
On Physics-Inspired Generative Models

By

Yilun Xu

S.B., Peking University (2020)

S.M., Massachusetts Institute of Technology (2022)

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2024

© 2024 Yilun Xu. All rights reserved.
The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-freelicense
to exercise any and all rights under copyright, including to reproduce, preserve, distribute
and publicly display copies of the thesis, or release the thesis under an open-access license.

Authored by: Yilun Xu
Department of Electrical Engineering and Computer Science
May 17, 2024

Certified by: Tommi S. Jaakkola
Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by: Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students



On Physics-Inspired Generative Models
By

Yilun Xu

Submitted to the Department of Electrical Engineering and Computer Science
on May 17, 2024 in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

ABSTRACT

Physics-inspired generative models such as diffusion models constitute a powerful family
of generative models. The advantages of models in this family come from relatively stable
training process and high capacity. A number of possible improvements remain possible.
In the thesis, we will first delve into the improved techniques for training and sampling in
diffusion models. The training objectives of diffusion models exhibit high variance when
the data distribution is multi-modal. To mitigate this, we propose a training objective
that generalizes conventional denoising score-matching and significantly reduces variance in
training targets. Alternatively, we introduce a training framework that integrates learnable
discrete latents into continuous diffusion models. These latents simplify the learning of
diffusion models’ complex noise-to-data mapping. On the other hand, the sampling process
of diffusion models generally involves solving differential equations. To expedite the sampling
process, we propose a new sampling algorithm that combines the best of previous ODE and
SDE samplers, greatly boosting the performance of pre-trained diffusion models. Additionally,
our research explores methods to promote diversity in finite samples by introducing mutual
repulsion forces in the generative process.

In the realm of physics-inspired generative models, many physical processes could be used to
develop generative models. We will introduce a new family of generative models arising from
electrostatic theory, termed Poisson Flow Generative Models (PFGM). PFGM rivals leading
diffusion models while showcasing improved sampling robustness. The extended version,
PFGM++, places diffusion models and PFGM under the same framework and introduces new,
better models. We will further present a principled approach to convert physical processes
into generative models.

Thesis supervisor: Tommi S. Jaakkola
Title: Professor of Electrical Engineering and Computer Science

2



Acknowledgments

I am incredibly grateful to my advisor, Tommi Jaakkola, for his constant guidance and

support throughout my four-year PhD journey. His advice was invaluable in every aspect

of my research: from identifying research directions to providing constructive criticism and

encouragement for my sometimes whimsical ideas, and from presentation skills to paper

writing, teaching, and mentoring junior students. More importantly, his guidance extends

beyond research, helping me to grow as a person. I have learned so much from him in many

areas, of which I can only mention a few due to space: Tommi is an optimistic advisor with

his own distinct tastes and a readiness to listen. Every time I discussed any idea with him,

good or bad, he always listened patiently and analyzed the strengths and weaknesses of the

ideas with professional and sometimes creative feedback. Tommi is also an advisor of great

integrity, with high academic ethics and a fair and just approach to his students, always

prioritizing the career success of his students. Over these four years, I have gradually learned

these virtues from him, although I know I still have much to learn to catch up with him.

My peer colleagues have greatly enriched my life at MIT on campus. I was fortunate to

have Ziming Liu as my collaborator at MIT. We first met during a discussion about optimal

transport at the end of 2021. Although that discussion didn’t yield results, we reconnected over

an idea on “physics-inspired generative models" a month later and subsequently collaborated

on a series of projects. Much of the work in this thesis is related to Ziming. Throughout

our collaboration, I often found myself learning from Ziming: his creativity, witty comments,

and knack for simplifying complex concepts. Shangyuan Tong was a reliable collaborator; I

generally sought his opinion first whenever I had a new idea, as he always provided excellent

advice. Yonglong Tian was like an elder brother, always willing to share his wisdom and life

experiences, and to support our projects with whatever resources he could offer. Xiang Chen

3



is a collaborator who can always patiently help me with theoretical questions at any time and

a brother who listens well when I face personal challenges. I am grateful for the assistance

and insights provided by Gabriele Corso, particularly for his profound understanding of AI

for Science. I enjoyed the casual chats with Hao He and am grateful for his help on my

first paper at MIT, which greatly helped me get up to speed in my PhD journey. Di Luo

and Tianxiao Shen were excellent research collaborators, distinguished by their diligence,

ingenuity, and creativity. Amit Schechter’s excellent communication skills and empathy made

my first experience as a TA at MIT extremely positive, contributing to the course receiving

high ratings. I have learned a lot from Timur Garipov about coding, paper writing, and

filing my tax return. I will never forget the quality time with many other (former) group

members: Guang-He Lee, Wengong Jin, Vikas Garg, Tian Xie, Bracha Laufer, Benson Chen,

Bowen Jing, Xiang Fu, Abhi Gupta, Felix Faltings, Peter Holderrieth, Chenyu Wang, Jason

Yim, Hannes Stärk and Octavian Ganea. The sudden passing of Octavian Ganea deeply

saddens me — it is an enormous loss for his family and the academy. I also thank junior

students Mingyang Deng and Ziyu Xiong for placing their trust in me during their internship

in Tommi’s group — it has been a joy to watch them grow as researchers!

I am also very fortunate to have worked with Karsten Kreis and Arash Vahdat during

my first—and only—industrial internship in my PhD. They offered unrestrained research

suggestions and insights, helped me improve my presentations and writings, provided advice

on career paths in the industry, and supported me with their extensive industrial backgrounds.

I would like to thank Phillip Isola and Karsten Kreis for agreeing to serve on my PhD

thesis committee and providing valuable feedback. I am also much obliged to Dina Katabi

and Vincent Sitzmann for their service to my RQE committee. I want to thank Max Tegmark

for his support in generously providing a recommendation letter for me and helping with the

paper writing. The graduate officers, Leslie Kolodziejski, Janet Fisher, and Meredith Bittrich,

also provide invaluable support throughout my PhD journey. I am also thankful to the lab

assistant Teresa Cataldo, for her timely and thoughtful response to many requests. During

my job search process, I receive generous help from Yang Song, Ji Lin, Ruiqi Gao, Jim Fan,

Yilun Du, Durk Kingma, Shengjia Zhao, Jiaming Song, Karsten Kreis and Arash Vahdat. It

is my honor to receive support from the MIT-DSTA Singapore collaboration, the National

4



Science Foundation, and the MIT-IBM Grand Challenge project for my thesis research.

I also receive enormous support and company from my close friends during my time in

Boston. I would like to thank my long-time friends, Tianyuan Zhang and Victor Chen. I

always know they will be there to listen, whether in times of up or down. Friends like Veronica

Liao, Nicole Han, Tianwei Yin, Vivian Chiang, Matt Hong, Tianchen Yu, Ke Li, Yuanqi Du,

and Weiyi Zhang have provided great conversations. I am grateful to be part of the MIT

Table Tennis team. I will always memorize the games with Jie Xu, Tonghang Han, Jingting

Lin, Anastasia Nikolakopoulou, Fabian Mohr, IIya Smirnov and Maria Castillo. Thank you,

Maria, for trusting me as your doubles partner. We are undoubtedly the strongest mixed

doubles team in the Boston area!

Finally, I would like to thank my parents for their unwavering love and support. Words

cannot express my gratitude!

5



Contents

1 Introduction 25

1.1 Generative Modeling by Reversing Physical Processes . . . . . . . . . . . . . 26

1.1.1 Improved Training Techniques for Diffusion Models . . . . . . . . . . 27

1.1.2 Improved Sampling Techniques for Diffusion Models . . . . . . . . . . 28

1.1.3 Generative Models from Alternative Physical Processes . . . . . . . . 29

1.2 Summary of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 Background on Diffusion Models 33

2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Constructing Generative Models with Thermodynamical Theory . . . . . . . 34

2.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

I Improved Training Techniques for Diffusion Models 39

3 Reducing the Variance in the Score Estimation 40

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Understanding the Training Target in Score-Matching Objective . . . . . . . 42

3.3 Variance Reduction with Stable Target Field . . . . . . . . . . . . . . . . . . 44

3.4 Theoretical Analysis of Stable Target Field . . . . . . . . . . . . . . . . . . . 46

3.4.1 Asymptotic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.2 Trace of Covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.1 Variance Reduction in the Intermediate Phase . . . . . . . . . . . . . 48

6



3.5.2 Image Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.3 Accelerating Training of Diffusion Models . . . . . . . . . . . . . . . . 52

3.6 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Towards Straighter Diffusion Trajectories with Discrete Latents 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Augmenting Diffusion Models with Discrete Latents . . . . . . . . . . . . . . 61

4.2.1 Two-Stage Training Procedure . . . . . . . . . . . . . . . . . . . . . . 62

4.2.2 Reduced Curvature through End-to-end training . . . . . . . . . . . . 63

4.2.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.1 Image Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.2 Molecular Docking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

II Improved Sampling Techniques for Diffusion Models 79

5 Accelerating the Sampling Process by Optimized Noise Usage 80

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Explaining SDE and ODE Performance Regimes . . . . . . . . . . . . . . . . 83

5.3 Harnessing Noise with Restart . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.1 Restart Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.2 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.3 Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4.1 Sampling Error versus Contracted Error . . . . . . . . . . . . . . . . 90

5.4.2 Experiments on Standard Benchmarks . . . . . . . . . . . . . . . . . 91

5.4.3 Experiments on Large-scale Text-to-Image Model . . . . . . . . . . . 94

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7



6 Non-I.I.D. Diverse Sampling with Diffusion Models 99

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 Promoting Sample Diversity with Particle Guidance . . . . . . . . . . . . . . 102

6.3 Connections with Existing Methods . . . . . . . . . . . . . . . . . . . . . . . 103

6.3.1 Coupled Replicas and Metadynamics . . . . . . . . . . . . . . . . . . 103

6.3.2 Stein Variational Gradient Descent . . . . . . . . . . . . . . . . . . . 104

6.3.3 Electrostatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4 Fixed Potential Particle Guidance . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4.1 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.5 Learned Potential Particle Guidance . . . . . . . . . . . . . . . . . . . . . . 113

6.5.1 Training Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.5.2 Preserving Marginal Distributions . . . . . . . . . . . . . . . . . . . . 114

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

III Novel Generative Models from Physical Processes 116

7 Generative Models from Electrostatics 117

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.3 Poisson Flow Generative Models: Learning and Inference . . . . . . . . . . . 122

7.3.1 Augmenting the Data with Additional Dimension . . . . . . . . . . . 122

7.3.2 Learning the Normalized Poisson Field . . . . . . . . . . . . . . . . . 124

7.3.3 Inference Anchored by the Additional Dimension . . . . . . . . . . . 126

7.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8 An Extended View of Electrostatics in Higher-dimensional Space 137

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.2 PFGM++: Augmenting the Data with Arbitrary Dimension D . . . . . . . 140

8.2.1 Electric Field in Higher-Dimensional Space . . . . . . . . . . . . . . . 140

8



8.2.2 Efficient Training with Perturbation Kernel . . . . . . . . . . . . . . 143

8.3 Diffusion Models as D→∞ Special Cases . . . . . . . . . . . . . . . . . . . 145

8.4 Balancing Robustness and Rigidity . . . . . . . . . . . . . . . . . . . . . . . 147

8.4.1 Behavior of Perturbation Kernel When Varying D . . . . . . . . . . . 148

8.4.2 Balancing the Trade-off by Controlling D . . . . . . . . . . . . . . . 149

8.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9 Duality between Physical Processes and Generative Models 155

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

9.2 Converting Physical Processes to Generative Models . . . . . . . . . . . . . . 157

9.3 Classification via Dispersion Relation . . . . . . . . . . . . . . . . . . . . . . 160

9.4 Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

9.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

10 Conclusion 167

A Additional Proofs and Derivations 171

A.1 Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

A.1.1 Derivation of Equation 3.6 . . . . . . . . . . . . . . . . . . . . . . . . 171

A.1.2 Proof for Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

A.1.3 Proof for Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

A.1.4 STF Specified with Popular SGMs . . . . . . . . . . . . . . . . . . . 176

A.2 Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

A.2.1 Proof for Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

A.2.2 Proof for Theorem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

A.2.3 Heun’s method as DPM-Solver-2 . . . . . . . . . . . . . . . . . . . . 192

A.3 Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

A.3.1 Proof for Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

A.3.2 Sampling a Predefined Joint Distribution . . . . . . . . . . . . . . . . 197

A.3.3 Preserving Marginal Distribution . . . . . . . . . . . . . . . . . . . . 198

9



A.3.4 Invariance of Particle Guidance . . . . . . . . . . . . . . . . . . . . . 203

A.3.5 Connections with Existing Methods . . . . . . . . . . . . . . . . . . . 205

A.3.6 Combinatorial Analysis of Synthetic Experiments . . . . . . . . . . . 208

A.4 Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

A.4.1 Proof for Theorem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

A.4.2 Proof for the Prior Distribution on z = zmax Hyperplane . . . . . . . 215

A.4.3 Multipole Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

A.4.4 Extension of Green’s Function in N -dimensional Space . . . . . . . . 220

A.4.5 Physical Interpretation of the ODEs in PFGM . . . . . . . . . . . . . 222

A.5 Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

A.5.1 Proof for Theorem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

A.5.2 Proof for Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 225

A.5.3 Proof for Theorem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

A.5.4 Proof for Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 228

A.6 Chapter 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

A.6.1 Green’s Function Review . . . . . . . . . . . . . . . . . . . . . . . . . 230

A.6.2 Interpolating Between DMs and PFGMs . . . . . . . . . . . . . . . . 240

A.6.3 Smooth Condition and Dispersion Relations . . . . . . . . . . . . . . 241

B Additional Details and Results 245

B.1 Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

B.1.1 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

B.1.2 Extra Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

B.1.3 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

B.2 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

B.2.1 Algorithm Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . 253

B.2.2 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

B.2.3 Extra Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

B.2.4 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

B.3 Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

10



B.3.1 Algorithm Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . 269

B.3.2 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

B.3.3 Extra Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

B.3.4 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

B.4 Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

B.4.1 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

B.4.2 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

B.4.3 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

B.5 Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

B.5.1 Failure of VE/VP-ODE . . . . . . . . . . . . . . . . . . . . . . . . . 298

B.5.2 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

B.5.3 Extra Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

B.5.4 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

B.6 Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

B.6.1 Aligning the Training in PFGM++ Family . . . . . . . . . . . . . . . 315

B.6.2 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

B.6.3 Extra Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

C Code 331

References 333

11



List of Figures

1.1 Gradual zooming-out views of the 2D electric field in a 3D augmented space.

As the distance from the data support increases, the charge distribution pro-

gressively resembles a point charge. This indicates that the charge distribution

effectively “collapses" to a single point when we are sufficiently far away. . . 29

2.1 The forward SDE and backward SDE/ODE in diffusion models. . . . . . . . 34

3.1 Illustration of differences between the DSM objective and our proposed STF

objective. The “destroyed” images (in blue box) are close to each other while

their sources (in red box) are not. Although the true score in expectation

is the weighted average of vi, the individual training updates of the DSM

objective have a high variance, which our STF objective reduces significantly

by including a large reference batch (yellow box). . . . . . . . . . . . . . . . 42

3.2 (a): Illustration of the three phases in a two-mode distribution. (b): Estimated

VDSM(t) for two distributions. We normalize the maximum value to 1 for

illustration purposes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 (a, b): VDSM(t) and D(t) versus t. We normalize the maximum values to 1

for illustration purposes. (c, d): VSTF(t) with a varying reference batch size n. 49

3.4 FID and generated samples throughout training on (a) CIFAR-10 and (b)

CelebA 642. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 FID scores in the training with varying reference batch size. . . . . . . . . . 53

12



4.1 Discrete-Continuous Latent Variable Diffusion Models (DisCo-Diff) augment DMs

with additional discrete latent variables that capture global appearance patterns,

here shown for images of huskies. (a) During training, discrete latents are inferred

through an encoder, for images a vision transformer [69], and fed to the DM via

cross-attention. Backpropagation is facilitated by continuous relaxation with a

Gumbel-Softmax distribution. To sample novel images, an additional autoregressive

model is learnt over the distribution of discrete latents. (b) Schematic visualization of

generative denoising diffusion trajectories. Different colors indicate different discrete

latent variables, pushing the trajectories toward different modes. . . . . . . . . . 59

4.2 Samples generated from DisCo-Diff trained on the ImageNet dataset: (a)

randomly sampled discrete latents and class labels; (b) samples in each grid

sharing the same discrete latent. The class label for the top/bottom row is

fixed to coffeepot/malamute. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Modeling 2D mixture of Gaussians. Left: Data distribution. Middle: Generated

data by regular DM. Right: Generated data by DisCo-Diff. We use different colors to

distinguish data generated by different discrete latents. We further provide zoom-ins

and visualize some ODE trajectories by dotted lines. . . . . . . . . . . . . . . . . 64

4.4 Modeling 2D mixture of Gaussians: analysis. The mean curvature (left)

and norm of the neural networks’ Jacobians (right) along the reverse-time ODE

trajectories as function of t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Group hierarchical DisCo-Diff. Different discrete latents are fed to the denoiser

U-Net at different feature resolutions. . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Top: Images created from two 30-dim discrete latents z and ẑ, with the far-right

column combining their sub-coordinates. Bottom: Variations in images by fixing

portions of z (originating from the red-boxed image). We see that lower-resolution

latents affect layout / shape; high-resolution latents alter color / texture. . . . . . 72

4.7 Left: Loss versus time. Right: Impact of discrete latent switching during the

sampling process. The numbers represent the percentage of the total sampling

steps. The blue/green arrows mean the sampling steps that utilize the discrete

latent associated with the leftmost/rightmost grid in the figure. . . . . . . . 73

13



4.8 Examples of alternative docking poses modeled when conditioning on different

discrete latents, the “correct" z (i.e. same as the encoder) and an incorrect ẑ. The

DM maps them to two distinct sets of plausible orientations with which the ligand

could fit in the pocket. Notably, the correct latent corresponds to poses within 2Å

of the ground truth. The colored beads are set on the atoms corresponding to the

first latent variable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.9 Generated samples in DisCo-Diff with a cfg scale ranging from 0 to 8, under

the class label “malamute" on ImageNet-128. . . . . . . . . . . . . . . . . . 75

5.1 (a) Illustration of the implementation of drift and noise terms in ODE, SDE,

and Restart. (b) Sample quality versus number of function evaluations (NFE)

for different approaches. ODE (Green) provides fast speeds but attains only

mediocre quality, even with a large NFE. SDE (Yellow) obtains good sample

quality but necessitates substantial sampling time. In contrast to ODE and

SDE, which have their own winning regions, Restart (Red) achieves the best

quality across all NFEs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Additional sampling error versus (a) contracted error, where the Pareto frontier

is plotted and (b) total error, where the scatter plot is provided. (c) Pareto

frontier of NFE versus total error. . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 FID versus NFE on (a) unconditional generation on CIFAR-10 with VP; (b)

class-conditional generation on ImageNet with EDM. . . . . . . . . . . . . . 92

5.4 CIFAR-10, VP, in the low NFE regime. Restart consistently outperforms the

DPM-solver with an NFE ranging from 16 to 36. . . . . . . . . . . . . . . . . 92

5.5 FID score with a varying number of Restart iterations K. . . . . . . . . . . . 94

5.6 FID score versus (a) CLIP ViT-g/14 score and (b) Aesthetic score for text-to-

image generation at 512× 512 resolution, using Stable Diffusion v1.5 with a

varying classifier-free guidance weight w = 2, 3, 5, 8. . . . . . . . . . . . . . . 95

14



5.7 Visualization of generated images with classifier-free guidance weight w = 8,

using four text prompts (“A photo of an astronaut riding a horse on mars.",

"A raccoon playing table tennis", "Intricate origami of a fox in a snowy forest"

and "A transparent sculpture of a duck made out of glass") and the same

random seeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1 Comparison of I.I.D. and particle guidance sampling. The center figure repre-

sents each step, with the distribution in pink and the samples as yellow crosses,

where particle guidance uses not only the score (in blue) but also the guidance

from joint-potential (red), leading it to discover different modes (right-hand

samples vs those on the left). At the bottom, Van Gogh cafe images samples

generated with Stable Diffusion with and without particle guidance. A more

detailed discussion on the suboptimality of I.I.D. sampling is presented in

Appendix B.4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 In-batch similiarity score versus (a) CLIP ViT-g/14 score and (b) Aesthetic

score for text-to-image generation at 512×512 resolution, using Stable Diffusion

v1.5 with a varying guidance scale from 6 to 10. . . . . . . . . . . . . . . . . 110

6.3 Text prompt: (a,b) “A baby eating a cake with a tie around his neck with

balloons in the background" (COCO); (c,d,e) “VAN GOGH CAFE TERASSE

copy.jpg", with original training data in (c). . . . . . . . . . . . . . . . . . . 110

7.1 (a) 3D Poisson field trajectories for a heart-shaped distribution (b) The

evolvements of a distribution (top) or an (augmented) sample (bottom) by

the forward/backward ODEs pertained to the Poisson field. . . . . . . . . . . 119

7.2 (a) Poisson field (black arrows) and particle trajectories (blue lines) of a 2D

uniform disk (red). Left (no augmentation, 2D): all particles collapse to the

disk center. Right (augmentation, 3D): particles hit different points on the

disk. (b) Proof idea of Theorem 6. By Gauss’s Law, the outflow flux dΦout

equals the inflow flux dΦin. The factor of two in p(x)dA/2 is due to the

symmetry of Poisson fields in z < 0 and z > 0. . . . . . . . . . . . . . . . . 123

15



7.3 Sample norm distributions with varying time variables (σ for VE-ODE and z

for PFGM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.4 Uncurated samples on datasets of increasing resolution. From left to right:

CIFAR-10 32× 32, CelebA 64× 64 and LSUN bedroom 256× 256. . . . . . 131

7.5 (a) Samples from VE-ODE (Euler w/o corrector). We highlight the noisier

images with red boxes. The rest are cleaner images. (b) Samples from VE-

ODE (Euler w/ corrector). We mark the noisier samples after correction with

green boxes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.6 (a) Norm-σ(t) relation during the backward sampling of VE-ODE (Euler).

(b) Norm-z(t′) relation during the backward sampling of PFGM (Euler). The

shaded areas mean the standard deviation of norms. (c) Number of steps

versus FID score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.1 Overview of paper contributions and structure. PFGM++ unify PFGM and

diffusion models, as well as the potential to combine their strengths (robustness

and rigidity). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.2 The augmented dimension D affects electric field lines (gray), which connect

charge/data on a line (purple) to latent space (green). When D = 1 (top) or

D = 2 (bottom), electric field lines map the same red line segment to a blue

line segment or onto a blue ring, respectively. The mapping defined by electric

lines has SO(2) symmetry on the surface of z21 + z22 = r2 cylinder. . . . . . . 142

8.3 Mean TVD between the posterior p0|r(·|x) (x is perturbed sample) and the

uniform prior, w/o (a) and w/ (b) the phase alignment (r = σ
√
D). . . . . . 148

8.4 (a) Average ℓ2 difference between scaled electric field and score function, versus

D. (b) Log-variance of radius distribution versus D. (c) Density of radius

distributions pr=σ√D(R) with varying σ and D. . . . . . . . . . . . . . . . . 148

8.5 FID score versus (left) α and (right) NFE on CIFAR-10. . . . . . . . . . . 152

9.1 Duality between physics and generative models. So far only diffusion models

and Poisson flows are discovered by researchers. Can we unlock more? . . . . 157

9.2 Framework that converts physical processes to generative models. . . . . . . 158

16



A.1 Synthetic experiment on learning a potential that preserves marginal distribu-

tions. The description of each plot can be found in the text. . . . . . . . . . 201

A.2 Proof idea of Theorem 11. By Gauss’s Law, the outflow flux dΦout equals the

inflow flux dΦin. The factor of two in p(x)dA/2 is due to the symmetry of

Poisson fields in z < 0 and z > 0. . . . . . . . . . . . . . . . . . . . . . . . . 212

A.3 Diagram of the deviation in Proposition 6 . . . . . . . . . . . . . . . . . . . 215

B.1 FID versus NFE using ODE samplers on CIFAR-10 (left) and CelebA 64×

64 (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

B.2 Samples generated by three different final models of DSM (left column) and

STF (right column) on CIFAR-10. Red boxes indicate noisy images. . . . . . 250

B.3 CIFAR-10 samples from STF using EDM model. The FID is 1.90 and NFE is 35.251

B.4 Samples generated by models trained on DSM (top) and STF (bottom) on

CelebA 642 with VE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

B.5 Averaged training loss versus noise level t. . . . . . . . . . . . . . . . . . . . 262

B.6 Generated samples by DisCo-Diff on class-conditioned ImageNet-64, with ODE

sampler (FID=1.65, NFE=78). . . . . . . . . . . . . . . . . . . . . . . . . . 264

B.7 Generated samples by DisCo-Diff on class-conditioned ImageNet-128, with

ODE sampler (FID=2.08, NFE=114). . . . . . . . . . . . . . . . . . . . . . . 265

B.8 Generated samples by DisCo-Diff on class-conditioned ImageNet-128, with

ODE sampler. Samples in each grid share the same latent, and grids in each

row share the same class labels. We can see that generally, images sharing the

same discrete latents demonstrate similar global characteristics, such as shape,

layout, and color, despite being under the same class. It suggests that discrete

latents provide complementary information to the class labels. . . . . . . . . 266

17



B.9 Generated images with a shared latent, using group hierarchical DisCo-Diff

trained on ImageNet-64. Left: Shared latent z. Middle: Shared latent ẑ.

Right: Shared latent (z0:20, ẑ20:30), where the first 20 coordinates are from z

and the last 10 coordinates are from ẑ. We can see that the generated images

from composed latents generally inherit the shape from images generated by z,

and the color from images generated by ẑ. . . . . . . . . . . . . . . . . . . . 267

B.10 Progressively fixing more subcoordinates of the discrete latents, using our

group hierarchical DisCo-Diff on ImageNet-64. Left: Randomly sampled z.

Middle: Fixing the first 20 coordinates z:20 as the one derived from the red-

boxed image, sampling the rest. Right: Fixing the whole 30-dim. z as the

one derived from the red-boxed image. The figure shows the effect when

progressively fixing more coordinates of the discrete latent, and sampling the

remaining coordinates by the auto-regressive model. The images first converge

in shape/layout, and subsequently converge in color/texture. . . . . . . . . . 268

B.11 Comparison of additional sampling error versus (a) contracted error (plotting

the Pareto frontier) and (b) total error (using a scatter plot). (c) Pareto

frontier of NFE versus total error. . . . . . . . . . . . . . . . . . . . . . . . . 274

B.12 FID score versus (a) CLIP ViT-g/14 score and (b) Aesthetic score for text-

to-image generation at 512× 512 resolution, using Stable Diffusion v1.5 with

varying classifier-free guidance weight w = 2, 3, 5, 8. . . . . . . . . . . . . . . 277

B.13 (a): Adjusting tmin in Restart on VP/EDM; (b): Adjusting the Restart interval

length when tmin = 0.06. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

B.14 Generated images with text prompt="A photo of an astronaut riding a horse

on mars" and w = 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

B.15 Generated images with text prompt="A raccoon playing table tennis" and

w = 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

B.16 Generated images with text prompt="Intricate origami of a fox in a snowy

forest" and w = 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

B.17 Generated images with text prompt="A transparent sculpture of a duck made

out of glass" and w = 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

18



B.18 Plot of the functions y = N(1 − (N−1
N

)x) and y = min(x,N) for N = 1000

representing, respectively, the expected number of modes captured by I.I.D.

sampling distribution with N equiprobable modes and the optimal coverage. 286

B.19 Example of a too large PG weight causing aliasing artifacts. . . . . . . . . . 287

B.20 Left: plot of random samples (in blue) of the two-dimensional Gaussian mixture

distribution (density depicted in red). I.I.D. samples often recover the same

modes, while particle guidance with a radial kernel captures all modes. Right:

average number of modes recovered with 10 samples as a function of the weight

given by the diffusion noising terms and the potential weight when using an

RBF kernel with Euclidean and radial distances respectively. As expected

with little weight to the potential terms we obtain approximately 6.5 modes

recovered in line with the I.I.D. diffusion performance. Further increasing the

potential weight on the Euclidean creates instability. . . . . . . . . . . . . . 289

B.21 Text prompt: Captain Marvel Exclusive Ccxp Poster Released Online By Marvel296

B.22 Text prompt: Portrait of Tiger in black and white by Lukas Holas . . . . . . 296

B.23 Text prompt: VAN GOGH CAFE TERASSE copy.jpg . . . . . . . . . . . . 296

B.24 Text prompt: A transparent sculpture of a duck made out of glass . . . . . . 297

B.25 Text prompt: A unicorn in a snowy forest . . . . . . . . . . . . . . . . . . . 297

B.26 SVGD guidance, with varying αt . . . . . . . . . . . . . . . . . . . . . . . . 297

B.27 Uncurated samples from Langevin dynamics [197] and PFGM (RK45), both

using the NCSNv2 architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 308

B.28 Interpolation on CelebA 64× 64 by PFGM . . . . . . . . . . . . . . . . . . . 310

B.29 Temperature scaling on CelebA 64× 64 by PFGM . . . . . . . . . . . . . . . 311

B.30 CIFAR-10 samples from PFGM (RK45) . . . . . . . . . . . . . . . . . . . . 312

B.31 CelebA 64× 64 samples from PFGM (RK45, NCSNv2 architecture) . . . . . 313

B.32 LSUN bedroom 256× 256 samples from PFGM (RK45) using DDPM channel

configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

B.33 Illustration of the phase alignment analysis . . . . . . . . . . . . . . . . . . . 315

B.34 FID score in the training course when varying D, (a) w/o and (b) w/ moving

average. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

19



B.35 Visualization of the first two coordinates (x0,x1) for the 1000-dimensional

synthetic data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

B.36 Visualization of the first two coordinates (x0,x1) for the generated data (blue)

versus true data (orange). From the top row to the bottom row: the latent

dimension of the neural network is set to 4 (a), 8 (b), and 32 (c). . . . . . . . 327

B.37 Generated samples on CIFAR-10 with varied hyper-parameter for noise injec-

tion (α). Images from top to bottom rows are produced by models trained

with D = 64/128/2048/∞. We use the same random seeds for finite Ds during

image generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

B.38 Generated images on FFHQ 64× 64 dataset, by (left) D = 128 and (right)

EDM (D →∞). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

20



List of Tables

3.1 CIFAR-10 sample quality (FID, Inception) and number of function evalua-

tion (NFE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 FID and NFE on CelebA 642 . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 FID score together with NFE on ImageNet-64. . . . . . . . . . . . . . . . . . 68

4.2 FID score and NFE on class-cond. ImageNet-128. . . . . . . . . . . . . . . . 69

4.3 Ablations on class-cond. ImageNet-64. . . . . . . . . . . . . . . . . . . . . . 70

4.4 Molecular docking performance on PDBBind. For each method, we report the

percentage of top-1 predictions within 2Å of the ground truth for the full test

set and the subset restricted to unseen proteins. Runtime in seconds (* refers

to run on CPU). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1 Uncond. CIFAR-10 with EDM and PFGM++ . . . . . . . . . . . . . . . . . 94

6.1 Quality of generated conformer ensembles for the GEOM-DRUGS test set

in terms of Coverage (%) and Average Minimum RMSD (Å). We follow the

experimental setup from [189], for experimental details and introduction of

the baselines please refer to Appendix B.4.2. . . . . . . . . . . . . . . . . . 112

7.1 CIFAR-10 sample quality (FID, Inception) and number of function evalua-

tion (NFE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2 CIFAR-10 sample quality (FID, Inception) and number of function evalua-

tion (NFE). All the methods below the NCSNv2 backbone separator use the

NCSNv2 [49] network architecture as the backbone. . . . . . . . . . . . . . . 131

7.3 FID/NFE on CelebA 64× 64 . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.4 Bits/dim on CIFAR-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

21



8.1 CIFAR-10 sample quality (FID) and number of function evaluations (NFE). 150

8.2 FFHQ 64× 64 sample quality (FID) with 79 NFE in unconditional setting . 151

8.3 LSUN Churches 256× 256 sample quality (FID) with 99 NFE in unconditional

setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.4 FID score versus quantization bit-widths on CIFAR-10. . . . . . . . . . . . . 153

9.1 Summary of results for different physical equations, their properties, and

whether they can be converted to a generative model. x′ and x are the source

point and the field point, and r ≡ |x− x′|. . . . . . . . . . . . . . . . . . . . 161

9.2 Dispersion relation suggests new generative models . . . . . . . . . . . . . . 164

A.1 Values of different observables under different joint probability distributions.

For every method we take 5000 samples (of 10 particles), samples from p̃0

and p̂0 were obtained reweighting 50000 samples of the independent I.I.D.

distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

B.1 Wall-clock training time (s) per 50 iterations on VE with NCSN++ [35] . . . 247

B.2 Wall-clock training time (s) per 50k images on EDM with improved NCSN++ [27]247

B.3 CIFAR-10 sample quality (FID, Inception) and number of function evalua-

tion (NFE), with standard deviation. . . . . . . . . . . . . . . . . . . . . . . 248

B.4 Specific network configurations on ImageNet . . . . . . . . . . . . . . . . . . 254

B.5 CIFAR-10 sample quality (FID score) and number of function evaluations (NFE)

on VP [37] for baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

B.6 CIFAR-10 sample quality (FID score), number of function evaluations (NFE)

and Restart configurations on VP [37], VP with DPM-Solver-3 [26], EDM [27]

and PFGM++ [31] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

B.7 ImageNet 64× 64 sample quality (FID score) and number of function evalua-

tions (NFE) on EDM [27] for baselines . . . . . . . . . . . . . . . . . . . . . 278

B.8 ImageNet 64 × 64 sample quality (FID score), number of function evalua-

tions (NFE) and Restart configurations on EDM [27] . . . . . . . . . . . . . 279

22



B.9 Numerical results on Stable Diffusion v1.5 with a classifier-free guidance weight

w = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

B.10 Numerical results on Stable Diffusion v1.5 with a classifier-free guidance weight

w = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

B.11 Numerical results on Stable Diffusion v1.5 with a classifier-free guidance weight

w = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

B.12 Numerical results on Stable Diffusion v1.5 with a classifier-free guidance weight

w = 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

B.13 Restart (Steps=66) configurations on Stable Diffusion v1.5 . . . . . . . . . . 281

B.14 Quality of generated conformer ensembles for the GEOM-DRUGS test set

in terms of Coverage (%) and Average Minimum RMSD (rA). Minimizing

recall and precision refers to the hyperparameter choices that minimize the

respective median AMR on the validation set. . . . . . . . . . . . . . . . . . 293

B.15 FID scores versus zmax on PFGM w/ DDPM++ . . . . . . . . . . . . . . . . 301

B.16 NFE and FID scores of different backward ODEs in PFGM . . . . . . . . . . 302

B.17 NFE and FID scores of w/ and w/o substitution . . . . . . . . . . . . . . . . 303

B.18 The FID scores in Figure 7.6c of different methods and NFE. . . . . . . . . . 304

B.19 FID/NFE on LSUN bedroom 256× 256 . . . . . . . . . . . . . . . . . . . . 305

B.20 Signal-to-noise ratio of different dataset-method pairs . . . . . . . . . . . . . 306

B.21 CIFAR-10 sample quality (FID, Inception) and number of function evalua-

tion (NFE). All the methods below the NCSNv2 backbone separator use the

NCSNv2 [49] network architecture as the backbone. . . . . . . . . . . . . . . 307

B.22 FID/NFE on CelebA 64× 64 . . . . . . . . . . . . . . . . . . . . . . . . . . 308

B.23 Wall-clock sampling time (second) . . . . . . . . . . . . . . . . . . . . . . . . 309

B.24 Min, Average and standard deviation of FID on CIFAR-10 using three different

sets of random seeds for sampling . . . . . . . . . . . . . . . . . . . . . . . . 323

B.25 FID and NFE on CIFAR-10, using the Stable Target Field [23] in training

objective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

B.26 Maximum mean discrepancy between the generated data and the true data. . 326

23



24



Chapter 1

Introduction

Generative models have significantly transformed the way people work, create, and learn in

recent years. Prominent applications include ChatGPT [1], text-to-image models [2]–[4], text-

to-3D models [5], [6], and text-to-video models [7], [8]. Such capabilities can greatly stimulate

creativity and enhance work efficiency across numerous sectors, including education, the

gaming industry, social media, and professional editing software. The training of generative

models in machine learning is based on the assumption that training data are sampled from

an unknown data distribution [9]. Modern generative models commonly use deep neural

networks to approximate complex data distributions based on finite training data. They can

generate novel data points by sampling from these modeled distributions.

Among the various data types utilized in generative modeling, high-dimensional data poses

a significant challenge primarily due to the curse of dimensionality. As the dimensionality

increases, the volume of data space expands exponentially. This phenomenon makes it difficult

to capture and model the data distribution effectively with limited training data in high-

dimensional space. Additionally, the data distributions of interest are often highly complex

and multi-modal, further complicating the task of generative modeling. Recently, diffusion

models [10]–[12], along with broader physics-inspired generative models [13], have emerged as

strong frameworks and achieved impressive results on a wide spectrum of generative tasks

for high-dimensional data. Before diffusion models, the primary approaches included: (i)

Generative Adversarial Networks (GANs [14]) that utilize an adversarial training objective;

(ii) models trained with maximum likelihood objectives, such as PixelCNN [15] and normal-

25



izing flow models [16], [17]; (iii) Variational Autoencoders [18], [19] and (iv) Energy-based

models [20], [21]. Each method, however, involves its own set of drawbacks: (i) can result in

unstable training and low diversity in generated samples; (ii) necessitates specific architectural

designs that may limit model capacity; (iii) demands careful coordination between various

neural networks; and (iv) suffers from slow training and sampling speeds. Utilizing natural

physical processes as encoders to transform data into noise, diffusion models learn to

perform generative tasks by reversing the physical processes. This approach allows them

to bypass many of the limitations associated with earlier generative models.

1.1 Generative Modeling by Reversing Physical Processes

Drawing on principles from thermodynamics [10], diffusion models involve two opposing

processes: a forward process that transforms the data distribution into a simpler prior

smoothly over time, and a reverse process that iteratively denoises a sample from this noisy

prior. The forward process in diffusion models is a simple Brownian motion that degrades

the data by gradually adding Gaussian noise. To reverse this process, it is sufficient to

learn a time-dependent vector field, known as the score function, and iteratively solve a

differential equation [22]. Unlike GANs and VAEs, the training of diffusion models does not

require synchronization between multiple neural networks, resulting in a more stable training

procedure. Additionally, they are less constrained by architectural requirements and employ

an iterative process similar to the concatenation of neural networks, enhancing their overall

capacity. This stability and enhanced capacity allow diffusion models to scale effectively to

large datasets.

Despite their advantages, diffusion models encounter several challenges, including a high-

variance training process, especially when handling multi-modal data, and a slow iterative

sampling process. Additionally, the independent and identically distributed (i.i.d.) sampling

procedure often results in repetitive samples. These issues underscore the need for approaches

to stabilize and improve the training of diffusion models on complex datasets

and demand for new techniques aimed at accelerating the sampling process and

promoting diversity within mini-batch samples. Furthermore, diffusion models are

26



just one of many physics-inspired generative models. Numerous physical processes beyond

Brownian motion remain untapped and can be utilized to construct generative models. This

leads us to an important question: Can we discover other physics-inspired generative

models that exhibit even better properties? In the following sections, we will briefly

summarize the improved training and sampling techniques for diffusion models and discuss

our research on developing other physics-inspired generative models, as detailed in later

chapters.

1.1.1 Improved Training Techniques for Diffusion Models

The training of diffusion models utilizes a perturbation-denoising approach to estimate the

vector fields. This starts by perturbing clean data using Gaussian noise; then, the network

reconstructs the original from the perturbed samples [12]. However, with complex multi-modal

data, many clean data points can be perturbed to similar noisy samples, creating ambiguous

training targets and causing instability.

In [23], we tackle this problem by implementing a weighted summation of multiple clean

data points to estimate the true target, pinpointing the direction of the true vector field from

the perturbed sample. This novel training objective generalizes conventional single-point

estimate, and significantly reduces variance in training targets. Consequently, this

results in improved sample quality, enhanced stability, and accelerated training

speed in various variants of diffusion models.

Another challenge facing diffusion models is the requirement to learn a non-linear and

highly complex mapping from a uni-modal Gaussian distribution to a multi-modal data

distribution. This complexity makes training more difficult and results in generative ordinary

differential equation (ODE) [24] trajectories with strong curvature. To address this issue,

we augment diffusion models with discrete latent variables. These discrete latents help to

capture different modes within the data distribution, and the task for diffusion models then

becomes capturing continuous variations within each mode based on the given discrete latent.

The separated modeling of discrete and continuous variation significantly simplifies the

learning of the model’s complex noise-to-data mapping. This approach effectively

reduces the curvature of the diffusion model’s generative ODE and makes the overall training

27



loss smaller, especially at larger diffusion times.

1.1.2 Improved Sampling Techniques for Diffusion Models

Solving differential equations in the sampling process of diffusion models often involves speed

and quality trade-offs. Deterministic samplers (ODE-based) [25]–[27] are fast but plateau in

performance, whereas stochastic samplers (SDE-based) [27], [28] provide better sample quality

but are slower. Our analysis attributes this difference to sampling errors: ODE-samplers

have smaller discretization errors, while stochasticity in SDE contracts errors accumulated

during the sampling process [29].

Based on these insights, in [29], we propose a novel sampling algorithm called Restart,

which combines the advantages of ODE and SDE. The method alternates between

adding substantial noise during additional forward steps and strictly adhering to a reverse

ODE process. The inclusion of substantial forward noise enhances the contraction effect of

the stochasticity, while adherence to the reverse ODE allows for expedited sampling. This

separation of stochasticity and the deterministic sampling process proves highly beneficial,

as Restart surpasses SDE and ODE samplers in speed and quality on standard

benchmarks (CIFAR-10 and ImageNet-64), and exhibits a superior balance of text-

image alignment, visual quality, and diversity on large-scale text-to-image Stable

Diffusion model.

Conventionally, diffusion models generate independent and identically distributed samples

from the model distribution. In practice, however, the model often needs to be sampled

multiple times to achieve a diverse set of mini-batch samples, which incurs costs orthogonal

to sampling time. We propose moving beyond the typical assumption of independent

samples to enhance sample diversity and efficiency. Our approach introduces an extension of

diffusion-based generative sampling called particle guidance. In this method, a joint-particle

time-evolving potential enforces diversity by adding mutual repulsive forces

between samples (particles). Empirically, our framework improves diversity and mitigates

memorization in applications such as text-to-image generation and molecular conformer

generation.

28



Figure 1.1: Gradual zooming-out views of the 2D electric field in a 3D augmented space. As
the distance from the data support increases, the charge distribution progressively resembles
a point charge. This indicates that the charge distribution effectively “collapses" to a single
point when we are sufficiently far away.

1.1.3 Generative Models from Alternative Physical Processes

With diffusion models as a notable example, physics-inspired generative models encompass a

forward process that simplifies complex data distributions into prior distributions over time,

and an associated reverse process, or sampling process, that gradually reverts these prior

distributions back to their original data distribution. Consequently, in order to define

new physics-inspired generative models, it is necessary to identify an appropriate

forward process. This process should naturally simplify the data distribution over time

and be reversible, and its associated vector field should be easy to learn by neural networks.

Drawing on electrostatics, we chart a novel path for physics-inspired generative models

and introduce the Poisson Flow Generative Models (PFGM) [30] and its extended version,

PFGM++ [31]. PFGM interprets data as electrical charges in an augmented space. As

shown in Figure 1.1, when we move sufficiently far from the data support, the charge

distribution collapses into a point charge, and the electric field appears radial in every

direction. Consequently, it can be demonstrated that the electric field lines emitted by these

charges define a bijection between the data distribution and a uniform distribution on a large

hemisphere. Empirically, this new family of models surpasses diffusion models in terms of

sample quality, sampling speed, and robustness. Additionally, we explore the duality between

physical processes and generative models with an aim to conceptualize and design additional

new physics-inspired generative models [13].

29



1.2 Summary of Thesis

This thesis is structured into three thematic parts. Below, we provide brief summary of each

part.

Part I focuses on developing new techniques aimed at stabilizing the training in diffusion

models, and straightening their generative trajectories, particularly when dealing with complex

multi-modal datasets.

• In Chapter 3, we remedy the high-variance problem in diffusion models’ objective,

by incorporating a reference batch, which we use to calculate weighted conditional

scores as more stable training targets. We show that the procedure indeed helps in the

challenging intermediate regime by reducing (the trace of) the covariance of training

targets. This chapter is based on [23].

• In Chapter 4, we augment diffusion models with learnable discrete latents, inferred with

an encoder, and train DM and encoder end-to-end. The discrete latents significantly

simplify learning the DM’s complex noise-to-data mapping by reducing the curvature

of the DM’s generative ODE, and improving sample quality on various datasets with

ODE samplers. This chapter is based on [32].

Part II is about accelerating the sampling process of diffusion models, as well as promoting

diversity by exerting mutually repulsive forces among samples. All the techniques discussed

are training-free and can be readily applied to any pre-trained diffusion models.

• In Chapter 5, we propose a novel sampling algorithm called Restart to combine the best

of previous ODE and SDE samplers. Restart alternates between adding substantial

noise in additional forward steps and strictly following a backward ODE. Empirically,

the Restart sampler surpasses previous SDE and ODE samplers in both speed and

accuracy. The chapter is based on [29].

• In Chapter 6, we propose particle guidance, an extension of diffusion-based generative

sampling where a joint-particle time-evolving potential enforces diversity. We test

the framework in both conditional image generation, where we can increase diversity

30



without affecting quality, and molecular conformer generation, where we improve the

median error over previous methods. This chapter is built upon [33].

Part III investigates a new family of generative models inspired by electrostatics theory

and its unification with diffusion models in an extended view. This part also provides a

forward-looking perspective on the methodologies for constructing generative models given

any physical process.

• In Chapter 7, we introduce a new type of generative model — Poisson Flow Generative

Model (PFGM) — based on electrostatic theory. We interpret the data points as

electrical charges on the z = 0 hyperplane in a space augmented with an additional

dimension z, generating a high-dimensional electric field (the gradient of the solution

to Poisson equation). We prove that if these charges flow upward along electric field

lines, their initial distribution in the z = 0 plane transforms into a distribution on the

hemisphere of radius r that becomes uniform in the r → ∞ limit. We demonstrate

that PFGM outperforms previous state-of-the-art diffusion models while offering faster

image generation speeds.

• In Chapter 8, we expand the theory of electrostatics used in PFGM, unifying diffusion

models and PFGM. More intriguingly, interpolation between the two models reveals

a sweet spot with new state-of-the-art performance in image generation. We provide

a theoretical explanation for why both PFGM and diffusion models are sub-optimal

solutions for practitioners. This chapter is built on [31].

• In Chapter 9, we present a unifying framework and algorithm that transforms physical

processes into smooth density flow generative models. Additionally, we introduce a

classification criterion based on the dispersion relations of the underlying physical

partial differential equations (PDEs). This theoretical approach can be applied to

various physical PDEs, leading to the discovery of new families of generative models.

This chapter is based on [13].

We conclude the thesis and discuss current limitations in Chapter 10.

31



32



Chapter 2

Background on Diffusion Models

In this chapter, we formulate the problem of generative modeling and explain how diffusion

models tackle this task. Since other physics-inspired generative models share similar training

and sampling techniques with diffusion models, we will use diffusion models as an anchor to

examine the training and sampling processes of physics-inspired generative models.

2.1 Problem Formulation

A generative model is a statistical model designed to approximate an unknown data distri-

bution p(x). It parameterizes a model distribution pθ using a learnable function, such as a

deep neural network, characterized by parameters θ. In a typical problem setting, we have a

finite number of N -dimensional data points {x1,x2, . . . ,xn}, each sampled independently and

identically from an unknown data distribution p(x), as the training set. The primary objective

is to closely approximate the true data distribution by estimating θ from the available n data

points:

pθ(x) ≈ p(x)

Upon determining the model parameters θ, it is possible to generate novel data by sampling

from the model distribution pθ(x). Therefore, a valid generative model must fulfill two key

requirements: (1) the ability to approximate the data distribution accurately and

33



(2) the capability to allow sampling from the model distribution.

2.2 Constructing Generative Models with Thermodynam-

ical Theory

Figure 2.1: The forward SDE and backward SDE/ODE in diffusion models.

Inspired by the Brownian motion in thermodynamics [10], diffusion models gradually

degrade the complex data distribution into an equilibrium state through a forward process1.

This thesis adopts the continuous perspective on such degradation, as discussed in [34]. An

intuitive analogy can be drawn from a drop of ink diffusing in water. The forward process is

an SDE with no learned parameter in the form of:

dx = f(x, t)dt+ g(t)dw, (2.1)

where x ∈ Rd with x(0) ∼ p0 being the data distribution, t ∈ [0, 1], f : Rd × [0, 1] → Rd,

g : [0, 1] → R, and w ∈ Rd is the standard Wiener process. It gradually transforms the

data distribution to a known prior (e.g., Gaussian distribution) as time goes from 0 to 1.
1For simplicity, we focus on the version where the diffusion coefficient g(t) is independent of x(t).

34



We denote the time-dependent intermediate marginal distribution in the forward process as

pt. The sampling of diffusion models is done via a corresponding backward (reverse-time)

SDE [22]:

dx =
[
f(x, t)− g(t)2∇x log pt(x)

]
dt̄+ g(t)dw̄, (2.2)

dx =
[
f(x, t)− g(t)2sθ(x, t)

]
dt̄+ g(t)dw̄, (2.3)

dx =

[
f(x, t)− 1

2
g(t)2sθ(x, t)

]
dt̄− 1

2
g(t)2sθ(x, t)dt̄+ g(t)dw̄, (2.4)

where ·̄ denotes time traveling backward from 1 to 0, and ∇x log pt(x) in the drift term is

the score function of intermediate distribution at time t. The backward SDE induces exactly

the same intermediate distribution pt as the forward SDE. Intuitively, the forward process

describes a natural degradation from data to Gaussian distribution, and the backward process

iteratively reverses such process to reconstruct clean data. Further, the backward SDE has a

marginally equivalent probability flow ODE [35]:

dx =

[
f(x, t)− 1

2
g(t)2∇x log pt(x)

]
dt̄, (2.5)

Both backward SDE (Equation 2.4) and ODE (Equation 2.5) progressively recover p0 from

the prior p1. Figure 2.1 summarizes the forward process and the corresponding backward

SDE/ODE in diffusion models. To construct a generative model from this framework,

estimating the score function by neural network sθ suffices. Let’s denote the model distribution

pθ(x) as the distribution at time t = 0 in the following SDE, which substitutes the score

function with neural functions in Equation 2.4:

dx =
[
f(x, t)− g(t)2sθ(x, t)

]
dt̄+ g(t)dw̄

35



If one has an accurate approximation of the score function, given by

sθ(x, t) ≈ ∇x log pt(x),

then it can be demonstrated that the model distribution closely approximates the data

distribution under certain mild conditions [36]: pθ(x) ≈ p(x). Consequently, diffusion models

meet the two criteria outlined in Section 2.1: the ability to accurately approximate the

data distribution and to allow sampling from the model distribution. There are two types

of commonly used SDEs in the literature, i.e., Variance Exploding (VE) and Variance

Preserving (VP), considered in [37]. For VE, f(x, t) = 0, g(t) = σ(t)
√

2 log σmax/σmin,

where σ(t) = σmin(σmax/σmin)
t; for VP, f(x, t) = −1

2
β(t), g(t) =

√
β(t), where β(t) =

(βmax − βmin)t+ βmin.

Some chapters in this thesis are built on a simplified version of the diffusion framework,

termed EDM, proposed in [27]. The forward process in EDM has the simple form as follows:

dx =
√

2σ̇(t)σ(t)dw, (2.6)

where σ(t) is typically set to t, and is ranging from 0 to some large values. It can be regarded

as a special case of Equation 2.1, with f(x, t) = 0, g(t) =
√
2σ̇(t)σ(t). The forward process

leads to a simple perturbation kernel, which will be discussed in the next section. The

corresponding backward SDE and ODE are dx = −2σ̇(t)σ(t)∇x log pt(x)dt+
√
2σ̇(t)σ(t)dw

and dx = −σ̇(t)σ(t)∇x log pt(x)dt, respectively.

2.3 Training

In the previous section, we have shown that by estimating the score of the transformed data

distribution at time t, ∇x log pt(x), via a neural network sθ(x, t), we are able to construct a

valid generative model. A popular approach to learning the score function is to minimize a

36



weighted sum of the denoising score-matching objective [38]:

min
θ

Et∼qt(t)λ(t)Ex∼p0Ex̃∼pt|0(·|x)
[
∥sθ(x̃, t)−∇x̃ log pt|0(x̃|x)∥22

]
, (2.7)

where qt is the distribution for time variable, e.g ., U [0, 1] for VE/VP [35] and a log-normal

distribution for EDM [27], λ(t) is a positive weighting function to keep the time-dependent

loss around the same magnitude [35], p0 is the data distribution and pt|0(x̃|x) is the transition

kernel denoting the conditional distribution of x̃ given x2. Specifically, diffusion models

“destroy” data according to a diffusion process utilizing Gaussian transition kernels pt|0. For

example, the perturbation kernel pertaining to the EDM SDE (Equation 2.6) is Gaussian

with varying time-dependent standard deviations: pt|0(x̃|x) = N (x, σ(t)2I)

Although the training target in the objective is the conditional score ∇x̃ log pt|0(x̃|x), the

optimal model sθ∗(x̃, t) matches∇x log pt(x) almost everywhere given sufficient data and model

capacity [38]. There are several equivalent objectives that can obtained by reparameterizing

the neural network, such as x0-prediction, v-prediction [39] and the preconditioning technique

in [27], to reduce the variance or amplify the learning signal in the training target.

2.4 Sampling

After the estimation of the score function, we can sample from diffusion models via a reverse-

time SDE [22] or a marginally-equivalent ODE [37], with the initial samples sampled from

the known prior x ∼ p1(x):

(SDE) dx =
[
f(x, t)− g(t)2sθ(x, t)

]
dt̄+ g(t)dw̄ (2.8)

(ODE) dx =

[
f(x, t)− 1

2
g(t)2sθ(x, t)

]
dt̄ (2.9)

Prior works employ the Euler-Maruyama method, Predictor-Corrector solver [37] or

adaptive step size method [28] to solve the diffusion SDE (Equation 2.8). To solve the

diffusion ODE (Equation 2.9), previous papers utilize first-order (e.g., forward Euler method)
2We omit “(0)” from x(0) when there is no ambiguity.

37



or higher-order (e.g., Heun’s method, RK45) numerical solvers [25], [27]. [26], [40] further

utilize the multistep method to stabilize the sampling process. Diffusion ODE is generally

faster to solve than diffusion SDE and is more commonly used in practical scenarios due to

speed considerations.

38



Part I

Improved Training Techniques for Diffu-

sion Models

When handling complex multi-modal data distributions, diffusion models often exhibit a

high-variance training process, and their backward ODE trajectories are highly curved. In

Part I, we focus on developing new training techniques aimed at stabilizing the training of

diffusion models (Chapter 3) and reducing the curvature of generative trajectories (Chapter 4).

We have observed that these enhanced training techniques consistently improve the models’

performance across datasets and modalities, and result in higher-quality samples during

inference.

39



Chapter 3

Reducing the Variance in the Score

Estimation

Despite providing impressive empirical results, the training algorithms of diffusion models can

be further improved by reducing the variance of the training targets in their objective for score

estimation. We argue that the source of such variance lies in the handling of intermediate

noise-variance scales, where multiple modes in the data affect the direction of reverse paths.

In this chapter, we propose to remedy the problem by incorporating a reference batch into

the training objective of diffusion models, to calculate weighted conditional scores. We show

that the procedure indeed helps in the challenging intermediate regime by reducing (the trace

of) the covariance of training targets. The new stable targets can be seen as trading bias for

reduced variance, where the bias vanishes with increasing reference batch size. Empirically,

we show that the new objective improves the image quality, stability, and training speed of

various popular diffusion models across datasets with both general ODE and SDE solvers.

This chapter was previously published as [23].

3.1 Introduction

Diffusion models have recently achieved impressive results on a wide spectrum of generative

tasks. However, we argue that, despite achieving impressive empirical results, the current

training scheme of diffusion models can be further improved. In particular, the variance of

40



training targets in the denoising score-matching (DSM) objective can be large and lead to

suboptimal performance. To better understand the origin of this instability, we decompose

the score field into three regimes. Our analysis shows that the phenomenon arises primarily

in the intermediate regime, which is characterized by multiple modes or data points exerting

comparable influences on the scores. In other words, in this regime, the sources of the noisy

examples generated in the course of the forward process become ambiguous. We illustrate

the problem in Figure 3.1a, where each stochastic update of the score model is based on

disparate targets.

In this chapter, we propose a generalized version of the denoising score-matching objective,

termed the Stable Target Field (STF) objective. The idea is to include an additional reference

batch of examples that are used to calculate weighted conditional scores as targets. We apply

self-normalized importance sampling to aggregate the contribution of each example in the

reference batch. Although this process can substantially reduce the variance of training

targets (Figure 3.1b), especially in the intermediate regime, it does introduce some bias.

However, we show that the bias together with the trace-of-covariance of the STF training

targets shrinks to zero as we increase the size of the reference batch.

Experimentally, we show that our STF objective achieves new state-of-the-art performance

on CIFAR-10 unconditional generation when incorporated into EDM [27]. The resulting

FID score [41] is 1.90 with 35 network evaluations. STF also improves the FID/Inception

scores for other variants of score-based models, i.e., VE and VP SDEs [35], in most cases. In

addition, it enhances the stability of converged score-based models on CIFAR-10 and CelebA

642 across random seeds, and helps avoid generating noisy images in VE. STF accelerates

the training of score-based models (3.6× speed-up for VE on CIFAR-10) while obtaining

comparable or better FID scores. To the best of our knowledge, STF is the first technique to

accelerate the training process of diffusion models. We further demonstrate the performance

gain with increasing reference batch size, highlighting the negative effect of large variance.

Our contributions are summarized as follows: (1) We detail the instability of the current

diffusion models training objective in a principled and quantitative manner, characterizing

a region in the forward process, termed the intermediate phase, where the score-learning

targets are most variable. (2) We propose a generalized score-matching objective, stable

41



v1

v2

v3

(a) DSM

v1
v2

v3

(b) STF

Figure 3.1: Illustration of differences between the DSM objective and our proposed STF
objective. The “destroyed” images (in blue box) are close to each other while their sources
(in red box) are not. Although the true score in expectation is the weighted average of vi,
the individual training updates of the DSM objective have a high variance, which our STF
objective reduces significantly by including a large reference batch (yellow box).

target field, which provides more stable training targets. (3) We analyze the behavior of the

new objective and prove that it is asymptotically unbiased and reduces the trace-of-covariance

of the training targets by a factor pertaining to the reference batch size in the intermediate

phase under mild conditions. (4) We illustrate the theoretical arguments empirically and

show that the proposed STF objective improves the performance, stability, and training

speed of score-based methods. In particular, it achieves the current state-of-the-art FID score

on the CIFAR-10 benchmark when combined with EDM.

3.2 Understanding the Training Target in Score-Matching

Objective

The vanilla denoising score-matching objective at time t is:

ℓDSM(θ, t) = Ep0(x)Ept|0(x(t)|x)[∥sθ(x(t), t)−∇x(t) log pt|0(x(t)|x)∥22], (3.1)

where the network is trained to fit the individual targets ∇x(t) log pt|0(x(t)|x) at (x̃, t) – the

“influence" exerted by clean data x on x(t). We can swap the order of the sampling process

42



by first sampling x̃ from pt and then x from p0|t(·|x̃). Thus, sθ has a closed form minimizer:

s∗DSM(x(t), t) = Ep0|t(x|x(t))[∇x(t) log pt|0(x(t)|x)] = ∇x(t) log pt(x(t)). (3.2)

The score field is a conditional expectation of ∇x̃ log pt|0(x̃|x) with respect to the posterior

distribution p0|t. In practice, a Monte Carlo estimate of this target can have high variance

[42], [43]. In particular, when multiple modes of the data distribution have comparable

influences on x(t), p0|t(·|x(t)) is a multi-mode distribution, as also observed in [44]. Thus

the targets ∇x(t) log pt|0(x(t)|x) vary considerably across different x and this can strongly

affect the estimated score at (x̃, t), resulting in slower convergence and worse performance in

practical stochastic gradient optimization [45].

To quantitatively characterize the variations of individual targets at different time, we

propose a metric – the average trace-of-covariance of training targets at time t:

VDSM(t) = Ept(x̃)
[
Tr(Covp0|t(x|x̃)(∇x̃ log pt|0(x̃|x)))

]
= Ept(x̃)Ep0|t(x|x̃)

[
∥∇x̃ log pt|0(x̃|x))−∇x̃ log pt(x̃)∥22

]
. (3.3)

Phases: 1 2 3

(a) ODE Sampling

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

V D
SM

(t) Two Gaussians
CIFAR-10

(b) VDSM(t) versus t

Figure 3.2: (a): Illustration of the three phases
in a two-mode distribution. (b): Estimated
VDSM(t) for two distributions. We normalize
the maximum value to 1 for illustration pur-
poses.

We use VDSM(t) to define three successive

phases relating to the behavior of training

targets. As shown in Figure 3.2a, the three

phases partition the score field into near, in-

termediate, and far regimes (Phase 1∼3 re-

spectively). Intuitively, VDSM(t) peaks in the

intermediate phase (Phase 2), where multiple

distant modes in the data distribution have

comparable influences on the same noisy per-

turbations, resulting in unstable targets. In

Phase 1, the posterior p0|t concentrates around one single mode, thus low variation. In Phase

3, the targets remain similar across modes since limt→1 pt|0(x̃|x) ≈ p1 for commonly used

transition kernels.

43



We validate this argument empirically in Figure 3.2b, which shows the estimated VDSM(t)

for a mixture of two Gaussians as well as a subset of CIFAR-10 dataset [46] for a more

realistic setting. Here we use VE SDE, i.e., pt|0(x̃|x) = N
(
x, σ2

m(
σM
σm

)2tI
)

for some σm and

σM [35]. VDSM(t) exhibits similar phase behavior across t in both toy and realistic cases.

Moreover, VDSM(t) reaches its maximum value in the intermediate phase, demonstrating the

large variations of individual targets. We defer more details to Appendix B.1.1.

3.3 Variance Reduction with Stable Target Field

The vanilla denoising score-matching approach (Equation 3.2) can be viewed as a Monte Carlo

estimator, i.e., ∇x(t) log pt(x̃) = Ep0|t(x|x(t))[∇x(t) log pt|0(x(t)|x)] ≈ 1
n

∑n
i=1∇x(t) log pt|0(x̃|xi)

where xi is sampled from p0|t(·|x̃) and n = 1. The variance of a Monte Carlo estimator

is proportional to 1
n
, so we propose to use a larger batch (n) to counter the high variance

problem described in Section 3.2. Since sampling directly from the posterior p0|t is not

practical, we first apply importance sampling with the proposal distribution p0. Specifically,

we sample a large reference batch BL = {xi}ni=1 ∼ pn0 and get the following approximation:

∇x(t) log pt(x̃) ≈
1

n

n∑
i=1

p0|t(xi|x(t))
p0(xi)

∇x(t) log pt|0(x(t)|xi).

The importance weights can be rewritten as p0|t(x|x(t))/p0(x) = pt|0(x(t)|x)/pt(x(t)). How-

ever, this basic importance sampling estimator has two issues. The weights now involve

an unknown normalization factor pt(x(t)) and the ratio between the prior and posterior

distribution can be large in high dimensional spaces. To remedy these problems, we appeal

to self-normalization techniques [47] to further stabilize the training targets:

∇x(t) log pt(x̃) ≈
n∑
i=1

pt|0(x̃|xi)∑n
j=1 pt|0(x̃|xj)

∇x(t) log pt|0(x̃|xi). (3.4)

We term this new training target in Equation 3.4 as Stable Target Field (STF). In practice, we

sample the reference batch BL = {xi}ni=1 from pn0 and obtain x(t) by applying the transition

44



kernel to the “first” training data x1. Taken together, the new STF objective becomes:

ℓSTF(θ, t) = E{xi}ni=1∼pn0Ex(t)∼pt|0(·|x1)[∥∥∥sθ(x(t), t)− n∑
k=1

pt|0(x̃|xk)∑n
j=1 pt|0(x̃|xj)

∇x(t) log pt|0(x̃|xk)
∥∥∥2
2

]
. (3.5)

When n = 1, STF reduces to the vanilla denoising score-matching (Equation 3.1). When

n > 1, STF incorporates a reference batch to stabilize training targets. Intuitively, the new

weighted target assigns larger weights to clean data with higher influence on x̃, i.e., higher

transition probability pt|0(x(t)|x).

Similar to our analysis in Section 3.2, we can again swap the sampling process in Equa-

tion 3.5 so that, for a perturbation x̃, we sample the reference batch BL = {xi}ni=1 from

p0|t(·|x(t))pn−10 , where the first element involves the posterior, and the rest follow the data

distribution. Thus, the minimizer of the new objective (Equation 3.5) is (derivation can be

found in Appendix A.1.1)

s∗STF(x̃, t) = Ex1∼p0|t(·|x̃)E{xi}ni=2∼p
n−1
0

[
n∑
k=1

pt|0(x̃|xk)∑
j pt|0(x̃|xj)

∇x̃ log pt|0(x̃|xk)

]
. (3.6)

Note that although STF significantly reduces the variance, it introduces bias: the minimizer

is no longer the true score. Nevertheless, in Section 3.4, we show that the bias converges to 0

as n→∞, while reducing the trace-of-covariance of the training targets by a factor of n when

p0|t ≈ p0. We further instantiate the STF objective (Equation 3.5) with transition kernels in

the form of pt|0(x̃|x) = N (x, σ2
t I), which includes EDM [27], VP (through reparameterization)

and VE [35]:

Ex1∼p0|t(·|x̃)E{xi}ni=2∼p
n−1
0

∥∥∥∥sθ(x(t), t)− 1

σ2
t

n∑
k=1

exp
(
−∥x(t)−xk∥22

2σ2
t

)
∑

j exp
(
−∥x(t)−xj∥22

2σ2
t

)(xk − x(t))

∥∥∥∥2
2

 .
To aggregate the time-dependent STF objective over t, we sample the time variable t from

the training distribution qt and apply the weighting function λ(t). Together, the final training

objective for STF is Et∼qt(t) [λ(t)ℓSTF(θ, t)]. We summarize the training process in Algorithm 1.

45



The small batch size |B| is the same as the normal batch size in the vanilla training process.

We defer specific use cases of STF objectives combined with various popular diffusion models

to Appendix A.1.4.

Algorithm 1 Learning the stable target field
Input: Training iteration T , Initial model sθ, dataset D, learning rate η.
for t = 1 . . . T do

Sample a large reference batch BL from D, and subsample a small batch B = {xi}|B|i=1

from BL
Uniformly sample the time {ti}|B|i=1 ∼ qt(t)

|B|

Obtain the batch of perturbed samples {xi(ti)}|B|i=1 by applying the transition kernel pt|0
on B
Calculate the stable target field of BL for all xi(ti):

vBL(xi(ti)) =
∑

x∈BL
pti|0(xi(ti)|x)∑

y∈BL
pti|0(xi(ti)|y)∇xi(ti) log pti|0(xi(ti)|x)

Calculate the loss: L(θ) = 1
|B|
∑|B|

i=1 λ(ti)∥sθ(xi(ti), ti)− vBL(xi(ti))∥22
Update the model parameter: θ = θ − η∇L(θ)

end for
return sθ

3.4 Theoretical Analysis of Stable Target Field

In this section, we analyze the theoretical properties of our approach. In particular, we

show that the new minimizer s∗STF(x̃, t) (Equation 3.6) converges to the true score asymptoti-

cally (Section 3.4.1). Then, we show that the proposed STF reduces the trace-of-covariance

of training targets propositional to the reference batch size in the intermediate phase, with

mild conditions (Section 3.4.2).

3.4.1 Asymptotic Behavior

Although in general s∗STF(x̃, t) ̸= ∇x̃ log pt(x̃), the bias shrinks toward 0 with a increasing

n. In the following theorem we show that the minimizer of STF objective at (x̃, t), i.e.,

s∗STF(x̃, t), is asymptotically normal when n→∞.

46



Theorem 1. Suppose ∀t ∈ [0, 1], 0 < σt <∞, then

√
n (s∗STF(x̃, t)−∇x̃ log pt(x̃))

d−→ N
(
0,

Cov(∇x̃pt|0(x̃|x))
pt(x̃)2

)
(3.7)

We defer the proof to Appendix A.1.2. The theorem states that, for commonly used

transition kernels, s∗STF(x̃, t) − ∇x̃ log pt(x̃) converges to a zero mean normal, and larger

reference batch size (n) will lead to smaller asymptotic variance. As can be seen in Equation 3.7,

when n→∞, s∗STF(x̃, t) highly concentrates around the true score ∇x̃ log pt(x̃).

3.4.2 Trace of Covariance

We now highlight the small variations of the training targets in the STF objective compared

to the DSM. As done in Section 3.2, we study the trace-of-covariance of training targets in

STF:

VSTF(t) = Ept(x̃)

[
Tr

(
Covp0|t(·|x̃)pn−1

0

(
n∑
k=1

pt|0(x̃|xk)∑
j pt|0(x̃|xj)

∇x̃ log pt|0(x̃|xk)

))]
.

In the following theorem we compare VSTF with VDSM. In particular, we can upper bound

VSTF(t) by

Theorem 2. Suppose ∀t ∈ [0, 1], 0 < σt <∞, then

VSTF(t) ≤
1

n− 1

(
VDSM(t) +

√
3d

σ2
t

√
Ept(x̃)Df

(
p0(x) ∥ p0|t(x|x̃)

))
+O

(
1

n2

)
,

where Df is an f-divergence with f(y) =

(1/y − 1)2 (y < 1.5)

8y/27− 1/3 (y ≥ 1.5)

. Further, when n ≫ d

and p0|t(x|x̃) ≈ p0(x) for all x̃, VSTF(t) ⪅
VDSM(t)
n−1 .

We defer the proof to Appendix A.1.3. The second term that involves f -divergence Df is

necessary to capture how the coefficients, i.e., pt|0(x̃|xk)/
∑

j pt|0(x̃|xj) used to calculate the

weighted score target, vary across different samples x̃. This term decreases monotonically

as a function of t. In Phase 1, p0|t(x|x̃) differs substantially from p0(x) and the divergence

47



term Df dominates. In contrast to the upper bound, both VSTF(t) and VDSM(t) have minimal

variance at small values of t since the training target is always dominated by one x. The

theorem has more relevance in Phase 2, where the divergence term decreases to a value

comparable to VDSM(t). In this phase, we empirically observe that the ratio of the two terms

in the upper bound ranges from 10 to 100. Thus, when we use a large reference batch size (in

thousands), the theorem implies that STF offers a considerably lower variance (by a factor of

10 or more) relative to the DSM objective. In Phase 3, the second term vanishes to 0, as

pt ≈ pt|0 with large σt for commonly used transition kernels. As a result, STF reduces the

average trace-of-covariance of the training targets by at least n− 1 times in the far field.

Together, we demonstrate that the STF targets have diminishing bias (Theorem 1) and

are much more stable during training (Theorem 2). These properties make the STF objective

more favorable for diffusion models training with stochastic gradient optimization.

3.5 Experiments

In this section, we first empirically validate our theoretical analysis in Section 3.4, especially

for variance reduction in the intermediate phase (Section 3.5.1). Next, we show that the

STF objective improves various diffusion models on image generation tasks in terms of

image quality (Section 3.5.2). In particular, STF achieves state-of-the-art performance on

top of EDM. In addition, we demonstrate that STF accelerates the training of diffusion

models (Section 3.5.3), and improves the convergence speed and final performance with an

increasing reference batch size (Section 3.5.3).

