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ABSTRACT

A key cog in machine learning is the humble embedding: vector representations of real
world objects such as text, images, graphs, or molecules whose geometric similarities capture
intuitive notions of semantic similarities. It is thus common to curate massive datasets of
embeddings by inferencing on a machine learning model of choice. However, the sheer dataset
size and large dimensionality is often the bottleneck in effectively leveraging and learning
from this rich dataset. Inspired by this computational bottleneck in modern machine learning
pipelines, we study the following question:

How can we efficiently compute on large scale high dimensional data?

In this thesis, we focus on two aspects of this question.

1. Efficient local similarity computation: we give faster algorithms for individual similarity
computations, such as calculating notions of similarity between collections of vectors,
as well as dimensionality reduction techniques which preserve similarities. In addition
to computational efficiency, other resource constraints such as space and privacy are
also considered.

2. Efficient global similarity analysis: we study algorithms for analyzing global relation-
ships between vectors encoded in similarity matrices. Our algorithms compute on
similarity matrices, such as distance or kernel matrices, without ever initializing them,
thus avoiding an infeasible quadratic time bottleneck.

Overall, the main message of this thesis is that sublinear algorithms design principles are
instrumental in designing scalable algorithms for big data.

Thesis supervisor: Piotr Indyk
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Over the last decade, the capabilities of machine learning (ML) models to meaningfully
represent diverse data such as video, images, text, and molecules has dramatically increased.
Geometric similarities between high dimensional embeddings from ML models are increasingly
expressive enough to capture semantic relationships between real world objects. In response,
practitioners frequently curate massive collections of vectors after running inference on neural
networks, leading to large scale high dimensional datasets: in many industrial applications,
it is common to have datasets of billions of embeddings in hundreds of dimensions. Due to
the aforementioned property of embeddings, similarity computations lie at the heart of many
ML tasks, such as search, retrieval, clustering, recommendations, and ranking.

The proliferation of such large datasets challenges our classical notions of algorithmic
efficiency with regards to similarity computations. For example, quadratic time algorithms
which compute on all pairs of vectors in a dataset are no longer feasible. As an illustration,
consider running a quadratic sized computation on a dataset of ten billion vectors (n = 1010).
At the time of writing, a high end CPU can perform on the order of ∼ 1012 FLOP a second,
meaning a n2 computation requires time on the order of years. Ignoring computation time,
even storing a quadratic sized answer requires exabytes of space. It stands to reason that
efficient algorithms to process massive datasets are necessary. This motivates asking:

How can we efficiently compute on large scale high dimensional data?

The goal of this thesis is to respond to this formidable computational challenge.
We focus on two sides of the same coin: in the first part of the thesis, we study efficient

algorithms for computing various notions of similarity between data points. Since our goal is
to compute a single real number, we dub this part local similarity computation. In the second
part, we focus on global similarity analysis and study algorithms for analyzing matrices
which encode pairwise similarities between all vectors in a large dataset. Both parts are
inspired by algorithmic design principles from sublinear algorithms, and many of the upper
bounds are complemented with lower bounds, demonstrating that they lie precariously on the
edge of algorithmic possibilities. Furthermore, all of our algorithms bridge the theory-practice
divide and show significant empirical gains over prior methods.
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1.1 Overview of Our Main Contributions

We briefly outline our main contributions. Our results are described in more detail in the
proceeding sections. n is always the dataset size and d is the dimensionality.

1.1.1 Overview of Part 1: Efficient ‘Local’ Similarity Computation

Chamfer Distance: A Relaxation of Optimal Transport. In Chapter 3, we begin by
considering notions of similarities that are defined on groups of vectors. We give an algorithm
to compute the Chamfer distance, a common relaxation of the well studied Optimal Transport
(OT) distance. Given two datasets A and B of size at most n, the Chamfer distance is the
total cost to move every point in A to its nearest point in B. In comparison to OT, the
mapping between A and B does not have to be one-to-one. In practice, the Chamfer distance
is a popular proxy for the more computationally demanding OT, as the Chamfer distance
admits a naive O(n2) time algorithm. However, this naive algorithm also cannot scale to
large n. We resolve this by providing a linear time algorithm for computing the Chamfer
distance. Our algorithm only computes an approximately optimal value and does not output
the underlying mapping between A and B. This is not a limitation of our algorithm, but
rather a fundamental obstacle, which we show using a (conditional) lower bound.

Dimensionality Reduction for Non-negative Sparse Vectors. The previous chapter
focuses on speeding up the ‘n’ part of the computation. In Chapter 4, we shift focus to the
‘d’ parameter and study dimensionality reduction. Here, Euclidean dimensionality reduction
(i.e. ℓ2 distance) is a success story due to the Johnson-Lindenstrauss (JL) lemma which
provides an efficient and practical map for embedding ℓ2 in low-dimensions. Unfortunately,
dimensionality reduction results are few and far between for other metrics, even other ℓp
norms. We study an important setting where such results are algorithmically possible: the
case of sparse vectors. Assuming our vectors are sparse, prior works give (linear) mappings
which preserve ℓp distances between sparse vectors while projecting to a low dimension
only depending on the sparsity and p. Unfortunately, such mappings necessarily embed to
dimensions with exponential dependence on p.

In the chapter, we show that under the condition that our vectors are sparse and non-
negative, we can embed our dataset to a dimension that only depends on the sparsity with no
dependence on p. This allows us to obtain dimensionality reduction for large p such as the
ℓ∞ distance. Curiously, our dimensionality reduction scheme is non-linear and only works
under the non-negativity assumption. Our (unconditional) lower bounds demonstrate that
both assumptions (non-linear and non-negativity) are necessary.

Private Similarity Computation. Lastly, we focus on other notions of efficiency beyond
computational time and study computing similarities with privacy constraints, formalized via
the framework of differential privacy (DP). Many ML methods in privacy, such as DP model
training, rely on computing the similarity between a query point (such as public or synthetic
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data) and private data. We abstract out this common subroutine and study the following
fundamental algorithmic problem: Given a similarity function f and a large high-dimensional
private dataset X ⊂ Rd, output a differentially private data structure which approximates∑

x∈X f(x, y) for any query y. We consider the cases where f is a kernel function, such as
f(x, y) = e−∥x−y∥22 (also known as DP kernel density estimation), or a distance function such
as f(x, y) = ∥x− y∥2, among others.

Our theoretical results improve upon prior work and give better privacy-utility trade-
offs, as well as faster query times for a wide range of kernels and distance functions. The
unifying approach behind our results is leveraging ‘low-dimensional structures’ present in
the specific functions f that we study, using tools such as provable dimensionality reduction,
approximation theory, and one-dimensional decomposition of the functions.

The first part of the thesis is based on the following papers.

• [31]: Near-Linear Time Algorithm for the Chamfer Distance, joint with Ainesh Bakshi,
Piotr Indyk, Rajesh Jayaram, and Erik Waingarten. Appeared in Advances in Neural
Information Processing Systems 36 (NeurIPS 2023).

• Improved dimensionality reduction for (non-negative) sparse vectors, joint with David
Woodruff and Richard Zhang.

• [25]: Efficiently Computing Similarities to Private Datasets, joint with Arturs Back-
urs, Zinan Lin, Sepideh Mahabadi, and Jakub Tarnawski. Appeared in the Twelfth
International Conference on Learning Representations (ICLR 2024).

1.1.2 Overview of Part 2: Efficient ‘Global’ Similarity Analysis

In the second part, we shift our focus to global similarity analysis. Given a similarity function
f : Rd × Rd → R, we study algorithms for similarity matrices which encode all pairwise
values f(x, y) for all pairs x, y ∈ Rd in our dataset. Our algorithms never initialize these
matrices, avoiding a quadratic time bottleneck.

Distance Matrices. In Chapter 6, we study the case where f is a distance function.
Our results include efficient algorithms for computing matrix-vector products for a wide
class of distance matrices, such as the ℓ1 metric for which we get a linear runtime, as well
as an Ω(n2) lower bound for any algorithm which computes a matrix-vector product for
the ℓ∞ case, showing a separation between the ℓ1 and the ℓ∞ metrics. Our upper bound
results, in conjunction with recent works on the matrix-vector query model, have many
further downstream applications, including the fastest algorithm for computing a relative
error low-rank approximation for the distance matrix induced by ℓ1 and ℓ22 functions and
the fastest algorithm for computing an additive error low-rank approximation for the ℓ2
metric, in addition to applications for fast matrix multiplication. We also give algorithms for
constructing distance matrices and show that one can construct an approximate ℓ2 distance
matrix in time faster than the bound implied by the Johnson-Lindenstrauss lemma.
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Kernel Matrices. Next we shift our focus to the case where f is a kernel function, for
example f(x, y) = exp(−∥x−y∥2). The main drawback of using kernel methods (learning and
inference using kernel matrices) is again efficiency – given n input points, most kernel-based
algorithms need to materialize the full n×n kernel matrix before performing any subsequent
computation, thus incurring Ω(n2) runtime. Breaking this quadratic barrier for various
problems has therefore been a subject of extensive research efforts. We break the quadratic
barrier and obtain subquadratic time algorithms for several fundamental linear-algebraic and
graph processing primitives, including approximating the top eigenvalue and eigenvector and
low-rank approximation. We build on the recently developed Kernel Density Estimation
framework, which (after preprocessing in time subquadratic in n) can return estimates of
row/column sums of the kernel matrix. In particular, we develop efficient reductions from
weighted vertex and weighted edge sampling on kernel graphs, simulating random walks on
kernel graphs, and importance sampling on matrices to Kernel Density Estimation and
show that we can generate samples from these distributions in sublinear (in the support of
the distribution) time. Our sampling primitives are the central ingredient in each of our
applications.

The second part of the thesis is based on the following papers.

• [108]: Faster Linear Algebra for Distance Matrices, joint with Piotr Indyk. Appeared
in Advances in Neural Information Processing Systems 35 (NeurIPS 2022).

• [30]: Subquadratic Algorithms for Kernel Matrices via Kernel Density Estimation, joint
with Ainesh Bakshi, Piotr Indyk, Praneeth Kacham, and Samson Zhou. Appeared in
the Eleventh International Conference on Learning Representations (ICLR 2023).

1.2 The Chamfer Distance: A Relaxation of OT

For any two point sets A,B ⊂ Rd of sizes up to n, the Chamfer distance1 from A to B is
defined as

CH(A,B) =
∑
a∈A

min
b∈B

dX(a, b)

where dX is the underlying distance measure, such as the Euclidean (ℓ2) or Manhattan (ℓ1)
distance. The Chamfer distance, and its weighted generalization called Relaxed Earth Mover
Distance [17, 127], are popular measures of dissimilarity between point clouds. They are
widely used in machine learning (e.g., [127, 193]), computer vision (e.g., [18, 80, 116, 184])
and computer graphics [137]. Subroutines for computing Chamfer distances are available in

1This is the definition adopted, e.g., in [18]. Some other papers, e.g., [80], replace each distance term
dX(a, b) with its square, e.g., instead of ∥a − b∥2 they use ∥a − b∥22. In this paper we focus on the first
definition, as it emphasizes the connection to Earth Mover Distance and its relaxed weighted version in
[17, 127].
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popular libraries, such as Tensorflow [3], Pytorch [2] and PDAL [1]. In many of those appli-
cations (e.g., [127]) Chamfer distance is used as a faster proxy for the more computationally
demanding Earth-Mover (Optimal Transport) Distance.

Despite the popularity of Chamfer distance, the naïve algorithm for computing it has
quadratic O(n2) running time, which makes it difficult to use for large datasets. Faster
approximate algorithms can be obtained by performing n exact or approximate nearest
neighbor queries, one for each point in A. By utilizing the state of the art approximate
nearest neighbor algorithms, this leads to (1+ε)-approximate estimators with running times of
O
(
n(1/ε)O(d) log n

)
in low dimensions [15] or roughly O(dn

1+ 1
2(1+ε)2−1 ) in high dimensions [13].

Alas, the first bound suffers from exponential dependence on the dimension, while the second
bound is significantly subquadratic only for relatively large approximation factors.

We overcome this bottleneck and present the first (1 + ε)-approximate algorithm for
estimating Chamfer distance that has a near-linear running time, both in theory and in
practice. Concretely, our contributions are as follows:

• When the underlying metric dX is defined by the ℓ1 or ℓ2 norm, we give an algorithm
that runs in time O (nd log(n)/ε2) and estimates the Chamfer distance up to 1 ± ε with
99% probability (see Theorem 3.1.1). In general, our algorithm works for any metric dX
supported by Locality-Sensitive Hash functions (see Definition 3.2.1), with the algorithm
running time depending on the parameters of those functions. Importantly, the algorithm
is quite easy to implement (see Algorithms 1 and 2 in Chapter 3).

• For the more general problem of reporting a mapping g : A→ B whose cost
∑

a∈A dX(a, g(a))
is within a factor of 1+ε from CH(A,B), we show that, under a popular complexity-theoretic
conjecture, an algorithm with a running time analogous to that of our estimation algorithm
does not exist, even when dX(a, b) = ∥a − b∥1. Specifically, under a Hitting Set Conjec-
ture [198], any such algorithm must run in time Ω(n2−δ) for any constant δ > 0, even when
the dimension d = Θ(log2 n) and ε = Θ(1)

d
. (In contrast, our estimation algorithm runs in

near-linear time for such parameters). This demonstrates that, for the Chamfer distance,
estimation is significantly easier than reporting.

• We experimentally evaluate our algorithm on real and synthetic data sets. Our experiments
demonstrate the effectiveness of our algorithm for both low and high dimensional datasets
and across different dataset scales. Overall, it is much faster (>5x) than brute force
(even accelerated with KD-trees) and both faster and more sample efficient (5-10x) than
simple uniform sampling. We demonstrate the scalability of our method by running it
on billion-scale Big-ANN-Benchmarks datasets [176], where it runs up to 50x faster
than optimized brute force. In addition, our method is robust to different datasets:
while uniform sampling performs reasonably well for some datasets in our experiments, it
performs poorly on datasets where the distances from points in A to their neighbors in B
vary significantly. In such cases, our algorithm is able to adapt its importance sampling
probabilities appropriately and obtain significant improvements over uniform sampling.
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1.3 Dimensionality Reduction for Sparse Vectors

Many popular algorithms for data processing in machine learning suffer from large running
times on high-dimensional datasets. To alleviate this curse of dimensionality, a common
paradigm is to first embed the data into a lower dimension and then run any desired algorithm
in the embedded space. Arguably the most fundamental result in this area is the the Johnson-
Lindenstrauss (JL) lemma. It states that any set of high-dimensional data X with |X| = n
can be embedded into an O(log n/ε2)-dimensional space while approximately preserving
all pairwise ℓ2 distances up to ε relative error [120]. While very versatile, the JL lemma
is still a pessimistic worst case bound. This has led to a proliferation of works studying
better trade-offs for specific problems with the goal of exploiting intrinsic structure within
the problem or in the dataset to obtain smaller embedding dimensions. This ‘fine-grained’
approach has found success in many domains including nearest neighbor search [14, 107],
clustering [33, 39, 114, 117, 146, 156], and numerical linear algebra [68, 201].

In this chapter, we consider data sparsity as the structure to exploit, rather than any
specific algorithmic problem. Sparsity is an ubiquitous property of datasets and plays a
crucial role in many tasks across machine learning, statistics, and signal-processing. Sparsity
assumptions are additionally motivated by the fact that there exist dimensionality reduc-
tion upper bounds for sparse vectors for general ℓp norms. In contrast, virtually all the
aforementioned progress beyond JL has been limited to the ℓ2 norm2.

The aim of this chapter is to shed further light on the landscape of dimensionality
reduction for sparse vectors. We are interested in maps f which embed a set X ⊂ Rd of
s-sparse vectors (vectors with at most s non-zero entries) and guarantee that all pairwise
distances, measured in ℓp norm, between vectors in X are approximately preserved under
f . The chapter explores the following natural questions. Building upon prior works which
studied such maps for general ℓp norms, the first question asks:

(Q1) Can we obtain improved dimensional reduction for preserving pairwise dis-
tances between sparse vectors for general ℓp norms?

Thus our first result of the chapter is an embedding for general sparse vectors.

Theorem 1.3.1. (Informal, see Theorem 4.4.2) For every p ≥ 1, there exists a linear map
f : Rd → Rm for m = sp+2 log(s) log(d/ε)2O(p)/ε2 which satisfies ∥f(x)∥p = (1± ε)∥x∥p for
all s-sparse vectors x ∈ Rd.

In comparison, the best prior bound achieves embedding dimension pO(p)sp logp−1(d)/ε2,
also via a linear map [209]. While the exponent of s is smaller by 2 in the prior bound,
it incurs an exponential dependence on p in both the terms pO(p) and log(d)p−1. Thus,
qualitatively, we obtain improvements when the sparsity is small (for example s ≲ logp−3(d)).

2This is not for the lack of trying: there exist fundamental limits disallowing for dimensionality reduction
for general ℓp norms [43].
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For general ℓp norms, it is known that any linear map must suffer an Ω(sp) dependence on
the dimension, which degrades as p increases [209]. In particular for the important ℓ∞ case,
all known bounds based on linear maps become vacuous. It is thus natural to explore if other
conditions in addition to sparsity can overcome the exponential dependence on p. In our
case, we look to sparse non-negative vectors, i.e., sparse vectors whose non-zero coordinates
are positive. This additional constraint is motivated in two ways. Practically in many
applications, many vector datasets are non-negative (for example embeddings produced by
deep networks often get passed through a final ReLu layer). Theoretically, non-negativity
has been exploited in other algorithms for sparse vectors, e.g. there exist separations between
computing the convolution of non-negative sparse vectors and computing the convolution of
general sparse vectors [41, 42, 118]. Thus we ask:

(Q2) Can we obtain improved dimensionality reduction for non-negative sparse
vectors in general ℓp norms (such as ℓ∞)?

Note that one cannot assume non-negativity by simply shifting the dataset, as shifting
can destroy sparsity. Thus, perhaps the most conceptually interesting contribution of the
chapter is the following theorem for embedding non-negative sparse vectors.

Theorem 1.3.2. (Informal, see Theorem 4.5.2) Let X be a set of n non-negative s-sparse
vectors. For every p ≥ 1, there exists a non-linear map f : Rd → Rm for m = O(log(n) ·
min (s2/ε2, s/ε3)) which satisfies ∥f(x) − f(y)∥p = (1 ± ε)∥x − y∥p for all x, y ∈ X. For
the ℓ∞ case, we can instead guarantee ∥f(x) − f(y)∥∞ = ∥x − y∥∞ for all x, y ∈ X with
m = O(s log(n)).

We now switch to lower bounds. As discussed in Chapter 4, our positive answer to
Question (2) involves embedding with a non-linear map, and the embedding dimension has
no dependence on p. This is most interesting in light of the fact that all prior dimensionality
reduction upper bounds we are aware of (in virtually any context), use linear maps. The
following question explores the role of linearity in embedding sparse vectors.

(Q3) What are the limitations of linear maps in dimensionality reduction for
sparse vectors?

Surprisingly, we show that our upper bound embedding of Theorem 4.5.2 is optimal in
many ways; none of the following three hypothesis in the theorem statement can be dropped:
(a) any such map f must be non-linear, (b) the input point set must be non-negative, and
only the ℓp norms of differences can be preserved, not the sums. All mentioned lower bounds
are proven in Chapter 4.

Additional results. The chapter includes additional consequences of our upper bounds
to geometric optimization problems including clustering problems. We additionally study
average-case embeddings, where a dimension reduction map is not required to approximate
distances on all pairs of vectors, but rather only on a large constant fraction of pairs. The
guarantees (upper and lower bounds) differ substantially compared to the setting where we
require all pairs to be approximately preserved. See Chapter 4 for more details.
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1.4 Privately Computing Similarities

It is evident that privacy is an important and often non-negotiable requirement in machine
learning pipelines. Thus, privacy also serves as a resource which we must optimize for, in
addition to computation time.

In response, the rigorous framework of differential privacy (DP) has been adopted as
the de-facto standard for understanding and alleviating privacy concerns [76]. This is in-
creasingly relevant as non-private ML models have been shown to profusely leak sensitive
user information [47–51, 60, 84, 93, 189]. Many methodologies have been proposed in hopes
of balancing DP requirements with retaining good downstream performance of ML models.
Examples include generating public synthetic data closely resembling the private dataset at
hand (and training on it) [139, 141, 142, 202, 204, 206], or selecting similar public examples
for pre-training ML models [100, 205]. Furthermore, in the popular DP-SGD method, it is
also widely understood that the use of public data bearing similarity to private datasets
vastly improves downstream performance [72, 139, 202–204]. To list some concrete examples,
[100] use a variant of the Fréchet distance to compute similarities of private and public data,
[205] use a trained ML model to compute the similarity between public and private data,
and [142] use a voting scheme based on the ℓ2 distances between (embeddings of) private
and synthetic data to select synthetic representatives.

Common among such works is the need to compute similarities to a private dataset. While
this is explicit in examples such as [100, 142, 205], it is also implicit in many other works
which employ the inductive bias that pre-training on similar public data leads to better DP
model performance [72, 139, 202, 203].

We study the abstraction of this key subroutine and consider the following fundamental
algorithmic problem: given a private dataset X ⊂ Rd and a similarity function f(x, y) : Rd×
Rd → R, such as a kernel or distance function, output a private data structure DX : Rd → R
which approximates the map y →

∑
x∈X f(x, y). We additionally require that DX be always

private with respect to X. Since D itself satisfies ε-DP, it can support an arbitrary number of
queries without privacy loss. This is motivated by scenarios such as synthetic data generation,
or when we do not have a pre-specified number of queries known upfront.

This problem has garnered much recent interest due to its strong motivation [7, 69, 94,
102, 192, 194]. It is a meaningful abstraction since similarities between (neural network based)
embeddings can meaningfully represent rich relationships between objects such as images
or text [167]. Indeed, beyond training private models, there is additional motivation from
performing downstream tasks such as private classification or clustering, where a natural
methodology is to classify a query as the class which it has the highest similarity to.

Discussion of Theoretical Results. The main trade-offs that we are interested in is
between privacy, as measured with differential privacy (Definition 5.0.1), and accuracy of our
answers, also called utility. For example, a data structure which always returns a fixed answer
like 42 is clearly always private regardless of the number of queries performed, but is highly
inaccurate. Thus, our goal is to obtain non-trivial accuracy guarantees while respecting
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privacy. Secondary, but important, concerns are query time and data structure construction
time and space. Our main theoretical results are summarized in Table 5.1.

Theorem 1.4.1. (Informal; see Theorem 5.3.4 and Corollary 5.5.1) Suppose the data points
have bounded diameter in ℓ1. For any α ∈ (0, 1) and ε > 0, there exists an algorithm
which outputs an ε-DP data structure D capable of answering any ℓ1 distance query with α

multiplicative error and Õ
(

d1.5

ε
√
α

)
additive error in expectation. For the ℓ2 case, where the

points have bounded ℓ2 diameter, we instead have Õ
(

1
εα1.5

)
additive error.

Our approach is fundamentally different, and much simpler, than that of prior works [102],
who used powerful black-box online learning results to approximate the sum of distances.
Furthermore, given that we think of n as the largest parameter, we incur much smaller
additive error. Our ℓ1 upper bounds are complemented with a lower bound stating that any
ε-DP algorithm supporting ℓ1 distance queries for private datasets in the box [0, R]d must
incur Ω̃(Rd/ε) error.

Theorem 1.4.2. (Informal; see Theorem 5.4.2) Any ε-DP data structure which answers ℓ1
distance queries with additive error at most T for any query must satisfy T = Ω̃(Rd/ε).

We also obtain additional novel results for kernel functions. For example for the kernel
1

1+∥x−y∥2 , we obtain the first private data structures; see Table 5.1 in the chapter for details.

Discussion of Empirical Results. Our experimental results are given in Section 5.10.
The first experiment demonstrates that our ℓ1 query algorithm is superior to prior state of
the art [102] for accurately answering distance queries. The error of our algorithm smoothly
decreases as ε increases, but their algorithms always return the trivial estimate of 0. This is
due to the fact that the constants used in their theorem are too large to be practically useful.

We additionally explore an application to DP classification on the CIFAR-10 dataset.
The standard setup is to train a private classification model on the training split (viewed
as the private dataset), with the goal of accurately classifying the test split [72, 203]. Our
methodology is simple, fast, and does not require a GPU: we simply instantiate a private
similarity data structure for each class and assign any query to the class which it has the
highest similarity to (or smallest distance if f is a distance). We set f to be ℓ22 since it has
arguably the simplest algorithm among the f ’s studied in the chapter. In contrast to prior
works, our methodology involves no DP-SGD training. For comparable accuracy, we use >
3 orders of magnitude less runtime compared to prior baselines [72, 203]. See Chapter 5
for further empirical evaluations.

1.5 Subquadratic Algorithms for Distance Matrices

Given a set of n points X = {x1, . . . , xn}, the distance matrix of X with respect to a distance
function f is defined as the n × n matrix A satisfying Ai,j = f(xi, xj). Distances matrices
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are ubiquitous objects arising in various applications ranging from learning image manifolds
[188, 195], signal processing [179], biological analysis [99], and non-linear dimensionality
reduction [70, 124, 125, 188], to name a few3. Unfortunately, explicitly computing and
storing A requires at least Ω(n2) time and space. Such complexities are prohibitive for
scaling to large datasets.

A silver lining is that in many settings, the matrix A is not explicitly required. Indeed
in many applications, it suffices to compute some underlying function or property of A,
such as the eigenvalues and eigenvectors of A or a low-rank approximation of A. Thus an
algorithm designer can hope to use the special geometric structure encoded by A to design
faster algorithms tailored for such tasks.

Therefore, it is not surprising that many recent works explicitly take advantage of the
underlying geometric structure of distance matrices, and other related families of matrices,
to design fast algorithms (see Section 6.0.1 for a thorough discussion of prior works). In this
work, we continue this line of research and take a broad view of algorithm design for distance
matrices. Our main motivating question is the following:

Can we design algorithms for fundamental linear algebraic primitives which are
specifically tailored for distance matrices and related families of matrices?

We make progress towards the motivating question by studying three of the most funda-
mental primitives in algorithmic linear algebra. Specifically:

1. We study upper and lower bounds for computing matrix-vector products for a wide array
of distance matrices:

Creating efficient versions of matrix-vector queries for distance matrices automatically
lends itself to many further downstream applications. We remark that our algorithms
can access to the set of input points but do not explicitly create the distance matrix. A
canonical example of our upper bound results is the construction of matrix-vector queries
for the function f(x, y) = ∥x− y∥pp.

Theorem 1.5.1. Let p ≥ 1 be an integer. Suppose we are given a dataset of n points
X = {x1, . . . , xn} ⊂ Rd. X implicitly defines the matrix Ai,j = ∥xi − xj∥pp. Given a
query z ∈ Rn, we can compute Az exactly in time O(ndp). If p is odd, we also require
O(nd log n) preprocessing time.

We give similar guarantees for a wide array of functions f and we refer the reader to Table
6.1 which summarizes our matrix-vector query upper bound results.

We also study fundamental limits for any upper bound algorithms. In particular, we
show that no algorithm can compute a matrix-vector query for general inputs for the ℓ∞
metric in subquadratic time, assuming a standard complexity-theory assumption called
the Strong Exponential Time Hypothesis (SETH) [103, 104].
3We refer the reader to the survey [74] for a more thorough discussion of applications of distance matrices.
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Theorem 1.5.2. For any α > 0 and d = ω(log n), any algorithm for exactly computing
Az for any input z, where A is the ℓ∞ distance matrix, requires Ω(n2−α) time (assuming
SETH).

This shows a separation between the functions listed in Table 6.1 and ℓ∞.

2. We give fast algorithms for constructing distance matrices. To establish some context,
recall that the classic JL lemma states (roughly) that a random projection of a dataset
X ⊂ Rd of size n onto a dimension of size O(log n) approximately preserves all pairwise
distances [119]. A common applications of this lemma is to instantiate the ℓ2 distance
matrix. A naive algorithm which computes the distance matrix after performing the JL
projection requires approximately O(n2 log n) time. Surprisingly, we show that the JL
lemma is not tight with respect to creating an approximate ℓ2 distance matrix; we show
that one can initialize the ℓ2 distance in an asymptotically better runtime.

Theorem 1.5.3. (Informal; See Theorem 6.6.5) We can calculate a n× n matrix B such
that each (i, j) entry Bij of B satisfies (1− ε)∥xi− xj∥2 ≤ Bij ≤ (1+ ε)∥xi− xj∥2 in time
O(ε−2n2 log2(ε−1 log n)).

Our result can be viewed as the natural runtime bound which would follow if the JL lemma
implied an embedding dimension bound of O(poly(log log n)). While this is impossible,
as it would imply an exponential improvement over the JL bound which is tight [131],
we achieve our speedup by carefully reusing distance calculations via tools from metric
compression [111]. Our results also extend to the ℓ1 distance matrix (see Theorem 6.6.5).

3. Other results: Chapter 6 additionally contains results on approximate matrix multiplica-
tion for ℓ∞, as well as downstream applications of our matrix vector product upper bounds
including faster algorithms for eigenvector calculations and low-rank approximation. See
Table 6.2 for details.

1.6 Subquadratic Algorithms for Kernel Matrices

For a kernel function k : Rd×Rd → R and a set X = {x1 . . . xn} ⊂ Rd of n points, the entries
of the n× n kernel matrix K are defined as Ki,j = k(xi, xj). Alternatively, one can view X
as the vertex set of a complete weighted graph where the weights between points are defined
by the kernel matrix K. Popular choices of kernel functions k include the Gaussian kernel,
the Laplace kernel, exponential kernel, etc; see [98, 173, 174] for a comprehensive overview.

Despite their wide applicability, kernel methods suffer from drawbacks, one of the main
being efficiency – given n input points in d dimensions, many kernel-based algorithms need
to materialize the full n × n kernel matrix K before performing the computation. For
some problems this is unavoidable, especially if high-precision results are required [21]. In
this work, we show that we can in fact break this Ω(n2) barrier for several fundamental
problems in numerical linear algebra and graph processing. We obtain algorithms that run
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in o(n2) time and scale inversely-proportional to the smallest entry of the kernel matrix.
This allows us to skirt several known lower bounds, where the hard instances require the
smallest kernel entry to be polynomially small in n. Our parameterization in terms of the
smallest entry is motivated by the fact in practice, the smallest kernel value is often a fixed
constant [23, 24, 122, 147, 177]. We build on recently developed fast approximate algorithms
for Kernel Density Estimation [22, 23, 55, 58, 177]. Specifically, these papers present fast
approximate data structures with the following functionality:

Definition 1.6.1. (Kernel Density Estimation (KDE) Queries) For a given dataset X ⊂ Rd

of size n, kernel function k, and precision parameter ε > 0, a KDE data structure supports the
following operation: given a query y ∈ Rd, return a value KDEX(y) that lies in the interval
[(1− ε)z, (1 + ε) z], where z =

∑
x∈X k(x, y), assuming that k(x, y) ≥ τ for all x ∈ X.

The performance of the state of the art algorithms for KDE also scales proportional to
the smallest kernel value of the dataset (see Table 2.1). In short, after a preprocessing time
that is sub-quadratic (in n), KDE data structures use time sublinear in n to answer queries
defined as above. Note that for all of our kernels, k(x, y) ≤ 1 for all inputs x, y.

We show that given a KDE data structure as described above, it is possible to solve a
variety of matrix problems in time subquadratic time o(n2), i.e., sublinear in the matrix size.
We emphasize that in our applications, we only require black-box access to KDE queries.
Given this, we design such algorithms for problems such as eigenvalue/eigenvector estimation,
low-rank approximation, and graph sparsification.

Our results are obtained via the following two-pronged approach. First, we use KDE
data structures to design algorithms for the following basic primitives, frequently used in
sublinear time algorithms and property testing:

1. sampling vertices by their (weighted) degree in K (Theorems 7.3.2 and 7.3.4 and Algo-
rithms 23 / 25),

2. sampling random neighbors of a given vertex by edge weights in K and sampling a random
weighted edge (Theorem 7.3.5 and Algorithms 26 and 27),

3. performing random walks in the graph K (Theorem 7.3.7 and Algorithm 28), and

4. sampling the rows of the edge-vertex incident matrix and the kernel matrix K, both with
probability proportional to respective row norms squared (Section 7.4.1, Theorem 7.4.1,
and Section 7.4.2, Corollary 7.4.10 respectively).

In the second step, we use these primitives to implement a host of algorithms for the
aforementioned problems. We emphasize that these primitives are used in a black-box
manner, meaning that any further improvements to their running times will automatically
translate into improved algorithms for the downstream problems. For our applications, we
make the following parameterization, which we expand upon in Remark 7.2.1 and Section
7.2.1. At a high level, many of our applications, such as spectral sparsification, are succinctly
characterized by the following parameterization.
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Table 1.1: Summary of applications for KDE subroutines. We suppress dependence on the
precision ε.

Problem # of KDE Queries Post-processing time Prior Work

Spectral sparsification (Thm. 7.0.1) Õ
(

n
τ3

)
O
(
nd
τ3

)
Remark 7.2.1

Laplacian system solver (Thm. 7.0.1) Õ
(

n
τ3

)
O
(
nd
τ3

)
Remark 7.2.1

Low-rank approx. (Thm. 7.0.3) O(n) O (n · poly (k) + nkd) Remark 7.2.3
Approximating 1st Eigenvalue (Thm. 7.0.2) Remark 7.2.2 d · poly(1/τ) ω(n) (Remark 7.2.2)

Parameterization 1.6.1. All of our algorithms are parameterized by the smallest edge
weight in the kernel matrix, i.e., the smallest edge weight in the matrix K is at least τ .

Table 1.1 lists the applications of our primitives, along with the number of KDE queries
required in addition to any post-processing time. We refer to the specific sections in Chapter
7 for full details.

Empirical Results. We empirically demonstrate the efficacy of our algorithms on low-rank
approximation (LRA) and spectral sparsification, where we observe a 9x decrease in the
number of kernel evaluations over baselines for LRA and a 41x reduction in the graph size
for spectral sparsification.
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Chapter 2

Preliminaries

Throughout the thesis, any input dataset will be a set of n points X = {x1, . . . , xn} ⊂ Rd.

For p ≥ 1, the ℓp norm of a vector x ∈ Rd is defined as ∥x∥p =
(∑d

i=1 |xi|p
)1/p

and

∥x∥∞ = maxi |xi|. Throughout the thesis, Õ hides logarithmic factors in n and d.

Dimensionality Reduction Tools. The Johnson-Lindenstrauss (JL) lemma will make
several appears throughout the thesis. It provides a dimensionality reduction for the ℓ2 norm.

Theorem 2.0.1 ([119]). Let ε ∈ (0, 1) and define T : Rd → Rk by

T (x)i =
1√
k

d∑
j=1

Zijxj, i = 1, . . . , k.

Then for every vector x ∈ Rd, we have

Pr[(1− ε)∥x∥2 ≤ ∥T (x)∥2 ≤ (1 + ε)∥x∥2] ≥ 1− ecε
2k,

Letting k = O(log(n)/ε2) and using the union bound allows us to project a set of n
datapoints into k dimensions while preserving all pairwise ℓ2 distances up to a 1± ε factor.
The following modification of the JL map given above allows us to embed ℓ2 into a low
dimensional ℓ1 space.

Theorem 2.0.2 ([148]). Let ε ∈ (0, 1) and define T : Rd → Rk by

T (x)i =
1

βk

d∑
j=1

Zijxj, i = 1, . . . , k

where β =
√
2/π. Then for every vector x ∈ Rd, we have

Pr[(1− ε)∥x∥2 ≤ ∥T (x)∥1 ≤ (1 + ε)∥x∥2] ≥ 1− ecε
2k,

where c > 0 is a constant.
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Table 2.1: Instantiations of KDE queries. The query times depend on the dimension d,
(multiplicative) accuracy ε, and additive error τ (alternatively, assuming a lower bound of
τ). The parameter β is assumed to be a constant and log factors are not shown.

Kernel f(x, y) Preprocessing Time KDE Query Time Reference
Gaussian e−∥x−y∥22 nd

ε2τ0.173+o(1)
d

ε2τ0.173+o(1) [58]
Exponential e−∥x−y∥2 nd

ε2τ0.1+o(1)
d

ε2τ0.1+o(1) [58]
Exponential e−∥x−y∥2 nd

ε2τ0.5
d

ε2τ0.5
[23]

Laplacian e−∥x−y∥1 nd
ε2τ0.5

d
ε2τ0.5

[23]
Rational Quadratic 1

(1+∥x−y∥22)β
nd
ε2

d
ε2

[22]

Kernel Density Estimation. For a kernel function k, such as those in Table 2.1, we
define a kernel density estimation (KDE) query is defined as follows. Table 2.1 lists known
bounds on datastructures which perform KDE queries for a wide range of kernels.

Definition 1.6.1. (Kernel Density Estimation (KDE) Queries) For a given dataset X ⊂ Rd

of size n, kernel function k, and precision parameter ε > 0, a KDE data structure supports the
following operation: given a query y ∈ Rd, return a value KDEX(y) that lies in the interval
[(1− ε)z, (1 + ε) z], where z =

∑
x∈X k(x, y), assuming that k(x, y) ≥ τ for all x ∈ X.

Hardness Assumptions. Throughout the thesis, we rely on several fine-grained complex-
ity hardness assumptions to prove lower bounds for computing similarities in various settings.
The first conjecture is the following.

Definition 2.0.1. (Hitting Set (HS) problem) The input to the problem consists of two sets
of vectors A,B ⊆ {0, 1}d, and the goal is to determine whether there exists some a ∈ A such
that a · b ̸= 0 for every b ∈ B. If such an a ∈ A exists, we say that a hits B.

It is easy to see that the Hitting Set problem can be solved in time O(n2d). The Hitting
Set Conjecture [198] postulates that this running time is close to the optimal.

Conjecture 2.0.1. Suppose d = Θ(log2 n). Then for every constant α > 0, no randomized
algorithm can solve the Hitting Set problem in O(n2−α) time.

The second conjecture is the Strong Exponential Time Hypothesis (SETH) [103, 104].
It is a statement about the complexity of k-SAT, but we use a more convenient formulation
in terms of the orthogonal vectors problem.

Definition 2.0.2. (Orthogonal Vectors problem (OVP)) Given two sets of vectors A =
{a1, . . . , an} and B = {b1, . . . , bn}, A,B ⊂ {0, 1}d, |A| = |B| = n, determine whether there
exist x ∈ A and y ∈ B such that the dot product x · y =

∑d
j=1 xjyj (taken over reals) is equal

to 0.

Conjecture 2.0.2. [197] Suppose d = ω(log n). Assuming SETH, for every constant α > 0,
no randomized algorithm can solve OVP in O(n2−α) time.
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Part I

Efficient ‘Local’ Similarity Computation
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Chapter 3

The Chamfer Distance

For any two point sets A,B ⊂ Rd of size up to n, recall that the Chamfer distance from A
to B is defined as

CH(A,B) =
∑
a∈A

min
b∈B

dX(a, b),

where dX is the underlying distance measure (e.g., the Euclidean or Manhattan distance). The
Chamfer distance is a popular measure of dissimilarity between point clouds, used in many
machine learning, computer vision, and graphics applications, and admits a straightforward
O(dn2)-time brute force algorithm. Further, the Chamfer distance is often used as a proxy for
the more computationally demanding Earth-Mover (Optimal Transport) Distance. However,
the quadratic dependence on n in the running time makes the naive approach intractable for
large datasets.

In this chapter, we overcome this bottleneck and present the first (1 + ϵ)-approximate
algorithm for estimating the Chamfer distance with a near-linear running time. Specifically,
our algorithm runs in time O (nd log(n)/ϵ2) and is implementable. We also give evidence that
if the goal is to report a (1+ε)-approximate mapping from A to B (as opposed to just its value),
then any sub-quadratic time algorithm is unlikely to exist. Our experiments demonstrate
that our upper bound algorithm is both accurate and fast on large high-dimensional datasets.

Our algorithm is given in Section 3.1, our lower bounds are proved in Section 3.3, and
empirical evaluations are given in Section 3.4.

3.1 Algorithm and Road Map of Analysis

In this section, we establish our main result for estimating Chamfer distance:

Theorem 3.1.1 (Estimating Chamfer Distance in Nearly Linear Time). Given as input
two datasets A,B ⊂ Rd such that |A|, |B| ≤ n, and an accuracy parameter 0 < ε < 1,
Chamfer-Estimate runs in time O (nd log(n)/ε2) and outputs an estimator η such that with
probability at least 99/100,

(1− ε)CH(A,B) ≤ η ≤ (1 + ε)CH(A,B),
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when the underlying metric is Euclidean (ℓ2) or Manhattan (ℓ1) distance.

Let us now motivate the algorithm design, with the formal algorithm presented in Algo-
rithm 1. For ease of exposition, we make the simplifying assumption that the underlying
metric is Manhattan distance, i.e. dX(a, b) = ∥a− b∥1. Our algorithm still succeeds whenever
the underlying metric admits a locality-sensitive hash function (see Definition 3.2.1).

Uniform vs Importance Sampling. A natural algorithm for estimating CH(A,B) pro-
ceeds by uniform sampling : sample an a ∈ A uniformly at random and explicitly compute
minb∈B ∥a− b∥1. In general, we can compute the estimator ẑ for CH(A,B) by averaging over
s uniformly chosen samples, resulting in runtime O(nds). It is easy to see that the resulting
estimator is un-biased, i.e. E[ẑ] = CH(A,B). However, if a small constant fraction of elements
in A contribute significantly to CH(A,B), then s = Ω(n) samples could be necessary to obtain,
say, a 1% relative error estimate with constant probability. Since each sample requires a
linear scan to find the nearest neighbor, this would result in a quadratic runtime.

While such an approach has good empirical performance for well-behaved datasets, it
does not work for data sets where the distribution of the distances from points in A to their
nearest neighbors in B is skewed. Further, it is computationally prohibitive to verify the
quality of the approximation given by uniform sampling. Towards proving Theorem 3.1.1,
it is paramount to obtain an algorithm that works regardless of the structure of the input
dataset.

A more nuanced approach is to perform importance sampling where we sample a ∈ A with
probability proportional to its contribution to CH(A,B). In particular, if we had access to a
distribution, Da, over elements a ∈ A such that, minb∈B∥a− b∥1 ≤Da ≤ λminb∈B∥a− b∥1,
for some parameter λ > 1, then sampling O(λ) samples results in an estimator ẑ that is
unbiased and within 1% relative error to the true answer with probability at least 99%.
Formally, we consider the estimator defined in Algorithm 1, where we assume access to
CrudeNN(A,B), a sub-routine which receives as input A and B and outputs estimates Da ∈
R≥0 for each a ∈ A which is guaranteed to be an upper bound for minb∈B ∥a − b∥1. Based
on the values {Da}a∈A we construct an importance sampling distribution D supported on A.
Our algorithm samples points from the distribution D, exactly calculates the contribution
to the Chamfer distance of only the sampled points, and then appropriately re-weights these
values to form the final estimate.

Thus obtain the following lemma which bounds the performance of our estimator.

Lemma 3.1.2 (Variance Bounds for Chamfer Estimate). Let n, d ∈ N and suppose A,B are
two subsets of Rd of size at most n. For any T ∈ N, the output η of Chamfer-Estimate(A,B, T )
satisfies

E [η] = CH(A,B),

Var [η] ≤ 1

T
· CH(A,B)2

(
D

CH(A,B)
− 1

)
,

28



Algorithm 1 The Chamfer-Estimate Algorithm.

1: Input: Two subsets A,B ⊂ Rd of size at most n, and a parameter T ∈ N.
2: Output: A number η ∈ R≥0.
3: procedure Chamfer-Estimate((A,B, T ))
4: Execute the algorithm CrudeNN(A,B), and let the output be a set of positive real

numbers {Da}a∈A which always satisfy Da ≥ minb∈B ∥a− b∥1. Let D :=
∑

a∈A Da.
5: Construct the probability distribution D, supported on the set A, which satisfies that

for every a ∈ A,

Pr
x∼D

[x = a] :=
Da

D
.

6: For ℓ ∈ [T ], sample xℓ ∼ D and spend O(|B|d) time to compute

ηℓ :=
D

Dxℓ

·min
b∈B
∥xℓ − b∥1.

7: Output

η :=
1

T

T∑
ℓ=1

ηℓ.

8: end procedure

for D in Algorithm 1. The expectations and variance are over the randomness in the samples
of Line 6 of Chamfer-Estimate(A,B, T ). In particular,

Pr
[
|η − CH(A,B)| ≥ ε · CH(A,B)

]
≤ 1

ε2 · T

(
D

CH(A,B)
− 1

)
.

The proof of Lemma 3.1.2 follows from a standard analysis of importance sampling and
is given in Section 3.2. Observe, if D ≤ λCH(A,B), it suffices to sample T = O(λ/ε2) points
in A, leading to a running time of O(ndλ/ε2).

Obtaining importance sampling probabilities. It remains to show how to implement
the CrudeNN(A,B) subroutine to obtain the distribution over elements in A which is a reason-
able over-estimator of the true probabilities. A natural first step is to consider performing an
O(log n)-approximate nearest neighbor search (NNS): for every a′ ∈ A, find b′ ∈ B satisfying
∥a′ − b′∥1/minb∈B ∥a′ − b∥1 = O(log n). This leads to the desired guarantees on {Da}a∈A.
Unfortunately, the state of the art algorithms for O(log n)-approximate NNS, even under
the ℓ1 norm, posses extraneous poly(log n) factors in the runtime, resulting in a significantly
higher running time. These factors are even higher for the ℓ2 norm. Therefore, instead
of performing a direct reduction to approximate NNS, we open up the approximate NNS
black-box and give a simple algorithm which directly satisfies our desired guarantees on
{Da}a∈A.
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Algorithm 2 The CrudeNN Algorithm.
1: Input: Two subsets A,B of a metric space (X, ∥ · ∥1) of size at most n such that all

non-zero distances between any point in A and any point in B is between 1 and poly(n/ε).
We assume access to a locality-sensitive hash family at every scale H(r) for any r ≥ 0
satisfying conditions of Definition 3.2.1. (We show in Section 3.2 that, for ℓ1 and ℓ2, the
desired hash families exist, and that distances between 1 and poly(n/ε) is without loss
of generality).

2: Output: A list of numbers {Da}a∈A where Da ≥ minb∈B ∥a− b∥1.
3: procedure CrudeNN((A,B))
4: We instantiate L = O(log(n/ε)) and for i ∈ {0, . . . , L}, we let ri = 2i.
5: For each i ∈ {0, . . . , L} sample a hash function hi : X → U from hi ∼ H(ri).
6: For each a ∈ A, find the smallest i ∈ {0, . . . , L} for which there exists a point b ∈ B

with hi(a) = hi(b), and set Da = ∥a− b∥1.
• The above may be done by first hashing each point b ∈ B and i ∈ {0, . . . , L}

according to hi(b). Then, for each a ∈ A, we iterate through i ∈ {0, . . . , L} while
hashing a according to hi(a) until the first b ∈ B with hi(a) = hi(b) is found.

7: end procedure

To begin with, we assume that the aspect ratio of all pair-wise distances is bounded by
a fixed polynomial, poly(n/ε) (we defer the reduction from an arbitrary input to one with
polynomially bounded aspect ratio to Lemma 3.2.2). We proceed via computing O(log(n/ε)
different (randomized) partitions of the dataset A ∪ B. The i-th partition, for 1 ≤ i ≤
O(log(n/ε)), can be written as A ∪ B = ∪jP i

j and approximately satisfies the property
that points in A ∪ B that are at distance at most 2i will be in the same partition P i

j with
sufficiently large probability. To obtain these components, we use a family of locality-sensitive
hash functions, whose formal properties are given in Definition 3.2.1. Intuitively, these hash
functions guarantee that:

1. For each a′ ∈ A, its true nearest neighbor b′ ∈ B falls into the same component as a′

in the i0-th partition, where 2i0 = Θ(∥a′ − b′∥1) 1, and

2. Every other extraneous b ̸= b′ is not in the same component as a′ for each i < i0.

It is easy to check that any hash function that satisfies the aforementioned guarantees
yields a valid set of distances {Da}a∈A as follows: for every a′ ∈ A, find the smallest i0 for
which there exists a b′ ∈ B in the same component as a′ in the i0-th partition. Then set
Da′ = ∥a′−b′∥1. Intuitively, the b′ we find for any fixed a′ in this procedure will have distance
that is at least the closest neighbor in B and with good probability, it won’t be too much
larger. A caveat here is that we cannot show the above guarantee holds for 2i0 = Θ(∥a′−b′∥1).
Instead, we obtain the slightly weaker guarantee that, in the expectation, the partition b′

1Recall we assumed all distances are between 1 and poly(n) resulting in only O(log n) different partitions
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lands in is a O(log n)-approximation to the minimum distance, i.e. 2i0 = Θ(log n · ∥a′− b′∥1).
Therefore, after running CrudeNN(A,B), setting λ = log n suffices for our O (nd log(n)/ε2)
time algorithm. We formalize this argument in the following lemma:

Lemma 3.1.3 (Oversampling with bounded Aspect Ratio). Let (X, dX) be a metric space
with a locality-sensitive hash family at every scale (see Definition 3.2.1). Consider two subsets
A,B ⊂ X of size at most n and any ε ∈ (0, 1) satisfying

1 ≤ min
a∈A,b∈B

a̸=b

dX(a, b) ≤ max
a∈A,b∈B

dX(a, b) ≤ poly(n/ε).

Algorithm 2, CrudeNN(A,B), outputs a list of (random) positive numbers {Da}a∈A which
satisfy the following two guarantees:

• With probability 1, every a ∈ A satisfies Da ≥ minb∈B dX(a, b).

• For every a ∈ A, E[Da] ≤ O(log n) ·minb∈B dX(a, b).

Further, Algorithm 2, runs in time O(dn log(n/ε)) time, assuming that each function used
in the algorithm can be evaluated in O(d) time.

Proof Sketch for Theorem 3.1.1. Given the lemmas above, it is straight-forward to complete
the proof of Theorem 3.1.1. First, we reduce to the setting where the aspect ratio is poly(n/ε)
(see Lemma 3.2.2 for a formal reduction). We then invoke Lemma 3.1.3 and apply Markov’s
inequality to obtain a set of distances Da such that with probability at least 99/100, for
each a ∈ A, minb∈B ∥a − b∥1 ≤ Da and

∑
a∈A Da ≤ O(log(n))CH(A,B). We then invoke

Lemma 3.1.2 and set the number of samples, T = O (log(n)/ε2). The running time of our
algorithm is then given by the time of CrudeNN(A,B), which is O(nd log(n/ε)), and the time
needed to evaluate the estimator in Lemma 3.1.2, requiring O (nd log(n)/ε2) time. Refer to
Section 3.2 for the full proof.

Other Related Works We note that importance sampling is a popular technique used for
speeding up geometric algorithms. For example, [106] uses it to obtain a fast c-approximate
algorithm for computing Earth Mover Distance (EMD) in two (or any constant) dimensions,
for some constant c > 2. However, the application and implementation of importance
sampling in that paper is quite different from ours.

In [106], the space containing all input points is subdivided into regions, and the total
EMD value is represented as a sum of EMDs restricted to point-sets in each region (plus an
additional representing the “global” EMD). The EMD cost in each region is then approximated
quickly by embedding EMD into ℓ1 using a randomly shifted quadtree with logarithmic
distortion; these estimations define the sampling probabilities.

In contrast, in our work, the value of the Chamfer distance is exactly equal to the sum
of distances from each point to its nearest neighbor, so there is no decomposition involved.
Instead, we approximate each distance to nearest neighbor using a randomized hierarchical
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decomposition; for the case of the ℓ1 norm, each level of the decomposition partitions the
space into rectangular boxes, as in quadtrees. Crucially, however, to ensure that the running
time of our algorithm is within the stated bounds, we cannot use a standard randomly shifted
quadtree where each level is shifted by the same random vector (as in [106]). This is because
shifting all levels by the same amount only ensures that the expected distortion between
a fixed pair of points is logarithmic; to ensure that the distance to the nearest neighbor
is distorted by O(log n), we would need to use O(log n) independent quadtrees and apply
the union bound. Instead, we use independent random partitions at each level, and show
(Lemma 3.1.3) that this suffices to bound the expected distortion of the distance to the
nearest neighbor, without incurring any additional factors. This makes it possible to obtain
the running time as stated.

There are other works on quickly computing EMD and related distances. For example,
the algorithm of [12] runs in time that is linear in the number of distances, i.e. it runs in Ω(n2)
time and gets a 1 + ε approximation to EMD. This means that their approach requires a
runtime quadratic in the size of the dataset n. In contrast, Chamfer distance admits a trivial
time O(n2) algorithm and our main contribution is to provide a nearly linear O(n log(n)/ε2)
algorithm to get (1 + ε)-approximation to Chamfer distance.

