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ABSTRACT

Robots are becoming better at navigating and moving around, but they still struggle with
using tools, which severely limits their usefulness for household tasks. Using tools requires
dexterously manipulating everyday objects like hammers, scissors, knives, screwdrivers, etc.
While simple for humans, manipulating everyday objects remains a long-standing challenge
that requires breakthroughs in robotic hardware, sensing, perception, and control algorithms.
This thesis proposes machine learning techniques that substantially improve the state-of-
the-art performance of dexterous manipulation controllers. It focuses specifically on in-hand
object reorientation tasks. Previous works on this problem had limitations like using expensive
sensors or hands, only working for a few objects, requiring the hand to face upward, slow
object motion, etc. This thesis goes a step further by enabling a low-cost robot hand to
dynamically reorient diverse objects in mid-air with the hand facing downward using an
inexpensive depth camera. To train such a system, the thesis proposes techniques for robots
to learn to reorient objects with a downward-facing hand in the air. It also proposes multiple
techniques to improve the time efficiency of the learning algorithms. Additionally, it discusses
how to reduce the gap between simulation and reality so that controllers trained in simulation
can transfer directly to real systems. Furthermore, the thesis explores the use of tactile
sensors in dexterous manipulation. It concludes with a discussion of the current system’s
issues and outlines future research directions for dexterous manipulation.

Thesis supervisor: Pulkit Agrawal
Title: Assistant Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Imagine using a screwdriver to tighten a screw. If we think about all the steps, it becomes
evident that our hands perform remarkable fine-grained and dexterous manipulation: grasping
the screwdriver from a toolbox, precisely reorienting it in mid-air to align with the screw, and
executing a coordinated rotation while applying sufficient pressure to secure the screw in place.
This is an example of dexterous manipulation, a family of skills crucial in accomplishing
various tasks, such as using tools like scissors, screwdrivers, and knives. In-hand object
reorientation is a specific dexterous manipulation problem that aims to manipulate a hand-
held object from an arbitrary initial orientation to an arbitrary target orientation. The task
of in-hand object reorientation subsumes many challenges of dexterous manipulation and
is, therefore, an apt task to study and advance dexterous manipulation. Despite the human
ability to perform dexterous manipulation actions effortlessly, such manipulation remains an
open challenge in robotics.

Dexterous robotic manipulation involves controlling a high degrees-of-freedom (DoF) hand
to apply forces to manipulate an object through its fingertips [1]–[3]. Such manipulation poses
many challenges, such as frequent making and breaking of contact, real-time feedback control
with high-dimensional observation such as camera images, a large control space, objects being
in unstable configurations (e.g., when held and manipulated in air), and generalization to
different dynamics and geometric properties of objects. These challenges become even more
pronounced when robots quickly manipulate objects, as in dynamic dexterous manipulation.

Historically, the challenges of dexterous manipulation have been addressed through various
approaches. One line of work [4]–[7] leveraged analytical kinematics and dynamics models of
the hand and object. These works either employed trajectory optimization [4]–[6] or model-
predictive control [8] to solve for control policies, or utilized kinodynamic planning [7]. Object
dynamics can be quite complex when objects have complex geometries, undergo dynamic
motion, or possess non-uniform surface properties. For such complex dynamics, employing
trajectory optimization or model-predictive control during inference can be computationally
expensive. Consequently, it is common to build reduced-order models that simplify the
dynamics by making assumptions such as manipulating objects with simple geometries [5],
performing static or quasi-static manipulation [6], or utilizing simplifications like small
motion of the object or fingers [6]. However, such simplifications are task-dependent, limiting
scalability to various tasks, and can also lead to sub-optimal performance. Furthermore, if
the object geometry is unknown in advance, using analytical dynamics models is known to
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be challenging.
Since building reduced-order dynamics models that work with sensory observations is

a challenge, data-driven approaches have been employed to learn dynamics models [9]–[12]
directly from sensory observations. The learned model is used to optimize for the desired
behavior using model-predictive control. However, when the manipulation task requires
the object to be in unstable configurations, such as during in-hand reorientation in the air,
collecting data for learning a dynamics model is at least as hard as successfully learning a
controller to perform the task. This is because learning a dynamics model that captures
unstable configurations requires data where the object is manipulated successfully through
the unstable configurations. Instead of relying on random exploration for data collection, one
possibility is to use intrinsic rewards [13], [14] to drive the agent’s exploration and learn the
dynamics model. However, learned dynamics models only perform well for in-distribution
states on which the dynamics model was trained. In the early stages of random exploration,
the agent may generate trajectories substantially different from the optimal objection motion,
potentially hindering the learning of an effective policy. Instead of autonomously collecting
data, an alternative is to collect data via human teleoperation of the robot. Nevertheless, for
many in-hand dexterous manipulation tasks, such as reorienting objects in the air with a
downward-facing hand, teleoperation is known to be difficult due to the task being inherently
unstable, lack of tactile feedback, the morphology gap between the human and robotic hand,
etc.

Instead of relying on dynamics models to perform costly inference of actions during deploy-
ment, another approach is to learn a policy that outputs actions from sensory observations
directly and doesn’t depend on any real-time optimization. Methods that don’t rely on models
during inference are known as model-free methods [15]–[19] and can be categorized into two
camps: imitation and reinforcement learning (RL). Imitation learning typically involves train-
ing policies to mimic demonstration data via supervised learning [20]–[25]. There are various
ways to generate demonstration data, such as motion planning, trajectory optimization, or
human demonstrations. However, these methods fall short in the case of dynamic dexterous
manipulation. Collecting expert demonstration data for dynamic dexterous manipulation is
challenging. As mentioned earlier, trajectory optimization does not typically perform well
when the manipulation process is dynamic and contact-rich. Moreover, it is challenging
for humans to demonstrate dexterous manipulation, especially when there is a significant
morphological disparity between the robot and human hands. Furthermore, collecting demon-
strations from humans is expensive and time-consuming, substantially limiting the amount of
data that can be collected. Consequently, solely training policies with imitation learning is
insufficient and lacks robustness over variations in the initial state conditions of the robot
and the environment [23].

Some work [26]–[28] resort to directly learning in-hand dexterous manipulation policies
with reinforcement learning algorithms in the real world. This benefits from training the
policies directly with real-world sensory inputs and dynamics. However, such approaches need
to overcome the challenges of resetting the environments between trials [29], measuring task
rewards, and collecting data in the real world, which is slow. One way to bypass these issues
is to leverage simulation [15], [16], [18], [19] for training policies that are transferred to reality
(i.e., sim-to-real). Although policy learning in simulation leverages the simulation engine as
a model to generate data, the resulting policy after training is model-free. Consequently,
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during inference time, these policies can run in real-time efficiently without dealing with
complex dynamics models, which is important for dynamic and dexterous manipulation.

The use of simulation also poses challenges. RL algorithms are typically not data-efficient
and require large compute resources. Collecting data in simulation can also be very expensive
if the data collection speed is not fast. For example, [15] used 6144 CPU cores and 8 GPUs
to train a single object in-hand reorientation policy in simulation. This can make using
simulation to train complex robot skills very costly. Furthermore, a substantial sim-to-real
gap exists since the simulation model only approximates the real-world dynamics model.

Over the last few years, there has been a significant advancement in GPU-based simu-
lation [30]. Robots can now perform massive parallel exploration in simulation on GPUs,
enabling the collection of at least 1000 times more data on a single workstation compared
to other CPU-based physics simulations [30]. For example, it only takes an hour to train a
Shadow hand to reorient a cube in 3D space in simulation on a commodity GPU [30].

To further lower the time taken to train policies in simulation, it is necessary to improve
the data efficiency of RL. Learning a sensorimotor policy with RL is typically data inefficient
because the policy needs to simultaneously learn which features to extract from sensory
observations, such as vision, and infer the high-rewarding actions. The problem can be made
easier if one of two factors were known: sufficient state information or apriori knowledge of
high-rewarding actions. Learning a policy via RL from sufficient state information would be
much easier than direct learning from sensory observations. Similarly, apriori knowledge of
high-rewarding actions would reduce the data requirements of learning from visual observations.
Leveraging this intuition, prior works [31], [32] have developed the teacher-student learning
framework. The main idea of teacher-student learning is that privileged information, which is
information that is readily available in simulations but not in the real world, such as the full
object state, can be leveraged to speed up policy learning and improve policy performance.
Such a policy cannot be used for real-world deployment as privileged state information is
only available in simulation. Therefore, a second real-world deployable policy (student) that
operates from sensory observations that can be easily obtained in the real world (e.g., camera
images) is trained to mimic the expert policy we trained (teacher). This is typically done
using imitation learning. Since it’s a supervised learning process, such distillation from the
teacher to the student policy is time efficient. Such a framework has been shown to speed
up the overall policy learning for many different applications, including self-driving [32],
quadruped locomotion [31], [33]. We also found that it also helps improve the policy learning
speed in dexterous manipulation problems [19], [34], [35]. Moreover, a student policy that
mimics the teacher policy trained with privileged state information can achieve higher task
performance than one directly trained solely on the sensory information available in the
real-world environment [34].

Despite being trained via supervised learning, we found that learning vision-based student
policies in simulation for challenging tasks such as dynamic in-hand object reorientation can
consume much time. For example, as shown in Chapter 2, the naive imitation learning for
training a student policy takes about 20 days to learn how to reorient hundreds of objects.
A close analysis reveals that a substantial training time is consumed by image rendering in
simulation. In Chapter 2, we mitigate this issue using a simple idea: we can leverage the state
information and the CAD models of the rigid bodies in simulation to generate a synthetic
point cloud for pre-training the vision-based policy. Such synthetic point cloud generation

23



does not involve any rendering and, hence, is very fast. While there is a difference between
the synthetic point cloud and the rendered point cloud, training with the synthetic point
cloud provides a good initial policy. We only need to finetune the policy with the rendered
point cloud. The two-stage student policy training reduces the demand for rendering and,
consequently, the training time. For the task considered in Chapter 2, our pipeline makes
training five times faster.

A substantial sim-to-real gap typically exists when transferring the learned policy from
simulation to the real world, making policy transfer fail. Two main sources contributing to
the difference in performance between simulation and reality (i.e., the sim-to-real gap) are
differences in the dynamics and perception. The dynamics gap arises from differences in
robot and object dynamics, approximations in the simulator’s contact model, and a lack of
knowledge of real-world dynamic parameters such as friction, etc. To bridge this gap, we
first performed system identification on the robot dynamics to make the simulated robot
behave more similarly to the real robot, and then we used domain randomization to improve
the policy’s robustness against unmodeled factors, such as object friction. To perform the
system identification on the robot dynamics, we employed a zeroth-order search to find the
best simulation parameters for the simulated joints that yield the closest motor response to
the real motors. This is feasible in massively parallel simulation, as we can search across
tens of thousands of environments in parallel. Notably, only robot dynamics parameters are
identified, not the object’s. This is because we want the policy to work on different objects
in the real world, and we cannot perform dynamics identification on different objects. To
make the policy robust to factors (such as object friction) that are not directly observed in
reality, we use domain randomization to make the policy robust to these variations [36]. The
perception gap is caused by differences in the statistics of sensor readings and/or noise. To
account for this, we add noise to the simulated point cloud.

In Chapter 2, we introduced systematic choices of identifying the robot’s dynamics,
employing domain randomization, designing the reward function, and considering hardware
factors such as the number of fingers and the fingertip material, which effectively reduced the
sim-to-real gap. This enabled us to successfully transfer dynamic in-hand object reorientation
skills from simulation to the real world. Moreover, this was achieved using only one camera,
whereas other works [15] have relied on multiple cameras.

In-hand object reorientation is a fundamental building block for dexterous manipulation
tasks such as tightening a screw with a screwdriver, opening a bottle cap, or peeling vegetables.
However, deploying the aforementioned learned in-hand reorientation policies directly to
these downstream tasks will likely fail due to additional objectives and constraints required
for successful completion. Downstream tasks impose constraints that are absent during the
training of object reorientation by itself. For instance, when using a screwdriver, the robot
must rotate it along a specific axis and apply sufficient force to drive the screw — constraints
not present in normal training. In Chapter 3, we studied peeling vegetables with robot hands
as an exemplary case study. Here, the fingers must rotate the vegetable along a particular
axis, ensure they do not occlude the top surface after rotation so the vegetable can be peeled,
and maintain a sufficiently large holding force to withstand lateral peeling forces. Integrating
such task-specific constraints into learned policies poses numerous challenges addressed in this
thesis. For the vegetable peeling case, we propose incorporating a demonstration pose from a
keyframe into the reward function to encourage the policy to control the fingers properly and
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avoid covering the top surface after reorientation. This keyframe pose ensures the fingers
strive to stay close to the desired configuration. Obtaining it is straightforward: manually
move the fingers to the target pose and record the robot’s state.

As mentioned earlier, the teacher policy is typically trained with reinforcement learning.
Chapter 4 presents a method for speeding up RL policy learning in massively parallel
simulation. In a massively parallel simulation setup, one common choice for training a policy
is on-policy RL algorithms such as PPO [37]. Part of the reason is that it is easy to scale PPO
to tens of thousands of environments on a single workstation. However, on-policy methods
tend to have worse data efficiency than off-policy methods [38]. Many of the existing off-policy
algorithm implementations do not scale well with a larger number of environments and have
poor wall-clock time efficiency. If we can scale off-policy methods to tens of thousands of
environments on a single workstation, we can potentially get a much more time-efficient
learning algorithm. Chapter 4 proposes a scalable framework that adapts off-policy algorithms
to leverage many parallel environments for data collection and improves the time efficiency
of off-policy methods. We experimentally show that such techniques can substantially boost
RL policy’s learning speed on commonly used RL benchmark tasks.

While the teacher-student learning framework enables rapid policy learning, sensor
observations can substantially impact policy performance. In certain dexterous manipulation
tasks, relying solely on vision can be sub-optimal. The cameras may become occluded during
in-hand manipulation, providing no sensory input and significantly challenging the learning
task. In the task demonstrated in Chapter 2, some failure cases occurred when the object
slipped from the robot’s grasp. We hypothesize that this issue might arise due to the absence
of appropriate tactile sensing capabilities to detect object slipping. There are also scenarios
where robots need to find objects in the dark (e.g., fetching objects from a bag) where vision
sensors are ineffective. To address such limitations of visual manipulation, incorporating
additional sensory modalities is beneficial. For example, equipping dexterous hands with
tactile sensors can be invaluable when visual information is unavailable. Chapter 5 explores
using an omnidirectional GelSight sensor with dexterous hands for localizing, identifying,
and grasping target objects in the dark using tactile sensing alone. Imagine a common daily
task: retrieving a mouse from a backpack and properly reorienting it to place on a table.
We propose a framework enabling robots to explore and fetch the target object using touch
sensors analogous to this real-world scenario. The key idea is that the robot hand can collect
object shape information by tapping along the contours, gathering contour data. This data
can then train a tactile sensory data representation for object identification.

This thesis advances in-hand dexterous manipulation research through machine-learning
techniques. The main contributions are as follows:

1. We developed the first real-world system capable of dynamically reorienting objects
with complex and previously unseen geometries in the air by any desired amount in
real-time, using only a single depth camera.

2. We proposed a novel two-stage teacher-student policy learning framework to learn
policies with superior performance and accelerate vision-based student policy learning.
Furthermore, we scaled up off-policy methods for massively parallel simulation on a
single workstation, significantly enhancing the overall time efficiency of policy learning.

25



3. We propose a set of systematic choices of identifying the robot’s dynamics, employing
domain randomization, designing the reward function, and considering hardware factors
such as the number of fingers and the fingertip material, which effectively reduced the
sim-to-real gap in dynamic dexterous manipulation tasks.

4. We studied and demonstrated how dexterous manipulation skills should be trained
while incorporating task-specific constraints to effectively solve downstream tasks such
as peeling vegetables.
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Chapter 2

Visual Dexterity

2.1 Overview

The human hand’s dexterity is vital to a wide range of daily tasks such as re-arranging
objects, loading dishes in a dishwasher, fastening bolts, cutting vegetables, and other forms
of tool use both inside and outside households. Despite a long-standing interest in creating
similarly capable robotic systems, current robots are far behind in their versatility, dexterity,
and robustness. In-hand object reorientation, illustrated in Figure 1, is a specific dexterous
manipulation problem where the goal is to manipulate a hand-held object from an arbitrary
initial orientation to an arbitrary target orientation [4], [5], [7], [18], [39]–[41]. Object
reorientation occupies a special place in manipulation because it is a pre-cursor to flexible
tool use. After picking a tool, the robot must orient the tool in an appropriate configuration
to use it. For example, a screwdriver can only be used if its head is aligned with the top of
the screw. Object reorientation is, therefore, not only a litmus test for dexterity but also an
enabler for many downstream manipulation tasks.

A reorientation system ready for the real world should satisfy multiple criteria: it should
be able to reorient objects into any orientation, generalize to new objects, and operate in
real-time using data from commodity sensors. Some seemingly benign setup choices can make
the system impractical for real-world deployment. For instance, consider the choice of placing
multiple cameras around the workspace to reduce occlusion in viewing the object being
manipulated [15], [16]. For a mobile manipulator, such camera placements are impractical.
Similarly, performing reorientation under the assumption that the hand is below the object
(upwards facing hand configuration) [12], [15], [16] instead of the hand holding the object from
the top (downwards facing hand configuration) is much easier. With a downward-facing hand,
the hand must manipulate the object while simultaneously counteracting gravity. Small errors
in finger motion can result in the object falling down. The upward-facing hand assumption
makes control easier, but it limits the downstream use of the reorientation skill in many
tool-use applications.

Even without real-world setup constraints, object reorientation is challenging because
it requires coordinated movement between multiple fingers resulting in a high-dimensional
control space. The robot must control the amount of applied force, when to apply it, and
where the fingers should make and break contact with the object. The combination of
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continuous and discrete decisions leads to a challenging continuous-discrete optimization
problem that is often computationally intractable. For computational feasibility, a majority of
prior works constrain manipulation to simple convex shapes such as polygons or cylinders [6],
[11], [15], [17], [28], [41]–[49]. Other simplifying assumptions include designing specific
movement patterns of fingers [43], [50], assuming fingers never make and break contact
with the object [6], [51], hand being in an upward-facing configuration [5], [12], [15] or the
manipulation being quasi-static [50], [52]. Such assumptions restrict the applicability of
reorientation to a limited set of objects, scenarios, or orientations (for example, along only a
single axis).

Complementary to the control problem is the issue of measuring the state information
the controller requires, such as the object’s pose, surface friction, whether the finger is in
contact with the object, etc. Touch sensors provide local contact information but are not
widely available as a plug-and-play module. The difficulty in using visual sensing is that
fingers occlude the object during reorientation. Recent works employed RGBD (RGB and
depth) cameras to estimate object pose but require a separate pose estimator to be trained
per object, which limits their generalization to new object shapes [15], [16], [50], [53].

Due to challenges in perception and control, no prior work has demonstrated a real-world
ready reorientation system. Although controlling directly from perception is hard, given the
full low-dimensional representation of relevant state information such as the object’s position,
velocity, pose, and manipulator’s proprioceptive state, it is possible to build a controller using
deep reinforcement learning (RL) that successfully reorients diverse objects in simulation [18].
RL effectively leverages large amounts of interaction data to find an approximate solution to
the computationally challenging optimization problem of solving for reorientation. However,
as a result of requiring large amounts of data and full state information, today, such RL
controllers can only be trained in simulation. This leaves at least two open questions: how to
train controllers with sensors available in the real world such as visual inputs and whether
controllers trained in simulation transfer to the real world (sim-to-real transfer problem).

The difficulty in training RL controllers from visual inputs stems from the learner’s
need to simultaneously solve the problem of inferring the relevant state information (feature
learning) and determining the optimal actions. If the optimal actions were known in advance,
it would be simpler to train a model that predicts these actions from visual inputs (supervised
learning). Such a two-stage teacher-student training paradigm, where first a control policy
is trained via RL with full state information (teacher) and then a second student policy
trained via supervised learning to mimic the teacher has been successfully used for several
applications [18], [32], [54]–[56]. We found the major roadblock in learning a visual policy
that works across diverse objects is the slow speed of rendering in simulation which resulted
in training times of over 20 days with our compute resources. Such slow training makes
experimentation infeasible. We devised a two-stage approach for training the vision policy
that first uses a synthetic point cloud without the need for rendering and is then finetuned
with rendered point cloud to reduce the sim-to-real gap. Our pipeline makes training 5×
times faster. The second consideration was the use of a sparse convolution neural network
to represent the policy to process point clouds at the speed required for real-time feedback
control (12Hz in our case). By directly predicting actions from point clouds, our approach
bypasses the problem of consistently defining pose/keypoints across different objects, allowing
for generalization to new shapes.
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The next challenge is in overcoming the sim-to-real gap. In dynamic in-hand object
reorientation, both the robot and the object move quickly. Achieving precise control in a
system with fast-changing dynamics is challenging. It becomes even more challenging when
using a downward-facing hand as control failures are irreversible. Therefore, dynamic in-hand
object reorientation poses a substantial sim-to-real transfer challenge. Some reasons for the
sim-to-real gap are differences in motor/object dynamics, perception noise, and modeling
approximations made by the simulator. For instance, contact models in fast simulators
tend to be a crude approximation of reality, especially for non-convex objects [57]. Whether
sim-to-real transfer of reorientation controller is even possible for these complex object shapes
remained unclear.

The systematic choices of identifying the manipulator dynamics (details in Method section),
domain randomization [36], the design of reward function, and the hardware considerations,
including the number of fingers and the fingertip material, reduced the sim-to-real gap. We
conducted experiments in the challenging downward-facing hand configuration. We tested
the controller’s ability to make use of an external support surface for reorientation (extrinsic
dexterity [3]) and the harder condition when the object is in the air without any supporting
surface. The results show progress towards developing a real-time controller capable of
dynamically reorienting new objects with complex shapes and diverse materials by any
amount in the full space of rotations (SO(3), special orthogonal group in three dimensions)
using inputs from just a single commodity depth camera and joint encoders. While there is
substantial room for improvement, especially in achieving precise reorientation, our results
provide evidence that sim-to-real transfer is possible for challenging tasks involving dynamic
and contact-rich manipulation in less-structured settings than previously demonstrated.

Finally, many prior efforts used custom or expensive manipulators (such as the Shadow
Hand [12], [15], [16] costing over $100, 000) and often relied on sophisticated sensing equipments
such as a motion capture system. Such a hardware stack is hard to replicate due to its
cost and complexity. In contrast, our hardware setup costs less than $5, 000 and uses only
open-source components, making it easier to replicate. Furthermore, our platform is not
specific to object reorientation and can be used for other dexterous manipulation tasks. Due
to the low barrier to entry, and the evidence that such a system can tackle a challenging
manipulation task, our platform can democratize research in dexterous manipulation.

2.2 Results

We trained a single controller to reorient 150 objects from an arbitrary initial to a target
configuration in simulation. The learned controllers are deployed in the real world on the
open-source three-fingered D’Claw manipulator [58] and a modified four-fingered version
with nine and twelve degrees of freedom (DoFs), respectively. The robot’s observation is a
depth image captured from a single Intel RealSense camera and the proprioceptive state of
the fingers. The goal is provided as the point cloud of the object in a target configuration
in the SO(3) space. The initial configuration of the object is a random transformation in
SE(3)(special Euclidean group in three dimensions) space within the range of the robot’s
fingers – either the object is set on a table or handed over by a human to the robot.

We experimented with the hand in the downward-facing configuration in two settings:
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Figure 2.1: Illustration of the robot system. (A): the front and side views of our
real-world setup. The controller is a neural network that uses depth recordings from a
single camera along with the joint positions of the manipulator to predict the change in
joint positions. (B): Visualization of the same controller reorienting three different objects.
The rightmost column shows the target orientation. The first two rows are instances of a
four-fingered hand reorienting objects in the air. The last row shows reorientation with the
help of a supporting surface (extrinsic dexterity).

with and without a supporting table. Our system runs in real-time at a control frequency of
12 Hz using a commodity workstation. Figure 1 shows the intermediate steps of manipulating
three objects to target orientations depicted in the rightmost column. The proposed controller
reorients a diverse set of new objects with complex geometries not used for training. The main
text movie provides a short summary of our results with audio. Movie S1 shows our system
reorienting many objects and provides a more detailed summary of our major findings. Movie
S2 visualizes the setting where the robot is tasked with a sequence of target orientations. In
such a scenario, it has to stop when it reaches the current target orientation and then restart
to achieve the next target.

