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ABSTRACT

Physics-inspired generative models such as diffusion models constitute a powerful family
of generative models. The advantages of models in this family come from relatively stable
training process and high capacity. A number of possible improvements remain possible.
In the thesis, we will first delve into the improved techniques for training and sampling in
diffusion models. The training objectives of diffusion models exhibit high variance when
the data distribution is multi-modal. To mitigate this, we propose a training objective
that generalizes conventional denoising score-matching and significantly reduces variance in
training targets. Alternatively, we introduce a training framework that integrates learnable
discrete latents into continuous diffusion models. These latents simplify the learning of
diffusion models’ complex noise-to-data mapping. On the other hand, the sampling process
of diffusion models generally involves solving differential equations. To expedite the sampling
process, we propose a new sampling algorithm that combines the best of previous ODE and
SDE samplers, greatly boosting the performance of pre-trained diffusion models. Additionally,
our research explores methods to promote diversity in finite samples by introducing mutual
repulsion forces in the generative process.

In the realm of physics-inspired generative models, many physical processes could be used to
develop generative models. We will introduce a new family of generative models arising from
electrostatic theory, termed Poisson Flow Generative Models (PFGM). PFGM rivals leading
diffusion models while showcasing improved sampling robustness. The extended version,
PFGM-++, places diffusion models and PFGM under the same framework and introduces new,
better models. We will further present a principled approach to convert physical processes
into generative models.

Thesis supervisor: Tommi S. Jaakkola
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Chapter 1

Introduction

Generative models have significantly transformed the way people work, create, and learn in
recent years. Prominent applications include ChatGPT [1], text-to-image models |2]-[4], text-
to-3D models [5], [6], and text-to-video models [7], [8]. Such capabilities can greatly stimulate
creativity and enhance work efficiency across numerous sectors, including education, the
gaming industry, social media, and professional editing software. The training of generative
models in machine learning is based on the assumption that training data are sampled from
an unknown data distribution [9]. Modern generative models commonly use deep neural
networks to approximate complex data distributions based on finite training data. They can
generate novel data points by sampling from these modeled distributions.

Among the various data types utilized in generative modeling, high-dimensional data poses
a significant challenge primarily due to the curse of dimensionality. As the dimensionality
increases, the volume of data space expands exponentially. This phenomenon makes it difficult
to capture and model the data distribution effectively with limited training data in high-
dimensional space. Additionally, the data distributions of interest are often highly complex
and multi-modal, further complicating the task of generative modeling. Recently, diffusion
models [10]-[12], along with broader physics-inspired generative models [13], have emerged as
strong frameworks and achieved impressive results on a wide spectrum of generative tasks
for high-dimensional data. Before diffusion models, the primary approaches included: (i)
Generative Adversarial Networks (GANs [14]) that utilize an adversarial training objective;

(i) models trained with maximum likelihood objectives, such as PixelCNN [15] and normal-
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izing flow models [16], [17]; (iii) Variational Autoencoders [18], [19] and (iv) Energy-based
models [20], [21]. Each method, however, involves its own set of drawbacks: (i) can result in
unstable training and low diversity in generated samples; (ii) necessitates specific architectural
designs that may limit model capacity; (iii) demands careful coordination between various
neural networks; and (iv) suffers from slow training and sampling speeds. Utilizing natural
physical processes as encoders to transform data into noise, diffusion models learn to
perform generative tasks by reversing the physical processes. This approach allows them

to bypass many of the limitations associated with earlier generative models.

1.1 Generative Modeling by Reversing Physical Processes

Drawing on principles from thermodynamics [10], diffusion models involve two opposing
processes: a forward process that transforms the data distribution into a simpler prior
smoothly over time, and a reverse process that iteratively denoises a sample from this noisy
prior. The forward process in diffusion models is a simple Brownian motion that degrades
the data by gradually adding Gaussian noise. To reverse this process, it is sufficient to
learn a time-dependent vector field, known as the score function, and iteratively solve a
differential equation [22]. Unlike GANs and VAESs, the training of diffusion models does not
require synchronization between multiple neural networks, resulting in a more stable training
procedure. Additionally, they are less constrained by architectural requirements and employ
an iterative process similar to the concatenation of neural networks, enhancing their overall
capacity. This stability and enhanced capacity allow diffusion models to scale effectively to
large datasets.

Despite their advantages, diffusion models encounter several challenges, including a high-
variance training process, especially when handling multi-modal data, and a slow iterative
sampling process. Additionally, the independent and identically distributed (i.i.d.) sampling
procedure often results in repetitive samples. These issues underscore the need for approaches
to stabilize and improve the training of diffusion models on complex datasets
and demand for new techniques aimed at accelerating the sampling process and

promoting diversity within mini-batch samples. Furthermore, diffusion models are
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just one of many physics-inspired generative models. Numerous physical processes beyond
Brownian motion remain untapped and can be utilized to construct generative models. This
leads us to an important question: Can we discover other physics-inspired generative
models that exhibit even better properties? In the following sections, we will briefly
summarize the improved training and sampling techniques for diffusion models and discuss
our research on developing other physics-inspired generative models, as detailed in later

chapters.

1.1.1 Improved Training Techniques for Diffusion Models

The training of diffusion models utilizes a perturbation-denoising approach to estimate the
vector fields. This starts by perturbing clean data using Gaussian noise; then, the network
reconstructs the original from the perturbed samples [12]. However, with complex multi-modal
data, many clean data points can be perturbed to similar noisy samples, creating ambiguous
training targets and causing instability.

In (23], we tackle this problem by implementing a weighted summation of multiple clean
data points to estimate the true target, pinpointing the direction of the true vector field from
the perturbed sample. This novel training objective generalizes conventional single-point
estimate, and significantly reduces variance in training targets. Consequently, this
results in improved sample quality, enhanced stability, and accelerated training
speed in various variants of diffusion models.

Another challenge facing diffusion models is the requirement to learn a non-linear and
highly complex mapping from a uni-modal Gaussian distribution to a multi-modal data
distribution. This complexity makes training more difficult and results in generative ordinary
differential equation (ODE) [24] trajectories with strong curvature. To address this issue,
we augment diffusion models with discrete latent variables. These discrete latents help to
capture different modes within the data distribution, and the task for diffusion models then
becomes capturing continuous variations within each mode based on the given discrete latent.
The separated modeling of discrete and continuous variation significantly simplifies the
learning of the model’s complex noise-to-data mapping. This approach effectively

reduces the curvature of the diffusion model’s generative ODE and makes the overall training
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loss smaller, especially at larger diffusion times.

1.1.2 TImproved Sampling Techniques for Diffusion Models

Solving differential equations in the sampling process of diffusion models often involves speed
and quality trade-offs. Deterministic samplers (ODE-based) [25]-[27] are fast but plateau in
performance, whereas stochastic samplers (SDE-based) [27], [28] provide better sample quality
but are slower. Our analysis attributes this difference to sampling errors: ODE-samplers
have smaller discretization errors, while stochasticity in SDE contracts errors accumulated
during the sampling process [29].

Based on these insights, in [29], we propose a novel sampling algorithm called Restart,
which combines the advantages of ODE and SDE. The method alternates between
adding substantial noise during additional forward steps and strictly adhering to a reverse
ODE process. The inclusion of substantial forward noise enhances the contraction effect of
the stochasticity, while adherence to the reverse ODE allows for expedited sampling. This
separation of stochasticity and the deterministic sampling process proves highly beneficial,
as Restart surpasses SDE and ODE samplers in speed and quality on standard
benchmarks (CIFAR-10 and ImageNet-64), and exhibits a superior balance of text-
image alignment, visual quality, and diversity on large-scale text-to-image Stable
Diffusion model.

Conventionally, diffusion models generate independent and identically distributed samples
from the model distribution. In practice, however, the model often needs to be sampled
multiple times to achieve a diverse set of mini-batch samples, which incurs costs orthogonal
to sampling time. We propose moving beyond the typical assumption of independent
samples to enhance sample diversity and efficiency. Our approach introduces an extension of
diffusion-based generative sampling called particle guidance. In this method, a joint-particle
time-evolving potential enforces diversity by adding mutual repulsive forces
between samples (particles). Empirically, our framework improves diversity and mitigates
memorization in applications such as text-to-image generation and molecular conformer

generation.
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zoom out

Figure 1.1: Gradual zooming-out views of the 2D electric field in a 3D augmented space. As
the distance from the data support increases, the charge distribution progressively resembles
a point charge. This indicates that the charge distribution effectively “collapses" to a single
point when we are sufficiently far away.

1.1.3 Generative Models from Alternative Physical Processes

With diffusion models as a notable example, physics-inspired generative models encompass a
forward process that simplifies complex data distributions into prior distributions over time,
and an associated reverse process, or sampling process, that gradually reverts these prior
distributions back to their original data distribution. Consequently, in order to define
new physics-inspired generative models, it is necessary to identify an appropriate
forward process. This process should naturally simplify the data distribution over time
and be reversible, and its associated vector field should be easy to learn by neural networks.

Drawing on electrostatics, we chart a novel path for physics-inspired generative models
and introduce the Poisson Flow Generative Models (PFGM) [30] and its extended version,
PEFGM-++ [31]. PFGM interprets data as electrical charges in an augmented space. As
shown in Figure 1.1, when we move sufficiently far from the data support, the charge
distribution collapses into a point charge, and the electric field appears radial in every
direction. Consequently, it can be demonstrated that the electric field lines emitted by these
charges define a bijection between the data distribution and a uniform distribution on a large
hemisphere. Empirically, this new family of models surpasses diffusion models in terms of
sample quality, sampling speed, and robustness. Additionally, we explore the duality between
physical processes and generative models with an aim to conceptualize and design additional

new physics-inspired generative models [13].
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1.2 Summary of Thesis

This thesis is structured into three thematic parts. Below, we provide brief summary of each
part.

Part I focuses on developing new techniques aimed at stabilizing the training in diffusion
models, and straightening their generative trajectories, particularly when dealing with complex

multi-modal datasets.

e In Chapter 3, we remedy the high-variance problem in diffusion models’ objective,
by incorporating a reference batch, which we use to calculate weighted conditional
scores as more stable training targets. We show that the procedure indeed helps in the
challenging intermediate regime by reducing (the trace of) the covariance of training

targets. This chapter is based on [23].

e In Chapter 4, we augment diffusion models with learnable discrete latents, inferred with
an encoder, and train DM and encoder end-to-end. The discrete latents significantly
simplify learning the DM’s complex noise-to-data mapping by reducing the curvature
of the DM’s generative ODE, and improving sample quality on various datasets with

ODE samplers. This chapter is based on [32].

Part II is about accelerating the sampling process of diffusion models, as well as promoting
diversity by exerting mutually repulsive forces among samples. All the techniques discussed

are training-free and can be readily applied to any pre-trained diffusion models.

e In Chapter 5, we propose a novel sampling algorithm called Restart to combine the best
of previous ODE and SDE samplers. Restart alternates between adding substantial
noise in additional forward steps and strictly following a backward ODE. Empirically,
the Restart sampler surpasses previous SDE and ODE samplers in both speed and
accuracy. The chapter is based on [29].

e In Chapter 6, we propose particle guidance, an extension of diffusion-based generative
sampling where a joint-particle time-evolving potential enforces diversity. We test

the framework in both conditional image generation, where we can increase diversity

30



without affecting quality, and molecular conformer generation, where we improve the

median error over previous methods. This chapter is built upon [33].

Part III investigates a new family of generative models inspired by electrostatics theory
and its unification with diffusion models in an extended view. This part also provides a
forward-looking perspective on the methodologies for constructing generative models given

any physical process.

e In Chapter 7, we introduce a new type of generative model — Poisson Flow Generative
Model (PFGM) — based on electrostatic theory. We interpret the data points as
electrical charges on the z = 0 hyperplane in a space augmented with an additional
dimension z, generating a high-dimensional electric field (the gradient of the solution
to Poisson equation). We prove that if these charges flow upward along electric field
lines, their initial distribution in the z = 0 plane transforms into a distribution on the
hemisphere of radius r that becomes uniform in the r — oo limit. We demonstrate
that PFGM outperforms previous state-of-the-art diffusion models while offering faster

image generation speeds.

e In Chapter 8, we expand the theory of electrostatics used in PFGM, unifying diffusion
models and PFGM. More intriguingly, interpolation between the two models reveals
a sweet spot with new state-of-the-art performance in image generation. We provide
a theoretical explanation for why both PFGM and diffusion models are sub-optimal

solutions for practitioners. This chapter is built on [31].

e In Chapter 9, we present a unifying framework and algorithm that transforms physical
processes into smooth density flow generative models. Additionally, we introduce a
classification criterion based on the dispersion relations of the underlying physical
partial differential equations (PDEs). This theoretical approach can be applied to
various physical PDEs, leading to the discovery of new families of generative models.

This chapter is based on [13].

We conclude the thesis and discuss current limitations in Chapter 10.
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Chapter 2

Background on Diffusion Models

In this chapter, we formulate the problem of generative modeling and explain how diffusion
models tackle this task. Since other physics-inspired generative models share similar training
and sampling techniques with diffusion models, we will use diffusion models as an anchor to

examine the training and sampling processes of physics-inspired generative models.

2.1 Problem Formulation

A generative model is a statistical model designed to approximate an unknown data distri-
bution p(x). It parameterizes a model distribution py using a learnable function, such as a
deep neural network, characterized by parameters 6. In a typical problem setting, we have a
finite number of N-dimensional data points {x1, Xs,...,X,}, each sampled independently and
identically from an unknown data distribution p(x), as the training set. The primary objective
is to closely approximate the true data distribution by estimating 6 from the available n data

points:

pe(x) ~ p(x)

Upon determining the model parameters 6, it is possible to generate novel data by sampling
from the model distribution py(x). Therefore, a valid generative model must fulfill two key

requirements: (1) the ability to approximate the data distribution accurately and

33



(2) the capability to allow sampling from the model distribution.

2.2 Constructing Generative Models with Thermodynam-

ical Theory

Forward process

dx = f(x,t)dt + g(t)dw

dx = [f(x,t) - %g(t)zvx logp,(x)] dt — %g(t)zvx log pr(x)dt + g(t)dw

<
Backward process

Figure 2.1: The forward SDE and backward SDE/ODE in diffusion models.

Inspired by the Brownian motion in thermodynamics [10], diffusion models gradually
degrade the complex data distribution into an equilibrium state through a forward process'.
This thesis adopts the continuous perspective on such degradation, as discussed in [34]. An
intuitive analogy can be drawn from a drop of ink diffusing in water. The forward process is

an SDE with no learned parameter in the form of:
dx = f(x, t)dt + g(t)dw, (2.1)

where x € R? with x(0) ~ po being the data distribution, t € [0,1], f: R? x [0,1] — R4,
g:[0,1] = R, and w € R? is the standard Wiener process. It gradually transforms the

data distribution to a known prior (e.g., Gaussian distribution) as time goes from 0 to 1.

IFor simplicity, we focus on the version where the diffusion coefficient g(t) is independent of x(t).
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We denote the time-dependent intermediate marginal distribution in the forward process as
pi. The sampling of diffusion models is done via a corresponding backward (reverse-time)

SDE [22]:

dx = [f(x,t) — g(t)*Vxlog pi(x)] dt + g(t)dw, (2.2)
dx = [f(x,1) — g(t)*se(x, t)] AT + g(t)dw, (2.3)
dx — |£(x,4) - %g(tfs@(x, | ar - %g(t)Zse(X, £)dE + g(t)dw, (2.4)

where - denotes time traveling backward from 1 to 0, and Vy log p;(x) in the drift term is
the score function of intermediate distribution at time ¢. The backward SDE induces exactly
the same intermediate distribution p; as the forward SDE. Intuitively, the forward process
describes a natural degradation from data to Gaussian distribution, and the backward process
iteratively reverses such process to reconstruct clean data. Further, the backward SDE has a

marginally equivalent probability flow ODE [35]:
1, ]
dx = |f(x,t) — §g(t) Vi logpi(x)| dt, (2.5)

Both backward SDE (Equation 2.4) and ODE (Equation 2.5) progressively recover pg from
the prior p;. Figure 2.1 summarizes the forward process and the corresponding backward
SDE/ODE in diffusion models. To construct a generative model from this framework,
estimating the score function by neural network sy suffices. Let’s denote the model distribution
po(x) as the distribution at time ¢ = 0 in the following SDE, which substitutes the score

function with neural functions in Equation 2.4:

dx = [f(x,t) — g(t)*se(x, t)] A + g(t)dw
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If one has an accurate approximation of the score function, given by

so(x,t) ~ Vxlog pi(x),

then it can be demonstrated that the model distribution closely approximates the data
distribution under certain mild conditions [36]: ps(x) ~ p(x). Consequently, diffusion models
meet the two criteria outlined in Section 2.1: the ability to accurately approximate the
data distribution and to allow sampling from the model distribution. There are two types
of commonly used SDEs in the literature, i.e., Variance Exploding (VE) and Variance
Preserving (VP), considered in [37]. For VE, f(x,t) = 0,9(t) = 0(t)1/210g 0max/Tmin,
where 0(t) = Owmin(Omax/0min)’; for VP, f(x,t) = —18(t),g(t) = /B(t), where 5(t) =
(Bmax — Bumin)t + Bunin-

Some chapters in this thesis are built on a simplified version of the diffusion framework,

termed EDM, proposed in [27|. The forward process in EDM has the simple form as follows:

= \/26(D)o(H)dw, (2.6)

where o(t) is typically set to ¢, and is ranging from 0 to some large values. It can be regarded
as a special case of Equation 2.1, with f(x,t) = 0, g(t \/207 The forward process
leads to a simple perturbation kernel, which will be discussed in the next section. The
corresponding backward SDE and ODE are dx = —25 ()0 (t)Vy log p,(x)dt + /26 (t)o (t)dw
and dx = —d(t)o(t)Vy log p:(x)dt, respectively.

