induction, Lemma 54 holds for length-2d QSP sequences for

all d ≥ 1.
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Also, recall from Remark 43 that R(x,1)
j = R

(y,1)
j = R

(z,1)
j = 0 for all j ≥ d.

Lemma 55 (First-order degree-wise recovery). Let U be a length-d QSP sequence, Eϵ be

the error operator for U , and P its error profile. Let jmax be the largest j such that either

P(x,1)
j ̸= 0 or P(y,1)

j ̸= 1. There exists an unbiased recovery sequence R such that the error

profile P ′ of UϵRϵ satisfies

P ′(x,1)
j = P ′(y,1)

j = 0, (B.32)

for all j ≥ jmax. In addition, the length of the recovery sequence is at most 2(jmax + 1) if

jmax ≥ 1 and at most 4 if jmax = 0.

Proof. First, we consider jmax ≥ 1. Let n be the smallest integer such that

√︂
(P(x,1)

jmax
)2 + (P(y,1)

jmax
)2 ≤ π22jmax−1

(︃
n+

1

2

)︃
. (B.33)

Let R be the length-(2jmax + 2) QSP sequence in the form

Cmd,n,ηd . . . Cm1,n,η1I, (B.34)

with m1 = · · · = mjmax+1 = 0, n1 = · · · = njmax+1 = n and R be the error profile of Rϵ. By

Lemma 54, we have

⎛⎜⎝R(x,1)
jmax

R(y,1)
jmax

⎞⎟⎠ = π22jmax−1

(︃
n+

1

2

)︃
×

jmax∏︂
j=1

cos2(ηj)

⎛⎜⎝ sin(2ηjmax+1)

− cos(2ηjmax+1)

⎞⎟⎠ . (B.35)

Next, we choose η1 = · · · = ηjmax−1 = 0,

ηjmax = cos−1

⎛⎝
√︂
(P(x,1)

jmax
)2 + (P(y,1)

jmax
)2

π22jmax−1
(︁
n+ 1

2

)︁
⎞⎠1/2

(B.36)

ηjmax+1 = −
1

2
tan−1

(︄
P(x,1)
jmax

P(y,1)
jmax

)︄
≤ 0. (B.37)
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Substituting these phase angles into Eq. (B.35), we obtain

⎛⎜⎝R(x,1)
jmax

R(y,1)
jmax

⎞⎟⎠ = −

⎛⎜⎝P(x,1)
jmax

P(y,1)
jmax

⎞⎟⎠ . (B.38)

Thus by Remark 46 we have the Lemma for jmax ≥ 1.

Finally, we consider the case jmax = 0. Recall that for jmax ≥ 1, we have a continuous

control over the magnitude of the error profile provided by ηjmax . For jmax = 0, we use the

counter-rotation trick of Eq. (3.49). Accordingly, we choose η = − tan−1
(︂
P(x,1)

0 /P(y,1)
0

)︂
≤ 0

and

δη =
1

2
cos−1

⎛⎝
√︂

(P(x,1)
0 )2 + (P(y,1)

0 )2

π
(︁
n+ 1

2

)︁
⎞⎠ (B.39)

to arrive at Eq. (B.38) for jmax = 0. This concludes the proof of the Lemma.

Repeatedly applying Lemma 55, we incrementally lower jmax. When P(x,0)
j = P(y,0)

j = 0

for all j ≥ 0, we arrive at Theorem 4 for k = 1. Since the length of the recovery sequence in

each iteration of Lemma 54 is 2(jmax+1) and jmax is initially at most d− 1, the total length

of the recovery sequence is at most

4 +
d−1∑︂

jmax=1

2(jmax + 1) = d2 + d+ 2. (B.40)

Therefore, for a length-d QSP Uϵ, there exists recovery sequence Rϵ of length d2 + d + 2

satisfying Theorem 4 for k = 1.

B.3.2 Higher-order

We now generalize to higher-orders.