For quantitative evaluation, we use seven objects from the training dataset (B), which we
refer to as in-distribution, and five objects from the held-out test dataset (S), which we refer
to as out-of-distribution (OOD). Objects are shown in Figure 2A. We test each object 20
times with random initial and goal orientation in each testing condition. We 3D print these

30



objects to ensure the shape of objects in simulation and the real world is identical, which
is helpful in evaluating the extent of sim-to-real transfer. While the shape of these seven
objects is included in the training set, the surface properties such as friction of the real-world
objects, may not correspond to any object used for training in simulation. Evaluation on five
OOD objects tests generalization to shapes. To further showcase generalization to shapes
and different material properties, we also present results on some rigid objects from daily life.
The orientation errors are measured using an OptiTrack motion capture system that tracks
object pose. We define error as the distance between the goal and the object’s orientation
when the controller predicts it has reached the goal and stops. The motion capture is only
used for evaluation and is not required by our controller otherwise.

2.2.1 Extrinsic dexterity: object reorientation with a supporting
surface

We first report results on the easier problem of reorienting objects when the table is present
below the hand to support the object. Using an external surface to aid reorientation has
been referred to as extrinsic dexterity [3] and is necessary in many real-world use cases.
Visualization of the proposed controller reorienting a diverse set of objects is provided in
Figure 3. To demonstrate the versatility of our system, we present results of the robot
manipulating objects of different shapes, materials, surfaces, fingertip materials, and varying
numbers of fingers.

Reorientation using a three-fingered manipulator with rigid and soft fingertips

With table support, we found three fingers to suffice for the reorientation task. The error
distribution for different objects, when tested on a table surface covered with a white cloth
(material M1 in Figure 2E), is shown in Figure 2B using a violin plot [59]. Although the
overall error distribution is more informative, for ease of comparison, in Table 1, following
the success threshold used in previous work [15], we report summary statistics of success rate
measured as the percentage of tests with error within 0.4 or 0.8 radians. The seven train
objects can be reoriented within an error of 0.4 radians 81% of the time. On the five OOD
test objects, the success rate is lower at 45%. As expected, the performance is better with a
relaxed error threshold of 0.8 radians and worse at stricter thresholds.

Qualitatively observing the robot behavior revealed that some causes of failure were the
object overshooting the target orientation or the finger slipping across the object, especially
for OOD objects. One explanation is that rigid hemispherical fingertips contact the object in
a very small area (close to making a point contact), which makes small errors in the action
commands more pronounced. Further, we found that the fingertip material had low friction
resulting in slips which made manipulation harder. To mitigate these issues, we designed and
fabricated soft fingertips that cover the rigid 3D-printed skeleton with a soft elastomer (see
Figure S2c in the supplementary material). Soft fingertips provide higher friction and deform
when contact happens (compliance), increasing the contact area between the finger and the
object. The error distribution in Figure 2C shows using soft fingers doesn’t affect performance
on train objects but improves generalization to OOD objects. Results in Table 1 confirm the
findings – success rate on OOD objects increases from 45% to 55% when switching from rigid
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Figure 2.2: Experimental results of reorientation. (A): twelve objects with their IDs.
The first seven objects are from the training dataset B, and the last five are from the testing
dataset S. (B), (C) show the real-world error distribution when using rigid and soft fingertips,
respectively, on material M1. (D) shows the error distribution in simulation for each object
as a violin plot [59]. The violet rectangle shows the errors within [25%, 75%] percentile and
the horizontal bar in the rectangle depicts the median error. Train objects can mostly be
reoriented within an error of 0.4 radians, with similar performance for rigid and soft fingertips.
The error on test objects is higher, and soft fingertips exhibit better generalization. (E): five
table materials. (F) and (G) show the error distribution on different materials for object #5
and #10, respectively.

to soft fingertips. Qualitatively, we noticed that soft fingertips behave less aggressively than
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Figure 2.3: Different testing scenarios. We test our controller on objects with diverse
shapes and reorientation conditions such as using different supporting surfaces such as a
tablecloth, an uneven door mat, a slippery acrylic sheet, and a perforated bath mat. We also
evaluate performance using fingertips with different softness: rigid 3D-printed (row (A)), and
soft elastomer fingertips (rows (B) to (G)). Row (A) to (E) use a three-fingered robot hand.
And row (F) to (G) use a four-fingered robot hand. Our policy can reorient real household
objects (rows (E,G)) and can operate without the need for a supporting surface (in the air)
as shown in row (G).

rigid fingertips resulting in smoother object motion. We, therefore, use soft fingertips in the
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Table 2.1: Statistics of the orientation error when the hand reorients objects on
a table. CI stands for bias-corrected and accelerated (BCa) bootstrap confidence interval.
Train stands for testing on the seven objects (Figure 2A) from the training dataset B. Test
stands for testing on the five objects from the testing dataset S.

with rigid fingertips
(real)

with soft fingertips
(real) in simulation

Train Test Train Test Train Test
≤ 0.4 radians (22.9◦) 81% 45% 79% 55% 96% 85%

95% CI [73%, 90%] [32%, 58%] [71%, 86%] [44%, 62%] [94%, 97%] [82%, 88%]
≤ 0.8 radians (45.8◦) 95% 75% 98% 86% 98% 87%

95% CI [88%, 98%] [46%, 91%] [96%, 99%] [58%, 96%] [97%, 99%] [84%, 90%]
95% CI of the median

of orientation errors (radian) [0.20, 0.27] [0.29, 0.46] [0.21, 0.28] [0.33, 0.42] [0.12, 0.13] [0.15, 0.18]

rest of the experiments. It’s worth noting that although the controller was trained using a
rigid-body simulator, its performance does not degrade when applied to soft fingertips.

The reorientation error can result from imperfect training, sim-to-real gap, generalization
gap, or failures at detecting if the object is at the target orientation, which triggers the
controller to stop. In Figure 2D, we report the error distribution in simulation. Although
the trained controller is not perfect in simulation, the errors in simulation follow the same
trend as in the real world (Figure 2C) but are lower, indicating some sim-to-real gap. As
shown in Table 1, the performance gap between the simulation and the real world is smaller
with a relaxed error threshold of 0.8 radians than with a threshold of 0.4 radians, illustrating
the difficulty in precise reorientation. For some objects (#1,#12), the error distribution is
bi-modal both in simulation and the real world. The test runs with high errors largely result
from incorrect detection of when to stop. For instance, object #12 appears nearly symmetric
in the point cloud representation, which often leads to errors close to 180◦. Although it is
hard to quantitatively disentangle errors originating from incorrect action prediction and
the stopping criterion, based on our experience with the system, we hypothesize that the
latter contributes more which is supported by the analysis in Supplementary Discussion (see
Discussion on precise manipulation).

Object reorientation on different supporting materials

Changing the table surface changes the dynamics of object motion. We tested if our controller
is robust to a diverse set of materials: a rough cloth (M1), a smooth cloth (M2), a slippery
acrylic sheet (M3), a bathtub mat with perforations resulting in non-stationary object
dynamics depending on the object’s position on the mat (M4), and a door mat with uneven
texture (M5). The materials have different surface structures, roughness, and friction, leading
to different system dynamics. We evaluate with one in-distribution object (object #5) and
one out-of-distribution object (object #10). Figure 2F and Figure 2G show that our controller
performs similarly on different supporting materials, demonstrating its robustness.
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2.2.2 Towards object reorientation in air

As the controllers discussed above were trained with a supporting surface, when the supporting
surface was removed, the manipulator consistently dropped the object resulting in failures.
Prior work used a specialized training procedure of configuring the object in a good pose at
the start of each training episode and a manually designed gravity curriculum [18] to learn
in-air (without supporting surface) reorientation controllers. Consequently, it was necessary
to train separate controllers for reorientation with a supporting surface and in the air. It is
preferable to have a single controller capable of in-air reorientation and use the supporting
surface, if available, to recover from any dropping failures. We achieved this desideratum
by employing a four-fingered hand and designing a reward function that penalizes contact
between the object and the supporting surface to discourage the controller from using external
support for reorientation. When the controller is trained on a supporting surface with the
proposed reward function, in-air reorientation emerges.

Although both three and four-fingered hands can reorient objects on a supporting surface
(Figure 4A), only the four-fingered hand was capable of in-air reorientation (Figure 4B). We
hypothesize this to be the case because, with four fingers, more finger configurations can
reorient the object, making it easier for policy optimization to find one solution. Furthermore,
we hypothesize that the redundancy in the number of fingers makes the system more robust
to errors in action prediction.

SO(3) object reorientation in air

Figure 1B shows how our controller trained in simulation reorients different real-world objects
in the air. In-air reorientation can fail if the object is not accurately reoriented or if the robot
drops the object. Because in-air reorientation is more challenging, it is possible that the
controller is less accurate at reorienting objects. On evaluation with two objects, we found
the distribution of orientation error in trials where the objects are not dropped (Figure 4C) to
be similar to reorientation with the supporting surface, indicating that the controller doesn’t
lose reorientation precision in the more challenging in-air scenario. In simulation analysis, we
did not notice any notable correlation between orientation error and the distance between
the initial and target orientations (Figure S12b in the supplementary material), indicating
that the controller performs similarly in the full SO(3) space.

Our controller performs dynamic reorientation. The median time for manipulation across
objects and randomly sampled orientation distances in the full SO(3) space is less than 7s
(Figure 4D), which makes it a fast in-air reorientation controller operating in the full SO(3)
space. Figure 4D also shows that the reorientation times in the real world are longer than
in simulation, which we believe is due to real-world contact dynamics being different from
simulation.

Simulation analysis reveals that object dropping is the most notable source of errors
(Figure S12c). Dropping rates vary substantially across objects. Real-world results follow
the same trend. The dropping rate of a shape used in training, the truck (object #5), was
23%, much lower than the dropping rate of 56% for an out-of-distribution duck-shaped object
(#10). The dropping rate for the duck object shape in the simulation was around 20%
showing a sim-to-real gap. However, it remains unclear if the difference in performance can
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Figure 2.4: Benefit and performance of reorientation with a four-fingered hand.(A):
When training a controller to reorient objects with a supporting surface, the three-fingered and
four-fingered hands achieve similar learning performance. (B): However, when we incentivize
the hands to lift the object during reorientation, the four-fingered hand outperforms the three-
fingered hand substantially. (C): We tested the controller performance with a four-fingered
hand in the air. We collected 20 non-dropping testing cases for one in-distribution object and
one out-of-distribution object. The error distribution is similar to that in the case of table-top
reorientation. (D) shows the distribution of the episode time both in simulation and the real
world. (E): We show the same controller’s performance on twelve objects with a supporting
surface. (F): We tested the controller on symmetric objects with a supporting surface. The
controller behaves reasonably well even though it was never trained with symmetric objects.

be attributed to the simulator being an approximate model of the real world or whether the
object in the real world is much harder to manipulate. This is because, even though the
simulation and real-world experiments used the object with the same shape, properties such
as surface friction that are critical in reorientation can be different. If an object is curved
and has a smooth surface, which is the case with the duck, small differences in friction can
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substantially change the task difficulty. We chose to report results on the duck as it was used
in prior work [50] and is among the harder objects to reorient and thus also highlights the
limitations of our controller.

If a table is present below the hand (for example, the setup shown in the third row of
Figure 1B) and the object is dropped, we notice that our controller picks up the object
and continues reorienting – an instance of recovery from failures. It is possible that the
reward term encouraging in-air reorientation might hurt on-table reorientation. However,
the error distribution for on-table reorientation with the updated reward function (Equation
6)(Figure 4E) is similar to earlier on-table experiments. Moreover, although our controller is
trained using objects with asymmetry or reflective symmetry, which makes learning much
easier, we noticed some generalization to symmetric objects (Figure 4F, more discussion in
Supplementary Discussion). The in-air, on-table, and dropping recovery results demonstrate
that it is possible to build a single controller that works across different scenarios.

Qualitatively looking at the reorientation behavior, it might appear that the object is
not always moving toward the target orientation. One possibility is that the manipulator
randomly moves the object until it gets close to the target orientation by chance and then
stops. To rule out this possibility, we provide videos in Movie S1 showing that for the same
initial but different target orientation, the object motions are different. And for the same
initial and target orientation, object motions across trials are similar, which would not be
the case if the object was randomly being reoriented.

2.2.3 Generalization to objects in daily life

In previous experiments, we used 3D-printed objects for quantitative evaluation. However,
real-world objects have varying object dynamics due to differences in material properties,
non-uniform mass distribution, and other factors that can vary across the object surface. To
test the generalization ability of our controller on such objects, we conducted a qualitative
evaluation on a few household objects. Since we did not have the CAD (Computer Aided
Design) model of these objects to generate point clouds in target orientations, we used a
free iPad App called Scaniverse to scan the objects. Note that the scan was only required
to specify the target orientation, and the scanned object cloud was imperfect (see Figure
5), resulting in noisy goal specification. Figures 1B and 5 illustrate examples of reorienting
such objects. The results illustrate that the controller exhibits a certain degree of robustness
against noise in the goal specification and some ability to generalize to new materials and
shapes.

2.2.4 Comparison to prior works

Unfortunately, a strictly fair comparison with prior work is not possible as we make fewer
assumptions (such as no object-specific pose trackers, reorientation in full SO(3) space, and not
being quasi-static), and there are substantial differences in hardware/sensing. Nevertheless,
to contextualize our research within the existing literature, we present an approximate
comparison to the closest work that reported reorientation results on a duck-shaped object
with a downward-facing but under-actuated hand of different morphology and mechanical
properties [50]. They reported a success rate of 60% (3 out of 5 tests) for reorienting the duck
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Figure 2.5: Reorientation of real objects. Examples of reorienting real objects that were
not 3D printed using a four-fingered and a three-fingered manipulator.

quasi-statically (reorientation time of more than 70s compared to ∼ 7s for our controller) to
within 0.1 radians, but only in a subset of the SO(3) space (rotation only along two axes).
Further, they used a precise object-specific pose tracker (error < 2 degrees or 0.034 radians).
If we assume perfect stopping criteria (the agent stops reorientation if the object is within
0.1 radians of the target), then for the duck-shaped object, we achieve a success rate of 71%
when dynamically reorienting in the full SO(3) space in simulation. Due to challenges in
setting up precise stopping in the real world, we could not run these evaluations in the real
world. Even if we did, the differences in material properties between the duck used by us and
prior research [50] would make the comparison unfair. Comparing our simulation and their
real-world results is also unfair. However, the results indicate that with more assumptions,
such as the precise stopping criterion, the performance of our system improves. Improving
the precision of our system without any additional assumptions is an exciting avenue for
future research.

The differences in experimental setups with other prior works [15], [16], [49], [52] and
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concurrent work [60] are even larger. For instance, OpenAI’s work [15] reported results
on reorientation with a single object (no generalization), with a simple shape (cube), an
upward-facing hand, and an extensive sensing system consisting of three RGB cameras, a
motion capture system, and a different hand. Moreover, their success criterion was the number
of times an object passes through a target pose, and they never trained their controller to
stop the object at the target pose, which we experimentally found harder to learn. In the
broader context of manipulation, the ability to stop at the target pose is vital: If the robot
uses a tool, it must reorient it to the desired pose and hold the tool in that pose.

The focus of our work is not to increase the reorientation performance on a single object;
rather, our work expands the scope of object reorientation to operate in more general and
pragmatic settings. The result is a single controller for reorienting multiple objects, evidence
of some generalization to new objects, and dynamic reorientation in the air without a highly
specialized perception system. At the same time, there remains ample scope for improving
performance, and we hope that our conscious use of open-source hardware, commodity sensing,
computing, and fast-learning framework (Figure 6 and Figure 7) will facilitate future research
in enhancing performance and comparing results.

2.3 Discussion

Solving contact-rich tasks typically requires optimizing the location at which the robotic
manipulator contacts the object [4], [61], [62]. One would assume predicting the contact
location requires knowledge of the object’s shape. However, inputs to the teacher policy
have no information about object shape, yet it could reorient diverse and new objects. One
possibility is that the agent gathers shape information by integrating information across
the sequence of touches made by the fingers. However, the teacher policy is not recurrent,
ruling out this possibility. The surprising observation of reorientation without knowledge of
shape was made by earlier work in the context of a reorientation system in simulation [18].
However, because real-world results were not demonstrated, it remained unclear if such an
observation was an artifact of the simulator or the property of the reorientation problem.
With real-world evaluation, we have more confidence that shape information may not be as
critical to object reorientation as one might apriori think. However, this is not to suggest
that shape is not useful at all. The results show that one can go quite far without shape
information, but the performance, especially on precise manipulation and in generalization to
new shapes, can likely be improved by incorporating shape features into the teacher policy,
an exciting direction for future research.

Typically, having more fingers introduces more optimization variables, making the opti-
mization problem harder in the conventional view. However, we have some evidence to the
contrary (Figure 4B). Having more fingers can make it easier for deep reinforcement learning
to find a solution, especially in challenging manipulation scenarios such as in the air, similar
to how over-parameterized deep networks find better solutions (a conjecture). We conjecture
that over-parameterized hardware results in a larger pool of good solutions (more ways to
reorient an object with more fingers), making it easier for current optimizers in deep learning
to find a good solution.

In designing the proposed system, we either devised or made several technical choices:
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two-stage student training, representing both the camera recordings and proprioceptive
readings as a point cloud, sparse convolution neural network for real-time control, limited
range of domain randomization due to system identification, system identification using
parallel GPU simulation, use of soft material on fingertips, using a larger number of fingers
instead of the conventional wisdom of using fewer fingers. These choices, however, are not
specific to in-hand reorientation but can be applied to a broad spectrum of vision-based
manipulation tasks involving rigid bodies. We hope that the knowledge of these choices,
along with a low-cost platform, can further the goal of democratizing research in dexterous
manipulation.

Limitations and Possible Extensions Object reorientation with a downward-facing
hand has notable room for improving precision and reducing the drop rate. We hypothesize
that one possible cause for dropping objects is that the control frequency of 12Hz is not fast
enough. The robot dynamically manipulates the object, and it takes a fraction of a second
to lose control. It might be challenging to determine when the object is slipping from the
fingers in real-time using visual feedback at 12Hz. Feedback control at a higher frequency
may mitigate such failures but either requires more efficient neural network architectures or
more processing power.

Another hypothesis for object dropping is missing information regarding whether the
finger is in contact with the object, if the object is slipping, or how much force is being
applied. We conjecture that explicit knowledge of contact, contact force, and other signals
such as slip can substantially improve performance. Currently, the robot relies purely on
occluded vision observations to infer contacts. Augmenting the robot’s observation with
touch sensors is therefore an exciting direction for future investigation.

We also found that inaccurate prediction of rotational distance is another cause for
imprecise object reorientation. The prediction of rotational distance is less accurate when
the actual rotational distance is less than 0.4 radians (see Discussion on precise manipulation
in Supplementary Discussion).

We hypothesize that generalization and precision can be improved by training on a larger
object dataset, investigating RGB sensing to complement depth sensing to capture fine
geometric structures and reduce noise, and integrating visual and tactile sensing to obtain
more complete point clouds. Further, there remains a sim-to-real gap that future research
should investigate.

We used D’Claw manipulators in this work as it is open-source and low-cost. However,
many aspects of the D’Claw, such as the finger design and the number of fingers, are sub-
optimal. For instance, although we observed some robustness to the softness of fingertips,
different softness and skeleton designs can notably affect the longevity of fingertips. We
manually iterated over many soft fingertip designs, which was time-consuming. Similarly,
the fingertips have a hemispherical shape, quite different from humans and presumably not
optimal. The performance of the task can be improved by better hardware design: the
shape of fingers, the degrees of actuation on each finger, the placement of fingers, and the
choice of materials. Manually iterating over these choices is infeasible. A promising future
direction is to utilize a computational approach for automatically designing the hand for
specific tasks [63].
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In summary, we presented a real-time controller that can dynamically reorient complex
and new objects by any desired amount using a single depth camera. The system is both
simple and affordable, which aligns with the objective of making dexterous manipulation
research accessible to a wider audience.

2.4 Materials and Method

Given a random object in a random initial pose, the robot is tasked to reorient the object
to a user-provided target orientation in SO(3) space. We train a single vision-based object
reorientation controller (or policy) in simulation to reorient hundreds of objects. The controller
trained in simulation is directly deployed in the real world (zero-shot transfer). The choices
in our experimental setup have been made to support future deployment of reorientation in
service of tool use and on a mobile manipulator.

Object datasets We use two object datasets in this work: Big dataset (B) and Small
dataset (S). B contains 150 objects from internet sources. S contains 12 objects from the
ContactDB [64] dataset. These two datasets do not have overlapped shapes. More details on
the object dataset are in Supplementary Methods.

Simulation setup We use Isaac Gym [30] as the rigid body physics simulator. We train
all the policies on a table-top setup: hands face downward with a supporting table.

Success criteria During training, the success criterion for reorienting an object acts as
both a reward signal and a criterion for success to end the episode. A straightforward
success criterion is judging whether an object’s orientation is close to the target orientation
(orientation criterion). However, a controller trained using this criterion tends to cause the
object to oscillate around the target orientation. To address this issue, the success criterion
is expanded to explicitly penalize finger and object movements. For further details on how
we designed the success criteria for training, please refer to Supplementary Methods.

2.4.1 Training the visuomotor policy

We model the problem of learning the controller, π, as a finite-horizon discrete-time decision
process with horizon length T . The policy π takes as input sensory observations (ot) and
outputs action commands (at) at every time step t. Learning π using RL is data inefficient
when the observation (ot) is high-dimensional (for example, point clouds). The reason is that
the policy needs to simultaneously learn which features to extract from visual observations and
what are the high-rewarding actions. The problem would be simplified if one of these factors
were known: learning a policy via RL from sufficient state information would be much easier
than direct learning from sensory observations. Similarly, apriori knowledge of high-rewarding
actions would reduce the data requirements of learning from visual observations.

Prior work has employed this intuition to ease policy learning by decomposing the learning
process into two steps [18], [32], [54], [56]. In the first step, a teacher policy is trained in
simulation with RL using low-dimensional state space that includes privileged information.
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In the case of in-hand object reorientation, privileged information includes quantities such
as fingertip velocity, object pose, and object velocity that can be directly accessed from the
simulator but can be challenging to measure in the real world. Because the teacher policy
operates from a low-dimensional state space, it can be more efficiently trained using RL. Next,
to enable operation in the real world, one can either train a perception system to predict the
privileged information [15], [53] or train a second student policy to predict high-rewarding
teacher actions from raw sensory observations via supervised learning [18], [32], [54], [56].

An underlying assumption of the two-stage training paradigm is that a low-dimensional
state for learning a teacher policy can be identified. Because there are no tools available
to theoretically analyze if a particular choice of state space is sufficient for policy learning,
selecting the state inputs for the teacher policy is a manual process based on human intuition.
At first, object reorientation might seem to require knowledge of object shape since the
controller must reason about where to make contact. If object shape is necessary, then it will
not be possible to reduce depth observations into a low-dimensional state. However, past work
found that even without any shape information, it is possible to train RL policies to achieve
good reorientation performance on a diverse set of objects in simulation [18]. Therefore,
teacher-student training can be leveraged to simplify the learning of object reorientation.

To deploy the policy in the real world, some prior works train a perception system
to predict the object pose [15], [16]. However, object pose is only defined with respect
to a particular reference frame. Choosing a common frame of reference across different
objects is not possible. As a consequence, pose estimators cannot generalize across objects.
Therefore, we choose to train an end-to-end student policy that takes as input the raw
sensory observations and is optimized to match the actions predicted by the teacher policy
via supervised learning [25]. Because supervised learning is considerably more data efficient
than RL, such an approach solves the hard problem of learning a policy from raw sensory
observations.