3.2 Full Analysis of the Upper Bound

Proof of Lemma 3.1.2. The proof follows from a standard analysis of importance sampling.
The fact that our estimator η is unbiased holds from the definition of ηℓ, since we are
re-weighting samples according to the probability with which they are sampled in D (in
particular, the estimator is unbiased for all distributions D where Da > 0 for all a ∈ A).
The bound on the variance is then a simple calculation:

Var [η] ≤ 1

T
·

([∑
a∈A

(
D

Da

)
min
b∈B
∥a− b∥22

]
− CH(A,B)2

)

≤ 1

T
·

[∑
a∈A

min
b∈B
∥a− b∥2 ·D

]
− CH(A,B)2

T

≤ 1

T
· CH(A,B)2

(
D

CH(A,B)
− 1

)
.

The final probability bound follows from Chebyshev’s inequality.

Locality Sensitive Hashing at every scale. We now discuss how to find such partitions.
For the ℓ1 distance, each partition i is formed by imposing a (randomly shifted) grid of side
length 2i on the dataset. Note that while the grid partitions the entire space Rd into infinitely
many components, we can efficiently enumerate over the non empty components which
actually contain points in our dataset. To this end, we introduce the following definition:
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Definition 3.2.1 (Hashing at every scale). There exists a fixed constant c1 > 0 and a
parameterized family H(r) of functions from X to some universe U such that for all r > 0,
and for every x, y ∈ X

1. Close points collide frequently:

Pr
h∼H(r)

[h(x) ̸= h(y)] ≤ ∥x− y∥1
r

,

2. Far points collide infrequently:

Pr
h∼H(r)

[h(x) = h(y)] ≤ exp

(
−c1 ·

∥x− y∥1
r

)
.

We are now ready to make this approach concrete via the following lemma:

Lemma 3.2.1 (Oversampling with bounded Aspect Ratio). Let (X, dX) be a metric space
with a locality-sensitive hash family at every scale (see Definition 3.2.1). Consider two subsets
A,B ⊂ X of size at most n and ε ∈ (0, 1) satisfying

1 ≤ min
a∈A,b∈B

a̸=b

dX(a, b) ≤ max
a∈A,b∈B

dX(a, b) ≤ poly(n/ε).

Algorithm 2, CrudeNN(A,B), outputs a list of (random) positive numbers {Da}a∈A which
satisfy the following two guarantees:

• With probability 1, every a ∈ A satisfies Da ≥ minb∈B dX(a, b).

• For every a ∈ A, E[Da] ≤ O(log n) ·minb∈B dX(a, b).

Further, Algorithm 2, runs in time O (nd log(n/ε)) time, assuming that each function used
in the algorithm can be evaluated in O(d) time.

Finally, we show that it always suffices to assume bounded aspect ratio:

Lemma 3.2.2 (Reduction to bounded Aspect Ratio). Given an instance A,B ⊂ Rd such
that |A|, |B| ≤ n, and 0 < ε < 1 there exists an algorithm that runs in time O (nd log(n)/ε2)
and outputs a partition A1, A2, . . . AT of A and B1, B2, . . . BT of B such that T = O(n) and
for each t ∈ [T ],

1 ≤ min
a∈At,b∈Bt

a̸=b

∥a− b∥1 ≤ max
a∈At,b∈Bt

∥a− b∥1 ≤ poly(n/ε).

Further,
(1− ε)CH(A,B) ≤

∑
t∈[T ]

CH(At, Bt) ≤ (1 + ε)CH(A,B).
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We defer the proofs of Lemma 3.2.1 and Lemma 3.2.2 to sub-sections 3.2.1 and 3.2.3
respectively. We are now ready to complete the proof of Theorem 3.1.1.

Proof of Theorem 3.1.1. Observe, by Lemma 3.2.2, we can partition the input into pairs
(At, Bt)t∈[T ] such that each pair has aspect ratio at most poly(n/ε) and the CH(A,B) is
well-approximated by the direct sum of CH(At, Bt). Next, repeating the construction from
Lemma 3.2.1, and applying Markov’s inequality, we have list {Da}a∈A such that with
probability at least 99/100, for all a ∈ A, Da ≥ minb∈B ∥a − b∥1 and D =

∑
a∈ADa ≤

O(log(n))CH(A,B). Invoking Lemma 3.1.2 with the aforementioned parameters, and T =
O (log(n)/ε2) suffices to obtain an estimator η which is a (1± ε) relative-error approximation
to CH(A,B). Since we require computing the exact nearest neighbor for at most O (log(n)/ε2)
points, the running time is dominated by O (nd log(n)/ε2), which completes the proof.

3.2.1 Analysis for CrudeNN

In this subsection, we focus analyze the CrudeNN algorithm and provide a proof for Lemma 3.2.1.
A construction of hash family satisfying Definition 3.2.1 is given in Section 3.2.2. Each func-
tion from the family can be evaluated in O(d) time per point. We are now ready to prove
Lemma 3.2.1.

Proof of Lemma 3.2.1. We note that the first item is trivially true, since CrudeNN(A,B)
always sets Da to be some distance between a and a point in B. Thus, this distance can
only be larger than the true minimum distance. The more challenging aspect is obtaining
an upper bound on the expected value of Da. Consider a fixed setting of a ∈ A, and the
following setting of parameters:

b = argmin
b′∈B

dX(a, b
′) γa = dX(a, b) i0 = ⌈log2 γa⌉,

and notice that since γa is between 1 and poly(n/ε), we have i0 is at least 0 and at most
L = O(log(n/ε)). We will upper bound the expectation of Da by considering a parameter
c > 1 (which will later be set to O(log n)), and integrating over the probability that Da is
at least γ, for all γ ≥ c · γa:

E [Da] ≤ c · γa +
∫ ∞

cγa

Pr [Da ≥ γ] dγ. (3.1)

We now show that for any a ∈ A, the probability that Da is larger than γ can be appropriately
bounded. Consider the following two bad events.

• E1(γ): This event occurs when there exists a point b′ ∈ B at distance at least γ from
a and there exists an index i ≤ i0 for which hi(a) = hi(b

′).

• E2(γ): This event occurs when there exists an index i > i0 such that:

– For every i′ ∈ {i0, . . . , i− 1}, we have hi′(a) ̸= hi′(b) for all b ∈ B.
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– There exists b′ ∈ B at distance at least γ from a where hi(a) = hi(b
′).

We note that whenever CrudeNN(A,B) set Da larger than γ, one of the two events, E1(γ)
or E2(γ), must have been triggered. To see why, suppose CrudeNN(A,B) set Da to be larger
than γ because a point b′ ∈ B with dX(a, b

′) ≥ γ happened to have hi(a) = hi(b
′), for an

index i ∈ {0, . . . , L}, and that the index i was the first case where it happened. If i ≤ i0,
this is event E1(γ). If i > i0, we claim event E2(γ) occurred: in addition to hi(a) = hi(b

′), it
must have been the case that, for all i′ ∈ {i0, . . . , i− 1}, hi′(a) ̸= hi′(b) (otherwise, i would
not be the first index). We will upper bound the probability that either event E1(γ) or E2(γ)
occurs. We make use of the tail bounds as stated in Definition 3.2.1. The upper bound for
the probability that E1(γ) is simple, since it suffices to union bound over at most n points
at distance larger than γ, using the fact that ri0 = 2i0 is at most 2 · γa:

Pr [E1(γ)] ≤ n · exp
(
−c1 ·

γ

2γa

)
. (3.2)

We will upper bound the probability that event E2(γ) a bit more carefully. We will use the
fact that for all i, the parameter ri is always between 2i−i0γa and 2i−i0+1γa.

Pr [E2(γ)] ≤
∑
i>i0

(
i−1∏
i′=i0

γa
ri′

)
·max

{
n · exp

(
−c1 ·

γ

ri

)
, 1

}
≤
∑
i>i0

2−(0+···+(i−1−i0))max

{
exp

(
ln(n)− c1 ·

γ

2i−i0+1 · γa

)
, 1

}
≤
∑
k≥0

2−Ω(k2) ·max

{
exp

(
ln(n)− c1 ·

γ

2k+2 · γa

)
, 1

}
. (3.3)

With the above two upper bounds in place, we upper bound (3.1) by dividing the integral
into the two contributing summands, from E1(γ) and E2(γ), and then upper bounding each
individually. Namely, we have∫ ∞

γ:cγa

Pr [Da ≥ γ] dγ ≤
∫ ∞

γ:cγa

Pr [E1(γ)] dγ +

∫ ∞

γ:cγa

Pr [E2(γ)] dγ.

The first summand can be simply upper bounded by using the upper bound from (3.2), where
we have ∫ ∞

γ:cγa

Pr [E1(γ)] dγ ≤
∫ ∞

γ:cγa

n exp

(
−c1 ·

γ

2γa

)
dγ ≤ n · 2γa

c1
· e−c1c/2 ≤ γa

for a large enough c = Θ(log n). The second summand is upper bounded by the upper bound
in (3.3), while being slightly more careful in the computation. In particular, we first commute
the summation over k and the integral; then, for each k ≥ 0, we define

αk := 2k+3 ln(n) · γa/c1,

35



and we break up the integral into the interval [c · γa, αk] (if αk < cγa, the interval is empty),
as well as [αk,∞):∫ ∞

γ:cγa

Pr [E2(γ)] dγ ≤
∑
k≥0

2−Ω(k2)

∫ ∞

γ:cγa

max

{
exp

(
ln(n)− c1 ·

γ

2k+2 · γa

)
, 1

}
dγ

≤
∑
k≥0

2−Ω(k2)

(
(αk − c · γa)+ +

∫ ∞

γ:αk

exp

(
−c1

2
· γ

2k+2γa

)
dγ

)
,

where in the second inequality, we used the fact that the setting of αk, the additional ln(n)
factor in the exponent can be removed up to a factor of two. Thus,∫ ∞

γ:cγa

Pr [E2(γ)] dγ ≤
∑
k≥0

2−Ω(k2)
(
γa ·O(2k log n) + γa ·O(2k)

)
= O(log n) · γa.

Finally, the running time is dominated by the cost of evaluating O(log(n/ε)) functions
on n points in dimension d. Since each evaluation takes O(d) time, the bound follows.

3.2.2 Locality-Sensitive Hashing at Every Scale

Lemma 3.2.3 (Constructing a LSH at every scale). For any r ≥ 0 and any d ∈ N, there
exists a hash family H(r) such that for any two points x, y ∈ Rd,

Pr
h∼H(r)

[h(x) ̸= h(y)] ≤ ∥x− y∥1
r

Pr
h∼H(r)

[h(x) = h(y)] ≤ exp

(
−∥x− y∥1

r

)
.

In addition, for any h ∼ H(r), h(x) may be computed in O(d) time.

Proof. The construction proceeds in the following way: in order to generate a function
h : Rd → Zd sampled from H(r),

• We sample a random vector z ∼ [0, r]d.

• We let
h(x) =

(⌈
x1 + z1

r

⌉
,

⌈
x2 + z2

r

⌉
, . . . ,

⌈
xd + zd

r

⌉)
.

Fix x, y ∈ Rd. If h(x) ̸= h(y), there exists some coordinate k ∈ [d] on which h(x)k ̸= h(y)k.
This occurs whenever (i) |xk − yk| > r, or (ii) |xk − yk| ≤ r, but zk happens to fall within an
interval of length |xk − yk|, thereby separating x from y. By a union bound,

Pr
h∼H(r)

[h(x) ̸= h(y)] ≤
d∑

k=1

|xk − yk|
r

=
∥x− y∥1

r
.
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On the other hand, in order for h(x) = h(y), it must be the case that every |xk−yk| ≤ r, and
in addition, the threshold zk always avoids an interval of length |xk − yk|. The probability
that this occurs is

Pr
h∼H(r)

[h(x) = h(y)] =
d∏

k=1

max

{
0, 1− |xk − yk|

r

}
≤ exp

(
−

d∑
k=1

|xk − yk|
r

)

≤ exp

(
−∥x− y∥1

r

)
.

Extending the above construction to ℓ2 follows from embedding the points A ∪B into ℓ1
via a standard construction given in Theorem 2.0.2.

The map T : Rd → Rk from Theorem 2.0.2 with k = O (log n/ε2) gives an embedding of
A ∪B into ℓk1 of distortion (1± ε) with high probability. Formally, with probability at least
1− 1/n over the draw of T with t = O (log n/ε2), every a ∈ A and b ∈ B satisfies

(1− ε)∥a− b∥2 ≤ ∥T (a)− T (b)∥1 ≤ (1 + ε)∥a− b∥2.

This embedding has the effect of reducing ℓ2 to ℓ1 without affecting the Chamfer distance of
the mapped points by more than a (1± ε)-factor. In addition, the embedding incurs an extra
additive factor of O (nd log n/ε2) to the running time in order to perform the embedding for
all points.

3.2.3 Reduction to poly(n/ε) Aspect Ratio for ℓp, p ∈ [1, 2]

In this section, we discuss how to reduce to the case of a poly(n/ε) aspect ratio. The
reduction proceeds by first obtaining a very crude estimate of CH(A,B) (which will be a
poly(n)-approximation), applying a locality-sensitive hash function in order to partition
points of A and B which are significantly farther than poly(n) · CH(A,B). Finally, we
add O(log n) coordinates and add random vector of length poly(ε/n) · CH(A,B) in order
to guarantee that the minimum distance is at least poly(ε/n) · CH(A,B) without changing
CH(A,B) significantly.

Proof of Lemma 3.2.2. Partitioning Given Very Crude Estimates. In particular, sup-
pose that with an O(nd) +O(n log n) time computation, we can achieve a value of η ∈ R≥0

which satisfies
CH(A,B) ≤ η ≤ c · CH(A,B),

with high probability (which we will show how to do briefly with c = poly(n)). Then, consider
sampling h ∼ H(cn ·η) and partitioning A and B into equivalence classes according to where
they hash to under h. The probability that two points at distance farther than O(log n)·cn·η
collide under h is small enough to union bound over at most n2 many possible pairs of vectors.
In addition, the probability that there exists a ∈ A for which b ∈ B minimizing ∥a − b∥p
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satisfies h(a) ̸= h(b) is at most CH(A,B)/(cn · η) ≤ 1/n. This latter inequality implies that
computing the Chamfer distance of the corresponding parts in the partition and summing
them is equivalent to computing CH(A,B).

Getting Very Crude Estimates. We now show how to obtain a poly(n)-approximation
to CH(A,B) in time O(nd) + O(n log n) for points in Rd with ℓp distance. This is done via
the p-stable sketch of Indyk [105]. In particular, we sample a vector g ∈ Rd by independent
p-stable random variables (for instance, g is a standard Gaussian vector for p = 2 and a
vector of independent Cauchy random variables for p = 1). We may then compute the scalar
random variables {⟨a, g⟩}a∈A and {⟨b, g⟩}b∈B, which give a projection onto a one-dimensional
space. By p-stability, for any a ∈ A and b ∈ B, the distribution of ⟨a, g⟩ − ⟨b, g⟩ is exactly
as ∥a − b∥p · g′, where g′ is an independent p-stable random variable. Hence, we will have
that for every a ∈ A and b ∈ B,

∥a− b∥p
poly(n)

≤ |⟨a, g⟩ − ⟨b, g⟩| ≤ ∥a− b∥p · poly(n),

with probability 1− 1/ poly(n) and hence CH({⟨a, g⟩}a∈A, {⟨b, g⟩}b∈B), which is computable
by 1-dimensional nearest neighbor search (i.e., repeatedly querying a binary search tree),
gives a poly(n)-approximation to CH(A,B).

Adding Distance Finally, we now note that η/c gives us a lower bound on CH(A,B).
Suppose we append O(log n) coordinates to each point and in those coordinates, we add
a random vector of norm ε · η/(cn). With high probability, every pair of points is now at
distance at least ε · η/(cn). In addition, the Chamfer distance between the new set of points
increases by at most an additive O (εη/c), which is at most O(ε) · CH(A,B), proving Lemma
3.2.2.

3.3 Lower Bound for Reporting the Alignment

We presented an algorithm that, in time O (nd log(n)/ε2), produces a (1 + ε)-approximation
to CH(A,B). It is natural to ask whether it is also possible to report a mapping g : A→ B
whose cost

∑
a∈A ∥a− g(a)∥1 is within a factor of 1 + ε from CH(A,B). (Our algorithm uses

on random sampling and thus does not give such a mapping). This section shows that, under
a popular complexity-theoretic conjecture called the Hitting Set Conjecture [198], such an
algorithm does not exists. For simplicity, we focus on the case when the underlying metric
dX is induced by the Manhattan distance, i.e., dX(a, b) = ∥a− b∥1. The argument is similar
for the Euclidean distance, Euclidean distance squared, etc. To state our result formally, we
first recall the Hitting Set (HS) problem.

Definition 2.0.1. (Hitting Set (HS) problem) The input to the problem consists of two sets
of vectors A,B ⊆ {0, 1}d, and the goal is to determine whether there exists some a ∈ A such
that a · b ̸= 0 for every b ∈ B. If such an a ∈ A exists, we say that a hits B.
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It is easy to see that the Hitting Set problem can be solved in time O(n2d). The Hitting
Set Conjecture [198] postulates that this running time is close to the optimal. We recall the
hitting set conjecture.

Conjecture 2.0.1. Suppose d = Θ(log2 n). Then for every constant α > 0, no randomized
algorithm can solve the Hitting Set problem in O(n2−α) time.

Our result can be now phrased as follows.

Theorem 3.3.1 (Hardness for reporting a mapping). Let T (N,D, ε) be the running time of
an algorithm ALG that, given sets of A”, B” ⊂ {0, 1}D of sizes at most N , reports a mapping
g : A” → B” with cost (1 + ε)CH(A”, B”), for D = Θ(log2N) and ε = Θ(1)

D
. Assuming the

Hitting Set Conjecture, we have that T (N,D, ε) is at least Ω(N2−δ) for any constant δ > 0.

Proof. To set the notation, we let nA = |A|, nB = |B|.
The proof mimics the argument from [170], which proved a similar hardness result for

the problem of computing the Earth-Mover Distance. In particular, Lemma 4.3 from that
paper shows the following claim.

Claim 3.3.2. For any two sets A,B ⊆ {0, 1}d, there is a mapping f : {0, 1}d → {0, 1}d” and
a vector v ∈ {0, 1}d”, such that d” = O(d) and for any a ∈ A, b ∈ B:

• If a · b = 0 then ∥f(a)− f(b)∥1 = 4d+ 2,

• If a · b > 0 then ∥f(a)− f(b)∥1 ≥ 4d+ 4,

• ∥f(a)− v∥1 = 4d+ 4.

Furthermore, each evaluation f(a) can be performed in O(d) time.

We will be running ALG on sets A” = {f(a) : a ∈ A} and B” = {f(b) : b ∈ B} ∪ {v}. It
can be seen that, given a reported mapping g, we can assume that for all a” ∈ A” we have
∥a”− g(a”)∥1 ≤ 4d+ 4, as otherwise g can map a′′ to v. If for all a ∈ A there exists b ∈ B
such that a · b = 0, i.e., A does not contain a hitting vector, then the optimal mapping cost
is nA(4d+ 2). More generally, let H be the set of vectors a ∈ A hitting B, and let h = |H|.
It can be seen that

CH(A”, B”) = h(4d+ 4) + (nA − h)(4d+ 2) = nA(4d+ 2) + 2h.

Thus, if we could compute CH(A”, B”) exactly, we would determine if h = 0 and solve HS.
In what follows we show that even an approximate solution can be used to accomplish this
task as long as ε is small enough.

Let t = c log(n)/ε for some large enough constant c > 1. Consider the algorithm
HittingSet(A,B) that solves HS by invoking the algorithm ALG.

It can be seen that the first three steps of the algorithm take at most O(ntd) time.
Furthermore, if the algorithm terminates, it reports the correct answer, as only vectors a
that are guaranteed not to be hitting are removed in the recursion. It remains to bound
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Algorithm 3 Reduction from Hitting Set to (1 + ε)-approximate CH, implemented using
algorithm ALG .

1: Input: Two sets A,B ⊂ {0, 1}d of size at most n, and an oracle access to ALG that
computes (1 + ε)-approximate CH.

2: Output: Determines whether there exists a ∈ A such that a · b > 0 for all b ∈ B
3: procedure HittingSet((A,B))
4: Sample (uniformly, without replacement) min(t, |A|) distinct vectors a ∈ A, and for

each of them check if a · b > 0 for all B. If such an a is found, return YES.
5: Construct A”, B” as in Claim 3.3.2, and invoke ALG. Let g : A” → B” be the

returned map.
6: Identify the set M containing all a ∈ A such that ∥g(f(a))− f(a)∥1 = 4d+ 2. Note

that a · b = 0 for b ∈ B such that f(b) = g(f(a)).
7: Recursively execute HittingSet(A−M,B)
8: end procedure

the total number and cost of the recursive steps. To this end, we will show that, with high
probability, in each recursive call we have |A−M | ≤ |A|/2. This will yield a total time of
log n[(ntd) + T (n+ 1, O(d), ε)]. Since t = c log(n)/ε, d = log2 n and ε = Θ(1)

d
, it follows that

the time is at most n log5(n) + log(n)T (n+ 1, O(d), ε), and the theorem follows.
To show that |A−M | ≤ |A|/2, first observe that if the algorithm reaches step (2), then

for a large enough constant c > 1 it holds, with high probability, that the set H of hitting
vectors a has cardinality at most ε·nA, as otherwise one such vector would have been sampled.
Thus, the subroutine ALG returns a map where the vast majority of the points f(a) have
been matched to a point f(b) such that ∥f(a)− f(b)∥1 = 4d+ 2. More formally, the cost of
the mapping g is

C =
∑
a”∈A”

∥a”− g(a”)∥1

≤ (1 + ε)[nA(4d+ 2) + 2|H|]
≤ (1 + ε)[nA(4d+ 2) + 2εnA]

≤ nA(4d+ 2) + 4εnA(d+ 2)

≤ nA(4d+ 2) + nA

where in the last step we used the assumption about ε.
Denote m = |M |. Observe that the cost C of the mapping g can be alternatively written

as:
C = m(4d+ 2) + (nA −m)(4d+ 4) = nA(4d+ 4)− 2m

This implies m = (nA(4d + 4) − C)/2. Since we showed earlier that C ≤ nA(4d + 2) + nA,
we conclude that

m = (nA(4d+ 4)− C)/2 ≥ (2nA − nA)/2 = nA/2.
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Thus, |A−M | = nA −m ≤ nA/2, completing the proof.

3.4 Experiments

We perform an empirical evaluation of our Chamfer distance estimation algorithm.

Summary of Results Our experiments demonstrate the effectiveness of our algorithm
for both low and high dimensional datasets and across different dataset sizes. Overall, it is
much faster than brute force (even accelerated with KD-trees). Further, our algorithm is
both faster and more sample-efficient than uniform sampling. It is also robust to different
datasets: while uniform sampling performs well for most datasets in our experiments, it
performs poorly on datasets where the distances from points in A to their neighbors in B
vary significantly. In such cases, our algorithm is able to adapt its importance sampling
probabilities appropriately and obtain significant improvements over uniform sampling.

Dataset |A|, |B| d Experiment Metric Reference

ShapeNet ∼ 8 · 103,∼ 8 · 103 3 Small Scale ℓ1 [53]
Text Embeddings 2.5 · 103, 1.8 · 103 300 Small Scale ℓ1 [127]
Gaussian Points 5 · 104, 5 · 104 2 Outliers ℓ1 -

DEEP1B 104, 109 96 Large Scale ℓ2 [20]
Microsoft-Turing 105, 109 100 Large Scale ℓ2 [176]

Table 3.1: Summary of our datasets. For ShapeNet, the value of |A| and |B| is averaged
across different point clouds in the dataset.

3.4.1 Experimental Setup

We use three different experimental setups, small scale, outlier, and large scale. They are
designed to ‘stress test’ our algorithm, and relevant baselines, under vastly different parameter
regimes. The datasets we use are summarized in Table 3.1. For all experiments, we introduce
uniform sampling as a competitive baseline for estimating the Chamfer distance, as well
as (accelerated) brute force computation. All results are averaged across 20+ trials and 1
standard deviation error bars are shown when relevant.

Small Scale These experiments are motivated from common use cases of Chamfer distance
in the computer vision and NLP domains. In our small scale experiments, we use two different
datasets: (a) the ShapeNet dataset, a collection of point clouds of objects in three dimensions
[53]. ShapeNet is a common benchmark dataset frequently used in computer graphics,
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computer vision, robotics and Chamfer distance is a widely used measure of similarity
between different ShapeNet point clouds [53]. (b) We create point clouds of words from
text documents from [127]. Each point represents a word embedding obtained from the
word-to-vec model of [151] in R300 applied to the Federalist Papers corpus. As mentioned
earlier, a popular relaxation of the common Earth Mover Distance is exactly the (weighted)
version of the Chamfer distance [17, 127].

Since ShapenNet is in three dimensions, we implement nearest neighbor queries using KD-
trees to accelerate the brute force baseline as KD-trees can perform exact nearest neighbor
search quickly in small dimensions. However, they have runtime exponential in dimension
meaning they cannot be used for the text embedding dataset, for which we use a standard
naive brute force computation. For both these datasets, we implement our algorithms
using Python 3.9.7 on a M1 MacbookPro with 32GB of RAM. We also use an efficient
implementation of KD trees in Python and use Numpy and Numba whenever relevant.
Since the point clouds in the dataset have approximately the same n value, we compute
the symmetric version CH(A,B) + CH(B,A). For these experiments, we use the ℓ1 distance
function.

Outliers This experiment is meant to showcase the robustness of our algorithm. We
consider two point clouds, A and B, each sampled from Gaussian points in R100 with identity
covariance. Furthermore, we add an "outlier" point to A equal to 0.5n · 1, where 1 is the all
ones vector.

This example models scenarios where the distances from points in A to their nearest
neighbors in B vary significantly, and thus uniform sampling might not accurately account
for all distances, missing a small fraction of large ones.

Large Scale The purpose of these experiments is to demonstrate that our method scales
to datasets with billions of points in hundreds of dimensions. We use two challenging
approximate nearest neighbor search datasets: DEEP1B [20] and Microsoft Turing-ANNS
[176]. For these datasets, the set A is the query data associated with the datasets. Due
to the asymmetric sizes, we compute CH(A,B). These datasets are normalized to have unit
norm and we consider the ℓ2 distance function.

These datasets are too large to handle using the prior configurations. Thus, we use a
proprietary in-memory parallel implementation of the SimHash algorithm, which is an ℓ2
LSH family for normalized vectors according to Definition 3.2.1 [59], on a shared virtual
compute cluster with 2x64 core AMD Epyc 7763 CPUs (Zen3) with 2.45Ghz - 3.5GHz clock
frequency, 2TB DDR4 RAM and 256 MB L3 cache. We also utilize parallelization on the
same compute cluster for naive brute force search.

3.4.2 Results

Small Scale First we discuss configuring parameters. Recall that in our theoretical results,
we use O(log n) different scales of the LSH family in CrudeNN. CrudeNN then computes (over)
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Figure 3.1: Sample complexity vs relative error curves.
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Figure 3.2: Runtime experiments. We set the number of samples for uniform and importance
sampling such that the relative errors of their respective approximations are similar.

estimates of the nearest neighbor distance from points in A to B (in near linear time) which
is then used for importance sampling by Chamfer-Estimate. Concretely for the ℓ1 case,
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Figure 3.3: Sample complexity vs relative error curves as we vary the number of LSH data
structures and window sizes. Each curve maps k ×W where k is the number of LSH data
structures we use to repeatedly hash points in B and W is the window size, the number of
points retrieved from B that hash closest to any given a at the smallest possible distance
scales.

this the LSH family corresponds to imposing O(log n) grids with progressively smaller side
lengths. In our experiments, we treat the number of levels of grids to use as a tuneable
parameter in our implementation and find that a very small number suffices for high quality
results in the importance sampling phase.

Indeed, Figure 3.4 (b) shows that only using 3 grid levels is sufficient for the crude
estimates Da to be within a factor of 2 away from the true nearest neighbor values for the
ShapeNet dataset, averaged across different point clouds in the dataset. Thus for the rest of
the Small Scale experiments, we fix the number of grid levels to be 3.

We now discuss the main experimental results. Figure 3.1 (a) shows the sample complexity
vs accuracy trade offs of our algorithm, which uses importance sampling, compared to uniform
sampling. Accuracy is measured by the relative error to the true value. We see that our
algorithm possesses a better trade off as we obtain the same relative error using only 10
samples as uniform sampling does using 50+ samples, resulting in at least a 5x improvement
in sample complexity. For the text embedding dataset, the performance gap between our
importance sampling algorithm and uniform sampling grows even wider, as demonstrated by
Figure 3.1 (b), leading to > 10x improvement in sample complexity.

In terms of runtimes, we expect the brute force search to be much slower than either
importance sampling and uniform sampling. Furthermore, our algorithm has the overhead
of first estimating the values Da for a ∈ A using an LSH family, which uniform sampling
does not. However, this is compensated by the fact that our algorithm requires much fewer
samples to get accurate estimates.

Indeed, Figure 3.2 (a) shows the average time of 100 Chamfer distance computations
between randomly chosen pairs of point clouds in the ShapeNet dataset. We set the number
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of samples for uniform sampling and importance sampling (our algorithm) such that they
both output estimates with (close to) 2% relative error. Note that our runtime includes the
time to build our LSH data structures. This means we used 100 samples for importance
sampling and 500 for uniform. The brute force KD Tree algorithm (which reports exact
answers) is approximately 5x slower than our algorithm. At the same time, our algorithm
is 50% faster than uniform sampling. For the Federalist Papers dataset (Figure 3.2 (b)),
our algorithm only required 20 samples to get a 2% relative error approximation, whereas
uniform sampling required at least 450 samples. As a result, our algorithm achieved 2x
speedup compared to uniform sampling.

Outliers We performed similar experiments as above. Figure 3.1 (c) shows the sample
complexity vs accuracy trade off curves of our algorithm and uniform sampling. Uniform
sampling has a very large error compared to our algorithm, as expected. While the relative
error of our algorithm decreases smoothly as the sample size grows, uniform sampling has the
same high relative error. In fact, the relative error will stay high until the outlier is sampled,
which typically requires Ω(n) samples.

Large Scale We consider two modifications to our algorithm to optimize the performance
of CrudeNN on the two challenging datasets that we are using; namely, note that both
datasets are standard for benchmarking billion-scale nearest neighbor search. First, in the
CrudeNN algorithm, when computing Da for a ∈ A, we search through the hash buckets
h1(a), h2(a), . . . containing a in increasing order of i (i.e., smallest scale first), and retrieve
the first W (window size) distinct points in B from these buckets. Then, the whole process is
repeated k times, with k independent LSH data structures, and Da is set to be the distance
from a to the closest among all Wk retrieved points.

Note that previously, for our smaller datasets, we set Da to be the distance to the first
point in B colliding with a, and repeated the LSH data structure once, corresponding to
W = k = 1. In our figures, we refer to these parameter choices as k × W and test our
algorithm across several choices.

For the DEEP and Turing datasets, Figures 3.1 (d) and 3.1 (e) show the sample complexity
vs relative error trade-offs for the best parameter choice (both 64×106) compared to uniform
sampling. Qualitatively, we observe the same behavior as before: importance sampling
requires fewer samples to obtain the same accuracy as uniform sampling. Regarding the
other parameter choices, we see that, as expected, if we decrease k (the number of LSH data
structures), or if we decrease W (the window size), the quality of the approximations {Da}a∈A
decreases and importance sampling has worse sample complexity trade-offs. Nevertheless, for
all parameter choices, we see that we obtain superior sample complexity trade-offs compared
to uniform sampling, as shown in Figure 3.3. A difference between these parameter choices
are the runtimes required to construct the approximations {Da}a∈A. For example for the
DEEP dataset, the naive brute force approach (which is also optimized using parallelization)
took approximately 1.3 ·104 seconds, whereas the most expensive parameter choice of 64×106

took approximately half the time at 6.4× 103 and the cheapest parameter choice of 8× 105
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took 225 seconds, leading to a 2x-50x factor speedup. The runtime differences between
brute force and our algorithm were qualitative similar for the Turing dataset.

Similar to the small scale dataset, our method also outperforms uniform sampling in
terms of runtime if we require they both output high quality approximations. If we measure
the runtime to get a 1% relative error, the 16 × 2 · 105 version of our algorithm for the
DEEP dataset requires approximately 980 samples with total runtime approximately 1785
seconds, whereas uniform sampling requires > 1750 samples and runtime > 2200 seconds,
which is > 23% slower. The gap in runtime increases if we desire approximations with even
smaller relative error, as the overhead of obtaining the approximations {Da}a∈A becomes
increasingly overwhelmed by the time needed to compute the exact answer for our samples.

Additional Experimental Results For the ShapeNet dataset, we show we can efficiently
recover the true exact nearest neighbor of a fixed point cloud A in Chamfer distance among
a large collect of different point clouds. In other words, it is beneficial for finding the
‘nearest neighboring point cloud’. Recall the ShapeNet dataset, contains approximately
5 · 104 different point clouds. We consider the following simple (and standard) two step
pipeline: (1) use our algorithm to compute an approximation of the Chamfer distance from
A to every other point cloud B in our dataset. More specifically, compute an approximation
to CH(A,B) + CH(B,A) for all B using 50 samples and the same parameter configurations as
the small scale experiments. Then filter the dataset of points clouds and prune down to the
top k closest point cloud candidates according to our approximate distances. (2) Find the
closest point cloud in the top k candidates via exact computation.

We measure the accuracy of this via the standard recall @k measure, which computes
the fraction of times the exact nearest neighbor B of A, averaged over multiple A’s, is within
the top k choices. Figure 3.4 (a) shows that the true exact nearest neighbor of A, that is the
point cloud B which minimizes CH(A,B) + CH(B,A) among our collection of multiple point
clouds, is within the top 30 candidates > 98%, time (averaged over multiple different choices
of A). This represents a more than 1000x reduction in the number of point clouds we do
exact computation over compared to the naive brute force method, demonstrating the utility
of our algorithm for downstream tasks.

3.5 Conclusion

We present an efficient approximation algorithm for estimating the Chamfer distance up
to a 1 + ε factor in time O (nd log(n)/ε2). The result is complemented with a conditional
lower bound which shows that reporting a Chamfer distance mapping of similar quality
requires nearly quadratic time. Our algorithm is easy to implement in practice and compares
favorably to brute force computation and uniform sampling. We envision our main tools
of obtaining fast estimates of coarse nearest neighbor distances combined with importance
sampling can have additional applications in the analysis of high-dimensional, large scale
data.
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Chapter 4

Dimensionality Reduction for Sparse
Vectors

In this chapter, we prove new dimensionality reduction results for preserving pairwise dis-
tances of sparse vectors. We recall the three guiding questions of this chapter introduced in
Section 1.3:

(Q1) Can we obtain improved dimensional reduction for preserving pairwise dis-
tances between sparse vectors for general ℓp norms?

(Q2) Can we obtain improved dimensionality reduction for non-negative sparse
vectors in general ℓp norms (such as ℓ∞)?

(Q3) What are the limitations of linear maps in dimensionality reduction for
sparse vectors?

In addition, we introduce another question we study in this chapter. The lower bounds
used to answer Q3 above are shown by demonstrating specific sparse datasets where preserving
all pairs simultaneously is provably impossible. Therefore, it is natural to ask if relaxed
guarantees can circumvent the strong lower bounds we show for Question (3). Towards
this, we if we only require the distances between constantly many pairs to be preserved
(for example, 99% of the pairwise distance)? Can this lead to better upper bounds? In
this ‘average-case’ setting where we only care about preserving the distance between a large
constant fraction of pairs, there exists a positive answer based on a folklore dimensionality
reduction map.

Definition 4.0.1 (Birthday Paradox Map). Consider the linear map f : Rd → Rm where
every coordinate in {1, . . . , d} = [d] is mapped uniformly at random to one of m coordinates.
The coordinates in [d] that are mapped to the same ‘bucket’ in [m] are summed.

For any fixed s-sparse vector x ∈ Rd, the birthday paradox implies that if m ≥ Cs2 for a
large constant C, then with probability at least 99%, all the support elements of x do not
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collide. Thus with probability at least 99%, ∥f(x)∥p = ∥x∥p holds for any fixed x. Clearly,
the upper bound does not depend on p and works for general sparse vectors. The natural
question following from this discussion is if we can improve upon the O(s2) upper bound of
the birthday paradox map. This is the last question we address.

(Q4) Is the birthday paradox max optimal for ‘average-case’ dimensionality re-
duction of sparse vectors?

4.1 Our Contributions

We detail our contributions for each question below. To summarize, Table 4.1 lists our upper
bound results towards Questions (1) and (2), Table 4.2 lists our lower bound results for
Questions (3) and (4). Finally, Table 4.3 lists some applications of our upper bounds.

4.1.1 Question 1

We recall our first result. It is an embedding for general sparse vectors.

Theorem 1.3.1. (Informal, see Theorem 4.4.2) For every p ≥ 1, there exists a linear map
f : Rd → Rm for m = sp+2 log(s) log(d/ε)2O(p)/ε2 which satisfies ∥f(x)∥p = (1± ε)∥x∥p for
all s-sparse vectors x ∈ Rd.

In comparison, the best prior bound achieves embedding dimension pO(p)sp logp−1(d)/ε2,
also via a linear map. While the exponent of s is smaller by 2 in the prior bound, it incurs an
exponential dependence on p in both the terms pO(p) and log(d)p−1. Thus, qualitatively, we
obtain improvements when the sparsity is small (for example s ≲ logp−3(d)). Quantitatively,
our improvement can be seen when we embed ℓ∞ into a large ℓp norm for sparse vectors. The
choice of p = O(log(s)/ε) is the natural choice as the ℓO(log(s)/ε) norm approximates the ℓ∞
norm up to a multiplicative 1± ε factor for s-sparse vectors. We have the following corollary.

Corollary 4.1.1 (Informal, see Corollary 4.5.5). Let p = O(log(s)/ε). There is a linear map
f : Rd → Rm such that ∥f(x)∥p = (1± ε)∥x∥∞ for all s-sparse x ∈ Rd for the following m:

• If we use the embedding of [209], then m = sO(ε−1(log log d+log s))/ε2.

• If we use the embedding of Theorem 4.4.2, then m = log(s) log(d/ε)sO(ε−1 log s)/ε2.

Thus, our embedding avoids a multiplicative overhead of sO(ε−1 log log d).

4.1.2 Question 2

Perhaps the most conceptually interesting contribution of this chapter is the following theorem
for embedding non-negative sparse vectors.
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Theorem 1.3.2. (Informal, see Theorem 4.5.2) Let X be a set of n non-negative s-sparse
vectors. For every p ≥ 1, there exists a non-linear map f : Rd → Rm for m = O(log(n) ·
min (s2/ε2, s/ε3)) which satisfies ∥f(x) − f(y)∥p = (1 ± ε)∥x − y∥p for all x, y ∈ X. For
the ℓ∞ case, we can instead guarantee ∥f(x) − f(y)∥∞ = ∥x − y∥∞ for all x, y ∈ X with
m = O(s log(n)).

There are three interesting aspects of this result that we want to highlight. They establish
important context for the lower bound results introduced shortly: (a) the map f is non-linear,
(b) X needs to be a point sets of non-negative sparse vectors, and (c), our embedding is valid
for ℓ∞.

Before we discuss lower bounds, we present some interesting consequences of Theorem
1.3.2. First, similar ideas extend to embeddings for general sparse vectors, but with bounded
entries.

Theorem 4.1.2 (Informal, see Theorem 4.5.4). Let X be a set of n s-sparse vectors with
entries in {−∆, . . . , 0, . . . ,∆}. For every p ≥ 1, there exists a non-linear map f : Rd → Rm

for m = O(s2∆O(p) log(n)/ε2) which satisfies ∥f(x)−f(y)∥p = (1±ε)∥x−y∥p for all x, y ∈ X.

Quantitatively, the above result allows us to embed ℓ∞ into a much smaller ℓp dimension
for p = O(log(s)/ε) for general sparse vectors, assuming the entries are bounded.

Corollary 4.1.3 (Informal, see Corollary 4.5.5). Consider the setting of Corollary 4.1.1 with
a dataset X of s-sparse vectors. If the entries of X are in {−O(1), . . . , O(1)}, then there is
a map with m = log(|X|)sO(1/ε)/ε2.

The corollary suggests that the ‘hardness’ for embedding general sparse vectors maybe
due to entries with a large range.

4.1.3 Question 3

We show that our upper bound for embedding non-negative sparse vectors presented in
Theorem 1.3.2 is optimal in many ways.

Non-linearity is required. We give an example of a O(1)-sparse point set where any
linear map requires Ω(d) dimensions to preserve the ℓ∞ norm up to relative error 0.5.

Theorem 4.1.4. Let S be the set of all 10-sparse vectors in Rd with all non-zero coordinates
being equal to 1. Let A : Rd → Rm be a matrix such that

1

2
∥x∥∞ ≤ ∥Ax∥∞ ≤

3

2
∥x∥∞ ∀x ∈ S.

Then m = Ω(d).
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Point Set Norm
Our Embedding

Dimension
Thm.

Prior Embedding

Dimension

All s-sparse

vectors

Fixed ℓp

p ≥ 1

(
2O(p)sp+2 log(s) log(d/ε)

)
· 1
ε2

(linear map)
4.4.2

(
pO(p)sp logp−1(d)

)
· 1
ε2

(linear map, p > 1, p ̸= 2)

[209]

Set of n non-negative

s-sparse vectors
All ℓp

O
(

log(n)
ε
·min

(
s2

ε
, s
ε2

))
(non-linear map)

4.5.2

O
(

s2(p log(n))p−1

ε2

)
(linear map and fixed p)

[209]

Set of n non-negative

s-sparse vectors
ℓ∞

O (s log(n))

(non-linear map)
4.5.2 −

Table 4.1: Results are stated for preserving all pairwise distances up to a multiplicative
(1 ± ε)-factor for vectors in the point set. The last row is an exact embedding. The result
of n non-negative vectors listed in the second row is not explicitly given in [209], but can be
easily derived from their argument. The p = 1, 2 cases were originally addressed in [35] and
[44] respectively and O(ε−2s log(d/s)) dimensions suffice for these two cases. We note that
our Theorem 4.5.2 satisfies the additional guarantee that it also preserves the norm of the
pairwise sums in ℓ∞ up to a factor of 2.
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‘Non-smoothness’ is required. The map f of Theorem 1.3.2 is continuous but not
differentiable. Motivated by this phenomenon (recall that most dimensionality reduction
maps in literature are linear), we show that any upper bound satisfying Theorem 1.3.2 cannot
be ‘very smooth’: any twice differentiable map (satisfying the same hypothesis) must embed
into Ω(d) dimensions.

Theorem 4.1.5. Suppose f : Rd → Rm is such that f(x) = (f1(x), . . . , fm(x)) where each
fi is twice differentiable with continuous second partial derivatives. Let S be the set of all
10-sparse vectors in Rd with all non-zero coordinates being equal to 1. Suppose f satisfies

0.99∥rx∥∞ ≤ ∥f(rx)∥∞ ≤ 1.01∥rx∥∞ ∀r > 0, ∀x ∈ S.

Then m = Ω(d).

Sums cannot be preserved. It is natural to ask if the map f of Theorem 1.3.2 can also
preserve sums of non-negative sparse vectors: ∥f(x)+f(y)∥p ≈ ∥x+y∥p?. Indeed, our upper
bound of Theorem 1.3.2 has the additional property that it preserves the norms of sums in
ℓ∞ norm up to a multiplicative factor of 2, even if we embed into one dimension. We show
that the approximation factor 2 is tight in a very strong sense.

Theorem 4.1.6. Let ei be the ith basis vector in Rd. Consider the set S = {ei} ∪ {0} of
d+ 1 vectors. Suppose f : S → Rm be an arbitrary mapping which satisfies

∥x+ y∥∞ ≤ ∥f(x) + f(y)∥∞ ≤ (2− ε)∥x− y∥∞ ∀x, y ∈ S

for any ε > 0. Then m ≥ d.

General sparse vectors are hard to embed. Lastly, we consider dropping the non-
negative hypothesis. We again show that for the ℓ∞ case, upper bounds as in the non-negative
case cannot exist for general sparse vectors. Note that prior lower bounds studied in [209]
are restricted to linear maps. In contrast, we show in the following theorem that any map
which satisfies the same hypothesis as Theorem 1.3.2, but which holds for general sparse
vectors with possibly negative entries, must embed into Ω(d) dimensions.

Theorem 4.1.7. Let ei be the ith basis vector in Rd. Consider the set S = {±ei} ∪ {0} of
2d+ 1 vectors. Suppose f : S → Rm be an arbitrary mapping which satisfies

0.9∥x− y∥∞ ≤ ∥f(x)− f(y)∥∞ ≤ 1.1∥x− y∥∞ ∀x, y ∈ S,

∥x+ y∥∞ ≤ ∥f(x) + f(y)∥∞ ≤ C∥x+ y∥∞ ∀x, y ∈ S

for any C ≥ 1. Then m ≥ d.

Lastly, we can ask for the right dependence on s and ε for Theorem 4.5.2. The following
lower bound implies that Ω(s/ log(n)) is necessary, matching the s-dependency of our upper
bound.

Theorem 4.1.8 (Informal, see Theorem 4.6.1). Any map f satisfying similar guarantees to
that of Theorem 4.5.2 with ε = O(1) must map to Ω(s/ log(n)) dimensions.
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4.1.4 Question 4

Our main contribution towards Question (4) is to demonstrate that the average-case guar-
antees of the folklore birthday paradox upper bound of Definition 4.0.1 is optimal in many
natural settings. First recall that the folklore upper bound guarantees that for any p and for
any point set of s-sparse vectors, there exists an embedding into O(s2) dimensions which pre-
serves the ℓp norm exactly for 99% of the vectors (this is a weaker hypothesis than requiring
pairwise distances to preserved as long as all zeros vector, which is s-sparse, is also mapped
to the all zeros vector).

Arbitrary linear maps. Our first result states that any linear map with arbitrary real
entries which satisfies the properties of the folklore upper bound must embed to at least
m = Ω(s2) dimensions. Our lower bound holds for any even integer p. More precisely, we
construct a set of s-sparse vectors in d-dimensions, where we show that any linear map A
which guarantees exact norm-preservation for more than 99% of this set (i.e. a randomly
chosen vector in the set has a > 99% chance of their ℓp norm being preserved under the
map) must map to Ω(s2) dimensions. We note that proving lower bounds for linear maps is
motivated by the fact that in settings such as streaming algorithms, any algorithm may as
well be a linear mapping (under some restrictions) [140].

Theorem 4.1.9 (Informal, see Theorem 4.7.1). Let p ≥ 2 be an even integer. There exists
a point set S ⊂ Rs2 of s-sparse vectors such that any linear map A : Rs2 → Rm satisfying
∥Ax∥p = ∥x∥p for 99% of vectors x ∈ S must map to m = Ω(s2) dimensions.

Beyond Exact Preservation. Our lower bound for linear maps extends to a stronger
statement for the ℓ2 case. We show that m = Ω(s2) even if we only require the weaker
guarantee of |∥Ax∥22−∥x∥22| ≲

∥x∥22
s

. This is optimal as any weaker relative error of ε = ω(1/s)

can be accomplished with JL with Õ(1/ε2) = o(s2) dimensions. Note the folklore upper bound
guarantees the stronger statement of exact preservation; however for lower bounds, assuming
a weaker hypothesis implies a stronger result.

Theorem 4.1.10 (Informal, see Theorem 4.2.1). There exists a point set S ⊂ Rs2 of s-sparse
vectors such that any linear map A : Rs2 → Rm satisfying |∥Ax∥22 − ∥x∥22| ≤ O(∥x∥22/s) for
99% of vectors x ∈ S must map to m = Ω(s2) dimensions.

We also extend this lower bound for linear maps to the case where we require inner-
products to be preserved, rather than ℓ2 norms (Theorem 4.7.4).

Arbitrary smooth mappings. For the ℓ2 case, we consider a more general class of
mappings f : Rs2 → Rm where f(x) = (f1(x), . . . , fm(x)) and each fi : Rs2 → R is twice
differentiable with continuous second partial derivatives. In this case, we can prove the
following theorem. We prove that this large richer class of mappings still requires m = Ω(s2)
to satisfy the guarantees of the folklore upper bound for the ℓ2 case.
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Theorem 4.1.11 (Informal, see Theorem 4.7.2). The lower bound statement of Theorem
4.1.10 extends to the general class of mappings defined above.

Beyond Embeddings. Our ℓ2 lower bounds hold even when we are not restricted to
computing the norm on the embeddings produced by a mapping f and can use another
function g (on top of the output of f) to compute the norm.

Formally, we define an encoding-decoding scheme using an encoding function f which
maps a s-sparse vector in Rs2 to a dimension m. A decoding function g then takes the output
of f and maps it to a potentially much larger dimension c. Our goal is to show that even if
c≫ s2, as long as m is substantially less than the initial sparsity squared, we cannot have
∥g(f(x))∥2 ≈ ∥x∥2.

Definition 4.1.1. We suppose the encoder and decoder functions satisfy the following.

• (Encoder function) f : Rs2 → Rm where

f(x) = (f1(x), . . . , fm(x))

and each fi : Rs2 → R is twice differentiable with continuous second partial derivatives.

• (Decoder function) g : Rm → Rs2 where

g(x) = (g1(x), . . . , gs2(x))

and each gi : Rm → R is twice differentiable with continuous second partial derivatives.

Theorem 4.1.12 (Informal, see Theorem 4.7.3). The lower bound statement of Theorem
4.1.10 extends to the case of encoder/decoder schemes of Definition 4.1.1 and shows that f
(the encoder) must map to Ω(s2) dimensions.

Perhaps surprisingly, the theorem above states that if f and g are both sufficiently smooth,
then f still must map to Ω(s2) dimensions. That is, the whole procedure is still ‘bottle-necked’
by the dimension of f and this novel lower bound implies that our folklore upper bound is
in fact optimal.

One reason for why this lower bound is surprising is that the hypothesis that g is smooth
is quite crucial. In fact, the lower bound cannot hold if g is arbitrary, even if f is constrained
to be a linear map. Indeed, compressed sensing algorithms tells us that there exists a suitable
linear map A : Rd → RÕ(s) and a decoding function g such that g(Ax) = x for any s-sparse
x. However, g is usually a complicated optimization step. For example in the popular Lasso
algorithm for exact recovery, g amounts to solving a linear program [83], and the optimal
solutions to such optimization programs can be highly discontinuous.

Specifically, Theorem 4.7.3 reveals an interesting separation result in the context of
compressed sensing: if we let the decoding algorithm be arbitrary, then we can map to Õ(s)
dimensions. On the other hand, imposing even mild smoothness assumptions on g implies a
much larger Ω(s2) lower bound.
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Point Set Gurantee
Our Lower

Bound
Thm.

O(1)-sparse

non-negative vectors

∥x∥∞
2
≤ ∥f(x)∥∞ ≤ 3∥x∥∞

2

Linear f
Ω(d) 4.1.4

O(1)-sparse

non-negative vectors

∥x+ y∥∞ ≤ ∥f(x) + f(y)∥∞ ≤ (2− ε) · ∥x+ y∥∞
Arbitrary f , any ε > 0

Ω(d) 4.1.6

O(1)-sparse

non-negative vectors

∀r > 0, 0.99∥rx∥∞ ≤ ∥f(rx)∥∞ ≤ 1.01∥rx∥∞
Arbitrary f with continuous second-order derivatives

Ω(d) 4.1.5

O(1)-sparse

vectors

0.9 · ∥x− y∥∞ ≤ ∥f(x)− f(y)∥∞ ≤ 1.1 · ∥x− y∥∞
∥x+ y∥∞ ≤ ∥f(x) + f(y)∥∞ ≤ C · ∥x+ y∥∞

Arbitrary f , any C > 0

Ω(d) 4.1.7

s-sparse

vectors

∥f(x)− f(y)∥∞ ≤ ∥x− y∥∞
C∥x− y∥1 ≤ ∥f(x)− f(y)∥1

Arbitrary f , any C > 0

Ω(Cs) 4.6.1

s-sparse

vectors

∥f(x)∥p = ∥x∥p for 99% of the points

Linear f , even p
Ω(s2) 4.7.1

s-sparse

vectors

|∥f(x)∥22 − ∥x∥22| ≤ O(∥x∥22/s) for 99% of the points

Arbitrary f with continuous second-order derivatives
Ω(s2) 4.7.2

s-sparse

vectors

|∥g(f(x))∥22 − ∥x∥22| ≤ O(∥x∥22/s) for 99% of the points

Arbitrary f , g with continuous second-order derivatives
Ω(s2) 4.7.3

Table 4.2: Our lower bound results. The first four guarantees hold for every pair of vectors
x, y in the point set specified in the respective theorems. The last column is the dimension
that f must map to. In the last row, g can map to an arbitrary dimension ≫ s2.

4.1.5 Applications of Our Embeddings

Our dimensionality reduction results, just as the JL lemma, have a slew of downstream
algorithmic applications. We present a (possibly very small) subset of some of the new
applications here, with a focus on more fundamental geometric optimization problems that
have been well studied1.