First, we provide an explicit recursive construction of higher order unbiased sequences.
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Lemma 56 (Top-degree recovery term, higher-order). For all k ≥ 1, there exists a kth-order

unbiased QSP sequence of length-(2kd) Rϵ, parameterized by η1, . . . , ηd ∈ [−π, π) and n ∈ Z

with an error profile R satisfying

⎛⎜⎝R(x,k)
d−1

R(y,k)
d−1

⎞⎟⎠ = πk22d−3(2n+ 1)k
d−1∏︂
j=1

cos2(ηj)

⎛⎜⎝ 0 1

−1 0

⎞⎟⎠
k−1⎛⎜⎝ sin(2ηd)

− cos(2ηd)

⎞⎟⎠ , (B.41)

and R(x,k−1)
j = R(y,k−1)

j = 0 for all j ≥ d.

Proof. We will provide a recursive construction for a length-(2kd) QSP satisfying the Lemma.

Let Rϵ be the length-2d recovery sequence parameterized by n ∈ Z and η1, . . . , ηd as in

Lemma 54 and R its error profile. From the Lemma, we have

⎛⎜⎝R(x,1)
d−1

R(y,1)
d−1

⎞⎟⎠ = π22d−3(2n+ 1)
d−1∏︂
j=1

cos2(ηj)

⎛⎜⎝ 0 1

−1 0

⎞⎟⎠
0⎛⎜⎝ sin(2ηd)

− cos(2ηd)

⎞⎟⎠ , (B.42)

and R(x,0)
j = R(y,0)

j = 0 for all j ≥ d. So R satisfies the Lemma for k = 1.

Suppose the Lemma holds for k ≥ 1 and let Rϵ be the kth-order unbiased QSP sequence

satisfying the Lemma. We define R̄ϵ to be the QSP sequence identical to Rϵ except that

ηd ↦→ ηd +
π
2

and n ↦→ −(n + 1). Let R and R̄ be their respective error profiles. Using

Remark 51, one can show that

R(σ,k)
j = R̄(σ,k)

j (σ = x, y), (B.43a)

R(z,k)
j = −R̄(z,k)

j , (B.43b)

for all j and k ≥ 1.

Thus we can construct a sequence S using Remark 51 that is unbiased to order k + 1 as

follow:

Sϵ ≡ e−iπ(n+
1
2
)(1+ϵ)ZRϵe

iπ(n+ 1
2
)(1+ϵ)ZR̄ϵ, (B.44)
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which is a length-(2k+1d) QSP unitary. By the result of Remark 51, the error profile S of Sϵ

satisfies⎛⎜⎝S(x,k)
d−1

S(y,k)
d−1

⎞⎟⎠ = π(2n+ 1)

⎛⎜⎝ 0 1

−1 0

⎞⎟⎠
⎛⎜⎝R(y,k−1)

d−1

R(x,k−1)
d−1

⎞⎟⎠ , (B.45)

= πk22d−3(2n+ 1)k
d−1∏︂
j=1

cos2(ηj)

⎛⎜⎝ 0 1

−1 0

⎞⎟⎠
k−1⎛⎜⎝ sin(2ηd)

− cos(2ηd)

⎞⎟⎠ . (B.46)

Therefore the Lemma holds for k + 1 and, by induction, it holds for all k.

Lemma 57 (Higher-order degree-wise recovery). Let U be a length-d QSP sequence, Eϵ

be its error operator, and P its error profile. Suppose Eϵ is unbiased to order-k, that is

P(x,k′)
j = P(y,k′)

j = 0 for all j ≥ 0 and k′ < k. Let jmax be the largest j such that either

P(x,k)
j ̸= 0 or P(y,k)

j ̸= 0. There exists an unbiased recovery sequence R such that the error

profile P ′ of UϵRϵ satisfies

P ′(x,k)
j = P ′(y,k)

j = 0, (B.47)

for all j ≥ jmax and k ≥ 0. In addition, the length of the recovery sequence is at most

2k+1(jmax + 1) if jmax ≥ 1 and at most 2k+2 if jmax = 0.