2.3 Training

In the previous section, we have shown that by estimating the score of the transformed data
distribution at time ¢, V4 log p;(x), via a neural network sy(x,t), we are able to construct a

valid generative model. A popular approach to learning the score function is to minimize a
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weighted sum of the denoising score-matching objective [38]:

min Eieg, ) At Exnpo By () [[186(%, 1) = Vs log pyo(X[x)]13] , (2.7)

where ¢, is the distribution for time variable, e.g., U[0, 1] for VE/VP [35] and a log-normal
distribution for EDM [27], A(¢) is a positive weighting function to keep the time-dependent
loss around the same magnitude [35], po is the data distribution and pyo(X[x) is the transition

2. Specifically, diffusion models

kernel denoting the conditional distribution of x given x
“destroy” data according to a diffusion process utilizing Gaussian transition kernels pyo. For
example, the perturbation kernel pertaining to the EDM SDE (Equation 2.6) is Gaussian
with varying time-dependent standard deviations: pyo(X|x) = N (x, 0 (¢)*I)

Although the training target in the objective is the conditional score Vg log pyjo(X|x), the
optimal model sy« (X, t) matches V log p;(x) almost everywhere given sufficient data and model
capacity [38]. There are several equivalent objectives that can obtained by reparameterizing

the neural network, such as xg-prediction, v-prediction [39] and the preconditioning technique

in |27], to reduce the variance or amplify the learning signal in the training target.

2.4 Sampling

After the estimation of the score function, we can sample from diffusion models via a reverse-
time SDE [22] or a marginally-equivalent ODE [37], with the initial samples sampled from

the known prior x ~ p;(x):

(SDE) dx = [f(x,t) — g(t)*se(x,t)] AT + g(t)dw (2.8)
1 _
(ODE)  dx = |f(x,t) — 5g(t)2s,9(x, t)| dt (2.9)
Prior works employ the Euler-Maruyama method, Predictor-Corrector solver [37] or

adaptive step size method [28] to solve the diffusion SDE (Equation 2.8). To solve the

diffusion ODE (Equation 2.9), previous papers utilize first-order (e.g., forward Euler method)

2We omit “(0)” from x(0) when there is no ambiguity.
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or higher-order (e.g., Heun’s method, RK45) numerical solvers [25], [27]. [26], [40] further
utilize the multistep method to stabilize the sampling process. Diffusion ODE is generally
faster to solve than diffusion SDE and is more commonly used in practical scenarios due to

speed considerations.
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Part 1

Improved Training Techniques for Diffu-

sion Models

When handling complex multi-modal data distributions, diffusion models often exhibit a
high-variance training process, and their backward ODE trajectories are highly curved. In
Part I, we focus on developing new training techniques aimed at stabilizing the training of
diffusion models (Chapter 3) and reducing the curvature of generative trajectories (Chapter 4).
We have observed that these enhanced training techniques consistently improve the models’
performance across datasets and modalities, and result in higher-quality samples during

inference.
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Chapter 3

Reducing the Variance in the Score

Estimation

Despite providing impressive empirical results, the training algorithms of diffusion models can
be further improved by reducing the variance of the training targets in their objective for score
estimation. We argue that the source of such variance lies in the handling of intermediate
noise-variance scales, where multiple modes in the data affect the direction of reverse paths.
In this chapter, we propose to remedy the problem by incorporating a reference batch into
the training objective of diffusion models, to calculate weighted conditional scores. We show
that the procedure indeed helps in the challenging intermediate regime by reducing (the trace
of) the covariance of training targets. The new stable targets can be seen as trading bias for
reduced variance, where the bias vanishes with increasing reference batch size. Empirically,
we show that the new objective improves the image quality, stability, and training speed of
various popular diffusion models across datasets with both general ODE and SDE solvers.

This chapter was previously published as [23].

3.1 Introduction

Diffusion models have recently achieved impressive results on a wide spectrum of generative
tasks. However, we argue that, despite achieving impressive empirical results, the current

training scheme of diffusion models can be further improved. In particular, the variance of

40



training targets in the denoising score-matching (DSM) objective can be large and lead to
suboptimal performance. To better understand the origin of this instability, we decompose
the score field into three regimes. Our analysis shows that the phenomenon arises primarily
in the intermediate regime, which is characterized by multiple modes or data points exerting
comparable influences on the scores. In other words, in this regime, the sources of the noisy
examples generated in the course of the forward process become ambiguous. We illustrate
the problem in Figure 3.1a, where each stochastic update of the score model is based on
disparate targets.

In this chapter, we propose a generalized version of the denoising score-matching objective,
termed the Stable Target Field (STF) objective. The idea is to include an additional reference
batch of examples that are used to calculate weighted conditional scores as targets. We apply
self-normalized importance sampling to aggregate the contribution of each example in the
reference batch. Although this process can substantially reduce the variance of training
targets (Figure 3.1b), especially in the intermediate regime, it does introduce some bias.
However, we show that the bias together with the trace-of-covariance of the STF training
targets shrinks to zero as we increase the size of the reference batch.

Experimentally, we show that our STF objective achieves new state-of-the-art performance
on CIFAR-10 unconditional generation when incorporated into EDM [27|. The resulting
FID score [41] is 1.90 with 35 network evaluations. STF also improves the FID /Inception
scores for other variants of score-based models, i.e., VE and VP SDEs [35], in most cases. In
addition, it enhances the stability of converged score-based models on CIFAR-10 and CelebA
642 across random seeds, and helps avoid generating noisy images in VE. STF accelerates
the training of score-based models (3.6x speed-up for VE on CIFAR-10) while obtaining
comparable or better FID scores. To the best of our knowledge, STF is the first technique to
accelerate the training process of diffusion models. We further demonstrate the performance
gain with increasing reference batch size, highlighting the negative effect of large variance.

Our contributions are summarized as follows: (1) We detail the instability of the current
diffusion models training objective in a principled and quantitative manner, characterizing
a region in the forward process, termed the intermediate phase, where the score-learning

targets are most variable. (2) We propose a generalized score-matching objective, stable
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(a) DSM (b) STF

Figure 3.1: Illustration of differences between the DSM objective and our proposed STF
objective. The “destroyed” images (in blue box) are close to each other while their sources
(in red box) are not. Although the true score in expectation is the weighted average of v;,
the individual training updates of the DSM objective have a high variance, which our STF
objective reduces significantly by including a large reference batch ( ).

target field, which provides more stable training targets. (3) We analyze the behavior of the
new objective and prove that it is asymptotically unbiased and reduces the trace-of-covariance
of the training targets by a factor pertaining to the reference batch size in the intermediate
phase under mild conditions. (4) We illustrate the theoretical arguments empirically and
show that the proposed STF objective improves the performance, stability, and training
speed of score-based methods. In particular, it achieves the current state-of-the-art FID score

on the CIFAR-10 benchmark when combined with EDM.

3.2 Understanding the Training Target in Score-Matching
Objective

The vanilla denoising score-matching objective at time ¢ is:
Cosui(0,) = Epy 0 Epy o x(ty o 180 (x(£), 1) = Vicqey log papo (x(£) ) 3], (3.1)

where the network is trained to fit the individual targets V() log pyo(x(t)|x) at (x,t) — the

“influence" exerted by clean data x on x(t). We can swap the order of the sampling process
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by first sampling X from p; and then x from poy¢(:|x). Thus, sy has a closed form minimizer:

spsm (x(1), 1) = By, ixix(t) [Vx(t) 108 pryo(x(£)[x)] = Vixr) log pe(x(1)).- (3.2)

The score field is a conditional expectation of Vxlog pyo(X|x) with respect to the posterior
distribution pg;. In practice, a Monte Carlo estimate of this target can have high variance
[42], [43]. In particular, when multiple modes of the data distribution have comparable
influences on x(t), poj¢(-|x(t)) is a multi-mode distribution, as also observed in [44]. Thus
the targets Vi) log pyo(x(t)|x) vary considerably across different x and this can strongly
affect the estimated score at (X,t), resulting in slower convergence and worse performance in
practical stochastic gradient optimization [45].

To quantitatively characterize the variations of individual targets at different time, we

propose a metric — the average trace-of-covariance of training targets at time t:

Vosai(t) = Ep,(x) | Tr(Covp,, i) (Vi log po(X[)) |

= Ep, 0By, (x5 [V 10g pyjo(X[x)) — Vg log py(%)|13] - (3.3)

We use Vpsm(t) to define three successive

phases relating to the behavior of training X ois //
targets. As shown in Figure 3.2a, the three Gk fggj Iy \
phases partition the score field into near, in- - ﬁ :‘E o j \
termediate, and far regimes (Phase 1~3 re- ) 00 0z o4 08 08 10

spectively). Intuitively, Vpsm(t) peaks in the (a) ODE Sampling ~ (b) Vbsui(#) versus ¢

intermediate phase (Phase 2), where multiple Figure 3.2: (a): Illustration of the three phases
in a two-mode distribution. (b): Estimated
Vbsm(t) for two distributions. We normalize
comparable influences on the same noisy per- the maximum value to 1 for illustration pur-
poses.

distant modes in the data distribution have

turbations, resulting in unstable targets. In
Phase 1, the posterior pg; concentrates around one single mode, thus low variation. In Phase
3, the targets remain similar across modes since limy_,; pyo(X|x) ~ p; for commonly used

transition kernels.
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We validate this argument empirically in Figure 3.2b, which shows the estimated Vpgy(t)
for a mixture of two Gaussians as well as a subset of CIFAR-10 dataset [46] for a more
realistic setting. Here we use VE SDE, i.e., pyo(X|x) = N (X, 0%(%{)”1) for some o, and
on [35]. Vbsm(t) exhibits similar phase behavior across ¢ in both toy and realistic cases.
Moreover, Vpgm(t) reaches its maximum value in the intermediate phase, demonstrating the

large variations of individual targets. We defer more details to Appendix B.1.1.

3.3 Variance Reduction with Stable Target Field

The vanilla denoising score-matching approach (Equation 3.2) can be viewed as a Monte Carlo
estimator, i.c., Vi log pi(X) = By, xix() [V 10g pro(x(8)[%)] ~ 1 377, Vi) log pejo (XIx5)
where x; is sampled from po,(-|X) and n = 1. The variance of a Monte Carlo estimator
is proportional to %, so we propose to use a larger batch (n) to counter the high variance
problem described in Section 3.2. Since sampling directly from the posterior pg is not
practical, we first apply importance sampling with the proposal distribution pg. Specifically,

we sample a large reference batch B, = {x;}, ~ p{ and get the following approximation:

. 1 < Poje(x4]x(1))
Vi logpy(x) &~ — ————— =V log pro(x(t)]x;).
(v log p(X) ~ — Zl P (t) 1og pyo(x(t)]x:)
The importance weights can be rewritten as po(x|x(t))/po(x) = pyo(x(t)|x)/p:(x(t)). How-
ever, this basic importance sampling estimator has two issues. The weights now involve
an unknown normalization factor p;(x(¢)) and the ratio between the prior and posterior
distribution can be large in high dimensional spaces. To remedy these problems, we appeal

to self-normalization techniques [47| to further stabilize the training targets:

V% XX'L -
V(o) log pi(% ZZ to(X )Vx(t)logpﬂO(X‘Xi). (3.4)

j=1 Prio(X[x;

We term this new training target in Equation 3.4 as Stable Target Field (STF). In practice, we
sample the reference batch By, = {x;}!_, from pj and obtain x(¢) by applying the transition
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kernel to the “first” training data x;. Taken together, the new STF objective becomes:

gSTF(& t) = E{Xi}" NPSE (t)~pejo(-1x1)

|

When n = 1, STF reduces to the vanilla denoising score-matching (Equation 3.1). When

so(x(t),t) = Pro(X[x)

1 > i1 Pyo(X[x;

)vx(t) log pyjo(X[xz)

z] . (35)

n > 1, STF incorporates a reference batch to stabilize training targets. Intuitively, the new
weighted target assigns larger weights to clean data with higher influence on X, i.e., higher
transition probability pyo(x(t)[x).

Similar to our analysis in Section 3.2, we can again swap the sampling process in Equa-
tion 3.5 so that, for a perturbation X, we sample the reference batch B, = {x;}I, from
poje(-[x(t))pg ", where the first element involves the posterior, and the rest follow the data
distribution. Thus, the minimizer of the new objective (Equation 3.5) is (derivation can be

found in Appendix A.1.1)

Dijo(X]x N
Z PoExe) S Valog )| (30

SETF(i7t) = EXlNPo\t(“X) {xi}io~py Z Dtjo X|X

O

Note that although STF significantly reduces the variance, it introduces bias: the minimizer
is no longer the true score. Nevertheless, in Section 3.4, we show that the bias converges to 0
as n — 0o, while reducing the trace-of-covariance of the training targets by a factor of n when
Do = po. We further instantiate the STF objective (Equation 3.5) with transition kernels in
the form of pyo(%|x) = N (x, 071), which includes EDM [27], VP (through reparameterization)
and VE [35]:

Hx(t)—xkn%) )

1o o (-

SG(X(t)7 t) - _QZ (_ Hx(t;—xj||§> (Xk‘ - X(t))

Exl"’po\t(“i)E{xz} n—1

i=2"Po

o
th=1 D _; €xp 2

To aggregate the time-dependent STF objective over ¢, we sample the time variable ¢ from
the training distribution ¢; and apply the weighting function A(t). Together, the final training
objective for STF is Eyq, ) [A(t)lsTr(0,t)]. We summarize the training process in Algorithm 1.
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The small batch size |B| is the same as the normal batch size in the vanilla training process.
We defer specific use cases of STF objectives combined with various popular diffusion models

to Appendix A.1.4.

Algorithm 1 Learning the stable target field

Input: Training iteration 7', Initial model sy, dataset D, learning rate 7.

fort=1...7T do
Sample a large reference batch B, from D, and subsample a small batch B = {XZ}IB‘
from B,
Uniformly sample the time {¢; }Z |~ q (1)

Obtain the batch of perturbed samples {Xi(ti)}gl by applying the transition kernel py
on B

Calculate the stable target field of By, for all x;(t;):
¢ 0 (Xi (ti)[%)
v, (Xi(ti) = X xes, Zy:BZL‘Opf i) Vii(t:) 108 prjo(xi(t:) %)
Calculate the loss: £(8) = o X120 A(t:)llso(xi(t:), ts) — v, (xi(4:))13
Update the model parameter: 0 =6 —nVL(0)

end for
return sy

3.4 Theoretical Analysis of Stable Target Field

In this section, we analyze the theoretical properties of our approach. In particular, we
show that the new minimizer si r(X,t) (Equation 3.6) converges to the true score asymptoti-
cally (Section 3.4.1). Then, we show that the proposed STF reduces the trace-of-covariance
of training targets propositional to the reference batch size in the intermediate phase, with

mild conditions (Section 3.4.2).

3.4.1 Asymptotic Behavior

Although in general s§p(X,t) # Vzlog p;(X), the bias shrinks toward 0 with a increasing
n. In the following theorem we show that the minimizer of STF objective at (X,t), i.e.,

sirp(X, 1), is asymptotically normal when n — co.
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Theorem 1. Suppose Vt € [0,1],0 < 0, < 00, then

(3.7)

Vi (Srp(X, 1) — Vi logpy (%)) 2 N (07 COV(V;(ptO()E]X)))

pe(X)?

We defer the proof to Appendix A.1.2. The theorem states that, for commonly used
transition kernels, s§rp(X,t) — Vzlog pi(X) converges to a zero mean normal, and larger
reference batch size (n) will lead to smaller asymptotic variance. As can be seen in Equation 3.7,

when n — 00, s§pp(X,t) highly concentrates around the true score Vg log p:(X).

3.4.2 Trace of Covariance

We now highlight the small variations of the training targets in the STF objective compared
to the DSM. As done in Section 3.2, we study the trace-of-covariance of training targets in

STF:

Vsrr(t) = Ep,x)

—~  Pujo(X[xx) N
Tr | Co o\ n—1 E ———F—Vilo X|x i
T ( Vpo‘t(~|x)p0 (kl Zj pt\o(X|Xj) gpt|0( | k)))]

In the following theorem we compare Vgrp with Vpgy. In particular, we can upper bound

VSTF (t) by

Theorem 2. Suppose ¥Vt € [0,1],0 < 0, < 00, then

Vors(t) < —— (vpsw) " %w@pt@m (po(x) | p0t<x|s<>)> +o(%).

1/y —1)? y<1.5
W/ ) ( ) Further, when n > d

8y/27—1/3 (y > 1.5)

Vpsm(t)
n—1 °

where Dy is an f-divergence with f(y)

and pop(X|X) = po(x) for all X, Vsrp(t)

We defer the proof to Appendix A.1.3. The second term that involves f-divergence Dy is
necessary to capture how the coefficients, i.e., pyo(X|xx)/>_; prjo(X[x;) used to calculate the
weighted score target, vary across different samples x. This term decreases monotonically

as a function of ¢. In Phase 1, po(x|x) differs substantially from py(x) and the divergence
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term D; dominates. In contrast to the upper bound, both Vgrp(t) and Vpgum(¢) have minimal
variance at small values of ¢ since the training target is always dominated by one x. The
theorem has more relevance in Phase 2, where the divergence term decreases to a value
comparable to Vpgy(t). In this phase, we empirically observe that the ratio of the two terms
in the upper bound ranges from 10 to 100. Thus, when we use a large reference batch size (in
thousands), the theorem implies that STF offers a considerably lower variance (by a factor of
10 or more) relative to the DSM objective. In Phase 3, the second term vanishes to 0, as
Pt & pyo with large o, for commonly used transition kernels. As a result, STF reduces the
average trace-of-covariance of the training targets by at least n — 1 times in the far field.
Together, we demonstrate that the STF targets have diminishing bias (Theorem 1) and
are much more stable during training (Theorem 2). These properties make the STF objective

more favorable for diffusion models training with stochastic gradient optimization.