1the selection of applications presented is heavily biased by our own interests.
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For the rest of the section, we assume our input is a dataset X of n non-negative s-sparse
vectors in Rd. Many of the statements below are also applicable to general sparse vectors
(with appropriate modifications), but we focus on non-negative sparse vectors for simplicity.

At a high level, dimensionality reduction allows us to make black-box use of any existing
algorithm for a geometric task in low-dimensions. If the dimensionality reduction step is
sufficiently powerful, we can hope to get faster runtimes at the cost of a small approximation
factor loss. A prototypical example is computing the diameter of a point set, defined as
follows:

Definition 4.1.1. diameterp = maxx,y∈X ∥x− y∥p.

Invoking our dimensionality reduction with existing algorithms for computing the diameter
implies the following.

Theorem 4.1.13. Let X be dataset of non-negative s-sparse vectors. We have the following
algorithms:

1. Using [52], for any constant integer p, we can compute a 1 + ε approximation to
diameterp of X in time Õ(n/

√
ε+ 2O(s2 log(1/ε))) which is correct with probability 99%.

2. We can exactly compute the diameter of X in ℓ∞ norm in time O(ns). This algorithm
can be implemented in a stream using O(s) words of memory.

3. We can exactly compute the diameter of X in ℓ1 norm in time n2O(s). This algorithm
can be implemented in a stream using 2O(s2) words of memory.

We note additional applications to other problems such as max cut and various formula-
tions of clustering such as k-means. They are summarized in Table 4.3.

Problem Definition
Embedding

Dimension
Distortion Reference

Diameter 4.1.1 O(s2) 1 Lemma 4.8.1 and Theorem 4.1.13

Max-Cut 4.8.1 O(s2/ε) 1± ε Theorem 4.8.3

k-median/k-center 4.8.2 O(s2 log(n)/ε2) 4± ε Theorem 4.8.5

k-means 4.8.2 O(s2 log(n)/ε2) 16± ε Theorem 4.8.5

Distance Estimation 4.8.3 O(s/ε) 1± ε Theorem 4.8.6

Table 4.3: Applications of our dimensionality reduction upper bounds. In all cases, the
input is a dataset X of n non-negative vectors which are s-sparse and the norm is ℓp for an
arbitrary p ≥ 1. The distortion bounds hold with probability at least 99%. See the theorem
statements for full details.
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4.1.6 Open Problems

We note some interesting questions that are not addressed by our work in this chapter.

1. What is the right ϵ and s dependency for the upper bound of Theorem 4.5.2? Can we
improve the Ω(s/ log(n)) lower bound of Theorem 4.6.1? For example, for every p ≥ 1,
can we construct a set of n non-negative s-sparse vectors such that any embedding f to
m dimensions which preserves all pairwise ℓp distances up to say 1± 0.1 requires m =
Ω(s/ε2)? For the p = 2 case, the JL lower bound of [11] implies a Ω(log(n)/(ε2 log(1/ε))
lower bound for arbitrary mappings (for a 1± ε approximation) since their hard point
set consists of basis vectors (i.e. 1-sparse). Our ‘average case’ lower bounds discussed
in Section 4.2.2 are not directly applicable since the lower bound instances used in
the proof technically require an infinite sized point set and do not rule out arbitrary
mappings.

2. Can we obtain o(sp) embedding dimension for preserving the norm general s-sparse
vectors? Both our upper bound of Theorem 4.4.2 and the result of [209] suffer a sΘ(p)

dependence in the embedding dimension (see Table 4.1). Our lower bound in Theorem
4.1.7 suggests that an exponential dependence on p is likely necessary, since we rule
out the existence of any non-trivial mapping for the ℓ∞ case. Note that [209] provide
a Ω(sp) lower bound, but only for linear maps.

3. In general, what is the power of non-linear embeddings in provable dimensionality
reduction? As far as we are aware, all ‘JL style’ upper bounds use linear map. Our
results demonstrate a separation between linear and non-linear maps in the natural
case of non-negative sparse vectors, and it is intriguing to ask if such separations exist
in other settings.

4.2 Technical Overview

For conciseness, we give on overview of our proof technique for our upper bounds for embed-
ding non-negative sparse vectors, as well as Theorem 4.2.1 which provides lower bounds for
embeddings with average case guarantees.The proofs of these results already contain many
of the key ideas used in other results of the chapter.

4.2.1 Overview: Embedding Non-negative Sparse Vectors

The goal of this section is to motivate our upper bound result of Theorem 4.5.2. It states
that for any dataset X ⊂ Rd of n non-negative s-sparse vectors and any p ≥ 1, there exists
a map F which embeds into O(s2 log(n)/ε2) dimensions and preserves all pairwise distances
in ℓp norm. For simplicity, we only focus on the ℓ∞ norm case in the overview. Our map F
will be non-linear map.
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Figure 4.1: A simple plot demonstrating the performance of our non-negative embedding
(Theorem 4.5.2) and the map of [209]. The dots represent a 10-sparse vectors in R1000 with
entries chosen uniformly in [0, 1]. The x-axis is the true ℓp norm and the y axis is the
approximated norm using the two different maps. Every vector has two dots (one for each
map). We embed in Rm for M = 50 but the performance is qualitatively similar for other
m. We see that the performance of our map is demonstrably superior, especially when p
increases.

The main idea is to first construct a map with slightly weaker guarantees. We give a
construction of a map (randomized) f : Rd → RO(s2) such that

1. f preserves the ℓ∞ norm of any pair in X with probability 99%.

2. f is always never expanding: ∥f(x)− f(y)∥∞ ≤ ∥x− y∥∞.

Before discussing the construction of f , let’s quickly see why the two points are beneficial
towards the final construction. The final construction for F simply concatenates O(log n)
independent copies of f . Due to independence, with high probability, every pair x, y will have
at least one copy of f which ‘certifies’ the ℓ∞ norm between them is at least ∥x−y∥∞ (due to
property (1))). Furthermore, since we know every copy of f is non-expanding, we will never
overestimate the distance. Putting these two statements together implies the approximation
guarantees.

Now we describe the construction for f which satisfies the two properties listed above.
Property (1) actually holds for the birthday paradox map. However, this will not work work
since it cannot guarantee property (2). (And more indirectly, our lower bound in Theorem
4.1.4 rules out all linear maps). Instead, we use a high non-linear map f . Similar to the
birthday paradox map, we start by hashing all coordinates of the ambient dimension, d, to
a set of O(s2) buckets. These buckets are the coordinates of the embedding. The crucial
difference is that instead of summing the coordinates that land in a bucket, we simply take
the maximum. More precisely, for a sparse vector x, we look at the buckets where the support
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elements of x land. Then for all buckets which are non-empty, we take the maximum of the
support elements of x that land in the bucket. All empty buckets get 0.

The hashing step already guarantees property (1), similar to the birthday paradox upper
bound. So it remains to check property (2). This reduces to checking the following: suppose
coordinates 1, . . . , k map to the same bucket under f . Let x and y be two non-negative
sparse vectors. Then we want |max(x1, . . . , xk) − max(y1, . . . , yk)| ≤ maxi |xi − yk|, where
xi and yi are the ith entries of x and y (they maybe 0). We can check that this is sufficient
to imply property (2). To show this claim, imagine all the coordinates xi and yi together
on the number line. They must all be to the right of the origin due to the non-negativity
constraint. The right most coordinate, say x1 without loss of generality, is closer to the
rightmost coordinate among the y’s, than it is to y1. So the claim follows immediately.

Somewhat mysteriously, this construction crucially relies on the non-negativity property
of the sparse vectors. An explicit example where our proposed map fails for general sparse
vectors is as follows: consider two sparse vectors x = [−1, 0, . . . , 0] and y = [0, 1, 0, . . . , 0].
Clearly, ∥x− y∥∞ = 1. Now suppose the first two coordinates hash to the same bucket under
f . Then the first coordinate of f(x) will have coordinate −1, since we take the maximum
of all the support elements of x that land in the first bucket. In this case, the bucket is
a singleton. Similarly, the first coordinate of the embedding of y will be 1, meaning the
distance between f(x) and f(y) is 2. Thus, the property (2) does not hold. One could try
to massage the map f a bit to fix the issue for this particular example, but our Theorem
4.1.7 rules out the existence of any map which preserves the distances between general sparse
vectors in ℓ∞ norm.

4.2.2 Overview: Average Case Lower Bounds

In this section, we provide insights to our lower bound result of Theorem 4.2.1. Similar ideas
are used in all of our average case lower bounds so we focus on this case which we believe is
the most instructive.

First we briefly outline how a known lower bounds for the JL lemma is proven. We state
the proof of [11] where a slightly suboptimal lower bound is given (the result is tight up to
log(1/ε) factors), but is perhaps more pedagogically useful in relation to our approach.

[11] construct a specific set of n unit vectors and consider an embedding of these points
into m dimensions which preserves all pairwise distances up to 1± ε multiplicative factor, or
the inner product up to additive ±ε. Letting X ∈ Rn×m denote the matrix of embeddings,
they consider the gram matrix XXT . The key point is that they have precise control on all
the entries of XXT due to the JL assumption. This allows them to argue that the rank of
X must be sufficiently large, implying a lower bound for m, the embedding dimension.

For us, we cannot directly employ this approach. Our lower bound hypothesis is weaker
since we only guarantee that the norm is preserved say 99% of the time. This means that we
have no control over a constant fraction of the entries in XXT , which can wildly influence the
rank. However, this approach suggests that rank is a useful parameter and this observation
is the starting point of our lower bound.
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We now outline our lower bound approach for the case of a linear map A given in Theorem
4.2.1. The proof for this theorem contains many of the key ideas used in our other lower
bound results.

We first construct a suitable distribution over sparse vectors. Our distribution first
randomly samples the support elements and then puts random Gaussian values in the
sampled support. The distribution we use, Unift,r, is defined below.

Definition 4.2.1. Let Unift,r be a distribution over t-sparse vectors defined as follows. To
generate x ∼ Unift,r,

1. First pick t coordinates uniformly at random to be the support.

2. The non-zero coordinates of x are i.i.d. Gaussians with variance r.

If r = 1, we also denote the distribution as Unift. Theorem 4.2.1 states the following.

Theorem 4.2.1. Let A : Rs2 → Rm be a linear map and γ ≤ C/s for a sufficiently small
constant C > 0. If A is such that for any 1 ≤ t ≤ s,

Pr
x∼Unift

(
|∥Ax∥22 − ∥x∥22| ≤ γ∥x∥22

)
≥ 0.99,

then m ≥ s2/1000.

To begin the proof, we first assume for contradiction that m≪ s2. Now note that

∥Ax∥22 − ∥x∥22 =
∑
i,j

xixj⟨Ai, Aj⟩ −
∑
i

x2
i

= Tr(xxTATA)−
∑
i

x2
i

where Ai are the columns of A. For simplicity, let’s ignore the
∑

i x
2
i portion of P for the

rest of the discussion. We also assume the sum
∑

i,j xixj⟨Ai, Aj⟩ is over i ̸= j. (In the
formal proof, we show that the

∑
i x

2
i portion and the

∑
i x

2
i ∥Ai∥22 ‘roughly cancel’.) We view

this expression as a polynomial P (x) of degree 2 in the variables xi, xj. Then the condition
|∥Ax∥22 − ∥x∥22| ≤ γ∥x∥22 implies that with large probability, P (x) lies in a fixed interval I of
size O(1) (as typically, γ∥x∥22 = O(1)). Our goal now is to show that P (x) has variance Ω(1)
(under the randomness of x), implying it does not lie in I with large constant probability,
violating the hypothesis of the theorem.

Now it would be very bad for us if P takes on ‘very small’ values over a typical choice
of x. This means that we cannot rule out P ∈ I. For example, P could even be equal to
0 if the non-zero entries of xTx only collide with the zero entries of ATA. To avoid this
possibility, we first demonstrate that a large fraction of the columns of A have norms very
close to 1. However, there are s2 columns, which are all in Rm. Since we assumed m to be
very small, this means that we have ≫ m almost-unit vectors in m dimensions. We show
that this implies there are at least Ω(s2) pairs of Ai and Aj that are non-zero (note that
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there are Θ(s4) total pairs). This bound crucially relies on the fact that m≪ s2 and can be
thought of as a ‘generalized’ version of the rank argument used in [11]. Since any pair (i, j)
is non-zero in xTx with probability approximately 1/s2, this means xTx and ATA ‘collide’
on a non-zero entry with a large constant probability.

However, this is not quite strong enough for our purposes since the coefficient of P , which
are exactly ⟨Ai, Aj⟩, can be very close to 0 and unluckily, xTx could only collide on such
small entries. Thus, our refined aim is to show that the coefficients of P that collide with
the non-zero entries of xTx are ‘large’ in the sense that the sum of these coefficient squared
is Ω(1). It can be checked that this is sufficient to show the variance of P (x) = Ω(1).

Then in the formal proof, we show that the sum of non-zero coefficient squared is Ω(1), via
a ‘fine-grained’ exploitation of the fact that m≪ s2 (i.e. another appearance of rank). Now
to argue anti-concentration of P (x), we invoke the following classical inequality which states
that the random variable P (x) cannot be concentrated in an interval that is much smaller
than the variance (which is directly related to the sum of non-zero coefficients squared).

Lemma 4.2.2 (Theorem 8 in [46]). Let P : Rn → R be a polynomial of degree d. Let Z
denote the random variable where P is evaluated on a standard Gaussian vector in Rn. There
is an absolute constant B such that

Pr(|Z| ≤ ε
√

Var(Z)) ≤ Bdε1/d.

An application of Lemma 4.2.2 then implies that with sufficiently large constant probabil-
ity, P (x) does not lie in the interval I defined above, contradicting the theorem hypothesis
that ∥Ax∥22 approximately preserves the norm of x with large probability. Hence, our as-
sumption that m≪ s2 is not valid, finishing the proof. The formal details are given in the
proof of Theorem 4.2.1.

4.3 Related Works

Lower-bounds for the JL Lemma Lower bounds for dimensionality reduction were
introduced for understanding the minimum embedding dimension for n vectors with at most
1 + ε multiplicative distortion. By using rank arguments of perturbed identity matrices, as
outlined in Section 4.2.2, the first such lower bounds showed that the embedding dimension
must satisfy Ω(log(n)/(ε2 log(1/ε))), even when the embedded vectors are simple basis vectors
[11]. Furthermore, these bounds hold even when a non-linear or adaptive embedding function
is applied; however they crucially depend on the maximum distortion being smaller than
ε. These lower bounds were improved to an optimal Ω(log(n)/ε2) bound for an oblivious or
fixed linear map [130], and then finally improved to any non-oblivious, non-linear embedding
function by [131]. It is worth noting that the final construction is significantly different that
that of previous works and does not use nearly orthogonal sparse vectors. Note that these
lower bounds inherently rely on the assumption that the dot product of the embedding must
approximately preserve the dot product, without any post-processing or decoding.

61



Speeding up JL for Sparse Vectors There have been a number of works on speeding
up the runtime for embedding a collection of n sparse vectors using a JL map (while still
embedding to O(log(n)/ε2) dimensions). [121] demonstrates a distribution over sparse JL
embedding matrices Π such that Πx takes Õ(∥x∥0/ε) time to compute, where ∥x∥0 denotes
the number of non-zero entries of a vector x.

Distributional Embedding Lower Bounds and JL Recall that the standard JL lemma
states that for any n vectors in Rd, one can use a random Gaussian embedding to O(log(n)/ε2)
dimensions to guarantee the following maximum distortion bound with high probability:
(1−ε)∥x−y∥2 ≤ ∥Ax−Ay∥2 ≤ (1+ε)∥x−y∥2 for all x, y ∈ V , where |V | = n. Furthermore,
this embedding is also oblivious. While it is also known that the JL lemma is tight in the
worst case, we emphasize that even our average case lower bounds towards Question (4)
(see Section 4.1.4) are not implied by the existing JL lower bounds, even for the p = 2 case
of Theorem 4.1.9. At a high level, this is because our hypothesis is much weaker (we only
require a large fraction of the norm to be preserved, rather than all pairs). We elaborate
below.

JL embedding lower bounds state that for large enough n, there exists a specific point
set on n points such that any map f which preserves all pairwise distances must map to
Ω(log(n)/ε2) dimensions [131]. The main difference between this lower bound and our lower
bounds of Section 4.1.4 are that the hypotheses assumed are different. The JL upper bound
guarantee implies approximate norm preservation for every pair of differences of points in
a collection of n points, simultaneously and with high probability. Similarly, the JL lower
bound assumes approximate norm preservation for every pair in a collection of n vectors.
On the other hand, the folklore birthday paradox upper bound assumes a fixed sparse vector
as input, whose norm it preserves with constant probability. Similarly, our lower bounds
of Section 4.1.4 only assume approximate norm preservation only a constant fraction of the
time across a uniform distribution of suitably chosen sparse vector inputs. Consequently,
we have no term depending on the number of input vectors in the statement (both in the
folklore upper bound and the lower bounds).

There is also the distributional JL lemma which is a random map from Rd → RO(1/ε2)

preserving the norm of any fixed vector in Rd up to a multiplicative 1± ε with probability at
least 99% [120]. It is shown in [115] that the projection dimension of the distributional JL
lemma is tight information theoretically. This ostensibly seems to imply our lower bounds
(e.g. the p = 2 case of Theorem 4.1.9), for example if we parameterize the sparsity as s = 1/ε,
seemingly rendering our lower bounds obsolete. But this is not the case! The information-
theoretic lower bound proved in [115] relies on dense vectors in Rd. This is not an artifact
of the proof, but an inherent requirement to prove their information-theoretic lower bound:
any such lower bound cannot use sparse vectors. This is because information-theoretically,
there is already a smaller projection dimension from compressed sensing: we can encode any
sparse vector in Õ(s) dimensions. Parameterizing the sparsity by s = 1/ε, this implies an
information-theoretic upper bound of Õ(1/ε), demonstrating that the lower bound of [115]
is not applicable to sparse vectors.
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Compressed Sensing The field of compressed sensing studies decoding to recover encoded
or compressed sparse vectors [75]. The restricted isometry property (RIP), introduced in [44],
is a way to recover sparse vectors and focuses on bounding the RIP constant: the maximum
distortion D of a linear map A ∈ Rm× on all s-sparse vectors: (∥x∥p ≤ ∥Ax∥p ≤ D∥x∥p for
all x with x ∈ Rd and s-sparse. The mappings under matrices with good RIP constants
can serve as the compressed representation. Furthermore, matrices with such properties
automatically give dimensionality reduction for s-sparse vectors. The prior known bounds
for m for RIP matrices with distortion 1 ± ε are O(s log(d/s)/ε2) for the p = 1 and 2 case
[35, 44]. For other values of p, [209] gave bounds of the form Õ(sp) (see Table 4.1).

If the RIP constant is small enough, then applying a linear programming decoding via ℓ1
minimization recovers the sparse vectors when compressed to the informational-theoretical
optimal O(s log(d)) dimensions, with a matching lower bound [138, 145]. There are other
alternatives, e.g. based on CountSketch [57, 164], but all these decoders solve a complex
optimization problem. However, these mappings do not serve as embeddings (e.g. the ℓp of
the original vector is not approximated by the ℓp norm of the mapping).

Role of Sparsity in Machine Learning Sparse primitives such as sparse matrix multi-
plication is fundamental in a wide range of domains, such as graph analytics and scientific
computing, and is used as iterative algorithms for sparse matrix factorization. Moreover, the
field of deep learning often relies on faster sparse kernels to demonstrate speedups in practice,
as it is a core operation in graph neural networks, transformers, and other architectures
[65, 97]. On the theoretical side, there are also many works which seek to understand the role
of sparsity in computational hardness for optimization problems such as sparse regression
[64, 71, 82, 92, 95, 144, 157, 165].

4.4 Embedding for sparse vectors

We prove Theorem 4.4.2 in this section and give an embedding for sparse vectors. Later in
Section 4.5, we give an embedding tailored to non-negative sparse vectors.

Our embedding is constructed in two parts. In the first part, we consider the birthday
paradox linear mapping A : Rd → Rm given in Definition 4.0.1. It is a random mapping
which preserves all ℓp norms of a fixed pair of sparse vectors with constant probability.
Furthermore, it will have bounded expansion. Our final embedding is formed by stacking
many independent copies of our base mappings. Our final embedding is the following.

Definition 4.4.1 (Final Embedding). A (d,m, T ) embedding F : Rd → RmT is defined as
follows. For every 1 ≤ i ≤ T , let Ai : Rd → Rm be an independent copy of the random
mapping of Definition 4.0.1. F is defined by stacking the matrices Ai on top of each other
(note that F is linear), and dividing by T 1/p. In other words,

Fx =
1

T 1/p
·

T⊕
i=1

Aix.
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First we show the birthday paradox map has bounded distortion.

Lemma 4.4.1. Let A : Rd → R100s2/δ be the mapping of Definition 4.0.1. For any s-sparse
vector x ∈ Rd independent of A,

Pr(∀p, ∥Ax∥p = ∥x∥p) ≥ 1− δ.

For every s-sparse vector x, ∥Ax∥p ≤ s1−1/p∥x∥p deterministically for all p ≥ 1.

Proof. Consider the columns of A corresponding to the support of x. There are only at most
s such columns. The probability that the non-zero rows of any two of these columns are the
same is at most (

2s

2

)
· 1

(100s2/δ)
< δ.

Thus with probability at least 1−δ, the non-zero entries of Ax are exactly the non-zero entries
of x. Under this event, the value of any ℓp norm (or any coordinate symmetric function) is
preserved.

The second statement follows from the following fact: for any real numbers x1, . . . , xk

and p ≥ 1, we have
(x1 + . . .+ xk)

p ≤ kp−1(|x1|p + . . .+ |xk|p) (4.1)

due to convexity.

We now prove the main theorem of the section. At a high level, we can compensate for the
(bounded) distortion of the birthday paradox map by concatenating multiple independent
copies.

Theorem 4.4.2. Let p ≥ 1 and F : Rd → Rsp+2 log(s) log(d/ε)2O(p)/ε2 be a (d,m, T ) embedding as
stated in Definition 4.4.1 for m = O(2O(p)s2/ε) and T = O(log(s) log(d/ε)2O(p)sp/ε). Then

Pr
(
∀ s-sparse x ∈ Rd, ∥Fx∥p = (1± ε)∥x∥p

)
≥ 0.99.

Proof. Let A1, . . . , AT be the linear maps Ai : Rd → Rm for F where T = log(s) log(d/ε)2O(p)sp/ε
and m = 2O(p)s2/ε. Consider a fixed x for now. First, note that each i satisfies ∥Aix∥p =
∥x∥p with failure probability at most s2/m ≤ ε. Then with failure probability at most
exp(−Ω(Tε)), at least 1− 10ε fraction of the Ai’s satisfy ∥Aix∥p = ∥x∥p. Condition on this
event. Then,

∥Fx∥pp ≥ (1− 10ε)∥x∥pp.

Now for t = 2k, k ≥ 0, let E it be the event that at least t and at most 2t non-zero coordinates
of x collide together under Ai. We have

Pr(E it ) ≤
(
s

t

)
· 1

mt−1
:= pt.
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Since t ≥ 2, we have

pt(2t)
p−1 =

(
s

t

)
· (2t)

p−1

mt−1
≤ m

( es

tm

)t
(2t)p−1

≤ εt−1

st−2
· e

t(2t)p−1

2100p(t−1)

≤ εt−1et · (2t)p−1

2100p(t−1)

≤ εt−1et

(
(2t)

1
t−1

2100

)p(t−1)

≤ ε/2t.

Now due to the independence of the different Ai’s, the probability that at least O
(

Tε
(2t)p−1 · 1

min(2t,log s)

)
of the Ai’s satisfy E ti is at most

exp

(
−Ω

(
Tε

(2t)p−1 log s

))
≤
(ε
d

)1000s
by the Chernoff bound and adjusting constants. Thus with failure probability at most
(ε/d)100s, for every t simultaneously, the number of Ai’s that satisfy E it is at most O

(
Tε

(2t)p−1 · 1
min(2t,log s)

)
.

Conditioning on this, we have

∥Fx∥pp ≤ (1− 10ε)∥x∥pp +
∑
t≥2

(2t)p−1O

(
ε

(2t)p−1
· 1

min (2t, log s)

)
∥x∥pp,

where the outer (2t)p−1 factor is due to the same argument as in Equation 4.1. Now since
there are at most O(log s) terms in the above sum,∑

t≥2

(2t)p−1O

(
ε

(2t)p−1
· 1

min (2t, log s)

)
≤
∑
t≥2

(2t)p−1O

(
ε

(2t)p−1
·
(
1

2t
+

1

log s

))
= O(ε),

and thus with failure probability at most (ε/d)100s,

∥Fx∥pp ≤ (1− 10ε)∥x∥pp +O(ε)∥x∥pp ≤ (1 +O(ε))∥x∥pp.

So far we have considered a single fixed x. We now apply this reasoning to a large collection
via the union bound. Let N be an γ-net in ℓp norm of all s-sparse vectors z in Rd satisfying
∥z∥p = 1 with γ = ε2/d2. We have that |N | ≤ (d/ε)50s. By our choice of T and the above
calculations, we know that

(1− 10ε)∥z∥pp ≤ ∥Fz∥pp ≤ (1 + 10ε)∥z∥pp
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for all z ∈ N simultaneously with probability at least 0.99. By taking the 1/pth power, we
also have

∀z ∈ N , (1− 10ε)∥z∥p ≤ ∥Fz∥p ≤ (1 + 10ε)∥z∥p (4.2)

where we have used the fact that 1 + 10ε ≥ (1 + 10ε)1/p and similarly, (1− 10ε)1/p ≥ 1− 10ε
since p ≥ 1 and ε ∈ (0, 1). We now extend the guarantees of Equation (4.2) for all s-sparse
y ∈ Rd.

Since F is linear, we can without loss of generality assume ∥y∥p = 1 by scaling. Pick
z ∈ N that satisfies ∥z − y∥p ≤ γ. We know ∥z∥p = 1 and |∥Fz∥p − 1| ≤ 10ε. Then

|1− ∥Fy∥p| ≤ |∥Fz∥p − ∥Fy∥p|+ 10ε ≤ ∥F (z − y)∥p + 10ε,

and
∥F (z − y)∥pp ≤ γp max

i
∥Ai∥pp ≤ γpmax

i
(∥Ai∥p−1

∞ ∥Ai∥1) ≤ dγp

(where we are using the induced matrix norm). Hence,

|∥Fy∥p − 1| = |∥Fy∥p − ∥y∥p| ≤ 10ε+ d1/pγ ≤ 11ε = 11ε∥y∥p,

completing the proof. The theorem statement follows by adjusting the value of ε.

4.5 Embedding for Non-negative Sparse Vectors

In this section we present our embeddings for non-negative sparse vectors and prove Theorem
4.5.2.

Our embedding is again constructed in two parts. In the first part, we introduce a ‘base’
mapping f : Rd → Rm. It will be a random mapping which preserves all ℓp norms of a
fixed pair of non-negative sparse vectors with constant probability. Crucially, it will be
non-expanding. Our final embedding is formed by stacking many independent copies of our
base mapping.

Definition 4.5.1 (Base mapping). We define a mapping f : Rd → Rm. Pick a uniformly
random function from h : [d] → [m]. For every i ∈ [m], let Si = {j ∈ [d] | h(j) = i}. We
define f(x) ∈ Rm as follows. For every i ∈ [m],

f(x)i =

{
max ({xj | j ∈ Si}) if Si ̸= ∅,
0, otherwise.

Our final embedding is the following.

Definition 4.5.2 (Final Embedding). A non-negative (d,m, T ) embedding F : Rd → RmT

is defined as follows. For every 1 ≤ i ≤ T , let fi : Rd → Rm be an independent copy of the
random mapping of Definition 4.5.1. Then for any x ∈ Rd,

F (x) =
T⊕
i=1

fi(x).
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The key properties of the base mapping are proved below. As discussed in Section 4.2,
the non-expansion property is particularly crucial.

Theorem 4.5.1. Let f : Rd → Rm be a random mapping of Definition 4.5.1. It satisfies the
following:

1. f(0) = 0 deterministically for all values m ≥ 1.

2. For any pair of non-negative s-sparse vectors x, y ∈ Rd (both independent of f), if we
take m = Ω(s2/δ),

Pr(∀p, ∥f(x)− f(y)∥p = ∥x− y∥p) ≥ 1− δ.

3. For every pair of non-negative vectors x and y (not necessarily sparse) and any embed-
ding dimension m, ∥f(x)− f(y)∥p ≤ ∥x− y∥p deterministically for all p ≥ 1.

Proof. The first property follow from the definition of f . Let m = 100s2/δ and h be the
uniformly random function from [d]→ [m] that constitutes f .

Let x and y be two fixed s-sparse vectors in Rd. Proving the second condition relies solely
on the fact that h is likely to separate all the non-zero coordinates of x and y. Indeed, the
union of their supports is of size at most 2s. Under h, the probability that some two domain
elements in their union collide is at most(

2s

2

)
· 1

(100s2/δ)
< δ.

This event means that very coordinate j in the union of the supports of x and y is mapped
to a unique coordinate in [m], and thus for every p,

∥x− y∥pp =
d∑

j=1

|xi − yi|p =
m∑
i=1

|f(x)i − f(y)i|p = ∥f(x)− f(y)∥pp,

proving the second condition.
The third condition crucially relies on the fact that we are using the ‘max’ operation to

define f . For any pair of non-negative vectors x and y, we have

∥f(x)− f(y)∥p =
m∑
i=1

|f(x)j − f(y)j|p =
m∑
i=1

|max({xj | h(j) = i})−max({yj | h(j) = i})|p.

It suffices to prove the following: if a1, . . . , ak and b1, . . . , bk are non-negative real numbers
then

|max(a1, . . . , ak)−max(b1, . . . , bk)| ≤ max
t
|at − bt|.

This is because assuming the claim, we have

m∑
i=1

|max({xj | h(j) = i})−max({yj | h(j) = i})|p ≤
m∑
i=1

max
j|h(j)=i

|xj − yj|p ≤
d∑

j=1

|xi − yi|p,

67



since h maps every coordinate in [d] to only one coordinate in [m].
Now to prove the claim, assume without loss of generality that at′ = max(at) ≥ maxt(bt).

Then |at′ −maxt(bt)| ≤ |at′ − bt′ | since in the real line, we have the ordering bt′ ≤ maxt(bt) ≤
at′ .

Building upon Theorem 4.5.1, we give an embedding which approximately preserves all
pairwise distances between points in a dataset of non-negative sparse vectors.

Theorem 4.5.2 (Embedding for non-negative sparse vectors). Let F : Rd → RmT be a
non-negative (d,m, T ) embedding for

m = O

(
min

(
s2

ε
,
s

ε2

))
, T = O

(
log(n)

ε

)
as stated in Definition 4.5.2. Let X ⊂ Rd be a dataset of n non-negative s-sparse vectors
(which is independent of F ). We have

1.

Pr

(
∀p ≥ 1,∀x, y ∈ X,

∥F (x)− F (y)∥pp/T
∥x− y∥pp

∈ 1± ε

)
≥ 1− 1/poly(n).

2. For the ℓ∞ norm, it suffices to take m = O(s) and T = O(log n) and guarantee that

Pr (∀x, y ∈ X, ∥F (x)− F (y)∥∞ = ∥x− y∥∞) ≥ 1− 1/poly(n).

3. Additionally for the ℓ∞ norm, it suffices to take m = 1 and T = 1 and guarantee that

Pr

(
∀x, y ∈ X,

∥F (x) + F (y)∥∞
∥x+ y∥∞

∈ [1, 2]

)
≥ 1− 1/poly(n).

Proof. We first prove part (1) in the case m = O(s2/ε). Note that

F =
T⊕

k=1

fk

where each fk : Rd → RO(s2/ε) is the mapping of Definition 4.5.1 and T = O(log(n)/ε). Now
consider an arbitrary fixed pair x, y ∈ X. For this pair, we know every fk is non-expanding
and satisfies ∥fk(x)−fk(y)∥pp = ∥x−y∥pp for all p ≥ 1 simultaneously with probability at least
1− ε/10. Since fk’s are independent, the number of indices k for which exact equality holds
is a binomial random variable. A standard concentration bound (Lemma 4.9.1) shows that
∥fk(x)− fk(y)∥pp = ∥x− y∥pp for at least a (1− ε/2)T of the indices with failure probability
at most exp(−Ω(Tε)) = 1/poly(n). If this is the case, we have∑

k

∥fk(x)− fk(y)∥pp ≥ (1− ε/2)T · ∥x− y∥pp
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and by the non-expanding property of fk, we also have∑
k

∥fk(x)− fk(y)∥pp ≤ T · ∥x− y∥pp.

The first part of the theorem for the m = O(s2/ε) case then follows by a union bound over
all Θ(n2) pairs.

We now show that m = O(s/ε2) also suffices. Consider the random variable ∥f1(x) −
f1(y)∥pp. We know deterministically ∥f1(x) − f1(y)∥pp ≤ ∥x − y∥pp no matter what. For a
non-zero coordinate zi of z := x− y, let ti denote the indicator random variable for the event
that i does not collide with any of the other non-zero coordinates of z. By our choice of
m, we know that E[ti] ≥ 1− ε2 since the sparsity of z is O(s), as it is the difference of two
s-sparse vectors. Thus,

E[∥f1(x)− f1(y)∥pp] ≥ (1− ε2)∥x− y∥pp,

so by Markov’s inequality,

0 ≤ E
[
∥x− y∥pp − ∥f1(x)− f1(y)∥pp

]
≤ ε∥x− y∥pp

with probability at least 1− ε. Now by applying the Chernoff bound as before, with failure
probability at most exp(−Ω(Tε)) = 1/poly(n), we have ∥fk(x)− fk(y)∥pp ≥ (1− ε)∥x− y∥pp
for at least a (1− ε/2)T of the indices. The proof finishes identically as before.

The ℓ∞ case can be handled as follows. For a fixed pair x, y, suppose that the first
coordinate witnesses their ℓ∞ norm. If we take m = O(s), then the first coordinate does not
collide with any other coordinate with probability at least 99% (there maybe collisions among
other coordinates). Thus with large constant probability, a fixed base mapping f of Definition
4.5.1 certifies that ∥f(x)−f(y)∥∞ ≥ ∥x−y∥∞. But we always have ∥f(x)−f(y)∥∞ ≤ ∥x−y∥∞
deterministically. Thus with O(log n) repetitions, every pair x, y will have at least one copy
of the base mapping which ensures that the ℓ∞ distance is exactly preserved.

For the third part of the theorem, note that since the coordinates are non-negative and
F (x) ∈ R is just the maximum coordinate, we trivially have ∥F (x)+F (y)∥∞ ≥ ∥x+y∥∞. In
the other direction, we claim that ∥f(x)+f(y)∥∞ ≤ 2∥x+y∥∞ always holds deterministically
where f is our base mapping of Definition 4.5.1. Indeed, it suffices to show that for any
non-negative real numbers a1, . . . , ar and b1, . . . , br, we always have

max(a1, . . . , ar) + max(b1, . . . , br) ≤ 2max
t∈[r]

(at + bt). (4.3)

This is seen to be true by just taking t = argmax at (w.l.o.g. max(at) ≥ max(bt)). This
completes the proof.

The additive guarantees of our mapping F also extends to general ℓp norms, with an
additional overhead of 2O(p).
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Corollary 4.5.3. Let p ≥ 1 and F : Rd → Rs22O(p) log(n)/ε2 be a non-negative (d, s22O(p)/ε, T )
embedding for T = 2O(p) log(n)/ε as stated in Definition 4.5.2. Let X ⊂ Rd be a dataset of n
non-negative s-sparse vectors (which is independent of F ). We have

Pr

(
∀x, y ∈ X,

∥F (x) + F (y)∥pp/T
∥x+ y∥pp

∈ 1± ε

)
≥ 1− 1/poly(n).

Proof. The proof is very similar to that of Theorem 4.5.2 so we only highlight the differences.
For the parameters, we take fk : Rd → Rm for m = s22O(p)/ε and T = log(n)2O(p)/ε. Let
γ = s2/m. First, for any fixed pair x, y ∈ X we have ∥fk(x) + fk(y)∥pp = ∥x+ y∥pp holds for
at least 1− γ fraction of k’s with failure probability at most 1/poly(n). Thus we have∑

k

∥fk(x) + fk(y)∥pp ≥ (1− γ)T · ∥x+ y∥pp.

To bound the other direction, we also always have ∥fk(x) + fk(y)∥pp ≤ 2p∥x+ y∥pp for every k
from Eq. 4.3. This means that∑

k

∥fk(x) + fk(y)∥pp ≤ (1− γ)T · ∥x+ y∥pp + γT2p∥x+ y∥pp.

Recalling the value of γ finishes the proof as in Theorem 4.5.2.

If we limit the entries of the sparse vectors to be from a discrete set, then we can extend
our non linear map towards for general vectors as well.

Theorem 4.5.4. Let p ≥ 1 and F : Rd → Rs2∆O(p) log(n)/ε2 be a (d, s2∆O(p)/ε), T ) embedding
for T = log(n)∆O(p)/ε as stated in Definition 4.5.2. Let X ⊂ Rd be a dataset of n s-sparse
vectors with entries in the discrete set {−∆, . . . ,∆}. We have

Pr

(
∀x, y ∈ X,

∥F (x)− F (y)∥pp
∥x− y∥pp

∈ [(1− ε)T, T ]

)
≥ 1− 1/poly(n).

Proof. We again consider

F =
T⊕

k=1

fk

where each fk : Rd → Rm for m = s2(2∆)p/ε is the mapping of Definition 4.5.1 and T =
O(log(n)(2∆)p/ε). We can check that the first two properties of f in Theorem 4.5.1 hold for
arbitrary s-sparse vectors. However, the third property crucially relies on non-negative entries.
Nevertheless, we can obtain the following variant, assuming the entries are in a discrete set:
for every pair of vectors x, y ∈ {−∆, . . . ,∆}d, we have ∥fk(x)−fk(y)∥p ≤ ∆∥x−y∥p. Indeed,
as in the proof of Theorem 4.5.1, it suffices to prove the following: if a1, . . . , ak and b1, . . . , bk
are all in {−∆, . . . ,∆}, then

|max(a1, . . . , ak)−max(b1, . . . , bk)| ≤ 2∆ ·max
t
|at − bt|.
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And this holds because if the RHS is 0, then so is the LHS. Otherwise, the RHS is at least
2∆ · 1 and the LHS is always bounded by 2∆.

Equipped with this, we similarly have that with failure probability at most exp(−Ω(Tγ)) =
1/poly(n), ∥fk(x)− fk(y)∥pp = ∥x− y∥pp for at least (1− γ/2)T fraction of the indices k where
γ = ε/(2∆)p. If this is the case, then again∑

k

∥fk(x)− fk(y)∥pp ≥ (1− γ/2)T · ∥x− y∥pp

and by the bounded-expanding property of fk, we also have∑
k

∥fk(x)− fk(y)∥pp ≤ (1− γ/2)T · ∥x− y∥pp + γT (2∆)p∥x− y∥pp.

Putting everything together, we have
∑

k ∥fk(x)− fk(y)∥pp ∈ (1± ε/2)T · ∥x− y∥pp. And the
final result follows from union bounding over all Θ(n2) pairs, as desired.

As a corollary, we can embed ℓ∞ into a smaller dimensional space in ℓO(log(s)/ε).

Corollary 4.5.5. Let p = O(log(s)/ε). Let X be a set of s-sparse vectors in Rd (arbitrary
entries). There is an embedding of X into ℓmp which preserves all pairwise ℓ∞ distances up
to 1± ε factor for the following values of m:

• If we use the embedding of [209], then m = sO(ε−1(log log d+log s))/ε2.

• If we use the embedding of Theorem 4.4.2, then m = log(s) log(d/ε)sO(ε−1 log s)/ε2.

• If |X| ⊂ {−O(1), . . . , O(1)}, then the embedding of Theorem 4.5.4 gives m = log(|X|)sO(1/ε)/ε2.

Proof. The proof follows by noting that in s dimensions, the ℓ∞ norm is 1± ε approximated
by the ℓp norm for p = O(log(s)/ε) (Lemma 4.9.2), and plugging in this value of p in the
respective theorems.

4.6 Dimensionality Reduction Lower Bounds for Non-
Negative Vectors

In this section, we provide lower bounds for dimensionality reduction for sparse vectors under
various hypotheses. As stated in Section 4.1, together they demonstrate that our non-negative
sparse embedding of Theorem 4.5.2 is optimal in many natural ways. See Section 4.1 for an
overview.

We begin by showing that a linear map cannot have the same guarantees as Theorem
4.5.2.
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Theorem 4.1.4. Let S be the set of all 10-sparse vectors in Rd with all non-zero coordinates
being equal to 1. Let A : Rd → Rm be a matrix such that

1

2
∥x∥∞ ≤ ∥Ax∥∞ ≤

3

2
∥x∥∞ ∀x ∈ S.

Then m = Ω(d).

Proof. Suppose for the sake of contradiction that m < d/100. By considering the basis
vectors, every column of A must have an entry with absolute value at least 1/2. Then there
must exist a row r of A which has at least d/m ≥ 100 such entries. At least 50 of such entries
in row r must be of the same sign. Let x be an indicator vector for the column of 10 these
entries in row r. Note that x ∈ S and |(Ax)r| ≥ 5 which implies ∥Ax∥∞ ≥ 5, contradicting
our assumption on A. Thus, m ≥ d/100 = Ω(d), as desired.

The following theorem states that preserving the norms of the sum of vectors is impossible
a factor of 2− ε for any ε > 0 in ℓ∞, even if we only restrict to non-negative sparse vectors.
Note that Theorem 4.5.2 preserves the norms of the sums up to a factor of 2.

Theorem 4.1.6. Let ei be the ith basis vector in Rd. Consider the set S = {ei} ∪ {0} of
d+ 1 vectors. Suppose f : S → Rm be an arbitrary mapping which satisfies

∥x+ y∥∞ ≤ ∥f(x) + f(y)∥∞ ≤ (2− ε)∥x− y∥∞ ∀x, y ∈ S

for any ε > 0. Then m ≥ d.

Proof. Suppose for the sake of contradiction that m < d. First note that f(0) must be
the all 0’s vector by taking x = y = 0. Then taking x = ei and y = 0 implies that
∥f(ei)∥∞ ∈ [1, 2− ε] for all i. Again label such coordinates of f(ei) that lie in this range as
‘large.’ If m < d, then there exists i and j such that f(ei) and f(ej) have the same large
index by Pigeonhole. We know that ∥f(ei) + f(ej)∥∞ ∈ [1, 2 − ε] by our hypothesis. Now
if the large entries of f(ei) and f(ej) have the same sign, then their sum in absolute value
is at least 2, which cannot happen from the above observation. On the other hand, if they
have different signs, then the largest sum (in absolute value) that these entries can add to is
at most 1− ε (either from 2− ε+ (−1) or −(2− ε) + 1), which also cannot happen. These
cases are exhaustive which means our assumption m < d cannot hold, and we must have
m ≥ d.

The following theorem shows that any mapping f also cannot be ‘too smooth’. Note that
in our mapping, we use the maximum function, which is not differentiable.

Theorem 4.1.5. Suppose f : Rd → Rm is such that f(x) = (f1(x), . . . , fm(x)) where each
fi is twice differentiable with continuous second partial derivatives. Let S be the set of all
10-sparse vectors in Rd with all non-zero coordinates being equal to 1. Suppose f satisfies

0.99∥rx∥∞ ≤ ∥f(rx)∥∞ ≤ 1.01∥rx∥∞ ∀r > 0, ∀x ∈ S.

Then m = Ω(d).
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Proof. Note that fi(0) = 0 by taking r → 0. Since the second partial derivatives of all fi
are continuous, they are bounded in magnitude in the compact set [0, 1]d. Let T be such an
upper bound which holds for all i. Now we let r ≪ 1 be a sufficiently small value which will
be determined shortly. For any fixed fi, Taylor’s theorem for multivariate functions2 implies
that for any y ∈ [0, r]d which is O(1)-sparse,

|fi(y)− ⟨∇fi(0), y⟩| ≤ T (y1 + . . .+ yd)
2 ≤ O(Tr2)

for every i. Let A : Rd → Rm be the matrix with ai as it’s rows. The above inequality implies
that

∥f(y)− Ay∥∞ ≤ O(Tr2).

Thus if r > 0 sufficiently small, z is any vector such that ∥z∥∞ = 1, and

0.99∥rz∥∞ ≤ ∥f(rz)∥∞ ≤ 1.01∥rz∥∞,

then we must also have
1

2
∥rz∥∞ ≤ ∥A(rz)∥∞ ≤

3

2
∥rz∥∞.

But since A is linear, this actually implies that

1

2
∥r′z∥∞ ≤ ∥A(r′z)∥∞ ≤

3

2
∥r′z∥∞

for all r′ > 0. Putting everything together, (letting z be the vectors in the hypothesis of the
theorem statement), implies that

1

2
∥z∥∞ ≤ ∥Ax∥∞ ≤

3

2
∥z∥∞ ∀z ∈ S.

Then Theorem 4.1.4 implies that m = Ω(d), as desired.

The next lower bound of this section demonstrates that the non-negative hypothesis is
crucial. If we drop the non-negativity constraint, then any map cannot satisfy the guarantees
promised by Theorem 4.5.2.

Theorem 4.1.7. Let ei be the ith basis vector in Rd. Consider the set S = {±ei} ∪ {0} of
2d+ 1 vectors. Suppose f : S → Rm be an arbitrary mapping which satisfies

0.9∥x− y∥∞ ≤ ∥f(x)− f(y)∥∞ ≤ 1.1∥x− y∥∞ ∀x, y ∈ S,

∥x+ y∥∞ ≤ ∥f(x) + f(y)∥∞ ≤ C∥x+ y∥∞ ∀x, y ∈ S

for any C ≥ 1. Then m ≥ d.
2https://en.wikipedia.org/wiki/Taylor’s_theorem#Taylor’s_theorem_for_multivariate_functions
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Proof. Suppose for the sake of contradiction that m ≤ d − 1. We first show that f(ei) =
−f(−ei) for all i. Indeed, ei + (−ei) = 0 so we must have ∥f(ei) + f(−ei)∥∞ = 0 =⇒
f(ei) = −f(−ei). We also have f(0) = 0 ∈ Rm, also using the second relation. This means
that ∥f(±ei)∥∞ ∈ [0.9, 1.1] for all i by using the first relation with x = ±ei and y = 0.

For a vector v ∈ S, call the indices where ∥f(v)∥∞ ∈ [0.9, 1.1] large entries. Our goal is
to show that most vectors in S need to have distinct large entries. This will imply that m
must be large since |S| is large.

Indeed, if m ≤ d− 1, then there must exists some i ̸= j such that f(ei) and f(ej) share
the same large entry index by Pigeonhole. Then either f(ej) or f(−ej) = −f(ej) also has
the opposite sign as the large entry of f(ei). So at least in one case, we can find two vectors
x, y ∈ S such that ∥f(x) − f(y)∥∞ ≥ 2 · 0.9 = 1.8. However, since i ≠ j, we know that
∥x− y∥∞ = 1, contradicting the first relation. Hence, m ≥ d, as desired.

Finally, the last lower bound demonstrates that any map with weaker guarantees than
that of Theorem 4.5.2 must map to Ω̃(s) dimensions. Note that Theorem 4.5.2 satisfies
the hypothesis of the theorem bellow with C = O(1/ log n) for a dataset of n non-negative
s-sparse vectors.

Theorem 4.6.1. Suppose d > 2s and let S =
{∑s

i=1 ei,
∑2s

i=s+1 ei, 0
}
. Suppose f : S → Rm

be an arbitrary mapping which satisfies

∥f(x)− f(y)∥∞ ≤ ∥x− y∥∞ ∀x, y ∈ S,

C∥x− y∥1 ≤ ∥f(x)− f(y)∥1 ∀x, y ∈ S,

for any C > 0. Then m ≥ Cs.

Proof. By shifting, we can assume f(0) = 0. Let v1 =
∑s

i=1 ei and v2 =
∑2s

i=s+1 ei. Then the
first relation implies that all coordinates of v1 and v2 are bounded by 1 in absolute value.
The second relation them implies that

2Cs ≤ ∥f(v1)− f(v2)∥1 ≤ ∥f(v1)∥1 + ∥f(v2)∥1 ≤ 2m,

yielding m ≥ Cs.

4.7 Average Case Lower Bounds for Embedding General
Sparse Vectors

The goal of this section is to prove lower bounds showing that the birthday paradox map of
Definition 4.0.1 is optimal in many settings. The point set we use are generated randomly
from the following distribution as discussed in Section 4.2.

Definition 4.2.1. Let Unift,r be a distribution over t-sparse vectors defined as follows. To
generate x ∼ Unift,r,
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1. First pick t coordinates uniformly at random to be the support.

2. The non-zero coordinates of x are i.i.d. Gaussians with variance r.

Our first result is to show that any linear map with the same average case guarantees as
the birthday paradox map must map to Ω(s2) dimensions. Note that the birthday paradox
map satisfies the hypothesis of the theorem statement below up to constant factors (by
mapping to Cs2 dimensions for a sufficiently large constant C). This is because any fixed set
of coordinates of size at most s hashes to unique buckets under the map with probability say
at least 99% (by picking large enough C). If this is the case, then it does not matter what
entries we put in this set of coordinates.

Theorem 4.7.1. Let A : Rs2 → Rm be a linear map and p ≥ 2 be an even integer. If A is
such that for any 1 ≤ t ≤ s,

Pr
x∼Unift

(∥Ax∥p = ∥x∥p) ≥ 0.99,

then m ≥ s2/1000.

Proof. Suppose for the sake of contradiction that m < s2/1000. The proof is roughly divided
into three parts. The first part shows that ATA has many ‘non-zero’ coordinates. The
second part shows that a random sparse vector u (as chosen in the hypothesis of the theorem
statement) has ‘many’ pairs of coordinates ui and uj such that the corresponding (i, j) entry
in ATA is also non-zero. The last part then shows that the prior result implies that A does
not (approximately) preserve the norm of u with a large constant probability, contradicting
the assumption of the theorem. The last part relies on the fact that the zero set of a non-zero
polynomial has measure 0.

Part #1. Let A1, . . . , As2 denote the columns of A. Let v be a random vector chosen from
Unif1, and let i be it’s support with vi the corresponding non-zero entry. Then ∥Av∥pp =
∥Ai∥pp · v

p
i and ∥v∥pp = vpi . Then the hypothesis implies that

Pr(|∥Ai∥22 − 1| ≤ 0.0001) ≥ 0.99. (4.4)

(Note that we deliberately work with a weaker hypothesis since it will be more useful to
us later on). Thus, a 0.99 fraction of the columns of A have Euclidean norm in the range
[0.999, 1.001]. Let AX be the restriction to such columns. Note that all diagonal entries of
AT

XAX are at in the range [0.999, 1.001] and all entries are bounded by 1.001 in absolute
value (via Cauchy-Schwarz on the columns of AX). For i ≥ 1, we let ℓi denote the number
of non-diagonal entries of AT

XAX whose absolute values are in (2−i, 2−i+1] and ℓ0 denote the
rest of the non-diagonal entries (with absolute values in (1, 1.001]). We show the following
claims hold.

a) ∥AX∥2F ≥ (0.99)2s2,
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b) ∥AT
XAX∥2F ≥

(.99)4s4

m
,

c)
∑

i≥0 ℓi2
−2i+2 ≥ (.99)4s4

m
− 1.001s2.

Claim (a) readily follows from inequality (4.4). To show (b), note that singular values of
AT

XAX are the squared singular values of AX so ∥AT
XAX∥2F =

∑m
i=1 σi(AX)

4 (since the rank
of A is at most m). By Cauchy–Schwarz,

m · ∥AT
XAX∥2F = m

∑
i

σi(AX)
4 ≥

(∑
i

σi(AX)
2

)2

= ∥AX∥4F ≥ (.99)4s4.

To show (c), note that all diagonal entries of AT
XAX are at in the range [0.999, 1.001].

Claim (c) then follows from using the lower bound of Claim (b) since there are at most s2

diagonal entries.

Part #2. Now let u be a vector drawn from Unifs and let T be its support. The hypothesis
of the theorem states that

Pr(∥Au∥p = ∥u∥p) ≥ 0.99. (4.5)

Our goal is to demonstrate a contradiction by showing Pr(∥Au∥p ̸= ∥u∥p) ≥ 0.02, which
contradicts (4.5).

Let uX be the restriction of u to the coordinates in X (i.e., only keep the coordinates
in X). Consider uXu

T
X . By our choice of u, the non-zero entries of uXu

T
X lie on a random

principal submatrix of size |T ∩X|× |T ∩X|. We show that with a sufficiently large constant
probability, both uXu

T
X ∈ R|X|×|X| and AT

XAX ∈ R|X|×|X| have a non-zero value in ‘many’
shared entries.

