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Abstract
Policy decisions concerning housing, transportation, and resource allocation would 
all benefit from accurate small-area population forecasts. However, despite the suc-
cess of regional-scale migration models, developing neighborhood-scale forecasts 
remains a challenge due to the complex nature of residential choice. Here, we intro-
duce an innovative approach to this challenge by extending density-functional fluc-
tuation theory (DFFT), a proven approach for modeling group spatial behavior in 
biological systems, to predict small-area population shifts over time. The DFFT 
method uses observed fluctuations in small-area populations to disentangle and 
extract effective social and spatial drivers of segregation, and then uses this informa-
tion to forecast intra-regional migration. To demonstrate the efficacy of our approach 
in a controlled setting, we consider a simulated city constructed from a Schelling-
type model. Our findings indicate that even without direct access to the underlying 
agent preferences, DFFT accurately predicts how broader demographic changes at 
the city scale percolate to small-area populations. In particular, our results demon-
strate the ability of DFFT to incorporate the impacts of segregation into small-area 
population forecasting using interactions inferred solely from steady-state popula-
tion count data.

Keywords  Small-area forecasts · Residential choice · Migration · Schelling model · 
Density-functional fluctuation theory · Segregation

Introduction

Forecasting neighborhood-scale population changes in response to residen-
tial migrations remains a challenge, with the potential to inform and significantly 
affect local planning of social and economic developments [46]. For example, 
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such forecasts could be used to achieve optimal allocation of educational, health 
and safety resources by determining the need for new schools [49], hospitals [22] 
and fire stations [35] in each neighborhood. In addition, such forecasts would be 
important for estimating housing demands [27], and might help combat socioeco-
nomic inequalities by predicting the need for low-income housing developments [1] 
and public transportation [56, 57]. Despite this wide range of important potential 
applications, methods for accurate neighborhood-scale population forecasts remain 
limited.

At regional scales, there are already numerous methods for predicting population 
change and dynamics. Traditionally, the demographic equation is applied to different 
cohorts [24, 26, 37, 44, 46, 47, 52]. In particular, estimates of birth and death rates 
from past data are already quite accurate. Models with different amounts of sophis-
tication have also been developed to estimate the migration rates from available data 
[43]. For example, the gravity model [14, 18, 23, 25, 36, 38] and the gravity-like 
Weidlich-Haag Migratory Model [19, 53–55] fit migration data by including relative 
preferences of origin and destination regions as well as preferences to make moves 
to closer locations. The challenge, then, is how to relate forecasts at the regional 
level to forecasts at the neighborhood scale.

One of the many hurdles for making such relations is that, at the neighborhood 
scale, drivers of segregation can significantly affect the resulting distributions. At 
regional scales, most methods either ignore the drivers of segregation [38] or assume 
some simple forms for such segregation effects [19]. These simplifications are most 
likely justified for regional or national population forecasts, because the drivers of 
segregation, such as economic status, social preferences and housing policy [10, 16], 
are likely to average over large scales. Such simplifications, however, could lead to 
substantial errors if we apply them to make small-area forecasts.

While many small-area population forecast methods have been developed and 
tested, none to date explicitly account for the effects of residential segregation. 
[59] recently collected a thorough review of these small-area methods, including 
extrapolative, cohort-component, and small-area microsimulations. Some methods 
referenced here account for aspects that might be of special importance to small-
area dynamics such as land use, roads, urban accessibility [29], water body, country 
borders [4], demographic and socioeconomic characteristics [8]. However, residen-
tial segregation remains a key feature of American society and a potent driver of 
residential mobility at the neighborhood scale. For example, residential tipping, the 
process in which in-migrations or out-migrations of neighborhoods are driven by the 
current racial compositions, can lead to dramatic differences in neighborhood popu-
lation changes [7]. Thus, there is a need to explore methods that can account for 
segregation effects in order to provide accurate forecasts of neighborhood migration.

Although there is a rich history of methods aimed at quantifying segregation and 
understanding its causes, it is unclear how to use most of these methods to create 
forecasts of small-area populations. One general approach is to quantify segrega-
tion based on numerical indices, so-called segregation indices, to characterize the 
degree of segregation in a city [12, 15, 31–34, 39–41, 58]. Such indices have been 
essential to understanding how segregation correlates with residential outcomes as 
well as potential drivers of segregation. Recently, [13] even used such indices to 
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extrapolate which neighborhoods are more likely to change their degree of segrega-
tion but stopped short of forecasting population changes, presumably because such 
indices are too coarse-grained to make accurate predictions. Another approach uti-
lizes agent-based models [5, 6, 11, 17, 42, 45, 48, 51, 60–63], such as the well-stud-
ied Schelling model [5, 17, 45, 60–62], to determine the degree to which different 
proposed interactions lead to segregation and to investigate their dynamics. Such 
studies have shown that even slight preferences towards segregated neighborhood 
compositions can lead to drastic city-wide segregation and dynamic phenomena 
such as residential tipping. Since these models require a priori knowledge of the 
decision rules for migration that are challenging to determine in practice, they have 
found limited use for predicting quantitative trends in human populations [3]. Thus, 
despite great progress in understanding the nature of segregation, neither segrega-
tion indices nor agent-based models have led to widely adopted methods for predict-
ing population dynamics at the small-area scale.