The teacher-student training paradigm has been used to learn object reorientation policy
in simulation from visual and proprioceptive observations [18]. However, a separate policy
was trained per object. Secondly, it required more than a week to train the student vision
policy for a single object on an NVIDIA V100 GPU. We developed a two-stage student
training (Teacher-student2) framework (Figure 6) that substantially speeds up the vision
student policy learning. Using this framework, we were able to learn a vision policy that
operates across a diverse set of objects and generalizes to objects with different shapes and
physical parameters.

Teacher policy: reinforcement learning with privileged information

The learning of teacher policy (πE) is formulated as a reinforcement learning problem
where the robot observes the current observation (oE

t ), takes an action (at), and receives
a reward (rt) afterward. A single policy (πE) is trained across multiple objects using
proximal policy optimization (PPO) [37] to maximize the expected discounted episodic return:
πE∗

= argmaxπE E
[∑T−1

t=0 γtrt

]
. Since the observation ot at a single time step t does not

convey the full state information such as the geometric shape of an object, our setup is an
instance of Partially Observable Markov Decision Process (POMDP). However, for the sake
of simplicity and based on the finding that knowledge of object shape may not be critical
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Figure 2.6: Teacher and two-stage student training framework. First, a teacher policy
is trained using reinforcement learning with privileged state information. Then, a student
policy is trained to imitate the teacher using synthetic and complete point clouds as input.
The student policy is further fine-tuned using rendered point clouds. During deployment, the
student policy can be directly used to control real robots.

as discussed above, we chose to model the policy as a Markov Decision Process (MDP):
at = πE∗

(ot;at−1). The policy also takes as input the previous action (at−1) to encourage
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smooth control.

Observation space The inputs to the teacher policy, ot, include proprioceptive state
information, object state, and target orientation. Details are shown in Supplementary
Methods.

Action space We use position controllers to actuate the robot joints at a frequency of
12Hz. The policy outputs the relative joint position changes at ∈ R3G. Instead of directly
using at, we use the exponential moving average of actions āt = αat+(1−α)āt−1 for smooth
control, where α ∈ [0, 1] is a smoothing coefficient. In our experiments, we set α = 0.8. Given
the smoothed action āt, the target joint position at the next time step is: qtgt

t+1 = qt + āt.

Reward We first describe the reward function for the hand to reorient objects on a table.
The first term in the reward function (Equation 1) is the success criteria for the task. However,
since this only provides sparse reward supervision, the criteria by itself is insufficient for
successful learning. Therefore we add additional reward shaping [65] terms to encourage
reorientation. We use a dense reward term that encourages minimization of the distance (∆θt)
between the agent’s current and target orientation (Equation 2). We penalize the agent for
moving fingertips far away from the object (Equation 3). Without this term, fingers barely
made any contact with the object during training. We also penalize the agent for expending
energy (Equation 4) and for pushing the object too far from the robot’s hand (Equation 5) in
which case the episode is also terminated. The reward terms are mathematically expressed
as:

r1t =c11(Task successful) sparse task reward (2.1)

+c2
1

|∆θt|+ ϵθ
dense task reward (2.2)

+c3

G∑
i=1

∥∥∥pfi
t − po

t

∥∥∥2

2
keep fingertip close to the object (2.3)

+c4|q̇t|T |τt| energy reward (2.4)

+c51(∥po
t∥

2
2 > p̄) penalty for pushing the object away (2.5)

where c1, c2 > 0, and c3, c4, c5 < 0 are coefficients, 1 is an indicator function, ϵθ and p̄ are
constants, pfi

t is the fingertip position of ith finger, po
t is the object center position, τt is the

vector of the joint torques.
Using the aforementioned reward function, we were able to train reorientation policies that

used the support of the table. Next, to enable the more challenging behavior of reorienting
objects in the air, we added a penalty for the contact between the object and table (Equation
7) and a penalty for using the penultimate joint instead of the fingertip for reorientation
(Equation 8). Although the term in Equation 8 is not critical, it results in more natural-looking
behaviors. The overall reward function is:
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r2t =r1t (2.6)
+c61(object contacts with the table) (2.7)

+c7

N∑
i=1

1(pfit,z > p̄z) (2.8)

where c6, c7 < 0 are coefficients.

Student policy - imitation learning from depth observations

The student policy (πS) is trained in simulation with the purpose of being deployed in the
real world. Since the sim-to-real gap for depth data is less pronounced than RGB data, we
only use the depth images provided by the camera along with readings from joint encoders.
We represent the depth data as a point cloud in the robot’s base link frame. To enable the
neural network representing πS to model the spatial relationship between the fingers and
the object, we express the robot’s current configuration by showing the policy a point cloud
representing points sampled on the surface of the fingers. We concatenate the point cloud
obtained from the camera along with the generated point cloud of the hand. We denote this
scene point cloud as P s

t .

Goal representation Instead of providing the goal orientation as a pose which has
generalization issues discussed above, the goal is represented as the object’s point cloud in
the target orientation P g. In other words, the policy sees how the object should look in the
end (see the top left of Figure 7A).

Observation space The input to πS is the point cloud Pt = P s
t ∪P g (see Figure 7A). We

also did an ablation study on different ways to process the goal point cloud in Supplementary
Discussion S5.4. The results show that merging P s

t and P g before they are input to the
network leads to faster learning.

Architecture The critical requirement for the vision policy is to run at a high enough
frequency to enable real-time control. For fast computation, we designed a sparse convolutional
neural network to process point cloud (Pt) using the Minkowski Engine [66] (see Figure 7A).
Compared to the architecture used in [18], our convolutional network has a higher capacity
to make it possible to learn the reorientation of multiple objects. Without direct access to
object velocity, it is necessary to integrate temporal information in πS , for which we use the
gated recurrent unit [67] in the network.

Optimization The student policy πS is trained using DAGGER [25] to imitate the teacher
policy πE .
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Figure 2.7: Student policy learning. (A): Student vision policy network architecture.
(B): Sparse 3D CNN (Convolutional Neural Network) component of the policy network. (C):
Proposed two-stage student learning learns faster than single-stage student learning. The
dashed vertical line denotes the transition from the first to the second stage of student learning.
The performance dip happens due to a change in the distribution of point cloud inputs from
being unoccluded in the first stage to being occluded in the second. (D): Post-training
evaluation of teacher and student policies on the training dataset B. For each object, the
initial and target orientations are randomly sampled 50 times, resulting in 7500 samples.
The empirical cumulative distribution function (ECDF) of the orientation error is plotted.
The results show that the students are close to the teacher’s performance. (E), (F), (G):
Comparing the ECDFs of the policies being evaluated on dataset B and dataset S reveals
small generalization gap for all the policies.

Need for two-stage student learning We found training a vision policy in simulation
to be slow, consuming 20+ days on an NVIDIA V100 GPU (Figure 7C). The main reason
for slow training is that the simulator performs rendering to generate a point cloud which
consumes a substantial amount of time and GPU memory. To reduce training time, we
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generated synthetic point clouds by uniformly sampling points on the object and robot meshes
used by the simulator. The synthetic point cloud is also complete (no occlusions), which
makes training easier. The vision policy (πS

1 ) can be trained with synthetic point cloud in
less than three days, which is a 7× speedup (stage 1; see Figure 7C). However, the policy,
πS
1 , cannot be deployed in the real world because it operates on an idealized point cloud

(no occlusions). Therefore, once the student reaches high performance, we initiate stage
2, where the policy is finetuned with the rendered point cloud. Such finetuning is quick in
wall-clock time (around one day), and the resulting policy (πS

2 ) performs better than training
from scratch with rendered point clouds (see Figure 7C). It is possible to further reduce the
training time of the student policy by employing visual pre-training with passive data that
we discuss in Supplementary Discussion S5.5. An additional benefit of the two-stage student
policy training is that πS

1 is agnostic to the camera pose. Therefore a policy from a new
viewpoint (πS

2 ) can be quickly obtained by finetuning using rendered point clouds from that
camera pose. Training the vision policy from scratch is not necessary.

Stage 1: details of synthetic point cloud In stage 1, the simulation is not used for
rendering but only for physics simulation. We generate the point cloud for each link on the
manipulator and object by sampling K points on their meshes in the following way: let the
point cloud of link lj in the local coordinate frame of the link be denoted as P lj ∈ RK×3.
Given link orientation (Rlj

t ∈ R3×3) and position (plj
t ∈ R3×1) at time step t, the point

cloud can be computed in the global frame, P lj
t = P lj(R

lj
t )

T + (p
lj
t )

T . The point cloud
representation of the entire scene is the union of point clouds of all the links, the object being
manipulated, and the object in the goal orientation: P s

t =
⋃j=M

j=1 P
lj
t where M is the total

number of links (bodies) in the environment. The point cloud P s
t can be efficiently generated

using matrix multiplication.

Stage 2: details of rendered point cloud In stage 2, at each time step, we acquire depth
images from the simulator and convert them into point clouds (which we call exteroceptive
point cloud) using the camera’s intrinsic and extrinsic matrices. Note that such a point cloud
is incomplete due to occlusions. We also convert the joint angle information into poses of the
links on the robot hand via forward kinematics and then generate the complete point cloud
of the robot (which we call proprioceptive point cloud). Note that such a proprioceptive
point cloud of a robot can be easily obtained in the real world in real-time from the joint
position readings. The policy input is the union of the exteroceptive and the proprioceptive
point cloud.

2.4.2 Reducing the simulation to reality gap

There are two main sources of the gap between simulation and reality. The first one is dynamics
gap that arises from differences in the robot dynamics, the approximation in the simulator’s
contact model, and differences in object dynamics that depends on material properties such
as friction. The other source is perception gap caused by differences in statistics of sensor
readings and/or noise. One way to reduce these gaps is to train a single policy across many
different settings of the simulation parameters (domain randomization [36]). The success of
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domain randomization hinges on the hope that the real world is well approximated by one of
the many simulation parameter settings used during training. The chances of such a match
increase by randomizing parameters over a larger range. However, excessive randomization
may result in an overly conservative policy with low performance [68]. Therefore, we make
design choices that reduce the need for domain randomization and use it only when needed.

The perception gap is reduced by using only depth readings, which is more similar between
simulation and reality than RGB. To account for noisy depth sensing, we add noise to the
simulated point cloud. The dynamics gap can be reduced by identifying simulation parameters
closest to the real world. While such identification is possible for the robotic manipulator,
it is infeasible for object dynamics that vary in material and mass distribution. Therefore,
we perform system identification on the robot dynamics and use only small randomization
to account for unmodeled errors. We use a larger range of domain randomization on the
object and environment dynamics. To make the policy more robust to unmodeled real-world
physics, we apply random forces on the object during training which pressures the policy to
reorient objects while being robust to external disturbance. Lastly, to increase compliance
and friction between the object and the manipulator, we use soft fingertips. Such a choice
makes the system more tolerant of errors in control commands. Empirically we noticed that
soft fingertips make the robot less aggressive and reduce overshoot.

Identification of robot dynamics

We build the Unified Robot Description Format (URDF) model for the manipulator using its
CAD model, which provides accurate kinematics parameters, but the dynamics parameters,
such as joint damping and stiffness, must be estimated. One way of identifying dynamics
parameters is to leverage the equations of motion (or the dynamics model) and solve for the
unknown variables using a dataset of motion trajectories. The Isaac Gym simulator has a
built-in dynamics model. But because the simulator’s code is not open-source, we do not have
access to the precise dynamics model nor the gradients of dynamics parameters. We, therefore,
used a black-box approach that leverages the ability of Isaac Gym to perform massively
parallel simulations. We spawn many simulations with different dynamics parameters and
use the one that has the closest match to the real robot’s motion.

Let λi ∈ Λ denote the dynamics parameter of the ith simulated robot (Cλi), where Λ
denotes the entire set of dynamics parameter values over which search is performed. To
evaluate the similarity between the motion of Cλi and the real robot (Creal), we compute the

score: h(qCreal

A (·), qCλi

A (·)) = −
∥∥∥qCreal

A (·)− qCλi

A (·)
∥∥∥2

2
, where qC

A(·) represents the joint position
trajectories of a robot C given action commands A(·) which are detailed in Supplementary
Methods. The closer the motion of the simulated robot is to that of the real world, the
higher the score will be. We use the black-box optimization method of Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [69], an instance of evolutionary search algorithms,
to determine the optimal dynamics parameter: λ∗ = argmaxλ∈Λ h(qCreal

A (·), qCλ

A (·)). Note
that it might be impossible to find a simulated robot that exactly matches the real robot
due to the approximate parameterization of real-world dynamics in simulation and the
stochasticity in the real-world resulting from actuation/sensing noise. More details on the
identification are in Supplementary Methods.
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2.4.3 Real-world deployment

Real-world observation It includes the joint positions of each motor in the manipulator
and the depth image from a RealSense camera. Details how the joint positions and depth
image are converted into a unified point cloud input can be found in Supplementary Methods.

Stopping criteria To automatically stop the robot, we train a predictor that re-uses
features from the policy network to predict |∆θt| (see Figure 7A). The robot is stopped when
∆θpredt < θ̄ and ||at|| < ā.

More details on the stopping criteria, the real-world experimental setup, and the procedure
for quantitative evaluation are in Supplementary Methods.
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Chapter 3

Vegetable Peeling: A Case Study in
Constrained Dexterous Manipulation

3.1 Introduction

Having robots perform food preparation tasks has been of great interest in robotics. Imagine
the scenario of making mashed potatoes, where a critical step is to peel potatoes. Humans
peel potatoes by grasping the potato in one hand and using the second hand to actuate
a peeler to remove the potato’s skin. After a part of the potato is peeled, it is rotated
while being held in the hand (i.e., in-hand manipulation) and peeled again. The sequence
of rotating and peeling continues until all of the potato’s skin is removed. In this work, we
present a robotic system that can re-orient different vegetables using an Allegro hand in a way
that their skin can be peeled using another manipulator. Our setup is shown in Figure 3.1
and Figure 3.2.

In-hand rotation of vegetables is an instance of dexterous manipulation problem [7], a
family of tasks that involves continuously controlling the force on an object while it is moving
with respect to the fingertips [3], [39]. The challenges in dexterous manipulation stem from
the frequent making and breaking of contact, issues in contact modeling, high-dimensional
control space, perception challenges due to severe occlusions, etc. A body of work made
simplifying assumptions such as manipulating convex objects [4]–[7], small finger motions[49],
[50], [62], slow or quasi-static motion or manipulating a few specific objects [12], [50], [62]
to leverage trajectory optimization or planning-based methods to achieve in-hand object
re-orientation [4]–[7], [12], [49], [50], [62]. Another line of work has used reinforcement learning
for in-hand re-orientation[18], [19], [46], [70], [71] and recent works have leveraged simulation
to train policies capable of dynamically re-orienting a diverse set of new objects in real-time
and in the real world [18], [19].

There are several challenges in adapting re-orientation controllers for a downstream task
such as peeling vegetables. These challenges stem from the fact that controllers optimized for
re-orientation [15], [19], [46], [70], [71] are only optimized to continuously reorient the object
and not to satisfy numerous constraints arising from task-specific requirements. For instance,
peeling vegetables requires the hand to first stop re-orienting the object and then for the
peeler to peel the vegetable. Many prior works solve a version of the re-orientation problem
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Figure 3.1: We present a dexterous manipulation system that utilizes an Allegro hand
mounted on a Franka robot arm to reorient food items for downstream peeling. The other
Franka robot arm (the right arm in the figure) uses its gripper to grasp a peeler for peeling.
The reorientation controller for the Allegro hand is learned through reinforcement learning,
while the peeling is performed via teleoperation. In the figure, we demonstrate the process of
reorienting and peeling a melon, a sweet potato, and a squash from top to bottom row.

Figure 3.2: Robot setup for reorientation and peeling.

where the object is continuously rotated [15], [70], [72] or otherwise perform quasistatic
re-orientation [50]. Stopping and re-starting dynamic re-orientation is difficult due to the
challenge of dealing with the object’s inertia. Second, the hand needs to hold the object
firmly enough to resist forces applied by the peeler. The closest work that attempts to
hold the object at a target configuration [19] is only able to loosely hold the object which
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is insufficient for resisting forces. Third, the hand needs to reorient the vegetable along a
specific axis in place. Here, the specific axis refers to the rotational axis on the object that is
parallel to the peeling direction. Similar to how humans reorient vegetables for peeling, it
is desirable for the hand to reorient the object in place so that multiple consecutive cycles
of reorientation and peeling can be performed. If the object substantially shifts its position
during reorientation, the controller will struggle to reorient and hold the object at future
time steps. Fourth, when the vegetable is held stationary the fingers should not obstruct the
top surface of the vegetable to ensure that the peeler can peel the vegetable.

While in-hand object reorientation has been widely studied [15], [18], [19], [53], [70],
[72], no prior works can satisfy the constraints mentioned above. Yet, these constraints
become critical for downstream dexterous manipulation beyond object re-orientation. We use
vegetable peeling as a case study to investigate the challenges and solutions for building a
dexterous manipulation system that can operate under constraints. We develop a framework
where we leverage reinforcement learning in simulation to train a policy that can perform
object re-orientation under constraints. For the peeling task, we explored two approaches - a
teleoperation-based method leveraging human guidance as well as an autonomous vision-based
technique. Our contributions are as follows:

1. A framework for solving dexterous manipulation problems under the aforementioned
constraints.

2. We propose a method that can make RL policy learn to stop its motion and hold objects
firmly in hand – a critical behavior for many downstream dexterous manipulation
problems.

3. We present a step towards a robotic system capable of peeling diverse vegetables with
different shapes, masses, and material properties while holding and manipulating the
vegetables in hand.

3.2 Related work

In-hand Object Reorientation: Dexterous manipulation involves the use of high degrees-of-
freedom (DoF) manipulators for object manipulation [2]. Its requirement for high-dimensional
real-time control and its nature of frequent contact-making and breaking present grand
challenges to roboticists. Recently, there has been a growth of interest in a particular
instance of dexterous manipulation problems: in-hand object reorientation. This problem
is of particular interest as it is a necessary step in many tool-use scenarios. For example,
to use a screwdriver for tightening a screw, one has to reorient the screwdriver to align
it with the screw. We can cluster the works in in-hand object reorientation from many
aspects. For example, from the perspective of sensory information, [43] studies open-loop
cube reorientation without using any sensors, [6], [11], [12], [15], [73] use motion capture
system or special tracking markers for object reorientation, [72] uses proprioceptive sensors
such as joint encoders, [17], [46], [47], [71] use tactile sensors and [15], [19], [48], [53] utilize
vision sensors. In terms of the dynamics of the system, [49], [50], [62] achieved object
reorientation under the assumption of quasi-static motion where object moves slowly and
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its inertia effect can be ignored, while [15], [19], [42], [46], [71] focuses on dynamic object
reorientation where object is manipulated in a fast and dynamic way. To make in-hand
object manipulation useful for downstream tool use tasks, one important aspect of the skill is
the ability of stably and firmly holding the object in end of the policy rollout. While many
prior works on dynamic manipulation such as [12], [15], [46], [71], [72] only consider endlessly
rotating the object in hand and cannot stop the object stably when the object reaches the
goal orientation, some works such as [19], [42] try to develop controllers that can reorient
objects in hand and also hold the object in the goal orientation. Our work studies dynamic
in-hand object manipulation with the capability of stopping objects stably in hand.

Reinforcement Learning for Contact-rich Tasks: Contact-rich tasks are particularly
challenging due to the difficulty in modeling the system dynamics, especially when the
tasks are performed in the wild, outside of a constrained and controlled setting. Examples
of such tasks include quadruped robots hiking in mountains and robot hands reorienting
various everyday objects. There have been many works using reinforcement learning to learn
controllers for solving contact-rich tasks [15], [16], [68], [70], [74]–[76]. In the real world,
robots typically only have access to a limited amount of state information of the system due
to the lack of sensors or the challenges in setting up the sensors. Using reinforcement learning
to learn controllers from scratch with limited sensory information tends to be data-inefficient.
One way to speed up policy learning is to provide asymmetric information to the policy and
value function, where the value function observes much more privileged information [15], [16],
[70], [77]. Another method is to decouple policy learning into two stages: a reinforcement
learning stage where agents (teacher) observe privileged fully-observable state information,
and an imitation learning stage where the policy with limited sensory observation input
(student) learns to imitate the policy with fully-observable state information. This approach
has been successfully applied to various contact-rich problems such as locomotion [33], [54]–
[56], [75] and dexterous manipulation [18], [19], [72]. Our pipeline is built upon the idea of
teacher-student policy learning and has made several key improvements, which we will detail
below.

3.3 Method

Peeling requires a reorientation controller that can stop its motion and firmly hold objects
after reorientation. The first step in stopping is to decide when re-orientation should be
stopped. One possibility is to have a perception system predict the desired rotation angle
after which the next round of peeling would be performed. To accomplish the goal, the robot
would need to track changes in object pose and compare it with the target rotation angle.
However, accurately estimating object pose is challenging, especially when generalization to
new objects is necessary [15], [70], [76], [78].

One of our insights is that instead of training a predictor for desired rotation angle and
object pose estimation, it can be easier and sufficient to train a binary vision classifier that
detects in real-time when the peeled part has been turned over. With such a classifier, the
reorientation controller’s job is simply to keep reorienting the object until it receives a stop
signal. In this formulation, unlike prior works [18], [19], the reorientation controller is not
conditioned on target orientation but rather on a stop signal. Formally, the policy takes as
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Figure 3.3: Object dataset used in this work. We collected meshes of carrot, sweet potato,
potato, squash, pumpkin, etc.

input a binary variable Istopt ∈ {0, 1} representing the stop signal. If Istopt = 1, the policy
should stop immediately and ensure the fingers stably and firmly hold the object. Otherwise,
the policy should continue reorienting the object. Note that in this work, we focus on learning
the reorientation controller, leaving integration of a vision classifier to future work.

The next question is how to train such a policy. Using RL to train the policy from scratch
can be challenging and requires extensive reward shaping because Istopt = 1 is a rare event in
an episode, and when the Istopt is flipped to one from zero, the policy needs to quickly stop
the motion posing a hard-exploration challenge.

Prior works [18], [19] show success in training a goal-conditioned object reorientation
controller. Can we leverage a goal-conditioned reorientation controller to train a controller
that reacts to a stop signal? It turns out we can formulate this using the teacher-student
learning framework [18], [19], [32], [54], [56]. Specifically, we can use RL to train a goal-
conditioned controller that reorients an object by random goal angles along its rotational axis.
This acts as the teacher. Next, we can use imitation learning (specifically DAGGER [25]) to
train a controller conditioned on the stop signal to imitate the teacher. The stop signal can
be generated during training by checking if the orientation distance to the goal is below a
threshold. Using imitation learning bypasses the hard exploration challenge.

3.3.1 Training Setup

Robot We use an Allegro Hand that is controlled via a PD controller at 300Hz. Our control
policy sets joint position commands and runs at a lower frequency at 12Hz.

Simulation We trained the policies in Isaac Gym simulation [30]. To set dynamics-related
robot parameters in the simulation, we followed a prior approach [19], which uses a gradient-
free search method to find the dynamics parameters for each joint (joint friction, damping,
maximum joint velocity, and maximum effort) in simulation that generates the motor response
that is closest to the real motors.

Object Dataset We collected 23 object meshes (potatoes, squash, cucumber, etc.) from
Objaverse [79]. 10 variants for each mesh were created by varying the size. The mass of the
object was randomly sampled in the range of [80, 960]g. Note that we aim to reorient much
heavier objects than prior works [15], [18], [19], [70].
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3.3.2 Teacher Policy Learning: Reorient and Stop

We train the teacher policy to re-orient the object along a pre-defined axis and stop (see
Figure 3.4a). The teacher is formulated as a goal-conditioned policy aE

t = πE(oE
t ,at−1, g),

where E represents variables for the teacher policy, ot is the observation, at is the action
command, g is the goal representing the amount by which the object needs to be re-oriented.
g is randomly and uniformly sampled from [1.57, 4.0]rad during training.

While the teacher policy’s formulation is similar to that in prior works [18], [19], we
propose (i) a much simpler reward function, (ii) new success criteria that effectively encourages
the policy to stop the object and firmly hold it, and (iii) an interpolation scheme that enables
smoother policy actions in the real world.

Observation and Action Space

oE
t includes joint positions and velocities, the fingertip poses and velocities, object pose and

velocity, the distance between the current object orientation and the goal orientation, and
whether any of the fingertips touch the object. at is the delta joint position command. The
neural network policy runs at 12Hz.

