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A B S T R A C T

The Vessel Monitoring System (VMS) on trawlers has revolutionized our understanding of spatiotemporal
fishing activities. However, the low temporal resolution of historical VMS datasets complicates a precise
analysis of fishing effort distribution. One inherent challenge for precise interpolation is the stark contrast
between trawler movement patterns during steaming, characterized by straight lines, and fishing, which often
involves consecutive turns. In this study, we introduce HiTrip, a deep learning approach that interpolates
historical VMS data from two-hour intervals down to three minutes by harnessing both VMS and marine
hydrological datasets. The proposed deep learning model, integrating ResNet, LSTM, and MLP, seamlessly
synthesizes spatial features from coarse fishing effort distributions, sea surface factor fields, and current fields,
while accounting for the temporal relationships within trajectory segments. Evaluated on 1855 East China Sea
trawler VMS records and Copernicus Climate Data Store hydrological factor data, HiTrip achieves a 0.20 km
interpolation error, meeting a finery 0.005◦ × 0.005◦ spatial resolution demand for fishing effort distribution
analysis. Ablation study validates the efficacy of our deep learning model integrating multi-source datasets.
Moreover, when evaluated on a diverse Global Fishing Watch dataset, which includes 45 trawlers spanning
various global maritime regions, HiTrip maintains a 0.40 km error, emphasizing its broad generalization ability.
1. Introduction

Introduced by the European Union (EU) in 2002, the Vessel Moni-
toring Systems (VMS) primarily aimed to bolster fishery control and en-
forcement (Campbell et al., 2014). Over time, the amassed VMS records
have illuminated rich spatiotemporal trends of fishing activities (Lee
et al., 2010; Zong et al., 2016; Behivoke et al., 2021; Bond et al.,
2021). Today, these datasets serve a plethora of purposes. They are
instrumental in predicting vessel collision risks to ensure safe naviga-
tion (Shaobo et al., 2020; Murray and Perera, 2021), gauging maritime
traffic congestion (Zhang et al., 2020; Yang et al., 2022; Qu et al., 2023;
Huang et al., 2023), identifying unusual fishing behaviors (Rong et al.,
2020; Solano-Carrillo et al., 2021).

One of the most notable applications of VMS datasets is their uti-
lization in evaluating historical fishing effort distribution (Zhao et al.,
2021; Li et al., 2022). Such evaluations enable authorities to discern
trends in fishery resource consumption and formulate sustainable fish-
ing strategies. Yet, due to equipment constraints, the EU previously
mandated a two-hour sampling interval for these datasets (Mills et al.,
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2007). As a consequence, most VMS datasets are available only in one-
hour or two-hour sampling interval (Bertrand et al., 2005; Kourti et al.,
2005; Katara and Silva, 2017). This prolonged interval obscures specific
trajectory segments between sampled endpoints, thus diminishing the
spatial precision of historical fishing effort distribution analysis.

Early VMS datasets typically have long sampling intervals and
cannot be directly resampled, leading to an underestimation of his-
torical fishing efforts (Skaar et al., 2011). This underestimation sig-
nificantly impacts understanding the evolution of fishing effort distri-
bution. Firstly, it may conceal historical environmental degradation
or overfishing in specific regions, as these issues might have been
undetected due to underreported fishing activities. Secondly, perceived
increase in fishing efforts over time might be attributed to shorter
sampling intervals rather than actual increases in fishing activities.
These issues complicate the task of fisheries management in accurately
assessing the historical progression of fishery resources and formulating
effective fishing management strategies.
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Fig. 1. Fishing effort distributions calculated from the same VMS dataset but with different spatial resolution and sampling interval. (a) 0.4◦ ×0.4◦ and two hours, (b) 0.01◦ ×0.01◦

and three minutes.
Table 1
Review of the sampling interval and region.

Source reference Sampling
interval (min)

Region

Salthaug and Johannessen (2006) 60 Norway
Mills et al. (2007) 120 UK
Walter et al. (2007) 120 USA
van et al. (2008) 120 Netherlands
Pedersen et al. (2008) 60 Germany
Mullowney and Dawe (2009) 60 Canada
Russo et al. (2011) 20 Italy
Zhang et al. (2016) 3 China
Lopes et al. (2018) 10 Portugal
Hong et al. (2019) 3 China
Azevedo and Silva (2020) 10 Portugal
Liu et al. (2023) 10 China

For instance, Katara and Silva (2017) revealed that using a two-hour
sampling interval resulted in missing 42% of fishing activities when
compared to a ten-minute interval. Similarly, Lopes et al. (2018) found
that a two-hour interval failed to capture 89% of fishing hauls, leading
to a 70% reduction in the estimated fishing effort compared to data
collected every ten minutes.

Fig. 1 shows a case study of the fishing effort distributions derived
from the East China Sea VMS dataset, albeit with varying spatial
resolutions and sampling intervals. The total fishing efforts in Fig. 1(a)
and 1(b) stand at 53,163 h and 61,929 h, respectively. A reduced
spatial resolution from 0.01◦ to 0.4◦, paired with an extended sam-
pling interval shift from three minutes to two hours, results in a
8,766 h underestimation of the total fishing effort for the latter. Fur-
thermore, certain highlighted fishing hotspots evident in Fig. 1(b) are
conspicuously absent in Fig. 1(a). This discrepancy stems from potential
fishing activities concealed between the two-hour interval endpoints,
which consequently go unrecorded. Such problems are particularly
pronounced for trawlers, as most individual fishing operations last less
than three hours (Hong et al., 2019).

Table 1 shows the sampling intervals across different historical peri-
ods and maritime regions. It reveals that many early VMS datasets, par-
ticularly those from fishing vessels in the Atlantic Ocean, had sampling
intervals exceeding one or two hours. This was primarily due to EU reg-
ulations mandating that VMS records be transmitted every two hours.
The prolonged sampling intervals in those VMS datasets contribute to
an underestimation of fishing effort, affecting the comprehension of
historical fishery resource evolution and limiting the effectiveness of
fishing planning. Hence, this study aims to interpolate the sampling
interval from two hours to three minutes to achieve a more accurate
estimation of historical fishing effort distribution. This upsampling will
2

facilitate a more in-depth insight into historical fishing effort distri-
butions and their implications on benthic ecosystems (Jones, 1992).
Moreover, a VMS historical dataset with enhanced temporal granu-
larity is advantageous for numerous applications, including trajectory
forecasting and collision risk assessments.

To address the impacts of VMS datasets with long sampling interval
on the estimation of fishing effort distribution, trajectory interpolation
is often used to decrease the sampling interval. Previous research on
interpolating fishing vessel trajectories typically falls into two main
categories: mathematical methods and deep learning approaches.

Mathematical interpolation methods such as Linear Interpolation
(LI) (Natale et al., 2015), cubic Hermite spline (cHs) (Hintzen et al.,
2010), and the Catmull–Rom modification (CRm) (Russo et al., 2011)
have been previously utilized for interpolating the trajectories of fishing
vessels. These techniques rely on mathematical regression to create
smooth interpolated curves. However, their inherent design, which
focuses on producing smooth curves, limits their effectiveness, partic-
ularly in accurately representing multiple or sharp turns in trajectory
segments. This limitation is particularly evident in the interpolation of
complex trawler trajectories spanning two-hours segments. These seg-
ments often consist of successive turns, a common aspect of fishing ac-
tivities. For example, Hintzen et al. (2010), Russo et al. (2011) reported
that when trawler trajectory segments were interpolated from two-hour
intervals to 6-minute and 20-minute intervals, the interpolation errors
were 1.18 km and 0.65 km, respectively. Traditional methods lack the
refinement needed to precisely capture the specifics of these turns,
including their exact positions or angles. Consequently, they tend to
introduce errors when interpolating the intricate movements of trawler
fishing trajectories.

Deep learning methodologies, with their ability to harness vast
amounts of data and their advanced learning capabilities, have been
increasingly employed in various studies addressing trajectory issues
related to fishing vessels (Zhao et al., 2020; Capobianco et al., 2021;
Liu et al., 2021). These approaches have been primarily focused on ad-
dressing data loss issues (Liu et al., 2021) and improving the accuracy
of trajectory predictions (Guo et al., 2018; Wang et al., 2020). However,
there has been less emphasis on the interpolation of historical VMS
datasets in existing research.

In our previous research (Teng et al., 2021), we created a deep
learning model based on MLP (Multi-Layer Perceptron) and LSTM
(Long Short-Term Memory) model to interpolate VMS datasets from
a 30-minute to a three-minute interval. This was achieved without
incorporating hydrological data. The effectiveness of the proposed
model stems from the consistency of trawlers’ operational states, either
fishing or steaming, within a 30-minute interval. This is in contrast to

the usual duration of typical continuous fishing activities, which often
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Fig. 2. Visualization of a single voyage with different sampling intervals. (a) single voyage with two hours sampling interval, dot line represents linear interpolation between two
endpoints; (b) steaming trajectory with three minutes sampling interval; (c) fishing trajectory with three minutes sampling interval.
lasts around three hours. The proposed learning model is proficient in
learning the movement patterns of trawlers within these 30-minute in-
tervals, enabling it to produce interpolation results with a low average
error of just 0.09 km.

As for other type of ship, most of the interpolation studies deal
with simple trajectories, such as the trajectory of a ferry (Gao et al.,
2021) or a cargo (Xue et al., 2017) in an inland river, which does
not contain many turns due to the limitation of the river channel or
gears. It is important to note that these studies often focus on sim-
pler trajectory patterns of specific vessels, influenced by river channel
constraints or the vessels’ operational nature. However, trawlers have
a large operation range in the ocean, and will conduct multiple turns
during fishing. Hence, applying these simpler interpolation methods to
trawlers is unlikely to yield accurate reconstructions of their distinct
movement patterns, differentiating them from other ship types.

Previous interpolation methods face significant limitations with
longer sampling intervals like two hours. Over these extended periods,
a trawler trajectory segment might include multiple turns. Solely de-
pending on VMS records in these cases fails to provide a comprehensive
insight into the different operational states and turns within the trawler
trajectory segment. Consequently, for such longer intervals, these inter-
polation methods may fall short in accurately representing the intricate
movement patterns of the trawler trajectory.