Recently, a new statistical physics method called Density-Functional Fluctua-
tion Theory (DFFT) was developed to make steady-state predictions of how crowds 
will distribute in different environments [30]. In short, DFFT is a top-down data-
driven approach that extracts functions to separately quantify effective social and 
spatial preferences from observed fluctuations in small-area population densities. By 
combining these functions, DFFT is able to predict population distributions in new 
environments, suggesting it could be a very promising approach to generate small-
area forecasts. More recent work by Barron et al [2] connected DFFT to traditional 
measures of segregation, demonstrating that a large variety of segregation indices 
can be directly computed from functions arising in DFFT. This suggests that DFFT 
is uniquely positioned to relate measures of segregation with population forecasting, 
bridging these traditionally distinct branches of demographic research.

This work represents the first application of DFFT beyond steady-state considera-
tions by extending DFFT to predict small-area data over time for multi-group sys-
tems (i.e., multiple types of agents in a system evolving in time far from equilib-
rium). In particular, we endeavor to forecast the number of individuals in small-area 
units of a simulated city that is driven by a Schelling-type model. While this city 
is not expected to capture complexities in real-world segregation, it—crucially—
allows us to demonstrate the efficacy of DFFT for small-area forecasting in a con-
trolled setting.

Notably, DFFT relies only on small-area population counts and does not require 
migration data. While population count data is widely accessible (e.g., Census 
data), migration data is often private. Census data is also accompanied by additional 
methodological challenges including non-uniform populations across small-areas, 
changes in small-area geometries over time, and time-varying changes in behavior. 
These challenges require methodologies that are beyond the scope of this paper. As 
such, we rely here solely on simulated data to test the ability of DFFT to capture 
interactions from small-area population counts and to then use this information to 
make forecasts under new conditions.

In this work, we first consider a Schelling-type model to simulate a city 
where agents exhibit both social and spatial drivers of segregation. Whereas the 
social drivers are directly dependent on the neighborhood composition, spatial 
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drivers are neighborhood-specific and could represent neighborhood housing 
costs, crime, school quality, or other perceived neighborhood characteristics [9, 
50]. We then use these simulations to create steady-state population data (i.e., 
when small-area distributions no longer change drastically over time) for our 
analysis (Fig. 1a; Sect. 2). Next, we apply DFFT to this data and extract functions 
describing the effective spatial and social preferences of the population (Fig. 1b; 
Sect. 3) while using no knowledge of the underlying agent behaviors other than 
their observable effects on small-area agent distributions. Notably, this quantifi-
cation of preferences is generic so that it can in theory capture cumulative effects 
of the drivers of segregation without making specific assumptions about their 
properties or relative strengths.

We proceed by introducing a sudden regional-scale population change, resulting 
in segregation-driven small-area population changes over time. (This is reminiscent, 
for example, of how following widespread damage from Hurricane Katrina, the sud-
den population influx to Houston, Texas, resulted in segregation-driven intra-city 
migrations, e.g. ‘White flight’, over the next several years [21].) We consider a dras-
tic population change for this demonstration because the resulting migrations could 
present greater discrepancies with predictions than those arising from small popula-
tion changes, thereby providing a stress test for our predictive framework.

To predict the time evolution of small-area population data following the sud-
den regional-scale population change, we develop a time-dependent version of 
DFFT (TD-DFFT). TD-DFFT, while relying on functions extracted from the origi-
nal steady-state data, extends the scope of DFFT by enabling predictions even in 
scenarios where the system is outside the steady state. We then compare the predic-
tions from TD-DFFT to the data generated by the underlying Schelling-type model 
(Fig. 1c; Sect. 4). Finally, we predict the new steady-state joint densities resulting 
from the sudden regional-scale population change, either through numerical compu-
tation using our novel TD-DFFT or analytic calculation using the DFFT functions. 
These predictions are then compared to the observed data for the new steady state 
(Fig. 1d; Sect. 5).

In the following sections we will describe the Schelling model and DFFT frame-
work in detail. The variables will be defined as they are introduced, but for ease of 
reference Table 1 summarizes the notation used throughout this paper.