Reward Function

A common approach to designing the reward function is to create multiple terms that make
it easier for the manipulator to discover the desired behavior (i.e., reward shaping). For
instance, to facilitate exploration, we can devise a reward term that reduces the distance
between the fingertips and the center of mass (CoM) of the object. To discourage excessive
translational motion of the object during rotation, we can create a reward term that penalizes
the displacement of the CoM. To discourage the object from rotating with undesired motion
along other axes, we can add another reward term that reduces the distance between the tip
of the thumb and the centerline of the palm. This ensures that the thumb applies force close
to the object’s CoM, rather than to one side of the object. Additionally, we need to design a
reward term that discourages the fingers from covering the top surface of the object, which
affects peeling. Hence, designing multiple reward terms is necessary to regulate the behavior
under specific constraints. Balancing these terms requires extensive hyper-parameter tuning.

For the task of in-hand re-orientation, we found that the reward function can be substan-
tially simplified by using a task demonstration. However, unlike prior works that rely on
trajectory-level demonstrations [80], [81], our method only requires a one-step demonstration
(a keyframe), which is much easier to collect. Specifically, we manually move the real Allegro
hand to a good pose where the constraints mentioned above are satisfied (e.g., the fingers
do not cover the food item), and the fingers touch the object and are ready to reorient it.
We record the joint positions as qdemo. During training in simulation, we encourage the joint
positions at any time step to be close to qdemo.

Overall, our reward function is as follows:

rt =c11(Task successful) + c2
1

|∆θt|+ ϵθ
(3.1)

+c3
∥∥qt − qdemo

∥∥2

2
(3.2)
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where c1 = 800, c2 = 1.5, c3 = −0.6 are coefficients. 1(Task successful) is 1 when the task
is successfully completed, and 0 otherwise. ∆θt is the distance between the object’s current
and goal orientation. The first two terms are task rewards for object reorientation. The last
term is to regulate hand behavior.

Success Criteria

In a goal-conditioned object reorientation, a common way to claim the task successful is by
checking if the distance between the object’s current and the goal orientation is smaller than
a threshold value (orientation criterion Cori = ∆θ < θ̄) [15], [70]. Another criterion is that all
the fingertips should make contact with the object (contact criterion Ccontact), a pre-requisite
for firmly holding the object after reorientation. However, only checking these two criteria is
insufficient to ensure the policy learns to stop the motion and hold the object firmly around
the goal orientation, as discussed in [19]. The policy can oscillate around the goal state due
to observation and control delay and noise.

To further encourage the policy to stop robot motion when the goal is reached and firmly
hold the object, we propose adding time constraints to the success criteria: both Cori and
Ccontact should be continuously satisfied for T̄ succ time steps. Adding this criterion makes
the MDP partially observable since the policy’s observation lacks the knowledge of time.
Therefore, to facilitate policy learning, we augment the observation space with a scalar
indicator variable Isucc = tsucc/T̄ succ ∈ [0, 1], where tsucc is the number of consecutive steps
satisfying Cori and Ccontact. The observation space becomes oE := oE ⊕ Isucc. In this work,
θ̄ = 0.2rad, T̄ succ = 8.

Reset Constraints

As mentioned earlier, a reorientation policy for peeling needs to meet several constraints,
such as in-place and fixed-axis reorientation (Figure 3.4b). While one could design individual
reward terms to satisfy these constraints, tuning these reward terms to achieve the desired
result can be difficult. Instead, it is much simpler to formulate the constraints as reset
conditions. In other words, if the constraints are violated, the episode is reset immediately.
This incentivizes the policy to explore only in space where the constraints are satisfied.
Similar techniques were also used in some prior works [18], [19], [71].

Domain randomization and Perturbation during training

During training, we apply domain randomization on the joint stiffness and damping, friction,
and restitution. In addition, we randomly apply a perturbation force on the object’s CoM.
We randomly sample the direction of the perturbation force and set its magnitude to 10mo,
where mo is the object mass.

Interpolation and Reference for Action Commands

Our neural network controller operates at a relatively low control frequency of 12Hz. To
track the joint position command, a low-level PD controller runs at 300Hz. To ensure
smoother joint motion, we interpolate the low-frequency joint position commands. While
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MLP Transformer

...
(c)

Figure 3.4: (a) shows an example of the rotational axis of a melon. (b) shows an example
where the object’s orientation (the blue line) has a large deviation from the desired rotational
axis (the green line). We reset the episode when this occurs. (c) shows the policy Architecture
for the teacher and the student. In this figure, we use ot to represent all the policy input at
each time step.

more complex interpolation schemes such as spline interpolation are possible, we found that
simple linear interpolation is sufficient to generate smooth higher-frequency (60Hz) joint
position commands. To do this, we linearly interpolate between the current reference joint
positions (qref

t ) and the desired joint positions (qcmd
t+1 ) for the next policy control time step.

We then send the interpolated joint position commands to the PD controllers. Mathematically,
qcmd,n
t+1 = qref

t + n
N
at, where n ∈ [1, N ] (N = 5) and qcmd,n

t+1 represents the nth interpolated
joint position command for the next policy control time step.

When the action space is chosen as the change in joint position, the target joint position
for the PD controller is calculated as follows: qcmd

t+1 = qt + at [15], [18], [19]. Here, qt is the
current joint position, and at = ∆qt is the desired change in joint positions, as described
earlier. In this case, the reference is chosen to be the current joint positions, i.e., qref

t = qt.
However, we found that this scheme results in significant jerky motion when combined with
action interpolation. To illustrate this, consider a simplified example of one joint, as shown
in Figure 3.5a. Since we are using a PD controller only to control the joint position, there is
usually an error in tracking the joint position command, as shown by the difference between
qcmd
t and qt. If we set qreft = qt, when we interpolate between qreft and qcmd

t+1 , it tends to cause
a sudden change in the PD controller’s set point, as shown in Figure 3.5a. A sudden change
in the set point can cause a sudden change in the joint torque command and hence cause jerky
motion. To resolve this issue, we use the previous joint position command as the reference,
as shown in Figure 3.5b. In other words, qref

t = qcmd
t , and qcmd

t+1 = qcmd
t + at.

3.3.3 Student Policy Learning: Imitate and Stop

After learning a goal-conditional teacher policy aE
t = πE(oE

t ,at−1, g), the next question is how
to train a real-world deployable student policy that can rotate the object in hand and hold
it stably after reorientation. We propose conditioning the student policy on a stop signal
Istopt ∈ {0, 1}: aS

t = πS(oS
t ,at−1, I

stop
t ). In other words, the student policy should continue
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Time
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(a)
Time

Joint position

(b)

Figure 3.5: Examples of joint position commands after interpolation sent to a low-level PD
controller. represents the actual joint position of the motor. is the computed desired
joint position. on the green line shows the interpolated joint position commands that are
sent to the low-level PD controller. (a) shows the case of qcmd

t+1 = qt +at, while (b) shows the
case of qcmd

t+1 = qcmd
t + at. We can see that (b) generates much smoother joint commands.

reorienting the object when Istopt = 0, but stably hold the object when Istopt = 1. This design
choice provides flexibility in how we control the policy to stop the reorientation. For example,
the policy could rotate the object for a pre-specified amount of time (i.e., set Istopt = 1 after t
seconds). Alternatively, an external perception module could detect when the peeled part
has fully turned over, triggering Istopt = 1 and the policy to stop the motion and hold the
object immediately.

How can we use the learned goal-conditioned teacher policy to train a student policy that
is conditioned on the stop signal? We can set the value for Istopt automatically during policy
rollout based on the orientation distance ∆θt.

Istopt =

{
0 if ∆θt > θ̄

1 otherwise

Observation Space

In this work, we only use proprioceptive sensory information (joint positions qt and velocities
q̇t) as the observation input (oS

t ). Our findings indicate that relying solely on proprioceptive
sensory information results in strong performance. Future research could investigate incorpo-
rating visual data to further enhance the system’s capabilities, such as preventing objects
from slipping out of the grasp.

Policy Architecture

As the student policy only has access to a limited amount of sensory information (a POMDP
setting), it is important to incorporate history information, as has been done in previous
works [15], [19], [70]. While [15], [19], [70] utilized RNNs to process history information,
Transformers [82] have gained significant attention due to their improved performance and
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Figure 3.6: (a): the Allegro hand holds a papaya to be peeled. (b): we utilize Grounded
SAM to segment the papaya. (c): the 3D point cloud representing the segmented papaya’s
exposed surface. (d): we take a slice of this point cloud at the center region along the
papaya’s longest axis. (e): the points within this center slice are projected onto the central
plane aligned with the axis. (f): we fit a spline curve to the projected points to obtain the
desired trajectory for the peeler tip to follow.

faster training in domains such as natural language processing. Therefore, in this work,
we employ a Transformer-based policy architecture. aS

t = πS(oS
1 ,a0, I

stop
1 , ...,oS

t ,at−1, I
stop
t ).

The policy is a decoder-only attention network (Figure 3.4c) with three self-attention layers.
The hidden size is 256, the intermediate size is 512, and the number of attention heads is 8.

Training

The policy is trained using DAGGER [25].

3.3.4 Peeling

In this section, we demonstrate that our reorientation controller can be used for downstream
peeling tasks. We use the dexterous robot hand to do the reorientation and then control
another Franka Panda robot arm to do the peeling as shown in Figure 3.1. To control
the robot arm, we experimented with both using a teleoperation system and an automatic
vision-based peeling system.

Teleoperation-based peeling

We used a leader-follower teleoperation system in which a human operator controls a leader
system, and the Franka arm follows the motion of the leader in real-time. A 200 Hz operational
space impedance controller [83] runs on the Panda arm, controlling for pose via torque, and an
operator interacts with a Haption Virtuose™ 6D HF TAO1 device. Bilateral position-position
haptic coupling is done between the two devices. The controllers and haptic coupling are
implemented using Drake [84].

Vision-based peeling

While teleoperation provides effective peeling commands for the Franka arm and demonstrates
that our reorientation controller can firmly grasp objects after reorientation, automating the
peeling process would be ideal. One approach to achieve this is by computing the peeler’s

1https://www.haption.com/en/products-en/virtuose-6d-tao-en.html#fa-download-downloads
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Figure 3.7: (a) shows the objects for evaluation: melon, radish, pumpkin, papaya. (b) shows
the traveling distance. Before reorientation begins, we ensure a reference point (point A) is
facing upward. After reorientation, we identify the point (point B) now facing upward. We
then measure the distance from point A to point B along the contour.

motion trajectory based on RGB and depth vision data. The trajectory can be determined
through the following steps (see Figure 3.6): (1) We utilize Grounded SAM [85] to segment
the target vegetable given an image and vegetable name input. (2) Using the segmentation
mask and depth data, we reconstruct the 3D point cloud representing the vegetable’s top
surface. (3) We identify the vegetable’s longest axis (the peeling direction) by applying
principal component analysis. (4) We slice the point cloud into a 2cm thick segment along the
central plane that crosses the center point and aligns with the longest axis. We then project
all the points within the slice onto the plane. (5) We fit a spline curve to the projected points
to obtain a smooth trajectory for the peeler tip. Finally, cartesian-space position control
moves the peeler along this trajectory while keeping the peeler orientation fixed.

3.4 Results

To quantitatively evaluate the real-world policy transfer performance, we tested the controller
on four vegetables (Figure 3.7a): a pumpkin (mass: 827g), a melon(623g), a radish(727g), a
papaya(848g).

3.4.1 Traveling distance for a fixed amount of commanded motion
time

The first question we want to answer is whether the learned policy can successfully reorient
vegetables in the real world. In peeling, the width of the peeled part depends on the peeler’s
width. Thus, it is more informative to measure how much the reorientation controller rotates
an object by the traveling distance of a surface point, rather than the absolute rotation angle.
Specifically, we mark a reference point P ref on the object surface near the mid-point of its
rotational axis. At the start, we ensure P ref is centered and facing upward when held. After
reorientation, we record the new point P new that is now centered and facing upward. We
then measure the contour length from P new to P ref along the surface (Figure 3.7b).

To demonstrate the capability of our controller to reorient real objects, we conducted two
rounds of testing. Our controller is trained to stop motion when it receives a stop signal. In
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Figure 3.8: (a): Violin plots showing the distribution of the traveling distance of a point
on the object surface after the controller is commanded to rotate the object for 3.5 s and 7
s, respectively. (b): Violin plot showing the distribution of time taken by the controller to
transition from rotating the object in hand to firmly holding the object after receiving the
stop signal. The x-axis represents the timing of the stop signal sent to the controller after it
starts.

the first round, we sent the stop signal 3.5 seconds after the controller started rotating. In
the second round, we sent the stop signal 7 seconds after start. We repeated each test 10
times. As shown in Figure 3.8a, the controller successfully reoriented all four food items by a
sufficient amount for peeling. When commanded to reorient for 3.5s, 90% of tests reoriented
the objects by at least 4cm. With 7s, 90% of tests reoriented objects by at least 7.3cm. Given
more time, the controller reoriented objects by a larger amount.

3.4.2 How well does the controller track the commanded motion
time?

As discussed in Section 3.3, if our controller can quickly respond to a stop signal at any time
step, it can be combined with a perception system that tracks peeling progress. Hence, we
measured how long it takes to stop the hand and object motion after receiving the stop signal.
As shown in Figure 3.8b, the motion stops after 0.4s on average after the controller receives
the stop signal.

3.4.3 Firm grasp after reorientation

To enable downstream peeling, the reorientation controller must learn to firmly grasp the
object after stopping finger motion. We tested this by checking if the Allegro hand and object
could be lifted in the air for 3s by only lifting the object with a single human hand. Table 3.1
shows that across objects and commanded times, the controller firmly grasped objects in
90% of tests. Moreover, our controller possesses the capability of performing consecutive
reorientations. It can repetitively execute the sequence of peeling and reorientation multiple
times in succession.
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Table 3.1: Successful lifting rate (10 tests each)

Commanded motion time Pumpkin Melon Papaya Radish
3.5s 80% 90% 80% 90%
7s 100% 90% 100% 90%
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Figure 3.9: (a) shows learning curves of the teacher policies with or without c3
∥∥qt − qdemo

∥∥2

2
in the reward function. (b) shows the differences between student policies trained with
different sensory information (joint positions and velocities vs. joint positions only).

3.4.4 Real-world Peeling

We evaluated whether the reorientation controller could reorient food items to facilitate
peeling (Figure 3.1). We tested using an Allegro hand and a Leap hand [86]. Testing showed
that peeling applied substantial pulling forces on objects. However, in most cases, both
hands maintained a firm enough grasp to enable successful peeling. Failures often occur when
holding small objects, as some fingertips may fail to establish secure contact with the surface.

3.4.5 Ablation study

Demo term in Reward function

We proposed using a keyframe demonstration to ease reward shaping. To evaluate its
effectiveness, we compared learning curves of the teacher policies trained with and without
the c3

∥∥qt − qdemo
∥∥2

2
reward term. As shown in Figure 3.9a, adding the keyframe substantially

improved learning. Additionally, it demonstrates that mimicking the keyframe pose via a
single reward term effectively reduces the reward-shaping burden.

Necessity of having joint velocity information in πS

The student policy’s sensory input included joint positions and velocities. We investigated
whether including joint velocity information in the input is beneficial. Figure 3.9b shows that
adding joint velocities to the input improved performance.
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Transformer vs RNN

Different from prior works [15], [18], [19], [70], our student policy uses a Transformer
architecture instead of an RNN architecture. We compared the learning performance of a
Transformer-based policy and an RNN-based policy. Figure 3.10 shows that a Transformer-
based policy learns much faster and gets better performance at convergence than an RNN-
based policy.
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Figure 3.10: Learning curves of student policies with a Transformer or RNN architecture
with respect to the number of samples and wall-clock time, respectively.

3.5 Discussions

The reorientation controller presented in this study is a blind controller that relies solely on
proprioceptive sensory information. While it has demonstrated the ability to successfully
reorient heavy objects and securely hold them in place, its performance could potentially be
enhanced by incorporating visual and tactile feedback.

The current system has a few failure modes. Firstly, the object might slip out of the
hand since the controller does not utilize any vision information. Secondly, the controller
might fail if the vegetables are small, as the fingers cannot effectively make contact with the
object. When using a vision-based peeling approach to peel the vegetables, the segmentation
network (Grounded SAM) might fail to correctly identify and segment the target vegetable
in the image. Sometimes, the segmentation mask would incorrectly include the robot hand.
Some fine-tuning of the pre-trained Grounded SAM model would be necessary to mitigate
such issues.

Future work could involve learning a peeling policy via behavior cloning on data collected
via teleoperation to achieve better autonomy of the system. Additionally, incorporating
visual and tactile feedback into the reorientation controller could potentially enhance its
performance
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Chapter 4

Parallel Q-Learning

4.1 Overview

Reinforcement learning (RL) has achieved impressive results on many real-world problems.
A primary challenge in using RL is the need for large amounts of real-world data. There are
two main strategies to tackle this problem. One is to improve the sample efficiency of RL
algorithms [38], [87] to make better use of available data. The other is to reduce the need for
real-world data collection by training policies in simulation and deploying them in the real
world [15], [19], [31], [33], [88]. In sim-to-real pipelines, the training wall-clock time matters
more than the sample efficiency — faster training can speed up the experiment cycle and
unlock the potential for addressing a broader range of complex problems.

The community has widely recognized the need for faster training, leading to the develop-
ment of several distributed frameworks [89], [90]. However, these frameworks usually operate
at a server scale that requires hundreds or thousands of computers in a cluster, making them
impractical for many researchers and practitioners. In these frameworks, most computers
run multiple simulator instances in parallel to speed up data collection. Recent advances
in GPU-based simulation, such as Isaac Gym [30], mitigated the need for a large cluster
by enabling the parallel simulation of tens of thousands of environments on a single GPU.
A natural question is: what RL algorithm achieves the best wall-clock time when training
uses massively parallel simulation on GPUs? Many prior works [34], [91], [92] use on-policy
algorithms like PPO [37] for training in Isaac Gym due to its simplicity and easy-to-scale
nature.

It is known that on-policy methods have lower data efficiency than off-policy methods.
Intuitively, by virtue of requiring less data than on-policy algorithms, off-policy algorithms
(Q-learning methods, in particular) should reduce the wall-clock time of training. However,
better sample efficiency will not lead to shorter training time if the algorithm cannot efficiently
use parallel environments. Some prior works [89], [93] have developed distributed frameworks
for off-policy methods to leverage parallel environments. However, these frameworks have only
shown successful scaling with hundreds of parallel environments (for example, a maximum
of 256 environments in [89]). Now that GPU-based simulation enables tens of thousands
of parallel environments on a single GPU, it remains unclear whether off-policy methods
can work efficiently in this case. For instance, if there are 10, 000 parallel environments and
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we still use the typical replay buffer capacity (say 1M samples), the entire replay buffer
is refreshed every 100 environment steps, making the data in the replay buffer more like
the data collected from an on-policy method. Do off-policy methods still retain their data
efficiency in this scenario? Increasing the replay buffer capacity is not always an option due
to the memory size limits of the hardware.

In this work, we investigate how to scale up Q-learning to tens of thousands of environments.
We present our approach, Parallel Q-Learning (PQL), which can be deployed on a workstation.
The learning speed in PQL is boosted by parallelizing the data collection, policy function
learning, and value function learning on a single workstation. This allows for collecting more
simulation data and updating value/policy functions more times in a given time window,
leading to an improvement in the training wall clock time. Achieving such parallelization would
be non-trivial for on-policy algorithms, as the policy update requires on-policy interaction
data, which means that data collection and policy updates need to happen in sequence.

Our main contributions are summarized as follows:

• We present a scheme for time-efficient reinforcement learning, PQL, that can efficiently
leverage tens of thousands of parallel environments on a workstation.

• We thoroughly investigate the effect of important hyperparameters such as the speed
ratio on different processes that control the resource allocation and provide empirical
guidelines for tuning these values to scale up Q-learning.

• We deploy different exploration strategies in parallel environments, which leads to
robust exploration and mitigates the hassle of tuning the exploration noise.

• We demonstrate the effectiveness of our method on six Isaac Gym benchmark tasks [30]
and show its superiority over state-of-the-art (SOTA) on-/off-policy algorithms. Our
method PQL achieves both faster learning in wall-clock time and better sample efficiency.
Empirically, we also found that DDPG performs better than SAC in a massively parallel
environment setting.

4.2 Related Work

Massively Parallel Simulation Simulation has been an important tool in various research
fields, such as robotics, drug discovery, and physics. In the past, researchers have used
simulators like Drake [84], MuJoCo [94] and PyBullet [95] for rigid body simulation. Recently,
there has been a new wave of development in GPU-based simulation, e.g., Isaac Gym [30].
GPU-based simulation has substantially improved simulation speed by allowing massive
amounts of parallel simulation on a single commodity GPU. It has been used in various
challenging robotics control problems, including quadruped locomotion [33], [92] and dexterous
manipulation [19], [34], [91]. With fast simulation, one can obtain much more environment
interaction data in the same training time as before. This poses a challenge to RL algorithms
in making the best use of the massive amount of data. A straightforward way is to use
on-policy algorithms such as PPO, which can be easily scaled up and is also the default

66



algorithm used by researchers in Isaac Gym. However, on-policy algorithms are less data-
efficient. In our work, we investigate how to scale up off-policy algorithms to achieve higher
sample efficiency and shorter wall-clock training time under massively parallel simulation.

Distributed Reinforcement Learning There have been numerous distributed reinforce-
ment learning frameworks to speed up learning. One line of work focuses on Q-learning
methods. Gorila [93] distributes DQN agents to many machines where each machine has
its local environment, replay buffer, and value learning, and uses asynchronous SGD for
a centralized Q function learning. Similarly, [96] apply asynchronous SGD to the DDPG
algorithm [38]. Combining with prioritized replay [97], n-step returns [98], and double-Q
learning [99], [89] (Ape-X) parallelize the actor thread (environment interactions) for data
collection and use a centralized learner thread for policy and value function learning. Built
upon Ape-X, [100] adapt the distributed prioritized experience replay for RNN-based DQN
agents.

Another line of work improves the training speed on policy gradient methods. A3C [101]
uses asynchronous SGD across many CPU cores, with each running an actor learner on
a single machine. [102] develop a hybrid CPU/GPU implementation of A3C, but it can
have poor convergence due to the stale off-policy data being used for the on-policy update.
[90] (IMPALA) introduce an off-policy correction scheme (V-trace) to mitigate the lagging
issue between the actors and learners in distributed on-policy settings. [103] further improve
the IMPALA training speed by moving the policy inference from the actor to the learner.
[104] parallelize the environments for synchronous advantage actor-critic. [105] propose a
distributed version of PPO [37] for training various locomotion skills in a diverse set of
environments. [106] develop a decentralized version of distributed PPO to mitigate the
synchronization overhead between different actor processes and applies it to a point-goal
navigation task.

Our scheme is most closely related to Ape-X [89] but has a number of key differences.
First, our scheme is specifically designed for massively (>> 1000) parallel GPU-based
simulation. Our scheme is optimized for a single-machine setup, which can help democratize
large-scale RL research. Second, we further decouple and parallelize the learning with two
separate learners for policy function learning and Q-function learning, respectively. Third,
we allocate a local replay buffer for each learner. This can reduce the communication cost
between the replay buffer and the learners. Fourth, working with a single machine presents
new challenges in balancing the computing resource between different parallel processes. Our
scheme offers a mechanism to balance the computing resource among different processes.

4.3 Method

We developed a parallel off-policy training scheme, Parallel Q-Learning (PQL), for massively
parallel GPU-based simulation, where thousands of environments can be simulated simul-
taneously on a single GPU. In a typical actor-critic Q-learning method, three components
run sequentially: a policy function, a Q-value function, and an environment. Agents roll
out the policy in the environments and collect interaction data, which is added to a replay
buffer; then, the value function is updated to minimize the Bellman error, after which the
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Figure 4.1: Overview of Parallel Q Learning (PQL). We have three concurrent processes
running: Actor, P-learner, V-learner. Actor collects interaction data. P-learner updates
the policy network. V-learner updates the Q functions.

policy function is updated to maximize the Q values. This sequential scheme slows down the
training, as each component needs to wait for the other two to finish before proceeding. To
maximize the learning speed and reduce the waiting time, we parallelize the computation
of all three components. This allows for more network updates per data point, which can
improve the utilization of the massive amount of data and lead to better training speed, as
demonstrated in the experiments. Off-policy RL methods are well-suited for parallelization
as the interaction data in a replay buffer does not need to come from the latest policy. In
contrast, on-policy methods such as PPO require using the rollout data from the latest
policy (on-policy data) to update the policy, thus making it non-trivial to parallelize the data
collection and policy/value function update.