Proof. The proof of the Lemma is nearly identical to that of Lemma 55.

First, consider k ≥ 1 and jmax ≥ 1. Let n be the smallest integer such that

√︂
(P(x,k)

jmax
)2 + (P(y,k)

jmax
)2 ≤ πk22jmax−1(2n+ 1)k. (B.48)

Let R be the kth-order unbiased length-(2k+1(jmax + 1)) QSP sequence parameterized by

η1, . . . , ηjmax+1 ∈ [−π, π) and n ∈ Z, that satisfies Lemma 56 and R be its error profile.
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From Lemma 56, we have

⎛⎜⎝R(x,k)
jmax

R(y,k)
jmax

⎞⎟⎠ = πk22jmax−1(2n+ 1)k
jmax∏︂
j=1

cos2(ηj)

⎛⎜⎝ 0 1

−1 0

⎞⎟⎠
k−1⎛⎜⎝ sin(2ηjmax+1)

− cos(2ηjmax+1)

⎞⎟⎠ , (B.49)

Next, we choose η1 = · · · = ηjmax−1 = 0, n from Eq. (B.48), and

ηjmax = cos−1

⎛⎝
√︂
(P(x,k)

jmax
)2 + (P(y,k)

jmax
)2

πk22jmax−1(2n+ 1)k

⎞⎠1/2

, (B.50)

ηjmax+1 = −1

2
tan−1

(︄
P(x,k)
jmax

P(y,k)
jmax

)︄
− 3πk

4
. (B.51)

Substituting these phase angles into Eq. (B.49), we obtain

⎛⎜⎝R(x,k)
jmax

R(y,k)
jmax

⎞⎟⎠ = −

⎛⎜⎝P(x,k)
jmax

P(y,k)
jmax

⎞⎟⎠ . (B.52)

From Remark 46, we have Lemma 57 for jmax ≥ 1.

Finally, for the case jmax = 0 we again use the counter-rotation trick of Eq. (3.49) setting

η1 = η ± δη. We choose η = − tan−1
(︂
P(x,0)

0 /P(y,0)
0

)︂
− 3πk

4
and

δη =
1

2
cos−1

⎛⎝2

√︂
(P(x,k)

0 )2 + (P(y,k)
0 )2

πk(2n+ 1)k

⎞⎠, (B.53)

to arrive at Eq. (B.52) for jmax = 0. This concludes the proof of Lemma 57.

This provides an alternate proof for Theorem 4 which is restated below for convenience.

Theorem 4 (Recoverability). Given any noisy QSP operator Uϵ(θ) of length d and an integer

k ≥ 1, there exists a recovery sequence Rϵ(θ) satisfying

|⟨0|UϵRϵ|0⟩|2 = |⟨0|U0|0⟩|2 +O(ϵk+1), (3.44)
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for all θ.

Proof. To prove Theorem 4 in full generality for k ≥ 1, we repeatedly apply Lemma 57.

Let R(k′)
ϵ be the recovery operator accumulated from such repeated applications for order-

k′. We start by constructing R
(1)
ϵ such that U †

0UϵR
(1)
ϵ is unbiased to order-2. We then

increment k′, repeating the process up to k′ = k + 1 to obtain a (k + 1)th-order unbiased

operator U †
0UϵR

(1)
ϵ . . . R

(k)
ϵ .

We can therefore write

UϵR
(1)
ϵ . . .R(k)

ϵ ≡ U0e
iϵ(z+O(ϵ))Z+iϵk+1[(x+O(ϵ))X+(y+O(ϵ))Y ], (B.54)

as required by Eq. (3.45) thus providing an alternate proof of Theorem 4.