3.5.1 Variance Reduction in the Intermediate Phase

The proposed Algorithm 1 utilizes a large reference batch to calculate the stable target field

instead of the individual target. In addition to the theoretical analysis in Section 3.4, we

provide further empirical study to characterize the intermediate phase and verify the variance

reduction effects by STF. Apart from V (t), we also quantify the average divergence between

the posterior p0|t(·|x̃) and the data distribution p0 at time t (introduced in Theorem 2):

D(t) = Ept(x̃)
[
Df

(
p0|t(x|x̃) ∥ p0(x)

)]
. Intuitively, the number of high-density modes in

48



Phase ! Phase 2 Phase 3

(a)

Phase ! Phase 2 Phase 3

(b)

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

V S
TF

(t)

Two Gaussians

n = 1
n = 10
n = 50
n = 100

(c)

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

V S
TF

(t)

CIFAR-10-4096

n = 1
n = 100
n = 1000

(d)

Figure 3.3: (a, b): VDSM(t) and D(t) versus t. We normalize the maximum values to 1 for
illustration purposes. (c, d): VSTF(t) with a varying reference batch size n.

p0|t(·|x̃) grows as D(t) decreases. To investigate their behaviors, we construct two synthetic

datasets: (1) a 64-dimensional mixture of two Gaussian components (Two Gaussians), and

(2) a subset of 1024 images of CIFAR-10 (CIFAR-10-4096).

Figure 3.3a and Figure 3.3b show the behaviors of VDSM(t) and D(t) on Two Gaussian and

CIFAR-10-4096. In both settings, VDSM(t) reaches its peak in the intermediate phase (Phase

2), while D(t) gradually decreases over time. These results agree with our theoretical

understanding from Section 3.2. In Phase 2 and 3, several modes of the data distribution

have noticeable influences on the scores, but only in Phase 2 are the influences much more

distinct, leading to high variations of the individual target ∇x̃ log pt|0(x̃|x),x ∼ p0|t(·|x̃).

Figure 3.3c and Figure 3.3d further show the relationship between VSTF(t) and the

reference batch size n. Recall that when n = 1, STF degenerates to individual target and

VSTF(t) = VDSM(t). We observe that VSTF(t) decreases when enlarging n. In particular,

the predicted relation VSTF(t) ⪅ VDSM(t)/(n− 1) in Theorem 2 holds for the two Gaussian

datasets where Df is small. On the high dimensional dataset CIFAR-10-4096, the stable

target field can still greatly reduce the training target variance with large reference batch

sizes n.

3.5.2 Image Generation

We demonstrate the effectiveness of the new objective on image generation tasks. We

consider CIFAR-10 [46] and CelebA 64 × 64 [51] datasets. We set the reference batch

size n to 4096 (CIFAR-10) and 1024 (CelebA 642). We choose the current state-of-the-art

score-based method EDM [27] as the baseline, and replace the DSM objective with our

49



Table 3.1: CIFAR-10 sample quality (FID, Inception) and number of function evalua-
tion (NFE).

Methods Inception ↑ FID ↓ NFE ↓

StyleGAN2-ADA [48] 9.83 2.92 1
DDPM [12] 9.46 3.17 1000
NCSNv2 [49] 8.40 10.87 1161
PFGM [50] 9.68 2.48 104

VE [35]

DSM - RK45 9.27 8.90 264
STF (ours) - RK45 9.52 ↑ 5.51 ↓ 200
DSM - PC 9.68 2.75 2000
STF (ours) - PC 9.86 ↑ 2.66 ↓ 2000

VP [35]

DSM - DDIM 9.20 5.16 100
STF (ours) - DDIM 9.28 ↑ 5.06 ↓ 100
DSM - RK45 9.46 2.90 140
STF (ours) - RK45 9.43 ↓ 2.99 ↑ 140

EDM [27]

DSM - Heun, NCSN++ 9.82 1.98 35
STF (ours) - Heun, NCSN++ 9.93 ↑ 1.90 ↓ 35
DSM - Heun, DDPM++ 9.78 1.97 35
STF (ours) - Heun, DDPM++ 9.79 ↑ 1.92 ↓ 35

STF objective during training. We also apply STF to two other popular diffusion models,

VE/VP SDEs [35]. For a fair comparison, we directly adopt the architectures and the

hyper-parameters in [52] and [35] for EDM and VE/VP respectively. In particular, we use the

improved NCSN++/DDPM++ models [27] in the EDM scheme. To highlight the stability

issue, we train three models with different seeds for VE on CIFAR-10. We provide more

experimental details in Appendix B.1.1.

Numerical Solver. The reverse-time ODE and SDE in scored-based models are com-

patible with any general-purpose solvers. We use the adaptive solver RK45 method [35],

[53] (RK45) for VE/VP and the popular DDIM solver [54] for VP. We adopt Heun’s 2nd

order method (Heun) and the time discretization proposed by [27] for EDM. For SDEs,

we apply the predictor-corrector (PC) sampler used in [35]. We denote the methods in a

objective-sampler format, i.e., A-B, where A ∈ {DSM, STF} and B ∈ {RK45, PC, DDIM,

50



Heun}. We defer more details to Appendix B.1.1.

Results. For quantitative evaluation of the generated samples, we report the FID

scores [41] (lower is better) and Inception [55] (higher is better). We measure the sampling

speed by the average NFE (number of function evaluations). We also include the results of

several popular generative models [11], [12], [48], [50] for reference.

Table 3.1 and Table 3.2 report the sample quality and the sampling speed on unconditional

generation of CIFAR-10 and CelebA 642. Our main findings are: (1) STF achieves new

state-of-the-art FID scores for unconditional generation on CIFAR-10 bench-

mark. As shown in Table 3.1, The STF objective obtains a FID of 1.90 when incor-

porated with the EDM scheme. To the best of our knowledge, this is the lowest FID

score on the unconditional CIFAR-10 generation task. In addition, the STF objective

consistently improves the EDM across the two architectures. (2) The STF objective im-

proves the performance of different diffusion models. We observe that the STF

objective improves the FID/Inception scores of VE/VP/EDM on CIFAR-10, for most

ODE and SDE samplers. STF consistently provides performance gains for VE across

datasets. Remarkably, our objective achieves much better sample quality using ODE

samplers for VE, with an FID score gain of 3.39 on CIFAR-10, and 2.22 on Celeba 642.

Table 3.2: FID and NFE on
CelebA 642

Methods/NFEs FID ↓ NFE ↓

CelebA 642 - RK45

VE (DSM) 7.56 260

VE (STF) 5.34 266

CelebA 642 - PC

VE (DSM) 9.13 2000

VE (STF) 8.28 2000

For VP, STF provides better results on the popular DDIM

sampler, while suffering from a slight performance drop when

using the RK45 sampler. (3) The STF objective stabi-

lizes the converged VE model with the RK45 sampler.

In Appendix B.1.2, we report the standard deviations of per-

formance metrics for converged models with different seeds

on CIFAR-10 with VE. We observe that models trained with

the STF objective give more consistent results, with a smaller

standard deviation of used metrics.

We further provide generated samples in Appendix B.1.3. One interesting observation is

that when using the RK45 sampler for VE on CIFAR-10, the generated samples from the

STF objective do not contain noisy images, unlike the vanilla DSM objective.

51



Effects of the Reference Batch Size According to our theory (Theorem 2), the upper

bound of the trace-of-covariance of the STF target decreases proportionally to the reference

batch size. Here we study the effects of the reference batch size (n) on model performances

during training. The FID scores are evaluated on 1k samples using the RK45 sampler. As

shown in Figure 3.5, models converge faster and produce better samples when increasing n.

It suggests that smaller variations of the training targets can indeed speed up training and

improve the final performances of diffusion models.

3.5.3 Accelerating Training of Diffusion Models

(a) CIFAR-10 (b) CelebA 64× 64

Figure 3.4: FID and generated samples throughout training on (a) CIFAR-10 and (b) CelebA
642.

The variance-reduction techniques in neural network training can help to find better

optima and achieve faster convergence rate [45], [56], [57]. In Figure 3.4, we demonstrate the

FID scores every 50k iterations during the course of training. Since our goal is to investigate

relative performance during the training process, and because the FID scores computed on

1k samples are strongly correlated with the full FID scores on 50k sample [49], we report FID

scores on 1k samples for faster evaluations. We apply ODE samplers for FID evaluation, and

measure the training time on two NVIDIA A100 GPUs. For a fair comparison, we report

the average FID scores of models trained by the DSM and STF objective on VE versus the

wall-clock training time (h).

52



40 60 80
Wall-clock training time (h)

40

50

60

70

FI
D

 S
co

re

CIFAR-10

DSM (n=1)
STF (n=128)
STF (n=512)
STF (n=4096)

Figure 3.5: FID scores in the training
with varying reference batch size.

The STF objective achieves better FID scores with

the same training time, although the calculation of the

target field by the reference batch introduces slight

overhead (Algorithm 1). In Figure 3.4a, we show that

the STF objective drastically accelerates the training

of diffusion models on CIFAR-10. The STF objective

achieves comparable FID scores with 3.6× less training

time (25h versus 90h). The training time improvement

for CelebA 642 datasets is less significant than on

CIFAR-10. Our hypothesis is that the STF objective

is more effective when there are multiple well-separated modes in data distribution, e.g ., the

ten classes in CIFAR-10, where the DSM objective suffers from relatively larger variations

in the intermediate phase. In addition, the converged models have better final performance

when paired with the STF on both datasets.

3.6 Related Works

Different phases of diffusion models. The idea of diffusion models having different

phases has been explored in prior works though the motivations and definitions vary [27], [58].

[27] argues that the training targets are difficult and unnecessary to learn in the very near

field (small t in our Phase 1), whereas the training targets are always dissimilar to the true

targets in the intermediate and far field (our Phase 2 and Phase 3). As a result, their solution

is sampling t with a log-normal distribution to emphasize the relevant region (relatively large

t in our Phase 1). In contrast, we focus on reducing large training target variance in the

intermediate and far field, and propose STF to better estimate the true target (cf. [27]). [58]

identifies a key region where the model learns perceptually rich contents, and determines

the training weights λ(t) based on the signal-to-noise ratio (SNR) at different t. As SNR

is monotonically decreasing over time, the resulting up-weighted region does not match our

Phase 2 characterization. In general, our proposed STF method reduces the training target

variance in the intermediate field and is complementary to previous improvements of diffusion

53



models.

Importance sampling. The technique of importance sampling has been widely adopted

in machine learning community, such as debiasing generative models [59], counterfactual

learning [60] and reinforcement learning [61]. Prior works using importance sampling to

improve generative model training include reweighted wake-sleep (RWS) [62] and importance

weighted autoencoders (IWAE) [63]. RWS views the original wake-sleep algorithm [64] as

importance sampling with one latent variable, and proposes to sample multiple latents to

obtain gradient estimates with lower bias and variance. IWAE utilizes importance sampling

with multiple latents to achieve greater flexibility of encoder training and tighter log-likelihood

lower bound compared to the standard variational autoencoder [65], [66].

Variance reduction for Fisher divergence. One popular approach to score-matching

is to minimize the Fisher divergence between true and predicted scores [67]. [68] links the

Fisher divergence to denoising score-matching [38] and studies the large variance problem (in

O(1/σ4
t )) of the Fisher divergence when t → 0. They utilize a control variate to reduce

the variance. However, this is typically not a concern for current diffusion models as the

time-dependent objective can be viewed as multiplying the Fisher divergence by λ(t) = σ2
t ,

resulting in a finite-variance objective even when t→ 0.

3.7 Conclusion

We identify large target variance as a significant training issue affecting diffusion models. We

define three phases with distinct behaviors, and show that the high-variance targets appear

in the intermediate phase. As a remedy, we present a generalized score-matching objective,

Stable Target Field (STF), whose formulation is analogous to the self-normalized importance

sampling via a large reference batch. Albeit no longer an unbiased estimator, our proposed

objective is asymptotically unbiased and reduces the trace-of-covariance of the training

targets, which we demonstrate theoretically and empirically. We show the effectiveness of our

method on image generation tasks, and show that STF improves the performance, stability,

and training speed over various state-of-the-art diffusion models. Future directions include a

principled study on the effect of different reference batch sampling procedures. Our presented

54



approach is uniformly sampling from the whole dataset {xi}ni=2 ∼ pn−10 , so we expect that

training diffusion models with a reference batch of more samples in the neighborhood of

x1 (the sample from which x̃ is perturbed) would lead to an even better estimation of the

score field. Moreover, the three-phase analysis can effectively capture the behaviors of other

physics-inspired generative models, such as PFGM [50] or the more advanced PFGM++ [31].

Therefore, we anticipate that STF can enhance the performance and stability of these models

further.

55



56



Chapter 4

Towards Straighter Diffusion Trajectories

with Discrete Latents

Another challenge in the training of diffusion models (DMs) lies in their complex noise-to-data

mapping. The generative ODE in diffusion models defines a highly non-linear mapping from a

uni-modal Gaussian noise to the multi-modal data distribution, which has strong curvature for

their ODE trajectories and arguably represents an unnecessarily challenging learning problem.

How can we simplify the mapping? This chapter proposes Discrete-Continuous Latent

Variable Diffusion Models (DisCo-Diff) to simplify this task by introducing complementary

discrete latent variables. We augment DMs with learnable discrete latents, inferred with an

encoder, and train DM and the encoder end-to-end. DisCo-Diff does not rely on pre-trained

networks, making the framework universally applicable. The discrete latents significantly

simplify learning the DM’s complex noise-to-data mapping by reducing the curvature of the

DM’s generative ODE. An additional autoregressive transformer models the distribution of

the discrete latents, a simple step because DisCo-Diff requires only few discrete variables

with small codebooks. We validate DisCo-Diff on toy data, several image synthesis tasks as

well as molecular docking, and find that introducing discrete latents consistently improves

model performance.

This chapter is based on the paper [32].

57



4.1 Introduction

The generation of diffusion models (DMs) can be formulated either as a stochastic (diffusion

SDE) or, more conveniently, as a deterministic process (diffusion ODE) that takes as input

random noise from the Gaussian prior and transforms it into data through a generative

ordinary differential equation (ODE) [24]. The Gaussian prior corresponds to the DM’s

continuous latent variables, where the data is uniquely encoded through the ODE-defined

mapping.

However, realistic data distributions are typically high-dimensional, complex and often

multimodal. Directly encoding such data into a single unimodal Gaussian distribution and

learning a corresponding reverse noise-to-data mapping is challenging. The mapping, or

generative ODE, necessarily needs to be highly complex, with strong curvature, and one may

consider it unnatural to map an entire data distribution to a single Gaussian distribution.

In practice, conditioning information, such as class labels or text prompts, often helps to

simplify the complex mapping by offering the DM’s denoiser additional cues for more accurate

denoising. However, such conditioning information is typically of a semantic nature and, even

given a class or text prompt, the mapping remains highly complex. For instance, in the case

of images, even within a class we find images with vastly different styles and color patterns,

which corresponds to large distances in pixel space.

In this chapter, we propose Discrete-Continuous Latent Variable Diffusion Models

(DisCo-Diff), DMs augmented with additional discrete latent variables that encode additional

high-level information about the data and can be used by the main DM to simplify its de-

noising task (Figure 4.1). These discrete latents are inferred through an encoder network and

learnt end-to-end together with the DM. Thereby, the discrete latents directly learn to encode

information that is beneficial for reducing the DM’s score matching objective and making the

DM’s hard task of mapping simple noise to complex data easier. Indeed, in practice, we find

that they significantly reduce the curvature of the DM’s generative ODE and reduce the DM

training loss in particular for large diffusion times, where denoising is most ambiguous and chal-

lenging. In contrast to previous work [70]–[72], we do not rely on domain-specific pre-trained

encoder networks, making our framework general and universally applicable. To facilitate

58



Figure 4.1: Discrete-Continuous Latent Variable Diffusion Models (DisCo-Diff) augment DMs
with additional discrete latent variables that capture global appearance patterns, here shown for
images of huskies. (a) During training, discrete latents are inferred through an encoder, for images
a vision transformer [69], and fed to the DM via cross-attention. Backpropagation is facilitated by
continuous relaxation with a Gumbel-Softmax distribution. To sample novel images, an additional
autoregressive model is learnt over the distribution of discrete latents. (b) Schematic visualization of
generative denoising diffusion trajectories. Different colors indicate different discrete latent variables,
pushing the trajectories toward different modes.

59



sampling of discrete latent variables during inference, we learn an autoregressive model over

the discrete latents in a second step. We only use a small set of discrete latents with relatively

small codebooks, which makes the additional training of the autoregressive model easy. We

specifically advocate for the use of auxiliary discrete instead of continuous latents; see 4.2.2.

While previous works [73]–[78] use fully discrete latent variable-based approaches to

model images, this typically requires large sets of spatially arranged latents with large code-

books, which makes learning their distribution challenging. DisCo-Diff, in contrast, carefully

combines its discrete latents with the continuous latents (Gaussian prior) of the DM and

effectively separates the modeling of discrete and continuous variations within the data. It

requires only a few discrete latents.

To demonstrate its universality, we validate the DisCo-Diff framework on several different

tasks. As a motivating example, we study 2D toy distributions, where the discrete latents

learn to capture different modes with smaller curvature during sampling. We then tackle

image synthesis, where the discrete latents learn large-scale appearance, often associated

with global style and color patterns. Thereby, they offer complementary benefits to semantic

conditioning information. Quantitatively, DisCo-Diff universally boosts output quality and

achieves state-of-the-art performance on several ImageNet generation benchmarks. In addition,

we experimentally validate that auxiliary discrete latents are superior to continuous latents

in our setup, and study different network architectures for injecting the discrete latents into

the DM network. A careful hierarchical design can encourage different discrete latents to

encode different image characteristics, such as shape vs. color, reminiscent of observations

from the literature on generative adversarial networks [79], [80]. We also apply DisCo-Diff

to molecular docking, a critical task in drug discovery, where the discrete latents again

improve performance by learning to indicate critical atoms in the interaction and, in this way,

deconvolving the multimodal uncertainty given by different possible poses from continuous

variability of each pose. Moreover, we augment Poisson Flow Generative Models [81], [82]

with discrete latent variables to showcase that the framework can also be applied to other

“iterative” generative models, other than regular DMs, observing similar benefits.

Contributions. (i) We propose DisCo-Diff, a novel framework for combining discrete

and continuous latent variables in DMs in a universal manner. (ii) We extensively validate

60



(a) 128× 128 (b) Shared discrete latents

Figure 4.2: Samples generated from DisCo-Diff trained on the ImageNet dataset: (a) randomly
sampled discrete latents and class labels; (b) samples in each grid sharing the same discrete
latent. The class label for the top/bottom row is fixed to coffeepot/malamute.

DisCo-Diff, significantly boosting model quality in all experiments, and achieving state-of-the-

art performance on several image synthesis tasks. (iii) We present detailed analyses as well

as ablation and architecture design studies that demonstrate the unique benefits of discrete

latent variables and how they can be fed to the main denoiser network. (iv) Overall, we

provide insights for designing performant generative models. We make the case for discrete

latents by showing that real-world data is best modeled with generative frameworks that

leverage both discrete and continuous latents. We intentionally developed a simple and

universal framework that does not rely on pre-trained encoders to offer a broadly applicable

modeling approach to the community.

4.2 Augmenting Diffusion Models with Discrete Latents

In Section 4.2.1, we first formally define DisCo-Diff’s generative model and training framework,

before discussing and carefully motivating our approach in detail in Section 4.2.2. In

Section 4.2.3, we highlight critical architecture considerations.

61



4.2.1 Two-Stage Training Procedure

In our DisCo-Diff framework (Figure 4.1), we augment a DM’s learning process with an

m-dimensional discrete latent z ∈ Nm, where each dimension is a random variable from

a categorical distribution of codebook size k. There are three learnable components: the

denoiser neural network Dθ : Rd × R× Nm → Rd, corresponding to DisCo-Diff’s DM, which

predicts denoised images conditioned on diffusion time t and discrete latent z; an encoder

Eϕ : Rd → Nm, used to infer discrete latents given clean images y. It outputs a categorical

distribution over the k categories for each discrete latent; and a post-hoc auto-regressive model

Aψ, which approximates the distribution of the learned discrete latents z by
∏m

i=1 pψ(zi|z<i).

DisCo-Diff’s training process is divided into two stages. In the first stage, the denoiser Dθ

and the encoder Eϕ are co-optimized in an end-to-end fashion. This is achieved by extending

the denoising score matching objective (as expressed in Eq. 2.7) to include learnable discrete

latents z associated with each data y:

EyEz∼Eϕ(y)Et,n
[
λ(t)||Dθ(y + n, t, z)− y||2

]
, (4.1)

where y is sampled from the data distribution p0(y). In contrast to the standard objective

in Equation 2.7, which focuses on learning the reparameterization of the score ∇x log pt(x),

the denoiser in our approach is essentially learning the reparameterization of the conditional

score ∇x log pt(x|z) by x0-prediction: the score function in Equation 2.7 can be expressed as

s∗θ(x, z, t) = (Dθ(x, t, z)−x)/t2. The convolution of the probability density functions pt(·|z) =

p(·|z) ∗N (0, t2I). This conditional score originates from conditioning the DM on the discrete

latents z, which are inferred by the encoder Eϕ. The denoiser network Dθ can better capture

the time-dependent score (i.e., achieving a reduced loss) if the score for each sub-distribution

pt(x|z) is simplified. Therefore, the encoder Eϕ, which has access to clean input data, is

encouraged to encode useful information into the discrete latents and help the denoiser to more

accurately reconstruct the data. Naively backpropagating gradients into the encoder through

the sampling of the discrete latent variables z is not possible. Hence, during training we rely on

a continuous relaxation based on the Gumbel-Softmax distribution [83] (see B.2.2 for details).

When training the denoiser network, we randomly replace the discrete latent variables

62



with a non-informative null-embedding with probability 0.1. Thereby, the DM learns both

a discrete latent variable-conditioned and a regular, unconditional score. During sampling,

we can combine these scores for classifier-free guidance [84] with respect to the model’s own

discrete latents, and amplify their conditioning effect (details in 4.3.1).

We can interpret DisCo-Diff as a variational autoencoder (VAE) [66], [85]–[87] with

discrete latents and a DM as decoder. VAEs often employ regularization on their latents. We

did not find this to be necessary, as we use only very low-dimensional latent variables, e.g.,

10 in our ImageNet experiments, with relatively small codebooks. Moreover, we employ a

strictly non-zero temperature in the Gumbel-Softmax relaxation, encouraging stochasticity.

In the second stage, we train the autoregressive model Aψ to capture the distribution

of the discrete latent variables pϕ(z) defined by pushing the clean data through the trained

encoder. We use a maximum likelihood objective as follows:

Ey∼p0(y),z∼Eϕ(y)

[
m∑
i=1

log pψ(zi|z<i)

]
(4.2)

Since we set m to a relatively small number, it becomes very easy for the model to handle such

short discrete vectors, which makes this second-stage training efficient. Also, the additional

sampling overhead due to this autoregressive component on top of the DM becomes negligible.

At inference time, when using DisCo-Diff to generate novel samples, we first sample a discrete

latent variable from the autoregressive model, and then sample the DM with an ODE or

SDE solver.

4.2.2 Reduced Curvature through End-to-end training

We will now critically discuss and motivate our design choices and also discuss the most

relevant related works. For an extended discussion of related work see Section 4.4.

The curvature of diffusion models. DMs, in their simpler ODE-based formulation

(β(t) = 0 in 2.4), learn a complex noise-to-data mapping. The noise is drawn from an

analytically tractable, unimodal Gaussian distribution. As the data is encoded in this

distribution, we can consider this high-dimensional Gaussian distribution the DM’s continuous

latent variables (DMs can generally be seen as deep latent variable models [88], [89]). However,

63



Figure 4.3: Modeling 2D mixture of Gaussians. Left: Data distribution. Middle: Generated
data by regular DM. Right: Generated data by DisCo-Diff. We use different colors to distinguish
data generated by different discrete latents. We further provide zoom-ins and visualize some ODE
trajectories by dotted lines.

2 4 6 8 10
backward ODE time t

0

10

20

30

40

cu
rv

at
ur

e 
ap

po
x.

DisCo-Diff
Diffusion Model

5 10

10 2

100

(a)

0.0 2.5 5.0 7.5 10.0
backward ODE time t

0.00

0.25

0.50

0.75

1.00

1.25
no

rm
 o

f J
ac

ob
ia

n
DisCo-Diff
Diffusion Model

0 10
10 4

10 2

100

(b)

Figure 4.4: Modeling 2D mixture of Gaussians: analysis. The mean curvature (left) and
norm of the neural networks’ Jacobians (right) along the reverse-time ODE trajectories as function
of t.

the mapping from unstructured noise to a diverse, typically multimodal data distribution

necessarily needs to be highly complex. This corresponds to a highly non-linear generative

ODE with strong curvature, which is challenging to learn and also makes synthesis slow by

requiring a fine discretization. To illustrate this point, we trained a DM on a simple 2D

mixture of Gaussians, where we observe bent ODE trajectories near the data (Figure 4.3,

middle). This effect is significantly stronger in high dimensions.

A simpler mapping with discrete latent variables. The role of the discrete latents

in DisCo-Diff is to reduce this complexity and make the DM’s learning task easier. The single

64



Figure 4.5: Group hierarchical DisCo-Diff. Different discrete latents are fed to the denoiser
U-Net at different feature resolutions.

noise-to-data mapping is effectively partitioned into a set of simpler mappings, each with less

curvature in its generative ODE. We argue that it is unnatural to map an entire multimodal

complex data distribution to a single continuous Gaussian distribution. Instead, we believe

that an ideal generative model should combine both discrete and continuous latent variables,

where discrete latents capture global multimodal structure and the continuous latents model

local continuous variability. With this in mind, we suggest to only use a moderate number of

discrete latents with small codebooks. On the one hand, a few latents can already significantly

simplify the DM’s learning task. On the other hand, if we only have few latents with small

codebooks, training a generative model—an autoregressive one in our case—over the discrete

latent variable distribution itself, will be simple (which we observe, see Section 4.3).

Validation in 2D. To validate our reasoning, let us revisit the toy 2D mixture of

Gaussians. In Figure 4.3, right, we show the DisCo-Diff model’s synthesized data. The

discrete latents learn to capture the different modes, and DisCo-Diff’s DM component models

the individual modes. The DM’s ODE trajectories for different latents are now almost perfectly

straight, indicating a simple conditional score function. In Figure 4.4, left, we quantitatively

show strongly reduced curvature along the entire diffusion time t. In Figure 4.4, right, as

a measure of network complexity we also show the norms of the Jacobians of the employed

denoiser networks. We see significantly reduced norms for DisCo-Diff for all t, suggesting

that the denoiser’s task is indeed strongly simplified and less network capacity is required.

65



Using few, global latents with relatively small codebooks is important. DisCo-

Diff is fundamentally different from most contemporary generative modeling frameworks

using discrete latent variables [73]–[78], [86]. These works use autoencoders to encode images

in its entirety into spatially-arranged discrete tokens, essentially a down-sampled version

of the input. However, this is also unnatural: Encoding continuous variability, like smooth

pose, shape or color variations in images, into discrete latents requires the use of very large

codebooks and, on top of that, these models generally rely on very high-dimensional spatial

grids of discrete latents (e.g. 32x32=1024 latents with codebooks >1, 000 [73], while we use

just 10 latents with a codebook size of 100 in our main image models). This makes learning

the distribution over the discrete latents very challenging for these types of models, while it

is simple in DisCo-Diff, where they just supplement the DM. In DisCo-Diff, we get the best

from both continuous and discrete latent variables, using only few global latents.

End-to-end training is essential. DisCo-Diff’s discrete latents are in spirit similar to

leveraging non-learnt conditioning information. As pointed out by [70], this has been crucial

to facilitate training high-performance generative models like strong class-conditional [90],

[91] or text-to-image DMs [3], [4], [92]. However, DisCo-Diff aims to fundamentally address

the problem, rather than relying on given conditioning data. Moreover, the data usually has

significant variability even given, for instance, a class label. Our discrete latents can further

reduce the complexity (as observed, see Section 4.3).

However, could we use pre-trained encoder networks, such as CLIP [93] or others [94], [95],

to produce encodings to condition on and whose distribution could be modeled in a second

stage? This is explored by previous works [70]–[72], [96], but has important disadvantages: (i)

The most crucial downside is that such encoders are not universally available, but typically

only for images. However, we seek to develop a universally applicable framework. For

instance, we also apply DisCo-Diff to molecular docking (see Section 4.3.2), where no suitable

pre-trained networks are available. (ii) In DisCo-Diff, the job of the discrete latents is to

make the denoising task of the DM easier, which is especially ambiguous at large noise levels

(in fact, we find that the latents help in particular to reduce the loss at these high noise

levels, see Figure 4.7). It is not obvious what information about the data the latents should

best encode for this. By learning them jointly with the DM objective itself, they are directly

66



trained to help the DM learn better denoisers and lower curvature generative ODEs. (iii) A

generative model needs to be trained over the encodings in the second stage. In DisCo-Diff,

we can freely choose an appropriate number of latents and codebook size to simplify the

DM’s denoising task, while also facilitating easy learning of the autoregressive model in the

second stage. When using pre-trained encoders, one must work with the encodings by these

methods, which were not developed for generative modeling. We attribute DisCo-Diff’s strong

generation performance to its end-to-end learning.

The latent variables must be discrete. Could we also use auxiliary continuous latent

variables? Continuous latents are almost always based on underlying Gaussian distributions.

Hence, if such continuous latents learnt multimodal structure in the data to simplify the main

DM’s denoising task, as DisCo-Diff’s discrete latents do, then learning a distribution over

them in the second stage would again require a highly non-linear difficult-to-learn mapping

from Gaussian noise to the multimodal encodings. This is the problem DisCo-Diff aims to

solve in the first place. [97] augment DMs with non-spatial continuous latent variables, but

they only focus on semantic face image manipulation. InfoDiffusion [98] conditions DMs on

discrete latent variables. However, it focuses on learning disentangled representations, also

primarily for low-resolution face synthesis, and uses a mutual information-based objective.

Contrary to DisCo-Diff, neither of these works tackles high-quality synthesis for challenging,

diverse datasets.

In our ablation studies (Section 4.3.1), we further validate our design choices and motiva-

tions that we presented here.

4.2.3 Architecture

As discussed, DisCo-Diff enhances the training of continuous DMs by incorporating learnable

discrete latent variables that are meant to capture the global underlying discrete structure

of the data. To ensure that DisCo-Diff works as intended, suitable network architectures

are necessary. Below, we summarize our design choices, focusing on DisCo-Diff for image

synthesis. However, the framework is general, requiring only an encoder to infer discrete

latents from clean input data and a conditioning mechanism that integrates these discrete

latents into the denoiser network. In fact, we also apply our model to 2D toy data and

67



Table 4.1: FID score together with NFE on ImageNet-64.

FID NFE

without class-conditioning

IC-GAN [99] 9.20 1
BigGAN [100] 16.90 1
iDDPM [101] 16.38 50
EDM [27] 6.20 50
SCDM [70] 3.94 50
DisCo-Diff (ours) 3.70 50

class-conditioned, ODE sampler

EDM [27] 2.36 79
PFGM++ [82] 2.32 79
DisCo-PFGM++ (ours) 1.92 78
DisCo-Diff (ours) 1.65 78

class-conditioned, stochastic sampler

iDDPM [101] 2.92 250
ADM [90] 2.07 250
CDM [102] 1.48 8000
VDM++ [91] 1.43 511
EDM (w/ Restart [29]) 1.36 623
RIN [103] 1.23 1000
DisCo-Diff (ours; w/ Restart [29]) 1.22 623

class-conditioned, w/ adversarial objective

IC-GAN [99] 6.70 1
BigGAN-deep [100] 4.06 1
CTM [104] 1.92 1
StyleGAN-XL [105] 1.51 1

molecular docking.

Encoder. For image modeling, we utilize a ViT [69] as the backbone for the encoder.

We extend the classification mechanism in ViTs, and treat each discrete token as a different

classification token. Concretely, we add m extra classification tokens to the sequence of image

patches. This architectural design naturally allows each discrete latent to effectively capture

the global characteristic of the images, akin to performing data classification.

Discrete latent variable conditioning. For image experiments, DisCo-Diff’s denoisers

are U-Nets as widely used for DMs [27], [106]. For the discrete latent variable conditioning,

we utilize cross-attention [4]. Drawing inspiration from text-to-image generation, DisCo-Diff’s

discrete latents function analogously to text, exerting a global influence on the denoiser’s

output. Specifically, image features act as queries and discrete latents are keys and values

68



Table 4.2: FID score and NFE on class-cond. ImageNet-128.

FID NFE

ADM [90] 5.91 250
ADM-G [90] 2.97 250
CDM (32, 64, 128) [102] 3.52 8100
RIN [103] 2.75 1000
VDM++, w/ ODE sampler [91] 2.29 115
DisCo-Diff, w/ ODE sampler (ours) 2.08 114

in the cross-attention layer, enabling discrete latents to globally shape the image features.

We add a cross-attention layer after each self-attention layer within the U-Net. In our main

models, all discrete latents are given to all cross-attention layers.

Group hierarchical models. To enhance the interpretability of discrete latents, we

also explore the inductive bias inherent in the U-Net architecture and feed distinct latent

groups into various resolution features in the up-sampling branch of the U-Net, as shown in

Figure 4.5. This approach draws inspiration from StyleGAN [79], where distinct latents are

introduced at different resolutions, enabling each to capture different image characteristics by

the neural network’s inductive bias. This design fosters a group hierarchy, where the groups

associated with higher-resolution features offer supplementary information, conditioned upon

the groups related to lower-resolution features. We refer to this refined model as the group

hierarchical DisCo-Diff.

In the molecular docking task, existing denoisers operate through message passing in a

permutation equivariant way over 3D point clouds representing molecular structures [107].

We build this property and architectural bias directly into the latent variables allowing

them to take values indicating one node in the point cloud (therefore for every point cloud

the codebook size equals the number of nodes). This latent design choice aligns with the

intuition of the encoder determining the atoms playing key roles in the structure and allows

for minimal modification of the score model where the latents simply represent additional

features for every node. The encoder is also composed of a similar equivariant message

passing, e3nn [108], network where for each node one logit per latent will be predicted. More

details on the architecture for the molecular docking task can be found in Section B.2.2.

The auto-regressive model over the distribution of the discrete latents is implemented

69



Table 4.3: Ablations on class-cond. ImageNet-64.

FID

EDM [27] 2.36

Oracle setting

Continuous latent (KLD weight=0.1) 1.67
Continuous latent (KLD weight=1) 2.36
DisCo-Diff (cfg=0) 1.65

Generative prior on latent

Continuous latent (KLD weight=0.1) 11.12
Continuous latent (KLD weight=1, cfg=0) 2.36
Continuous latent (KLD weight=1, cfg=1) 2.36
DisCo-Diff (cfg=0) 1.81
DisCo-Diff (cfg=1) 1.65
DisCo-Diff (cfg=2) 2.33

in image experiments using a standard Transformer decoder [109]. For molecular docking, it

again uses an e3nn network that is fed the conditioning information of the protein structure

and molecular graph. Generally, DisCo-Diff is compatible with other conditional inputs, e.g.

class labels, which can be added as inputs to denoiser and auto-regressive model. We use an

auto-regressive model for simplicity and expect DisCo-Diff’s second stage to work equally

well with other discrete data generative models, e.g. discrete state diffusion models [110],

[111]. Architecture details, also for 2D toy data experiments, in B.2.2.

4.3 Experiments

4.3.1 Image Generation

We use the ImageNet [112] dataset and tackle both class-conditional (at varying resolu-

tions 64×64 and 128×128) and unconditional generation. To measure sample quality, we

follow the literature and use Fréchet Inception Distance (FID) [113] (lower is better). We

also report the number of neural function evaluations (NFE).

In the class-conditional setting, the DisCo-Diff’s denoiser is initialized using pre-trained

ImageNet models, except for the new components: the cross-attention layers between discrete

latents and images, and the encoder. We utilize the pre-trained U-Net in EDM [27] for

70



ImageNet-64, and for ImageNet-128, we implement the U-ViT in VDM++ [91]. We also

adhere to their respective noise schedules and loss weightings during the training process.

We use Heun’s second-order method as ODE sampler, and a 12-layer Transformer as the

auto-regressive model. We set the latent dimension to m = 10 and the codebook size to

k = 100 in DisCo-Diff.

Results. See Table 4.1, Table 4.2. (1) DisCo-Diff achieves the new state-of-the-

art on class-conditioned ImageNet-64/ImageNet-128 when using ODE sampler.

Specifically, DisCo-Diff reduces the previous state-of-the-art FID score from 2.36 to 1.65

on ImageNet-64, and from 2.29 to 2.08 on ImageNet-128. This aligns with our analysis

(4.2.2) that DisCo-Diff yields straighter ODE trajectories. (2) DisCo-Diff outperforms

all baselines in the unconditional setting, or when using stochastic sampler.

DisCo-Diff also surpasses the previous best method (SCDM [70]) in the unconditional setting,

even though their method relies on pre-trained MoCo features. In addition, DisCo-Diff

sets the new record ImageNet-64 FID of 1.22 when using Restart sampler [29]. Note that

the competitive method RIN [103] employs a novel architecture distinct from conventional

U-Nets/U-ViTs. (3) Discrete latents capture variability complementary to class

semantics. Figure 4.2 (b) illustrates that samples sharing the same discrete latent exhibit

similar characteristics, and there are noticeable distinctions for different discrete latents under

the same class. It suggests that the discrete latents capture variations that are useful in

simplifying the diffusion process defined in Euclidean space beyond class labels, underpinning

the improvements of DisCo-Diff over the pre-trained class-conditioned DMs. (4) Discrete

latents boost the performance on PFGM++. When applied to another ODE-based

generative model PFGM++ [82], DisCo-PFGM++ also improves over the baseline version

(see Table 4.1). More samples in B.2.4.

Ablations and Analyses. Table 4.3 shows that employing moderate classifier-free guidance

with respect to the discrete latents (scale cfg=1) enhances the FID score (studied using

ODE sampler), implying that the discrete latents effectively learn modes similar to the

role of class labels and text. We further substituted the discrete latents with 1000-dim.

71



Figure 4.6: Top: Images created from two 30-dim discrete latents z and ẑ, with the far-right column
combining their sub-coordinates. Bottom: Variations in images by fixing portions of z (originating
from the red-boxed image). We see that lower-resolution latents affect layout / shape; high-resolution
latents alter color / texture.

continuous latents (1000 to offer capacity at least as high as with the m=10 and k=100

discrete latents), using Kullback-Leibler divergence-based (KLD) regularization as in VAEs

to control the information retained. For fair comparison, we trained a DiT-based DM [114]

on the continuous latents using the same Transformer architecture as in DisCo-Diff’s auto-

regressive model. Table 4.3 shows that with a low KLD weight (0.1), the continuous latents

are under-regularized, challenging the DiT in modeling the complex encoding distribution

and leading to a significant gap between oracle FID (latents predicted from training images)

and generative FID (latents sampled from second-stage latent generative models). Conversely,

a higher KLD weight (1) causes encoder collapse, and the continuous latents are not used

(no latent (EDM), oracle latents and generative latents all produce same FIDs). In contrast,

DisCo-Diff’s generative FID shows only a minor degradation compared to the oracle FID,

indicating the ease of modeling the discrete prior with a simple Transformer.

The DM training objective (2.7) has most variability at large diffusion times due to the

multimodal posterior of clean data given noisy inputs [23]. Conditioning information can

72



0 10 20 30 40 50
t

0.2

0.4

0.6

0.8

1.0

lo
ss

(t
)

Diffusion Model
DisCo-Diff

0.01 1.0

0.5

1.0

(a) (b)

Figure 4.7: Left: Loss versus time. Right: Impact of discrete latent switching during the
sampling process. The numbers represent the percentage of the total sampling steps. The
blue/green arrows mean the sampling steps that utilize the discrete latent associated with
the leftmost/rightmost grid in the figure.

reduce this ambiguity. For instance, [115] show that text conditioning primarily influences

the denoiser at larger times. Figure 4.7 (a) shows that the learned discrete latents behave

similarly to text conditioning, significantly lowering the training loss at higher time steps.

Complementarily, Figure 4.7 (b) indicates that switching discrete latents towards the end of

sampling barely affects the samples, implying they are not used at smaller times t.

In DisCo-Diff, the sampling time of the auto-regressive model is negligible compared

to the DM’s. For instance, for generating 32 images on ImageNet-128, the auto-regressive

models requires only 0.44 seconds, while DisCo-Diff’s DM component takes 78 seconds for

True	pose

𝑧 𝑧̂

~	0.9	Å	RMSD ~	6.9	Å	RMSD

True	pose ~	1.2	Å	RMSD ~	6.0	Å	RMSD

𝑧 𝑧̂

Figure 4.8: Examples of alternative docking poses modeled when conditioning on different discrete
latents, the “correct" z (i.e. same as the encoder) and an incorrect ẑ. The DM maps them to two
distinct sets of plausible orientations with which the ligand could fit in the pocket. Notably, the
correct latent corresponds to poses within 2Å of the ground truth. The colored beads are set on the
atoms corresponding to the first latent variable.

73



114 NFE, with an average of 0.68 second/NFE, all on a single NVIDIA A100 GPU.

Group Hierarchical DisCo-Diff. We evaluate the group hierarchical DisCo-Diff (Sec-

tion 4.2.3), feeding three separate 10-dim. discrete latents into the U-Net at each level of

resolution. Figure 4.6 shows that latents for lower-resolution features mainly govern overall

shape and layout, while latents for higher-resolution control color and texture. For example,

in the bottom figure, when gradually fixing groups in order, the images first converge in

shape and then in color.

Discrete Latent Variable Classifier-Free Guidance Classifier-free guidance [84] (cfg)

is a mode-seeking technique commonly used in diffusion literature, such as class-conditioned

genreation [114] or text-to-image generation [4]. It generally guides the sampling trajectories

toward higher-density regions. We can similarly apply classifier-free guidance in the DisCo-

Diff, where we treat the discrete latent as conditional inputs. We follow the convention in [2],

and the classifier-free guidance at time step t is as follows:

D̃θ(x, σ(t), z) = wDθ(x, σ(t), z) + (1− w)Dθ(x, σ(t), ∅)

where Dθ(x, σ(t), z)/Dθ(x, σ(t), ∅) is the conditional/unconditional models, sharing param-

eters. We drop the discrete latent with probability 0.1 during training, to train the un-

conditional model Dθ(x, σ(t), ∅). A mild w would usually lead to improvement in sample

diversity [114]. Table 4.3 demonstrates that using a moderate guidance scale w=1 (we use

w = 1 and cfg=1 interchangeably in the paper) improves the FID score, suggesting that the

learned discrete latent in the DisCo-Diff framework has strong indications of mode of data

distribution. We further explore varying the guidance scale on ImageNet-128. As shown

in Figure 4.9, increasing the classifier-free guidance scale w would strengthen the effect of

guidance.

74



(a) cfg=0 (b) cfg=1 (c) cfg=4 (d) cfg=8

Figure 4.9: Generated samples in DisCo-Diff with a cfg scale ranging from 0 to 8, under the
class label “malamute" on ImageNet-128.

4.3.2 Molecular Docking

We test DisCo-Diff also on molecular docking, a fundamental task in drug discovery that

consists of generating the 3D structure with which a small molecule will bind to a protein.

We build on top of DiffDock [107], a DM that recently achieved state-of-the-art performance,

integrating discrete latent variables (see Sec. 4.2 and App. B.2.2 for details). For computa-

tional reasons, we use the reduced DiffDock’s architecture (referred to as DiffDock-S) from

[116], which, although less accurate, is much faster for training and inference. For training

and evaluation, we follow the standard from [117] using the PDBBind dataset [118] (see

App. B.2.2).

Results. Table 4.4 reports performance of our (DisCo-DiffDock-S ) and relevant baseline

methods. We see that also in this domain discrete latents provide improvements, with

the success rate on the full dataset increasing from 32.9% to 35.4% and from 13.9% to

18.5% when considering only test complexes with unseen proteins. This improvement is

particularly strong on the harder component of the test set, where the baseline model is,

likely, highly uncertain. This supports the intuition that DisCo-Diff boosts performance by

more appropriately modeling discrete and continuous variations in the data. In Fig. 4.8, we

visualize two examples from the test set which highlight how the model learns to associate

distinct sets of poses with different latents, decomposing the multimodal components of the

pose distribution from the continuous variations that each pose can have.

75



Table 4.4: Molecular docking performance on PDBBind. For each method, we report the
percentage of top-1 predictions within 2Å of the ground truth for the full test set and the
subset restricted to unseen proteins. Runtime in seconds (* refers to run on CPU).

Full Unseen Runtime

GNINA [119] 22.9 14.0 127
SMINA [120] 18.7 14.0 126*
GLIDE [121] 21.8 19.6 1405*
EquiBind [117] 5.5 0.7 0.04
TankBind [122] 20.4 6.3 0.7

DiffDock-S [116] 32.9 13.9 8.1
DisCo-DiffDock-S (ours) 35.4 18.5 9.1

DiffDock [107] 38.2 20.8 40

4.4 Related Works

Our work builds on DMs [10], [24], [27], [123], which have been widely used not only for image

generation [2]–[4], [90], [101], [124]–[126], but also for video [92], [127]–[129], 3D [130]–[135]

and 4D [136]–[139] synthesis, as well as in various other domains, including, for instance,

molecular docking and protein design [107], [140]–[142].

In the DM literature, latent variables have been most popular as part of latent diffusion

models, where a DM is trained in a compressed, usually continuous, latent space [4], [143]. In

contrast, DisCo-Diff leverages discrete latent variables and uses them to augment a DM. The

first models using discrete latent variables for high-dimensional generative modeling tasks

include Boltzmann machines [144], [145] and early discrete variational autoencoders [87],

[146], [147]. More recently, a variety of works encode images into large 2D spatial grids of

discrete tokens with vector quantization or similar techniques [73]–[78], [86]. As discussed,

these models typically require a very large number of tokens and rely on large codebooks,

which makes modeling their distribution challenging. DisCo-Diff, in contrast, leverages only

few discrete latents with small codebooks that act in harmony with the additional continuous

DM.

There are previous related works that also condition DMs on auxiliary encodings. [97]

augment DMs with non-spatial latent variables, but their latents are continuous and high-

dimensional, which makes training their latent DM more challenging. This is precisely what

76



we avoid by instead using low-dimensional and discrete latents. Moreover, they focus on

semantic face image manipulation, not high-quality synthesis for challenging, diverse datasets.

[72] use the representations of a pre-trained CLIP image encoder [93] for conditioning

a DM and learn another DM over the CLIP embeddings for sampling. Similarly, [70] and

[71] use clustered MoCo-based [94] and clustered DINO-based [95] features, respectively, for

conditioning. Hence, these three approaches are strictly limited to image synthesis, where

such encoders, pre-trained on large-scale datasets, are available. In contrast, we purposefully

avoid the use of pre-trained networks and learn the discrete latents jointly with the DM,

making our framework universally applicable. Another related work is InfoDiffusion [98],

which also conditions DMs on discrete latent variables. However, contrary to DisCo-Diff, this

work focuses on learning disentangled representations, similar to β-VAEs [148], primarily

for low-resolution face synthesis. It uses a mutual information-based objective and does not

focus on diverse and high-quality synthesis of complex data such as ImageNet.

In contrast to the above works, we show how discrete latent variables boost generative

performance itself and we significantly outperform these works in complex and diverse high-

quality synthesis. Furthermore, we motivate DisCo-Diff fundamentally, with reduced ODE

curvature and model complexity, providing a new and complementary perspective.

In the molecular docking literature, since DiffDock [107] introduced the use of diffusion

models in the task, a number of works have proposed different modifications to its framework.

In particular, some [149]–[151] have proposed to separate the blind docking task between

pocket identification (i.e. identifying the region of the protein where the small molecule would

bind) and pose prediction (i.e. predicting the specific pose with which the ligand would bind

to the protein), as previously done in many traditional approaches [152]. One could see this

as hand-crafting a (roughly discrete) latent variable in the pocket and using it to decompose

the task. By allowing the encoder to learn arbitrary discrete latents through its interaction

with the denoiser, DisCo-Diff largely includes the above-mentioned strategy as a particular

case.

77



4.5 Conclusion

We have proposed Discrete-Continuous Latent Variable Diffusion Models (DisCo-Diff),

a novel and universal framework for combining discrete latent variables with continuous

DMs. The approach significantly boosts performance by simplifying the DM’s denoising task

through the help of auxiliary discrete latent variables, while introducing negligible overhead.

Extensive experiments and analyses demonstrate the unique benefits of global discrete latent

variables that are learnt end-to-end with the denoiser. DisCo-Diff does not rely on any

pre-trained encoder networks. As such, we validated our method not only on image synthesis,

but also for molecular docking, demonstrating its universality. Future work includes applying

DisCo-Diff at larger scale, for instance in text-to-image models or video generation.

78



Part II

Improved Sampling Techniques for Diffu-

sion Models

In Part II, we address the challenges associated with the slow sampling speeds of pre-trained

diffusion models. These challenges are primarily due to the need to solve differential equations

and the repetitive generation of mini-batch samples for each user prompt. We focus on

accelerating the sampling process by introducing a significantly larger amount of noise than

typically used (Chapter 5), and avoiding repetitive samples by applying mutually repulsive

forces among the samples (Chapter 6). The techniques presented are training-free and can

be seamlessly integrated with any pre-trained diffusion models.

79



Chapter 5

Accelerating the Sampling Process by

Optimized Noise Usage

The slow sampling processes hinder the real-world deployment of diffusion models. Previous

efforts in acceleration of diffusion models frequently necessitate balancing speed and quality:

ODE-based samplers are fast but plateau in performance, while SDE-based samplers deliver

higher sample quality at the cost of increased sampling time. In this chapter, we attribute

this difference to sampling errors: ODE-samplers involve smaller discretization errors while

stochasticity in SDE contracts accumulated errors. Based on these findings, we propose

a novel sampling algorithm called Restart in order to balance discretization errors and

contraction better. The sampling method alternates between adding substantial noise in

additional forward steps and strictly following a backward ODE. Empirically, the Restart

sampler surpasses previous SDE and ODE samplers in both speed and accuracy. Restart not

only outperforms the previous best SDE results but also accelerates the sampling speed by

10-fold / 2-fold on CIFAR-10 / ImageNet 64×64. In addition, it attains significantly better

sample quality than ODE samplers within comparable sampling times. Moreover, Restart

better balances text-image alignment/visual quality versus diversity than previous samplers

in the large-scale text-to-image Stable Diffusion model.

This chapter was previously published as [29].

80



5.1 Introduction

Diffusion models involve iterative backward processes that gradually transform a simple

distribution (e.g ., Gaussian in diffusion models) into a complex data distribution by solving

differential equations. The associated vector fields (or drifts) driving the evolution of the

differential equations are predicted by neural networks. The resulting sample quality can be

often improved by enhanced simulation techniques but at the cost of longer sampling times.

Prior samplers for simulating these backward processes can be categorized into two

groups: ODE-samplers whose evolution beyond the initial randomization is deterministic, and

SDE-samplers where the generation trajectories are stochastic. Several works [27], [28], [37]

show that these samplers demonstrate their advantages in different regimes, as depicted in

Figure 5.1b. ODE solvers [25]–[27] result in smaller discretization errors, allowing for decent

sample quality even with larger step sizes (i.e., fewer number of function evaluations (NFE)).

However, their generation quality plateaus rapidly. In contrast, SDE achieves better quality

in the large NFE regime, albeit at the expense of increased sampling time. To better

understand these differences, we theoretically analyze SDE performance: the stochasticity in

SDE contracts accumulated error, which consists of both the discretization error along the

trajectories as well as the approximation error of the learned neural network relative to the

ground truth drift (e.g ., score function in diffusion model [37]). The approximation error

dominates when NFE is large (small discretization steps), explaining the SDE advantage in

this regime. Intuitively, the stochastic nature of SDE helps "forget" accumulated errors from

previous time steps.

Inspired by these findings, we propose a novel sampling algorithm called Restart, which

combines the advantages of ODE and SDE. As illustrated in Figure 5.1a, the Restart sampling

algorithm involves K repetitions of two subroutines in a pre-defined time interval: a Restart

forward process that adds a substantial amount of noise, akin to "restarting" the original

backward process, and a Restart backward process that runs the backward ODE. The Restart

algorithm separates the stochasticity from the drifts, and the amount of added noise in the

Restart forward process is significantly larger than the small single-step noise interleaving

with drifts in previous SDEs such as [27], [37], thus amplifying the contraction effect on

81



accumulated errors. By repeating the forward-backward cycle K times, the contraction effect

introduced in each Restart iteration is further strengthened. The deterministic backward

processes allow Restart to reduce discretization errors, thereby enabling step sizes comparable

to ODE. To maximize the contraction effects in practice, we typically position the Restart

interval towards the end of the simulation, where the accumulated error is larger. Additionally,

we apply multiple Restart intervals to further reduce the initial errors in more challenging

tasks.

Experimentally, Restart consistently surpasses previous ODE and SDE solvers in both

quality and speed over a range of NFEs, datasets, and pre-trained models. Specifically,

Restart accelerates the previous best-performing SDEs by 10× fewer steps for the same FID

score on CIFAR-10 using VP [37] (2× fewer steps on ImageNet 64 × 64 with EDM [27]),

and outperforms fast ODE solvers (e.g ., DPM-solver [26]) even in the small NFE regime.

When integrated into previous state-of-the-art pre-trained models, Restart further improves

performance, achieving FID scores of 1.88 on unconditional CIFAR-10 with PFGM++ [31],

and 1.36 on class-conditional ImageNet 64× 64 with EDM. To the best of our knowledge,

these are the best FID scores obtained on commonly used UNet architectures for diffusion

models without additional training. We also apply Restart to the practical application

of text-to-image Stable Diffusion model [153] pre-trained on LAION 512 × 512. Restart

more effectively balances text-image alignment/visual quality (measured by CLIP/Aesthetic

scores) and diversity (measured by FID score) with a varying classifier-free guidance strength,

compared to previous samplers.

Our contributions can be summarized as follows: (1) We investigate ODE and SDE

solvers and theoretically demonstrate the contraction effect of stochasticity via an upper

bound on the Wasserstein distance between generated and data distributions (Section 5.2);

(2) We introduce the Restart sampling, which better harnesses the contraction effect of

stochasticity while allowing for fast sampling. The sampler results in a smaller Wasserstein

upper bound (Section 5.3); (3) Our experiments are consistent with the theoretical bounds

and highlight Restart’s superior performance compared to previous samplers on standard

benchmarks in terms of both quality and speed. Additionally, Restart improves the trade-off

between key metrics on the Stable Diffusion model (Section 5.4).

82



(a) (b)

Figure 5.1: (a) Illustration of the implementation of drift and noise terms in ODE, SDE,
and Restart. (b) Sample quality versus number of function evaluations (NFE) for different
approaches. ODE (Green) provides fast speeds but attains only mediocre quality, even with a
large NFE. SDE (Yellow) obtains good sample quality but necessitates substantial sampling
time. In contrast to ODE and SDE, which have their own winning regions, Restart (Red)
achieves the best quality across all NFEs.

5.2 Explaining SDE and ODE Performance Regimes

To sample from the aforementioned generative models, a prevalent approach employs general-

purpose numerical solvers to simulate the corresponding differential equations. This includes

Euler and Heun’s 2nd method [154] for ODEs (e.g., Equation 2.5), and Euler-Maruyama for

SDEs (e.g., Equation 2.4). Sampling algorithms typically balance two critical metrics: (1) the

quality and diversity of generated samples, often assessed via the Fréchet Inception Distance

(FID) between generated distribution and data distribution [41] (lower is better), and (2) the

sampling time, measured by the number of function evaluations (NFE). Generally, as the

NFE decreases, the FID score tends to deteriorate across all samplers. This is attributed to

the increased discretization error caused by using a larger step size in numerical solvers.

However, as illustrated in Figure 5.1b and observed in previous works on diffusion

models [25], [27], [37], the typical pattern of the quality vs time curves behaves differently

between the two groups of samplers, ODE and SDE. When employing standard numerical

solvers, ODE samplers attain a decent quality with limited NFEs, whereas SDE samplers

struggle in the same small NFE regime. However, the performance of ODE samplers quickly

reaches a plateau and fails to improve with an increase in NFE, whereas SDE samplers can

83



achieve noticeably better sample quality in the high NFE regime. This dilemma raises an

intriguing question: Why do ODE samplers outperform SDE samplers in the small NFE

regime, yet fall short in the large NFE regime?

The first part of the question is relatively straightforward to address: given the same

order of numerical solvers, simulation of ODE has significantly smaller discretization error

compared to the SDE. For example, the first-order Euler method for ODE results in a local

error of O(δ2), whereas the first-order Euler-Maruyama method for SDEs yields a local error

of O(δ
3
2 ) (see e.g ., Theorem 1 of [155]), where δ denotes the step size. As O(δ

3
2 )≫ O(δ2),

ODE simulations exhibit lower sampling errors than SDEs, likely causing the better sample

quality with larger step sizes in the small NFE regime.

In the large NFE regime, the step size δ shrinks and discretization errors become less

significant for both ODEs and SDEs. In this regime it is the approximation error — error

arising from an inaccurate estimation of the ground-truth vector field by the neural network

sθ — starts to dominate the sampling error. We denote the discretized ODE and SDE using

the learned field sθ as ODEθ and SDEθ, respectively. In the following theorem, we evaluate

the total errors from simulating ODEθ and SDEθ within the time interval [tmin, tmax] ⊂ [0, T ].

This is done via an upper bound on the Wasserstein-1 distance between the generated and

data distributions at time tmin. We characterize the accumulated initial sampling errors up

until tmax by total variation distances. Below we show that the inherent stochasticity of

SDEs aids in contracting these initial errors at the cost of larger additional sampling error in

[tmin, tmax]. Consequently, SDE results in a smaller upper bound as the step size δ nears 0

(pertaining to the high NFE regime).

Theorem 3 (Informal). Let tmax be the initial noise level and pt denote the true distribution at

noise level t. Let pODEθ
t , pSDEθ

t denote the distributions of simulating ODEθ, SDEθ respectively.

Assume that ∀t ∈ [tmin, tmax], ∥xt∥ < B/2 for any xt in the support of pt, pODEθ
t or pSDEθ

t .

Then

W1(p
ODEθ
tmin

, ptmin) ≤ B · TV
(
pODEθ
tmax , ptmax

)
+O(δ + ϵapprox) · (tmax − tmin)

W1(p
SDEθ
tmin

, ptmin)︸ ︷︷ ︸
total error

≤
(
1− λe−U

)
B · TV (pSDEθ

tmax , ptmax)︸ ︷︷ ︸
upper bound on contracted error

+O(
√
δtmax + ϵapprox) (tmax − tmin)︸ ︷︷ ︸

upper bound on additional sampling error

84



In the above, U = BL1/tmin + L2
1t

2
max/t

2
min, λ < 1 is a contraction factor, L1 and ϵapprox are

uniform bounds on ∥tsθ(xt, t)∥ and the approximation error ∥t∇x log pt(x)− tsθ(x, t)∥ for

all xt, t, respectively. O() hides polynomial dependency on various Lipschitz constants and

dimension.

We defer the formal version and proof of Theorem 3 to Appendix A.2.1. As shown in

the theorem, the upper bound on the total error can be decomposed into upper bounds

on the contracted error and additional sampling error. TV (pODEθ
tmax

, ptmax) and TV (pSDEθ
tmax

, ptmax)

correspond to the initial errors accumulated from both approximation and discretization

errors during the simulation of the backward process, up until time tmax. In the context of

SDE, this accumulated error undergoes contraction by a factor of 1 − λe−BL1/tmin−L2
1t

2
max/t

2
min

within [tmin, tmax], due to the effect of adding noise. Essentially, the minor additive Gaussian

noise in each step can drive the generated distribution and the true distribution towards each

other, thereby neutralizing a portion of the initial accumulated error.

The other term related to additional sampling error includes the accumulation of dis-

cretization and approximation errors in [tmin, tmax]. Despite the fact that SDE incurs a higher

discretization error than ODE (O(
√
δ) versus O(δ)), the contraction effect on the initial error

is the dominant factor impacting the upper bound in the large NFE regime where δ is small.

Consequently, the upper bound for SDE is significantly lower. This provides insight into

why SDE outperforms ODE in the large NFE regime, where the influence of discretization

errors diminishes and the contraction effect dominates. In light of the distinct advantages of

SDE and ODE, it is natural to ask whether we can combine their strengths. Specifically, can

we devise a sampling algorithm that maintains a comparable level of discretization error as

ODE, while also benefiting from, or even amplifying, the contraction effects induced by the

stochasticity of SDE? In the next section, we introduce a novel algorithm, termed Restart,

designed to achieve these two goals simultaneously.

5.3 Harnessing Noise with Restart

In this section, we present the Restart sampling algorithm, which incorporates stochasticity

during sampling while enabling fast generation. We introduce the algorithm in Sec 5.3.1,

85



followed by a theoretical analysis in Sec 5.3.2. Our analysis shows that Restart achieves a

better Wasserstein upper bound compared to those of SDE and ODE in Theorem 3 due to

greater contraction effects.

5.3.1 Restart Sampling

In the Restart algorithm, simulation performs a few repeated back-and-forth steps within

a pre-defined time interval [tmin, tmax] ⊂ [0, T ], as depicted in Figure 5.1a. This interval is

embedded into the simulation of the original backward ODE referred to as the main backward

process, which runs from T to 0. In addition, we refer to the backward process within the

Restart interval [tmin, tmax] as the Restart backward process, to distinguish it from the main

backward process.

Starting with samples at time tmin, which are generated by following the main backward

process, the Restart algorithm adds a large noise to transit the samples from tmin to tmax

with the help of the forward process. The forward process does not require any evaluation of

the neural network sθ(x, t), as it is generally defined by an analytical perturbation kernel

capable of transporting distributions from tmin to tmax. For instance, in the case of diffusion

models, the perturbation kernel is N (0, (σ(tmax)
2 − σ(tmin)

2)Id×d). The added noise in this

step induces a more significant contraction compared to the small, interleaved noise in SDE.

The step acts as if partially restarting the main backward process by increasing the time.

Following this step, Restart simulates the backward ODE from tmax back to tmin using the

neural network predictions as in regular ODE. We repeat these forward-backward steps

within [tmin, tmax] interval K times in order to further derive the benefit from contraction.

Specifically, the forward and backward processes in the ith iteration (i ∈ {0, . . . , K − 1})

proceed as follows:

(Restart forward process) xi+1
tmax

= xitmin
+ εtmin→tmax (5.1)

(Restart backward process) xi+1
tmin

= ODEθ(x
i+1
tmax

, tmax → tmin) (5.2)

where the initial x0
tmin

is obtained by simulating the ODE until tmin: x0
tmin

= ODEθ(xT , T →

tmin), and the noise εtmin→tmax is sampled from the corresponding perturbation kernel from

86



tmin to tmax. The Restart algorithm not only adds substantial noise in the Restart forward

process (Equation 5.1), but also separates the stochasticity from the ODE, leading to a greater

contraction effect, which we will demonstrate theoretically in the next subsubsection. For

example, we set [tmin, tmax] = [0.05, 0.3] for the VP model [27] on CIFAR-10. Repetitive use of

the forward noise effectively mitigates errors accumulated from the preceding simulation up

until tmax. Furthermore, the Restart algorithm does not suffer from large discretization errors

as it is mainly built from following the ODE in the Restart backward process (Equation 5.2).

The effect is that the Restart algorithm is able to reduce the total sampling errors even in

the small NFE regime. Detailed pseudocode for the Restart sampling process can be found

in Algorithm 9, Appendix B.3.1.

5.3.2 Theoretical Analysis

We provide a theoretical analysis of the Restart algorithm under the same setting as Theorem 3.

In particular, we prove the following theorem, which shows that Restart achieves a much

smaller contracted error in the Wasserstein upper bound than SDE (Theorem 3), thanks to

the separation of the noise from the drift, as well as the large added noise in the Restart

forward process (Equation 5.1). The repetition of the Restart cycle K times further leads to a

enhanced reduction in the initial accumulated error. We denote the intermediate distribution

in the ith Restart iteration, following the discretized trajectories and the learned field sθ, as

p
Restartθ(i)
t∈[tmin,tmax]

.

Theorem 4 (Informal). Under the same setting of Theorem 3, assume K ≤ C
L2(tmax−tmin)

for

some universal constant C. Then

W1(p
Restartθ(K)
tmin

, ptmin)︸ ︷︷ ︸
total error

≤B · (1− λ)K TV (p
Restartθ(0)
tmax , ptmax)︸ ︷︷ ︸

upper bound on contracted error

+ (K + 1) ·O (δ + ϵapprox) (tmax − tmin)︸ ︷︷ ︸
upper bound on additional sampling error

where λ < 1 is the same contraction factor as Theorem 3. O() hides polynomial dependency

on various Lipschitz constants, dimension.

87



Proof sketch. To bound the total error, we introduce an auxiliary process q
Restartθ(i)
t∈[tmin,tmax]

, which

initiates from true distribution ptmax and performs the Restart iterations. This process differs

from p
Restartθ(i)
t∈[tmin,tmax]

only in its initial distribution at tmax (ptmax versus p
Restartθ(0)
tmax ). We bound

the total error by the following triangular inequality:

W1(p
Restartθ(K)
tmin

, ptmin)︸ ︷︷ ︸
total error

≤ W1(p
Restartθ(K)
tmin

, q
Restartθ(K)
tmin

)︸ ︷︷ ︸
contracted error

+W1(q
Restartθ(K)
tmin

, ptmin)︸ ︷︷ ︸
additional sampling error

To bound the contracted error, we construct a careful coupling process between two individual

trajectories sampled from p
Restartθ(i)
tmin

and q
Restartθ(i)
tmin

, i = 0, . . . , K − 1. Before these two

trajectories converge, the Gaussian noise added in each Restart iteration is chosen to maximize

the probability of the two trajectories mapping to an identical point, thereby maximizing the

mixing rate in TV. After converging, the two processes evolve under the same Gaussian noise,

and will stay converged as their drifts are the same. Lastly, we convert the TV bound to

W1 bound by multiplying B. The bound on the additional sampling error echoes the ODE

analysis in Theorem 3: since the noise-injection and ODE-simulation stages are separate, we

do not incur the higher discretization error of SDE.

We defer the formal version and proof of Theorem 4 to Appendix A.2.1. The first term in

RHS bounds the contraction on the initial error at time tmax and the second term reflects the

additional sampling error of ODE accumulated across repeated Restart iterations. Comparing

the Wasserstein upper bound of SDE and ODE in Theorem 3, we make the following three

observations: (1) Each Restart iteration has a smaller contraction factor 1 − λ compared

to the one in SDE, since Restart separates the large additive noise (Equation 5.1) from

the ODE (Equation 5.2). (2) Restart backward process (Equation 5.2) has the same order

of discretization error O(δ) as the ODE, compared to O(
√
δ) in SDE. Hence, the Restart

allows for small NFE due to ODE-level discretization error. (3) The contracted error further

diminishes exponentially with the number of repetitions K though the additional error

increases linearly with K. It suggests that there is a sweet spot of K that strikes a balance

between reducing the initial error and increasing additional sampling error. Ideally, one

should pick a larger K when the initial error at time tmax greatly outweighs the incurred

error in the repetitive backward process from tmax to tmin. We provide empirical evidences in

88



Sec 5.4.2.

While Theorem 3 and Theorem 4 compare the upper bounds on errors of different methods,

we provide empirical validation in Section 5.4.1 by directly calculating these errors, showing

that the Restart algorithm indeed yields a smaller total error due to its superior contraction

effects. The main goal of Theorem 3 and Theorem 4 is to study how the already accumulated

error changes using different samplers, and to understand their ability to self-correct the error

by stochasticity. In essence, these theorems differentiate samplers based on their performance

post-error accumulation. For example, by tracking the change of accumulated error, Theorem

1 sheds light on the distinct "winning regions" of ODE and SDE: ODE samplers have smaller

discretization error and hence excel at the small NFE regime. In contrast, SDE performs

better in large NFE regime where the discretization error is negligible and its capacity to

contract accumulated errors comes to the fore.

5.3.3 Practical Considerations

The Restart algorithm offers several degrees of freedom, including the time interval [tmin, tmax]

and the number of restart iterationsK. Here we provide a general recipe of parameter selection

for practitioners, taking into account factors such as the complexity of the generative modeling

tasks and the capacity of the network. Additionally, we discuss a stratified, multi-level Restart

approach that further aids in reducing simulation errors along the whole trajectories for more

challenging tasks.

Where to Restart? Theorem 4 shows that the Restart algorithm effectively reduces

the accumulated error at time tmax by a contraction factor in the Wasserstein upper bound.

These theoretical findings inspire us to position the Restart interval [tmin, tmax] towards the

end of the main backward process, where the accumulated error is more substantial. In

addition, our empirical observations suggest that a larger time interval tmax−tmin is more

beneficial for weaker/smaller architectures or more challenging datasets. Even though a

larger time interval increases the additional sampling error, the benefits of the contraction

significantly outweigh the downside, consistent with our theoretical predictions. We leave the

development of principled approaches for optimal time interval selection for future works.

Multi-level Restart For challenging tasks that yield significant approximation errors,

89



the backward trajectories may diverge substantially from the ground truth even at early stage.

To prevent the ODE simulation from quickly deviating from the true trajectory, we propose

implementing multiple Restart intervals in the backward process, alongside the interval placed

towards the end. Empirically, we observe that a 1-level Restart is sufficient for CIFAR-10,

while for more challenging datasets such as ImageNet [156], a multi-level Restart results in

enhanced performance [156].

5.4 Experiments

In Sec 5.4.1, we first empirically verify the theoretical analysis relating to the Wasserstein

upper bounds. We then evaluate the performance of different sampling algorithms on standard

image generation benchmarks, including CIFAR-10 [157] and ImageNet 64 × 64 [156] in

Sec 5.4.2. Lastly, we employ Restart on text-to-image generation, using Stable Diffusion

model [153] pre-trained on LAION-5B [158] with resolution 512× 512, in Sec 5.4.3.

5.4.1 Sampling Error versus Contracted Error

Our proposed Restart sampling algorithm demonstrates a higher contraction effect and smaller

addition sampling error compared to SDE, according to Theorem 3 and Theorem 4. Although

our theoretical analysis compares the upper bounds of the total, contracted and additional

sampling errors, we further verify their relative values through a synthetic experiment.

Setup We construct a 20-dimensional dataset with 2000 points sampled from a Gaussian

mixture, and train a four-layer MLP to approximate the score field ∇x log pt. We implement

the ODE, SDE, and Restart methods within a predefined time range of [tmin, tmax] = [1.0, 1.5],

where the process outside this range is conducted via the first-order ODE. To compute various

error types, we define the distributions generated by three methods as outlined in the proof

of Theorem 4 and directly gauge the errors at end of simulation t = 0 instead of t = tmin: (1)

the generated distribution as pSampler
0 , where Sampler ∈ {ODEθ, SDEθ,Restartθ(K)}; (2) an

auxiliary distribution qSampler
0 initiating from true distribution ptmax at time tmax. The only

difference between pSampler
0 and qSampler

0 is their initial distribution at tmax ( pODEθ
tmax versus

ptmax); and (3) the true data distribution p0. In line with Theorem 4, we use Wasserstein-1

90



0.65 0.70 0.75 0.80 0.85 0.90
Additional Sampling error

0.725

0.750

0.775

0.800

0.825

0.850

0.875
Co

nt
ra

ct
ed

 e
rro

r

ODE
SDE
Restart

(a)

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Additional Sampling error

0.70

0.75

0.80

0.85

0.90

0.95

1.00

To
ta

l E
rro

r

ODE
SDE
Restart

(b)

20 40 80 160 320
NFE

0.750

0.775

0.800

0.825

0.850

0.875

To
ta

l E
rro

r

ODE
SDE
Restart

(c)

Figure 5.2: Additional sampling error versus (a) contracted error, where the Pareto frontier
is plotted and (b) total error, where the scatter plot is provided. (c) Pareto frontier of NFE
versus total error.

distance W1(p
Sampler
0 , qSampler

0 ) / W1(q
Sampler
0 , p0) to measure the contracted error / additional

sampling error, respectively. Ultimately, the total error corresponds to W1(p
Sampler
0 , p0).

Detailed information about dataset, metric and model can be found in the Appendix B.3.2.