Modified schelling simulation

To generate sample population data, we use a dynamic Schelling-type agent-based 
model [17] modified to include spatial dependence. In this model, two types of 
agents, 1000 red and 1000 blue, make probabilistic moves to new empty cells on 
a 60-by-60 lattice grid with periodic boundary conditions (Fig. 2a). The moves are 
based on changes in utility functions that specify social (“Social Utility” Uso

R
 , Uso

B
 ) 

and spatial (“Spatial Utility” Usp

R
 , Usp

B
 ) preferences. In particular, at each step in time, 

we randomly choose an agent and an empty cell, and then the agent accepts the 
move to the empty cell with probability
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Fig. 1   General Workflow of Applying DFFT to Data of Segregated Populations. a Collect small-
area steady-state population data in the form of probability distributions of local densities. Steady state 
is reached when the population distribution no longer changes drastically over time. In our example, we 
simulate the steady-state data from a Schelling model (yellow bubble). b Extract DFFT functions from 
steady-state data. The DFFT functions characterize social and spatial preferences separately. c After a 
population change, we predict the time evolution of small-area population data with time-dependent 
DFFT (TD-DFFT) using the extracted DFFT functions. We compare our prediction with the observed 
time evolution from the Schelling model simulations (yellow bubble). d We predict the new small-area 
steady state after the regional-scale change either numerically using TD-DFFT or analytically using 
DFFT functions. We compare our prediction with the observed new steady state of the Schelling model 
simulations (yellow bubble)
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where Δ denotes the change in utilities due to the proposed move [28] so that agents 
are more likely to move if the total utility increases. The social and spatial utility 
functions are defined in Figs. 2b,c and 2d,e respectively. In this particular case, we 

(1)PSchelling =

⎧
⎪⎨⎪⎩

1

1+e
−Δ(Uso

R
+U

sp

R
)
if agent is red

1

1+e
−Δ(Uso

B
+U

sp

B
)
if agent is blue

,

Table 1   Definition of variables

Variable Meaning Usage

PSchelling Probability of moving for each Schelling step Schelling
Uso

R
Social Utility for a red agent

Uso
B

Social Utility for a blue agent
U

sp

R
Spatial Utility for a red agent

U
sp

B
Spatial Utility for a blue agent

x Position in Schelling city
Nne
R

Number of red agents in the 8-connected neighborhood
Nne
B

Number of blue agents in the 8-connected neighborhood
b Block index Schelling & DFFT
btot Total number of blocks in a city
t Time
s Number of cells (spaces) in a block
stot Total number of cells (spaces) in a city
Ntot Total number of agents in a city
N tot
R

Total number of red agents in a city
N tot
B

Total number of blue agents in a city
Pb Probability Distribution of agents in block b
NR,b Number (Density) of red agents in block b
NR Abbreviated NR,b when there is no ambiguity
NB,b Number (Density) of blue agents in block b
NB Abbreviated NB,b when there is no ambiguity
zb Normalization constant for Pb DFFT
vR,b Vexation for red agents in block b
vB,b Vexation for blue agents in block b
f Frustration
Hb Headache function for block b
P Probability distribution of states of the entire city
Pb→b′ Probability of transition of an agent from block b to b′

�R,b→b′ Number (Density) flow rate for red agent from block b to b′

�B,b→b′ Number (Density) flow rate for blue agent from block b to b′

�R Red agent potential in a city
�B Blue agent potential in a city
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define the social utility to be proportional to the number of 8-connected neighbors 
(dashed box in Fig. 2a) that are of the same type (more complex social utility func-
tions are considered in SI Section S8). This dependence is illustrated by the monoto-
nicity of the utility functions in the rows and columns in Fig. 2b and c respectively. 
We set the spatial utilities as shown in Fig. 2d and e, where red agents prefer the 
West side of the city and blue agents prefer the South side of the city. We use these 
simulations to generate the data throughout this paper.

From these simulations we obtain coarse-grained data (i.e., data at some small-
area organizational unit) of agent densities and their steady-state joint probability dis-
tributions. In particular, we run an ensemble of Schelling simulations until they reach 
a steady state, where the probability of a block having a particular density no longer 
changes over time (See SI Section S1 for a discussion of how an ensemble may be 
obtained for real-world data). A sample steady-state configuration for the ensemble is 
shown in Fig. 2f. We coarse-grain the Schelling lattice grid into 25 blocks (outlined in 
the figure by thick lines), such that there are 144 sites in each block, and record the total 
number of red agents NR,b and blue agents NB,b in each block b. Since all the blocks 
have the same area, NR,b and NB,b indicate the local densities. By sampling the different 
steady-state configurations (denoted in the figure by the stack and ellipses) we measure 
the joint local probability distribution of agent densities for each block Pb(NR,b,NB,b) . 
For simplicity, we will abbreviate NR,b and NB,b as NR and NB when there is no ambigu-
ity. We show the steady-state joint probability distributions for the North East (NE), 
South West (SW) and South East (SE) blocks in fig. 2g. As a result of spatial utility, 
the SE block is likely to be occupied by a high density of blue agents, while the NE 
block is likely to be occupied by a low density of red and blue agents. The SW block 
is occupied by high densities of agents with a wide distribution of red and blue agent 
compositions. This wide distribution reflects the tendency of the red and blue agents to 
segregate due to social utility.