3.5 Experiments

In this section, we first empirically validate our theoretical analysis in Section 3.4, especially
for variance reduction in the intermediate phase (Section 3.5.1). Next, we show that the
STF objective improves various diffusion models on image generation tasks in terms of
image quality (Section 3.5.2). In particular, STF achieves state-of-the-art performance on
top of EDM. In addition, we demonstrate that STF accelerates the training of diffusion
models (Section 3.5.3), and improves the convergence speed and final performance with an

increasing reference batch size (Section 3.5.3).

3.5.1 Variance Reduction in the Intermediate Phase

The proposed Algorithm 1 utilizes a large reference batch to calculate the stable target field
instead of the individual target. In addition to the theoretical analysis in Section 3.4, we
provide further empirical study to characterize the intermediate phase and verify the variance
reduction effects by STF. Apart from V (), we also quantify the average divergence between
the posterior poy(-|X) and the data distribution py at time ¢ (introduced in Theorem 2):
D(t) = Epx) [Ds (pop(x|X) || po(x))]. Intuitively, the number of high-density modes in
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Figure 3.3: (a, b): Vpsm(t) and D(t) versus t. We normalize the maximum values to 1 for
illustration purposes. (c, d): Vsrr(t) with a varying reference batch size n.

pop(+|X) grows as D(t) decreases. To investigate their behaviors, we construct two synthetic
datasets: (1) a 64-dimensional mixture of two Gaussian components (Two Gaussians), and
(2) a subset of 1024 images of CIFAR-10 (CIFAR-10-4096).

Figure 3.3a and Figure 3.3b show the behaviors of Vpgy(t) and D(t) on Two Gaussian and
CIFAR-10-4096. In both settings, Vpsm(t) reaches its peak in the intermediate phase (Phase
2), while D(t) gradually decreases over time. These results agree with our theoretical
understanding from Section 3.2. In Phase 2 and 3, several modes of the data distribution
have noticeable influences on the scores, but only in Phase 2 are the influences much more
distinct, leading to high variations of the individual target Vi log pyo(X|x),x ~ poje(+|X).

Figure 3.3c and Figure 3.3d further show the relationship between Vgrr(t) and the
reference batch size n. Recall that when n = 1, STF degenerates to individual target and
Vorr(t) = Vbsm(t). We observe that Vgrp(t) decreases when enlarging n. In particular,
the predicted relation Virr(t) S Vbsm(t)/(n — 1) in Theorem 2 holds for the two Gaussian
datasets where Dy is small. On the high dimensional dataset CIFAR-10-4096, the stable
target field can still greatly reduce the training target variance with large reference batch

sizes n.

3.5.2 Image Generation

We demonstrate the effectiveness of the new objective on image generation tasks. We
consider CIFAR-10 [46] and CelebA 64 x 64 [51] datasets. We set the reference batch
size n to 4096 (CIFAR-10) and 1024 (CelebA 64%). We choose the current state-of-the-art
score-based method EDM [27] as the baseline, and replace the DSM objective with our
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Table 3.1: CIFAR-10 sample quality (FID, Inception) and number of function evalua-
tion (NFE).

Methods Inception + FID | NFE |
StyleGAN2-ADA [48] 9.83 2.92 1
DDPM [12] 9.46 317 1000
NCSNv2 [49] 8.40 10.87 1161
PFGM [50] 9.68 2.48 104
VE [35]

DSM - RK45 9.27 8.90 264
STF (ours) - RK45 9.52 5.51 200
DSM - PC 9.68 2.75 2000
STF (ours) - PC 9.86 2.66 2000
VP [35]

DSM - DDIM 9.20 5.16 100
STF (ours) - DDIM 9.28 5.06 100
DSM - RK45 9.46 2.90 140
STF (ours) - RK45 9.43 | 2.99 1 140
EDM |27

DSM - Heun, NCSN++ 9.82 1.98 35
STF (ours) - Heun, NCSN++  9.93 1.90 35
DSM - Heun, DDPM++ 9.78 1.97 35
STF (ours) - Heun, DDPM-++ 9.79 1.92 35

STF objective during training. We also apply STF to two other popular diffusion models,
VE/VP SDEs [35]. For a fair comparison, we directly adopt the architectures and the
hyper-parameters in [52] and [35] for EDM and VE/VP respectively. In particular, we use the
improved NCSN++/DDPM++ models [27] in the EDM scheme. To highlight the stability
issue, we train three models with different seeds for VE on CIFAR-10. We provide more
experimental details in Appendix B.1.1.

Numerical Solver. The reverse-time ODE and SDE in scored-based models are com-
patible with any general-purpose solvers. We use the adaptive solver RK45 method [35],
[53] (RK45) for VE/VP and the popular DDIM solver [54] for VP. We adopt Heun’s 2nd
order method (Heun) and the time discretization proposed by [27]| for EDM. For SDEs,
we apply the predictor-corrector (PC) sampler used in [35]. We denote the methods in a
objective-sampler format, i.e., A-B, where A € {DSM, STF} and B € {RK45, PC, DDIM,
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Heun}. We defer more details to Appendix B.1.1.

Results. For quantitative evaluation of the generated samples, we report the FID
scores [41] (lower is better) and Inception [55]| (higher is better). We measure the sampling
speed by the average NFE (number of function evaluations). We also include the results of
several popular generative models [11], [12], [48], [50] for reference.

Table 3.1 and Table 3.2 report the sample quality and the sampling speed on unconditional
generation of CIFAR-10 and CelebA 64%. Our main findings are: (1) STF achieves new
state-of-the-art FID scores for unconditional generation on CIFAR-10 bench-
mark. As shown in Table 3.1, The STF objective obtains a FID of 1.90 when incor-
porated with the EDM scheme. To the best of our knowledge, this is the lowest FID
score on the unconditional CIFAR-10 generation task. In addition, the STF objective
consistently improves the EDM across the two architectures. (2) The STF objective im-
proves the performance of different diffusion models. We observe that the STF
objective improves the FID/Inception scores of VE/VP/EDM on CIFAR-10, for most
ODE and SDE samplers. STF consistently provides performance gains for VE across
datasets. Remarkably, our objective achieves much better sample quality using ODE
samplers for VE, with an FID score gain of 3.39 on CIFAR-10, and 2.22 on Celeba 642.
For VP, STF provides better results on the popular DDIM

Table 3.2: FID and NFE on
sampler, while suffering from a slight performance drop when CelebA 642

using the RK45 sampler. (3) The STF objective stabi-
Methods/NFEs ~ FID | NFE |

lizes the converged VE model with the RK45 sampler. CelebA 642 - RK45

In Appendix B.1.2, we report the standard deviations of per- VE (DSM) 56 260

formance metrics for converged models with different seeds VE (STF) 5.34 266

on CIFAR-10 with VE. We observe that models trained with CelebA 61* - PC

VE (DSM) 9.13 2000
VE (STF) 8.28 2000

the STF objective give more consistent results, with a smaller

standard deviation of used metrics.
We further provide generated samples in Appendix B.1.3. One interesting observation is
that when using the RK45 sampler for VE on CIFAR-10, the generated samples from the

STF objective do not contain noisy images, unlike the vanilla DSM objective.
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Effects of the Reference Batch Size According to our theory (Theorem 2), the upper
bound of the trace-of-covariance of the STF target decreases proportionally to the reference
batch size. Here we study the effects of the reference batch size (n) on model performances
during training. The FID scores are evaluated on 1k samples using the RK45 sampler. As
shown in Figure 3.5, models converge faster and produce better samples when increasing n.
It suggests that smaller variations of the training targets can indeed speed up training and

improve the final performances of diffusion models.

3.5.3 Accelerating Training of Diffusion Models

CIFAR-10 Celeba 64 X 64

FID Score

a4 a4 A oA
N ~ o N N ~
S o & v o o

0 20 40 60 80 20 40 60 80 100 120 140
Wall-clock training time (h) Wall-clock training time (h)
(a) CIFAR-10 (b) CelebA 64 x 64

Figure 3.4: FID and generated samples throughout training on (a) CIFAR-10 and (b) CelebA
642.

The variance-reduction techniques in neural network training can help to find better
optima and achieve faster convergence rate [45], [56], [57]. In Figure 3.4, we demonstrate the
FID scores every 50k iterations during the course of training. Since our goal is to investigate
relative performance during the training process, and because the FID scores computed on
1k samples are strongly correlated with the full FID scores on 50k sample [49], we report FID
scores on 1k samples for faster evaluations. We apply ODE samplers for FID evaluation, and
measure the training time on two NVIDIA A100 GPUs. For a fair comparison, we report
the average FID scores of models trained by the DSM and STF objective on VE versus the

wall-clock training time (h).
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The STF objective achieves better FID scores with CIFAR-10

the same training time, although the calculation of the 7o \\\ o ny (21:112)8)

target field by the reference batch introduces slight 2 60 L :;E E:ziggé)

overhead (Algorithm 1). In Figure 3.4a, we show that é5o \ e

the STF objective drastically accelerates the training o . N
W

of diffusion models on CIFAR-10. The STF objective

40 60 80
. . .. Wall-clock training time (h)
achieves comparable FID scores with 3.6 x less training

time (25h versus 90h). The training time improvement

Figure 3.5: FID scores in the training
for CelebA 64? datasets is less significant than on ith varying reference batch size.

CIFAR-10. Our hypothesis is that the STF objective

is more effective when there are multiple well-separated modes in data distribution, e.g., the
ten classes in CIFAR-10, where the DSM objective suffers from relatively larger variations
in the intermediate phase. In addition, the converged models have better final performance

when paired with the STF on both datasets.

3.6 Related Works

Different phases of diffusion models. The idea of diffusion models having different
phases has been explored in prior works though the motivations and definitions vary [27], [58].
[27] argues that the training targets are difficult and unnecessary to learn in the very near
field (small ¢ in our Phase 1), whereas the training targets are always dissimilar to the true
targets in the intermediate and far field (our Phase 2 and Phase 3). As a result, their solution
is sampling ¢ with a log-normal distribution to emphasize the relevant region (relatively large
t in our Phase 1). In contrast, we focus on reducing large training target variance in the
intermediate and far field, and propose STF to better estimate the true target (cf. [27]). [58]
identifies a key region where the model learns perceptually rich contents, and determines
the training weights A(¢) based on the signal-to-noise ratio (SNR) at different ¢. As SNR
is monotonically decreasing over time, the resulting up-weighted region does not match our
Phase 2 characterization. In general, our proposed STF method reduces the training target

variance in the intermediate field and is complementary to previous improvements of diffusion
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models.

Importance sampling. The technique of importance sampling has been widely adopted
in machine learning community, such as debiasing generative models [59], counterfactual
learning [60] and reinforcement learning [61]. Prior works using importance sampling to
improve generative model training include reweighted wake-sleep (RWS) [62| and importance
weighted autoencoders (IWAE) [63]. RWS views the original wake-sleep algorithm [64] as
importance sampling with one latent variable, and proposes to sample multiple latents to
obtain gradient estimates with lower bias and variance. IWAE utilizes importance sampling
with multiple latents to achieve greater flexibility of encoder training and tighter log-likelihood
lower bound compared to the standard variational autoencoder [65], [66].

Variance reduction for Fisher divergence. One popular approach to score-matching
is to minimize the Fisher divergence between true and predicted scores [67]. [68] links the
Fisher divergence to denoising score-matching [38| and studies the large variance problem (in
O(1/0})) of the Fisher divergence when ¢t — 0. They utilize a control variate to reduce
the variance. However, this is typically not a concern for current diffusion models as the

2

time-dependent objective can be viewed as multiplying the Fisher divergence by A(t) = o7,

resulting in a finite-variance objective even when ¢ — 0.

3.7 Conclusion

We identify large target variance as a significant training issue affecting diffusion models. We
define three phases with distinct behaviors, and show that the high-variance targets appear
in the intermediate phase. As a remedy, we present a generalized score-matching objective,
Stable Target Field (STF), whose formulation is analogous to the self-normalized importance
sampling via a large reference batch. Albeit no longer an unbiased estimator, our proposed
objective is asymptotically unbiased and reduces the trace-of-covariance of the training
targets, which we demonstrate theoretically and empirically. We show the effectiveness of our
method on image generation tasks, and show that STF improves the performance, stability,
and training speed over various state-of-the-art diffusion models. Future directions include a

principled study on the effect of different reference batch sampling procedures. Our presented
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approach is uniformly sampling from the whole dataset {x;}", ~ pg_l, so we expect that
training diffusion models with a reference batch of more samples in the neighborhood of
x; (the sample from which X is perturbed) would lead to an even better estimation of the
score field. Moreover, the three-phase analysis can effectively capture the behaviors of other
physics-inspired generative models, such as PFGM [50] or the more advanced PFGM++ [31].
Therefore, we anticipate that STF can enhance the performance and stability of these models

further.
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Chapter 4

Towards Straighter Diffusion Trajectories

with Discrete Latents

Another challenge in the training of diffusion models (DMs) lies in their complex noise-to-data
mapping. The generative ODE in diffusion models defines a highly non-linear mapping from a
uni-modal Gaussian noise to the multi-modal data distribution, which has strong curvature for
their ODE trajectories and arguably represents an unnecessarily challenging learning problem.
How can we simplify the mapping? This chapter proposes Discrete-Continuous Latent
Variable Diffusion Models (DisCo-Diff) to simplify this task by introducing complementary
discrete latent variables. We augment DMs with learnable discrete latents, inferred with an
encoder, and train DM and the encoder end-to-end. DisCo-Diff does not rely on pre-trained
networks, making the framework universally applicable. The discrete latents significantly
simplify learning the DM’s complex noise-to-data mapping by reducing the curvature of the
DM’s generative ODE. An additional autoregressive transformer models the distribution of
the discrete latents, a simple step because DisCo-Diff requires only few discrete variables
with small codebooks. We validate DisCo-Diff on toy data, several image synthesis tasks as
well as molecular docking, and find that introducing discrete latents consistently improves
model performance.

This chapter is based on the paper [32].

27



4.1 Introduction

The generation of diffusion models (DMs) can be formulated either as a stochastic (diffusion
SDE) or, more conveniently, as a deterministic process (diffusion ODE) that takes as input
random noise from the Gaussian prior and transforms it into data through a generative
ordinary differential equation (ODE) [24]. The Gaussian prior corresponds to the DM’s
continuous latent variables, where the data is uniquely encoded through the ODE-defined
mapping.

However, realistic data distributions are typically high-dimensional, complex and often
multimodal. Directly encoding such data into a single unimodal Gaussian distribution and
learning a corresponding reverse noise-to-data mapping is challenging. The mapping, or
generative ODE, necessarily needs to be highly complex, with strong curvature, and one may
consider it unnatural to map an entire data distribution to a single Gaussian distribution.
In practice, conditioning information, such as class labels or text prompts, often helps to
simplify the complex mapping by offering the DM’s denoiser additional cues for more accurate
denoising. However, such conditioning information is typically of a semantic nature and, even
given a class or text prompt, the mapping remains highly complex. For instance, in the case
of images, even within a class we find images with vastly different styles and color patterns,
which corresponds to large distances in pixel space.

In this chapter, we propose Discrete-Continuous Latent Variable Diffusion Models
(DisCo-Diff ), DMs augmented with additional discrete latent variables that encode additional
high-level information about the data and can be used by the main DM to simplify its de-
noising task (Figure 4.1). These discrete latents are inferred through an encoder network and
learnt end-to-end together with the DM. Thereby, the discrete latents directly learn to encode
information that is beneficial for reducing the DM’s score matching objective and making the
DM’s hard task of mapping simple noise to complex data easier. Indeed, in practice, we find
that they significantly reduce the curvature of the DM’s generative ODE and reduce the DM
training loss in particular for large diffusion times, where denoising is most ambiguous and chal-
lenging. In contrast to previous work [70]-[72], we do not rely on domain-specific pre-trained

encoder networks, making our framework general and universally applicable. To facilitate
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Encoder Gumbel .Discre.te!a!lt. Autoregressive Model . J )
(e.g. VlT) Soﬁmax Variables (Transformer)

Trammg Cross Attention Sampling . J.---
(a) Denoiser Neural Network c

(b) Generative processes for different discrete latent variables

Figure 4.1: Discrete-Continuous Latent Variable Diffusion Models (DisCo-Diff) augment DMs
with additional discrete latent variables that capture global appearance patterns, here shown for
images of huskies. (a) During training, discrete latents are inferred through an encoder, for images
a vision transformer [69], and fed to the DM via cross-attention. Backpropagation is facilitated by
continuous relaxation with a Gumbel-Softmax distribution. To sample novel images, an additional
autoregressive model is learnt over the distribution of discrete latents. (b) Schematic visualization of
generative denoising diffusion trajectories. Different colors indicate different discrete latent variables,
pushing the trajectories toward different modes.
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sampling of discrete latent variables during inference, we learn an autoregressive model over
the discrete latents in a second step. We only use a small set of discrete latents with relatively
small codebooks, which makes the additional training of the autoregressive model easy. We
specifically advocate for the use of auxiliary discrete instead of continuous latents; see 4.2.2.

While previous works [73]-[78] use fully discrete latent variable-based approaches to
model images, this typically requires large sets of spatially arranged latents with large code-
books, which makes learning their distribution challenging. DisCo-Diff, in contrast, carefully
combines its discrete latents with the continuous latents (Gaussian prior) of the DM and
effectively separates the modeling of discrete and continuous variations within the data. It
requires only a few discrete latents.