Towards this end, let Yij be the indicator variable for the entry (i, j) in uXu
T
X being

non-zero and let sij denote the squared (i, j) entry of AT
XAX . We know

E[Yij] =
s(s− 1)

s2(s2 − 1)
=

1

s(s+ 1)
.

Finally, let Z =
∑

i,j sijYij. Recalling our partitions ℓk that we defined earlier and Claim (c),
we have

E[Z] =
∑
i,j

sij E[Yij] ≥
1

s(s+ 1)

∑
k

ℓk2
−2k ≥ 1

4s(s+ 1)

(
(.99)4s4

m
− 1.001s2

)
> 200.

We want to show Z concentrates well around its mean. Towards this end, we bound E[Z2].
We have

Z2 =

(∑
i,j

sijYij

)2

=
∑
i,j

s2ijYij +
∑
i,j,j′

sijsij′YijYij′ +
∑

i,j,i′,j′

sijsi′j′YijYi′j′ .
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Since s2ij ≤ 1.001, the first term can be bounded as

E

[∑
i,j

s2ijYij

]
≤ 1.001

s(s+ 1)

∑
i,j

sij = 1.001E[Z].

Similarly, the third term can be bounded as

E

[ ∑
i,j,i′,j′

sijsi′j′YijYi′j′

]
=
∑

i,j,i′,j′

sijsi′j′

(
1

s(s+ 1)

)2

≤

(∑
i,j

sij
s(s+ 1)

)2

= (E[Z])2 .

It remains to bound the second term. We know E[YijYij′ ] ≤ 1/s3. For a row i of AT
XAX ,

let Zk(i) denote the number of entries in that row which are in level ℓk. Then the third sum
is

E

[∑
i,j,j′

sijsij′YijYij′

]
≤ s

∑
i

∑
j,j′

sijsij′

s4

≤ 4s
∑
i

∑
k,k′

Zk(i)Zk′(i)

s422k22k′

= 4s
∑
i

(∑
k

Zk(i)

s222k

)2

.

Let ti =
∑

k Zk(i)2
−2k. We now consider the following two cases.

Case 1: At least half of the ti’s are at least s. In this case, we note that

E[Z] ≥
∑
i

∑
k

Zk(i)

22ks2
=
∑
i

ti
s2
≥ |X|

2s
≥ 0.495s.

We have

4s
∑
i

(∑
k

Zk(i)

s222k

)2

≤ 4s
∑
i

∑
k

Zk(i)

s222k
≤ 4sE[Z]

where we have used the fact that
∑

k Zk(i) ≤ s2. So altogether,

E[Z2] ≤ 5sE[Z] + E[Z]2 ≤ 12E[Z]2.

Thus the Paley–Zygmund inequality implies that

Pr(Z ≥ 1) ≥ (1− 0.01)2 · E[Z]
2

E[Z2]
≥ 1

20
.
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Case 2: At least half of the ti’s are at most s. In this case, let AT
X′AX′ be AT

XAX restricted
to the rows where ti ≤ s. We know |X ′| ≥ 0.5|X|. Our goal is to show that AT

X′AX′ still has
at least ‘many’ non-zero off-diagonal entries.

The proof is identical to the proof of the three claims (a), (b), (c) above. All sums below
only pertain to the matrix AT

X′AX′ . Indeed, we know ∥AX′∥2F ≥ 0.495s2 so

m · ∥AT
X′AX′∥2F = m

∑
i

σi(AX′)4 ≥

(∑
i

σi(AX′)2

)2

= ∥AX′∥4F ≥ (.495)2s4.

Combining with the fact that all non-diagonal entries are bounded by 1.001 in absolute
value, the above inequality implies that

∑
i≥0 ℓi2

−2i+2 ≥ (.495)2s4/(1.001m) − s2 ≥ 50s2.
Furthermore, for a row i of AT

X′AX′ ,∑
k

Zk(i)

s222k
=

ti
s2
≤ 1

s
,

so we can bound

4s
∑
i

(∑
k

Zk(i)

s222k

)2

≤ 4
∑
i

∑
k

Zk(i)

s222k

= 4
∑
i

ti
s2
≤ 4E[Z].

Thus,
E[Z2] ≤ 6E[Z] + E[Z]2.

So by Payely-Zygmund,

Pr(Z ≥ 1) ≥ (1− 0.01)2 · E[Z]
2

E[Z2]
≥ 1

20
.

Thus we see that Z ≥ 1 with probability at least .05 in both cases.

Part #3. Recalling that T is the support set of u, we have Au
∑

t∈T utAt and thus,

∥∥∥∥∥∑
t∈T

utAt

∥∥∥∥∥
p

p

− ∥u∥pp =
∑

i1,...,ip

ui1 · · ·uip

∑
j∈[m]

Ai1(j) · · ·Aip(j)

−∑
t∈T

u2
t := P (u), (4.6)

where the outer sum is over all p-sized tuples of indices (with repeats allowed), the notation
Ai1(j) denotes the jth entry of the column Ai1 , and the inner sum is over all the entries of
the column.
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We claim that if p is an even integer, then P (u) is a non-zero polynomial. To do so, we
demonstrate a monomial ui1 · · ·uip with a non-zero coefficient. Now if we assume Z ≥ 1,
then this implies there exists two columns say A1 and A2 of A such that ⟨A1, A2⟩ is non-zero
and both 1 and 2 are in the support set T of u. We consider the following different cases for
p.

If p = 2, consider the monomial u1u2. It’s coefficient in P is
∑

j A1(j)A2(j) = ⟨A1, A2⟩ ≠
0, so we are done. Now if p > 2 and even, instead consider the monomial up−2

1 u2
2. We claim

that this is non-zero. Indeed, since p− 2 is also even,
∑

j A1(j)
p−2A2(j)

2 must be non-zero
since it is a sum of non-negative terms, one of which is non-zero (since at least one j satisfies
A1(j)A2(j) ̸= 0). So we are also done.

Now finally, we note that since the entries of u in its support are picked from a continuous
distribution and P is non-zero, the probability of the event P (u) = 0 is also 03. However,
∥Au∥p = ∥u∥p implies ∥Au∥pp−∥u∥pp = P (u) = 0. Overall, with probability at least 0.05 (the
event that Z ≥ 1), we have P (u) ̸= 0, contradicting the hypothesis (4.5). Thus, m ≥ s2/1000,
as desired.

We extend the previous theorem to the case of approximate norm preservation for the ℓ2
case.

Theorem 4.2.1. Let A : Rs2 → Rm be a linear map and γ ≤ C/s for a sufficiently small
constant C > 0. If A is such that for any 1 ≤ t ≤ s,

Pr
x∼Unift

(
|∥Ax∥22 − ∥x∥22| ≤ γ∥x∥22

)
≥ 0.99,

then m ≥ s2/1000.

Proof. Suppose for the sake of contradiction that m < s2/1000. The proof is roughly
divided into three parts as in Theorem 4.7.1. The first part shows that ATA has many
‘non-zero’ coordinates. The second part shows that a random sparse vector u (as chosen in
the hypothesis of the theorem statement) has ‘many’ pairs of coordinates ui and uj such
that the corresponding (i, j) entry in ATA is also non-zero. The last part then shows that
the prior result implies that A does not (approximately) preserve the norm of u with a large
constant probability, contradicting the assumption of the theorem. The last part relies on
bounding the probability that a random polynomial lies in an unexpectedly small interval.
Since the first two parts are identical, we just present the last part.

Recall the random variable Z defined in the proof of Theorem 4.7.1. There we showed
that Z ≥ 1 with probability at least 0.05.
Part #3. Recalling that T is the support set of u, we have ∥Au∥22−∥u∥22 =

∥∥∑
t∈T utAt

∥∥2
2
−

∥u∥22. ∥∥∥∥∥∑
t∈T

utAt

∥∥∥∥∥
2

2

− ∥u∥22 =
∑

t̸=t′∈T

utut′⟨At, At′⟩+
∑
t∈T

ϵtu
2
t := P (u) (4.7)

3e.g. see [101]
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where |ϵt| ≤ 0.001. If we pick the entries of u to be standard Gaussians, we have

E[P (u)] =
∑
t

ϵt.

Recalling that Yij is the indicator for uT
XuX having a non-zero entry at (i, j), we have

E[P (u)2] ≥
∑
i,j

sijYij +
∑

t̸=t′∈T

ϵtϵt′ +
∑
t∈T

3ϵ2t

so
Var(P (u)) = E[P (u)2]− (E[P (u)])2 ≥

∑
i,j

sijYij = Z.

Thus, if we assume that Z ≥ 1, then Lemma 4.2.2 implies that if the variables of u in the
support T are picked from the standard Gaussian distribution, then the probability that
P (u) ∈ [−ε, ε] = O(

√
ε) for any sufficiently small ε > 0. Now consider the following three

events.

• E1 = event that ∥u∥22 ≤ 100s.

• E2 = event that Z ≥ 1.

• E3 = event that P (u) ̸∈ [−c, c] for a sufficiently small constant c.

By picking c to be a small enough constant, we know that all the events hold with probability
at least 0.02. Let’s condition on all of these events holding. If so, we show that the
condition |∥Au∥22 − ∥u∥22| ≤ γ∥u∥22 cannot hold. Indeed, the condition directly implies that
∥Au∥22 − ∥u∥22 = P (u) lies in an interval strictly contained in [−c, c]. Thus altogether, with
probability at least 0.02, we have |∥Au∥22 − ∥u∥22| > γ∥u∥22, contradicting inequality (4.5).
This finishes the proof.

We now extend the result of the prior theorem to a more general class of mappings. We
recall the general class that we consider, as described in Section 4.1. We let f : Rs2 → Rm

where f(x) = (f1(x), . . . , fm(x)) and assume each fi : Rs2 → R is twice differentiable with
continuous second partial derivatives.

At a high level, the level of smoothness assumed allows us to consider a taylor expansion,
where we approximate each fi using a linear function up to some quadratic error. By taking
the expansion sufficiently close to the origin, the quadratic error becomes negligible, thereby
reducing the problem to the linear case. Crucially, we use the fact that our sparse vectors
are drawn from a ‘scale invariant’ distribution, in the sense that scaling a vector sampled
from Unift,r is equivalent to sampling from Unift,r′ for an appropriate r′. The full details are
given in the proof below.

Theorem 4.7.2. Suppose γ ≤ C/s for a sufficiently small constant C > 0. If f : Rs2 → Rm

as defined above is such that for any 1 ≤ t ≤ s and any r > 0,

Pr
x∼Unift,r

(
|∥f(x)∥22 − ∥x∥22| ≤ γ∥x∥22

)
≥ 0.999,

then m ≥ s2/1000.
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Proof. Note that we may assume that fi(0) = 0; otherwise our guarantees would trivially fail
when r → 0. Since the second partial derivatives of all fi which comprise f are continuous,
they are bounded in magnitude in [−1, 1]s2 , a compact set. Let L be such an upper bound
which holds for all i (note that L may depend on s). Now we let c≪ 1 be a sufficiently small
value which will be determined shortly. For any fixed fi, Taylor’s theorem for multivariate
functions4 implies that for any x ∈ [−c, c]s2 ,

|fi(x)− ⟨∇fi(0), x⟩| ≤ L (x1 + . . .+ xs2)
2 ≤ Ls4c2

for every i. Let A : Rs2 → Rm be the matrix with ai as it’s rows. The above inequality
implies that

∥f(x)− Ax∥∞ ≤ c2s4L.

Thus Lemma 4.9.3 implies that

|∥f(x)∥22 − ∥Ax∥22| ≤ c3 · poly(s, L) (4.8)

for all x ∈ [−c, c]s2 satisfying ∥f(x)∥22 ≤ 2∥x∥22. By picking c sufficiently small, we can say
the following:

• For any x ∈ [−c, c]s2 such that |∥f(x)∥22−∥x∥22| ≤ γ∥x∥22, we also have |∥Ax∥22−∥x∥22| ≤
γ∥x∥22 + c3 · poly(s, L),

• For any x where |∥Ax∥22 − ∥x∥22| ≤ γ′∥x∥22 holds for some scalar γ′ > 0, then for any
scalar r > 0, we also have |∥Ay∥22 − ∥y∥22| ≤ γ′∥y∥22 where y = r · x.

The first claim follows from inequality (4.8), and the second claim follows from the fact that
A is a linear map. Now note that by picking a large enough constant β ≫ 1, we know that
sampling from any t, x ∼ Unift,c/sβ satisfies ∥x∥22 ≥ c2.5/sβ

′ (for some other constant β′ > 0)
with probability 0.999. Thus a sufficiently small choice of c and large enough β implies the
following:

• For any x ∈ [−c, c]s2 such that |∥f(x)∥22−∥x∥22| ≤ γ∥x∥22, we also have |∥Ax∥22−∥x∥22| ≤
2γ∥x∥22,

• For any t, x sampled from Unift,c/sβ is in [−c, c]s2 with probability at least 0.999.

Now note that a uniformly chosen vector in Unift,r for any r > 0 is just a scaled uniformly
chosen vector in Unift,1. Due to our hypothesis on f , it then follows that A is such that for
any 1 ≤ t ≤ s,

Pr
x∼Unift,1

(∣∣∥Ax∥22 − ∥x∥22∣∣ ≤ 2γ∥x∥22
)
≥ 0.99.

The theorem then follows from Theorem 4.2.1 (note that 2γ is smaller than the tolerance
required in that proof).

4https://en.wikipedia.org/wiki/Taylor’s_theorem#Taylor’s_theorem_for_multivariate_functions
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As discussed in Section 4.1, we further extend our prior result to encoder decoder schemes
(recalled below), where another ‘decoder’ function can be applied on top of the embeddings
to compute the ℓ2 norm. Our lower bound shows that as long as both the encoder and
decoder functions are sufficiently smooth, the encoder function is required to map to Ω(s2)
dimensions. We do not restrict the embedding dimension of the decoder function. In other
words, the whole process is ‘bottle necked’ by the inner dimension.

Definition 4.1.1. We suppose the encoder and decoder functions satisfy the following.

• (Encoder function) f : Rs2 → Rm where

f(x) = (f1(x), . . . , fm(x))

and each fi : Rs2 → R is twice differentiable with continuous second partial derivatives.

• (Decoder function) g : Rm → Rs2 where

g(x) = (g1(x), . . . , gs2(x))

and each gi : Rm → R is twice differentiable with continuous second partial derivatives.

Theorem 4.7.3 (Encoder/Decoder Schemes). Let γ ≤ C/s for a sufficiently small constant
C > 0. If h(x) : Rs2 → Rs2 as defined above is such that for any 1 ≤ t ≤ s and any r > 0,

Pr
x∼Unift,r

(
|∥h(x)∥22 − ∥x∥22| ≤ γ∥x∥22

)
≥ 0.999,

then m ≥ s2/1000.

Proof. Similar to the proof of Theorem 4.7.2, let A be the matrix where the ith row is equal
to ∇hi(0). Note that A : Rs2 → Rs2 . We first claim that A has rank at most m. To see this,
note that

h(x) = (g1(f(x)), . . . , gs2(f(x)).

For 1 ≤ j ≤ s2, let hj(x) = gj(f(x)). Denoting the input variables of gj as gj(y1, . . . , ym),
the chain rule tells us that for any j and i,

∂hj

∂xi

=
m∑
ℓ=1

∂gj
∂yℓ
· ∂fℓ
∂xi

= ⟨qi, pj⟩

where
qi =

(
∂f1
∂xi

, . . . ,
∂fm
∂xi

)
∈ Rm

and
pj =

(
∂gj
∂y1

, . . . ,
∂gj
∂ym

)
∈ Rm.

82



(For simplicity, we are omitting the fact that all the partial derivatives of fℓ are being
evaluated at 0 and the partial derivatives of gj are being evaluated f(0)). Letting

B =


qT1
qT2
...
qTs2

 ∈ Rs2×m, C =


pT1
pT2
...
pTs2

 ∈ Rs2×m,

we see that

A =


pT1B

T

pT2B
T

...
pTs2B

T

 = CBT ∈ Rs2×s2 .

Thus, A has rank at most m. Now the rest of the proof proceeds by combining elements
of Theorem 4.2.1 and 4.7.2, which we only briefly sketch for simplicity.

First, identical to the proof of Theorem 4.7.2, a second-order multi-variable talyor expan-
sion around 0 implies that A is such that for any 1 ≤ t ≤ s

Pr
x∼Unift,1

(∣∣∥Ax∥22 − ∥x∥22∣∣ ≤ γ∥x∥22
)
≥ 0.99.

Now we cannot directly invoke Theorem 4.2.1, since the matrix A in the statement of
Theorem 4.2.1 maps Rs2 to Rm, but A is Rs2 → Rs2 . However, note that the proof of Theorem
4.2.1 only relies on the rank of the matrix ATA, which is at most m (also true here). Thus,
the rest of the proof is identical to the proof of Theorem 4.2.1.

Finally, we extend the lower bound of Theorem 4.2.1 to the case of approximately pre-
serving inner products.

Theorem 4.7.4. Let A : Rs2 → Rm be a non-zero linear map and γ ≤ C/s for a sufficiently
small constant C > 0. If A is such that for any 1 ≤ t, t′ ≤ s,

Pr
x∼Unift,y∼Unift′

(|⟨Ax,Ay⟩ − ⟨x, y⟩| ≤ γ∥x∥2∥y∥2) ≥ 0.99

and
Pr

y∼Unif1

(
|∥Ay∥22 − ∥y∥22| ≤ γ∥y∥22

)
≥ 0.99,

then m ≥ s2/1000.

Proof. The proof is almost identical to that of Theorem 4.2.1 but we present the full details
for completeness, since we are working with two vectors instead of one. Suppose for the sake
of contradiction that m < s2/103. The proof is again roughly divided into three parts. The
first part shows that ATA has many ‘non-zero’ coordinates. The second part shows that a
pair of random sparse vector u and v (as chosen in the hypothesis of the theorem statement)
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have ‘many’ pairs of coordinates ui and vj such that the corresponding (i, j) entry in ATA
is also non-zero. The last part then shows that the prior result implies that A does not
(approximately) preserve the inner product with a large constant probability, contradicting
the assumption of the theorem. The last part relies on bounding the probability that a
random polynomial lies in an unusually small interval.

Part #1.

Let A1, . . . , As2 denote the columns of A. Let v be a random vector chosen from Unif1, and
let i be it’s support with vi the corresponding non-zero entry. Then ∥Av∥22 = ∥Ai∥22 · v2i and
∥v∥22 = v2i . Then the hypothesis implies that

Pr(|∥Ai∥22 − 1| ≤ 0.0001) ≥ 0.99. (4.9)

Thus, a 0.99 fraction of the columns of A have Euclidean norm in the range [0.999, 1.001].
Let AX be the restriction to such columns. Note that all diagonal entries of AT

XAX are
at in the range [0.999, 1.001] and all entries are bounded by 1.001 in absolute value (via
Cauchy-Schwarz on the columns of AX). For i ≥ 1, we let ℓi denote the number of non-
diagonal entries of AT

XAX whose absolute values are in (2−i, 2−i+1] and ℓ0 denote the rest of
the non-diagonal entries (with absolute values in (1, 1.001]). We show the following claims
hold.

a) ∥AX∥2F ≥ (0.99)2s2,

b) ∥AT
XAX∥2F ≥

(.99)4s4

m
,

c)
∑

i≥0 ℓi2
−2i+2 ≥ (.99)4s4

m
− 1.001s2.

Claim (a) readily follows from inequality (4.9). To show (b), note that singular values of
AT

XAX are the squared singular values of AX so ∥AT
XAX∥2F =

∑m
i=1 σi(AX)

4 (since the rank
of A is at most m). By Cauchy–Schwarz,

m · ∥AT
XAX∥2F = m

∑
i

σi(AX)
4 ≥

(∑
i

σi(AX)
2

)2

= ∥AX∥4F ≥ (.99)4s4.

To show (c), note that all diagonal entries of AT
XAX are at in the range [0.999, 1.001]. Claim

(c) then follows from using the lower bound of Claim (b) since there are at most s2 diagonal
entries.

Part #2.

Now let u and v be a vector drawn from Unifs and Unifr respectively and let Tu and Tv be
their corresponding support sets. The hypothesis of the theorem states that

Pr(|⟨Au,Av⟩ − ⟨u, v⟩| ≤ γ∥u∥2∥v∥2) ≥ 0.99. (4.10)
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Our goal is to demonstrate a contradiction by showing Pr(⟨Au,Av⟩| > γ∥u∥2∥v∥2) ≥ 0.02,
which contradicts (4.10).

Let uX be the restriction of u to the coordinates in X (i.e., only keep the coordinates
in X) and similarly define vX . Consider uXv

T
X . The non-zero entries of uXv

T
X lie on a

random principal submatrix. We show that with a sufficiently large constant probability,
both uXv

T
X ∈ R|X|×|X| and AT

XAX ∈ R|X|×|X| have a non-zero value in ‘many’ shared entries.
Towards this end, let Yij be the indicator variable for the entry (i, j) in uXu

T
X being

non-zero and let sij denote the squared (i, j) entry of AT
XAX . We know

E[Yij] =
1

s2
.

Finally, let Z =
∑

i,j sijYij. Recalling our partitions ℓk that we defined earlier and Claim (c),
we have

E[Z] =
∑
i,j

sij E[Yij] ≥
1

s2

∑
k

ℓk2
−2k ≥ 1

4s2

(
(.99)4s4

m
− 1.001s2

)
> 200.

The same proof as in Theorem 4.2.1 shows that Z ≥ 1 with probability at least .05.

Part #3.

Recalling that Tu and Tv are the support sets of u and v, we have

⟨Au,Av⟩ − ⟨u, v⟩ =
∑
i,j

uivj⟨Ai, Aj⟩ −
∑
i

uivi := P (u, v). (4.11)

If we pick the entries of u and v to be standard Gaussians, we have E[P ] = 0. Recalling that
Yij is the indicator for uT

XvX having a non-zero entry at (i, j), we have

E[P 2] ≥
∑
i,j

sijYij = Z.

Thus, if we assume that Z ≥ 1, then Lemma 4.2.2 implies that if the variables of u and v
in their support are picked from the standard Gaussian distribution, then the probability
that P ∈ [−ε, ε] = O(

√
ε) for any sufficiently small ε > 0. Now consider the following three

events.

• E1 = event that ∥u∥2∥v∥2 ≤ 100s.

• E2 = event that Z ≥ 1.

• E3 = event that P ̸∈ [−c, c] for a sufficiently small constant c.

By picking c to be a small enough constant, we know that all the events hold with probability
at least 0.02. Let’s condition on all of these events holding. If so, we show that the condition
|⟨Au,Av⟩ − ⟨u, v⟩| ≤ γ∥u∥2∥v∥2 cannot hold. Indeed, the condition directly implies that
⟨Au,Av⟩ − ⟨u, v⟩ = P lies in an interval strictly contained in [−c, c]. Thus altogether, with
probability at least 0.02, we have |⟨Au,Av⟩ − ⟨u, v⟩| > γ∥u∥2∥v∥2, contradicting inequality
(4.10). This finishes the proof.
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4.8 Applications

We now present applications of our improved embeddings for sparse vectors for geometric
optimization. As stated in the technical overview section, we assume our input is a dataset
X of n non-negative s-sparse vectors in Rd. Many of the statements below are also applicable
to general sparse vectors (with appropriate modifications), but we focus on non-negative
sparse vectors for simplicity.

4.8.1 Diameter

Our goal is to compute the diameter of the dataset X in ℓp norm (see Definition 4.1.1).
The first lemma shows that the diameter is preserved when projecting onto very low

dimensions.

Lemma 4.8.1. Let f : Rd → RO(s2) mapping given in Definition 4.5.1. Let X̃ = {f(x) | x ∈
X} ⊂ RO(s). We have

Pr
(
∀p, diameterp(X) = diameterp(X̃)

)
≥ 0.99.

For the ℓ∞ case, we can instead embed to O(s) dimensions

Proof. Let (x, y) be a pair in X that witnesses the diameter. Theorem 4.5.1 implies that for
any p, the distance between x and y is preserved under f . The proof of the ℓ∞ case is the
same as in Theorem 4.5.2: the coordinate which witnesses the distance between x and y does
not collide with any of the other support elements with constant probability. Furthermore,
Theorem 4.5.1 also implies that all other distances do not expand under f . This completes
the proof.

This implies the following corollary stating that any ‘low dimensional’ algorithm for
computing the diameter can be used to compute the diameter of X, after composing with
our dimensionality reduction.

Corollary 4.8.2. Given p ≥ 1, consider an algorithm which computes a C-factor approx-
imation of the diameter of any n point dataset in d-dimensions in Q(n, d, C) time. Then
there exists an algorithm which computes a C approximation of the diameter correctly with
99% probability of our dataset X in time Q(n,O(s2), C) + O(ns). For the ℓ∞ case, the
corresponding bound is Q(n,O(s), C) +O(ns).

Proof. We simply project our dataset X using f as stated in Lemma 4.8.1 and apply the
algorithm Q in the projected space.

Appealing to existing algorithms on diameter computation implies the following results.

Theorem 4.1.13. Let X be dataset of non-negative s-sparse vectors. We have the following
algorithms:
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1. Using [52], for any constant integer p, we can compute a 1 + ε approximation to
diameterp of X in time Õ(n/

√
ε+ 2O(s2 log(1/ε))) which is correct with probability 99%.

2. We can exactly compute the diameter of X in ℓ∞ norm in time O(ns). This algorithm
can be implemented in a stream using O(s) words of memory.

3. We can exactly compute the diameter of X in ℓ1 norm in time n2O(s). This algorithm
can be implemented in a stream using 2O(s2) words of memory.

Proof. The first result just follows from appealing to Corollary 4.1 in [52] which gives an
algorithm for computing the diameter in ℓp in low-dimensional spaces, and appropriately
plugging in the bounds as specified in Corollary 4.8.2.

For the second result, we recall a folklore streaming algorithm for computing diameter in
ℓ∞ norm. We have

diameterp(X) = max
dimension i

max
x,y∈X

|xi − yi| = max
dimension i

(
max
x∈X

xi −min
y∈X

yi

)
.

Thus, it just suffices to only keep track the maximum and the minimum coordinate along
every dimension. Via Lemma 4.8.1, it suffices to assume the dimension is only O(s). The
non-streaming algorithm simply scans the points along every dimension as well.

Finally for the third result, we recall a well known isometric embedding of ℓk1 into ℓ2
k

∞ for
any k ≥ 1: simply map any x ∈ Rd to Ax ∈ R2k where A has all possible ±1 vectors as rows.
Applying this embedding reduces the ℓ1 case to the ℓ∞ case addressed above.

4.8.2 Maximum Cut

We consider the max cut problem defined as follows.

Definition 4.8.1. MaxCutp(X) = maxS⊆X

∑
x∈S,y∈X\S ∥x− y∥p.

To the best of our knowledge, dimensionality reduction for max cut has been only studied
in the ℓ2 case where its known that O(1/ε2) dimensions suffice to estimate the max cut of
an arbitrary sized dataset up to 1± ε (only for ℓ2) [62, 128].

We show the following dimensionality reduction for max cut in the general ℓp case.

Theorem 4.8.3. Let f : Rd → RO(min(s/ε2,s2/ε)) mapping given in Theorem 4.5.2. Let
X̃ = {f(x) | x ∈ X}. For every p ≥ 1, we have

E
[∣∣∣MaxCutp(X̃)−MaxCutp(X)

∣∣∣] ≤ O(ε) ·MaxCutp(X).

Proof. We drop the dependence on p for the sake of clarity. Let E be the set of edges that
participate in a fixed optimal max cut for X. Let MaxCut(X̃) be the value of the cut given
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by E in the projected dimension (note that E is deterministic but the value is random). We
have

E
[∣∣∣MaxCut(X)−MaxCut(X̃)

∣∣∣] ≤ ∑
(x,y)∈E

E
[
|∥f(x)− f(y)∥p − ∥x− y∥pp|

]
≤

∑
(x,y)∈E

ε∥x− y∥p

= ε ·MaxCut(X),

where we have used the fact that ∥f(x) − f(y)∥p ≥ (1 − ε)∥x − y∥p with probability 1 − ε
and 0 ≤ ∥f(x) − f(y)∥p ≤ ∥x − y∥p always (refer to the proof of Theorem 4.5.2). Now we
make two simple observations. First, we always have

MaxCut(X̃) ≥ MaxCut(X̃),

since MaxCut(X̃) is the best cut in the projected space. Secondly, since the value of every cut
never expands in the projected dimension due to property (3) in Theorem 4.5.1, we also have
that the value of every cut in the projected space is at most MaxCut(X) deterministically.
In particular, it must also be true that

MaxCut(X) ≥ MaxCut(X̃).

In particular, this means that we have

0 ≤ MaxCut(X)−MaxCut(X̃) ≤ MaxCut(X)−MaxCut(X̃),

so the random variable
∣∣∣MaxCut(X̃)−MaxCut(X)

∣∣∣ is always bounded by
∣∣∣MaxCut(X)−MaxCut(X̃)

∣∣∣,
which finishes the proof.

As a corollary, we obtain the following streaming algorithm by combining our dimen-
sionality reduction result above with a known streaming algorithms for max-cut given in
[62].

Corollary 4.8.4. There is a randomized streaming algorithm that, given 0 < ε < 1/2, p ≥ 1,
and a non-negative s-sparse X ⊆ [poly(n)]d presented as a stream, uses space Õ(poly(ε−1s))
and reports an estimate that with probability at least 2/3 is a (1 + ε)-approximation to
MaxCutp(X).

4.8.3 Clustering Applications

We consider the (arguably) most well-studied formulations of clustering: k-median, k-means,
and k-center. Dimensionality reduction for these problems have been well studied in the
ℓ2 case [146]. Here we consider dimensionality reduction for general ℓp norms, but with a
restricted set of vectors (non-negative sparse).

We recall their definitions below.
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Definition 4.8.2. We are interested in general ℓp norm formulations of the k-median/center/means
clustering objectives.

• k-median: Given a dataset X = {x1, . . . , xn} of n points ∈ Rd, the goal is to find a
partition C = {C1, C2, . . . , Ck} of [n] into k non-empty parts (clusters) to minimize the
following:

cost(C(X)) =
k∑

i=1

min
ui∈Rd

∑
j∈Ci

∥xj − ui∥p.

• k-center: Same as k-median, but we define the cost as

cost(C(X)) = max
k

min
ui∈Rd

max
j∈Ci

∥xj − ui∥p.

• k-means: Same as k-median, but we instead use the squared distances ∥x− ui∥2p.

Note that for these clustering problems, the centers ui do not have to be in X and can
be arbitrary points in space. That is, once the points are partitioned, we optimize for the
choice of centers. Note that even though our initial dataset may satisfy structural properties
as sparsity, is it likely that the optimal centers chosen will not. Thus, while our embedding
of Theorem 4.5.2 guarantees that ℓp distances between our dataset is preserved, there is no
meaningful notion of what the center is under the embedding. Nevertheless, our embedding
implies that the cost of every clustering is preserved up to a small multiplicative factor.

Theorem 4.8.5. Consider the k-median or k-center problem. Let X be a set of n non-
negative s-sparse vectors in Rd. Let F : Rd → RO(min(s2/ε, s/ε2)·log(n)/ε be the mapping given in
Theorem 4.5.2 and X̃ = {F (x) | x ∈ X}. We have

Pr
(
∀C, cost(C(X̃)) = (4± ε)cost(C(X))

)
≥ 1− 1/poly(n).

For k-means, an identical statement as above holds, except the 4 is replaced by a 16.

Proof. Fix a clustering C (partition of the datapoints). The complication arises due the fact
that cost(C(X)) optimizes for (non-necessarily sparse) centers in Rd whereas C(X̃)) optimizes
for centers in the projected space. There may not be an analogue of a center chosen in Rd in
the projected space. To get around this, we show we can simply move the centers to their
closest data point in X with a small multiplicative loss. The proof proceeds formally as
follows.

We first only consider the case of k-median and k-center. Assume that F preserves all
pairwise distances between points in X, which holds with probability at least 1− 1/poly(n)
and condition on this event. Take any one of the k partitions C of C and consider the best
center u for this partition in Rd. Now let u′ be the closest center to u in its partition C.
Moving u to u′ will never decrease the cost (by the optimality of u). We claim that it will also
never increase the cost by more than a factor of 2. Indeed for k-median, the cost increases

89



by a factor of |C| · ∥u − u′∥p by triangle inequality, which is less than
∑

j∈C ∥xj − u∥p by
the minimality of u′. Now the sum is just the original cost. For k-center a similar reasoning
holds.

Call such clusterings where the centers are restricted to the dataset points in X as basic.
The above reasoning implies that given a partition C, the cost of the optimum clusterings
and the optimum basic clusterings only differ by a multiplicative factor of 2. Of course the
same reasoning is also true in the projected dimension. But note that the costs of all basic
clusterings are preserved under F , since all pairwise distances are preserved. Thus we have
the following chain of inequalities:

cost(C(X̃), basic) ≤ 2cost(C(X̃)) ≤ 2cost(C(X̃), basic) = 2(1± ε)cost(C(X), basic),

and similarly

2(1± ε)cost(C(X), basic) ≤ 4(1± ε)cost(C(X)) ≤ 4(1± ε)cost(C(X), basic).

Adjusting ε, altogether, this shows that cost(C(X̃)) and cost(C(X)) are within a factor of
4± ε of each other. The argument does not depend on the choice of C (once we condition on
the event that all pairwise distances are preserved). The proof also easily extends to k-means,
where the basic clusterings now increase the cost by at most a factor of 4 due to the squared
triangle inequality.

4.8.4 Distance Estimation

We first define the distance estimation problem.

Definition 4.8.3. In the distance estimation problem, we want to preprocess a dataset
X and output a datastructure D. Then on any query y, D outputs an approximation to∑

x∈X ∥x− y∥pp.

We have the following result.

Theorem 4.8.6. Given a dataset X ⊂ Rd of n non-negative s-sparse vectors and even
integer p, we can compute a datastructure D using O(n log(n)ps/ε) preprocessing time. For
any fixed non-negative s-sparse query y, D(y) computes a value t satisfying∣∣∣∣∣t−∑

x∈X

∥x− y∥pp

∣∣∣∣∣ ≤ ε ·
∑
x∈X

∥x− y∥pp

with probability 1− 1/poly(n) with query time O(log(n)ps/ε).

Proof. We will have O(log n) independent d-variate polynomials P1, . . . PO(logn). Each Pi will
output an estimate ti with the guarantee that

E

[∣∣∣∣∣ti −∑
x∈X

∥x− y∥pp

∣∣∣∣∣
]
≤ ε ·

∑
x∈X

∥x− y∥pp,
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which extends to the high-probability guarantee by just taking medians of all the independent
estimates.

P1 will be constructed by using the ‘base’ mapping f1 : Rd → Rm for m = O(s/ε) of
Theorem 4.5.1. We set X̃1 = {f1(x) | x ∈ X}, and let P1(z) =

∑
x∈X̃1

∥x− z∥pp. Then t1 is
simply P1(f1(y)). Note that each x ∈ X satisfies E[∥f1(x)−f1(y)∥pp] ≥ (1−ε)∥x−y∥pp and we
always have ∥f1(x)− f1(y)∥pp ≤ ∥x− y∥pp, so 0 ≤ E[∥x− y∥pp − ∥f1(x)− f1(y)∥pp] ≤ ε∥x− y∥pp.
Finally, we repeat this independently for all Pi. The construction and query times are only
dependent on the polynomial evaluation.

Note that each Pi is a polynomial with the number of monomials bounded by O(mp). It
takes O(nmp) time to construct P and given z, we can compute P (z) in time O(mp) as well.
Theorem 4.5.2 guarantees the quality of the approximation.

4.9 Auxilliary Lemmas

Lemma 4.9.1. If X1, . . . , Xt are i.i.d. Bernoulli(p) for p ≥ 1− ε/100 then

Pr

(∣∣∣∣∣
t∑

i=1

Xi − tp

∣∣∣∣∣ ≥ εt

)
≤ exp (−Ω(εt)) .

Proof Sketch. Consider the complement random variables Yi = 1−Xi. These are Bernoulli(1−
p) and so by a standard Chernoff bound,

Pr

(∣∣∣∣∣
t∑

i=1

Yi − t(1− p)

∣∣∣∣∣ ≥ εt

)
≤ exp (−Ω(εt)) ,

as desired.

Lemma 4.9.2. Let z ∈ Rd, p ≥ 10 log(d)/ε, and ε ∈ (0, 1/10). Then ∥z∥p ∈ (1± ε)∥z∥∞.

Proof. Without loss of generality, suppose ∥z∥∞ = |z1| = maxi∈[d] |zi|. We have

d|z1|p ≥ ∥z∥pp ≥ |z1|p.

Taking 1/p-th powers gives us
d1/p|z1| ≥ ∥z∥p ≥ |z1|,

and the lemma follows by noting that d1/p = exp(log(d)/p) = exp(ε/10) = 1 + Θ(ε).

Lemma 4.9.3. If a, b ∈ Rd satisfy ∥a− b∥∞ ≤ δ, then |∥a∥22 − ∥b∥22| ≤ 2δ
√
d∥a∥2 + δ2d.

Proof. Let ci = bi−ai. We know that |ci| ≤ δ. Then bi = ai+ci and a2i −b2i = a2i −(ai+ci)
2 =

c2i − 2aici so |
∑

i(a
2
i − b2i )| ≤ dδ2 + 2δ

∑
i |ai| ≤ 2δ

√
d∥a∥2 + δ2d.
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Chapter 5

Privately Computing Similarities

In this chapter, we give algorithms for computing similarities to private datasets: given a
private dataset X ⊂ Rd and a similarity function f(x, y) : Rd × Rd → R, such as a kernel
or distance function, output a private data structure DX : Rd → R which approximates the
map y →

∑
x∈X f(x, y). We additionally require that DX be always private with respect to

X, regardless of the number of times it is queried
In addition to the privacy angle mentioned in Section 1.4, computing similarity to a

dataset is a fundamental and well-studied problem in its own right. In the case where f is a
kernel such as f(x, y) = e−∥x−y∥2/σ2 , this is known as kernel density estimation (KDE), whose
non-private setting has been extensively studied [22, 23, 30, 58], with many applications in
machine learning; see [98, 173, 174] for a comprehensive overview. In the case where f is a
distance function, the sum represents the objective of various clustering formulations, such
as k-means and k-median.

5.0.1 Our Results

The aforementioned works have produced non-trivial utility-privacy trade-offs for computing
similarities privately for a wide class of f . On the theoretical side, we improve upon these
results by giving faster algorithms and improved utility-privacy trade-offs for a wide range of
kernels and distance functions. We also study utility lower bounds in order to understand the
inherent algorithmic limitations for such problems. Our algorithms are also validated prac-
tically; they demonstrate empirical improvements over baselines, both in terms of accuracy
and query time.

Definitions. In this work, we consider the natural and standard notion of differential
privacy introduced in the seminal work of [76]. Two datasets X,X ′ are called neighboring if
they differ on a single data point.

Definition 5.0.1 ([76]). Let M be a randomized algorithm that maps an input dataset to
a range of outputs O. For ε, δ > 0, M is defined to be (ε, δ)-DP if for every neighboring
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datasets X,X ′ and every O ⊆ O,

Pr[M(X) ∈ O] ≤ eε · Pr[M(X ′) ∈ O] + δ.

If δ = 0, we say that M is ε-DP, which is referred to as pure differential privacy.

We also work under the function release model; the data structure we output must handle
arbitrarily many queries without privacy loss.

Function release. Given a private dataset X and a public function f , we wish to release a
differentially private (DP) data structure capable of answering either kernel density estimation
(KDE) or distance queries. We focus on the function release model as in [192] and employ
their definition: the algorithm designer releases a description of a data structure D which
itself is private (i.e. D is the output of a private mechanism as per Definition 5.0.1). A client
can later use D to compute D(y) for any query y. Since D itself satisfies ε-DP, it can support
an arbitrary number of queries without privacy loss. This is motivated by scenarios such as
synthetic data generation, or when we do not have a pre-specified number of queries known
upfront. Our accuracy guarantees are also stated similarly as in [192]: we bound the error
for any fixed query y. Thus, while our outputs are always private (since D itself is private),
some query outputs can be inaccurate.

Our private dataset is denoted as X ⊂ Rd, with |X| = n. The similarities are computed
with respect to a public function f : Rd × Rd → R. We define distance queries (for distance
functions such as ∥x− y∥2) and KDE queries (for kernel functions such as f(x, y) = e−∥x−y∥22)
as follows:

Definition 5.0.2 (Distance Query). Let f be a distance function. Given a query y ∈ Rd, a
distance query computes an approximation to

∑
x∈X f(x, y).

Definition 1.6.1. (Kernel Density Estimation (KDE) Queries) For a given dataset X ⊂ Rd

of size n, kernel function k, and precision parameter ε > 0, a KDE data structure supports the
following operation: given a query y ∈ Rd, return a value KDEX(y) that lies in the interval
[(1− ε)z, (1 + ε) z], where z =

∑
x∈X k(x, y), assuming that k(x, y) ≥ τ for all x ∈ X.

The normalization by |X| = n is inconsequential; we follow prior convention for KDE
queries. For distance queries, the un-normalized version seemed more natural to us.

Discussion of Theoretical Results. The main trade-off that we are interested in is
between privacy, as measured with respect to the standard DP definition (Definition 5.0.1),
and accuracy of our answers, also called utility. For example, a data structure which always
returns a fixed answer, such as 42, is clearly always private regardless of the number of
queries performed, but is highly inaccurate. Thus, our goal is to obtain non-trivial accuracy
guarantees while respecting privacy. Secondary, but important, concerns are query time and
data structure construction time and space. Our main theoretical results are summarized in
Table 5.1, where we use the following error notation.
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Type f Thm. Our Error Prior Error Our Query Time Prior Query Time

Distance

Queries

∥x− y∥1 5.3.4
(
1 + α, d1.5

ε
√
α

) (
1,
(

nd7

ε2

)1/3)
d d [102]

∥x− y∥2 5.5.1
(
1 + α, 1

εα1.5

) (
1,
(

n15d7

ε2

)1/17)
d ≥ d [102]

∥x− y∥22 5.5.4 (1, d
ε
) - d -

∥x− y∥pp 5.5.3
(
1 + α, d

ε
√
α

)
- d

KDE

Queries

e−∥x−y∥2 5.6.1 (1, α) (1, α) d+ 1
α4

d
α2 [192]

e−∥x−y∥22 5.6.1 (1, α) (1, α) d+ 1
α4

d
α2 [192]

1
1+∥x−y∥2 5.8.1 (1, α) - d+ 1

α4 -

1
1+∥x−y∥22

5.8.1 (1, α) (1, α) d+ 1
α4

d
α2 [192]

1
1+∥x−y∥1 5.8.1 (1, α) - d

α2 -

Table 5.1: Summary of the ε-DP upper bounds. See Definition 5.0.3 for the error notation.
For clarity, we suppress all logarithmic factors. The KDE bounds assume that n ≥ Ω̃

(
1

αε2

)
.

The distance query bounds are stated for points in a bounded radius.

Definition 5.0.3 (Error Notation). For a fixed query, if Z represents the value output by
our private data structure and Z ′ represents the true value, we say that Z has error (M,A)
for M ≥ 1 and A ≥ 0 if E[|Z −Z ′|] ≤ (M − 1)Z ′ +A. That is, we have relative error M − 1
and additive error A. The expectation is over the randomness used by our data structure.

We want M to be close to 1 and the additive error A to be as small as possible. Table
5.1 shows our errors and query times, as well as those of the most relevant prior works. See
Section 5.1 for a technical overview of how we obtain these results.

For distance queries, the most relevant work is [102]. They considered the ℓ1 and ℓ2
functions and obtained additive errors with large dependence on n (dataset size) and d
(dimension); see Table 5.1. In contrast, we show that if we allow for a small multiplicative
error (e.g. α = 0.001 in Table 5.1), we can obtain additive error with improved dependence
on d and no dependence on n.

Theorem 1.4.1. (Informal; see Theorem 5.3.4 and Corollary 5.5.1) Suppose the data points
have bounded diameter in ℓ1. For any α ∈ (0, 1) and ε > 0, there exists an algorithm
which outputs an ε-DP data structure D capable of answering any ℓ1 distance query with α

multiplicative error and Õ
(

d1.5

ε
√
α

)
additive error in expectation. For the ℓ2 case, where the

points have bounded ℓ2 diameter, we instead have Õ
(

1
εα1.5

)
additive error.
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Our approach is fundamentally different, and much simpler, than that of [102], who used
powerful black-box online learning results to approximate the sum of distances. Furthermore,
given that we think of n as the largest parameter, we incur much smaller additive error. Our
simpler approach also demonstrates superior empirical performance as discussed shortly. Our
ℓ1 upper bounds are complemented with a lower bound stating that any ε-DP algorithm
supporting ℓ1 distance queries for private datasets in the box [0, R]d must incur Ω̃(Rd/ε)
error.

Theorem 1.4.2. (Informal; see Theorem 5.4.2) Any ε-DP data structure which answers ℓ1
distance queries with additive error at most T for any query must satisfy T = Ω̃(Rd/ε).

Note that our lower bound only pertains to additive error and does not say anything
about multiplicative error. It is an interesting direction to determine if multiplicative factors
are also necessary. We also obtain results for other functions related to distances, such as ℓpp;
see Section 5.5.

We now discuss our kernel results. For the Gaussian (e−∥x−y∥22), exponential (e−∥x−y∥2),
and Cauchy ( 1

1+∥x−y∥22
) kernels, we parameterize our runtimes in terms of additive error α.

Here, we obtain query times of Õ(d+1/α4) whereas prior work [192] requires Õ(d/α2) query
time. Thus our results are faster in high-dimensional regimes where d≫ 1/α2.

Theorem 5.0.1 (Informal; see Theorems 5.6.1 and 5.8.1). Consider the Gaussian, exponen-
tial, and Cauchy kernels. In each case, for any ε > 0 and α ∈ (0, 1), there exists an algorithm
which outputs an ε-DP data structure that answers KDE queries with error (1, α) and query
times Õ(d+ 1/α4).

For kernels 1
1+∥x−y∥2 and 1

1+∥x−y∥1 , we obtain the first private data structures; see Table
5.1. We do this via a black-box reduction to other kernels that already have private data
structure constructions, using tools from function approximation theory; this is elaborated
more in Section 5.1. All KDE results, including prior work, assume that n is lower-bounded
by some function of α and ε. These two kernels and the Cauchy kernel fall under the family
of smooth kernels [22].

We also give faster query times for the non-private setting for the Gaussian, exponential,
and Cauchy KDEs. Interestingly, our improvements for the non-private setting use tools
designed for our private data structures and are faster in the large d regime.

Theorem 5.0.2 (Informal; see Theorem 5.9.1). For the Gaussian kernel, we improve
prior running time for computing a non-private KDE query with additive error α from
Õ
(

d
ε2α0.173+o(1)

)
to Õ

(
d+ 1

ε2α2.173+o(1)

)
. Similarly for the exponential kernel, the improvement

in the query time is from Õ
(

d
ε2α0.1+o(1)

)
to Õ

(
d+ 1

ε2α2.1+o(1)

)
. The preprocessing time of both

algorithms is asymptotically the same as in prior works.

Discussion of Empirical Results. Our experimental results are given in Section 5.10.
We consider three experiments which are representative of our main results. The first setting
demonstrates that our ℓ1 query algorithm is superior to prior state of the art [102] for
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accurately answering distance queries. The error of our algorithm smoothly decreases as ε
increases, but their algorithms always return the trivial estimate of 0. This is due to the
fact that the constants used in their theorem are too large to be practically useful. We also
demonstrate that our novel dimensionality reduction results can be applied black-box in
conjunction with any prior DP-KDE algorithm, leading to savings in both data structure
construction time and query time, while introducing negligible additional error.

Lastly, we explore an application to DP classification on the CIFAR-10 dataset. The
standard setup is to train a private classification model on the training split (viewed as
the private dataset), with the goal of accurately classifying the test split [72, 203]. Our
methodology is simple, fast, and does not require a GPU: we simply instantiate a private
similarity data structure for each class and assign any query to the class which it has the
highest similarity to (or smallest distance if f is a distance). We set f to be ℓ22 since it has
arguably the simplest algorithm. In contrast to prior works, our methodology involves no
DP-SGD training. For comparable accuracy, we use > 3 orders of magnitude less runtime
compared to prior baselines [72, 203].

5.1 Technical Overview

At a high level, all of our upper bounds crucially exploit fundamental ‘low-dimensionality
structures’ present in the f ’s that we consider. For different f ’s, we exploit different ‘low-
dimensional’ properties, elaborated below, which are tailored to the specific f at hand.
However, we emphasize that the viewpoint of ‘low-dimensionality’ is the extremely versatile
tool driving all of our algorithmic work. We provide the following insights into the low-
dimensional properties used in our upper bounds.

Distance Queries via One-dimensional Decompositions. For the ℓ1 distance function,
our improvements are obtained by reducing to the one-dimensional case. To be more precise,
we use the well-known property that

∑
x∈X ∥x− y∥1 =

∑d
j=1

∑
x∈X |xj − yj|. In other words,

the sum of ℓ1 distances decomposes into d one-dimensional sums (this is also true for other
related functions such as ℓpp). This explicit low-dimensional representation offers a concrete
avenue for algorithm design: we create a differentially private data structure for each of the
d one-dimensional projections of the dataset. In one dimension, we can employ many classic
and efficient data structure tools. Furthermore, using metric embedding theory (Theorem
2.0.2), we can also embed ℓ2 into ℓ1 using an oblivious map, meaning that any algorithmic
result for ℓ1 implies similar results for ℓ2 as well.

Kernels via New Dimensionality Reduction Results. For kernels such as Gaussian,
exponential, and Cauchy, we obtain novel dimensionality reduction results. Our results show
that KDE values are preserved if we project both the dataset and the queries to a suitably
low dimension via an oblivious, data-independent linear map. Our dimensionality reduction
schemes are automatically privacy-respecting: releasing an oblivious, data-independent ma-
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trix leaks no privacy. Our results also have implications for non-private KDE queries and
give new state-of-the-art query times.

To obtain our new dimensionality reduction bounds, we analyze Johnson-Lindenstrauss
(JL) matrices for preserving sums of kernel values. The main challenge is that kernel functions
are non-linear functions of distances, and preserving distances (as JL guarantees) does not
necessarily imply that non-linear functions of them are preserved. Furthermore, JL-style
guarantees may not even be true. JL guarantees that distances are preserved up to relative
error when projecting to approximately O(log n) dimensions [119], but this is not possible
for the kernel values: if ∥x− y∥2 is extremely large, then after applying a JL projection G,
∥Gx−Gy∥2 can differ from ∥x− y∥2 by a large additive factor ∆ (even if the relative error is
small) with constant probability, and thus e−∥Gx−Gy∥2 = e−∆ · e−∥x−y∥2 does not approximate
e−∥x−y∥2 up to relative error.

We overcome these issues in our analysis by noting that we do not require a relative error
approximation! Even non-private KDE data structures (such as those in Table 2.1) already
incur additive errors. This motivates proving additive error approximation results, where the
additive error from dimensionality reduction is comparable to the additive error incurred by
existing non-private KDE data structures. We accomplish this via a careful analysis of the
non-linear kernel functions and show that it is possible to project onto a constant dimension,
depending on the additive error, which is independent of the original dataset size n or original
dimensionality d.

Theorem 5.1.1 (Informal; see Theorems 5.6.2 and 5.8.2). Consider the Gaussian and expo-
nential kernels. For any α ∈ (0, 1), projecting the dataset and query to Õ(1/α2) dimensions
using an oblivious JL map preserves the KDE value up to additive error α. For the Cauchy
kernel, projecting to O(1/α2) dimensions preserves the KDE value up to multiplicative 1 + α
factor.

We note that variants of ‘dimensionality reduction’ have been studied for Gaussian kernels,
most notably via coresets which reduce the dataset size (one can then correspondingly reduce
the dimension by projecting onto the data span; see [143, 161]). However, these coresets
are data-dependent and it is not clear if they respect DP guarantees. On the other hand,
our results use random matrices that do not leak privacy. Lastly, our analysis also sheds
additional light on the power of randomized dimensionality reduction beyond JL for structured
problems, complementing a long line of recent works [33, 39, 56, 68, 114, 146, 156].

Smooth Kernels via Function Approximation Theory. For DP-KDE, we also exploit
low-dimensional structures via function approximation, by approximating kernels such as

1
1+∥x−y∥2 in terms of exponential functions. To be more precise, for h(x, y) = ∥x−y∥2, ∥x−y∥22,
and ∥x − y∥1, Corollary 5.7.2 allows us to express 1

1+h(x,y)
≈
∑

j∈J wje
−tjh(x,y) for explicit

parameters tj, wj. The corollary follows from a modification of results in approximation theory,
see Section 5.7. This can be viewed as projecting the kernel onto a low-dimensional span of
exponential functions, since only |J | = Õ(1) terms in the sum are required. We can then
benefit from already existing KDE data structures for various kernels involving exponential
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functions, such as the exponential kernel! Hence, we obtain new private KDE queries for
a host of new functions in a black-box manner. The fact that |J | (the number of terms in
the sum) is small is crucial, as instantiating a differentially private KDE data structure for
each j ∈ [J ] does not substantially degrade the privacy guarantees or construction and query
times. This reduction is detailed in Section 5.7.