Attaining accurate interpolation from a two-hour interval down
to three minutes meets two major challenges. Firstly, there is a pro-
nounced difference in the trajectory patterns observed during steaming
versus fishing. The former predominantly manifests as straight lines,
whereas the latter often displays a series of consecutive turns. This
highlights the importance of distinguishing between these operational
states for accurate interpolation. However, the broad sampling interval
frequently conceals nuanced movement patterns, making it challeng-
ing to identify the operation states of intermediate trajectory seg-
ments using only two consecutive VMS records. For instance, Fig. 2(a)
showcases a single trawler voyage sampled at a two-hour interval. In
contrast, Fig. 2(b) and 2(c) display two trajectory segments extracted
3

from Fig. 2(a), but sampled at a three-minute interval. Notably, even
though they are located in close geographical proximity, the segments
distinctly represent the diverse movement patterns of trawling and
fishing activities.

Secondly, even if the target trajectory segment is correctly recog-
nized as in the fishing activities, it is still a challenge to accurate
reconstruct the turn morphology inside the target segment. For in-
stance, the two consecutive trajectory segments in Fig. 2(c) are both
within one fishing activities, while their turns are different in direction
and curvature.

To address these challenges, we delve into the pivotal factors that
play a role in distinguishing operation states and influencing turns: (1)
The four continuous VMS records sketch the basic shape of the target
trajectory segment. Meanwhile, the velocity and course of these records
pinpoint potential turn locations. (2) Coarse fishing effort distribution,
even when derived from VMS records with a two-hour sampling rate,
sheds light on fishing hotspots. This serves as a direct clue to differen-
tiate the fishing state. (3) Sea surface factors fields can act as another
discerning markers. For instance, certain areas become probable fishing
hotspots when they exhibit significant variability in the sea surface
temperature field compared to their surroundings. Such variability can
lead to fish stock aggregation, making these regions more attractive for
trawlers’ fishing activities (Zhang et al., 2018; Iiyama et al., 2018). (4)
Trawlers usually move orthogonal or in opposition to the currents while
trawling their nets. So current fields can offer insights into the trawlers’
course adjustments during fishing.

Drawing from these insights, we introduce a novel historical trawler
trajectory interpolation system, called HiTrip, using deep learning on
both VMS and hydrological factor datasets. HiTrip ambitiously seeks
to refine the sampling intervals of historical VMS datasets from two-
hour spans down to just three minutes. Beyond just harnessing VMS
records, our approach integrates coarse fishing effort distributions,
sea surface factors fields, and current fields, offering a comprehensive
understanding of operation states and inferring possible turns.

HiTrip operates on an encoder–decoder structure. The encoder is
tailored to extract features from all crucial factors, whereas the decoder
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is designed to produce VMS records at a finer sampling interval. Within
the encoder, the Multi-Layer Perceptron (MLP) is leveraged to capture
the overall trajectory shape, as represented by the sparsely sampled
set of four input VMS records. To assess the contributions of coarse
fishing effort distributions, sea surface factors fields, and current fields,
we employ three parallel Residual Networks (ResNet) (He et al., 2016),
with each network dedicated to a specific data source. Transitioning to
the decoder phase, the sophisticated features drawn by the encoder are
streamlined and channeled into the Long Short-Term Memory (LSTM)
network (Hochreiter and Schmidhuber, 1997) to generate the features
for each finery time step corresponding to the output. Finally, these
features are honed by an MLP to create a finely up-sampled trajectory
segment.

In the case study, we leveraged a VMS dataset acquired from the
BeiDou Satellite, covering records from 1855 otter trawlers operating
in the East China Sea. This dataset possesses a sampling interval of
three minutes. We sourced marine hydrological factor fields from the
Copernicus Climate Data Store,1 offering a spatial–temporal resolu-
ion of 0.25◦ × 0.25◦, updated on a daily basis. HiTrip showcases a
ommendable average interpolation error of 0.20 km, meeting the
equirements for analyzing fishing effort distribution with a spatial
esolution of 0.005◦ × 0.005◦. Through meticulous ablation studies, we
nderscore the benefits of our deep learning model that seamlessly
ntegrates multi-source data for accurate interpolation. Additionally,
e evaluated HiTrip’s efficacy using a distinct dataset from Global
ishing Watch,2 covering 45 trawlers across multiple global maritime
reas. The evaluations highlight an average distance error of 0.40 km,
einforcing HiTrip’s adaptability and effectiveness across varied marine
ontexts.

. Materials

This section begins by introducing the three datasets: the VMS
ataset sourced from the BeiDou Satellite, the VMS dataset from Global
ishing Watch, and the marine hydrological factor fields. Following
his, we delve into the correlation between trajectories and coarse fish-
ng effort distribution, as well as the relationship between trajectories
nd marine hydrological factors fields.

.1. VMS dataset in the East China Sea

We use the VMS dataset captured via the China BeiDou Satellite
ystem with a short sampling interval of three minutes. The primary
ishing regions of this dataset cover Zhoushan and Yushan fishing
rounds, with their external fishing grounds situated within the geo-
raphical bounds of 120◦𝐸 − 130◦𝐸 and 25◦𝑁 − 35◦𝑁 . This dataset
ontains VMS records from September 2015 to May 2017 for a total
f 1855 trawlers.

Each VMS record of a trawler includes five properties: t imestamp,
ongitude, lat itude, velocity, and course. To provide a calculable rep-
esentation for the course of trawlers, we transform the course to its
ine and cosine value. Thus, each record can be expressed as 𝑟𝑡 =
{𝑙𝑜𝑛𝑡, 𝑙𝑎𝑡𝑡, 𝑣𝑡, 𝑐𝑠𝑡 , 𝑐

𝑐
𝑡 }.

Because the task of HiTrip is to interpolate the sampling interval
from two hours to three minutes, we down-sample the original VMS
dataset to two hours as the dataset to be interpolated, called low-
sampled interval dataset (L). At the same time, the original VMS dataset
is employed as the ground-truth dataset for assessing the interpolation
accuracy, called high-sampled interval dataset (H).

The fishing cessation period for trawlers in the East China Sea is
from June to September. Consequently, both L and H are partitioned

1 https://marine.copernicus.eu/
2 https://globalfishingwatch.org/data-download/datasets/public-training-

ata-v1
4

p

into two distinct parts: 2015.09–2016.05 and 2016.09–2017.05. To
realize the target of interpolating the historical VMS dataset, we use the
VMS dataset from Sep. 2016 to May. 2017 for analysis and interpolation
model training while employing the VMS dataset from Sep. 2015 to
May. 2016 as the historical VMS dataset to be interpolated.

2.2. Trawler dataset in global maritime regions

To evaluate the generalization of HiTrip, we employ the trawler
dataset downloaded from Global Fishing Watch. This dataset comprises
45 trawlers, primarily operating within the Norwegian Sea, Pacific
Ocean, and Indian Ocean. The records cover the period from Sep. 2015
to Nov. 2016.

To represent the target of interpolating the historical VMS dataset,
we divide the trawler dataset into two equal parts chronologically. The
latter half of this dataset is used for transfer learning based on our well-
trained interpolation model, while the former half is utilized to assess
the generalization ability of HiTrip.

2.3. Marine hydrological factor fields

We source marine hydrological factor fields from the Copernicus
Climate Data Store, encompassing both sea surface factors and current
fields. These fields have a spatial–temporal resolution of 0.25◦ × 0.25◦

nd are updated daily. The sea surface factors include sea surface height
SSH), temperature (SST ), and salinity (SSS). Current fields, on the
ther hand, are depicted by a two-dimensional vector representing
astward and northward sea water velocities.

To enhance the model’s understanding of the influence of current
ields on trawler trajectories, we modify the representation in line with
he trawler’s course. We transform each record in the current fields
or a given date 𝑑 into three components: sine, cosine, and magnitude,
enoted respectively as 𝐶𝑠

𝑑 , 𝐶
𝑐
𝑑 , 𝐶

𝑚
𝑑 .

Based on the above description, given a date 𝑑, the sea surface fac-
ors fields and current fields can be represented as 𝑆𝑑 = {𝑆𝑆𝐻𝑑 , 𝑆𝑆𝑇𝑑 ,
𝑆𝑆𝑑} and 𝐶𝑑 = {𝐶𝑠

𝑑 , 𝐶
𝑐
𝑑 , 𝐶

𝑚
𝑑 }, respectively.

.4. Coarse fishing effort distribution

From the low-sampled dataset L, we derive the coarse fishing effort
istributions. We divide the fishing grounds into spatial cells matching
he resolution of the hydrological factor fields, set at 0.25◦ × 0.25◦. The
istribution is aggregated daily. Leveraging a velocity threshold of 5.5
nots, as established in our prior research (Huang et al., 2019), we
ilter out specific fishing records. These records, indicative of a two-
our fishing effort, are subsequently aligned with their respective grid
nd date. Consequently, for any given date 𝑑, the coarse fishing effort
istribution is denoted as 𝐷𝑑 .

.5. Relationship analysis

For precise interpolation, it is essential to identify the operational
tate and deduce the turns inherent to fishing behaviors in interpolated
rajectory segments. We first examine the correlation between coarse
ishing effort distributions and trawler activities. Then, we explore the
ndirect influence of sea surface factor fields on trawler behaviors.
astly, we assess how current fields affect the course changes with the
rajectory segment, especially during fishing activities.

Firstly, regions with high concentrations in the coarse fishing ef-
ort distributions signify intense fishing activities, identifying them as
ishing hotspots. Such hotspots can hint at the potential fishing states
f individual trajectory segments. When a trawler enters one of these
otspots, it is highly likely to be engaged in fishing. Similarly, if a
otspot lies ahead, the trawler might be inclined to head towards it.
hus, the coarse fishing effort distribution can assist in discerning the
robable operational state of a specific trajectory segment.

https://marine.copernicus.eu/
https://globalfishingwatch.org/data-download/datasets/public-training-data-v1
https://globalfishingwatch.org/data-download/datasets/public-training-data-v1
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Fig. 3. Spatial variability distributions of SST, SSH, SSS, and the corresponding coarse fishing effort distributions at same date. (a) Mar. 12, 2016, (b) Apr. 30, 2016, (c) Nov. 11,
2015.
Fig. 4. Effect of current on trajectory. (a) distribution of angles between course and current while fishing. (b) voyage visualization with the background of current, green arrow
represents the starting and ending course of the voyage.
Regions with pronounced variability in sea surface factors fields,
such as SST, relative to their adjacent areas, typically suggest nutrient-
rich conditions. Such regions can induce fish aggregation and, subse-
quently, influence trawler fishing behaviors. By measuring the variabil-
ity within each grid and juxtaposing it with the fishing hotspots from
the coarse fishing effort distributions, we can ascertain the relation-
ship between variability in sea surface factor fields and fishing effort
distribution.