To demonstrate its universality, we validate the DisCo-Diff framework on several different
tasks. As a motivating example, we study 2D toy distributions, where the discrete latents
learn to capture different modes with smaller curvature during sampling. We then tackle
image synthesis, where the discrete latents learn large-scale appearance, often associated
with global style and color patterns. Thereby, they offer complementary benefits to semantic
conditioning information. Quantitatively, DisCo-Diff universally boosts output quality and
achieves state-of-the-art performance on several ImageNet generation benchmarks. In addition,
we experimentally validate that auxiliary discrete latents are superior to continuous latents
in our setup, and study different network architectures for injecting the discrete latents into
the DM network. A careful hierarchical design can encourage different discrete latents to
encode different image characteristics, such as shape vs. color, reminiscent of observations
from the literature on generative adversarial networks [79], [80]. We also apply DisCo-Diff
to molecular docking, a critical task in drug discovery, where the discrete latents again
improve performance by learning to indicate critical atoms in the interaction and, in this way,
deconvolving the multimodal uncertainty given by different possible poses from continuous
variability of each pose. Moreover, we augment Poisson Flow Generative Models [81], [82]
with discrete latent variables to showcase that the framework can also be applied to other
“iterative” generative models, other than regular DMs, observing similar benefits.

Contributions. (7) We propose DisCo-Diff, a novel framework for combining discrete

and continuous latent variables in DMs in a universal manner. (ii) We extensively validate
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(a) 128 x 128 (b) Shared discrete latents

Figure 4.2: Samples generated from DisCo-Diff trained on the ImageNet dataset: (a) randomly
sampled discrete latents and class labels; (b) samples in each grid sharing the same discrete
latent. The class label for the top/bottom row is fixed to coffeepot/malamute.

DisCo-Dift, significantly boosting model quality in all experiments, and achieving state-of-the-
art performance on several image synthesis tasks. (iiz) We present detailed analyses as well
as ablation and architecture design studies that demonstrate the unique benefits of discrete
latent variables and how they can be fed to the main denoiser network. (iv) Overall, we
provide insights for designing performant generative models. We make the case for discrete
latents by showing that real-world data is best modeled with generative frameworks that
leverage both discrete and continuous latents. We intentionally developed a simple and
universal framework that does not rely on pre-trained encoders to offer a broadly applicable

modeling approach to the community.

4.2 Augmenting Diffusion Models with Discrete Latents

In Section 4.2.1, we first formally define DisCo-Dift’s generative model and training framework,
before discussing and carefully motivating our approach in detail in Section 4.2.2. In

Section 4.2.3, we highlight critical architecture considerations.
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4.2.1 Two-Stage Training Procedure

In our DisCo-Diff framework (Figure 4.1), we augment a DM’s learning process with an
m-~dimensional discrete latent z € N™, where each dimension is a random variable from
a categorical distribution of codebook size k. There are three learnable components: the
denoiser neural network Dy: R? x R x N™ — R?, corresponding to DisCo-Diff’s DM, which
predicts denoised images conditioned on diffusion time ¢ and discrete latent z; an encoder
E,;: RY — N™ used to infer discrete latents given clean images y. It outputs a categorical
distribution over the k categories for each discrete latent; and a post-hoc auto-regressive model
Ay, which approximates the distribution of the learned discrete latents z by [/, py(zi|z<;).
DisCo-Dift’s training process is divided into two stages. In the first stage, the denoiser Dy
and the encoder Ey are co-optimized in an end-to-end fashion. This is achieved by extending
the denoising score matching objective (as expressed in Eq. 2.7) to include learnable discrete

latents z associated with each data y:
EyE, b, Een (A1) Do(y +n,t,2) — y|’] | (4.1)

where y is sampled from the data distribution po(y). In contrast to the standard objective
in Equation 2.7, which focuses on learning the reparameterization of the score Vy log p;(x),
the denoiser in our approach is essentially learning the reparameterization of the conditional
score Vy log pi(x|z) by x¢-prediction: the score function in Equation 2.7 can be expressed as
s;(x,2,t) = (Dy(x,t,z)—x)/t*. The convolution of the probability density functions p;(-|z) =
p(-|z) * N'(0,¢2I). This conditional score originates from conditioning the DM on the discrete
latents z, which are inferred by the encoder E,4. The denoiser network Dy can better capture
the time-dependent score (i.e., achieving a reduced loss) if the score for each sub-distribution
pi(x|z) is simplified. Therefore, the encoder E,, which has access to clean input data, is
encouraged to encode useful information into the discrete latents and help the denoiser to more
accurately reconstruct the data. Naively backpropagating gradients into the encoder through
the sampling of the discrete latent variables z is not possible. Hence, during training we rely on
a continuous relaxation based on the Gumbel-Softmax distribution [83] (see B.2.2 for details).

When training the denoiser network, we randomly replace the discrete latent variables
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with a non-informative null-embedding with probability 0.1. Thereby, the DM learns both
a discrete latent variable-conditioned and a regular, unconditional score. During sampling,
we can combine these scores for classifier-free guidance [84] with respect to the model’s own
discrete latents, and amplify their conditioning effect (details in 4.3.1).

We can interpret DisCo-Diff as a variational autoencoder (VAE) [66], [85]-87] with
discrete latents and a DM as decoder. VAEs often employ regularization on their latents. We
did not find this to be necessary, as we use only very low-dimensional latent variables, e.g.,
10 in our ImageNet experiments, with relatively small codebooks. Moreover, we employ a
strictly non-zero temperature in the Gumbel-Softmax relaxation, encouraging stochasticity.

In the second stage, we train the autoregressive model A, to capture the distribution
of the discrete latent variables p,(z) defined by pushing the clean data through the trained
encoder. We use a maximum likelihood objective as follows:

=1

Bypo(y) a~Ey(y) [Z log p¢(zi|Z<z‘)] (4.2)

Since we set m to a relatively small number, it becomes very easy for the model to handle such
short discrete vectors, which makes this second-stage training efficient. Also, the additional
sampling overhead due to this autoregressive component on top of the DM becomes negligible.
At inference time, when using DisCo-Diff to generate novel samples, we first sample a discrete
latent variable from the autoregressive model, and then sample the DM with an ODE or

SDE solver.

4.2.2 Reduced Curvature through End-to-end training

We will now critically discuss and motivate our design choices and also discuss the most
relevant related works. For an extended discussion of related work see Section 4.4.

The curvature of diffusion models. DMs, in their simpler ODE-based formulation
(6(t) = 0 in 2.4), learn a complex noise-to-data mapping. The noise is drawn from an
analytically tractable, unimodal Gaussian distribution. As the data is encoded in this
distribution, we can consider this high-dimensional Gaussian distribution the DM’s continuous

latent variables (DMs can generally be seen as deep latent variable models [88], [89]). However,
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Figure 4.3: Modeling 2D mixture of Gaussians. Left: Data distribution. Middle: Generated
data by regular DM. Right: Generated data by DisCo-Diff. We use different colors to distinguish
data generated by different discrete latents. We further provide zoom-ins and visualize some ODE
trajectories by dotted lines.
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Figure 4.4: Modeling 2D mixture of Gaussians: analysis. The mean curvature (left) and
norm of the neural networks’ Jacobians (right) along the reverse-time ODE trajectories as function
of t.

the mapping from unstructured noise to a diverse, typically multimodal data distribution
necessarily needs to be highly complex. This corresponds to a highly non-linear generative
ODE with strong curvature, which is challenging to learn and also makes synthesis slow by
requiring a fine discretization. To illustrate this point, we trained a DM on a simple 2D
mixture of Gaussians, where we observe bent ODE trajectories near the data (Figure 4.3,
middle). This effect is significantly stronger in high dimensions.

A simpler mapping with discrete latent variables. The role of the discrete latents

in DisCo-Dift is to reduce this complexity and make the DM’s learning task easier. The single
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Figure 4.5: Group hierarchical DisCo-Diff. Different discrete latents are fed to the denoiser
U-Net at different feature resolutions.
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noise-to-data mapping is effectively partitioned into a set of simpler mappings, each with less
curvature in its generative ODE. We argue that it is unnatural to map an entire multimodal
complex data distribution to a single continuous Gaussian distribution. Instead, we believe
that an ideal generative model should combine both discrete and continuous latent variables,
where discrete latents capture global multimodal structure and the continuous latents model
local continuous variability. With this in mind, we suggest to only use a moderate number of
discrete latents with small codebooks. On the one hand, a few latents can already significantly
simplify the DM’s learning task. On the other hand, if we only have few latents with small
codebooks, training a generative model—an autoregressive one in our case—over the discrete
latent variable distribution itself, will be simple (which we observe, see Section 4.3).
Validation in 2D. To validate our reasoning, let us revisit the toy 2D mixture of
Gaussians. In Figure 4.3, right, we show the DisCo-Diff model’s synthesized data. The
discrete latents learn to capture the different modes, and DisCo-Diff’s DM component models
the individual modes. The DM’s ODE trajectories for different latents are now almost perfectly
straight, indicating a simple conditional score function. In Figure 4.4, left, we quantitatively
show strongly reduced curvature along the entire diffusion time ¢. In Figure 4.4, right, as
a measure of network complexity we also show the norms of the Jacobians of the employed
denoiser networks. We see significantly reduced norms for DisCo-Diff for all ¢, suggesting

that the denoiser’s task is indeed strongly simplified and less network capacity is required.

65



Using few, global latents with relatively small codebooks is important. DisCo-
Diff is fundamentally different from most contemporary generative modeling frameworks
using discrete latent variables [73]-[78], [86]. These works use autoencoders to encode images
in its entirety into spatially-arranged discrete tokens, essentially a down-sampled version
of the input. However, this is also unnatural: Encoding continuous variability, like smooth
pose, shape or color variations in images, into discrete latents requires the use of very large
codebooks and, on top of that, these models generally rely on very high-dimensional spatial
grids of discrete latents (e.g. 32x32=1024 latents with codebooks >1,000 |73], while we use
just 10 latents with a codebook size of 100 in our main image models). This makes learning
the distribution over the discrete latents very challenging for these types of models, while it
is simple in DisCo-Diff, where they just supplement the DM. In DisCo-Diff, we get the best
from both continuous and discrete latent variables, using only few global latents.

End-to-end training is essential. DisCo-Dift’s discrete latents are in spirit similar to
leveraging non-learnt conditioning information. As pointed out by [70], this has been crucial
to facilitate training high-performance generative models like strong class-conditional [90],
[91] or text-to-image DMs [3], [4], [92]. However, DisCo-Diff aims to fundamentally address
the problem, rather than relying on given conditioning data. Moreover, the data usually has
significant variability even given, for instance, a class label. Our discrete latents can further
reduce the complexity (as observed, see Section 4.3).

However, could we use pre-trained encoder networks, such as CLIP 93] or others [94], [95],
to produce encodings to condition on and whose distribution could be modeled in a second
stage? This is explored by previous works |70]-{72], [96], but has important disadvantages: (i)
The most crucial downside is that such encoders are not universally available, but typically
only for images. However, we seek to develop a universally applicable framework. For
instance, we also apply DisCo-Diff to molecular docking (see Section 4.3.2), where no suitable
pre-trained networks are available. (i) In DisCo-Diff, the job of the discrete latents is to
make the denoising task of the DM easier, which is especially ambiguous at large noise levels
(in fact, we find that the latents help in particular to reduce the loss at these high noise
levels, see Figure 4.7). It is not obvious what information about the data the latents should

best encode for this. By learning them jointly with the DM objective itself, they are directly

66



trained to help the DM learn better denoisers and lower curvature generative ODEs. (iii) A
generative model needs to be trained over the encodings in the second stage. In DisCo-Diff,
we can freely choose an appropriate number of latents and codebook size to simplify the
DM’s denoising task, while also facilitating easy learning of the autoregressive model in the
second stage. When using pre-trained encoders, one must work with the encodings by these
methods, which were not developed for generative modeling. We attribute DisCo-Diff’s strong
generation performance to its end-to-end learning.

The latent variables must be discrete. Could we also use auxiliary continuous latent
variables? Continuous latents are almost always based on underlying Gaussian distributions.
Hence, if such continuous latents learnt multimodal structure in the data to simplify the main
DM’s denoising task, as DisCo-Dift’s discrete latents do, then learning a distribution over
them in the second stage would again require a highly non-linear difficult-to-learn mapping
from Gaussian noise to the multimodal encodings. This is the problem DisCo-Diff aims to
solve in the first place. [97] augment DMs with non-spatial continuous latent variables, but
they only focus on semantic face image manipulation. InfoDiffusion [98| conditions DMs on
discrete latent variables. However, it focuses on learning disentangled representations, also
primarily for low-resolution face synthesis, and uses a mutual information-based objective.
Contrary to DisCo-Diff, neither of these works tackles high-quality synthesis for challenging,
diverse datasets.

In our ablation studies (Section 4.3.1), we further validate our design choices and motiva-

tions that we presented here.

4.2.3 Architecture

As discussed, DisCo-Diff enhances the training of continuous DMs by incorporating learnable
discrete latent variables that are meant to capture the global underlying discrete structure
of the data. To ensure that DisCo-Diff works as intended, suitable network architectures
are necessary. Below, we summarize our design choices, focusing on DisCo-Diff for image
synthesis. However, the framework is general, requiring only an encoder to infer discrete
latents from clean input data and a conditioning mechanism that integrates these discrete

latents into the denoiser network. In fact, we also apply our model to 2D toy data and
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Table 4.1: FID score together with NFE on ImageNet-64.

FID NFE
without class-conditioning
IC-GAN [99] 9.20 1
BigGAN [100] 16.90 1
iDDPM [101] 16.38 50
EDM [27] 6.20 50
SCDM [70] 3.94 50
DisCo-Diff (ours) 3.70 50
class-conditioned, ODE sampler
EDM [27] 2.36 79
PFGM-++ [82] 2.32 79
DisCo-PFGM++ (ours) 192 78
DisCo-Diff (ours) 1.65 78
class-conditioned, stochastic sampler
iDDPM [101] 2.92 250
ADM [90] 2.07 250
CDM [102] 1.48 8000
VDM ++ [91] 143 511
EDM (w/ Restart [29]) 1.36 623
RIN [103] 1.23 1000
DisCo-Diff (ours; w/ Restart [29]) 1.22 623
class-conditioned, w/ adversarial objective
IC-GAN [99] 6.70 1
BigGAN-deep [100] 4.06 1
CTM [104] 1.92 1
StyleGAN-XL [105] 1.51 1

molecular docking.

Encoder. For image modeling, we utilize a ViT [69] as the backbone for the encoder.
We extend the classification mechanism in ViTs, and treat each discrete token as a different
classification token. Concretely, we add m extra classification tokens to the sequence of image
patches. This architectural design naturally allows each discrete latent to effectively capture
the global characteristic of the images, akin to performing data classification.

Discrete latent variable conditioning. For image experiments, DisCo-Diff’s denoisers
are U-Nets as widely used for DMs [27], [106]. For the discrete latent variable conditioning,
we utilize cross-attention [4]. Drawing inspiration from text-to-image generation, DisCo-Diff’s
discrete latents function analogously to text, exerting a global influence on the denoiser’s

output. Specifically, image features act as queries and discrete latents are keys and values
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Table 4.2: FID score and NFE on class-cond. ImageNet-128.

FID NFE
ADM [90] 591 250
ADM-G [90] 2.97 250
CDM (32, 64, 128) [102] 352 8100
RIN [103] 2.75 1000
VDM++, w/ ODE sampler [91] 229 115

DisCo-Diff, w/ ODE sampler (ours) 2.08 114

in the cross-attention layer, enabling discrete latents to globally shape the image features.
We add a cross-attention layer after each self-attention layer within the U-Net. In our main
models, all discrete latents are given to all cross-attention layers.

Group hierarchical models. To enhance the interpretability of discrete latents, we
also explore the inductive bias inherent in the U-Net architecture and feed distinct latent
groups into various resolution features in the up-sampling branch of the U-Net, as shown in
Figure 4.5. This approach draws inspiration from StyleGAN [79], where distinct latents are
introduced at different resolutions, enabling each to capture different image characteristics by
the neural network’s inductive bias. This design fosters a group hierarchy, where the groups
associated with higher-resolution features offer supplementary information, conditioned upon
the groups related to lower-resolution features. We refer to this refined model as the group
hierarchical DisCo-Diff.

In the molecular docking task, existing denoisers operate through message passing in a
permutation equivariant way over 3D point clouds representing molecular structures [107].
We build this property and architectural bias directly into the latent variables allowing
them to take values indicating one node in the point cloud (therefore for every point cloud
the codebook size equals the number of nodes). This latent design choice aligns with the
intuition of the encoder determining the atoms playing key roles in the structure and allows
for minimal modification of the score model where the latents simply represent additional
features for every node. The encoder is also composed of a similar equivariant message
passing, e3nn [108], network where for each node one logit per latent will be predicted. More
details on the architecture for the molecular docking task can be found in Section B.2.2.

The auto-regressive model over the distribution of the discrete latents is implemented
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Table 4.3: Ablations on class-cond. ImageNet-64.

FID
EDM [27] 2.36
Oracle setting
Continuous latent (KLD weight=0.1) 1.67
Continuous latent (KLD weight=1) 2.36
DisCo-Diff (cfg=0) 1.65
Generative prior on latent
Continuous latent (KLD weight=0.1) 11.12

Continuous latent (KLD weight=1, cfg=0) 2.36
Continuous latent (KLD weight=1, cfg=1) 2.36

DisCo-Diff (cfg=0) 1.81
DisCo-Diff (cfg=1) 1.65
DisCo-Diff (cfg=2) 2.33

in image experiments using a standard Transformer decoder [109]. For molecular docking, it
again uses an e3nn network that is fed the conditioning information of the protein structure
and molecular graph. Generally, DisCo-Diff is compatible with other conditional inputs, e.g.
class labels, which can be added as inputs to denoiser and auto-regressive model. We use an
auto-regressive model for simplicity and expect DisCo-Diff’s second stage to work equally
well with other discrete data generative models, e.g. discrete state diffusion models [110],

[111]. Architecture details, also for 2D toy data experiments, in B.2.2.