Results In our experiment, we adjust the parameters for all three processes and calculate

the total, contracted, and additional sampling errors across all parameter settings. Figure

5.2a depicts the Pareto frontier of additional sampling error versus contracted error. We can

see that Restart consistently achieves lower contracted error for a given level of additional

sampling error, compared to both the ODE and SDE methods, as predicted by theory. In

Figure 5.2b, we observe that the Restart method obtains a smaller total error within the

additional sampling error range of [0.8, 0.85]. During this range, Restart also displays a

strictly reduced contracted error, as illustrated in Figure 5.2a. This aligns with our theoretical

analysis, suggesting that the Restart method offers a smaller total error due to its enhanced

contraction effects. From Figure 5.2c, Restart also strikes a better balance between efficiency

and quality, as it achieves a lower total error at a given NFE.

5.4.2 Experiments on Standard Benchmarks

To evaluate the sample quality and inference speed, we report the FID score [41] (lower is

better) on 50K samplers and the number of function evaluations (NFE). We borrow the

pretrained VP/EDM/PFGM++ models on CIFAR-10 or ImageNet 64× 64 from [27], [31].

We also use the EDM discretization scheme [27] (see Appendix B.3.1 for details) during

91



32 64 128 256 512 1024
NFE

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

FI
D

 s
co

re
 (5

0K
)

ODE
Gonna Go Fast
Improved SDE
Restart

(a) CIFAR-10, VP

32 64 128 256 512 1024
NFE

1.50

1.75

2.00

2.25

2.50

2.75

3.00

FI
D

 s
co

re
 (5

0K
)

128 256 512 1024

1.4

1.6

1.8
ODE
Improved SDE
Restart

(b) ImageNet 64×64, EDM

Figure 5.3: FID versus NFE on (a) unconditional generation on CIFAR-10 with VP; (b)
class-conditional generation on ImageNet with EDM.

15 20 25 30 35
NFE

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

FI
D 

sc
or

e 
(5

0K
)

DPM Solver
Restart

Figure 5.4: CIFAR-10, VP, in the low NFE regime. Restart consistently outperforms the
DPM-solver with an NFE ranging from 16 to 36.

sampling.

For the proposed Restart sampler, the hyperparameters include the number of steps in

the main/Restart backward processes, the number of Restart iteration K, as well as the time

interval [tmin, tmax]. We pick the tmin and tmax from the list of time steps in EDM discretization

scheme with a number of steps 18. For example, for CIFAR-10 (VP) with NFE=75, we choose

tmin=0.06, tmax=0.30, K=10, where 0.30/0.06 is the 12th/14th time step in the EDM scheme.

We also adopt EDM scheme for the Restart backward process in [tmin, tmax]. In addition, we

apply the multi-level Restart strategy (Sec 5.3.3) to mitigate the error at early time steps for

the more challenging ImageNet 64× 64. We provide the detailed Restart configurations in

Appendix B.3.2.

For SDE, we compare with the previously best-performing stochastic samplers proposed

92



by [27] (Improved SDE). We use their optimal hyperparameters for each dataset. We also

report the FID scores of the adaptive SDE [28] (Gonna Go Fast) on CIFAR-10 (VP). Since

the vanilla reverse-diffusion SDE [37] has a significantly higher FID score, we omit its results

from the main charts and defer them to Appendix B.5.3. For ODE samplers, we compare with

the Heun’s 2nd order method [154] (Heun), which arguably provides an excellent trade-off

between discretization errors and NFE [27]. To ensure a fair comparison, we use Heun’s

method as the sampler in the main/Restart backward processes in Restart.

We report the FID score versus NFE in Figure 5.3a and Table 5.1 on CIFAR-10, and

Figure 5.3b on ImageNet 64× 64 with EDM. Our main findings are: (1) Restart outperforms

other SDE or ODE samplers in balancing quality and speed, across datasets and models. As

demonstrated in the figures, Restart achieves a 10-fold / 2-fold acceleration compared to the

previous best SDE results on CIFAR-10 (VP) / ImageNet 64× 64 (EDM) at the same FID

score. In comparison to ODE sampler (Heun), Restart obtains a better FID score, with the

gap increasing significantly with NFE. (2) For stronger models such as EDM and PFGM++,

Restart further improve over the ODE baseline on CIFAR-10. In contrast, the Improved SDE

negatively impacts the performance of EDM, as also observed in [27]. It suggests that Restart

incorporates stochasticity more effectively. (3) Restart establishes new state-of-the-art FID

scores for UNet architectures without additional training. In particular, Restart achieves FID

scores of 1.36 on class-cond. ImageNet 64× 64 with EDM, and 1.88 on uncond. CIFAR-10

with PFGM++.

To further validate that Restart can be applied in low NFE regime, we show

that one can employ faster ODE solvers such as the DPM-solver-3 [26] to further accelerate

Restart. Figure 5.4 shows that the Restart consistently outperforms the DPM-solver with

an NFE ranging from 16 to 36. This demonstrates Restart’s capability to excel over ODE

samplers, even in the small NFE regime. It also suggests that Restart can consistently

improve other ODE samplers, not limited to the DDIM, Heun. Surprisingly, when paired

with the DPM-solver, Restart achieves an FID score of 2.11 on VP setting when

NFE is 30, which is significantly lower than any previous numbers (even lower

than the SDE sampler with an NFE greater than 1000 in [37]), and make VP

model on par with the performance with more advanced models (such as EDM).

93



We include detailed Restart configuration in Table B.6 in Appendix B.3.2.

Table 5.1: Uncond.
CIFAR-10 with EDM
and PFGM++

NFE FID

EDM-VP [27]

ODE (Heun) 63 1.97

35 1.97

Improved SDE 63 2.27

35 2.45

Restart 43 1.90

PFGM++ [31]

ODE (Heun) 63 1.91

35 1.91

Restart 43 1.88

0 20 40 60
Number of Restart iterations K

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

FI
D

 s
co

re
 (5

0K
)

EDM (Restart)
EDM (ODE)
VP (Restart)
VP (ODE)

Figure 5.5: FID score with a
varying number of Restart iter-
ations K.

Theorem 10 shows that each

Restart iteration reduces the con-

tracted errors while increasing the

additional sampling errors in the

backward process. In Figure 5.5,

we explore the choice of the number

of Restart iterations K on CIFAR-

10. We find that FID score ini-

tially improves and later worsens

with increasing iterations K, with

a smaller turning point for stronger

EDM model. This supports the the-

oretical analysis that sampling er-

rors will eventually outweigh the contraction benefits as K increases, and EDM only permits

fewer Restart iterations due to smaller accumulated errors. It also suggests that, as a rule

of thumb, we should apply greater Restart strength (e.g ., larger K) for weaker or smaller

architectures and vice versa.

5.4.3 Experiments on Large-scale Text-to-Image Model

We further apply Restart to the text-to-image Stable Diffusion v1.5 1 pre-trained on LAION-

5B [158] at a resolution of 512 × 512. We employ the commonly used classifier-free guid-

ance [159], [160] for sampling, wherein each sampling step entails two function evaluations –

the conditional and unconditional predictions. Following [160], [161], we use the COCO [162]

validation set for evaluation. We assess text-image alignment using the CLIP score [163] with

the open-sourced ViT-g/14 [164], and measure diversity via the FID score. We also evaluate

visual quality through the Aesthetic score, as rated by the LAION-Aesthetics Predictor

V2 [165]. Following [166], we compute all evaluation metrics using 5K captions randomly

sampled from the validation set and plot the trade-off curves between CLIP/Aesthetic scores
1https://huggingface.co/runwayml/stable-diffusion-v1-5

94

https://huggingface.co/runwayml/stable-diffusion-v1-5


0.290 0.295 0.300 0.305 0.310 0.315 0.320
CLIP score (ViT-g/14)

14

16

18

20

22
FI

D
 s

co
re

 (5
K

)
DDIM (Steps=50)
DDIM (Steps=100)
DDPM (Steps=100)
DDPM (Steps=200)
Restart (Steps=66)

(a) FID versus CLIP score

5.15 5.20 5.25 5.30 5.35 5.40
Aesthetic score

14

16

18

20

22

FI
D

 s
co

re
 (5

K
)

DDIM (Steps=50)
DDIM (Steps=100)
DDPM (Steps=100)
DDPM (Steps=200)
Restart (Steps=66)

(b) FID versus Aesthetic score

Figure 5.6: FID score versus (a) CLIP ViT-g/14 score and (b) Aesthetic score for text-
to-image generation at 512 × 512 resolution, using Stable Diffusion v1.5 with a varying
classifier-free guidance weight w = 2, 3, 5, 8.

and FID score, with the classifier-free guidance weight w in {2, 3, 5, 8}.

We compare with commonly used ODE sampler DDIM [25] and the stochastic sampler

DDPM [167]. For Restart, we adopt the DDIM solver with 30 steps in the main backward

process, and Heun in the Restart backward process, as we empirically find that Heun performs

better than DDIM in the Restart. In addition, we select different sets of hyperparameters for

each guidance weight. For instance, when w = 8, we use [tmin, tmax]=[0.1, 2], K=2 and 10 steps

in Restart backward process. We defer the detailed Restart configuration to Appendix B.3.2,

and the results of Heun to Appendix B.3.3.

As illustrated in Figure 5.6a and Figure 5.6b, Restart achieves better FID scores in most

cases, given the same CLIP/Aesthetic scores, using only 132 function evaluations (i.e., 66

sampling steps). Remarkably, Restart achieves substantially lower FID scores than other

samplers when CLIP/Aesthetic scores are high (i.e., with larger w values). Conversely,

Restart generally obtains a better text-image alignment/visual quality given the same FID.

We also observe that DDPM generally obtains comparable performance with Restart in FID

score when CLIP/Aesthetic scores are low, with Restart being more time-efficient. These

findings suggest that Restart balances diversity (FID score) against text-image alignment

(CLIP score) or visual quality (Aesthetic score) more effectively than previous samplers.

In Figure 5.7, we visualize the images generated by Restart, DDIM and DDPM with

w = 8. Compared to DDIM, the Restart generates images with superior details (e.g ., the

95



(a) Restart (Steps=66) (b) DDIM (Steps=100) (c) DDPM (Steps=100)

Figure 5.7: Visualization of generated images with classifier-free guidance weight w = 8, using
four text prompts (“A photo of an astronaut riding a horse on mars.", "A raccoon playing
table tennis", "Intricate origami of a fox in a snowy forest" and "A transparent sculpture of
a duck made out of glass") and the same random seeds.

rendition of duck legs by DDIM is less accurate) and visual quality. Compared to DDPM,

Restart yields more photo-realistic images (e.g ., the astronaut). We provide extended of

text-to-image generated samples in Appendix B.3.4.

5.5 Conclusion

In this chapter, we introduce the Restart sampling for generative processes involving differen-

tial equations, such as diffusion models and PFGMs. By interweaving a forward process that

adds a significant amount of noise with a corresponding backward ODE, Restart harnesses

and even enhances the individual advantages of both ODE and SDE. Theoretically, Restart

provides greater contraction effects of stochasticity while maintaining ODE-level discretiza-

tion error. Empirically, Restart achieves a superior balance between quality and time, and

improves the text-image alignment/visual quality and diversity trade-off in the text-to-image

Stable Diffusion models.

A current limitation of the Restart algorithm is the absence of a principled way for

hyperparameters selection, including the number of iterations K and the time interval

[tmin, tmax]. At present, we adjust these parameters based on the heuristic that weaker/smaller

models, or more challenging tasks, necessitate a stronger Restart strength. In the future

96



direction, we anticipate developing a more principled approach to automating the selection of

optimal hyperparameters for Restart based on the error analysis of models, in order to fully

unleash the potential of the Restart framework.

97



98



Chapter 6

Non-I.I.D. Diverse Sampling with

Diffusion Models

In practical deployment, most diffusion models generate four samples per user query (e.g.,

Midjourney, Stable Diffusion). Therefore, the diversity of these mini-batch samples becomes

an important issue alongside generation speed discussed in the previous chapter — users

expect a diverse set of samples from which to choose. In this chapter, we tackle the question of

how to improve diversity and sample efficiency by moving beyond the common assumption of

independent samples. For this, we propose particle guidance, an extension of diffusion-based

generative sampling where a joint-particle time-evolving potential enforces diversity. We

analyze theoretically the joint distribution that particle guidance generates, its implications

on the choice of potential, and the connections with methods in other disciplines. Empirically,

we test the framework both in the setting of conditional image generation, where we are able

to increase diversity without affecting quality, and molecular conformer generation, where we

reduce the previous state-of-the-art median error.

This chapter was previously published in [33]. Gabriele Corso contributed significantly

to the materials in this chapter. My contributions are conceiving the idea with Gabriele,

conducting the image experiments, and helping with paper writing.

99



6.1 Introduction

Deep generative modeling has become pervasive in many computational tasks across computer

vision, natural language processing, physical sciences, and beyond. In many applications,

these models are used to take a number of representative samples of some distribution of

interest like Van Gogh’s style paintings or the 3D conformers of a small molecule. Although

independent samples drawn from a distribution will perfectly represent it in the limit of

infinite samples, this may not be the optimal strategy for a finite number. Therefore, while

deep learning methods have so far largely focused on the task of taking independent identically

distributed (I.I.D.) samples from some distribution, this paper examines how one can use

deep generative models to take a finite number of samples that can better represent the

distribution of interest.

In other fields where finite-samples approximations are critical, researchers have developed

various techniques to tackle this challenge. In molecular simulations, several enhanced

sampling methods, like metadynamics and replica exchange, have been proposed to sample

diverse sets of low-energy structures and estimate free energies. In statistics, Stein Variational

Gradient Descent (SVGD) is an iterative technique to match a distribution with a finite set

of particles. However, these methods are not able to efficiently sample complex distributions

like images.

Towards the goal of better finite-samples generative models, that combine the power of

recent advances with sample efficiency, we propose a general framework for sampling sets

of particles using diffusion models. This framework, which we call particle guidance (PG),

is based on the use of a time-evolving potential to guide the inference process. We present

two different strategies to instantiate this new framework: the first, fixed potential particle

guidance, provides ready-to-use potentials that require no further training and have little

inference overhead; the second, learned potential particle guidance, requires a training process

but offers better control and theoretical guarantees.

The theoretical analysis of the framework leads us to two key results. On one hand, we

obtain an expression for the joint marginal distribution of the sampled process when using

any arbitrary guidance potential. On the other, we derive a simple objective one can use to

100



Figure 6.1: Comparison of I.I.D. and particle guidance sampling. The center figure represents
each step, with the distribution in pink and the samples as yellow crosses, where particle
guidance uses not only the score (in blue) but also the guidance from joint-potential (red),
leading it to discover different modes (right-hand samples vs those on the left). At the bottom,
Van Gogh cafe images samples generated with Stable Diffusion with and without particle
guidance. A more detailed discussion on the suboptimality of I.I.D. sampling is presented in
Appendix B.4.1.

train a model to learn a time-evolving potential that exactly samples from a joint distribution

of interest. We show this provides optimal joint distribution given some diversity constraint

and it can be adapted to the addition of further constraints such as the preservation of

marginal distributions. Further, we also demonstrate the relations of particle guidance to

techniques for non-I.I.D. sampling developed in other fields and natural processes and discuss

its advantages.

Empirically, we demonstrate the effectiveness of the method in both synthetic experiments

and two of the most successful applications of diffusion models: text-to-image generation and

molecular conformer generation. In the former, we show that particle guidance can improve

the diversity of the samples generated with Stable Diffusion [153] while maintaining a quality

comparable to that of I.I.D. sampling. For molecular conformer generation, applied to the

state-of-the-art method Torsional Diffusion [168], particle guidance is able to simultaneously

improve precision and coverage, reducing their median error by respectively 19% and 8%. In

all settings, we also study the critical effect that different potentials can have on the diversity

and sample quality.

101



6.2 Promoting Sample Diversity with Particle Guidance

Our goal is to define a sampling process that promotes the diversity of a finite number of

samples while retaining the advantages and flexibility that characterize diffusion models. Let

p(x) be some probability distribution of interest and ∇x log pt(x) be the score that we have

learned to reverse the diffusion process dx = f(x, t)dt+ g(t)dw. Similarly to how classifier

guidance is applied, we modify the reverse diffusion process by adding the gradient of a

potential. However, we are now sampling together a whole set of particles x1, ..., xn, and

the potential log Φt is not only a function of the current point but a permutation invariant

function of the whole set:

dxi =

[
− f(xi, t

′) + g2(t′)

(
∇xi

log pt′(xi) +∇xi
log Φt′(x1, ...,xn)

)]
dt+ g(t′)dw. (6.1)

where the points are initially sampled I.I.D. from a prior distribution pT . We call this idea

particle guidance (PG). This framework allows one to impose different properties, such as

diversity, on the set of particles being sampled without the need to retrain a new score model

operating directly on the space of sets.

We will present and study two different instantiations of this framework:

1. Fixed Potential PG where the time-evolving joint potential is handcrafted, leading to

very efficient sampling of diverse sets without the need for any additional training. We

present this instantiation in Section 6.4 and show its effectiveness on critical real-world

applications of diffusion models in Section 6.4.2.

2. Learned Potential PG where we learn the time-evolving joint potential to provably

optimal joint distributions. Further, this enables direct control of important properties

such as the preservation of marginal distributions. We present this instantiation in

Section 6.5.

102



6.3 Connections with Existing Methods

As discussed in the introduction, other fields have developed methods to improve the tradeoff

between sampling cost and coverage of the distribution of interest. In this section, we will

briefly introduce four methods (coupled replicas, metadynamics, SVGD and electrostatics)

and draw connections with particle guidance.

6.3.1 Coupled Replicas and Metadynamics

In many domains linked to biochemistry and material science, researchers study the properties

of the physical systems by collecting several samples from their Boltzmann distributions

using molecular dynamics or other enhanced sampling methods. Motivated by the significant

cost that sampling each individual structure requires, researchers have developed a range of

techniques to improve sample efficiency and speed by, for example, reducing the correlation of

subsequent samples from slow-mixing Markov chains. The most popular of these techniques

are parallel sampling with coupled replicas and sequential sampling with metadynamics.

As the name suggests, replica methods involve directly taking n samples of a system

with the different sampling processes, replicas, occurring in parallel. In particular, coupled

replica methods [169], [170] create a dependency between the replicas by adding, like particle

guidance, an extra potential Φ to the energy function to enforce diversity or match experimental

observables. This results in energy-based sampling procedures that target:

p̃(x1, . . . ,xn) = Φ(x1, . . . ,xn)
n∏
i=1

p(xi).

Metadynamics [171], [172] was also developed to more efficiently sample the Boltzmann

distribution of a given system. Unlike replica methods and our approach, metadynamics is a

sequential sampling technique where new samples are taken based on previously taken ones

to ensure diversity, typically across certain collective variables of interest s(x). In its original

103



formulation, the Hamiltonian at the kth sample is augmented with a potential as:

H̃k = H − ω
∑
j<k

exp

(
−
∥s(x)− s(x0

j)∥2

2σ2

)

where H is the original Hamiltonian, x0
j are the previously sampled elements and ω and

σ parameters set a priori. Once we take the gradient and perform Langevin dynamics to

sample, we obtain dynamics that, with the exception of the fixed Hamiltonian, resemble

those of particle guidance in Eq. 6.4 where

∇xi
log Φt(x1, · · · ,xn)← ∇xi

ω
∑
j<i

exp

(
−
∥s(xi)− s(x0

j)∥2

2σ2

)
.

Although they differ in their parallel or sequential approach, both coupled replicas and

metadynamics can be broadly classified as energy-based generative models. As seen here,

energy-based models offer a simple way of controlling the joint distribution one converges

to by simply adding a potential to the energy function. On the other hand, however, the

methods typically employ an MCMC sampling procedure, which lacks the critical finite-time

sampling property of diffusion models and significantly struggles to cover complex probability

distributions such as those of larger molecules and biomolecular complexes. Additionally,

the MCMC typically necessitates a substantial number of steps, generally proportional to a

polynomial of the data dimension [173]. With particle guidance, we instead aim to achieve

both properties (controllable diversity and finite time sampling) at the same time. We can

simulate the associated SDE/ODE with a total number of steps that is independent of the

data dimension.

6.3.2 Stein Variational Gradient Descent

Stein Variational Gradient Descent (SVGD) [174] is a well-established method in the vari-

ational inference community to iteratively transport a set of particles to match a target

104



distribution. Given a set of initial particles {x0
1 . . .x

0
n}, it updates them at every iteration as:

xℓ−1i ← xℓi + ϵℓψ(x
ℓ
i) where ψ(x) =

1

n− 1

n∑
j=1

[k(xℓj,x)∇xℓ
j
log p(xℓj) +∇xℓ

j
k(xℓj,x)] (6.2)

where k is some (similarity) kernel and ϵℓ the step size. Although SVGD was developed with

the intent of sampling a set of particles that approximate some distribution p without the

direct goal of obtaining diverse samples, SVGD and our method have a close relation.

This relation between our method and SVGD can be best illustrated under specific choices

for drift and potential under which the probability flow ODE discretization of particle guidance

can be approximated as (derivation in Appendix A.3.5):

xt+∆t
i ≈ xti + ϵt(xi)ψt(x

t
i) where ψ(x) =

1

n− 1

n∑
j=1

[kt(x
t
j ,x)∇x log pt(x) +∇xt

j
kt(x

t
j ,x)] (6.3)

Comparing this with Eq. 6.2, we can see a clear relation in the form of the two meth-

ods, with some key distinctions. Apart from the different constants, the two methods use

different terms for the total score component. Interestingly both methods use smoothed-

out scores, however, on the one hand, particle guidance uses the diffused score at the

specific particle xi, ∇xi
log pt(xi), while on the other, SVGD smoothes it out by tak-

ing a weighted average of the score of nearby particles weighted by the similarity kernel

(
∑

j k(xi,xj)∇xj
log p(xj))/(

∑
j k(xi,xj)).

The reliance of SVGD on other particles for the “smoothing of the score”, however, causes

two related problems, firstly, it does not have the finite-time sampling guarantee that the time

evolution of diffusion models provides and, secondly, it suffers from the collapse to few local

modes near the initialization and cannot discover isolated modes in data distribution [175].

This challenge has been theoretically [176] and empirically [177] studied with several works

proposing practical solutions. In particular, relevant works use an annealing schedule to

enhance exploration [178] or use score matching to obtain a noise-conditioned kernel for

SVGD [179]. Additionally, we empirically observe that the score smoothing in SVGD results

in blurry samples in image generation.

105



6.3.3 Electrostatics

Recent works [31], [50] have shown promise in devising novel generative models inspired

by the evolution of point charges in high-dimensional electric fields defined by the data

distribution. It becomes natural therefore to ask whether particle guidance could be seen

as describing the evolution of point charges when these are put in the same electric field

such that they are not only attracted by the data distribution but also repel one another.

One can show that this evolution can indeed be seen as the combination of Poisson Flow

Generative Models with particle guidance, where the similarity kernel is the extension of

Green’s function in N+1-dimensional space, i.e., k(x, y) ∝ 1/||x− y||N−1. We defer more

details to Appendix A.3.5.

6.4 Fixed Potential Particle Guidance

In this section, we will present and study a simple, yet effective, instantiation of particle

guidance based on the definition of the time-evolving potential as a combination of predefined

kernels. As we will see in the experiments in Section 6.4.2, this leads to significant sample

efficiency improvements with no additional training required and little inference overhead.

To promote diversity and sample efficiency, in our experiments, we choose the potential

log Φt to be the negative of the sum of a pairwise similarity kernel k between each pair of

particles log Φt(x1, ...xn) = −αt

2

∑
i,j kt(xi,xj) obtaining:

dxi =

[
− f(xi, t

′) + g2(t′)

(
∇xi

log pt′(xi)− αt′∇xi

n∑
j=1

kt′(xi,xj)

)]
dt+ g(t′)dw (6.4)

Intuitively, the kernel term will push our different samples to be dissimilar from one another

while at the same time the score term will try to match our distribution. Critically, this

does not come at a significant additional runtime as, in most domains, the cost of running

the pairwise similarity kernels is very small compared to the execution of the large score

network architecture. Moreover, it allows the use of domain-specific similarity kernels and

does not require training any additional classifier or score model. We can also view the

106



particle guidance Equation 6.4 as a sum of reverse-time SDE and a guidance term. Thus, to

attain a more expedited generation speed, the reverse-time SDE can also be substituted with

the probability flow ODE [180].

6.4.1 Theoretical Analysis

To understand the effect that particle guidance has beyond simple intuition, we study the

joint distribution of sets of particles generated by the proposed reverse diffusion. However,

unlike methods related to energy-based models (see coupled replicas, metadynamics, SVGD

in Sec. 6.3) analyzing the effect of the addition of a time-evolving potential log Φt in the

reverse diffusion is non-trivial.

While the score component in particle guidance is the score of the sequence of probability

distributions p̃t(x1, . . . ,xn) = Φt(x1, . . . ,xn)
∏n

i=1 pt(xi), we are not necessarily sampling

exactly p̃0 because, for an arbitrary time-evolving potential Φt, this sequence of marginals

does not correspond to a diffusion process. One strategy used by other works in similar

situations [181] relies on taking, after every step or at the end, a number of Langevin steps to

reequilibrate and move the distribution back towards p̃t. This, however, increases significantly

the runtime cost (every Langevin step requires score evaluation) and is technically correct

only in the limit of infinite steps leaving uncertainty in the real likelihood of our samples.

Instead, in Theorem 5, we use the Feynman-Kac theorem to derive a formula for the exact

reweighting that particle guidance has on a distribution (derivation in Appendix A.3.1):

Theorem 5. Under integrability assumptions, sampling xT1 , ...,x
T
n from pT and following

the particle guidance reverse diffusion process, we obtain samples from the following joint

probability distribution at time t = 0:

p̂0(x1, . . . ,xn) = E[Z exp[−
´ T
0
g(t)2{⟨∇ log Φt(Xt),∇ log p̂t(Xt)⟩+∆ logΦt(Xt)}dt]],

with Z (explicit in the appendix) such that

∏N
i=1 p0(xi) = E[Z],

107



(Xt)t∈[0,T ] is a stochastic process driven by the equation

dXt = {f(Xt, t)− g(t)2∇ log pt(Xt)}dt+ g(t)dw, X0 = {xi}Ni=1.

Hence the density p̂0 can be understood as a reweighting of the random variable Z that

represents I.I.D. sampling.

Riemannian Manifolds. Note that our theoretical insights can also be extended to the

manifold framework. This is a direct consequence of the fact that the Feynman-Kac theorem

can be extended to the manifold setting, see for instance [182].

Preserving Invariances The objects that we learn to sample from with generative models

often present invariances such as the permutation of the atoms in a molecule or the roto-

translation of a conformer. To simplify the learning process and ensure these are respected,

building such invariances in the model architecture is common practice. In the case of

diffusion models, to obtain a distribution that is invariant to the action of some group G,

such as that of rotations or permutations, it suffices to have an invariant prior and build a

score model that is G-equivariant [183], [184]. Similarly, in our case, we are interested in

distributions that are invariant to the action of G on any of the set elements (see Section

6.4.2), we show that a sufficient condition for this invariance to be maintained is that the

time-evolving potential Φt is itself invariant to G-transformations of any of its inputs (see

Proposition 3 in Appendix A.3.4).

6.4.2 Experiments

Fixed potential particle guidance can be implemented on top of any existing trained diffusion

model with the only requirement of specifying the potential/kernel to be used in the domain.

We present three sets of empirical results in three very diverse domains. First, in Appendix

B.4.2, we work with a synthetic experiment formed by a two-dimensional Gaussian mixture

model, where we can visually highlight some properties of the method. In this section instead,

we consider text-to-image and molecular conformer generation, two important tasks where

108



diffusion models have established new state-of-the-art performances, and show how, in each

of these tasks, particle guidance can provide improvements in sample efficiency pushing the

diversity-quality Pareto frontier.

Text-to-image Generation

In practice, the most prevalent text-to-image diffusion models, such as Stable Diffusion [153]

or Midjourney, generally constrain the output budget to four images per given prompt. Ideally,

this set of four images should yield a diverse batch of samples for user selection. However, the

currently predominant method of classifier-free guidance [159] tends to push the mini-batch

samples towards a typical mode to enhance fidelity, at the expense of diversity.

To mitigate this, we apply the proposed particle guidance to text-to-image generation.

We use Stable Diffusion v1.5, pre-trained on LAION-5B [158] with a resolution of 512× 512,

as our testbed. We apply an Euler solver with 30 steps to solve for the ODE version

of particle guidance. Following [185], we use the validation set in COCO 2014 [162] for

evaluation, and the CLIP [163]/Aesthetic score [165] (higher is better) to assess the text-

image alignment/visual quality, respectively. To evaluate the diversity within each batch of

generated images corresponding to a given prompt, we introduce the in-batch similarity score.

This metric represents the average pairwise cosine similarity of features within an image batch,

utilizing the pre-trained DINO [186] as the feature extractor. Contrasting the FID score, the

in-batch similarity score specifically measures the diversity of a batch of images generated for

a given prompt. We use a classifier-free guidance scale from 6 to 10 to visualize the trade-off

curve between the diversity and CLIP/Aesthetic score, in line with prior works [160], [185].

For particle guidance, we implement the RBF kernel on the down-sampled pixel space (the

latent space of the VAE encoder-) in Stable Diffusion, as well as the feature space of DINO.

Please refer to Appendix B.4.2 for more experimental details.

As shown in Figure 6.2a and Figure 6.2b, particle guidance (PG) consistently obtains a

better (lower) in-batch similarity score in most cases, given the same CLIP/Aesthetic score,

with a classifier-free guidance scale ranging from 6 to 10. Conversely, we observe that while the

in-batch similarity score of I.I.D. sampling improves with the reduced classifier-free guidance

scale, particle guidance continues to surpass I.I.D. sampling in terms of CLIP/Aesthetic score

109



0.318 0.319 0.320 0.321 0.322
CLIP score (ViT-g/14)

0.59

0.60

0.61

0.62

0.63

0.64

In
-b

at
ch

 s
im

ila
rit

y 
sc

or
e I.I.D.

PG (pixel)
PG (feature)

(a) In-batch similarity versus CLIP score

5.34 5.35 5.36 5.37 5.38 5.39 5.40 5.41
Aesthetic score

0.59

0.60

0.61

0.62

0.63

0.64

In
-b

at
ch

 s
im

ila
rit

y 
sc

or
e I.I.D

PG (pixel)
PG (feature)

(b) In-batch similarity versus Aesthetic score

Figure 6.2: In-batch similiarity score versus (a) CLIP ViT-g/14 score and (b) Aesthetic
score for text-to-image generation at 512× 512 resolution, using Stable Diffusion v1.5 with a
varying guidance scale from 6 to 10.

(a) I.I.D. (b) PG (c) Training data (d) I.I.D. (e) PG

Figure 6.3: Text prompt: (a,b) “A baby eating a cake with a tie around his neck with balloons
in the background" (COCO); (c,d,e) “VAN GOGH CAFE TERASSE copy.jpg", with original
training data in (c).

110



given the same in-batch similarity. When the potential is the similarity kernel applied in the

feature space, particle guidance notably attains a lower in-batch similarity score compared to

I.I.D. sampling or to the approach in the original downsampled pixel space. This suggests

that utilizing a semantically meaningful feature space is more appropriate for determining

distances between images.

In Figure 6.3, we further visualize generated batches of four images per prompt by I.I.D.

sampling and particle guidance (feature) with the same random seeds, when fixing the

classifier-free guidance scale to 9. We can see that particle guidance improves the visual

diversity in the generated batch. Interestingly, particle guidance can also help to alleviate the

memorization issue of Stable Diffusion [187]. For example, given the text prompt of a painting

from LAION dataset, particle guidance (Figure 6.3d) avoids the multiple replications of the

training data in the I.I.D. setting (the top-left and the bottom-right images in Figure 6.3c).

We provide extended samples in Appendix B.4.3, and additionally show that SVGD (Eq. 6.2)

fails to promote diversity, instead yielding a set of blurry images.

Molecular Conformer Generation

Molecular conformer generation is a key task in computational chemistry that consists of

finding the set of different conformations that a molecule most likely takes in 3D space.

Critically it is often important to find all or most of the low-energy conformers as each can

determine a different behavior (e.g. by binding to a protein). This necessity is reflected in the

metrics used by the community that look both at coverage (also called recall) and precision

over the set predictions.

Over the past few years, molecular conformer generation has been extensively studied

by the machine learning community, with well-established benchmarks [188] and several

generative models designed specifically for this task [168], [184], [189]. However, all these

methods are based on training a generative model to generate single samples and then running

this model several times (more than 200 on average in the standard GEOM-DRUGS dataset)

to generate a large number of I.I.D. samples.

As discussed before, however, this strategy is suboptimal to generate representative sets

of samples and cover the distribution. Therefore, we take the state-of-the-art conformer

111



Table 6.1: Quality of generated conformer ensembles for the GEOM-DRUGS test set in terms
of Coverage (%) and Average Minimum RMSD (Å). We follow the experimental setup from
[189], for experimental details and introduction of the baselines please refer to Appendix
B.4.2.

Recall Precision
Coverage ↑ AMR ↓ Coverage ↑ AMR ↓

Method Mean Med Mean Med Mean Med Mean Med

RDKit ETKDG 38.4 28.6 1.058 1.002 40.9 30.8 0.995 0.895
OMEGA 53.4 54.6 0.841 0.762 40.5 33.3 0.946 0.854
GeoMol 44.6 41.4 0.875 0.834 43.0 36.4 0.928 0.841
GeoDiff 42.1 37.8 0.835 0.809 24.9 14.5 1.136 1.090
Torsional Diffusion 72.7 80.0 0.582 0.565 55.2 56.9 0.778 0.729

TD w/ particle guidance 77.0 82.6 0.543 0.520 68.9 78.1 0.656 0.594

generation model, torsional diffusion, and, without retraining the model itself, we show that

we can obtain significant improvements in both coverage and precision via particle guidance.

Torsional diffusion [168] defines the diffusion process over the manifold defined by changes

in torsion angles from some initial conformer because of the relative rigidity of the remaining

degrees of freedom. Given this observation, we also define the guidance kernel on this manifold

as an RBF kernel over the dihedral angle differences.

Another important consideration when dealing with molecular conformers is given by

the permutation symmetries that characterize several molecules: conformers that appear

different might be very similar under permutations of the order of the atoms that do not

change the bond structure. To maximize the sample efficiency and avoid generating similar

conformers, we make the kernel invariant to these transformations. For this, we employ

the simple strategy to take the minimum value of the original kernel under the different

perturbations (formalized in Appendix B.4.2).

Table 6.1 shows that by applying particle guidance to SDE-based reverse process of

torsional diffusion (see Appendix B.4.2 for details) we are able to balance coverage and

precision being able to obtain, without retraining the model, significantly improved results on

both metrics with 8% and 19% simultaneous reductions respectively in recall and precision

median AMR.

112



6.5 Learned Potential Particle Guidance

While the fixed potential particle guidance seen so far is very effective in improving the

diversity of samples with little overhead, it is hard to argue about the optimality of the

resulting joint distribution. This is because of the complexity of the expression obtained in

Theorem 5 and its dependence on the data distribution itself. Furthermore, in some domains,

particularly in scientific applications, researchers need to control the distribution that they

are sampling. This is necessary, for example, to apply correct importance weights or compute

free energy differences. While Theorem 5 allows us to theoretically analyze properties of the

distribution, the joint and marginal distributions remain largely intractable.

In this section, we analyze how we can sample from desired joint probability distribution

by learning a tailored time-evolving potential for particle guidance. Using the maximum

entropy theorem [190], we can show that the distribution satisfying a bound on the expected

value of a (diversity) metric Φ0 while minimizing the KL divergence with the independent

distribution is:

p̂0(x1, ...,xn) ∝ Φ0(x1, ...,xn)
β(α)

n∏
i=1

p(xi) (6.5)

where β is a function of α, the value of the bound on Ep̂[log Φ0].

6.5.1 Training Procedure

We now have to learn a time-evolving potential Φt that when used as part of the particle

guidance framework generates p̂0 (we assume Φ0 is chosen such that β(α) = 1). To achieve

this, we mandate that the generation process of particle guidance in Eq. 6.1 adheres to the

sequence of marginals p̂t(xt1, ...,xtn) = Φt(x
t
1, ...,x

t
n)
∏n

i=1 pt(x
0
i ) and learn Φθ

t to satisfy this

evolution. Under mild assumptions, using Doob h-theory (derivation in Appendix A.3.2), we

show that we can learn the Φθ
t by the following objective:

θ∗ = argmin
θ

Ex0
1,...,x

0
n∼p0 Ext

i∼pt|0(·|x0
i )
[∥Φ0(x

0
1, ...,x

0
n)− Φθ

t (x
t
1, ...,x

t
n)∥2] (6.6)

where pt|0 is the Gaussian perturbation kernel in diffusion models. Importantly, here the

113



initial x0
i are sampled independently from the data distribution so this training scheme can

be easily executed in parallel to learning the score of pt.

6.5.2 Preserving Marginal Distributions

While the technique discussed in the previous section is optimal in the maximum entropy

perspective, it does not (for arbitrary Φ0) preserve the marginal distributions of individual

particles, i.e. marginalizing xi over p̂ does not recover p. Although not critical in many

settings and not respected, for a finite number of particles, neither by the related methods in

Section 6.3 nor by the fixed potential PG, this is an important property in some applications.

Using again the maximum entropy theorem, we can show that the distribution satisfying

a bound on the expected value of a (diversity) metric Φ′0 and preserving the marginal

distribution while minimizing the KL divergence with the independent distribution can be

written as:

p̂0(x1, ...,xn) ∝ Φ′0(x1, ...,xn)
β(α)

n∏
i=1

p(xi)γθ(xi) (6.7)

for some scalar function over individual particles γθ. In Appendix A.3.3, we derive a new

training scheme to learn the parameters of γθ. This relies on setting the normalization

constant to an arbitrary positive value and learning values of θ that respect the marginals.

Once γθ is learned, its parameters can be frozen and the training procedure of Eq. 6.6 can be

started.

6.6 Conclusion

In this chapter, we have analyzed how one can improve the sample efficiency of generative

models by moving beyond I.I.D. sampling and enforcing diversity, a critical challenge in

many real applications that has been largely unexplored. Our proposed framework, particle

guidance, steers the sampling process of diffusion models toward more diverse sets of samples

via the definition of a time-evolving joint potential. We have studied the theoretical properties

of the framework such as the joint distribution it converges to for an arbitrary potential and

how to learn potential functions that sample some given joint distribution achieving optimality

114



and, if needed, preserving marginal distributions. Finally, we evaluated its performance

in two important applications of diffusion models text-to-image generation and molecular

conformer generation, and showed how in both cases it is able to push the Pareto frontier of

sample diversity vs quality.

We hope that particle guidance can become a valuable tool for practitioners to ensure

diversity and fair representation in existing tools even beyond the general definition of

diversity directly tackling known biases of generative models. Further, we hope that our

methodological and theoretical contributions can spark interest in the research community

for better joint-particle sampling methods.

115



Part III

Novel Generative Models from Physical

Processes

In Part III, we explore new generative models inspired by physical processes beyond the

Brownian motion utilized in diffusion models. Chapters 7 and 8 introduce a novel family of

generative models based on electrostatic theory, which competes with diffusion models in

terms of sample quality and robustness. Additionally, we present a systematic approach for

translating physical processes into valid generative models in Chapter 9.

116



Chapter 7

Generative Models from Electrostatics

In previous chapters, we focus on techniques developed for a particular type of physics-inspired

generative model: diffusion models. The stability and scalability of diffusion models stem

from their underlying physical process, known as the diffusion process in thermodynamics.

This physical process describes a natural and smooth degradation from data to a simple prior

distribution. However, numerous other physical processes have similar properties. These are

largely unexplored and hold great potential.

In this chapter, we propose a new “Poisson flow" generative model (PFGM) inspired by

electrostatics, mapping a uniform distribution on a high-dimensional hemisphere to any data

distribution. We interpret the data points as electrical charges on the z = 0 hyperplane in a

space augmented with an additional dimension z, generating a high-dimensional electric field

(the gradient of the solution to the Poisson equation). We prove that if these charges flow

upward along electric field lines, their initial distribution in the z = 0 plane transforms into a

distribution on the hemisphere of radius r that becomes uniform in the r → ∞ limit. To

learn the bijective transformation, we estimate the normalized field in the augmented space.

For sampling, we devise a backward ODE that is anchored by the physically meaningful

additional dimension: the samples hit the (unaugmented) data manifold when the z reaches

zero. Experimentally, PFGM achieves current state-of-the-art performance among the

normalizing flow models on CIFAR-10. It also performs on par with the state-of-the-art SDE

approaches while offering significant acceleration on image generation tasks. Additionally,

PFGM appears more tolerant of estimation errors on weaker network architecture and robust

117



to the step size in the Euler method.

This chapter was previously published as [30].

7.1 Introduction

Although recent advances on diffusion [167] and scored-based models [34] achieve comparable

sample quality to GAN’s without adversarial training, these models have a slow stochastic

sampling process. [34] proposes backward ODE samplers (normalizing flow) that speed

up the sampling process but these methods have not yet performed on par with the SDE

counterparts.

In this chapter, we present a new “Poisson flow" generative model (PFGM), exploiting

a remarkable physics fact that generalizes to N dimensions. As illustrated in Figure 7.1a,

motion in a viscous fluid transforms any planar charge distribution into a uniform angular

distribution. Specifically, we interpret N -dimensional data points x (images, say) as positive

electric charges in the z = 0 plane of an N + 1-dimensional space (see Figure 7.1a) filled

with a viscous liquid (say honey). A positive charge with z > 0 will be repelled by the other

charges and move in the direction of their repulsive force, eventually crossing an imaginary

hemisphere of radius r. We show that, remarkably, if the original charge distribution is

let loose just above z = 0, this law of motion will cause a uniform distribution for their

hemisphere crossings in the r →∞ limit.

Our Poisson flow generative process reverses the forward process: we generate a uniform

distribution of negative charges on the hemisphere, then track their motion back to the z = 0

plane, where they will be distributed as the data distribution. A Poisson flow can be viewed as

a type of continuous normalizing flows [34], [191], [192] in the sense that it continuously maps

between an arbitrary distribution and an easily sampled one: in the previous works an N -

dimensional Gaussian and in PFGM a uniform distribution on an N -dimensional hemisphere.

In practice, we implement the Poisson flow by solving a pair of forward/backward ordinary

differential equations (ODEs) induced by the electric field (Figure 7.1b) given by the N -

dimensional version of Coulomb’s law (the gradient of the solution to the Poisson’s equation

with the data as sources). We will interchangeably refer to this gradient as the Poisson field,

118



since electric fields normally refer to the special case N = 3.

density
high

low

z

x

y

O z = 0

(a)

Forward ODE

Backward ODE
Forward ODE

Backward ODE

(b)

Figure 7.1: (a) 3D Poisson field trajectories for a heart-shaped distribution (b) The evolve-
ments of a distribution (top) or an (augmented) sample (bottom) by the forward/backward
ODEs pertained to the Poisson field.

The proposed generative model PFGM has a stable training objective and empirically

outperforms previously state-of-the-art continuous flow methods [34], [54]. As a different

iterative method, PFGM offers two advantages compared to score-based methods [34], [49].

First, the ODE process of PFGM achieves faster sampling speeds than the SDE samplers

in [34]. while retaining comparable performance. Second, our backward ODE exhibits better

generation performance than the reverse-time ODEs of VE/VP/sub-VP SDEs [34], as well as

greater stability on a weaker architecture NSCNv2 [49]. The rationale for robustness is that

the time variables in these ODE baselines are strongly correlated with the sample norms

during training time, resulting in a less error-tolerant inference. In contrast, the tie between

the anchored variable and the sample norm in PFGM is much weaker.

Experimentally, we show that PFGM achieves current state-of-the-art performance on

CIFAR-10 dataset in the normalizing flow family, with FID/Inception scores of 2.48/9.65 (w/

DDPM++ [34]) and 2.35/9.68 (w/ DDPM++ deep [34]). It performs competitively with

current state-of-the-art SDE samplers [34] and provides 10× to 20× speed up across datasets.

Notably, the backward ODE in PFGM is the only ODE-based sampler that can produce

decent samples on its own on NCSNv2 [49], while other ODE baselines fail without corrections.

In addition, PFGM demonstrates the robustness to the step size in the Euler method, with a

varying number of function evaluations (NFE) ranging from 10 to 100. We further showcase the

119



utility of the invertible forward/backward ODEs of the Poisson field on likelihood evaluation

and image manipulations, and its scalability to higher resolution images on LSUN bedroom

256× 256 dataset.

7.2 Background

Poisson equation Let x ∈ RN and ρ(x) : RN → R be a source function. We assume that

the source function has a compact support, ρ ∈ C0 and N ≥ 3. The Poisson equation is

∇2φ(x) = −ρ(x), (7.1)

where φ(x) : RN → R is called the potential function, and ∇2 ≡
∑N

i=1
∂2

∂x2i
is the Laplacian

operator. It is usually helpful to define the gradient field E(x) = −∇φ(x) and rewrite the

Poisson equation as ∇·E = ρ, known in physics as Gauss’s law [193]. The Poisson equation is

widely used in physics, giving rise to Newton’s gravitational theory [194] and the electrostatic

theory [193], when ρ(x) is interpreted as mass density or electric charge density, respectively.

E is the N -dimensional analog of the electric field. The Poisson equation Eq. (7.1) (with

zero boundary condition at infinity) admits a unique simple integral solution 1:

φ(x) =

ˆ
G(x,y)ρ(y)dy, G(x,y) =

1

(N − 2)SN−1(1)

1

||x− y||N−2
, (7.2)

where SN−1(1) is a geometric constant representing the surface area of the unit (N − 1)-

sphere 2, and G(x,y) is the extension of Green’s function in N -dimensional space (details in

Appendix A.4.4). The negative gradient field of φ(x), referred as Poisson field of the source

ρ, is

E(x) = −∇φ(x) = −
ˆ
∇xG(x,y)ρ(y)dy, ∇xG(x,y) = −

1

SN−1(1)

x− y

||x− y||N
. (7.3)

Qualitatively, the Poisson field E(x) points away from sources, or equivalently −E(x) points
1Eq. (7.2) is valid for N ≥ 3. When N = 2, the Green’s function is G(x,y) = −log(||x − y||)/2π. We

assume N ≥ 3 since N is typically large in the relevant applications.
2The N -sphere with radius r is defined as {x ∈ RN+1, ||x|| = r}

120



towards sources, as illustrated in Figure 7.1. It is straightforward to check that when

ρ(x)→ δ(x−y), we get φ(x)→ G(x,y) and E(x)→ −∇xG(x,y). This implies that G(x,y)

and −∇xG(x,y) can be interpreted as the potential function and the gradient field generated

by a unit point source, e.g ., a point charge, located at y. When ρ(x) takes general forms

but has bounded support, simple asymptotics exist for ||x|| ≫ ||y||. To the lowest order,

E(x) = ∇xG(x,y)|y=0 ∼ x/||x||N behaves as if it were generated by a unit point source

at y = 0. In physics, the power law decay is considered to be long-range (compared to

exponential decay) [193].

Particle dynamics in a Poisson field The Poisson field immediately defines a flow

model, where the probability distribution evolves according to the gradient flow ∂pt(x)/∂t =

−∇ · (pt(x)E(x)). The gradient flow is a special case of the Fokker-Planck equation [195],

where the diffusion coefficient is zero. Intuitively we can think of pt(x) as represented by

a population of particles. The corresponding (non-diffusion) case of the Itô process is the

forward ODE dx
dt

= E(x). We can interpret the trajectories of the ODE as particles moving

according to the Poisson field E(x), with initial states drawn from p0. The physical picture of

the forward ODE is a charged particle under the influence of electric fields in the overdamped

limit (details in Appendix A.4.5).

The dynamics is also rescalable in the sense that the particle trajectory remains the same

for dx
dt

= ±f(x)E(x) for f(x) > 0, f(x) ∈ C1, because the time rescaling dt → f(x(t))dt

recovers dx
dt

= ±E(x). Note that the dynamics is stiff due to the power law factor in the

denominator in Equation 7.3, posing computational challenges. Luckily the rescalablility

allows us to rescale E(x) properly to get new ODEs (formally defined later in Section 7.3.3)

that are more amenable for sampling.

Generative Modeling via ODE Generative modeling can be done by transforming

a base distribution to a data distribution via mappings defined by ODEs. The ODE-based

samplers allow for adaptive sampling, exact likelihood evaluation and modeling of continuous-

time dynamics [34], [191]. Previous works broadly fall into two lines. [191], [196] introduce a

continuous-time normalizing flow model that can be trained with maximum likelihood by the

instantaneous change-of-variables formula [191]. For sampling, they directly integrate the

learned invertiable mapping over time. Another work [34] unifies the scored-based model [49],

121



[197] and diffusion model [167] into a general diffusion process, and uses the reverse-time

ODE of the diffusion process for sampling. They show that the reverse-time ODE produces

high quality samples with improved architecture.

7.3 Poisson Flow Generative Models: Learning and Infer-

ence

In this section, we start with the properties of the Poisson flow in the augmented space and

show how to draw samples from the data distribution by following the backward ODE of the

Poisson flow (Section 7.3.1). We then discuss how to actually learn a normalized Poisson

field from data samples through simulations of the forward ODE (Section 7.3.2) and present

an equivalent backward ODE that allows for exponentially decay on z (Section 7.3.3).

7.3.1 Augmenting the Data with Additional Dimension

We wish to generate samples x ∈ RN from a distribution p(x) supported on a bounded region.

We may set the source ρ(x) = p(x) ∈ C0 3 and compute the resulting gradient field E(x)

from Eq. (7.3). Since −E(x) points towards sources, the backward ODE dx/dt = −E(x)

will take samples close to the sources. One may naively hope that the backward ODE is a

generative model that recovers p(x). Unfortunately, the backward ODE has the problem of

mode collapse. We illustrate this phenomenon with a 2D uniform disk. The reverse Poisson

field −E(x) on the 2D (x, y)-plane points towards the center of the disk O (Figure 7.2a left),

so all particle trajectories (blue lines) will eventually hit O. If we instead add an additional

dimension z (Figure 7.2a right), particles can hit different points on the disk and faithfully

recover the data distribution.

Consequently, instead of solving the Poisson equation ∇2φ(x) = −p(x) in the original

data space, we solve the Poisson equation in an augmented space x̃ = (x, z) ∈ RN+1 with

an additional variable z ∈ R. We augment the training data x̃ in the new space by setting
3A probability distribution p(x) is a special case of “charge density" ρ(x) because p(x) need to be non-

negative and integrates to unity. Here we focus on applications to probability distribution of data, which is
the objective to be modeled in generative modeling.

122



No augmentation (2D) Augmentation (3D)

(a)

dΦin = p(x)dA/2
dΩ

dΦout = dΩ/SN(1)

Gauss′￼s Law

N dim O

r → ∞

dΦin dΦout=

z

S5
S4

S3

S1
S2

(b)

Figure 7.2: (a) Poisson field (black arrows) and particle trajectories (blue lines) of a 2D
uniform disk (red). Left (no augmentation, 2D): all particles collapse to the disk center.
Right (augmentation, 3D): particles hit different points on the disk. (b) Proof idea of
Theorem 6. By Gauss’s Law, the outflow flux dΦout equals the inflow flux dΦin. The factor
of two in p(x)dA/2 is due to the symmetry of Poisson fields in z < 0 and z > 0.

z = 0 such that x̃ = (x, 0). As a consequence, the data distribution in the augmented space

is p̃(x̃) = p(x)δ(z), where δ is the Dirac delta function. By Equation 7.3, the Poisson field by

solving the new Poisson equation ∇2φ(x̃) = −p̃(x̃) has an analytical form:

∀x̃ ∈ RN+1,E(x̃) = −∇φ(x̃) = 1

SN(1)

ˆ
x̃− ỹ

||x̃− ỹ||N+1
p̃(ỹ)dỹ (7.4)

The associated forward/backward ODEs of the Poisson field are dx̃/dt = E(x̃), dx̃/dt =

−E(x̃). Intuitively, theses ODEs uniquely define trajectories of particles between the z = 0

hyperplane and an enclosing hemisphere (cf. Figure 7.1a). In the following theorem, we show

that the backward ODE defines a transformation between the uniform distribution on an

infinite hemisphere and the data distribution p̃(x̃) in the z = 0 plane. We present the formal

proof to Appendix A.4, illustrated by Figure 7.2b. The proof is based on the idea that when

the radius of hemisphere r →∞, the data distribution p̃(x̃) can be effectively viewed as a

delta distribution at origin. Consequently, the Poisson field points in the radial direction at

r →∞, perpendicular to S+
N(r) (Green arrows in Figure 7.2b).

Theorem 6. Suppose particles are sampled from a uniform distribution on the upper (z > 0)

half of the sphere of radius r and evolved by the backward ODE dx̃
dt

= −E(x̃) until they reach

the z = 0 hyperplane, where the Poisson field E(x̃) is generated by the source p̃(x̃). In the

123



r →∞ limit, under some mild conditions detailed in Appendix A.4, this process generates a

particle distribution p̃(x̃), i.e., a distribution p(x) in the z = 0 hyperplane.

Proof sketch. Suppose the flux of the backward ODE connects a solid angle dΩ (on S+
N(r))

with an area dA (on supp(p̃(x̃)). According to Gauss’s law, the outflow flux dΦout = dΩ/SN (1)

on the hemisphere (Green arrows in Figure 7.2b) equals the inflow flux dΦin = p(x)dA/2 on

supp(p̃(x̃)) (Red arrows in Figure 7.2b). dΦin = dΦout gives dΩ/dA = p(x)SN(1)/2 ∝ p(x).

Together, by change-of-variable, we conclude that the final distribution in the z = 0 hyperplane

is p(x).

The theorem states that starting from an infinite hemisphere, one can recover the data

distribution p̃ by following the inverse Poisson field −E(x̃). We defer the formal proof and

technical assumptions of the theorem to Appendix A.4. The property allows generative

modeling by following the Poisson flow of ∇2φ(x̃) = −p̃(x̃).

7.3.2 Learning the Normalized Poisson Field

Given a set of training data D = {xi}ni=1 i.i.d sampled from the data distribution p(x), we

define the empirical version of the Poisson field (Equation 7.4) as follows:

Ê(x̃) = c(x̃)
n∑
i=1

x̃− x̃i
||x̃− x̃i||N+1

where the gradient field is calculated on n augmented datapoints {x̃i = (xi, 0)}ni=1, and

c(x̃) = 1/
∑n

i=1
1

||x̃−x̃i||N+1 is the multiplier for numerical stability. We further normalize the

field to resolve the variations in the magnitude of the norm ∥ Ê(x̃) ∥2, and fit the neural

network to the more amenable negative normalized field v(x̃) = −
√
NÊ(x̃)/∥ Ê(x̃) ∥2. The

Poisson field is rescalable (cf. Section 7.2) and thus trajectories of its forward/backward

ODEs are invariant under normalization. We denote the empirical field calculated on batch

data B by ÊB and the negative normalized field as vB(x̃) = −
√
NÊB(x̃)/∥ ÊB(x̃) ∥2.

Similar to the scored-based models, we sample points inside the hemisphere by perturbing

the augmented training data. Given a training point x ∈ D, we add noise to its augmented

124



version {x̃i = (xi, 0)}ni=1 to construct the perturbed point (y, z):

y = x+ ∥ ϵx ∥ (1 + τ)mu, z = |ϵz|(1 + τ)m (7.5)

where ϵ = (ϵx, ϵz) ∼ N (0, σ2IN+1×N+1), u ∼ U(SN−1(1)) and m ∼ U [0,M ]. The upper limit

M , standard deviation σ and τ are hyper-parameters. With fixed ϵ and u, the added noise

increases exponentially with m. The rationale behind the design is that points farther away

from the data support play a less important role in generative modeling, sharing a similar

spirit with the choice of noisy scales in score-based models [34], [49].

In practice, we sample the points by perturbing a mini-batch data B = {xi}|B|i=1 in each

iteration. We uniformly sample the power m in [0,M ] for each datapoint. We select a large

M (typically around 300) to ensure the perturbed points can reach a large enough hemisphere.

We use a larger batch BL for the estimation of normalized field since the empirical normalized

field is biased, which empirically gives better results. Denoting the set of perturbed points as

{ỹi}|B|i=1, we train the neural network fθ on these points to estimate the negative normalized

field by minimizing the following loss:

L(θ) = 1

|B|

|B|∑
i=1

∥ fθ(ỹi)− vBL(ỹi) ∥22

We summarize the training process in Algorithm 2. In practice, we add a small constant γ to

the denominator of the normalized field to overcome the numerical issue when ∃i, ||x̃−x̃i|| ≈ 0.

Algorithm 2 Learning the normalized Poisson Field
Input: Training iteration T , Initial model fθ, dataset D, constant γ, learning rate η.
for t = 1 . . . T do

Sample a large batch BL from D and subsample a batch of datapoints B = {xi}|B|i=1 from
BL
Simulate the ODE: {ỹi =perturb(xi) }|B|i=1

Calculate the normalized field by BL: vBL(ỹi) = −
√
NÊBL(ỹi)/(∥ ÊBL(ỹi) ∥2 +γ),∀i

Calculate the loss: L(θ) = 1
|B|
∑|B|

i=1 ∥ fθ(ỹi)− vBL(ỹi) ∥22
Update the model parameter: θ = θ − η∇L(θ)

end for
return fθ

125



Algorithm 3 perturb(x)
Sample the power m ∼ U [0,M ]
Sample the initial noise (ϵx, ϵz) ∼ N (0, σ2I(N+1)×(N+1))
Uniformly sample the vector from the unit ball u ∼ U(SN(1))
Construct training point y = x+ ∥ ϵx ∥ (1 + τ)mu, z = |ϵz|(1 + τ)m

return ỹ = (y, z)

7.3.3 Inference Anchored by the Additional Dimension

After estimating the normalized field v, we can sample from the data distribution by the

backward ODE dx̃ = v(x̃)dt. Nevertheless, the boundary condition of the above ODE is

unclear: the starting and terminal time t of the ODE are both unknown. To remedy the issue,

we propose an equivalent backward ODE in which x evolves with the augmented variable z:

d(x, z) = (
dx

dt

dt

dz
dz, dz) = (v(x̃)xv(x̃)

−1
z , 1)dz

where v(x̃)x,v(x̃)z are the corresponding components of x, z in vector v(x̃). In the new

ODE, we replace the time variable t with the physically meaningful variable z, permitting

explicit starting and terminal conditions: when z = 0, we arrive at the data distribution and

we can freely choose a large zmax as the starting point in the backward ODE. The backward

ODE is compatible with general-purpose ODE solvers, e.g ., RK45 method [198] and forward

Euler method. The popular black-box ODE solvers, such as the one in Scipy library [199],

typically use a common starting time for the same batch of samples. Since the distribution

on the z = zmax hyperplane is no longer uniform, we derive the prior distribution by radially

projecting uniform distribution on the hemisphere with radius r = zmax to the z = zmax

hyperplane:

pprior(x) =
2zN+1

max

SN(zmax)(∥ x ∥22 +z2max)
N+1

2

=
2zmax

SN(1)(∥ x ∥22 +z2max)
N+1

2

where SN(r) is the surface area of N -sphere with radius r. The reason behind the radial

projection is that the Poisson field points in the radial direction at r → ∞. The new

backward ODE also defines a bijective transformation between pprior(x) on the infinite

126



hyperplane (zmax →∞) and the data distribution p̃(x̃), analogous to Theorem 6. In order

to sample from pprior(x), it is suffice to sample the norm (radius) from the distribution:

pradius(∥ x ∥2) ∝ ∥ x ∥N−12 /(∥ x ∥22 +z2max)
N+1

2 and then uniformly sample its angle. We

provide detailed derivations and practical sampling procedure in Appendix A.4.2. We further

achieve exponential decay on the z dimension by introducing a new variable t′:

[Backward ODE] d(x, z) = (v(x̃)xv(x̃)
−1
z z, z)dt′ (7.6)

The z component in the backward ODE, i.e., dz = zdt′, can be solved by z = et
′ . Since

z reaches zero as t′ → −∞, we instead choose a tiny positive number zmin as the terminal

condition. The corresponding starting/terminal time of the variable t′ are log zmax/ log zmin

respectively. Empirically, this simple change of variable leads to 2× faster sampling with

almost no harm to the sample quality. In addition, we substitue the predicted v(x̃)z with a

more accurate one when z is small (Appendix B.5.2). We defer more details of the simulation

of backward ODE to Appendix B.5.2.

7.4 Experiments

In this section, we demonstrate the effectiveness of the backward ODE associated with PFGM

on image generation tasks. In Section 7.4, we show that PFGM achieves currently best in class

performance in the normalizing flow family. In comparison to the existing state-of-the-art

SDE or MCMC approaches, PFGM exhibits 10× or 20× acceleration while maintaining

competitive or higher generation quality. Meanwhile, unlike existing ODE baselines that

heavily rely on corrector to generate decent samples on weaker architectures, PFGM exhibits

greater stability against error (Section 7.4). Finally, we show that PFGM is robust to the

step size in the Euler method (Section 7.4), and its associated ODE allows for likelihood

evaluation and image manipulation by editing the latent space (Section 7.4).

127



Table 7.1: CIFAR-10 sample quality (FID, Inception) and number of function evalua-
tion (NFE).

Invertible? Inception ↑ FID ↓ NFE ↓

PixelCNN [15] ✗ 4.60 65.9 1024
IGEBM [21] ✗ 6.02 40.6 60
ViTGAN [200] ✗ 9.30 6.66 1
StyleGAN2-ADA [48] ✗ 9.83 2.92 1
StyleGAN2-ADA (cond.) [48] ✗ 10.14 2.42 1
NCSN [197] ✗ 8.87 25.32 1001
NCSNv2 [49] ✗ 8.40 10.87 1161
DDPM [167] ✗ 9.46 3.17 1000
NCSN++ VE-SDE [34] ✗ 9.83 2.38 2000
NCSN++ deep VE-SDE [34] ✗ 9.89 2.20 2000
Glow [16] ✓ 3.92 48.9 1
DDIM, T=50 [54] ✓ - 4.67 50
DDIM, T=100 [54] ✓ - 4.16 100
NCSN++ VE-ODE [34] ✓ 9.34 5.29 194
NCSN++ deep VE-ODE [34] ✓ 9.17 7.66 194

DDPM++ backbone

VP-SDE [34] ✗ 9.58 2.55 1000
sub-VP-SDE [34] ✗ 9.56 2.61 1000

VP-ODE [34] ✓ 9.46 2.97 134
sub-VP-ODE [34] ✓ 9.30 3.16 146
PFGM (ours) ✓ 9.65 2.48 104

DDPM++ deep backbone

VP-SDE [34] ✗ 9.68 2.41 1000
sub-VP-SDE [34] ✗ 9.57 2.41 1000

VP-ODE [34] ✓ 9.47 2.86 134
sub-VP-ODE [34] ✓ 9.40 3.05 146
PFGM (ours) ✓ 9.68 2.35 110

128



Image Generation

Setup For image generation tasks, we consider the CIFAR-10 [201], CelebA 64×64 [51] and

LSUN bedroom 256×256 [202]. Following [49], we first center-crop the CelebA images and then

resize them to 64× 64. We choose M = 291 (CIFAR-10 and CelebA)/356 (LSUN bedroom),

σ = 0.01 and τ = 0.03 for the perturbation Algorithm 3, and zmin = 1e − 3, zmax =

40 (CIFAR-10)/60 (CelebA 642)/100 (LSUN bedroom) for the backward ODE. We further

clip the norms of initial samples into (0, 3000) for CIFAR-10, (0, 6000) for CelebA 642 and

(0, 30000) for LSUN bedroom. We adopt the DDPM++ and DDPM++ deep architectures [34]

as our backbones. We add the scalar z (resp. predicted direction on z) as input (resp. output)

to accommodate the additional dimension. We take the same set of hyper-parameters, such

as batch size, learning rate and training iterations from [34]. We provide more training details

in Appendix B.5.2, and discuss how to set these hyper-parameters for general datasets in

B.5.2 and B.5.2.

Baselines We compare PFGM to modern autoregressive model [15], GAN [48], [200],

normalizing flow [16] and EBM [21]. We also compare with variants of score-based models

such as DDIM [54] and current state-of-the-art SDE/ODE methods [34]. We denote the

methods that use forward-time SDEs in [34] such as Variance Exploding (VE) SDE/Variance

Preserving (VP) SDE/ sub-Variance Preserving (sub-VP), and the corresponding backward

SDE/ODE, as A-B, where A ∈ {VE, VP, sub-VP} and B ∈ {SDE, ODE}. We follow the

model selection protocol in [34], which selects the checkpoint with the smallest FID score

over the course of training every 50k iterations.

Numerical Solvers The backward ODE (Equation 7.6) is compatible with any general

purpose ODE solver. In our experiments, the default solver of ODEs is the black box solver

in the Scipy library [199] with the RK45 [53] method (RK45), unless otherwise specified.

For VE/VP/subVP-SDEs, we use the predictor-corrector (PC) sampler introduced in [34].

For VP/sub-VP-SDEs, we apply the predictor-only sampler, because its performance is on

par with the PC sampler while requiring half computation.

129



||x||2

102

103

104

z(t')
10

15

20

p(
||x

|| 2
)

PFGM

||x||2

102

103

104

(t)
10

15

20

p(
||x

|| 2
)

Score-based VE-ODE

Figure 7.3: Sample norm distributions with varying time variables (σ for VE-ODE and z for
PFGM)

Results For quantitative evaluation on CIFAR-10, we report the Inception [55] (higher is

better) and FID [41] scores (lower is better) in Table 7.1. We also include our preliminary

experimental results on a weaker architecture NCSNv2 [49] in Appendix B.5.3. We measure

the inference speed by the average NFE (number of function evaluation). We also explicitly

indicate which methods belong to the invertible flow family.

Our main findings are: (1) PFGM achieves the best Inception scores and FID

scores among the normalizing flow models. Specifically, PFGM obtains an Inception

score of 9.68 and a FID score of 2.48 using the DDPM++ deep architecture. To our

knowledge, these are the highest FID and Inception scores by flow models on CIFAR-10.

(2) PFGM achieves a 10× ∼ 20× faster inference speed than the SDE methods

using similar architectures while retaining comparable sample quality. As shown in

Table 7.1, PFGM requires NFEs of 110, whereas the SDE methods typically use 1000 ∼ 2000

inference steps. PFGM outperforms all the baselines on DDPM++ in all metrics. In addition,

PFGM generally samples faster than other ODE baselines with the same RK45 solver. (3)

The backward ODE in PFGM is compatible with architectures with varying

capacities. PFGM consistently outperforms other ODE baselines on DDPM++ (Table 7.1)

or NCSNv2 (Appendix B.5.3) backbones. (4) PFGM shows scalability to higher

resolution datasets. In Appendix B.5.3, we show that PFGM are capable of scale-up to

LSUN bedroom 256× 256. In particular, PFGM has comparable performance with VE-SDE

with 15× fewer NFE.

In Figure 7.4, we visualize the uncurated samples from PFGM on CIFAR-10, CelebA

130



Figure 7.4: Uncurated samples on datasets of increasing resolution. From left to right:
CIFAR-10 32× 32, CelebA 64× 64 and LSUN bedroom 256× 256.

64× 64 and LSUN bedroom 256× 256. We provide more samples in Appendix B.5.4.

Failure of VE/VP-ODEs on NCSNv2 Architecture

Table 7.2: CIFAR-10 sample quality (FID, Inception) and number of function evalua-
tion (NFE). All the methods below the NCSNv2 backbone separator use the NCSNv2 [49]
network architecture as the backbone.

Inception ↑ FID ↓ NFE ↓

PixelCNN [15] 4.60 65.93 1024
IGEBM [21] 6.02 40.58 60
WGAN-GP [203] 7.86± .07 36.4 1
SNGAN [204] 8.22± .05 21.7 1
NCSN [197] 8.87± .12 25.32 1001

NCSNv2 backbone

Langevin dynamics [49] 8.40± .07 10.87 1161
VE-SDE [34] 8.23± .02 10.94 1000
VP-SDE [34] 6.85± .01 44.05 1000

VE-ODE (Euler w/ corrector) 8.05± .03 11.33 1000
VP-ODE (Euler w/ corrector) 7.33± .07 37.74 1000
PFGM (Euler) 8.00± .09 11.78 200
PFGM (RK45) 8.30± .05 11.22 118

In our preliminary experiments on NCSNv2 architectures, we empirically observe that the

VE/VP-ODEs have FID scores greater than 90 on CIFAR-10. In particular, VE/VP-ODEs

can only generate decent samples when applying the Langevin dynamics corrector, and

131



Table 7.3: FID/NFE on CelebA 64× 64

FID ↓ NFE ↓

NCSN [197] 26.89 1001

NCSNv2 backbone

Langevin dynamics [49] 10.23 2501
VE-SDE [34] 8.15 1000
VP-SDE [34] 34.52 1000

VE-ODE (Euler w/ corrector) 8.30 200
VP-ODE (Euler w/ corrector) 41.81 200
PFGM (Euler) 7.85 100
PFGM (RK45) 7.93 110

DDPM++ backbone

PFGM (RK45) 3.68 110

even then, their performances are still inferior to PFGM (Table B.21, Table B.22). The

poor performance on NCSNv2 stands in striking contrast to their high sample quality on

NCSN++/DDPM++ in [34]. It indicates that the VE/VP-ODEs are more susceptible

to estimation errors than PFGM. We hypothesize that the strong norm-σ correlation

seen during the training of score-based models causes the problem.

For score-based models, the l2 norms of perturbed training samples and the standard

deviations σ(t) of Gaussian noises have a strong correlation, e.g ., l2 norm ≈ σ(t)
√
N for

large σ(t) in VE [34]. In contrast, as shown in Figure 7.3, PFGM allocates high mass across

a wide spectrum of the training sample norms. During sampling, VE/VP-ODEs could break

down when the trajectories of backward ODEs deviate from the norm-σ(t) relation to which

most training samples pertain. The weaker NCSNv2 backbone incurs larger errors and thus

leads to their failure. The PFGM is more resistant to estimate errors because of the greater

range of training sample norms.

To further verify the hypothesis above, we split a batch of VE-ODE samples into cleaner

and noisier samples according to visual quality (Figure 7.5a). In Figure 7.6a, we investigate

the relation for cleaner and noisier samples during the forward Euler simulation of VE-ODE

when σ(t) < 15. We can see that the trajectory of cleaner samples stays close to the norm-σ(t)

132



(a) VE-ODE (b) VE-ODE w/ corrector

Figure 7.5: (a) Samples from VE-ODE (Euler w/o corrector). We highlight the noisier
images with red boxes. The rest are cleaner images. (b) Samples from VE-ODE (Euler w/
corrector). We mark the noisier samples after correction with green boxes.

0.0 2.5 5.0 7.5 10.0 12.5 15.0

(t)
0

200

400

600

800

l 2
 n

or
m

VE-ODE (Euler)
Cleaner samples
Noisier samples
Noisier samples w/ corrector

l2 norm = (t) N

(a) Norm-σ(t) in VE-ODE

0 2 4 6 8

z(t ′)
0

200

400

600

800

1000

1200

l 2
 n

or
m

PFGM (Euler)

(b) Norm-z(t′) in PFGM

0 20 40 60 80 100

NFE

0

50

100

150

200

FI
D

CIFAR-10

0

10

20

PFGM (Euler)
DDIM
VP-ODE (Euler)

(c) FID vs. NFE on CIFAR-10

Figure 7.6: (a) Norm-σ(t) relation during the backward sampling of VE-ODE (Euler). (b)
Norm-z(t′) relation during the backward sampling of PFGM (Euler). The shaded areas mean
the standard deviation of norms. (c) Number of steps versus FID score.

relation (the red dash line), whereas that of the noisier samples diverges from the relation.

The Langevin dynamics corrector changes the trajectory of noisier samples to align with the

relation. Figure 7.6b further shows that the anchored variable z(t′) and the norms in the

backward ODE of PFGM are not strongly correlated, giving rise to the robustness against

the imprecise estimation on NCSNv2. We defer more details to Appendix B.5.1.