Density‑functional fluctuation theory

Single-group Density-Functional Fluctuation Theory posits that, by observing the 
steady-state probability distribution in a block (a small-area organizational unit), one 
can extract information about the location-dependent preferences and social inter-
actions for a single type of agent [30]. In particular, by observing the means of the 
distributions, it is possible to determine the agent preference for each block, while the 
shapes of the distributions provide information about social preference. For example, 
a Poisson-like distribution for the density in a block indicates no social interactions, 
a narrowly peaked distribution indicates strong repulsion, and a bimodal distribution 
indicates strong attractive interactions. [30] developed a theory that captures these 
behaviors through a block-dependent steady-state probability distribution of the form

(2)Pb(N) = z−1
b

1

N!
exp[−vbN − f (N)],
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where z−1
b

 is a normalization constant; vb is defined as the “vexation” and is block b 
specific; and f(N) is defined as the “frustration” and is a block-independent function 
of local densities. Since we presently consider blocks of the same size, the number 
of agents N is commensurate with the density. When f(N) is zero, the distribution 
is Poisson and the mean is proportional to exp[−vb] , indicating agents avoid blocks 
with high vb . The deviation of the distribution from Poisson is captured by the func-
tion f(N) that depends only on the density of agents. When f(N) is concave up (e.g., 
Pb is narrowly peaked), agents in the city disperse. When f(N) is concave down (e.g., 
Pb is bimodal) agents in the city aggregate. Importantly, f(N) is non-parametric and 
thus it captures the effective social interactions in an entirely data-driven fashion. 
Thus, frustration and vexations respectively capture effective social and spatial inter-
actions directly from the data and do not require a priori knowledge of agent prefer-
ences. In previous work, it was shown that this functional form for the probability 
distribution arises mathematically from the detailed balance condition for the equi-
librium in a broad class of agent-based models. In fact, DFFT has proven remark-
ably accurate for predicting crowd distributions in not only modelled but also living 
systems [30].

Furthermore, it has been demonstrated that such a model arises for real-world 
cities by applying the principle of maximum entropy (MaxEnt) to U.S. Census data 
[2]. Specifically, by employing the size-invariance and organizational equivalence 
properties, which all common segregation indices of evenness and exposure satisfy, 
[2] are able to transform Census data into a probability density function with an 
analogous 2-group DFFT form,

(3)

Pb(NR,NB) = z−1
b

1

NR!NB!(s − NR − NB)!
exp[−vR,bNR − vB,bNB − f

(
NR,NB

)
],

Fig. 2   Schelling-type simulation and steady-state data. a Top-left corner of the Schelling lattice grid 
with 1000 red and 1000 blue agents. At each step in time, an agent and an empty cell are randomly cho-
sen, and the agent will make probabilistic move to the empty cell. In this example, a red agent is chosen 
to move to a randomly chosen empty cell. The 8-connected neighborhood of the red agent and empty 
cell are shown as dashed boxes. b Social Utility for red agents is defined by Uso

R
(Nne

R
,Nne

B
) = 0.4 ⋅ Nne

R
 , 

where Nne

R
 and Nne

B
 are the number of 8-connected red and blue neighbors respectively. For the red agent 

in a, the change in social utility due to the proposed move is given by Uso

R
(5, 1) − Uso

R
(1, 6) = +1.6 , 

making this move favorable by social preferences. c Social Utility for blue agents is defined by 
U

so

B
(Nne

R
,Nne

B
) = 0.4 ⋅ Nne

B
 . d Spatial Utility for red agents Usp

R
(x) is a function of location x, that 

decreases linearly in the horizontal direction. The change in spatial utility for the red agent in a for the 
proposed move is ΔUsp

R
≈ +0.17 , making this move favorable by spatial preferences. So, according to 

Eq. (1), the red agent has a 85% chance of moving. e Spatial Utility for blue agents Usp