For each grid denoted as (𝑥, 𝑦), we compute the variability (𝑉 𝑎𝑟) as
the average spatial difference in relation to its adjacent 3 × 3 grids.
Using SST as a representative example, this variability is determined
according to Eq. (1). Here, the notation | ∗ | stands for the absolute
value calculation.

𝑉 𝑎𝑟𝑆𝑆𝑇(𝑥,𝑦) = 1
8
∑

𝑥′ ,𝑦′
|𝑆𝑆𝑇𝑡(𝑥, 𝑦) − 𝑆𝑆𝑇𝑡(𝑥′, 𝑦′)|,

𝑤ℎ𝑒𝑟𝑒 𝑥′ ∈ [𝑥 − 1, 𝑥 + 1], 𝑦′ ∈ [𝑦 − 1, 𝑦 + 1]
(1)

Fig. 3 depicts the examples of the variability distributions for SSH,
SST, and SSS, juxtaposed against their corresponding coarse fishing
5

effort distributions for the same date. Significantly, the areas high-
lighted in red in Fig. 3 emphasize that fishing efforts intensify in
regions exhibiting pronounced variability in sea surface factors fields.
Statistical findings reveal that of the grids ranking in the top 20% for
the highest fishing efforts, a vast majority – 99% for SSH, 78% for SST,
and 86% for SSS – exhibit variability exceeding their respective me-
dian values. This observation accentuates the indirect influence of sea
surface factor fields on trawler fishing activities, suggesting heightened
fishing activities in areas with marked variability.

Thirdly, we then assess how currents influence the course of fine-
grained trajectory segments. By calculating the angle between the
current and the course of fishing records from H, we find that, as
depicted in Fig. 4(a), most trawlers during fishing operations maintain
a substantial angle (ranging from 90◦ to 180◦) relative to the current. A
representative voyage, visualized alongside the current field and shown
in Fig. 4(b), reinforces this observation, with most fishing trajectories
deviating significantly from the direction of the currents. This suggests
that current fields can enhance HiTrip’s ability to infer the turn pattern
for the target trajectory segments.
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Fig. 5. CDF of latitude and longitude span of each single sample.

From our in-depth analysis of various influencing factors and their
relation to trajectory segments, we discern that both coarse fishing
effort distributions and sea surface factors fields play pivotal roles in
identifying the fishing states of trawlers. Moreover, current fields prove
instrumental in inferring turn patterns. Consequently, HiTrip integrates
multi-source data, encompassing VMS records, coarse fishing effort
distributions, sea surface factors fields, and current fields.

3. Methodology

This section initiates by defining the interpolation problem. Fol-
lowing that, we introduce the encoder–decoder architecture of the
interpolation model. Furthermore, we introduce two optimizations for
trajectory interpolation. Finally, we provide the training specifics for
HiTrip.

3.1. Problem formulation

Using inputs that include two consecutive VMS records 𝑟𝐿𝑡 and
𝑟𝐿𝑡+1, a coarse fishing effort distribution 𝐷𝑡, sea surface factors fields
𝑆𝑡, and a current field 𝐶𝑡, HiTrip will interpolate 𝑛 records on the
trajectory segment of 𝑟𝐿𝑡 and 𝑟𝐿𝑡+1 according to the interpolation target.
Subsequently, we begin by explaining the construction of each input,
followed by the articulation of HiTrip’s interpolation problem.

Given that trawlers in the East China Sea typically engage in a
single fishing activity lasting less than three hours (Huang et al., 2019),
the trajectory segment to be interpolated between 𝑟𝐿𝑡 and 𝑟𝐿𝑡+1 may
encompass steaming, fishing, or a combination of both operation states.
To comprehensively account for the potential entire fishing activity
within the target trajectory segment, we enhance the input by including
two additional records: 𝑟𝐿𝑡−1 and 𝑟𝐿𝑡+2. This expanded input can be
represented as 𝑅𝐿

𝑡 = {𝑟𝐿𝑡−1, 𝑟
𝐿
𝑡 , 𝑟

𝐿
𝑡+1, 𝑟

𝐿
𝑡+2}.

When considering marine factors, which encompass 𝐷𝑡, 𝑆𝑡, and 𝐶𝑡, it
is crucial to recognize that within a six-hour duration (the time span of
𝑅𝐿
𝑡 ), the operational area for trawlers is notably smaller than the entire

fishing ground. To supply the model with highly correlated 𝐷𝑡, 𝑆𝑡, and
𝐶𝑡 aligned with the trajectory segment to be interpolated, we opt for
a subregion from the marine factor fields. This approach empowers
the interpolation model to extract precise features influencing the
morphology of the target trajectory segment, as opposed to information
from unrelated marine factor fields far away.

The computation of the subregion entails two steps: center grid
calculation and range determination. Firstly, we calculate the center
grid (𝑥, 𝑦) of 𝑅𝐿

𝑡 using Eq. (2). Here, 𝑟𝐿𝑡,𝑙𝑜𝑛 and 𝑟𝐿𝑡,𝑙𝑎𝑡 are the longitude and
latitude values of 𝑟𝐿, 𝐿𝑜𝑛 and 𝐿𝑎𝑡 denote the minimum longitude
6

𝑡 𝑚𝑖𝑛 𝑚𝑖𝑛
and latitude values within the dataset L, which are 120◦𝐸 and 25◦𝑁 ,
respectively. Additionally, 𝑟𝑒𝑠 indicates the resolution of 𝐷𝑡, 𝑆𝑡, and
𝐶𝑡, which is 0.25◦. The function 𝑎𝑣𝑔(∗) signifies the calculation of the
average value.

𝑥 = ⌊

𝑎𝑣𝑔(𝑟𝐿𝑡−1,𝑙𝑜𝑛, 𝑟
𝐿
𝑡,𝑙𝑜𝑛, 𝑟

𝐿
𝑡+1,𝑙𝑜𝑛, 𝑟

𝐿
𝑡+2,𝑙𝑜𝑛, ) − 𝐿𝑜𝑛𝑚𝑖𝑛

𝑟𝑒𝑠
⌋

𝑦 = ⌊

𝑎𝑣𝑔(𝑟𝐿𝑡−1,𝑙𝑎𝑡, 𝑟
𝐿
𝑡,𝑙𝑎𝑡, 𝑟

𝐿
𝑡+1,𝑙𝑎𝑡, 𝑟

𝐿
𝑡+2,𝑙𝑎𝑡, ) − 𝐿𝑜𝑛𝑚𝑖𝑛

𝑟𝑒𝑠
⌋

(2)

Secondly, we calculate the range of movement that trawlers can
traverse within six hours to determine the size of subregion. Fig. 5
shows that most trawlers nearly cover an area with a latitude and
longitude span of less than 1◦ within six hours. Taking into account that
trawlers may move in various directions, we choose a (2◦×2◦) subregion
to cover the possible movement area, i.e., 9 × 9 grids centered around
the coordinates (𝑥, 𝑦).

The interpolation problem can be formalized as Eq. (3). Here, 𝜃 is
the set of all learnable parameters. 𝑅̂𝐻

𝑡 is the predicted records from
the interpolation model, denoted as 𝑅̂𝐻

𝑡 = {𝑟̂𝐻𝑡+1, 𝑟̂
𝐻
𝑡+2,… , 𝑟̂𝐻𝑡+𝑛−1, 𝑟̂

𝐻
𝑡+𝑛}.

The corresponding ground-truth records of 𝑅̂𝐻
𝑡 is 𝑅𝐻

𝑡 , denoted as 𝑅𝐻
𝑡 =

{𝑟𝐻𝑡+1, 𝑟
𝐻
𝑡+2,… , 𝑟𝐻𝑡+𝑛−1, 𝑟

𝐻
𝑡+𝑛}. In this study, the sampling intervals for L and

H are two hours and three minutes, respectively. Consequently, the
value of n is determined to be 39.

𝑅̂𝐻
𝑡 = 𝐺𝜃(𝑅𝐿

𝑡 , 𝐷
𝑠𝑢𝑏
𝑡 , 𝑆𝑠𝑢𝑏

𝑡 , 𝐶𝑠𝑢𝑏
𝑡 ) (3)

3.2. Model overview

HiTrip’s objective is to derive spatiotemporal patterns from multiple
sources and interpolate VMS records from two-hour intervals down to
three minutes. We employ an encoder–decoder architecture, where the
decoder, equipped with LSTM, guides the encoder in feature extraction,
as illustrated in Fig. 6. The decoder’s role is to produce the interpolated
𝑛 records using LSTM, while the encoder concentrates on extracting and
organizing spatial features from multiple sources into 𝑛 time steps for
the decoder.

The encoder tackles the challenge of having four input VMS records
compared to the number of interpolated records (𝑛 = 39) by extracting
as many relevant features as it can from four different types of input
sources: low-sampled VMS records, coarse fishing effort distribution,
sea surface factor fields, and current fields. Each of these sources
goes through a specific feature extraction network within the encoder,
tailored to pull out spatial features for the corresponding target time
steps. The decoder, powered by LSTM, then instructs each feature
extraction network in the encoder on how to create spatial features
and generate interpolated records by learning from temporal patterns.
Thus, HiTrip effectively learns the spatiotemporal patterns embedded
within the four types of input sources and is capable of performing the
interpolation from two-hour intervals to three-minute intervals.

3.3. Encoder

The encoder is tasked with bridging the information gap by pulling
out as many pertinent spatial features as possible from the input.
This input consists of four successive VMS records taken at two-hour
intervals, a distribution of coarse fishing effort, sea surface factors
fields, and current fields, all showcasing distinct spatial traits. The
encoder efficiently compiles these features to build a basis for the
decoder to generate interpolation results. Subsequently, we will detail
each component of the encoder, emphasizing how they individually
extract features from each data source.
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Fig. 6. HiTrip framework. The top two blocks are the encoder–decoder architecture of HiTrip, while bottom four blocks is the module of HiTrip. 𝐸𝑛𝑐𝑅 is tasked with feature
extraction for VMS records, 𝐸𝑛𝑐𝐷/𝐸𝑛𝑐𝐶/𝐸𝑛𝑐𝑆 are responsible for capturing spatial features from coarse fishing effort distribution, sea surface factors fields, and current fields,
respectively. After extract features from multi-source inputs, Encoder organizes features according to the time steps of the trajectory points to be interpolated. Decoder applies
LSTM as its core to integrate temporal features and generates interpolated points by MLP.
3.3.1. VMS records
Given a coarsely-sampled trajectory segment, represented as 𝑅𝐿

𝑡 ,
the objective of HiTrip is to develop an interpolation model that de-
duces the finer-grained trajectory segment 𝑅𝐻

𝑡 , consisting of n records.
Considering that 𝑅𝐿

𝑡 contains only four records, the spatial features
extracted from it should be a multiple of n.