Effects of Step Size in the Forward Euler Method

In order to accelerate the inference speed of ODEs, we can increase the step size (decrease the

NFEs) in numerical solvers such as the forward Euler method. It also enables the trade-off

133



between sample quality and computational efficiency in real-world deployment. We study the

effects of increasing step size on PFGM, VP-ODE and DDIM [54] using the forward Euler

method, with a varying NFE ranging from 10 to 100.

In Figure 7.6c, we report the sample quality measured by FID scores on CIFAR-10. As

expected, all the methods have higher FID scores when decreasing the NFE. We observe that

the sample quality of PFGM degrades gracefully as we decrease the NFE. Our method shows

significantly better robustness to step sizes than the VP-ODE, especially when only taking a

few Euler steps. In addition, PFGM obtains better FID scores than DDIM on most NFEs

except for 10 where PFGM is marginally worse. This suggests that the PFGM is a promising

method for accommodating instantaneous resource availability, as high-quality samples can

be generated in limited steps.

Utilities of ODE: likelihood evaluation and latent representation

Similar to the family of discrete normalizing flows [16], [17], [205] and continuous probability

flow [34], the forward ODE in PFGM defines an invertible mapping between the data space

and latent space with a known prior. Formally, we define the invertible forwardM mapping

by integrating the corresponding forward ODE d(x, z) = (v(x̃)xv(x̃)
−1
z z, z)dt′ of Equation 7.6:

x(log zmax) =M(x(log zmin)) ≡ x(log zmin) +

ˆ log zmax

log zmin

v(x(t′))xv(x̃(t
′))−1z et

′
dt′

where log zmin/log zmax are the starting/terminal time in the forward ODE. The forward

mapping transfers the data distribution to the prior distribution pprior on the z = zmax

hyperplane (cf. Section 7.3.3): pprior(x(log zmax)) = M(p(x(log zmin))). The invertibility

enables likelihood evaluation and creates a meaningful latent space on the z = zmax hyperplane.

In addition, we can adapt to the computational constraints by adjusting the step size or the

precision in numerical ODE solvers.

Likelihood evaluation We evaluate the data likelihood by the instantaneous change-of-

variable formula [34], [191]. In Table 7.4, we report the bits/dim on the uniformly dequantized

CIFAR-10 test set and compare with existing baselines that use the same setup. We observe

that PFGM achieves better likelihoods than discrete normalizing flow models, even without

134



maximum likelihood training. Among the continuous flow models, sub-VP-ODE shows the

lowest bits/dim, although its sample quality is worse than VP-ODE and PFGM (Table 7.1).

The exploration of the seeming trade-off between likelihood and sample quality is left for

future works.

Table 7.4: Bits/dim on CIFAR-10

bits/dim ↓

RealNVP [17] 3.49

Glow [16] 3.35

Residual Flow [196] 3.28

Flow++ [205] 3.29

DDPM (L) [167] ≤ 3.70*

DDPM++ backbone

VP-ODE [34] 3.20

sub-VP-ODE [34] 3.02

PFGM (ours) 3.19

Latent representation Since the samples are

uniquely identifiable by their latents via the invertible

mappingM, PFGM further supports image manipu-

lation using its latent representation on the z = zmax

hyperplane. We include the results of image inter-

polation and the temperature scaling [16], [17], [34]

to Appendix B.5.3 and Appendix B.5.3. For interpo-

lation, it shows that we can travel along the latent

space to obtain perceptually consistent interpolations

between CelebA images.

7.5 Conclusion

We present a new deep generative model by solving the Poisson equation whose source term

is the data distribution. We estimate the normalized gradient field of the solution in an

augmented space with an additional dimension. For sampling, we devise a backward ODE

that exponential decays on the physically meaningful additional dimension. Empirically, our

approach has currently best performance over other normalizing flow baselines, and achieving

10× to 20× acceleration over the stochastic methods. Our backward ODE shows greater

stability against errors than popular ODE-based methods, and enables efficient adaptive

sampling. We further demonstrate the utilities of the forward ODE on likelihood evaluation

and image interpolation. Future directions include improving the normalization of Poisson

fields. More principled approaches can be used to get around the divergent near-field behavior.

For example, we may exploit renormalization, a useful tool in physics, to make the Poisson

field well-behaved in near fields.

135



136



Chapter 8

An Extended View of Electrostatics in

Higher-dimensional Space

In Chapter 7, we discuss a new type of generative models — PFGM — arising from elec-

trostatics theory. In this chapter, we will introduce its extended version PFGM++ that

unifies diffusion models and Poisson Flow Generative Models (PFGM). These models realize

generative trajectories for N dimensional data by embedding paths in N+D dimensional

space while still controlling the progression with a simple scalar norm of the D additional

variables. The new models reduce to PFGM when D=1 and to diffusion models when D→∞.

The flexibility of choosing D allows us to trade off robustness against rigidity as increasing D

results in more concentrated coupling between the data and the additional variable norms.

We dispense with the biased large batch field targets used in PFGM and instead provide an

unbiased perturbation-based objective similar to diffusion models. To explore different choices

of D, we provide a direct alignment method for transferring well-tuned hyperparameters from

diffusion models (D→∞) to any finite D values. Our experiments show that models with

finite D can be superior to previous state-of-the-art diffusion models on CIFAR-10/FFHQ

64×64 datasets/LSUN Churches 256×256, with median Ds. Furthermore, we demonstrate

that models with smaller D exhibit improved robustness against modeling errors.

This chapter was previously published as [31].

137



8.1 Introduction

Physics continues to inspire new deep generative models such as diffusion models [10], [27],

[34], [167] based on thermodynamics [206] or Poisson flow generative models (PFGM) [30]

derived from electrostatics in previous chapter. The associated generative processes involve

iteratively denoising samples by following physically meaningful trajectories. Diffusion models

learn a noise-level dependent score function so as to reverse the effects of forward diffusion,

progressively reducing the noise level σ along the generation trajectory. PFGMs in turn

augment N -dimensional data points with an extra dimension and evolve samples drawn from

a uniform distribution over a large N+1-dimensional hemisphere back to the z=0 hyperplane

where the clean data (as charges) reside by tracing learned electric field lines.

In this chapter, we introduce a broader family of physics-inspired generative models that we

call PFGM++. These models extend the electrostatic view into higher dimensions through

multi-dimensional z ∈ RD augmentations. When interpreting N -dimensional data points x as

positive charges, the electric field lines define a surjection from a uniform distribution on an

infinite N+D-dimensional hemisphere to the data distribution located on the z=0 hyperplane.

We can therefore draw generative samples by following the electric field lines, evolving points

from the hemisphere back to the z=0 hyperplane. We leverage the symmetry of z to reduce

the vector to a scalar ∥z∥2 = r, simplifying the sampling process. The use of symmetry turns

the aforementioned surjection into a bijection between an easy-to-sample prior on a large

r = rmax hyper-cylinder to the data distribution. The symmetry reduction also permits D

to take any positive values, including reals. We derive a new perturbation-based training

objective akin to denoising score matching [38] that avoids the need to use large batches

to construct electric field line targets in PFGM. The perturbation-based objective is more

efficient, unbiased, and compatible with paired sample training of conditional generation

models.

The models in the new family differ based on their augmentation dimension D which is

now a hyper-parameter. By setting D=1 we obtain PFGM while D→∞ leads to diffusion

models. We establish D→∞ equivalence with popular diffusion models [27], [34] both in

terms of their training objectives as well as their inferential processes. We demonstrate that

138



PFGM (Xu et al, 2022)

D = 1 D → ∞D*

Sec 5 Sweet spot balancing

robustness and rigidity

Diffusion models

VE/VP (Song et al, 2021)

EDM (Karras et al, 2022)

PFGM++  (D ∈ ℝ+)

Sec 3.1 Higher-dimensional augmentation 

Sec 3.2 Perturbation-based training objective

Thm 4.1 Field / Sampling equivalence

Prop 4.2 Training equivalence

Extension from PFGM Equivalence between  and diffusion modelsD → ∞

Figure 8.1: Overview of paper contributions and structure. PFGM++ unify PFGM and
diffusion models, as well as the potential to combine their strengths (robustness and rigidity).

the hyper-parameter D controls the balance between robustness and rigidity: using a small

D widens the distribution of noisy training sample norms in comparison to the norm of

the augmented variables, leading to a more robust generative process. However, small D

also leads to a heavy-tailed problem of training samples, making the training process more

challenging (neural networks cannot rigidly predict the fields correctly). Neither D=1 nor

D→∞ offers an ideal balance between being insensitive to missteps (robustness) and allowing

effective learning (rigidity). Instead, we adjust D in response to different architectures and

tasks. To facilitate quickly finding the best D we provide an alignment method to directly

transfer other hyperparameters across different choices of D.

Experimentally, we show that some models with finite D outperform the previous state-

of-the-art diffusion models (D→∞), i.e., EDM [27], on image generation tasks. In particular,

intermediate D=2048/128/131072 achieve the best performance among other choices of

D ranging from 64 to ∞, with min FID scores of 1.91/2.43/6.52 on CIFAR-10/ FFHQ

64×64/LSUN Churches 256×256 datasets in unconditional generation, using 35/79/99 NFE.

In class-conditional generation, D=2048 achieves new state-of-the-art FID of 1.74 on CIFAR-

10. We further verify that in general, decreasing D leads to improved robustness against

a variety of sources of errors, i.e., controlled noise injection, large sampling step sizes and

post-training quantization.

Our contributions are summarized as follows: (1) We propose PFGM++ as a new family

of generative models based on expanding augmented dimensions and show that symmetries

139



involved enable us to define generative paths simply based on the scalar norm of the augmented

variables (Section 8.2.1); (2) We propose a perturbation-based objective to dispense with any

biased large batch derived electric field targets, allowing unbiased training (Section 8.2.2);

(3) We prove that the score field and the training objective of diffusion models arise in the

limit D→∞ (Section 8.3); (4) We demonstrate the trade-off between robustness and rigidity

by varying D (Section 8.4). We also detail the hyperparameter transfer procedures from

EDM/DDPM (D →∞) to finite Ds in Appendix B.6.1; (5) We empirically show that models

with finite D achieve superior performance to diffusion models while exhibiting improved

robustness (Section 8.5).

8.2 PFGM++: Augmenting the Data with Arbitrary

Dimension D

In this section, we present our new family of generative models PFGM++, generalizing

PFGM [30] in terms of the augmented space dimensionality. We show that the electric fields

in N+D-dimensional space with D ∈ Z+ still constitute a valid generative model (Sec 8.2.1).

Furthermore, we show that the additionalD-dimensional augmented variable can be condensed

into their scalar norm due to the inherent symmetry of the electric field. To improve the

training process, we propose an efficient perturbation-based objective for training PFGM++

(Sec 8.2.2) without relying on the large batch approximation in the original PFGM.

8.2.1 Electric Field in Higher-Dimensional Space

While PFGM [30] consider the electric field in a N+1-dimensional augmented space, we

augment the data x with D-dimensional variables z = (z1, . . . , zD), i.e., x̃ = (x, z) and

D ∈ Z+. Similar to the N+1-dimensional electric field (Equation 7.4), the electric field at

the augmented data x̃ = (x, z) ∈ RN+D is:

E(x̃) =
1

SN+D−1(1)

ˆ
x̃− ỹ

∥x̃− ỹ∥N+D
p(y)dy (8.1)

140



Analogous to the theoretical results presented in PFGM, with the electric field as the drift

term, the ODE dx̃=E(x̃)dt defines a surjection from a uniform distribution on an infinite

N+D-dim hemisphere (the measure we used on hemisphere is defined as the “surface area”

of the hypersphere, i.e., r̄N+D−1dΩ, where dΩ is the solid angle on the N+D−1-dimensional

sphere with radius r̄) and the data distribution on the N-dim z=0 hyperplane. However,

the mapping has SO(D) symmetry on the surface of D-dim cylinder
∑D

i=1 z
2
i = r2 for any

positive r. We provide an illustrative example at the bottom of Figure 8.2 (D=2, N=1),

where the electric flux emitted from a line segment (red) has rotational symmetry through

the ring area (blue) on the z21 + z22 = r2 cylinder. Hence, instead of modeling the individual

behavior of each zi, it suffices to track the norm of augmented variables — r(x̃) = ∥z∥2 —

due to symmetry. Specifically, note that dzi = E(x̃)zidt, and the time derivative of r is

dr

dt
=

D∑
i=1

zi
r

dzi
dt

=

ˆ ∑D
i=1 z

2
i

SN+D−1(1)r∥x̃− ỹ∥N+D
p(y)dy

=
1

SN+D−1(1)

ˆ
r

∥x̃− ỹ∥N+D
p(y)dy

Henceforth we replace the notation for augmented data with x̃ = (x, r) for simplicity.

After the symmetry reduction, the field to be modeled has a similar form as Equation 8.1

except that the last D sub-components {E(x̃)zi}Di=1 are condensed into a scalar E(x̃)r =

1
SN+D−1(1)

´
r

∥x̃−ỹ∥N+D p(y)dy. Therefore, we can use the physically meaningful r as the anchor

variable in the ODE dx/dr by change-of-variable:

dx

dr
=

dx

dt

dt

dr
=

E(x̃)x
E(x̃)r

(8.2)

Indeed, the ODE dx/dr turns the aforementioned surjection into a bijection between an

easy-to-sample prior distribution on the r=rmax hyper-cylinder 1 and the data distribution

on r=0 (i.e., z=0) hyperplane. The following theorem states the observation formally:

Theorem 7. Assume the data distribution p ∈ C1 and p has compact support. As rmax→∞,

for D ∈ R+, the ODE dx/dr = E(x̃)x/E(x̃)r defines a bijection between limrmax→∞ prmax(x) ∝
1The hyper-cylinder here is consistent with the hemisphere in PFGM [30], because hyper-cylinders degrade

to hyper-planes for D = 1, which are in turn isomorphic to hemispheres.

141



Figure 8.2: The augmented dimension D affects electric field lines (gray), which connect
charge/data on a line (purple) to latent space (green). When D = 1 (top) or D = 2 (bottom),
electric field lines map the same red line segment to a blue line segment or onto a blue ring,
respectively. The mapping defined by electric lines has SO(2) symmetry on the surface of
z21 + z22 = r2 cylinder.

limrmax→∞ r
D
max/(∥x∥22 + r2max)

N+D
2 when r = rmax and the data distribution p when r = 0.

Proof sketch. The r-dependent intermediate distribution of the ODE (Equation 8.2) is

pr(x)∝
´
rD/∥x̃− ỹ∥N+Dp(y)dy, which satisfies initial/terminal conditions, i.e., pr=0=p,

limrmax→∞ prmax ∝ limrmax→∞ r
D
max/(∥x∥22 + r2max)

N+D
2 , as well as the continuity equation of

the ODE, i.e., ∂rpr +∇x · (prE(x̃)x/E(x̃)r) = 0.

We defer the formal proof to Appendix A.5.1. Note that in the theorem we further extend

the domain of D from positive integers to positive real numbers. In practice, the starting con-

dition of the ODE is some sufficiently large rmax such that prmax(x) ∝∼ rDmax/(∥x∥22 + r2max)
N+D

2 .

The terminal condition is r= 0, which represents the generated samples reaching the data

support. The proposed PFGM++ framework thus permits choosing arbitrary D, including

D = 1 which recovers the original PFGM formulation. Interestingly, we will also show that

when D→∞, PFGM++ recover the diffusion models (Sec 8.3). In addition, as discussed

in Sec 8.4, the choice of D is important, since it controls two properties of the associated

electric field, i.e., robustness and rigidity, which affect the sampling performance.

142



8.2.2 Efficient Training with Perturbation Kernel

Although the training process in PFGM can be directly applied to PFGM++, we propose a

more efficient training objective to dispense with the large batch in PFGM. The objective

from PFGM paper [30] requires sampling a large batch of data {yi}ni=1∼pn(y) in each training

step to approximate the integral in the electric field (Equation 8.1):

E{yi}ni=1∼pn(y)Ex̃∼p̃train(x̃|ỹ1=(y1,0))[∥∥∥∥fθ(x̃)−
∑n−1

i=0
x̃−ỹi

∥x̃−ỹi∥N+D∥∥∑n−1
i=0

x̃−ỹi

∥x̃−ỹi∥N+D

∥∥
2
+ γ

∥∥∥∥2
2

]

where p̃train is heuristically designed to cover the regions that the backward ODE traverses and

γ in the denominator is a tiny positive number to prevent numerical issues. This objective has

several obvious drawbacks: (1) The large batch incurs additional overheads; (2) Its minimizer

is a biased estimator of the electric field (Equation 8.1); (3) The large batch is incompatible

with typical paired sample training of conditional generation, where each condition is paired

with only one sample, such as text-to-image [153], [160] and text-to-3D generation [207],

[208].

To remedy these issues, we propose a perturbation-based objective without the need for

the large batch, while achieving an unbiased minimizer and enabling paired sample training of

conditional generation. Inspired by denoising score-matching [38], we design the perturbation

kernel to guarantee that the minimizer in the following square loss objective matches the

ground-truth electric field in Equation 8.1:

Er∼p(r)Ep(y)Epr(x|y)
[
∥fθ(x̃)− (x̃− ỹ)∥22

]
(8.3)

where r ∈ (0,∞), p(r) is the training distribution over r, pr(x|y) is the perturbation

kernel and ỹ=(y, 0)/x̃=(x, r) are the clean/perturbed augmented data. The minimizer

of Equation 8.3 is f ∗θ (x̃)∝
´
pr(x|y)(x̃− ỹ)p(y)dy, which matches the direction of elec-

tric field E(x̃) ∝
´
(x̃− ỹ)/∥x̃− ỹ∥N+Dp(y)dy when setting the perturbation kernel to

pr(x) ∝ 1/(∥x∥22 + r2)
N+D

2 . Denoting the r-dependent intermediate marginal distribution as

143



pr(x)=
´
pr(x|y)p(y)dy, the following proposition states that the choice of pr(·|y) guarantee

that the minimizer of the square loss to match the direction of the electric field:

Proposition 1. With perturbation kernel pr(x|y) ∝ 1/(∥x− y∥22 + r2)
N+D

2 , for ∀x ∈ RN , r >

0, the minimizer f ∗θ (x̃) in the PFGM++ objective (Equation 8.3) matches the direction of

electric field E(x̃) in Equation 8.1. Specifically, f ∗θ (x̃) ∝ (SN+D−1(1)/pr(x))E(x̃).

We defer the proof to Appendix A.5.2. The proposition indicates that the minimizer f ∗θ (x̃)

can match the direction of E(x̃) with sufficient data and model capacity. The current training

target in Equation 8.3 is the directional vector between the clean data ỹ and perturbed

data x̃ akin to denoising score-matching for diffusion models [27], [34]. In addition, the new

objective allows for conditional generations under a one-sample-per-condition setup. Since

the perturbation kernel is isotropic, we can decompose pr(·|y) in hyperspherical coordinates

to Uψ(ψ)pr(R), where Uψ is the uniform distribution over the angle component and the

distribution of the perturbed radius R = ∥x− y∥2 is

pr(R) ∝
RN−1

(R2 + r2)
N+D

2

We defer the practical sampling procedure of the perturbation kernel to Appendix B.6.2. The

mean of the r-dependent radius distribution pr(R) is around r
√
N/D. Hence we explicitly

normalize the target in Equation 8.3 by r/
√
D, to keep the norm of the target around the

constant
√
N , similar to diffusion models [34]. In addition, we drop the last dimension of the

target because it is a constant — (x̃− ỹ)r/(r/
√
D) =

√
D. Together, the new objective is

Er∼p(r)Ep(ỹ)Epr(x̃|ỹ)
[∥∥∥fθ(x̃)− x− y

r/
√
D

∥∥∥2
2

]
(8.4)

which is essentially a rescaled version of Equation 8.3. After training the neural network

through objective Equation 8.4, we can use the ODE (Equation 8.2) anchored by r to generate

samples, i.e., dx/dr = E(x̃)x/E(x̃)r = fθ(x̃)/
√
D, starting from the prior distribution prmax .

We would like to highlight that PFGM++ maintain the same memory requirements as PFGM

(D = 1) or diffusion models (D =∞) during both training and sampling. This is achieved by

condensing the high-dimensional augmented variable z into the scalar r.

144



8.3 Diffusion Models as D→∞ Special Cases

Diffusion models generate samples by simulating ODE/SDE involving the score function

∇x log pσ(x) at different intermediate distributions pσ [27], [34], where σ is the standard

deviation of the Gaussian kernel. In this section, we show that both sampling and training

schemes in diffusion models are equivalent to those in D→∞ case under the PFGM++

framework. To begin with, we show that the electric field (Equation 8.1) in PFGM++ has the

same direction as the score function when D tends to infinity, and their sampling processes

are also identical.

Theorem 8. Assume the data distribution p ∈ C1. Consider taking the limit D →∞ while

holding σ = r/
√
D fixed. Then, for all x,

lim
D→∞
r=σ
√
D

∥∥∥∥−
√
D

E(x̃)r
E(x̃)x − σ∇x log pσ=r/

√
D(x)

∥∥∥∥
2

= 0

where E(x̃ = (x, r))x is given in Equation 8.1. Further, given the same initial point, the

trajectory of the PFGM++ ODE (dx/dr=E(x̃)x/E(x̃)r) matches the diffusion ODE [27]

(dx/dt=− σ̇(t)σ(t)∇x log pσ(t)(x)) in the same limit.

Proof sketch. By re-expressing the x component E(x̃)x in the electric field and the score

∇x log pσ in diffusion models, the proof boils down to show that limD→∞,r=σ
√
D pr(x|y) ∝

exp(−∥x− y∥22/2σ2) for ∀x,y ∈ RN+D:

lim
D→∞,r=σ

√
D

1

(∥x− y∥22 + r2)
N+D

2

∝ lim
D→∞,r=σ

√
D
e−

(N+D)
2

ln(1+
∥x−y∥2

r2
)

= lim
D→∞,r=σ

√
D
e−

(N+D)∥x−y∥22
2r2 = e−

∥x−y∥22
2σ2 (8.5)

The equivalence of trajectories can be proven by change-of-variable dσ = dr/
√
D. Their prior

distributions are also the same since limD→∞ prmax=σmax
√
D(x) = N (0, σ2

maxI).

We defer the formal proof to Appendix A.5.3. Since ∥x − y∥22/r2 ≈ N/D when x ∼

145



pr(x),y ∼ p(y), Equation 8.5 approximately holds under the condition D ≫ N . Remarkably,

the theorem states that PFGM++ recover the field and sampling of previous popular diffusion

models, such as VE/VP [49] and EDM [27], by choosing the appropriate schedule and scale

function in [27].

In addition to the field and sampling equivalence, we demonstrate that the proposed

PFGM++ objective (Equation 8.4) with perturbation kernel pr(x|y) ∝ 1/(∥x− y∥22 + r2)
N+D

2

recovers the weighted sum of the denoising score matching objective [38] for training continuous

diffusion model [27], [34] when D→∞. All previous objectives for training diffusion models

can be subsumed in the following form [27], under different parameterizations of the neural

networks fθ:

Eσ∼p(σ)λ(σ)Ep(y)Epσ(x|y)
[∥∥∥fθ(x, σ)− x− y

σ

∥∥∥2
2

]
(8.6)

where pσ(x|y) ∝ exp(−∥x− y∥22/2σ2). The objective of the diffusion models resembles the

one of PFGM++ (Equation 8.4). Indeed, we show that when D→∞, the minimizer of the

proposed PFGM++ objective at x̃=(x, r) is f ∗θ (x, r = σ
√
D)=− σ∇x log pσ(x), the same as

the minimizer of diffusion objective at the noise level σ=r/
√
D.

Proposition 2. When r = σ
√
D,D →∞, the minimizer in the PFGM++ objective (Equa-

tion 8.4) is equaivalent to the minimizer in the weighted sum of denoising score matching

objective (Equation 8.6)

We defer the proof to Appendix A.5.4. The proposition states that the training objective

of diffusion models is essentially the same as PFGM++’s when D→∞. Combined with

Theorem 8, PFGM++ thus recover both the training and sampling processes of diffusion

models when D→∞.

Transfer hyperparameters to finite Ds The training hyperparameters of diffusion

models (D→∞) have been highly optimized through a series of works [27], [34], [167]. It

motivates us to transfer hyperparameters, such as rmax and p(r), of D→∞ to finite Ds. Here

we present an alignment method that enables a “zero-shot" transfer of hyperparameters

across different Ds. Our alignment method is inspired by the concept of phases in [23],

146



which demonstrates that the score field in the forward process of diffusion models can be

decomposed into three successive phases. As we move from the near field (Phase 1) to the far

field (Phase 3), the perturbed data become influenced by more modes in the data distribution.

The authors show that the posterior p0|σ serves as a phase indicator, as it gradually evolves

from a delta distribution to a uniform distribution when transitioning from Phase 1 to Phase

3.

We aim to align the phases for two distinctD1, D2 > 0. In Appendix B.6.1, we demonstrate

that when r ∝
√
D, the phase of the intermediate distribution pr is approximately invariant

to all D > 0 (including D→∞). In other words, when rD1/rD2 =
√
D1/D2, the phases of prD1

and prD2
, under D1 and D2 respectively, are roughly aligned. Theorem 8 further shows that the

relation r=σ
√
D makes PFGM++ equivalent to diffusion models when D→∞. Together, the

r=σ
√
D formula aligns the phases of pσ in diffusion models and pr=σ√D in PFGM++ for ∀D>0.

Such alignment enables directly transferring the finely tuned hyperparameters σmax, p(σ) in

previous state-of-the-art diffusion models [27] with rmax=σmax
√
D, p(r)=p(σ=r/

√
D)/
√
D.

We put the practical hyperparameter transfer procedures in Appendix B.6.1.

We empirically verify the alignment formula on the CIFAR-10 [157]. [23] shows that

the posterior p0|r(y|x) ∝ pr(x|y)p(y) gradually grows towards a uniform distribution from

the near to the far field. As a result, the mean total variational distance (TVD) be-

tween a uniform distribution and the posterior serves as an indicator of the phase of pr:

Epr(x)TVD
(
U(·) ∥ p0|r(·|x)

)
. Figure 8.3 reports the mean TVD before and after the r=σ

√
D

alignment. We observe that the mean TVDs of a wide range of Ds take similar values after

the alignment, suggesting that the phases of pr=σ√D are roughly aligned for different Ds.

8.4 Balancing Robustness and Rigidity

In this section, we first delve into the behaviors of PFGM++ with different Ds (Sec 8.4.1)

based on the alignment formula. Then we demonstrate how to leverage D to balance the

robustness and rigidity of models (Sec 8.4.2). We defer all experimental details in this section

to Appendix B.6.2.

147



0 20000 40000 60000 80000
r

0.0

0.2

0.4

0.6

0.8

1.0
M

ea
n 

TV
D

No alignment
D = 24

D = 28

D = 212

D = 216

D = 220

(a) No alignment

0 20 40 60 80

0.2

0.4

0.6

0.8

1.0
r = D  alignment

D = 24

D = 28

D = 212

D = 216

D = 220

(b) r = σ
√
D alignment

Figure 8.3: Mean TVD between the posterior p0|r(·|x) (x is perturbed sample) and the
uniform prior, w/o (a) and w/ (b) the phase alignment (r = σ

√
D).

8.4.1 Behavior of Perturbation Kernel When Varying D

20 25 210 215 220

D

0.00
0.25
0.50
0.75
1.00
1.25
1.50

Av
er

ag
e 

2 d
iff

er
en

ce

1e 1
= 1
= 5
= 20
= 80

(a)

25 210 215

D

0

5

10

15

lo
g 2

Va
r p

r(R
) = 1

= 5
= 20
= 80

(b)

||x||2

1e3
0 1 2 3 4 5 6 7 8 10

20

40

80

p r
=

D
(||

x|
| 2)

D = 22

D = 26

D = 210

D = 214

D = 218

(c)

Figure 8.4: (a) Average ℓ2 difference between scaled electric field and score function, versus
D. (b) Log-variance of radius distribution versus D. (c) Density of radius distributions
pr=σ

√
D(R) with varying σ and D.

According to Theorem 8, when D→∞, the field in PFGM++ has the same direction as

the score function, i.e.,
√
DE(x̃)x/E(x̃)r=σ∇x log pσ=r/

√
D(x). In addition to the theoretical

analysis, we provide further empirical study to characterize the convergence towards diffusion

models as D increases. Figure 8.4a reports the average ℓ2 difference between the two

quantities, i.e., Epσ(x)[∥−
√
DE(x̃)x/E(x̃)r−σ∇x log pσ(x)∥2] with r=σ

√
D. We observe that

the difference monotonically decreases as a function of D, and converges to 0 as predicted

by theory. For σ=1, the distance remains 0 since the empirical posterior p0|r (a categorical

148



distribution) concentrates around a single example for all D. This is because the distance

between the perturbed data x and a specific data point is much smaller than the distance

between x and any other data points in the training set. The posterior will gradually allocate

all the mass on a certain datapoint for all D when decreasing σ.

Next, we examine the behavior of the perturbation kernel after the phase alignment. Recall

that the isotropic perturbation kernel pr(x|y) ∝ 1/(∥x− y∥22 + r2)
N+D

2 can be decomposed

into a uniform angle component and a radius distribution pr(R) ∝ RN−1/(R2 + r2)
N+D

2 .

Figure 8.4b shows the variance of the radius distribution significantly decreases as D increases.

The results imply that with relatively large r, the norm of the training sample in pr(x)

becomes increasingly concentrated around a specific value as D increases, reaching its highest

level of concentration as D→∞ (diffusion models). Figure 8.4c further shows the density

of training sample norms in pr=σ
√
D(x) on CIFAR-10. We can see that the range of the

high-mass region gradually shrinks when D increases.

8.4.2 Balancing the Trade-off by Controlling D

As noted in [30], diffusion models (D→∞) are more susceptible to estimation errors compared

to PFGM (D=1) due to the strong correlation between σ and the training sample norm, as

demonstrated in Figure 8.4c. When D and r are large, the marginal distribution pr(x) is

approximately supported on the sphere with radius r
√
N/D. The backward ODE can lead

to unexpected results if the sampling trajectories deviate from this norm-r relation present

in training samples. This phenomenon was empirically confirmed by [30] for PFGM/diffusion

models (D=1 and D→∞ cases) using a weaker architecture NCSNv2 [49], where PFGM was

shown to be significantly more robust than diffusion models.

Smaller D, however, implies a heavy-tailed input distribution. Figure 8.4c illustrates that

the examples used as the input to the neural network have a broader range of norms when

D is small. In particular, when D<25, the variance of perturbation radius can be larger

than 210 (Figure 8.4b). This broader input range can be challenging for any finite-capacity

neural network. Although [30] introduced heuristics to bypass this issue in the D=1 case,

e.g ., restricting the sampling/training regions, these heuristics also prevent the sampling

process from faithfully recovering the data distribution.

149



Thus, we can view D as a parameter to optimize so as to balance the robustness of

generation against rigidity that helps learning. Increased robustness allows practitioners to

use smaller neural networks, e.g., by applying post-training quantization [209], [210]. In other

words, smaller D allows for more aggressive quantization/larger sampling step sizes/smaller

architectures. These can be crucial in real-world applications where computational resources

and storage are limited. On the other hand, such gains need to be balanced against easier

training afforded by larger values of D. The ability to optimize the balance by varying D

can be therefore advantageous. We expect that there exists a sweet spot of D in the middle

striking the balance, as the model robustness and rigidity go in opposite directions.

8.5 Experiments

We consider the widely used benchmarks CIFAR-10 32×32 [157], FFHQ 64×64 [211] and

LSUN Churches 256× 256 [212] for image generation. For training, we utilize the improved

NCSN++/DDPM++ architectures, preconditioning techniques and hyperparameters from

the state-of-the-art diffusion model EDM [27]. Specifically, we use the alignment method

developed in Sec 8.3 to transfer their tuned critical hyperparameters σmax, σmin, p(σ) in the

D→∞ case to finite D cases. According to the experimental results in [211], the log-normal

training distribution p(σ) has the most substantial impact on the final performances. For

ODE solver during sampling, we use Heun’s 2nd method [154] as in EDM.

Table 8.1: CIFAR-10 sample quality (FID) and number of function evaluations (NFE).

Min FID ↓ Top-3 Avg FID ↓ NFE ↓

DDPM [167] 3.17 - 1000
DDIM [54] 4.67 - 50
VE-ODE [34] 5.29 - 194
VP-ODE [34] 2.86 - 134
PFGM [30] 2.48 - 104

PFGM++ (unconditional)

D = 64 1.96 1.98 35
D = 128 1.92 1.94 35
D = 2048 1.91 1.93 35
D = 3072000 1.99 2.02 35
D →∞ [27] 1.98 2.00 35

PFGM++ (class-conditional)

D = 2048 1.74 - 35
D →∞ [27] 1.79 - 35

150



Table 8.2: FFHQ 64× 64 sample quality (FID) with 79 NFE in unconditional setting

Min FID ↓ Top-3 Avg FID ↓

D = 128 2.43 2.48
D = 2048 2.46 2.47
D = 3072000 2.49 2.52
D →∞ [27] 2.53 2.54

Table 8.3: LSUN Churches 256× 256 sample quality (FID) with 99 NFE in unconditional
setting

Min FID ↓ Top-3 Avg FID ↓

D = 131072 6.52 6.58
D →∞ [27] 6.63 6.66

We compare models trained with D→∞ (EDM) and D∈{64, 128, 2048, 3072000}. In

our experiments, we exclude the case of D=1 (PFGM) because the perturbation kernel is

extremely heavy-tailed (Figure 8.4b), making it difficult to integrate with our perturbation-

based objective without the restrictive region heuristics proposed in [30]. We also exclude

the small D = 64 for the higher-resolution dataset FFHQ. Since the data dimension of LSUN

Churches is relatively high (N=196608), we only try D=131072 to validate our ideas while

saving computations. We include several popular generative models for reference and defer

more training and sampling details to Appendix B.5.2.

Results: In Table 8.1, 8.2 and B.19, we report the sample quality measured by the FID

score [41] (lower is better), and inference speed measured by the number of function evaluations.

As in EDM, we report the minimum FID score over checkpoints. Since we empirically

observe a large variation of FID scores on FFHQ across checkpoints (Appendix B.6.2), we

also use the average FID score over the Top-3 checkpoints as another metric. Our main

findings are (1) Median Ds outperform previous best diffusion models [27] under

PFGM++ framework. We observe that the D=2048/128/131072 cases achieve the best

performance among our choices on CIFAR-10/FFHQ/LSUN Churches, with min FID score of

1.91/2.43/6.52 in unconditional setting, using the perturbation-based objective. In addition,

median Ds obtain better Top-3 average FID scores than EDM across datasets in unconditional

setting and achieve a current state-of-the-art FID score of 1.74 in CIFAR-10 class-conditional

151



setting. (2) There is a sweet spot between (1,∞). Neither small D nor infinite D

obtains the best performance, which confirms that there is a sweet spot in the middle, well-

balancing rigidity and robustness. (3) Model with D≫N recovers diffusion models.

We find that model with sufficiently large D roughly matches the performance of diffusion

models, as predicted by the theory. Further results in Appendix B.6.3 show that D=3072000

and diffusion models obtain the same FID score when using a more stable training target [23]

to mitigate the variations between different runs and checkpoints.

0.0 0.1 0.2 0.3 0.4
0

50

100

150

200

250

300

FI
D 

Sc
or

e

D = 64
D = 128
D = 2048
D  (Diffusion)

(a)

20 25 30 35
NFE

2.0

2.2

2.4

2.6

2.8 D = 64
D = 128
D = 2048
D  (Diffusion)

(b)

Figure 8.5: FID score versus (left) α and (right) NFE on CIFAR-10.

Model Robustness versus D In Section 8.4, we show that the model robustness degrades

with an increasing D by analyzing the behavior of perturbation kernels. To further validate

the phenomenon, we conduct three sets of experiments with different sources of errors

on CIFAR-10. We defer more details to Appendix B.6.2. Firstly, we perform controlled

experiments to compare the robustness of models quantitatively. To simulate the errors, we

inject noise into the intermediate point xr in each of the 35 ODE steps: xr = xr + αϵr where

ϵr ∼ N (0, r/
√
DI), and α is a positive number controlling the amount of noise. Figure 8.5a

demonstrates that as α increases, FID score exhibits a much slower degradation for smaller D.

In particular, when D=64, 128, the sample quality degrades gracefully. We further visualize

the generated samples in Appendix B.6.3. It shows that when α=0.2, models with D=64, 128

can still produce clean images while the sampling process of diffusion models (D→∞) breaks

down.

152



In addition to the controlled scenario, we conduct two more realistic experiments: (1)

We introduce more estimation error of neural networks by applying post-training quantiza-

tion [213], which can directly compress neural networks without fine-tuning. Table 8.4 reports

the FID score with varying quantization bit-widths for the convolution weight values. We

can see that finite Ds have better robustness than the infinite case, and a lower D exhibits a

larger performance gain when applying lower bit-widths quantization. (2) We increase the

discretization error during sampling by using smaller NFEs, i.e., larger sample steps. As

shown in Figure 8.5b, gaps between D=128 and diffusion models gradually widen, indicating

greater robustness against the discretization error. The rigidity issue of smaller D also affects

the robustness to discretization error, as D=64 is consistently inferior to D=128.

Table 8.4: FID score versus quantization bit-widths on CIFAR-10.

Quantization bits: 9 8 7 6 5

D = 64 1.96 1.96 2.12 2.94 28.50
D = 128 1.93 1.97 2.15 3.68 34.26
D = 2048 1.91 1.97 2.12 5.67 47.02
D →∞ 1.97 2.04 2.16 5.91 50.09

8.6 Conclusion

We present a new family of physics-inspired generative models called PFGM++, by extending

the dimensionality of augmented variable in PFGM from 1 to D ∈ R+. Remarkably, PFGM++

includes diffusion models as special cases when D→∞. To address issues related to large

batch training, we propose a perturbation-based objective. In addition, we show that D

effectively controls the robustness and rigidity in the PFGM++ family. The multi-dimensional

augmentation is crucial for empirical improvement, as it allows us to search for better models

tailored to specific tasks and architectures, and enables the perturbation-based training

objective (avoid the heavy-tailed problem when D = 1 as in PFGM [30]). On the other hand,

the perturbation-based objective reduces training overheads and makes PFGM++ applicable

to typical conditional generation settings. Empirical results show that models with finite

values of D can perform better than previous state-of-the-art diffusion models, while also

153



exhibiting improved robustness.

There are many potential avenues for future research in the PFGM++ framework. For

example, it may be possible to identify the “sweet spot" value of D for different architectures

and tasks by analyzing the behavior of errors. Since PFGM++ enables adjusting robustness,

another direction is to apply aggressive network compression techniques, i.e., pruning and

low-bit training, to smaller D. Furthermore, there may be opportunities to develop stochastic

samplers for PFGM++, with the reverse SDE in diffusion models as a special case. Lastly,

PFGM++ may yield more significant performance improvements over diffusion models (the

D → ∞ case) in fields with less optimized network architectures. Our theoretical and

experimental results demonstrate that PFGM++ exhibit superior robustness compared

to diffusion models when using a smaller D. This increased robustness can translate to

more substantial improvements on weaker architectures.we expect PFGM++ to have more

significant performance gains than diffusion models in domains other than image generation,

where network architectures have already been extensively optimized. We will leave the

application of PFGM++ to other fields for future work.

154



Chapter 9

Duality between Physical Processes and

Generative Models

Having witnessed the success of diffusion models and PFGM, we ask if there is a systematic way

to convert physical processes into generative models. The answer is yes! The well-established

and mature nature of physics compared to generative modeling suggests a vast potential

for the transfer of knowledge from the former to the latter. In this chapter, we explore the

intriguing duality between physics and generative models. We present a unifying framework

and algorithm that transforms physical processes into smooth density flow generative models.

Additionally, we introduce a classification criterion based on the dispersion relations of the

underlying physical partial differential equations (PDEs). This theoretical approach can be

applied to various physical PDEs, leading to the discovery of new families of generative models.

Our work lays the groundwork for the principled design of machine learning generative models

derived from the theories of physics.

This chapter is based on the paper [13]. Ziming Liu and Di Luo contributed significantly

to the materials in this chapter. My contributions are developing the idea with them and

helping with paper writing.

155



9.1 Introduction

The connection between physics and generative models can be quite deep. Our Universe

is arguably a generative model [214], [215]: Starting from the wave function of our early

Universe, which was a simple multivariate Gaussian corresponding to spatially uniform fields

with small quantum fluctuations, our Universe evolves to “generate" ever richer and more

complex phenomenon. However, the dynamics that drive the evolution are described by

(simple and elegant) partial differential equations (PDEs). The same applies to generative

models that leverage continuous physical processes: although the whole transformation from

latent to data distribution can be quite complicated, the movement at each step is simple,

ready to be learned by deep neural networks.

In fact, the developments of generative models have been heavily influenced by physics [10],

[12], [20], [24], [31], [38], [50], [153], [160], [197], [207], [216]–[220]. Recently, we have witnessed

the success of physics-inspired deep generative models, such as diffusion models (DM) [10],

[12], [24], [27] based on thermodynamics and Poisson flow generative models (PFGM) [31],

[50] derived from electrostatics. The idea of diffusion models is to reverse the process of ink

diffusing in water, while Poisson flows view data points as charged particles and let them

move in electric fields. Given these two successful examples, it is thus natural to ask: can

physics offer more to generative models (see FIG. 9.1)? Concretely, given a physical process,

L̂ϕ(x, t) ≡ F (ϕ, ϕt, ϕtt,∇ϕ,∇2ϕ, ...︸ ︷︷ ︸
ϕ′

) = f(x, t), (9.1)

can we convert it to a generative model?

In this chapter, we develop a unifying theory that exploits the duality between physics

and generative models to answer this question. Our framework provides a concrete algorithm

for translating a broad spectrum of physical processes into generative models in three steps.

We demonstrate explicitly how the famous diffusion model can arise from diffusion equation

in our formulation. Furthermore, we introduce a crucial criterion for classifying the potential

of various physical processes and PDEs for conversion into generative models, using the

dispersion relation as a guiding metric. Applying our methodology across different physical

156



..

......

......

Generative
Models

Schrodinger / Dirac YukawaHelmholtzwaveelectrostaticsdiffusion

Physics

Diffusion
Models

Poisson
Flow

Figure 9.1: Duality between physics and generative models. So far only diffusion models and
Poisson flows are discovered by researchers. Can we unlock more?

PDEs, we have unveiled a new family of generative models, which we call smooth density

flows elaborated below. Our study establishes a foundational understanding and offers a

principled approach to designing generative models rooted in the principles of physics.

9.2 Converting Physical Processes to Generative Models

This section reveals a connection between continuous physical processes and generative

models. The key is to match their associated PDEs: each physical process is described by a

PDE, while each generative model is associated with a density flow (which is also a PDE).

To convert a physical process to a generative model, we need three conversion steps (see

FIG. 9.2): Step I converts a physical process to a PDE, which is always feasible in the sense

that PDEs are just mathematical abstractions of physical processes; Step II rewrites the

PDE to a density flow (assuming the density flow condition). Step III converts the density

flow to a generative model (assuming the smooth condition).

Step I. Physical processes are described by PDEs.—Continuous physical processes are

described by partial differential equations, see Eq. (9.1), where ϕ(x, t) is a scalar function

defined on RN × R+, L̂ is a differential operator acting on ϕ(x, t), f(x, t) is the source

term, and subscripts stand for partial derivatives, e.g., ϕt ≡ ∂ϕ/∂t, ϕtt ≡ ∂2ϕ/∂t2, and ϕ′

stands for the collections of partial derivatives of ϕ. For example, the diffusion equation

interprets ϕ(x, t) as temperature, L̂(ϕ) = F (ϕ′) = ϕt − ∇2ϕ, and f(x, t) is interpreted as

heat source. For simplicity, we will mostly discuss linear PDEs which are also symmetric

157



Figure 9.2: Framework that converts physical processes to generative models.

both in space and time 1, i.e., where F does not depend explicitly on x or t. The linearity

and symmetries usually make ϕ(x, t) analytically solvable and these solutions are available in

many mathematical physics textbooks [221], [222].

For linear PDEs, the solution ϕ(x, t) can be expressed as a convolution of the Green’s func-

tionG(x, t;x′, t′) with the source term f(x, t), i.e., ϕ(x, t) =
´
G(x, t;x′, t′)f(x′, t′)dNx′dt [223].

The Green’s function G(x, t;x′, t′) is defined as the solution of L̂G(x, t;x′, t′) = δ(x−x′)δ(t−t′)

with G(x, t;x′, t′) = 0 when t < t′.

Step II. Converting PDEs to density flows.—When a density distribution p(x, t) has flow

velocity v(x, t) and birth rate R(x, t), it satisfies the following density flow equation (a.k.a

Fokker-Planck equation):

∂p(x, t)

∂t
+∇ · [p(x, t)v(x, t)]−R(x, t) = 0, (9.2)

which itself is a PDE. We want to convert the physical PDE to a density flow, i.e., rewrite

Eq. (9.1) in the form of Eq. (9.2) (called the density flow condition). Although not all PDEs

have this property, many physical PDEs satisfy this condition.

Step III. Converting density flows to generative models.—Given i.i.d. data samples from

the probability distribution pdata(x),x ∈ RN , the goal of generative models is to obtain new

samples from pdata(x). Recent generative models, including diffusion models and Poisson flow

models, leverage this ordinary differential equation dx
dt

= v(x, t) for generation, with differences

in the functional form of v(x, t). This ODE can evolve the probability distribution p(x, t)

as ∂p(x,t)
∂t

+∇ · [p(x, t)v(x, t)] = 0, known as the probability flow equation, or the continuity

equation. Here p and v are interpreted as a probability distribution and a velocity field,

respectively. The probability distribution, starting as the data distribution p(x, 0) = pdata(x),

1This means that L̂ remains unchanged under (1) translations in time t→ t+ δt, (2) translations in space
x→ x+ δx, and (3) rotations in space x→ Rx.

158



evolves to a (hopefully simple) final distribution p(x, T ). To generate samples from pdata(x),

one can first draw samples from the final distribution pprior(x) ≡ p(x, T ), and run the process
dx
dt

= v(x, t) backward from t = T to t = 0 2.

Although we assumed conservation above, we can more generally allow a birth term R(x, t),

giving Eq. (9.2). R > 0 (R < 0) means particles are born (die) in the forward process, and

die (are born) in the backward process 3. In this case, p(x, t) is a density distribution instead

of a probability distribution, so we call Eq. (9.2) the density flow equation. This extension

of density flows has found numerous applications in machine learning, such as unbalanced

optimal transport methods for modeling single-cell dynamics and domain adaptation [224],

[225], as well as in Bayesian inference for probabilistic modeling [226]. In practice, the density

flow with birth/death dynamics can be simulated efficiently. For example, in diffusion Monte

Carlo, the birth/death processes can be included as branching processes with population

control on R(x, t) [227], [228].

Algorithm.—Above we have clarified all the steps in FIG. 9.2, so now we can assembly

them into Algorithm 4. The algorithm takes in: (1) a partial differential equation L̂ϕ = 0

which describes certain physical process; (2) data distribution pdata(x) represented by a set

of training samples. The algorithm outputs generated samples. Below, we showcase how to

use this algorithm to convert the diffusion equation into the diffusion models.

Remember that our goal is to convert the diffusion equation ϕt −∇2ϕ = 0 to a density

flow ∂p
∂t

+∇ · (pv)−R = 0:

ϕt −∇2ϕ =
∂ϕ

∂t
+∇ · (ϕ(−∇logϕ))− 0 = 0

⇔∂p

∂t
+∇ · (pv)−R = 0

(9.3)

Matching the two sides gives:

p = ϕ, v = −∇logϕ, R = 0. (9.4)
2Note that time is usually defined in opposite directions in physics and machine-learning applications: our

Universe generates complex structures as time moves forward, whereas generative models using e.g. diffusion
make things simpler over time and generate complexity by evolving backward in time.

3In the time interval [t, t+ dt], a forward particle at x has probability |R|dt to turn into two/zero particles
when R > 0/R < 0.

159



Algorithm 4 Generative models from physical processes (GenPhys)

1: Input: partial differential equation L̂ϕ(x, t) = 0, data distribution pdata(x)
2: (1) Rewrite L̂ϕ(x, t) in the form ∂p(x,t)

∂t
+ ∇ · [p(x, t)v(x, t)] − R(x, t) such that p =

p(ϕ, ϕt,∇ϕ, · · · ), v = v(ϕ, ϕt,∇ϕ, · · · ), R = R(ϕ, ϕt,∇ϕ, · · · )
3: (2) Solve L̂ϕ(x, t) = pdata(x)δ(t). If L̂ is linear, we can express ϕ(x, t) in terms of the

Green’s function G(x, t;x′): ϕ(x, t) =
´
G(x, t;x′)pdata(x

′)dNx′, where L̂G(x, t;x′) =
δ(x− x′)δ(t)

4: (3) Using the relations in (1) and solutions in (2) to obtain p(x, t), v(x, t), R(x, t)
5: (4) Train a neural network sθ(x, t) to fit v(x, t) such that sθ(x, t) ≈ v(x, t). Train another

neural network Wα(x, t) to fit R(x, t) such that Wα(x, t) ≈ R(x, t)

6: (5) Draw x(T ) ∼ p(x, T ), simulate dx(t)
dt

= sθ(x, t) from t = T to t = 0 with the branching
process Wα(x, t). Output x(0).

7: Return Generated samples x

The solution ϕ of the diffusion equation is (with the initial condition ϕ(x, 0) = pdata(x)):

ϕ(x, t) =

ˆ
G(x, t;x′)pdata(x

′)dNx′,

G(x, t;x′) =
1

(2πt)N/2
exp(−|x− x′|2

2t
).

(9.5)

Combining Eq. (9.4) and Eq. (9.5) gives

p(x, t) =
1

(2πt)N/2

ˆ
pdata(x

′)exp(−|x− x′|2

2t
)dNx′,

v(x, t) = Ept(x′|x)

(
x− x′

t

)
,

R(x, t) = 0,

(9.6)

where pt(x′|x) ∝ pdata(x
′)G(x, t;x′). Note that −v(x, t) recovers the score function in [24],

[197], i.e., ∇x log p(x, t).

9.3 Classification via Dispersion Relation

Although density flows and generative models are equivalent mathematically, generative

models further have this practical consideration: pprior(x) ≡ p(x, T ) should be asymptotically

independent of pdata(x) as T →∞. It motivates us to study a family of equations that satisfy

160



equation diffusion equation Poisson equation ideal wave equation dissipative wave equation Helmholtz equation screened Poisson equation (Yukawa) Schrödinger equation (free)
PDE L̂ϕ = 0 ϕt −∇2ϕ = 0 ϕtt +∇2ϕ = 0 ϕtt −∇2ϕ = 0 ϕtt + 2ϵϕt −∇2ϕ = 0 ϕtt +∇2ϕ+ k20ϕ = 0 ϕtt +∇2ϕ−m2ϕ = 0 iϕt +∇2ϕ = 0

Rewritten ∂ϕ
∂t

+∇ · (ϕ(−∇logϕ)) = 0 ∂(−ϕt)
∂t

+∇ · ((−ϕt)(∇ϕϕt )) = 0 ∂(−ϕt)
∂t

+∇ · ((−ϕt)(−∇ϕϕt )) = 0 ∂(−ϕt−2ϵϕ)
∂t

+∇ · ((−ϕt − 2ϵϕ)( ∇ϕ
ϕt+2ϵϕ

)) = 0
∂(−ϕt)
∂t

+∇ · ((−ϕt)(∇ϕϕt ))− k
2
0ϕ = 0 ∂(−ϕt)

∂t
+∇ · ((−ϕt)(∇ϕϕt )) +m2ϕ = 0 ∂|ϕ|2

∂t
+∇ · (|ϕ|2(2Im∇logϕ)) = 0

p ϕ −ϕt −ϕt −(ϕt + 2ϵϕ) −ϕt −ϕt |ϕ|2
v −∇logϕ ∇ϕ

ϕt
−∇ϕ

ϕt

∇ϕ
ϕt+2ϵϕ

∇ϕ
ϕt

∇ϕ
ϕt

2Im∇logϕ
R 0 0 0 0 k20ϕ −m2ϕ 0

G(r, t) 1

(4πt)
N
2
exp(− r2

4t
) 1

(t2+r2)
N−1

2

1√
t2−r2Θ(t− r) (2D) e−ϵtcosh(ϵ

√
t2−r2)√

t2−r2 Θ(t− r) (2D) ( k0√
t2+r2

)
N−1

2 H
(1)
N−1

2

(k0
√
t2 + r2) ( m√

t2+r2
)
N−1

2 KN−1
2
(m
√
t2 + r2) 1

(4πit)
N
2
exp( ir

2

4t
)

Ĝ(k, t) exp(−k2t) exp(−kt) exp(±ikt) exp(−ϵt+ i
√
k2 − ϵ2t) (k > ϵ)

exp(−(ϵ+
√
k2 − ϵ2)t) (k ≤ ϵ)

Ĝ(k, t)
exp(−i

√
k20 − k2t) (k ≤ k0)

exp(−
√
k2 − k20t) (k > k0)

exp(−
√
k2 +m2t) exp(ik2t)

Dispersion
relation ω(k) ω = −ik2 ω = ±ik ω = ±k ω =

{
i(−ϵ±

√
ϵ2 − k2) k ≤ ϵ

iϵ±
√
k2 − ϵ2 k > ϵ

ω =

{
±
√
k20 − k2 k ≤ k0

±i
√
k2 − k20 k > k0

ω = ±i
√
k2 +m2 ω = k2

Illustration
ϕ

Density flow
condition Yes Yes Yes Yes Yes Yes Yes

Smooth
condition Yes Yes No Conditionally yes Conditional Yes Yes No

smooth density flow? Yes (Diffusion Models) Yes (Poisson Flow) No Conditionally Yes (large ϵ) Conditionally yes (small k) Yes No

Table 9.1: Summary of results for different physical equations, their properties, and whether
they can be converted to a generative model. x′ and x are the source point and the field
point, and r ≡ |x− x′|.

the smooth condition, i.e., solutions become smoother over time. We call a physical process

that satisfies both the density flow and smooth conditions as smooth density flow.

For the diffusion equation, we can show that the smooth condition is met. We define D

to measure the independence of the final distribution on the initial condition:

D(x′1,x
′
2, T ) ≡

ˆ √
G(x, T ;x′1)

√
G(x, T ;x′2)d

Nx

= exp

(
−|x1 − x2|2

8T

)
,

(9.7)

where D = 1 means independence, and D = 0 means dependence. We have lim
T→∞

D(x′1,x
′
2, T )

→ 1, implying the smooth condition.

Checking the smooth condition case by case can be quite math-heavy, as we demonstrate in

Appendix A.6.1. We now show that dispersion relations can elegantly characterize the smooth

condition. The dispersion relation relates a wave’s wave number k to its frequency ω. All

linear PDEs L̂ϕ(x, t) = 0 have wave solutions: ϕ(x, t) ∝ exp(−iωt)exp(ik · x). Substituting

the wave ansatz into the PDE gives the dispersion relation ω(k). For example, the diffusion

equation ϕt − ∇2ϕ = 0 has ω = −ik2(k ≡ |k|), where w is purely imaginary, so the time

factor exp(−iωt) ∼ exp(−k2t) decays in time. In contrast, the wave equation ϕtt −∇2ϕ = 0

has ω(k) = ±k, where ω is real, so the time factor exp(±ikt) oscillates in time without any

decay.

In Appendix A.6.3, we prove that the smooth condition is, in fact equivalent to the

161



following condition:

Im ω(k) < Im ω(0), ∀k > 0 (9.8)

Note that although dispersion relations may have multiple branches, we only require one

branch to satisfy Eq. (9.8). For example, dispersion relations of the Poisson equation have

two branches ω = ±ik, one of which (ω = −ik) satisfies Eq. (9.8). Intuitively, the smooth

condition requires that details of the initial distribution smooth out as time elapses, which

means that high-frequency modes should decay faster than low-frequency ones. Eq. (9.8)

states that non-zero frequency modes should decay faster than the zero frequency mode.

If we define p̂(k) as the spatial Fourier transform of p(x), this condition simply means

that spatial oscillations with k ≡ |k| > 0 decay faster than the total probability/mass

p̂(k = 0, t) =
´
p(x, t)dNx. In Table 9.1, we list the dispersion relations ω(k) of several

physical PDEs, which we elaborate below.

9.4 Applications.

We will examine several representative PDEs in physics, including the diffusion equation,

the Poisson equation, the wave equation (ideal or dissipative), the Helmholtz equation, the

screened Poisson equation and the Schrödinger equation. When a physical process p satisfies

both the density flow condition and the smooth condition, we call it smooth density flow.

In summary: (1) p is smooth density flow. Examples: p = diffusion, Poisson, screened

Poisson (Yukawa). (2) p is conditionally smooth density flow. Examples: p = dissipative

wave, Helmholtz. (3) p is not a smooth density flow. Examples: p = ideal wave, Schrödinger.

For each PDE, we rewrite it into the form of a density flow (figuring out its corresponding

(p,v, R)), calculate the Green’s function and dispersion relation. In the following, we focus

on their physical intuition, with detailed results summarized in TABLE 9.1.

The diffusion equation is ϕt − ∇2ϕ = 0, describing how densities (e.g., mass, heat,

charge) transport in space. In a steady environment, a system would reach thermal equilibrium,

satisfying the smoothing condition.

The Poisson equation is ∇2ϕ = 0. If we interpret one of its spatial dimensions to be

time, then the equation becomes ϕtt +∇2ϕ = 0. Remember, we interpret p = −ϕt as density,

162



and v = −∇ϕ/ϕt, whose mental picture is charged particles moving along the electric field

lines. Any compact distribution, when they go very far away along electric field lines, will

become a uniform distribution on a hypersphere [50]. Equivalently, this is because any charge

distribution, when viewed from far away, behaves like a point particle. In this sense, the

Poisson equation satisfies the smoothing condition.

The ideal wave equation is ϕtt − ∇2ϕ = 0, describing the propagation of waves of

sound, light, etc [229]. The wave equation preserves information in the sense that a wave

front travels with a constant speed away from the source. Think of a stone dropped into

water. The information preservation property goes against the smooth condition where we

want smoothing effects.

The dissipative wave equation is ϕtt + 2ϵϕt − ∇2ϕ = 0 where ϵ is the damping

coefficient [230]. It describes wave propagation with dissipation. Dissipation slows down the

wave propagation, leading to behavior “interpolating" between wave and diffusion: ϵ → 0

recovers ideal waves, and ϵ→∞ recovers diffusion. Choosing a large (small) enough ϵ will

make the process quantitatively similar to diffusion (wave), so the smooth condition should

hold (fail).

The Helmholtz equation (∇2
x̃ + k20)ϕ = 0 is the single-frequency wave equation, where

x̃ = (x, t). It explains the wave-like behavior (shown in Table 9.1) in its Green’s function.

Think of water ripples driven by a periodic source. k0 → 0 recovers the Poisson equation,

so a small enough k0 should be smooth density flow. However, if k0 is too large, Green’s

function may become negative in the region of interest, violating the density flow condition.

The screened Poisson equation, a.k.a. Yukawa (∇2
x̃−m2)ϕ = 0, where m expresses

the “screening". Compared to the Poisson potential (the solution of the Poisson equation),

the screened Poisson potential is more short-ranged with a length scale m−1, due to screening

effects. When N = 3, ϕ is the well-known Yukawa potential [231]. Note that m = 0 recovers

the Poisson equation. The solution is qualitatively similar to that of the Poisson equation,

although decreases faster with distance.

The Schrödinger equation of a free particle is iϕt = −∇2ϕ+ V (x)ϕ, where ϕ is the

(complex-valued) wave function. It describes the evolution of a quantum particle [232]. The

Schrödinger equation describes the wave nature of the particles, based on the idea of wave-

163



particle duality. For V (x) = 0, the free particle PDE implies ∂|ϕ|2
∂t

+∇ · [|ϕ|2(2Im∇logϕ)] = 0

(see Appendix A.6.1 for details), so p = |ϕ|2, v = 2 Im∇logϕ and R = 0. The Green’s

function G(x, t;x′) = 1
(4it)N/2 exp(− |x−x

′|2
4it

). p(x, T ) oscillates restlessly even for large T and

depends on the initial distribution, violating the smooth condition. However, to have the final

distribution independent of the initial distribution, it is possible to consider the subsystem

quantum dynamics under the Schrödinger evolution such that it thermalizes or reaches a

steady state in the open quantum system formulation.

Physics PDE Dispersion Relation

Mixed diffusion Poisson aϕtt − bϕt +∇2ϕ = 0 (a > 0, b > 0) ω = i
2a
(b±

√
b2 + 4ak2)

Fractional diffusion ϕt + (−∆)βϕ = 0 (β > 0) ω = −ik2β
Third-order diffusion ϕttt −∆u = 0 ω = (−i, eiπ6 , ei 5π6 )k 2

3

Elasticity (Biharmonic) ϕt +∇2∇2ϕ = 0 ω = −ik4

Table 9.2: Dispersion relation suggests new generative models

PDEs for a new family of smooth density flow We can now simply invent generative

models by constructing PDEs whose dispersion relations satisfy the condition Eq. (9.8). We

list a few examples in Table 9.2. The mixed diffusion Poisson equation interpolates between

the diffusion equation and the Poisson equation. The fractal diffusion and the third-order

diffusion equations characterize more exotic diffusion beyond Brownian motion. The elasticity

equation (a.k.a bi-harmonic equation), widely used in continuum mechanics, can also be

converted to a smooth density flow.

9.5 Conclusion

We have developed a novel framework that can construct generative models from physical

processes and lead to the discovery of a new family of smooth density flow. Our framework

establishes the foundation for first-principle understanding and design of machine learning

models based on physics theories. Meanwhile, it also opens up a number of exciting opportu-

nities that are beyond the current analysis, including: (1) From smoothing to non-smoothing

PDEs. There exists non-smooth density flow model which can also provide useful genera-

tive modeling, such as the case in quantum machine learning with dynamics based on the

164



Schrödinger equation and quantum circuits. (2) From linear to nonlinear PDEs, e.g., the

Navier-Stokes equation, the reaction-diffusion equation, and the Bose-Einstein condensation,

etc. (3) From symmetric to general PDEs. We only discussed PDEs with translational or

rotational symmetry with analytical accessibility of the Green’s function, but generic PDEs

without such symmetries may offer additional power and flexibility. For example, the imagi-

nary time evolution of a Schrödinger equation with position-dependent potential gives rise to

the birth/death process in the density flow. (4) From time-independent to time-dependent

PDEs. This opens up connections to a broader class of dynamical processes in nature, such as

non-equilibrium dynamics, quench experiments and annealing. For example, it is also known

that adiabatic quantum dynamics can achieve universal quantum computation [233], which

can be leveraged for generic probability modeling. Our work unlocks numerous possibilities

for advancing machine learning via physics, heralding a new era of interdisciplinary innovation

in both fields.

165



166



Chapter 10

Conclusion

Physics-inspired generative models, exemplified by diffusion models, have emerged as a strong

family in generative modeling. Their underlying training objective is essentially fitting a

fixed vector field (e.g., score function in diffusion models) and requires no coordination

among multiple neural networks as in VAEs [85] or GANs [14], [79], resulting in a more

stable learning process. In addition, they are less constrained by architectural requirements

compared to normalizing flows [16], [234] and employ an iterative backward process similar

to the concatenation of neural networks, thereby possessing high capacity.

Taken together, training stability and capacity are likely the key characteristics that

primarily account for the dominance of diffusion models in tackling larger problems and across

various modalities. For example, in the vision domain, diffusion models have achieved remark-

able performance on text-to-image generation [2], [235], text-to-3D generation [130], [133]

and text-to-video generation [127], [128]. Diffusion models also dominate many generative

modeling tasks in the other domains, including biology (docking [236] and molecular confor-

mation generation [168], [184]) and speech synthesis [237], [238]. Moreover, diffusion models

excel at solving challenging ill-posed inverse problems commonly encountered in science and

engineering, such as super-resolution [239] and medical image reconstruction [240].

In this thesis, we have presented improved techniques in both the training and sampling

of diffusion models. We enhance the training of diffusion models to reduce the variance of

training targets (Chapter 3) and the curvature of generative trajectories (Chapter 4). To

accelerate the generation speed of diffusion models, we design a new sampler that better

167



utilizes the stochasticity in the sampling process, achieving superior performance in all

network function evaluation (NFE) regimes (Chapter 5). We further exert mutually repulsive

force in the sampling process to promote the diversity among mini-batch samples (Chapter 6).

Despite the clear improvements demonstrated by these techniques in this thesis, several

research questions remain unexplored. First of all, our training techniques have been tested on

standard benchmarks like ImageNet. With additional computing resources, there is potential

to apply these ideas to larger scale tasks, such as text-to-image generation. Secondly, the

proposed sampling technique is not optimized for extremely low NFEs, and it is anticipated

that more efficient noise utilization could enhance models in this regime. Lastly, we currently

lack a precise characterization of the final joint distribution when applying the repulsive force

in the sampling of diffusion models, suggesting an avenue for further research.

Additionally, we introduced a new family of generative models, Poisson Flow Generative

Models (PFGM), which draw inspiration from electrostatics theory. We demonstrate that

PFGM outperforms previous diffusion models while offering a faster and more robust gen-

eration process. Since the introduction of this model, many researchers have applied it to

other fields, such as antibody generation [241] and medical image (CT scan) [242] generation.

We further expand the electrostatics theory used in PFGM, unifying diffusion models and

PFGM. More intriguingly, interpolation between the two models reveals a sweet spot with

new state-of-the-art performance in image generation (Chapter 8). Finally, we present a

systematic approach to convert physical processes into generative models, to expand the

design space of generative models (Chapter 9).

Although we address the question of how to construct generative models based on physical

processes, the question of which physical processes are optimal as forward processes remains

unanswered. To answer the question, we can encapsulate these physical processes within

a space that can be optimized for generative modeling, enabling the selection of the most

suitable process for specific tasks or architectures. Physical processes introduce natural

hyper-parameters that characterize the generative process. For instance, diffusion models

and Poisson Flow Generative Models (PFGM) can be viewed as methods that progressively

smooth the data distribution using different time-dependent kernel functions. We can integrate

optimizable parameters within these valid kernel functions and assess the performance of the

168



resulting generative models by evaluating sample quality, sampling robustness, and ease of

learning, among other criteria.

Another interesting question is are vector fields arising from physical forward models easier

to learn when the data come from physical processes? Physics offers bridges between complex

data and simple prior, with fixed vector fields to be learned. The fixed vector fields lead to a

stable training process and underpin the scalability of physics-inspired generative models.

When data comes from physical processes, the advantage of physics-inspired generative models

may depend on whether neural networks naturally learn such vector fields more effectively

than other models. The suitability might depend on whether the neural network’s inductive

biases align well with the underlying vector fields in physical data, which tends to be smooth

and meaningful. For comparison, it seems unnatural to sequentially factorize data and require

a neural network to model each conditional distribution in auto-regressive models. We will

reserve these questions for future exploration.

Overall, this thesis provides new progress in three key areas of physics-inspired generative

models: training, sampling, and the development of a new family of such models. Looking

forward, we anticipate the emergence of more research ideas in this field, which will further

advance data-driven techniques for generative modeling as a whole and benefit downstream

applications like artwork creation, drug discovery, and speech synthesis.

169



170



Appendix A

Additional Proofs and Derivations

A.1 Chapter 3

A.1.1 Derivation of Equation 3.6

Recall that the STF objective (Equation 3.5) at time t is

ℓSTF(θ, t) = E{xi}ni=1∼pn0Ex(t)∼pt|0(·|x1)[∥∥∥sθ(x(t), t)− n∑
k=1

pt|0(x̃|xk)∑n
j=1 pt|0(x̃|xj)

∇x(t) log pt|0(x̃|xk)
∥∥∥2
2

]
.

Swapping the sampling order and we get

ℓSTF(θ, t) = Ex(t)∼ptE{xi}ni=1∼p0|t(·|x̃)p
n−1
0[∥∥∥sθ(x(t), t)− n∑

k=1

pt|0(x̃|xk)∑n
j=1 pt|0(x̃|xj)

∇x(t) log pt|0(x̃|xk)
∥∥∥2
2

]
.

This means that with input x̃ and t, the model is optimized with

E{xi}ni=1∼p0|t(·|x̃)p
n−1
0

[∥∥∥sθ(x(t), t)− n∑
k=1

pt|0(x̃|xk)∑n
j=1 pt|0(x̃|xj)

∇x(t) log pt|0(x̃|xk)
∥∥∥2
2

]
.

171



Taking its derivative w.r.t. sθ(x̃, t) results in

E{xi}ni=1∼p0|t(·|x̃)p
n−1
0

[
2

(
sθ(x(t), t)−

n∑
k=1

pt|0(x̃|xk)∑n
j=1 pt|0(x̃|xj)

∇x(t) log pt|0(x̃|xk)

)]
.

Setting it to 0, we have

sθ(x(t), t)− E{xi}ni=1∼p0|t(·|x̃)p
n−1
0

[
n∑
k=1

pt|0(x̃|xk)∑n
j=1 pt|0(x̃|xj)

∇x(t) log pt|0(x̃|xk)

]
= 0.

Thus, we arrive at the minimizer of the STF objective (Equation 3.6):

s∗STF(x̃, t) = Ex1∼p0|t(·|x̃)E{xi}ni=2∼p
n−1
0

[
n∑
k=1

pt|0(x̃|xk)∑
j pt|0(x̃|xj)

∇x̃ log pt|0(x̃|xk)

]
.

A.1.2 Proof for Theorem 1

Theorem 1. Suppose ∀t ∈ [0, 1], 0 < σt <∞, then

√
n (s∗STF(x̃, t)−∇x̃ log pt(x̃))

d−→ N
(
0,

Cov(∇x̃pt|0(x̃|x))
pt(x̃)2

)
(3.7)

Proof. Recall that s∗STF(x̃, t) is calculated via Equation 3.6. The mean of the denominator

in the expectation 1
n

∑n
j=1 pt|0(x̃|xj), for large n, approximate 1

n−1
∑n

j=2 pt|0(x̃|xj), which in

turn, 1
n−1

∑n
j=2 pt|0(x̃|xj)

p−→ pt(x̃) by WLLN.

Similarly, for the mean of the remaining terms in the expectation, by CLT, we have

√
n

(
1

n

n∑
k=1

pt|0(x̃|xk)∇x̃ log pt|0(x̃|xk)− pt(x̃)∇x̃ log pt(x̃)

)
d−→ N

(
0, Cov(∇x̃pt|0(x̃|x))

)
Putting them together via Slutsky’s theorem, we conclude the proof.

172



A.1.3 Proof for Theorem 2

Theorem 2. Suppose ∀t ∈ [0, 1], 0 < σt <∞, then

VSTF(t) ≤
1

n− 1

(
VDSM(t) +

√
3d

σ2
t

√
Ept(x̃)Df

(
p0(x) ∥ p0|t(x|x̃)

))
+O

(
1

n2

)
,

where Df is an f-divergence with f(y) =

(1/y − 1)2 (y < 1.5)

8y/27− 1/3 (y ≥ 1.5)

. Further, when n ≫ d

and p0|t(x|x̃) ≈ p0(x) for all x̃, VSTF(t) ⪅
VDSM(t)
n−1 .

Proof. Step 1: Make the likelihood weighting coefficients “independent"

We first apply Hoeffding’s inequality for the set {xi}ni=2 ∼ pn−10 to make the summation∑n
j=2 pt|0(x̃|xj) concentrate to its expectation (n− 1)pt(x(t)). Since pt|0(x̃|xj) ∈ (0, 1

(
√
2πσt)d

),

we have

Pr

[∣∣∣∣∣
n∑
j=2

pt|0(x̃|xj)− (n− 1)pt(x(t))

∣∣∣∣∣ ≥ nγ1

]
≤ 2e

−2n2γ1 (
√
2πσt)

d

(n−1) ,

∀γ1 ∈ (1
2
, 1).