B
(x) is a function 

of location x, that decreases linearly in the vertical direction. f A sample steady-state configuration of 
our simulation after reaching steady state ( > 10000 steps). We divide the Schelling lattice grid into 25 
blocks with 144 sites each, three of which are shaded and labeled as ‘NE’, ‘SW’, and ‘SE’ for reference. 
To obtain a collection of steady-state configurations (red stack and red ellipses), we run an ensemble of 
Schelling simulations. g From the collection of steady-state configurations, one can observe the steady-
state joint probability distribution of observing a given agent densities for each block. Distributions for 
blocks ‘NE’, ‘SW’, ‘SE’ are shown

▸
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where z−1
b

 is, again, a normalization constant; vR,b and vB,b are the block-dependent 
vexations for the Red and Blue agents; s is the total number of sites within a block; 
and f (NR,NB) is the block-independent frustration that is a function of local densi-
ties of Red and Blue agents. The 1∕(s − NR − NB)! term arises to account for blocks 
being of finite size in the work of [2], where neighborhoods have a known total 
population, but not [30] where there is no set limit to the number of agents in a 
block. To be precise, Eq. (3) corresponds to the ‘three-group case’ in the analysis 
performed by [2] where an empty site is effectively considered as a third type of 
agent. Despite this, we refer to this as 2-group DFFT due to the presence of only two 
‘real’ agent types.
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As in the single-group case, agents avoid blocks with a high vexation. However, 
the frustration is now interpreted as a surface that captures the social interactions 
for two types of agents. The concavities of curves on this surface reflect the social 
preferences for having greater or fewer agents of a particular type, and the frustra-
tion itself can be considered a multigroup, non-parametric, functional measure of 
segregation [2].

To verify that Eq. (3) can indeed be used to fit the Schelling model steady-state 
data (Fig. 2g), we first rearrange Eq. (3) to obtain

where cb = ln(zb) is a normalization constant. The left-hand side (abbr.  LHS) 
of Eq.  (4) is determined by our observed probability Pb (Fig.  2g), and is plotted 
for three sample blocks in Fig.  3a. Next, we use a Maximum Likelihood Estima-
tion algorithm to infer the frustration and vexations that best fit the data and plot 
these in Fig. 3b. We find that the fits are remarkably accurate as illustrated by the 
small errors, differences between left-hand side and right-hand side (abbr. RHS) of 
Eq.  (4), shown for three sample blocks in Fig. 3c. When comparing the observed 
joint probability distributions (Fig.  2g) with the distributions modeled by Eq.  (3) 
using the extracted frustration and vexations (Fig. 3b), we observe a mean absolute 
percentage error of 14% for joint densities with at least 10 observations. As we now 
show, the extracted frustration and vexations can next be used to predict how small-
area populations will redistribute in response to regional population changes.

Predicting time evolution

To generate a regional population change in the simulation data, we abruptly switch 
350 randomly chosen red agents in the north half of the Schelling lattice into blue 
agents. Although such a change is unrealistic, it results in an extreme small-area 
time evolution and therefore is harder to forecast accurately than neighborhood 
changes arising from more modest regional changes. We then record the evolution 
of an ensemble of cities undergoing this regional change (illustrated by the stack and 
ellipses), going from the initial altered state at t = 0 to the new steady state at t → ∞ 
(Fig. 4a). As before, we coarse grain these data at the block level to extract the den-
sity of red and blue agents at each point in time. The challenge is then to predict 
the evolution of the densities at the block scale using DFFT parameters extracted 
from the initial steady state data and knowledge of the regional-scale demographic 
change.

Time‑dependent DFFT model (Kohn‑Sham TD‑DFFT)

To accurately predict the time evolution of small-area populations, we introduce a 
Time-Dependent DFFT model. This method parallels the adiabatic approximation 

(4)
− ln[NR!NB!(s − NR − NB)!Pb(NR,NB)] = f

(
NR,NB

)
+ vR,bNR + vB,bNB + cb,
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found in Kohn-Sham Time-Dependent Density-Functional Theory (TD-DFT). The 
strength of the TD-DFFT model is that it relies solely on the block-scale (small-area) 