Our scheme is optimized for training speed in terms of wall-clock time and can be readily
applied on a workstation. It is built upon DDPG [38], but can be easily extended to other
off-policy algorithms such as SAC [107] (see Appendix B.3). Our scheme also incorporates
common techniques used to improve Q learning performance, such as double Q learning [99]
and n-step returns [98]. Furthermore, we experimented with adding distributional RL [108]
to PQL, which we refer to as PQL-D. While it improves performance on challenging
manipulation tasks, it leads to a slight decrease in the convergence speed of the RL agent. In
this paper, we use the following notation: at time step t, st represents observation data, at
represents action command, rt represents the reward, dt represents whether the environment
terminates, π(st) represents the policy network, Q(st, at) represents the Q network, Q′(st, at)
represents the target Q network, and N represents the number of parallel environments.
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4.3.1 Scheme Overview

PQL parallelizes data collection, policy learning, and value learning into three processes, as
shown in Figure 4.1. We refer to them as Actor, P-learner, and V-learner, respectively.

• Actor: We collect a batch of interaction data using parallel environments. We use Isaac
Gym [30] as our simulation engine, which supports massively parallel simulation. Note that we
do not make any Isaac-Gym-specific assumptions, and PQL is optimized for any GPU-based
simulator that supports a large number of parallel environments. In the Actor process, the
agent interacts with tens of thousands of environments according to an exploration policy.
Therefore, we maintain a local policy network πa(st), which is periodically synchronized with
the policy network πp(st) in P-learner (which we explain below).

• V-learner: We create a dedicated process for training value functions, which allows for
continuous updates without being interrupted by data collection or policy network updates.
To compute the Bellman error, we need the policy network to estimate the optimal action
and the replay buffer to sample a batch of I.I.D. training data. Since we use a dedicated
process for updating value functions, V-learner must frequently query the policy network
and sample data from the replay buffer. To reduce the communication overhead of the policy
and data across processes, we maintain a local version of the policy network πv(st) and the
replay buffer in V-learner. πv(st) is synced with πp(st) in P-learner periodically. When
the GPU memory is sufficiently large to host the entire replay buffer, which is usually the
case when observations are not images, we construct the replay buffer on the GPU to avoid
the CPU-GPU data transfer bottleneck.

• P-learner: We use another dedicated process for updating the policy network πp(st),
which is optimized to maximize the Qp(st, π

p(st)). We also maintain a local replay buffer
of {(st)} and a value function Qp(st, at) in P-learner to reduce communication overhead
across processes. Qp(st, at) is periodically updated with Qv(st, at) in V-learner.

We use Ray [109] for parallelization. The pseudo-code is in Algorithm 1, 2, and 3 in the
Appendix B.1.

Data Transfer Suppose there are N parallel environments in the Actor process. At each
step, the Actor rolls out the policy πa(st) and generates N pairs of (st, at, st+1, rt, dt+1). Then
the Actor sends the entire batch of interaction data {(st, at, st+1, rt, dt+1)} to the V-learner
(see Figure 4.1). Since policy update in P-learner only needs state information, Actor only
sends {(st)} to the P-learner.

Network Transfer The V-learner periodically sends the parameters of the Qv(st, at) to
P-learner, which updates the local Qp(st, at) in P-learner. The P-learner sends the policy
network πp(st) to both the Actor and V-learner.

Both the data and policy network transfer happen concurrently.
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4.3.2 Balance between Actor, P-learner, and V-learner

Our scheme allows the Actor, P-learner, and V-learner to run concurrently. However, if
each process ran as fast as possible, independent of each other, it can make training unstable.
Thus, we explicitly control the update frequencies of the three processes using the following
two ratios:

βa:v :=
fa
fv

and βp:v :=
fp
fv
,

where fa is the number of rollout steps per environment in Actor per unit time, fv is the
number of Q function updates in V-learner per unit time, fp is the number of policy updates
in P-learner per unit time. βa:v determines how many steps Actor rolls out the policy with
N environments when one Q function update is performed in the V-learner. βp:v decides
how many Q function updates are performed in V-learner when P-learner updates the
policy once. Once the ratios are set, we monitor the progress of each process and dynamically
adjust the speed of Actor and P-learner by letting the process wait if necessary.

Controlling the three processes via βa:v, βp:v provides three major advantages. First, it
allows us to balance the resource allocation of each process and reduce the variance of PQL’s
performance. Given a fixed amount of computing resources, the ability to let some of the
processes wait enables other processes to use the GPU resource more. This is particularly
important when working with limited resources. If there is only one GPU, and all three
processes run freely on it, simulation with a large number of environments can cause very
high GPU utilization, which slows down the P-learner and V-learner and leads to worse
performance. Note that such control was not examined in prior studies, such as Ape-X [89],
where a computer cluster was used for both the simulation and network training — the
phenomenon of competing for limited computing resources (all three processes on one GPU)
did not occur. On the other hand, leaving each process running freely creates more variance
in the training speed and learning performance as the simulation speed and network training
speed are heavily dependent on the task complexity, network size, computer hardware, etc.
For example, simulation for contact-rich tasks can be slower than others; some tasks might
require a deeper policy network or Q networks; even the GPUs on a machine might have
different running conditions at different times, leading to different speeds across processes
and further leading to different learning performances.

Second, ratio control can improve convergence speed. For example, prior works [110]
show that updating the policy network less frequently than the Q functions leads to better
learning. Third, the ratio βp:v can be interpreted as the frequency of the target policy
network update. One may notice that we use a lagged policy to update the Q function and
synchronize it according to the above ratio. Therefore, we do not create a target policy
network explicitly, but every synchronization can be considered as a hard update of the policy
network.

4.3.3 Mixed Exploration

We can achieve improvement in convergence by having a good exploration strategy. Too
much exploration can make agents fail to latch onto useful experience and learn a good
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Figure 4.2: We experiment on six Isaac Gym tasks: Ant , Humanoid , ANYmal , Shadow Hand ,
Allegro Hand , Franka Cube Stacking .

policy quickly, while too little exploration does not give the agent enough good interaction
data to improve the policy. Balancing the exploration and exploitation often requires
extensive hyper-parameter tuning or complex scheduling mechanisms. In DDPG, one common
practice to control exploration is to set the standard deviation σ of the uncorrelated and
zero-mean Gaussian noise that is being added to the deterministic policy output (at =
max(min(π(st)+N (0, σ), au), al) [111]–[113] where at ∈ [al, au]). Since it is difficult to predict
how much exploration noise is appropriate, one typically needs to tune σ for each task. Can
we mitigate the hassle of tuning σ? Our idea is that instead of finding the best σ value, we can
try out different σ values altogether, which we call mixed exploration. Even if some σ values
lead to bad exploration at a certain training stage, others can still generate good exploration
data. This strategy is easily implemented thanks to the massively parallel simulation, as we
can use different σ values in different parallel environments. Similar ideas have been used in
prior works [89], [101]. In our work, we uniformly generate the noise levels in the range of
[σmin, σmax]. For the ith environment out of N environments, σi = σmin +

i−1
N−1

(σmax − σmin)
where i ∈ {1, 2, ..., N}. We use σmin = 0.05, σmax = 0.8 for all the tasks in our experiments.

4.4 Experiments

In this section, we demonstrate the effectiveness of our method compared to SOTA baselines,
analyze the effects of key hyper-parameters, and provide empirical guidelines for setting their
values. All experiments are carried out on a single workstation with a few GPUs. We run
each experiment with five random seeds and plot their mean and standard error.

4.4.1 Setup

Tasks We evaluate our method on six Isaac Gym benchmark tasks [30]: Ant , Humanoid ,
ANYmal , Shadow Hand , Allegro Hand , and Franka Cube Stacking (see Figure 4.2). For
more details about these tasks, please refer to [30]. Additionally, we provide two more tasks
in Section 4.4.5: (1) a vision-based Ball Balancing task and (2) a contact-rich dexterous

71



manipulation task that requires learning to reorient hundreds of different objects using a
DClaw Hand with a single policy [19]. Note that we use the four-finger hand version and do
not include any domain randomization.

Baselines We consider the following baselines: (1) PPO [37], which is the default algorithm
used by many prior works [30], [34], [91] that use Isaac Gym for simulation, (2) DDPG(n):
DDPG [38] implementation with double Q learning and n-step returns , (3) SAC(n):
SAC [107] implementation with n-step returns. Hyper-parameters are available in Appendix
B.2.1.

Hardware We use NVIDIA GeForce RTX 3090 GPUs as our default GPUs for the experi-
ments unless otherwise specified. More details are shown in Table B.3 in the appendix.

4.4.2 PQL learns faster than baselines

The first and most important question to answer is whether PQL leads to faster learning than
SOTA baselines. To answer this, we compared the learning curves of PQL and PQL-D (PQL
with distributional RL) with baselines on six benchmark tasks. As shown in Figure 4.3, our
method (PQL, PQL-D) achieves the fastest policy learning in five out of six tasks compared
to all baselines. Moreover, we observed that adding distributional RL to PQL can further
boost learning speed. Figure 4.3 shows that in five out of six tasks, PQL-D achieves wall-clock
time faster than, or at least on par with, PQL. The improvements are most salient on the two
challenging contact-rich manipulation tasks (Shadow Hand and Allegro Hand). Additionally,
the faster learning of PQL than DDPG(n) demonstrates the advantage of using a parallel
scheme for data collection and network updates. We also found that DDPG(n) outperforms
SAC(n) in all tasks. This could be due to the fact that the exploration scheme in DDPG can
scale up better than the one in SAC. In DDPG, we apply the same mixed exploration as
in PQL, while the exploration of SAC solely comes from sampling in the stochastic policy
distribution, which can be heavily affected by the quality of the policy distribution.

4.4.3 How well does mixed exploration perform?

As discussed in Section 4.3.3, massively parallel simulation enables us to deploy different
exploration strategies in different environments to generate more diverse exploration trajecto-
ries. We use a simple mixed exploration strategy, as described in Section 4.3.3, and compare
its effectiveness to cases where all the environments use the same exploration capacity (the
same σ values). We experimented with σ ∈ {0.2, 0.4, 0.6, 0.8}. As shown in Figure 4.4, the
learning performance is significantly affected by the choice of σ value. If we use the same σ
value for all parallel environments, then we need to tune σ for each task. In contrast, the
mixed exploration strategy, where each environment uses a different σ value, outperforms
(learns faster or at least as fast as) all other fixed σ values. This implies that using the mixed
exploration strategy can reduce the tuning effort needed for σ values per task.
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Figure 4.3: We compare our methods to the SOTA RL algorithms (PPO, SAC with n-step
returns, DDPG with n-step returns). We use 4096 environments for training in all tasks
except the PPO baseline on Shadow Hand and Allegro Hand tasks, where we use 16384 as it
gives the best performance for PPO on these two tasks as shown in Figure 4.5c. Our methods
achieve the fastest learning speed in almost all tasks.

4.4.4 Effects of different hyper-parameters

In this section, we investigate the effects of the number of environments, βp:v, βa:v, batch
size, replay buffer size, and the number of GPUs. These hyper-parameters are of particular
interest given the massively parallel simulation (N >> 1000) and our parallel scheme. Lastly,
GPU hardware can also impact learning speed. To explore this, we conduct experiments
using four different GPU models and analyze the effect of GPU hardware on performance in
Appendix B.3. Overall, PQL works robustly across different GPU models.
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Figure 4.4: We compared our proposed mixed exploration scheme by applying different
constant maximum noise values. We can see that the mixed exploration scheme either
outperforms or is on par with other schemes, which can save the tuning effort on the noise
level.

How does the number of environments N affect policy learning?

Previous works on distributed frameworks for RL [89], [90] have shown how the learning
performance is affected by the number of parallel environments N , with N in the order
of hundreds. GPU simulation enables running thousands of environments in parallel on a
single workstation, and we anticipate that this will only improve with time. However, more
parallel environments will only be beneficial if RL algorithms can exploit such data, i.e. if
performance scales with more data. We, therefore, investigated how different algorithms
scale with the number of environments (N >> 1000, the biggest N we experimented with is
16, 384). As shown in Figure 4.5, both PQL and PPO benefit from using more environments
in parallel. Moreover, the learning performance of PQL is relatively less sensitive to N on
the simple task (Ant), while on the hard task (Shadow Hand), PPO’s learning performance
substantially drops as we decrease the number of environments. In contrast, our method
(PQL) demonstrates stable and similar learning with all the different numbers of environments
except when N is very small (N = 256) on Shadow Hand , suggesting that PQL is more
robust to changes in N .
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Figure 4.5: We sweep over different numbers of environments (N) on both PPO and PQL
(our method). Overall, PQL is less sensitive to the number of environments than PPO on
both tasks.

Effect of βp:v and βa:v

As discussed in Section 4.3.2, explicitly controlling the βa:v and βp:v can help improve the
learning performance and reduce the variance under different training conditions, such as
fluctuated hardware utilization. If βp:v is larger, the policy updates more frequently than the
value functions, potentially leading to policy overfitting to the stale value function, which in
turn leads to poor exploration. If the policy updates much slower than the value function, the
policy might lag behind the value function a lot, which hurts the learning speed. Similarly, if
βa:v is larger, the V-learner might need to wait for Actor to collect enough data, since the
simulation speed cannot be changed, leading to slower learning. If βa:v is smaller, the value
function updates more given the generated rollout data.

To qualitatively assess the effects of different βa:v and βp:v, we sweep over a range of
values for these two hyper-parameters and compare them in Figure 4.6 and Figure 4.7.
Figure 4.6 shows that PQL is relatively robust to a wide range of βp:v values, which means
this hyper-parameter would require little tuning. We use βp:v = 1 : 2 as the default value in
our experiments shown in the paper. This ratio value is consistent with prior works [110],
[113], but our findings are in the context of parallel training of policy and value function.
Figure 4.7 shows that βa:v has a greater impact on the learning performance. An overall trend
is that if we increase the number of environments, then we need to have V-learner update the
Q functions more times. For example, on Shadow Hand , βa:v = 1 : 4 performs the best when
N = 2048 and N = 4096. But when N = 8192 and N = 16384, βa:v = 1 : 12 performs the
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Figure 4.6: We show the averaged returns in evaluation after a fixed amount of training
time ∆T . Across the set of different numbers of environments we experimented with
(2048, 4096, 8192, 16384), we found that setting βp:v = 1 : 2 generally works well. ∆T = 60
mins for Ant , and ∆T = 80 mins for Shadow Hand . The complete learning curves are in
Figure B.6.
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Figure 4.7: Given different values of N , we show the effect of different βa:v. An overall trend
we observe is that as N gets bigger, it’s more beneficial to update the critic more frequently.
We also found that βa:v = 1 : 8 generally works well given different N values. So one can set
βa:v = 1 : 8 as a good initial value, and tune it if necessary on new tasks.

best. We use βa:v = 1 : 8 by default as it achieves a good performance across different N values.
In summary, Figure 4.6 and Figure 4.7 show that βp:v and βa:v do affect the performance
with a varied number of environments. We suggest setting βp:v = 1 : 2, βa:v = 1 : 8 as a good
starting point for new tasks and tune them if necessary, as these are the values we found work
well on six different tasks with different numbers of environments. In addition, in Section B.3,
we show that adding the speed ratio control (βa:v and βp:v) is beneficial for balancing the
computing resources used by each process when resources are limited.

Effect of batch size

With many parallel environments (N), a significant amount of data is generated quickly.
While it is easy to increase N from hundreds to tens of thousands in Isaac Gym on a single
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Figure 4.8: Effect of different batch sizes. Small batch size usually leads to slower learning.
If the batch size is too big, the policy learning can slow down because GPUs have limited
cores and it takes more time to process a very big batch of data.

GPU, it is infeasible to increase the replay buffer size by 100 times due to limited GPU
memory or CPU RAM (if the data is stored on the CPU). Consequently, the replay buffer is
frequently overwritten, meaning that each collected sample may not be used efficiently. One
way to efficiently utilize large amounts of changing data is to increase the batch size. To
determine how much increase in batch size is necessary for Q-learning with a limited-capacity
replay buffer to take advantage of the large amounts of incoming data, we investigated
the relationship between performance and batch size. Many prior works have shown that
using a large batch size can improve network performance, such as in contrastive learning
settings [114], [115]. In our work, we found that large-batch training can notably improve
the learning speed in off-policy RL for massively parallel simulations, as shown in Figure 4.8.
However, if the batch size is too big, the learning speed can be slowed down. This is because
GPUs have a limited number of CUDA cores, and it takes more time to process a very big
batch of data once the batch size is above some threshold value, which is another underlying
trade-off.

Effect of Replay buffer size

As discussed in Section 4.1, when dealing with tens of thousands of parallel environments,
the replay buffer with normal capacity (e.g. 1M) gets a full refresh for every several hundreds
of environment steps. This means that the replay buffer will not contain too much historical
data. Apriori, one might think off-policy methods will fail in this case and that we need
to proportionally increase the replay buffer size to store more experience data. However,
surprisingly, we empirically found that even with thousands of parallel environments, having
a “small" replay buffer (1M or 5M) can still lead to good performance. In Figure 4.9, we
show how the learning curves change as we vary the buffer capacity. We can see that, in all
cases, the policies learn well. We hypothesize that PQL still works well in this case because a
large number of parallel environments can generate diverse enough data in a few environment
steps. Moreover, |B| ∈ {1, 5}M leads to faster policy learning at the beginning of the training
than |B| = {10, 20}M. We hypothesize that this is because a smaller replay buffer allows the
old and less informative samples to be replaced much faster, which is more important in the
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Figure 4.9: (a) and (b): effect of different replay buffer size. (c) and (d): effect of number
of GPUs used for running PQL. PQL can be deployed on a flexible number of GPUs. In
complex tasks such as Shadow Hand , it is beneficial to have at least 2 GPUs where the Actor
runs on a separate GPU as the simulation itself consumes more GPU compute as the task
complexity increases.

early stages of training. The converged performances are similar when |B| = {5, 10, 20}M.
However, the converged performance is slightly worse when |B| = 1M. This may be because
a small replay buffer, which discards new data too quickly, can have a negative impact on
learning in the end.

Number of GPUs

Nowadays, it is common to have workstations with multiple GPUs. Running different
processes on separate GPUs can potentially speed up learning. Our PQL scheme can adapt
to different numbers of GPUs available on a workstation. Specifically, Actor, P-learner,
and V-learner can be placed on any GPU. To investigate the performance variation when we
distribute the three components across different numbers of GPUs, we conducted experiments
with three scenarios on Tesla A100 GPUs: (1) place all three processes on the same GPU,
(2) place the Actor on one GPU, P-learner and V-learner on another GPU, (3) place
the Actor, P-learner, V-learner on a different GPU respectively. In the two-GPU case,
we allocate Actor to a dedicated GPU because simulating many tasks with a large number
of environments can cause high GPU utilization. As shown in Figure 4.9, our PQL scheme
works well in all three scenarios with one, two, or three GPUs. When the task becomes more

78



(a)

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

PPO
PQL-D(Ours)

Dclaw

Wall clock time (min)

S
uc

ce
ss

 ra
te

(b)

Figure 4.10: (a): DClaw Hand task. (b): We compared our proposed PQL-D method with
PPO.

complex like Shadow Hand , the simulation takes much more computation and time. Putting
all three processes will slow down each one of them due to full GPU utilization, which is
why we see a bigger gap between the 2-GPU or 3-GPU training and 1-GPU training on
Shadow Hand . Therefore, it is beneficial to place the Actor on one GPU and P-learner and
V-learner on other GPUs.

4.4.5 Additional Tasks

Vision-based Ball Balancing task Simulating vision-based tasks is much slower and
more demanding on the GPU as each simulation step involves both the physics simulation and
image rendering. To demonstrate the generality of our scheme in operating in this practical
setting of vision-based training, we consider a vision-based Ball Balancing task [30].

Since directly learning a vision-based policy with RL is time-consuming, we use the idea
of asymmetric actor-critic learning [77] to speed up vision policy learning. Image data is
compressed using the lz4 library to reduce the bandwidth requirement and communication
overhead. More setup details are in Appendix B.2.3. As shown in Figure B.1, PQL achieves
better sample efficiency and higher final performance than PPO with N = 1024 parallel
environments.

Reorient hundreds of objects with a DClaw Hand We conducted further experiments
on a contact-rich dexterous manipulation task [19], DClaw Hand , as shown in Figure 4.10a.
This task is much more challenging than the Shadow Hand task and Allegro Hand task because
it needs to learn to reorient hundreds of different objects with a single policy. Furthermore,
the control frequency (12Hz) is much lower than the default control frequency (60Hz) used
in all six proposed benchmark tasks. This means that the simulation takes much longer to
run between each policy command step, and the Actor process will be much slower. In
Figure 4.10b, we observe that our method reaches 70% success rate around 200 minutes,
which is approximately 3 times faster than PPO.
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4.5 Discussion and Future Work

We present a scheme PQL for scaling up off-policy methods with tens of thousands of parallel
environments on a single workstation. Our method achieves state-of-the-art results on the
Isaac Gym benchmark tasks in terms of the training wall clock time. The driving force
behind this success is the parallelization of data collection, policy function learning, and value
function learning. We provide a mechanism to balance and control the speed in different
processes, which leads to better and more stable performance across different hardware
conditions or when the GPU resource is limited. Although PPO requires a large number of
environments to work on complex tasks such as Shadow Hand , PQL is more lenient on the
number of environments and works well on a wide range of different numbers of environments.
With a large number of parallel environments, it is beneficial to use a big batch size for
training agents, with the caveat that if the batch size is too big, it might take the GPU
more time to process the batch data and lead to a slowdown in policy learning. We also
found using different exploration scales in different environments achieves better or similar
performance compared to a carefully-tuned exploration scale in all parallel environments,
which means we need less hyper-parameter tuning. Even though the number of environments
is 1000× more, we did not find it necessary to use a replay buffer that is 1000× bigger. In
fact, a replay buffer with a capacity of 5M transitions is sufficient for our experiments even
with 16843 parallel environments. Our scheme’s hardware requirements are flexible and work
well with different numbers of GPUs and various GPU models.

In this paper, we experimented with default task configurations for the Isaac Gym
benchmark tasks. Therefore, the reported results are for tasks without extensive domain
randomization. The investigation of how well PQL performs in the presence of extensive
domain randomization is left for future work. Another interesting direction is to explore better
sampling strategies for the replay buffer. PQL does not use techniques such as prioritized
experience replay [97], which could improve sample efficiency but significantly hurt wall-clock
time efficiency due to massive amount of collected data. Therefore, new strategies should
be considered, such as rejecting samples given the massive amount of data. It would also
be practical to study different exploration strategies that can take advantage of parallel
environments. When using PQL in other tasks, we have observed that if the agent is in joint
position control mode, mixed exploration strategy tends to work better when the action space
is defined on relative joint position control rather than on absolute joint position control. We
hypothesize that exploring the full action space ([−1, 1]) in absolute joint position control
leads to many useless explorations, and thus data from a significant portion of the parallel
environments may not provide much value. In such cases, it would be interesting to investigate
how to adaptively change the maximum range of exploration noise throughout the training
process. Lastly, our scheme can be easily extended to a system with multiple parallel learners
or value learners given the decoupling of policy and value learning. In this case, it would
be interesting to apply ensemble methods or evolutionary strategies to further exploit the
massive amount of data.
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Chapter 5

Tactile sensing with a dexterous hand

5.1 Overview

Consider the setup in Fig 5.1 wherein multiple objects are placed in a box with unknown
positions and orientations. A multi-fingered robot is tasked to fetch a particular object
using only tactile observations from sensors placed on fingertips, without access to visual
observations. Such problems are commonly encountered in daily life — retrieving a desired
object from the backpack, inside of a drawer, or from a tall cabinet where the topmost
shelves are not visually observable. In these situations, the sense of touch can compensate
for the lack of visual observations. To the best of our knowledge, the capability of a robotic
system successfully retrieving a desired object based only on tactile observations has not
been demonstrated in scenes with multiple freely moving and unknown objects.