Thus the summation can be re-expressed as:

n∑
j=2

pt|0(x̃|xj) = (1−O(2e
−2n2γ1 (

√
2πσt)

d

(n−1) ))[(n− 1)pt(x(t)) +O(nγ1)]

+O(2e
−2n2γ1 (

√
2πσt)

d

(n−1) )O((n− 1)
1

(
√
2πσt)d

)

= (n− 1)pt(x(t)) +O(ne−2n
2γ1−1(

√
2πσt)d)

173



The coefficient for x1 is then

pt|0(x̃|x1)∑n
j=1 pt|0(x̃|xj)

=
pt|0(x̃|x1)

pt|0(x̃|x1) +
∑n

j=2 pt|0(x̃|xj)

=
pt|0(x̃|x1)

pt|0(x̃|x1) + (n− 1)pt(x(t)) +O(ne−2n
2γ1−1(

√
2πσt)d)

= O(
1

n
)

The coefficient for xk, k ∈ {2, . . . , n} is:

pt|0(x̃|xk)∑n
j=1 pt|0(x̃|xj)

=
pt|0(x̃|xk)

(n− 1)pt(x(t)) + pt|0(x̃|x1) +O(ne−2n
2γ1−1(

√
2πσt)d)

=
1

(n− 1)

pt|0(x̃|xk)
pt(x(t))

+O(
1

n2
) +O(ne−2n

2γ1−1(
√
2πσt)d)

Step 2: Re-express the trace-of-covariance by the “independent" weights

Plugging in the above formulation of coefficients, we can rewrite the trace-of-covariance

for the new target as:

VSTF(x(t), t)

= Ex1∼p0|t(x|x̃)E{xi}ni=2∼pn−1(x)∥
n∑
k=1

pt|0(x̃|xk)∑n
j=1 pt|0(x̃|xj)

∇x(t) log pt|0(x̃|xk)

− Ex1∼p0|t(x|x̃)E{xi}ni=2∼pn−1(x)

n∑
k=1

pt|0(x̃|xk)∑n
j=1 pt|0(x̃|xj)

∇x(t) log pt|0(x̃|xk)∥22

≤ Ex1∼p0|t(x|x̃)E{xi}ni=2∼pn−1(x)∥
n∑
k=2

1

(n− 1)

pt|0(x̃|xk)
pt(x(t))

∇x(t) log pt|0(x̃|xk)

− Ex1∼p0|t(x|x̃)E{xi}ni=2∼pn−1(x)

n∑
k=2

1

(n− 1)

pt|0(x̃|xk)
pt(x(t))

∇x(t) log pt|0(x̃|xk)

+
n∑
k=2

O(
1

n2
)∇x(t) log pt|0(x̃|xk)−O(

1

n
)Ep(x)[∇x(t) log pt|0(x̃|x)]∥22 +O(

1

n2
)

=
1

(n− 1)2

n∑
k=2

Tr

(
Covxk∼p(x)(

pt|0(x̃|xk)
pt(x(t))

∇x(t) log pt|0(x̃|xk))
)
+O(

1

n2
)

=
1

(n− 1)
Tr

(
Covx∼p(x)(

pt|0(x̃|x)
pt(x(t))

∇x(t) log pt|0(x̃|x))
)
+O(

1

n2
) (A.1)

174



Step 3: Upper bound the new trace-of-covariance term

Next, we examine the new trace-of-covariance term:

Tr

(
Covx∼p0(x)(

pt|0(x̃|x)
pt(x(t))

∇x(t) log pt|0(x̃|x))
)

=
d∑
i=1

Ep0(x)
[
(
pt|0(x̃|x)
pt(x(t))

∇x(t) log pt|0(x̃|x))i)2
]

−
(
Ep0(x)

[
pt|0(x̃|x)
pt(x(t))

∇x(t) log pt|0(x̃|x))i)
])2

=
d∑
i=1

Ep0(x)
[
(
p0|t(x|x̃)
p0(x)

∇x(t) log pt|0(x̃|x))i)2
]

−
(
Ep0(x)

[
p0|t(x|x̃)
p0(x̃)

∇x(t) log pt|0(x̃|x))i)
])2

=
d∑
i=1

Ep0(x)
[
(
p0|t(x|x̃)
p0(x)

∇x(t) log pt|0(x̃|x))i)2
]
− (∇x(t) log pt|0(x̃)i)

2

=
d∑
i=1

Ep0(x)
[
(
p0|t(x|x̃)
p0(x)

∇x(t) log pt|0(x̃|x))i)2
]
− (∇x(t) log pt|0(x̃)i)

2

+ Ep0|t(x|x̃)
[
(∇x(t) log pt|0(x̃|x)i)2

]
− Ep0|t(x|x̃)

[
(∇x(t) log pt|0(x̃|x)i)2

]
= VDSM(x(t), t) +

d∑
i=1

Ep0|t

[
(
p0|t(x|x̃)
p(x)

− 1)∇x(t) log pt|0(x̃|x)2i
]

≤ VDSM(x(t), t) +
d∑
i=1

√
Ep0|t

[
(
p0|t(x|x̃)
p(x)

− 1)2
]
Ep0|t

[
∇x(t) log pt|0(x̃|x)4i

]
(A.2)

We can further upper bound the trace-of-covariance term in Equation A.1:

VSTF(x(t), t)

=
1

(n− 1)
Tr(Covx∼p(x)(

pt|0(x̃|x)
pt(x(t))

∇x(t) log pt|0(x̃|x))) +O(
1

n2
)

≤ 1

n− 1

(
VDSM(x(t), t) +

d∑
i=1

√
Ep0|t

[
(
p0|t(x|x̃)
p(x)

− 1)2
]
Ep0|t

[
∇x(t) log pt|0(x̃|x)4i

])
+O(

1

n2
)

175



Taking the expectation w.r.t pt(x(t)) for both sides, we get

VSTF(t)

≤ Ept(x(t))
[

1

n− 1

(
VDSM(x(t), t)

+
d∑
i=1

√
Ep0|t

[
(
p0|t(x|x̃)
p(x)

− 1)2
]
Ep0|t

[
∇x(t) log pt|0(x̃|x)4i

])
+O(

1

n2
)

]

≤ 1

n− 1

(
VDSM(t) +

d∑
i=1

Ept(x(t))

√
Ep0|t

[
(
p0|t(x|x̃)
p(x)

− 1)2
]
Ep0|t

[
∇x(t) log pt|0(x̃|x)4i

])
+O(

1

n2
)

≤ 1

n− 1

(
VDSM(t) +

d∑
i=1

√
Ept(x̃)Df

(
p0(x) ∥ p0|t(x|x̃)

)√
Ep0,t

[
∇x(t) log pt|0(x̃|x)4i

])
+O(

1

n2
) (Concavity of x

1
2 , Cauchy’s inequality)

≤ 1

n− 1

(
VDSM(t) + d

√
Ez∼N (0,σ2)[

z4

σ8
t

]
√

Ept(x̃)Df

(
p0(x) ∥ p0|t(x|x̃)

))
+O(

1

n2
)

≤ 1

n− 1

(
VDSM(t) +

√
3d

σ2
t

√
Ept(x̃)Df

(
p0(x) ∥ p0|t(x|x̃)

))
+O(

1

n2
)

where Df is an f -divergence with f(y) =

(1/y − 1)2 (y < 1.5)

8y/27− 1/3 (y ≥ 1.5)

. Note that we choose

this particular form of f(y) since it is the convex function with the tightest upper bound on

( 1
y
− 1)2.

A.1.4 STF Specified with Popular SGMs

Here, we detail the practically used STF objectives in Section 3.5, which are built on the

popular instances of SGMs, e.g.VE, VP [35], and EDM [27].

VE and EDM For VE and EDM, the transition kernel is in the form of

pt|0(x̃|x) = N
(
x, σ2

t I
)

t ∈ [0, 1].

176



VE has σt = σm

(
σM
σm

)t
for some fixed σm and σM . EDM has σt = (tσ

1
ρ

M + (1 − t)σ
1
ρ
m)ρ for

some σm and σM , with ρ set to 7 in practice. The STF objective for both VE and EDM at x̃

is then in the following form:

Ex1∼p0|t(·|x̃)E{xi}ni=2∼p
n−1
0

∥∥∥∥sθ(x(t), t)− 1

σ2
t

n∑
k=1

exp
(
−∥x(t)−xk∥22

2σ2
t

)
∑

j exp
(
−∥x(t)−xj∥22

2σ2
t

)(xk − x(t))

∥∥∥∥2
2

 .
VP VP in its original formulation has the transition kernel as

pt|0(x̃|x) = N
(
e−

1
4
t2(βM−βm)− 1

2
tβmx, I − Ie−

1
2
t2(βM−βm)−tβm

)
,

for some βm and βM . The STF objective for VP at x̃ is

Ex1∼p0|tE{xi}ni=2∼p
n−1
0

∥∥∥∥sθ(x(t), t)− 1

σ2
t

n∑
k=1

exp
(
−∥x(t)−e

βtxk∥22
2σ2

t

)
∑

j exp
(
−∥x(t)−e

βtxj∥22
2σ2

t

) (eβtxk − x(t)
) ∥∥∥∥2

2

 ,
where βt = −1

4
t2(βM − βm) − 1

2
tβm, and σt =

√
1− e2βt . Note that as shown in [27], VP’s

transition kernel can be reparameterized in the form of N (x, σ2
t I) with a correspondingly

revised sampling process. Adopting this formulation, we would have the STF objective for

VP the same as the one for VE and EDM with a different σt.

177



A.2 Chapter 5

In this section, we provide proof of our main results. Below, we define some crucial notations

that we will use throughout. We use ODE(. . . ) to denote the backward ODE under exact

score ∇ log pt(x). More specifically, given any x ∈ Rd and s > r > 0, let xt denote the

solution to the following ODE:

dxt = −t∇ log pt(xt)dt. (A.3)

ODE(x, s→ r) is defined as "the value of xr when initialized at xs = x". It will also be useful

to consider a "time-discretized ODE with drift tsθ(x, t)": let δ denote the discretization step

size and let k denote any integer. Let δ denote a step size, let xt denote the solution to

dxt = −tsθ(xkδ, kδ)dt, (A.4)

where for any t, k is the unique integer such that t ∈ ((k−1)δ, kδ]. We verify that the dynamics

of Equation A.4 is equivalent to the following discrete-time dynamics for t = kδ, k ∈ Z:

x(k−1)δ = xkδ −
1

2

(
((k − 1)δ)2 − (kδ)2

)
sθ(xkδ, kδ).

We similarly denote the value of xr when initialized at xs = x as ODEθ(x, s→ r). Analogously,

we let SDE(x, s→ r) and SDEθ(x, s→ r) denote solutions to

dyt = −2t∇ log pt(yt)dt+
√
2tdBt

dyt = −2tsθ(yt, t)dt+
√
2tdBt

respectively. Finally, we will define the Restartθ process as follows:

(Restartθ forward process) xi+1
tmax

= xitmin
+ εitmin→tmax

(Restartθ backward process) xi+1
tmin

= ODEθ(x
i+1
tmax

, tmax → tmin), (A.5)

178



where εitmin→tmax
∼ N (0, (t2max − t2min) I). We use Restartθ(x, K) to denote xKtmin

in the

above processes, initialized at x0
tmin

= x. In various theorems, we will refer to a function

Q(r) : R+ → [0, 1/2), defined as the Gaussian tail probability Q(r) = Pr(a ≥ r) for

a ∼ N (0, 1).

A.2.1 Proof for Theorem 3

Theorem 9. [Formal version of Theorem 3] Let tmax be the initial noise level. Let the initial

random variables xtmax = ytmax
, and

xtmin = ODEθ(xtmax , tmax → tmin)

ytmin
= SDEθ(ytmax

, tmax → tmin),

Let pt denote the true population distribution at noise level t. Let pODEθ
t , pSDEθ

t denote the

distributions for xt, yt respectively. Assume that for all x,y, s, t, sθ(x, t) satisfies

∥tsθ(x, t)− tsθ(x, s)∥ ≤ L0|s− t|, ∥tsθ(x, t)∥ ≤ L1, ∥tsθ(x, t)− tsθ(y, t)∥ ≤ L2 ∥x− y∥, and

the approximation error ∥tsθ(x, t)− t∇ log pt(x)∥ ≤ ϵapprox. Assume in addition that ∀t ∈

[tmin, tmax], ∥xt∥ < B/2 for any xt in the support of pt, pODEθ
t or pSDEθ

t , and K ≤ C
L2(tmax−tmin)

for some universal constant C. Then

W1(p
ODEθ
tmin

, ptmin) ≤ B · TV
(
pODEθ
tmax , ptmax

)
+ eL2(tmax−tmin) · (δ(L2L1 + L0) + ϵapprox) (tmax − tmin) (A.6)

W1(p
SDEθ
tmin

, ptmin) ≤ B ·
(
1− λe−BL1/tmin−L2

1t
2
max/t

2
min

)
TV (pSDEθ

tmax , ptmax)

+ e2L2(tmax−tmin)
(
ϵapprox + δL0 + L2

(
δL1 +

√
2δdtmax

))
(tmax − tmin)

(A.7)

where λ := 2Q

(
B

2
√
t2max−t2min

)
.

Proof. Let us define xtmax ∼ ptmax , and let xtmin = ODE(xtmax , tmax → tmin). We verify that

xtmin has density ptmin . Let us also define x̂tmin = ODEθ(xtmax , tmax → tmin). We would like

to bound the Wasserstein distance between x̄tmin and xtmin (i.e., pODEθ
tmin

and ptmin), by the

179



following triangular inequality:

W1(x̄tmin ,xtmin) ≤ W1(x̄tmin , x̂tmin) +W1(x̂tmin ,xtmin) (A.8)

By Lemma 2, we know that

∥x̂tmin − xtmin∥ ≤ e(tmax−tmin)L2 (δ(L2L1 + L0) + ϵapprox) (tmax − tmin) ,

where we use the fact that ∥x̂tmax − xtmax∥ = 0. Thus, we immediately have

W1(x̂tmin ,xtmin) ≤ e(tmax−tmin)L2 (δ(L2L1 + L0) + ϵapprox) (tmax − tmin) (A.9)

On the other hand,

W1(x̂tmin ,xtmin) ≤B · TV (x̂tmin ,xtmin)

≤B · TV (x̂tmax ,xtmax) (A.10)

where the last equality is due to the data-processing inequality. Combining Equation A.9 ,

Equation A.10 and the triangular inequality Equation A.8, we arrive at the upper bound

for ODE (Equation A.6). The upper bound for SDE (Equation A.7) shares a similar proof

approach. First, let ytmax ∼ ptmax . Let ŷtmin = SDEθ(ytmax , tmax → tmin). By Lemma 5,

TV
(
ŷtmin ,ytmin

)
≤

(
1− 2Q

(
B

2
√
t2max − t2min

)
· e−BL1/tmin−L2

1t
2
max/t

2
min

)
· TV

(
ŷtmax ,ytmax

)
On the other hand, by Lemma 4,

E [∥ŷtmin − ytmin∥] ≤e2L2(tmax−tmin)
(
ϵapprox + δL0 + L2

(
δL1 +

√
2δdtmax

))
(tmax − tmin) .

The SDE triangular upper bound on W1(ȳtmin ,ytmin) follows by multiplying the first in-

equality by B (to bound W1(ȳtmin , ŷtmin)) and then adding the second inequality (to bound

W1(ytmin , ŷtmin)). Notice that by definition, TV
(
ŷtmax ,ytmax

)
= TV

(
ytmax ,ytmax

)
. Finally,

180



because of the assumption that K ≤ C
L2(tmax−tmin)

for some universal constant, we summarize

the second term in the Equation A.6 and Equation A.7 into the big O in the informal version

Theorem 3.

A.2.2 Proof for Theorem 4

Theorem 10. [Formal version of Theorem 4] Consider the same setting as Theorem 9. Let

pRestartθ,i
tmin

denote the distributions after ith Restart iteration, i.e., the distribution of xitmin
=

Restartθ(x0
tmin

, i). Given initial x0
tmax
∼ pRestart,0

tmax , let x0
tmin

= ODEθ(x0
tmax

, tmax → tmin). Then

W1(p
Restartθ,K
tmin

, ptmin) ≤B · (1− λ)
K TV (pRestart,0

tmax , ptmax)︸ ︷︷ ︸
upper bound on contracted error

+ e(K+1)L2(tmax−tmin)(K + 1) (δ(L2L1 + L0) + ϵapprox) (tmax − tmin)︸ ︷︷ ︸
upper bound on additional sampling error

(A.11)

where λ = 2Q

(
B

2
√
t2max−t2min

)
.

Proof. Let x0
tmax

∼ ptmax . Let xKtmin
= Restart(x0

tmin
, K). We verify that xKtmin

has density

ptmin . Let us also define x̂0
tmin

= ODEθ(x
0
tmax

, tmax → tmin) and x̂Ktmin
= Restartθ(x̂0

tmin
, K).

By Lemma 1,

TV
(
xKtmin

, x̂Ktmin

)
≤

(
1− 2Q

(
B

2
√
t2max − t2min

))K

TV
(
x0
tmin

, x̂0
tmin

)
≤

(
1− 2Q

(
B

2
√
t2max − t2min

))K

TV
(
x0
tmax

, x̂0
tmax

)
=

(
1− 2Q

(
B

2
√
t2max − t2min

))K

TV
(
x0
tmax

,x0
tmax

)
The second inequality is held by data processing inequality. The above can be used to bound

181



the 1-Wasserstein distance as follows:

W1

(
xKtmin

, x̂Ktmin

)
≤ B · TV

(
xKtmin

, x̂Ktmin

)
≤

(
1− 2Q

(
B

2
√
t2max − t2min

))K

TV
(
x0
tmax

,x0
tmax

)
(A.12)

On the other hand, using Lemma 3,

W1

(
xKtmin

, x̂Ktmin

)
≤
∥∥xKtmin

− x̂Ktmin

∥∥
≤e(K+1)L2(tmax−tmin)(K + 1) (δ(L2L1 + L0) + ϵapprox) (tmax − tmin) (A.13)

We arrive at the result by combining the two bounds above (Equation A.12, Equation A.13)

with the following triangular inequality,

W1(x̄
K
tmin

,xKtmin
) ≤ W1(x̄

K
tmin

, x̂Ktmin
) +W1(x̂

K
tmin

,xKtmin
)

Below we prove the lemmas used above.

Mixing under Restart with Exact ODE

Lemma 1. Consider the same setup as Theorem 10. Consider the Restartθ process defined

in equation A.5. Let

xitmin
= Restartθ(x0

tmin
, i)

yitmin
= Restartθ(y0

tmin
, i).

Let pRestartθ(i)
t and qRestartθ(i)

t denote the densities of xit and yit respectively. Then

TV
(
p
Restartθ(K)
tmin

, q
Restartθ(K)
tmin

)
≤ (1− λ)K TV

(
p
Restartθ(0)
tmin

, q
Restartθ(0)
tmin

)
,

where λ = 2Q

(
B

2
√
t2max−t2min

)
.

182



Proof. Conditioned on xitmin
,yitmin

, let xi+1
tmax = xitmin

+
√
t2max − t2minξ

x
i and yi+1

tmax = yitmin
+√

t2max − t2minξ
y
i . We now define a coupling between xi+1

tmin
and yi+1

tmin
by specifying the joint

distribution over ξxi and ξyi .

If xitmin
= yitmin

, let ξxi = ξyi , so that xi+1
tmin

= yi+1
tmin

. On the other hand, if xitmin
̸= yitmin

,

let xi+1
tmax and yi+1

tmax be coupled as described in the proof of Lemma 7, with x′ = xi+1
tmax ,y

′ =

yi+1
tmax , σ =

√
t2max − t2min. Under this coupling, we verify that,

E
[
1
{
xi+1
tmin
̸= yi+1

tmin

}]
≤E

[
1
{
xi+1
tmax
̸= yi+1

tmax

}]
≤E

[(
1− 2Q

(∥∥xitmin
− yitmin

∥∥
2
√
t2max − t2min

))
1
{
xitmin

̸= yitmin

}]

≤

(
1− 2Q

(
B

2
√
t2max − t2min

))
E
[
1
{
xitmin

̸= yitmin

}]
.

Applying the above recursively,

E
[
1
{
xKtmin

̸= yKtmin

}]
≤

(
1− 2Q

(
B

2
√
t2max − t2min

))K

E
[
1
{
x0
tmin
̸= y0

tmin

}]
.

The conclusion follows by noticing that TV
(
p

Restartθ(K)
tmin

, q
Restartθ(K)
tmin

)
≤ Pr

(
xKtmin

̸= yKtmin

)
= E

[
1
{
xKtmin

̸= yKtmin

}]
, and by selecting the initial coupling so that Pr

(
x0
tmin
̸= y0

tmin

)
=

TV
(
p

Restartθ(0)
tmin

, q
Restartθ(0)
tmin

)
.

W1 Discretization Bound

Lemma 2 (Discretization bound for ODE). Let xtmin = ODE (xtmax , tmax → tmin) and let

xtmin = ODEθ (xtmax , tmax → tmin). Assume that for all x,y, s, t, sθ(x, t) satisfies

∥tsθ(x, t)− tsθ(x, s)∥ ≤ L0|s − t|, ∥tsθ(x, t)∥ ≤ L1 and ∥tsθ(x, t)− tsθ(y, t)∥ ≤ L2 ∥x− y∥.

Then

∥xtmin − xtmin∥ ≤ e(tmax−tmin)L2 (∥xtmax − xtmax∥+ (δ(L2L1 + L0) + ϵapprox) (tmax − tmin))

Proof. Consider some fixed arbitrary k, and recall that δ is the step size. Recall that by

183



definition of ODE and ODEθ, for t ∈ ((k − 1)δ, kδ],

dxt = −t∇ log pt(xt)dt

dxt = −tsθ(xkδ, kδ)dt.

For t ∈ [tmin, tmax], let us define a time-reversed process x←t := x−t. Let v(x, t) := ∇ log p−t(x).

Then for t ∈ [−tmax,−tmin]

dx←t = tv(x←t , t)ds.

Similarly, define x←t := x−t and v(x, t) := sθ (x,−t). It follows that

dx←t = tv(x←kδ, kδ)ds,

where k is the unique (negative) integer satisfying t ∈ [kδ, (k+1)δ). Following these definitions,

d

dt
∥x←t − x←t ∥

≤∥tv(x←t , t)− tv(x←t , t)∥

+ ∥tv(x←t , t)− tv(x←t , t)∥

+ ∥tv(x←t , t)− tv(x←t , kδ)∥

+ ∥tv(x←t , kδ)− tv(x←kδ, kδ)∥

≤ϵapprox + L2 ∥x←t − x←t ∥+ δL0 + L2 ∥x←t − x←kδ∥

≤ϵapprox + L2 ∥x←t − x←t ∥+ δL0 + δL2L1.

Applying Gronwall’s Lemma over the interval t ∈ [−tmax,−tmin],

∥xtmin − xtmin∥

=
∥∥x←−tmin

− x←−tmin

∥∥
≤eL2(tmax−tmin)

(∥∥x←−tmax
− x←−tmax

∥∥+ (ϵapprox + δL0 + δL2L1) (tmax − tmin)
)

=eL2(tmax−tmin) (∥xtmax − xtmax∥+ (ϵapprox + δL0 + δL2L1) (tmax − tmin)) .

184



Lemma 3. Given initial x0
tmax

, let x0
tmin

= ODE
(
x0
tmax

, tmax → tmin
)
, and let

x̂0
tmin

= ODEθ
(
x0
tmax

, tmax → tmin
)
. We further denote the variables after K Restart iterations

as xKtmin
= Restart(x0

tmin
, K) and x̂Ktmin

= Restartθ(x̂0
tmin

, K), with true field and learned field

respectively. Then there exists a coupling between xKtmin
and x̂Ktmin

such that

∥∥xKtmin
− x̂Ktmin

∥∥ ≤ e(K+1)L2(tmax−tmin)(K + 1) (δ(L2L1 + L0) + ϵapprox) (tmax − tmin) .

Proof. We will couple xitmin
and x̂itmin

by using the same noise εitmin→tmax
in the Restart

forward process for i = 0 . . . K − 1 (see Equation A.5). For any i, let us also define

yi,jtmin
:= Restartθ

(
xitmin

, j − i
)
, and this process uses the same noise εitmin→tmax

as previous

ones. From this definition, yK,Ktmin
= xKtmin

. We can thus bound

∥∥xKtmin
, x̂Ktmin

∥∥ ≤∥∥∥y0,K
tmin
− x̂Ktmin

∥∥∥+ K−1∑
i=0

∥∥∥yi,Ktmin
− yi+1,K

tmin

∥∥∥ (A.14)

Using the assumption that tsθ(·, t) is L2 Lipschitz,

∥∥y0,i+1
tmin
− x̂i+1

tmin

∥∥
=
∥∥ODEθ(y

0,i
tmax , tmax → tmin)−ODEθ(x̂

i
tmax

, tmax → tmin)
∥∥

≤eL2(tmax−tmin)
∥∥y0,i

tmax − x̂itmax

∥∥
=eL2(tmax−tmin)

∥∥y0,i
tmin
− x̂itmin

∥∥ ,
where the last equality is because we add the same additive Gaussian noise εitmin→tmax

to y0,i
tmin

and x̂itmin
in the Restart forward process. Applying the above recursively, we get

∥∥∥y0,K
tmin
− x̂Ktmin

∥∥∥ ≤eKL2(tmax−tmin)
∥∥y0,0

tmin
− x̂0

tmin

∥∥
≤eKL2(tmax−tmin)

∥∥x0
tmin
− x̂0

tmin

∥∥
≤e(K+1)L2(tmax−tmin) (δ(L2L1 + L0) + ϵapprox) (tmax − tmin) , (A.15)

where the last line follows by Lemma 2 when setting xtmax = x̄tmax . We will now bound

185



∥∥∥yi,Ktmin
− yi+1,K

tmin

∥∥∥ for some i ≤ K. It follows from definition that

yi,i+1
tmin

= ODEθ

(
xitmax

, tmax → tmin
)

yi+1,i+1
tmin

= xi+1
tmin

= ODE
(
xitmax

, tmax → tmin
)
.

By Lemma 2,

∥∥yi,i+1
tmin
− yi+1,i+1

tmin

∥∥ ≤ eL2(tmax−tmin) (δ(L2L1 + L0) + ϵapprox) (tmax − tmin)

For the remaining steps from i+ 2 . . . K, both yi,· and yi+1,· evolve with ODEθ in each step.

Again using the assumption that tsθ(·, t) is L2 Lipschitz,

∥∥∥yi,Ktmin
− yi+1,K

tmin

∥∥∥ ≤ e(K−i)L2(tmax−tmin) (δ(L2L1 + L0) + ϵapprox) (tmax − tmin)

Summing the above for i = 0...K − 1, and combining with Equation A.14 and Equation A.15

gives

∥∥xKtmin
− x̂Ktmin

∥∥ ≤ e(K+1)L2(tmax−tmin)(K + 1) (δ(L2L1 + L0) + ϵapprox) (tmax − tmin) .

Lemma 4. Consider the same setup as Theorem 9. Let xtmin = SDE (xtmax , tmax → tmin) and

let xtmin = SDE (xtmax , tmax → tmin). Then there exists a coupling between xt and xt such that

E [∥xtmin − xtmin∥] ≤ e2L2(tmax−tmin)E [∥xtmax − xtmax∥]

+ e2L2(tmax−tmin)
(
ϵapprox + δL0 + L2

(
δL1 +

√
2δdtmax

))
(tmax − tmin)

Proof. Consider some fixed arbitrary k, and recall that δ is the stepsize. By definition of

SDE and SDEθ, for t ∈ ((k − 1)δ, kδ],

dxt = −2t∇ log pt(xt)dt+
√
2tdBt

dxt = −2tsθ(xkδ, kδ)dt+
√
2tdBt.

186



Let us define a coupling between xt and xt by identifying their respective Brownian motions.

It will be convenient to define the time-reversed processes x←t := x−t, and x←t := x−t, along

with v(x, t) := ∇ log p−t(x) and v(x, t) := sθ(x,−t). Then there exists a Brownian motion

B←t , such that for t ∈ [−tmax,−tmin],

dx←t = −2tv(x←t , t)dt+
√
−2tdB←t

dx←t = −2tv(x←kδ, kδ)dt+
√
−2tdB←t

⇒ d(x←t − x←t ) = −2t (v(x←t , t)− v(x←kδ, kδ)) dt,

where k is the unique negative integer such that t ∈ [kδ, (k + 1)δ). Thus

d

dt
E [∥x←t − x←t ∥]

≤2 (E [∥tv(x←t , t)− tv(x←t , t)∥] + E [∥tv(x←t , t)− tv(x←t , t)∥])

+ 2 (E [∥tv(x←t , t)− tv(x←t , kδ)∥] + E [∥tv(x←t , kδ)− tv(x←kδ, kδ)∥])

≤2 (ϵapprox + L2E [∥x←t − x←t ∥] + δL0 + L2E [∥x←t − x←kδ∥])

≤2
(
ϵapprox + L2E [∥x←t − x←t ∥] + δL0 + L2

(
δL1 +

√
2δdtmax

))
.

By Gronwall’s Lemma,

E [∥xtmin − xtmin∥]

=E
[∥∥x←−tmin

− x←−tmin

∥∥]
≤e2L2(tmax−tmin)(

E
[∥∥x←−tmax

− x←−tmax

∥∥]+ (ϵapprox + δL0 + L2

(
δL1 +

√
2δdtmax

))
(tmax − tmin)

)
=e2L2(tmax−tmin)(

E [∥xtmax − xtmax∥] +
(
ϵapprox + δL0 + L2

(
δL1 +

√
2δdtmax

))
(tmax − tmin)

)

187



Mixing Bounds

Lemma 5. Consider the same setup as Theorem 9. Assume that δ ≤ tmin. Let

xtmin = SDEθ (xtmax , tmax → tmin)

ytmin = SDEθ (ytmax , tmax → tmin) .

Then there exists a coupling between xs and ys such that

TV (xtmin ,ytmin) ≤

(
1− 2Q

(
B

2
√
t2max − t2min

)
· e−BL1/tmin−L2

1t
2
max/t

2
min

)
TV (xtmax ,ytmax)

Proof. We will construct a coupling between xt and yt. First, let (xtmax ,ytmax) be sampled

from the optimal TV coupling, i.e., Pr(xtmax ≠ ytmax) = TV (xtmax ,ytmax). Recall that by

definition of SDEθ, for t ∈ ((k − 1)δ, kδ],

dxt = −2tsθ(xkδ, kδ)dt+
√
2tdBt.

Let us define a time-rescaled version of xt: xt := xt2 . We verify that

dxt = −sθ(x(kδ)2 , kδ)dt+ dBt,

where k is the unique integer satisfying t ∈ [((k − 1)δ)2, k2δ2). Next, we define the time-

reversed process x←t := x−t, and let v(x, t) := sθ(x,−t). We verify that there exists a

Brownian motion Bx
t such that, for t ∈ [−t2max,−t2min],

dx←t = vxt dt+ dBx
t ,

where vxt = sθ(x
←
−(kδ)2 ,−kδ), where k is the unique positive integer satisfying −t ∈ (((k −

1)δ)2, (kδ)2]. Let dy←t = vyt dt+ dBy
t , be defined analogously. For any positive integer k and

188



for any t ∈ [−(kδ)2,−((k − 1)δ)2), let us define

zt = x←−k2δ2 − y←−k2δ2 + (2k − 1)δ2
(
vx−(kδ)2 − v

y
−(kδ)2

)
+
(
Bx
t −Bx

−(kδ)2

)
−
(
By
t −B

y
−(kδ)2

)
.

Let γt := zt
∥zt∥ . We will now define a coupling between dBx

t and dBy
t as

dBy
t =

(
I − 21 {t ≤ τ}γtγTt

)
dBx

t ,

where 1 {} denotes the indicator function, i.e. 1 {t ≤ τ} = 1 if t ≤ τ , and τ is a stopping time

given by the first hitting time of zt = 0. Let rt := ∥zt∥. Consider some t ∈ (−i2δ2,−(i− 1)2δ2),

and Let j := tmax
δ

(assume w.l.o.g that this is an integer), then

rt − r−t2max
≤

j∑
k=i

(2k − 1)δ2
∥∥∥(vx−(kδ)2 − vy−(kδ)2)∥∥∥+ ˆ t

−t2max

1 {t ≤ τ}2dB1
s

≤
j∑
k=i

(
k2 − (k − 1)2

)
δ22L1/ (tmin) +

ˆ t

−t2max

1 {t ≤ τ}2dB1
t

=

ˆ −(i−1)δ2
−t2max

2L1

tmin
ds+

ˆ t

−t2max

1 {t ≤ τ}2dB1
s ,

where dB1
s = ⟨γt, dBx

s − dBy
s ⟩ is a 1-dimensional Brownian motion. We also verify that

r−t2max
=
∥∥z−t2max

∥∥
=
∥∥∥x←−t2max

− y←−t2max
+ (2j − 1)δ2

(
vx−t2max

− vy−t2max

)
+
(
Bx
t −Bx

−t2max

)
−
(
By
t −B

y
−t2max

)∥∥∥
≤
∥∥∥x←−t2max

+ (2j − 1)δ2vx−t2max
+
(
Bx
−(j−1)2δ2 −Bx

−t2max

)∥∥∥
+
∥∥∥y←−t2max

+ (2j − 1)δ2vy−t2max
+
(
Bx
−(j−1)2δ2 −Bx

t +By
t −B

y
−t2max

)∥∥∥ ≤ B

where the third relation is by adding and subtracting Bx
−(j−1)2δ2−Bx

t and using triangle inequal-

ity. The fourth relation is by noticing that x←−t2max
+(2j−1)δ2vx−t2max

+
(
Bx
−(j−1)2δ2 −Bx

−t2max

)
=

x←−(j−1)2δ2 and that y←−t2max
+(2j−1)δ2vy−t2max

+
(
Bx
−(j−1)2δ2 −Bx

t +By
t −B

y
−t2max

)
d
= y←−(j−1)2δ2 ,

and then using our assumption in the theorem statement that all processes are supported on

a ball of radius B/2.

We now define a process st defined by dst = 2L1/tmindt + 2dB1
t , initialized at s−t2max

=

189



B ≥ r−t2max
. We can verify that, up to time τ , rt ≤ st with probability 1. Let τ ′ denote the

first-hitting time of st to 0, then τ ≤ τ ′ with probability 1. Thus

Pr(τ ≤ −t2min) ≥Pr(τ ′ ≤ −t2min) ≥ 2Q

(
B

2
√
t2max − t2min

)
· e−BL1/tmin−L2

1t
2
max/t

2
min

where we apply Lemma 6. The proof follows by noticing that, if τ ≤ −t2min, then xtmin = ytmin .

This is because if τ ∈ [−k2δ2,−(k − 1)2δ2], then x←−(k−1)2δ2 = y←−(k−1)2δ2 , and thus x←t = y←t

for all t ≥ −(k − 1)2δ2, in particular, at t = −t2min.

Lemma 6. Consider the stochastic process

drt = dB1
t + cdt.

Assume that r0 ≤ B/2. Let τ denote the hitting time for rt = 0. Then for any T ∈ R+,

Pr(τ ≤ T ) ≥ 2Q

(
B

2
√
T

)
· e−ac−

c2T
2 ,

where Q is the tail probability of a standard Gaussian defined in Definition 1.

Proof. We will use he following facts in our proof:

1. For x ∼ N (0, σ2), Pr(x > r) = 1
2

(
1− erf

(
r√
2σ

))
= 1

2
erfc

(
r√
2σ

)
.

2.
´ T
0

a exp
(
−a2

2t

)
√
2πt3

dt = erfc
(

a√
2T

)
= 2Pr (N (0, T ) > a) = 2Q

(
a√
T

)
by definition of Q.

Let drt = dB1
t + cdt, with r0 = a. The density of the hitting time τ is given by

p(τ = t) = f(a, c, t) =
a exp

(
− (a+ct)2

2t

)
√
2πt3

. (A.16)

(see e.g. [243]). From item 2 above,

ˆ T

0

f(a, 0, t)dt = 2Q

(
a√
T

)
.

190



In the case of a general c ̸= 0, we can bound (a+ct)2

2t
= a2

2t
+ ac+ c2t

2
. Consequently,

f(a, c, t) ≥ f(a, 0, t) · e−ac−
c2t
2 .

Therefore,

Pr(τ ≤ T ) =

ˆ T

0

f(a, c, t)dt ≥
ˆ T

0

f(a, 0, t)dte−c = 2Q

(
B

2
√
T

)
· e−ac−

c2T
2 .

TV Overlap

Definition 1. Let x be sampled from standard normal distribution N (0, 1). We define the

Gaussian tail probability Q(a) := Pr(x ≥ a).

Lemma 7. We verify that for any two random vectors ξx ∼ N (0, σ2I) and ξy ∼ N (0, σ2I),

each belonging to Rd, the total variation distance between x′ = x + ξx and y′ = y + ξy is

given by

TV (x′,y′) = 1− 2Q (r) ≤ 1− 2r

r2 + 1

1√
2π
e−r

2/2,

where r = ∥x−y∥
2σ

, and Q(r) = Pr(ξ ≥ r), when ξ ∼ N (0, 1).

Proof. Let γ := x−y
∥x−y∥ . We decompose x′,y′ into the subspace/orthogonal space defined by γ:

x′ = x⊥ + ξ⊥x + x∥ + ξ∥x

y′ = y⊥ + ξ⊥y + y∥ + ξ∥y

191



where we define

x∥ := γγTx x⊥ := x− x∥

y∥ := γγTy y⊥ := y − y∥

ξ∥x := γγT ξx ξ⊥x := ξx − ξ∥x

ξ∥y := γγT ξy ξ⊥y := ξy − ξ∥y

We verify the independence ξ⊥x ⊥⊥ ξ
∥
x and ξ⊥y ⊥⊥ ξ

∥
y as they are orthogonal decompositions

of the standard Gaussian. We will define a coupling between x′ and y′ by setting ξ⊥x = ξ⊥y .

Under this coupling, we verify that

(
x⊥ + ξ⊥x

)
−
(
y⊥ + ξ⊥y

)
= x− y − γγT (x− y) = 0

Therefore, x′ = y′ if and only if x∥ + ξ
∥
x = y∥ + ξ

∥
y. Next, we draw (a, b) from the optimal

coupling between N (0, 1) and N (∥x−y∥
σ

, 1). We verify that x∥ + ξ
∥
x and y∥ + ξ

∥
y both lie in

the span of γ. Thus it suffices to compare
〈
γ,x∥ + ξ

∥
x

〉
and

〈
γ,y∥ + ξ

∥
y

〉
. We verify that〈

γ,x∥ + ξ
∥
x

〉
=
〈
γ,y∥

〉
+
〈
γ,x∥ − y∥

〉
+
〈
γ, ξ

∥
x

〉
∼ N (

〈
γ,y∥

〉
+ ∥x− y∥ , σ2)

d
=
〈
γ,y∥

〉
+ σb.

We similarly verify that
〈
γ,y∥ + ξ

∥
y

〉
=
〈
γ,y∥

〉
+
〈
γ, ξ

∥
y

〉
∼ N (

〈
γ,y∥

〉
, σ2)

d
=
〈
γ,y∥

〉
+ σa.

Thus TV (x′,y′) = TV (σa, σb) = 1− 2Q
(
∥x−y∥

2σ

)
. The last inequality follows from

Pr(N (0, 1) ≥ r) ≥ r

r2 + 1

1√
2π
e−r

2/2

A.2.3 Heun’s method as DPM-Solver-2

The first order ODE in DPM-Solver [26] (DPM-Solver-1) is in the form of:

x̂ti−1
=

αti
αti−1

x̂ti−1
− (σ̂ti−1

αti
αti−1

− σ̂ti)σ̂ti∇x log pσ̂ti (x̂ti) (A.17)

192



The first order ODE in EDM is in the form of

xti−1
= xti − (σti−1

− σti)σti∇x log pσti (xti) (A.18)

When xt =
x̂t

αt
, σ̂t = σtαt, we can rewrite the DPM-Solver-1 (Equation A.17) as:

xti−1
= xti − (σti−1

− σti)σ̂ti∇x log pσ̂ti (x̂ti)

= xti − (σti−1
− σti)σ̂ti∇x log pσti (xti)

1

αti
(change-of-variable)

= xti − (σti−1
− σti)σti∇x log pσti (xti)

where the expression is exactly the same as the ODE in EDM [27]. It indicates that the

sampling trajectory in DPM-Solver-1 is equivalent to the one in EDM, up to a time-dependent

scaling (αt). As limt→0 αt = 1, the two solvers will lead to the same final points when using

the same time discretization. Note that the DPM-Solver-1 is also equivalent to DDIM (c.f.

Section 4.1 in [26]), as also used in this paper.

With that, we can further verify that Heun’s method used in this paper corresponds to

the DPM-Solver-2 when setting r1 = 1.

193



A.3 Chapter 6

A.3.1 Proof for Theorem 5

In this section, we provide the proof of Theorem 5. First, we restate the Feynman-Kac

theorem. Let u : [0, T ]× Rd such that for any t ∈ [0, T ] and x ∈ Rd we have

∂tu(t, x) + ⟨b(t, x),∇u(t, x)⟩+ (1/2)⟨Σ(t, x),∇2u(t, x)⟩ − V (t, x)u(t, x) + f(t, x) = 0, (A.19)

with u(T, x) = Φ(T, x). Then, under integrability and regularity assumptions, see [244] for

instance, we have

u(0, x) = E[
´ T
0
exp[−

´ r
0
V (τ,Xτ )dτ ]f(r,Xr)dr + exp[−

´ T
0
V (τ,Xτ )dτ ]Φ(T,XT ) | X0 = x],

(A.20)

with u(T, x) = Φ(T, x) and dXt = b(t,Xt)dt+ Σ(t,Xt)dBt. In the rest of this section, we

derive the specific case of Theorem 5.

We recall that the generative model with particle guidance is given by (p̂t)t∈[0,T ] and is

associated with the generative model

dŶt = {−f(Ŷt, T − t) + g(T − t)2(sθ(Ŷt, T − t) +∇ log ΦT−t(Ŷt))}dt+ g(T − t)dw. (A.21)

We also recall that the generative model without particle guidance is given by (qt)t∈[0,T ] and

is associated with the generative model

dYt = {−f(Yt, T − t) + g(T − t)2sθ(Yt, T − t)}dt+ g(T − t)dw. (A.22)

Using the Fokker-Planck equation associated with Equation A.22 we have for any x ∈ (Rd)N

∂tqt(x) + div({−f(T − t, ·) + g(T − t)2sθ(T − t, ·)}qt)(x)− (g(T − t)2/2)∆qt(x) = 0. (A.23)

194



This can also be rewritten as

∂tqt(x) + ⟨−f(T − t, x) + g(T − t)2sθ(x, T − t),∇qt(x)⟩ − (g(T − t)2/2)∆qt(x) (A.24)

+ div({−f(·, T − t) + g(T − t)2sθ(T − t, ·)})(x)qt(x) = 0 (A.25)

Denoting ut = qT−t we have

∂tut(x) + ⟨f(x, t)− g(t)2sθ(x, t),∇ut(x)⟩+ (g(t)2/2)∆ut(x) (A.26)

− div({−f(t, ·) + g(t)2sθ(·, t)})(x)ut(x) = 0. (A.27)

Note that since ut = qT−t, we have that ut = pt with the conventions from 6.2. Now

combining this result with Equation A.19 and Equation A.20 with V (t, x) = div({−f(·, t) +

g(t)2sθ(t, ·)})(x) and f = 0 we have that

u0(x) = E[Z], (A.28)

with

Z = exp[−
´ T
0
V (τ,Xτ )dτ ]p0(XT ), (A.29)

and

dXt = {f(t,Xt)− g(t)2sθ(Xt, t)}dt+ g(t)dw. (A.30)

with X0 = x. We now consider a similar analysis in the case of the generative with particle

guidance. Using the Fokker-Planck equation associated with Equation A.21 we have for any

x ∈ (Rd)N

∂tq̃t(x)+div({−f(·, T−t)+g(T−t)2(sθ(·, T−t)+∇ log ΦT−t)}q̃t)(x)−(g(T−t)2/2)∆q̃t(x) = 0.

(A.31)

195



This can also be rewritten as

∂tq̃t(x) + ⟨−f(x, T − t) + g(T − t)2sθ(x, T − t),∇q̃t(x)⟩ − (g(T − t)2/2)∆q̃t(x) (A.32)

+ div({−f(·, T − t) + g(T − t)2sθ(·, T − t)})(x)q̃t(x) (A.33)

+ g(T − t)2(⟨log ΦT−t(x),∇ log q̃t(x)⟩+∆ logΦT−t(x))q̃t(x) = 0. (A.34)

Denoting ût = q̃T−t we have

∂tût(x) + ⟨f(t, x)− g(t)2sθ(x, t),∇ût(x)⟩+ (g(t)2/2)∆ût(x) (A.35)

− div({−f(·, t) + g(t)2sθ(t, ·)})(x)ût(x) (A.36)

− g(t)2(⟨∇ log Φt(x),∇ log q̃T−t(x)⟩+∆ logΦt(x))ût(x) = 0. (A.37)

Following the convention of 6.2, we have that ût = p̂0. Now combining this result with

Equation A.19 and Equation A.20 with V̂ (t, x) = div({−f(·, t) + g(t)2sθ(·, t)})(x)

+g(t)2(⟨∇ log Φt(x),∇ log p̃T−t(x)⟩+∆ logΦt(x)) and f = 0 we have that

û0(x) = E[Ẑ], (A.38)

with

Ẑ = exp[−
´ T
0
V̂ (τ,Xτ )dτ ]p0(XT ), (A.39)

and

dXt = {f(Xt, t)− g(t)2sθ(Xt, t)}dt+ g(t)dw. (A.40)

again with X0 = x. We conclude the proof upon noting that

Ẑ = Z exp[−
´ T
0
g(t)2(⟨∇ log Φt(Xt),∇ log ût(Xt)⟩+∆ logΦt(Xt))dt]. (A.41)

Interpretation An interpretation of this reweighting term can be given through the lens of

SVGD. We introduce the Stein operator as in [174] given by for any Ψ : (Rd)N → (Rd)N by

Ap̂t(Ψt) = ∇ log p̂tΨ
⊤
t +∇Ψt. (A.42)

196



Using Ψt = ∇ log Φt, we get that

Tr(Ap̂t(Ψt)) = ⟨∇ log Φt,∇ log p̂t⟩+∆ logΦt. (A.43)

The squared expectation of this quantity w.r.t. a distribution q on (Rd)N is the Kernel Stein

Discrepancy (KSD) between q and p̂t given the kernel log Φt.

A.3.2 Sampling a Predefined Joint Distribution

For ease of derivation via the Doob h-transform, we temporarily reverse the time from t to

T − t. Here, pT is treated as the data distribution, and ΦT is regarded as the potential, as

specified by users. We now consider another model. Namely, we are looking for a generative

model p̂t with t ∈ [0, T ] such that for any t ∈ [0, T ] we have p̂t = ptΦt with ΦT given by the

user. In layman’s terms, this means that we are considering a factorized model for all times t

with the additional requirement that at the final time T , the model is given by pT = p̂TΦT

with ΦT known. This is to be compared with Theorem 5. Indeed in Theorem 5 while the

update on the generative dynamics is explicit (particle guidance term), the update on the

density is not. In what follows, we are going to see, using tools from Doob h-transform theory,

that we can obtain an expression for the update of the drift in the generative process when

considering models of the form p̂t = ptΦt.

More precisely, we consider the following model. Let p̂T = pT and for any s, t ∈ [0, T ]

with s < t and x1:n
s = {xit}ni=1 ∈ (Rd)n and x1:n

t = {xit}ni=1 ∈ (Rd)n we define

p̂t|s(x
1:n
t |x1:n

s ) = pt|s(x
1:n
t |x1:n

s )Φt(x
1:n
t )/Φs(x

1:n
s ), (A.44)

with Φt which satisfies for any x1:n
t ∈ (Rd)n

∂tΦt(x
1:n
t )+ ⟨−fT−t(x1:n

t )+ g(T − t)2∇ log pt(x
1:n
t ),∇Φt(x

1:n
t )⟩+(g(T − t)2/2)∆Φt(x

1:n
t ) = 0,

(A.45)

with ΦT given. Note that Equation A.45 expresses that Φt satisfies the backward Kolmogorov

equation. Under mild assumptions, using Doob h-theory, we get that there exists (X̂t)t∈[0,T ]

197



such that for any t ∈ [0, T ] we have Ŷt ∼ p̂t and for any t ∈ [0, T ]

dŶt = {−fT−t(Ŷt) + g(T − t)2[∇ log pt(Ŷt) +∇ log Φt(Ŷt)]}dt+ g(T − t)dw. (A.46)

The main difficulty is to compute Φt for any t ∈ [0, T ]. Under mild assumptions, solutions to

the backward Kolmogorov Equation A.45 are for any t ∈ [0, T ] by

Φt(x
1:n
t ) = E[ΦT (YT )|Yt = x1:n

t ] =
´
ΦT (YT = x1:n

T )pT |t(x
1:n
T |x1:n

t )dx1:n
T , (A.47)

where we have

dYt = {−fT−t(Yt) + g(T − t)2∇ log pt(Yt)}dt+ g(T − t)dw. (A.48)

This means that (Yt)t∈[0,T ] is given by the original generative model, with time-dependent

marginals pt. The expression Equation A.47, suggests to parameterize Φt by Φθ
t and to

consider the loss function

ℓt(θ) = EYT
EYt∼pt|T (·|YT )[∥ΦT (YT )− Φθ

t (Yt)∥2]. (A.49)

Then, we can define a global loss function L(θ) =
´ T
0
λ(t)ℓt(θ)dt where λt is some weight.

One problem with this original loss function is that it requires sampling and integrating with

respect to Yt which requires sampling from the generative model.

Recall that we reverse the time from t to T − t at the beginning. Reverse back to the

original convention in the main text, Equation A.50 can be expressed as

ℓt(θ) = EX0∼p0EXt∼pt|0(·|XT )[∥Φ0(X0)− Φθ
t (Xt)∥2]. (A.50)

A.3.3 Preserving Marginal Distribution

For arbitrary time evolving potentials Φt(x1, ...,xn) sampling using particle guidance does

not preserve the marginals p(xi) ̸=
´
x1,...,xi−1,xi+1,...,xn

p̂(x1, ...,xn)dx1...dxi−1dxi+1...dxn. In

many domains this is not required and none of the methods discussed in Section 6.3 have this

198



property for finite number of particles, however, in domains where, for example, one wants to

obtain unbiased estimates of some function this property may be useful.

While the technique discussed in Section 6.5 allows us to use any potential Φ0(x1, ...,xn)

choosing Φ0 in such a way that preserves marginals is hard for non-trivial potentials and

distributions. Therefore, we propose to learn a non-trivial marginal preserving Φθ
0 from the

data in the following way. Let Φθ
0(x1, ...,xn) = Φ′0(x1, ...,xn)

∏
i γθ(xi) where Φ′0 is some

predefined joint potential that, for example, encourages diversity in the joint distribution

and γθ is a learned scalar function operating on individual points that counterbalances the

effect that Φ′0 has on marginals while maintaining its effect on sample diversity.

How do we learn such scaling function γθ to preserve marginals? By definition, the

individual marginal distribution is (consider i = 1 w.l.o.g.):

p̂1(x1) =

´
x2,...,xn

Φ′0(x1, ...,xn)
∏

i p(xi)γθ(xi)dx2...dxn´
x′
1,...,x

′
n
Φ′0(x

′
1, ...,x

′
n)
∏

i p(x
′
i)γθ(x

′
i)dx

′
1...dx

′
n

=

=
p(x1)Ex2,...,xn∼

∏
i>1 p(xi)

[
Φ′0(x1, ...,xn)

∏
i γθ(xi)

]
Ex′

1,...,x
′
n∼

∏
i p(x

′
i)

[
Φ′0(x

′
1, ...,x

′
n)
∏

i γθ(x
′
i)
] =

= p(x1)
Ex2,...,xn∼

∏
i>1 p(xi)

[
Φθ

0(x1, ...,xn)
]

Ex′
1,...,x

′
n∼

∏
i p(x

′
i)

[
Φθ

0(x
′
1, ...,x

′
n)
]

Therefore p̂1 = p if and only if the fraction is always equal to 1 (intuitively for the marginal

to be maintained on average the potential should have no effect). Assuming that the joint

potential Φ′0 is invariant to the permutation to its inputs. Then one can also prove that,

p̂1 = p if and only if Ex2,...,xn∼
∏

i>1 p(xi)

[
Φθ

0(x1, ...,xn)
]

is equal to a positive constant C for

any x1. We can then minimize the following regression loss to learn the scalar function γθ, by

matching Ex2,...,xn∼
∏

i>1 p(xi)

[
Φθ

0(x1, ...,xn)
]

and C:

min
θ

Ex1(Ex2,...,xn∼
∏

i p(xi)

[
Φ′0(x1, ...,xn)

∏
i ̸=1

γθ(xi)
]
− C

γθ(x1)
)2

However, achieving this objective necessitates costly Monte Carlo estimations for the expec-

tation over n− 1 independent samples. Moreover, obtaining an unbiased estimator for the

full-batch gradient in a mini-batch setup is challenging. To bypass this issue, we implement

a greedy update rule that optimizes the value γθ(x1) on the single sample x1. The greedy

199



update can be viewed as continuous extension of the Iterative Proportional Fitting (IPF) for

symmetry matrices. The essence of the IPF algorithm lies in determining scaling factors for

each row and column of a given matrix, ensuring that the sum of each row and column (the

marginals) aligns with a specified target value. IPF is known for its uniqueness and conver-

gency guarantees [245]. Let’s denote ϕi(x1, ...,xn) = stop_grad(Φ′0(x1, ...,xn)
∏

j ̸=i γθ(xj)),

the objective for the greedy update rule is as follows:

min
γθ(x1)

Ex1(Ex2,...,xn∼
∏

i ̸=1 p(xi)ϕ1(x1, ...,xn)−
C

γθ(x1)
)2

The gradient w.r.t θ in the objective above is:

θ′ = θ − βEx1,x2,...,xn∼
∏

i p(xi)

[
2C

γ2θ (x1)

(
ϕ1(x1, ...,xn)−

C

γθ(x1)

)]
∇θγθ(x1) (A.51)

where β is the learning rate. The corresponding update by stochastic gradient is:

θ′ =θ − β 1
n

n∑
i=1

[
2C

γ2θ (xi)

(
ϕi(x1, ...,xn)−

C

γθ(xi)

)]
∇θγθ(xi) (A.52)

=θ − β 1
n

n∑
i=1

[
2C

γ3θ (xi)

(
Φθ

0(x1, ...,xn)− C
)]
∇θγθ(xi) (A.53)

for x1, ...,xn ∼
∏

i p(xi). The stochastic gradient is an unbiased estimator of the gradient in

Equation A.51.

Empirical Synthetic Experiments

We demonstrate this training paradigm in a synthetic experiment using a mixture of Gaussian

distributions in 2D. In particular, we set p to be a mixture of 7 Gaussians with the same

variance with placed as shown in Figure A.1.A. The middle Gaussian has a weight that is

four times that of the others.

Figure A.1.B shows the marginal distribution when sampling 10 particles with joint

200



Figure A.1: Synthetic experiment on learning a potential that preserves marginal distributions.
The description of each plot can be found in the text.

distribution:

p̃0(x1, ...,xn) ∝ Φ′0(x1, ...,xn)
n∏
i=1

p(xi)

where Φ′0 is a measure of diversity that in this case we take to be the exponential of the

negative of the mean of pairwise Euclidean RBF similarity kernels. Table A.1 highlights

how sampling from this modified joint distribution significantly increases the diversity of the

samples, especially when it comes to the expected value of log Φ′0 itself. However, as clear

from Figure A.1.B, the marginal distribution is significantly changed with the middle mode

being sampled only 13% of the times instead of 40% and even the shape of the outer modes

being altered.

To fix this we learn a function γθ, here parameterized simply as the set of values on a

grid representing the domain. We follow the training scheme presented in Equation A.52

obtaining the function presented in Figure A.1.D. As evident from the plot, this has the effect

of overweighing samples in the central mode, while downsampling samples in the outside

201



modes, especially when coming from the outer parts. In Figure A.1.C we plot the marginal

of the resulting distribution:

p̂0(x1, ...,xn) ∝ Φ′0(x1, ...,xn)
n∏
i=1

p(xi)γθ(xi).

Although the marginals closely match, p̂0 still has more diversity in its sets of samples

compared to I.I.D. sampling of p, however, as seen in Table A.1 the level of diversity in p̂0 is

lower than that of p̃0, highlighting the “cost" of imposing the preservation of marginals.

Table A.1: Values of different observables under different joint probability distributions. For
every method we take 5000 samples (of 10 particles), samples from p̃0 and p̂0 were obtained
reweighting 50000 samples of the independent I.I.D. distribution.

Observable I.I.D. p p̃0 p̂0

Number of modes recovered at every sample 4.9 5.9 5.3
Expected value of log Φ′0 -37.3 -31.8 -36.3

Then to match the marginals we can minimize:

DKL(p || p̂1) = Ex1∼p
[
− log

p̂1(x1)

p(x1)

]
= Ex1∼p

[
− log

Ex2,...,xn∼
∏

i>1 p(xi)

[
Φθ

0(x1, ...,xn)
]

Ex′
1,...,x

′
n∼

∏
i p(x

′
i)

[
Φθ

0(x
′
1, ...,x

′
n)
] ]

≤− Ex1,...,xn∼p0
[
log Φθ

0(x1, ...,xn)
]
+ logEx1,...,xn∼p0

[
Φθ

0(x1, ...,xn)
]

Therefore, combining this with the loss presented in Section 6.5 we can train particle

guidance with arbitrary Φ′0 and to preserve marginals with the following objective:

θ∗ = argmin
θ

Ex0
1,...,x

0
n∼p0 Ext

i∼pt|0(·|x0
i )
[∥Φ0(x

0
1, ...,x

0
n)− Φθ

t (x
t
1, ...,x

t
n)∥2 − β log Φθ

0(x
0
1, ...,x

0
n)]

+ β logEx0
1,...,x

0
n∼p0

[
Φθ

0(x
0
1, ...,x

0
n)
]

where Φ0 indicates Φθ
0 with stop-gradients and β is an hyperparameter.

This is still not ready for being applied to training because of log outside the expectation

202



of the last term. Taking the gradient of the term w.r.t. θ we obtain:

∇θ logEx0
1,...,x

0
n∼p0

[
Φθ

0(x
0
1, ...,x

0
n)
]
=
Ex0

1,...,x
0
n∼p0

[
Φθ

0(x
0
1, ...,x

0
n)∇θ log Φ

θ
0(x

0
1, ...,x

0
n)
]

Ex0
1,...,x

0
n∼p0

[
Φθ

0(x
0
1, ...,x

0
n)
]

=
1

Z
Ex0

1,...,x
0
n∼p0

[
Φθ

0(x
0
1, ...,x

0
n)∇θ log Φ

θ
0(x

0
1, ...,x

0
n)
]

where similarly to what has been done previously for example in [246], the denominator Z

is estimated with a running average of the value of the kernel over the samples from the I.I.D.

distribution. This produces unbiased gradients in the limit of a small learning rate. Therefore,

an stochastic gradient descent procedure with batch size equal to 1 would correspond to,

taking a sample from the independent distribution x0
1, ...,x

0
n ∼ p0, sampling xti ∼ pt|0(·|x0

i )

and then computing the updates:

θ′ = θ −∇θ

∥∥Φ0(x
0
1, ...,x

0
n)− Φθ

t (x
t
1, ...,x

t
n)
∥∥2 + β

(
1− Φθ

0(x
0
1, ...,x

0
n)

Z

)
∇θ log Φ

θ
0(x

0
1, ...,x

0
n)

Z ′ = ϵ Φθ
0(x

0
1, ...,x

0
n) + (1− ϵ) Z

A.3.4 Invariance of Particle Guidance

Proposition 3. Let G be the group of rotations or permutations of a set of vectors. Assuming

that pT (x) is a G-invariant distribution, the learned score s(x, t) and f(x, t) are G-equivariant

and the potential log Φt(x1 . . .xn) is G-invariant to a transformation of any of its inputs,

then the resulting distribution we sample from will also be G-invariant to a transformation of

any of the elements of the set.

Note that in this section we will derive this specific formulation for the group of rotations

or permutations and the Brownian motion in Euclidean space. For a more general statement

on Lie groups G and Brownian motions associated with a given metric, one could generalize

the result from [247] Proposition F.2.

Proof. For simplicity, we will consider Euler discretization steps going with time from T to 0

203



(as used in our experiments), however, the proposition applies in the continuous setting too:

pθ(x
(t−1)
i |x(t)

1:n) = pz(x
(t−1)
i − x

(t)
i + f(x

(t)
i , t)− g2(sθ(x

(t)
i , t) +∇x

(t)
i
log Φt(x

(t)
1:n)))

where z ∼ N(0, g2I). Without loss of generality since the whole method is invariant

to permutations of the particles, consider xn to be the particle to which we apply Tg the

transformation of an arbitrary group element g.

Since by assumption log Φt(x
(t)
1:n) = log Φt(x

(t)
1:n−1, Tg(x

(t)
n )) we have pθ(x

(t−1)
i |x(t)

1:n) =

pθ(x
(t−1)
i |x(t)

1:n−1, Tg(x
(t)
n )).

On the other hand, since log Φt(x
(t)
1:n) is invariant to G transformations of x(t)

n , its gradient

w.r.t. the same variable will be G-equivariant. Therefore:

pθ(Tg(x
(t−1)
n )|x(t)

1:n−1, Tg(x
(t)
n )) =

= pz(Tg(x
(t−1)
n )− Tg(x(t)

n ) + f(Tg(x
(t)
n ), t)− g2(sθ(Tg(x(t)

n ), t) +∇
x
(t)
n
log Φt(x

(t)
1:n−1, Tg(x

(t)
n ))))

= pz(Tg(x
(t−1)
n )− Tg(x(t)

n ) + Tg(f(x
(t)
n , t))− g2(Tg(sθ(x(t)

n , t)) + Tg(∇x
(t)
n
log Φt(x

(t)
1:n))))

= pz(Tg(x
(t−1)
n − x(t)

n + f(x(t)
n , t)− g2(sθ(x(t)

n , t) +∇x
(t)
n
log Φt(x

(t)
1:n)))) = pθ(x

(t−1)
n |x(t)

1:n)

where between lines 2 and 3 we have used the equivariance assumptions and in the latter

two the properties of elements of G.

Putting these together, we follow a similar derivation of Proposition 1 from [184]:

204



pθ(x
(0)
1:n−1, Tg(x

(0)
n )) =

=

ˆ
p(x

(T )
1:n−1, Tg(x

(T )
n ))

T∏
t=1

pθ(x
(t−1)
1:n−1, Tg(x

(t−1)
n )|x(t)

1:n−1, Tg(x
(t)
n )) =

=

ˆ (∏
i<n

p(x
(T )
i )

)( T∏
t=1

∏
i<n

pθ(x
(t−1)
i |x(t)

1:n−1, Tg(x
(t)
n ))

)
·

·
(
p(Tg(x

(T )
n ))

T∏
t=1

pθ(Tg(x
(t−1)
n )|x(t)

1:n−1, Tg(x
(t)
n ))

)
=

=

ˆ (∏
i<n

p(x
(T )
i )

)( T∏
t=1

∏
i<n

pθ(x
(t−1)
i |x(t)

1:n)

)(
p(x(T )

n )
T∏
t=1

pθ(x
(t−1)
n |x(t)

1:n)

)
= pθ(x

(0)
1:n)

A.3.5 Connections with Existing Methods

Particle Guidance as SVGD

In this section, we derive the approximation of Eq. 6.3 starting from the probability flow

ODE equivalent of Eq. 6.4 under the assumptions of no drift f(x, t) = 0 and using the

following form for Φt(x1, ..., xn) = (
∑

i,j kt(xi, xj))
−n−1

2 where kt is a similarity kernel based

on the Euclidean distance (e.g. RBF kernel).

dxi =

[
f(xi, t)−

1

2
g2(t)

(
∇xi log pt(xi) +∇xi log

(∑
ij

kt(xi, xj)
)−n−1

2

)]
dt

= −1

2
g2(t)dt

(
∇xi log pt(xi)−

1
2
∇xi

∑
ij kt(xi, xj)

1
n−1

∑
ij kt(xi, xj)

)

Now we can simplify the numerator using the fact that kt is symmetric and approximate the

denominator assuming that different particles will have similar average distances to other

205



particles:

≈ −1

2
g2(t)dt

(
∇xi log pt(xi)−

∇xi

∑
j kt(xi, xj)∑

j kt(xi, xj)

)

= − g
2(t)dt

2 S(xi)

(∑
j

kt(xi, xj)∇xi log pt(xi)−∇xikt(xi, xj)

)

where S(xi) =
∑

j kt(xi, xj). Now we can use the fact that ∇xikt(xi, xj) = −∇xjkt(xi, xj)

because the kernel only depends on the Euclidean distance between the two points:

= −n g
2(t)dt

2 S(xi)

(
1

n− 1

∑
j

kt(xi, xj)∇xi log pt(xi) +∇xjkt(xi, xj)

)

Letting ϵt(xi) = n g2(t)∆t
2 S(xi)

, we obtain Eq. 6.3:

xt−∆ti ≈ xti + ϵt(xi)ψt(x
t
i) where ψ(x) =

1

n− 1

n∑
j=1

[kt(x
t
j, x)∇x log pt(x) +∇xtj

kt(x
t
j, x)]

Particle Guidance in Poisson Flow Generative Models

In this section, we consider the more general Poisson Flow Generative Models++ [31] frame-

work in which the N -dimensional data distribution is embedded into N+D-dimensional space,

where D is a positive integer (D = 1/D → ∞ recover PFGM [50]/diffusion models). The

data distribution is interpreted as a positive charge distribution. Each particle independently

follows the electric field generated by the N -dimensional data distribution p(x) embedded

in a N + D-dimensional space. One can similarly do particle guidance in the PFGM++

scenarios, treating the group of particles as negative charges, not only attracted by the data

distribution but also exerting the mutually repulsive force. Formally, for the augmented data

the ODE in PFGM++ (Eq.4 in [31]) is

dx

dr
=
E(x, r)x
E(x, r)r

206



where Ex and Er are the electric fields for different coordinates:

E(x, r)x =
1

SN+D−1(1)

ˆ
x− y

(∥x− y∥2 + r2)
N+D

2

p(y)dy

E(x, r)r =
1

SN+D−1(1)

ˆ
r

(∥x− y∥2 + r2)
N+D

2

p(y)dy

Note that when r = σ
√
D,D →∞, the ODE is dx

dr
= E(x,r)x

E(x,r)r
= − σ√

D
∇x log pσ(x) and the

framework degenerates to diffusion models.

Now if we consider the repulsive forces among a set of (uniformly weighted) particles with

the same anchor variables r, {(xi, r)}ni=1, only the electric field in the x coordinate changes

(the component in the r coordinate is zero). Denote the new electric field in x component as

Êx:

Ê(xi, r)x = E(xi, r)x︸ ︷︷ ︸
attractive force by data

+
1

SN+D−1(1)

1

n− 1

∑
j ̸=i

xj − xi
(∥xj − xi∥2)

N+D
2︸ ︷︷ ︸

repulsive force between particles

The corresponding new ODE for the i-th particle is

dxi
dr

=
Ê(xi, r)x
E(xi, r)r

=
E(xi, r)x
E(xi, r)r

+

1
SN+D−1(1)

1
n−1

∑
j ̸=i

xj−xi
(∥xj−xi∥2)

N+D
2

E(xi, r)r

=
E(xi, r)x
E(xi, r)r︸ ︷︷ ︸

predicted by pre-trained models

+

1
n−1

∑
j ̸=i

xj−xi
(∥xj−xi∥2)

N+D
2´

r

(∥x−y∥2+r2)
N+D

2
p(y)dy︸ ︷︷ ︸

particle guidance

=
E(xi, r)x
E(xi, r)r

+

1
n−1

∑
j ̸=i

xj−xi
∥xj−xi∥N+D

SN+D−1

rD−1SD−1
pr(xi)

where pr is the intermidate distribution, and Sn is the surface area of n-sphere. Clearly, the

207



direction of the guidance term can be regarded as the sum of the gradient of N+D-dimensional

Green’s function G(x, y) ∝ 1/||x− y||N+D−2, up to some scaling factors:

∇xiG(xi, xj) =
xi − xj

∥xj − xi∥N+D

A.3.6 Combinatorial Analysis of Synthetic Experiments

Proposition 4. Let us have a random variable taking a value equiprobably between N distinct

bins. The expectation of the proportion of bins discovered (i.e. sampled at least once) after N

samples is 1− (N−1
N

)N which tends to 1− 1/e as N tends to infinity.

Proof. Let ni be the number of samples in the iit bin. The proportion of discovered bins is

equal to:

1

N
E
[ N∑
i=1

Ini>0

]
=

1

N

N∑
i=1

E[Ini>0] = P (ni > 0) = 1− P (ni = 0) = 1−
(
N − 1

N

)N

In the limit of N →∞:

lim
N→∞

1−
(
N − 1

N

)N
= 1− y = 1− 1

e

since (using L’Hôpital’s rule):

log y = lim
N→∞

N log

(
N − 1

N

)
= lim

N→∞

log(N−1
N

)

1/N
= lim

N→∞

1/N2

−1/N2
= −1

Therefore for N = 10 we would expect 10 ∗ (1− 0.910) ≈ 6.51, which corresponds to what

is observed in the empirical results of Section B.4.2.

Proposition 5. (Coupon collector’s problem) Let us have a random variable taking a

value equiprobably between N distinct bins. The expectation of the number of samples required

to discover all the bins is N HN , where HN is the Nth harmonic number, which is Θ(N logN)

as N tends to infinity.

208



Proof. Len Li|j be the number of samples it takes to go from j to i bins discovered. We are

therefore interested in E[LN |0].

E[Lj|j−1] =
N − (j − 1)

N
∗ 1 + j − 1

N
[E[Lj|j−1] + 1] =⇒ E[Lj|j−1] =

N

N − (j − 1)

Therefore:

E[LN |0] = E
[ N∑
j=1

Lj|j−1

]
=

N∑
j=1

E[Lj|j−1] = N

N∑
j=1

1

N − (j − 1)
= N

N∑
j=1

1

j
= N HN

Since HN is Θ(logN), then E[LN |0] is Θ(N logN).

For N = 10, E[L10|0] ≈ 29.29.

209



A.4 Chapter 7

A.4.1 Proof for Theorem 6

Before proceeding to the proof for Theorem 6, we show a technical lemma that guarantees

the existence-uniqueness of the solution to the Poisson equation, under some mild conditions.

Lemma 8. Given Ω = RN , N ≥ 3, assume that the source function ρ ∈ C0(Ω), and ρ

has a compact support. Then the the Poisson equation ∇2φ(x) = −ρ(x) on Ω with zero

boundary condition at infinity (lim∥x∥2→∞ φ(x) = 0) has a unique solution φ(x) ∈ C2(Ω) up

to a constant.

Proof. For the existence of the solution, one can verify that the analytical construction

using the extension of Green’s function in N ≥ 3 dimensional space (Lemma 11), i.e.,

φ(x) =
´
G(x,y)ρ(y)dy, G(x,y) = 1

(N−2)SN−1(1)
1

||x−y||N−2 , is one possible solution to the

Poisson equation ∇2φ(x) = −ρ(x). Since ρ ∈ C0(Ω) and ∇2φ(x) = −ρ(x), we conclude that

φ(x) ∈ C2(Ω).

The proof idea of the uniqueness is similar to the uniqueness theorems in electrostatics.