5.1.1 Outline of the Chapter

Our ℓ1 algorithm in one dimension is in Section 5.3. It contains the main ideas for the
high-dimensional ℓ1 algorithm, given in Section 5.3.1. Section 5.4 states our lower bounds
for the ℓ1 distance function. Applications of our ℓ1 upper bound, such as for ℓ2 and ℓpp, are
given in Section 5.5. Our improved DP bounds for the exponential and Gaussian kernels are
given in Section 5.6. Section 5.8 contains improved DP results for smooth kernels (such as
Cauchy kernels). Our function approximation theory reduction is presented in Section 5.7.
Section 5.9 contains our improved KDE query bounds in the non-private setting. Finally,
in Section 5.10, we empirically verify our upper bound algorithms and give applications to
private classification.

5.2 Related Work

We use the standard definition of differential privacy [76], given in Definition 5.0.1. We survey
the most relevant prior works. We write guarantees in terms of the expected error for any
fixed query. These algorithms, and ours, can easily be converted to high-probability results
by taking the median of multiple (logarithmic many) independent copies. The theorem
statement below pertains to the distance functions ∥x− y∥1. It is stated for the case where
all the dataset points and queries are in the box [0, 1]d, but easily extend to a larger domain
by scaling.

Theorem 5.2.1 ([102]). Assume the dataset and query points are contained in [0, 1]d. There
exists an algorithm which outputs an ε-DP data structure for the function ∥x− y∥1 with the
following properties: (1) the expected additive error is Õ

(
n1/3d7/3

ε2/3

)
, (2) the construction time

is O
(
n8/3ε2/3d2/3

)
, (3) the space usage is O

(
n2/3ε2/3

d1/3

)
, (4) and the query time is O(d).

[102] also obtained results for ℓ2 with additive errors containing factors of n and d as
shown in Table 5.1. The construction times and query times in the result below are not
explicitly stated in [102], but they are likely to be similar to that of Theorem 5.2.1.

Theorem 5.2.2 ([102]). Assume the dataset and query points are contained in the ℓ2 ball of
diameter 1. There exists an algorithm which outputs an ε-DP data structure for the distance
function f(x, y) = ∥x− y∥2 such that the expected additive error is Õ

(
n15/17d7/17

ε2/17

)
.
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The result of [192] concerns private KDE constructions for the exponential (e−∥x−y∥2),
Gaussian (e−∥x−y∥22), and Laplace (e−∥x−y∥1) kernels.

Theorem 5.2.3 ([192]). Let α ∈ (0, 1) and suppose n ≥ Ω
(

1
αε2

)
. For h(x, y) = ∥x −

y∥2, ∥x−y∥22, or ∥x−y∥1, there exists an algorithm which outputs an ε-DP data structure for
f(x, y) = e−h(x,y) with the following properties: (1) the expected additive error is at most α,
(2) the query time is O

(
d
α2

)
, the construction time is O

(
nd
α2

)
, and the space usage is O

(
d
α2

)
.

Earlier works such as the mechanisms in [7, 38, 91] also study or imply results for DP-KDE.
However, many suffer from drawbacks such as exponential dependency on d for running time.
The results of [192] were shown to be superior to such prior methods (see therein for more
discussions), so we only compare to the current state of the art DP KDE results from [192].

Other Works on Distance Estimation [81] give lower bounds for additive errors of
private algorithms which approximate the k-median cost function, which is related to the ℓ1
distance query. However, their lower bound only applies to coresets specifically, whereas our
lower bounds hold for any private mechanism. There have also been recent works designing
scalable algorithms for computing distance functions in the non-private setting; see [109] and
references therein.

Generic Private Queries. We refer the reader the the excellent survey of [190] and
references therein for an overview of algorithms and discussions for broad classes of queries
for private datasets. Lastly, we note that dimensionality reduction has been studied in
differential privacy in non-KDE contexts in [37, 178]; see the references therein for further
related works.

5.3 ℓ1 Distance Query

We construct a private data structure for answering ℓ1 distance queries in one dimension. As
an overview, the general high-dimensional case, given in Section 5.3.1, can be handled as
follows: create a collection of d one-dimensional data structures, constructed on the standard
coordinate projections of the dataset. We now describe our one-dimensional algorithm. For
the sake of simplicity, let us assume for now that all dataset points are integer multiples of
1/n in [0, 1]. This holds without loss of generality as shown later. Furthermore, let us also
instead consider the slightly different interval query problem. Here we are given an interval
I ⊂ R as the query, rather than a point y, and our data structure outputs |I ∩X|. We can
approximate a distance query at any y by asking appropriate interval queries I, for example
geometrically increasing intervals around the query point y.

To motivate the algorithm design, let us additionally ignore privacy constraints for a
moment. We use the classic binary tree in one dimension: its leaves correspond to the integer
multiples of 1/n in [0, 1] and store the number of dataset points in that particular position,
while internal nodes store the sum of their children. It is well-known that any interval query
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I can be answered by adding up the values of only O(log n) tree nodes. To handle privacy,
we release a noisy version of the tree. We note that changing any data point can only change
O(log n) counts in the tree, each by at most one (the leaf to root path). This bounds the
sensitivity of the data structure. The formal algorithm and guarantees are stated below.
Before presenting them, we make some simplifications which hold without loss of generality.

Remark 5.3.1 (Simplifications). (1) We scale all dataset points from [0, R] to [0, 1] by
dividing by R. We also scale y. We can undo this by multiplying our final estimate by R. (2)
After scaling, we assume y ∈ [0, 1]. If y is outside [0, 1], for example if y ≥ 1, we can just
instead query 1 and add n(y − 1) to the final answer, since all dataset points are in [0, 1].
This does not affect the approximation. (3) Lastly, we round all points to integer multiples
of 1/n, introducing only O(R) additive error.

Algorithm 4 Pre-processing data structure
1: Input: A set X of n numbers in the interval [0, 1], privacy parameter ε
2: Output: An ε-DP data structure
3: procedure Preprocess
4: Round every dataset point to an integer multiple of 1/n
5: Compute the counts of the number of dataset points rounded to every multiple of

1/n
6: Build a balanced binary tree T where internal nodes store the sum of the counts of

their children and leaf nodes store the counts of the multiples of 1/n
7: Independently add noise drawn from Laplace(η) where η = O(log(n)/ε) to every

count
8: Return tree T
9: end procedure

Algorithm 5 Interval Query
1: Input: Tree T , interval Q ⊆ [0, 1]
2: procedure NoisyCount
3: Round the endpoints of Q to the closest multiple of 1/n
4: Break Q up into the smallest number of contiguous and disjoint pieces such that there

is a node in T representing each piece ▷ At most O(log n) pieces are required
5: Return the sum of the counts in each of the nodes in T computed above
6: end procedure

Lemma 5.3.1. The tree T returned by Algorithm 4 is ε-DP.

Proof. We can encode the tree T as a vector in dimension O(n). Changing one input data
point only changes O(log n) entries of this vector, each by 1, thus the sensitivity of T is
O(log n). Adding coordinate-wise Laplace noise of magnitude η = O(log(n)/ε) suffices to
ensure ε-DP using the standard Laplace mechanism.
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Algorithm 6 One dimensional Distance Query
1: Input: data structure T from Algorithm 4, query y ∈ [0, 1], accuracy parameter α ∈

(0, 1).
2: procedure DistanceQuery
3: Round y to the closest integer multiple of 1/n
4: Value ← 0
5: for j = 0, 1, ..., O(log(n)/α) do
6: Qj ←

[
y + 1

(1+α)j+1 , y +
1

(1+α)j

)
▷ This will consider the points to the right of y

7: Value ← Value + NoisyCount(Qj) · 1
(1+α)j

8: end for
9: Repeat the previous loop for intervals to the left of y

10: Return Value
11: end procedure

We now analyze the utility of the algorithm.

Theorem 5.3.2. Suppose X ⊆ [0, R] is a dataset of n numbers in one dimension. Let
α ∈ (0, 1) be the accuracy parameter used in Algorithm 6. Let A be the output of Algorithm
6 and let A′ =

∑
x∈X |y − x| be the true distance query value. Then we have E |A − A′| ≤

αA′ + Õ
(

R
ε
√
α

)
.

Proof. For simplicity, we only consider the distance query to the points in X to the right of y.
The identical proof extends to the symmetric left case. We also work under the simplifications
stated in Remark 5.3.1. They only affect the additive error by at most O(R). For an interval
Q, define TrueCount(Q) to be the true value |Q ∩X|. Let

Estimate1 =
∑
j≥0

1

(1 + α)j
· TrueCount(Qj) and A′ =

∑
j≥0

∑
x∈X∩Qj

|y − x|.

First, we know that |Estimate1 − A′| ≤ α · A′, as for all j, the distanced between y and
different points x ∈ X ∩Qj only differ by a multiplicative (1 + α) factor. Thus, it suffices to
show the output as returned by Algorithm 6, i.e. A, differs from Estimate1 by Õ

(
1

ε
√
α

)
. Let

NoisyCount(Q) denote the interval query answer returned by our noised-tree via Algorithm
5. Algorithm 6 outputs A =

∑
j≥0

1
(1+α)j

· NoisyCount(Qj). We wish to bound

|Estimate1 − A| ≤

∣∣∣∣∣∑
j≥0

1

(1 + α)j
· (TrueCount(Qj)− NoisyCount(Qj))

∣∣∣∣∣ .
Note that Zj := TrueCount(Qj)− NoisyCount(Qj) is equal to the sum of at most O(log n)
Laplace random variables, each with parameter O((log n)/ε). This is because we compute all
noisy counts by accumulating the counts stored in the individual nodes in T corresponding
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to Qj. We only query O(log n) nodes for any Qj and each node has independent noise
added. Thus, EZj = 0 and Var

[
Zj · 1

(1+α)j

]
≤ Õ(1)

ε2
· 1
(1+α)2j

. In addition, the Zj’s are also
independent of each other since the intervals Qj’s are disjoint, meaning we query disjoint
sets of nodes in the tree for different Qj’s. Hence,

Var

[∑
j≥0

1

(1 + α)j
· Zj

]
≤ Õ(1)

ε2
·
∑
j≥0

1

(1 + α)2j
≤ Õ(1)

αε2
, (5.1)

meaning with large constant probability, say at least 0.999, the quantity |Estimate1−A| is at
most Õ(1)/(ε

√
α) by Chebyshev’s inequality. A similar conclusion also holds in expectation

since for any centered random variable W , E |W | ≤
√

Var(W ). We recover our desired
statement by multiplying through by R to undo the scaling.

5.3.1 High-Dimensional ℓ1 Query

Algorithm 6 automatically extends to the high dimensional case due to the decomposability
of the ℓ1 distance function. Indeed, we simply instantiate d different one-dimensional distance
query data structures, each on the coordinate projection of our private dataset. The algorithm
is stated below. For simplicity, we state both the preprocessing and query algorithms together.

Algorithm 7 High-dimensional ℓ1 distance query

1: Input: Set X of n d-dimensional points in the box [0, R]d, privacy parameter ε, multi-
plicative accuracy parameter α, query y

2: procedure ℓd1 Query
3: Instantiate d different one-d data structures D1, . . . ,Dd. Di is the output of Algorithm

4 on the ith coordinate projections of X. Each data structure is ε/d-DP ▷ Preprocessing
Stage

4: Return The sum of outputs when Di is queried on yi for every i ▷ Query Stage
5: end procedure

Our result is stated in Theorem 5.3.4, which is a corollary of Lemma 5.3.1, Theorem 5.3.2,
and the following advanced composition theorem of [77].

Theorem 5.3.3 (Advanced Composition Starting from Pure DP [77]). Let M1, . . . ,Mk :
X n → Y be randomized algorithms, each of which is ε-DP. Define M : X n → Yk by
M(x) = (M1(x), . . . ,Mk(x)) where each algorithm is run independently. Then M is (ε′, δ)-
DP for any ε, δ > 0 and

ε′ =
kε2

2
+ ε
√

2k log(1/δ).

For δ = 0, M is kε-DP.
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Theorem 5.3.4. Let A be the output of Algorithm 7. Let A′ =
∑

x∈X ∥y − x∥1 be the true
answer. We have E |A− A′| ≤ αA′ + Õ

(
Rd1.5

ε
√
α

)
. Furthermore, Algorithm 7 is ε-DP.

Proof. The ε-DP guarantee follows from standard DP composition results (Theorem 5.3.3),
so it remains to argue about the approximation guarantee. Let Ai be the estimate returned by
Di and let A′

i be the true answer in the ith dimension. Note that A′ =
∑

i A
′
i and A =

∑
i Ai.

Naively applying Theorem 5.3.2 gives us additive error Õ(Rd2/(ε
√
α)). However, we can

exploit the fact that the data structures in the individual dimensions are using independent
randomness to get a better bound.

Let us inspect the proof of Theorem 5.3.2. Let Zi
j be the variables Zj used in the proof of

Theorem 5.3.2 for coordinate i. Similar to the proof of Theorem 5.3.2, we can note that the
error incurred by our estimate among all coordinates, can be upper bounded by the absolute
value of

∑
j

1
(1+α)j

(∑
i Z

i
j

)
, where each Zi

j are independent across i and j and are each the
sum of at most O(log n) different Laplace O((log n)/ε) random variables. The variance of
each individual dimension is given by Equation 5.1 (with ε scaled down by ε/d), i.e., it is of
the order Õ(d2)/(αε2). The total variance across d copies is then Õ(d3)/(αε2). Finally, the
same calculations as the proof of Theorem 5.3.2 imply an additive error of the square root
of this quantity, namely Õ(d1.5)/(

√
αε).

If we relax the privacy guarantees to approximate DP, we can get a better additive error,
matching the additive error term in the lower bound of Theorem 5.4.2 (note however that
Theorem 5.4.2 is a lower bound on pure DP algorithms, not approximate DP).

Theorem 5.3.5. Let δ > 0 and A be the output of Algorithm 7 where every one dimen-
sional algorithm is instantiated to be (cε/

√
d log(1/δ))-DP for a sufficiently small constant

c independent of all parameters. Let A′ =
∑

x∈X ∥y − x∥1 be the true answer. We have

E |A − A′| ≤ αA′ + Õ

(
Rd
√

log(1/δ)

ε
√
α

)
. Furthermore, Algorithm 7 is (ε, δ)-DP assuming

ε ≤ O(log(1/δ)). Õ hides logarithmic factors in n.

Proof. The same proof as Theorem 5.3.4 applies, but instead we use the approximate DP
advanced composition result 5.3.3, and an appropriately smaller noise parameter in Algorithm
4.

5.4 Lower Bounds for ℓ1Distance Queries

First we obtain lower bounds for the one-dimensional case, which is then extended to the
arbitrary dimensional case. Recall the definition of the dimensional distance query problem:
Given a dataset X of n points in the interval [0, R], an algorithm outputs a data structure
which given query y ∈ R, computes the value

∑
x∈X |x − y|. Our lower bound idea is via

the ‘packing lower bound’ technique used in DP [34, 96, 191]. At a high level, we construct
many datasets which differ on very few points. By the restrictions of DP, the ℓ1 distance
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queries on these datasets must be similar, since they are all ‘nearby’ datasets. However, our
construction will ensure that these different datasets result in vastly different true ℓ1 distance
queries for a fixed set of queries. This implies a lower bound on the additive error incurred
from the privacy requirements.

Theorem 5.4.1. For sufficiently large n and any ε < 0.2 , any ε-DP algorithm which outputs
a data structure such that with probability at least 2/3, the distance query problem is correctly
answered on any query y with additive error at most T , must satisfy T = Ω(R/ε).

Proof. Let T be the additive error of an algorithm A as described in the theorem statement.
Our goal is to show that we must have T ≥ Ω(R/ε). Note that crucially we know the value
of T . Since the purported algorithm outputs an ε-DP data structure, we use the value of T
to design a ‘hard’ instance for the algorithm.

Let α ∈ [0, 1] be a parameter. Define 2R
1−α different datasets as follows: we first put

markers in the interval [0, R] at locations kRα for all 0 ≤ k ≤ R1−α. At every marker besides
0, we either put 0 or γ := ⌈ 3T

Rα ⌉ data points, and consider all such possible choices. The rest
of the data points are put at location 0. For sufficiently large n, this results in the claimed
number of datasets.

Now for every such dataset D, define the function fD : R→ R defined as

fD(y) =
∑
x∈D

|x− y|.

We claim that the (exact) vector of evaluations

[fD(0), fD(R
α), fD(2R

α), . . . , fD(R), fD(R +Rα)]

uniquely determines D. Indeed, fD is a piece wise linear function consisting of at most
R1−α + 2 pieces. Its slopes can only change precisely at the locations kRα. Thus, exactly
calculating fD((k+1)Rα)−fD(kRα) gives us the exact values of the slopes, and thus allows us
to reconstruct the piece wise linear functions that comprise fD. Correspondingly, this allows
us to determine which markers contain a non zero (i.e. γ) number of points, reconstructing
D.

The second claim is that the vector of evaluations with entry wise additive error at most
T allows for the exact reconstruction of the vector of evaluations. This follows from the fact
that the exact evaluation values are multiples of γRα and the additive error is small enough
to determine the correct multiple. Formally, we have that T < 1

2
γRα and since each fD(kR

α)
is a multiple of γRα, any entry of a noisy evaluation vector with additive error at most T
can be easily rounded to the correct value, as it lies closest to a unique multiple of γRα.

Now the rest of the proof proceeds via the ‘packing’ argument for proving lower bounds
in differential privacy. Let Q be the queries defined above and let PD be the set of allowable
vectors of evaluations (i.e. those that achieve entry wise error of at most T ) for dataset D
on Q. As argued above, the probability that A on dataset D outputs a vector in PD is at
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least 2/3, and all these sets PD are disjoint as argued above. Furthermore, all datasets differ
in at most

γR1−α ≤ 3TR1−2α +R1−α

data points. Let D′ be the dataset with all points at 0. Group privacy gives us

1 ≥
∑
D

Pr(A(D′, Q) ∈ PD)

≥
∑
D

e−(3TR1−2α+R1−α)ε · Pr(A(D,Q) ∈ PD)

≥
∑
D

2

3
e−(3TR1−2α+R1−α)ε

≥ 2R
1−α · 2

3
e−(3TR1−2α+R1−α)ε.

It follows that

3TR1−2α +R1−α ≥ log(2)R1−α

ε
+

log(2/3)

ε
=⇒ T ≥ log(2)Rα

3ε
+

log(2/3)

3εR1−2α
− Rα

3
.

Taking α→ 1, we can check that for ε ≤ 0.2, T ≥ 0.02R/ε = Ω(R/ε), as desired.

Let us now extend the lower bound to d dimensions. Recall the problem we are interested
in is the following: Given a dataset X of n points in Rd with every coordinate in the
interval [0, R], give an algorithm which outputs a data structure, which given a query y ∈ Rd,
computes the value

∑
x∈X ∥x − y∥1. The goal is to prove that ≈ Rd/ε additive error is

required for answering queries of this form. For a vector v, let v(j) denote its jth coordinate.

Theorem 5.4.2. For sufficiently large n and R as a function of d and sufficiently small
constant ε, any ε-DP algorithm which outputs a data structure which with probability at least
2/3 answers the above query problem for any query with additive error at most T , must
satisfy T = Ω̃(Rd/ε).

Proof. We reduce the 1 dimensional version of the problem to the d dimensional version which
allows us to use the lower bound of Theorem 5.4.1. Pick α such that (Rd)α = Rd/ log(Rd) and
suppose R satisfies R ≥ 2Cd for a sufficiently large constant C. Furthermore, assume that R
is an integer multiple of Rα. Now consider the lower bound construction from Theorem 5.4.1
where the parameter ‘R’ there is replaced by Rd and α is as stated. Theorem 5.4.1 implies
that an ε-DP data structure which with probability at least 2/3 correctly answers any distance
query for a one dimensional input y must have additive error at least Ω((Rd)α/ε) = Ω̃(Rd/ε).
We will now show how to simulate any one dimensional query y on this lower bound instance
with one d dimensional query on a related d dimensional instance.

To construct the d dimensional instance, consider the interval [0, Rd] as d different blocks,
separated by integer multiples of R as [0, R), [R, 2R), . . . etc. Note that in the one dimensional
hard instance we are considering from Theorem 5.4.1, we can always ensure that every one
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of these d blocks contains the same number of points (For example by only considering such
‘balanced’ allocations of dataset constructions in the marker construction from 5.4.1. Due to
our choice of R and α, it is easy to see that the number of such balanced allocations is at
least 2Θ((Rd)1−α)). Let X1 be this one dimensional dataset and let n′ be the number of (one
dimensional) points that are contained within each block. Consider the d dimensional dataset
on n′ points where the (one dimensional) points in the first block are the first coordinate
projections of the dataset and in general, the points in the ith block are the ith coordinate
projections of the dataset. Since every block has the same number of points, we can construct
such a dataset which is consistent with respect to these coordinate projections1. Denote this
dataset by Xd. For a one dimensional query y, make a vector ŷ ∈ Rd which just has y copied
in all its coordinates.

We have ∑
x∈X1

|y − x| =
∑

blocks b

∑
x∈b

|y − x|

=
d∑

j=1

∑
x∈Xd

|x(j)− ŷ(j)|

=
∑
x∈Xd

∥x− ŷ∥1.

Thus, the exact value of the single d dimensional query we have constructed is equal to the
exact value of the one dimensional query we are interested in. This reduction immediately
implies that any ε-DP data structure which with probability at least 2/3 answers all d
dimensional queries with additive error at most T must satisfy T = Ω̃(Rd/ε), as desired.

Remark 5.4.1. The lower bound is slightly stronger than stated since we only assume the
query vectors have their one dimensional coordinates bounded by Õ(R).

Remark 5.4.2. There is a gap between our upper and lower bounds. Our ε-DP data structure
has a O(d1.5) dependency whereas the lower bound we prove only states Ω(d) dependency is
required. Note that our approx-DP result of Theorem 5.3.5 has only O(d) dependency, but
the lower bound we proved only applies to pure DP algorithms. It is an interesting question
to close this gap between the upper and lower bounds.

5.5 Corollaries of Our ℓ1 data structure

Our high dimensional ℓ1 distance query result implies a multitude of downstream results for
other distances and functions. For example, it automatically implies a similar result for the
ℓ2 case via a standard oblivious mapping from ℓ2 to ℓ1. A similar procedure was applied in

1Note there are many ways to assign the coordinate projections to the points in Rd. We can just consider
one fixed assignment.
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[102], but using our version of the ℓ1 distance query obtains superior results for the ℓ2 case.
The guarantees of the mapping is stated in Theorem 2.0.2.

The mapping T given by Theorem 2.0.2 is oblivious to the private dataset and can be
released for free without any loss in privacy, and the distances are preserved up to a 1 + α
multiplicative error if we take k = O(log(n) log(1/α)/α2) for a dataset of size n.

Corollary 5.5.1. Let X be a private dataset of size n with a bounded diameter of R in ℓ2.
There exists an ε-DP data structure such that for any fixed query y, with probability 99%, it
outputs Z satisfying

∣∣Z −∑x∈X ∥x− y∥2
∣∣ ≤ α

∑
x∈X ∥x− y∥2 + Õ

(
R

α1.5ε

)
.

Proof. We sketch the argument since it is follows from a combination of the prior listed
results. We just apply the embedding result of Theorem 2.0.2 as well as the guarantees of
our ℓ1 distance query data structure from Theorem 5.3.4. The only thing left to check is
the bounds of the individual coordinates after we apply the embedding. Note that with
high probability, every coordinate after applying T will be bounded by Õ(Rα2).2 The bound
follows by just plugging into the statement of Theorem 5.3.4.

Note that minor modifications to the one dimensional ℓ1 algorithm also implies the
following:

Corollary 5.5.2. Let p ≥ 1 and suppose all points in our one-dimensional datasets are in
the interval [0, R]. Let Z be the output of Algorithm 6 but with α scaled down by a factor of
p and all counts weighted instead by (R/(1 + α/p)j)p in Lines 8 and 13 of Algorithm 6. Let
Z ′ =

∑
x∈X |y − x|p be the true answer. We have E |Z − Z ′| ≤ αZ ′ + Õ

(
Rp log(1/p)

ε
√
α

)
.

The higher dimensional version also follows in a similar manner to Theorem 5.3.4 due to
the decomposability of ℓpp :

∑
x∈X ∥x− y∥pp =

∑d
j=1

∑
x∈X |x(j)− y(j)|p.

Corollary 5.5.3. Let Z be the output of Algorithm 7 but with modifications made as in
Corollary 5.5.2. Let Z ′ =

∑
x∈X ∥y − x∥pp be the true answer. We have, E |Z − Z ′| ≤

αZ ′ + Õ
(

Rpd1.5 log(1/p)
ε
√
α

)
. Furthermore, Algorithm 7 is ε-DP. Similarly to Theorem 5.3.5, we

can get an (ε, δ)-DP algorithm satisfying E |Z − Z ′| ≤ αZ ′ + Õ

(
Rpd
√

log(p/δ)

ε
√
α

)
.

5.5.1 An alternate algorithm for ℓ22
We give an alternate, simpler algorithm, with slightly better guarantees than our general ℓpp
result.

Corollary 5.5.4. There exists an ε-DP algorithm which answers the ℓ22 distance query with
additive error O

(
R2d
ε

)
in expectation and requires O(d) query time.

2We need to clip the the coordinates of the embedding output so that every coordinate lies in the correct
range. But this event happens with high probability, so it does not affect the distance-preserving guarantees.
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Proof. The following identity holds:∑
x∈X

∥x− y∥22 =
∑
x∈X

∥x− EX∥22 + n∥y − EX∥22

where EX = 1
n

∑
x∈X x. Note that the first quantity

∑
x∈X ∥x − EX∥22 is a scalar which

does not depend on the query y. Thus, an alternate ε-DP algorithm in the ℓ22 case is to first
release a (noisy) version of

∑
x∈X ∥x− EX∥22 as well as a noisy EX.

If all coordinates are in [0, R], then changing one data point can change every coordinate
of EX by a R/n factor. Analyzing

∑
x∈X ∥x−EX∥22 is a bit trickier since changing one data

point changes a term in the sum as well as EX. Let z denote the new mean after changing
one data point in X and let EX denote the old mean. We have∑

x∈X

∥x− z∥22 =
∑
x∈X

∥x− EX + EX − z∥22

=
∑
x∈X

(
∥x− EX∥22 + 2⟨x− EX,EX − z⟩+ ∥EX − z∥22

)
.

Now n∥EX − z∥22 ≤ O(R2d/n) and∑
x∈X

2|⟨x− EX,EX − z⟩| ≤ 2
∑
x∈X

∥x− EX∥2 · ∥z − EX∥2 ≤ O(R2d).

Thus, the simple Laplacian mechanism of adding Laplace(O(R2d/ε)) and releasing the
value of

∑
x∈X ∥x − EX∥22 ensures ε/2-DP. Then we can release the vector EX by adding

Laplace(O(Rd/(nε))) noise to every coordinate, to also ensure ε/2-DP. Overall, the algorithm
is ε-DP. To analyze the error, note that we get additive error O(R2d/ε) from the noisy value∑

x∈X ∥x−EX∥22. Assuming n is sufficiently large, we can easily repeat a calculation similar
to above which shows that the overall additive error is at most O(R2d/ε) in expectation.
Indeed, letting z denote the noisy mean we output, we have∣∣∥y − z∥22 − ∥y − EX∥22

∣∣ ≤ 2∥y − z∥2 · ∥z − EX∥2 + ∥z − EX∥22,

from which the conclusion follows.

5.6 Improved Bounds for the Exponential and Gaussian
Kernels

In this section we provide our bounds for the exponential and Gaussian kernels, improving
the query time of the result of [192] stated in Theorem 5.2.3.

Theorem 5.6.1. Let α ∈ (0, 1) and suppose n ≥ O
(

1
αε2

)
. For h(x, y) = ∥x − y∥2 and

∥x − y∥22, there exists an algorithm which outputs an ε-DP data structure for the kernel
f(x, y) = e−h(x,y) with the following properties:
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1. The expected additive error is α,

2. The query time is Õ
(
d+ 1

α4

)
,

3. The construction time is Õ
(
nd+ n

α4

)
,

4. and the space usage is Õ
(
d+ 1

α4

)
.

Note that our bound improves upon [192] in the large dimension regime d ≫ 1/α2, by
disentangling the factors of d and 1/α. We prove this via a general dimensionality reduction
result, which maybe of general interest. Note that our dimensionality reduction result also
implies improved bounds for KDE queries in the non-private setting as well, as elaborated
in Section 5.9.

5.6.1 Dimensionality Reduction for Gaussian KDE

We obtain general dimensionality reduction results for the Gaussian and exponential KDE,
using variants of the Johnson-Lindenstrauss (JL) transforms. See 5.1 for an overview and
motivations.

Theorem 5.6.2 (Dim. Reduction for Gaussian and exponential kernels). Let G : Rd →
RO(log(1/α)/α2) be the standard Gaussian JL projection where α < 1 is a sufficiently small
constant. Fix a query y ∈ Rd. Let

z =
1

|X|
∑
x∈X

f(x, y),

ẑ =
1

|X|
∑
x∈X

f(Gx,Gy)

for f(x, y) = e−∥x−y∥2 or f(x, y) = e−∥x−y∥22. Then, E |z − ẑ| ≤ α.

As stated, Theorem 5.6.2 requires a projection matrix of dense Gaussian random variables,
making the projection time Õ(d/α2). We can speed this up by using the fast JL transform
of [6], which only requires Õ(d + 1/α2) time, a significant speedup in the case where the
original dimension d is large.

Corollary 5.6.3. The same guarantees as in Theorem 5.6.2 holds if we use the fast JL
transform and project to O(log(1/α)2/α2) dimensions.

In the proof of Theorem 5.6.2, we use the following facts about a standard Johnson-
Lindenstrauss (JL) projection using Gaussians:

Lemma 5.6.4 ([107, 156]). Let x be a unit vector in Rd and let G be an (appropriately
scaled) Gaussian random projection to k dimensions. Then for t > 0:

Pr(|∥Gx∥ − 1| ≥ t) ≤ e−t2k/8,
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and

Pr(∥Gx∥ ≤ 1/t) ≤
(
3

t

)k

.

Proof of Theorem 5.6.2 . We give the full proof for f(x, y) = e−∥x−y∥2 . Carrying out the
identical steps with very minor modifications also implies the same statement for f(x, y) =
e−∥x−y∥22 , whose details are omitted. Fix a x ∈ X. We calculate E |f(x, y)− f(Gx,Gy)| (note
the randomness is over G). We consider some cases, depending on the value of f(x, y).

Case 1: f(x, y) ≤ α. In this case, if ∥Gx − Gy∥2 ≥ ∥x − y∥2, then f(Gx,Gy) ≤ α, so the
additive error |f(x, y) − f(Gx,Gy)| ≤ α. Thus, the only relevant event is if the distance
shrinks, i.e., ∥Gx − Gy∥2 ≤ ∥x − y∥2. If f(Gx,Gy) ≤ 3α after the projection, then the
additive error |f(x, y) − f(Gx,Gy)| ≤ O(α). Thus, we just have to consider the event
f(Gx,Gy) > 3α.

For this to happen, we note that ∥x − y∥2 ≥ log(1/α), but ∥Gx − Gy∥2 ≤ log(α−1/3).
Thus, the distance has shrunk by a factor of

∥x− y∥2
∥Gx−Gy∥2

≥ logα−1

log(α−1/3)
=

log(3) + log(α−1/3)

log(α−1/3)
= 1 +

log(3)

log(α−1/3)
.

By setting k = O(log(1/α)3) and t = O(1/ log(1/α)) in Lemma 5.6.4, the probability of this
event is at most α, meaning the expected additive error E |f(x, y)− f(Gx,Gy)| can also be
bounded by α.

Case 2: f(x, y) > α. This is a more involved case, as we need to handle both the sub-cases
where the distance increases and decreases. Let f(x, y) = r > α.

Sub-case 1: In this sub-case, we bound the probability that f(Gx,Gy) ≤ r − α/2. The
original distance is equal to log(1/r) and the new distance is at least log((r − α/2)−1). The
ratio of the new and old distances is g(r) = log(r − α/2)/ log(r). Writing r = wα/2 for
w ≥ 2, we have

g(r) =
log((w − 1)α/2)

log(wα/2)
=

log((w − 1)/w · wα/2)
log(wα/2)

= 1 +
log(1− 1/w)

log(wα/2)
.

As | log(1 − 1/w)| = Θ(1/w) for w ≥ 2, it suffices to upper bound |w log(wα/2)| in the
interval 2 ≤ w ≤ 2/α. One can check that the upper bound occurs for w = 2/(eα), resulting
in log(1 − 1/w)/ log(wα/2) = Ω(α). Thus by taking k = O(log(1/α)/α2) in Lemma 5.6.4,
the probability that f(Gx,Gy) ≤ r − α/2 is at most α.

Sub-case 2: In this sub-case, we bound the probability that f(Gx,Gy) ≥ r + α/2. Again
the ratio of the old and new distances is at least log(r)/ log(r + α/2). Writing r = wα/2 for
w ≥ 2, we have

log(r)

log(r + α/2)
=

log(wα/2)

log((w + 1)α/2)
= 1 +

log(1− 1/(w + 1))

log((w + 1)α/2)
.
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Thus a similar calculation as above implies that the probability of f(Gx,Gy) ≥ r + α/2 is
at most α by setting k = O(log(1/α)/α2) in Lemma 5.6.4.

Altogether, we have bounded the probability of |f(Gx,Gy)− f(x, y)| ≥ α/2 by at most
α, meaning E |f(Gx,Gy)−G(x, y)| ≤ α, as desired.

Then by linearity and the triangle inequality, it follows that

E |z − ẑ| ≤ 1

|X|
∑
x

E |f(x, y)− f(Gx,Gy)| ≤ 1

|X|
∑
x

O(α) ≤ O(α),

as desired.

We now prove Corollary 5.6.3 where we use the fast JL transform of [6]. However, the
fast JL transform, denoted as Π, does not exactly satisfy the concentration bounds of Lemma
5.6.4. In fact, only slightly weaker analogous concentration results are known. Nevertheless,
they suffice for our purposes. We quickly review the concentration inequalities known for the
fast JL transform and sketch how the proof of Theorem 5.8.2 can be adapted.

Theorem 5.6.5 ([146]). Let Π : Rd → Rm be the fast JL map of [6]. Then for every unit
vector x ∈ Rd, we have:

1. If t ≤ logm√
m

, then

Pr(|∥Πx∥22 − 1| ≥ t) ≤ e−Ω( t2m
logm

).

2. If logm√
m
≤ t ≤ 1, then

Pr(|∥Πx∥22 − 1| ≥ t) ≤ e−Ω(t
√
m).

3. If t ≥ 1, then
Pr(|∥Πx∥22 − 1| ≥ t) ≤ e−Ω(

√
tm).

Proof of Corollary 5.6.3. We sketch the modification needed and everything else is identical
to the proof of Theorem 5.6.2. Going through the proof, we can check that Case 2 is the only
bottleneck that potentially requires a higher projection dimension than Theorem 5.6.2. Here,
we need to set t = α in Theorem 5.6.5 and the first inequality there is relevant. However,
due to the logm factor in the denominator, we require an additional log(1/α) factor in the
projection dimension to achieve the same probability of failure as in the proof of Theorem
5.6.2.

Proof of Theorem 5.6.1. We simply apply our dimensionality reduction result of Corollary
5.6.3 in a black-box manner in conjunction with the data structure of Theorem 5.2.3 from
[192]: First we project the datapoints to dimension Õ(1/α2) and build the data structure on
the projected space. We also release the fast JL projection matrix used which is oblivious
of the dataset so it leaks no privacy. Finally, to compute a KDE query, we also project the
query vector y using the fast JL projection and query the data structure we built in the
lower dimensional space. The construction time, query time, and space all follow from the
guarantees of the fast JL transform [6] and Theorem 5.2.3 from [192].
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5.7 Sparse Function Approximation

We provide details on the function approximation theory, which are later used to obtain our
final results on smooth kernels, which are stated in Section 5.8. We use the fact that a small
number of exponential sums can approximate smooth kernels, enabling us to reduce this case
to prior kernels of Section 5.6. First we recall a classic result.

Theorem 5.7.1 ([171]). Given ε, δ ∈ (0, 1], there exist O(log(1/(ε · δ))) positive numbers
wj, tj > 0, all bounded by O

(
1

ε log(1/δ)

)
, such that for all x ∈ [ε, 1] we have (1 − δ)x−1 ≤∑

j wje
−tjx ≤ (1 + δ)x−1. Furthermore, |wje

−tj | ≤ O(1) for all j.

The theorem implies the following useful corollary.

Corollary 5.7.2. Given α ∈ (0, 1], there exist O(log(1/α)) positive numbers wj, tj > 0, all
bounded by O

(
1

α log(1/α)

)
, such that for all x ≥ 1 we have

∣∣∣∑j wje
−tjx − x−1

∣∣∣ ≤ α.

Proof. Let f(x) be the approximation to x−1 in the interval [α, 1] given by Theorem 5.7.1
for δ = O(α). Now consider g(x) = α · f(αx). For any x ∈ [1, 1/α], we have

|g(x)− x−1| = |α · f(αx)− x−1| ≤ |δ/x| ≤ O(α)

where the first equality follows from the fact that α · x is in the interval [α, 1] for x ∈ [1, 1/α].
Thus, g(x) is an additive O(α) approximation to x−1 in the interval [1, 1/α]. Now since g
and x−1 are both decreasing functions of x, and x−1 ≤ α for x ≥ 1/α, it immediately follows
that g(x) is an O(α) additive error approximation for x−1 for all x ≥ 1 (note the constant
in the O notation has increased). The bounds on the coefficients of g in its exponential sum
representation follows from the guarantees of Theorem 5.7.1.

Using Corollary 5.7.2, we can obtain private KDE data structures for the kernels f(x, y) =
1

1+∥x−y∥2 ,
1

1+∥x−y∥1 ,
1

1+∥x−y∥22
via a black-box reduction to the corresponding private KDE data

structures for the kernels e−∥x−y∥2 , e−∥x−y∥22 , and e−∥x−y∥1 .

Theorem 5.7.3. Let h(x, y) = ∥x− y∥2, ∥x− y∥22, or ∥x− y∥1 and α ∈ (0, 1). Suppose there
exists an algorithm for constructing an ε-DP KDE data structure for the kernel e−h(x,y) on a
given dataset of size n which answers any query with expected additive error α, takes C(n, α)
construction time, Q(n, α) query time, and S(n, α) space, assuming n ≥ L(ε, α).

Then, there exists an ε-DP data structure for answering KDE queries for f(x, y) = 1
1+h(x,y)

which answers any query with expected additive error α and the same construction, query,
and space as the exponential case, but with n replaced by O(n log(1/α)) and α replaced by
α/ log(1/α) in the functions C,Q, S, and L.

Proof. We give a reduction showing how (a small collection of) private KDE data structures
for the kernel e−h(x,y) can be used to answer KDE queries for f(x, y) = 1

1+h(x,y)
. Let g(z) be

112



the function guaranteed by Corollary 5.7.2 which approximates 1/z by an additive factor for
all z ≥ 1:

|
∑
j

wje
−tjz

︸ ︷︷ ︸
g(z)

−z−1| ≤ O(α) ∀z ≥ 1.

We have

1

|X|
∑
x∈X

f(x, y) =
1

|X|
∑
x∈X

1

1 + h(x, y)
=

(
1

|X|
∑
x∈X

∑
j

wje
−tj(1+h(x,y))

)
+O(α)

=

[∑
j

wje
−tj

(
1

|X|
∑
x∈X

e−tjh(x,y)

)]
+O(α) =

∑
j

wje
−tj

 1

|Xj|
∑
x∈Xj

e−h(x,yj)

+O(α)

where Xj is the dataset Xj = {tj · x | x ∈ X} and yj is the query tj · y in the cases that
h(x, y) = ∥x− y∥1 or ∥x− y∥2. In the case where h(x, y) = ∥x− y∥22 we have Xj = {

√
tj · x |

x ∈ X} and yj is the query
√
tj · y.

Note that the function g is public so the parameters wj and tj are publicly known (and do
not depend on the dataset). Now we simply instantiate private KDE data structures which
approximate each of the sums 1

|Xj |
∑

x∈Xj
e−h(x,y). More specifically, we release O(log(1/α))

kernel KDE data structures, one for each Xj, and each of which is O(ε/ log(1/α))-DP. Then
the overall data structures we release are ε-DP by composition. Furthermore, since each
wje

−tj = O(1) and there are only O(log(1/α)) of these terms, if each data structure has
expected additive error O(α/ log(1/α)), then the overall error is O(α) as well. To summarize,
the logarithmic blowup happens in the query/space, as well as any lower-bound assumption
on the size of the dataset.

5.8 New Bounds for Smooth Kernels

In this section, we give new bounds for privately computing KDE queries for the kernels
f(x, y) = 1

1+∥x−y∥2 ,
1

1+∥x−y∥22
, and 1

1+∥x−y∥1 . Our main result is the following.

Theorem 5.8.1. Let α ∈ (0, 1) and suppose n ≥ Õ
(

1
αε2

)
. For the kernels f(x, y) = 1

1+∥x−y∥2
and f(x, y) = 1

1+∥x−y∥22
, there exists an algorithm which outputs an ε-DP data structure with

the following properties:

1. The expected additive error is α,

2. The query time is Õ
(
d+ 1

α4

)
,

3. The construction time is Õ
(
nd+ n

α4

)
,

4. and the space usage is Õ
(
d+ 1

α4

)
.
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For the kernel f(x, y) = 1
1+∥x−y∥1 , we can obtain the following:

1. The expected additive error is α,

2. The query time is Õ
(

d
α2

)
,

3. The construction time is Õ
(
nd
α2

)
,

4. and the space usage is Õ
(

d
α2

)
.

The road-map for this section is described in two steps. First, we give new dimensionality
reduction results for the first two kernels which obtain the stronger relative error guarantee.
Then we show how to combine our dimensionality reduction result with classical function
approximation theory to reduce the smooth kernel case to our prior Gaussian and exponential
kernel result of Theorem 5.6.1. These results assume a similar condition on n as in our
Theorem 5.6.1 and prior works [192]: n ≥ Õ

(
1

αε2

)
. We present our novel dimensionality

reduction for the kernels f(x, y) = 1
1+∥x−y∥2 and 1

1+∥x−y∥22
.

5.8.1 Dimensionality Reduction

Our main result is the following. As before, we assume the projection is chosen independently
of the dataset and query.

Theorem 5.8.2 (Dim. Reduction for Smooth Kernels). Let G : Rd → R1/α2 be a Gaussian
JL projection where α < 1 is a sufficiently small constant. Fix a query y ∈ Rd. Let

z =
1

|X|
∑
x∈X

f(x, y),

ẑ =
1

|X|
∑
x∈X

f(Gx,Gy).

for f(x, y) = 1
1+∥x−y∥2 or f(x, y) = 1

1+∥x−y∥22
. Then, E |z − ẑ| ≤ O(αz).

A similar corollary as Corollary 5.8.3 also applies to the exponential and Gaussian KDE
case.

Corollary 5.8.3. The same dimensionality reduction bound, up to constant factors, holds
as in Theorem 5.8.2, if we use the fast JL transform.

Proof of Theorem 5.8.2. We give the full proof for f(x, y) = 1
1+∥x−y∥2 . Carrying out the

identical steps with small modifications also implies the same statement for f(x, y) = 1
1+∥x−y∥22

,
whose details are omitted. Fix a x ∈ X. We calculate E |f(x, y) − f(Gx,Gy)| (note the
randomness is over G). First we consider the case where the distance ∥Gx−Gy∥2 expands.
Let Ai be the event that

∥Gx−Gy∥2 − ∥x− y∥2
∥x− y∥2

∈ [αi, α(i+ 1))
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for i ≥ 0. We have∑
i≥0

Pr[Ai]E[|f(x, y)− f(Gx,Gy)| | Ai] ≤
∑
i≥0

e−i2/8

(
1

1 + ∥x− y∥2
− 1

1 + ∥x− y∥2(1 + α(i+ 1))

)
=
∑
i≥0

e−i2/8 ∥x− y∥2
1 + ∥x− y∥2

· α(i+ 1)

1 + ∥x− y∥2(1 + α(i+ 1))

≤
∑
i≥0

e−i2/8 α(i+ 1)

1 + ∥x− y∥2

=
α

1 + ∥x− y∥2

∑
i≥0

(i+ 1)e−i2/8

<
7α

1 + ∥x− y∥2
.

We now handle the cases where the distance shrinks. We further subdivide this case into
sub-cases where the distance shrinks by a factor t satisfying 1 ≤ t ≤ 6 and the sub-case
where t ≥ 6. To handle the first sub-case, let Bi be the event that

∥x− y∥2
∥Gx−Gy∥2

∈ [1 + αi, 1 + α(i+ 1))

for 0 ≤ i ≤ 5/α. Note that

E[|f(x, y)− f(Gx,Gy)| | Bi] ≤
1

1 + ∥x−y∥2
(1+α(i+1))

− 1

1 + ∥x− y∥2

=
∥x− y∥2
∥x− y∥2 + 1

· α(i+ 1)

1 + ∥x− y∥2 + α(i+ 1)

≤ α(i+ 1)

1 + ∥x− y∥2
.

Furthermore, under the event Bi, we have that

∥x− y∥2 − ∥Gx−Gy∥2 ≥
(
1− 1

1 + αi

)
∥x− y∥2 ≥

αi

6
∥x− y∥2.

Thus, ∑
0≤i≤5/α

Pr[Bi]E[|f(x, y)− f(Gx,Gy)| | Bi] ≤
∑

0≤i≤5/α

e−i2/288 · α(i+ 1)

1 + ∥x− y∥2

≤ α

1 + ∥x− y∥2

∑
i≥0

(i+ 1)e−i2/288

<
160α

1 + ∥x− y∥2
.
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For the other sub-case, write it as the union ∪∞i=1Di where Di is the event that

3 · 2i+1 ≥ ∥x− y∥2
∥Gx−Gy∥2

≥ 3 · 2i,

i.e., ∥Gx−Gy∥2 shrinks by a factor between 3 · 2i and 3 · 2i+1. Lemma 5.6.4 gives us

∑
i≥1

Pr[Di] · E[|f(x, y)− f(Gx,Gy)| | Di] ≤
∑
i≥1

(
1

2i

)k

·
(

1

1 + ∥x− y∥2/2i+1
− 1

1 + ∥x− y∥2

)

≤
∑
i≥1

(
1

2i

)1/α2

· 2i+1

1 + ∥x− y∥2

≤ 2

1 + ∥x− y∥2
·
∑
i≥1

(
1

2i

)1/α2−1

≤ 2α

1 + ∥x− y∥2
.

Together, the above cases imply that

E |f(x, y)− f(Gx,Gy)| ≤ O(α) · 1

1 + ∥x− y∥2
.

Then by linearity and the triangle inequality, it follows that

E |z − ẑ| ≤ 1

|X|
∑
x

E |f(x, y)− f(Gx,Gy)| ≤ O(α) · 1

|X|
∑
x

1

1 + ∥x− y∥2
≤ O(αz),

as desired.

Proof of 5.8.3. We outline the steps in the proof of Theorem 5.8.2 which required concen-
tration bounds for the standard JL transform stated in Lemma 5.6.4, and show how they
can be appropriately replaced by the guarantees of Theorem 5.6.5. The first step is the sum
bounding the contribution of the events Ai, defined as the event where

∥Gx−Gy∥2 − ∥x− y∥2
∥x− y∥2

∈ [αi, α(i+ 1))

for i ≥ 0. Here, for some smaller values of i, the second condition of Theorem 5.6.5 is
appropriate and for the rest, the third event is appropriate. Since the sum

∑
i≥0 ie

−
√
i

converges to a constant, this portion of the proof carries through. The same comment applies
where we bound the contribution of the events Bi. The last place we need to check is when
we bound the contribution of the events Di. Here, the third statement of Theorem 5.6.5 is
relevant, and the calculation boils down to showing the sum

∑
i≥1 e

−Ω(
√
3·2i−1) · 2i converges

to a constant, which is clearly true.
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We are now able to prove Theorem 5.8.1.

Proof of Theorem 5.8.1. The claimed guarantees follow from a simple combination of the
tools we have developed so far, and a black-box appeal to the result of Theorem 5.2.3. For
the kernel f(x, y) = 1

1+∥x−y∥2 , we can first perform dimensionality reduction to O(1/α2)
dimensions via an oblivious fast JL projection as stated in Corollary 5.8.3. We then use the
reduction given by Theorem 5.7.3 to instantiate O(log(1/α)) copies of private exponential
KDE data structure of Theorem 5.2.3. The same procedure works for the kernel f(x, y) =

1
1+∥x−y∥22

. We don’t have a dimensionality reduction result for the kernel f(x, y) = 1
1+∥x−y∥1 ,

so we just repeat the same steps as above, except we do not perform any dimensionality
reduction. The guarantees follow from the guarantees of Theorem 5.2.3 along with the black
box reduction given in Theorem 5.7.3.

5.9 Faster Kernel Density Estimation in the Non-Private
Setting

Our novel dimensionality reduction results also obtain faster query algorithms for KDE queries
in the non-private settings as well in the high-dimensional regime where d≫ 1/α2 where d
is the original dimension and α is our desired additive error. Indeed, we can combine our
dimensionality reduction bounds of Theorems 5.6.2 and 5.8.2 with any KDE data structure
by first projecting to a reduced dimension and then instantiating the KDE data structure
in the projected space. Since the dimensionality reduction preserves kernel sums, we can
guarantee accurate answers in the projected dimension. In particular, by combining our
dimensionality reduction results (the fast JL versions of corollaries 5.6.3 and 5.8.3) with
prior KDE data structures whose preprocessing and query times are listed in Table 2.1, the
following new results easily follow for KDE queries. They give improved query times for the
Gaussian, exponential, and the Cauchy kernels. For the Gaussian and exponential kernels, we
project to dimension Õ(1/α2) where α is the additive error that prior data structures incur
and for the Cauchy kernel, we project to dimension Õ(1/ε2), where 1+ ε is the multiplicative
factors that prior data structures incur.

Theorem 5.9.1. By combining with [58], for the Gaussian and exponential kernels, we
obtain a data structure which gives a (1 + ε) multiplicative and α additive error guarantee
for any fixed query with 90% probability with the following preprocessing and query time:

• Gaussian kernel: the preprocessing time is Õ
(

nd
ε2α0.173+o(1)

)
and query time Õ

(
d+ 1

ε2α2.173+o(1)

)
.

• Exponential kernel: the preprocessing time is Õ
(

nd
ε2α0.1+o(1)

)
and query time Õ

(
d+ 1

ε2α2.1+o(1)

)
.

For the kernel 1
1+∥x−y∥22

, by combining with [22], we obtain a data structure which gives a
(1 + ε) multiplicative error with 90% probability for any fixed query with preprocessing time
Õ(nd/ε2) and query time Õ(d+ 1

ε4
).
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5.10 Empirical Evaluation

We evaluate our algorithms on synthetic and real datasets. We consider three experimental
settings which together are representative of our main upper-bound results. We show the
average of 20 trials and ±1 standard deviation is shaded where appropriate. All experiments
unless stated otherwise are implemented in Python 3.9 on an M1 MacbookPro with 32GB
of RAM.

5.10.1 ℓ1 Experiments.

The task here is to approximate the (normalized) map y → 1
n

∑
x∈X |x − y| for a one

dimensional dataset X of size n = 103, with points randomly picked in [0, 1]. The query
points are O(n) evenly spaced points in [0, 1]. We implement our one-dimensional ℓ1 distance
query algorithm and compare to the prior baseline of [102]. Both our and [102]’s high-
dimensional algorithms are constructed by instantiating d different copies of one-dimensional
data structures (on the standard coordinates ). Thus, the performance in one dimension
is directly correlated with the high-dimensional case. In our case, the map we wish to
approximate converges to

∫ 1

0
|x − y| dx = y2 − y + 1/2 for y ∈ [0, 1], allowing us to easily

compare to the ground truth. In Figure 5.1a, we plot the average relative error across all
queries as a function of ε. The explicit parameter settings for the algorithm given in [102] are
extremely large in practice, meaning the output of their algorithm was always the identically 0
function, which gives relative error equal to 1 (the distance query was always estimated to be
0) for the values of ε tested, as shown in Figure 5.1a. On the other hand, our algorithm gives
non-trivial empirical performance and its error decreases smoothly as ε increases. Indeed,
Figure 5.1b shows our output values (scaled by 1/n) for various ε’s. We can observe that
our estimates converge to the true function as ε increases. We observed qualitatively similar
results for both algorithms for the larger n = 106 case as well.