To understand what makes vision-free object retrieval challenging, first consider a scenario
where the robot can visually observe the scene. In such a case, it is (typically) possible to
identify the location and identity of all objects from just a single image. Furthermore, the
same image communicates enough information about object geometry to plan a grasp. In
contrast, tactile observations made by the fingertips are local and sparse. Fingertips only
make infrequent contact with a local area of the object. Therefore the robot first needs
to explore to localize objects. Then it needs to plan a sequence of touches on each object
to gather enough information to identify and grasp it. Unlike visual data, where a single
observation is usually sufficient, tactile-based object retrieval requires careful planning of a
long sequence of actions for information gathering and mechanisms for temporal integration
of this information.

Usually, one would expect that as the robot interacts more with the environment, it
gathers more “information". However, this is not always true: generating touch readings
requires applying force on an object that might move it. Such motion creates difficulty both
in localization and identification. During localization, a moving object might contact another
object previously encountered by the robot and potentially invalidate existing state estimates
such as the object’s location and pose. Similarly, during classification, if the object moves
while being touched, the shape estimation is noisier which can make object identification
difficult.

To summarize, the two key problems that make object retrieval in the absence of vision
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Figure 5.1: System setup showing object retrieval from an occluded bin using only tactile
sensing in the real world. The agent has to localize and identify the object from fingertip
tactile sensors alone

challenging are: Firstly, there is significant partial observability resulting from local and
sparse touch observations. Secondly, obtaining touch readings requires force application on
objects which may, in turn, lead to a change in object pose. While prior work has studied
object classification and localization using tactile observations [116], [117], this has primarily
been limited to single object scenes with a few classes of stationary objects.

We present a system that overcomes these challenges and is capable of exploring and
retrieving novel objects only from local fingertip tactile observations in the presence of several
movable objects, albeit in a simplified setup where individual objects are separated. Our
solution employs a localization scheme that minimizes object motion while clustering to find
object positions. Once objects are localized, the robot performs directed exploration to infer
object shape by making careful touches around the determined object location. The shape
information gathered from the sequence of contacts is represented as a point cloud. We
leverage self-supervised contrastive learning [118], [119] to embed tactile point clouds into a
feature space used for object identification. To retrieve localized and identified objects, a
simple grasping system is deployed. We present results on a 3-fingered robotic hand-arm
system in both simulation and the real world. Our system achieves 76% success in simulation
and 60% in the real world at retrieving novel objects without visual feedback.

5.2 Related Work

In recent years, much progress has been made in the development and usage of tactile sensors
to improve a robot’s ability to complete dexterous manipulation tasks [120]. In particular,
sensors utilizing a variety of transduction methods, such as resistance [121] , capacitance
[122], piezo-electrical [123], magnetic [124], and optical [125]–[127], have been shown to help
robots more intelligently interact with the physical world [127]–[130]. In our work, we leverage
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tactile sensing to perform object retrieval completely in the absence of visual input.

5.2.1 Object Classification with Tactile Sensors

While there has been much work in object classification using a combination of image and
tactile information [131]–[133], our problem requires us to rely only on tactile data for
classification. [134], [135], and [126] classified different fabrics, textures, and basic geometries
(respectively) using only camera-based tactile sensors. Others, such as [116], [136], [137],
used force-based tactile sensors to accomplish the classification task but often assumed the
object was static. [138] aims to do tactile-based classification by leveraging multi-modal
information across vision and touch. A class of methods also aim to make full shape inference
from tactile feedback [139]–[143] but typically assume the object is static and there is only a
single object in the scene. In contrast, in this work, we also operate in the tactile-only regime,
but we interact with multiple non-static objects when collecting the surface touches used
in classification and just look to make object identification, not ideal shape reconstruction.
Moreover, we are able to operate in a regime where we do not require any explicit object
models or knowledge of object dynamics at test time, making the method easy to apply
broadly to a variety of novel objects.

5.2.2 Object Localization with Tactile Sensing

Localization and manipulation of objects using only tactile sensing have been explored in
prior work. While some works [144], [145] focused more on the dynamics and kinematics
of the robot to perform localization, Li et al. [146] used a GelSight sensor to localize the
sensed portion of single small objects like USB cables relative to the gripper. Bauza et al.
[117] adopt a similar approach, combining heightmap information obtained from a tactile
sensor with the robot’s kinematics and the iterated closest point method to localize and even
identify small objects. Other works [147] approach the localization problem by also building
a visual map, but do so assuming objects are fixed. [148] perform contact-based localization
to perform accurate manipulation when the object is in hand. In contrast to these works, we
are less focused on fine-grained, precise, and in-hand localization than localization strategies
that can deal with multiple, much larger movable objects while also performing identification
and grasping. We compromise significantly on accuracy to obtain a general strategy that
can approximately localize objects without requiring known object shapes and dynamics by
aiming to keep the scene static.

[149] goes beyond static objects and uses a SLAM approach to do planar object recon-
struction and localization of non-static objects in the plane in single object scenes, leveraging
a Gaussian process implicit surface method and particle filtering. Methods like [150], [151]
also attempted to use only tactile sensing to retrieve a non-static object in a single object
scene using particle filtering methods. Additionally, [152] uses a pre-touch sensor to localize
and then senses object properties like stiffness and sliding for object discrimination. In
contrast, in our work, we interact with multiple movable objects with a dexterous 3-fingered
manipulator and perform the whole pipeline of localization, identification and grasping for
object retrieval only using fingertip tactile sensors.
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Figure 5.2: Depiction of the full pipeline for tactile-only object retrieval. The agent first
localizes several objects in the scene by vertically probing in a discrete grid around the
environment, while applying minimal force. The object is then interacted with by radially
tapping it gently for identification. The collected data is then used to identify if the object
matches the object it is tasked to retrieve and then grasping is performed to actually retrieve
the object.

5.3 System Description

Fig 5.1 illustrates our system consisting of a three-fingered robotic hand mounted on a
UR5e robotic arm (controlled by [153]), equipped with fingertip GelSight 360 [154] for touch
sensing. Robotic Hand: as shown in Fig 5.1, we use the three-fingered D’Claw robotic
hand system [58]. Each finger has three Dynamixel servo motors connected in series for a
total of nine degrees of freedom. The fingers are position controlled. Tactile Sensor: we use
omnidirectional GelSight sensors [154] on the tip of each finger of the D’Claw hand. These
sensors contain fisheye camera lens surrounded by a soft elastomer gel that deforms when
the sensor makes contact. The deformations are recorded as a RGB image by the camera.
This GelSight sensor has a significantly larger area of contact (approximately 15 cm2) with
objects than most sensors since it wraps completely around the finger. This is important
to actually help identify objects with fewer interactions. To obtain binary contact readings
from the sensor’s raw data (RGB images), we train a force recognition model (as described
in [155]) in the real world to map images of contact from the GelSight sensor to binary labels
of whether contact occurred or not.

5.4 Problem Setup

We first task the agent by allowing it to interact with a given target object at a known
location and pose, as shown in Fig 5.2. The target object is then placed in a planar bin area
along with other distractor objects, each in a random unknown pose. The agent’s goal is to
leverage only tactile sensing to retrieve the target object. All objects are rigid and movable,
and the agent has no prior knowledge of distractor object shapes. Furthermore, we assume
no objects are stacked on each other for tractability. The robot observes fingertip positions
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{pi ∈ R3, i = 1, 2, 3} estimated through joint encoders, as well as a reading of binary contact
{ci ∈ {0, 1}, i = 1, 2, 3} for each finger.

5.5 TactoFind: Identifying and Retrieving Objects in the
absence of Visual Feedback

The problem of blind identification and retrieval of novel and movable objects is an instance
of partially observable Markov decision process, which is known to be intractable in general.
To make this problem more approachable, instead of solving end-to-end, we can take a
step-wise approach illustrated in Fig 5.2 and make assumptions detailed below. The robot
first performs object localization, then instance identification, followed by grasping. In the
localization phase, the location of all objects is estimated agnostic of their identity. During
instance identification, an exploration algorithm is deployed to interact with each object. The
contact data resulting from the interaction with each object is matched against the contact
data of the target object for identification. Lastly, the position of the identified object is used
to grasp and retrieve it. In each step, both interaction and inference algorithms are designed
to minimize object motion and to integrate sparse tactile information for dealing with the
challenges mentioned in Section 5.1. We train the identification model in simulation and
transfer it to the real world, whereas the localization and interaction strategies are directly
implemented in the real world.

5.5.1 Object Localization with Tactile Sensing

For the task of interest, an object localization The main challenge in object localization is
that object motion while localizing the N -th object may disrupt the estimates for any of
the N − 1 objects localized previously. Minimizing object motion is further complicated
when object masses, shapes, and friction properties are unknown. Assuming that no two
objects are vertically stacked and that objects do not touch each other, our approach to
object localization consists of two steps: first, the workspace is discretized into a square grid
(H) with fixed side length δ = 5cm (roughly half the average width of the target objects)
and every location on the grid is probed to estimate if it is occupied by the object. The
result is a binary object occupancy map (i.e., H[i, j]← {0, 1}). Next, H is clustered to obtain
approximate locations for each object.

To obtain the occupancy map, H[i, j] we move the gripper to the center of the grid
location (i, j) and at a pre-specified height above the bottom of the bin/table. The gripper
is commanded to move down along the normal to the plane (Fig 5.2). To minimize object
motion, as soon as any contact is encountered or if the tip of the gripper reaches the surface
of the table, the arm’s motion is stopped. If contact was encountered, the grid position is
deemed to be occupied (i.e., H[i, j] = 1). The procedure is repeated for all grid locations.
The occupancy map is clustered using K-means algorithm [156], with a known value of K
corresponding to the number of objects in the bin. This procedure yields a list of approximate
object center positions

[
o1c , o

2
c , . . . , o

N
c

]
(Fig 5.5), which can then be utilized for fine-grained

object identification.
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5.5.2 Dynamic Object Identification

The localization process above provides an occupancy map and object locations, which is
insufficient to estimate the 3D shape of objects required to perform identification. Prior
works have found that random One naive strategy to get more interaction data is to randomly
move the fingers, and once in a while, the fingers will touch the object. However, such a
naive strategy makes it hard to identify objects. The reason is that the object might move a
lot due to random finger motions, causing noise in the data. When the object does not move,
the fingertip locations when fingers make contact with the object represent the points on the
object’s surface. However, if the object moves a lot, the touch points are effects of both the
object’s geometry as well as the object’s motion, which makes it more challenging to identify
what object it is. Therefore, it is beneficial to have an interaction policy that explores the
object’s surface but also tries to minimize the object’s motion.

After collecting such data, the next step is identifying whether the object is the target
object we are searching for. A straightforward way is to train a classifier that outputs
the object ID and see if it matches the target object ID. However, such a classifier cannot
generalize to novel objects. Therefore, instead, we use contrastive learning to learn an
embedding space in which we can determine whether the object is the same as the target
object based on the distance between their embedding vectors.

Collecting Interaction Data Instead of having the hand doing unstructured exploration
around the object, which obtains very few useful interaction data and can cause the object to
have a big motion, we devised a radial sliding strategy. It tries to move the fingers to follow
the contours of the objects in the vertical direction. We hypothesize that such slices of object
contours along the vertical axis would be sufficient for identifying an object (as described in
the next section) since they give a notion of object shape. However, in our experiments, we
found that having the fingertips move along the object contours when object geometry is
complex tends to cause the object to move. Instead, we command the fingers to tap along
the object contours (radial tapping strategy). Tapping significantly reduces the object motion
and allows us to identify free objects much more effectively than sliding. This is because the
number of points of contact is reduced and the force inward can be controlled more carefully.
As shown in Fig 5.3, we first reset the fingers to their initial positions, and then close the
fingers (move the fingertips inwards to touch the objects), when touch happens on any of the
fingertips (ctj = 1), we record the fingertip position ptj and stop moving the finger. Since each
touch only generates one data point (the fingertip position ptj), we get up to three points at
each time we close the fingers (potentially one from each finger). We move the fingers upward
by a small distance and repeat such a process until the fingers touch the top of the object. By
doing so, we get a sequence of contact positions Px

o = {p00, p01, p02, p10, p11, p12, . . . , pN0 , pN1 , pN2 }
for a series of N taps for object o at an unknown pose x, where each contact point p is a
point in R3.

Some things to note — Firstly, the actual contact forces do not need to be used since we
are just detecting binary contact on the surface. Secondly, the object itself may move since
the fingers are not guaranteed to perfectly cage the object while the contact is being made.
To account for potential object motion, we perform object relocalization by estimating the
direction of motion from the contact points at each time step. Specifically, at every point
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in time, we maintain a current estimate ĉ for the current object center. Each radial tap
gives us a sequence of contact points {pi}, which we average to get a single point p. We
then perform an exponential smoothing update ĉnew = γĉold + (1− γ)p to get a smoothed
new estimate, and move the hand in the xy-plane to ĉnew. This allows us to correct for local
object motions that may occur when interacting with the object without knowing the object
model beforehand. Note that our goal is not to accurately estimate the center of the object.
A rough estimate is sufficient for the hand to track its location. As long as the three fingers
can surround the object, we can collect meaningful interaction data.

Representation Learning for Object Identification The contact information we get
from the interaction policy is a sequence of contact positions Px

o , which can be viewed as
a very sparse point cloud. Our goal is to identify whether the obtained point cloud Px1

o

and the point cloud obtained by interacting with the target object Px2
otgt belong to the same

object. Note that even if they are the same object, the object can be in different poses.
Therefore, we need a shape representation that is agnostic to the object orientation but
still allows distinguishing between different objects. We can learn such representation using
contrastive learning [119], [157]–[159] — represent touches on the same object at different
poses similarly and touches across different objects differently. One potential representation
learning objective is the InfoNCE loss (as also discussed in [119]). Assuming we have some
parametric encoder f with parameters θ, this loss can be expressed as:

LNCE(θ) = E(x,x+)∼Do,{xk}∼D

[
log

exp fθ(x) · fθ(x+)∑
exp fθ(x) · fθ(xk)

]

where the positive distribution Do consists of touch sequences sampled from different poses of
the same object o and the negative distribution D is touch sequences sampled from arbitrary
poses of different objects. We treat the touch data (sequences of contact positions Px

o ) as a
sequential time serie, and parameterize the encoder fθ with a transformer architecture.

Once the representation is learned, the object of interest can be identified by comparing
the cosine similarity of touch sequences in the representation space z = fθ(Px

o ) of the touches
made blindly across various objects in the bin with the touches made on the target object
outside of the bin. This identified object can be used for object retrieval using a grasping
controller.

While more complex schemes could be developed for grasping [34], [160], we found that
the hand lends itself very naturally to grasping with a simple caging policy. Concretely, we
simply close the fingers until the fingertips touch the object with some amount of force. The
touch sensors on the fingertips are used to tell whether the fingertips touch the object with a
sufficient amount of contact area. After all three fingers touch the object with a sufficient
amount of contact, we lift the arm to grasp the object. We depict this policy in Fig 5.2,
and deploy it in an object-agnostic manner to grasp objects which have been localized and
identified.
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Figure 5.3: Depiction of the contrastive representation learning architecture for object
identification. The sequence of contact points goes through a transformer based encoder to
provide embeddings that are trained with the InfoNCE loss. Affinity in this representation
space can then be used for object identification

5.6 Experimental Evaluation

In this section, we aim to answer the following questions: (1) How effective is the overall
pipeline at identifying and grasping particular object instances from tactile sensing alone? (2)
Can a dexterous hand with tactile sensing localize movable objects without visual input? (3)
Is the data obtained by interacting with objects using the radial tapping strategy described
in Section 5.5.2 effective for classification? (4) Is the radial tapping interaction strategy for
object identification effective for movable objects? (5) Is representation learning using the
scheme in Section 5.5.2 effective for identifying novel objects?

We used the 150 object meshes collected in [19]. The meshes are from various datasets
including Google Scanned Objects [161] and ShapeNet [162]. We built the simulation
environment in PyBullet. The 3-D printed versions of the objects were used for testing in
the real world. For evaluation, we create test scenes by randomly choosing K objects from
this set and placing them in random poses in a bin.

5.6.1 Baselines and Evaluation Metrics

While no entire system exists that completes the entire task described in this work, we
compare it with several prior works that perform localization, identification, or grasping. For
localization, we compare with [150] which uses particle filters for localization. To understand
the importance of our particular interaction strategy, sensing modality and other design
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Figure 5.4: Film strip depicting phases of real world localization and identification with our
pipeline. We see that objects move minimally, while shapes are successfully identified and
grasped. Red box shows the localization, blue box shows the interaction, and the green box
shows the grasping.

choices in terms of being able to collect information without moving the object significantly
during object identification, we compared with two baselines: 1) radial tapping with noisy
contact detection rather than accurate binary contact direction (noisy contact) to test the
importance of accurately binarizing contact, 2) radial tapping without hand relocalization
in cases where the object slips as discussed in Section 5.5.2 (no relocalization) to show
the importance of the relocalization strategy. To understand the impact of specific model
architecture, we compared with two baselines: 1) an LSTM [116] rather than a transformer
with the InfoNCE objective, 2) using Triplet loss [163], [164] instead of InfoNCE loss function,
to understand the importance of the particular choice of transformer and infoNCE objectives.
Evaluation Metrics: For localization, we measure the error (in cm) between the identified
object center and the ground truth object center of mass (clustering error). Additionally,
we measure displacement from the original object positions to determine how disruptive
exploration is (perturbation error). We evaluated this for scenes with 3 objects. For
identification, we measure the success percentage in identifying the correct object out of
5 unique object instances that are randomly placed in the bin, as well as the number of
successful taps made with the object.

5.6.2 Simulation Results

We report results on localizing objects in different scenes in simulation with various different
objects in Table 5.1. We see that our proposed clustering scheme gets within 3.6 cm on
average across various objects while ensuring minimal displacement of only 1.7 cm during
exploration when evaluated on test objects approximately 10 to 15 cm in diameter. In
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comparison, the particle filtering scheme used in [150] performs competitively with ours on
scenes with single objects, achieving an average of 4.5cm of error. However, when increasing
the number of objects to three, the particle filtering struggles and the error increases to
6.4cm on average. This is likely due to the fact that increasing the number of objects also
increases the dimensionality of the particles, meaning exponentially more particles are needed
to achieve more accuracy.

Table 5.1: Results on object localization in simulation. For both strategies, we measure
the success rate (defined as when each predicted center is within δ = 7.5cm of the object
center), the average prediction error, and the average displacement of the objects during the
localization. Our clustering strategy scales to multiple objects much better than particle
filtering, likely because multiple objects introduce a higher dimensional search space.

Method Success Rate Center Error Object Displacement
Ours (1 object) 99.2%± 0.2% 3.2± 0.1cm 1.8± 0.1cm

Particle Filter (1 object) [150] 94.6%± 0.6% 4.5± 0.3cm 1.5± 0.1cm
Ours (3 objects) 91.3%± 1.7% 3.6± 0.2cm 1.7± 0.1cm

Particle Filter (3 objects) [150] 52.8%± 1.4% 6.4± 0.1cm 2.4± 0.1cm

Next, we show in Table 5.2, that our proposed identification technique is able to select
the correct object out of five novel objects with 69.8% accuracy.

Interaction: To understand why the interaction strategy is better than alternatives, we
study the impact of removing individual elements of the interaction strategy. Table 5.2 shows
the results of these ablations. First, we add random noise into the sensors, compromising the
system’s ability to quickly detect contact. This results in identification success dropping from
69.8% to 54.4%, likely due to greatly increased object motion. We also investigate the effects
of removing the relocalization policy described in Section 5.5.2. Without the ability to adapt
to object motion, identification accuracy drops to 58.5%, a drop of over 10%. Therefore, we
can conclude that both our relocalization policy, as well as accurate contact detection, are
necessary to achieve our system’s accuracy.

Identification: From Table 5.3, we see that the transformer with the InfoNCE objective
achieves a higher success rate than the alternatives. In particular, training with InfoNCE
loss improves performance over using Triplet loss

Method Accuracy (Validation Set) Accuracy (Training Set) Successful Taps
Ours 69.8%± 1.2% 88.4%± 0.9% 228.4± 0.7

No Relocalization 58.5%± 1.4% 61.8%± 1.3% 157.1± 0.8
Noisy Sensors 54.4%± 1.4% 59.3%± 1.4% 183.8± 0.7

Table 5.2: Effectiveness of interaction strategies on object identification in simulation. We
measure for each policy the overall accuracy when selecting out of five (previously unseen)
objects on both the training and validation object sets, as well as the average number of
successful taps the policy gets from the object. These experiments show that both our object
position estimation as well as accurate contact detection are essential for successful object
identification.
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Method Accuracy (5 objects) Accuracy (3 objects)
Transformer + InfoNCE loss (Ours) 69.8%± 1.2% 80.3%± 1.0%

LSTM + InfoNCE loss 65.7%± 1.3% 77.0%± 1.2%
Transformer + Triplet loss 52.3%± 1.4% 64.8%± 1.3%

Table 5.3: Effects of architecture and objective on object identification in simulation. Using
a more expressive architecture like a transformer helps with classification, while the InfoNCE
loss outperforms using a triplet loss.

Finally, in simulation, we evaluate the combined pipeline of object localization and
identification (leaving grasping for real-world evaluation in Section 5.6.3) in terms of the
percentage of trials where the successful object is identified and localized. We find in Table 5.4
that our pipeline is able to accomplish a success rate of 76.8% in simulation.

5.6.3 Real World Results

Success Rate Overall Localization Identification
Sim 76.8%± 2.3% 91.3%± 1.7% 80.3%± 1.0%
Real 59.4%± 11.3% 81.0%± 9.0% 75.7%± 9.8%

Table 5.4: Results on full pipeline object retrieval in simulation and the real world. We find
that there are expected drops in performance from simulation to the real system, but the
identification is still able to significantly outperform random chance

The pipeline transfers relatively well to the real world. Due to the lack of ground truth
object positions running on the real system, we qualitatively evaluate pipeline stage success.
Specifically, we deem localization to be successful if the robot is able to get its three fingers
around each object, and grasping to be successful if the robot is able to lift the chosen object.
When evaluated on three objects at a time, we find that localization has a success rate of 78%.
The object identification model trained in simulation has a success rate of 73% in the real
world. And similarly, grasping is able to accomplish a success rate of 71%. When this entire
system is executed sequentially, it accomplishes a success rate of 59.4%, as shown in Fig 5.4.
While this leaves room for improvement, in each part of the pipeline, it is significantly better
than chance and much better than a random policy.

5.6.4 Ablations

To understand how much moving objects affect classification performance, we perform an
ablation study in Table 5.5 repeating the comparisons in Section 5.6.2 with a fixed stationary
object. We find that classification is significantly easier, showing the difficulty of scenarios
with moving objects.

To understand just how much these methods help with moving objects, we also ran an
ablation study where we performed comparisons in Table 5.6 as we change object friction
and mass. The localization performance degrades as we use small friction and mass values,
especially low friction. This is expected as on a slippery surface, an object moves more easily
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Clustering

Top-down view

Figure 5.5: Visualization of planar occupancy and resulting clusters (the dots) during
localization compared with true object centers (the triangles). While showing non-zero error,
the relative object centers are well predicted enough for subsequent object identification.

Method Accuracy (5 objects) No. of Successful Taps
Ours (Moving Objects) 69.8%± 1.2% 228.4± 0.7
Ours (Static Objects) 86.2%± 0.9% 235.4± 1.2

Table 5.5: Effectiveness of interaction strategies on object identification in simulation for
static objects. We run our object interaction strategy on both moving and static objects and
find that static objects are easier to classify than moving ones, showing how challenging our
problem setting is

Friction Coefficient µ = 0.5 µ = 0.25 µ = 0.1
Localization Accuracy 91.3%± 1.7% 82.6%± 1.8% 17.3%± 1.7%

Identification 69.8%± 1.2% 65.3%± 1.3% 53.8%± 1.4%

Table 5.6: Effect of the coefficient of friction (µ) on localization and classification performance
in simulation. As friction reduce, localization becomes much more difficult and identification
accuracy also decreases due to increased object movement.

and suffers from large motion even if the robot hand applies a small force on it. However,
our identification pipeline suffers a much smaller performance drop, indicating the capability
of our method in handling non-static objects.