Suppose we have two different solutions φ1, φ2 ∈ C2 which satisfy

∇2φ1(x) = −ρ(x),∇2φ2(x) = −ρ(x). (A.54)

We define φ̃(x) ≡ φ2(x)− φ1(x). Subtracting the above two equations gives

∇2φ̃(x) = 0,∀x ∈ Ω. (A.55)

By the vector differential identity we have

φ̃(x)∇2φ̃(x) = ∇ · (φ̃(x)∇φ̃(x))−∇φ̃(x) · ∇φ̃(x), (A.56)

By the divergence theorem we have

ˆ
Ω

∇ · (φ̃(x)∇φ̃(x))dNx =

‹
∂Ω

φ̃(x)∇φ̃(x) · dN−1S = 0, (A.57)

210



where dN−1S denotes an N − 1 dimensional surface element at infinity, and the second

equation holds due to zero boundary condition at infinity. Combining Eq. (A.55)(A.56)(A.57),

we have ˆ
Ω

∇ · (φ̃(x)∇φ̃(x))dNx =

ˆ
Ω

||∇φ̃(x)||2dNx = 0, (A.58)

since this is an integral of a positive quantity, we must have ∇φ̃(x) = 0, or φ̃(x) = c, ∀x ∈ Ω.

This means φ1 and φ2 differ at most by a constant, but a constant does not affect gradients,

so ∇φ1(x) = ∇φ2(x).

In our method section (Section 7.3.1), we augmented the original N -dimensional data with

an extra dimension. The new data distribution in the augmented space is p̃(x̃) = p(x)δ(z),

where δ is the Dirac delta function. The support of the data distribution is in the z = 0

hyperplane. In the following lemma, we show the existence and uniqueness of the solution to

∇2φ(x̃) = −p̃(x̃) outside the data support.

Lemma 9. Assume the support of the data distribution in the augmented space (supp(p̃(x̃)))

is a compact set on the z = 0 hyperplane, p(x) ∈ C0 and N ≥ 3. The Poisson equation

∇2φ(x̃) = −p̃(x̃) with zero boundary condition at infinity (lim∥x∥2→∞ φ(x̃) = 0) has a unique

solution φ(x̃) ∈ C2 for x̃ ∈ RN+1 \ supp(p̃(x̃)), up to a constant.

Proof. Similar to the proof in Lemma 8, one can easily verify that the analytical construction

using Green’s method, i.e., φ(x̃) =
´
G(x̃, ỹ)p̃(x̃)dỹ, G(x̃, ỹ) = 1

(N−1)SN (1)
1

||x̃−ỹ||N−1 , is one

possible solution to the Poisson equation ∇2φ(x̃) = −p̃(x̃). Since p̃(x̃) = 0 for x̃ ∈ RN+1 \

supp(p̃(x̃)) and ∇2φ(x̃) = −p̃(x̃), we conclude that φ(x̃) ∈ C2(RN+1 \ supp(p̃(x̃))).

For the uniqueness, suppose we have two different solutions φ1, φ2 ∈ C2(RN+1\supp(p̃(x̃)))

which satisfy

∇2φ1(x̃) = −p̃(x̃),∇2φ2(x̃) = −p̃(x̃). (A.59)

We define φ̃(x̃) ≡ φ2(x̃)− φ1(x̃). Subtracting the above two equations gives

∇2φ̃(x̃) = 0,∀x̃ ∈ RN+1 \ supp(p̃(x̃)). (A.60)

211



dΦin = p(x)dA/2
dΩ

dΦout = dΩ/SN(1)

Gauss′￼s Law

N dim O

r → ∞

dΦin dΦout=

z

S5
S4

S3

S1
S2

Figure A.2: Proof idea of Theorem 11. By Gauss’s Law, the outflow flux dΦout equals the
inflow flux dΦin. The factor of two in p(x)dA/2 is due to the symmetry of Poisson fields in
z < 0 and z > 0.

By the vector differential identity we have

φ̃(x̃)∇2φ̃(x̃) = ∇ · (φ̃(x̃)∇φ̃(x̃))−∇φ̃(x̃) · ∇φ̃(x̃), (A.61)

By the divergence theorem we have

ˆ
RN+1

∇ · (φ̃(x̃)∇φ̃(x̃))dN+1x̃ =

‹
∂RN+1

φ̃(x̃)∇φ̃(x̃) · dNS = 0, (A.62)

where dNS denotes an N dimensional surface element at infinity, and the second equation

holds due to zero boundary condition at infinity. Combining Eq. (A.60)(A.61)(A.62), we have

ˆ
RN+1

∇ · (φ̃(x̃)∇φ̃(x̃))dN+1x̃ =

ˆ
RN+1\supp(p̃(x̃))

∇ · (φ̃(x̃)∇φ̃(x̃))dN+1x̃

=

ˆ
RN+1\supp(p̃(x̃))

||∇φ̃(x̃)||2dN+1x̃ = 0,

The first equation holds because Lebesgue measure of supp(p̃(x̃)) is zero. Since ||∇φ̃(x̃)||2 is an

integral of a positive quantity, we must have ∇φ̃(x̃) = 0, or φ̃(x̃) = c, ∀x̃ ∈ RN+1\supp(p̃(x̃)).

This means φ1 and φ2 differ at most by a constant function, but a constant does not affect

gradients, so ∇φ1(x̃) = ∇φ2(x̃).

As illustrated in Figure A.2, there is a bijective mapping between the upper hemisphere

212



of radius r and the z = 0 plane, where each pair of corresponding points is connected by

an electric field line. We will now formally prove that, in the r → ∞ limit, this mapping

transforms the arbitrary charge distribution in the source plane (that generated the electric

field) into a uniform distribution on the hemisphere.

Theorem 11. Suppose particles are sampled from a uniform distribution on the upper (z > 0)

half of the sphere of radius r and evolved by the backward ODE dx̃
dt

= −E(x̃) until they reach

the z = 0 hyperplane, where the Poisson field E(x̃) is generated by the source p̃(x̃). In the

r →∞ limit, under the conditions in Lemma 9, this process generates a particle distribution

p̃(x̃), i.e., a distribution p(x) in the z = 0 hyperplane.

Proof. By Lemma 9, we know that with zero boundary at infinity, the Poisson equation

∇2φ(x̃) = −p̃(x̃) has a unique solution φ(x̃) ∈ C2 for x̃ ∈ RN+1 \ supp(p̃(x̃)). Hence

E(x̃) = −∇φ(x̃) ∈ C1, guaranteeing the existence-uniqueness of the solution to the ODE
dx̃
dt

= −E(x̃) according to Theorem 2.8.1 in [248].

Consider the tube in Figure A.2 connecting an area on dA in the z = ϵ→ 0+ hyperplane

(S3) to a solid angle dΩ on the hemisphere (S1), with S2 as its side. The tube is the space

swept by dA following electric field E, so by definition the electric field is parallel to the

tangent space of the tube sides S2. The bottom of the tube S3 is located at z = ϵ→ 0+, a bit

above the z = 0 plane, so the tube does not enclose any charges. We note that the divergence

of Poisson field is zero in RN+1 \ supp(p̃(x̃)):

∇ · E(x̃) = −∇2φ(x̃) = p̃(x̃) = 0,∀x̃ ∈ RN+1 \ supp(p̃(x̃))

Denote the volume and surface of the tube as V and B. According to divergence theorem,‚
E(x̃) · dB =

´
V
∇ · E(x̃)dV = 0. Hence the net flux leaving the tube is zero:

ΦS1 + ΦS2 + ΦS3 = 0, ΦSi
≡
‹
Si

E(x̃) · dB (i = 1, 2, 3) (A.63)

There is no flux through the sides, i.e., ΦS2 = 0, since E(x̃) is orthogonal to the surface

element dB on the tube sides by definition. As a result, the flux ΦS3 entering from below

must equal the flux ΦS1 leaving the other end. Denote the l2 norm of the vector r as r. We

213



first calculate the influx ΦS3 . To do so, we study a Gaussian pillbox whose top, side and

bottom are S3, S4 and S5. S3 and S5 are located at z = ϵ and z = −ϵ (ϵ → 0+). Denote

the volume and surface of the pillbox as V ′ and B′. The pillbox contains charge p(x)dA, so

according to Gauss’s law
‚

E(x̃) · dB′ =
´
V ′ ∇ · E(x̃)dV ′ =

´
V ′ p̃(x̃)dV

′ = p(x)dA, i.e.,

Φ′S3
+ Φ′S4

+ Φ′S5
= p(x)dA, Φ′Si

≡
‹
Si

E(x̃) · dB′ (i = 3, 4, 5) (A.64)

The flux on the sides Φ′S4
∝ ϵ → 0, and Φ′S3

= Φ′S5
due to mirror symmetry of z = 0. So

Φ′S3
= Φ′S5

= p(x)dA/2. Note on the S3 surface, the outflux of the pillbox is exactly the

influx of the tube, so we have:

ΦS3 = −Φ′S3
= −p(x)dA/2, (A.65)

inserting which and ΦS2 = 0 to Eq. (A.63) gives

ΦS1 = −ΦS3 = p(x)dA/2. (A.66)

On the other hand, in the far-field limit r → ∞, since supp(p(x)) is bounded, the data

distribution can be effectively seen as a point charge (see Appendix A.4.3). By Lemma 10, we

have limr→∞E(r) = − limr→∞∇φ(r) = r
SN (1)rN+1 . The resulting outflux on the hemisphere is

ΦS1 = Err
NdΩ = dΩ/SN(1) (A.67)

where Er ≡ E(r) · r/r is the radial component of E. Comparing Equation A.66 and

Equation A.67 yields dΩ/dA = p(x)SN(1)/2 ∝ p(x). In other words, the mapping from the

z = 0 hyperplane to the hemisphere dilutes the charge density p(x) up to a constant factor.

Thus by change-of-varible, we conclude that the mapping transforms the data distribution into

a uniform distribution on the infinite hemisphere. Since the ODE is reversible, the backward

ODE transforms the uniform distributoin on the infinite hemisphere to the distribution

p̃(x̃).

214



A.4.2 Proof for the Prior Distribution on z = zmax Hyperplane

z

O

θ

x

zmax r dA1

dA2
dA3θ

zmax

Figure A.3: Diagram of the deviation in Proposition 6

We obtain the prior distribution pprior by projecting the uniform distribution U(S+
N (zmax))

on the hemisphere S+
N(zmax) to the z = zmax hyperplane. In the following proposition, we

show that the projected distribution is pprior(x) =
2zmax

SN (1)rN+1 .

Proposition 6. The radial projection of U(S+
N(zmax)) on the hemisphere S+

N(zmax) to the

z = zmax hyperplane has the probability density pprior(x) =
2zmax

SN (1)rN+1 .

Proof. We calculate the change-of-variable ratio by comparing two associate areas. As

illustrated in Figure A.3, an area dA1 on S+
N(zmax) is projected to an area dA3 on the

hyperplane in the (x, zmax) direction, and we have

U(S+
N(zmax))dA1 = pprior(x)dA3

We aim to calculate the ratio dA1/dA3 below. We define the angle between (0, zmax) and

x̃ = (x, zmax) to be θ. We project dA3 to the hyperplane orthogonal to x̃ to get dA2 =

dA3cosθ = dA3zmax/r where r ≡ ||x̃||2 =
√
||x||22 + z2max. Since dA1 is parallel to dA2 and

they lie in the same cone from the origin O, we have dA2/dA1 = (r/zmax)
N . Combining all

215



the results gives

pprior(x) = U(S+
N(zmax))

dA1

dA3

= U(S+
N(zmax))

dA1

dA2

dA2

dA3

=
2

SN(1)zNmax
(
zmax

r
)N
zmax

r
=

2zmax

SN(1)rN+1

In order to sample from pprior(x), we first sample the norm (radius) R = ||x||2 from the

distribution:

pradius(R) ∝ RN−1pprior(x) (pprior is isotropic)

∝ RN−1/(||x||22 + z2max)
N+1

2

= RN−1/(R2 + z2max)
N+1

2 (A.68)

and then uniformly sample its angle. Sampling from pprior encompasses three steps. We first

sample a real number r1 with parameters α = N
2
, β = 1

2
, i.e.,

R1 ∼ Beta(α, β)

Next, we set R2 = R1

1−R1
such that R2 is effectively sampled from the inverse beta distri-

bution a(also known as beta prime distribution) with parameters α = N
2
, β = 1

2
. Finally,

we set R3 =
√
z2maxR2. To verify the pdf of R3 is pradius, note that the pdf of inverse beta

distribution is

p(R2) ∝ R
N
2
−1

2 (1 +R2)
−N

2
− 1

2

216



Next, by change-of-variable, the pdf of R3 =
√
z2maxR2 is

p(R3) ∝ R
N
2
−1

2 (1 +R2)
−N

2
− 1

2 ∗ 2R3

z2max

∝ R3R
N
2
−1

2

(1 +R2)
N+1

2

=
(R3/zmax)

N−1

(1 + (R2
3/z

2
max))

N+1
2

∝ RN−1
3

(1 + (R2
3/z

2
max))

N+1
2

∝ RN−1
3

(z2max +R2
3)

N+1
2

∝ pradius(R3) (By Equation B.6)

Hence we conclude that p(R3) = pradius(R3).

A.4.3 Multipole Expansion

We discuss the behaviors of the potential function in Poisson equation (Equation 7.1) under

different scenarios, utilizing the multipole expansion. Suppose we have a unit point charge

q = 1 located at x ∈ RN . We know that the potential function at another point y ∈ RN is

φ(y− x) = 1/||y− x||N−2 (ignoring a constant factor). Now we assume that x is close to the

origin such that we can Taylor expand around x = 0:

φ(y − x) = φ(y)−
N∑
α=1

xαφα(y) +
1

2

N∑
α=1

N∑
β=1

xαxβφαβ(y)− ... (A.69)

where
φα(y) =

(
∂φ(y − x)

∂xα

)
x=0

= (N − 2)
yα
||y||N

φαβ(y) =

(
∂2φ(y − x)

∂xα∂xβ

)
x=0

= (N − 2)
Nyαyβ − ||y||2δαβ

||y||N+2

(A.70)

In the case where the source is a distribution p(x), the potential φ(y) can again be Taylor

expanded:

φ(y) = qφ(y) +
N∑
α=1

qαφα(y) +
N∑
α=1

N∑
β=1

qαβφαβ(y)− ... (A.71)

217



where

q =

ˆ
p(x)dx, qα =

ˆ
p(x)xαdx, qαβ =

ˆ
p(x)xαxβdx, (A.72)

which are called monopole, dipole and quadrupole in physics, respectively. The gradient field

E(y) = ∇Φ(y) can be expanded in the same such that

E(y) = E(0)(y) + E(1)(y) + E(2)(y) + ... (A.73)

It is easy to check that ||E(i)(y)|| decays as 1/||y||N−2+i, which means higher-order corrections

decay faster than leading terms. So when ||y|| → ∞, only the monopole term ||E(0)(y)||

matters, which behaves like a point source.

In a more realistic setup, we only have a large but finite ||y||, so the question is: under

what condition is the point source approximation valid? We examine φ(0), φ(1) and φ(2) more

carefully:

φ(0) =
1

||y||N−2

φ(1) =
N∑
α=1

(N − 2)
yαxα
||y||N

= (N − 2)
xTy

||y||N

φ(2) =
1

2

N∑
α=1

N∑
β=1

(N − 2)
Nyαyβ − ||y||2δαβ

||y||N+1
xαxβ =

N − 2

2

N(xTy)2 − ||x||2||y||2

||y||N+2

(A.74)

Since φ(1) is an odd function of x, integrating φ(1) over x leads to zero (samples are normalized

to zero mean). In machine learning applications, N is usually a large number (although in

physics N is merely 3). If y is a random vector of length ||y||, then xTy ∼ ( 1√
N
± 1

N
)||x||||y||.

So Eq. (A.74) can be approximated as

φ(0) ∼ 1

||y||N−2
, φ(2) ∼

√
N

2

||x||2

||y||N
(A.75)

Requiring
´
φ(0)p(x)dx≫

´
φ(2)p(x)dx gives ||y||2 ≫

√
N Ep(x) ||x||2. So the condition for

218



the point source approximation to be valid is:

κ =
2||y||2√

N Ep(x) ||x||2
≫ 1 (A.76)

Based on this condition, we can partition space into three zones: (1) the far zone κ ≫ 1,

where the point source approximation is valid; (2) the intermediate zone κ ∼ O(1), where the

gradient field has moderate curvature; (3) the near zone κ≪ 1, where the gradient field has

high curvature. In practice, the initial value ||y|| is greater than 1000 (hence κ≫ 1) with

high probability on CIFAR-10 and CelebA datasets, incidating that the initial samples lie in

the far zone and gradually move toward the near zone where ||y|| ≈ ||x|| (κ≪ 1).

We summarize above observations in the following lemma in the ||y|| → ∞ limit:

Lemma 10. Assume the data distribution p(x) ∈ C0 has a compact support in RN , then the

solution φ to the Poisson equation ∇2φ(x) = −p(x) with zero boundary condition at infinity

satisfies lim∥x∥2→∞∇φ(x) = − 1
SN−1(1)

x
∥x∥N2

.

Proof. By Lemma 8, the gradient of the solution has the following form:

∇φ(x) =
ˆ
∇xG(x,y)p(y)dy, ∇xG(x,y) = −

1

SN−1(1)

x− y

||x− y||N
.

Since p(x) has a bounded support, we assume max{∥ x ∥2: p(x) ̸= 0} < B. On the other

hand, we have

lim
∥x∥2→∞

∇xG(x,y) = lim
∥x∥2→∞

− 1

SN−1(1)

x− y

||x− y||N
= lim
∥x∥2→∞

− 1

SN−1(1)

x

||x||N

for ∀y such that ∥ y ∥2< B. Hence,

lim
∥x∥2→∞

∇φ(x) = lim
∥x∥2→∞

ˆ
∇xG(x,y)p(y)dy =

ˆ
lim

∥x∥2→∞
∇xG(x,y)p(y)dy

= − 1

SN−1(1)

x

∥ x ∥N2

219



A.4.4 Extension of Green’s Function in N -dimensional Space

In this section, we show that the function G(x,y) defined in Equation 7.2 is the N -dimensional

extension of the Green’s function, φ(x) =
´
G(x,y)ρ(y)dy solves the Poisson equation

∇2φ(x) = −ρ(x).

Lemma 11. Assume the dimension N ≥ 3, and the source term satisfies ρ ∈ C0(Ω),´
RN ρ

2(x)dx < +∞, lim∥x∥2→∞ ρ(x) = 0. The extension of Green’s function G(x,y) =

1
(N−2)SN−1(1)

1
||x−y||N−2 solves the Poisson equation ∇2

xG(x,y) = −δ(x− y). In addition, with

zero boundary condition at infinity (lim∥x∥2→∞ φ(x) = 0), φ(x) =
´
G(x,y)ρ(y)dy solves the

Poisson equation ∇2φ(x) = −ρ(x).

Proof. It is convenient to denote r = x − y, r = ||r|| and notice ∂r/∂x = r/r. Firstly, we

calculate ∇xG(x,y):

∇xG(x,y) =
1

(N − 2)SN−1(1)
∇x(

1

rN−2
)

=
1

(N − 2)SN−1(1)

∂

∂r
(

1

rN−2
)∇xr

= − 1

SN−1(1)

r

rN

(A.77)

Then we calculate ∇2
xG(x,y):

∇2
xG(x,y) ≡ ∇x · ∇xG(x,y)

= − 1

SN−1(1)
∇x ·

r

rN

= − 1

SN−1(1)
(∇x(

1

rN
) · r+ 1

rN
∇r · r)

= − 1

SN−1(1)
(−N
rN

+
N

rN
)

= − 0

SN−1(1)rN

(A.78)

which is 0 for r > 0, but undermined for r = 0. So we are left with proving

ˆ
Sϵ(y)

∇2
xG(x,y)d

Nx = −1, (A.79)

220



where Sϵ(y) denotes a ball centered at y with a radius ϵ→ 0+. With the divergence theorem,

we have ˆ
Sϵ(y)

∇2
xG(x,y)d

Nx =

‹
∂Sϵ(y)

∇xG(x,y) · dN−1B (A.80)

where the surface integral can be computed

‹
∂Sϵ(y)

∇xG(x,y) · dN−1B =

‹
∂Sϵ(y)

(− 1

SN−1(1)

r

rN
) · dN−1B = − 1

SN−1(1)

SN−1(ϵ)

ϵN−1
= −1

(A.81)

in which we used
‚
∂Sϵ(y)

r · dN−1B = ϵSN−1(ϵ). Together, we conclude that

∇2
xG(x,y) = −δ(x− y) (A.82)

Next we show that φ(x) =
´
G(x,y)ρ(y)dy solves ∇2φ(x) = −ρ(x). Taking the Laplacian

operator of both sides gives:

∇2
xφ(x) = ∇2

x

ˆ
G(x,y)ρ(y)dy

=

ˆ
∇2

xG(x,y)ρ(y)dy

=

ˆ
−δ(x− y)ρ(y)dy (By Equation A.82)

= −ρ(x)

In addition, we show that φ(x) is zero at infinity. Since ρ(x) ∈ C0 and has compact

support, we know that ρ(x) is bounded, and let |ρ(x)| < B.

lim
∥x∥2→∞

φ(x) = lim
∥x∥2→∞

ˆ
G(x,y)ρ(y)dy

≤ B lim
∥x∥2→∞

ˆ
supp(ρ)

1

(N − 2)SN−1(1)

1

||x− y||N−2
dy

= 0

The last equality holds since supp(ρ) is a compact set.

221



A.4.5 Physical Interpretation of the ODEs in PFGM

In Section 7.2, in order to move the particles along the electric lines, we set the time derivative

of x to the Poisson field E(x):

[q = 1, forward ODE]
dx

dt
= E(x), [q = −1, backward ODE]

dx

dt
= −E(x) (A.83)

We give the interpretation of the ODEs from a physical perspective. Newton’s law implies

that the external force is proportional to the acceleration of the particle. In the overdamped

limit, e.g., when the particle is moving in honey, the external force is instead proportional to

the velocity of the particle, making the equation of motion a first-order ODE. Denoting the

viscosity of the fluid as γ, the dynamics of the particle under the influence of the electric

field of the source ρ(x) is

m
d2x

dt2
= −γ dx

dt
+ qE(x),

which has an overdamped limit dx
dt

= qE(x) when we set t→ γt and γ →∞. In this case, a

particle with mass m = 1 and charge q = 1 would follow the electric field with velocity equal

to E, justifying Eq. (A.83).

222



A.5 Chapter 8

A.5.1 Proof for Theorem 7

Theorem 7. Assume the data distribution p ∈ C1 and p has compact support. As rmax→∞,

for D ∈ R+, the ODE dx/dr = E(x̃)x/E(x̃)r defines a bijection between limrmax→∞ prmax(x) ∝

limrmax→∞ r
D
max/(∥x∥22 + r2max)

N+D
2 when r = rmax and the data distribution p when r = 0.

Proof. Let qr(x) = SD−1

SN+D−1

´
rD/∥x̃− ỹ∥N+Dp(y)dy, where Sn is the surface area of the

n-sphere. We will show that qr ∝
´
rD/∥x̃− ỹ∥N+Dp(y)dy is equal to the r-dependent

marginal distribution pr by verifying (1) the starting distribution is correct when r=0; (2)

the continuity equation holds, i.e., ∂rqr +∇ · (qrE(x̃)x/E(x̃)r) = 0. The starting distribution

is limr→0 qr(x) ∝ limr→0

´
rD/∥x̃− ỹ∥N+Dp(y)dy ∝ p(x), which confirms that qr=p. The

223



continuity equation can be expressed as:

∂rqr +∇ · (qrE(x̃)x/E(x̃)r)

= ∂r

(ˆ
rD

∥x̃− ỹ∥N+D
p(y)dy

)
+∇ ·

(ˆ
rD

∥x̃− ỹ∥N+D
p(y)dy

´
x̃−ỹ

∥x̃−ỹ∥N+D p(y)dy´
r

∥x̃−ỹ∥N+D p(y)dy

)

=

ˆ (
DrD−1

∥x̃− ỹ∥N+D
− (N +D)r

∥x̃− ỹ∥N+D−2

)
p(y)dy +∇ ·

(
rD−1

ˆ
x̃− ỹ

∥x̃− ỹ∥N+D
p(y)dy

)
=

ˆ (
DrD−1

∥x̃− ỹ∥N+D
− (N +D)r

∥x̃− ỹ∥N+D−2

)
p(y)dy +∇ ·

(
rD−1

ˆ
x̃− ỹ

∥x̃− ỹ∥N+D
p(y)dy

)
=

ˆ (
DrD−1

∥x̃− ỹ∥N+D
− (N +D)r

∥x̃− ỹ∥N+D−2

)
p(y)dy

+ rD−1
N∑
i=1

ˆ
∥x̃− ỹ∥N+D − ∥x̃− ỹ∥N+D−2(xi − yi)

2(N +D)

∥x̃− ỹ∥2(N+D)
p(y)dy

=

ˆ (
DrD−1

∥x̃− ỹ∥N+D
− (N +D)rD+1

∥x̃− ỹ∥N+D−2

)
p(y)dy

+ rD−1
ˆ
N∥x̃− ỹ∥N+D − ∥x̃− ỹ∥N+D−2∥x− y∥2(N +D)

∥x̃− ỹ∥2(N+D)
p(y)dy

= rD−1
ˆ

(N +D)(∥x̃− ỹ∥N+D − ∥x̃− ỹ∥N+D−2∥x− y∥2)− (N +D)r2∥x̃− ỹ∥N+D−2

∥x̃− ỹ∥2(N+D)

p(y)dy

= rD−1
ˆ

(N +D)r2∥x̃− ỹ∥N+D−2 − (N +D)r2∥x̃− ỹ∥N+D−2

∥x̃− ỹ∥2(N+D)
p(y)dy

= 0

It means that qr satisfies the continuity equation for any r ∈ R≥0. Together, we conclude

224



that qr = pr. Lastly, note that the terminal distribution is

lim
rmax→∞

prmax(x) ∝ lim
rmax→∞

ˆ
rDmax

∥x̃− ỹ∥N+D
p(y)dy

= lim
rmax→∞

ˆ
rDmax

(∥x− y∥2 + r2max)
N+D

2

p(y)dy

= lim
rmax→∞

rDmax

(∥x∥2 + r2max)
N+D

2

+ lim
rmax→∞

ˆ (
rDmax

(∥x− y∥2 + r2max)
N+D

2

− rDmax

(∥x∥2 + r2max)
N+D

2

)
p(y)dy

= lim
rmax→∞

rDmax

(∥x∥2 + r2max)
N+D

2

(p has a compact support)

A.5.2 Proof for Proposition 1

Proposition 1. With perturbation kernel pr(x|y) ∝ 1/(∥x− y∥22 + r2)
N+D

2 , for ∀x ∈ RN , r >

0, the minimizer f ∗θ (x̃) in the PFGM++ objective (Equation 8.3) matches the direction of

electric field E(x̃) in Equation 8.1. Specifically, f ∗θ (x̃) ∝ (SN+D−1(1)/pr(x))E(x̃).

Proof. The minimizer at x̃ in Equation 8.3 is

f ∗θ (x̃) =

ˆ
pr(y|x)(x̃− ỹ)dỹ

=

´
pr(x|y)(x̃− ỹ)p(y)dy

pr(x)
(A.84)

The choice of perturbation kernel is

pr(x|y) ∝
1

∥x̃− ỹ∥N+D
=

1

(∥x− y∥22 + r2)
N+D

2

225



By substituting the perturbation kernel in Equation A.84, we have:

f ∗θ (x̃) ∝

´
x̃−ỹ

(∥x−y∥22+r2)
N+D

2
p(y)dy

pr(x)

=

´
x̃−ỹ

∥x̃−ỹ∥2N+D p(y)dy

pr(x)

= (SN+D−1(1)/pr(x))E(x̃)

A.5.3 Proof for Theorem 8

Theorem 8. Assume the data distribution p ∈ C1. Consider taking the limit D →∞ while

holding σ = r/
√
D fixed. Then, for all x,

lim
D→∞
r=σ
√
D

∥∥∥∥−
√
D

E(x̃)r
E(x̃)x − σ∇x log pσ=r/

√
D(x)

∥∥∥∥
2

= 0

where E(x̃ = (x, r))x is given in Equation 8.1. Further, given the same initial point, the

trajectory of the PFGM++ ODE (dx/dr=E(x̃)x/E(x̃)r) matches the diffusion ODE [27]

(dx/dt=− σ̇(t)σ(t)∇x log pσ(t)(x)) in the same limit.

Proof. The x component in the Poisson field can be re-expressed as

E(x̃)x =
1

SN+D−1(1)

ˆ
x− y

∥x̃− ỹ∥N+D
p(y)dy

∝
ˆ
pr(x|y)(x− y)p(y)dy

where the perturbation kernel pr(x|y) ∝ 1/(∥x− y∥22 + r2)
N+D

2 . The direction of the score

can also be written down in a similar form:

∇x log pσ(x) =

´
pσ(x|y)y−xσ2 p(y)dy

pσ(x)
∝
ˆ
pσ(x|y)(x− y)p(y)dy

where pσ(x|y) ∝ exp−∥x−y∥
2
2

2σ2 . Since p ∈ C1, and obviously pr(x|y) ∈ C1, then

226



limD→∞
´
pr(x|y)(x− y)p(y)dy =

´
limD→∞ pr(x|y)(x− y)p(y)dy. It suffices to prove that

the perturbation kernel pr(x|y) point-wisely converge to the Gaussian kernel pσ(x|y), i.e.,

limD→∞ pr(x|y) = pσ(x|y), to ensure E(x)x ∝ ∇x log pσ(x). Given ∀x,y ∈ RN ,

lim
D→∞

pr(x|y) ∝ lim
D→∞

1

(∥x− y∥22 + r2)
N+D

2

= lim
D→∞

(∥x− y∥22 + r2)−
N+D

2

∝ lim
D→∞

(1 +
∥x− y∥22

r2
)−

N+D
2

= lim
D→∞

(1 +
∥x− y∥22
Dσ2

)−
N+D

2 (r = σ
√
D)

= lim
D→∞

exp

(
−N +D

2
ln(1 +

∥x− y∥22
Dσ2

)

)
= lim

D→∞
exp

(
−N +D

2

∥x− y∥22
Dσ2

)
( limD→∞

∥x−y∥22
Dσ2 = 0)

= exp−∥x− y∥22
2σ2

∝ pσ(x|y)

Hence limD→∞ pr(x|y) = pσ(x|y), and we establish that E(x̃)x ∝ ∇x log pσ(x). We can

rewrite the drift term in the PFGM++ ODE as

lim
D→∞
r=σ
√
D

√
DE(x̃)x/E(x̃)r = lim

D→∞
r=σ
√
D

√
D
´
pr(x|y)(x− y)p(y)dy´
pr(x|y)(−r)p(y)dy

= lim
D→∞
r=σ
√
D

√
D
´
pr(x|y)(y − x)p(y)dy

rpr(x)

= lim
D→∞
r=σ
√
D

√
D
´
pσ(x|y)(y − x)p(y)dy

rpσ(x)

= σ∇x log pσ(x) (∇x log pσ(x) =

´
pσ(x|y)y−xσ2 p(y)dy

pσ(x)
)

(A.85)

which establishes the first part of the theorem. For the second part, by the change-of-variable

227



dσ = dr/
√
D, the PFGM++ ODE is

lim
D→∞
r=σ
√
D

dx

dσ
=

dx

dr
· dr
dσ

= lim
D→∞
r=σ
√
D

E(x̃)x · E(x̃)−1r ·
√
D

= lim
D→∞
r=σ
√
D

σ∇x log pσ(x)√
D

·
√
D (by Equation A.85)

= σ∇x log pσ(x)

which is equivalent to the diffusion ODE.

A.5.4 Proof for Proposition 2

Proposition 2. When r = σ
√
D,D →∞, the minimizer in the PFGM++ objective (Equa-

tion 8.4) is equaivalent to the minimizer in the weighted sum of denoising score matching

objective (Equation 8.6)

Proof. For ∀x ∈ RN , the minimizer in PFGM++ objective (Equation 8.4) at point x̃ = (x, r)

is

f ∗θ,PFGM++(x̃) = lim
D→∞
r=σ
√
D

´
pr(x|y) x−y

r/
√
D
p(y)dy

pr(x)

= lim
D→∞
r=σ
√
D

´
pσ(x|y) x−y

r/
√
D
p(y)dy

pσ(x)

(By Theorem 8, limD→∞ pr(x|y) = pσ(x|y))

=

´
pσ(x|y)x−yσ p(y)dy

pσ(x)
(A.86)

On the other hand, the minimizer in denoising score matching at point x in noise level

σ = r/
√
N +D is

f ∗θ,DSM(x, σ) =

´
pσ(x|y)x−yσ p(y)dy

pσ(x)
(A.87)

228



Combining Equation A.86 and Equation A.87, we have

lim
D→∞
r=σ
√
D

f ∗θ,PFGM++(x, σ
√
N +D) = f ∗θ,DSM(x, σ)

229



A.6 Chapter 9

A.6.1 Green’s Function Review

Math Basics

Fourier transformation The Green’s functions of many PDEs can be found with Fourier

transforms. For a scalar function ϕ(x, t), x ∈ RN , we define the Fourier transformation

ϕ̃(k, t) = F [ϕ] ≡
ˆ
ϕ(x, t)e−ik·xdNx, (A.88)

and the inverse Fourier transformation

ϕ(x, t) = F−1[ϕ̃] ≡ 1

(2π)N

ˆ
ϕ̃(k, t)eik·xdNk. (A.89)

One nice property of Fourier transformation is that derivatives in x space becomes

multiplication in k space, i.e.,

F [∇ϕ] = −ikϕ̃, F [∇2ϕ] = −|k|2ϕ̃ (A.90)

So solving the PDE in the k space can be much simpler than in the x space. That said,

transforming ϕ̃(k, t) back to ϕ(x, t) via inverse Fourier transformation may be hard.

Volume and Surface in high dimensions The n-dimensional unit ball BN = {x :∑N
i=1 x

2
i ≤ 1} has volume VN = π

n
2

Γ(n+1
2

)
and surface area AN−1 = nVn = 2π

n
2

Γ(n
2
)
. The N -

dimensional volume element dNx expressed in spherical coordinates is

dNx = rN−1dr

N−2∏
i=1

[
(sinθi)

N−1−i dθi
]
dφ (A.91)

where r ≡ |x|, θi ∈ [0, π], for i = 1, · · · , N − 2, φ ∈ [0, 2π). Usually one is interested in

calculating the integral
´
f(x)dNx, so if f(x) has axial symmetries except for θ1, i.e., f(x) is

independent of θi(i ≥ 2) and ϕ, the RN space can be sliced into “rings" based on θ1 and r,

230



and the ring at (θ1 → θ1 + dθ1, r → r + dr) has the volume

dNx = 2πAN−2(rsinθ1)
N−2rdθ1dr. (A.92)

Diffusion Equation

The Green’s function G(x, t) of the diffusion equation for (x ∈ RN) satisfies:

Gt −∇2G = δ(x)δ(t), (A.93)

where for simplicity, we have assumed the source point x′ = 0. Using Fourier transformation

Eq. (A.88), the transformed PDE becomes:

G̃t + |k|2G̃ = δ(t), (A.94)

which is equivalent to

G̃t + |k|2G̃ = 0 (t > 0), G̃(k, 0) = 1. (A.95)

This initial value problem has the solution

G̃(k, t) = exp(−|k|2t) (A.96)

which is a Gaussian distribution in k space. Now transforming back to x space:

G(x, t) = F−1[G̃]

=
1

(2π)N

ˆ
k

exp(−|k|2t)exp(ik · x)dNk

=
1

(2π)N

ˆ
k

exp(−k2t)exp(ikxcosθ)AN−2(ksinθ)N−2kdkdθ (k ≡ |k|, x ≡ |x|) (invoke Eq. A.92)

=
AN−2
(2π)N

ˆ ∞
k=0

dkkN−1exp(−k2t)
ˆ π

θ=0

exp(ikxcosθ)(sinθ)N−2dθ,

(A.97)

231



and the integral of θ is:

ˆ π

θ=0

exp(ikxcosθ)(sinθ)N−2dθ =
√
πΓ(

N − 1

2
)0Γ̃1(

N

2
,−(kx)2

4
), (A.98)

where 0Γ̃1(b, z) is a regularized hypergeometric function. So

G(x, t) =
AN−2

√
πΓ(N−1

2
)

(2π)N
(

ˆ ∞
k=0

kN−1exp(−k2t)0Γ̃1(
N

2
,−(kx)2

4
))

=
AN−2

√
πΓ(N−1

2
)

(2π)N
(
1

2
exp(−x

2

4t
)t

N
2 )

=
1

(4πt)
N
2

exp(−r
2

4t
)

=
1

(4πt)
N
2

exp(−|x|
2

4t
)

(A.99)

which is a Gaussian distribution with zero mean and variance 2t. In fact, there is a much

simpler way to compute the inverse Fourier transform, by noticing that the components of k

are separable:

G(x, t) = F−1[G̃]

=
1

(2π)N

ˆ
k

exp(−|k|2t)exp(ik · x)dNk

=
N∏
i=1

(
1

2π

ˆ ∞
−∞

exp(−k2i t)exp(ikixi)dki)

=
N∏
i=1

(
exp(−x2i

4t
)

2π

ˆ ∞
−∞

exp(−t(ki −
ixi
2t

)2)dki)

=
N∏
i=1

(
exp(−x2i

4t
)

2π

√
π

t
)

=
1

(4πt)
N
2

exp(−|x|
2

4t
)

(A.100)

However, the more difficult derivation is more general, and is useful when we attempt to

interpolate between DMs and PFGMs (see Appendix A.6.2). For general x′, we thus have

G(x, t;x′) =
1

(4πt)
N
2

exp(−|x− x′|2

4t
) (A.101)

232



For general data distribution pdata(x), we have ϕ(x, t) =
´
pdata(x

′)G(x, t;x′)dNx′. We

now check the three conditions:

[density flow condition] holds. p(x, t;x′) = ϕ(x, t;x′) ≥ 0.

[smooth condition] holds. We have

F (x′1,x
′
2, T ) ≡

ˆ √
p(x, T ;x′1)

√
p(x, T ;x′2)d

Nx = exp(−|x1 − x2|2

8T
), (A.102)

so lim
T→∞

F (x′1,x
′
2, T )→ 1, implying data-independent priors.

Poisson Equation

The Green’s function ϕ(x) of the Poisson equation for (x ∈ RN) satisfies:

∇2G = δ(x) (A.103)

where for simplicity we have assumed the source point x′ = 0. Note that (so far) G(x)

does not depend on time t, since Poisson equation physically describes steady states (which

are time independent). To bake in the notion of time t, PFGM [50] augments x ∈ R to

be x̃ ≡ (x, t) ∈ RN+1 1, where x is the data point, and t is the augmented dimension. By

splitting x and t explicitly, the Poisson equation becomes:

Gtt +∇2G = 0, G(x, 0) = δ(x). (A.104)

Using Fourier transformation Eq. (A.88) , the transformed PDE becomes:

G̃tt − |k|2G̃ = 0, G̃t(k, 0) = 1, (A.105)

whose general solution is G̃ = 1
|k|(Aexp(−|k|t) +Bexp(|k|t)) with −A+B = 1. Considering

the free boundary condition, i.e., as t → ∞, G̃ → 0, we have A = −1, B = 0. So G̃ =

− 1
|k|exp(−|k|t). Now transforming back to x space:

1The original PFGM [50] uses z instead of t.

233



G(x, t) = F−1[G̃]

=
1

(2π)N

ˆ
k

1

|k|
exp(−|k|t)exp(ik · x)dNk

=
1

(2π)N

ˆ
k

1

k
exp(−kt)exp(ikxcosθ)

AN−2(ksinθ)
N−2kdkdθ (k ≡ |k|, x ≡ |x|) (invoke Eq. A.92)

=
AN−2
(2π)N

ˆ ∞
k=0

dkkN−2exp(−kt)
ˆ π

θ=0

exp(ikxcosθ)(sinθ)N−2dθ,

=
AN−2

√
πΓ(N−1

2
)

(2π)N
(

ˆ ∞
k=0

kN−2exp(−kt)0Γ̃1(
N

2
,−(kx)2

4
))

=
2

(4π)
N
2

(
2N−2Γ(N−1

2
)

√
π

1

(t2 + x2)
N−1

2

)

=
Γ(N−1

2
)

2π
N+1

2

1

(t2 + x2)
N−1

2

=
Γ(N−1

2
)

2π
N+1

2

1

(t2 + |x|2)N−1
2

,

(A.106)

which is the Poisson kernel in PFGM [50]. For general x′, we have

G(x, t;x) =
Γ(N−1

2
)

2π
N+1

2

1

(t2 + |x− x′|2)N−1
2

(A.107)

For general data distribution pdata(x), we have ϕ(x, t) =
´
pdata(x

′)G(x, t;x′)dNx′. We

now check the three conditions:

[density flow condition] holds.

[smooth condition] holds. Although F (x′1,x
′
2, t) may not have a closed form for any

t > 0, we notice that for large T :

p(x, T ;x′) ∼ 1

(1 + |x−x′|2
T 2 )

N+1
2

≈ exp(−(N + 1)|x− x′|2

2T 2
), (A.108)

so we can show lim
T→∞

F (x′1,x
′
2, T ) ≡

´ √
p(x, T ;x′1)

√
p(x, T ;x′2)d

Nx → 1 similar to the

diffusion equation case.

234



Wave Equation

The Green’s function G(x, t) of the wave equation for (x ∈ RN) satisfies:

Gtt −∇2G = δ(x)δ(t), (A.109)

where for simplicity we have assumed the source point x′ = 0. Using Fourier transformation

Eq. (A.88) , the transformed PDE becomes:

G̃tt + |k|2G̃ = 0, G̃t(k, 0) = 1, G̃(k, 0) = 0 (A.110)

whose solution is G̃ = 1
|k|(sin(|k|t). Now transforming back to x space:

G(x, t) = F−1[G̃]

=
1

(2π)N

ˆ
k

1

|k|
sin(|k|t)exp(ik · x)dNk

=
AN−2

√
πΓ(N−1

2
)

(2π)N
(

ˆ ∞
k=0

kN−2sin(kt)0Γ̃1(
N

2
,−(kx)2

4
))

(A.111)

Doing the integration is not easy, but we refer readers to [229] for the ideal wave solutions in

arbitrary N dimensions, and [230] for dissipative waves. Here we summarize the main results

in [229]. We denote the Green’s function in N -dimensions by ϕn, then solutions differing by

2 dimensions are related (r ≡ |x|):

GN+2(r, t) = −
1

2πr

∂GN(r, t)

∂r
(A.112)

235



The solutions for N ≤ 5 are listed (τ ≡ t− r):

G1 =
1

2
Θ(τ)

G2 =
1

2π

Θ(τ)√
t2 − r2

G3 =
1

4π

δ(τ)

r

G4 =
1

4π2
(

δ(τ)

r(t2 − r2) 1
2

− Θ(t− r)
(t2 − r2) 3

2

)

G5 =
1

8π2
(
δ(τ)

r3
+
δ′(τ)

r2
)

(A.113)

One interesting observation is that solutions in even and odd dimension have qualitative

differences. When N = 1, 3, 5, ... is odd, the solution only contains δ(τ) and its derivatives

(the only exception is N = 1), meaning only the wave front t = r is excited, with everywhere

else zero. By contrast, when N = 2, 4, ... is even, the solution contains the step function Θ(τ),

which does not vanish for t > r, is referred to as “wake" [229]. For general data distribution

pdata(x), we have ϕ(x, t) =
´
pdata(x

′)G(x, t;x′)dNx′.

[density flow condition] fails. In Table 9.1, we match p ≡ −ϕt, but is p a valid

probability density distribution? We check the 2D case

p ≡ −ϕt =
1

2π
(
tΘ(t− r)
(t2 − r2) 3

2

− δ(t− r)√
t2 − r2

). (A.114)

The second term is negative. Beyond the wave front r > t, p = 0, so v = ∇ϕ
p

is ill-defined.

[smooth condition] fails. For x′1 ̸= x′2, even the support of p(x, t;x′1) and p(x, t;x′2) do

not match.

Helmholtz Equation

The Helmholtz equation is (∇2 + k20)ϕ = 0. It is easy to see that k0 = 0 recovers the

Poisson equation. From the physics perspective, the Helmholtz equation can be interpreted

as single-frequency wave equation, or single-energy Schrödinger equation.

Relation to wave equation The wave equation is ϕtt−∇2ϕ = 0. It is usually interesting

to study periodic solutions (in time) ϕ(x) = f(x, t)e−ik0t with the angular frequency k0.

236



Inserting the ansatz to the wave equation gives (∇2 + k20)f = 0, which is the Helmholtz

equation.

Relation to Schrödinger equation The Schrödinger equation of a free particle is

iℏ∂ϕ
∂t

= − ℏ2
2m
∇2ϕ where ϕ is the wave function. It is usually interesting to study steady states,

such that ϕ(x, t) = f(x)e−iEt/ℏ. Inserting the steady-state ansatz to the Schrödinger equation

gives (∇2 + 2mE
ℏ2 )f = 0, which is the Helmholtz equation with k0 =

√
2mE
ℏ .

The Green’s function is the solution to (for simplicity, we set x′ = 0):

∇2G(x) + k20G(x) = δ(x) (A.115)

The solution can be found at [249]:

G(x) =
i

4
(
k0
2πr

)
N
2
−1H

(1)
N
2
−1(k0r), r ≡ |x| (A.116)

where H(1) is first kind Hankel function. H
(1)
n ≡ Jn + iYn where Jn and Yn are first-

kind and second-kind Bessel functions, respectively. When k → 0, kr → 0, H(1)
n
2
−1(k0r) ≈

− iΓ(N
2
−1)

π
( 2
k0r

)
N
2
−1, so ϕ(x) ∼ 1

rN−2 , which is the Green’s function of the Poisson equation.

Similar to the Poisson equation, we identify one dimension in x as time t, and we change

N → N + 1, x→ x′ = [x, t]. This means the equation

Gtt +∇2G+ k20G = δ(x− x′), x ∈ RN (A.117)

has the solution

G(x, t;x′) =
i

4
(

k0

2π
√
t2 + r2

)
N−1

2 H
(1)
N−1

2

(k0
√
t2 + r2), r ≡ |x− x′|. (A.118)

For simplicity, we only consider the real part (which is still a solution to the Helmholtz

equation):

G(x, t;x′) = −1

4
(

k0

2π
√
t2 + r2

)
N−1

2 YN−1
2
(k0
√
t2 + r2), r ≡ |x− x′|. (A.119)

For general data distribution pdata(x), we have ϕ(x, t) =
´
pdata(x

′)G(x, t;x′)dNx′.

237



[density flow condition] Conditionally holds. Note G is a decreasing function of t for

small (t, r), because k0
2π
√
t2+r2

decreases with increasing t, −YN−1
2
(k0
√
t2 + r2) is a decreasing

(positive) function of t for some range k0
√
t2 + r2 ≤ rc, where rc is the first zero of YN−1

2
. So

p(x, t,x′) ≡ −ϕt(x, t;x′) ≥ 0 for k0
√
t2 + r2 ≤ rc. When k0

√
t2 + r2 > rc, YN−1

2
(k0
√
t2 + r2)

oscillates and can change sign. For the (t, r) region one is interested in, it suffices to choose

k0 ≤ rc
(
√
t2+r2)max

to make sure that p is a valid density distribution.

[smooth condition] Conditionally holds. As long as k0 is small enough (equivalently,

phase space is properly clipped), p defines a density distribution.

Screened Poisson Equation

The screened Poisson equation is (∇2 −m2)ϕ = 0. The screened Poisson equation is very

similar to the Helmholtz equation, the only difference being the sign within the brackets.

m = 0 recovers the Poisson equation. m can be interpreted as the screening magnitude, as in

Thomas-Fermi screening or Debye screening; or m can be interpreted as the mass of bosons,

as in Yukawa potential.

Relation to Klein-Gordon equation The Klein-Gordon (KG) equation is ϕtt −∇2ϕ+

m2ϕ = 0. Time-independent solutions (hence ϕtt = 0) of KG is the screened Poisson equation.

The Green’s function is the solution to (for simplicity, we have set x′ = 0):

∇2G(x)−m2G(x) = δ(x) (A.120)

The solution can be found at [250]:

G(x) = − 1

(2π)
N
2

(
m

r
)
N
2
−1KN

2
−1(mr), r ≡ |x| (A.121)

where Kn is the second kind modified Bessel functions. When x ≪ 1, Kn(x) ∼ 1
xn

. When

m→ 0, KN
2
−1(mr) ∼ 1

(mr)
N
2 −1

, so G(x) ∼ 1
rN−1 recovers the Poisson kernel.

Similar to the Poisson equation, we identify one dimension in x as time t, and we change

238



N → N + 1, x→ x′ = [x, t]. This means the equation

Gtt +∇2G−m2G = δ(x− x′), x ∈ RN (A.122)

has the solution

G(x, t;x′) =
1

(2π)
N+1

2

(
m√
t2 + r2

)
N−1

2 KN−1
2
(m
√
t2 + r2), r ≡ |x− x′| (A.123)

For general data distribution pdata(x), we have ϕ(x, t) =
´
pdata(x

′)G(x, t;x′)dNx′

[density flow condition] holds. p(x, t;x′) ≡ −ϕt > 0, since both ( m√
t2+r2

)
N+1

2 and

KN−1
2
(m
√
t2 + r2) are positive and decreasing functions of t.

[smooth condition] holds, since the dispersion relation ω(k) = −i
√
m2 + k2 satisfies

the smoothing condition.

Schrödinger Equation

The Schrödinger equation is iϕt = −∇2ϕ+ V (x)ϕ, where ϕ is the (complex) wave function.

It describes the evolution of a quantum particle [232]. For V (x) = 0, the free particle

Schrödinger equation is iϕt = −∇2ϕ. Note that since ϕ is a complex scalar function, it is not

a valid probability distribution. In fact, quantum mechanics interpret |ϕ|2 as the probability

distribution. Now we aim to calcuate ∂|ϕ|2
∂t

from the Schrödinger equation:

iϕt +∇2ϕ = 0 (A.124)

Taking the complex conjugate gives

−iϕ∗t +∇2ϕ∗ = 0 (A.125)

Multiplying ϕ∗ to Eq. (A.124) and multiplying ϕ to Eq. (A.125) and subtracting the two

gives:

i(ϕ∗ϕt + ϕϕ∗t ) + ϕ∗∇2ϕ− ϕ∇2ϕ∗ = 0. (A.126)

239



Note that

ϕ∗ϕt + ϕϕ∗t =
∂|ϕ|2

∂t
, ϕ∗∇2ϕ− ϕ∇2ϕ∗ = ∇ · (ϕ∗∇ϕ− ϕ∇ϕ∗), (A.127)

Eq. (A.126) can simplify to

i
∂|ϕ|2

∂t
+∇ · (ϕ∗∇ϕ− ϕ∇ϕ∗) = i

∂|ϕ|2

∂t
+ i∇ · (|ϕ|2(2Im∇logϕ)) = 0. (A.128)

By comparing to Eq. (9.2), we have p = |ϕ|2, v = 2Im∇logϕ and R = 0. The Green’s function

G(x, t;x′) = 1
(4it)N/2 exp(− |x−x

′|2
4it

), which can be obtained by simply t → it in the diffusion

kernel. For general data distribution pdata(x), we have ϕ(x, t) =
´
pdata(x

′)G(x, t;x′)dNx′.

[density flow condition] fails. p ≡ |ϕ|2 is a probability distribution, but it may have

zeros due to interference, resulting divergence of v.

[smooth condition] fails. p(x, T ) oscillates restlessly even for large T and dependent on

the initial distribution.

A.6.2 Interpolating Between DMs and PFGMs

Let’s study this PDE:

aϕtt − bϕt +∇2ϕ = δ(x)δ(t), (A.129)

where (a, b) = (1, 0) and (a, b) = (0, 1) recovers the Poisson equation and the diffusion

equation, respectively. The Fourier transformation Eq. (A.88) converts the PDE to

aϕ̃tt − bϕ̃t − |k|2ϕ̃ = δ(t), (A.130)

or equivalently,

aG̃tt − bG̃t − |k|2G̃ = 0, (aG̃t − bG̃)(k, 0) = 1. (A.131)

Inserting the trial equation G̃ = Aexp(−ωt) to above gives

aω2 + bω − |k|2 = 0,−ωaA− bA = 1 (A.132)

240



The quadratic equation has the solution ω± = 1
2a
(−b±

√
b2 + 4|k|2) where only w+ is consistent

with the free boundary condition (ϕ̃→ 0, when t→∞). So ω ≡ ω+ = 1
2a
(−b+

√
b2 + 4|k|2),

and A = − 1
ωa+b

= − 2

b+
√
b2+4|k|2

,

G̃(k, t) = − 2

b+
√
b2 + 4|k|2

exp(− 1

2a
(
√
b2 + 4|k|2 − b)t) (A.133)

Now we try to transform back to x space:

G(x, t) = F−1[G̃]

=
1

(2π)N

ˆ
k

− 2

b+
√
b2 + 4|k|2

exp(− 1

2a
(
√
b2 + 4|k|2 − b)t)exp(ik · x)dNk

= −AN−2
(2π)N

ˆ ∞
k=0

dk
kN−1

b+
√
b2 + 4k2

exp(− 1

2a
(
√
b2 + 4k2 − b)t)

ˆ π

θ=0

exp(ikxcosθ)(sinθ)N−2dθ

= −
AN−2

√
πΓ(N−1

2
)

(2π)N
(

ˆ ∞
k=0

kN−1

b+
√
b2 + 4k2

exp(− 1

2a
(
√
b2 + 4k2 − b)t)0Γ̃1(

N

2
,−(kx)2

4
))

(A.134)

To the best of the our knowledge and Wolfram Mathematica’s ability, the integral does not have

a closed from. For general data distribution pdata(x), we have ϕ(x, t) =
´
pdata(x

′)G(x, t;x′)dNx′

[density flow condition] holds.

[smooth condition] holds. The dispersion relation ω = i
2a
(b −

√
b2 + 4ak2) satisfies

Eq. (9.8).

A.6.3 Smooth Condition and Dispersion Relations

Define the overlap between p(x, t;x′i) (i = 1, 2):

F (x′1,x
′
2, t) ≡

´
p(x, t;x′1)p(x, t;x

′
2)d

Nx´
p(x, t;x′1)p(x, t;x

′
1)d

Nx
, (A.135)

241



then the density flow condition requires that lim
t→∞

F (x′1,x
′
2, t)→ 1. We now attempt to rewrite

Eq. (A.135) in terms of Fourier bases, where dispersion relation should emerge. Define

p̃(k, t;x′i) =

ˆ
p(x, t;x′i)exp(−ik · x)dNx, i = 1, 2 (A.136)

Note that p(x, t;x′i) (i = 1, 2) differ only by a translation, so their Fourier function differs

only by a phase

p(k, t;x′2) = p(k, t;x′1)exp(ik · (x′1 − x′2)) (A.137)

Due to the unitarity of Fourier transformation, the integration in x can be converted to

integration in k, so

F (x′1,x
′
2, t) =

´
p∗(k, t;x′1)p(k, t;x

′
2)d

Nk´
p∗(k, t;x′1)p(k, t;x

′
1)d

Nk

=

´
p∗(k, t;x′1)p(k, t;x

′
1)exp(ik · (x′1 − x′2))d

Nk´
p∗(k, t;x′1)p(k, t;x

′
1)d

Nk

=

´
|p(k, t;x′1)|2cos(k · (x′1 − x′2))d

Nk´
|p(k, t;x′1)|2dNk

= ⟨cos(k · (x′1 − x′2))⟩|p(k,t;x′
1)|2

(A.138)

where is the expected value of cos(k · (x′1−x′2)) over (unnormalized) distribution |p(k, t;x′1)|2.

Note that

p(k, t;x′1) = exp(−iω(k)t)p(k, 0;x′1) = exp(−iRe ω(k)t)exp(Im ω(k)t)p(k, t;x′1), (A.139)

we have

|p(k, t;x′1)|2 = exp(2Im ω(k)t) (A.140)

where we used |p(k, 0;x′1)|2 = 1. Define

k∗ ≡ argmax
k

Im ω(k), (A.141)

242



as t increases, |p(k, t;x′1)|2 has increasingly more probability concentrated around k = k∗. As

a result,

lim
t→∞

F (x′1,x
′
2, t) = ⟨cos(k · (x′1 − x′2))⟩|k|=k∗ , (A.142)

where the averaging is over the sphere |k| = k∗. The limit is 1 if and only if k∗ = 0 for

x′1 ̸= x′2. k∗ = 0 is equivalent to

Im ω(k) < Im ω(0), for all k > 0. (A.143)

The physical interpretation is that waves of k > 0 should decay faster than k = 0.

243



244



Appendix B

Additional Details and Results

B.1 Chapter 3

B.1.1 Experimental Details

In this section, we include more details about the training and sampling of score-based models

by the STF and DSM objectives.

Details for the Experiments in Section 3.2

In Section 3.2, we demonstrate the behavior of VDSM(t) in the three phases on Two Gaussians

and a subset of CIFAR-10. Here we provide more details about the two datasets.

The distribution of the two Gaussian is 1
2
N (µ, σ̂2I64×64) +

1
2
N (−µ, σ̂2I64×64), where µ =

0.1 · 1 ∈ R64, and σ̂ = 1e − 4. We estimate all the integrals in Equation 3.3 by sampling

1k points from the corresponding distributions. For the subset of CIFAR-10, we uniformly

sample 4096 images from CIFAR-10 dataset, and assign uniform distribution on the discrete

set. We also approximate VDSM(t) by Monte Carlo estimation and sample 200 perturbations

for each t. We use VE SDE for all simulations, and set σm = 1e− 2, σM = 50.

Interestingly, VDSM(t) is relatively large for the Two Gaussians distribution compared to

CIFAR-10 (see Figure 3.2b) when t → 0. This can be explained by their continuous and

245



discrete natures. For the two Gaussian distribution, we can rewrite VDSM(t) as

VDSM(t) = Ex̃∼pt(x̃)

[
σ̂2

σ2
t (σ

2
t + σ̂2)

+ 4
α(x̃)(1− α(x̃))∥µ∥σ4

t

σ4
t + σ̂2

]

where α(x) = 1

1+exp−4xTµ
can be regarded as the probability that x comes from the Gaussian

component N (µ, σ̂2I64×64). When t → 0, obviously α(x̃)(1 − α(x̃)) → 0, and the term
α(x̃)(1−α(x̃))∥µ∥σ4

t

σ4
t+σ̂

2 vanishes. Hence limt→0 VDSM(t) ≈ limt→0
σ̂2

σ2
t (σ

2
t+σ̂

2)
= σ̂2

σ2
m(σ2

m+σ̂2)
, which can

not be neglected when σm is small. On the other hand, we can effectively view the 4069

discrete samples as a mixture of 4096 0-variance Gaussians, i.e., σ̂ = 0. Thus by similar

reasoning we could see limt→0 VDSM(t) ≈ limt→0
σ̂2

σ2
t (σ

2
t+σ̂

2)
= 0.

Training

We consider the CIFAR-10 and CelebA 642 in image generation tasks. Following [49], we first

center-crop the CelebA images and then resize them to 64× 64. For VE/VP, we use the same

set of hyper-parameters and the NCSN++/DDPM++ backbones and the continuous-time

training objectives for forward SDEs in [35]. For EDM, we adopt the improved hyper-

parameters and architectures for NCSN++ in [27]. We set the reference batch size n to

4096 on CIFAR-10, 1024 on CelebA 642. The training iteration is 1.3M on CIFAR-10 and

1M on CelebA 642 for VE/VP, and 200M images for EDM [27]. The small batch size B in

Algorithm 1 is the same as the batch size in the baseline score-based methods. For model

selection, we pick the checkpoint with the lowest FID per 50k iterations on 10k samples for

computing all the scores, as in [35] for VE/VP, and per 2.5M images on 50k samples as in

[27] for EDM.

To measure the stability of converged VE models, we repeat the experiment 3 times on

CIFAR-10 for DSM and STF objectives, using different random seeds.

We quantitatively study the training overhead of STF. All the numbers are measured on

two NVIDIA A100 GPUs. In Table B.1 and Table B.2, we report the wall-clock training

time (s) per 50 iterations/50k images on VE/EDM. We can see that the STF introduces

additional overhead after incorporating the large reference batch. Since the calculation of

the mini-batch target does not involve neural networks, the STF does not take significantly

246



longer training time. Indeed, in Section 3.5.3 we show that STF achieves comparable or

better performance within a shorter training time.

Table B.1: Wall-clock training time (s) per 50 iterations on VE with NCSN++ [35]

Dataset-Method CIFAR-10-DSM CIFAR-10-STF CelebA-DSM CelebA-STF

Wall-clock time 13 16 24 26

Table B.2: Wall-clock training time (s) per 50k images on EDM with improved NCSN++ [27]

Dataset-Method CIFAR-10 - DSM CIFAR-10 - STF

Wall-clock time 98.5 101.5
Memory per GPU (G) 36.05 40.64

Sampling

We adopt the RK45 method for the backward ODE sampling of VE, and the DDIM sampler [54]

for VP. For RK45 sampler of VE, we use the function implemented in

scipy.integrate.solve_ivp with the tolerances atol=1e− 5/1e− 4, rtol=1e− 5/1e− 4

for CIFAR-10/CelebA 642. As in [35], we set the terminal time to 1e− 5/1e− 3 for VE/VP.

For EDM, we adopt Heun’s 2nd order method and the discretization scheme in [27], with 35

NFE.

We use the predictor-corrector (PC) sampler for reverse-time SDE. We follow [35] to set

the Euler-Maruyama method as the predictor and the Langevin dynamics (MCMC) as the

corrector.

Evaluations

For the evaluation, we compute the Fréchet distance between 50000 samples and the pre-

computed statistics of CIFAR-10. For CelebA 642, we adopt the setting in [49] where the

distance is computed between 10000 samples and the test set.

247



B.1.2 Extra Experiments

Stability of converged models

In Table B.3, we report the sample quality measured by FID/Inception score, and their

standard deviations across random seeds on CIFAR-10. We can see that models trained with

STF objective have lower variations of their final performances, in most cases. In particular,

the standard deviation decreases from 4.41 to 0.06 for RK45 sampler on VE. It suggests that

the STF objective can stabilize the performance of converged models.

Table B.3: CIFAR-10 sample quality (FID, Inception) and number of function evalua-
tion (NFE), with standard deviation.

Methods Inception ↑ FID ↓ NFE ↓

RK45 method (ODE)

VE (DSM) 9.27± 0.12 8.90± 4.41 264± 52
VE (STF) 9.52± 0.06 5.51± 0.06 200± 8

PC sampler (SDE)

VE (DSM) 9.68± 0.12 2.75± 0.13 2000
VE (STF) 9.86± 0.05 2.66± 0.13 2000

Effects of step size

In Figure B.1, we show the FID scores with the number of function evaluations of ODE

samplers on CIFAR-10 and CelebA 642 . To vary the NFE, we adjust the error tolerance

in the RK45 method. The sample quality of the STF objective degrades gracefully when

decreasing the NFE. The STF objective consistently outperforms the DSM one for all NFEs

on CIFAR-10, and largely improves over the baseline when setting the tolerance to 5e− 3 on

CelebA 642 . It suggests that the STF has greater robustness to different step sizes.

B.1.3 Samples

We provide extended samples from score-based models trained by DSM/STF objective on

CIFAR-10 and CelebA 642 by ODE samplers. For systematic comparison, we visualize

248



100 150 200
NFE

10

20

30

40

FI
D

 S
co

re

1e-51e-4

1e-3

1e-51e-4

1e-3

CIFAR-10 (RK45)

vanilla
STF

100 150 200 250
NFE

10

20

30

40

FI
D

 S
co

re

1e-45e-4

1e-3

5e-3

1e-4

5e-3

CelebA 64 × 64 (RK45)

vanilla
STF

Figure B.1: FID versus NFE using ODE samplers on CIFAR-10 (left) and CelebA 64 ×
64 (right)

samples from models trained on different seeds. We also provide samples generated by the

state-of-the-art model — STF with EDM framework.

CIFAR-10

In Figure B.2, we visualize the samples produced by different methods across random seeds for

VE. We use the RK45 sampler for sampling. We observe that the model trained by the DSM

objective can produce noisy images (in red boxes), and the image quality has great variability

across different random seeds. In contrast, models trained by STF objective generate clean

and consistent samples with varying random seeds.

In Figure B.3, we further provide samples from a model trained by STF under the EDM

framework [27]. The model is the current state-of-the-art on the unconditional CIFAR-10

generation task.

CelebA 64 × 64

In Figure B.4, we provide samples from models trained on DSM and STF objectives with

VE.

249



(a) DSM-1 (b) STF-1

(c) DSM-2 (d) STF-2

(e) DSM-3 (f) STF-3

Figure B.2: Samples generated by three different final models of DSM (left column) and STF
(right column) on CIFAR-10. Red boxes indicate noisy images.

250



Figure B.3: CIFAR-10 samples from STF using EDM model. The FID is 1.90 and NFE is 35.

251



(a) DSM

(b) STF

Figure B.4: Samples generated by models trained on DSM (top) and STF (bottom) on
CelebA 642 with VE.

252



B.2 Chapter 4

B.2.1 Algorithm Pseudocode

We provide algorithm pseudocode for the training in the first stage for denoiser and en-

coder (Alg 5) and the second stage for auto-regressive model (Alg 6) for clarity. We also

include the pseudocode for sampling in Alg 7. Note that we generalize the equations in the

main text by considering the conditional generation with condition c.

Algorithm 5 Mini-batch training of denoiser and encoder in DisCo-Diff
1: Input: Denoiser Dθ, encoder Eϕ, training dataset D, batch size B, Gumbel-Softmax

temperature τ , training iteration T
2: for i = 0, . . . , T − 1 do
3: Sample mini-batch data {(yi, ci)}Bi=1 from D
4: Sample time variables {ti}Bi=1 from p(t) and noise vectors {ni ∼ N (0, σ2

i I)}Bi=1

5: Get perturbed data {ŷi = yi + ni}Bi=1

6: Sample the discrete latent from the encoder {zi ∼ Eϕ(yi)}Bi=1 using Gumbel-Softmax
relaxation with temperature τ

7: Calculate loss ℓ(θ, ϕ) =
∑B

i=1 λ(t)∥Dθ(ŷi, ti, zi, ci)− yi∥22
8: Update the network parameter θ and ϕ via Adam optimizer
9: end for

Algorithm 6 Mini-batch training of auto-regressive model in DisCo-Diff
1: Input: Auto-regressive model Aψ, encoder Eϕ, training dataset D, batch size B, Gumbel-

Softmax temperature τ , training iteration T
2: for i = 0, . . . , T − 1 do
3: Sample mini-batch data {(yi, ci)}Bi=1 from D
4: Sample the discrete latent from the encoder {zi ∼ Eϕ(yi)}Bi=1 using Gumbel-Softmax

relaxation with temperature τ
5: Calculate loss ℓ(ψ) =

∑B
i=1

∑m
j log pψ((zi)j|(zi)<j, ci)

6: Update the network parameter ψ via Adam optimizer
7: end for

B.2.2 Experimental Details

ImageNet Experiments

Architecture

253



Algorithm 7 Sampling procedure of DisCo-Diff
1: Input: Auto-regressive model Aψ, denoiser Dϕ, time discretization {ti}ni=0, condition c
2: /* Sample discrete latent from auto-regressive model */
3: for i = 1, . . . ,m do
4: Sample zi ∼ pψ(zi|z<i, c)
5: end for
6: /* Diffusion ODE (Heun’s 2nd order method) */
7: Sample x0 ∼ N (0, t20I)
8: for i = 0, . . . , n− 1 do
9: di = (xi −Dθ(xi, ti, z, c))/ti

10: xi+1 = xi + (ti+1 − ti)di
11: if ti+1 ̸= 0 then
12: d′i = (xi+1 −Dθ(xi+1, ti+1, z, c))/ti+1

13: xi+1 = xi + (ti+1 − ti)(12di +
1
2
d′i)

14: end if
15: end for

Feature maps Attention resolution Encoder patch size

ImageNet-64 1-2-3-4 (×192) (8,16,32) 8× 8

ImageNet-128 1-2-4-16 (×128) (16,32,64) 16× 16

Table B.4: Specific network configurations on ImageNet

254



For all the ImageNet experiments, we fix the latent dimension m = 10 in DisCo-Diff, and

the codebook size for each discrete latent to 1000. Below we provide architecture details

for the denoiser network, encoder, and auto-regressive model. Table B.4 also lists some key

network configurations. Please see the source code in the Supplementary Material for all

low-level details.

Denoiser Neural Network. (1) ImageNet-64: We use the same UNet architecture in

EDM [27] for ImageNet-64, with newly injected cross-attention layers after each self-attention

layers in each residual block. We feed the discrete vector into a six-layer Transformer encoder

(with latent dimension 192) to obtain the corresponding embeddings for discrete variables.

These embeddings are then input into the cross-attention layers. (2) ImageNet-128: We

employ the UViT design in simple diffusion [106] and VDM++ [91]. UViT uses convolutional

layers for down-/up-sampling, and a 36-layer ViT to process the lowest-resolution feature

maps in the bottleneck, to strike a better balance between expressiveness and computation.

Since the authors didn’t release the code and model, we reimplemented the architecture by

ourselves. We empirically observe that the convolutional blocks in EDM work better than the

ones described in the simple diffusion paper, so we combine the up-/down-sampling blocks in

EDM with the 36-layer ViT at the bottleneck layer. We further introduce a cross-attention

layer for discrete latent in each up-/down-sampling block, and every three Transformer blocks

in the ViT (e.g., 12 new cross-attention layers in the ViT) to save computation.

Encoder. We utilize a 12-layer standard ViT [69] as the backbone for encoder. Its latent

dimension is 768 and the number of attention heads is 12. The patch size for ImageNet-64

is 8 × 8 and for ImageNet-128 is 16 × 16. We treat each of the m discrete latents as a

classification token, and concatenate their embeddings with the path embeddings.

Auto-regressive model. We use a standard Transformer decoder [109], with a depth of

12, a number of heads of 8, and a latent dimension of 512. The inference time of the auto-

regressive model is much smaller than the iterative denoising process, given that the discrete

latent only has 10 dimensions. To generate 32 images on ImageNet-128, the auto-regressive

model takes 0.44 seconds, while the diffusion model takes 78 seconds for 114 NFE, with an

255



average of 0.68 s/NFE on a single NVIDIA A100 GPU.

Training and Sampling

We borrow the preconditioning techniques, training noisy schedule, optimizers, exponential

moving average (EMA) schedule, and hyper-parameters from previous state-of-the-art diffusion

model EDM [27] on ImageNet-64. We employ the shifted EDM-monotonic noisy schedule

proposed in VDM++ [91] on ImageNet-128, and keep other training details the same in

ImageNet-64. We use the Gumbel-Softmax [83] as the continuous relaxation for the discrete

latents. The temperature τ in Gumbel-Softmax controls the smoothness of the categorical

distribution. When τ → 0, the expected value of the Gumbel-Softmax is the same as the

one of the underlying predicted distribution. As we increase t, the Gumbel-Softmax would

gradually converge to a uniform distribution. Hence, a relatively large τ effectively provides

regualization effects. During training, we set the τ to a constant 1. However, for the extraction

of latents from training images, which aids in constructing the dataset for the second stage of

the auto-regressive model, we adjust τ to a lower value of 0.01.

We use Heun’s second-order ODE solver as the default ODE sampler, which is proven

effective in previous works [27], [82]. We directly use the hyper-parameters for the 623 NFE

setting in Restart sampler [29] on ImageNet-64, for DisCo-Diff.

Evaluation

For the evaluation, we follow the standard protocol and compute the Fréchet distance

between 50000 generated samples and the training images.

Molecular Docking

In this appendix, we will introduce the task of molecular docking and some of the existing

approaches to tackle it for readers who are not familiar with this field. Experienced readers

may skip to Section B.2.2 where we start describing the details of our docking approach.

Task Overview

Molecular docking consists of finding the 3D structure that a protein (also referred to

as receptor) and a small molecule (or ligand) take when binding. This is an important

task in drug design because most drugs are small molecules that operate by binding to a

specific protein of interest in our body and inhibiting or enhancing its function. The common

256



particular instantiation of the docking problem that we consider is also referred to as rigid

blind docking i.e. where we are given as input the correct protein structure (rigid) but

are not provided any information about where the ligand will bind on the protein nor the

conformations it will take (blind).