Recalling that for k = 1, the length of the recovery operation using this construction

is d2 + d + 2 = Θ(21d2
1
) (Eq. (B.40)), we note that given a noisy QSP corrected to order

k of length-dk with dk = Θ(2kd2
k
), we can perform correction to the (k + 1)th-order using

at most dk applications of Lemma 56 for each 0 ≤ jmax ≤ dk − 1. From Lemma 57, each

application adds length 2k(jmax + 1) for jmax > 0 and 2k+1 for jmax = 0. The overall length

of the resulting sequence therefore has length dk satisfying

dk+1 = dk + 2k+2 +

dk∑︂
jmax=1

2k+1(jmax + 1) = Θ(2k+1d2
k+1

). (B.55)

The main reason for the exponentially worse performance as compared with the con-

struction in Appendix B.2 is the fact that we do not make use of the phase redundancy in

the recovered operators, and thus recovery at each order is performed de novo.
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Appendix C

Appendix for Chapter 5

C.1 Proof of Pareto Set Scaling Theorem

As discussed in Section 5.1.3, the performance of our algorithm depends on the size of the

Pareto frontier. In the paper, we provide experimental evidence for the polynomial scaling of

the DIB Pareto frontier of a variety of datasets. In this appendix, we will prove Theorem 7,

which provides sufficient conditions for the sparsity of the Pareto frontier and apply it to a

number of examples.

As in Section 5.1.3, let S = {(Ui, Vi)}Ni=1 be a sample of N i.i.d. bivariate random

variables having joint cumulative distribution FUV (u, v). Further, let RS,U(Ui) and RS,V (Vi)

be the marginal rank statistics of U and V , respectively, with respect to S; that is, Ui is the

RS,U(Ui)
th smallest U -value in S and likewise for V . Ties can be broken arbitrarily. We will

often drop the subscripts on RS,U and RS,V when the context is obvious.

Definition 58. Given a permutation σ : [N ] → [N ] where [N ] ≡ {1, . . . , N}, we call i a

sequential minimum if j < i⇒ σ(j) > σ(i).

We would now like to show that the marginal rank statistics S are sufficient for deter-

mining membership in Pareto(S), which we formalize in Lemma 59.
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Lemma 59. Let σU(i) = R(Ui) and σV (i) = R(Vi). An element (Ui, Vi) ∈ S is maximal if

and only if its rank, i, is a sequential minimum of σU ◦ σV .

Proof. ( =⇒ ) Assume (Ui, Vσ(i)) ∈ S is maximal. For any other point (uj, vσ(j)) ∈ S, i ̸= j,

if j < i⇒ ui < uj, then vσ(i) > vσ(j) by definition of maximality, which implies σ(j) > σ(i),

showing that i is a sequential minimum of σ.

( ⇐= ) For (ui, vσ(i)) ∈ S such that i is a sequential minimum of σ. For any other

point (uj, vσ(j)) ∈ S, i ̸= j, either i < j ⇒ ui > uj showing that (ui, vσ(i)) is maximal,

or j > i ⇒ σ(j) > σ(i) by definition of a sequential minimum, which implies vσ(i) > vσ(j)

showing that (ui, vσ(i)) is maximal.

Corollary 60. Membership in the Pareto set is invariant under strictly monotonic transfor-

mations of U or V .

Proof. Strictly monotonic transformations leave the rank statistics unchanged and therefore

also do not affect membership in the Pareto set by Lemma 59.

We now turn to the main result of this Appendix: the proof of Theorem 7, which is

restated here for convenience.

Theorem 7. Let S = {(Ui, Vi)}Ni=1 be a set of bivariate random variables drawn i.i.d. from

a distribution with Lipschitz continuous CDF F (u, v), and invertible marginal CDFs FU , FV .

Define the region

RN ≡
{︂
(u, v) ∈ [0, 1]× [0, 1] : u+ v − C(u, v) ≥ e−

1
N

}︂
, (5.3)

where C(u, v) denotes the copula of (Ui, Vi), which is the function that satisfies F (u, v) =

C(FU(u), FV (v)).