4.3 Experiments

4.3.1 Image Generation

We use the ImageNet [112] dataset and tackle both class-conditional (at varying resolu-
tions 64x64 and 128x128) and unconditional generation. To measure sample quality, we
follow the literature and use Fréchet Inception Distance (FID) [113] (lower is better). We
also report the number of neural function evaluations (NFE).

In the class-conditional setting, the DisCo-Dift’s denoiser is initialized using pre-trained
ImageNet models, except for the new components: the cross-attention layers between discrete

latents and images, and the encoder. We utilize the pre-trained U-Net in EDM [27] for
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ImageNet-64, and for ImageNet-128, we implement the U-ViT in VDM-++ [91]. We also
adhere to their respective noise schedules and loss weightings during the training process.
We use Heun’s second-order method as ODE sampler, and a 12-layer Transformer as the

auto-regressive model. We set the latent dimension to m = 10 and the codebook size to

k = 100 in DisCo-Diff.

Results. See Table 4.1, Table 4.2. (1) DisCo-Diff achieves the new state-of-the-
art on class-conditioned ImageNet-64/ImageNet-128 when using ODE sampler.
Specifically, DisCo-Diff reduces the previous state-of-the-art FID score from 2.36 to 1.65
on ImageNet-64, and from 2.29 to 2.08 on ImageNet-128. This aligns with our analysis
(4.2.2) that DisCo-Diff yields straighter ODE trajectories. (2) DisCo-Diff outperforms
all baselines in the unconditional setting, or when using stochastic sampler.
DisCo-Diff also surpasses the previous best method (SCDM [70]) in the unconditional setting,
even though their method relies on pre-trained MoCo features. In addition, DisCo-Diff
sets the new record ImageNet-64 FID of 1.22 when using Restart sampler [29]. Note that
the competitive method RIN [103| employs a novel architecture distinct from conventional
U-Nets/U-ViTs. (3) Discrete latents capture variability complementary to class
semantics. Figure 4.2 (b) illustrates that samples sharing the same discrete latent exhibit
similar characteristics, and there are noticeable distinctions for different discrete latents under
the same class. It suggests that the discrete latents capture variations that are useful in
simplifying the diffusion process defined in Euclidean space beyond class labels, underpinning
the improvements of DisCo-Diff over the pre-trained class-conditioned DMs. (4) Discrete
latents boost the performance on PFGM+4+. When applied to another ODE-based
generative model PFGM++ [82], DisCo-PFGM} + also improves over the baseline version
(see Table 4.1). More samples in B.2.4.

Ablations and Analyses. Table 4.3 shows that employing moderate classifier-free guidance
with respect to the discrete latents (scale cfg=1) enhances the FID score (studied using
ODE sampler), implying that the discrete latents effectively learn modes similar to the

role of class labels and text. We further substituted the discrete latents with 1000-dim.
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Figure 4.6: Top: Images created from two 30-dim discrete latents z and z, with the far-right column
combining their sub-coordinates. Bottom: Variations in images by fixing portions of z (originating
from the red-boxed image). We see that lower-resolution latents affect layout / shape; high-resolution
latents alter color / texture.

continuous latents (1000 to offer capacity at least as high as with the m=10 and k=100
discrete latents), using Kullback-Leibler divergence-based (KLD) regularization as in VAEs
to control the information retained. For fair comparison, we trained a DiT-based DM [114]
on the continuous latents using the same Transformer architecture as in DisCo-Dift’s auto-
regressive model. Table 4.3 shows that with a low KLD weight (0.1), the continuous latents
are under-regularized, challenging the DiT in modeling the complex encoding distribution
and leading to a significant gap between oracle FID (latents predicted from training images)
and generative FID (latents sampled from second-stage latent generative models). Conversely,
a higher KLD weight (1) causes encoder collapse, and the continuous latents are not used
(no latent (EDM), oracle latents and generative latents all produce same FIDs). In contrast,
DisCo-Dift’s generative FID shows only a minor degradation compared to the oracle FID,
indicating the ease of modeling the discrete prior with a simple Transformer.

The DM training objective (2.7) has most variability at large diffusion times due to the

multimodal posterior of clean data given noisy inputs [23]. Conditioning information can
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Figure 4.7: Left: Loss versus time. Right: Impact of discrete latent switching during the
sampling process. The numbers represent the percentage of the total sampling steps. The
blue/green arrows mean the sampling steps that utilize the discrete latent associated with
the leftmost /rightmost grid in the figure.

reduce this ambiguity. For instance, [115] show that text conditioning primarily influences
the denoiser at larger times. Figure 4.7 (a) shows that the learned discrete latents behave
similarly to text conditioning, significantly lowering the training loss at higher time steps.
Complementarily, Figure 4.7 (b) indicates that switching discrete latents towards the end of
sampling barely affects the samples, implying they are not used at smaller times ¢.

In DisCo-Diff, the sampling time of the auto-regressive model is negligible compared
to the DM’s. For instance, for generating 32 images on ImageNet-128, the auto-regressive

models requires only 0.44 seconds, while DisCo-Diff’s DM component takes 78 seconds for
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Figure 4.8: Examples of alternative docking poses modeled when conditioning on different discrete
latents, the “correct" z (i.e. same as the encoder) and an incorrect 2. The DM maps them to two
distinct sets of plausible orientations with which the ligand could fit in the pocket. Notably, the
correct latent corresponds to poses within 2A of the ground truth. The colored beads are set on the
atoms corresponding to the first latent variable.
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114 NFE, with an average of 0.68 second/NFE, all on a single NVIDIA A100 GPU.

Group Hierarchical DisCo-Diff. We evaluate the group hierarchical DisCo-Diff (Sec-
tion 4.2.3), feeding three separate 10-dim. discrete latents into the U-Net at each level of
resolution. Figure 4.6 shows that latents for lower-resolution features mainly govern overall
shape and layout, while latents for higher-resolution control color and texture. For example,
in the bottom figure, when gradually fixing groups in order, the images first converge in

shape and then in color.

Discrete Latent Variable Classifier-Free Guidance Classifier-free guidance [84] (cfg)
is a mode-seeking technique commonly used in diffusion literature, such as class-conditioned
genreation [114] or text-to-image generation [4]. It generally guides the sampling trajectories
toward higher-density regions. We can similarly apply classifier-free guidance in the DisCo-
Diff, where we treat the discrete latent as conditional inputs. We follow the convention in [2],

and the classifier-free guidance at time step ¢ is as follows:

Dy(x,0(t),z) = wDg(x,0(t),z) + (1 — w)Dg(x,0(t), D)

where Dy(x,0(t),z)/Dy(x,0(t),D) is the conditional /unconditional models, sharing param-
eters. We drop the discrete latent with probability 0.1 during training, to train the un-
conditional model Dy(x,0(t),D). A mild w would usually lead to improvement in sample
diversity [114]. Table 4.3 demonstrates that using a moderate guidance scale w=1 (we use
w = 1 and cfg=1 interchangeably in the paper) improves the FID score, suggesting that the
learned discrete latent in the DisCo-Diff framework has strong indications of mode of data
distribution. We further explore varying the guidance scale on ImageNet-128. As shown
in Figure 4.9, increasing the classifier-free guidance scale w would strengthen the effect of

guidance.
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Figure 4.9: Generated samples in DisCo-Diff with a cfg scale ranging from 0 to 8, under the
class label “malamute" on ImageNet-128.

4.3.2 Molecular Docking

We test DisCo-Diff also on molecular docking, a fundamental task in drug discovery that
consists of generating the 3D structure with which a small molecule will bind to a protein.
We build on top of DiffDock [107], a DM that recently achieved state-of-the-art performance,
integrating discrete latent variables (see Sec. 4.2 and App. B.2.2 for details). For computa-
tional reasons, we use the reduced DiffDock’s architecture (referred to as DiffDock-S) from
[116], which, although less accurate, is much faster for training and inference. For training
and evaluation, we follow the standard from [117] using the PDBBind dataset [118] (see
App. B.2.2).

Results. Table 4.4 reports performance of our (DisCo-DiffDock-S) and relevant baseline
methods. We see that also in this domain discrete latents provide improvements, with
the success rate on the full dataset increasing from 32.9% to 35.4% and from 13.9% to
18.5% when considering only test complexes with unseen proteins. This improvement is
particularly strong on the harder component of the test set, where the baseline model is,
likely, highly uncertain. This supports the intuition that DisCo-Diff boosts performance by
more appropriately modeling discrete and continuous variations in the data. In Fig. 4.8, we
visualize two examples from the test set which highlight how the model learns to associate
distinct sets of poses with different latents, decomposing the multimodal components of the

pose distribution from the continuous variations that each pose can have.
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Table 4.4: Molecular docking performance on PDBBind. For each method, we report the
percentage of top-1 predictions within 2A of the ground truth for the full test set and the
subset restricted to unseen proteins. Runtime in seconds (* refers to run on CPU).

Full Unseen Runtime

GNINA [119] 22.9  14.0 127
SMINA [120] 18.7 14.0 126*
GLIDE [121] 21.8 19.6 1405*
EquiBind [117] 55 0.7 0.04
TankBind [122] 204 63 0.7
DiffDock-S [116] 329 139 8.1
DisCo-DiffDock-S (ours) 354  18.5 9.1
DiffDock [107] 38.2 20.8 40

4.4 Related Works

Our work builds on DMs [10], [24], [27], [123], which have been widely used not only for image
generation |2]-[4], [90], [101], [124]-[126], but also for video [92], [127]-[129], 3D [130]-[135]
and 4D [136]-[139] synthesis, as well as in various other domains, including, for instance,
molecular docking and protein design [107], [140]-[142].

In the DM literature, latent variables have been most popular as part of latent diffusion
models, where a DM is trained in a compressed, usually continuous, latent space [4], [143]. In
contrast, DisCo-Diff leverages discrete latent variables and uses them to augment a DM. The
first models using discrete latent variables for high-dimensional generative modeling tasks
include Boltzmann machines [144], [145] and early discrete variational autoencoders [87],
[146], [147]. More recently, a variety of works encode images into large 2D spatial grids of
discrete tokens with vector quantization or similar techniques [73]-[78], [86]. As discussed,
these models typically require a very large number of tokens and rely on large codebooks,
which makes modeling their distribution challenging. DisCo-Diff, in contrast, leverages only
few discrete latents with small codebooks that act in harmony with the additional continuous
DM.

There are previous related works that also condition DMs on auxiliary encodings. [97]
augment DMs with non-spatial latent variables, but their latents are continuous and high-

dimensional, which makes training their latent DM more challenging. This is precisely what
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we avoid by instead using low-dimensional and discrete latents. Moreover, they focus on
semantic face image manipulation, not high-quality synthesis for challenging, diverse datasets.

[72] use the representations of a pre-trained CLIP image encoder [93] for conditioning
a DM and learn another DM over the CLIP embeddings for sampling. Similarly, [70] and
[71] use clustered MoCo-based [94] and clustered DINO-based [95] features, respectively, for
conditioning. Hence, these three approaches are strictly limited to image synthesis, where
such encoders, pre-trained on large-scale datasets, are available. In contrast, we purposefully
avoid the use of pre-trained networks and learn the discrete latents jointly with the DM,
making our framework universally applicable. Another related work is InfoDiffusion [98],
which also conditions DMs on discrete latent variables. However, contrary to DisCo-Diff, this
work focuses on learning disentangled representations, similar to 5-VAEs [148|, primarily
for low-resolution face synthesis. It uses a mutual information-based objective and does not
focus on diverse and high-quality synthesis of complex data such as ImageNet.

In contrast to the above works, we show how discrete latent variables boost generative
performance itself and we significantly outperform these works in complex and diverse high-
quality synthesis. Furthermore, we motivate DisCo-Diff fundamentally, with reduced ODE
curvature and model complexity, providing a new and complementary perspective.

In the molecular docking literature, since DiffDock [107] introduced the use of diffusion
models in the task, a number of works have proposed different modifications to its framework.
In particular, some [149]-[151] have proposed to separate the blind docking task between
pocket identification (i.e. identifying the region of the protein where the small molecule would
bind) and pose prediction (i.e. predicting the specific pose with which the ligand would bind
to the protein), as previously done in many traditional approaches [152]. One could see this
as hand-crafting a (roughly discrete) latent variable in the pocket and using it to decompose
the task. By allowing the encoder to learn arbitrary discrete latents through its interaction
with the denoiser, DisCo-Diff largely includes the above-mentioned strategy as a particular

case.
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4.5 Conclusion

We have proposed Discrete-Continuous Latent Variable Diffusion Models (DisCo-Diff),
a novel and universal framework for combining discrete latent variables with continuous
DMs. The approach significantly boosts performance by simplifying the DM’s denoising task
through the help of auxiliary discrete latent variables, while introducing negligible overhead.
Extensive experiments and analyses demonstrate the unique benefits of global discrete latent
variables that are learnt end-to-end with the denoiser. DisCo-Diff does not rely on any
pre-trained encoder networks. As such, we validated our method not only on image synthesis,
but also for molecular docking, demonstrating its universality. Future work includes applying

DisCo-Diff at larger scale, for instance in text-to-image models or video generation.
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Part 11

Improved Sampling Techniques for Diffu-

sion Models

In Part II, we address the challenges associated with the slow sampling speeds of pre-trained
diffusion models. These challenges are primarily due to the need to solve differential equations
and the repetitive generation of mini-batch samples for each user prompt. We focus on
accelerating the sampling process by introducing a significantly larger amount of noise than
typically used (Chapter 5), and avoiding repetitive samples by applying mutually repulsive
forces among the samples (Chapter 6). The techniques presented are training-free and can

be seamlessly integrated with any pre-trained diffusion models.
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Chapter 5

Accelerating the Sampling Process by
Optimized Noise Usage

The slow sampling processes hinder the real-world deployment of diffusion models. Previous
efforts in acceleration of diffusion models frequently necessitate balancing speed and quality:
ODE-based samplers are fast but plateau in performance, while SDE-based samplers deliver
higher sample quality at the cost of increased sampling time. In this chapter, we attribute
this difference to sampling errors: ODE-samplers involve smaller discretization errors while
stochasticity in SDE contracts accumulated errors. Based on these findings, we propose
a novel sampling algorithm called Restart in order to balance discretization errors and
contraction better. The sampling method alternates between adding substantial noise in
additional forward steps and strictly following a backward ODE. Empirically, the Restart
sampler surpasses previous SDE and ODE samplers in both speed and accuracy. Restart not
only outperforms the previous best SDE results but also accelerates the sampling speed by
10-fold / 2-fold on CIFAR-10 / ImageNet 64x64. In addition, it attains significantly better
sample quality than ODE samplers within comparable sampling times. Moreover, Restart
better balances text-image alignment/visual quality versus diversity than previous samplers
in the large-scale text-to-image Stable Diffusion model.

This chapter was previously published as [29].
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5.1 Introduction

Diffusion models involve iterative backward processes that gradually transform a simple
distribution (e.g., Gaussian in diffusion models) into a complex data distribution by solving
differential equations. The associated vector fields (or drifts) driving the evolution of the
differential equations are predicted by neural networks. The resulting sample quality can be
often improved by enhanced simulation techniques but at the cost of longer sampling times.

Prior samplers for simulating these backward processes can be categorized into two
groups: ODE-samplers whose evolution beyond the initial randomization is deterministic, and
SDE-samplers where the generation trajectories are stochastic. Several works [27], [28], [37]
show that these samplers demonstrate their advantages in different regimes, as depicted in
Figure 5.1b. ODE solvers [25]-|27] result in smaller discretization errors, allowing for decent
sample quality even with larger step sizes (i.e., fewer number of function evaluations (NFE)).
However, their generation quality plateaus rapidly. In contrast, SDE achieves better quality
in the large NFE regime, albeit at the expense of increased sampling time. To better
understand these differences, we theoretically analyze SDE performance: the stochasticity in
SDE contracts accumulated error, which consists of both the discretization error along the
trajectories as well as the approximation error of the learned neural network relative to the
ground truth drift (e.g., score function in diffusion model [37]). The approximation error
dominates when NFE is large (small discretization steps), explaining the SDE advantage in
this regime. Intuitively, the stochastic nature of SDE helps "forget" accumulated errors from
previous time steps.

Inspired by these findings, we propose a novel sampling algorithm called Restart, which
combines the advantages of ODE and SDE. As illustrated in Figure 5.1a, the Restart sampling
algorithm involves K repetitions of two subroutines in a pre-defined time interval: a Restart
forward process that adds a substantial amount of noise, akin to "restarting" the original
backward process, and a Restart backward process that runs the backward ODE. The Restart
algorithm separates the stochasticity from the drifts, and the amount of added noise in the
Restart forward process is significantly larger than the small single-step noise interleaving

with drifts in previous SDEs such as [27], [37], thus amplifying the contraction effect on
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accumulated errors. By repeating the forward-backward cycle K times, the contraction effect
introduced in each Restart iteration is further strengthened. The deterministic backward
processes allow Restart to reduce discretization errors, thereby enabling step sizes comparable
to ODE. To maximize the contraction effects in practice, we typically position the Restart
interval towards the end of the simulation, where the accumulated error is larger. Additionally,
we apply multiple Restart intervals to further reduce the initial errors in more challenging
tasks.