5.7 Discussion

The pipeline proposed in this work is only a starting point for tactile-only object localization
and retrieval. While we have designed a strategy using tapping to minimize object movement,
an interesting future research direction would be to explore how to localize, identify and
grasp objects that can move substantially.
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Chapter 6

Discussion

This thesis explored techniques for training dynamic dexterous manipulation policies, acceler-
ating policy learning for these challenging contact-rich tasks, and incorporating constraints
for training dexterous manipulation skills for downstream applications.

It may seem counterintuitive that we can train a controller to reorient thousands of
objects with different geometries without explicit knowledge of their shapes. One hypothesis
is that the controller can implicitly infer the object shape information using a history of state
information. However, even if the teacher policy is just a simple multi-layer perceptron, it
can still perform well. This indicates the existence of a strong baseline that can reorient
different objects with high precision without knowing any object shape information, either
explicitly or implicitly.

Nevertheless, this does not imply that knowing object shape information is not useful.
The overall precision and success rate of the reorientation controller can be further improved
if it can leverage the object shape information. For instance, we found that the failure rates
are much higher for objects with extreme aspect ratios, such as long and thin objects like
a spoon. We discovered that if we train a controller specifically to reorient this type of
object using the robot hand, we can achieve a very high success rate. However, reorienting
these kinds of objects becomes challenging when we train the controller with a mixed set of
different objects, even if we provide the policy with information about object shape. One
hypothesis is that in the early stages of training, the policy finds an easy solution that does
not utilize any object shape information and still achieves a good overall success rate across
objects, leading the policy to ignore shape information. Once the policy performance plateaus
after ignoring the shape information, it becomes difficult for the policy to further improve
performance by learning to utilize shape information (i.e., a local minima). On the other
hand, the ability to reorient objects within the hand is a valuable skill for many tasks, such
as vegetable peeling, tightening screws, opening bottles, and more. When developing in-hand
manipulation capabilities, it is crucial to consider the additional constraints imposed by the
intended downstream application tasks. For instance, the task of vegetable peeling introduces
specific requirements, like maintaining a firm grip after rotating the vegetable for stable
peeling. Accounting for these task-specific constraints during system development can lead
to more practical and effective solutions tailored to real-world applications.

The teacher-student framework proves to be a very useful tool in simulation for training
dynamic dexterous manipulation tasks. Having access to the full state information of rigid
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bodies in simulated tasks is a significant advantage. We can leverage this privilege to train
policies much more efficiently. Typically, the teacher and the student policy share the same
task objective. However, we also demonstrate the flexibility of using different task objectives
to train each policy. In the vegetable peeling project, the teacher policy was trained to
reorient the object in hand by a random orientation angle, while the student policy aimed
to reorient the object for a random duration. Such reformulation expands the application
scenarios of the teacher-student framework.

When training vision policies in simulation, a substantial portion of compute time is
dedicated to image rendering. If the vision policy operates on point clouds, it can be beneficial
to first train the policy with synthetic point clouds and then fine-tune it with realistic point
clouds. Since all state information is available in simulation, we can create synthetic point
clouds using the state data of rigid bodies and their CAD models. This process is highly
efficient and avoids image rendering in simulation. As generating synthetic point clouds is
fast and they contain more information than realistically rendered point clouds, training
with synthetic data can substantially accelerate policy learning, as demonstrated in our
experiments.

Future work

While our work advances the field of dexterous manipulation, it merely scratches the surface.
Many research opportunities lie ahead for further exploration and discovery.

Precise and Robust Dynamic Dexterous Manipulation: Achieving highly precise
manipulation with high success rates is challenging for dynamic dexterous manipulation tasks
involving fast-moving objects with significant inertia. For instance, getting less than 0.1 rad
orientation error in the system presented in Chapter 2 was challenging. Depth images in
real-world settings exhibited substantial noise. Future work could investigate leveraging RGB
images for control and incorporating tactile sensors on fingertips for contact detection to
improve success rates.

Dexterous Manipulation of Challenging Objects: Manipulating objects with
complex characteristics, such as small size or extreme dynamics like slippery or deformable
surfaces, poses significant challenges. The issue of manipulating small objects is exacerbated
by the use of large robot hands, such as the Allegro or Leap hands, commonly employed
in research. Manipulating small objects like pens or forks is particularly challenging with
these hands. Future studies could explore more compact hand designs to address this issue.
Furthermore, manipulating objects with extreme dynamics, such as slippery or deformable
objects, presents another layer of difficulty. Simulating the dynamics of deformable objects
can be time-consuming, which limits the speed of data collection. More research is needed to
investigate how to dexterously manipulate such objects.

Dexterous Manipulation for Real-World Tasks: Recent years have witnessed
significant progress in in-hand object reorientation [15], [18], [19], [50], [62], [71], [72], [165].
However, grounding these dexterous manipulation skills in downstream tasks remains under-
explored. For example, training robots to grasp a knife from a block, reorient it in hand, and
chop vegetables would impose additional constraints and spur new research problems.

Scalable Learning Systems for Dexterous Manipulation: In this thesis, we looked
at different manipulation tasks like reorienting objects in hand, peeling vegetables, and picking
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up objects blindly with tactile sensors. We proposed many techniques to teach robots these
skills. However, an open question remains: how can we scale up the learning process so that
robots can master many different dexterous manipulation tasks? Two common approaches
include learning from simulation data and learning from real-world data. In simulation, we
can use reinforcement learning algorithms to train a simulated robot agent to learn skills.
However, designing a good reward function for each task is not straightforward and can be
very time-consuming and difficult. One interesting research direction is to investigate how to
combine planning or optimization approaches [166] with model-free policy learning during
the training time. This hybrid approach could potentially make finding effective policies
easier in simulation environments. In the real world, one option is to set up a teleoperation
system where humans control the robot and demonstrate the desired behaviors. We can then
use imitation learning methods to train the policy. However, teleoperation with dexterous
robot hands on dynamic, fast-moving tasks is challenging. Future work could explore more
scalable solutions that allow robots to learn and perform many different types of dexterous
manipulation tasks more efficiently.

Closing remarks: Robotics is a system engineering discipline that requires a holistic
understanding of both the software and hardware components. Gaining this integrated
perspective on the AI/software and physical/mechanical aspects has been crucial, affording
me a more comprehensive view of the multifaceted challenges in robotics. Ultimately, it is
this holistic mindset that has enabled me to make progress and achieve the results laid out
in this thesis.
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Appendix A

Visual Dexterity

A.1 Supplementary Methods

A.1.1 Nomenclature

B the Big dataset
S the Small dataset
o observation
a action command
ā smoothed action command
π policy
r reward
E expert
S student
γ discount factor
α smoothing factor for action
q joint positions

∆θ the distance between the object’s current orientation and goal orientation
q̇ joint velocities
vo object’s linear velocity
ωo object’s angular velocity
z embedding vector

A(·) a sequence of action commands
Λ the entire space of possible dynamics parameters
λ dynamics parameters of a robot
f frequency

F o
d disturbance force on the object

mo object’s mass
θ̄ threshold value for orientation distance
¯̇q threshold value for joint velocity norm
ā threshold value for action norm
v̄ threshold value for linear velocity norm
ω̄ threshold value for angular velocity norm



p̄ threshold value for object’s distance from the hand
ϵθ a constant in reward function
P point cloud
lj jthlink on the hand
G number of fingers
pfi fingertip position of ith finger
τt joint torques
po object center position
R rotation matrix
p position
M number of links on a hand
C robot
h score function for trajectory similarity

N () Gaussian distribution
U() uniform distribution

A.1.2 Experiment details

Object datasets

We use the following object sets: Big dataset (B) and Small dataset (S). B is used
for training policies. It is a collection of 150 objects from internet sources such as Google
Scanned Objects [161]. The chosen objects cover a wide range of complex and non-convex
shapes, such as cars, shoes, and animals (see Figure A.1). We only choose objects that
are asymmetric or only reflective symmetric, which mitigates the multi-modality issue in
defining object poses [18]. However, such a choice for training does not restrict our system
from reorienting symmetric objects, a claim we empirically evaluate. S is used for evaluating
generalization performance. It contains 12 objects from the ContactDB [64] dataset with no
overlapping object shape with dataset B. We use a subset of 5 objects from S to evaluate
out-of-distribution (OOD) performance in the real world.

Object dataset preprocessing In order to make the objects manipulable by the robot
hands, we need to scale their meshes to proper sizes. In simulation, we center each mesh and
manually scale each object mesh to a proper size compared to the robot hand size. Overall,
the longest side of the objects’ bounding boxes lies in the range of [0.095, 0.165]m. The mass
of each object is randomly sampled from [0.03, 0.18]kg. The mass of the objects used in the
real-world tests is shown in Table A.2.

Convex Decomposition We use approximate convex decomposition (V-HACD [167]) to
perform an approximate convex decomposition on the object and the robot hand meshes for
fast collision detection in the simulator. The decomposition resolution is 100, 000.



Training setup

Observation space for the teacher policy The inputs to the teacher policy, oE
t ∈ R19G+21,

include joint positions (R3G) and velocities (R3G), fingertip pose (R7G) and velocities (R6G),
object pose (R7) and velocity (R6), target orientation expressed as a quaternion (R4), and the
rotation difference between current and target object orientation expressed as a quaternion
(R4), where G represents the number of fingers. The pose of each finger is represented by a
position (R3) and an orientation component (quaternion; R4).

Teacher policy architecture Our teacher policy is an MLP (Multilayer Perceptron)
network consisting of three hidden layers (512, 256, 256 neurons) and ELU (Exponential
Linear Unit) activation functions [168]. We use Adam [169] to optimize the networks.

GPU hardware In our experiments, we use one NVIDIA GeForce RTX 3090 for training
the teacher policies, and one NVIDIA Tesla V100 for training the student (vision) policies.

Hyper-parameters Table A.1 lists the hyper-parameters used in the experiments.

Point cloud voxelization The point cloud input to the policy network has no color
information and is voxelized in a resolution of 0.005m.

Success criteria The success criterion defines when the agent has accurately reoriented
the object in the target configuration. Its purpose is two-fold: a reward signal during training
and a criterion that signals success to stop the reorientation policy and thereby end the
episode during training. A straightforward success criterion is judging whether an object’s
orientation is close to the target orientation (orientation criterion). The controller learned
using the criterion when evaluated in simulation results in a behavior wherein the robotic
fingers stabilize the object when its orientation is close to the target. However, the same
controller, when evaluated in the real world, often does not result in fingers stopping when
the object orientation is close to the target leading to overshooting. Consequently, instead
of stopping, the object oscillates around the target orientation. We believe this is a result
of sim-to-real gaps, including the control latency, observation noise, and the difference in
dynamics. We ameliorate this issue by expanding the definition of success criterion to penalize
finger and object motions explicitly. The task is considered completed successfully in the
simulation if all the following three criteria are satisfied. First, the orientation criterion is
satisfied when |∆θt| < θ̄ where ∆θt is the distance between the object’s current and target
orientation. Second, the finger motion criterion requires the joint motion of the robot to be
small and is satisfied when ||q̇t|| < ¯̇q and ||at|| < ā where q̇t is the joint velocities at time step
t, at is the policy output. Third, the object motion criterion requires the object’s velocity to
be small. It is satisfied when ||vo

t || < v̄ and ||ωo
t || < ω̄ where vo

t ,ω
o
t denote object’s linear

and angular velocities respectively.
θ̄, ¯̇q, ā, v̄, ω̄ are manually defined thresholds. The finger and object motion criteria act as

regularizers to explicitly encourage the policies to slow down the motion near the end.



Compute cost Energy Cost: We used a single NVIDIA V100 (32GB memory) GPU to
train the policy. The total training time, including the teacher and two student stages, was
less than 400 hours. The GPU has a maximum power consumption of 250W when running
at full capacity, but our learning system did not always use the GPU to its fullest extent.
Therefore, the maximum power consumption was not always reached, resulting in a GPU
power consumption of no more than 100kWh. Based on the average electricity cost in the
United States of 15.64 cents/kWh in May 2022, the total cost of GPU computing is less than
$15.6. Additionally, if we consider the energy cost of other workstation components, such as
the CPU and fans, the power rate remains under 1000W. Running the entire system at full
utilization for 400 hours would cost around $62.4.

GPU Cost: The V100 GPU model designed for HPC (High-performance Computing) is
relatively expensive, costing about $4K on Amazon. We used it only because it is the default
GPU model in our servers. However, our training is not limited to V100 and can also be
performed on other GPUs. For example, the training can be done using a 3090 RTX GPU,
which costs about $1.4K. During deployment, we have also successfully run the policy on a
workstation with a 2080Ti GPU, which costs only $700. Therefore, the cost of computing
hardware can vary greatly depending on the available GPUs. Our policy network is not very
large, so it can be trained or deployed on cheaper GPUs, such as the 3090 RTX.

Real-world setup

We used two robot hands in our experiments: a three-fingered hand (D’Claw) and a four-
fingered hand. The three and four-fingered hands consist of nine and twelve Dynamixel
motors, respectively. The hands are fixed on an 80/20 aluminum frame. Since our goal is to
construct a real-world ready reorientation system that can be used on a mobile manipulator
in the future, we only use one RealSense D415 camera to observe the robotic hand manipulate
the object. The robot and camera are calibrated using the dual quaternions method [170].
We only perform camera calibration on one of the robot fingers, and the ArUco marker is
attached to the fingertip. Due to the limits on the finger’s motion (3 DoFs), it is impossible
to span a broad range of positions for the ArUco marker, resulting in noisy calibration with
noticeable errors. Empirically we found such errors didn’t influence the performance of our
system. We use ROS [171] for communication with the Dynamixel motors and use a threading
lock to prevent simultaneous reading and writing on the motors as Dynamixel motors use
a half-duplex UART (Universal Asynchronous Receiver Transmitter) for communication.
Each Dynamixel motor is controlled via position control in 12Hz. The Dynamixel-specific
parameters noted in Dynamixel’s control table are set as follows: P is 200, and the D gain is
10. The observations available to the controller are the joint positions of each motor and the
depth image from the Realsense camera.

Real-world observation The observation consists of the joint positions of each motor
in the robotic hand and the depth image from the RealSense camera. We convert both
these sensory inputs into a point cloud. The joint angles are converted into a point cloud as
follows: Using the robot’s CAD model, we uniformly sample points on each link and cache it.
Given a sequence of joint positions, we use forward kinematics to compute the pose of each
link and accordingly transform each of the associated pre-cached point clouds. We call the



concatenated point cloud of all links as proprioceptive point cloud. The depth image is also
converted into a 3D point cloud (exteroceptive point cloud). Both point clouds are merged
and used as inputs to our policy. We do not assume access to any other sensory information.

Stopping criteria The robot stops when it is deemed successful as per the success criteria
described above. Evaluating the success criteria requires knowledge of object motion (object
motion criterion), orientation distance (orientation criterion), and fingertip motion (finger
motion criterion). Although we can measure the fingertip motion (q̇t and at) in the real world,
we cannot directly measure the object’s motion and pose. To obtain the orientation error, we
train a predictor that re-uses features from the policy network to predict |∆θt| (see Figure
7A). Predicting object motion from point clouds is harder, and we found it unnecessary to
estimate. We found that satisfying only the orientation criterion and finger motion criterion
is sufficient to stop the object at the target orientation successfully. We also found it sufficient
only to check ||at|| < ā to detect finger motion during real-world deployment.

Real-world quantitative evaluation setup We set up a motion capture system using
six OptiTrack cameras to evaluate the policy performance in the real world quantitatively.
We add markers on the surface of evaluation objects. Even though the added markers add
little bumps on the object’s surface and therefore change the dynamics, we found our policies
to be robust enough to deal with these changes. The output of the motion capture system is
the object pose. We use the tracked object pose when the stopping criteria are satisfied to
compute the error from the target orientation. We only use the motion capture system for
quantitative evaluation, and it is not required by our system to reorient objects. Note that
the motion capture system can occasionally fail to track the objects when the fingers heavily
occluded the markers. When it happens, we discard this test as we cannot get a quantitative
error in this case.

Computing the orientation error for symmetric objects

With symmetric objects, it is hard to determine whether the controller completes the task or
not unless we know in what way the object is symmetric. We can still use a motion capture
system to get the object’s pose. However, we cannot directly compute the distance between
the orientation from the motion capture system, and the goal orientation as there exist many
different orientations that make objects look similar. Therefore, we need to find out all such
possible goal orientations. Although scaling this up to a wide variety of objects is challenging,
in our experiments, we tested on two symmetric objects (a rectangular cuboid and a cube)
whose symmetric axes can be easily enumerated. In other words, on the rectangular cuboid
and cube, we can easily identify all possible rotational axes upon which the objects can be
rotated by some angle and end up with the same visual appearance. Then we compute the
distances between the actual object orientation and all possible goal orientations and find
the minimum distance.



A.1.3 Fabrication

Fingertip Fabrication We experimented with both rigid and soft fingertips. The rigid
fingertips were fabricated using 3D printing. For the soft fingertips, we designed a rigid inner
skeleton coated in a soft outer elastomer. The elastomer allows the robot’s fingertips to have
increased compliance and friction when interacting with the plastic objects, as the plastic
internal skeleton helps maintain the shape of the fingertips without too much deformation,
similar to a human finger. The design for the internal skeleton used is shown in Figure A.2.

The fingertip skeletons and molds for the elastomer are 3D printed on the Markforge
Onyx One using the Onyx filament. To help improve the adhesion of the silicone to the Onyx
material, the skeletons are sanded with 400-grit sandpaper, corona treated, and primed using
the Dow DOWSIL P5200 Adhesion Promoter.

The gel coating for both fingertip designs is made from Smooth-On’s Ecoflex platinum-
catalyzed silicone. The elastomer has a shore hardness of 00-10 and exhibits a tacky finish
when fully cured. A ratio of 1:0.008:0.005 by weight of the Ecoflex mixture (Parts A and
B combined), Smooth-On Silc Pig White, and Smooth-On Silc Pig Black are combined to
provide the gray color of the fingertips. To ensure the surface of the gel elastomer is smooth,
XTC-3D is applied to the inside of the 3D-printed molds to smooth out any texture. The
uncured Ecoflex mixture is poured into the molds and degassed to eliminate air bubbles from
forming on the elastomer’s surface. The skeletons are pushed into the top-down molds and
left to cure at room temperature for 4 hours.

Object Fabrication We use 3D printing to fabricate objects that are used for quantitative
evaluation. Each object was printed with a 0.25mm layer height on the Lulzbot TAZ Pro
Dual Extruder using PolyTerra PLA filament in different colors. Table A.2 lists the mass of
each object used in real-world experiments. Note that to test the transfer of our results, we
also included real household objects in our test set.

A.1.4 Overcoming sim-to-real gap

Dynamics Identification

Action commands In this work, we send two types of action commands to the robot and
collect the joint movement trajectories. The first type of action command is a step command
(A(t) = c where c is a constant joint position command). We collect the step responses from
the motors. The second type of action command is sin-wave action commands in different
frequencies. The sin-wave command is A(t) = sin(2πft) where f ∈ [0.05, 1.5]Hz. For both
types of action commands, we scale the amplitude proportionally to the joint limit of each
joint.

Dynamics parameters to be identified We perform dynamics identification on the joint
stiffness, damping, and velocity limit. Only one finger on the real robot hand is used to
collect the response trajectories. Each joint on the finger is identified individually, and the
same group of dynamics parameters of the finger is applied to the remaining fingers in the



simulator. Figure A.3, Figure A.4, and Figure A.5 show that the simulated joints behave
similarly to the real joints given the same control commands.

Response curves In Figure A.3, Figure A.4, and Figure A.5, we show the response curves
of the three joints on a finger given a sequence of action commands both in simulation and in
the real world. We can see that after the dynamics identification, the simulated joints can
give a similar response as the real joints. We also observe that the real joints (the orange
lines) usually have a slightly slower response than the simulated joints (the green lines). This
is due to the latency of a real robot hand system. We did not model the latency in simulation
and found that our controller still works on the real robot hands. It is possible that including
the latency in simulation might further improve the controller’s real-world performance, for
which we leave the investigation to future work.

Robust policy learning

Observation and action noise We add Gaussian noise to the action commands (Table A.3)
for training all policies. The teacher policy is trained with state noise as detailed in Table A.3.
The vision policies are trained with data augmentation on the point cloud observation.
With a probability of p = 0.4, we add Gaussian noise N (0, 0.004) to the point positions.
Independently, with a probability of p = 0.4, we randomly drop out q ∈ [0, 20] percent of the
points.

Dynamics randomization We train policies with small randomization in the joint dynamic
parameters: link mass, joint friction, and joint damping. We add large randomization to
the object dynamics parameters such as mass friction, and restitution. Table A.3 lists the
amount of randomization we add to the dynamics parameters and the observation/action
noise.

Disturbance force on the object With a probability p = 0.2 at each time step, we apply
a disturbance force with a magnitude of F o

d = cdm
o where mo is the object mass, cd is a

coefficient and a random force direction sampled in the SO(3) space.

A.2 Supplementary Discussion

A.2.1 Student policy closely tracks the performance of teacher policy

We evaluated our learned policies on the training object dataset (B) and the testing object
dataset (S), respectively, in simulation. To characterize how well a policy behaves in the
testing time, we use the empirical cumulative distribution function (ECDF) as the metric
to measure the distribution of the errors (∆θ). Figure 7D shows the ECDF curves for the
teacher policy and student policies at stages 1 and 2, respectively. Using fully-observable
low-dimensional state information, the teacher policy achieves the highest success rate at
any error threshold. The student policies are able to track the teacher policy’s performance
closely.



A.2.2 Symmetric object reorientation

Learning visual policies to reorient symmetric objects is challenging because objects in
different but symmetrical poses appear similar leading to multimodality[18]: Given a target
orientation, many different poses of a symmetric object match the goal configuration visually,
leading to different but equally good action sequences. It is challenging to learn a stochastic
vision policy that explicitly accounts for multi-modality. An alternative is to use implicit
models [172]. However, these models are computationally inefficient, which prevents their use
in a real-time controller.

The key intuition behind how we overcome this problem is that we need to account for
multi-modality only at training time to ensure that a correct action sequence is not incorrectly
penalized. However, at deployment, it is not necessary to distinguish between modes, and
reorienting the object into any of the equivalent symmetric configurations would suffice. We
bypass the problem of accounting for multi-modality at training time by using only unimodal
objects – asymmetric or reflective-symmetric objects. Our hypothesis was that if we are able
to successfully learn a controller that operates over a diverse range of asymmetric shapes, it
may also generalize to symmetric objects.

To verify if this hypothesis was true, we tested our controller on two symmetric objects
(a rectangular cuboid and a cube) with table support. Figure 4F shows that our controller
still works reasonably well. Nonetheless, in this case, the orientation error tends to be higher
than non-symmetric objects (Figure 4E). Although it is hard to pinpoint whether this is due
to the performance drop in predicting the actions or predicting when the goal orientation is
reached, we believe the latter plays a bigger role.

A.2.3 Ablation on the reward terms

To investigate how reward terms and their coefficients affect policy performance, we conducted
an ablation study where we varied the values of c1, c2, and c3 in Equation 2.1. For the sake of
brevity, we trained policies on a single object (object #10) without domain randomization.

As illustrated in Figure A.6, increasing the value of c1 led to an improvement in policy
learning, but too large a value of c1 resulted in a decline in performance. Similarly, increasing
c2 improved policy learning, but after c2 = 1.0, the performance began to deteriorate. In
contrast, policy learning was found to be less sensitive to c3, which encourages fingers to
remain near objects, and to c5, which discourages fingers from pushing objects away. However,
we did observe that having c3 < 0 and c5 < 0 was advantageous, as the learning curves
exhibited substantially higher variance when c3 = 0 and c5 = 0. The fourth term (c4) imposes
an energy penalty to prevent excessive energy usage on the motors. As shown in Figure A.6, a
c4 value of 0 allows the policy to learn the fastest, as there are no energy constraints. However,
as c4 increases, the learning speed decreases. When c4 becomes too large, the learning process
begins to fail.