Then, if the Lebesgue measure of this region λ(RN) = Θ
(︂
ℓ(N)
N

)︂
as N → ∞, we have

E [|Pareto(S)|] = Θ(ℓ(N)).
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Proof. Since the marginal CDFs are invertible by assumption and therefore strictly mono-

tonic, Corollary 60 allows us to consider instead U ′
i = FU(Ui) and V ′

i = FV (Vi) with the

promise that Pareto(S ′) = Pareto(S) where S ′ ≡ {(U ′
i , V

′
i }. Note that FU ′(u′) = u′ and

FV ′(v′) = v′, and therefore without loss of generality, we can assume FU and FV are uniform

distributions over the interval [0, 1] dropping the prime notation. This allows us to identify

the copula with the joint CDF C(FU(u), FV (v)) = C(u, v) = F (u, v).

Let 1A(x) denote the indicator function of a set A: taking the value 1 for x ∈ A and 0

otherwise. Then, ES [|Pareto(S)|] = ES
[︂∑︁N

i=1 1Pareto(S)(Ui, Vi)
]︂
. Making use of the linearity

of expectation and noting that (Ui, Vi) are drawn i.i.d., we can write

ES [|Pareto(S)|] = NES
[︁
1Pareto(S)(U1, V1)

]︁
. (C.1)

Note that E
[︁
1Pareto(S)(u, v)

]︁
= (1−Pr[U > u, V > v])N = (u+ v−C(u, v))N , which follows

from the definition of Pareto optimality. For convenience, we define Ĉ(u, v) ≡ u+v−C(u, v)

yielding

ES [|Pareto(S)|] =
∫︂ 1

0

∫︂ 1

0

Nf(u, v)Ĉ(u, v)N−1dudv. (C.2)

Take fmax to be the maximum value f achieves over the domain, we are guaranteed fmax <∞

as C is Lipschitz by assumption. Therefore

ES [|Pareto(S)|] ≤ Nfmax

∫︂ 1

0

∫︂ 1

0

Ĉ(u, v)N−1dudv. (C.3)

Now, define ĈN , which is equal to Ĉ in the region RN and 0 otherwise. We also define the

region

R′
N ≡

{︂
(u, v) ∈ [0, 1]× [0, 1] : e−

1+2 logN
N ≤ Ĉ(u, v) < e−

1
N

}︂
. (C.4)
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We now split the integral over [0, 1]2 into three disjoint parts

∫︂ 1

0

∫︂ 1

0

Ĉ(u, v)N−1dudv =∫︂
RN

ĈN(u, v)
N−1dudv +

∫︂
R′

N

Ĉ(u, v)N−1dudv +

∫︂
[0,1]2\RN∪R′

N

Ĉ(u, v)N−1dudv.

(C.5)

The integrand of the final term is bounded by e− log(N)+O(1) = O(N−1) and λ([0, 1]2 \ RN ∪

R′
N) = Θ(1); therefore, this term goes to 0 as N →∞. Now, we turn to the middle term on

the right-hand side. Since C is 2-non-decreasing and Lipschitz, we have that the measure

of the set λ(R′
N) = Θ

(︂
e−

1
N − e− 1+2 logN

N

)︂
= Θ

(︁
logN
N

)︁
, Ĉ(u, v) < e−

1
N in the region R′

N by

definition, and therefore, the second term goes to 0 as N →∞. Since there is always at least

one point on the Pareto frontier, the first term must be Ω(1), and the integral is dominated

by the portion over RN . Equivalently,

∫︂ 1

0

∫︂ 1

0

Ĉ(u, v)N−1dudv ∼
∫︂ 1

0

∫︂ 1

0

ĈN(u, v)
N−1dudv. (C.6)

Further,

∫︂ 1

0

∫︂ 1

0

NCN(u, v)
N−1dudv ≤ N

∫︂ 1

0

∫︂ 1

0

1RN
(u, v)dudv = Nλ(RN) = ℓ(N). (C.7)

Following the chain of inequalities and asymptotic equivalences, we arrive at the desired

result ES [|Pareto(S)|] = Θ(ℓ(N)).