The aim of this module is to extract spatial patterns from the input
VMS record sequence and arrange them according to targeted time
steps. Each record in the input sequence comprises multi-dimensional
parameters, such as latitude, longitude, velocity, and course. The com-
plex and nonlinear relationships among these parameters call for the
use of Multi-Layer Perceptron (MLP). MLP is highly effective in discern-
ing and learning these intricate patterns, primarily due to its nonlinear
activation functions and the presence of multiple hidden layers. Conse-
quently, we employ a three-layer MLP to extract spatial patterns from
the VMS record sequence, resulting in a feature vector 𝑋𝑅 ∈ R𝑛×𝑀 .
Here 𝑀 signifies the number of features in the feature vector for each
time step. This process is crucial for bridging the informational gap
of the interpolation, ensuring that the spatial patterns of the VMS
records are represented and utilized in the subsequent steps of the deep
learning model. The network architecture used for extracting features
from VMS records is represented in Eq. (4).

𝑋𝑅 = 𝐸𝑛𝑐𝑅(𝑅𝐿
𝑡 ) (4)

3.3.2. Coarse fishing effort distribution
Derived from the coarse-grained VMS dataset 𝑅𝐿, the hotspots

in the coarse fishing effort distribution pinpoint areas where many
trawlers engage in fishing. The hotspots within the coarse fishing
effort distribution are key indicators, which signify areas of intense
fishing activities, often indicated by a high density of trawlers’ VMS
records. An area is identified as a fishing hotspot when its fishing effort
values substantially deviate from those of the surrounding regions.
These hotspots are crucial as they can indicate potential operational
7

states of the trajectory segments being interpolated. Thus, extracting
these hotspots as primary spatial features from the coarse fishing effort
distribution becomes essential, providing vital insights into the spatial
dynamics of fishing activities.

Convolutional operations in Convolutional Neural Networks (CNN)
excel at detecting variations among adjacent grids, and by integrating
multiple levels of CNNs, the network gains the ability to recognize
variations across grids that are further apart. However, a significant
challenge arises when multiple CNN layers are stacked: the gradient
vanishing problem. This issue can impede the network’s learning pro-
cess. To overcome this, Residual Networks (ResNet) are employed.
ResNet effectively solves the gradient vanishing problem by introducing
shortcut connections that link the input directly to the output. These
shortcuts facilitate a direct flow of gradients, mitigating the risk of
gradient vanishing. Consequently, we utilize ResNet as the foundation
of our spatial feature extraction module, capitalizing on its robustness
in maintaining gradient flow.

As illustrated in Fig. 6, we initiate by applying a CNN layer (with
1 × 1 filter size, F filters) in 𝐸𝑛𝑐𝐷 to enhance the channel of the
provided input 𝐷𝑠𝑢𝑏

𝑡 from R1×9×9 to R𝐹×9×9. We then incorporate two
Residual Blocks to extract high-level features, maintaining a uniform
structure of the features. The configuration of the Residual Block,
detailed in the bottom right of Fig. 6, aligns with the recommendations
in He et al. (2016). It comprises two convolutional layers, each with
a 3 × 3 filter size and F filters, and incorporates a ReLU function
in between to introduce non-linearity. Following the initial pair of
Residual Blocks, another CNN layer (with 1 × 1 filter size, 2F filters) is
applied, amplifying the output channel of the prior layers from R𝐹×9×9

to R2𝐹×9×9.
Then an additional pair of Residual Blocks is utilized, further hon-

ing the high-level features while retaining the feature dimensions at
R2𝐹×9×9. Given that the decoder processes the features extracted by the
encoder in sequential time steps, the concluding CNN layer (with 1 × 1
filter size, n filters) is employed to consolidate the feature set across 𝑛
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time steps. The output of the feature extraction network is represented
by 𝑋𝐷 ∈ R𝑛×9×9. This output is vital for the precise interpolation,
nsuring that the spatial dynamics are accurately represented. The
hole procedure can be summarized as:
𝐷 = 𝐸𝑛𝑐𝐷(𝐷𝑠𝑢𝑏

𝑡 ) (5)

.3.3. Sea surface factors fields
Besides the coarse fishing effort distribution, both Fig. 3 and the

tatistical findings in Section 2.5 reveal that sea surface factors fields
an also work as an indicator of fishing hotspots. Given that certain
reas within the sea surface factors fields become probable fishing
otspots due to their pronounced variability compared to neighboring
egions, it is imperative to extract the spatial features from the sea
urface factor fields.

Given the need to capture spatial distribution variations, we utilize a
etwork structure analogous to that applied for the coarse fishing effort
istribution to extract the spatial features of the sea surface factors
ield. This feature extraction network 𝐸𝑛𝑐𝑆 for sea surface factors fields
an be summarized as:
𝑆 = 𝐸𝑛𝑐𝑆 (𝑆𝑠𝑢𝑏

𝑡 ) (6)

.3.4. Current fields
The observations from Fig. 4 indicate that trawlers, when engaged

n fishing activities, tend to maintain a significant angle relative to the
urrent. This suggests that the current fields can be instrumental in
iding the interpolation model to predict course changes of the trawler.
ince 𝑅𝐿

𝑡 provides only a rough sketch of the target trajectory segment,
t is essential to extract spatial features of the current fields across grids
o depict potential course of each interpolated trajectory segment. For
his extraction, we employ a network structure mirroring that of 𝐸𝑛𝑐𝑆 ,

resulting in spatial features represented as 𝑋𝐶 ∈ R𝑛×9×9. The feature
extraction process for current fields using the network 𝐸𝑛𝑐𝐶 is outlined
as:

𝑋𝐶 = 𝐸𝑛𝑐𝐶 (𝐶𝑠𝑢𝑏
𝑡 ) (7)

In summary, from the spatial feature extractions described above,
we derive four distinct features: VMS records feature 𝑋𝑅, coarse fishing
effort distribution feature 𝑋𝐷, sea surface factors fields feature 𝑋𝑆 , and
urrent fields feature 𝑋𝐶 . As depicted in Fig. 6, these four feature vec-
ors are utilized by the decoder to produce the fine-grained trajectory
egment 𝑅𝐻

𝑡 . We merge these four features from the encoder, resulting
n the consolidated feature vector 𝑉 ∈ R𝑛×(𝑀+243), shown in Eq. (8),
here Concat is the tensor concatenate operation.

= 𝐶𝑜𝑛𝑐𝑎𝑡(𝑋𝑅, 𝑋𝐷, 𝑋𝑆 , 𝑋𝐶 ) (8)

.4. Decoder

The interpolated trajectory in our study is characterized by a se-
uential pattern, where each point in the trajectory is influenced by
ts preceding points. The decoder’s primary objective is to encapsulate
his temporal pattern present in the interpolated trajectory. Long Short-
erm Memory (LSTM) Neural Network, a specialized variant of the
ecurrent Neural Network, is particularly effective in capturing these

emporal dependencies. Therefore, to accurately represent this inherent
equential nature and to effectively organize the spatial features pro-
ided by the encoder, we have chosen LSTM as the core component
f our decoder. By employing LSTM, we ensure that the temporal
ynamics of the trajectory are captured and represented in a manner
hat reflects the movement and behavior patterns of trawlers.

Furthermore, Bidirectional LSTM (Bi-LSTM) can further enhance
his capability by analyzing both past and future context in the data.
owever, the utility of Bi-LSTM is constrained in scenarios where
8

nterpolated points are generated sequentially, and the future context
Table 2
Average distance errors of linear interpolation from different sampling interval to three
minutes.

Sampling interval (minutes) 6 12 18 24 30 45 60

Distance error (km) 0.01 0.09 0.32 0.42 0.67 0.89 1.01

crucial for Bi-LSTM’s functionality is unavailable for the points gener-
ated earlier. This limitation is particularly pertinent in our case, where
interpolated points are produced in a sequential manner, meaning
the information needed for subsequent points is not available at the
time of generating previous points. Therefore, we choose LSTM as the
main framework for our decoder. Its ability to effectively handle the
sequential nature of the data and organize spatial features makes it
more apt for our specific interpolation challenge than Bi-LSTM.

The LSTM’s time step is configured to n, enabling it to sequen-
ially generate feature vectors of each time step in alignment with
he records to be interpolated. Moreover, the LSTM input, represented
s 𝑉 ∈ R𝑛×(𝑀+243), is structured according to these time steps. This
rrangement ensures that in every time step, the feature 𝑉𝑖 ∈ R(𝑀+243)

an be fed into the LSTM. Upon generating these feature vectors for
ach time step, a MLP is further applied to map each feature vector to
ts final record, encompassing both longitude and latitude coordinates.
he process of decoder can be summarized as:

𝑟̂𝐻𝑡+𝑖 = 𝑀𝐿𝑃 ( 𝐿𝑆𝑇𝑀 (𝑉𝑖) ), 𝑖 ∈ [1, 𝑛] (9)

.5. Optimization

Upon constructing features into 𝑉 ∈ R𝑛×(𝑀+243) through the en-
oder, a pronounced information gap persists between the four sparsely
ampled VMS records and the desired 39 VMS records for interpolation.
his discrepancy makes it challenging for the deep learning model
o yield accurate interpolation outcomes. Moreover, while the LSTM
aptures the sequential nature of the outputs, the first output record
𝐻
𝑡+1 is dependent exclusively on the confined feature vector 𝑉1. This

limitation might introduce initial error, which could subsequently cas-
cade and impact the generation of following records. To counter these
challenges, we introduce two optimizations, labeled as 𝑜𝑝𝑡1 and 𝑜𝑝𝑡2.

To mitigate the evident information gap, we lessen the number of
records predicted in 𝑅𝐻

𝑡 , thereby reducing the burden on deep learning
model. Nonetheless, this strategy requires additional interpolation step
to reach the intended target sampling interval. The primary focus
of 𝑜𝑝𝑡1 is to find a suitable target sampling interval for the deep
learning model that minimizes the information gap while keeping the
interpolation error minimal.