A contact penalty term (c6, Equation 2.7) promotes in-air object reorientation by reducing
table dependency. Policies trained with the penalty achieved 87% in-air success, as those
without achieved only 4.1%. This clearly shows that the contact penalty term benefits the
in-air reorientation.



A.2.4 Using a different encoder for goal

As shown in Figure A.7b, we also found that stacking the goal object point cloud onto the
scene point cloud and feeding it as a whole into the 3D CNN encoder (Figure 7B) leads to
faster policy learning than using two separate 3D CNN encoders (Figure A.7a) to process the
scene point cloud and the goal object point cloud.

A.2.5 Stage 0: speeding up vision policy training with visual pre-
training

Can we further speed up the vision policy learning? As shown in Figure 7A, our policy
network is a recurrent network. Training a sequence model can take longer training time. We
investigated whether we can first pre-train the vision network component (sparse 3D CNN)
in the policy network without involving the RNN component (Stage 0), and then fine-tune
the policy with the pre-trained vision network (Stage 1). To pre-train the vision network,
we explored various representation learning techniques, such as learning a forward/inverse
dynamics model and reconstructing the input point cloud to pre-train the vision network.
To our surprise, although most pre-training techniques lead to mild, if any, improvement
in the policy learning speed, it’s beneficial to first train the vision network to predict some
low-dimensional state information of the system. More specifically, in the pre-training stage,
the vision network is trained to predict the object category, the distance between the object’s
orientation and the goal orientation, and the joint positions of the robot hand (qt). Note
that we do not predict object pose, which would require a definition of reference frame on
the objects. To further speed up the training, we do not use simulation at all to generate
the training data at this stage. Instead, we generate completely random synthetic data for
training (Figure A.8). First, we convert meshes of the robot links and objects into their
corresponding canonical point clouds. Next, we randomly sample joint angles and use forward
kinematics to get the pose of each robot link and randomly sample object poses and goal
poses. Finally, we transform the canonical point clouds of each part according to their poses
and get the point cloud of the entire scene.

For rotational distance prediction, we experimented with two representations. The first
one is the 6D representation [173] of the relative rotation matrix Ro

t (R
g)−1 between the

object’s current orientation Ro
t and goal orientation Rg. The second one is the scalar distance

between the two rotation matrices (∆θt). We found that pre-training the vision network to
predict the scalar distance leads to faster convergence during pre-training than predicting the
6D representation of the relative rotation matrix. In addition, we experimented with two ways
of using the output of the vision network for the state prediction tasks: (1) three prediction
tasks use the same embedding (Figure A.9a), (2) we split the vision network output into three
parts (object embedding zo, goal embedding zg, robot embedding zr), and each prediction
task only uses the relevant embedding (Figure A.9b). When training to predict the scalar
rotational distance, we don’t find these two ways of using the vision network output to make a
difference. However, when training to predict the 6D representation of the rotational distance,
splitting the embedding leads to a notably faster pre-training (Figure A.10a). After the
pre-training converges, we proceed to Stage 1 using the pre-trained vision network backbones.
We found that all four pre-training schemes lead to a substantial and similar speedup for



policy learning (Figure A.10b). We also did an ablation study on the importance of different
pre-training tasks in Section A.2.6.

A.2.6 Ablation on the prediction tasks for vision network pre-
training

We perform ablation study on different prediction tasks for pre-training the vision networks in
Stage 0. In Figure A.11, Full represents the case of training to predict all three tasks (the scalar
rotational distance, the joint positions, and the object category) with the single embedding
architecture. And our ablation studies remove each prediction task individually. As shown in
Figure A.11, removing the rotational distance prediction task makes the pretraining much
easier (loss goes down much faster), but it also negatively affects the benefit of pre-training
the most. It implies that the task of predicting the rotational distance is most useful for
pre-training the vision network. Removing the task of predicting the joint positions slightly
reduces the benefit of pre-training. Removing the task of predicting the object category has
almost no effect on the policy learning.

A.2.7 Analysis for object reorientation in the air in simulation

We can get three outcomes when using the four-fingered hand to reorient objects in the air:
the episode succeeds (Success), the controller stops the object with an orientation error bigger
than 0.4 radians (Orientation error), the object falls (Object falls), or the controller runs
out of time and fails to reach the goal orientation (Time out). To see the ratio of each case,
we tested the vision controller, which takes as input the realistically rendered point cloud,
on the twelve objects in Figure A.12a in simulation. We set the testing episode length to
180 time steps, which is equivalent to 15 seconds. For the first 24 time steps (2 seconds),
we keep the table below the hand so that the hand can first grasp the objects. After the
24th step, we remove the table and check if the controller can reorient the objects in the air.
Note that this is a rough approximation of the real-world testing scenario where we hand
over the object to the robot hand and release the object after the hand grasps the object,
because when we remove the table, there is no guarantee that the hand happens to grasp the
object stably at the 24th time step. Nonetheless, empirically, we found only 10.3% of the
1200 testing episodes have the issue of object falling immediately (we check if the object falls
from 24 steps to 30 steps) after the table is removed, suggesting that this is still a reasonable
approximation of the real-world testing scenarios. To emulate how we stop the policy in the
real world, we also stop the policy in the simulation if |∆θpredt | < θ̄ (we check the predicted
orientation distance from the policy network) and ||at|| < ā.

Each object is tested 100 times with a random initial pose and goal orientation. We plot
the percentage of each case (Success, Orientation error, Time out, Object falls) in Figure A.12c.
The figure shows that the majority of failures occur because objects fall out of the hand.
For object #12, the percentage of failures due to large orientation errors is particularly high
because this object is nearly symmetric in the point cloud representation. Figure A.13a and
Figure A.13b show the comparison of two objects between the orientation error and episode
time in simulation and in the real world, respectively. The results suggest that there are still
gaps in the policy performance between simulation and the real world. Nonetheless, even in



the real world, the median time for successful reorientation in the full SO(3) space is less
than 7 seconds, demonstrating the fast and dynamic manipulation capability of the system.
Figure A.13c and Figure A.13d show the distribution of the orientation error and episode
time of the non-dropping episodes for all twelve objects in the simulation.

A.2.8 Discussion on precise manipulation

In this study, we adopted a success threshold of 0.4 radians, consistent with the definition used
in a previous study [15]. It is natural to wonder if our controller can accurately reorient objects
with a smaller reorientation error. To provide more insight into the system performance
at a stricter success criterion of 0.1 radians, we did more analysis in simulation. We find
that at 0.4 radians, the success rate is 72.3% (from 1200 tests on the 12 objects shown in
Figure A.12a), but drops to 25.9% at 0.1 radians. However, this drop is not due to the
inability of our controller to perform precise manipulation. It is, in fact, largely attributed to
the failure of the module that predicts the rotational distance between the object’s current
and target orientation, which in turn is used to stop the hand. For instance, if we use the
ground-truth distance to stop the controller, success rates of 67.4% and 80.9% are achieved
at 0.1 radians and 0.4 radians thresholds, respectively.

To provide readers with a better understanding of the accuracy of the rotation distance
predictor, we have also included scatter plots comparing ground-truth and predicted distance
in Figure A.14. More specifically, we conducted simulation tests on each of the twelve objects
100 times, with a success threshold θ̄ set to 0.1 radians. For each trial, we recorded the
trajectory and predicted rotational distance at each time step. We then plotted the actual
and predicted rotational distances between the object and the goal orientation in Figure A.14.
The figure demonstrates that although the prediction model performs reasonably well overall,
it suffers from providing sufficient accuracy in the region where ∆θ ≤ 0.4 radians, which is of
particular interest for precise manipulation. For example, among the data points for which
the actual ∆θ ≤ 0.1 radians, only 29.4% of the predictions correctly estimated distances
within 0.1 radians. When the actual ∆θ ≤ 0.4 radians, 85.9% of the predictions estimated
the distance to be less than 0.4 radians. Inaccurate predictions of rotational distance, coupled
with observation and command delays in the real system, make precise manipulation with
∆θ ≤ 0.1 radians challenging. This indicates one research direction for improving orientation
accuracy is to train a better predictor for orientation distance or a better classifier for
identifying whether the goal orientation has been reached.



Train Test

Figure A.1: Object dataset. On the left of the red line, we show the dataset B (the training
dataset). And on the right of the red line, we show the dataset S (the testing dataset in
simulation).

(a) (b) (c)

Figure A.2: 3D models for the robot hands. (A): three-fingered robot hand. (B): four-
fingered robot hand. (C): fingertips with a rounded skeleton and the grey shell represents
soft elastomer.
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Figure A.3: Joint response curves. We identified the dynamics of a finger joint (the top
one) and show the results. Three curves are plotted: (1) the command sent to the joint,
(2) the joint’s simulated response using the identified dynamics parameters, (3) the joint’s
real-world response. The identified dynamics parameters allow the simulated joint to move
similarly to the real joint.
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Figure A.4: Joint response curves. Dynamics identification on a middle joint of one finger.
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Figure A.5: Joint response curves. Dynamics identification on a bottom joint of one
finger.
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Figure A.6: Reward function ablation. Different learning curves as we vary the values of
c1 (a), c2 (b), c3 (c), c4 (d), c5(e).
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Figure A.7: Encoder architectures. (a): we tried using separate encoders for the goal
point cloud and the scene point cloud. (b) shows that using separate encoders leads to
considerably slower policy learning than using a single encoder on merged goal and scene
point clouds.
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Figure A.8: Synthetic data. The synthetic data generation in Stage 0.
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Figure A.9: Different architectures for prediction. In (a) and (b), we designed two
architectures, with the difference being whether the output of the vision network is split into
entity-specific embeddings or not.
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Figure A.10: Learning curves for pretraining. (a) shows the learning curves under
different training conditions. The red dots represent the checkpoints we took for policy
learning. (b): After the pre-training, we use the vision network as the policy backbone and
train the policy with BC. The State policy is a student policy that takes as input the joint
positions, rotation matrix of the relative orientation, and object position, which can be seen
as an upper bound for the vision policy. Vision from scratch (stage 1) means the vision
policy learning in stage 1 only without stage 0.
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Figure A.11: Effects of different prediction tasks. (a): loss curves for the pre-training
in Stage 0. (b): learning curves for training the vision policies with the pre-trained vision
networks in Stage 1.
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Figure A.12: Precise manipulation analysis. Tests for object reorientation in the air in
simulation. We tested each object in Figure A.12a 100 times with random initial pose and
goal orientation. (a): the objects we used for testing (same as Figure 3A). (b): We show
the relationship between the reorientation error and the distance (∆θ0) between the object’s
initial and target orientation on non-dropping tests (around 90%). We randomly sub-sample
the tests on in-distribution objects to make sure the total numbers of points are the same for
in-distribution objects and out-of-distribution objects in this plot. (c): We categorize the
testing results for each object into four cases: Success, Orientation error (where the controller
stops the object with an orientation error greater than 0.4 radians), Time out, Object falls.
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Figure A.13: Precise manipulation analysis. Following Figure A.12, (a) and (b): With
object #5 and #10, we compare the distribution of the orientation error and the elapsed
time of the episodes in simulation and in the real world. The controller achieves lower error
and uses shorter time in simulation. We can see there is still a gap between the simulation
and real-world performance. (c) and (d): we show the distribution of the reorientation error
and episode time of the non-dropping testing episodes on all twelve objects in simulation.
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Figure A.14: Reorientation error analysis. We plotted the actual and predicted rotational
distance between the object and goal orientation from 1200 testing episodes on twelve objects
in Figure A.12a. (b) is a zoomed-in version of (a) for x ∈ [0, 0.4] radians and y ∈ [0, 0.4]
radians. The region between the two red lines indicates an error of less than 0.1 radians.
Overall, our rotational distance predictor performs reasonably well, but it has limited accuracy
when the actual distance is ∆θ ≤ 0.4 radians, indicating the difficulty of precisely predicting
the rotational distance.



Table A.1: Hyper-parameter Setup

Hyperparameter Value Hyperparameter Value Hyperparameter Value
Teacher policy

# of envs 32000 batch size 64000
# of rollout steps
per policy update

8

GAE lambda 0.95 Reward discount 0.99
# of policy update epochs

after each rollout
12

Actor learning rate 0.0003 Critic learning rate 0.001 PPO clip range 0.1
ϵθ 0.4 radians c1 800 c2 1
c3 -1 c4 -20 c5 -100
c6 -1 c7 -2 p̄ 0.15
p̄z 0.16 ¯̇q 0.25 v̄ 0.04
ω̄ 0.5 cd 15

Student policy

# of envs (Stage 1/Stage 2) 400/260 batch size (Stage 1/Stage 2) 40/20
# of pts sampled from

each CAD model
500

# of pts sampled from realistically
rendered point cloud

6000 learning rate 0.0003
# of rollout steps
per policy update

80

Table A.2: Object mass.

Object Mass (g) Object Mass (g) Object Mass (g) Object Mass (g)

158.0 95.0 111.1 116.9

151.8 70.3 104.3 92.1

106.3 140.9 86.8 117.6

148.1 162.1 106.1 50.1

60.5 104.1 85.7 180.9

244.0 127.9 137.1 67.1



Table A.3: Dynamics Randomization and Noise

Parameter Range Parameter Range Parameter Range
state observation +N (−0.002, 0.002) action +N (0, 0.05) joint stiffness ×U(0.8, 1.2)
joint damping ×U(0.8, 1.2) link mass ×U(0.8, 1.2) friction for robot, objects U(0.24, 1.6)

friction for table U(0.05, 1.0) restitution U(0.0, 1.0) object size scale U(0.95, 1.05)
object mass U(0.009, 0.324) kg

N (µ, σ): Gaussian distribution with mean µ and standard deviation σ.
U(a, b): uniform distribution between a and b.
+: the sampled value is added to the original value of the variable. ×: the original value is scaled by the sampled value.



Appendix B

Parallel Q-Learning

B.1 Pseudo Code

Algorithm 1 Actor Process (main process)
for n = 1 : Wa do
π ← policy network from P-learner process
Initialize an empty buffer B = ϕ
for t = 1 : H do
at ← π(st) with mixed exploration noise
(rt, st+1)← envs.step(at)
B = B ∪ {st,at, rt, st+1}

end for
Q1, Q2 ← Q functions from V-learner process
send B, π to V-learner, send {st} in B, Q1, Q2 to P-learner
sleep for ta seconds to satisfy βa:v

end for

Algorithm 2 P-learner Process
Initialize an empty buffer Bp = ϕ
for n = 1 : Wp do

if new data received then
{st} ← from Actor process
Q1, Q2 ← from Actor process
B = B ∪ {st}

end if
sample a batch of {st}
update π by maximizing the mini=1,2Qi(st, π(st))
sleep for tp seconds to satisfy βp:v

end for



Algorithm 3 V-learner Process
Initialize an empty buffer Bv = ϕ
for n = 1 : Wv do

if new data received then
{st, at, rt, st+1} ← from Actor process
π ← from Actor process
Q1, Q2 ← from Actor process
B = B ∪ {st}

end if
sample a batch of {st, at, rt, st+1}
update Q1, Q2 by minimizing the mean-squared Bellman error (with Double Q-learning)
sleep for tv seconds to satisfy βp:v, βa:v

end for

B.2 Training setups

B.2.1 Hyper-parameters

We use the hyper-parameter values shown in Table B.1 and the reward scaling shown in
Table B.2 for all the experiments unless otherwise specified. As for PPO, we use the same
hyperparameter setup in [30].

Table B.1: Hyper-parameter setup for six Isaac Gym benchmark tasks

Hyper-parameter PQL(ours) DDPG SAC

Num. Environments 4,096 4,096 4,096
Critic Learning Rate 5× 10−4 5× 10−4 5× 10−4

Actor Learning Rate 5× 10−4 5× 10−4 5× 10−4

Learnable Entropy Coefficient - - True
Optimizer Adam Adam Adam
Target Update Rate (τ) 5× 10−2 5× 10−2 5× 10−2

Batch Size 8,192 8,192 8,192
Num. Epochs (βa:v) 8 8 8
Discount Factor(γ) 0.99 0.99 0.99
Normalized Observations True True True
Gradient Clipping 0.5 0.5 0.5
Exploration Policy Mix Mix -
N -step target 3 3 3
Warm-up Steps 32 32 32
Replay Buffer Size 5× 106 5× 106 5× 106



Table B.2: Reward scale

Reward scale

Ant 0.01
Humanoid 0.01
ANYmal 1.0

Franka Cube Stacking 0.1
Allegro Hand 0.01
Shadow Hand 0.01
Ball Balance 0.1
DClaw Hand 0.01

B.2.2 Hardware Configurations

Table B.3 lists the hardware configurations of the workstations we used for the experiments.
We use the machines with GeForce RTX 3090 for experiments by default. We also measure
how much time it takes for the simulator to generate 1M interaction data with 4096 parallel
environments on Ant and Shadow Hand . We generate 1M data via the following command.

for i in range(244):
action = torch.randn((4096,

envs.action_space.shape[0]),
device=’cuda’)

out = envs.step(action)

Table B.3: Hareware configurations on different workstations

Workstation 1 Workstation 2 Workstation 3 Workstation 4

CPU AMD Threadripper 3990X Intel Xeon Gold 6248 AMD Rome 7742 Intel Xeon W-2195

GPU GeForce RTX 3090 Tesla V100 Tesla A100 GeForce RTX 2080 Ti

GPU CUDA Cores 10496 5120 6912 4352

GPU FP32 TFLOPs 35.58 16.4 19.5 13.45

Time for generating

1M data (N = 4096) (s)

Ant 1.678± 0.006 2.117± 0.038 1.999± 0.004 3.397± 0.014

Shadow Hand 6.706± 0.028 9.051± 0.035 8.653± 0.101 10.885± 0.025

B.2.3 Vision experiment setup

We render the RGB camera image in a resolution of 48× 48. The CNN part of our vision
network g(ot) is as follows:

Conv(3,32,3,2)-BN(32)-ReLU-3x(Conv(32,32,3,2)-BN(32)-ReLU)

where Conv(a,b,k,s) is a Convolutional layer with input channels a, output channels b,
kernel size k, stride s.



Since our policy input contains a history of observations (ot−2, ot−1, ot), we use the same
CNN to extract the feature of each observation and then concatenate all the embeddings.
Then, the concatenated embedding goes through an MLP network h:

FC(256)-ReLU-FC(63)-ReLU-FC(3)

In summary, at each time step t, the policy output is h[cat(g(ot−2), g(ot−1), g(ot))]. Storing
images in a replay buffer can take up a lot of memory. Therefore, we experiment with different
placements of the replay buffer: (1) put the replay buffer on a GPU with a big memory, (2)
put the replay buffer on CPU RAM. We use the same A100 GPUs for all these image-based
experiments. Figure B.1 shows that our method (PQL) works with either the replay buffer
on the GPU or CPU, and it achieves much faster learning and better performance than PPO.
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Figure B.1: (a): the Ball Balancing task in Isaac Gym. (b): the rendered RGB image from
the simulated camera. (c) shows the learning curves regarding the number of environment
steps. (d) shows the training wall-clock time. We can see that PQL achieves both better
sample efficiency and higher final performance than PPO.

B.3 Additional Experiments

n-step returns We investigate how much does n-step returns help for PQL. As shown in
Figure B.3, adding n-step return leads to faster learning than not using n-step return (n = 1).
However, using a big n value hurt the learning. Empirically we found that n = 3 gives us the
best performance.

Benefit of adding speed control (βp:v, βa:v) on different processes As we mentioned in
Section 4.3.2, adding speed control using βp:v, βa : v can help reduce the variance of training
when the amount of computation resources changes. To provide more insights, we ran
experiments without speed control, i.e., each process could run as fast as possible without any
waiting. As shown in Figure B.2, when there are sufficient compute resources available (with
two GPUs), the benefit of having the speed ratio control is not significant. However, when
only one GPU is available for running all three processes (Actor, P-learner, V-learner),
we can see that without the ratio control, the learning curves on all six benchmark tasks slow
down. We believe this is because all three processes are trying to run as fast as possible,
resulting in competition for GPU utilization, which slows overall learning. Adding the ratio
control helps balance GPU resource utilization among the three processes. Thus, even with
one GPU, the learning performance with ratio control is quite similar to that with two GPUs.



Table B.4: Hyper-parameter setup for the Ball Balancing task.

Hyper-parameter PQL(ours) PPO

Num. Environments 1,024 1,024
Critic Learning Rate 5× 10−4 5× 10−4

Actor Learning Rate 5× 10−4 5× 10−4

Optimizer Adam Adam
Target Update Rate (τ) 5× 10−2 -
Batch Size 4,096 4,096
Horizon length 1 16
Num. Epochs 12 5
Discount Factor(γ) 0.99 0.99
Normalized Observations True True
Gradient Clipping True True
Exploration Policy Mix -
N -step target 3 -
Warm-up Steps 32 -
Replay Buffer Size 106 -
Clip Ratio - 0.2
GAE - True
λ - 0.95
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Figure B.2: Comparison of the learning performance with and without the speed ratio control
(βp:v, βa:v) on two RTX3090 GPUs and on 1 RTX3090 GPU, respectively.

GPU hardware The simulation speed and network training speed vary across different
GPU models. In Table B.3, we list how much time it takes for the simulator to generate
1M environment interaction data with 4096 parallel environments on four machines with



different GPU models. In our test, the simulation speed on different GPU models is as follows:
GeForce 3090 > Tesla A100 > Tesla V100 > GeForce 2080Ti. We test PQL performance
on all these four different machine configurations (Table B.3). Figure B.3c and Figure B.3d
show that different GPU models affect the policy learning speed, especially on complex tasks
like Shadow Hand which takes more simulation time.
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Figure B.3: (a) and (b): effect of n-step return. n = 3 performs the best. (c) and (d):
effect of GPU models used for running PQL. Overall, we see that PQL works robustly across
different GPU models, and running on newer GPUs tends to give faster learning.

PQL for SAC As discussed above, PQL framework is flexible and can be combined with
different Q-learning methods. Here, we show that PQL can be combined with SAC as well.
Figure B.4 shows that adding the PQL framework to SAC substantially speeds up the learning
speed of SAC.

Sample efficiency compared to baselines Figure B.5 shows the sample efficiency of
each algorithm on different environments. Overall, we see that PQL achieves the best sample
efficiency. In addition, DDPG(n) also outperforms SAC(n) in terms of sample efficiency on
these tasks.

Sweep over different βa:v and βp:v Figure B.6 shows the complete learning curves with
different βp:v values and different number of environments. Similarly, Figure B.7 shows the
learning curves for different βa:v.
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Figure B.4: We apply our parallel Q-learning to SAC. PQL + SAC achieves faster learning
than SAC itself.
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Figure B.5: Similar to Figure 4.3, we show that our method (PQL) also achieves better
sample efficiency than baselines.

Comparison of our implementation with RL-games In this work, we implemented
all the algorithms (PQL and all the baselines) from scratch, as it gives us the most flexibility
in exploring different design choices that can affect learning performance. To show that our
codebase provides good performance, we compare it against the most commonly used RL
codebase used for Isaac Gym, which is RL-games [174]. However, RL-games only support
PPO and SAC. Hence, we compare our implementations of PPO and SAC against the ones
in RL-games.
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Figure B.6: Learning curves for different βp:v.
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Figure B.7: Learning curves for different βa:v.
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Figure B.8: Comparison between our implementations of PPO and SAC against the ones
provided in RL-games. We can see that both codebases provide similar performance, showing
that our implementation is good and reliable. On Shadow Hand , our PPO learns even faster
and better than the PPO in RL-games.

Distributional critic update We investigate how a distributional version of the critic
update affects the policy learning performance. Here, we utilize categorical parameterization
that outputs a discrete-value distribution defined over a fixed set of atoms zi [108]. We use
the same hyper-parameters across the six tasks, where the number of atoms l = 51 and the
bounds on the support from (−10, 10). To make sure the values lie on the support defined
by the atoms, we scale the reward into a similar range via different scaling factors shown in
Table B.2 and apply the categorical projection operator before minimizing the cross-entropy.
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