We now apply Theorem 7 to a few illustrative examples.

The Fréchet–Hoeffding copulae, W and M , are extremal in the sense that, written in two

dimensions, any copula C must satisfy W (u, v) ≤ C(u, v) ≤M(u, v), ∀(u, v) ∈ [0, 1]2; where

W (u, v) = max(u + v − 1, 0) and M(u, v) = min(u, v). W and M correspond to complete

negative and positive monotonic dependence, respectively.

Example 61 (Fréchet–Hoeffding lower bound). First, let us consider the scaling of the
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Pareto of a distribution with extremal copula W (u, v). In this case, we note that the re-

gion [0, 1]2 \ RN is the triangle with vertices at {(0, 0), (0, e−1/N), (e−1/N , 0)}, and therefore

λ(RN) = 1 − 1
2
exp− 2

N . For large N , λ(RN) = 1
2
+ O(N−1). We see that this satisfies the

conditions for Theorem 7 with ℓ(N) = N , giving ES [|Pareto(S)|] = Θ(N) as expected for a

distribution with complete negative monotonic dependence.

Example 62 (Fréchet–Hoeffding upper bound). First, let us consider the scaling of the

Pareto of a distribution with extremal copula M(u, v). In this case, we note that the region

[0, 1]2 \RN is the region [0, e−1/N ], and therefore, λ(RN) = 1−exp− 2
N . For large N , λ(RN) =

2
N
+O(N−2). We see that this satisfies the conditions for Theorem 7 with ℓ(N) = 1, giving

ES [|Pareto(S)|] = Θ(1) as expected for a distribution with complete positive monotonic

dependence.

Example 63 (Independent random variables). Next, let us consider the case of independent

random variables with copula C(u, v) = uv. Note that the level curves in this case u + v −

C(u, v) = e−
1
N are given by v = e−

1
N −u
1−u . We can then integrate to find the area of the region

RN

λ(RN) = 1−
∫︂ e−

1
N

0

e−
1
N − u
1− u du = e−1/n

(︁
1− e1/n

)︁ (︁
log
(︁
1− e−1/n

)︁
− 1
)︁
. (C.8)

Expanding for large N , we find that λ(RN) =
logN
N

+O(N−1). We see that this satisfies the

conditions for Theorem 7 with ℓ(N) = logN , giving ES [|Pareto(S)|] = Θ(logN).

Theorem 7 provides a useful tool to pin down the scaling of the size of the Pareto

set. Due to the relatively quick decay of the additional terms in Eq. (C.5), we find that

scaling estimates using the region RN are quite accurate even for modest N . However, its

applicability is limited, as it requires that we either have an analytic expression for the

copula or are otherwise able to estimate the copula to precision 1/N . In particular, we

are not able to prove any bounds for the DIB frontier, which is the case U = H(Z), and

V = I(Z;Y ). We suspect that for most realistic datasets, including points on the DIB
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plane, that ℓ(N) = polylog(N), which implies that the scaling of the Pareto set is likewise

Θ(polylog(N)). Since we are interested in the large N behavior, we are hopeful that more

general results can be found through the study of extreme-value copulas, which we leave for

future work.

C.2 Auxiliary Functions

In this appendix, we provide the pseudocode for the important auxiliary functions used in

Algorithms 1 and 2. The Pareto set data structure is a list of point structures. A point

structure, p, contains fields for both objectives p.x, p.y, and optional fields for storing the

uncertainties p.dx, p.dy and clustering function p.f. As a list, the Pareto set P for point

p, and index i, also supports the functions size(P ) returning the number of elements in P ,

insert(p, i, P ) for inserting point p at index i, and remove(i, P ) for removing the entry at

index i. Additionally, since the Pareto set P is maintained in sorted order by its first index,

we can find the correct index at which to insert a new point in logarithmic time: for a point

p and Pareto set P , this is written find_index(p.x, P ) in the pseudocode of Algorithms

Algorithms 3 to 5.