To pinpoint the optimal sampling interval, we assess linear interpo-
lation’s capability across various down-sampled intervals transitioning
to three minutes. Table 2 shows the interpolation errors encountered
when using linear interpolation to convert the VMS data from various
sampling intervals to a three-minute interval. Notably, when upsam-
pling from intervals exceeding twelve minutes, the error hovers around
the hundred-meter range. However, comparing the errors from twelve-
minute and six-minute intervals, there is a nine-fold difference in
interpolation error, with the latter showing a mere distance error of
approximately 10 m. This significant reduction is attributed to the
typical behavior of trawlers; they are unlikely to undertake complex
maneuvers within a short six-minute duration, like executing a sharp
turn. Hence, we adjust our deep learning model’s target sampling rate
from three minutes to six minutes and subsequently produce the three-
minute record through linear interpolation as our first optimization.
The prediction target of the interpolation model changes to 𝑅̂𝐻 ′

𝑡 =
{𝑟̂𝐻 ′

𝑡+1, 𝑟̂
𝐻 ′

𝑡+2,… , 𝑟̂𝐻 ′
𝑡+𝑚}, where 𝑚 = 𝑛−1

2 . After obtaining 𝑅̂𝐻 ′
𝑡 , we generate

the fine-grained 𝑅̂𝐻
𝑡 by Eq. (10).

̂𝐻𝑡+𝑖 =

⎧

⎪

⎨

⎪

𝑟̂𝐻 ′

𝑡+(𝑖−1)∕2 + 𝑟̂𝐻 ′

𝑡+(𝑖+1)∕2

2
𝑖𝑓 𝑖 𝐢𝐬 𝑜𝑑𝑑

𝐻 ′
(10)
⎩

𝑟̂𝑡+𝑖∕2 𝑖𝑓 𝑖 𝐢𝐬 𝑒𝑣𝑒𝑛
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𝑟

The second optimization is targeted at mitigating the accumulated
error resulting from the limited features available for record 𝑟̂𝐻𝑡+1. Typi-
cally, record 𝑟̂𝐻𝑡+𝑘 generated at time step k can harness both the feature
𝑉𝑘 and the temporal features extracted by the LSTM from the previous
k-1 steps. However, record 𝑟̂𝐻𝑡+1 relies solely on 𝑉1. Consequently, record
̂𝐻𝑡+1 has fewer constraints and is susceptible to introducing errors that
can ripple through the generation of subsequent records.

To mitigate this issue, we integrate both 𝑟̂𝐻𝑡 and 𝑟̂𝐻𝑡+𝑚+1 into the inter-
polation target, which align with the known starting and ending points
of the trajectory segment to be interpolated, specifically 𝑟𝐿𝑡 and 𝑟𝐿𝑡+1.
Therefore, the first predicted record 𝑟̂𝐻𝑡 is limited by 𝑟𝐿𝑡 , and the subse-
quent record 𝑟̂𝐻𝑡+1 benefits from the feature 𝑉1 derived from the encoder
and the temporal features harnessed by the LSTM from its preceding
time step. This strategy signifies that the generation of the fine-grained
trajectory segment is anchored by the known endpoints, providing a
reliable boundary for the entire trajectory’s position. After 𝑜𝑝𝑡2, the
prediction target of the deep learning model can be denoted as 𝑅̂𝐻 ′

𝑡 =
{𝑟̂𝐻𝑡 , 𝑟̂𝐻 ′

𝑡+1, 𝑟̂
𝐻 ′

𝑡+2,… , 𝑟̂𝐻 ′

𝑡+𝑚−1, 𝑟̂
𝐻 ′
𝑡+𝑚, 𝑟̂

𝐻
𝑡+𝑚+1}. The corresponding ground-truth

is 𝑅𝐻 ′
𝑡 = {𝑟𝐿𝑡 , 𝑟

𝐻
𝑡+1, 𝑟

𝐻
𝑡+3,… , 𝑟𝐻𝑡+𝑛−3, 𝑟

𝐻
𝑡+𝑛−1, 𝑟

𝐿
𝑡+1}.

3.6. Loss function

In deep learning, the loss function serves to quantify the difference
between the prediction results and the ground truth data, thereby
guiding the optimization of model parameters. In this study, we utilize
Mean Square Error (MSE) as the loss function, as presented in Eq. (11).
Throughout the training process, the objective of the model is to
diminish the MSE between the predicted and the true records.

 = 1
𝑛

𝑛
∑

𝑡=1
‖𝑟𝐻𝑡 − 𝑟̂𝐻𝑡 ‖

2 (11)

4. Results

This section begins by introducing six baseline methods against
which HiTrip’s performance will be compared. Then we use the ge-
ographical distance as evaluation metric to compare HiTrip and six
baseline methods. We also provide visualization of several interpola-
tion examples to highlight the improvements made by spatial feature
extraction module from multi-source input. Subsequently, we compare
the fishing effort distribution estimated by HiTrip and six baseline
methods to show the effectiveness of HiTrip. Several ablation studies
are conducted to assess the contributions of each component of HiTrip.
Finally, we employ other trawler dataset from Global Fishing Watch to
demonstrate HiTrip’s generalizability.

4.1. Baselines

We evaluate HiTrip against six baselines, categorized into two
groups: mathematical and deep learning-based methods.

4.1.1. Mathematical methods
We use the following mathematical methods to directly interpolate

the sampling interval of 𝑅𝐿
𝑡 from two hours to three minutes.

• Linear Interpolation (LI): We link the consecutive VMS records,
𝑟𝐿𝑡 and 𝑟𝐿𝑡+1, using a line segment and then sample the interpolated
positions along this segment.

• cubic Hermite spline (cHs) (Hintzen et al., 2010): cHs formu-
lates a spline interpolation function using position, course, and
velocity. The interpolated records can be derived by inputting the
target timestamps into this equation.

• Catmull–Rom modification (CRm) (Russo et al., 2011): CRm
employs all accessible VMS records to determine the course devi-
ation induced by currents. It then utilizes this course deviation
to refine the interpolated records derived from the Catmull–
Rom model. In this study, we leverage current fields from the
Copernicus Climate Data Store, rather than computing currents
from VMS records, which can enhance the accuracy of CRm.
9

Fig. 7. Training loss.

4.1.2. Deep learning methods
For the baseline deep learning methods, we apply the same two

optimizations as used in HiTrip.

• Bidirectional Gated Recurrent Unit (Bi-GRU) (Wang et al.,
2020): This research designs a Bi-GRU network to extract the
spatiotemporal features from longitude, latitude, velocity, course,
and time.

• Spatio-Temporal Sequence to Sequence model (ST-Seq2Seq)
(You et al., 2020): This study adopts the encoder–decoder frame-
work, leveraging two GRU networks for the encoder and decoder
roles. The encoder first translates the VMS records into a context
vector, which is subsequently used by the decoder to produce the
target trajectory.

• Bidirectional Long Short-Term Memory Neural Network (Bi-
LSTM) (Liu et al., 2021): This study employs a Bi-LSTM archi-
tecture to generate the interpolations between two successive
records.

4.2. Training details

The East China Sea dataset serves as the benchmark for evaluating
the interpolation accuracy of HiTrip and other baselines. This dataset is
further leveraged in our ablation study. We partition the VMS dataset
based on the local cessation period, specifically from September 2015
to May 2016 and from September 2016 to May 2017. To simulate the
interpolation process for historical VMS datasets, the VMS records from
September 2016 to May 2017 is employed to train the interpolation
model of HiTrip and the three deep learning baseline models. The
trainset contains 526,736 samples, and the validset includes 131,688
samples. We evaluate the interpolation accuracy using the VMS records
from September 2015 to May 2016, which contains 354,591 sam-
ples. Fig. 7 shows the training loss, which demonstrate the network
convergence.

4.3. Interpolation accuracy

To assess the accuracy of our interpolation in terms of spatial
distance, we utilize Geographical Distance Error (𝐷𝐸), which measures
the geographical distance between the interpolated records and the ac-
tual ground truth within the Geographic Coordinate System, calculated
with Eq. (12). Here, R indicates the Earth’s radius. We have chosen
not to use traditional metrics like RMSE (Root Mean Square Error),
MSE (Mean Squared Error), and MAE (Mean Absolute Error), despite
being direct outputs of the deep learning model. The reason is that
these metrics do not provide an absolute measure of the distance error,
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Table 3
Average distance error comparison among different models, the errors are presented in ‘‘mean ± standard deviation’’.

Model LI cHs CRm Bi-GRU Bi-LSTM ST-Seq2Seq HiTrip

Distance error (km) 1.95 ± 1.05 1.40 ± 0.73 1.08 ± 0.67 1.07 ± 0.69 0.99 ± 0.62 0.94 ± 0.60 0.20 ± 0.10
Fig. 8. CDF of DE for LI, cHs, CRm, Bi-GRU, ST-Seq2Seq, Bi-LSTM, and HiTrip.

Fig. 9. Interpolation results comparison among different models with the backgrounds
of coarse fishing effort distribution.

especially important in oceanic contexts where calculations should
consider the Earth’s curvature. Therefore, 𝐷𝐸 is implemented as the
primary measure to evaluate the accuracy of our interpolation model,
ensuring a more geographically precise assessment.

𝐷𝐸 = 𝑅
𝑛
(

𝑛
∑

𝑖=1
[𝑎𝑐𝑜𝑠(𝑠𝑖𝑛(𝑟𝐻𝑡,𝑙𝑎𝑡) × 𝑠𝑖𝑛(𝑟̂𝐻𝑡,𝑙𝑎𝑡)+

𝑐𝑜𝑠(𝑟𝐻𝑡,𝑙𝑎𝑡) × 𝑐𝑜𝑠(𝑟̂𝐻𝑡,𝑙𝑎𝑡) × 𝑐𝑜𝑠(𝑟𝐻𝑡,𝑙𝑜𝑛 − 𝑟̂𝐻𝑡,𝑙𝑜𝑛))]) (12)

Using the first part of the VMS dataset, spanning September 2015
to May 2016, we evaluate the interpolation outcomes of HiTrip against
the baselines, shown in Fig. 8. Given the tendency of trawlers to execute
numerous turns during a two-hour fishing window, LI records the
largest DE. Both cHs and CRm, considering they incorporate velocity
and course, register lower DEs than LI. Notably, the inclusion of current
fields in CRm, which is absent in both LI and cHs, renders it the most
accurate among mathematical methods, bringing it on par with the
deep learning model of Bi-GRU.
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Deep learning methods, leveraging their robust learning capabili-
ties, have the potential to replicate trajectory turns, thereby offering
lower DEs than their mathematical counterparts. HiTrip outperforms
all methods, with the highest DE capped at a mere 1.30 km. This
highlights the efficacy of using deep learning models to harness spatial
features from diverse data sources, leading to accurate interpolation of
trajectory segments.