Ground truth data for training and testing is obtained through experimental methods,

like X-ray crystallography, that, for each protein-ligand complex, allow to observe a particular

pose that protein and ligand took when binding together inside of the crystal. Although

there may be other poses that this particular protein and ligand may take when binding in a

natural environment, methods are evaluated based on their capacity to retrieve the crystal

pose. This accuracy is typically computed as the percentage of test complexes where the

predicted structure of the ligand (also referred to as ligand pose) is within a root mean square

distance (RMSD) of 2rA from the ground truth when aligning the protein structures.

Related work

Traditional approaches tackled the task via a search-based paradigm where, given a

scoring function, they would search over possible ligand poses with an optimization algorithm

to find a global minimum [121], [251]. Recently, deep learning methods have been trying to

speed up this search process by generating poses directly through a neural network. Initial

approaches [117], [122] used regression-based frameworks to predict the pose, but, although

significantly faster, they did not outperform traditional methods.

[107] argued that the issue with these regression-based approaches is their treatment of

the uncertainty in the multimodal model posterior pose distribution. They also proposed

DiffDock, a diffusion-based generative model to generate docked poses that was able to

outperform previous methods, which we use as a starting point for the integration of our

DisCo-Diff approach to diffusion.

Most deep learning approaches to docking model the data as a geometric graph or point

cloud in 3D. The nodes of this graph are the (heavy) atoms of the ligand and, typically, the

C-alpha carbon atoms of the protein backbone (sometimes full-atom representations are also

used for the protein but these are less common for computational complexity reasons). These

nodes are connected by edges in case of chemical bonds or pairwise distances below a certain

cutoff. Neural architectures learn features over the nodes of this graph through a number of

257



message passing layers, the geometric structure is encoded via invariant (e.g. relying only on

distance embeddings, see [252]) or equivariant operations [108].

Latent variables

We design each latent variable to take values indicating one of the nodes in the protein-

ligand joint graph. Therefore the codebook size for the latent variable of any given protein-

ligand complex is equal to the total number of nodes in the graph i.e. the sum of the

number of atoms in the ligand and the number of residues in the protein. With this choice,

intuitively each latent variable will indicate one particular atom or residue involved in some

key component of the protein-ligand interaction. For example, using two latents the model

can learn to indicate a geometric contact between a pair of nodes in the final representation.

Further note, each "codebook", when considered as a set of one-hot vectors indicating notes,

has a permutation equivariance property with the nodes of the graph (because they are

associated with node properties): if the nodes of the input graph are permuted each latent

variable coming out of the encoder or autoregressive model will also have its codebook

representation permuted.

Architecture details

Denoiser. This design choice for the discrete latents codebooks fits very well with the

preexisting DiffDock’s denoiser architecture composed of equivariant message passing layers

[108]. Each latent variable is encoded in a binary label for each node which is set to zero for

all nodes except the one indicated by the latent. These binary labels are concatenated to

the initial node features while the rest of the denoiser is kept unchanged. With probability

0.1 during training we drop the latents, in this case, the binary labels are set to zero for all

latents, and a learnable null-embedding is fed to all initial node features.

Encoder. The encoder and autoregressive models adopt very similar architectures to

the denoiser with a few key distinctions. The encoder takes as input the ground truth pose

of the ligand, learns features for each node through message passing, and finally m separate

feedforward MLPs (where m is the number of latents) with a one-dimensional output are

applied to each node representation. The concatenated outputs of each of these MLPs form

the logit vectors for each of the latent variables which are passed through the Gumbel-Softmax

discretization step.

258



Autoregressive model. Unlike the image synthesis experiments setting where the

images are often generated with relatively vague conditioning information, for docking, we are

interested in generating ligand poses conditioned on a particular protein (structure) and ligand.

This conditioning information significantly influences the posterior pose distribution and

consequently the learned latent variables. Therefore, we need to condition the autoregressive

model on the protein structure and the ligand. We achieve this, once again, through an

equivariant message passing network, operating on an input composed of the protein structure

and the ligand. The latter is centered at the protein’s center, given an arbitrary conformer

(i.e. molecular conformation) from RDKit [253] and a uniformly random orientation. Like

the denoiser, the autoregressive model takes as input the additional binary node labels for

the existing latents (masked out appropriately during training), and, like the encoder, it uses

its final node embeddings to predict the logits for the next latent variable.

Experimental details

For the docking experiments, we follow the datasets and procedures established by [117]

and [107]. Data for training and evaluation comes from the PDBBind dataset [118] with

time-based splits (complexes before 2019 for training and validation, selected complexes from

2019 for testing).

Denoiser. We use a denoiser architecture analogous to the one proposed by [116], which

is a smaller version of DiffDock’s original architecture where the main changes are: (1) 5

convolutional layers (vs 6 of the original DiffDock’s architecture) (2) node representations

with 24 scalars and pseudoscalars and 6 vectors and pseudovectors (vs respectively 48 and

10) (3) spherical harmonics order limited to 1 (vs 2). These changes, although somewhat

affecting the inference quality, make training and testing of the models significantly more

affordable (from 18 days on 4 GPUs to 9 days on 2 GPUs for training).

We keep the same denoiser architecture for both the baseline without discrete latents

(DiffDock-S) and our model and apply similar hyperparameter searches when applicable to

both models. At inference time, similarly to [107], we take 40 independent samples and use

the original DiffDock’s confidence model1 to select the top one. For DisCo-DiffDock each of
1The confidence model is an additional model, [107] trained to select the most likely correct poses out of

the diffusion models samples. The reader can think of this as trying to select the maximum likelihood pose.

259



the samples is taken by independently sampling from the autoregressive model and then the

(conditioned) denoiser.

Encoder. For the encoder, we use a similar but slightly smaller architecture with 3

convolutional layers, 24 scalars, and 4 vectors. We set the number of discrete latent variables

(each taking values over the whole set of possible nodes in the joint graph) to two, as we found

this to equilibrate the complexity of the generative task between the score and autoregressive

models.

Autoregressive model. One challenge with the autoregressive model in this domain is

its tendency to overfit the latent variables in the training set given the limited training data,

the complexity of the conditioning information, and the low training signal that discrete

labels provide. Therefore we found it beneficial to design the autoregressive model to use the

pretrained layers of the denoiser itself. In particular, we simply add independent MLPs for

each latent variable that are applied to the final scalar representations of the nodes. During

the autoregressive training, for the first five epochs, the weights of the convolutional layers

are frozen.

Inference hyperparameters. For inference, we maintain the number of inference steps

from DiffDock (20) and, for both DisCo-DiffDock and the baseline, we tune on the validation

set the sampling temperature for the different components of the diffusion similarly to how

it was done by [254]. For DisCo-DiffDock we also tune the temperature used to sample the

autoregressive model. We find, with 40 samples, to be beneficial to set this temperature > 1

while the diffusion sampling temperature < 1, this corresponds to encouraging exploration of

different binding modes while trying to obtain the maximum likelihood pose for each mode.

This further highlights the advantage provided by enabling the decomposition of different

degrees of uncertainty. Please see the source code in the Supplementary Material for all

low-level details and hyperparameters used.

260



Gaussian Mixture Experiments

Data generation For the toy example in section 4.2, we set the true data distribution to a

mixture of eight Gaussian components:

pdata(x) =
1

8

8∑
i=1

N (x;µi, σiI2×2)

where ∀i, σi = 0.2, and

µ1 =

3

0

 , µ2 =

−3
0

 , µ3 =

0

3

 , µ4 =

 0

−3

 ,

µ5 =

 3√
2

3√
2

 , µ6 =

 3√
2

−3√
2

 , µ7 =

 3√
2

−3√
2

 , µ8 =

−3√2
−3√
2

 .

To construct the toy dataset, we randomly sampled 1000 data points from each component,

totaling 8000 data points. We visualize the KDE plot of the generated data in Fig. 4.3(a).

Training and Sampling

We employ a four-layer MLP as the diffusion decoder (Denoiser Neural Network) G, for

both Disco-Diff and diffusion models. We use a three-layer MLP as the encoder E in Disco-Diff.

We set the latent dimension of discrete latent to 1 and the vocabulary size to 8. Ideally,

each discrete latent should correspond to a Gaussian component, and the time-dependent

scores for a single Gaussian component have a simple analytical expression. We leverage this

simplicity and reparameterize the output of diffusion decoder as G(x, t, z) = F(z)−x
t2+σ2

1
+H(x, t),

where F is the embedding for each discrete latent z and H is a four-layer MLP. The model

optimization uses the Adam optimizer with a learning rate of 1e-3.

For sampling, we use the Heun’s second-order sampler. We followed the time discretization

scheme in EDM [27] with 50 sampling steps.

Metric

We detail the metrics used in Fig. 4.4. The curvature for points x(t) on ODE trajectory

dx/dt = G(x, t, z) (z is null in diffusion models) is defined as κ(x(t)) = ||∂tT (x(t),t)||
||x′(t)|| where

T (x, t) = G(x(t),t,z)
||G(x(t),t,z)|| is the unit tangent vector. We can approximate the curvature by finite

261



difference: κ(x(t)) = ||∂tT (t)||
||x′(t)|| ≈

||T (t)−T (t−∆t)||
||x(t)−x(t−∆t)|| . We approximate x(t−∆t) by a single Euler

step, i.e., x(t−∆t) = x(t)− G(x, t, z)∆t. In Fig. 4.4(a), we report the expected curvature

given the backward time when simulating the ODE, i.e., Ex(t)

[
||T (t)−T (t−∆t)||
||x(t)−x(t−∆t)||

]
. We set the

time elapsed to ∆t = 0.001.

In Fig. 4.4(b), we measure the complexity of the trained neural networks using the

expected squared Frobenius norm of the network’s Jacobians, i.e., Ex(t) [||∇xG(x, t, z)||2F ].

Additionally, to quantitatively evaluate the generation quality, we report the Wasserstein-

2 (W-2) distance between the generated distribution and the ground truth distribution. In

the DisCo-Diff model, the W-2 distance is at 0.118, compared to 0.27 in the standard diffusion

model. It suggests that DisCo-Diff better captures the multimodal distribution, even in 2-dim

space.

B.2.3 Extra Experiments

Loss Analysis

In Fig. B.5, we provide the loss versus time curve on both ImageNet-64 and ImageNet-128

datasets. We have also included a log-scale version of the x-axis in the inset plot.

0 10 20 30 40 50
t

0.2

0.4

0.6

0.8

1.0

lo
ss

(t
)

Diffusion Model
DisCo-Diff

0.01 1.0

0.5

1.0

(a) ImageNet-64

0 20 40 60 80 100
t

0.2

0.4

0.6

0.8

lo
ss

(t
)

Diffusion Model
DisCo-Diff

1.0 100.0

0.25

0.50

0.75

(b) ImageNet-128

Figure B.5: Averaged training loss versus noise level t.

262



B.2.4 Samples

Class-conditoned ImageNet-64

We provide extended samples generated by DisCo-Diff in Fig. B.6.

Class-conditoned ImageNet-128

We provide extended samples generated by DisCo-Diff in Fig. B.7. We also visualize samples

with shared discrete latent in Fig. B.8.

Group Hierarchical DisCo-Diff

We further provide extended samples from the Group hierarchical DisCo-Diff. Fig. B.9

showcases the generated images when composing two discrete latents together, i.e., (z0:20,

ẑ20:30). We can see that the generated images from composed latent generally inherit the

shape from images generated by z, and the color from images generated by ẑ.

Fig. B.10 further shows the effect when progressively fixing more coordinates of the

discrete latent, and sampling the remaining coordinates by the auto-regressive model. The

images first converge in shape/layout, and subsequently converge in color/texture.

263



Figure B.6: Generated samples by DisCo-Diff on class-conditioned ImageNet-64, with ODE
sampler (FID=1.65, NFE=78).

264



Figure B.7: Generated samples by DisCo-Diff on class-conditioned ImageNet-128, with ODE
sampler (FID=2.08, NFE=114).

265



Figure B.8: Generated samples by DisCo-Diff on class-conditioned ImageNet-128, with ODE
sampler. Samples in each grid share the same latent, and grids in each row share the same
class labels. We can see that generally, images sharing the same discrete latents demonstrate
similar global characteristics, such as shape, layout, and color, despite being under the same
class. It suggests that discrete latents provide complementary information to the class labels.

266



Figure B.9: Generated images with a shared latent, using group hierarchical DisCo-Diff
trained on ImageNet-64. Left: Shared latent z. Middle: Shared latent ẑ. Right: Shared
latent (z0:20, ẑ20:30), where the first 20 coordinates are from z and the last 10 coordinates are
from ẑ. We can see that the generated images from composed latents generally inherit the
shape from images generated by z, and the color from images generated by ẑ.

267



Figure B.10: Progressively fixing more subcoordinates of the discrete latents, using our
group hierarchical DisCo-Diff on ImageNet-64. Left: Randomly sampled z. Middle: Fixing
the first 20 coordinates z:20 as the one derived from the red-boxed image, sampling the
rest. Right: Fixing the whole 30-dim. z as the one derived from the red-boxed image. The
figure shows the effect when progressively fixing more coordinates of the discrete latent, and
sampling the remaining coordinates by the auto-regressive model. The images first converge
in shape/layout, and subsequently converge in color/texture.

268



B.3 Chapter 5

B.3.1 Algorithm Pseudocode

EDM Discretization Scheme

[27] proposes a discretization scheme for ODE given the starting tmax and end time tmin.

Denote the number of steps as N , then the EDM discretization scheme is:

ti<N =

(
t
1
ρ
max +

i

N − 1
(t

1
ρ

min − t
1
ρ
max)

)ρ
with t0 = tmax and tN−1 = tmin. ρ is a hyperparameter that determines the extent to which

steps near tmin are shortened. We adopt the value ρ = 7 suggested by [27] in all of our

experiments. We apply the EDM scheme to creates a time discretization in each Restart

interval [tmax, tmin] in the Restart backward process, as well as the main backward process

between [0, T ] (by additionally setting tmin = 0.002 and tN = 0 as in [27]). It is important to

note that tmin should be included within the list of time steps in the main backward process

to seamlessly incorporate the Restart interval into the main backward process. We summarize

the scheme as a function in Algorithm 8.

Algorithm 8 EDM_Scheme(tmin, tmax, N, ρ = 7)

1: return
{
(t

1
ρ
max + i

N−1(t
1
ρ

min − t
1
ρ
max))ρ

}N−1
i=0

Restart Algorithm

We present the pseudocode for the Restart algorithm in Algorithm 9. In this pseudocode, we

describe a more general case that applies l-level Restarting strategy. For each Restart segment,

the include the number of steps in the Restart backward process NRestart, the Restart interval

[tmin, tmax] and the number of Restart iteration K. We further denote the number of steps in

the main backward process as Nmain. We use the EDM discretization scheme (Algorithm 8)

to construct time steps for the main backward process (t0 = T, tNmain = 0) as well as the

269



Restart backward process, when given the starting/end time and the number of steps.

Although Heun’s 2nd order method [154] (Algorithm 10) is the default ODE solver in the

pseudocode, it can be substituted with other ODE solvers, such as Euler’s method or the

DPM solver [26].

The provided pseudocode in Algorithm 9 is tailored specifically for diffusion models [27].

To adapt Restart for other generative models like PFGM++ [31], we only need to modify

the Gaussian perturbation kernel in the Restart forward process (line 10 in Algorithm 9) to

the one used in PFGM++.

Algorithm 9 Restart sampling
1: Input: Score network sθ, time steps in main backward process ti∈{0,Nmain}, Restart

parameters {(NRestart,j, Kj, tmin,j, tmax,j)}lj=1

2: Round tmin,j∈{1,l} to its nearest neighbor in ti∈{0,Nmain}
3: Sample x0 ∼ N (0, T 2I)
4: for i = 0 . . . Nmain − 1 do
5: xti+1

= OneStep_Heun(sθ, ti, ti+1)
6: if ∃j ∈ {1, . . . , l}, ti+1 = tmin,j then
7: tmin = tmin,j, tmax = tmax,j, K = Kj, NRestart = NRestart,j

8: x0tmin
= xti+1

9: for k = 0 . . . K − 1 do
10: εtmin→tmax ∼ N (0, (t2max − t2min)I)
11: xk+1

tmax = xktmin
+ εtmin→tmax

12: {t̄m}NRestart−1
m=0 = EDM_Scheme(tmin, tmax, NRestart)

13: for m = 0 . . . NRestart − 1 do
14: xk+1

t̄m+1
= OneStep_Heun(sθ, t̄m, t̄m+1)

15: end for
16: end for
17: end if
18: end for
19: return xtNmain

Algorithm 10 OneStep_Heun(sθ, xti , ti, ti+1)
1: di = tisθ(xti , ti)
2: xti+1

= xti − (ti+1 − ti)di
3: if ti+1 ̸= 0 then
4: d′i = ti+1sθ(xti+1

, ti+1)
5: xti+1

= xti − (ti+1 − ti)(12di +
1
2
d′i)

6: end if
7: return xti+1

270



B.3.2 Experimental Details

In this section, we discuss the configurations for different samplers in details. All the

experiments are conducted on eight NVIDIA A100 GPUs.

Configurations for Baselines

We select Vanilla SDE [37], Improved SDE [27], Gonna Go Fast [28] as SDE baselines

and the Heun’s 2nd order method [154] (Alg 10) as ODE baseline on standard benchmarks

CIFAR-10 and ImageNet 64× 64. We choose DDIM [25], Heun’s 2nd order method, and

DDPM [167] for comparison on Stable Diffusion model.

Vanilla SDE denotes the reverse-time SDE sampler in [37]. For Improved SDE, we use

the recommended dataset-specific hyperparameters (e.g.Smax, Smin, Schurn) in Table 5 of the

EDM paper [27]. They obtained these hyperparameters by grid search. Gonna Go Fast [28]

applied an adaptive step size technique based on Vanilla SDE and we directly report the FID

scores listed in [28] for Gonna Go Fast on CIFAR-10 (VP). For fair comparison, we use the

EDM discretization scheme [27] for Vanilla SDE, Improved SDE, Heun as well as Restart.

We borrow the hyperparameters such as discretization scheme or initial noise scale on

Stable Diffusion models in the diffuser 2 code repository. We directly use the DDIM and

DDPM samplers implemented in the repo. We apply the same set of hyperparameters to

Heun and Restart.

Configurations for Restart

We report the configurations for Restart for different models and NFE on standard benchmarks

CIFAR-10 and ImageNet 64× 64. The hyperparameters of Restart include the number of

steps in the main backward process Nmain, the number of steps in the Restart backward

process NRestart, the Restart interval [tmin, tmax] and the number of Restart iteration K.

In Table B.6 (CIFAR-10, VP) we provide the quintuplet (Nmain, NRestart, tmin, tmax, K) for

each experiment. Since we apply the multi-level Restart strategy for ImageNet 64 × 64,

we provide Nmain as well as a list of quadruple {(NRestart,i, Ki, tmin,i, tmax,i)}li=1 (l is the
2https://github.com/huggingface/diffusers

271

https://github.com/huggingface/diffusers


number of Restart interval depending on experiments) in Table B.8. In order to integrate

the Restart time interval to the main backward process, we round tmin,i to its nearest

neighbor in the time steps of main backward process, as shown in line 2 of Algorithm 9.

We apply Heun method for both main/backward process. The formula for NFE calculation

is NFE = 2 ·Nmain − 1︸ ︷︷ ︸
main backward process

+
∑l

i=1 Ki︸︷︷︸
number of repetitions

· (2 · (NRestart,i − 1))︸ ︷︷ ︸
per iteration in ith Restart interval

in this case.

Inspired by [27], we inflate the additive noise in the Restart forward process by multiplying

Snoise = 1.003 on ImageNet 64 × 64, to counteract the over-denoising tendency of neural

networks. We also observe that setting γ = 0.05 in Algorithm 2 of EDM [27] would sligtly

boost the Restart performance on ImageNet 64× 64 when t ∈ [0.01, 1].

We further include the configurations for Restart on Stable Diffusion models in Table B.13,

with a varying guidance weight w. Similar to ImageNet 64× 64, we use multi-level Restart

with a fixed number of steps Nmain = 30 in the main backward process. We utilize the Euler

method for the main backward process and the Heun method for the Restart backward

process, as our empirical observations indicate that the Heun method doesn’t yield significant

improvements over the Euler method, yet necessitates double the steps. The number of steps

equals to Nmain +
∑l

i=1Ki · (2 · (NRestart,i − 1)) in this case. We set the total number of steps

to 66, including main backward process and Restart backward process.

Given the prohibitively large search space for each Restart quadruple, a comprehensive

enumeration of all possibilities is impractical due to computational limitations. Instead, we

adjust the configuration manually, guided by the heuristic that weaker/smaller models or

more challenging tasks necessitate a stronger Restart strength (e.g., larger K, wider Restart

interval, etc). On average, we select the best configuration from 5 sets for each experiment;

these few trials have empirically outperformed previous SDE/ODE samplers. We believe

that developing a systematic approach for determining Restart configurations could be of

significant value in the future.

272



Pre-trained Models

For CIFAR-10 dataset, we use the pre-trained VP and EDM models from the EDM repository 3,

and PFGM++ (D = 2048) model from the PFGM++ repository 4. For ImageNet 64× 64,

we borrow the pre-trained EDM model from EDM repository as well.

Classifier-free Guidance

We follow the convention in [160], where each step in classifier-free guidance is as follows:

s̃θ(x, c, t) = wsθ(x, c, t) + (1− w)sθ(x, t)

where c is the conditions, and sθ(x, c, t)/sθ(x, t) is the conditional/unconditional models,

sharing parameters. Increasing w would strength the effect of guidance, usually leading to a

better text-image alignment [160].

More on the Synthetic Experiment

Discrete Dataset

We generate the underlying discrete dataset S with |S| = 2000 as follows. Firstly, we

sample 2000 points, denoted as S1, from a mixture of two Gaussians in R4. Next, we

project these points onto R20. To ensure a variance of 1 on each dimension, we scale the

coordinates accordingly. This setup aims to simulate data points that primarily reside on a

lower-dimensional manifold with multiple modes.

The specific details are as follows: S1 ∼ 0.3N(a, s2I)+0.7(−a, s2I), where a = (3, 3, 3, 3) ⊂

R4 and s = 1. Then, we randomly select a projection matrix P ∈ R20×4, where each entry is

drawn from N(0, 1), and compute S2 = PS1. Finally, we scale each coordinate by a constant

factor to ensure a variance of 1.
3https://github.com/NVlabs/edm
4https://github.com/Newbeeer/pfgmpp

273

https://github.com/NVlabs/edm
https://github.com/Newbeeer/pfgmpp


0.65 0.70 0.75 0.80 0.85 0.90
Additional Sampling error

0.65

0.70

0.75

0.80

0.85

0.90
Co

nt
ra

ct
ed

 e
rro

r
ODE
Vanilla SDE
Improved SDE
Restart

(a)

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Additional Sampling error

0.70

0.75

0.80

0.85

0.90

0.95

1.00

To
ta

l E
rro

r

ODE
Improved SDE
Vanilla SDE
Restart

(b)

20 40 80 160 320
NFE

0.750

0.775

0.800

0.825

0.850

0.875

To
ta

l E
rro

r ODE
Vanilla SDE
Improved SDE
Restart

(c)

Figure B.11: Comparison of additional sampling error versus (a) contracted error (plotting
the Pareto frontier) and (b) total error (using a scatter plot). (c) Pareto frontier of NFE
versus total error.

Model Architecture

We employ a common MLP architecture with a latent size of 64 to learn the score function.

The training method is adapted from [27], which includes the preconditioning technique and

denoising score-matching objective [38].

Varying Hyperparameters

To achieve the best trade-off between contracted error and additional sampling error, and

optimize the NFE versus FID (Fréchet Inception Distance) performance, we explore various

hyperparameters. [27] shows that the Vanilla SDE can be endowed with additional flexibility

by varying the coefficient β(t) (Eq.(6) in [27]). Hence, regarding SDE, we consider NFE

values from {20, 40, 80, 160, 320}, and multiply the original β(t) = σ̇(t)/σ(t) [27] with values

from {0, 0.25, 0.5, 1, 1.5, 2, 4, 8}. It is important to note that larger NFE values do not lead to

further performance improvements. For restarts, we tried the following two settings: first we

set the number of steps in Restart backward process to 40 and vary the number of Restart

iterations K in the range {0, 5, 10, 15, 20, 25, 30, 35}. We also conduct a grid search with the

number of Restart iterations K ranging from 5 to 25 and the number of steps in Restart

backward process varying from 2 to 7. For ODE, we experiment with the number of steps set

to {20, 40, 80, 160, 320, 640}.

Additionally, we conduct an experiment for Improved SDE in EDM. We try different values

of Schurn in the range of {0, 1, 2, 4, 8, 16, 32, 48, 64}. We also perform a grid search where the

number of steps ranged from 20 to 320 and Schurn takes values of [0.2×steps, 0.5×steps, 20, 60].

274



The plot combines the results from SDE and is displayed in Figure B.11.

To mitigate the impact of randomness, we collect the data by averaging the results from

five runs with the same hyperparameters. To compute the Wasserstein distance between two

discrete distributions, we use minimum weight matching.

Plotting the Pareto frontier

We generate the Pareto frontier plots as follows. For the additional sampling error versus

contracted error plot, we first sort all the data points based on their additional sampling

error and then connect the data points that represent prefix minimums of the contracted

error. Similarly, for the NFE versus FID plot, we sort the data points based on their NFE

values and connect the points where the FID is a prefix minimum.

B.3.3 Extra Experiments

Numerical Results

In this section, we provide the corresponding numerical results of Figure 5.3a and Figure 5.3b,

in Table B.5, B.6 (CIFAR-10 VP, EDM, PFGM++) and Table B.7, B.8 (ImageNet 64× 64

EDM), respectively. We also include the performance of Vanilla SDE in those tables. For

the evaluation, we compute the Fréchet distance between 50000 generated samples and the

pre-computed statistics of CIFAR-10 and ImageNet 64×64. We follow the evaluation protocol

in EDM [27] that calculates each FID scores three times with different seeds and reports the

minimum.

We also provide the numerical results on the Stable Diffusion model [153], with a classifier

guidance weight w = 2, 3, 5, 8 in Table B.9, B.10, B.11, B.12. As in [166], we report the

zero-shot FID score on 5K random prompts sampled from the COCO validation set. We

evaluate CLIP score [163] with the open-sourced ViT-g/14 [164], Aesthetic score by the more

recent LAION-Aesthetics Predictor V2 5. We average the CLIP and Aesthetic scores over 5K

generated samples. The number of function evaluations is two times the sampling steps in the

Stable Diffusion model, since each sampling step involves the evaluation of the conditional
5https://github.com/christophschuhmann/improved-aesthetic-predictor

275



and unconditional model.

Table B.5: CIFAR-10 sample quality (FID score) and number of function evaluations (NFE)
on VP [37] for baselines

NFE FID

ODE (Heun) [27] 1023 2.90
511 2.90
255 2.90
127 2.90
63 2.89
35 2.97

Vanilla SDE [37] 1024 2.79
512 4.01
256 4.79
128 12.57

Gonna Go Fast [28] 1000 2.55
329 2.70
274 2.74
179 2.59
147 2.95
49 72.29

Improved SDE [27] 1023 2.35
511 2.37
255 2.40
127 2.58
63 2.88
35 3.45

276



Table B.6: CIFAR-10 sample quality (FID score), number of function evaluations (NFE) and
Restart configurations on VP [37], VP with DPM-Solver-3 [26], EDM [27] and PFGM++ [31]

Method NFE FID Configuration
(Nmain, NRestart,i, Ki, tmin,i, tmax,i)

VP

519 2.11 (20, 9, 30, 0.06, 0.20)
115 2.21 (18, 3, 20, 0.06, 0.30)
75 2.27 (18, 3, 10, 0.06, 0.30)
55 2.45 (18, 3, 5, 0.06, 0.30)
43 2.70 (18, 3, 2, 0.06, 0.30)

VP w/ DPM-Solver-3

27 2.11 (8, 3, 1, 0.06, 0.3)
24 2.15 (7, 3, 1, 0.06, 1)
21 2.28 (6, 3, 1, 0.06, 1)
18 2.40 (5, 3, 1, 0.06, 1)

EDM

43 1.90 (18, 3, 2, 0.14, 0.30)

PFGM++

43 1.88 (18, 3, 2, 0.14, 0.30)

0.285 0.290 0.295 0.300 0.305 0.310 0.315 0.320
CLIP score (ViT-g/14)

14

16

18

20

22

FI
D

 s
co

re
 (5

K
)

Restart (Steps=66)
DDIM (Steps=50)
DDIM (Steps=100)
Heun (Steps=51)
Heun (Steps=101)
DDPM (Steps=100)
DDPM (Steps=200)

(a) FID versus CLIP score

5.15 5.20 5.25 5.30 5.35 5.40
Aesthetic score

14

16

18

20

22

FI
D

 s
co

re
 (5

K
)

Restart (Steps=66)
DDIM (Steps=50)
DDIM (Steps=100)
Heun (Steps=51)
Heun (Steps=101)
DDPM (Steps=100)
DDPM (Steps=200)

(b) FID versus Aesthetic score

Figure B.12: FID score versus (a) CLIP ViT-g/14 score and (b) Aesthetic score for text-to-
image generation at 512×512 resolution, using Stable Diffusion v1.5 with varying classifier-free
guidance weight w = 2, 3, 5, 8.

277



Table B.7: ImageNet 64 × 64 sample quality (FID score) and number of function evalua-
tions (NFE) on EDM [27] for baselines

NFE FID (50k)

ODE (Heun) [27] 1023 2.24
511 2.24
255 2.24
127 2.25
63 2.30
35 2.46

Vanilla SDE [37] 1024 1.89
512 3.38
256 11.91
128 59.71

Improved SDE [27] 1023 1.40
511 1.45
255 1.50
127 1.75
63 2.24
35 2.97

4 2 0 2
log(tmin)

2.0

2.2

2.4

2.6

2.8

3.0

3.2

FI
D

 s
co

re
 (5

0K
)

EDM (Restart)
EDM (ODE)
VP (Restart)
VP (ODE)

(a) (b)

Figure B.13: (a): Adjusting tmin in Restart on VP/EDM; (b): Adjusting the Restart interval
length when tmin = 0.06.

278



Table B.8: ImageNet 64×64 sample quality (FID score), number of function evaluations (NFE)
and Restart configurations on EDM [27]

NFE FID (50k) Configuration
Nmain, {(NRestart,i, Ki, tmin,i, tmax,i)}li=1

623 1.36
36, {(10, 3, 19.35, 40.79),(10, 3, 1.09, 1.92),

(7, 6, 0.59, 1.09), (7, 6, 0.30, 0.59),
(7, 25, 0.06, 0.30)}

535 1.39
36, {(6, 1, 19.35, 40.79),(6, 1, 1.09, 1.92),

(7, 6, 0.59, 1.09), (7, 6, 0.30, 0.59),
(7, 25, 0.06, 0.30)}

385 1.41
36, {(3, 1, 19.35, 40.79),(6, 1, 1.09, 1.92),

(6, 5, 0.59, 1.09), (6, 5, 0.30, 0.59),
(6, 20, 0.06, 0.30)}

203 1.46
36, {(4, 1, 19.35, 40.79),(4, 1, 1.09, 1.92),

(4, 5, 0.59, 1.09), (4, 5, 0.30, 0.59),
(6, 6, 0.06, 0.30)}

165 1.51
18, {(3, 1, 19.35, 40.79),(4, 1, 1.09, 1.92),

(4, 5, 0.59, 1.09), (4, 5, 0.30, 0.59),
(4, 10, 0.06, 0.30)}

99 1.71
18, {(3, 1, 19.35, 40.79),(4, 1, 1.09, 1.92),

(4, 4, 0.59, 1.09), (4, 1, 0.30, 0.59),
(4, 4, 0.06, 0.30)}

67 1.95 18, {(5, 1, 19.35, 40.79),(5, 1, 1.09, 1.92),
(5, 1, 0.59, 1.09), (5, 1, 0.06, 0.30)}

39 2.38 14, {(3, 1, 19.35, 40.79),
(3, 1, 1.09, 1.92), (3, 1, 0.06, 0.30)}

Table B.9: Numerical results on Stable Diffusion v1.5 with a classifier-free guidance weight
w = 2

Steps FID (5k) ↓ CLIP score ↑ Aesthetic score ↑

DDIM [25] 50 16.08 0.2905 5.13
100 15.35 0.2920 5.15

Heun 51 18.80 0.2865 5.14
101 18.21 0.2871 5.15

DDPM [167] 100 13.53 0.3012 5.20
200 13.22 0.2999 5.19

Restart 66 13.16 0.2987 5.19

279



Table B.10: Numerical results on Stable Diffusion v1.5 with a classifier-free guidance weight
w = 3

Steps FID (5k) ↓ CLIP score ↑ Aesthetic score ↑

DDIM [25] 50 14.28 0.3056 5.22
100 14.30 0.3056 5.22

Heun 51 15.63 0.3022 5.20
101 15.40 0.3026 5.21

DDPM [167] 100 15.72 0.3129 5.28
200 15.13 0.3131 5.28

Restart 66 14.48 0.3079 5.25

Table B.11: Numerical results on Stable Diffusion v1.5 with a classifier-free guidance weight
w = 5

Steps FID (5k) ↓ CLIP score ↑ Aesthetic score ↑

DDIM [25] 50 16.60 0.3154 5.31
100 16.80 0.3157 5.31

Heun 51 16.26 0.3135 5.28
101 16.38 0.3136 5.29

DDPM [167] 100 19.62 0.3197 5.36
200 18.88 0.3200 5.35

Restart 66 16.21 0.3179 5.33

Table B.12: Numerical results on Stable Diffusion v1.5 with a classifier-free guidance weight
w = 8

Steps FID (5k) ↓ CLIP score ↑ Aesthetic score ↑

DDIM [25] 50 19.83 0.3206 5.37
100 19.82 0.3200 5.37

Heun 51 18.44 0.3186 5.35
101 18.72 0.3185 5.36

DDPM [167] 100 22.58 0.3223 5.39
200 21.67 0.3212 5.38

Restart 47 18.40 0.3228 5.41

280



Table B.13: Restart (Steps=66) configurations on Stable Diffusion v1.5

w
Configuration

Nmain, {(NRestart,i, Ki, tmin,i, tmax,i)}li=1

2 30, {(5, 2, 1, 9), (5, 2, 5, 10)}
3 30, {(10, 2, 0.1, 3)}
5 30, {(10, 2 0.1, 2)}
8 30, {(10, 2, 0.1, 2)}

Sensitivity Analysis of Hyper-parameters

We also investigate the impact of varying tmin when tmax = tmin + 0.3, and the length the

restart interval when tmin = 0.06. Figure B.13a reveals that FID scores achieve a minimum at

a tmin close to 0 on VP, indicating higher accumulated errors at the end of sampling and poor

neural estimations at small t. Note that the Restart interval 0.3 is about twice the length

of the one in Table 5.1 and Restart does not outperform the ODE baseline on EDM. This

suggests that, as a rule of thumb, we should apply greater Restart strength (e.g.larger K,

tmax − tmin) for weaker or smaller architectures and vice versa.

In theory, a longer interval enhances contraction but may add more additional sampling

errors. Again, the balance between these factors results in a V-shaped trend in our plots

(Figure B.13b). In practice, selecting tmax close to the dataset’s radius usually ensures effective

mixing when tmin is small.

B.3.4 Samples

In this section, we provide extended generated images by Restart, DDIM, Heun and DDPM

on text-to-image Stable Diffusion v1.5 model [153]. We showcase the samples of four sets of

text prompts in Figure B.14, Figure B.15, Figure B.16, Figure B.17, with a classifier-guidance

weight w = 8.

281



(a) Restart (Steps=66) (b) DDIM (Steps=100)

(c) Heun (Steps=101) (d) DDPM (Steps=100)

Figure B.14: Generated images with text prompt="A photo of an astronaut riding a horse
on mars" and w = 8.

282



(a) Restart (Steps=66) (b) DDIM (Steps=100)

(c) Heun (Steps=101) (d) DDPM (Steps=100)

Figure B.15: Generated images with text prompt="A raccoon playing table tennis" and
w = 8.

283



(a) Restart (Steps=66) (b) DDIM (Steps=100)

(c) Heun (Steps=101) (d) DDPM (Steps=100)

Figure B.16: Generated images with text prompt="Intricate origami of a fox in a snowy
forest" and w = 8.

284



(a) Restart (Steps=66) (b) DDIM (Steps=100)

(c) Heun (Steps=101) (d) DDPM (Steps=100)

Figure B.17: Generated images with text prompt="A transparent sculpture of a duck made
out of glass" and w = 8.

285



B.4 Chapter 6

B.4.1 Discussions

Suboptimality of I.I.D. sampling

Combinatorial analysis Let us consider again the setting of a random variable taking

a value equiprobably between N distinct bins. In Fig. B.18, we plot the expected number

of modes (or bins) captured as a function of the number of steps as derived in Appendix

A.3.6. This suggests that the region where I.I.D. sampling is considerably suboptimal in

these regards (capturing the modes of the distribution) is when the number of samples is

comparable with the number of modes: if the number of modes is much larger than I.I.D.

samples are still likely to capture separate modes, and if the number of samples is much

larger the number of uncaptured modes is likely to be small.

0 500 1000 1500 2000 2500 3000 3500 4000
number of samples

0

200

400

600

800

1000

nu
m

be
r o

f m
od

es

Number of modes captured (N=1000)
I.I.D.
Optimal

Figure B.18: Plot of the functions y = N(1− (N−1
N

)x) and y = min(x,N) for N = 1000 repre-
senting, respectively, the expected number of modes captured by I.I.D. sampling distribution
with N equiprobable modes and the optimal coverage.

Literature There is a vast literature that has studied the suboptimality of I.I.D. sampling

from a statistical perspective and proposed different solutions. For example, in the field

of Bayesian inference, antithetic sampling [255] has been proposed as a way to reduce the

variance of Monte Carlo estimates. Determinantal Point Processes [256] have also been widely

286



studied as a technique to improve the diversity of samples.

Runtime and Memory Overhead

The runtime overhead due to the addition of particle guidance to the inference procedure

largely depends on the potential that is used and on the size of the set n. In particular,

while computing kernels tends to be significantly cheaper than running the score model, the

number of kernel computations scales quadratically with n while the number of score model

executions at every step is n.

In terms of memory, particle guidance does not create any significant overhead since the

kernel computations can be aggregated per element. However, when running inference on

GPU if n is larger than the batch size that fits the GPU memory when running score model

inference, the data might have to be moved back and forth between RAM and GPU memory

to enable synchronous steps for particle guidance, causing further overhead.

In the case of our experiments on Stable Diffusion, the number of samples extracted (4)

does not create significant overhead. However, in the setting of conformer generation on

DRUGS different molecules can have very different numbers of conformers with some even

having thousands of them. For efficiency, we therefore cap the size of n in particle guidance

to 128 and perform batches of 128 samples until the total number of conformers is satisfied.

Figure B.19: Example of a too
large PG weight causing aliasing
artifacts.

Other Limitations A badly chosen potential or in gen-

eral one with a guidance weight too high can overly change

the marginal likelihood and negatively impact the sampling

quality. As an example in Fig. B.19 the use of a particle

guidance parameter four times larger than the best one

caused various aliasing artifacts on the image.

However, in fixed potential particle guidance, its pa-

rameters can be easily fit at inference time, therefore, it is

typically relatively inexpensive to test the optimal value of

the guidance for the application of interest and the chosen

potential. This leads to the prevention of too high guidance

287



weights and the simple detection of bad potential when the optimal weight is close to 0.

B.4.2 Experimental Details

Synthetic Experiments

To show visually the properties of particle guidance and its effect on sample efficiency, we use

a two-dimensional Gaussian mixture model. In particular, we consider a mixture of N = 10

identical Gaussian distributions whose centers are equally spaced over the unit circle and

whose variance is 0.005. These Gaussians form a set of approximately disjoint equal bins. As

we are interested in inference, no model is trained and the true score of the distribution is

given as an oracle.

As expected if one runs normal I.I.D. diffusion, the sample falls in one bin at random.

Taking ten samples, as shown in Fig. B.20, some of them will fall in the same bin and some

bins will be left unfound. The empirical experiments confirm the combinatorial analysis (see

Appendix A.3.6) which shows that the expected number of bins discovered with N = 10

samples is only 6.5 and it takes on average more than 29 samples to discover all the bins.

In many settings this behavior is suboptimal, and we would want our model to discover

all the modes of the distribution with as few samples as possible. Using the straightforward

application of particle guidance with a simple RBF kernel based on the squared Euclidean

distance, we are able to encourage diversity obtaining, on average, the discovery of nearly 9

bins on average from 10 samples (see Fig. B.20).

Intrinsic diffusion models [257] have shown significant improvements when diffusion models

operate on the submanifold where the data lies. Similarly, here building into the kernel the

degrees of freedom over which the diversity lies helps the particle guidance to effectively

distribute the samples over the distribution. We know that the different modes are distributed

in a radial fashion, and thus we build an RBF kernel based on the angle difference w.r.t.

the origin. Using this lower-dimensional kernel enables us to consistently discover all modes

of the distribution. This submanifold observation aligns well with the practice of methods

such as metadynamics where the kernels are defined over some lower-dimensional collective

variables of interest.

288



Radial
kernel

I.I.D.
sampling

Radial kernelEuclidean kernel

Figure B.20: Left: plot of random samples (in blue) of the two-dimensional Gaussian mixture
distribution (density depicted in red). I.I.D. samples often recover the same modes, while
particle guidance with a radial kernel captures all modes. Right: average number of modes
recovered with 10 samples as a function of the weight given by the diffusion noising terms
and the potential weight when using an RBF kernel with Euclidean and radial distances
respectively. As expected with little weight to the potential terms we obtain approximately
6.5 modes recovered in line with the I.I.D. diffusion performance. Further increasing the
potential weight on the Euclidean creates instability.

Molecular Conformer Generation

Dataset We evaluate the method for the task of molecular conformer generation using the

data from GEOM [188], a collection of datasets that has become the standard benchmark for

this task in the machine learning community. In particular, we focus on GEOM-DRUGS, the

largest, most pharmaceutically relevant and widely used dataset in GEOM which consists

of 304k drug-like molecules. For each of these molecules, an ensemble of conformers was

generated with metadynamics in CREST [258], a procedure that gives accurate structures

but is prohibitive in high-throughput applications, costing an average of 90 core-hours per

molecule. To be able to use existing pre-trained models we rely on the experimental setup

and splits introduced by [189] and used by several papers afterward. As we do not retrain the

score model, we do not use the training set, instead, we finetune the inference parameters for

particle guidance and the other ablation experiments on a random subset of 200 molecules

out of 30433 from the validation set.

289



Evaluation metrics To evaluate conformer generation methods we want to test the ability

of a method to generate a set of conformers that are both individually good poses (precision)

and as a set cover the distribution of true conformers (recall). For this we employ the same

evaluation setup and metrics used by several papers in the field starting from [189]. In this

setup, methods are asked to generate twice as many conformers as in the original ensemble

and then the so-called Average Minimum RMSD (AMR) and Coverage (COV) are measured

for precision (P) and recall (R). For K = 2L let {C∗l }l∈[1,L] and {Ck}k∈[1,K] be respectively

the sets of ground truth and generated conformers:

COV-R :=
1

L

∣∣∣∣{l ∈ [1..L] : ∃k ∈ [1..K],RMSD(Ck, C
∗
l ) < δ

∣∣∣∣
AMR-R :=

1

L

∑
l∈[1..L]

min
k∈[1..K]

RMSD(Ck, C
∗
l )

(B.1)

where δ is the coverage threshold (set to 0.75rA for the GEOM-DRUGS experiments).

Swapping ground truth and generated conformers in the equations above we obtain the

precision metrics.

Baselines As baselines we report the performances of previous methods as measured by

[189] and [168]. Cheminformatics conformer prediction methods rely on rules and heuristics

derived from chemical structures to fix the local degrees of freedom and then use a combination

of search and template techniques to set the more flexible degrees of freedom like torsion

angles. The most accurate and widely used such methods include the open-source software

RDKit ETKDG [253] and the commercial tool OMEGA [251], [259].

Before the already introduced Torsional Diffusion [168], a number of other machine

learning approaches were proposed for this task, among these: GeoMol [189] uses a GNN

to sample directly from a random seed local structures around each atom and then torsion

angles, GeoDiff [184] defines a equivariant diffusion model over atom coordinates, and CGCF

[260] learns an energy-based model over the space of pairwise distance matrices.

Reverse diffusion As discussed in Section 6.4.2, we applied particle guidance to torsional

diffusion, as this is currently considered to be state-of-the-art and it uses, like most ML-based

290



methods before, I.I.D. sampling during inference. We define the particle guidance kernel to

operate directly on the implicit hypertorus manifold where torsional diffusion defines the

diffusion process, this, at the same time, makes the kernel lower dimensional and it involves

a minor modification to the existing inference procedure. The reverse diffusion process that

we apply is:

dτi =
1

2
g2(T − t) s(τi, L, T − t) dt︸ ︷︷ ︸

diffusion ODE

+ βT−t

(
1

2
g2(t) s(τi, L, T − t) dt+ g(T − t) dw

)
︸ ︷︷ ︸

Langevin diffusion SDE

+
γT−t
2

g2(T − t) ∇τi log ΦT−t(τ1, ..., τn)dt︸ ︷︷ ︸
particle guidance

where we follow the idea from [27] of dividing the different components of the reverse diffusion

and tuning their individual parameters. The potential was chosen to be:

log Φt(τ1, ...τn) = −
αt
2n

∑
i,j

kt(τi, τj) where kt(τi, τj) = exp(−||τi − τj||2

ht
) (B.2)

where the difference of each torsion angle is computed to be in (−π, π]. αt, βt, γt and ht are

inference hyperparameters that are ’logarithmically interpolated’ between two end values

chosen with hyperparameter tuning (using T = 1), e.g. αt = exp(t log(α1) + (1− t) log(α0)).

Permutation invariant kernel Since the kernel operates on the torsion angle differences it

is naturally invariant to SE(3) transformations, i.e. translations or rotations, of the conformers

in space. Moreover, as illustrated in Fig. 2 of [168], while exact torsion angle values depend

on arbitrary choices of neighbors or orientation (to compute the dihedral angle) differences in

torsion angles are invariant to these choices. However, one transformation that the kernel in

Equation B.2 is not invariant to are permutations of the atoms in the molecule. Many of

these permutations lead to isomorphic molecular graphs where however each of the torsion

angles may now refer to a different dihedral. To maximize the sample efficiency we make the

kernel invariant to these by taking the minimum over the values of the kernel under all such

291



permutations:

k′t(τi, τj) = min
π∈Π

kt(τi, Pπτj)

where Π is the set of all permutations that keep the graph isomorphic (but do change

the torsion angles assignment) and Pπ is the permutation matrix corresponding to some

permutation π. In practice, these isomorphisms can be precomputed efficiently, however, to

limit the overhead from applying the kernel multiple times, whenever there are more than 32

isomorphic graphs leading to a change in dihedral assignments we subsample these to only

keep 32.

Batch size The number of conformers one has to generate is given, for every molecule, by

the benchmark (2L) and can vary significantly. To avoid significant computational overheads,

we use batches of up to n = 128 until all the conformers for that particular molecule are

generated.

Full Results

We provide in Table B.14 again the results reported in Table 6.1 with the additions of

other baselines and ablation experiments. In particular, as ablations, on top of running

non-invariant particle guidance i.e. without the minimization over the permutations described

in the previous section, we also test low-temperature sampling, another variation of the

inference-time procedure that has been proposed for diffusion models that we applied as

described below.

Low-temperature sampling. Low-temperature sampling of some distribution p(x) with

temperature λ−1 < 1 consists of sampling the distribution pλ(x) ∝ p(x)λ. This helps mitigate

the overdispersion problem by concentrating more on high-likelihood modes and trading

off sample diversity for quality. Exact low-temperature sampling is intractable for diffusion

models, however, various approximation schemes exist. We use an adaptation of Hybrid

292



Langevin-Reverse Time SDE proposed by [261]:

dτ = −
(
λt +

λ ψ

2

)
sθ,G(C, t) g

2(t) dt+
√

1 + ψ g(t) dw with λt =
σd + σt
σd + σt/λ

where λ (the inverse temperature), ψ and σd are parameters that can be tuned.

Table B.14: Quality of generated conformer ensembles for the GEOM-DRUGS test set in
terms of Coverage (%) and Average Minimum RMSD (rA). Minimizing recall and precision
refers to the hyperparameter choices that minimize the respective median AMR on the
validation set.

Recall Precision
Coverage ↑ AMR ↓ Coverage ↑ AMR ↓

Method Mean Med Mean Med Mean Med Mean Med

RDKit ETKDG 38.4 28.6 1.058 1.002 40.9 30.8 0.995 0.895
OMEGA 53.4 54.6 0.841 0.762 40.5 33.3 0.946 0.854
CGCF 7.6 0.0 1.247 1.225 3.4 0.0 1.837 1.830
GeoMol 44.6 41.4 0.875 0.834 43.0 36.4 0.928 0.841
GeoDiff 42.1 37.8 0.835 0.809 24.9 14.5 1.136 1.090

Torsional Diffusion 72.7 80.0 0.582 0.565 55.2 56.9 0.778 0.729

TD w/ low temperature
- minimizing recall 73.3 77.7 0.570 0.551 66.4 73.8 0.671 0.613
- minimizing precision 68.0 69.6 0.617 0.604 72.4 81.3 0.607 0.548

TD w/ non-invariant PG
- minimizing recall 75.8 81.5 0.542 0.520 66.2 72.4 0.668 0.607
- minimizing precision 58.9 56.8 0.730 0.746 76.8 88.8 0.555 0.488

TD w/ invariant PG
- minimizing recall 77.0 82.6 0.543 0.520 68.9 78.1 0.656 0.594
- minimizing precision 72.5 75.1 0.575 0.578 72.3 83.9 0.617 0.523

Stable Diffusion

Setup

In this section, we detail the experimental setup on Stable Diffusion. We replace the score

function (∇xi
log pt′(xi)) in the original particle guidance formula (Equation 6.4) with the

293



classifier-free guidance formula [159]:

s̃(xi, c, t
′) = w∇xi

log pt′(xi, c) + (1− w)∇xi
log pt′(xi)

where c symbolizes the text condition, w ∈ R+ is the guidance scale, and∇xi
log pt′(xi, c)/ log pt′(xi)

is the conditional/unconditional scores, respectively. As probability ODE with classifier-free

guidance is the prevailing method employed in text-to-image models [160], we substitute

the reverse-time SDE in Equation 6.4 with the marginally equivalent ODE. Assuming that

f(xi, t
′) = 0, the new backward ODE with particle guidance is

dxi =

[
1

2
g2(t′)

(
s̃(xi, c, t

′)− αt′∇xi

n∑
j=1

kt′(xi,xj)

)]
dt

Following SVGD [174], we employ RBF kernel kt(τi, τj) = exp(− ||τi−τj ||
2

ht
) with ht = m2

t/ log n,

where mt is the median of particle distances. We implement the kernel both in the original

down-sampled pixel space (the latent of VAE) or the feature space of DINO-VIT-b/8 [186].

Defining the DINO feature extractor as gDINO, the formulation in the feature space becomes:

dxi =

[
1

2
g2(t′)

(
s̃(xi, c, t

′)− αt′∇x0
i

n∑
j=1

kt′
(
gDINO(x

0
i ), gDINO(x

0
j)
))]

dt

where we set the input to the DINO feature extractor gDINO to the x0-prediction: x0
i =

xi + σ(t′)2s̃(xi, c, t
′), as x0-prediction lies in the data manifold rather than noisy images. σ(t)

is the standard deviation of Gaussian perturbatio kernel given time t in diffusion models.

The gradient w.r.t. x0
i can be calculated by forward-mode auto-diff. We hypothesize that

defining Euclidean distance in the feature space is markedly more natural and effective

compared to the pixel space, allowing the repulsion in a more semantically meaningful way.

Our experimental results in Section 6.4.2 corroborate the hypothesis.

To construct the data for evaluation, we randomly sample 500 prompts from the COCO

validation set [162]. For each prompt, we generate a batch of four images. To get the average

CLIP score/Aesthetic score versus in-batch similarity score curve, for I.I.D. sampling, we use

w ∈ {6, 7.5, 8.5, 9}. We empirically observed that particle guidance achieved a much lower

294



in-batch similarity score (better diversity) than IID sampling. As diversity typically improves

with smaller guidance weights [159], [160], we chose a set of smaller guidance weights for

I.I.D. sampling to further improve its diversity, keeping it in the relatively similar range

as particle guidance. Hence for particle guidance, we use a set of larger guidance scales:

w ∈ {7.5, 8, 9, 9.5, 10}. Indeed, the experimental results suggest that even though I.I.D.

sampling used a smaller guidance weight to promote diversity, its in-batch similarity score

was still worse than that of particle guidance. . We set the hyper-parameter αt′ to 8σ(t) in

particle guidance (feature) and 30σ(t)2 in particle guidance (pixel). We use an Euler solver

with 30 NFE in all the experiments.

In-batch similarity score

We propose in-batch similarity score to capture the diversity of a small set of generated

samples {x1, . . . ,xn} given a prompt c:

In-batch similarity score(x1, . . . ,xn) =
1

n(n− 1)

∑
i ̸=j

gDINO(xi)
TgDINO(xj)

||gDINO(xi)||2||gDINO(xj)||2

To save memory, we use the DINO-VIT-s/8 [186] as the feature extractor gDINO.

B.4.3 Samples

In Figure B.21-Figure B.25, we visualize samples generated by the I.I.D. sampling process,

particle guidance in the pixel space, and particle guidance in the DINO feature space, on four

different prompts. For Figure B.21-Figure B.23, we select the prompts in [187], with which

Stable Diffusion is shown to replicate content directly from the LAION dataset. We also

include the generated samples of SVGD-guidance, in which we replace the particle guidance

term with SVGD formula (Equation 6.2). In Figure B.26, we observe that SVGD generally

leads to blurry images when increasing the guidance scale αt. This is predictable as the

guidance term in SVGD involves a weighted sum of scores of nearby samples, which will steer

the samples toward the mean of samples.

295



(a) I.I.D. (b) particle guidance (pixel) (c) particle guidance (feature)

Figure B.21: Text prompt: Captain Marvel Exclusive Ccxp Poster Released Online By Marvel

(a) I.I.D. (b) particle guidance (pixel) (c) particle guidance (feature)

Figure B.22: Text prompt: Portrait of Tiger in black and white by Lukas Holas

(a) I.I.D. (b) particle guidance (pixel) (c) particle guidance (feature)

Figure B.23: Text prompt: VAN GOGH CAFE TERASSE copy.jpg

296



(a) I.I.D. (b) particle guidance (pixel) (c) particle guidance (feature)

Figure B.24: Text prompt: A transparent sculpture of a duck made out of glass

(a) I.I.D. (b) particle guidance (pixel) (c) particle guidance (feature)

Figure B.25: Text prompt: A unicorn in a snowy forest

(a) αt = 0.1 (b) αt = 0.3 (c) αt = 1 (d) αt = 2

Figure B.26: SVGD guidance, with varying αt

297



B.5 Chapter 7

B.5.1 Failure of VE/VP-ODE

In Figure 7.6a, we demonstrate the trajectories of cleaner samples/noisier samples/noisier

samples w/ corrector. We visualize these three groups in Figure 7.5a and Figure 7.5b. The

noisier samples are marked with red boxes in Figure 7.5a and the remaining images in

Figure 7.5a are cleaner samples. The samples within green boxes in Figure 7.5b are noisier

samples w/ corrector. Samples on the same spatial locations in the two figures are generated

by identical initial latents.

The Gaussian kernels in score-based models are N (x, σ(t)2) (VE) and

N (
√

1− σ(t)2x, σ(t)2) (VP) [34]. When σ(t) is large, the norms of perturbed samples are

approximately
√
Nσ(t). The backward ODE could break down if the trajectories diverge from

the norm-σ(t) relation, as shown by the noisier samples’ trajectories in Figure 7.6a. In contrast,

the norm distributions of PFGM is approximately p(∥ x ∥) ∝ ∥ x ∥N−22 /(∥ x ∥22 +z2)
N
2 when

z is large (see deviation for pprior in Appendix A.4.2), which have a wider span for high density

region (see Figure 7.3). The weak correlation between norm and z makes PFGM more robust

on the lighter NCSNv2 backbone.

B.5.2 Experimental Details

Training

In this section, we include more details about the training of PFGM and other baselines.

We show the hyper-parameters settings for all the baselines (Appendix B.5.2). All the

experiments are run on a single NVIDIA A100 GPU.

Additional Settings

PFGM We set the hyper-parameters γ = 5, the larger batch size for calculating normalize

field |BL| = 4096 (CIFAR-10), 256 (CelebA), 64 (LSUN bedroom) in Algorithm 2, and M =

291 (CIFAR-10, CelebA)/356 (LSUN bedroom), σ = 0.01 and τ = 0.03 in Algorithm 3.

298



We use the a batch size of |B| = 128 (CIFAR-10, CelebA)/32 (LSUN bedroom), the same

Adam optimizer and exponential moving average in [34]. We center the data around the

origin. The initial z components in the normalized field are approximately zero with small

initial |ϵz| values in Algorithm 3. In this case, the trajectories of the forward ODE terminate

at points that are unlikely traversed by the backward ODE, i.e., points with large ∥ x ∥2
and small z. In light of this, we heuristically confine the maximum sampling step to

M = 200 (CIFAR-10, CelebA)/250 (LSUN bedroom) for points with the initial |ϵz| smaller

than 0.005. More principal solutions are left for future works.

For selecting M in more general settings, we recommend the following rule-of-thumb.

According to analysis in Section A.4.3, given a perturbation point (y, z) when setting the

exponent m =M in Algorithm 3, we can ensure the point source approximation by

||y||2 ≫
√
NEp(x)||x||2/2 (B.3)

where N is the data dimension and p(x) is the data distribution. By WLLN, we have

||ϵx|| =
√
Nσ, and recall that y = x+ ∥ ϵx ∥ (1+τ)Mu where ϵ = (ϵx, ϵz) ∼ N (0, σ2IN+1×N+1),

u ∼ U(SN(1)). Together, we conclude ||y|| ≈
√
Nσ(1 + τ)M . Substituting in Equation B.3,

we have

M >
1

2
log1+τ

Ep(x)||x||2

2
√
Nσ2

=
1

2

ln
Ep(x)||x||2

2
√
Nσ2

ln 1 + τ

We empirically observe that setting M = 3
4

ln
Ep(x)||x||

2

2
√
Nσ2

ln 1+τ
already gives good results, and the

corresponding ||y|| ≈ 3000. For example, on CIFAR-10 datasets, N = 3072, τ = 0.03, σ =

0.01,Ep(x)||x||2 ≈ 900, we have M = 3
4

ln
Ep(x)||x||

2

2
√
Nσ2

ln 1+τ
≈ 291.

Since we are operating in the augmented space, we add minor modifications to the

DDPM++/DDPM++ deep architectures to accommodate the extra dimension. More

specifically, we replace the conditioning time variable in VP/sub-VP with the additional

dimension z in PFGM as the input to the positional embedding. We also need to add an

extra scalar output representing the z direction. To this end, we add an additional output

channel to the final convolution layer and take the global average pooling of this channel

299



to obtain the scalar. For LSUN bedroom dataset, we both experiments with the channel

configurations suggested in NSCN++ [34] and DDPM [167].

VE/VP/sub-VP We use the same set of hyper-parameters and the NCSN++/DDPM++

(deep) backbone and the continuous-time training objectives for forward SDEs in [34].

Sampling

We provide more details of PFGM and VE/VP sampling implementations in Appendix B.5.2.

We further discuss two techniques used in PFGM ODE sampler: change-of-variable for-

mula (Appendix B.5.2) and the substitution of ground-truth Poisson field direction on

z (Appendix B.5.2).

Additional settings

PFGM For RK-45 sampler, we use the function implemented in scipy.integrate.solve_ivp

with atol=1e− 4, rtol=1e− 4. For forward Euler method, we discretize the ODE with con-

stant step size determined by the number of steps, i.e., step size = (log zmax−log zmin)/number

of steps for the backward ODE (Equation 7.6). As in [1], we set the terminal value of

zmin = 1e− 3. We choose zmax = 40 (CIFAR-10), 60 (CelebA 642), 100 (LSUN bedroom) to

satisfy the condition κ ≫ 1 by the multipole expansion analysis in Appendix A.4.3. The

condition ensures that the data distribution can be viewed roughly as a point source at origin.

For example, we set zmax = 40 on CIFAR-10, and the corresponding κ is greater than 50

with high probability. The hyperparameters work well without further fine tuning. Hence, we

hypothesize that PFGM is insensitive to the choice of hyperparameters in a reasonable range,

as shown in Table B.15. We clip the norms of initial samples into (0, 3000) for CIFAR-10,

(0, 6000) for CelebA and (0, 30000) for LSUN bedroom.

For selecting zmax and clipping upper bound of norms for general datasets, we recommend

the following rule-of-thumb. Recall that during the training perturbations (Equation 7.5),

given a random initial value ϵz ∼ N (0, σ2), maximum z is

z = |ϵz|(1 + τ)M

300



Hence we set zmax = E[|ϵz|(1 + τ)M ] =
√

2
π
σ(1 + τ)M . For example, on CIFAR-10, τ =

0.03,M = 291, and zmax ≈ 43. The clipping upper value is similarity derived, by setting

it to E[||ϵx||(1 + τ)M ] =
√
Nσ(1 + τ)M ≈ 3000, where ϵx ∼ N (0, σ2IN×N). By combining

Equation B.3, we further have

zmax =

√
2

π
σ(1 + τ)M =

√
2

σπ

(
Ep(x)||x||2

2
√
N

) 3
4

clipping upper value =
√
Nσ(1 + τ)M =

√
N

σ

(
Ep(x)||x||2

2
√
N

) 3
4

where N is the data dimension and p(x) is the data distribution. These formulas are easier

for practitioner to apply PFGM on new datasets.

VE/VP/sub-VP For the PC sampler in VE, we follow [34] to set the reverse diffusion

process as the predictor and the Langevin dynamics (MCMC) as the corrector. For VP/sub-

VP, we drop the corrector in PC sampler since it only gives slightly better results [34].

Table B.15: FID scores versus zmax on PFGM w/ DDPM++

zmax 30 40 50

FID score 2.49 2.48 2.48

Exponential Decay on z Dimension

Recall that in Section 7.3.3, we replace the vanilla backward ODE with a new ODE anchored

by z:

d(x, z) = (
dx

dt

dt

dz
dz, dz) = (v(x̃)xv(x̃)

−1
z , 1)dz

301



We further use the change-of-variable formula, i.e., t′ = − log z, to achieve exponential decay

on the z dimension:

d(x, z) = (v(x̃)xv(x̃)
−1
z z, z)dt′

The trajectories of the two ODEs above are the same when dt, dt′ → 0. We compare the

NFE and the sample quality of different ODEs in Table B.16. We measure the NFE/FID

of generating 50000 CIFAR-10 samples with the RK45 method in Scipy package [199]. The

batch size is set to 1000. All the numbers are produced on a single NVIDIA A100 GPU. We

observe that the ODE with the anchor variable t′ not only accelerates the vanilla by 2 times,

but has almost no harm to the sample quality measured by FID score.

Table B.16: NFE and FID scores of different backward ODEs in PFGM

Algorithm d(x, z)/dz d(x, z)/dt′

NFE 242 104
FID score 2.53 2.48

Substitute the Predicted z Direction with the Ground-truth

Since the neural network cannot perfectly learn the ground-truth z direction, we replace

the predicted fθ(x)z with the ground-truth direction when z is small. More specifically,

given x̃ = (x, z) ∈ RN+1, recall that the empirical field is Ê(x̃) = c(x̃)
∑n

i=1
x̃−x̃i

||x̃−x̃i||N+1 where

c(x̃) = 1/
∑n

i=1
1

||x̃−x̃i||N+1 . Hence we can rewrite the empirical field as

Ê(x̃) =
n∑
i=1

w(x̃, x̃i)(x̃− x̃i)

where
∑n

i=1w(x̃, x̃i) =
∑n

i=1

1

||x̃−x̃i||N+1∑n
j=1

1

||x̃−x̃j ||N+1
= 1. Furthermore we have ∀i, (x̃− x̃i)z = z−0 =

z. Together, the z component in the empirical field is Ê(x̃)z =
∑n

i=1w(x̃, x̃i)(x̃− x̃i)z = z.

The predicted normalized field (on x) is trained to approximate the normalized field (on x),

302



i.e.,

fθ(x̃)x ≈ −
√
NÊ(x̃)x/(

√
∥ Ê(x̃)x ∥22 +z2 + γ)

≈ −
√
NÊ(x̃)x/(

√
∥ Ê(x̃)x ∥22 + γ)

The last approximation is due to ∥ Ê(x̃)x ∥2≫ z. Solving for ∥ Ê(x̃)x ∥2, we get ∥ Ê(x̃)x ∥2≈
γ∥fθ(x̃)x∥2/

√
N

1−∥fθ(x̃)x∥2/
√
N

. Hence the z component in the normalized field after substituting the ground-

truth is Ê(x̃)z/(

√
∥ Ê(x̃)x ∥22 +z2+γ) = z/(

√
( γ∥fθ(x̃)x∥2/

√
N

1−∥fθ(x̃)x∥2/
√
N
)2 + z2+γ). In our experiments,

we therefore replace the original prediction fθ(x̃)z with −
√
Nz/(

√
( γ∥fθ(x̃)x∥2/

√
N

1−∥fθ(x̃)x∥2/
√
N
)2 + z2 + γ)

when z < 5/1/0.1 during the backward ODE sampling for CIFAR-10/CelebA 642/LSUN

bedroom 2562.

Table B.17 reports the NFE and FID score w/o and w/ the above substitution. We

observe that the usage of ground-truth z direction in the near field accelerates the sampling

speed.

Table B.17: NFE and FID scores of w/ and w/o substitution

Algorithm w/o substitution w/ substitution

NFE 134 104
FID score 2.48 2.48

Evaluation

We use FID [41] and Inception scores [55] to quantitatively measure the sample quality,

and NFE (number of evaluation steps) for the inference speed. FID (Fréchet Inception

Distance) score is the Fréchet distance between two multivariate Gaussians, whose means and

covariances are estimated from the 2048-dimensional activations of the Inception-v3 [262]

network for real and generated samples respectively. Inception score is the exponential

mutual information between the predicted labels of the Inception network and the images.

We also report bits/dim for likelihood evaluation. It is computed by dividing the negative

log-likelihood by the data dimension, i.e., bits/dim = − log pprior(x)/N .

303



For CIFAR-10, we compute the Fréchet distance between 50000 samples and the pre-

computed statistics of CIFAR-10 dataset in [41]. For CelebA 64× 64, we follow the setting

in [49] where the distance is computed between 10000 samples and the test set. For model

selection, we follow [49] and pick the checkpoint with smallest FID every 50k iterations on

10k samples for computing all the scores.

Effects of Step Size: FID versus NFE

For preciseness, Table B.18 reports the exact numbers in Figure 7.6c.

Table B.18: The FID scores in Figure 7.6c of different methods and NFE.

Method / NFE 10 20 50 100

VP-ODE 192.36 72.25 38.18 19.73
DDIM 13.36 6.48 4.67 4.16
PFGM 14.98 6.46 3.48 2.89

Since in the ODE d(x, z) = −(v(x̃)xv(x̃)−1z z, z)dt′ of PFGM, the z variable is a function

of t′ (z = et
′), we integrate the z in the Euler method to reduce the discretization error. The

vanilla update from time t′i to time t′i+1 is (xi+1, zi+1) = (xi, zi)−(v(x̃i)xv(x̃i)−1zi zi, zi)(t
′
i+1−t′i),

and the new update is (xi+1, zi+1) = (xi, zi)− (v(x̃i)xv(x̃i)
−1
zi

´ t′i+1

t′i
z(t′)dt′,

´ t′i+1

t′i
z(t′)dt′). We

empirically observe that the new update scheme significantly improve the FID score.

B.5.3 Extra Experiments

LSUN Bedroom 256 × 256

We report the FID scores and NFEs for LSUN bedroom dataset in Table B.19. We adopt the

code base of [34] in our experiments. In [34], they experimented on the LSUN bedroom 256×

256 dataset only on VE-SDE using a deeper NCSN++ backbone. In our DDPM++ architec-

ture, we directly borrow the configuration of channels from the NCSN++ architecture [34]

in each residual block (PFGM w/ NCSN++ channel). We further change zmax to 100, as it

empirically gives better sample quality.

304



We also evaluate the performance when using the configuration of channels in the

DDPM [167] architecture (PFGM w/ DDPM channel). We use the RK45 [53] solver in

the Scipy library [199] for PFGM sampling. We report the FID score using the evaluation

protocol in [90].

Table B.19: FID/NFE on LSUN bedroom 256× 256

FID ↓ NFE ↓

StyleGAN [263] 2.65 1
DDPM [167] 6.86 1000
VE-SDE [34] 11.75 2000

PFGM w/ NCSN++ channel 17.01 134
PFGM w/ DDPM channel 13.66 122

Table B.19 shows that PFGM has comparable performance with VE-SDE when using

DDPM channel, while achieving around 15× acceleration. We observe that PFGM achieves

a better FID score using the similar configuration in the DDPM model, and converges faster

— 150k over the total 2.4M training iterations suggested in [34]. Remarkably, the VE-ODE

baseline — the method most comparable to ours — only produces noisy samples on this

dataset. It suggests that PFGM is able to scale up to high resolution images when using

advanced architectures. We also compare with the number reported in [167] using similar

architecture. Note that DDPM requires 1000 NFE during sampling, and doesn’t possess

invertibility compared to flow models.

Results on NCSNv2 Architecture

In this section, we demonstrate the image generation on CIFAR-10 and CelebA 64× 64, using

NCSNv2 architecture [49], which is the predecessor of NCSN++ and DDPM++ [34] and

has smaller capacity. Since the VE/VP-ODE has poor performance (FID greater than 90),

with the RK45 solver, we also apply the forward Euler method (Euler) with fixed number of

steps. We explicitly name the sampler, with forward Euler method as predictor and Langevin

dynamics as corrector, as Euler w/ corrector. For Euler w/ corrector in VE/VP-ODE,

we use the probability flow ODE (reverse-time ODE) as the predictor and the Langevin

305



dynamics (MCMC) as the corrector. We borrow all the hyper-parameters from [34] except

for the signal-to-noise ratio. We empirically observe the new configurations in Table B.20

give better results on the NCSNv2 architecture.

To accommodate the extra dimension z on NCSNv2, we concatenate the image with an

additional constant channel with value z and thus the first convolution layer takes in four

input channels. We also add an additional output channel to the final convolution layer and

take the global average pooling of this channel to obtain the direction on z.

Table B.20: Signal-to-noise ratio of different dataset-method pairs

Dataset-Method CIFAR-10 - VE CIFAR-10 - VP CelebA - VE CelebA - VP

signal-to-noise ratio 0.16 0.27 0.12 0.27

CIFAR-10

Table B.21 reports the image quality measured by Inception/FID scores and the inference

speed measured by NFE on CIFAR-10, using a weaker architecture NCSNv2 [49]. We show

that PFGM with the RK45 solver has competitive FID/Inception scores with the Langevin

dynamics, which was the best model on the NCSNv2 architecture before, and requires

10× less NFE. In addition, PFGM performs better than all the other ODE samplers. Our

method is more tolerant of sampling error. Among the compared ODEs, our backward

ODE (Equation 7.6) is the only one that successfully generates high quality samples while

the VE/VP-ODE fail w/o the Langevin dynamics corrector. The backward ODE still beats

the baselines w/ corrector.

CelebA

In Table B.22, we report the quality of images generated by models trained on CelebA

64 × 64, as measured by the FID scores, and the sampling speed, as measured by NFE.

We use this dataset as our preliminary experiments hence we only apply NCSNv2 [49] for

different baselines. As shown in Table B.22, PFGM achieves best FID scores than all the

baselines on CelebA dataset, while accelerating the inference speed around 20×. Remarkably,

306



Table B.21: CIFAR-10 sample quality (FID, Inception) and number of function evalua-
tion (NFE). All the methods below the NCSNv2 backbone separator use the NCSNv2 [49]
network architecture as the backbone.