5.10.2 Dimensionality Reduction Experiments.

We empirically demonstrate that dimensionality reduction provides computational savings
for DP-KDE without significantly degrading accuracy. Our task is to approximate KDE
values for the Gaussian kernel e−∥x−y∥22 . We compare against the prior SOTA [192]. Our
provable dimensionality reduction result of Theorem 5.6.2 gives a general framework: apply
an oblivious dimensionality reduction to the data and use any DP-KDE algorithm in the
projected space. Indeed, Theorem 5.6.1 follows by applying the framework to the prior SOTA
algorithm of [192]. Thus in our experiment, we use the randomized dimension reduction of
Theorem 5.6.2 in conjunction with the implementation of [192]. Note that while we fix the
DP-KDE implementation used after dimensionality reduction, our framework is compatible
with any other choice and we expect qualitatively similar results with other choices.

Our dataset consists of embeddings of CIFAR-10 in dimension 2048, computed from an
Inception-v3 model [186], pre-trained on ImageNet [73]. Obtaining embeddings of private
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Figure 5.1: Our algorithm for ℓ1 queries has smaller error than prior SOTA of [102].

datasets from pre-trained ML models is standard in the applied DP literature [72, 203]. The
intuition is that the embeddings from the network are powerful enough to faithfully represent
the images in Euclidean space, so computing kernel values on these features is meaningful.
We project the embeddings to lower dimensions d ranging from 200 to 2000. We use the
training points of a fixed label as the private dataset and the corresponding test set as the
queries.

Figure 5.2a shows the relative error of our approach (in blue) and the baseline of [192]
(in orange) which does not use any dimensionality reduction. The relative errors of both
are computed by comparing to the ground truth. Figure 5.2b shows the construction time
of the private data structure and Figure 5.2c shows the total query time on the test points.
We see that the relative error smoothly decreases as we project to more dimensions, while
construction and query time smoothly increase. Note the construction time includes the time
to compute the projection. For example, projecting to d = 1000 increases the relative error
by 0.015 in absolute terms, while reducing the construction time by ≈ 2x and reducing the
construction time by a factor of > 4x.

5.10.3 DP Classification.

We consider the DP classification task on Cifar-10. The train and test splits are the private
data and query respectively, and the task is to train a private classifier on the train set to
classify the test set. Our methodology is extremely simple, fast, and does not require any
specialized hardware like GPUs: we instantiate an (ε, δ)-DP distance query data structure
on each class. The classes disjointly partition the data so the output, which is an (ε, δ)-DP
data structure for each class, is overall (ε, δ)-DP [163]. We use f(x, y) = ∥x−y∥22 since it has
the simplest algorithm (see Section 5.5.1). It essentially reduces to releasing a noisy mean for
every class. To classify a query, we assign it to the class whose (noisy) mean is closest to the
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Figure 5.2: Results for our dimensionality reduction experiments.

query. For other potential choices of f like kernels, one would instead assign to the class with
the highest KDE value. There are two competing SOTA works: one from Deepmind [72] and
[203]. We first give a high-level methodology of prior works: they start with a pre-trained
model on ImageNet3 and fine tune using DP-gradient descent/SGD. Note that the vectors
we build our private data structures on are the penultimate layer embeddings of the ResNet
pre-trained model used in [203]. Thus, all methods have the access to the same ‘pre-training’
information.

Note a simple but important point: ε, δ are input parameters, so we cannot just output
the data structure or ML model with the highest accuracy. The data structure or model we
output must satisfy the given privacy guarantee. Thus, accuracy vs privacy vs runtime are
non-trivial trade-offs. The full details are given below.

Methodology of [203]. We use the “GP” baseline from [203], which trains a linear classifier
with DP-SGD [4] on top of features from SimCLR [61]. Deviating from the vanilla DP-SGD,
GP uses all samples to compute gradients at every iteration (i.e., no subsampling) as it was
found to perform better. In our implementation, we use the “r152_2x_sk1” SimCLR network
released from [61] to extract the features of the images. When training the linear classifier,
we do a grid search of the hyper-parameters (learning rate ∈ [0.1, 0.05, 0.1], gradient clipping
threshold ∈ [1.0, 0.1, 0.01], noise multiplier ∈ [100, 500, 1000]) and take the best combination.
Following the common practice [203], we ignore the privacy cost of this hyper-parameter
tuning process.

Methodology of [72]. [72] pre-train the WRN-28-10 network [207] on ImageNet and
fine-tunes it on CIFAR10 with DP-SGD [4]. We use their official code for the experiments.
We do a grid search of the noise multiplier (∈ [9.4, 12.0, 15.8, 21.1, 25.0]) where the first four
values are used in the paper and the last value is an additional one we test. We report the

3The works consider other alternate datasets, but we only compare to the Imagenet case. We expect
qualitatively similar results when pre-training with other datasets.
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best results across these values and ignore the privacy cost of this hyper-parameter tuning
process.

Our hyper-parameters. For our method, we take the embeddings from the pre-trained
“r152_3x_sk1” SimCLR network released from [61]. Our embeddings were in dimensions
6144. Since we are computing the ℓ2 distance squared, we can apply Johnson-Lindenstrauss to
reduce the dimensionality, without any privacy loss. Furthermore, we can clip the embeddings
as well, which reduces the overall sensitivity of our algorithm (to reduce the R dependency in
Section 5.5.1) Thus, our hyper-parameters were the projection dimensions, which we looped
from 100 to 2000 and the clipping threshold, which we picked from 10 choices in [0.001, 1].

Let us temporarily ignore δ for simplicity of discussion. If they use T steps of training,
every model update step approximately satisfies ε/

√
T privacy (exact bounds depend on

the DP composition formulas), ensuring the overall final model is (ε, δ)-DP. Thus, every
step for them incurs some privacy budget, with the benefit of increased accuracy. Therefore,
these works can stop training at intermediate times to obtain a model with stronger privacy
guarantees (lower ε), but worse accuracy. However, the same procedure also gives an accuracy
vs model training time trade-off for these prior works. This is shown in Figure 5.3. The right
most endpoints of both baselines (the largest times), correspond to models with ε = 1. In
other words, their models with the worst privacy guarantees has the highest accuracy, while
also requiring the longest training time.

In contrast, our algorithm of Section 5.5.1 simply releases a noisy collection of fixed
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vectors. Our data structure construction time, which corresponds to their model training
time, is independent of (ε, δ) (but accuracy depends on them). In Figure 5.3, we plot the
accuracy of our data structure for ε = 1 (we use the best hyper-parameter choices for all
methods). For other values of ε, we would simply incur the same construction time, but
observe differing accuracy since the construction time is independent of ε (but again accuracy
improves for higher ε). The time to initialize our data structure (for all classes) is 28.8 ms
on a CPU, and the query time for all queries was 73.8 ms. On the other hand, fully training
the model of [203] up to ε = 1 takes > 8.5 hours on a single NVIDIA RTX A6000 GPU. The
runtimes of [72] are even longer since they use larger models. Thus, as shown in Figure 5.3,
creating our private data structure is > 3 orders of magnitude faster than the time to
create models of corresponding accuracy via the two baselines. Note that we are also using
arguably inferior hardware. The best accuracy of all methods as a function of ε, ignoring
run-time considerations, is shown in Figure 5.4.

Additional Results. In Figure 5.4, we also show the ε vs accuracy trade-off, ignoring
runtime. We plot accuracy as a function of the privacy ε. δ is always 10−5. We also plot
the best performance of every tested method: we iterate over the hyper-parameters of all
methods including both [72] and [203] using their code, and we display the best accuracy
for every value of ε. Hyper-parameters are described above. Note the trivial accuracy is
.1 via random labels. We see that for small values of ε, we obtain the second best results,
but lag behind both prior SOTA for large ε regime. The accuracy in the large ε ≥ 1 regime
are 0.87, 0.93, 0.95 respectively for ours, [203], and [72]. However, our approach has a major
run-time benefit compared to these prior works, as argued in Section 5.10. Such a boost in
runtime may justify the drop in accuracy in some applications.

Note that the main bottleneck in accuracy of our method is the quality of embeddings
used. If we ignore all privacy constraints, then our average similarity based methodology
obtains accuracy close to 0.87 without accounting for privacy. This is very close to the
performance obtained by our ε = 1 private data structure of Figure 5.4. Thus, we cannot
hope to do better in terms of accuracy. However, our method is extremely flexible in the
sense that better initial embeddings, for example from other models or models pre-trained
on additional or different data, can automatically lead to better downstream performance.

5.11 Conclusion

We give improved theoretical algorithms for computing similarity to private datasets for
a wide range of functions f . Our algorithms have the added benefit of being practical
to implement. We view our results as the tip of the iceberg in understanding similarity
computations on private datasets. Many exciting open directions remain such as obtaining
improved upper bounds or showing lower bounds for the f ’s we considered. It is also an
interesting direction to derive algorithms for more complicated ‘similarity’ measures, such
as Optimal Transport (OT), although it is not clear what notion of privacy we should
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best hyper-parameter choices are used for all methods.

use for such measures. Lastly, generalizing our proof-of-concept experiment on DP image
classification to text or other domains, using embeddings computed from models such as
LLMs, is also an interesting empirical direction.
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Part II

Efficient ‘Global’ Similarity Analysis
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Chapter 6

Subquadratic Algorithms for Distance
Matrices

In this chapter, we give subquadratic algorithms for analyzing distance matrices. Recall that
given a set of n points X = {x1, . . . , xn}, the distance matrix of X with respect to a distance
function f is defined as the n× n matrix A satisfying Ai,j = f(xi, xj). The main results of
this chapter are centered around the following three broad categories.

1. We study upper and lower bounds for constructing matrix-vector queries for a
wide array of distance matrices.

A matrix-vector query algorithm accepts a vector z as input and outputs the vector Az. There
is substantial motivation for studying such queries. Indeed, there is now a rich literature
for fundamental linear algebra algorithms which are in the “matrix free" or “implicit" model.
These algorithms only assume access to the underlying matrix via matrix-vector queries. Some
well known algorithms in this model include the power method for computing eigenvalues
and the conjugate gradient descent method for solving a system of linear equations. For
many fundamental functions of A, nearly optimal bounds in terms of the number of queries
have been achieved [29, 40, 154]. Furthermore, having access to matrix-vector queries also
allows the simulation of any randomized sketching algorithm, a well studied algorithmic
paradigm in its own right [201]. This is because randomized sketching algorithms operate
on the matrix ΠA or AΠ where Π is a suitably chosen random matrix, such as a Gaussian
matrix. Typically, Π is chosen so that the sketches ΠA or AΠ have significantly smaller row
or column dimension compared to A. If A is symmetric, we can easily acquire both types of
matrix sketches via a small number of matrix-vector queries.

Therefore, creating efficient versions of matrix-vector queries for distance matrices au-
tomatically lends itself to many further downstream applications. We remark that our
algorithms can access to the set of input points but do not explicitly create the distance
matrix. A canonical example of our upper bound results is the construction of matrix-vector
queries for the function f(x, y) = ∥x− y∥pp.
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Theorem 1.5.1. Let p ≥ 1 be an integer. Suppose we are given a dataset of n points
X = {x1, . . . , xn} ⊂ Rd. X implicitly defines the matrix Ai,j = ∥xi − xj∥pp. Given a query
z ∈ Rn, we can compute Az exactly in time O(ndp). If p is odd, we also require O(nd log n)
preprocessing time.

We give similar guarantees for a wide array of functions f and we refer the reader to
Table 6.1 which summarizes our matrix-vector query upper bound results. Note that some
of the functions f we study in Table 6.1 do not necessarily induce a metric in the strict
mathematical sense (for example the function f(x, y) = ∥x−y∥22 does not satisfy the triangle
inequality). Nevertheless, we still refer to such functions under the broad umbrella term of
“distance functions" for ease of notation. We always explicitly state the function f we are
referring to.

Crucially, most of our bounds have a linear dependency on n which allows for scalable
computation as the size of the dataset X grows. Our upper bounds are optimal in many
cases, see Theorem 6.2.12.

Function f(x, y) Preprocessing Query Time Reference

ℓpp for p even ∥x− y∥pp − O(ndp) Thm 6.2.1 / 6.2.3
ℓpp for p odd ∥x− y∥pp O(nd log n) O(ndp) Thm 6.1.2 / 6.2.4
Mixed ℓ∞ maxi,j |xi − yj| O(nd log n) O(n2) Thm 6.2.5

Mahalanobis Distance2 xTMy O(nd2) O(nd) Thm 6.2.6
Polynomial Kernel ⟨x, y⟩p − O(ndp) Thm 6.2.7

Total Variation Distance TV(x, y) O(nd log n) O(nd) Thm 6.2.8
KL Divergence DKL(x ∥ y) − O(nd) Thm 6.2.2

Symmetric Divergence DKL(x ∥ y) + DKL(y ∥x) − O(nd) Thm 6.2.9
Cross Entropy H(x, y) − O(nd) Thm 6.2.9

Hellinger Distance2
∑d

i=1

√
x(i)y(i) − O(nd) Thm 6.2.10

Table 6.1: A summary of our results for exact matrix-vector queries.

Combining our upper bound results with optimized matrix-free methods, immediate
corollaries of our results include faster algorithms for eigenvalue and singular value com-
putations and low-rank approximations. Low-rank approximation is of special interest as
it has been widely studied for distance matrices; for low-rank approximation, our bounds
outperform prior results for specific distance functions. For example, for the ℓ1 and ℓ22 case
(and in general PSD matrices), [28] showed that a rank-k approximation can be found in time
O(ndk/ε+ nkw−1/εw−1). This bound has extra poly(1/ε) overhead compared to our bound
stated in Table 6.2. The work of [113] has a worse poly(k, 1/ε) overhead for an additive error
approximation for the ℓ2 case. See Section 6.0.1 for further discussion of prior works. The
downstream applications of matrix-vector queries are summarized in Table 6.2.
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We also study fundamental limits for any upper bound algorithms. In particular, we show
that no algorithm can compute a matrix-vector query for general inputs for the ℓ∞ metric
in subquadratic time, assuming a standard complexity-theory assumption called the Strong
Exponential Time Hypothesis (SETH) [103, 104].

Theorem 1.5.2. For any α > 0 and d = ω(log n), any algorithm for exactly computing Az
for any input z, where A is the ℓ∞ distance matrix, requires Ω(n2−α) time (assuming SETH).

This shows a separation between the functions listed in Table 6.1 and the ℓ∞ metric.
Surprisingly, we can create queries for the approximate matrix-vector query in substantially
faster time.

Theorem 6.0.1. Suppose X ⊆ {0, 1, . . . , O(1)}d. We can compute By in time O(n ·
dO(

√
d log(d/ε))) where ∥A−B∥∞ ≤ ε.

To put the above result into context, the lower bound of Theorem 1.5.2 holds for points
sets in {0, 1, 2}d in d ≈ log n dimensions. In contrast, if we relax to an approximation
guarantee, we can obtain a subquadratic-time algorithm for d up to Θ(log2(n)/ log log(n)).

Finally, we provide a general understanding of the limits of our upper bound techniques.
In Theorem 6.3.1, we show that essentially the only f for which our upper bound techniques
apply have a “linear structure" after a suitable transformation. We refer to Appendix Section
6.3 for details.

Problem f(x, y) Runtime Prior Work

(1 + ε) Relative error rank k

low-rank approximation
ℓ1, ℓ

2
2

Õ
(

ndk
ε1/3

+ nkw−1

ε(w−1)/3

)
Theorem 6.5.4

O
(

ndk
ε

+ nkw−1

εw−1

)
[28]

Additive error ε∥A∥F rank k

low-rank approximation
ℓ2

Õ
(

ndk
ε1/3

+ nkw−1

ε(w−1)/3

)
Theorem 6.5.6

Õ(nd · poly(k, 1/ε))
[113]

(1 + ε) Relative error rank k

low-rank approximation
Any in Table 6.1

Õ
(

Tk
ε1/3

+ nkw−1

ε(w−1)/3

)
Theorem 6.5.7

Õ
(

n2dk
ε1/3

+ nkw−1

ε(w−1)/3

)
[29]

(1± ε) Approximation to
top k singular values

Any in Table 6.1
Õ
(

Tk
ε1/2

+ nk2

ε
+ k3

ε3/2

)
Theorem 6.5.8

Õ
(

n2dk
ε1/2

+ nk2

ε
+ k3

ε

3/2
)

[154]

Multiply distance matrix A

with any B ∈ Rn×n
Any in Table 6.1

O(Tn)

Lemma 6.5.9
O(nw)

Multiply two distance
matrices A and B

ℓ22
O(n2dw−2)

Lemma 6.5.11
O(nw)

Table 6.2: Applications of our matrix-vector query results. T denotes the matrix-vector
query time, given in Table 6.1. w ≈ 2.37 is the matrix multiplication constant.
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2. We give algorithms for multiplying distance matrices faster than general ma-
trices.

Fast matrix-vector queries also automatically imply fast matrix multiplication, which
can be reduced to a series of matrix-vector queries. For concreteness, if f is the ℓpp function
which induces A, and B is any n× n matrix, we can compute AB in time O(n2dp). This is
substantially faster than the general matrix multiplication bound of nw ≈ n2.37. We also give
an improvement of this result for the case where we are multiplying two distance matrices
arising from ℓ22. See Table 6.2 for summary.

3. We give fast algorithms for constructing distance matrices.

Finally, we give fast algorithms for constructing approximate distance matrices. To
establish some context, recall the classical Johnson-Lindenstrauss (JL) lemma which (roughly)
states that a random projection of a dataset X ⊂ Rd of size n onto a dimension of size O(log n)
approximately preserves all pairwise distances [119]. A common applications of this lemma is
to instantiate the ℓ2 distance matrix. A naive algorithm which computes the distance matrix
after performing the JL projection requires approximately O(n2 log n) time. Surprisingly, we
show that the JL lemma is not tight with respect to creating an approximate ℓ2 distance
matrix; we show that one can initialize the ℓ2 distance in an asymptotically better runtime.

Theorem 1.5.3. (Informal; See Theorem 6.6.5) We can calculate a n × n matrix B such
that each (i, j) entry Bij of B satisfies (1− ε)∥xi − xj∥2 ≤ Bij ≤ (1 + ε)∥xi − xj∥2 in time
O(ε−2n2 log2(ε−1 log n)).

Our result can be viewed as the natural runtime bound which would follow if the JL lemma
implied an embedding dimension bound of O(poly(log log n)). While this is impossible, as it
would imply an exponential improvement over the JL bound which is tight [131], we achieve
our speedup by carefully reusing distance calculations via tools from metric compression
[111]. Our results also extend to the ℓ1 distance matrix; see Theorem 6.6.5 for details.

Notation. For points in X, we denote xi(j) to be the jth coordinate of point xi for clarity.
For all other vectors v, vi denotes the ith coordinate. We are interested in matrices of the
form Ai,j = f(xi, xj) for f : Rd ×Rd → R which measures the similarity between any pair of
points. f might not necessarily be a distance function but we use the terminology “distance
function" for ease of notation. We will always explicitly state the function f as needed.
w ≈ 2.37 denotes the matrix multiplication constant, i.e., the exponent of n in the time
required to compute the product of two n× n matrix [8].

6.0.1 Related Works

Matrix-Vector Products Queries. Our work can be understood as being part of a long
line of classical works on the matrix free or implicit model as well as the active recent line
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of works on the matrix-vector query model. Many widely used linear algebraic algorithms
such as the power method, the Lanczos algorithm [129], conjugate gradient descent [175],
and Wiedemann’s coordinate recurrence algorithm [196], to name a few, all fall into this
paradigm. Recent works such as [29, 40, 154] have succeeded in precisely nailing down
the query complexity of these classical algorithms in addition to various other algorithmic
tasks such as low-rank approximation [29], trace estimation [150], and other linear-algebraic
functions [169, 185]. There is also a rich literature on query based algorithms in other
contexts with the goal of minimizing the number of queries used. Examples include graph
queries [88], distribution queries [45], and constraint based queries [79] in property testing,
inner product queries in compressed sensing [78], and quantum queries [66, 135].

Most prior works on query based models assume black-box access to matrix-vector queries.
While this is a natural model which allows for the design non-trivial algorithms and lower
bounds, it is not always clear how such queries can be initialized. In contrast, the focus
of our work is not on obtaining query complexity bounds, but rather complementing prior
works by creating an efficient matrix-vector query for a natural class of matrices.

Subquadratic Algorithms for Distance Matrices. Most work on subquadratic algo-
rithms for distance matrices have focused on the problem of computing a low-rank approx-
imation. [26, 113] both obtain an additive error low-rank approximation applicable for all
distance matrices. These works only assume access to the entries of the distance matrix
whereas we assume we also have access to the underlying dataset. [28] study the problem
of computing the low-rank approximation of PSD matrices with also sample access to the
entries of the matrix. Their results extend to low-rank approximation for the ℓ1 and ℓ22
distance matrices in addition to other more specialized metrics such as spherical metrics.
Table 6.2 lists the runtime comparisons between their results and ours.

Practically, the algorithm of [113] is the easiest to implement and has outstanding em-
pirical performance. We note that we can easily simulate their algorithm with no overall
asymptotic runtime overhead using O(log n) vector queries. Indeed, their algorithm proceeds
by sampling rows of the matrix according to their ℓ22 value and then post-processing these
rows. The sampling probabilities only need to be accurate up to a factor of two. We can
acquire these sampling probabilities by performing O(log n) matrix-vector queries which
sketches the rows onto dimension O(log n) and preserves all row-norms up to a factor of
two with high probability due to the Johnson-Lindenstrauss lemma [119]. This procedure
only incurs an additional runtime of O(T log n) where T is the time required to perform a
matrix-vector query.

The paper [110] shows that the exact L1 distance matrix can be created in time O(n(w+3)/2) ≈
n2.69 in the case of d = n, which is asymptotically faster than the naive bound of O(n2d) =
O(n3). In contrast, we focus on creating an (entry-wise) approximate distance matrices for
all values of d.

We also compare to the paper of [9]. In summary, their main upper bounds are approxi-
mation algorithms while we mainly focus on exact algorithms. Concretely, they study matrix
vector products for matrices of the form Ai,j = f(∥xi − xj∥22) for some function f : R→ R.
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They present results on approximating the matrix vector product of A where the approxi-
mation error is additive. They also consider a wide range of f , including polynomials and
other kernels, but the input to is always the ℓ2 distance squared. In contrast, we also present
exact algorithms, i.e., with no approximation errors. For example one of our main upper
bounds is an exact algorithm when Ai,j = ∥xi − xj∥1 (see Table 1 for the full list). Since it
is possible to approximately embed the ℓ1 distance into ℓ22, their methods could be used to
derive approximate algorithms for ℓ1, but not the exact ones. Furthermore, we also study
a wide variety of other distance functions such as ℓ∞ and ℓpp (and others listed in Table 1)
which are not studied in Alman et al. In terms of technique, the main upper bound technique
of Alman et al. is to expand f(∥xi − xj∥22) and approximate the resulting quantity via a
polynomial. This is related to our upper bound results for ℓpp for even p where we also use
polynomials. However, our results are exact, while theirs are approximate. Our ℓ1 upper
bound technique is orthogonal to the polynomial approximation techniques used in Alman
et al. We also employ polynomial techniques to give upper bounds for the approximate ℓ∞
distance function which is not studied in Alman et al. Lastly, Alman et al. also focus on
the Laplacian matrix of the weighted graph represented by the distance matrix, such as
spectral sparsification and Laplacian system solving. In contrast, we study different problems
including low-rank approximations, eigenvalue estimation, and the task of initializing an
approximate distance matrix. We do not consider the distance matrix as a graph or consider
the associated Laplacian matrix.

It is also easy to verify the “folklore" fact that for a gram matrix AAT , we can compute
AATv in time O(nd) if A ∈ Rn×d by computing ATv first and then A(ATv). Our upper
bound for the ℓ22 function can be reduced to this folklore fact by noting that ∥x − y∥22 =
∥x∥22 + ∥y∥22− 2⟨x, y⟩. Thus the ℓ22 matrix can be decomposed into two rank one components
due to the terms ∥x∥22 and ∥y∥22, and a gram matrix due to the term ⟨x, y⟩. This decomposition
of the ℓ22 matrix is well-known (see Section 2 in [74]). Hence, a matrix-vector query for the ℓ22
matrix easily reduces to the gram matrix case. Nevertheless, we explicitly state the ℓ22 upper
bound for completeness since we also consider all ℓpp functions for any integer p ≥ 1.

Polynomial Kernels. There have also been works on faster algorithms for approximating
a kernel matrix K defined as the n × n matrix with entries Ki,j = k(xi, xj) for a kernel
function k. Specifically for the polynomial kernel k(xi, xj) = ⟨xi, xj⟩p, recent works such
as [5, 19, 180, 199] have shown how to find a sketch K ′ of K which approximately satisfies
∥K ′z∥2 ≈ ∥Kz∥2 for all z. In contrast, we can exactly simulate the matrix-vector product Kz.
Our runtime is O(ndp) which has a linear dependence on n but an exponential dependence on
p while the aforementioned works have at least a quadratic dependence on n but a polynomial
dependence on p. Thus our results are mostly applicable to the setting where our dataset is
large, i.e. n≫ d and p is a small constant. For example, p = 2 is a common choice in practice
[54]. Algorithms with polynomial dependence in d and p but quadratic dependence in n are
suited for smaller datasets which have very large d and large p. Note that a large p might arise
if approximates a non-polynomial kernel using a polynomial kernel via a taylor expansion.
We refer to the references within [5, 19, 180, 199] for additional related work. There is also

130



work on kernel density estimation (KDE) data structures which upon query y, allow for
estimation of the sum

∑
x∈X k(x, y) in time sublinear in |X| after some preprocessing on the

dataset X. For widely used kernels such as the Gaussian and Laplacian kernels, KDE data
structures were used in [24] to create a matrix-vector query algorithm for kernel matrices in
time subquadratic in |X| for input vectors which are entry wise non-negative. We refer the
reader to [22, 23, 55, 58, 177] and references within for prior works on KDE data structures.

6.1 Faster Matrix-Vector Product Queries for ℓ1

We derive faster matrix-vector queries for distance matrices for a wide array of distance
metrics. First we consider the case of the ℓ1 metric such that Ai,j = f(xi, xj) where f(x, y) =

∥x− y∥1 =
∑d

i=1 |xi − yi|.

Algorithm 8 Preprocessing

1: Input: Dataset X ⊂ Rd

2: procedure Preprocessing
3: for i ∈ [d] do
4: Ti ← sorted array of the ith coordinates of all x ∈ X.
5: end for
6: end procedure
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Algorithm 9 matrix-vector Query for p = 1

1: Input: Dataset X ⊂ Rd

2: Output: z = Ay
3: procedure Query({Ti}i∈[d], y)
4: y1, · · · , yn ← coordinates of y.
5: Associate every xi ∈ X with the scalar yi
6: for i ∈ [d] do
7: Compute two arrays Bi, Ci as follows.
8: Bi contains the partial sums of yjxj(i) computed in the order induced by Ti

9: Ci contains the partial sums of yj computed in the order induced by Ti

10: end for
11: z ← 0n

12: for k ∈ [n] do
13: for i ∈ [d] do
14: q ← position of xk(i) in the order of Ti

15: S1 ← Bi[q]
16: S2 ← Bi[n]−Bi[q]
17: S3 ← Ci[q]
18: S4 ← Ci[n]− Ci[q]
19: z(k)+ = xk(i) · (S3 − S4) + S2 − S1

20: end for
21: end for
22: end procedure

We first analyze the correctness of Algorithm 9.

Theorem 6.1.1. Let Ai,j = ∥xi − xj∥1. Algorithm 9 computes Ay exactly.

Proof. Consider any coordinate k ∈ [n]. We show that (Ay)k is computed exactly. We have

(Ay)(k) =
n∑

j=1

yj∥xk − xj∥1 =
n∑

j=1

d∑
i=1

yj|xk(i)− xj(i)| =
d∑

i=1

n∑
j=1

yj|xk(i)− xj(i)|.

Let πi denote the order of [n] induced by Ti. We have

d∑
i=1

n∑
j=1

yj|xk(i)− xj(i)| =
d∑

i=1

 ∑
j:πi(k)≤πi(j)

yj(xj(i)− xk(i)) +
∑

j:πi(k)>πi(j)

yj(xk(i)− xj(i))

 .

We now consider the inner sum. It rearranges to the following:

xk(i)

 ∑
j:πi(k)>πi(j)

yj −
∑

j:πi(k)≤πi(j)

yj

+
∑

j:πi(k)≤πi(j)

yjxj(i)−
∑

j:πi(k)>πi(j)

yjxj(i)

= xk(i) · (S3 − S4) + S2 − S1,
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where S1, S2, S3, and S4 are defined in lines 15 − 18 of Algorithm 9 and the last equality
follows from the definition of the arrays Bi and Ci. Summing over all i ∈ [d] gives us the
desired result.

The following theorem readily follows.

Theorem 6.1.2. Suppose we are given a dataset {x1, . . . , xn} which implicitly defines the
distance matrix Ai,j = ∥xi − xj∥1. Given a query y ∈ Rd, we can compute Ay exactly in
O(nd) query time. We also require a one time O(nd log n) preprocessing time which can be
reused for all queries.

6.2 General Upper Bounds for Faster Matrix-Vector Queries

We now consider the case of ℓpp for p = 2. Generalizing the results of p = 1 and p = 2 allows
us to handle general ℓpp functions.

Algorithm 10 matrix-vector Query for p = 2

1: Input: Dataset X ⊂ Rd

2: Output: z = Ay
3: procedure Query(y)
4: v ←

∑n
i=j yjxj

5: S1 ←
∑n

i=j y
2
j

6: S2 ←
∑n

i=j y
2
j∥x∥22

7: z ← 0n

8: for k ∈ [n] do
9: z(k)← S1∥xk∥22 + S2 − 2⟨xk, v⟩

10: end for
11: end procedure

Theorem 6.2.1. We can compute Ay in O(nd) query time.

Proof. The proof follows from the following calculation of the kth coordinate of Ay:

(Ay)(k) =
n∑

j=1

yj∥xk − xj∥22 = ∥xk∥22

(
n∑

j=1

y2j

)
+

n∑
j=1

y2j∥xj∥22 − 2

〈
xk,

n∑
j=1

yjxj

〉
.

We can extend our results to general ℓpp functions as well as a wide array of commonly
used functions to measure (dis)similarity between vectors. For example, suppose the points
xi represent a probability distribution over the domain [n] := {1, . . . , n}. A widely used
“distance" function over distributions is the KL-divergence defined as

f(xi, xj) = DKL(xi ∥xj) =
∑
k∈[d]

xi(k) log(xi(k))−xi(k) log(xj(k)) = −H(xi)−
∑
k∈[d]

xi(k) log(xj(k)),
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where H is the entropy function. Our techniques extend to the KL-divergence as well.

Algorithm 11 matrix-vector Query for KL Divergence

1: Input: Dataset X ⊂ Rd

2: Output: z = Ay
3: procedure Query( y)
4: Si ←

∑n
j=1 yj log(xj(i)) for all i ∈ [d]

5: Hi ← H(xi) for all i ∈ [n]
6: Y ←

∑n
j=1 yj

7: z ← 0n

8: for k ∈ [n] do
9: z(k)← −Hk · Y −

∑d
i=1 xk(i)Si

10: end for
11: end procedure

Theorem 6.2.2. We can compute Ay in O(nd) query time.

Proof. Note that computed all of Si and Hi takes O(nd) time. Now

(Ay)(k) =
n∑

j=1

yjDKL(xk ∥xj)

=
n∑

j=1

−yjH(xk)−
n∑

j=1

yj

d∑
k=1

xi(k) log(xj(k))

= −H(xk)

(
n∑

j=1

yj

)
−

d∑
k=1

n∑
j=1

yjxi(k) log(xj(k))

= −Hk · Y −
d∑

k=1

xi(k)Sk,

as desired.

6.2.1 General p

We now consider the case of a general non-negative even integer p.
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Algorithm 12 matrix-vector Query for even p

1: Input: Dataset X ⊂ Rd

2: Output: z = Ay
3: procedure Query(y)
4: Compute all the values Si,t :=

∑n
j=1 xj(i)

p−t(−1)p−t for all i ∈ [d] and t ∈ {0, . . . , p}
5: z ← 0n

6: for k ∈ [n] do
7: z(k)←

∑d
i=1

∑p
t=1 xk(i)

tSi,t

8: end for
9: end procedure

Theorem 6.2.3. We can compute Ay in O(ndp) query time.

Proof. Consider the following calculation of the kth coordinate of Ay:

(Ay)(k) =
n∑

j=1

yj∥xk − xj∥pp

=
n∑

j=1

yj

d∑
i=1

(xk(i)− xj(i))
p

=
n∑

j=1

d∑
i=1

p∑
t=1

xk(i)
txj(i)

p−t(−1)p−t

=
d∑

i=1

p∑
t=1

xk(i)
t

n∑
j=1

xj(i)
p−t(−1)p−t

=
d∑

i=1

p∑
t=1

xk(i)
tSi,t.

Note that computing Si,t for all i and t takes O(ndp) time. Then returning the value of (Ay)k
takes O(dp) time resulting in the claimed runtime.

The case of a general non-negative odd integer p follows in a straightforward manner by
combining the above techniques with those of the p = 1 case of Theorem 6.1.2 so we omit
the proof.

Theorem 6.2.4. For odd integer p, we can compute Ay in O(nd log n) preprocessing time
and O(ndp) query time.

6.2.2 Other Distance Functions

In this section we initialize matrix-vector queries for a wide variety of “distance" functions.
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‘Mixed’ ℓ∞. We consider the case of a ‘permutation invariant’ version of the ℓ∞ norm
defined as follows:

f(x, y) = max
i∈[d],j∈[d]

|xi − yj|.

f is not a norm but we will refer to it as ‘mixed’ ℓ∞.

Algorithm 13 Preprocessing

1: Input: Dataset X ⊂ Rd

2: procedure Preprocessing
3: for j ∈ [n] do
4: minj,maxj ← minimum and maximum values of the entries of xj, respectively.
5: end for
6: end procedure

Algorithm 14 matrix-vector Query for mixed ℓ∞

1: Input: Dataset X ⊂ Rd

2: Output: z = Ay
3: procedure Query({minj,maxj}nj=1, y)
4: z ← 0n

5: for k ∈ [n] do
6: z(k)←

∑n
j=1 yj·max (|mink−minj |, |mink−maxj |, |maxk−minj |, |maxk−maxj |)

7: end for
8: end procedure

Theorem 6.2.5. We can compute Ay in O(nd) preprocessing time and O(n2) query time.

Proof. The preprocessing time holds because we calculate the maximum and minimum of a
list of d numbers a total of n times. For the query time, note that each z(k) takes O(n) time
to compute since we do a O(1) operation is each index of the sum in Line 6 of Algorithm 14.

To prove correctness, note that for any two vectors x, y ∈ Rd, the maximum value of
|xi−yj| is attained if xi and yj are among the minimum / maximum values of the coordinates
of x and y respectively. To see this, fix a value of xi. We can always increase |xi − yj| by
setting yj to be the maximum or minimum over all j.

Mahalanobis Distance Squared. We consider the function

f(x, y) = xTMy

for some d×d matrix M . This is the squared version of the well-known Mahalanobis distance.
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Algorithm 15 Preprocessing

1: Input: Dataset X ⊂ Rd

2: procedure Preprocessing
3: S ← d× n matrix where the jth column is Mxj for all j ∈ [n].
4: end procedure

Algorithm 16 matrix-vector Query for Mahalanobis distance squared

1: Input: Dataset X ⊂ Rd

2: Output: z = Ay
3: procedure Query( S, y)
4: v ← Sy
5: z ← 0n

6: for k ∈ [n] do
7: z(k)← ⟨xk, v⟩
8: end for
9: end procedure

Theorem 6.2.6. We can compute Ay in O(nd2) preprocessing time and O(nd) query time.

Proof. Note that the kth coordinate of Ay is given by

(Ay)(k) =
n∑

j=1

yjx
T
kMxj =

〈
xk,

n∑
j=1

yjMxk

〉
= ⟨xk, Sy⟩

which proves correctness. It takes O(nd2) time to compute S, O(nd) time to compute Sy,
and then O(d) time to compute the kth coordinate of Ay for all k ∈ [n].

Polynomial Kernels. We now consider polynomial kernels of the form

f(x, y) = ⟨x, y⟩p.

Theorem 6.2.7. We can compute Ay in O(ndp) query time.

Proof Sketch. Consider the following expression

g(z) =
n∑

j=1

yj⟨z, xj⟩p

as a polynomial g : Rd → R in the d coordinates of z. By rearranging, the above sum can
be written as a sum over O(dp) terms, corresponding to each monomial za11 . . . zadd where
a1 + . . . + ad = p. The coefficient of each term takes O(nd) time to compute given xi and
y. Once computed, we can evaluate the polynomial at z = xj for all j which form the
coordinates of Ay. Again, this can be viewed as “linearizing" the kernel given by ⟨x, y⟩p.
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We note that a proof similar to that of Theorem 6.2.7 was given in Section 5.3 of [9] by
expanding the relevant quantity as a polynomial; see Section 6.0.1 for detailed comparison
between [9] and our work.

6.2.3 Distances for Distributions

We now consider the case that each xi specifies a discrete distribution over a domain of d
elements. Matrices A where Ai,j is a function computing distances between distributions xi

and xj have recently been studied in machine learning.
We consider how to construct matrix-vector queries for such matrices for a range of widely

used distance measures on distributions. First note that a result on the TV distance follows
immediately from our ℓ1 result.

Theorem 6.2.8. Suppose Ai,j = TV(xi, xj). We can compute Ay in O(nd log n) preprocess-
ing time and O(nd) query time.

We now consider some other distance functions on distributions.

Divergences. Through a similar calculation as the KL divergence case, we can also achieve
O(nd) query times if f is the Jensen-Shannon divergence, defined as

f(x, y) =
DKL(x ∥ y) + DKL(y ∥x)

2
,

as well as the cross entropy function.

Theorem 6.2.9. Let f be the Jensen-Shannon divergence or cross entropy function. Then
Ay can be computed in O(nd) time.

Through a similar calculation as done in Section 6.2.2 (for the case of p = 1), we can also
perform matrix-vector multiplication queries in the case that

f(x, y) =
d∑

i=1

√
x(i)y(i).

This is the squared Hellinger distance.

Theorem 6.2.10. Let f be the squared Hellinger distance. Then Ay can be computed in
O(nd) time.

6.2.4 Approximate Matrix-Vector Query for ℓ2

While our techniques do not extend to the ℓ2 case for exact matrix-vector queries, we can
nonetheless instantiate approximate matrix-vector queries for the ℓ2 function. We recall the
following well known embedding result given in Theorem 2.0.2
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We can instantiate approximate matrix-vector queries for f(x, y) = ∥x − y∥2 via the
following algorithm.

Algorithm 17 Preprocessing

1: Input: Dataset X ⊂ Rd

2: procedure Preprocessing(T )
3: X ′ ← TX where T is the linear map from Theorem 2.0.2
4: Run Algorithm 8 on X ′

5: end procedure

For queries, we just run Algorithm 9 on X ′. We have the following guarantee:

Theorem 6.2.11. Let Ai,j = ∥xi − xj∥2. There exists a matrix B such that we can compute
By in O(nd2 + nd log n) preprocessing time and O(n log(n)/ε2) query time where

∥A−B∥F ≤ ε∥A∥F

with probability 1− 1/poly(n).

Proof. The preprocessing and query time follow from the time required to apply the trans-
formation T from Theorem 2.0.2 to our set of points X as well as the time needed for the
ℓ1 matrix-vector query result of Theorem 6.1.1. The Frobenius norm guarantee follows from
the fact that every entry of A will be approximated with relative error in B using Theorem
2.0.2.

6.2.5 Matrix-Vector Query Lower Bounds

Table 6.1 shows that we can initialize matrix-vector queries for a variety of distance functions
in O(nd) time. It is straightforward to see that this bound is optimal for a large class of
distance matrices.

Theorem 6.2.12. Consider the case that Ai,j = f(xi, xj) satisfying f(x, x) = 0 for all x.
Further assume that for all x, there exists an input y such that f(x, y) = 1. An algorithm
which outputs an entry-wise approximation of Az to any constant factor for input z requires
Ω(nd) time in the worst case.

Proof. We consider two cases for input points of A. In the first case, all points in our dataset
X are identical. In the second case, a randomly chosen point is distance 1 away from the
n − 1 identical points. Computing the product of A times the all ones vector allows us
to distinguish the two cases as A1 has entries summing to 0 in the first case whereas A1
has entries summing to n − 1 in the second case. Thus to approximate A1 entry-wise to
any constant factor, we must distinguish the two cases. If we read o(n) points, then with
good probability we will see no duplicates. Thus, we must read Ω(n) points, require Ω(nd)
time.
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6.3 When Do Our (Exact) Upper Bound Techniques Work?

By this point, we have seen many examples of matrix-vector queries which can be initialized
as well as a lower bound for a natural distance function which prohibits any subquadratic
time algorithm. Naturally, we are thus interested in the limits of our upper bound techniques
for instantiating fast matrix-vector product. An understanding of such limits sheds light on
families of structured matrices which may admit fast matrix-vector queries in general. In
this section we fully characterize the capabilities of our upper bound methods and show that
essentially our techniques can only work “linear" functions (in a possibly different basis).

First we set some notation. Let A be a n × n matrix we wish to compute where each
(i, j) entry is given by f(xi, xj). Given a query vector z ∈ Rn, the kth coordinate of Az is
given by

(Az)(k) =
n∑

i=1

zif(xk, xi).

An example choice of f is given by f(x, y) =
∑d

j=1 x(j) log(y(j)) (assuming all the coordinates
of x and y are entry wise non-negative. Note this is related to the cross entropy function in
Table 6.1).

We first highlight the major steps which are common to all of our upper bound algorithms
using f as an example. Our upper bound technique proceeds as follows:

• Break up f(x, y) into a sum over d terms:
∑d

j=1 x(j) log(y(j)).

• Switch the order of summation:

(Az)(k) =
n∑

i=1

zif(xk, xi) =
d∑

j=1

n∑
i=1

zixk(j) log(xi(j)).

• Evaluate each of the inner d summations with 1 evaluation each (after some prepro-
cessing). In other words, for a fixed j, each of the sums

∑n
i=1 zixk(j) log(xi(j)) can be

computed as one evaluation, namely xk(j) ·
(∑n

i=1 zi log(xi(j))
)

and in preprocessing,
we can compute

∑n
i=1 zi log(xi(j)) as it does not depend on the coordinate k.

The key steps of the above outline, namely switching the order of summation and pre-
computation of repeated terms, can be encapsulated in the following framework.

Theorem 6.3.1. Suppose there exist mappings T1, T2 : Rd → Rd′ (possibly non-linear) and
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a continuous g : R× R→ R such that for every k,

(Az)(k) =
n∑

i=1

zif(xk, xi)

=
n∑

i=1

zi

d′∑
j=1

g (T1(xk)(j), T2(xi)(j)) (breaking f into sum over d′ terms)

=
d′∑
j=1

n∑
i=1

zi · g (T1(xk)(j), T2(xi)(j)) (switching order of summation).

Further suppose that each of the terms
∑n

i=1 zi · g (T1(xk)(j), T2(xi)(j)) can be evaluated as

n∑
i=1

zi · g (T1(xk)(j), T2(xi)(j)) = g

(
T1(xk)(j),

n∑
i=1

ziT2(xi)(j)

)

for any choice of the vector z. Then g(a, b) must be a linear function in b.

Theorem 6.3.1 is stated in quite general terms. We are stipulating the following state-
ments: the functions T1, T2 represent possibly non-linear transformations to Rd′ on x, y
respectively such that f(x, y) can be decomposed as a sum over d′ function evaluations.
Each function evaluation takes in the same coordinate, say the jth coordinate, of both
T1(x) and T2(y) and computes the function g(T1(x)(j), T2(y)(j)). Finally the resulting sum∑n

i=1 zi · g (T1(xk)(j), T2(xi)(j)) can be computed as g
(
T1(xk)(j),

∑n
i=1 h(zi)T2(xi)(j)

)
.

If these conditions hold (which is precisely the case in the proof of all our upper bound
results), then it must be the case that g has a very special form, in particular, g must be
a linear function in its second variable. To make the setting more concrete, we map the
terminology of Theorem 6.3.1 into some examples from our upper bound results.

First consider the case that f(x, y) = ⟨x, y⟩. In this case, both T1 and T2 are the identity
maps and g(a, b) = ab. It is indeed the case that g(a, b) is linear in b. Now consider a slightly
more complicated choice f(x, y) =

∑d
j=1 x(j) log(y(j)). Here, we first have the mappings

T1 = identity but T2 is a coordinate wise map such that T2(y) = [log(y1), . . . , log(yn)]. The
function g again satisfies g(a, b) = ab. Finally we consider the example f(x, y) = ∥x − y∥22
which sets d′ ≫ d. In particular, the mappings T1, T2 expand x, y into a O(d2)-dimensional
vector, whose coordinates represent all possible combinations products of two coordinates
of x and y respectively. (The reader may realize that this particular case is an example of
“linearizing” the kernel given by f). Again g is the same function as before.

The proof of Theorem 6.3.1 relies on the following classical result on the solutions of
Cauchy’s functional equation.

Theorem 6.3.2. Let t : R→ R be a continuous function which satisfies t(x+y) = t(x)+ t(y)
for all inputs x, y in its domain. Then t must be a linear function.
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For us the hypothesis that t is continuous suffices but it is know that the above result
follows from much weaker hypothesis. We refer to the reader to [126] for reference related to
Cauchy’s functional equation.

Proof of Theorem 6.3.1. Our goal is to show that if

n∑
i=1

zi · g (T1(xk)(j), T2(xi)(j)) = g

(
T1(xk)(j),

n∑
i=1

ziT2(xi)(j)

)

for all z and choices of input points xi then g must be linear in the second variable. First set
zj = 0 for all j ≥ 2 and z1 = z2 = 1. For ease of notation, denote q := T1(xk)(j). As we vary
the coordinate of the points x1 and x2, the values T2(x1)(j) and T2(x2)(j) also vary over the
range of T2. Thus,

g(q, a) + g(q, b) = g(q, a+ b)

for all possible inputs a, b. However, this is exactly the hypothesis of Theorem 6.3.2 so it
follows that g must be a linear function in its second coordinate, as desired.

While the proof of Theorem 6.3.1 is straightforward, it precisely captures the scenarios
where our upper bound techniques apply. In short, it implies that f must have a linear
structure, under a suitable change of basis, for our techniques to hold. If its not the case,
then our techniques do not apply and new ideas are needed. Nevertheless, as displayed by the
versatility of examples in Table 6.1, such a structure is quite common in many applications
where matrices of distance or similarity functions arise.

The observant reader might wonder how our result for the ℓ1 function fits into the
above framework as it is not obviously linear. However, we note that the function hj(x) =∑n

i=1 |x(j) − xi(j)| (which appears in the theorem statement of Theorem 6.3.1 as the sum∑n
i=1 zi · g

(
T1(xk)(j), T2(xi)(j)

)
is actually a piece-wise linear function in x(j). The sorting

preprocessing we performed for Theorem 6.1.1 can be thought of as creating a data structure
which allows us to efficiently index into the correct linear piece.

6.4 Lower and (Approximate) Upper bounds for ℓ∞

In this section we give a proof of Theorem 1.5.2. Specifically, we give a reduction from the
Orthogonal Vector Problem (OVP) [197] to the problem of computing matrix-vector product
Az, where Ai,j = ∥xi−xj∥∞, for a given set of points X = {x1, . . . , xn}. Recall the orthogonal
vector problem and the associated conjecture.

Definition 2.0.2. (Orthogonal Vectors problem (OVP)) Given two sets of vectors A =
{a1, . . . , an} and B = {b1, . . . , bn}, A,B ⊂ {0, 1}d, |A| = |B| = n, determine whether there
exist x ∈ A and y ∈ B such that the dot product x · y =

∑d
j=1 xjyj (taken over reals) is equal

to 0.
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Conjecture 2.0.2. [197] Suppose d = ω(log n). Assuming SETH, for every constant α > 0,
no randomized algorithm can solve OVP in O(n2−α) time.

An efficient reduction from OVP to the matrix-vector product problem yields Theorem
1.5.2.

Lemma 6.4.1. If the matrix-vector product problem for ℓ∞ distance matrices induced by n
vectors of dimension d can be solved in time T (n, d), then OVP (with the same parameters)
can be solved in time O(T (n, d)).

Proof. Define two functions, f, g : {0, 1}d → [0, 1], such that f(0) = g(0) = 1/2, f(1) = 0,
g(1) = 1. We extend both functions to vectors by applying f and g coordinate wise and
to sets by letting f({a1, . . . , an}) = {f(a1), . . . , f(an)}); the function g is extended in the
same way for B. Observe that, for any pair of non-zero vectors a, b ∈ {0, 1}d, we have
∥f(a)− g(b)∥∞ = 1 if and only if a · b > 0, and ∥f(a)− g(b)∥∞ = 1/2 otherwise.

Consider two sets of binary vectors A and B. Without loss of generality we can assume
that the vectors are non-zero, since otherwise the problem is trivial. Define three distance
matrices: matrix MA defined by the set f(A), matrix MB defined by the set g(B) and
MAB defined by the set f(A) ∪ f(B). Furthermore, let M be the “cross-distance” matrix,
such that such that Mi,j = ∥f(ai) − g(bj)∥∞. Observe that the matrix MAB contains
blocks MA and MB on its diagonal, and blocks M and MT off-diagonal. Thus, MAB · 1 =
MA · 1 +MB · 1 + 2M · 1, where 1 denotes an all-ones vector of the appropriate dimension.
Since M · 1 = (MAB · 1−MA · 1−MB · 1)/2, we can calculate M · 1 in time O(T (n, d)). Since
all entries of M are either 1 or 1/2, we have that M · 1 < n2 if and only if there is an entry
Mi,j = 1/2. However, this only occurs if ai · bj = 0.

6.4.1 Approximate ℓ∞ Matrix-Vector Queries

In light of the lower bounds given above, we consider initializing approximate matrix-vector
queries for the ℓ∞ function. Note that the lower bound holds for points in {0, 1, 2}d and thus
it is natural to consider approximate upper bounds for the case of limited alphabet.

Binary Case. We first consider the case that all points x ∈ X are from {0, 1}d. We first
claim the existence of a polynomial T with the following properties. Indeed, the standard
Chebyshev polynomials satisfy the following lemma, see e.g., see Chapter 2 in [172].

Lemma 6.4.2. There exists a polynomial T : R → R of degree O(
√
d log(1/ε)) such that

T (0) = 0 and |T (x)− 1| ≤ ε for all x ∈ [1/d, 1].

Now note that ∥x−y∥∞ can only take on two values, 0 or 1. Furthermore, ∥x−y∥∞ = 0 if
and only if ∥x−y∥22 = 0 and ∥x−y∥∞ = 1 if and only if ∥x−y∥22 ≥ 1. Therefore, ∥x−y∥∞ = 0
if and only if T (∥x − y∥22/d) = 0 and ∥x − y∥∞ = 1 if and only if |T (∥x − y∥22/d) − 1| ≤ ε.
Thus, we have that

|Ai,j − T (∥xi − xj∥22/d)| = |∥xi − xj∥∞ − T (∥xi − xj∥22/d)| ≤ ε
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for all entries Ai,j of A. Note that T (∥x− y∥22/d) is a polynomial with O((2d)t) monomials
in the variables x(1), . . . , x(d). Consider the matrix B satisfying Bi,j = T (∥xi − xj∥22/d).
Using the same ideas as our upper bound results for f(x, y) = ⟨x, y⟩p, it is straightforward to
calculate the matrix vector product By (see Section 6.2.2). To summarize, for each k ∈ [n],
we write the kth coordinate of By as a polynomial in the d coordinates of xk. This polynomial
has O((2d)t) monomials and can be constructed in O(n(2d)t) time. Once constructed, we can
evaluate the polynomial at x1, . . . , xn to obtain all the n coordinates of By. Each evaluation
requires O((2d)t) resulting in an overall time bound of O(n(2d)t).

Theorem 6.4.3. Let Ai,j = ∥xi − xj∥∞. We can compute By in time O(n(2d)
√
d log(1/ε))

where ∥A−B∥∞ ≤ ε.

Entries in {0, . . . ,M}. We now consider the case that all points x ∈ X are from {0, . . . ,M}d.
Our argument will be a generalization of the previous section. At a high level, our goal is
to detect which of the M + 1 possible values in {0, . . . ,M} is equal to the ℓ∞ norm. To do
so, we appeal to the prior section and design estimators which approximate the indicator
function “∥x− y∥∞ ≥ i”. By summing up these indicators, we can approximate ∥x− y∥∞.