To evaluate the consistency and precision of HiTrip and other
baselines, we compute the mean and standard deviation of DE across
all interpolated trajectory segments, as presented in Table 3. HiTrip
achieves the minimal DE at 0.20 km, accompanied by the smallest
standard deviation of 0.10 km. When compared with CRm and ST-
Seq2Seq, the best ones in mathematical and deep learning models
respectively, HiTrip demonstrates reductions in average DE by 81% and
79%. Moreover, HiTrip’s standard deviation is notably lower than both
CRm and ST-Seq2Seq, suggesting that HiTrip’s predictions are more
consistent. In line with the Six Sigma guidelines (Yadav et al., 2018),
the majority of HiTrip’s DEs fall below 0.5 km. Given that a single
degree in the Geographic Coordinate System roughly equates to 100
km, HiTrip proves adept at analyzing fishing effort distribution with a
spatial resolution close to 0.005◦ × 0.005◦ and a temporal resolution of
three minutes.

Fig. 9 provides a visual representation of an interpolation example,
shedding light on the superior accuracy of HiTrip compared to other
models, especially in terms of coarse fishing effort distributions. LI’s
straight segment results in the highest DE when the interpolated section
contains a turn. While cHs and CRm depict the turn with smoother
curves, they miss the sharpness of the actual turn. Deep learning
techniques do recognize the segment’s turn pattern, but misplace the
turning positions. On the other hand, HiTrip not only identifies the
sharp turns but also pinpoints the precise turning location, typically
occurring in fishing hotspots. This highlights that the 𝐸𝑛𝑐𝐷 network
captures the core spatial features from the coarse fishing effort dis-
tributions, allowing HiTrip to accurately recreate the turns in the
interpolated trajectory segment.

To showcase the influence of implementing sea surface factors
fields, Fig. 10 displays three interpolation outcomes against the back-
ground of the variability in SSH, SSS, and SST fields, as determined by
Eq. (1). In Fig. 10(a), mathematical methods produce either straight
lines or smooth curves. While deep learning methods do introduce
turns in the trajectory, they misplace the turn positions, resulting
in substantial DEs. Extracting the spatial features from SSH variabil-
ity via the 𝐸𝑛𝑐𝑆 network, HiTrip accurately regenerate turns in re-
gions with marked variability, closely mirroring the ground truth.
Fig. 10(b) and 10(c) also demonstrate the effects of applying 𝐸𝑛𝑐𝑆 on
the variability fields of SSS and SST, respectively.

Fig. 10 showcases the efficacy of our custom-designed feature ex-
traction network, 𝐸𝑛𝑐𝑆 , in pinpointing the spatial features inherent
within the sea surface factors fields. This insight enhances HiTrip’s
capability to detect prospective fishing regions, thereby facilitating
a more precise reconstruction of turns within the target trajectory
segments.

To showcase the impact of exploiting the current fields through the
network 𝐸𝑛𝑐𝐶 , we present an interpolation example with the back-
ground of the current fields in Fig. 11. All methods, except for LI,
generate interpolations with turns. HiTrip’s outcomes indicate that
during fishing activities, such as setting, towing, or retrieving nets,
trawlers often navigate at significant angles to the current or even
against it.

Consequently, with both 𝐸𝑛𝑐𝐷 and 𝐸𝑛𝑐𝑆 identifying potential fish-
ing areas and the associated turning positions, and 𝐸𝑛𝑐𝐶 determin-
ing the course at each interpolation point, HiTrip attains remarkable
interpolation precision.
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Fig. 10. Interpolation results comparison among different models with the backgrounds of the spatial variability of (a) SSH, (b) SSS, and (c) SST.
Fig. 11. Interpolation results comparison among different models with the background
of current fields.

4.4. Estimation of fishing effort distribution

The main objective of analyzing the historical VMS dataset is to
track changes in fishing effort distribution over time. So the sec-
ond metric we used is the difference between the estimated fishing
effort distribution based on the interpolated results and the actual
distribution. Considering the maximum spatial resolution of HiTrip is
approximately 0.005◦ × 0.005◦, we juxtapose the fishing effort distri-
butions of HiTrip and the baseline methods at spatial resolutions of
0.005◦ × 0.005◦, 0.01◦ × 0.01◦, and 0.1◦ × 0.1◦. The time resolution for
these distributions is set to one month, a standard duration for such
analyses.

We specifically calculate the average fishing effort error (𝐴𝐹𝐸)
in areas where actual fishing activities were recorded. This approach
allows us to assess the accuracy of various interpolation models in
estimating fishing effort distribution. The average fishing effort error
(𝐴𝐹𝐸) and the average fishing effort value for month 𝑚, denoted as
𝐴𝐸𝑚 and 𝐴𝐹𝐸𝑚 respectively, are derived using Eq. (13) and (14).
Within these equations, ̂𝐹𝐸𝑚 labels the fishing effort distributions
deduced from the interpolation outcomes of various methods, while
𝐹𝐸𝑚 represents the actual fishing effort distributions for month 𝑚.
To ensure accuracy, both Eq. (13) and (14) consider only those grids
that have recorded fishing activity, preventing the dilution of fishing
effort errors into grids devoid of any fishing action. Table 4 presents
a comparison of the monthly average fishing effort errors across grids
during the evaluation period. It also offers the monthly average fishing
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effort values across these grids as references.

𝐴𝐸𝑚 = 𝑎𝑣𝑔(
∑

𝑥,𝑦
|𝐹𝐸𝑥,𝑦

𝑚 − ̂𝐹𝐸𝑥,𝑦
𝑚 |, 𝑖𝑓 𝐹𝐸𝑥,𝑦

𝑚 > 0) (13)

𝐴𝐹𝐸𝑚 = 𝑎𝑣𝑔(
∑

𝑥,𝑦
𝐹𝐸𝑥,𝑦

𝑚 , 𝑖𝑓 𝐹𝐸𝑥,𝑦
𝑚 > 0) (14)

In Table 4, as spatial resolution increases, leading to a rise in grid
numbers, the AFE per grid subsequently decreases. Across all spatial
resolutions and months, LI consistently registers the highest error,
while cHs and CRm follow with lessor errors. The interpolations derived
from deep learning methods outshine those produced by traditional
mathematical approaches in terms of precision. HiTrip stands out by
consistently recording the lowest AE across every spatial resolution
and month, surpassing all alternative methods. These results align with
observations from Table 3, underscoring that superior interpolation
techniques yield more accurate fishing effort distributions.

𝐸𝐸𝑅𝑚 =
𝐴𝐸𝑚

𝑎𝑣𝑔(
∑

𝑥,𝑦 |𝐹𝐸𝑥,𝑦
𝑚 |, 𝑖𝑓 𝐹𝐸𝑥,𝑦

𝑚 > 0)
(15)

To present a direct measure of estimation accuracy for the fishing
effort distribution across different interpolation models, we further in-
troduce the fishing effort error ratio (𝐸𝐸𝑅) in Eq. (15). 𝐸𝐸𝑅 calculates
the ratio of 𝐴𝐹𝐸 to the average fishing effort per grid each month.
This metric offers a comparative assessment of the relative precision of
different interpolation models in estimating fishing effort distribution.

Table 4 shows that the 𝐸𝐸𝑅 consistently rise with the increase
of spatial resolution across all methods. For instance, considering the
𝐸𝐸𝑅 in September, mathematical methods have a minimum value of
10.4% for CRm at a spatial resolution of 0.1◦ × 0.1◦. In comparison,
prior deep learning methods exhibit a minimum error ratio of 8.1% for
ST-Seq2Seq. When we enhance the spatial resolution, the error ratios
for mathematical methods exceeds 70%, whereas those for the earlier
deep learning methods surpasses 50%. In contrast, HiTrip’s 𝐸𝐸𝑅 in
September stand at 2.1%, 24.9%, and 18.6% for spatial resolutions of
0.1◦×0.1◦, 0.01◦×0.01◦, and 0.005◦×0.005◦, respectively. This indicates
that HiTrip effectively supports fishing effort distribution even at the
finer spatial resolution of 0.005◦ × 0.005◦.

In October, all methods except LI exhibit the highest average fishing
effort error. We visualize the error distributions for October’s fishing
efforts, ‖𝐹𝐸10− ̂𝐹𝐸10‖, comparing HiTrip with CRm and ST-Seq2Seq, as
depicted in Fig. 12. The same figure also presents the ground truth for
context. Notably, HiTrip displays fewer global errors, which are evenly
distributed across the fishing grounds. To delve deeper into distribution
errors, three prominent fishing zones are labeled in Fig. 12(a). As
the fishing season kicks off in September, numerous trawlers conduct
fishing offshore (zones A and B), while some target more distant areas
(zone C). The heatmap of the three fishing hot zones reveals HiTrip’s
superior accuracy in error distribution compared to its counterparts,
aligning with the quantitative findings in Table 4.
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Table 4
Estimation error of fishing effort over grids comparison among different models. We report the average fishing effort error and corresponding error ratio in Table.

Spatial
resolution

Month LI cHs CRm Bi-GRU Bi-LSTM ST-Seq2Seq HiTrip Average
fishing effort

0.1𝑜

Sep 43.0(17.6%) 31.2(12.7%) 25.5(10.4%) 25.7(10.5%) 20.7(8.5%) 19.9(8.1%) 5.0(2.1%) 245.1
Oct 63.1(14.5%) 44.2(10.1%) 35.6(8.2%) 34.8(8.0%) 29.6(6.8%) 27.3(6.3%) 6.7(1.5%) 436.8
Nov 59.5(15.4%) 41.2(10.7%) 33.5(8.7%) 33.3(8.6%) 27.6(7.1%) 25.6(6.6%) 5.8(1.5%) 385.6
Dec 57.2(15.4%) 38.7(10.4%) 31.3(8.4%) 29.8(8.0%) 24.9(6.7%) 24.5(6.6%) 6.0(1.6%) 370.7
Jan 48.8(16.5%) 34.7(11.7%) 28.1(9.5%) 27.0(9.1%) 24.0(8.1%) 21.9(7.4%) 5.2(1.8%) 295.9
Feb 44.5(18.5%) 31.1(12.9%) 24.9(10.4%) 24.1(10.0%) 20.3(8.5%) 19.0(7.9%) 4.5(1.9%) 240.6
Mar 50.1(17.3%) 34.2(11.8%) 27.9(9.6%) 27.5(9.5%) 22.2(7.7%) 22.0(7.6%) 5.2(1.8%) 289.0
Apr 49.0(18.0%) 34.2(12.5%) 27.6(10.1%) 26.7(9.8%) 21.2(7.8%) 21.0(7.7%) 5.0(1.8%) 272.6
May 63.1(27.1%) 45.6(19.6%) 37.9(16.3%) 34.8(14.9%) 28.9(12.4%) 26.8(11.5%) 6.5(2.8%) 232.9