Experimentally, Restart consistently surpasses previous ODE and SDE solvers in both
quality and speed over a range of NFEs, datasets, and pre-trained models. Specifically,
Restart accelerates the previous best-performing SDEs by 10x fewer steps for the same FID
score on CIFAR-10 using VP [37] (2x fewer steps on ImageNet 64 x 64 with EDM [27]),
and outperforms fast ODE solvers (e.g., DPM-solver [26]) even in the small NFE regime.
When integrated into previous state-of-the-art pre-trained models, Restart further improves
performance, achieving FID scores of 1.88 on unconditional CIFAR-10 with PEFGM-++ [31],
and 1.36 on class-conditional ImageNet 64 x 64 with EDM. To the best of our knowledge,
these are the best FID scores obtained on commonly used UNet architectures for diffusion
models without additional training. We also apply Restart to the practical application
of text-to-image Stable Diffusion model [153| pre-trained on LAION 512 x 512. Restart
more effectively balances text-image alignment /visual quality (measured by CLIP/Aesthetic
scores) and diversity (measured by FID score) with a varying classifier-free guidance strength,
compared to previous samplers.

Our contributions can be summarized as follows: (1) We investigate ODE and SDE
solvers and theoretically demonstrate the contraction effect of stochasticity via an upper
bound on the Wasserstein distance between generated and data distributions (Section 5.2);
(2) We introduce the Restart sampling, which better harnesses the contraction effect of
stochasticity while allowing for fast sampling. The sampler results in a smaller Wasserstein
upper bound (Section 5.3); (3) Our experiments are consistent with the theoretical bounds
and highlight Restart’s superior performance compared to previous samplers on standard
benchmarks in terms of both quality and speed. Additionally, Restart improves the trade-off

between key metrics on the Stable Diffusion model (Section 5.4).
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Figure 5.1: (a) Ilustration of the implementation of drift and noise terms in ODE, SDE,
and Restart. (b) Sample quality versus number of function evaluations (NFE) for different
approaches. ODE (Green) provides fast speeds but attains only mediocre quality, even with a
large NFE. SDE ( ) obtains good sample quality but necessitates substantial sampling
time. In contrast to ODE and SDE, which have their own winning regions, Restart (Red)
achieves the best quality across all NFEs.

5.2 Explaining SDE and ODE Performance Regimes

To sample from the aforementioned generative models, a prevalent approach employs general-
purpose numerical solvers to simulate the corresponding differential equations. This includes
Euler and Heun’s 2nd method [154] for ODEs (e.g., Equation 2.5), and Euler-Maruyama for
SDEs (e.g., Equation 2.4). Sampling algorithms typically balance two critical metrics: (1) the
quality and diversity of generated samples, often assessed via the Fréchet Inception Distance
(FID) between generated distribution and data distribution [41] (lower is better), and (2) the
sampling time, measured by the number of function evaluations (NFE). Generally, as the
NFE decreases, the FID score tends to deteriorate across all samplers. This is attributed to
the increased discretization error caused by using a larger step size in numerical solvers.
However, as illustrated in Figure 5.1b and observed in previous works on diffusion
models [25], [27], [37], the typical pattern of the quality vs time curves behaves differently
between the two groups of samplers, ODE and SDE. When employing standard numerical
solvers, ODE samplers attain a decent quality with limited NFEs, whereas SDE samplers
struggle in the same small NFE regime. However, the performance of ODE samplers quickly

reaches a plateau and fails to improve with an increase in NFE, whereas SDE samplers can
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achieve noticeably better sample quality in the high NFE regime. This dilemma raises an
intriguing question: Why do ODE samplers outperform SDE samplers in the small NFE
regime, yet fall short in the large NFE regime?

The first part of the question is relatively straightforward to address: given the same
order of numerical solvers, simulation of ODE has significantly smaller discretization error
compared to the SDE. For example, the first-order Euler method for ODE results in a local
error of O(6%), whereas the first-order Euler-Maruyama method for SDEs yields a local error
of O(62) (see e.g., Theorem 1 of [155]), where § denotes the step size. As O(52) > O(62),
ODE simulations exhibit lower sampling errors than SDEs, likely causing the better sample
quality with larger step sizes in the small NFE regime.

In the large NFE regime, the step size ¢ shrinks and discretization errors become less
significant for both ODEs and SDEs. In this regime it is the approximation error — error
arising from an inaccurate estimation of the ground-truth vector field by the neural network
sy — starts to dominate the sampling error. We denote the discretized ODE and SDE using
the learned field sy as ODEy and SDEy, respectively. In the following theorem, we evaluate
the total errors from simulating ODE, and SDEy within the time interval [tumin, tmax] C [0, 7.
This is done via an upper bound on the Wasserstein-1 distance between the generated and
data distributions at time t,,;,. We characterize the accumulated initial sampling errors up
until ¢, by total variation distances. Below we show that the inherent stochasticity of
SDEs aids in contracting these initial errors at the cost of larger additional sampling error in
[tmin, tmax]. Consequently, SDE results in a smaller upper bound as the step size ¢ nears 0
(pertaining to the high NFE regime).

Theorem 3 (Informal). Let t,,4, be the initial noise level and p, denote the true distribution at

noise level t. Let ptODE",prE" denote the distributions of simulating ODEy, SDFEy respectively.

Assume that Yt € [tmin, tmaa), |2e]| < B/2 for any x, in the support of p,, pP% or piPF.

Then

W1 (pODEG 5 ptmm) S B-TV (pt(z,ifgaptmaz> + O<5 + 6otpproa:) ' (tmaz - tmm)

tomin
SDE, U SDE,
Wi (Dt s Pon) < (L= 2e™7) BTV (D;," s Ptynas) + OV 0t imaz + €approz) (tmaz — tinin)
N >4 L. _y A\ 7
v - TV
total error upper bound on contracted error upper bound on additional sampling error
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In the above, U = BLy /tyin + L3t2, .0 /t2, A < 1 is a contraction factor, L1 and €qppror are
uniform bounds on ||tsg(xq,t)|| and the approzimation error ||tV log pi(x) — tsg(x,t)|| for
all x4,t, respectively. O() hides polynomial dependency on various Lipschitz constants and

dimension.

We defer the formal version and proof of Theorem 3 to Appendix A.2.1. As shown in
the theorem, the upper bound on the total error can be decomposed into upper bounds
on the contracted error and additional sampling error. TV (p2P® p,. ) and TV (pP% p,. )
correspond to the initial errors accumulated from both approximation and discretization
errors during the simulation of the backward process, up until time #,,.,. In the context of
SDE, this accumulated error undergoes contraction by a factor of 1 — Ae=BLt/tmin=Litha/thin
within [tmin, tmax], due to the effect of adding noise. Essentially, the minor additive Gaussian
noise in each step can drive the generated distribution and the true distribution towards each
other, thereby neutralizing a portion of the initial accumulated error.

The other term related to additional sampling error includes the accumulation of dis-
cretization and approximation errors in [tmin, tmax]- Despite the fact that SDE incurs a higher
discretization error than ODE (O(v/§) versus O(6)), the contraction effect on the initial error
is the dominant factor impacting the upper bound in the large NFE regime where 0 is small.
Consequently, the upper bound for SDE is significantly lower. This provides insight into
why SDE outperforms ODE in the large NFE regime, where the influence of discretization
errors diminishes and the contraction effect dominates. In light of the distinct advantages of
SDE and ODE; it is natural to ask whether we can combine their strengths. Specifically, can
we devise a sampling algorithm that maintains a comparable level of discretization error as
ODE, while also benefiting from, or even amplifying, the contraction effects induced by the
stochasticity of SDE? In the next section, we introduce a novel algorithm, termed Restart,

designed to achieve these two goals simultaneously.

5.3 Harnessing Noise with Restart

In this section, we present the Restart sampling algorithm, which incorporates stochasticity

during sampling while enabling fast generation. We introduce the algorithm in Sec 5.3.1,
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followed by a theoretical analysis in Sec 5.3.2. Our analysis shows that Restart achieves a
better Wasserstein upper bound compared to those of SDE and ODE in Theorem 3 due to

greater contraction effects.

5.3.1 Restart Sampling

In the Restart algorithm, simulation performs a few repeated back-and-forth steps within
a pre-defined time interval [tuyin, tmax] C [0, 7], as depicted in Figure 5.1a. This interval is
embedded into the simulation of the original backward ODE referred to as the main backward
process, which runs from 7" to 0. In addition, we refer to the backward process within the
Restart interval [tuyin, tmax] as the Restart backward process, to distinguish it from the main
backward process.

Starting with samples at time ¢,,;,, which are generated by following the main backward
process, the Restart algorithm adds a large noise to transit the samples from t,,;, t0 fax
with the help of the forward process. The forward process does not require any evaluation of
the neural network sy(z,t), as it is generally defined by an analytical perturbation kernel
capable of transporting distributions from #,,;, to t,.x. For instance, in the case of diffusion
models, the perturbation kernel is N (0, (0 (tmax)? — 0 (tmin)?)Laxa). The added noise in this
step induces a more significant contraction compared to the small, interleaved noise in SDE.
The step acts as if partially restarting the main backward process by increasing the time.
Following this step, Restart simulates the backward ODE from t,,,, back to t,;, using the
neural network predictions as in regular ODE. We repeat these forward-backward steps
within [¢min, tmax] interval K times in order to further derive the benefit from contraction.
Specifically, the forward and backward processes in the it® iteration (i € {0,..., K — 1})

proceed as follows:

(Restart forward process) Xt =Xt e e (5.1)
(Restart backward process) X;Iln = ODEg(XiL}X, tmax — tmin) (5.2)

where the initial x{ is obtained by simulating the ODE until ¢,,,: x{ = ODEg(z7, T —

tmin

tmin), and the noise ;. _,; is sampled from the corresponding perturbation kernel from
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tmin 10 tmax- The Restart algorithm not only adds substantial noise in the Restart forward
process (Equation 5.1), but also separates the stochasticity from the ODE, leading to a greater
contraction effect, which we will demonstrate theoretically in the next subsubsection. For
example, we set [tmin, tmax] = [0.05,0.3] for the VP model [27] on CIFAR-10. Repetitive use of
the forward noise effectively mitigates errors accumulated from the preceding simulation up
until ¢,,.x. Furthermore, the Restart algorithm does not suffer from large discretization errors
as it is mainly built from following the ODE in the Restart backward process (Equation 5.2).
The effect is that the Restart algorithm is able to reduce the total sampling errors even in
the small NFE regime. Detailed pseudocode for the Restart sampling process can be found

in Algorithm 9, Appendix B.3.1.

5.3.2 Theoretical Analysis

We provide a theoretical analysis of the Restart algorithm under the same setting as Theorem 3.
In particular, we prove the following theorem, which shows that Restart achieves a much
smaller contracted error in the Wasserstein upper bound than SDE (Theorem 3), thanks to
the separation of the noise from the drift, as well as the large added noise in the Restart
forward process (Equation 5.1). The repetition of the Restart cycle K times further leads to a
enhanced reduction in the initial accumulated error. We denote the intermediate distribution

in the i*" Restart iteration, following the discretized trajectories and the learned field sy, as
Restartg ()
te[tminvtmax} :

c

Theorem 4 (Informal). Under the same setting of Theorem 3, assume K < TP

] for

some universal constant C'. Then

W, (pRestartg(K)’ptmm) <B- (1 o /\)K TV(pReStart9(0)7ptmaz)

tmin tmazx
\ >
vV vV
total error upper bound on contracted error
+ (K + 1) -0 (5 + 6a}o;m‘o:):) (tmax - Zfmm)
N v

~
upper bound on additional sampling error

where \ < 1 is the same contraction factor as Theorem 3. O() hides polynomial dependency

on various Lipschitz constants, dimension.
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Proof sketch. To bound the total error, we introduce an auxiliary process qie;tértifﬁx], which

initiates from true distribution p,_, and performs the Restart iterations. This process differs

Restartg ()

et fonne] OTLY 1D its initial distribution at tmax (D, versus p?r: :Iarte(o)). We bound

from p

the total error by the following triangular inequality:

tmin ) Atmin

Wl (pRestartg (K) Do ) < Wl (pineisntartg (K) qRestartg (K) ) + Wl (qtRniitartg (K) Do )

(. / /

Vv v Vv
total error contracted error additional sampling error

To bound the contracted error, we construct a careful coupling process between two individual
trajectories sampled from pzneis:art"(i) and qf”n iitart"(i),i =0,...,K — 1. Before these two
trajectories converge, the Gaussian noise added in each Restart iteration is chosen to maximize
the probability of the two trajectories mapping to an identical point, thereby maximizing the
mixing rate in TV. After converging, the two processes evolve under the same Gaussian noise,
and will stay converged as their drifts are the same. Lastly, we convert the TV bound to
W7 bound by multiplying B. The bound on the additional sampling error echoes the ODE

analysis in Theorem 3: since the noise-injection and ODE-simulation stages are separate, we

do not incur the higher discretization error of SDE. [

We defer the formal version and proof of Theorem 4 to Appendix A.2.1. The first term in
RHS bounds the contraction on the initial error at time t,,,, and the second term reflects the
additional sampling error of ODE accumulated across repeated Restart iterations. Comparing
the Wasserstein upper bound of SDE and ODE in Theorem 3, we make the following three
observations: (1) Each Restart iteration has a smaller contraction factor 1 — A compared
to the one in SDE, since Restart separates the large additive noise (Equation 5.1) from
the ODE (Equation 5.2). (2) Restart backward process (Equation 5.2) has the same order
of discretization error O(J) as the ODE, compared to O(v/d) in SDE. Hence, the Restart
allows for small NFE due to ODE-level discretization error. (3) The contracted error further
diminishes exponentially with the number of repetitions K though the additional error
increases linearly with K. It suggests that there is a sweet spot of K that strikes a balance
between reducing the initial error and increasing additional sampling error. Ideally, one
should pick a larger K when the initial error at time t¢,,., greatly outweighs the incurred

error in the repetitive backward process from t,,., to tin. We provide empirical evidences in

88



Sec 5.4.2.

While Theorem 3 and Theorem 4 compare the upper bounds on errors of different methods,
we provide empirical validation in Section 5.4.1 by directly calculating these errors, showing
that the Restart algorithm indeed yields a smaller total error due to its superior contraction
effects. The main goal of Theorem 3 and Theorem 4 is to study how the already accumulated
error changes using different samplers, and to understand their ability to self-correct the error
by stochasticity. In essence, these theorems differentiate samplers based on their performance
post-error accumulation. For example, by tracking the change of accumulated error, Theorem
1 sheds light on the distinct "winning regions" of ODE and SDE: ODE samplers have smaller
discretization error and hence excel at the small NFE regime. In contrast, SDE performs
better in large NFE regime where the discretization error is negligible and its capacity to

contract accumulated errors comes to the fore.

5.3.3 Practical Considerations

The Restart algorithm offers several degrees of freedom, including the time interval [tuyin, tmax)
and the number of restart iterations K. Here we provide a general recipe of parameter selection
for practitioners, taking into account factors such as the complexity of the generative modeling
tasks and the capacity of the network. Additionally, we discuss a stratified, multi-level Restart
approach that further aids in reducing simulation errors along the whole trajectories for more
challenging tasks.

Where to Restart? Theorem 4 shows that the Restart algorithm effectively reduces
the accumulated error at time ¢,,,x by a contraction factor in the Wasserstein upper bound.
These theoretical findings inspire us to position the Restart interval [y, tmax] towards the
end of the main backward process, where the accumulated error is more substantial. In
addition, our empirical observations suggest that a larger time interval t,,,x—tmin 1S more
beneficial for weaker/smaller architectures or more challenging datasets. Even though a
larger time interval increases the additional sampling error, the benefits of the contraction
significantly outweigh the downside, consistent with our theoretical predictions. We leave the
development of principled approaches for optimal time interval selection for future works.

Multi-level Restart For challenging tasks that yield significant approximation errors,
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the backward trajectories may diverge substantially from the ground truth even at early stage.
To prevent the ODE simulation from quickly deviating from the true trajectory, we propose
implementing multiple Restart intervals in the backward process, alongside the interval placed
towards the end. Empirically, we observe that a 1-level Restart is sufficient for CIFAR-10,
while for more challenging datasets such as ImageNet [156], a multi-level Restart results in

enhanced performance [156].

5.4 Experiments

In Sec 5.4.1, we first empirically verify the theoretical analysis relating to the Wasserstein
upper bounds. We then evaluate the performance of different sampling algorithms on standard
image generation benchmarks, including CIFAR-10 [157] and ImageNet 64 x 64 [156] in
Sec 5.4.2. Lastly, we employ Restart on text-to-image generation, using Stable Diffusion

model [153] pre-trained on LAION-5B [158] with resolution 512 x 512, in Sec 5.4.3.

5.4.1 Sampling Error versus Contracted Error

Our proposed Restart sampling algorithm demonstrates a higher contraction effect and smaller
addition sampling error compared to SDE, according to Theorem 3 and Theorem 4. Although
our theoretical analysis compares the upper bounds of the total, contracted and additional
sampling errors, we further verify their relative values through a synthetic experiment.
Setup We construct a 20-dimensional dataset with 2000 points sampled from a Gaussian
mixture, and train a four-layer MLP to approximate the score field V4 log p;. We implement
the ODE, SDE, and Restart methods within a predefined time range of [timin, tmax) = [1.0, 1.5],
where the process outside this range is conducted via the first-order ODE. To compute various
error types, we define the distributions generated by three methods as outlined in the proof
of Theorem 4 and directly gauge the errors at end of simulation ¢t = 0 instead of ¢ = ¢.,;,: (1)
the generated distribution as pi™™*", where Sampler € {ODE,, SDEy, Restarty(K)}; (2) an

auxiliary distribution ¢5™*" initiating from true distribution p, _ at time ¢yax. The only

. Sampl Sampler - e .. . ODE
difference between py™""*" and ¢5""" is their initial distribution at tma ( py,_ ° versus

Dtoay); and (3) the true data distribution py. In line with Theorem 4, we use Wasserstein-1
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Figure 5.2: Additional sampling error versus (a) contracted error, where the Pareto frontier
is plotted and (b) total error, where the scatter plot is provided. (c) Pareto frontier of NFE
versus total error.
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Detailed information about dataset, metric and model can be found in the Appendix B.3.2.