Algorithm 3 Check if a point is Pareto optimal
Input : Point on objective plane p, and Pareto Set P
Output : true if and only if p is Pareto optimal in P
1: procedure is_pareto(p, P )
2: i = find_index(p.x, P ) ▷ Return correct value to insert p in P

return size(P ) = 0 or i = size(P ) or P [i + 1].y < p.y

C.3 The Symmetric Pareto Mapper

In this appendix, we consider one way that Algorithm 1 can be modified to accommodate

an additional structure in the dataset. The full pseudocode is provided in Algorithm 6 with

the key difference occurring on line 12. This modification amounts to a redefining of the
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Algorithm 4 Add point to Pareto Set
Input : Point on objective plane p, and Pareto Set P
Output : Updated Pareto Set P
1: procedure pareto_add(p, P )
2: if is_pareto(p, P ) then ▷ Insert only if Pareto optimal
3: i = find_index(p.x, P )
4: P ← insert(p, i, P ) ▷ Insert point into correct location
5: while i < size(P ) and p.y > P [i + 1].y do ▷ Remove dominated points
6: remove(i+ 1, P )
7: i = i+ 1

return P

Algorithm 5 Calculate distance to Pareto frontier
Input : Point on objective plane p, and Pareto Set P
Output : Distance to Pareto frontier (defined to be zero if Pareto optimal)
1: procedure pareto_distance(p, P )
2: if is_pareto(p, P ) then return 0 ▷ Distance defined to be zero if point is Pareto

optimal
3: i = find_index(p.x, P )
4: d = P [i].y − p.y ▷ Check top boundary
5: while P [i].x− p.x < d do
6: if i+ 1 < size(P ) and P [i].y > p.y then
7: q = point(x = P [i].x, y = P [i + 1].y)
8: d = minimum(distance(p, q), d) ▷ Check corners
9: else

10: d = minimum(P [i].x− p.x, d) ▷ Check right boundary
return d
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compressed variable Z = (f(X1), f(X2)). We would like to discover an encoding f that

trades off the entropy of the encoding with the ability to predict Y from (f(X1), f(X2)).

This corresponds to the following graphical model:

Z1 X1 Y

Z2 X2

f

f

Algorithm 6 Symmetric Pareto Mapper
Input : Joint distribution A,B,C ∼ pABC , and search parameter ε
Output : Approximate Pareto frontier P
1: procedure symmetric_pareto_mapper(pABC , ε)
2: Pareto set P = ∅ ▷ Initialize maintained Pareto set
3: Queue Q = ∅ ▷ Initialize search queue
4: Point p = (x =− H(pX1X2)/2, y = I(pX1X2;Y ), f = id) ▷ Evaluate trivial clustering
5: P ← insert(p, P )
6: Q← enqueue(id, Q) ▷ Start with identity clustering id : [n]→ [n] where n = |X|
7: while Q is not ∅ do
8: f = dequeue(Q)
9: n = | range(f)|

10: for 0 < i < j < n do ▷ Loop over all pairs of output clusters of f
11: f ′ = ci,j ◦ f ▷ Merge clusters i, j output f
12: Point p = Point(x =− H(pf ′(X1)f ′(X2))/2, y = I(pf ′(X1)f ′(X2);Y ), f =f

′)
13: d = pareto_distance(p, P )
14: P ← pareto_add(p, P ) ▷ Keep track of point and clustering in Pareto set
15: with probability e−d/ε, Q← enqueue(f ′, Q)
16:

return P
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Figure C.1: Joint distribution pX1,X2;Y for the (a) (Z/40Z)× group and (b) the Pauli group.
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