0.01𝑜

Sep 8.6(82.1%) 7.6(73.1%) 6.8(65.2%) 6.6(63.4%) 6.1(58.7%) 6.0(57.6%) 2.6(24.9%) 10.5
Oct 10.2(80.4%) 8.9(70.6%) 7.9(62.6%) 7.6(59.8%) 7.1(56.4%) 6.9(54.7%) 2.8(22.4%) 12.7
Nov 10.2(82.2%) 9.0(72.1%) 7.9(63.9%) 7.5(60.2%) 7.0(55.9%) 6.8(54.6%) 2.8(22.3%) 12.4
Dec 9.7(81.0%) 8.4(70.6%) 7.5(62.5%) 7.1(59.8%) 6.7(56.0%) 6.5(54.6%) 2.7(22.7%) 11.9
Jan 9.4(80.7%) 8.2(70.4%) 7.2(62.1%) 6.9(59.4%) 6.5(55.9%) 6.3(54.4%) 2.7(23.1%) 11.6
Feb 9.0(81.3%) 7.9(71.8%) 7.1(64.3%) 6.7(60.7%) 6.3(57.0%) 6.1(55.3%) 2.6(23.4%) 11.1
Mar 9.2(81.0%) 8.0(70.8%) 7.1(62.7%) 6.9(60.4%) 6.5(56.9%) 6.3(55.5%) 2.7(23.4%) 11.3
Apr 9.5(82.7%) 8.3(72.7%) 7.3(64.0%) 7.0(60.8%) 6.5(57.0%) 6.3(55.1%) 2.6(23.0%) 11.4
May 10.7(95.0%) 9.3(83.2%) 8.4(74.5%) 7.8(69.8%) 7.4(65.6%) 7.2(63.7%) 3.0(26.8%) 11.2

0.005𝑜

Sep 4.7(87.1%) 4.4(81.8%) 4.0(74.2%) 4.0(74.3%) 3.8(71.2%) 3.8(70.2%) 1.1(18.6%) 5.4
Oct 5.2(86.9%) 4.8(81.1%) 4.4(73.4%) 4.3(72.1%) 4.2(69.6%) 4.1(68.4%) 1.1(18.6%) 6.0
Nov 5.2(88.3%) 4.9(82.6%) 4.4(74.6%) 4.3(72.6%) 4.1(69.7%) 4.1(68.7%) 1.1(18.6%) 5.9
Dec 5.0(86.6%) 4.7(80.9%) 4.2(73.0%) 4.2(71.9%) 4.0(69.3%) 4.0(68.2%) 1.1(18.6%) 5.8
Jan 5.0(86.7%) 4.6(80.7%) 4.2(72.9%) 4.1(72.1%) 4.0(69.0%) 3.9(67.9%) 1.1(18.6%) 5.7
Feb 4.8(87.0%) 4.5(81.5%) 4.1(74.2%) 4.1(73.0%) 3.9(69.8%) 3.8(68.5%) 1.0(18.8%) 5.6
Mar 4.9(86.5%) 4.5(80.8%) 4.1(73.2%) 4.1(72.5%) 3.9(70.0%) 3.9(68.9%) 1.1(18.8%) 5.6
Apr 5.0(88.1%) 4.7(82.3%) 4.2(74.2%) 4.1(72.8%) 4.0(70.3%) 3.9(68.4%) 1.1(18.7%) 5.7
May 5.3(105.4%) 5.0(98.1%) 4.5(89.2%) 4.3(85.9%) 4.2(83.0%) 4.1(81.8%) 1.2(22.9%) 5.0
Table 5
Ablation studies. We report the average distance errors (mean ± standard deviation) when applying the network components with their
corresponding inputs in the interpolation model.
Module VMS

Records
Coarse Fishing
Effort Distributions

Sea Surface
Factor Fields

Current
Fields

LSTM 𝑜𝑝𝑡1 𝑜𝑝𝑡2 Distance error (km)

𝐸𝑥𝑝1 ✓ ✓ ✓ ✓ 0.93 ± 0.59

𝐸𝑥𝑝2 ✓ ✓ ✓ ✓ ✓ 0.76 ± 0.53
𝐸𝑥𝑝3 ✓ ✓ ✓ ✓ ✓ 0.87 ± 0.53
𝐸𝑥𝑝4 ✓ ✓ ✓ ✓ ✓ 0.88 ± 0.54

𝐸𝑥𝑝5 ✓ ✓ ✓ ✓ ✓ ✓ 0.48 ± 0.28
𝐸𝑥𝑝6 ✓ ✓ ✓ ✓ ✓ ✓ 0.39 ± 0.23
𝐸𝑥𝑝7 ✓ ✓ ✓ ✓ ✓ ✓ 0.44 ± 0.26

𝐸𝑥𝑝8 ✓ ✓ ✓ ✓ ✓ ✓ 0.32 ± 0.19

𝐸𝑥𝑝9 ✓ ✓ ✓ ✓ ✓ 0.54 ± 0.31
𝐸𝑥𝑝10 ✓ ✓ ✓ ✓ ✓ ✓ 0.38 ± 0.23
𝐸𝑥𝑝11 ✓ ✓ ✓ ✓ ✓ ✓ 0.45 ± 0.26

HiTrip ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.20 ± 0.10
4.5. Ablation study

To analyze the contributions of each component within HiTrip, we
carry out the ablation studies. All the settings and the results are shown
in Table 5.

We first evaluate the interpolation accuracy by solely utilizing a
Multi-Layer Perceptron (MLP) to extract spatial features from the input
VMS records, under the directive guidance of an LSTM-based decoder.
This methodology resulted in a 𝐷𝐸 of 0.93 km, which is impres-
sively lower than the outcomes achieved by three other deep learning
baselines. This finding emphasizes the superiority of our proposed MLP-
LSTM encoder–decoder combination, demonstrating its effectiveness
over the other deep learning models in accurately interpreting and
processing the spatial features of VMS data.

Subsequently, we apply ResNet to extract spatial features from
coarse fishing effort distribution, sea surface factors fields, and cur-
rent fields, respectively, followed by their integration with the fea-
tures extracted by MLP from VMS records. Adding spatial features
extracted from the coarse fishing effort distribution resulted in the
most significant improvement, achieving a low 𝐷𝐸 of 0.76 km. This
12
finding underscores the importance of differentiating between fishing
and steaming states to enhance the accuracy of trajectory interpolation.
The notable improvement in interpolation precision is mainly due to
ResNet’s effective extraction of spatial features from the coarse fishing
effort distribution. This approach allows for a more precise represen-
tation of the operational states in the trajectory, leading to a more
accurate and reliable interpolation of the VMS data.

When we applied ResNet to extract spatial features from sea surface
factors fields and merged these with the spatial features extracted from
VMS records by MLP, the 𝐷𝐸 is larger compared to utilizing spatial
features from coarse fishing effort distribution. This rise in 𝐷𝐸 is
likely due to the indirect way that sea surface factors fields indicate
fishing hotspots, resulting in a less accurate identification of fishing
activities. Furthermore, the 𝐷𝐸 increases even more when using the
combination of spatial features from current fields and VMS records.
This rise highlights the challenges in interpolating trajectories when
there is no clear distinction between fishing and steaming activities. It
points to the necessity of having direct and distinct indicators of fishing
activity to enhance the accuracy of interpolations in such models.
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Fig. 12. Visualization of distribution errors of fishing effort in October among three methods at different spatial resolutions. Best view in color. (a)–(c) are the ground-truth fishing
effort distribution, (d)–(l) are the distribution errors between the fishing effort distribution calculated after applying different interpolation methods and ground-truth.
Another important finding from our ablation study is the enhanced
interpolation accuracy achieved by combining spatial features ex-
tracted from current fields using ResNet with those from VMS records,
and either coarse fishing effort distributions or sea surface factors
fields. Such a combination outperforms the accuracy achieved when
these features are individually paired with VMS record features. The
synergistic effect of merging current field features with either coarse
fishing effort distributions or sea surface factors fields considerably
betters the prediction of course changes, thereby leading to more
precise trajectory interpolations.

However, it is important to recognize that a combination of spatial
features from both coarse fishing effort distribution and sea surface
13
factors fields results in a higher 𝐷𝐸 than the other combinations
mentioned. This outcome suggests that while it is vital to differentiate
between fishing and steaming states, failing to thoroughly consider
course changes can result in increased interpolation errors. This ob-
servation underscores the intricate nature of accurately interpolating
trawler trajectories and the necessity for a comprehensive approach
that takes into account the various dimensions of trawler movements
and behaviors.

Moreover, to demonstrate HiTrip’s proficiency in capturing the
temporal sequence characteristics intrinsic to the target trajectory seg-
ment, we conducted a test by removing the LSTM component from
the decoder and relying exclusively on an additional MLP to directly
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Table 6
Interpolation error (mean ± standard deviation) comparison among different models in Global Fishing Watch dataset.

Model LI cHs CRm Bi-GRU Bi-LSTM ST-Seq2Seq HiTrip𝐺𝐹𝑊 HiTrip𝐺𝐹𝑊
𝑇𝐿

Distance error (km) 1.86 ± 1.33 1.56 ± 0.97 1.30 ± 0.90 1.24 ± 0.85 1.09 ± 0.80 1.07 ± 0.80 0.89 ± 0.66 0.40 ± 0.29
produce the interpolated records. The results of this experiment show
that omitting LSTM results in a 60% increase in 𝐷𝐸 compared to the
original HiTrip configuration. This outcome clearly indicates that the
inclusion of LSTM, with its ability to represent temporal sequencing,
plays a crucial role in substantially improving the accuracy of the
interpolation.

Lastly, to gauge the potency of the two proposed optimizations, we
conduct tests excluding 𝑜𝑝𝑡1, 𝑜𝑝𝑡2, or both. The individual removal of
𝑜𝑝𝑡1 resulted in a DE rise by 125%, illuminating the pitfalls of not
bridging the information gap between input and target records. Exclu-
sion of 𝑜𝑝𝑡2 led to a 90% DE surge, underscoring the value of having
known anchor points at the beginning and end of trajectory segments
on limiting potential accumulated errors. When both optimizations are
absent, the DE soars by 170%, reaffirming the indispensable nature of
these optimizations in our model.