Results In our experiment, we adjust the parameters for all three processes and calculate
the total, contracted, and additional sampling errors across all parameter settings. Figure
5.2a depicts the Pareto frontier of additional sampling error versus contracted error. We can
see that Restart consistently achieves lower contracted error for a given level of additional
sampling error, compared to both the ODE and SDE methods, as predicted by theory. In
Figure 5.2b, we observe that the Restart method obtains a smaller total error within the
additional sampling error range of [0.8,0.85]. During this range, Restart also displays a
strictly reduced contracted error, as illustrated in Figure 5.2a. This aligns with our theoretical
analysis, suggesting that the Restart method offers a smaller total error due to its enhanced
contraction effects. From Figure 5.2¢, Restart also strikes a better balance between efficiency

and quality, as it achieves a lower total error at a given NFE.

5.4.2 Experiments on Standard Benchmarks

To evaluate the sample quality and inference speed, we report the FID score [41] (lower is
better) on 50K samplers and the number of function evaluations (NFE). We borrow the
pretrained VP/EDM /PFGM-++ models on CIFAR-10 or ImageNet 64 x 64 from [27], [31].
We also use the EDM discretization scheme [27] (see Appendix B.3.1 for details) during
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Figure 5.3: FID versus NFE on (a) unconditional generation on CIFAR-10 with VP; (b)
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Figure 5.4: CIFAR-10, VP, in the low NFE regime. Restart consistently outperforms the
DPM-solver with an NFE ranging from 16 to 36.

sampling.

For the proposed Restart sampler, the hyperparameters include the number of steps in
the main/Restart backward processes, the number of Restart iteration K, as well as the time
interval [tiin, tmax]- We pick the ¢, and ., from the list of time steps in EDM discretization
scheme with a number of steps 18. For example, for CIFAR-10 (VP) with NFE=T75, we choose
tmin=0.06, tmax=0.30, K =10, where 0.30/0.06 is the 12'® /14" time step in the EDM scheme.
We also adopt EDM scheme for the Restart backward process in [tmin, tmax]- In addition, we
apply the multi-level Restart strategy (Sec 5.3.3) to mitigate the error at early time steps for
the more challenging ImageNet 64 x 64. We provide the detailed Restart configurations in
Appendix B.3.2.

For SDE, we compare with the previously best-performing stochastic samplers proposed
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by [27] (Improved SDE). We use their optimal hyperparameters for each dataset. We also
report the FID scores of the adaptive SDE [28] (Gonna Go Fast) on CIFAR-10 (VP). Since
the vanilla reverse-diffusion SDE [37] has a significantly higher FID score, we omit its results
from the main charts and defer them to Appendix B.5.3. For ODE samplers, we compare with
the Heun’s 274 order method [154] (Heun), which arguably provides an excellent trade-off
between discretization errors and NFE [27]. To ensure a fair comparison, we use Heun’s
method as the sampler in the main/Restart backward processes in Restart.

We report the FID score versus NFE in Figure 5.3a and Table 5.1 on CIFAR-10, and
Figure 5.3b on ImageNet 64 x 64 with EDM. Our main findings are: (1) Restart outperforms
other SDE or ODE samplers in balancing quality and speed, across datasets and models. As
demonstrated in the figures, Restart achieves a 10-fold / 2-fold acceleration compared to the
previous best SDE results on CIFAR-10 (VP) / ImageNet 64 x 64 (EDM) at the same FID
score. In comparison to ODE sampler (Heun), Restart obtains a better FID score, with the
gap increasing significantly with NFE. (2) For stronger models such as EDM and PEGM++,
Restart further improve over the ODE baseline on CIFAR-10. In contrast, the Improved SDE
negatively impacts the performance of EDM, as also observed in [27]. It suggests that Restart
incorporates stochasticity more effectively. (3) Restart establishes new state-of-the-art FID
scores for UNet architectures without additional training. In particular, Restart achieves FID
scores of 1.36 on class-cond. ImageNet 64 x 64 with EDM, and 1.88 on uncond. CIFAR-10
with PEGM++.

To further validate that Restart can be applied in low NFE regime, we show
that one can employ faster ODE solvers such as the DPM-solver-3 [26] to further accelerate
Restart. Figure 5.4 shows that the Restart consistently outperforms the DPM-solver with
an NFE ranging from 16 to 36. This demonstrates Restart’s capability to excel over ODE
samplers, even in the small NFE regime. It also suggests that Restart can consistently
improve other ODE samplers, not limited to the DDIM, Heun. Surprisingly, when paired
with the DPM-solver, Restart achieves an FID score of 2.11 on VP setting when
NFE is 30, which is significantly lower than any previous numbers (even lower
than the SDE sampler with an NFE greater than 1000 in [37]), and make VP

model on par with the performance with more advanced models (such as EDM).
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We include detailed Restart configuration in Table B.6 in Appendix B.3.2.

Theorem 10 shows that each

Table 5.1: Uncond.
CIFAR-10 with EDM

Restart iteration reduces the con-
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tracted errors while increasing the and PEGM -+ —— EDM (Restart)
K EDM (ODE) -
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varying number of Restart iter-
: : ODE (Heun) 63 1.91
a smaller turning point for stronger o Lo ations K
EDM model. This supports the the-  Restart 43 1.88

oretical analysis that sampling er-

rors will eventually outweigh the contraction benefits as K increases, and EDM only permits
fewer Restart iterations due to smaller accumulated errors. It also suggests that, as a rule
of thumb, we should apply greater Restart strength (e.g., larger K') for weaker or smaller

architectures and vice versa.

5.4.3 Experiments on Large-scale Text-to-Image Model

We further apply Restart to the text-to-image Stable Diffusion v1.5 ! pre-trained on LAION-
5B [158] at a resolution of 512 x 512. We employ the commonly used classifier-free guid-
ance [159], [160] for sampling, wherein each sampling step entails two function evaluations —
the conditional and unconditional predictions. Following [160], [161], we use the COCO [162]
validation set for evaluation. We assess text-image alignment using the CLIP score [163] with
the open-sourced ViT-g/14 [164], and measure diversity via the FID score. We also evaluate
visual quality through the Aesthetic score, as rated by the LAION-Aesthetics Predictor
V2 [165]. Following [166], we compute all evaluation metrics using 5K captions randomly

sampled from the validation set and plot the trade-off curves between CLIP/Aesthetic scores

thttps:/ /huggingface.co/runwayml/stable-diffusion-v1-5
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Figure 5.6: FID score versus (a) CLIP ViT-g/14 score and (b) Aesthetic score for text-
to-image generation at 512 x 512 resolution, using Stable Diffusion v1.5 with a varying
classifier-free guidance weight w = 2, 3,5, 8.

and FID score, with the classifier-free guidance weight w in {2, 3,5, 8}.

We compare with commonly used ODE sampler DDIM [25] and the stochastic sampler
DDPM [167|. For Restart, we adopt the DDIM solver with 30 steps in the main backward
process, and Heun in the Restart backward process, as we empirically find that Heun performs
better than DDIM in the Restart. In addition, we select different sets of hyperparameters for
each guidance weight. For instance, when w = 8, we use [tuyin, tmax|=[0.1, 2], K=2 and 10 steps
in Restart backward process. We defer the detailed Restart configuration to Appendix B.3.2,
and the results of Heun to Appendix B.3.3.

As illustrated in Figure 5.6a and Figure 5.6b, Restart achieves better FID scores in most
cases, given the same CLIP /Aesthetic scores, using only 132 function evaluations (i.e., 66
sampling steps). Remarkably, Restart achieves substantially lower FID scores than other
samplers when CLIP/Aesthetic scores are high (i.e., with larger w values). Conversely,
Restart generally obtains a better text-image alignment/visual quality given the same FID.
We also observe that DDPM generally obtains comparable performance with Restart in FID
score when CLIP/Aesthetic scores are low, with Restart being more time-efficient. These
findings suggest that Restart balances diversity (FID score) against text-image alignment
(CLIP score) or visual quality (Aesthetic score) more effectively than previous samplers.

In Figure 5.7, we visualize the images generated by Restart, DDIM and DDPM with
w = 8. Compared to DDIM, the Restart generates images with superior details (e.g., the
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(a) Restart (Steps=66) (b) DDIM (Steps=100) (c) DDPM (Steps=100)

Figure 5.7: Visualization of generated images with classifier-free guidance weight w = 8, using
four text prompts (“A photo of an astronaut riding a horse on mars.", "A raccoon playing
table tennis", "Intricate origami of a fox in a snowy forest" and "A transparent sculpture of
a duck made out of glass") and the same random seeds.

rendition of duck legs by DDIM is less accurate) and visual quality. Compared to DDPM,
Restart yields more photo-realistic images (e.g., the astronaut). We provide extended of

text-to-image generated samples in Appendix B.3.4.

5.5 Conclusion

In this chapter, we introduce the Restart sampling for generative processes involving differen-
tial equations, such as diffusion models and PFGMs. By interweaving a forward process that
adds a significant amount of noise with a corresponding backward ODE, Restart harnesses
and even enhances the individual advantages of both ODE and SDE. Theoretically, Restart
provides greater contraction effects of stochasticity while maintaining ODE-level discretiza-
tion error. Empirically, Restart achieves a superior balance between quality and time, and
improves the text-image alignment /visual quality and diversity trade-off in the text-to-image
Stable Diffusion models.

A current limitation of the Restart algorithm is the absence of a principled way for
hyperparameters selection, including the number of iterations K and the time interval
[timin, tmax|- At present, we adjust these parameters based on the heuristic that weaker/smaller

models, or more challenging tasks, necessitate a stronger Restart strength. In the future
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direction, we anticipate developing a more principled approach to automating the selection of
optimal hyperparameters for Restart based on the error analysis of models, in order to fully

unleash the potential of the Restart framework.
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Chapter 6

Non-I1.I.D. Diverse Sampling with
Diffusion Models

In practical deployment, most diffusion models generate four samples per user query (e.g.,
Midjourney, Stable Diffusion). Therefore, the diversity of these mini-batch samples becomes
an important issue alongside generation speed discussed in the previous chapter — users
expect a diverse set of samples from which to choose. In this chapter, we tackle the question of
how to improve diversity and sample efficiency by moving beyond the common assumption of
independent samples. For this, we propose particle guidance, an extension of diffusion-based
generative sampling where a joint-particle time-evolving potential enforces diversity. We
analyze theoretically the joint distribution that particle guidance generates, its implications
on the choice of potential, and the connections with methods in other disciplines. Empirically,
we test the framework both in the setting of conditional image generation, where we are able
to increase diversity without affecting quality, and molecular conformer generation, where we
reduce the previous state-of-the-art median error.

This chapter was previously published in [33]. Gabriele Corso contributed significantly
to the materials in this chapter. My contributions are conceiving the idea with Gabriele,

conducting the image experiments, and helping with paper writing.
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6.1 Introduction

Deep generative modeling has become pervasive in many computational tasks across computer
vision, natural language processing, physical sciences, and beyond. In many applications,
these models are used to take a number of representative samples of some distribution of
interest like Van Gogh'’s style paintings or the 3D conformers of a small molecule. Although
independent samples drawn from a distribution will perfectly represent it in the limit of
infinite samples, this may not be the optimal strategy for a finite number. Therefore, while
deep learning methods have so far largely focused on the task of taking independent identically
distributed (I.I.D.) samples from some distribution, this paper examines how one can use
deep generative models to take a finite number of samples that can better represent the
distribution of interest.

In other fields where finite-samples approximations are critical, researchers have developed
various techniques to tackle this challenge. In molecular simulations, several enhanced
sampling methods, like metadynamics and replica exchange, have been proposed to sample
diverse sets of low-energy structures and estimate free energies. In statistics, Stein Variational
Gradient Descent (SVGD) is an iterative technique to match a distribution with a finite set
of particles. However, these methods are not able to efficiently sample complex distributions
like images.

Towards the goal of better finite-samples generative models, that combine the power of
recent advances with sample efficiency, we propose a general framework for sampling sets
of particles using diffusion models. This framework, which we call particle guidance (PG),
is based on the use of a time-evolving potential to guide the inference process. We present
two different strategies to instantiate this new framework: the first, fized potential particle
guidance, provides ready-to-use potentials that require no further training and have little
inference overhead; the second, learned potential particle guidance, requires a training process
but offers better control and theoretical guarantees.

The theoretical analysis of the framework leads us to two key results. On one hand, we
obtain an expression for the joint marginal distribution of the sampled process when using

any arbitrary guidance potential. On the other, we derive a simple objective one can use to
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Figure 6.1: Comparison of [.I.D. and particle guidance sampling. The center figure represents
each step, with the distribution in pink and the samples as yellow crosses, where particle
guidance uses not only the score (in blue) but also the guidance from joint-potential (red),
leading it to discover different modes (right-hand samples vs those on the left). At the bottom,
Van Gogh cafe images samples generated with Stable Diffusion with and without particle
guidance. A more detailed discussion on the suboptimality of I.I.D. sampling is presented in
Appendix B.4.1.

train a model to learn a time-evolving potential that exactly samples from a joint distribution
of interest. We show this provides optimal joint distribution given some diversity constraint
and it can be adapted to the addition of further constraints such as the preservation of
marginal distributions. Further, we also demonstrate the relations of particle guidance to
techniques for non-1.1.D. sampling developed in other fields and natural processes and discuss
its advantages.

Empirically, we demonstrate the effectiveness of the method in both synthetic experiments
and two of the most successful applications of diffusion models: text-to-image generation and
molecular conformer generation. In the former, we show that particle guidance can improve
the diversity of the samples generated with Stable Diffusion [153] while maintaining a quality
comparable to that of I.LI.D. sampling. For molecular conformer generation, applied to the
state-of-the-art method Torsional Diffusion [168|, particle guidance is able to simultaneously
improve precision and coverage, reducing their median error by respectively 19% and 8%. In
all settings, we also study the critical effect that different potentials can have on the diversity

and sample quality.
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6.2 Promoting Sample Diversity with Particle Guidance

Our goal is to define a sampling process that promotes the diversity of a finite number of
samples while retaining the advantages and flexibility that characterize diffusion models. Let
p(x) be some probability distribution of interest and Vy log p;(x) be the score that we have
learned to reverse the diffusion process dx = f(x,¢)dt + g(¢)dw. Similarly to how classifier
guidance is applied, we modify the reverse diffusion process by adding the gradient of a
potential. However, we are now sampling together a whole set of particles xq, ..., x,,, and
the potential log ®, is not only a function of the current point but a permutation invariant

function of the whole set:
dx; = | — f(x;, ) + ¢*(t) <in log p (x;) + Vy, log @y (x1, ..., Xn))l dt + g(t)dw. (6.1)

where the points are initially sampled I.I.D. from a prior distribution pr. We call this idea
particle guidance (PG). This framework allows one to impose different properties, such as
diversity, on the set of particles being sampled without the need to retrain a new score model
operating directly on the space of sets.

We will present and study two different instantiations of this framework:

1. Fixed Potential PG where the time-evolving joint potential is handcrafted, leading to
very efficient sampling of diverse sets without the need for any additional training. We
present this instantiation in Section 6.4 and show its effectiveness on critical real-world

applications of diffusion models in Section 6.4.2.

2. Learned Potential PG where we learn the time-evolving joint potential to provably
optimal joint distributions. Further, this enables direct control of important properties
such as the preservation of marginal distributions. We present this instantiation in

Section 6.5.

102



6.3 Connections with Existing Methods

As discussed in the introduction, other fields have developed methods to improve the tradeoff
between sampling cost and coverage of the distribution of interest. In this section, we will
briefly introduce four methods (coupled replicas, metadynamics, SVGD and electrostatics)

and draw connections with particle guidance.

6.3.1 Coupled Replicas and Metadynamics

In many domains linked to biochemistry and material science, researchers study the properties
of the physical systems by collecting several samples from their Boltzmann distributions
using molecular dynamics or other enhanced sampling methods. Motivated by the significant
cost that sampling each individual structure requires, researchers have developed a range of
techniques to improve sample efficiency and speed by, for example, reducing the correlation of
subsequent samples from slow-mixing Markov chains. The most popular of these techniques
are parallel sampling with coupled replicas and sequential sampling with metadynamics.
As the name suggests, replica methods involve directly taking n samples of a system
with the different sampling processes, replicas, occurring in parallel. In particular, coupled
replica methods [169], [170] create a dependency between the replicas by adding, like particle
guidance, an extra potential ® to the energy function to enforce diversity or match experimental

observables. This results in energy-based sampling procedures that target:

Metadynamics [171], [172] was also developed to more efficiently sample the Boltzmann
distribution of a given system. Unlike replica methods and our approach, metadynamics is a
sequential sampling technique where new samples are taken based on previously taken ones

to ensure diversity, typically across certain collective variables of interest s(x). In its original
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formulation, the Hamiltonian at the £ sample is augmented with a potential as:

Hy=H-wY exp (_ |s(x) — s(x;?)H?)