Fig. 3   Extracting effective social and spatial preferences a The LHS of Eq. (4) is determined by our 
observed probability Pb (Fig. 2g), and is plotted for blocks ‘NE’, ‘SW’, ‘SE’. We only keep data for cases 
where more than 10 observations are recorded for a particular agent combination. b Using Maximum 
Likelihood Estimation, we fit each of the 25 LHS surfaces by a block-independent surface called “frus-
tration” together with a block-dependent planar shift vR,bNR + vB,bNB + cb , where vR,b and vB,b are block-
dependent constants called “vexations”, and cb is a block-dependent normalization constant. Frustration 
describes social preference, while vexations describe spatial preference. c The errors of the fit in b are 
determined by the difference between the right hand and left hand sides of Eq. (4), for the NE, SW, and 
SE blocks and demonstrate very good agreement (generally in the range of only ±1, which is two orders 
of magnitude smaller than the variation in the RHS of Eq. (4)). We measure mean absolute error (MAE) 
to be 0.12, 0.15, and 0.13 (out of a dynamic range of ∼100) for blocks ‘NE’, ‘SW’, and ‘SE’, respec-
tively. We measure Pearson correlations to be 0.9999, 0.9975, and 0.9999 for blocks ‘NE’, ‘SW’, and 
‘SE’, respectively
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Fig. 4   Predicting time evolution a Starting from a steady-state configuration, at t = 0 , we introduce 
our demographic change by abruptly switching 350 randomly chosen red agents on the north side of the 
Schelling lattice into blue agents to obtain an altered state. The system is then evolved according to the 
Schelling model. The above procedure is repeated over an ensemble of Schelling simulations (shown as 
stacks and ellipses). b-c Predicted time evolution of the probability distribution for observing red or blue 
agents for the ‘SE’ block using the TD-DFFT model. Note that the distribution for red agents is skewed 
away from the mean towards more segregated values. The MVE predictions agree well with the Mean of 
the TD-DFFT Model for both types of agent. d-e Observed time evolution of the probability distribution 
for observing red or blue agents for the ‘SE’ block from the Schelling simulation. For 0 < t < 20000 , 
we measure mean absolute error (MAE) to be 0.10 (out of a dynamic range of ∼ 3) and 0.19 (out of a 
dynamic range of ∼10) for mean values of red and blue agents, respectively; we measure Pearson cor-
relations to be 0.9981 and 0.9983 for mean values of red and blue agents, respectively. f Observed ver-
sus predicted Joint-mean density trajectories for all blocks (counted left-to-right then top-to-bottom, in 
normal English reading order). Blocks 13-15 show interesting trajectories, which the TD-DFFT model 
predicts well. g Observed versus predicted average changes in number of agents in block ‘SE’ after 1000 
Schelling steps for various initial numbers of agents. We note that a calibration factor is necessary to 
match the time scales between the density based model predictions and the Schelling simulations
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densities and the inferred density-dependent spatial and social preferences to con-
struct an effective agent-based model. These coarse-grained preferences can be com-
bined to form block-level “Headache” functions,

The operational steps of the TD-DFFT model are then as follows. First, at every 
time step, an agent is randomly selected and a target block is chosen with a weight 
proportional to the number of empty spaces it has. The agent then moves from its 
current block b to the chosen block b′ with the probability

where Δ represents the change due to the proposed move.
This Kohn-Sham version of TD-DFFT has two advantages over traditional (e.g., 

Schelling) agent-based models that presume agent interactions. First, the effective 
agent utilities are inferred from observational data of small-area populations. Sec-
ond, TD-DFFT can be implemented more efficiently than a Schelling-type agent-
based model because, in TD-DFFT, the city is represented entirely by small-area 
population counts, making it unnecessary to represent the city at the individual-
level. For instance, it is possible to start with a particular city-scale state and numer-
ically simulate agent migrations using Eq. (6) to generate a realization for the time-
evolution of block-scale densities. Additionally, it is also possible to predict the joint 
probability distribution of the ensemble directly, without an agent-based simulation, 
through a master equation approach (See SI Section S2). Crucially, as we will dem-
onstrate in the following sections, these TD-DFFT approaches align well with the 
time-evolution of density changes found directly from the underlying agent-based 
model once a constant time-scale is introduced to align the average rate of TD-
DFFT migrations with the observed average migration rate (See SI Section S2.3 for 
a more detailed discussion of this time-scale).

Mean Value Equation (Hohenberg‑Kohn TD‑DFFT)

For cases where additional computational simplicity is necessary—especially when 
the number of city-scale states becomes intractable—we develop a simplified mean-
value approach of the TD-DFFT model described above. In particular, we note that 
real-world cities can have thousands of neighborhoods and millions of people, and 
that the number of feasible city-scale states scales steeply with the number of blocks 
and the number of individuals within blocks. The salient assumption of the mean-
value approach is then to reduce the distribution of possible densities for each block 
to its mean density, allowing for the average city behavior to be represented by a 
number of variables equivalent to the number of blocks multiplied by the number of 
agent types.

To apply the Mean Value Equation (MVE) (See derivation in SI Section S2.2.), 
it is necessary that the probability distributions of small-area densities are single-
peaked, which is indeed the case here, but may not be the case in cases of very 

(5)Hb(NR,NB) ≡ vR,bNR + vB,bNB + f (NR,NB).