Our estimators will again be designed using the Chebyshev polynomials. To motivate
them, suppose that we want to detect if ∥x− y∥∞ ≥ i or if ∥x− y∥∞ < i. In the first case,
some entry in x− y will have absolute value value at least i where as in the other case, all
entries of x− y will be bounded by i− 1 in absolute value. Thus if we can boost this ‘signal’,
we can apply a polynomial which performs thresholding to distinguish the two cases. This
motivates considering the functions of ∥x − y∥kk for a larger power k. In particular, in the
case that ∥x− y∥∞ ≥ i, we have ∥x− y∥kk ≥ ik and otherwise, ∥x− y∥kk ≤ dik−1. By setting
k ≈ log(d), the first value is much larger than the latter, which we can detect using the
‘threshold’ polynomials of the previous section.

We now formalize our intuition. It is known that appropriately scaled Chebyshev polyno-
mials satisfy the following guarantees, see e.g., see Chapter 2 in [172].

Lemma 6.4.4. There exists a polynomial T : R → R of degree O(
√
t log(t/ε)) such that

|T (x)| ≤ ε/t for all x ∈ [0, 1/(10t)] and |T (x)− 1| ≤ ε/t2 for all x ∈ [1/t, 1].

Given x, y ∈ Rd, our estimator will first try to detect if ∥x − y∥∞ ≥ i. Let T1 be a
polynomial from Lemma 6.4.4 with t = O(Mk) for k = O(M log(Md)) and assuming k is
even. Let T2 be a polynomial from Lemma 6.4.4 with t = O(

√
d log(M/ε)). Our estimator

will be

T2

(
1

d

d∑
j=1

T1

(
(x(j)− y(j))k

ik ·Mk

))
.

If coordinate j is such that |x(j)− y(j)| ≥ i, then

(x(j)− y(j))k

ik ·Mk
≥ 1

Mk
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and so T1 will evaluate to a value very close to 1. Otherwise, we know that

(x(j)− y(j))k

ik ·Mk
≤ (i− 1)k

ikMk
=

1

Mk
(1− 1/i)k ≪ 1

Mk
· 1

poly(M,d)

by our choice of k, which means that T1 will evaluate to a value close to 0. Formally,

1

d

d∑
j=1

T1

(
(x(j)− y(j))k

ik ·Mk

)
will be at least 1/d if there is a j ∈ [d] with |x(j)− y(j)| ≥ i and otherwise, will be at most
1/(10d). By our choice of T2, the overall estimate output at least 1− ε in the first case and
a value at most ε in the second case.

The polynomial which is the concatenation of T2 and T1 has O
(
(dk · deg(T1))

deg(T2)
)
=

(dM)O(M
√
d log(Md)) monomials, if we consider the expression as a polynomial in the variables

x(1), . . . , x(d). Our final estimator will be the sum across all i ≥ 1. Following our upper
bound techniques for matrix-vector products for polynomial, e.g. in Section 6.2.2, and as
outlined in the prior section, we get the following overall query time:

Theorem 6.4.5. Suppose we are given X = {x1, . . . , xn} ⊆ {0, . . . ,M}d which implicitly
defines the matrix Ai,j = ∥xi − xj∥∞. For any query y, we can compute By in time n ·
(dM)O(M

√
d log(Md/ε)) where ∥A−B∥∞ ≤ ε.

6.5 Applications of Matrix-Vector Products

6.5.1 Preliminary Tools

We highlight specific prior results which we use in conjunction with our matrix-vector query
upper bounds to obtain improved algorithmic results. First we recall a result of [29] which
gives a nearly optimal low-rank approximation result in terms of the number of matrix-vector
queries required.

Theorem 6.5.1 (Theorem 5.1 in [29]). Given matrix-vector query access to a matrix A ∈
Rn×n, accuracy parameter ε ∈ (0, 1), k ∈ [n] and any p ≥ 1, there exists an algorithm which
uses Õ(k/ε1/3) matrix-vector queries and outputs a n×k matrix Z with orthonormal columns
such that with probability at least 9/10,

∥A(I − ZZT )∥p ≤ (1 + ε) min
U :UTU=Ik

∥A(I − UUT )∥p

where ∥M∥p = (
∑n

i=1 σi(M)p)1/p is the p-th Schatten norm where σ1, . . . , σ(M) are the
singular values of M . The runtime of the algorithm is Õ(Tk/ε1/3 + nkw−1/ε(w−1)/3) where T
is the time for computing a matrix-vector query.
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The second result is of [154] which give an optimized analysis of a variant of power method
for computing the top k singular values.

Theorem 6.5.2 (Theorem 1 and 7 in [154]). Given matrix-vector query access to a matrix
A ∈ Rn×n, accuracy parameter ε ∈ (0, 1), k ∈ [n], there exists an algorithm which uses
Õ(k/ε1/2) matrix-vector queries and outputs a 1 ± ε approximation to the top k singular
values of A. The runtime of the algorithm is Õ(Tk/ε1/2 + nk2/ε+ k3/ε3/2).

Lastly, we recall the guarantees of the classical conjugate-gradient descent method.

Theorem 6.5.3. Let A be a symmetric PSD matrix and consider the linear system Ax = b
and let x∗ = argminx∥Ax− b∥2. Let κ denote the condition number of A. Given a starting
vector x0, the conjugate gradient descent algorithm uses O(

√
κ log(1/ε)) matrix-vector queries

and returns x such that
∥x− x∗∥A ≤ ε∥x0 − x∗∥A

where ∥x∥A = (xTAx)1/2 denotes the A-norm.

Note that matrices in our setting are also PSD, for example if Ai,j = ⟨xi, xj⟩. For non
PSD matrices A, one can also use the conjugate gradient descent method on the matrix
ATA which squares the condition number. Therefore, there are more complicated algorithms
which work directly on the matrix-vector queries of A for non PSD matrices, for example see
references in Chapters 6 and 7 of of [16]. We omit their discussion for clarity and just note
that in practice, iterative methods which directly use matrix-vector queries are preferred for
linear system solving.

6.5.2 Applications

We now derive specific applications using prior results from “matrix-free" methods. First we
cover low-rank approximation.

For the ℓ1 and ℓ22 distance matrices, we improve upon prior works for computing a relative
error low-rank approximation. While we can obtain such an approximation for a wide variety
of Schatten norms, we state the bound in terms of the Frobenius norm since it has been
studied in prior works.

Theorem 6.5.4. Let p ≥ 1 and consider the case that Ai,j = ∥xi − xj∥pp for all i, j. We can
compute a matrix B such that

∥A−B∥F ≤ (1 + ε)∥A− Ak∥F

where Ak denotes the optimal rank-k approximation to A in Frobenius norm. The runtime is
Õ(ndpk/ε1/3 + nkw−1/ε(w−1)/3).

Proof. The theorem follows from combining the matrix-vector query runtime of Table 6.1
and Theorem 6.5.1.

146



Note that the best prior result for the special case of ℓ1 and ℓ22 from [28] where they
obtained a runtime bound of O(ndk/ε+nkw−1/εw−1). Thus our bound improves upon this by
a multiplicative factor of poly(1/ε). We point out that the bound of O(ndk/ε+nkw−1/εw−1)
is actually optimal for the class of algorithms which sample the entries of A. Thus our results
show that if we know the set of points beforehand, which is a natural assumption, one can
overcome such lower bounds.

For the case of Ai,j = ∥xi−xj∥2, we cannot hope to achieve a relative error approximation
for low-rank approximation since we only have fast matrix-vector queries to the matrix B
where Bi,j = (1 ± ε)∥xi − xj∥2 via Theorem 6.2.11. Nevertheless, we can still obtain an
additive error low-rank approximation guarantee which outperforms prior works. First we
show that our approximation matrix-vector queries are sufficient to obtain such a guarantee.

Lemma 6.5.5. Let A,B satisfy ∥A − B∥F ≤ ε∥A∥F and suppose A′ and B′ are the best
rank-r approximation of A and B respectively in the Frobenius norm. Then

∥A−B′∥F ≤ ∥A− A′∥F + 2ε∥A∥F .

Proof. We have

∥A−B′∥F ≤ ∥A−B∥F + ∥B −B′∥F
≤ ε∥A∥F + ∥B − A′∥F
≤ ε∥A∥F + ∥B − A∥F + ∥A− A′∥F
≤ ∥A− A′∥F + 2ε∥A∥F .

Theorem 6.5.6. Let Ai,j = ∥xi − xj∥2 for all i, j. We can compute a matrix B such that

∥A−B∥F ≤ ∥A− Ak∥F + ε∥A∥F

with probability 1 − 1/poly(n) where Ak denotes the optimal rank-k approximation to A in
Frobenius norm. The runtime is Õ(ndk/ε1/3 + nkw−1/ε(w−1)/3).

Proof. The runtime follows from applying Theorem 6.5.1 on the matrix created after applying
Theorems 2.0.2 and 6.2.11. The approximation guarantee follows from Lemma 6.5.5.

The best prior work for additive error low-rank approximation for this case is due to [113]
which obtained such a guarantee with runtime Õ(nd · poly(k, 1/ε)) for a large unspecified
polynomial in k and 1/ε. Lastly we note that our relative error low-rank approximation
guarantee holds for any f in Table 6.1, as summarized in Table 6.2.

Theorem 6.5.7. Suppose we have exact matrix-vector query access to a matrix A with each
query taking time T . Then we can output a matrix B such that

∥A−B∥F ≤ (1 + ε)∥A− Ak∥F

where Ak denotes the optimal rank-k approximation to A in Frobenius norm. The runtime is
Õ(Tk/ε1/3 + nkw−1/ε(w−1)/3).
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Directly appealing to Theorems 6.5.2 and 6.5.3 in conjunction with our matrix-vector
queries achieves the fastest runtime for computing the top k singular values and solving linear
systems for a wide variety of distance matrices that we are aware of.

Theorem 6.5.8. Suppose we have exact matrix-vector query access to a matrix A with each
query taking time T . We can compute a 1± ε approximation to the k singular values of A
in time Õ(T/ε1/2 + nk2/ε + k3/ε3/2). Furthermore, we can solve linear systems for A with
the same guarantees as any iterative method which only uses matrix-vector queries with an
multiplicative overhead of T .

Finally, we can also perform matrix multiplication faster with distance matrices compared
to the general runtime of nw ≈ n2.37. This follows from the following lemma.

Lemma 6.5.9. Suppose A ∈ Rn×n admits an exact matrix-vector query algorithm in time
T . Then for any B ∈ Rn×n, we can compute AB in time O(Tm).

Proof. We can compute AB by computing the product of A with the n columns of B
separately.

As a corollary, we obtain faster matrix multiplication for all the family of matrices which
we have obtained a fast matrix-vector query for. We state one such corollary for the ℓpp case.

Corollary 6.5.10. Let p ≥ 1 and consider the case that Ai,j = ∥xi − xj∥pp for all i, j. For
any other matrix B, we can compute AB in time O(n2dp).

We can improve upon the above result slightly if we are multiplying two distance matrices
for the p = 2 case.

Lemma 6.5.11. Consider the case that Ai,j = ∥xi − xj∥22 for all i, j and Bi,j = ∥yi − yj∥22,
i.e., both A and B are n× n matrices with f = ℓ22. We can compute AB in time O(n2dw−2).

Proof. By decomposing both A and B, it suffices to compute the product XXTY Y T where
X, Y ∈ Rn×d are the matrices with the points xi and yi in the rows respectively. Z1 := XTY ∈
Rd×d can be computed in O(nd2) time. Then Z2 := XZ1 ∈ Rn×d can also be computed in
O(nd2) time. Finally, we need to compute Z2 × Y T . This can be done in O(n2dw−2) time by
decomposing both Z2 and Y T into n/d many d× d square matrices and using the standard
matrix multiplication bound on each pair of square matrices. This results in the claimed
runtime of O((n/d)2 · dw) = O(n2dw−2).

6.6 A Fast Algorithm for Creating ℓ1 and ℓ2 Distance
Matrices

We now present a fast algorithm for creating distance matrices which addresses our contri-
bution (3) stated in the introduction. Given a set of n points x1, . . . , xn in Rd, our goal is to
initialize an approximate n× n distance matrix B for the ℓ1 distance which satisfies

Bij = (1± ε)∥xi − xj∥1 (6.1)
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for all entries of B where 0 < ε < 1 is a precision parameter. The straightforward way to
create the exact distance matrix takes take O(n2d) time and by using the stability of Cauchy
random variables, we can create B which satisfies (6.1) in O(n2 log n) time for any constant
ε. (Note the Johnson-Lindenstrauss lemma implies a similar guarantee for the ℓ2 distance
matrix). The goal of this section is to improve upon this ‘baseline’ runtime of O(n2 log n).
The final runtime guarantees of this section will be of the form O(n2 · poly(log log n)).

Our improvement holds in the Word-RAM model of computation. Formally, we assume
each memory cell (i.e. word) can hold O(log n) bits and certain computations on words
take O(1) time. The only assumptions we require are the arithmetic operations of adding or
subtracting words as well as performing left or right bit shifts on words takes constant time.

We first present prior work on metric compression of [111] in Section 6.6.1. Our algorithm
description starts from Section 6.6.2 which describes our preprocesing step. Section 6.6.3
then presents our key algorithm ideas whose runtime and accuracy are analyzed in Sections
6.6.4 and 6.6.5.

6.6.1 Metric Compression Tree of [111]

The starting point of our result is the metric compression tree construction of [111], whose
properties we summarize below. First we introduce some useful definitions. The aspect
ration Φ of X is defined as

Φ =
maxi,j ∥xi − xj∥1
mini ̸=j ∥xi − xj∥1

.

Let ∆′ = maxi∈[n] ∥x1 − xi∥1 and ∆ = 2⌈log∆
′⌉.

Theorem 1 of [111] implies the following result. Given a dataset X = {x1, . . . , xn} ⊂ Rd

with aspect ration Φ, there exists a tree data structure T which allows for the computation of
a compressed representation X for the purposes of distance computations. At a high level, T
is created by enclosing X in a large enough and appropriately shifted axis-parallel square and
then recursively dividing into smaller squares (also called cells) with half the side-length until
all points of X are contained in their own cell. The edges of T encode the cell containment
relationships. Formally, T has the following properties:

• The leaf nodes of T correspond to the points of X.

• The edges of T are of two types: short edges and long edges which are defined as follows.
Short edges have a length d bit vector associated with them whereas long edges have
an integer ≤ O(log Φ) associated with them.

• Each long edge with associated integer k represents a non-branching path of length k
of short edges, all of whose associated length d bit vectors are the 0 string.

• Each node of T (including the nodes that are on paths which are compressed as long
edges) have an associated level −∞ < ℓ ≤ log(4∆). A level ℓ of a node v corresponds
to an axis-parallel square Gℓ of side length 2ℓ which contains all axis-parallel squares
of child nodes of v.

149



The notion of a padded point is important for the metric compression properties of T .

Definition 6.6.1 (Padded Point). A point xi is (ε,Λ, ℓ)-padded, if the grid cell Gℓ of side
length 2ℓ that contains xi also contains the ball of radius ρ(ℓ) centered at xi, where

ρ(ℓ) = 8ε−12ℓ−Λ
√
d.

We say that xi is (ε,Λ)-padded in T , if it is (ε,Λ, ℓ)-padded for every level ℓ.

The following lemma is proven in [111]. First define

Λ = log(16d1.5 log Φ/(εδ)). (6.2)

Lemma 6.6.1 (Lemma 1 in [111]). Consider the construction of T defined formally in
Section 3 of [111]. Every point xi is (ε,Λ)-padded in T with probability 1− δ.

Now let x be any point in our dataset. We can construct x̃ ∈ Rd, called the decompression
of x, from T with the following procedure: We follow the downward path from the root of T
to the leaf associated with x and collect a bit string for every coordinate d of x̃. When going
down a short edge with an associated bit vector b, we concatenate the ith bit of b to the
end of the bit string that we are keeping track of for the ith coordinate of x̃. When going
down a long edge, we concatenate with a number of zeros equaling the integer associated
with the long edge. Finally, a binary floating point is placed in the resulting bit strings of
each coordinate after the bit corresponding to level 0. The collected bits then correspond
to the binary expansion of the coordinates of x̃. For a more thorough description of the
decompression scheme, see Section 3 of [111].

The decompression scheme is useful because it allows approximate distance computations.

Lemma 6.6.2 (Lemma 2 in [111]). If a point xi is (ε,Λ)-padded in T , then for every j ∈ [n],

(1− ε)∥x̃i − x̃j∥1 ≤ ∥xi − xj∥1 ≤ (1 + ε)∥x̃i − x̃j∥1.

We now cite the runtime and space required for T . The following theorem follows from
the results of [111].

Theorem 6.6.3. Let L = log Φ + Λ. T has O(nΛ) edges, height L, its total size is O(ndΛ+
n log n) bits, and its construction time is O(ndL).

We contrast the above guarantees with the naive representation of X which stores O(log n)
bits of precision for each coordinate and occupies O(nd log n) bits of space, whereas T occupies
roughly O(nd log log n+ n log n) bits.

Finally, Theorem 2 in [111] implies we can create a collection of O(log n) trees T (by
setting δ to be a small constant in (6.2)) such that every point in X is padded in at least
one tree in the collection.
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6.6.2 Step 1: Preprocessing Metric Compression Trees

We now describe the preprocessing steps needed for our faster distance matrix compression.
Let

w =
4dΛ

log n
(6.3)

and recall our setting of Λ in (6.2). Note that we assume w is an integer which implicitly
assumes 4dΛ ≥ log n.

First we describe the preprocessing of T . Consider a short edge of T with an associated d
length bit string b. We break up b into w equal chunks, each containing d/w bits. Consider
a single chunk c. We pad (an equal number of) 2Λ many 0’s after each bit in c so that the
total number of bits is log n/2. We then store each padded chunk in one word. We do this
for every chunk resulting in w words for each short edge and we do this for all short edges in
all the trees.

The second preprocessing step we perform is creating a O(
√
n) × O(

√
n) table A. The

rows and columns of A are indexed by all possible bit strings with logn
2

bits. The entries of A
record evaluations of the function f(x, y) defined as follow: given x, y where x, y ∈ {0, 1} logn

2 ,
consider the partition of each of them into d/w blocks, each with an equal number of bits
(2Λ bits per block. Note that 2Λ · d/w = (log n)/2). Each block defines an integer. Doing so
results in d/w integers x1, . . . , xd/w derived from x and w integers y1, . . . , yd/w derived from
y. Finally,

f(x, y) =

d/w∑
i=1

|xi − yi|.

6.6.3 Step 2: Depth-First Search

We now calculate one row of the distance matrix from point a padded point x to all other
points in our dataset. Our main subroutine is a tree search procedure. Its input is a node v
in a tree T and it performs a depth-first search on the subtree rooted at v as described in
Algorithm 18. Given an internal vertex v, it calculates all the distances between the padded
point x to all data points in our dataset which are leaf nodes in the subtree rooted at v. A
summary of the algorithm follows.

We perform a depth-first search starting at v. As we traverse the tree, we keep track
of the current embedding of the internal nodes via collecting bits along the edges of T : we
append bits when we descend the tree and remove as we move up edges. However, we only
keep track of this embedding up to 2Λ levels below v. After that, we continue traversing the
tree but don’t update the embedding. The reason for this is after 2Λ levels, the embedding
is precise enough for all nodes below with respect to computing the distance to x. Towards
this end, we also track how many levels below v the tree search is currently at and update
this value appropriately.

The current embedding is tracked using w words. Recall that the bit string of every short
edge has been repackaged into w words, each ‘responsible’ for d/w coordinates. Furthermore,
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in each word on the edge, we have padded 0’s between the bits of each d/w coordinates.
When we need to update the current embedding by incorporating the bits along a short edge
e, we simply perform a bit shift on each of the w words on e and add it to the w words we are
keeping track of. We need to make sure we place the bits ‘in order.’ That is for our tracked
embedding, for every d coordinates, the bits on an edge e should precede the bits on the
edge directly following e in the tree search. Due to the padding from the preprocessing step,
the bit shift implies the bits on the short edges after e will be placed in their appropriate
corresponding places in order in the embedding representation.

Algorithm 18 DFS in Subtree
1: Input: Metric Compression Tree T , node v
2: procedure Search( T, v)
3: Initialize a global counter p for the number of levels which have been processed.

Initially set to 0 and will be at most 2Λ
4: Initialize w words t1, . . . , tw, all initially 0
5: Initialize a global counter r for the current level which is initially set to the level of v

in T
6: Perform a depth-first search in the subtree rooted at v. Run Process-Short-Edge

if a short edge is encountered, Process-Long-Edge if a long edge is encountered, and
Process-Leaf when we arrive at a leaf.

7: end procedure

While performing the depth-first search, we will encounter both short and long edges.
When encountering a short edge, we run the function Process-Short-Edge and similarly,
we run Process-Long-Edge when a long edge is encountered. Finally if we arrive at a leaf
node, we run Process-Leaf.

Algorithm 19 Process Short Edge
1: Input: Short edge e, number of processed nodes p, t1, . . . , tw
2: procedure Process-Short-Edge(e, p, t1, . . . , tw)
3: Let e1, . . . , ew be the w words associated with edge e
4: If search is traversing down e and p < 2Λ, add 2−pei to ti for all 1 ≤ i ≤ w and

increment p
5: If search is traversing up e and p ≤ 2Λ, subtract 2−pei from ti for all 1 ≤ i ≤ w and

decrement p
6: Update r to the level of the current node
7: end procedure
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Algorithm 20 Process Long Edge
1: Input: Long edge e, number of processed nodes p
2: procedure Process-Long-Edge(e, p)
3: If search is traversing down e and p < 2Λ, increment p
4: If search is traversing up e and p ≤ 2Λ, decrement p
5: Update r to the level of the current node
6: end procedure

When we arrive at a leaf node y, we currently have the decompression of y computed
from the tree. Note that we only have kept track of the bits after node v (up to limited
precision) since all prior bits are the same for y and x since they are in the same subtree.
More specifically, we have w words t1, . . . , tw. The first word t1 has 2Λ bits of each of the
first d/w coordinates of y. For every coordinate, the 2Λ bits respect the order described in
the decompression step in Section 6.6.2. A similar fact is true for the rest of the words ti.
Now to calculate the distance between x and y, we just have to consider the 2Λ bits of all d
coordinates of x which come after descending down vertex v. We then repackage these 2dΛ
total bits into w words in the same format as y. Note this preprocessing for x only happens
once (at the subtreee level) and can be used for all leaves in the subtree rooted at v.

Algorithm 21 Process Leaf
1: Input: t1, . . . , tw
2: procedure Process-Leaf(y, t1, . . . , tw)
3: Let the point y correspond to the current leaf node
4: Let s1, . . . , sw denote the embedding of x after node v, preprocessed to be in the same

format as t1, . . . , tw
5: Report

∑w
i=1A[ti, si] as the distance between x and y

6: end procedure

Finally, the complete algorithm just calls Algorithm 18 on successive parent nodes of x.
We mark each subtree that has already been processed (at the root node) so that the subtree
is only ever visited once. The number of calls to Algorithm 18 is at most the height of the
tree, which is bounded by O(log Φ + Λ). We then repeat this for all points x in our dataset
(using the tree which x is padded in) to create the full distance matrix.

6.6.4 Runtime Analysis

We consider the runtime required to compute the row corresponding to a padded point x
in the distance matrix. Multiplying by n results in the total runtime. Consider the tree
T in which x is padded in and which we use for the algorithm described in the previous
section and recall the properties of T outlined in Theorem 6.6.3. T has O(nΛ) edges, each
of which is only visited at most twice in the tree search (going up and down). Thus the time
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to traverse the tree is O(nΛ). There are also at most O(nΛ) short edges in T . Updating
the embedding given by t1, . . . , tw takes O(w) time per edge since it can be done in O(w)
total word operations. Long edges don’t require this time since they represent 0 bits; for
long edges, we just increment the counter for the current level. Altogether, the total runtime
for updating t1, . . . , tw across all calls to Algorithm 18 for the padded point x is O(nΛw).
Finally, calculating the distance from x to a fixed point y requires O(w) time since we just
index into the array A w times. Thus the total runtime is dominated by O(nΛw). Finally,
the total runtime for computing all rows of the distance matrix is

O(n2Λw) = O

(
n2dΛ2

log n

)
= O

(
n2d

log n
log2

(
d log Φ

ε

))
by setting δ to be a small constant in (6.2).

6.6.5 Accuracy Analysis

We now show that the distances we calculate are accurate within a 1± ε multiplicative factor.
The lemma below shows that if a padded point x and another point y have a sufficiently
far away least-common ancestor in T , then we can disregard many lower order bits in the
decompression computed from T while still guaranteeing accurate distance measurements.
The lemma crucially relies on x being padded.

Lemma 6.6.4. Suppose x is (ε,Λ)-padded in T . For another point y, suppose the least
common ancestor of x and y is at level ℓ. Let x̃ and ỹ denote the sketches of x and y
produced by T . Let x̃′ be a modified version of x̃ where for each of the d coordinates, we
remove all the bits acquired after level ℓ− 2Λ. Similarly define ỹ′. Then

∥x̃′ − ỹ′∥1 = (1± ε)∥x− y∥1.

Proof. Since x is padded, we know that ∥x−y∥1 ≥ p(ℓ−1) by Definition 6.6.1. On the other
hand, if we ignore the bits after level ℓ − 2Λ for every coordinate of x̃ and ỹ, the additive
approximation error in the distance is bounded by a constant factor times

d ·
ℓ−2Λ−1∑
i=−∞

2i = d · 2ℓ−2Λ.

From our choice of Λ, we can easily verify that d · 2ℓ−2Λ ≤ εp(ℓ− 1)/2. Putting everything
together and adjusting the value of ε, we have

∥x̃′ − ỹ′∥1 = ∥x̃− ỹ∥1 ± εp(ℓ− 1)/2 = (1± ε/2)∥x− y∥1 ± εp(ℓ− 1)/2 = (1± ε)∥x− y∥1

where we have used the fact that ∥x̃− ỹ∥1 = (1± ε/2)∥x− y∥1 from the guarantees of the
compression tree of [111].
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Putting together our results above along with the Johnson-Lindenstrauss Lemma and
Theorem 2.0.2 proves the following theorem.

Theorem 6.6.5. Let X = {x1, . . . , xn} be a dataset of n points in d dimensions with aspect
ration Φ. We can calculate a n× n matrix B such that each (i, j) entry Bij of B satisfies

(1− ε)∥xi − xj∥1 ≤ Bij ≤ (1 + ε)∥xi − xj∥1

in time
O

(
n2d

log n
log2

(
d log Φ

ε

))
.

Assuming the aspect ratio is polynomially bounded, we can compute n×n matrix B such that
each (i, j) entry Bij of B satisfies

(1− ε)∥xi − xj∥2 ≤ Bij ≤ (1 + ε)∥xi − xj∥2

with probability 1− 1/poly(n). The construction time is

O

(
n2

ε2
log2

(
log n

ε

))
.

6.6.6 A Faster Algorithm for ℓ∞ Distance Matrix Construction Over
Bounded Alphabet

In this section, we show how to create the ℓ∞ distance matrix. Recall from Section 6.4 that
there exists no o(n2) time algorithm to compute a matrix-vector query for the ℓ∞ distance
matrix, assuming SETH, even for n points in {0, 1, 2}d. This suggests that any algorithm for
computing a matrix-vector query needs to initialize the distance matrix. However, there is
still a gap between a Ω(n2) lower bound for matrix-vector queries and the naive O(n2d) time
needed to compute the ℓ∞ distance matrix. We make progress towards showing that this
gap is not necessary. Our main result is that surprisingly, we can initialize the ℓ∞ distance
matrix in time much faster than the naive O(n2d) time.

Theorem 6.6.6. Given n points over {0, 1, . . . ,M}d, we can initialize the exact ℓ∞ distance
matrix in time O(Mw−1n2(d logM)w−2) where w is the matrix multiplication constant. We
can also initialize a n× n matrix B such that each (i, j) entry Bij of B satisfies

(1− ε)∥xi − xj∥∞ ≤ Bij ≤ (1 + ε)∥xi − xj∥∞

in time Õ(ε−1n2(dM)w−2).

Thus for M = O(1), which is the setting of the lower bound, we can initialize the distance
matrix in time O(n2dw−2) and thus compute a matrix-vector query in that time as well.
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Proof. The starting point of the proof is to first design an algorithm which constructs a
matrix with (i, j) entry an indicator vector for ∥x − y∥∞ ≤ i or ∥x − y∥∞ > i. Given this,
we can then sum across all M choices and construct the full distance matrix. Thus it suffices
to solve this intermediate task.

Pick a sufficiently large p such that dip ≤ (i + 1)p. A choice of p = O(M log d) suffices.
Now in the case that ∥x−y∥∞ ≤ i, we have ∥x−y∥pp ≤ dip and otherwise, ∥x−y∥pp ≥ (i+1)p.
Thus, the matrix C with the (i, j) entry being ∥xi − xj∥pp is able to distinguish the two cases
so it suffices to create such a matrix. Now we can write ∥x − y∥pp as an inner product in
O(pd) variables, i.e., it is a gram matrix. Thus computing C can be done by computing a
product of n×O(pd) matrix by a O(pd)× n matrix, which can be done in

O

((
n

pd

)2

(pd)w−2

)
= O(n2(pd)w−2).

time by partitioning each matrix into square submatrices of dimension O(pd). Plugging in
the bound for p and considering all possible choices of i results in the final runtime bound of
O(Mw−1n2(d logM)w−2), as desired.

Now if we only want to approximate each entry up to a multiplicative 1 ± ε factor, it
suffices to only loop over i’s which are increasing by powers of 1 + cε for a small constant c.
This replaces an O(M) factor by an O(ε−1 logM) factor.

6.7 Empirical Evaluation

We perform an empirical evaluation of our matrix-vector query for the ℓ1 distance function.
We chose to implement our ℓ1 upper bound since it’s a clean algorithm which possesses
many of the same underlying algorithmic ideas as some of our other upper bound results.
We envision that similar empirical results hold for most of our upper bounds in Table 6.1.
Furthermore, matrix-vector queries are the dominating subroutine in many key practical
linear algebra algorithms such as the power method for eigenvalue estimation or iterative
methods for linear regression: a fast matrix-vector query runtime automatically translates
to faster algorithms for downstream applications.

Experimental Design. We chose two real and one synthetic dataset for our experiments.
We have two “small" datasets and one “large" dataset. The two small datasets have 5 · 104
points whereas the large dataset has approximately 106 points. The first dataset is points
drawn from a mixture of three spherical Gaussians in R50. The second dataset is the standard
MNIST dataset [132] and finally, our large dataset is Glove word embeddings1 in R50 [158].

The two small datasets are small enough that one can feasibly initialize the full n × n
distance matrix in memory in reasonable time. A 5 · 104 × 5 · 104 matrix with each entry
stored using 32 bits requires 10 gigabytes of space. This is simply impossible for the Glove

1Can be accessed here: http://github.com/erikbern/ann-benchmarks/

156

http://github.com/erikbern/ann-benchmarks/


Dataset (n, d) Algo. Preprocessing Time Avg. Query Time

Gaussian Mixture (5 · 104, 50)
Naive 453.7 s 43.3 s
Ours 0.55 s 0.09 s

MNIST (5 · 104, 784)
Naive 2672.5 s 38.6 s
Ours 5.5 s 1.9 s

Glove (1.2 · 106, 50)
Naive - ≈ 2.6 days (estimated)
Ours 16.8 s 3.4 s

Table 6.3: Dataset description and empirical results. (n, d) denotes the number of points
and dimension of the dataset, respectively. Query times are averaged over 10 trials with
Gaussian vectors as queries.

dataset as approximately 5.8 terabytes of space is required to initialize the distance matrix
(in contrast, the dataset itself only requires < 0.3 gigabytes to store).

The naive algorithm for the small datasets is the following: we initialize the full distance
matrix (which will count towards preprocessing), and then we use the full distance matrix to
perform a matrix-vector query. Note that having the full matrix to perform a matrix-vector
product only helps the naive algorithm since it can now take advantage of optimized linear
algebra subroutines for matrix multiplication and does not need to explicitly calculate the
matrix entries. Since we cannot initialize the full distance matrix for the large dataset, the
naive algorithm in this case will compute the matrix-vector product in a standalone fashion
by generating the entries of the distance matrix on the fly. We compare the naive algorithm
to our Algorithms 8 and 9.

Our experiments are done in a 2021 M1 Macbook Pro with 32 gigabytes of RAM. We
implement all algorithms in Python 3.9 using Numpy with Numba acceleration to speed up
all algorithms whenever possible.

Results. Results are shown in Table 6.3. We show preprocessing and query time for both
the naive and our algorithm in seconds. The query time is averaged over 10 trials using
Gaussian vectors as queries. For the Glove dataset, it was infeasible to calculate even a single
matrix-vector product, even using fast Numba accelerated code. We thus estimated the full
query time by calculating the time on a subset of 5 · 104 points of the Glove dataset and
extrapolating to the full dataset by multiplying the query time by (n/(5 · 104))2 where n is
the total number of points. We see that in all cases, our algorithm outperforms the naive
algorithm in both preprocessing time and query time and the gains become increasingly
substantial as the dataset size increases, as predicted by our theoretical results.
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Chapter 7

Subquadratic Algorithms for Kernel
Matrices

For a kernel function k : Rd × Rd → R and a set X = {x1 . . . xn} ⊂ Rd of n points, the
entries of the n× n kernel matrix K are defined as Ki,j = k(xi, xj). Alternatively, one can
view X as the vertex set of a complete weighted graph where the weights between points are
defined by the kernel matrix K. Popular choices of kernel functions k include the Gaussian
kernel, the Laplace kernel, exponential kernel, etc. The following notion of a kernel density
estimation query is central to the chapter.

Definition 1.6.1. (Kernel Density Estimation (KDE) Queries) For a given dataset X ⊂ Rd

of size n, kernel function k, and precision parameter ε > 0, a KDE data structure supports the
following operation: given a query y ∈ Rd, return a value KDEX(y) that lies in the interval
[(1− ε)z, (1 + ε) z], where z =

∑
x∈X k(x, y), assuming that k(x, y) ≥ τ for all x ∈ X.

The performance of the state of the art algorithms for KDE also scales proportional to
the smallest kernel value of the dataset (see Table 2.1). In short, after a preprocessing time
that is sub-quadratic (in n), KDE data structures use time sublinear in n to answer queries
defined as above. Note that for all of our kernels, k(x, y) ≤ 1 for all inputs x, y.

In this chapter, we show that given a KDE data structure as described above, it is
possible to solve a variety of matrix and graph problems in time subquadratic time o(n2),
i.e., sublinear in the matrix size. We emphasize that in our applications, we only require
black-box access to KDE queries. Given this, we design such algorithms for problems such as
eigenvalue/eigenvector estimation, low-rank approximation, and graph sparsification.

Our recall that our results are obtained via the following two-pronged approach. First, we
use KDE data structures to design algorithms for the following basic primitives, frequently
used in sublinear time algorithms and property testing:

1. sampling vertices by their (weighted) degree in K (Theorems 7.3.2 and 7.3.4 and
Algorithms 23 / 25),

2. sampling random neighbors of a given vertex by edge weights in K and sampling a
random weighted edge (Theorem 7.3.5 and Algorithms 26 and 27),
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3. performing random walks in the graph K (Theorem 7.3.7 and Algorithm 28), and

4. sampling the rows of the edge-vertex incident matrix and the kernel matrix K, both
with probability proportional to respective row norms squared (Section 7.4.1, Theorem
7.4.1, and Section 7.4.2, Corollary 7.4.10 respectively).

In the second step, we use these primitives to implement a host of algorithms for the
aforementioned problems. We emphasize that these primitives are used in a black-box
manner, meaning that any further improvements to their running times will automatically
translate into improved algorithms for the downstream problems. For our applications, we
make the following parameterization, which we expand upon in Remark 7.2.1 and Section
7.2.1. At a high level, many of our applications, such as spectral sparsification, are succinctly
characterized by the following parameterization. Recall parameterization 1.6.1: All of our
algorithms are parameterized by the smallest edge weight in the kernel matrix, i.e., the
smallest edge weight in the matrix K is at least τ .

Table 1.1 lists our applications along with the number of KDE queries required in addition
to any post-processing time. We refer to the specific sections of the body listed below for
full details. We note that in all of our theorems below, we assume access to a KDE data
structure of Definition 1.6.1 with parameters ε and τ .

One of our main results is spectral sparsification of the kernel matrix K interpreted as
a weighted graph. In Section 7.4.1, we compute a sparse subgraph whose associated matrix
closely approximates that of the kernel matrix K. The most meaningful matrix to study for
such a sparsification is the Laplacian matrix, defined as D−K where D is a diagonal matrix
of vertex degrees. The Laplacian matrix encodes fundamental combinatorial properties
of the underlying graph and has been well-studied for numerous applications, including
sparsification; see [32, 149, 181] for a survey of the Laplacian and its applications. Our result
computes a sparse graph, with a number of edges that is linear in n, whose Laplacian matrix
spectrally approximates the Laplacian matrix of the original graph K under Parameterization
1.6.1.

Theorem 7.0.1 (Informal; see Thm. 7.4.1). Let L be the Laplacian matrix corresponding
to the graph K. Then, for any ε ∈ (0, 1), there exists an algorithm that outputs a weighted
graph G′ with only m = O(n log n/(ε2τ 3)) edges, such that with probability at least 9/10,
(1 − ε)L ⪯ LG′ ⪯ (1 + ε)L. The algorithm makes Õ(m/τ 3) KDE queries and requires
Õ(md/τ 3) post-processing time.

We compare our results with prior works in Remark 7.2.1. We also show that Param-
eterization 1.6.1 is inherent for spectral sparsification. In particular, we use a hardness
result from [10] to show that for the Gaussian kernel, under the strong exponential time
hypothesis [103], any algorithm that returns an O(1)-approximate spectral sparsifier with
O(n1.99) edges requires Ω

(
n · 2log(1/τ)0.32

)
time (see Theorem 7.4.4 for a formal statement).

Obtaining the optimal dependence on τ remains an outstanding open question, even for
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Gaussian and Laplace kernels. Spectral sparsification has further downstream applications
in solving Laplacian linear systems, which we present in Section 7.4.1.

Furthermore, obtain truly sublinear time algorithms for approximating the top eigenvalue
and eigenvector of the kernel matrix, a problem which was studied in [24]. Our result is the
following theorem. Our bounds, and those of prior work, depend on the parameter p, which
refers to the exponent of τ in the KDE query runtimes. For example for the Gaussian kernel,
p ≈ 0.173. See Table 2.1 for other kernels.

Theorem 7.0.2 (Informal; see Theorem 7.4.14). Given an n×n kernel matrix K that admits
a KDE data-structure with query time d/(ε2τ p) (Table 2.1), there exists an algorithm that out-
puts a unit vector v such that vTKv ≥ (1−ε)λ1(K) in time min

(
Õ(d/(ε4.5τ 4)), Õ(d/(ε9+6pτ 2+2p))

)
,

where λ1(K) denotes the largest eigenvalue of K.

We discuss related works in Remark 7.2.2. In summary, the best prior result of [24] had
a runtime of Ω(n1+p) whereas our bound has no dependence on n. Finally, our last linear-
algebraic result is an additive-error low-rank approximation of the kernel matrix, presented
in Section 7.4.2.

Theorem 7.0.3 (Informal; see Cor. 7.4.10). There exists an algorithm that outputs a rank r
matrix B such that ∥K −B∥2F ≤ ∥K −Kr∥2F + ε∥K∥2F with probability 99% where Kr is the
optimal rank-r approximation of K. It uses n KDE queries and O(n · poly(r, 1/ε) + nrd/ε)
post-processing time.

We give detailed comparisons between our results and prior work in Remark 7.2.3. As a
summary, [28] obtain a relative error approximation with a running time of Õ

(
nd (r/ε)ω−1),

where ω denotes the matrix multiplication constant, whereas our running time is dominated
by O(nrd/ε) and we obtain only additive error guarantees. Nevertheless, the algorithm we
obtain, which builds upon the sampling scheme of [87], is a conceptually simpler algorithm
than the algorithm of [28] and easier to empirically evaluate. Indeed, we implement this
algorithm in Section 7.5 and show that it is highly competitive to the SVD.

We note that there is a line of work that considers dimensionality reduction for kernel
density estimation e.g., through coresets [160, 161, 187]. We view this direction of work as
orthogonal to our line of study. Lastly, the work [24] is similar in spirit to our work as they
also utilize KDE queries to speed up algorithms for kernel matrices. Besides top eigenvalue
estimation mentioned before, [24] also study the problem of estimating the sum of all entries
in the kernel matrix and obtain tight bounds for the latter.

7.1 Technical Overview

We provide a high-level overview and intuition for our algorithms. We first highlight our
algorithmic building blocks for fundamental tasks and then describe how these components
can be used to handle a wide range of problems. We note that our building blocks use
KDE data structures in a black-box way and thus we describe their performance in terms
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of the number of queries to a KDE oracle. We also note that a permeating theme across all
subsequent applications is that we want to perform some algorithmic task on a kernel matrix
K without computing each of its entries k(xi, xj).

Algorithmic Building Blocks . We first describe the “multi-level” KDE data structure,
which constructs a KDE data structure on the entire input dataset X, and then recursively
partitions X into two halves, building a KDE data structure on each half. The main
observation here is that if the initialization of a KDE data structure uses runtime linear in
the size n of X, then at each recursive level, the initialization of the KDE data structures
across all partitions remains linear. Since there are O(log n) levels, the overall runtime
to initialize our multi-level KDE data structure incurs only a logarithmic overhead (see
Figure 7.1 for an illustration).

Weighted vertex sampling. We describe how to sample vertices approximately propor-
tional to their weighted degree, where the weighted degree of a vertex xi with i ∈ [n] is
wi =

∑
j ̸=i k(xi, xj). We observe that performing n KDE queries suffices to get an approxi-

mation of the weighted vertex degree of all n vertices. We can thus think of vertex sampling
as a preprocessing step that uses n queries upfront and then allows for arbitrary sample
access at any point in the future with no query cost. Moreover, this preprocessing step of
taking n queries only needs to be performed once. Further, we can then perform weighted
vertex sampling from a distribution that is ε-close in total variation to the true distribution
(see Theorem 7.3.4 for details). Here, we use a multi-level tree structure to iteratively choose
a subset of vertices with probability proportional to its approximate sum of weighted degrees
determined by the preprocessing step, until the final vertex is sampled. Hence after the initial
n KDE queries, each query only uses O(log n) runtime, which is significantly better than the
naïve implementation that uses quadratic time to compute the entire kernel matrix.

Weighted neighbor edge sampling. We describe how to perform weighted neighbor edge
sampling for a given vertex x. The goal of weighted neighbor edge sampling is to efficiently
output a vertex v such that Pr[v = xk] =

(1±ε)k(x,xk)∑
j∈[n],xj ̸=x k(x,xj)

for all k ∈ [n]. Unlike the degree

case, edge sampling is not a straightforward KDE query since the sampling probability is
proportional to the kernel value between two points, rather than the sum of multiple kernel
values that a KDE query provides. However, we can utilize a similar tree procedure as in
Figure 7.1 in conjunction with KDE queries.

In particular, consider the tree in Figure 7.1 where each internal node corresponds to
a subset of neighbors of x. The two children of a parent node in the tree are simply the
two approximately equal subsets whose union make up the subset representing the parent
node. We can descend down the tree using the same probabilistic procedure as in the vertex
sampling case: at every node, we pick one of the children to descend into with probability
proportional to the sum of the edge weights represented by the children. The sum of edge
weights of the children can be approximated by a query to an appropriate KDE data structure
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in the “multi-level" KDE data structure described previously. By appropriately decreasing
the error of KDE data structures at each level of the tree, the sampled neighbor satisfies
the aforementioned sampling guarantee. Since the tree has height O(log n), then we can
perform weighted neighbor edge sampling, up to a tunably small total variation distance,
using O(log n) KDE queries and O(log n) time (see theorems 7.3.5 and 7.3.6 for details).

Random walks. We use our edge sampling procedure to output a random walk on the
kernel graph, where at any current vertex v of the walk, the next neighbor of v visited by the
random walk is chosen with probability proportional to the edge weights adjacent to v. In
particular, for a random walk with T steps, we can simply sequentially call our edge sampling
procedure T times, with each instance corresponding to a separate step in the random walk.
Thus we can perform T steps of a random walk, again up to a tunably small total variation
distance, using O(T log n) KDE queries and O(T log n) additional time.

Importance Sampling for the edge-vertex incidence matrix and the kernel matrix.
We now describe how to sample the rows of the edge vertex incident matrix H and the kernel
matrix K with probability proportional to the importance sampling score / leverage score
(see Definition 7.4.2). We remark that approximately sampling proportional to the leverage
score distribution for H is a fundamental algorithmic primitive in spectral graph theory and
numerical linear algebra. We note that a priori, such a task seems impossible to perform
in o(n2) time, even if the leverage scores are precomputed for us, since the support of the
distribution has size Θ(n2). However, note we do not need to compute (even approximately)
each leverage score to perform the sampling, but rather just output an edge proportional to
the right distribution.

We accomplish this by instead sampling proportional to the squared Euclidean norm of
the rows of H. It is known that oversampling the rows of a matrix by a factor that depends
on the condition number is sufficient to approximate leverage score sampling (see proof of
Theorem 7.4.1). Further, we show that H has a condition number (Lemma 7.4.3) that is
bounded by poly(1/τ). Recall, the edge-vertex incident matrix is defined as the

(
n
2

)
× n

matrix with the rows indexed by all possible edges and the columns indexed by vertices.
For each e = {i, j}, we have H{i,j},i =

√
k(xi, xj) and H{i,j},j = −

√
k(xi, xj). We pick

the ordering of i and j arbitrarily. Note that this is a weighted analogue of the standard
edge-vertex incident matrix and satisfies HTH = LG where LG is the Laplacian matrix of
the graph corresponding to the kernel matrix K. For both H and K, we wish to sample
the rows with probability proportional to row normed squared. For example, the row re
corresponding to edge e = (xi, xj) in H satisfies ∥re∥22 = 2k(xi, xj). Since the squared norm
of each row is proportional to the weight of the corresponding edge, we can perform this
sampling by combining the weighted vertex sampling and weighted neighbor edge sampling
primitives: we first sample a vertex with probability proportional to its degree and then
sample an appropriate random neighbor. Thus our row norm sampling procedure is sufficient
to simulate leverage score sampling (up to a condition number factor), which implies our
downstream application of spectral sparsification.
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We now describe the related primitive of sampling the rows of the kernel matrix K.
Naïvely performing this sampling would require us to implicitly compute the entire kernel
matrix, which as mentioned previously, is prohibitive. However, if there exists a constant c
such that the kernel function k that defines the matrix K satisfies k(x, y)2 = k(cx, cy) for
all inputs x, y, then the ℓ22 norm of each row can be approximated via a KDE query on the
transformed dataset X ′ = cX. In particular, the ℓ22 row norms of K are the vertex degrees of
the kernel graph for X ′. The property that k(x, y)2 = k(cx, cy) holds for the most popular
kernels such as the Laplacian, exponential, and Gaussian kernels. Thus, we can sample the
rows of the kernel matrix with the desired probabilities.

7.1.1 Linear Algebra Applications

We now discuss our linear algebra applications.

Spectral sparsification. Using the previously described primitives of weighted vertex
sampling and weighted neighbor edge sampling, we show that an ε spectral sparsifier for the
kernel density graph G can be computed i.e., we compute a graph G′ such that for all vectors
x, (1−ε)xTLGx ≤ xTLG′x ≤ (1+ε)xTLG′x, where LG and LG′ denote the Laplacian matrices
of the graphs G and G′. Recall that H is the

(
n
2

)
× n matrix such that H{i,j},i =

√
k(xi, xj)

and H{i,j},j = −
√

k(xi, xj). Here we use subsets of [n] of size 2 to index the rows of H and
the entry to be made negative in the above definition is picked arbitrarily. It can be verified
that HTH = LG. It is known that sampling t = O(n log(n)/ε2) rows of the matrix H by
using the so-called leverage scores gives a t ×

(
n
2

)
selecting-and-scaling matrix S such that

with probability at least 9/10,

(1− ε)LG = (1− ε)HTH ⪯ HTSTSH ⪯ (1 + ε)HTH = (1 + ε)LG. (7.1)

Thus the matrix SH directly corresponds to a graph G′, which is an ε spectral sparsifier
for graph G. The leverage scores of rows of H are also called “effective resistances” of edges
of graph G. Unfortunately, with the edge and neighbor vertex sampling primitives that we
have, we cannot perform leverage score sampling of H. On the other hand, observe that
the squared norm of row {i, j} of H is 2k(xi, xj) and with an application of vertex sampling
and edge sampling, we can sample a row of H from the length squared distribution i.e.,
the distribution on rows where probability of sampling a row is proportional to its squared
norm. It is a standard result that sampling from squared length distribution gives a selecting-
and-scaling matrix S that satisfies (7.1), although we have to sample t = O(κ2n log(n)/ε2)
rows from this distribution, where κ = σmax(H)/σmin(H) denotes the condition number of
H (σmax(H)/σmin(H) denote the largest/smallest positive singular values).

With the parameterization that for all i ̸= j, k(xi, xj) ≥ τ , we are able to show that
κ ≤ O(1/τ 1.5). Importantly, our upper bound on the condition number is independent of
the data dimension and number of input points. We obtain the upper bound on condition
number by using a Cheeger-type inequality for weighted graphs. Note that σmin(H) ≥√

λ2(HTH) =
√

λ2(LG), where we use λ2(M) to denote the second smallest eigenvalue of a
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positive semidefinite matrix. Cheeger’s inequality lower bounds exactly the quantity λ2(LG)
in terms of graph conductance. A lower bound of τ on every kernel value implies that every
node in the Kernel Graph has a high weighted degree and this lets us lower bound λ2(G) in
terms of τ using a Cheeger-type inequality from [86] and shows that O(n log(n)/τ 3ε2) samples
from the approximate squared length sampling distribution gives an ε spectral sparsifier for
the graph G.

First eigenvalue and eigenvector approximation. Our goal is to compute a 1 − ε
approximation to λ, the first eigenvalue of K, and an accompanying approximate eigenvector.
Such a task is key in kernel PCA and related methods. We begin by noting that under the
natural constraint that each row of K sums to at least nτ , a condition used in prior works
[24], the first eigenvalue must be at least nτ by looking at the quadratic form associated with
the all-ones vector.

Now we combine two disparate families of algorithms: first the guarantees of [27, 36] show
that sub-sampling a t×t principal submatrix of a PSD matrix preserves the eigenvalues of the
matrix up to an additive O(n/

√
t) factor. Since we’ve shown the first eigenvalue of K is at

least nτ , we can set t roughly O(1/(ε2τ 2)) with the guarantee that the top eigenvalue of the
sub-sampled matrix is at lest (1− ε)λ. Now we can either run the standard Krylov method
algorithm [153] to compute the top eigenvalue of the sampled matrix or alternatively, we can
instead use the algorithm of [24], the prior state of the art, to compute the eigenvalues of
the sampled matrix. At a high level, their algorithm utilizes KDE queries to approximately
perform power method on the kernel graph without creating the kernel matrix. In our case,
we can instead run their algorithm on the smaller sampled dataset, which represents a smaller
kernel matrix. Our final runtime is independent of n, the size of the dataset, whereas the
prior state of the art result of [24] have a ω(n) runtime.

Kernel matrix low-rank approximation. In this setting, our goal here is to output a
matrix B such that

∥K −B∥2F ≤ ∥K −Kt∥2F + ε∥K∥2F
where Kt is the best rank-t approximation to the kernel matrix K. The efficient algorithm of
[87] is able to achieve this guarantee if one can sample the ith row ri of K with probability
pi ≥ Ω(1) · ∥ri∥22/∥K∥2F . We can perform such an action using our primitive, which is capable
of sampling the rows of K with probability proportional to the squared row norms for the
Laplacian, exponential, and Gaussian kernels. Thus for these kernels, we can immediately
obtain efficient algorithms for computing a low-rank approximation.

7.2 Further Related Works

Remark 7.2.1. Spectral sparsification for kernel graphs has also been studied in prior
works, notably in [10] and [166]. We first compare to [10], who obtain a spectral sparsifi-
cation using an entirely different approach. They obtain an almost linear time sparsifier

164



(n1+o(1)) when the kernel is multiplicativily Lipschitz (see Section 1.1.2 in [10] for defini-
tion) and show hardness for constructing such a sparsifier when it is not. Focusing on the
Gaussian kernel, under Parameterization 1.6.1, [10] obtain an algorithm that runs in time
O
(
nd+ n2

√
log(1/τ) logn log(logn)/ε2

)
, whereas our algorithm runs in O

(
nd log2(n)/(ε2τ 2.0173+o(1))

)
time. We also note that the dimension d can be upper bounded by O(log n/ε2) by applying
Johnson-Lindenstrauss to the initial dataset. Therefore, [10] obtain a better dependence on
1/τ , whereas we obtain a better dependence on n. A similar comparison can be established
for other kernels as well. In practice, τ is set to be a small fixed constant, whereas n can be
arbitrarily large. Indeed in practice, a common setting of τ is 0.01 or 0.001, irrespective of
the size of the dataset [23, 24, 122, 147, 177].