, 202
i<k

where H is the original Hamiltonian, X(])- are the previously sampled elements and w and
o parameters set a priori. Once we take the gradient and perform Langevin dynamics to
sample, we obtain dynamics that, with the exception of the fixed Hamiltonian, resemble

those of particle guidance in Eq. 6.4 where

0Y[2
Vi, log @,(x1, -+ ,X,) ¢ Vy,w Z exp ( — I(x:) ;Uj(XJ)H )
j<i
Although they differ in their parallel or sequential approach, both coupled replicas and
metadynamics can be broadly classified as energy-based generative models. As seen here,
energy-based models offer a simple way of controlling the joint distribution one converges
to by simply adding a potential to the energy function. On the other hand, however, the
methods typically employ an MCMC sampling procedure, which lacks the critical finite-time
sampling property of diffusion models and significantly struggles to cover complex probability
distributions such as those of larger molecules and biomolecular complexes. Additionally,
the MCMC typically necessitates a substantial number of steps, generally proportional to a
polynomial of the data dimension [173]. With particle guidance, we instead aim to achieve
both properties (controllable diversity and finite time sampling) at the same time. We can
simulate the associated SDE/ODE with a total number of steps that is independent of the

data dimension.

6.3.2 Stein Variational Gradient Descent

Stein Variational Gradient Descent (SVGD) [174] is a well-established method in the vari-

ational inference community to iteratively transport a set of particles to match a target
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distribution. Given a set of initial particles {x{...x%}, it updates them at every iteration as:

n

D k(. %) Ve log p(x)) + Ve k(x], x)] (6.2)

J=1

1

X xE b ep(xt) where  1(x) = 1
n_

(2

where k is some (similarity) kernel and €, the step size. Although SVGD was developed with
the intent of sampling a set of particles that approximate some distribution p without the
direct goal of obtaining diverse samples, SVGD and our method have a close relation.

This relation between our method and SVGD can be best illustrated under specific choices
for drift and potential under which the probability flow ODE discretization of particle guidance

can be approximated as (derivation in Appendix A.3.5):

X§+At ~ X!+ e (x)Ys(xh)  where (x) = [kt(x§-, x)Vx log pi(x) + sz k; (XE-, x)] (6.3)

1
n—14%
1

j=
Comparing this with Eq. 6.2, we can see a clear relation in the form of the two meth-
ods, with some key distinctions. Apart from the different constants, the two methods use
different terms for the total score component. Interestingly both methods use smoothed-
out scores, however, on the one hand, particle guidance uses the diffused score at the
specific particle x;, Vi, logpi(x;), while on the other, SVGD smoothes it out by tak-
ing a weighted average of the score of nearby particles weighted by the similarity kernel
(225 k(xi, %) Vi, log p(x;)) /(32 k(% %5)).

The reliance of SVGD on other particles for the “smoothing of the score”, however, causes
two related problems, firstly, it does not have the finite-time sampling guarantee that the time
evolution of diffusion models provides and, secondly, it suffers from the collapse to few local
modes near the initialization and cannot discover isolated modes in data distribution [175].
This challenge has been theoretically [176] and empirically [177] studied with several works
proposing practical solutions. In particular, relevant works use an annealing schedule to
enhance exploration [178] or use score matching to obtain a noise-conditioned kernel for

SVGD [179]. Additionally, we empirically observe that the score smoothing in SVGD results

in blurry samples in image generation.
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6.3.3 Electrostatics

Recent works [31], [50] have shown promise in devising novel generative models inspired
by the evolution of point charges in high-dimensional electric fields defined by the data
distribution. It becomes natural therefore to ask whether particle guidance could be seen
as describing the evolution of point charges when these are put in the same electric field
such that they are not only attracted by the data distribution but also repel one another.
One can show that this evolution can indeed be seen as the combination of Poisson Flow
Generative Models with particle guidance, where the similarity kernel is the extension of
Green’s function in N+1-dimensional space, i.e., k(z,y) o< 1/||z — y||¥ . We defer more

details to Appendix A.3.5.

6.4 Fixed Potential Particle Guidance

In this section, we will present and study a simple, yet effective, instantiation of particle
guidance based on the definition of the time-evolving potential as a combination of predefined
kernels. As we will see in the experiments in Section 6.4.2, this leads to significant sample
efficiency improvements with no additional training required and little inference overhead.
To promote diversity and sample efficiency, in our experiments, we choose the potential
log @, to be the negative of the sum of a pairwise similarity kernel k between each pair of

particles log ®4(x1,..x,) = —% >, ; ki(x;, X;) obtaining;

n

dx; = | — f(x;,t") + ¢*(t) <in log py (x;) — ay Vy, Z Ky (x;, xﬂ)] dt + g(t')dw  (6.4)

j=1

Intuitively, the kernel term will push our different samples to be dissimilar from one another
while at the same time the score term will try to match our distribution. Critically, this
does not come at a significant additional runtime as, in most domains, the cost of running
the pairwise similarity kernels is very small compared to the execution of the large score
network architecture. Moreover, it allows the use of domain-specific similarity kernels and

does not require training any additional classifier or score model. We can also view the
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particle guidance Equation 6.4 as a sum of reverse-time SDE and a guidance term. Thus, to
attain a more expedited generation speed, the reverse-time SDE can also be substituted with

the probability flow ODE [180].

6.4.1 Theoretical Analysis

To understand the effect that particle guidance has beyond simple intuition, we study the
joint distribution of sets of particles generated by the proposed reverse diffusion. However,
unlike methods related to energy-based models (see coupled replicas, metadynamics, SVGD
in Sec. 6.3) analyzing the effect of the addition of a time-evolving potential log ®; in the
reverse diffusion is non-trivial.

While the score component in particle guidance is the score of the sequence of probability
distributions py(x1,...,%,) = Pu(x1,...,%,) [[-; pe(x;), we are not necessarily sampling
exactly po because, for an arbitrary time-evolving potential ®;, this sequence of marginals
does not correspond to a diffusion process. One strategy used by other works in similar
situations [181] relies on taking, after every step or at the end, a number of Langevin steps to
reequilibrate and move the distribution back towards p;. This, however, increases significantly
the runtime cost (every Langevin step requires score evaluation) and is technically correct
only in the limit of infinite steps leaving uncertainty in the real likelihood of our samples.
Instead, in Theorem 5, we use the Feynman-Kac theorem to derive a formula for the exact

reweighting that particle guidance has on a distribution (derivation in Appendix A.3.1):

Theorem 5. Under integrability assumptions, sampling xT ,....;x% from pr and following
the particle guidance reverse diffusion process, we obtain samples from the following joint

probability distribution at time t = 0:
Po(X1, ..., %,) = E[Z exp[— fo {{(Vlog @,(Xy), Vlog pr(Xy)) + Alog 4 (Xy) pdt]],

with Z (explicit in the appendiz) such that

[T, po(xi) = E[Z],
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(X¢)teo,r) 5 a stochastic process driven by the equation

dX; = {f(th) - g(t)ZVIngt(Xt)}dt + g(t)dw, Xy = {Xi ?;1-

Hence the density py can be understood as a reweighting of the random variable Z that

represents [.I.D. sampling.

Riemannian Manifolds. Note that our theoretical insights can also be extended to the
manifold framework. This is a direct consequence of the fact that the Feynman-Kac theorem

can be extended to the manifold setting, see for instance [182].

Preserving Invariances The objects that we learn to sample from with generative models
often present invariances such as the permutation of the atoms in a molecule or the roto-
translation of a conformer. To simplify the learning process and ensure these are respected,
building such invariances in the model architecture is common practice. In the case of
diffusion models, to obtain a distribution that is invariant to the action of some group G,
such as that of rotations or permutations, it suffices to have an invariant prior and build a
score model that is G-equivariant [183], [184]. Similarly, in our case, we are interested in
distributions that are invariant to the action of G on any of the set elements (see Section
6.4.2), we show that a sufficient condition for this invariance to be maintained is that the
time-evolving potential ®, is itself invariant to G-transformations of any of its inputs (see

Proposition 3 in Appendix A.3.4).

6.4.2 Experiments

Fixed potential particle guidance can be implemented on top of any existing trained diffusion
model with the only requirement of specifying the potential /kernel to be used in the domain.
We present three sets of empirical results in three very diverse domains. First, in Appendix
B.4.2, we work with a synthetic experiment formed by a two-dimensional Gaussian mixture
model, where we can visually highlight some properties of the method. In this section instead,

we consider text-to-image and molecular conformer generation, two important tasks where
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diffusion models have established new state-of-the-art performances, and show how, in each
of these tasks, particle guidance can provide improvements in sample efficiency pushing the

diversity-quality Pareto frontier.

Text-to-image Generation

In practice, the most prevalent text-to-image diffusion models, such as Stable Diffusion [153]
or Midjourney, generally constrain the output budget to four images per given prompt. Ideally,
this set of four images should yield a diverse batch of samples for user selection. However, the
currently predominant method of classifier-free guidance [159] tends to push the mini-batch
samples towards a typical mode to enhance fidelity, at the expense of diversity.

To mitigate this, we apply the proposed particle guidance to text-to-image generation.
We use Stable Diffusion v1.5, pre-trained on LATON-5B [158] with a resolution of 512 x 512,
as our testbed. We apply an Euler solver with 30 steps to solve for the ODE version
of particle guidance. Following [185], we use the validation set in COCO 2014 [162] for
evaluation, and the CLIP [163]/Aesthetic score [165] (higher is better) to assess the text-
image alignment /visual quality, respectively. To evaluate the diversity within each batch of
generated images corresponding to a given prompt, we introduce the in-batch similarity score.
This metric represents the average pairwise cosine similarity of features within an image batch,
utilizing the pre-trained DINO [186] as the feature extractor. Contrasting the FID score, the
in-batch similarity score specifically measures the diversity of a batch of images generated for
a given prompt. We use a classifier-free guidance scale from 6 to 10 to visualize the trade-off
curve between the diversity and CLIP/Aesthetic score, in line with prior works [160], [185].
For particle guidance, we implement the RBF kernel on the down-sampled pixel space (the
latent space of the VAE encoder-) in Stable Diffusion, as well as the feature space of DINO.
Please refer to Appendix B.4.2 for more experimental details.

As shown in Figure 6.2a and Figure 6.2b, particle guidance (PG) consistently obtains a
better (lower) in-batch similarity score in most cases, given the same CLIP/Aesthetic score,
with a classifier-free guidance scale ranging from 6 to 10. Conversely, we observe that while the
in-batch similarity score of I.I.D. sampling improves with the reduced classifier-free guidance

scale, particle guidance continues to surpass [.I.D. sampling in terms of CLIP /Aesthetic score
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(a) In-batch similarity versus CLIP score (b) In-batch similarity versus Aesthetic score
Figure 6.2: In-batch similiarity score versus (a) CLIP ViT-g/14 score and (b) Aesthetic

score for text-to-image generation at 512 x 512 resolution, using Stable Diffusion v1.5 with a
varying guidance scale from 6 to 10.

(c) Training data (d) L.I.D. (e) PG

Figure 6.3: Text prompt: (a,b) “A baby eating a cake with a tie around his neck with balloons
in the background" (COCO); (c,d,e) “VAN GOGH CAFE TERASSE copy.jpg", with original
training data in (c).
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given the same in-batch similarity. When the potential is the similarity kernel applied in the
feature space, particle guidance notably attains a lower in-batch similarity score compared to
L.I.D. sampling or to the approach in the original downsampled pixel space. This suggests
that utilizing a semantically meaningful feature space is more appropriate for determining
distances between images.

In Figure 6.3, we further visualize generated batches of four images per prompt by I.I.D.
sampling and particle guidance (feature) with the same random seeds, when fixing the
classifier-free guidance scale to 9. We can see that particle guidance improves the visual
diversity in the generated batch. Interestingly, particle guidance can also help to alleviate the
memorization issue of Stable Diffusion [187]. For example, given the text prompt of a painting
from LATION dataset, particle guidance (Figure 6.3d) avoids the multiple replications of the
training data in the L.I.D. setting (the top-left and the bottom-right images in Figure 6.3c).
We provide extended samples in Appendix B.4.3, and additionally show that SVGD (Eq. 6.2)

fails to promote diversity, instead yielding a set of blurry images.

Molecular Conformer Generation

Molecular conformer generation is a key task in computational chemistry that consists of
finding the set of different conformations that a molecule most likely takes in 3D space.
Critically it is often important to find all or most of the low-energy conformers as each can
determine a different behavior (e.g. by binding to a protein). This necessity is reflected in the
metrics used by the community that look both at coverage (also called recall) and precision
over the set predictions.

Over the past few years, molecular conformer generation has been extensively studied
by the machine learning community, with well-established benchmarks [188] and several
generative models designed specifically for this task [168], [184], [189]. However, all these
methods are based on training a generative model to generate single samples and then running
this model several times (more than 200 on average in the standard GEOM-DRUGS dataset)
to generate a large number of I.I.D. samples.

As discussed before, however, this strategy is suboptimal to generate representative sets

of samples and cover the distribution. Therefore, we take the state-of-the-art conformer
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Table 6.1: Quality of generated conformer ensembles for the GEOM-DRUGS test set in terms
of Coverage (%) and Average Minimum RMSD (A). We follow the experimental setup from
[189], for experimental details and introduction of the baselines please refer to Appendix
B.4.2.

Recall Precision
Coverage T AMR | Coverage 1 AMR |
Method Mean Med Mean Med | Mean Med Mean Med
RDKit ETKDG 384 286 1.058 1.002 | 40.9 30.8 0.995 0.895
OMEGA 53.4 54.6 0.841 0.762 | 40.5 33.3 0946 0.854
GeoMol 446 414 0.875 0.834 | 43.0 36.4 0928 0.841
GeoDiff 421 378 0.835 0809 | 249 145 1.136 1.090
Torsional Diffusion 72.7  80.0 0.582 0.565 | 55.2 56.9 0.778 0.729
TD w/ particle guidance | 77.0 82.6 0.543 0.520 | 68.9 78.1 0.656 0.594

generation model, torsional diffusion, and, without retraining the model itself, we show that
we can obtain significant improvements in both coverage and precision via particle guidance.

Torsional diffusion [168] defines the diffusion process over the manifold defined by changes
in torsion angles from some initial conformer because of the relative rigidity of the remaining
degrees of freedom. Given this observation, we also define the guidance kernel on this manifold
as an RBF kernel over the dihedral angle differences.

Another important consideration when dealing with molecular conformers is given by
the permutation symmetries that characterize several molecules: conformers that appear
different might be very similar under permutations of the order of the atoms that do not
change the bond structure. To maximize the sample efficiency and avoid generating similar
conformers, we make the kernel invariant to these transformations. For this, we employ
the simple strategy to take the minimum value of the original kernel under the different
perturbations (formalized in Appendix B.4.2).

Table 6.1 shows that by applying particle guidance to SDE-based reverse process of
torsional diffusion (see Appendix B.4.2 for details) we are able to balance coverage and
precision being able to obtain, without retraining the model, significantly improved results on
both metrics with 8% and 19% simultaneous reductions respectively in recall and precision

median AMR.
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6.5 Learned Potential Particle Guidance

While the fixed potential particle guidance seen so far is very effective in improving the
diversity of samples with little overhead, it is hard to argue about the optimality of the
resulting joint distribution. This is because of the complexity of the expression obtained in
Theorem 5 and its dependence on the data distribution itself. Furthermore, in some domains,
particularly in scientific applications, researchers need to control the distribution that they
are sampling. This is necessary, for example, to apply correct importance weights or compute
free energy differences. While Theorem 5 allows us to theoretically analyze properties of the
distribution, the joint and marginal distributions remain largely intractable.

In this section, we analyze how we can sample from desired joint probability distribution
by learning a tailored time-evolving potential for particle guidance. Using the maximum
entropy theorem [190], we can show that the distribution satisfying a bound on the expected
value of a (diversity) metric ®; while minimizing the KL divergence with the independent

distribution is:
ﬁO(Xla SET) XTL) X <DO(Xla SET) Xn)ﬁ(a) Hp(xl) (65)
i=1

where 3 is a function of «, the value of the bound on Ej[log ®y.

6.5.1 Training Procedure

We now have to learn a time-evolving potential ®; that when used as part of the particle
guidance framework generates py (we assume @ is chosen such that f(«) = 1). To achieve
this, we mandate that the generation process of particle guidance in Eq. 6.1 adheres to the
sequence of marginals p,(x}, ..., x5) = ®4(x}, ..., x%) [Ti2, p(x?) and learn ®Y to satisfy this
evolution. Under mild assumptions, using Doob h-theory (derivation in Appendix A.3.2), we
show that we can learn the ®¢ by the following objective:

[Bo(xl, s x0) — Bt X)) (6.6)

* .
0" = argmin E,o "

K,
0 7

yeeyX9 ~po Npth("x?) H

where pyo is the Gaussian perturbation kernel in diffusion models. Importantly, here the
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initial x? are sampled independently from the data distribution so this training scheme can

be easily executed in parallel to learning the score of p;.

6.5.2 Preserving Marginal Distributions

While the technique discussed in the previous section is optimal in the maximum entropy
perspective, it does not (for arbitrary @) preserve the marginal distributions of individual
particles, i.e. marginalizing x; over p does not recover p. Although not critical in many
settings and not respected, for a finite number of particles, neither by the related methods in
Section 6.3 nor by the fixed potential PG, this is an important property in some applications.

Using again the maximum entropy theorem, we can show that the distribution satisfying
a bound on the expected value of a (diversity) metric ®; and preserving the marginal
distribution while minimizing the KL divergence with the independent distribution can be

written as:

n

Do(X1, oy X)) 0 Y (x4, ..., X, )P () Hp(xi)yg(xi) (6.7)

i=1
for some scalar function over individual particles vy. In Appendix A.3.3, we derive a new
training scheme to learn the parameters of 745. This relies on setting the normalization
constant to an arbitrary positive