(6)Pb→b� =
1

1 + eΔHb+ΔHb�
,
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strong segregation. In particular, MVE assumes that the behavior of a small-area 
unit is well represented by the behavior of its expected (average) composition. If a 
neighborhood’s population could be either dominated by one group or the other with 
some probability, then treating the neighborhood as a uniform mixture of the two 
groups, as MVE would do, will be a poor approximation. Under conditions where 
this is not a concern, then the MVE can be applied as a very efficient computational 
approach, and the time-evolution of the TD-DFFT model can be approximated using

where NR,b and NR,b denote the mean red and blue agent density for block b, respec-
tively. �R,b→b′ and �B,b→b′ are the density flow rates for red and blue agents from block 
b to block b′ , calculated from

Eq. (7) says that the rate of change in the mean density of agents in block b is given 
by the sum of inflow rates from all other blocks b′ ≠ b into block b, minus the sum 
of outflow rates from block b into all other blocks b′ ≠ b . We can also easily inter-
pret the flow rate approximations in Eq.  (8) following the rules of the TD-DFFT 
Model (Sect. 4.1): The first term in the product represents the probability of choos-
ing the corresponding type of agent in block b, where the denominator Ntot is the 
total number of agents in the city; the second term in the product represents the 
probability of choosing an empty cell in block b′ , where the denominator stot − Ntot 
is the total number of empty cells in the city; the third term corresponds to the prob-
ability of transition defined in Eq. (6). Note that this MVE might fail to capture the 
behavior of the TD-DFFT Model with extreme segregation, when Eq. (7) exhibits 
‘bifurcation behavior’ [19, 55] (See SI Section S3). Since the MVE deals with aver-
age numbers in each block, it corresponds more closely to a Hohenberg-Kohn TD-
DFT [20].

Results

Overall, we obtain excellent agreement between the TD-DFFT model/MVE predic-
tions and the simulated time-dependent Schelling data. As an example, we compare 
the predicted (Figs. 4b,c) and observed (Figs. 4d,e) time evolution of the probability 
distribution of red ( NR ) and blue ( NB ) agents for the South East (SE) block (and all 

(7)

⎧
⎪⎪⎨⎪⎪⎩

d

dt
NR,b =

�
b�≠b

�
�R,b�→b − �R,b→b�

�

d

dt
NB,b =

�
b�≠b

�
�B,b�→b − �B,b→b�

�,

(8)

⎧⎪⎪⎨⎪⎪⎩

�R,b→b� ≈
NR,b

Ntot

⋅

s − NR,b� − NB,b�

stot − Ntot

⋅ Pb→b�

�B,b→b� ≈
NB,b

Ntot

⋅

s − NR,b� − NB,b�

stot − Ntot

⋅ Pb→b�

.
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other blocks in SI Section S4). We find that the model accurately captures the trends 
in the means, Pearson correlation with observations >0.99. as well as the skews 
in the distributions about the means. In particular, the MVE (blue dotted lines in 
Figs. 4b,c) accurately tracks the mean values of the TD-DFFT model (red lines in 
Figs.  4b,c). Additionally, we compare the trajectory of the joint means for all the 
blocks in Fig.  4f. Once again, we find excellent agreement throughout the entire 
trajectory—even when the evolution is non-monotonic as is the case for blocks 12 
through 15. Finally, given an initial joint density ( NR , NB ) for a particular block, we 
are able to predict the joint probability distribution for the block after 1000 Schell-
ing steps. We plot the observed average change in the joint density for each initial 
condition for the SE block in Fig. 4g. These predictions, indicated by the red arrows, 
are compared with the observed data, indicated by the black arrows. Once again, we 
observe excellent agreement between the predictions of the TD-DFFT model and 
the small-area population data. It is this capacity to model the step-wise evolution 
that allows the TD-DFFT model to accurately track the time dependent trajectories 
of the Joint Means as shown in Fig. 4f. Finally, we have conducted similar studies 
involving the same demographic change for more complicated Social and Spatial 
utility functions and have obtained TD-DFFT predictions of similar fidelity (SI Sec-
tion S8).

In part, the reason the Time-dependent DFFT model is able to accurately describe 
the evolution of the Schelling data after a demographic change is that it is also a 
type of agent-based model. There are, however, a number of important distinctions. 
First, the TD-DFFT model requires only coarse-grained data, which means it can 
work with the substantially more accessible small-area data as opposed to requir-
ing data at the individual scale. Details of the Schelling simulation such as the lat-
tice grid structure, the 8-connected neighbors, and empty spots are all averaged over 
to obtain the density in each block. As such, the TD-DFFT model keeps only the 
essential information necessary to make predictions about the density. Second, the 
TD-DFFT model relies on empirically extracted parameters and so does not require 
that we impose specific agent preferences governing the system evolution. Instead, 
it determines the necessary preferences from the original steady-state data in order 
to make predictions. These distinctions can lead to discrepancies in certain extreme 
conditions. For instance, when the block-size is very small (e.g., 4 by 4 cells) the 
interaction of agents between neighboring blocks will greatly affect the dynamics 
(See SI Section S5 for discussion of this discrepancy).