We now compare our guarantees to that of [166]. The author studies spectral sparsification
resurrected to smooth kernels (for example kernels of the form 1/∥x − y∥t2 which have a
polynomial decay; see [166] for a formal definition). This family does not include Gaussian,
Laplacian, or exponential kernels. For smooth kernels, [166] obtained a sparsifier with a
nearly optimal Õ(n/ε2) number of edges in time Õ(nd/ε2). Our algorithm obtains a similar
dependence in n, d, ε but includes an additional 1/τ 3 factor. However, it generalizes for any
kernel supporting a KDE data structure, which includes smooth kernels [22] (see Table 2.1
for a summary of kernels where our results apply). Our techniques are also different: [166]
does not use KDE data structures in a black-box manner to compute the sparsification as we
do. Rather, they simulate importance sampling on the edges of the kernel graph directly. In
addition to the nearly linear sparsifier, another interesting feature of [166] is that it enriches
the connections between spectral sparsification of kernel graphs and KDE data structures.
Indeed, the data structures used in [166] are inspired by and were used in the prior work of
[22] to create KDE query data structures themselves. Furthermore, the paper demonstrates
how to instantiate KDE data structures for smooth kernels using the kernel graph sparsifier
itself. We refer to [166] for details.

Remark 7.2.2. Our algorithm returns a sparse vector v supported on roughly O(1/(ε2τ 2))
coordinates. The best prior result is that of [24] which presented an algorithm with total
runtime O

(
dn1+p log(n/ε)2+p

ε7+4p

)
.

In comparison, our bound has no dependence on n and is thus a truly sublinear runtime.
Note that the bound of [24] does not depend on τ . We do not state the number of KDE
queries used explicitly in Table 1.1 since our algorithm uses KDE queries on a subsampled
dataset and in addition, only uses them by calling the algorithm of [24] as a subroutine (on
the subsampled dataset). The algorithm of [24] uses Õ(1/ε) KDE queries but with various
different initialization of τ so it is not meaningful to state “one” bound for the number of
KDE queries used and thus the final runtime is a more meaningful quantity to state. Lastly,
the authors in [24] present a lower bound of Ω(nd) for estimating the top eigenvalue λ1, which
ostensibly seems at odds with our stated bound which has no dependence on n. However,
the lower bound presented in [24] essentially sets τ = 1/ poly(n) for a large polynomial factor
depending on n (we estimate this factor to be Ω(n2)). Since we parameterize our dependence
via τ , which in practice is often set to a fixed constant, we can bypass the lower bound.
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Remark 7.2.3. We now compare our low-rank approximation result with a recent work of
[28, 155]. They showed the following theorem:

Theorem 7.2.1 (Theorem 4.2, [28]). Given a n× n PSD matrix A, target rank r ∈ [n] and
accuracy parameter ε ∈ (0, 1), there exists an algorithm that queries Õ (nr/ε) entries in A
and with probability at least 9/10, outputs a rank-r matrix B such that

∥A−B∥2F ≤ (1 + ε)∥A− Ar∥2F ,

where Ar is the best rank-r approximation to A. Further, the running time is Õ
(
n (r/ε)ω−1),

where ω is the matrix multiplication constant.

We note that their result applies to kernel matrices as well via the following fact.

Fact 7.2.2 (Kernel Matrices are PSD, [173]). Let k be a reproducing kernel and X be n data
points in Rd. Let K be the associated n× n kernel matrix such that Ki,j = k(xi, xj). Then,
K ≻ 0.

Here, the family of reproducing kernels is quite broad and includes polynomial kernels,
Gaussian, and Laplacian kernel, among others. Therefore, their theorem immediately implies
a relative error low-rank approximation algorithm for kernel matrices. Our result and the
theorem of [28] have comparable runtimes. While [28] obtain relative-error guarantees, we
only obtain additive-error guarantees.

However, reading each entry of the kernel matrix require O(d) time and thus [28] obtain
an running time of Õ

(
nd (r/ε)ω−1), whereas our running time is dominated by O(nrd/ε).

We note that similar ideas as our algorithm for additive error LRA were previously used to
design subquadratic algorithms running in time o(n2) for low-rank approximation of distance
matrices [26, 112].

7.2.1 Preliminaries

First, we discuss the cost of constructing KDE data structure and performing the queries
described in Definition 1.6.1. Table 2.1 summarizes previous work on kernel density estimation
though for the sake of uniformity, we list only “high-dimensional” data structures, whose
running times are polynomial in the dimension d. Those data structures have construction
times of the form O(dn/(τ pε2)) and answer KDE queries in time O(d/(τ pε2)), under the
condition that for all queries y we have 1

n

∑
x∈X k(x, y) ≥ τ (which clearly holds under our

Parameterization 1.6.1). The algorithms are randomized, and report correct answers with a
constant probability. The values of p lie in the interval [0, 1), and depend on the kernel. For
comparison, note that a simple random sampling approach, which selects a random subset
R ⊂ X of size O(1/(τε2)) and reports n

|R|
∑

x∈R k(x, y), achieves the exponent of p = 1 for
any kernel whose values lie in [0, 1].

We view our algorithms as parameterized in terms of τ , the smallest edge length. We argue
this is a natural parameterization. When picking a kernel function k, we also have to pick a
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scale term σ (for example, the exponential kernel is of the form k(x, y) = exp(−∥x− y∥2/σ)).
In practice, a common choice of σ follows the so called ‘median rule’ where σ is set to be
the median distance among all pairs of points in X. Thus, according to the median rule, the
‘typical’ kernel values in the graph K are Ω(1). While this is only true for ‘typical,’ and not
all, edge weights in K, we believe the KDE query abstraction of Definition 1.6.1 still provides
nontrivial and useful algorithms for working with kernel graphs. Typically in practice, the
setting of τ is a small constant, independent of the size of the dataset [122].

We note that, in addition to the aforementioned algorithms with theoretical guarantees,
there are other practical algorithms based on random sampling, space partition trees [89,
90, 133, 134, 147, 152, 168], coresets [159, 162, 208], or combinations of these methods [122],
which support queries needed in Definition 1.6.1; see [122] for an in-depth discussion on
applied works.

While these algorithms do not necessarily have as strong theoretical guarantees as the
ones discussed above and in Table 2.1, we can nonetheless use them via black box access in
our algorithms and utilize their practical benefits.

7.3 Algorithmic Building Blocks

A1,n/4 . . . . . . . . .

A1,n/2 An/2+1,n

A1,n

Figure 7.1: Multi-level Kernel Density Estimation Data Structure.

7.3.1 Multi-level KDE

We first describe the “multi-level” KDE data structure, which is required in our algorithms.
The data structure recursively constructs a KDE data structure on the entire dataset X, and
then recursively partitions X into two halves, building a KDE data structure on each half.
See Algorithm 22 for more details.
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Algorithm 22 Multi-level KDE Construction

1: Input: Dataset X ⊂ Rd, precision ε > 0.
2: procedure Multi-level-KDE-Construction
3: Let T = X.
4: while |T | > 1 do
5: Construct KDEX queries (see Definition 1.6.1).
6: Recursively apply to T [1 : ⌊m/2⌋] and T [⌊m/2⌋+ 1 : m]
7: end while
8: Output: All the data structures associated with the KDE query constructions
9: end procedure

Lemma 7.3.1. Given a dataset X ⊂ Rd, suppose the initialization of the KDE data structure
defined in Definition 1.6.1 uses runtime f(n, ε) for some function linear in n. Then the total
construction time of Algorithm 22 is f(n log n, ε).

Proof. The proof follows from the fact that at each recursive level, we do O(f(n, ε)) total
work since f is linear in n and there are O(log n) levels.

7.3.2 Weighted Vertex Sampling

We now discuss our fundamental primitives. The first one computes approximate weighted
degrees for all vertices. Algorithm 25 then performs vertex sampling by their (weighted)
degree.

Algorithm 23 Computing Approximate (Weighted) Degrees

1: Input: Dataset X ⊂ Rd, precision ε > 0.
2: procedure Vertex-Sampling
3: for i ∈ [1, n] do
4: pi ← KDEX(xi)− (1− ε) k(xi, xi)
5: end for
6: Output: Reals {pi}ni=1 such that (1−ε)deg(xi) ≤ pi ≤ (1+ε)deg(xi) for all 1 ≤ i ≤ n
7: end procedure

Definition 7.3.1 (Weighted Vertex Sampling). The weighted degree of a vertex xi with
i ∈ [n] is wi =

∑
j ̸=i k(xi, xj). The goal of weighted vertex sampling is to output a vertex v

such that Pr[v = xi] =
(1±ε)wi∑
j∈[n] wj

for all i ∈ [n].

This is a straightforward application of using n KDE queries to get the (weighted) vertex
degree of all n vertices. Note that this only takes n queries and only has to be done once.
Therefore, we can think of vertex sampling as a preprocessing step that uses O(n) queries
upfront and then allows for arbitrary access at any point in the future with no query cost.

168



Once we acquire {pi}ni=1, we can perform a fast sampling procedure through the following
algorithm, which we state in slightly more general terms.

Algorithm 24 Sample from Positive Array
1: Input: Array A = [a1, · · · , an] with ai > 0 for all i. Access to queries Ai,j =

∑
i∈[t,j] at

for 1 ≤ i ≤ j ≤ n.
2: procedure Array-Sampling
3: Let T = A.
4: while |T | > 1 do
5: Let m = len(T ).
6: Let a←

∑
(T [1 : ⌊m/2⌋]) //Can be simulated using an Ai,j query

7: Let b←
∑

(T [⌊m/2⌋+ 1 : m]).
8: If Unif[0, 1] ≤ a/(a+ b), T ← T [1 : ⌊m/2⌋]
9: Else T ← T [⌊m/2⌋+ 1 : m].

10: end while
11: Output: The single remaining element in T
12: end procedure

Combining Algorithms 23 and 24, we can sample from the degree distribution of the
graph K.

Algorithm 25 Degree Sampling

1: Input: Dataset X ⊂ Rd, precision ε > 0.
2: procedure Degree-Sampling
3: Use Algorithm 23 to compute reals {pi}ni=1 such that (1 − ε)deg(xi) ≤ pi ≤ (1 +

ε)deg(xi) for all 1 ≤ i ≤ n (only needs to be done once).
4: i← index in [n], which is the output of running Algorithm 24 on the array {pi}ni=1.
5: Output: xi with probability pi/

∑
j∈[n] pj.

6: end procedure

We now analyze the correctness and the runtimes of the algorithms proposed in Section
7.3. First, we give guarantees on Algorithm 23.

Theorem 7.3.2. Algorithm 23 returns {pi}ni=1 such that (1− ε)deg(xi) ≤ pi ≤ (1+ ε)deg(xi)
for all 1 ≤ i ≤ n.

Proof. The proof follows by the Definition of a KDE query, Definition 1.6.1.

We now analyze Algorithm 24, which samples from an array based on a tree data structure
given access to consecutive sum queries. The analysis of this process will also greatly facilitate
the analysis of other algorithms from Section 7.3.
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Lemma 7.3.3. Algorithm 24 samples an index i ∈ [n] proportional to ai in O(log n) time
with O(log n) queries.

Proof. Consider the sampling diagram given in Figure 7.1. Algorithm 24 does the following:
it first queries the root node A1,n and then its two children A1,m, Am+1,n where m = ⌊n/2⌋.
Note that A1,n = A1,m + Am+1,n. It then picks the tree rooted at A1,m with probability∑

i∈[m] ai∑
i∈[n] ai

and otherwise, picks the tree rooted at Am+1,n. The procedure recursively continues
by querying the root node, its two children, and picking one of its children to be the new
root node with probability proportional to the child’s weight given by an appropriate query
access. This is done until we reach a leaf node that corresponds to an index i ∈ [n].

We now prove correctness. Note that each node of the tree in Figure 7.1 corresponds to
a subset S ⊆ [n]. We prove inductively that the probability of landing on the vertex is equal
to
∑

i∈S ai. This is true for the root node of the tree since the algorithm begins at the root
note. Now consider transitioning from some node S to one of its children S1, S2. We know
that we are at node S with probability

∑
i∈S ai/

∑
j aj. Furthermore, we transition to S1

with probability
∑

i∈S1
ai/
∑

j∈S aj. Therefore, the probability of being at S1 is equal to∑
i∈S1

ai∑
j∈S aj

·
∑

i∈S ai∑
j aj

=

∑
i∈S1

ai∑
j aj

.

Since there is only one path from the root node to any vertex of a tree, this completes the
induction.

The runtime and the number of queries taken follows from the fact that the sampling
procedure descends on a tree with O(log n) height.

Combining Algorithms 23 and 24 allows us to sample from the degree distribution of the
graph K up to low error in total variation (TV) distance.

Theorem 7.3.4. Algorithm 25 samples from the degree distribution of K up to TV error
O(ε) using a fixed overhead of n KDE queries and runtime O(log n).

Proof. Since pi is with a 1 ± ε factor of deg(xi) for all i, then {pi}ni=1 is O(ε) close in
total variation distance from the true degree distribution. Moreover, Algorithm 24 perfectly
samples from the array {pi}ni=1, which proves the first part of the theorem.

For the second part, note that acquiring {pi}ni=1 requires n KDE queries. We can then
construct the data structure for Algorithm 24 by computing all the partial prefix sums in
O(n) time. Now the query access required by Algorithm 24 can be computed in O(1) time
through an appropriate subtraction of two prefix sums. Note that the previous steps need to
be only done once and can be utilized for all future runs of Algorithm 24. It follows from
Lemma 7.3.3 that Algorithm 25 takes O(log n) time.

7.3.3 Weighted Edge Sampling and Weighted Neighbor Edge Sam-
pling

We describe how to perform weighted neighbor edge sampling.
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Definition 7.3.2 (Weighted Neighbor Edge Sampling). Given a vertex xi, the goal of
weighted neighbor edge sampling is to output a vertex v such that Pr[v = xk] =

(1±ε)k(xi,xk)∑
j∈n,j ̸=i k(xi,xj)

for all i ∈ [n].

Algorithm 26 Sample Random Neighbor

1: Input: Dataset X ⊂ Rd, precision ε > 0, input vertex xi ∈ X.
2: procedure Neighbor-Sampling
3: Let ε′ = ε/ log n and T ← X \ {xi}.
4: while |T | > 1 do
5: Let m← |T |.
6: Compute a← KDET [1:m/2],ε′(xi) and b← KDET [m/2+1:m],ε′(xi).
7: If xi ∈ T [1 : m/2], set a← a− (1− ε′)k(xi, xi).
8: If xi ∈ T [m/2 + 1 : m], set b← b− (1− ε′)k(xi, xi).
9: If Unif[0, 1] ≤ a/(a+ b), let T ← T [1 : m/2]. Else, let T ← T [m/2 + 1 : m].

10: end while
11: Output: Return the last element x ∈ T such that x ∈ X \ {xi} and the probability

of selecting x is proportional to k(xi, x).
12: end procedure

We now prove the correctness of Algorithm 26 based on the ideas in Lemma 7.3.3. Note
that Algorithm 26 takes in input a precision level ε, which can be adjusted and impacts the
accuracy of KDE queries. We will discuss the cost of initializing KDE queries with various
precisions in Section 7.2.1.

Theorem 7.3.5. Let xi ∈ X be an input vertex. Consider the distribution D over X \ {xi},
the neighbors of xi in the graph K, induced by the edge weights in K. Algorithm 26 samples
a neighbor from a distribution that is within TV distance O(ε) from D using O(log n) KDE
queries and O(log n) time.

Proof. The proof idea is similar to that of Lemma 7.3.3. Given a vertex xi, its adjacent
edges have associated weights and our goal is to sample an edge proportion to these weights.
However, unlike the degree case, performing edge sampling is not a straightforward KDE
query as an edge only cares about the kernel value between two points, rather than the sum
of kernel values that a KDE query provides. Nevertheless, we can utilize the tree procedure
outline in the proof of Lemma 7.3.3 in conjunction with KDE queries with over various
subsets of X.

Imagine the same tree as in Figure 7.1 where each subset corresponds to a subset of
neighbors of xi (note that xi cannot be its own neighbor and hence we subtract k(xi, xi)
in line 7 or line 10). Algorithm 26 descends down the tree using the same probabilistic
procedure as in the proof of Lemma 7.3.3: at every node, it picks one of the children to
descend to with probability proportional to its weight. Here, the weight of a child node in
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the tree in Figure 7.1 is the sum of the weights of the edges connecting to the corresponding
neighbors of xi.

Now compare the telescoping product of probabilities that lands us in some leaf node aj
to the ideal telescoping product if we knew the exact array of edge weights as in the proof
of Lemma 27. Suppose the tree has height ℓ. At each node in our actual path descending
down the tree, we take the next step according to the ideal descent (according to the ideal
telescoping product), with the same probability, except for possibly an overestimate or
underestimate by a factor of 1 + ε′ or 1− ε′ factor respectively.

Therefore, we land in the correct leaf node with the same probability as in the ideal
telescoping product, except our probability can be off by a multiplicative (1 ± ε′)ℓ factor.
However, since ε′ = ε/ log n and ℓ ≤ log n, this factor is within 1± ε. Thus, we sample from
the correct distribution over the leaves of the trees in Figure 7.1 up to TV distance O(ε).

Algorithm 27 Sample Random Edge by Weight

1: Input: Dataset X ⊂ Rd, precision ε > 0.
2: procedure Edge-Sampling
3: Compute xi ← random vertex by using Algorithm 25.
4: Compute xj ← random Neighbor of xi using Algorithm 26.
5: Output: Edge (xi, xj) such that (xi, xj) is sampled with probability at least (1 −

ε)k(xi, xj).
6: end procedure

Theorem 7.3.6 (Weighted Edge Sampling). Algorithm 27 returns a random edge of K with
probability proportional to at least (1− ε) its weight using 1 call to Algorithm 26.

Proof. Consider an edge (u, v). Vertex u is sampled with probability at least (1−2ε) deg(u)∑
x∈X deg(x) .

Given this, v is then sampled with probability at least (1− 2ε) k(u,v)∑
x∈X\u k(u,x)

= (1− 2ε) k(u,v)deg(u) .

Using the same analysis for sampling v and then u, we have that any edge (u, v) is sampled
with probability at least 1− 2ε times k(u, v)/

∑
e∈K w(e).

7.3.4 Random Walk

Theorem 7.3.7. Algorithm 28 outputs a vertex from a vertex within O(Tε) total variation
distance from the true random walk distribution. Each step of the walk requires 1 call to
Algorithm 26 .

Proof. The proof follows from the correctness of Algorithm 26 given in Theorem 7.3.5.
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Algorithm 28 Perform Random Walk

1: Input: Dataset X ⊂ Rd, precision ε > 0.Dataset X ⊂ Rd, vertex xi ∈ X, length of walk
T ≥ 1.

2: procedure Random-Walk
3: Start at vertex v ← xi.
4: for j = 1 to T do
5: Sample a random neighbor of v using Algorithm 26. Let w be the resulting output.
6: Set v ← w.
7: end for
8: Output: Data point v.
9: end procedure

7.4 Linear Algebra Applications

We now present applications of the algorithmic building blocks constructed in Section 7.3 to
linear algebra.

7.4.1 Spectral Sparsification

Algorithm 29 Spectral Sparsification of the Kernel Graph

1: Input: Dataset X ⊂ Rd, accuracy parameter ε.
2: procedure [Spectral-Sparsification
3: Let t = O(n log(n)/ε2τ 3) be the number of edges that are to be sampled
4: Let p̂ denote the distribution returned by Algorithm 23 for a small enough constant

ε.
5: Initialize G′ = ∅.
6: for i = 1, . . . , t do
7: Sample a vertex u from the distribution p̂.
8: Sample a neighbor v of u using Algorithm 26 with constant ε.
9: Compute q̂uv, the probability that Algorithm 26 samples v given u as input.

10: Similarly define and compute q̂vu. Let wuv = 1/(t(p̂uq̂uv + p̂v q̂vu)).
11: Add the weighted edge ({u, v}, wuv) to the graph G′.
12: end for
13: end procedure

Given a set X, |X| = n, and a kernel k : X × X → R+, we describe how to construct a
spectral sparsifier for the weighted complete graph on X where weight of the edge {xi, xj} is
given by k(xi, xj).
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Definition 7.4.1 (Graph Laplacian). Given a weighted graph G = (V,E,w), the Laplacian
of G, denoted by LG = D − A, where A is the adjacency matrix of G with Ai,j = w({i, j})
and D is a diagonal matrix such that for all i ∈ [n], Di,i =

∑
j ̸=i Ai,j.

Theorem 7.4.1 (Spectral Sparsification of Kernel Density Graphs). Given a dataset X
of n points in Rd, and a kernel k : X × X → R+, let G = (X,

(
X
2

)
, w) be the weighted

complete graph on X with the weights w({xi, xj}) = k(xi, xj). Further, for all xi, xj ∈ X, let
k(xi, xj) ≥ τ , for some τ ∈ (0, 1). Let LG be the Laplacian matrix corresponding to the graph
G. Then, for any ε ∈ (0, 1), Algorithm 29 outputs a graph G′ with only m = O(n log n/(ε2τ 3))
edges, such that with probability at least 9/10,

(1− ε)LG ⪯ LG′ ⪯ (1 + ε)LG.

The algorithm makes Õ(m/τ 3) KDE queries and requires Õ(md/τ 3) post-processing time.

Let Gd be the weighted directed graph obtained by arbitrarily orienting the edges of the
graph G and let H be an edge-vertex incidence matrix defined as follows : for each e = (xi, xj)
in graph Gd, let He,xi

=
√

k(xi, xj) and He,xj
= −

√
k(xi, xj). Note that H⊤H = LG. Our

idea to construct spectral sparsifier is to compute a sampling-and-reweighting matrix S, i.e.,
a matrix that has at most one nonzero entry in each row, that with probability ≥ 9/10,
satisfies

(1− ε)LG = (1− ε)H⊤H ⪯ H⊤S⊤SH ⪯ (1 + ε)H⊤H = (1 + ε)LG.

The edges sampled by S form the edges of the graph G′. We construct this matrix S by
sampling rows of the matrix H from a distribution close to the distribution that samples
a row of H with a probability proportional to its squared norm. We show that this gives
a spectral sparsifier by showing that such a distribution approximates the “leverage score
sampling” distribution.

Definition 7.4.2 (Leverage Scores). Let M be a n× d matrix and mi denote the i-th row
of M . Then, for all i ∈ [n], τi, the i-th leverage of M is defined as follows:

τi = mi(M
⊤M)+m⊤

i ,

where X+ is the Moore-Penrose pseudoinverse for a matrix X.

We introduce the following intermediate lemmas. We begin by recalling that sampling
edges proportional to leverage scores (effective resistances on a graph) suffices to obtain
spectral sparsification [182, 200].

Lemma 7.4.2 (Leverage Score Sampling implies Sparsification). Given an n× d matrix M
and ε ∈ (0, 1), for all i ∈ [t], let τi be the i-th leverage score of M . Let p = {p1, p2, . . . , pn} be
a distribution over the rows of M such that pi = τi/

∑
j∈[n] τj. Further, for some ϕ ∈ (0, 1),

let p̂ = {p̂1, p̂2, . . . , p̂n} be a distribution such that p̂i ≥ ϕpi and let t = O
(

d log(d)
ε2ϕ

)
. Let
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S ∈ Rt×n be a random matrix where for all j ∈ [t], the j-th row is independently chosen as
(1/
√
tp̂i)e

⊤
i with probability p̂i. Then, with probability at least 99/100,

(1− ε)M⊤M ⪯M⊤S⊤SM ⪯ (1 + ε)M⊤M.

Next, we show that the matrix H is well-conditioned, in fact the condition number is
independent of the dimension and only depends on the minimum kernel value between any
two points in the dataset. This lets us use our edge sampling routines to compute an ε
spectral sparsifier.

Lemma 7.4.3 (Bounding Condition Number). Let H be the edge-vertex incidence matrix
as defined and also has the property that all nonzero entries in the matrix have an absolute
value of at most 1 and at least

√
τ . Let σmax(H) be the maximum singular value of H and

σmin(H) be the minimum nonzero singular value of H. Then σmax(H)/σmin(H) ≤ 4
√
2/τ 1.5.

Proof. We use the following standard upper bound on the spectral norm of an arbitrary
matrix A to upper bound the spectral norm of the matrix H:

∥A∥2 ≤

√√√√(max
i

∑
j

|Ai,j|

)(
max

j

∑
i

|Ai,j|

)
.

For the matrix H, as each column has at most n nonzero entries and each row has at most 2
non-zero entries and from the assumption that all the entries have magnitude at most 1, we
obtain that ∥H∥2 ≤

√
2n. To obtain lower bounds on σmin(H), we appeal to a Cheeger-type

inequality for weighted graphs from [85, 86]. First, we note that σmin(H) =
√

σmin(H⊤H) =√
σmin(LG) where G is the kernel graph that we are considering with each edge having

a weight of at least τ . Let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of the positive
semi-definite matrix LG. Now we have that

σmin(LG) = λ2(LG) ≥ min
i
(δi/2)ε(G)2

where δi =
∑

j ̸=i k(xi, xj) i.e., the weighted degree of vertex xi in graph G and

ε(G) = min
ϕ ̸=U⊂V,|U |≤n/2

|E(U, Ū)|
|E(U)|

where |E(U)| denotes the sum of weighted degrees of vertices in U and |E(U, Ū)| de-
notes the total weight of edges with one end point in U and the other outside U . Us-
ing the fact that G is a complete graph with each edge having a weight of at least τ
and at most 1, we obtain |E(U, Ū)| ≥ τ |U ||Ū | and |E(U)| ≤ n|U |, which implies that
ε(G) ≥ minϕ ̸=U⊂V,|U |≤n/2 τ |Ū |/n ≥ τ/2. We also similarly have that mini δi ≥ (n−1)τ , which
overall implies that λ2(LG) ≥ nτ 3/16 and that σmin(H) ≥

√
nτ 1.5/4. Thus, we obtain that

σmax(H)/σmin(H) ≤ 4
√
2/τ 1.5.
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We are now ready to complete the proof of our main theorem:

Proof of Theorem 7.4.1. Let q = {q1, q2, . . . , q(n2)} be a distribution over the rows of H such

that for all edges e = {i, j}, qe ≥ c
∥He,∗∥22
∥H∥2F

=
k(xi,xj)∑

e′={i′,j′} k(xi′ ,xj′ )
, for a fixed universal constant c.

Next, we show that this distribution is Θ(1/κ2) approximation to the leverage score
distribution for H. Let H = UΣV ⊤ be the “thin” singular value decomposition of H and
therefore all the diagonal entries of Σ are nonzero. By definition τi = ∥Ui∗∥22. We have

∥hi∥22 = ∥Ui∗ΣV
⊤∥22 = ∥Ui∗Σ∥22

where the equality follows from the fact that V ⊤ has orthonormal rows. Now, ∥Ui∗Σ∥22 ≥
∥Ui∗∥22σ2

min and ∥Ui∗Σ∥22 ≤ ∥Ui∗∥22σ2
max. Therefore, for all i ∈

(
n
2

)
, defining κ = σmin/σmax, we

have
τi∑
j τj

=
∥Ui∗∥22∑
j ∥Uj∗∥22

≥ ∥hi∥22/σ2
max∑

j ∥hj∥22/σ2
min

=
1

κ2

∥hi∥22
∥H∥2F

.

Then, we invoke Lemma 7.4.2 with ϕ = Ω(1/κ2) and conclude that sampling t = O
(
n logn
ε2κ2

)
rows of H results in a sparse graph G′ with corresponding Laplacian LG′ such that with
probability at least 99/100,

(1− ε/2)LG ⪯ LG′ ⪯ (1 + ε/2)LG.

Further, by Lemma 7.4.3, we can conclude κ2 ≤ 32/τ 3 and thus sampling t = O
(
n logn
ε2τ3

)
edges suffices.

We do not use Algorithm 27 to sample random edges from the perfect distribution to
implement spectral sparsification as we cannot compute the exact sampling probability of
the edge that is sampled. So, we first use Algorithm 25 with constant ε (say 1/2) to sample a
vertex u and Algorithm 26 with constant ε (say 1/2) to sample a neighbor v of u. Note that
Algorithms 25 and Algorithms 26 can be modified to also return the probabilities p̂u and
q̂vu with which the vertex i and the neighbor j of i are sampled. We can further query the
algorithms to return p̂v and q̂uv. Now, q{u,v} = p̂uq̂vu+ p̂v q̂uv is the probability with which this
sampling process samples the edge {u, v} and we have that p̂uq̂vu + p̂v q̂uv ≥ c k(xu,xv)∑

i̸=j k(xi,xj)
and

we use this distribution q to implement spectral sparsification as described above. As already
seen (Theorem 7.3.5), to compute vertex sampling distribution p̂, we use n KDE queries
and for each neighbor sampling step, we use O(log n) KDE queries. Thus, we overall use
O(n log2 n/(ε2τ 3)) constant approximate KDE queries to obtain an ε spectral sparsifier.

We can further compute another graph G′′ with only O(n/ε2) edges by computing an ε/2
spectral sparsifier for G′ using the spectral sparsification algorithm of Lee an Sun [136] (see
Theorem 1.1). This procedure doesn’t require any KDE queries and solely operates on the
weighted graph G′. The overall running time is O

(
n1+1/c log(n)

ϵ6+1/cτ3

)
, for a large fixed constant c.
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Hardness for spectral sparsification. We observe that we can use the lower bound from
Alman et. al. to establish hardness in terms of τ from Parameterization 1.6.1. The lower
bound we obtain is as follows:

Theorem 7.4.4 (Lower Bound for Spectral Sparsification under Parameterization 1.6.1).
Let k be the Gaussian kernel and let X be dataset such that minx,y∈X k(x, y) = τ , for some
1 > τ > 0. Then, any algorithm that with probability 9/10 outputs an O(1)-approximate
spectral sparsifier for the kernel graph associated with X, with O(n2−δ) edges, where δ < 0.01

is a fixed universal constant, requires Ω
(
n · 2log(1/τ)0.32

)
time, assuming the strong exponential

time hypothesis.

First, we begin with the definition of a multiplicatively-Lipschitz function:

Definition 7.4.3 (Multiplicatively-Lipschitz Kernels). A kernel k over a set X is (c, L)-
multiplicatively Lipschitz if for any ρ ∈ (1/c, c), and for any x, y ∈ X, c−Lk(x, y) ≤
k(ρx, ρy) ≤ cLk(x, y).

We will require the following theorem showing hardness for sparsification when the kernel
function is not multiplicatively-Lipschitz:

Theorem 7.4.5 (Theorem 8.3 [10]). Let k be a function and X be a dataset such that k is
not (c, L)-multiplicatively-Lipschitz on X for some L > 1 and c = 1 + 2 log

(
10 · 2L0.48

)
/L.

Then, there is no algorithm that returns a sparsifier of the kernel graph associated with X

with O(n2−δ) edges, where δ < 0.01 is a fixed universal constant, in less than O
(
n · 2L0.48

)
time, assuming the strong exponential time hypothesis.

Proof of Theorem 7.4.4 . First, we show that for any c > 1, if L < log(1/τ)(c − 1), then
the Gaussian kernel k is not (c, L)-multiplicatively Lipschitz. Let z = ∥x− y∥22 and let
f(z) = e−z. Observe, it suffices to show that there exists a z such that f(cz) ≤ c−Lf(z). Let
z be such that f(z) = ez = minx,y k(x, y) = τ , i.e. z = log(1/τ). Then,

f(c log(1/τ)) = e−c log(1/τ),

and for L < log(1/τ)(c− 1)

c−Lf(log(1/τ)) > e−c log(1/τ).

Then, applying Theorem 7.4.5 with c = 1 + 1√
L
, it suffices to conclude k is not (c, L)-

multiplicatively Lipschitz when L < log2/3(1/τ), which concludes the proof.

Solving Laplacian Systems Approximately

We describe how to approximately solve the Laplacian system LGx = b using the spec-
tral sparsifier LG′ . First, we note the following theorem that states the running time and
approximation guarantees of fast Laplacian solvers.
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Theorem 7.4.6 ([123], [183]). There is an algorithm that takes an input a graph Laplacian
L of a graph with m weighted edges, a vector b, and an error parameter α and returns x such
that with probability at least 99/100,

∥x− L+b∥L ≤ α∥L+b∥L,

where ∥x∥L =
√
x⊤Lx. The algorithm runs in time Õ(m log(1/α)).

We have the following theorem that bounds the difference between solutions for the exact
Laplacian system and the spectral sparsifier Laplacian.

Theorem 7.4.7. Let LG be the Laplacian of a connected graph G on n vertices and let LG′

be the Laplacian of an ε-spectral sparsifier G′ of graph G i.e.,

(1− ε)LG ⪯ LG′ ⪯ (1 + ε)LG,

for ε < c for a small enough constant c. Then, for any vector b with 1⊤b = 0, ∥L+
Gb −

L+
G′b∥LG

≤ 2
√
ε∥L+

Gb∥LG
.

Proof. Note that for ε < 1, the graph G′ also has to be connected and therefore the only
eigen vectors corresponding to eigen value 0 of the matrices LG and LG′ are of the form a · 1
for a ̸= 0 and hence columns (and rows) of LG span all vectors orthogonal to 1. Therefore
LGL

+
G = L+

GLG = I − (1/n)11⊤. Now,

∥L+
Gb− L+

G′b∥2LG
= b⊤(L+

G − L+
G′)LG(L

+
G − L+

G′)b

= b⊤L+
GLGL

+
Gb− b⊤L+

G′LGL
+
Gb− b⊤L+

G′LGL
+
Gb+ b⊤L+

G′LGL
+
G′b

≤ b⊤L+
Gb− b⊤L+

G′b− b⊤L+
G′b+

1

1− ε
b⊤L+

G′b

where in the last inequality, we used LGL
+
Gb = 1 and that for any vector v, v⊤LGv ≤

1
1−ε

v⊤LG′v. As the null spaces of both LG and LG′ are given by {a1 | a ∈ R}, we also obtain
that

(1− ε)L+
G ⪯ L+

G′ ⪯ (1 + ε)L+
G

using which we further obtain that

∥L+
Gb− L+

G′b∥2LG
≤
(

2

1− ε
− 2

)
b⊤L+

G′b ≤
2ε(1 + ε)

1− ε
b⊤L+

Gb ≤ 4ε∥L+
Gb∥

2
LG

.

Thus, ∥L+
Gb− L+

G′b∥LG
≤ 2
√
ε∥L+

Gb∥LG
.

Therefore, if x is a vector such that ∥x− LG′b∥LG′ ≤ α∥L+
G′b∥LG′ obtained using the fast

Laplacian solver, then

∥x− L+
Gb∥

2
LG

= ∥x− L+
G′b+ L+

G′b− L+
Gb∥

2
LG

≤ 2(∥x− L+
G′b∥2LG

+ ∥L+
G′b− L+

Gb∥
2
LG

)

≤ 2

1− ε
∥x− L+

G′b∥2L′
G
+ 4ε∥L+

Gb∥
2
LG

.
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Here we used the above theorem and the fact that LG ⪯ (1/(1−ε))LG′ . Now, ∥x−L+
G′b∥2LG′ ≤

α2∥L+
G′b∥2LG′ and ∥L+

G′b∥2LG′ = b⊤L+
G′LG′L+

G′b = b⊤L+
G′b ≤ (1 + ε)b⊤L+

Gb ≤ (1 + ε)∥L+
Gb∥2LG

,
which finally implies that

∥x− L+
Gb∥

2
LG
≤
(
2(1 + ε)2

1− ε
α2 + 4ε

)
∥L+

Gb∥
2
LG

.

Thus, using a ε spectral sparsifier G′ with m edges, we can in time Õ(m log(1/ε)) can obtain
a vector x such that ∥x− L+

Gb∥LG
≤ C
√
ε∥L+

Gb∥LG
for a large enough constant C.

7.4.2 Low-rank Approximation of the Kernel Matrix

We derive algorithms for low-rank approximations of the kernel matrix via KDE queries. We
present a algorithm for additive error approximation and compare to prior work for relative
error approximation.

We first recall the following two theorems. Let Ai,∗ denote the ith row of a matrix A.

Theorem 7.4.8 ([87]). Let A ∈ Rn×m be any matrix. Let S be a sample of O(k/ε) rows
according to a probability distribution (p1, . . . , pn) that satisfies pi ≥ Ω(1) · ∥Ai,∗∥22/∥A|2F for
every 1 ≤ i ≤ n. Then, in time O(mk/ε · poly(k, 1/ε)), we can compute from S a matrix
U ∈ Rk×m, that with probability at least 0.99 satisfies

∥A− AUTU∥2F ≤ ∥A− Ak∥2F + ε∥A∥2F .

Theorem 7.4.9 ([63], also see [112]). There is a randomized algorithm that given matrices
A ∈ Rn×m and U ∈ Rk×m, reads only O(k/ε) columns of A, runs in time O(mk)+poly(k, 1/ε),
and returns V ∈ Rn×k that with probability 0.99 satisfies

∥A− V U∥2F ≤ (1 + ε) min
X∈Rn×k

∥A−X∥2F .

Therefore to compute the low rank approximation, we just need sample from the dis-
tribution on rows required by Theorem 7.4.8. We reduce this question to evaluating KDE
queries as follows: If K is the kernel matrix, each row of K is the weight of the edges of the
corresponding vertex. Therefore, each pi in the distribution (p1, . . . , pn) is the sum of edge
weights squared for vertex xi. From vertex queries (Algorithm 25), we know that we can
get the degree of each vertex, which is the sum of edge weights. We can extend Algorithm
25 to sample from the sum of squared edge weights of each vertex as follows. Consider a
kernel k such that there exists an absolute constant c that satisfies k(x, y)2 = k(cx, cy) for
all x, y. Such a c exists for the most popular kernels such as the Laplacian, exponential,
and Gaussian kernels for which c = 2, 2, and 4 respectively. Thus give our dataset X, we
simply construct KDE queries for the dataset X ′ := cX. Then by sampling the degrees of
the vertices associated with the kernel graph K ′ of X ′, we can sample from the distribution
required by Theorem 7.4.8 by invoking Algorithm 25 on the dataset X ′. In particular, using
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n KDE queries for X ′, we can get row norm squared values for all rows of our original kernel
matrix K. We can then sample the rows according to Theorem 7.4.8 and fully construct the
rows that are sampled. Altogether, this takes n KDE queries and O(nk/ε) kernel function
evaluations to construct a rank k approximation of K; see Algorithm 30.

Corollary 7.4.10. Given a dataset X of size n, there exists an algorithm that outputs a
rank k matrix B such that

∥K −B∥2F ≤ ∥K −Kk∥2F + ε∥K∥2F

with probability 99/100, where K is a kernel matrix associated with X based on a Laplacian,
exponential, or Gaussian kernel, and Kk is the optimal rank-k approximation of K. It uses
n KDE queries and O(nk/ε · poly(k, 1/ε) + nkd/ε) post-processing time.

We remark that for the application presented in this subsection, we can we can replace
1.6.1. Indeed, since we only estimate row sums, we only require that the value of a KDE
query is at least τ , that is, the average value 1

|X|
∑

x∈X k(x, y) ≥ τ for a query y. Note that
via Cauchy Schwartz, this automatically implies a lower bound for the average squared sum:

1

|X|
∑
x∈X

k(x, y)2 ≥ 1

|X|2

(∑
x∈X

k(x, y)

)2

≥ τ 2.

Algorithm 30 Additive-error Low-rank Approximation

1: Input:Kernel matrix K ∈ Rn×n, data points X ⊂ Rd, accuracy parameter ε, rank
parameter k.

2: procedure Additive-LRA
3: Let c be the constant such that k(x, y)2 = k(cx, cy) for all inputs x, y.
4: for i = 1 to i = n do
5: Compute the value pi =

∑n
j=1 k(cxi, cxj) using KDE queries for the dataset cX.

6: end for
7: Sample and construct O(k/ε) rows of K according to probability proportional to
{pi}ni=1.

8: Compute U from the sample, using Theorem 7.4.8.
9: Compute V from the sample, using Theorem 7.4.9.

10: Output: Factors U, V such that ∥K − UV ∥2F ≤ ∥K −Kk∥2F + ε∥K∥2F
11: end procedure

7.4.3 First Eigenvalue and Eigenvector Approximation

Our goal is to approximate the top eigenvalue of the kernel matrix and find a vector witnessing
this approximation. Our overall algorithm can be split into two steps: first sample a random
principal submatrix of the kernel matrix. Under the condition that each row of the n × n

180



kernel matrix K satisfies that it’s sum is at least nτ , we can easily show that it must have
a large first eigenvalue and thus prior works on sampling bounds automatically imply the
first eigenvalue of the sampled matrix approximates that of K. The next step is to use a
‘noisy’ power method of [24] on the sampled submatrix. We note that this step employs a
KDE data-structure initialized only on the sampled indices of K. The algorithm and details
follow.

Algorithm 31 First Eigenvalue and Eigenvector Approximation

1: Input:Input dataset X ⊂ Rd of size |X| = n, precision ε > 0.
2: procedure First-Eigenvalue-Eigenvector
3: Let t← O(1/(ε2τ 2). Let S ← random subset of [n] of size t. Let XS be the samples

restricted to the indices in S.
4: Let KS ← principal submatrix of K on indices in S and let K̃ ← (n/s) ·KS. // Just

for notation; we do not initialize K or KS

5: Construct a KDE data structure for XS. Run Algorithm 1 of [24] (Kernel Noisy
Power Method) on KS. Let λ̂max be the resulting eigenvalue and v̂max be the resulting
eigenvector.

6: Output: λ̂max and v̂max.
7: end procedure

We remark that the eigenvector returned by Algorithm 31 will be a sparse vector supported
only on the coordinates in S.

We first state the necessary auxiliary statements needed to prove the guarantees of
Algorithm 31.

Lemma 7.4.11. If each row of K satisfies that its sum is at least nτ for parameter τ ∈ (0, 1),
then the largest eigenvalue of K, denoted as λ1, satisfies λ1 ≥ nτ .

Proof. This follows from looking at the quadratic form 1TK1 where 1 is the vector with all
entries equal to 1:

λ1 ≥
1TK1
1T1

≥ n2τ

n
= nτ.

We now state the guarantees of Algorithm 1 in [24].

Theorem 7.4.12 ([24]). Suppose the kernel function for a m ×m kernel matrix K has a
KDE data structure with query time d/(ε2τ p) (see Table 2.1). Then Algorithm 1 of [24]
returns λ such that λ ≥ (1− ε)λ1(K) in time O

(
dm1+p log(m/ε)2+p

ε7+4p

)
Finally, we need the following result on eigenvalues of sampled PSD matrices, proven in

[36].

Lemma 7.4.13 ([36]). Let A ∈ Rn×n be PSD with ∥A∥∞ ≤ 1. Let S ⊂ [n] be a random
subset of size t and let AS×S be the submatrix restricted to columns and rows in S and scaled
by n/s. Then, for all i ∈ [|S|], λi(AS×S) = λi(A)± n√

t
.
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We are now ready to prove the guarantees of Algorithm 31.

Theorem 7.4.14. Given a n × n kernel matrix K admitting a KDE data-structure with
query time d/(ε2τ p), Algorithm 31 returns λ such that λ ≥ (1− ε)λ1(K) in total time

min

(
O

(
d log(d/ε)

ε4.5τ 4

)
, O

(
d

ε9+6pτ 2+2p
log

(
1

ετ

)2+p
))

.

Remark 7.4.1. Two remarks are in order. First we recall that the runtime of [24] has a
n1+p factor while our bound has no dependence on n and is thus a truly sublinear runtime.
Second, if we skip the Kernel Noisy Power method step and directly initialize and calculate
the top eigenvalue of KS (using the standard gap independent power method of [153]), we
would get a runtime of Õ(d/(ε4.5τ 4)) which has a polynomially better ε dependence but a
worse τ dependence than the guarantees of Algorithm 31.

Proof of Theorem 7.4.14. We first prove the approximation guarantee. By our setting of t
and using Lemma 7.4.13, we see that the additive error in approximating the first eigenvalue
of K by that of K̃ is at most

n√
t
≤ ετn ≤ ελ1(K),

and thus λ1(K̃) ≥ (1− ε)λ1(K). Then by the guarantees of Theorem 7.4.12, it follows that
we find a 1 − ε multiplicative approximation to λ1(K̃) and thus a 1 − O(ε) multiplicative
approximation to that of λ1(K).

We now prove the runtime bound. It easily follows from plugging in m = O(1/(ε2τ 2)) in
Theorem 7.4.12.

7.5 Empirical Evaluation

We present empirical evaluations for our algorithms. We chose to evaluate algorithms for
low-rank approximation and spectral sparsification as they are arguably two of the most
well studied examples in our applications. For our experiments, we use the Laplacian kernel
k(x, y) = exp(−∥x − y∥1/σ). A fast KDE implementation of this kernel exists due to [23],
which builds upon the techniques of [55]. Note that the focus of our work is to use KDE
queries in a mostly black box fashion to solve important algorithmic problems for kernel
matrices. This viewpoint has the important advantage that it is flexible to the choice of any
particular KDE query instantiation. We chose to work with the implementation of [23] since
it possesses theoretical guarantees, has an accessible implementation1, and has been used
in experiments in prior works such as [23, 24]. However, we envision other choices of KDE
queries, which maybe have practical benefits but are theoretically incomparable would also
work well due to our flexibility.

1from https://github.com/talwagner/efficient_kde
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Figure 7.2: (a) Nested Dataset, (b) Rings Dataset

Datasets. We use two real and two synthetic datasets in our experiments. The datasets
used in the low-rank approximation experiments are MNIST (points in R784) [132] and Glove
word embeddings (points in R200)[158]. We use 104 points from each of their test datasets.
These datasets have been used in prior experimental works on kernel density estimation
[23, 177].

For spectral sparsification and clustering, we use construct two synthetic datasets, which
are challenging for other clustering method such as k-means clustering2. The first dataset
denoted as ‘Nested’ consists of 5, 000 points, equally split among the origin and a circle of
radius 1. The two natural clusters are the points at the origin and the points on the circle.
Since one cluster is contained in the convex hull of the other, a method like k-means clustering
will not be able to separate the two clusters, but it is known that spectral clustering can.
Our second dataset, labeled ‘Rings’, is an even more challenging clustering dataset. We
consider two tori in three dimensions that pass through the interior hole of each other, i.e.,
they interlock. The ‘small’ radius of each tori is 5 while the ‘large’ radius is 100. Our dataset
consists of 2500 points uniformly distributed on the two tori; see Figure 7.2b. Note that our
focus is not to compare the efficacy of various clustering methods, which is done in other
prior works (e.g., see footnote 2). Rather, we show that spectral clustering itself can be
optimized in terms of runtime, space usage, and the number of kernel evaluations performed
via our algorithms.

Evaluation metrics. For low-rank approximation, we use the additive error algorithm
detailed in Corollary 7.4.10 of Section 7.4.2. It requires sampling the rows of the kernel
matrix according to squared row norms, which can be done via KDE queries as outlined
there. Once the (small) number of rows are sampled, we explicitly construct these rows using
kernel evaluations. We compare the approximation error of this method computed via the

2For example, see https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html.
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standard Frobenius norm error to a state of the art sketching algorithm for computing low-
rank approximations, which is the input-sparsity time algorithm of Clarkson and Woodruff
[67] (IS). We also compare to an iterative SVD solver (SVD). All linear algebra subroutines
rely on Numpy and Scipy implementations and Numba complication when applicable.

Note that prior works such as [23, 24] have used use the number of kernel evaluations
performed (how many entries of K are computed) as a measure of computational cost. While
this is a software and architecture independent metric, which is unaffected by access to
specialized libraries or hardware (e.g., SIMD, GPU), it is of interest to go beyond this
measure. We use this measure as well as other important metrics as space usage and runtime
as points of comparison. For spectral sparsification and clustering, we compare the accuracy
of our method to the clustering solution when run on the full initialized kernel matrix.

Parameter settings. For low-rank approximation, we choose the bandwidth value σ
according to the choice made in prior experiments in [23]. There, σ is chosen according to the
popular median distance rule; see their experimental section for further information. For our
clustering experiments, we pick the value of σ, which results in spectral clustering (running
on the full kernel matrix) successfully clustering the input.

7.5.1 Results

Low-rank approximation. Note that the algorithm in Corollary 7.4.10 has a O(k) de-
pendence on the number of rows sampled. Concretely we sample 25k rows for a rank k
approximation which we fix it for all experiments. For the MNIST dataset, the rank versus
approximation error is shown in Figure 7.3a. The performance of our algorithm labeled as
KDE is given by the blue curve while the orange curve represents the IS algorithm. The
green curve represents the SVD error, which is a lower bound on the error for any algorithm.
Note that for SVD calculations, we do not calculate the full SVD since that is computation-
ally prohibitive; instead, we use an iterative solver. We can see that the errors of all three
methods are comparable to each other. In terms of runtime, the KDE based method took
24.7 seconds on average for the rank 50 approximation whereas IS took 71.5 seconds and
iterative SVD took 74.72 seconds on average. This represents a 2.9x decrease in the running
time. The time measured includes the time to initialize the data structures and matrices
used for the respective algorithms. In terms of the number of kernel evaluations, both IS
and iterative SVD require the kernel matrix, which is 108 kernel evaluations. On the other
hand for the rank 50 approximation, our method required only 1.1 · 107 kernel evaluations,
which is a 9x decrease in the number of evaluations. In terms of space, IS and iterative SVD
require 108 floating point numbers stored due to initializing the full 104× 104 matrix whereas
our method only requires 104 · 25 · 50 floating point numbers for the rank equal to 50 case
and smaller for other. This is a 8x decrease in the space required. Lastly, we verify that we
are indeed sampling from the correct distribution required by Corollary 7.4.10. In Figure
7.3b, we plot the points (xi, yi) where xi is the row norm squared for the ith row of the
kernel matrix K and yi is the row norm squared computed in our approximation algorithm
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(see Algorithm 30). As shown in Figure 7.3b, the data points fall very close to the y = x
line indicating that our algorithm is indeed sampling from approximately the correct ideal
distribution.

The qualitatively similar results for the Glove dataset are given in Figures 7.3c and 7.3d.
For the glove dataset, the average time taken by the three algorithms were 37.7, 37.7, and
44.2 seconds respectively, indicating that KDE and IS were comparable in runtime whereas
SVD took slightly longer. However, the number of kernel evaluations required by the latter
two algorithms was significantly larger: for rank equal to 10, our algorithm only required
2.6 · 106 kernel evaluations while the other methods both required 108 due to initializing the
matrix. Lastly, the space required by our algorithm was smaller by a factor of 40 since we
only explicitly compute 25 · 10 rows for the rank = 10 case. For Glove, we only perform our
experiments up to rank equal to 10 since the iterative SVD failed to converge for higher ranks.
While computing the full SVD would avoid the convergence issue, it would take significantly
longer time in general. For example for the MNIST dataset, computing the full SVD of the
kernel matrix took 552.9 seconds, which is approximately an order of magnitude longer than
any of the other methods.

Spectral sparsification and clustering. Our algorithm consists of running the spectral
sparsification algorithm of Theorem 7.4.1 (Algorithm 29) and computing the first two eigen-
vectors of the normalized Laplacian of the resulting sparse graph. We then run k-means
clustering on the computed Laplacian embedding for k = 2.

As noted above, we use two datasets that pose challenges for traditional clustering methods
such as k-means clustering. The Nested dataset is shown in Figure 7.2a. We sampled 3 · 105
many edges, which is 2.5% of total edges. Figure 7.4a shows the Laplacian embedding of
the sampled graph based on the first two eigenvectors. The colors of the red and blue points
correspond to their cluster in Figure 7.2a as identified by running k-means clustering on the
Laplacian embedding. The orange crosses are the points that the spectral clustering method
failed to correctly classify. These are only 23 points, which represent a 0.5% of total points.
Furthermore, Figure 7.4a shows that the Laplacian embedding of the sampled graph is able
to embed the two clusters into distinct and disjoint regions. Note that the total space savings
of the sampled graph over storing the entire graph is 41x. In terms of the time taken, the
iterative SVD method used to calculate the Laplacian eigenvectors took 0.18 seconds on the
sparse graph whereas the same method took 0.81 seconds on the entire graph. This is a 4.5x
factor reduction.

We recorded qualitatively similar results for the rings dataset. Figure 7.2b shows a plot
of the dataset. We sampled 105 many edges for the approximation, which represents a 3.3%
of total edges for form the sparse graph. The Laplacian embedding of the sparse graph is
shown in Figure 7.4b. In this case, the embedding constructed from the sparse graph was
able to separate the two rings into disjoint regions perfectly. The time taken for computing
the Laplacian eigenvectors for the sparse graph was 0.08 seconds whereas it took 0.27 seconds
for the full dense matrix.
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Figure 7.3: Figures for low rank approximation experiments.
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