4.6. Generalization of HiTrip

In this section, we delve into HiTrip’s generalization potential across
diverse maritime areas. We utilize a trawler dataset sourced from
Global Fishing Watch, which predominantly captures trawling activ-
ities in the Norwegian Sea, Pacific Ocean, and Indian Ocean. We
split this dataset chronologically into two halves: the latter portion is
allocated for transfer learning using the well-tuned HiTrip (referred
to as HiTrip𝐺𝐹𝑊

𝑇𝐿 ) or for training a fresh HiTrip instance (designated
as HiTrip𝐺𝐹𝑊 ). The initial half serves to evaluate the DE. Moreover,
the three deep learning baseline models also undergo transfer learning
based on their pre-trained models on the East China Sea dataset.

The sampling frequency of this dataset ranges from minutes to
hours, suggesting it is not directly suitable for training or evalua-
tion. To address this, we first employ linear interpolation to narrow
down the sampling intervals. Given that trawlers typically do not
execute intricate maneuvers in short time spans, we only apply this
interpolation when the gap between two successive records is under
twelve minutes. This tactic not only shortens the intervals as much
as feasible but also keeps the added error to a minimum. As a result,
the majority of the intervals between adjacent records are refined to
three minutes. The trainset, validset, and testset contain 1372, 344, and
1716 samples, respectively. This diverse dataset distribution enables a
comprehensive evaluation of the interpolation models across different
maritime regions, temporal periods and data volumes, providing robust
insights into their performance and applicability.

Table 6 showcases the DEs of the baseline models, HiTrip𝐺𝐹𝑊
𝑇𝐿 , and

HiTrip𝐺𝐹𝑊 . Initially, the LI yields the highest DE among all models,
yet it remains smaller than the DE presented in Table 3. This difference
largely arises from our application of linear interpolation on the dataset
to narrow down the sampling interval, causing some generated records
to match the linearly interpolated ground-truth records. However, as
certain ground-truth records are products of linear interpolation, the
DEs of cHs and CRm are marginally higher than those in Table 3.

Besides, the three deep learning models solely depend on VMS
records for inputs and do not extract the spatial features inherent in
coarse fishing effort distributions, sea surface factors fields, and current
fields. Consequently, transfer learning does not empower their well-
trained models to assimilate enough features pertinent to the respective
maritime regions, especially considering that the dataset volume is
considerably smaller than the East China Sea dataset. This limitation
is evident, as all of their DEs surpass those in Table 3.

Additionally, HiTrip𝐺𝐹𝑊 registers a higher error than HiTrip𝐺𝐹𝑊
𝑇𝐿 .

This discrepancy mainly stems from constraints tied to the training
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Fig. 13. Interpolation comparison of Global Fishing Watch dataset among different
models with the background of current fields.

data volume and the inherent difference when computing coarse fish-
ing effort distribution across different marine regions. Nevertheless,
the DE for HiTrip𝐺𝐹𝑊 still outperforms that of ST-Seq2Seq, attesting
to the merit of extracting spatial features from coarse fishing effort
distributions, sea surface factors fields, and current fields.

Remarkably, HiTrip𝐺𝐹𝑊
𝑇𝐿 posts the most commendable DE. This out-

come is attributed to HiTrip’s proficiency in encapsulating the influence
of coarse fishing effort distributions, sea surface factors fields, and
current fields for the target trajectory segments. The spatial features of
the new dataset then enhance the interpolation accuracy of HiTrip𝐺𝐹𝑊

𝑇𝐿 .
Furthermore, the slightly elevated DE of HiTrip𝐺𝐹𝑊

𝑇𝐿 in comparison to
HiTrip in Table 3 can be linked to biases in the coarse fishing effort
distribution calculation.

Fig. 13 illustrates an interpolation example in the Norwegian Sea
from the Global Fishing Watch dataset. The interpolations by the three
mathematical methods still yield either straight lines or gentle curves.
The Bi-LSTM’s results do suggest a turn but misdirect it, rendering it
less accurate than even the basic mathematical methods. Bi-GRU and
ST-Seq2Seq, on the other hand, manage to detect the trajectory turns
but falter in pinpointing the exact turn locations.

Due to the intrinsic bias in estimating the coarse fishing effort dis-
tribution across different maritime regions, HiTrip𝐺𝐹𝑊 faces challenges
in adequately extracting spatial features using the limited training
data available. This leads its interpolated results to diverge consider-
ably from the actual trajectory segment. Nevertheless, when utilizing
transfer learning and leveraging the well-trained HiTrip model in con-
junction with this dataset, HiTrip𝐺𝐹𝑊

𝑇𝐿 can successfully extract spatial
features on the corresponding coarse fishing effort distributions, sea
surface factors fields, and current fields. As a result, it can more accu-
rately reconstruct the target trajectory segments, producing outcomes
that outperform other models.

5. Discussion

This study proposes HiTrip, a historical trawler trajectory interpola-
tion system via deep learning on VMS and hydrological factor datasets.
HiTrip is able to interpolate the sampling interval of the historical
dataset from two hours to three minutes with a low interpolation
error. The precision of HiTrip’s interpolation is rooted in carefully
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crafting deep learning model to encapsulate the influential factors.
The deep learning model serves three primary functions: extracting
features from multi-source data, articulating sequential characteristics,
and implementing optimizations.

(1) Interpolation challenges mainly arise within trajectory segments
that showcase turns, particularly evident during fishing activities. Cur-
rent research typically differentiates the fishing state of target trajectory
segments by scrutinizing the characteristics of two sequential records
from low-sampled VMS datasets, often setting velocity thresholds (Lee
et al., 2010). Nonetheless, trawlers might wrap up a fishing activity
within a mere two-hour window, making it possible to overlook these
events when reliant on infrequent VMS records. Thus, using only two
adjacent VMS records for interpolation can lead to inaccuracies.

HiTrip goes beyond merely interpolating from VMS records; it en-
hances the feature set by integrating information from coarse fishing
effort distributions, sea surface factors fields’ variability, and current
fields. These additional features address the insufficiency of relying
on VMS records alone to identify fishing activities. The ablation study
underscores the importance of the encoder in gleaning features from
these diverse data sources. It further establishes that, even though the
coarse fishing effort distributions are derived from low-sampled VMS
datasets, they offer a direct insight into fishing hotspots. In compari-
son, the variability of the sea surface factors fields offers an indirect
indicator of fishing activities. Furthermore, the current fields augment
interpolation precision by signaling nuanced course changes.

(2) The outcomes within a target trajectory segment display a clear
sequential pattern. Each record’s position, velocity, and course are
dictated by the previous one. HiTrip employs the LSTM network to
capture this inherent sequential nature and further guides the encoder
to extract fused features from multiple data sources for each time step.
The ablation study emphasizes that overlooking the LSTM’s ability to
integrate these sequential features results in a significant decline in
interpolation accuracy.

(3) Introducing two pivotal optimization strategies is essential for
the accurate interpolation of historical trajectories, especially when
narrowing the gap from a two-hour to a mere three-minute sampling
interval. The first optimization tactically addresses the pronounced in-
formation discrepancy between the readily available four VMS records
and the targeted 39 VMS records. Besides, the second strategy curtails
the accumulation of interpolation errors. The efficacy and importance
of these optimizations are further substantiated by the results of our
ablation study.

Owing to its superior interpolation accuracy, HiTrip can facilitate
analysis for fishing effort distributions at an enhanced spatial reso-
lution of 0.005◦ × 0.005◦. This refined granularity paves the way for
advanced digital tools that can significantly aid in the planning and
management of marine fishery resources. Furthermore, the tests on
the Global Fishing Watch dataset attest to HiTrip’s generalization. It
can seamlessly adapt to different maritime regions while consistently
delivering high-precision results.

Additionally, we observe from Table 1 that numerous early datasets
from the Atlantic region feature sampling intervals longer than one
or two hours. For historical datasets with a two-hour sampling in-
terval, HiTrip can be effectively applied through transfer learning,
as demonstrated in our interpolation of the GFW dataset. Regarding
historical datasets with a one-hour sampling interval, the HiTrip model
can be adapted and retrained to meet the specific interpolation needs,
transitioning from a one-hour to a three-minute interval.

The primary limitation of HiTrip is its design specificity for trawlers,
making it less suitable for direct application to other types of fishing
vessels. Our study focused on the impact of marine hydrological factors
on trawler trajectories, leading to the development of a model specifi-
cally tailored for these effects. Trawlers are characterized by frequent
turns while fishing, typically in areas identified as fishing hotspots,
marked by dense clusters of VMS records. The coarse fishing effort
15

distribution and marine hydrological factor fields can help in indicating
the operational states of trawlers, however, it is crucial to recognize
that different fishing vessels display distinct trajectory patterns. For
instance, gillnets exhibit straighter trajectory segments and sharp turns
during fishing activities. These variations in movement patterns limits
HiTrip’s applicability across diverse types of fishing vessels.

The second significant limitation of HiTrip pertains to the amount
of historical VMS dataset required for its training. Our comparison of
interpolation results using historical VMS datasets from Global Fishing
Watch and the East China Sea shows that the accuracy of HiTrip’s
interpolation is dependent on the volume of the training dataset. In
situations where the available historical VMS dataset is limited, as
with the Global Fishing Watch dataset, employing transfer learning
techniques is more effective for achieving better interpolation accuracy
than starting the learning process from scratch

6. Conclusion and future direction

This study propose HiTrip, a historical trawler trajectory interpola-
tion system powered by deep learning. Leveraging VMS and hydrolog-
ical factor datasets, HiTrip refines the sampling interval of historical
VMS datasets from two hours to just three minutes.

HiTrip proposes a novel deep learning network that melds ResNet,
LSTM, and MLP, which seamlessly integrates spatial features derived
from coarse fishing effort distributions, sea surface factors fields, and
current fields, while also accounting for the temporal associations
among VMS records within the target trajectory segment. Validated
by our case study on the East China Sea’s dataset, HiTrip achieves an
impressive interpolation error of just 0.20 km. This level of precision
facilitates a detailed examination of historical fishing effort distribution
at a refined spatial resolution, approaching 0.005◦ × 0.005◦, as corrob-
orated by the historical dataset from the East China Sea. Furthermore,
when tested on a trawler dataset from Global Fishing Watch, span-
ning global maritime regions, HiTrip consistently demonstrates its vast
adaptability and generalizability.

Although HiTrip focuses on the gear of trawlers, the proposed
method also has the potential to be applied to other gears. Since coarse
fishing effort distributions, sea surface factors fields, and current fields
will also affect other gears of fishing vessels, our analysis and model can
be adapted to those gears. Additionally, HiTrip can be utilized for other
important fishery applications, such as recovering trawler trajectories
that have been manually terminated due to illegal fishing.
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