Predicting the new steady‑state

To predict the new steady-state joint probability distributions, Pb(NR,NB, t → ∞) , 
we can either run the TD-DFFT model until it reaches a steady state or calculate 
the new distribution analytically using DFFT. To analytically predict the new dis-
tribution, we take advantage of the fact that the social and spatial preferences of 
the individuals remain the same following the regional demographic change in the 
total number of each agent type. Since these social and spatial preferences manifest 
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themselves at the coarse-grained level as differences in the headache functions of 
two blocks, ΔHb + ΔH�

b
 , we can rewrite the headache function as

without affecting these preferences. In other words, ΔHb + ΔH�
b
 remains unaffected 

following this transformation. Here, �R and �B are block-independent constants 
called ‘agent potentials’ (directly analogous to chemical potentials in statistical 
physics and density-functional theory) that tune the expected total number of each 
type of agent over all the blocks. Such a change was also shown by [2] to result from 
minimizing the cross-entropy under the constraint of a known city-wide change in 
the number of agents. To determine the agent potential constants, we modify the 
exponent in Eq. 3 and use Newton’s method to converge on values for �R and �B so 

(9)Hb ⟶ Hb − �RNR − �BNB

Fig. 5   Analytic prediction of new steady state. a Predicted versus observed new steady-state joint 
probability distribution for block ‘SE’. b Predicted versus observed mean densities of red agents for all 
blocks, each with total capacity 144. We measure a Pearson correlations of 0.9997 and mean absolute 
error (MAE) of 0.42 (out of a dynamic range of ∼100). c Predicted versus observed mean densities of 
blue agents for all blocks, each with total capacity 144. We measure a Pearson correlation of 0.9999 and 
MAE value of 0.50 (out of a dynamic range of ∼100)
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that the means of the probability distribution, when averaged over all the blocks, 
equals the new mean for the entire city following the demographic change. We com-
pare the predictions for the joint probability distributions, as well as the mean of 
the agent densities for each block with the observed data from the Schelling model 
in Fig. 5 (See SI Section S4 for results for all blocks). We find excellent agreement 
between the predictions and the simulated small-are population data. Importantly, 
this analytic approach indeed arrives at the same new steady state distribution that 
our TD-DFFT model predicts (SI Section 2.1).

Implications and future directions

The ability of DFFT to accurately predict demographic changes in the Schelling 
model suggests that it may improve upon current methods for small-area population 
forecasting. Unlike bottom-up agent-based approaches that postulate specific agent 
preferences, DFFT empirically extracts these preferences from observations. Addi-
tionally, in contrast to top-down data-driven approaches that only extract descrip-
tive measures of segregation, DFFT uses more detailed measures that allow for the 
forecasting of population dynamics. Importantly, this framework could easily be 
extended to include an even greater number of agent types (potentially due to the 
presence of multiple racial groups, or parsing racial groups by other demographic 
characteristics into further subgroups) as the process of including agent-type-spe-
cific vexations and a multidimensional frustration is straightforward.

We also anticipate a pathway towards modeling other demographic changes, such 
as changes in social or spatial preferences. In these particular cases, it is necessary 
to know how to map such changes to the DFFT functions, which can be achieved 
in a number of ways. First, it may be possible to estimate the change in the DFFT 
functions based on certain sociological or demographic factors. Second, even if 
we had no a priori knowledge of this change, we could still use intermediate time 
points in the evolution of the demographic data to adjust the vexations and frustra-
tion. For example, after a certain number of Schelling time steps we would modify 
our DFFT functions so that we get the best agreement between the dynamics of the 
predicted and observed density changes for the agents (Fig. 4g). This suggests that 
DFFT can be a rather flexible approach for making predictions in a broad range of 
demographic conditions. Finally, to the extent that agent-based approaches like the 
Schelling model inform trends in demographic patterns, it may be possible to apply 
TD-DFFT to real data. For example, decennial U.S. Census data provides block-
level counts of the number of people by race and ethnicity. Given such data, DFFT 
could now be used not only to quantify segregation throughout the country [2] but 
also to forecast neighborhood-level changes in a manner which directly incorporates 
the observable effects of segregation.
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