Inception ↑ FID ↓ NFE ↓

PixelCNN [15] 4.60 65.93 1024
IGEBM [21] 6.02 40.58 60
WGAN-GP [203] 7.86± .07 36.4 1
SNGAN [204] 8.22± .05 21.7 1
NCSN [197] 8.87± .12 25.32 1001

NCSNv2 backbone

Langevin dynamics [49] 8.40± .07 10.87 1161
VE-SDE [34] 8.23± .02 10.94 1000
VP-SDE [34] 6.85± .01 44.05 1000

VE-ODE (Euler w/ corrector) 8.05± .03 11.33 1000
VP-ODE (Euler w/ corrector) 7.33± .07 37.74 1000
PFGM (Euler) 8.00± .09 11.78 200
PFGM (RK45) 8.30± .05 11.22 118

PFGM outperforms the Langevin dynamics and reverse-time SDE samplers, which are usually

considered better than their deterministic counterparts.

Remark: On the FID scores on CelebA 64× 64 One interesting observation is that

the samples of PFGM (RK45) (Figure B.27b) contain more obvious artifacts than Langevin

dynamics (Figure B.27a), although PFGM has a lower FID score on the same architecture.

We hypothesize that the diversity of samples has larger effects on the FID scores than the

artifacts. As shown in Figure B.27a and Figure B.27b, samples generated by PFGM have more

diverse background colors and hair colors than samples of Langevin dynamics. In addition,

we evaluate the performance of PFGM on the DDPM++ architecture. We show that the

FID score can be further reduced to 3.68 using the more advanced DDPM++ architecture.

By examining the generated samples of PFGM on DDPM++ (Figure B.31), we observe that

the samples are diverse and exhibit fewer artifacts than PFGM on NCSNv2. It suggests that

by using a more powerful architecture like DDPM++, we can remove the artifacts while

retaining the diversity in PFGM.

307



(a) Langevin dynamics [197] (b) PFGM (RK45)

Figure B.27: Uncurated samples from Langevin dynamics [197] and PFGM (RK45), both
using the NCSNv2 architecture.

Table B.22: FID/NFE on CelebA 64× 64

FID ↓ NFE ↓

NCSN [197] 26.89 1001

NCSNv2 backbone

Langevin dynamics [49] 10.23 2501
VE-SDE [34] 8.15 1000
VP-SDE [34] 34.52 1000

VE-ODE (Euler w/ corrector) 8.30 200
VP-ODE (Euler w/ corrector) 41.81 200
PFGM (Euler) 7.85 100
PFGM (RK45) 7.93 110

DDPM++ backbone

PFGM (RK45) 3.68 110

308



Wall-clock Sampling Time

The main bottleneck of sampling time in each ODE step is the function evaluation of the

neural network. Hence, for different ODE equations using similar neural network architectures,

their inference times per ODE step are approximately the same.

We implement PFGM on the NCSNv2 [49], DDPM++ [34], and DDPM++ deep [34]

architectures, with sight modifications to account for the extra dimension z. In Table B.23,

we report the sampling time per ODE step method with the DDPM++ backbone, as well

as the total sampling time. We measure the sampling time of generating a batch of 1000

images on CIFAR-10. We compare PFGM, VP/sub-VP ODEs using the RK45 solver. As a

reference, we also report the results of VP-SDE using the predictor-corrector sampler [34].

All the numbers are produced on a single NVIDIA A100 GPU.

Table B.23: Wall-clock sampling time (second)

Method PFGM VP-ODE sub-VP-ODE VP-SDE (PC)

NFE 110 134 146 1000

Wall-clock time per step 0.526 0.522 0.520 0.491

Total wall-clock time 57.81 69.97 75.92 490.65

As expected, ODEs using similar architectures and the same solver have nearly the same

wall-clock time per ODE step. The table also shows that PFGM achieves the smallest total

wall-clock sampling time.

Image Interpolations

The invertibility of the ODE in PFGM enables the interpolations between pairs of images. As

shown in Figure B.28, we adopt the spherical interpolations between the latent representations

of the images in the first and last column.

Temperature Scaling

To demonstrate more utilities of the meaningful latent space of PFGM, we include the

experiments of temperature scaling on CelebA 64× 64 dataset. We linearly increase the norm

309



Figure B.28: Interpolation on CelebA 64× 64 by PFGM

of latent codes from 1000 to 6000 to get the samples in Figure B.29.

B.5.4 Samples

We provide extended samples from PFGM on CIFAR-10 (Figure B.30), CelebA 64× 64 (Fig-

ure B.31) and LSUN bedroom 256× 256 (Figure B.32) datasets.

310



Figure B.29: Temperature scaling on CelebA 64× 64 by PFGM

311



Figure B.30: CIFAR-10 samples from PFGM (RK45)

312



Figure B.31: CelebA 64× 64 samples from PFGM (RK45, NCSNv2 architecture)

313



Figure B.32: LSUN bedroom 256× 256 samples from PFGM (RK45) using DDPM channel
configuration.

314



B.6 Chapter 8

B.6.1 Aligning the Training in PFGM++ Family

Analysis

In this section, we examine the phase of intermediate marginal distribution pr under different

Ds to derive an alignment method for hyper-parameters. Consider a N -dimensional dataset

D in which the average distance to the nearest neighbor is about l. We consider an arbitrary

datapoint x1 ∈ D and denote its nearest neighbor as x2. We assume ∥x1 − x2∥2 = l, and

uniform prior on D.

To characterize the phases of pr, ∀r > 0, we study the perturbation point y ∼ pr(y|x1).

According to Appendix B.6.2, the distance ∥x1 − y∥ is roughly r
√

N
D−1 . Since pr(y|x1) is

isotropic, with high probability, the two vectors y− x1,x2− x1 are approximately orthogonal.

In particular, the vector product (y − x1)
T (x1 − x2) = O( 1√

N
∥y − x1∥∥x1 − x2∥) = O( rl√

D
)

w.h.p. It reveals that ∥y − x2∥ =
√
l2 + r2 N

D−1 +O( rl√
D
). Figure B.33 depicts the relative

positions of x1,x2 and the perturbed point y.

Figure B.33: Illustration of the phase alignment analysis

The ratio of the posterior of the x2 and x1 — pr(x2|y)
pr(x1|y) — is an indicator of different phases

of field [23]: point in the nearer field tends to have a smaller ratio. Indeed, the ratio would

gradually decay from 1 to 0 when moving from the far to the near field. We can calculate the

315



ratio of the coefficients after approximating the distance ∥y − x2∥:

pr(x2|y)
pr(x1|y)

=
pr(y|x2)

pr(y|x1)
=

(
l2 + r2 N

D−1 +O( rl√
D
) + r2

r2 N
D−1 + r2

)N+D
2

=

(
1 +

l2 +O( rl√
D
)

r2 N
D−1 + r2

)N+D
2

= exp

(
ln(1 +

l2 +O( rl√
D
)

r2 N
D−1 + r2

) · N +D

2

)

≈ exp

(
l2 +O( rl√

D
)

r2 N
D−1 + r2

· N +D

2

)

= exp

(
l2 +O( rl√

D
)

r2
· N +D

2(N +D − 1)
· (D − 1)

)

≈ exp

(
l2 +O( rl√

D
)

r2
·D

)
(B.4)

Hence the relation r ∝
√
D should hold to keep the ratio invariant of the parameter D.

On the other hand, by Theorem 8 we know that pσ is equivalent to pr=σ√D when D →∞.

To achieve phase alignment on the dataset, one should roughly set r = σ
√
D.

Practical Hyperparameter Transfer from Diffusion Models

Transfer EDM training and sampling

We list out and compare the EDM training algorithm (Alg 11) and the PFGM++ with

transferred hyper-parameters (Alg 12). The major modification is to replace the Gaussian

noise ni ∼ N (0, σ2I) with the additive noise Rivi ∼ Uψ(ψ)pr(R), where r = σ
√
D. We

highlight the major modifications in blue.

We also show the sampling algorithms of EDM (Alg 13) and PFGM++ (Alg 14). Note that

we only change the prior sampling process while the for-loop is identical for both algorithms,

since EDM [27] sets σ = t, and dx
dr

= x−fθ(x,r)
r

= x−fθ(x,r)
σ
√
D

= dx√
Ddσ

= dx
dσ

dσ
dr

= dx
dσ

= dx
dt

. Thus

we can use the original samplers of EDM without further modification.

316



Algorithm 11 EDM training
1: Sample a batch of data {yi}Bi=1 from
p(y)

2: Sample standard deviations {σi}Bi=1

from p(σ)
3: Sample noise vectors {ni ∼
N (0, σ2

i I)}Bi=1

4: Get perturbed data {ŷi = yi + ni}Bi=1

5: Calculate loss ℓ(θ) =∑B
i=1 λ(σi)∥fθ(ŷi, σi)− yi∥22

6: Update the network parameter θ via
Adam optimizer

Algorithm 12 PFGM++ training with hyper-
parameter transferred from EDM
1: Sample a batch of data {yi}Bi=1 from p(y)
2: Sample standard deviations {σi}Bi=1 from
p(σ)

3: Sample r from pr: {ri = σi
√
D}Bi=1

4: Sample radiuses {Ri ∼ pri(R)}Bi=1

5: Sample uniform angles {vi = ui

∥ui∥2}
B
i=1,

with ui ∼ N (0, I)
6: Get perturbed data {ŷi = yi +Rivi}Bi=1

7: Calculate loss ℓ(θ) =∑B
i=1 λ(σi)∥fθ(ŷi, σi)− yi∥22

8: Update the network parameter θ via Adam
optimizer

Algorithm 13 EDM sampling (Heun’s 2nd

order method)

1: x0 ∼ N (0, σ2
maxI)

2: for i = 0, . . . , T − 1 do
3: di = (xi − fθ(xi, ti))/ti
4: xi+1 = xi + (ti+1 − ti)di
5: if ti+1 > 0 then
6: d′i = (xi+1 − fθ(xi+1, ti+1))/ti+1

7: xi+1 = xi + (ti+1 − ti)(12di +
1
2
d′i)

8: end if
9: end for

Algorithm 14 PFGM++ training with hyper-
parameter transferred from EDM

1: Set rmax = σmax
√
D

2: Sample radius R ∼ prmax(R) and uniform
angle v = u

∥u∥2 , with u ∼ N (0, I)
3: Get initial data x0 = Rv
4: for i = 0, . . . , T − 1 do
5: di = (xi − fθ(xi, ti))/ti
6: xi+1 = xi + (ti+1 − ti)di
7: if ti+1 > 0 then
8: d′i = (xi+1 − fθ(xi+1, ti+1))/ti+1

9: xi+1 = xi + (ti+1 − ti)(12di +
1
2
d′i)

10: end if
11: end for

Transfer DDPM (continuous) training and sampling: Here we demonstrate the “zero-

shot" transfer of hyperparameters from DDPM to PFGM++, using the r = σ
√
D formula.

We highlight the modifications in blue. In particular, we list the DDPM training/sampling

algorithms (Alg 15/Alg 17), and their counterparts in PFGM++ (Alg 16/Alg 18) for

comparisons. Let βT and β1 be the maximum/minimum values of β in DDPM [167]. Similar

to [34], we denote αt = e−
1
2
t2(β̄max−β̄min)−tβ̄min , with β̄max = βT · T and β̄min = β1 · T . For

example, on CIFAR-10, β̄min = 1e− 1 and β̄max = 20 with T = 1000. We would like to note

that the tis in the sampling algorithms (Alg 17 and Alg 18) monotonically decrease from 1 to

317



0 as i increases.

Algorithm 15 DDPM training
1: Sample a batch of data {yi}Bi=1 from
p(y)

2: Sample time {ti=t′i/T}Bi=1 with
t′i∼U({1, . . . , T})

3: Get perturbed data {ŷi =
√
αtiyi +√

1− αtiϵi}Bi=1, where ϵi ∼ N (0, I)
4: Calculate loss ℓ(θ) =∑B

i=1 λ(ti)∥fθ(ŷi, ti)− ϵi∥22
5: Update the network parameter θ via

Adam optimizer

Algorithm 16 PFGM++ training with hyper-
parameter transferred from DDPM
1: Sample a batch of data {yi}Bi=1 from p(y)
2: Sample time {ti}Bi=1 from U [0, 1]
3: Get σi from ti: {σi =

√
1−αti

αti
}

4: Sample r from pr: {ri = σi
√
D}Bi=1

5: Sample radiuses {Ri ∼ pri(R)}Bi=1

6: Sample uniform angles {vi = ui

∥ui∥2}
B
i=1,

with ui ∼ N (0, I)
7: Get perturbed data {ŷi =

√
αti(yi +

Rivi)}Bi=1

8: Calculate loss ℓ(θ) =∑B
i=1 λ(ti)∥fθ(ŷi, ti)−

√
DRivi

r
∥22

9: Update the network parameter θ via Adam
optimizer

Algorithm 17 DDIM sampling
1: xT ∼ N (0, I)
2: for i = T, . . . , 1 do
3: xi−1 =

√
αti−1

αti
xi

+(
√
1− αti−1

−
√

αti−1

αti

√
1− αti)fθ(xi, ti)

4: end for

Algorithm 18 PFGM++ sampling trans-
ferred from DDIM

1: Set σmax =
√

1−α1

α1
, rmax = σmax

√
D

2: Sample radius R ∼ prmax(R) and uniform
angle v = u

∥u∥2 , with u ∼ N (0, I)

3: Get initial data xT =
√
α1Rv

4: for i = T, . . . , 1 do
5: xi−1 =

√
αti−1

αti
xi

+(
√
1− αti−1

−
√

αti−1

αti

√
1− αti)fθ(xi, ti)

6: end for

B.6.2 Experimental Details

We show the experimental setups in section 8.4, as well as the training, sampling, and

evaluation details for PFGM++.

Experiments for the Analysis in Sec 8.4

In the experiments of section 8.3 and section 8.4.1, we need to access the posterior p0|r(y|x) ∝

pr(x|y)p(y) to calculate the mean TVD. We sample a large batch {yi}ni=1 with n = 1024 on

318



CIFAR-10 to empirically approximate the posterior:

p0|r(yi|x) =
pr(x|yi)p(yi)

pr(x)
≈ pr(x|yi)∑n

j=1 pr(x|yj)
=

1/(∥x− yi∥22 + r2)
N+D

2∑n
j=1 1/(∥x− yj∥22 + r2)

N+D
2

We sample a large batch of 256 to approximate all the expectations in section 8.4, such

as the average TVDs.

Training Details

We borrow the architectures, preconditioning techniques, optimizers, exponential moving

average (EMA) schedule, and hyper-parameters from previous state-of-the-art diffusion model

EDM [27]. We apply the alignment method in section 8.3 to transfer their well-tuned

hyper-parameters.

For architecture, we use the improved NCSN++ [27] for the CIFAR-10 dataset (batch size

512), and the improved DDPM++ for the FFHQ dataset (batch size 256). Since [27] does

not experiment on LSUN Churches dataset, we set the number of blocks to 2, and the feature

maps (× 1
128

) to 1-1-2-2-2-2-2 without augmentation, inspired by the architecture in [34]. For

optimizers, following EDM, we adopt the Adam optimizer with a learning rate of 10e− 4.

We further incorporate the EMA schedule, learning rate warm-up, and data augmentations

in EDM. Please refer to Appendix F in EDM paper [27] for details.

The most prominent improvements in EDM are the preconditioning and the new training

distribution for σ, i.e., p(σ). Specifically, adding these two techniques to the vanilla diffusion

objective (Equation 8.6), their effective training objective can be written as:

Eσ∼p(σ)λ(σ)cout(σ)
2Ep(y)Epσ(x|y)

[∥∥∥Fθ(cin(σ) · x, cnoise(σ))−
1

cout(σ)
(y − cskip(σ) · x)

∥∥∥2
2

]
(B.5)

with the predicted normalized score function in the vanilla diffusion objective (Equation 8.6)

re-parameterized as

fθ(x, σ) =
cskip(σ)x+ cout(σ)Fθ(cin(σ)x, cnoise(σ))− x

σ
≈ σ∇x log pσ(x)

319



cin(σ) = 1/
√
σ2 + σ2

data, cout(σ) = σ·σdata/
√
σ2 + σ2

data, cskip(σ) = σ2
data/(σ

2+σ2
data), cnoise(σ) =

1
4
ln(σ), with σdata = 0.5. {cin(σ), cout(σ), cskip(σ), cdata, cnoise(σ)} are all the hyper-parameters

in the preconditioning. The training distribution p(σ) is the log-normal distribution with

ln(σ) ∼ N (−1.2, 1.22), and the loss weighting λ(σ) = 1/cout(σ)
2.

Recall that the hyper-parameter alignment rule r = σ
√
D can transfer the hyper-parameter

from diffusion models (D→∞) to finite Ds. Hence we can directly set σ = r/
√
D in those

hyper-parameters for preconditioning. In addition, the training distribution p(r) can be

derived via the change-of-variable formula, i.e., p(r) = p(σ = r/
√
D)/
√
D. The final

PFGM++ objective after incorporating these techniques into Equation 8.4 is:

Er∼p(r)λ(r/
√
D)cout(r/

√
D)2Ep(y)Epr(x|y)

[∥∥∥Fθ(cin(r/√D) · x, cnoise(r/
√
D))

− 1

cout(σ)
(y − cskip(r/

√
D) · x)

∥∥∥2
2

]

with the predicted normalized electric field in the vanilla PFGM++ objective (Equation 8.4)

re-parameterized as

fθ(x̃) =
cskip(r/

√
D)x+ cout(r/

√
D)Fθ(cin(r/

√
D)x, cnoise(r/

√
D))− x

r/
√
D

≈
√
D
E(x̃)x
E(x̃)r

Sampling Details

For sampling, following EDM [27], we also use Heun’s 2nd method (improved Euler method) [154]

as the ODE solver for dx/dr = E(x̃)x/E(x̃)r = fθ(x̃)/
√
D.

We adopt the same parameterized scheme in EDM to determine the evaluation points

during N -step ODE sampling:

ri = (rmax
1
ρ +

i

N − 1
(rmin

1
ρ − rmax

1
ρ ))ρ and rN = 0

where ρ controls the relative density of evaluation points in the near field. We set ρ = 7

as in EDM, and rmax = σmax
√
D = 80

√
D, rmin = σmin

√
D = 0.002

√
D (σmax, σmin are the

hyper-parameters in EDM, controlling the starting/terminal evaluation points) following the

r = σ
√
D alignment rule.

320



Practical Sampling Procedures of Perturbation Kernel and Prior Distribution

In this section, we discuss how to simple from the perturbation kernel pr(x|y)

∝ 1/(∥x− y∥22 + r2)
N+D

2 in practice. We first decompose pr(·|y) in hyperspherical coordinates

to Uψ(ψ)pr(R), where Uψ is the uniform distribution over the angle component and the

distribution of the perturbed radius R = ∥x− y∥2 is

pr(R) ∝
RN−1

(R2 + r2)
N+D

2

(B.6)

The sampling procedure of the radius distribution encompasses three steps:

R1 ∼ Beta(α=
N

2
, β =

D

2
)

R2 =
R1

1−R1

R3 =
√
r2R2

Next, we prove that p(R3) = pr(R3). Note that the pdf of the inverse beta distribution is

p(R2) ∝ R
N
2
−1

2 (1 +R2)
−N+D

2

By change-of-variable, the pdf of R3 =
√
r2maxR2 is

p(R3) ∝ R
N
2
−1

2 (1 +R2)
−N

2
−D

2 ∗ 2R3

r2max

∝ R3R
N
2
−1

2

(1 +R2)
N+D

2

=
(R3/r)

N−1

(1 + (R2
3/r

2))
N+D

2

∝ RN−1
3

(1 + (R2
3/r

2))
N+D

2

∝ RN−1
3

(r2 +R2
3)

N+D
2

∝ pr(R3) (By Equation B.6)

Note that R1 has mean N
N+D

and variance O( ND
(N+D)3

). Hence when D = O(N), pr(R)

321



would highly concentrate on a specific value, resolving the heavy-tailed problem. We can

sample the uniform angel component by u = w/∥w∥,w ∼ N (0, IN×N). Together, sampling

from the perturbation kernel pr(x|y) is equivalent to setting x = y + R3u. On the other

hand, the prior distribution is

prmax(x) ∝ lim
rmax→∞

ˆ
rDmax/∥x̃− ỹ∥N+Dp(y)dy = lim

rmax→∞
rDmax/(∥x∥2 + r2max)

N+D
2

We observe that prmax(x) the same as the perturbation kernel prmax(x|y = 0). Hence we can

sample from the prior following x = R3u with R3,u defined above and r = rmax.

Evaluation Details

For the evaluation, we compute the Fréchet distance between 50000 generated samples and

the pre-computed statistics of CIFAR-10 and FFHQ. On CIFAR-10, we follow the evaluation

protocol in EDM [27], which repeats the generation three times with different seeds for

each checkpoint and reports the minimum FID score. However, we observe that the FID

score has a large fluctuation across checkpoints, and the minimum FID score of EDM in

our re-run experiment does not align with the original results reported in [27]. Figure B.34a

shows that the FID score could have a variation of ±0.2 during the training of a total of

200 million images [27]. To better evaluate the model performance, Table 8.2 reports the

average FID over the Top-3 checkpoints instead. In Figure B.34b, we further demonstrate the

moving average of the FID score with a window of 10000K images. It shows that D = 2048

consistently outperforms other baselines in the same training iterations, in agreement with

the results in Table 8.2.

We further report the variation of FID scores in Table B.24 for the best checkpoint across

different D values, by repeating the sampling process three times using different seeds. We

observe that the standard deviation of FID is approximately in the range of 0.5% ∼ 1% of

the average FID, which is much smaller than the performance gain of D = 128/2048 in terms

of Min or Average FID. Additionally, in Table 7.1 and Table 8.2 in the main text, we can see

that the median D = 128/2048 consistently improves over the baseline (D =∞) when using

the Top-3 Average FID of checkpoints as a metric.

322



Table B.24: Min, Average and standard deviation of FID on CIFAR-10 using three different
sets of random seeds for sampling

Min FID ↓ Average FID ↓ Standard deviation

D = 2048 1.92 1.94 0.02
D = 2048 1.91 1.92 0.01
D →∞ [27] 1.98 2.00 0.02

150000 160000 170000 180000 190000 200000
Kimg

2.45

2.50

2.55

2.60

2.65

2.70

2.75

2.80

FI
D 

Sc
or

e

D = 128
D = 2048
D = 3072000
D  (Diffusion)

(a) w/o moving average

150000 160000 170000 180000 190000 200000
Kimg

2.55

2.60

2.65

2.70

FI
D 

Sc
or

e

D = 128
D = 2048
D = 3072000
D  (Diffusion)

(b) w/ moving average

Figure B.34: FID score in the training course when varying D, (a) w/o and (b) w/ moving
average.

323



Experiments for Robustness

Controlled experiments with α In the controlled noise setting, we inject noise into the

intermediate point xr in each of the 35 ODE steps by xr = xr+αϵr where ϵr ∼ N (0, r/
√
DI).

Since pr has roughly the same phase as pσ=r/√D in diffusion models, we pick r/
√
D standard

deviation of ϵr when the intermediate step is r.

Post-training quantization In the post-training quantization experiments on CIFAR-10,

we quantize the weights of convolutional layers excluding the 32× 32 layers, as we empirically

observe that these input/output layers are more critical for sample quality.

B.6.3 Extra Experiments

Stable Target Field

[23] propose a Stable Target Field objective for training the diffusion models:

∇x log pσ(x) ≈ Ey1∼p0|t(·|x)E{yi}ni=2∼pn−1

[
n∑
k=1

pt|0(x|yk)∑
j pt|0(x|yj)

∇x log pt|0(x|yk)

]

where they sample a large batch of samples {yi}ni=2 from the data distribution to approximate

the score function at x. They show that the new target can enhance the stability of converged

models in different runs/seeds. PFGM++ can be trained in a similar fashion by replacing

the target x−y
r/
√
D

in perturbation-based objective (Equation 8.4) with

1

r/
√
D

(
x− Ep0|r(y|x) [y]

)
≈

1

r/
√
D

(
x− Ey1∼p0|r(·|x)E{yi}ni=2∼pn−1

[
n∑
k=1

1/(∥x− yk∥22 + r2)
N+D

2∑
j 1/(∥x− yj∥22 + r2)

N+D
2

yk

])

When n = 1, the new target reduces to the original target. Similar to [23], one can show that

the bias of the new target together with its trace-of-covariance shrinks to zero as we increase

the size of the large batch. This new target can alleviate the variations between random seeds.

With the new STF-style target, Table B.25 shows that when settingD = 3072000≫ N = 3072,

324



the model obtains the same FID score as the diffusion models (EDM [27]). It aligns with the

theoretical results in Sec 8.3, which states that PFGM++ recover the diffusion model when

D →∞.

Table B.25: FID and NFE on CIFAR-10, using the Stable Target Field [23] in training
objective.

FID ↓ NFE ↓

D = 3072000 1.90 35
D →∞ [27] 1.90 35

Toy Dataset

In this section, we construct a 1000-dimensional toy dataset to systematically investigate the

behaviors of models with different D values. We synthesize the data in three steps: first, we

randomly sample the data y from a 10-dimensional Gaussian mixture 1
2
N (1, 0.22 ∗ I10×10) +

1
2
N (−1, 0.22 ∗ I10×10). Next, we map the 10-dimensional data to 1000-dimensional space

using a random matrix W ∈ R1000×10: ŷ = Wy. The entries in W are i.i.d sampled from

standard normal distribution. Finally, we perturbed the data with a small Gaussian noise:

x = ŷ+ ϵ, where ϵ ∼ N (1, 0.012 ∗I1000×1000). The synthetic dataset contains 2000 data points

sampled using this procedure.

We design a four-layer UNet architecture, with widths corresponding to data dimen-

sion—latent dimension—latent dimension—latent dimension—data dimension. The latent

dimension directly controls the capacity of the neural network. We also incorporate the

residual connection, time-embedding and preconditioning techniques in EDM [27].

We examine the generated samples when varying D and the latent dimension. We

visualize the first two coordinates (x0,x1) of the true data (Figure B.35) and generated

data (Figure B.36) for illustration. In Figure B.36, we show that when the latent dimension is

set to 4, both the D = 100 and D =∞ (diffusion model) fail to recover the data distribution,

while model with intermediate D = 1000 well captures the underlying data distribution.

On weaker architecture (smaller latent dimension), the non-robustness of large D and the

non-rigidity of small D would be amplified. It corroborates the arguments that median Ds

325



better balance the robustness and rigidity. As we enlarge the neural network capacity by

increasing the latent dimension to 32, all the models with different Ds faithfully recover

the data distribution. For quantitative comparison, in Table B.26 we report the maximum

mean discrepancy between the generated data and the true data for different models. We

exclude the D = 1 case (PFGM) since the perturbation kernel is extremely heavy-tailed in

1000-dimensional space, preventing the use of the perturbation-based objective.

Figure B.35: Visualization of the first two coordinates (x0,x1) for the 1000-dimensional
synthetic data.

Table B.26: Maximum mean discrepancy between the generated data and the true data.

D = 100 D = 1000 D = 10000 D =∞

Latent Dimension = 4 1.75 0.17 0.79 1.82
Latent Dimension = 8 0.33 0.16 0.43 1.46
Latent Dimension = 32 0.12 0.01 0.14 0.07

Extended CIFAR-10 Samples when varying α

To see how the sample quality varies with α, we visualize the generative samples of models

trained with D ∈ {64, 128, 2048} and D →∞. We pick α ∈ {0, 0.1, 0.2}. Figure B.37 shows

that the smaller Ds produce better samples compared to larger D. Diffusion models (D →∞)

generate noisy images that appear to be out of the data distribution when α=0.2, in contrast

to the clean images by D = 64, 128.

326



(a) Latent dimension = 4

(b) Latent dimension = 8

(c) Latent dimension = 32

Figure B.36: Visualization of the first two coordinates (x0,x1) for the generated data (blue)
versus true data (orange). From the top row to the bottom row: the latent dimension of the
neural network is set to 4 (a), 8 (b), and 32 (c).

327



(a)
D=64, α=0 (FID=1.96)

(b)
D=64, α=0.1 (FID=1.97)

(c)
D=64, α=0.2 (FID=2.07)

(d)
D=128, α=0 (FID=1.92)

(e)
D=128, α=0.1 (FID=1.95)

(f)
D=128, α=0.2 (FID=2.19)

(g)
D=2048, α=0 (FID=1.92)

(h)
D=2048, α=0.1 (FID=1.95)

(i)
D=2048, α=0.2 (FID=2.19)

(j)
D→∞, α=0 (FID=1.98)

(k)
D→∞, α=0.1 (FID=9.27)

(l)
D→∞, α=0.2 (FID=92.41)

Figure B.37: Generated samples on CIFAR-10 with varied hyper-parameter for noise
injection (α). Images from top to bottom rows are produced by models trained with
D = 64/128/2048/∞. We use the same random seeds for finite Ds during image generation.

328



(a) D = 128 (FID=2.43) (b) EDM (D →∞) (FID=2.53)

Figure B.38: Generated images on FFHQ 64× 64 dataset, by (left) D = 128 and (right)
EDM (D →∞).

Extended FFHQ Samples

In Figure B.38, we provide samples generated by the D = 128 case and EDM (the D →∞

case).

329



330



Appendix C

Code

Below, we provide open-source implementations of the methods discussed in this thesis, as

well as pre-trained checkpoints.

• Chapter 3: https://github.com/Newbeeer/stf

• Chapter 5: https://github.com/Newbeeer/diffusion_restart_sampling

• Chapter 6: https://github.com/gcorso/particle-guidance

• Chapter 7: https://github.com/Newbeeer/Poisson_flow

• Chapter 8: https://github.com/Newbeeer/pfgmpp

331

https://github.com/Newbeeer/stf
https://github.com/Newbeeer/diffusion_restart_sampling
https://github.com/gcorso/particle-guidance
https://github.com/Newbeeer/Poisson_flow
https://github.com/Newbeeer/pfgmpp


332



References

[1] T. B. Brown, B. Mann, N. Ryder, et al., “Language models are few-shot learners,”

ArXiv, vol. abs/2005.14165, 2020.

[2] C. Saharia, W. Chan, S. Saxena, et al., “Photorealistic Text-to-Image Diffusion Models

with Deep Language Understanding,” in Advances in Neural Information Processing

Systems (NeurIPS), 2022.

[3] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical Text-

Conditional Image Generation with CLIP Latents,” arXiv preprint arXiv:2204.06125,

2022.

[4] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-Resolution

Image Synthesis with Latent Diffusion Models,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[5] B. Poole, A. Jain, J. T. Barron, and B. Mildenhall, “Dreamfusion: Text-to-3d using

2d diffusion,” arXiv:2209.14988, 2022.

[6] H. Jun and A. Nichol, “Shap-e: Generating conditional 3d implicit functions,” arXiv

preprint arXiv:2305.02463, 2023.

[7] J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet, “Video

diffusion models,” 2022. arXiv: 2204.03458 [cs.CV].

[8] U. Singer, A. Polyak, T. Hayes, X. Yin, J. An, S. Zhang, Q. Hu, H. Yang, O. Ashual,

O. Gafni, et al., “Make-a-video: Text-to-video generation without text-video data,”

arXiv:2209.14792, 2022.

333

https://arxiv.org/abs/2204.03458


[9] V. N. Vapni, “The nature of statistical learning theory,” in Statistics for Engineering

and Information Science, 2000. url: https://api.semanticscholar.org/CorpusID:

7138354.

[10] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsuper-

vised learning using nonequilibrium thermodynamics,” in International Conference on

Machine Learning, PMLR, 2015, pp. 2256–2265.

[11] Y. Song and S. Ermon, “Generative modeling by estimating gradients of the data

distribution,” Advances in Neural Information Processing Systems, vol. 32, 2019.

[12] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in

Neural Information Processing Systems, vol. 33, pp. 6840–6851, 2020.

[13] Z. Liu, D. Luo, Y. Xu, T. S. Jaakkola, and M. Tegmark, “Genphys: From physical

processes to generative models,” ArXiv, vol. abs/2304.02637, 2023.

[14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.

Courville, and Y. Bengio, “Generative adversarial nets,” Advances in neural information

processing systems, vol. 27, 2014.

[15] A. van den Oord, N. Kalchbrenner, L. Espeholt, K. Kavukcuoglu, O. Vinyals, and

A. Graves, “Conditional image generation with pixelcnn decoders,” in NIPS, 2016.

[16] D. P. Kingma and P. Dhariwal, “Glow: Generative flow with invertible 1x1 convolutions,”

in NeurIPS, 2018.

[17] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using real nvp,” ArXiv,

vol. abs/1605.08803, 2017.

[18] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” CoRR, vol. abs/1312.6114,

2013.

[19] A. Van Den Oord, O. Vinyals, et al., “Neural discrete representation learning,” Advances

in neural information processing systems, vol. 30, 2017.

[20] Y. LeCun, S. Chopra, R. Hadsell, A. Ranzato, and F. J. Huang, “A tutorial on

energy-based learning,” 2006.

334

https://api.semanticscholar.org/CorpusID:7138354
https://api.semanticscholar.org/CorpusID:7138354


[21] Y. Du and I. Mordatch, “Implicit generation and generalization in energy-based models,”

ArXiv, vol. abs/1903.08689, 2019.

[22] B. D. Anderson, “Reverse-time diffusion equation models,” Stochastic Processes and

their Applications, vol. 12, no. 3, pp. 313–326, 1982.

[23] Y. Xu, S. Tong, and T. S. Jaakkola, “Stable target field for reduced variance score esti-

mation in diffusion models,” in International Conference on Learning Representations,

2023.

[24] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-

Based Generative Modeling through Stochastic Differential Equations,” in International

Conference on Learning Representations (ICLR), 2021.

[25] J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,” ArXiv,

vol. abs/2010.02502, 2020.

[26] C. Lu, Y. Zhou, F. Bao, J. Chen, C. Li, and J. Zhu, “Dpm-solver: A fast ode

solver for diffusion probabilistic model sampling in around 10 steps,” arXiv preprint

arXiv:2206.00927, 2022.

[27] T. Karras, M. Aittala, T. Aila, and S. Laine, “Elucidating the design space of diffusion-

based generative models,” ArXiv, vol. abs/2206.00364, 2022.

[28] A. Jolicoeur-Martineau, K. Li, R. Piche-Taillefer, T. Kachman, and I. Mitliagkas,

“Gotta go fast when generating data with score-based models,” ArXiv, vol. abs/2105.14080,

2021.

[29] Y. Xu, M. Deng, X. Cheng, Y. Tian, Z. Liu, and T. Jaakkola, “Restart sampling for

improving generative processes,” ArXiv, vol. abs/2306.14878, 2023.

[30] Y. Xu, Z. Liu, M. Tegmark, and T. Jaakkola, “Poisson flow generative models,” ArXiv,

vol. abs/2209.11178, 2022.

[31] Y. Xu, Z. Liu, Y. Tian, S. Tong, M. Tegmark, and T. Jaakkola, “Pfgm++: Unlocking

the potential of physics-inspired generative models,” in International Conference on

Machine Learning, 2023.

335



[32] Y. Xu, G. Corso, T. Jaakkola, A. Vahdat, and K. Kreis, “Disco-diff: Enhancing

continuous diffusion models with discrete latents,” 2024.

[33] G. Corso, Y. Xu, V. D. Bortoli, R. Barzilay, and T. Jaakkola, “Particle guidance:

Non-i.i.d. diverse sampling with diffusion models,” ArXiv, vol. abs/2310.13102, 2023.

url: https://api.semanticscholar.org/CorpusID:264405842.

[34] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole,

“Score-based generative modeling through stochastic differential equations,” ArXiv,

vol. abs/2011.13456, 2021.

[35] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-

based generative modeling through stochastic differential equations,” in International

Conference on Learning Representations, 2021. url: https://openreview.net/forum?

id=PxTIG12RRHS.

[36] Y. Song, C. Durkan, I. Murray, and S. Ermon, “Maximum likelihood training of

score-based diffusion models,” in Neural Information Processing Systems, 2021. url:

https://api.semanticscholar.org/CorpusID:235352469.

[37] Y. Song, J. N. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole,

“Score-based generative modeling through stochastic differential equations,” ArXiv,

vol. abs/2011.13456, 2020.

[38] P. Vincent, “A connection between score matching and denoising autoencoders,” Neural

Computation, vol. 23, pp. 1661–1674, 2011.

[39] T. Salimans and J. Ho, “Progressive distillation for fast sampling of diffusion models,”

arXiv preprint arXiv:2202.00512, 2022.

[40] S. Li, L. Liu, Z. Chai, R. Li, and X. Tan, “Era-solver: Error-robust adams solver for fast

sampling of diffusion probabilistic models,” arXiv preprint arXiv:2301.12935, 2023.

[41] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans trained

by a two time-scale update rule converge to a local nash equilibrium,” in NIPS, 2017.

[42] A. B. Owen, Monte Carlo theory, methods and examples. 2013.

336

https://api.semanticscholar.org/CorpusID:264405842
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://api.semanticscholar.org/CorpusID:235352469


[43] V. Elvira and L. Martino, “Advances in importance sampling,” Wiley StatsRef: Statistics

Reference Online, 2021.

[44] Z. Xiao, K. Kreis, and A. Vahdat, “Tackling the generative learning trilemma with

denoising diffusion GANs,” in International Conference on Learning Representations,

2022. url: https://openreview.net/forum?id=JprM0p-q0Co.

[45] C. Wang, X. Chen, A. Smola, and E. Xing, “Variance reduction for stochastic gradient

optimization,” in NIPS, 2013.

[46] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny images,”

2009.

[47] T. Hesterberg, “Weighted average importance sampling and defensive mixture distri-

butions,” Technometrics, vol. 37, pp. 185–194, 1995.

[48] T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen, and T. Aila, “Training

generative adversarial networks with limited data,” ArXiv, vol. abs/2006.06676, 2020.

[49] Y. Song and S. Ermon, “Improved techniques for training score-based generative

models,” ArXiv, vol. abs/2006.09011, 2020.

[50] Y. Xu, Z. Liu, M. Tegmark, and T. Jaakkola, “Poisson flow generative models,”

Advances in Neural Information Processing Systems, 2022.

[51] S. Yang, P. Luo, C. C. Loy, and X. Tang, “From facial parts responses to face detection:

A deep learning approach,” 2015 IEEE International Conference on Computer Vision

(ICCV), pp. 3676–3684, 2015.

[52] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans for improved

quality, stability, and variation,” ArXiv, vol. abs/1710.10196, 2018.

[53] J. R. Dormand and P. J. Prince, “A family of embedded runge-kutta formulae,” Journal

of Computational and Applied Mathematics, vol. 6, pp. 19–26, 1980.

[54] J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,” ArXiv,

vol. abs/2010.02502, 2021.

[55] T. Salimans, I. J. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen,

“Improved techniques for training gans,” ArXiv, vol. abs/1606.03498, 2016.

337

https://openreview.net/forum?id=JprM0p-q0Co


[56] A. Defazio, F. Bach, and S. Lacoste-Julien, “Saga: A fast incremental gradient method

with support for non-strongly convex composite objectives,” Advances in neural

information processing systems, vol. 27, 2014.

[57] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent using predictive

variance reduction,” Advances in neural information processing systems, vol. 26, 2013.

[58] J. Choi, J. Lee, C. Shin, S. Kim, H. Kim, and S. Yoon, “Perception prioritized training

of diffusion models,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, 2022, pp. 11 472–11 481.

[59] A. Grover, J. Song, A. Kapoor, K. Tran, A. Agarwal, E. J. Horvitz, and S. Ermon, “Bias

correction of learned generative models using likelihood-free importance weighting,”

Advances in neural information processing systems, vol. 32, 2019.

[60] A. Swaminathan and T. Joachims, “The self-normalized estimator for counterfactual

learning,” in NIPS, 2015.

[61] A. M. Metelli, M. Papini, F. Faccio, and M. Restelli, “Policy optimization via impor-

tance sampling,” in NeurIPS, 2018.

[62] J. Bornschein and Y. Bengio, “Reweighted wake-sleep,” arXiv preprint arXiv:1406.2751,

2014.

[63] Y. Burda, R. Grosse, and R. Salakhutdinov, “Importance weighted autoencoders,”

arXiv preprint arXiv:1509.00519, 2015.

[64] G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal, “The “wake-sleep” algorithm for

unsupervised neural networks,” Science, vol. 268, no. 5214, pp. 1158–1161, 1995.

[65] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint

arXiv:1312.6114, 2013.

[66] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation and

approximate inference in deep generative models,” in International conference on

machine learning, PMLR, 2014, pp. 1278–1286.

[67] A. Hyvärinen and P. Dayan, “Estimation of non-normalized statistical models by score

matching.,” Journal of Machine Learning Research, vol. 6, no. 4, 2005.

338



[68] Z. Wang, S. Cheng, L. Yueru, J. Zhu, and B. Zhang, “A wasserstein minimum velocity

approach to learning unnormalized models,” in International Conference on Artificial

Intelligence and Statistics, PMLR, 2020, pp. 3728–3738.

[69] A. Dosovitskiy, L. Beyer, A. Kolesnikov, et al., “An image is worth 16x16 words:

Transformers for image recognition at scale,” in International Conference on Learning

Representations, 2021.

[70] F. Bao, C. Li, J. Sun, and J. Zhu, “Why are conditional generative models better than

unconditional ones?” arXiv preprint arXiv:2212.00362, 2022.

[71] V. T. Hu, D. W. Zhang, Y. M. Asano, G. J. Burghouts, and C. G. M. Snoek, “Self-

guided diffusion models,” Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), 2023.

[72] W. Harvey and F. Wood, “Visual chain-of-thought diffusion models,” arXiv preprint

arXiv:2303.16187, 2023.

[73] P. Esser, R. Rombach, and B. Ommer, “Taming transformers for high-resolution image

synthesis,” in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), 2021.

[74] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I.

Sutskever, “Zero-shot text-to-image generation,” in Proceedings of the 38th Interna-

tional Conference on Machine Learning (ICML), 2021.

[75] H. Chang, H. Zhang, L. Jiang, C. Liu, and W. T. Freeman, “Maskgit: Masked generative

image transformer,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), 2022.

[76] J. Yu, Y. Xu, J. Y. Koh, et al., “Scaling autoregressive models for content-rich text-to-

image generation,” Transactions on Machine Learning Research (TMLR), 2022.

[77] P. Pernias, D. Rampas, M. L. Richter, C. J. Pal, and M. Aubreville, “Wuerstchen: An

efficient architecture for large-scale text-to-image diffusion models,” arXiv preprint

arXiv:2306.00637, 2023.

339



[78] H. Chang, H. Zhang, J. Barber, et al., “Muse: Text-to-image generation via masked

generative transformers,” in Proceedings of the 40th International Conference on

Machine Learning (ICML), 2023.

[79] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative

adversarial networks,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), 2019.

[80] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila, “Analyzing

and improving the image quality of StyleGAN,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[81] Y. Xu, Z. Liu, M. Tegmark, and T. Jaakkola, “Poisson flow generative models,” in

Advances in Neural Information Processing Systems (NeurIPS), 2022.

[82] Y. Xu, Z. Liu, Y. Tian, S. Tong, M. Tegmark, and T. Jaakkola, “PFGM++: Unlock-

ing the potential of physics-inspired generative models,” in Proceedings of the 40th

International Conference on Machine Learning (ICML), 2023.

[83] E. Jang, S. S. Gu, and B. Poole, “Categorical reparameterization with gumbel-softmax,”

ArXiv, vol. abs/1611.01144, 2016.

[84] J. Ho and T. Salimans, “Classifier-Free Diffusion Guidance,” in NeurIPS 2021 Workshop

on Deep Generative Models and Downstream Applications, 2021.

[85] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in The International

Conference on Learning Representations, 2014.

[86] A. van den Oord, O. Vinyals, and k. kavukcuoglu koray, “Neural discrete representation

learning,” in Advances in Neural Information Processing Systems (NeurIPS), 2017.

[87] J. T. Rolfe, “Discrete variational autoencoders,” in International Conference on Learn-

ing Representations, 2017.

[88] C.-W. Huang, J. H. Lim, and A. Courville, “A variational perspective on diffusion-based

generative models and score matching,” in Neural Information Processing Systems

(NeurIPS), 2021.

340



[89] D. P. Kingma, T. Salimans, B. Poole, and J. Ho, “Variational diffusion models,” in

Advances in Neural Information Processing Systems, 2021.

[90] P. Dhariwal and A. Q. Nichol, “Diffusion Models Beat GANs on Image Synthesis,” in

Advances in Neural Information Processing Systems, 2021.

[91] D. P. Kingma and R. Gao, “Understanding diffusion objectives as the ELBO with

simple data augmentation,” in Thirty-seventh Conference on Neural Information

Processing Systems, 2023.

[92] J. Ho, W. Chan, C. Saharia, et al., “Imagen Video: High Definition Video Generation

with Diffusion Models,” arXiv preprint arXiv:2210.02303, 2022.

[93] A. Radford, J. W. Kim, C. Hallacy, et al., “Learning Transferable Visual Models From

Natural Language Supervision,” in Proceedings of the 38th International Conference

on Machine Learning (ICML), 2021.

[94] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for unsupervised

visual representation learning,” in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), 2020.

[95] M. Caron, H. Touvron, I. Misra, H. Jegou, J. Mairal, P. Bojanowski, and A. Joulin,

“Emerging properties in self-supervised vision transformers,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

[96] T. Li, D. Katabi, and K. He, “Self-conditioned image generation via generating

representations,” arXiv preprint arXiv:2312.03701, 2023.

[97] K. Preechakul, N. Chatthee, S. Wizadwongsa, and S. Suwajanakorn, “Diffusion au-

toencoders: Toward a meaningful and decodable representation,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[98] Y. Wang, Y. Schiff, A. Gokaslan, W. Pan, F. Wang, C. De Sa, and V. Kuleshov,

“InfoDiffusion: Representation learning using information maximizing diffusion models,”

in Proceedings of the 40th International Conference on Machine Learning (ICML),

2023.

341



[99] A. Casanova, M. Careil, J. Verbeek, M. Drozdzal, and A. Romero-Soriano, “Instance-

conditioned gan,” in Neural Information Processing Systems, 2021.

[100] A. Brock, J. Donahue, and K. Simonyan, “Large scale gan training for high fidelity

natural image synthesis,” ArXiv, vol. abs/1809.11096, 2018.

[101] A. Nichol and P. Dhariwal, “Improved denoising diffusion probabilistic models,” ArXiv,

vol. abs/2102.09672, 2021.

[102] J. Ho, C. Saharia, W. Chan, D. J. Fleet, M. Norouzi, and T. Salimans, “Cascaded

diffusion models for high fidelity image generation,” J. Mach. Learn. Res., vol. 23,

47:1–47:33, 2021.

[103] A. Jabri, D. J. Fleet, and T. Chen, “Scalable adaptive computation for iterative

generation,” in International Conference on Machine Learning, 2022.

[104] D. Kim, C.-H. Lai, W.-H. Liao, N. Murata, Y. Takida, T. Uesaka, Y. He, Y. Mitsufuji,

and S. Ermon, “Consistency trajectory models: Learning probability flow ode trajectory

of diffusion,” ArXiv, vol. abs/2310.02279, 2023.

[105] A. Sauer, K. Schwarz, and A. Geiger, “Stylegan-xl: Scaling stylegan to large diverse

datasets,” ACM SIGGRAPH 2022 Conference Proceedings, 2022.

[106] E. Hoogeboom, J. Heek, and T. Salimans, “Simple Diffusion: End-to-End Diffusion

for High Resolution Images,” in Proceedings of the 40th International Conference on

Machine Learning (ICML), 2023.

[107] G. Corso, H. Stärk, B. Jing, R. Barzilay, and T. Jaakkola, “Diffdock: Diffusion

steps, twists, and turns for molecular docking,” International Conference on Learning

Representations (ICLR), 2023.

[108] M. Geiger and T. Smidt, “E3nn: Euclidean neural networks,” arXiv preprint arXiv:2207.09453,

2022.

[109] A. Vaswani, N. M. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,

and I. Polosukhin, “Attention is all you need,” in Neural Information Processing

Systems, 2017.

342



[110] J. Austin, D. D. Johnson, J. Ho, D. Tarlow, and R. van den Berg, “Structured denoising

diffusion models in discrete state-spaces,” in Advances in Neural Information Processing

Systems, 2021.

[111] A. Campbell, J. Benton, V. D. Bortoli, T. Rainforth, G. Deligiannidis, and A. Doucet,

“A continuous time framework for discrete denoising models,” in Advances in Neural

Information Processing Systems, 2022.

[112] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-scale

hierarchical image database,” in Computer Vision and Pattern Recognition (CVPR),

2009.

[113] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans trained

by a two time-scale update rule converge to a local nash equilibrium,” in Advances in

neural information processing systems, 2017.

[114] W. Peebles and S. Xie, “Scalable diffusion models with transformers,” in Proceedings

of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 4195–4205.

[115] Y. Balaji, S. Nah, X. Huang, et al., “eDiff-I: Text-to-Image Diffusion Models with

Ensemble of Expert Denoisers,” arXiv preprint arXiv:2211.01324, 2022.

[116] G. Corso, A. Deng, N. Polizzi, R. Barzilay, and T. Jaakkola, “The discovery of binding

modes requires rethinking docking generalization,” in International Conference on

Learning Representations, 2024.

[117] H. Stärk, O. Ganea, L. Pattanaik, R. Barzilay, and T. Jaakkola, “Equibind: Geometric

deep learning for drug binding structure prediction,” in International Conference on

Machine Learning, 2022.

[118] Z. Liu, M. Su, L. Han, J. Liu, Q. Yang, Y. Li, and R. Wang, “Forging the basis

for developing protein–ligand interaction scoring functions,” Accounts of Chemical

Research, 2017.

[119] A. T. McNutt, P. Francoeur, R. Aggarwal, T. Masuda, R. Meli, M. Ragoza, J. Sunseri,

and D. R. Koes, “Gnina 1.0: Molecular docking with deep learning,” Journal of

cheminformatics, 2021.

343



[120] D. R. Koes, M. P. Baumgartner, and C. J. Camacho, “Lessons learned in empirical

scoring with smina from the csar 2011 benchmarking exercise,” Journal of chemical

information and modeling, 2013.

[121] T. A. Halgren, R. B. Murphy, R. A. Friesner, H. S. Beard, L. L. Frye, W. T. Pollard,

and J. L. Banks, “Glide: A new approach for rapid, accurate docking and scoring. 2.

enrichment factors in database screening,” Journal of medicinal chemistry, 2004.

[122] W. Lu, Q. Wu, J. Zhang, J. Rao, C. Li, and S. Zheng, “Tankbind: Trigonometry-aware

neural networks for drug-protein binding structure prediction,” Advances in neural

information processing systems, 2022.

[123] J. Ho, A. Jain, and P. Abbeel, “Denoising Diffusion Probabilistic Models,” in Advances

in Neural Information Processing Systems (NeurIPS), 2020.

[124] T. Dockhorn, A. Vahdat, and K. Kreis, “Score-based generative modeling with critically-

damped langevin diffusion,” in International Conference on Learning Representations

(ICLR), 2022.

[125] T. Dockhorn, A. Vahdat, and K. Kreis, “Genie: Higher-order denoising diffusion solvers,”

in Advances in Neural Information Processing Systems (NeurIPS), 2022.

[126] D. Podell, Z. English, K. Lacey, A. Blattmann, T. Dockhorn, J. Müller, J. Penna, and

R. Rombach, “SDXL: Improving Latent Diffusion Models for High-Resolution Image

Synthesis,” arXiv preprint arXiv:2307.01952, 2023.

[127] A. Blattmann, R. Rombach, H. Ling, T. Dockhorn, S. W. Kim, S. Fidler, and K.

Kreis, “Align your Latents: High-Resolution Video Synthesis with Latent Diffusion

Models,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2023.

[128] U. Singer, A. Polyak, T. Hayes, et al., “Make-A-Video: Text-to-Video Generation

without Text-Video Data,” in The Eleventh International Conference on Learning

Representations (ICLR), 2023.

344



[129] S. Ge, S. Nah, G. Liu, T. Poon, A. Tao, B. Catanzaro, D. Jacobs, J.-B. Huang, M.-Y.

Liu, and Y. Balaji, “Preserve Your Own Correlation: A Noise Prior for Video Diffusion

Models,” in Proceedings of the IEEE/CVF International Conference on Computer

Vision (ICCV), 2023.

[130] A. Nichol, H. Jun, P. Dhariwal, P. Mishkin, and M. Chen, Point-E: A System for

Generating 3D Point Clouds from Complex Prompts, 2022.

[131] X. Zeng, A. Vahdat, F. Williams, Z. Gojcic, O. Litany, S. Fidler, and K. Kreis, “LION:

Latent Point Diffusion Models for 3D Shape Generation,” in Advances in Neural

Information Processing Systems (NeurIPS), 2022.

[132] S. W. Kim, B. Brown, K. Yin, K. Kreis, K. Schwarz, D. Li, R. Rombach, A. Torralba,

and S. Fidler, “NeuralField-LDM: Scene Generation with Hierarchical Latent Diffusion

Models,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2023.

[133] B. Poole, A. Jain, J. T. Barron, and B. Mildenhall, “DreamFusion: Text-to-3D using

2D Diffusion,” in The Eleventh International Conference on Learning Representations

(ICLR), 2023.

[134] K. Schwarz, S. W. Kim, J. Gao, S. Fidler, A. Geiger, and K. Kreis, “WildFu-

sion: Learning 3D-Aware Latent Diffusion Models in View Space,” arXiv preprint

arXiv:2311.13570, 2023.

[135] R. Liu, R. Wu, B. Van Hoorick, P. Tokmakov, S. Zakharov, and C. Vondrick, “Zero-1-to-

3: Zero-shot One Image to 3D Object,” in Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV), 2023.

[136] U. Singer, S. Sheynin, A. Polyak, et al., “Text-to-4D Dynamic Scene Generation,” in

Proceedings of the 40th International Conference on Machine Learning, 2023.

[137] H. Ling, S. W. Kim, A. Torralba, S. Fidler, and K. Kreis, “Align your gaussians:

Text-to-4d with dynamic 3d gaussians and composed diffusion models,” arXiv preprint

arXiv:2312.13763, 2023.

345



[138] S. Bahmani, I. Skorokhodov, V. Rong, G. Wetzstein, L. Guibas, P. Wonka, S. Tulyakov,

J. J. Park, A. Tagliasacchi, and D. B. Lindell, “4d-fy: Text-to-4d generation using

hybrid score distillation sampling,” arXiv preprint arXiv:2311.17984, 2023.

[139] Y. Zheng, X. Li, K. Nagano, S. Liu, K. Kreis, O. Hilliges, and S. D. Mello, “A

unified approach for text- and image-guided 4d scene generation,” arXiv preprint

arXiv:2311.16854, 2023.

[140] J. Yim, B. L. Trippe, V. D. Bortoli, E. Mathieu, A. Doucet, R. Barzilay, and T.

Jaakkola, “Se(3) diffusion model with application to protein backbone generation,”

arXiv preprint arXiv:2302.02277, 2023.

[141] J. Ingraham, M. Baranov, Z. Costello, et al., “Illuminating protein space with a

programmable generative model,” Nature, vol. 623, pp. 1070–1078, 2023.

[142] J. L. Watson, D. Juergens, N. R. Bennett, et al., “De novo design of protein structure

and function with rfdiffusion,” Nature, vol. 620, pp. 1089–1100, 2023.

[143] A. Vahdat, K. Kreis, and J. Kautz, “Score-based Generative Modeling in Latent Space,”

in Neural Information Processing Systems (NeurIPS), 2021.

[144] R. Salakhutdinov and G. Hinton, “Deep boltzmann machines,” in Artificial intelligence

and statistics, 2009.

[145] G. E. Hinton, “A practical guide to training restricted boltzmann machines,” in Neural

networks: Tricks of the trade, Springer, 2012, pp. 599–619.

[146] A. Vahdat, E. Andriyash, and W. G. Macready, “Dvae#: Discrete variational autoen-

coders with relaxed Boltzmann priors,” in Advances in Neural Information Processing

Systems (NeurIPS), 2018.

[147] A. Vahdat, W. Macready, Z. Bian, A. Khoshaman, and E. Andriyash, “DVAE++:

Discrete variational autoencoders with overlapping transformations,” in Proceedings

of the 35th International Conference on Machine Learning (ICML), 2018.

[148] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and

A. Lerchner, “Beta-VAE: Learning basic visual concepts with a constrained variational

framework,” in International Conference on Learning Representations, 2017.

346



[149] M. R. Masters, A. H. Mahmoud, and M. A. Lill, “Fusiondock: Physics-informed

diffusion model for molecular docking,” ICML Workshop on Computational Biology,

2023.

[150] M. Plainer, M. Toth, S. Dobers, H. Stärk, G. Corso, C. Marquet, and R. Barzilay,

“Diffdock-pocket: Diffusion for pocket-level docking with sidechain flexibility,” in

NeurIPS 2023 Workshop on New Frontiers of AI for Drug Discovery and Development,

2023.

[151] H. Guo, S. Liu, H. Mingdi, Y. Lou, and B. Jing, “Diffdock-site: A novel paradigm for

enhanced protein-ligand predictions through binding site identification,” in NeurIPS

2023 Generative AI and Biology (GenBio) Workshop, 2023.

[152] R. Krivák and D. Hoksza, “P2rank: Machine learning based tool for rapid and accurate

prediction of ligand binding sites from protein structure,” Journal of cheminformatics,

vol. 10, pp. 1–12, 2018.

[153] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image

synthesis with latent diffusion models,” 2022 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 10 674–10 685, 2021.

[154] U. M. Ascher and L. R. Petzold, “Computer methods for ordinary differential equations

and differential-algebraic equations,” in SIAM, 1998.

[155] A. S. Dalalyan and A. Karagulyan, “User-friendly guarantees for the langevin monte

carlo with inaccurate gradient,” Stochastic Processes and their Applications, vol. 129,

no. 12, pp. 5278–5311, 2019.

[156] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale

hierarchical image database,” 2009 IEEE Conference on Computer Vision and Pattern

Recognition, pp. 248–255, 2009.

[157] A. Krizhevsky, “Learning multiple layers of features from tiny images,” Citeseer, 2009.

[158] C. Schuhmann, R. Beaumont, R. Vencu, et al., “Laion-5b: An open large-scale dataset

for training next generation image-text models,” ArXiv, vol. abs/2210.08402, 2022.

[159] J. Ho, “Classifier-free diffusion guidance,” ArXiv, vol. abs/2207.12598, 2022.

347



[160] C. Saharia, W. Chan, S. Saxena, et al., “Photorealistic text-to-image diffusion models

with deep language understanding,” ArXiv, vol. abs/2205.11487, 2022.

[161] A. Nichol, P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin, B. McGrew, I. Sutskever,

and M. Chen, “Glide: Towards photorealistic image generation and editing with

text-guided diffusion models,” in International Conference on Machine Learning, 2021.

[162] T.-Y. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and

C. L. Zitnick, “Microsoft coco: Common objects in context,” in European Conference

on Computer Vision, 2014.

[163] J. Hessel, A. Holtzman, M. Forbes, R. J. L. Bras, and Y. Choi, “Clipscore: A reference-

free evaluation metric for image captioning,” in Conference on Empirical Methods in

Natural Language Processing, 2021.

[164] G. Ilharco, M. Wortsman, R. Wightman, et al., “Openclip,” version 0.1, Zenodo, 2021.

doi: 10.5281/zenodo.5143773. url: https://doi.org/10.5281/zenodo.5143773.

[165] L.-A. Team, Laion-aesthetics predictor v2, https://github.com/christophschuhmann/

improved-aesthetic-predictor, 2022.

[166] C. Meng, R. Gao, D. P. Kingma, S. Ermon, J. Ho, and T. Salimans, “On distillation

of guided diffusion models,” ArXiv, vol. abs/2210.03142, 2022.

[167] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” ArXiv,

vol. abs/2006.11239, 2020.

[168] B. Jing, G. Corso, J. Chang, R. Barzilay, and T. Jaakkola, “Torsional diffusion for

molecular conformer generation,” arXiv preprint arXiv:2206.01729, 2022.

[169] G. Hummer and J. Köfinger, “Bayesian ensemble refinement by replica simulations

and reweighting,” The Journal of chemical physics, 2015.

[170] A. P. Pasarkar, G. M. Bencomo, S. Olsson, and A. B. Dieng, “Vendi sampling for molec-

ular simulations: Diversity as a force for faster convergence and better exploration,”

The Journal of Chemical Physics, vol. 159, no. 14, 2023.

[171] A. Laio and M. Parrinello, “Escaping free-energy minima,” Proceedings of the national

academy of sciences, 2002.

348

https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.5281/zenodo.5143773
https://github.com/christophschuhmann/improved-aesthetic-predictor
https://github.com/christophschuhmann/improved-aesthetic-predictor


[172] A. Barducci, G. Bussi, and M. Parrinello, “Well-tempered metadynamics: A smoothly

converging and tunable free-energy method,” Physical review letters, 2008.

[173] S. Chewi, C. Lu, K. Ahn, X. Cheng, T. L. Gouic, and P. Rigollet, “Optimal dimension

dependence of the metropolis-adjusted langevin algorithm,” ArXiv, vol. abs/2012.12810,

2020.

[174] Q. Liu and D. Wang, “Stein variational gradient descent: A general purpose bayesian

inference algorithm,” Advances in neural information processing systems, vol. 29, 2016.

[175] L. K. Wenliang and H. Kanagawa, “Blindness of score-based methods to isolated

components and mixing proportions,” 2020.

[176] J. Zhuo, C. Liu, J. Shi, J. Zhu, N. Chen, and B. Zhang, “Message passing stein

variational gradient descent,” in International Conference on Machine Learning, PMLR,

2018.

[177] J. Zhang, R. Zhang, L. Carin, and C. Chen, “Stochastic particle-optimization sampling

and the non-asymptotic convergence theory,” in International Conference on Artificial

Intelligence and Statistics, PMLR, 2020.

[178] F. D’Angelo and V. Fortuin, “Annealed stein variational gradient descent,” arXiv

preprint arXiv:2101.09815, 2021.

[179] W.-C. Chang, C.-L. Li, Y. Mroueh, and Y. Yang, “Kernel stein generative modeling,”

arXiv preprint arXiv:2007.03074, 2020.

[180] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-

based generative modeling through stochastic differential equations,” in International

Conference on Learning Representations, 2021.

[181] Y. Du, C. Durkan, R. Strudel, J. B. Tenenbaum, S. Dieleman, R. Fergus, J. Sohl-

Dickstein, A. Doucet, and W. S. Grathwohl, “Reduce, reuse, recycle: Compositional

generation with energy-based diffusion models and mcmc,” in International Conference

on Machine Learning, PMLR, 2023.

[182] J. Benton, Y. Shi, V. De Bortoli, G. Deligiannidis, and A. Doucet, “From denoising

diffusions to denoising markov models,” arXiv preprint arXiv:2211.03595, 2022.

349



[183] J. Köhler, L. Klein, and F. Noé, “Equivariant flows: Exact likelihood generative learning

for symmetric densities,” in International conference on machine learning, PMLR,

2020, pp. 5361–5370.

[184] M. Xu, L. Yu, Y. Song, C. Shi, S. Ermon, and J. Tang, “Geodiff: A geometric diffusion

model for molecular conformation generation,” in International Conference on Learning

Representations, 2021.

[185] Y. Xu, M. Deng, X. Cheng, Y. Tian, Z. Liu, and T. Jaakkola, “Restart sampling for

improving generative processes,” arXiv preprint arXiv:2306.14878, 2023.

[186] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin,

“Emerging properties in self-supervised vision transformers,” in Proceedings of the

IEEE/CVF international conference on computer vision, 2021.

[187] G. Somepalli, V. Singla, M. Goldblum, J. Geiping, and T. Goldstein, “Diffusion art or

digital forgery? investigating data replication in diffusion models,” in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.

[188] S. Axelrod and R. Gomez-Bombarelli, “Geom, energy-annotated molecular conforma-

tions for property prediction and molecular generation,” Scientific Data, 2022.

[189] O. Ganea, L. Pattanaik, C. Coley, R. Barzilay, K. Jensen, W. Green, and T. Jaakkola,

“Geomol: Torsional geometric generation of molecular 3d conformer ensembles,” Ad-

vances in Neural Information Processing Systems, 2021.

[190] I. Csiszár, “I-divergence geometry of probability distributions and minimization prob-

lems,” The annals of probability, pp. 146–158, 1975.

[191] T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordinary

differential equations,” ArXiv, vol. abs/1806.07366, 2018.

[192] W. Grathwohl, R. T. Q. Chen, J. Bettencourt, I. Sutskever, and D. K. Duvenaud,

“Ffjord: Free-form continuous dynamics for scalable reversible generative models,”

ArXiv, vol. abs/1810.01367, 2019.

[193] D. J. Griffiths, Introduction to electrodynamics, 2005.

[194] H. Goldstein, C. Poole, and J. Safko, Classical mechanics, 2002.

350



[195] H. Risken, “Fokker-planck equation,” 1984.

[196] R. T. Q. Chen, J. Behrmann, D. K. Duvenaud, and J.-H. Jacobsen, “Residual flows

for invertible generative modeling,” ArXiv, vol. abs/1906.02735, 2019.

[197] Y. Song and S. Ermon, “Generative modeling by estimating gradients of the data

distribution,” ArXiv, vol. abs/1907.05600, 2019.

[198] F. S. Lawrence, “Some practical runge-kutta formulas,” Mathematics of Computation,

vol. 46, pp. 135–150, 1986.

[199] P. Virtanen, R. Gommers, T. E. Oliphant, et al., “Scipy 1.0: Fundamental algorithms

for scientific computing in python,” Nature Methods, vol. 17, pp. 261–272, 2020.

[200] K. Lee, H. Chang, L. Jiang, H. Zhang, Z. Tu, and C. Liu, “Vitgan: Training gans with

vision transformers,” ArXiv, vol. abs/2107.04589, 2021.

[201] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (canadian institute for advanced

research),” 2009. url: http://www.cs.toronto.edu/~kriz/cifar.html.

[202] F. Yu, Y. Zhang, S. Song, A. Seff, and J. Xiao, “Lsun: Construction of a large-scale

image dataset using deep learning with humans in the loop,” ArXiv, vol. abs/1506.03365,

2015.

[203] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Improved

training of wasserstein gans,” in NIPS, 2017.

[204] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normalization for

generative adversarial networks,” ArXiv, vol. abs/1802.05957, 2018.

[205] J. Ho, X. Chen, A. Srinivas, Y. Duan, and P. Abbeel, “Flow++: Improving flow-based

generative models with variational dequantization and architecture design,” ArXiv,

vol. abs/1902.00275, 2019.

[206] C. Jarzynski, “Equilibrium free-energy differences from nonequilibrium measurements:

A master-equation approach,” Physical Review E, vol. 56, pp. 5018–5035, 1997.

[207] B. Poole, A. Jain, J. T. Barron, and B. Mildenhall, “Dreamfusion: Text-to-3d using

2d diffusion,” ArXiv, vol. abs/2209.14988, 2022.

351

http://www.cs.toronto.edu/~kriz/cifar.html


[208] A. Nichol, H. Jun, P. Dhariwal, P. Mishkin, and M. Chen, “Point-e: A system for

generating 3d point clouds from complex prompts,” ArXiv, vol. abs/2212.08751, 2022.

[209] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural network

with pruning, trained quantization and huffman coding,” arXiv: Computer Vision and

Pattern Recognition, 2015.

[210] R. Banner, Y. Nahshan, and D. Soudry, “Post training 4-bit quantization of convo-

lutional networks for rapid-deployment,” in Neural Information Processing Systems,

2018.

[211] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative

adversarial networks,” 2019 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 4396–4405, 2018.

[212] F. Yu, Y. Zhang, S. Song, A. Seff, and J. Xiao, “Lsun: Construction of a large-

scale image dataset using deep learning with humans in the loop,” arXiv preprint

arXiv:1506.03365, 2015.

[213] W. Sung, S. Shin, and K. Hwang, “Resiliency of deep neural networks under quantiza-

tion,” ArXiv, vol. abs/1511.06488, 2015.

[214] M. Tegmark, “Does the universe in fact contain almost no information?” arXiv preprint

quant-ph/9603008, 1996.

[215] H. W. Lin, M. Tegmark, and D. Rolnick, “Why does deep and cheap learning work so

well?” Journal of Statistical Physics, vol. 168, pp. 1223–1247, 2017.

[216] G. Parisi, “Correlation functions and computer simulations (ii),” Nuclear Physics,

vol. 205, pp. 337–344, 1981.

[217] A. Hyvärinen, “Some extensions of score matching,” Comput. Stat. Data Anal., vol. 51,

pp. 2499–2512, 2007.

[218] X. Zeng, A. Vahdat, F. Williams, Z. Gojcic, O. Litany, S. Fidler, and K. Kreis, “Lion:

Latent point diffusion models for 3d shape generation,” ArXiv, vol. abs/2210.06978,

2022.

352



[219] E. Hoogeboom, V. G. Satorras, C. Vignac, and M. Welling, “Equivariant diffusion for

molecule generation in 3d,” ArXiv, vol. abs/2203.17003, 2022.

[220] S. Rissanen, M. Heinonen, and A. Solin, “Generative modelling with inverse heat

dissipation,” ArXiv, vol. abs/2206.13397, 2022.

[221] J. Kirkwood, Mathematical physics with partial differential equations. Academic Press,

2018.

[222] R. B. Guenther and J. W. Lee, Partial differential equations of mathematical physics

and integral equations. Courier Corporation, 1996.

[223] R. Courant and D. Hilbert, Methods of mathematical physics: partial differential

equations. John Wiley & Sons, 2008.

[224] Y. Mroueh and M. Rigotti, “Unbalanced sobolev descent,” ArXiv, vol. abs/2009.14148,

2020.

[225] K. Fatras, T. S’ejourn’e, N. Courty, and R. Flamary, “Unbalanced minibatch optimal

transport; applications to domain adaptation,” ArXiv, vol. abs/2103.03606, 2021.

[226] Y. Lu, J. Lu, and J. Nolen, “Accelerating langevin sampling with birth-death,” ArXiv,

vol. abs/1905.09863, 2019.

[227] R. M. Martin, L. Reining, and D. M. Ceperley, Interacting Electrons: Theory and Com-

putational Approaches. Cambridge University Press, 2016. doi: 10.1017/CBO9781139050807.

[228] Y. Lu, J. Lu, and J. Nolen, “Accelerating langevin sampling with birth-death,” arXiv

preprint arXiv:1905.09863, 2019.

[229] H. Soodak and M. S. Tiersten, “Wakes and waves in n dimensions,” American journal

of physics, vol. 61, no. 5, pp. 395–401, 1993.

[230] R. Aleixo and E. Capelas de Oliveira, “Green’s function for the lossy wave equation,”

Revista Brasileira de Ensino de Física, vol. 30, pp. 1302.1–1302.5, Jan. 2008. doi:

10.1590/S1806-11172008000100003.

[231] H. YUKAWA and S. SAKATA, “On the interaction of elementary particles ii,” Proceed-

ings of the Physico-Mathematical Society of Japan. 3rd Series, vol. 19, pp. 1084–1093,

1937.

353

https://doi.org/10.1017/CBO9781139050807
https://doi.org/10.1590/S1806-11172008000100003


[232] D. J. Griffiths and D. F. Schroeter, Introduction to quantum mechanics. Cambridge

university press, 2018.

[233] D. Aharonov, W. Van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev, “Adiabatic

quantum computation is equivalent to standard quantum computation,” SIAM review,

vol. 50, no. 4, pp. 755–787, 2008.

[234] L. Dinh, D. Krueger, and Y. Bengio, “Nice: Non-linear independent components

estimation,” CoRR, vol. abs/1410.8516, 2014. url: https://api.semanticscholar.org/

CorpusID:13995862.

[235] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image

synthesis with latent diffusion models,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2022, pp. 10 684–10 695.

[236] G. Corso, H. Stärk, B. Jing, R. Barzilay, and T. Jaakkola, “Diffdock: Diffusion steps,

twists, and turns for molecular docking,” arXiv preprint arXiv:2210.01776, 2022.

[237] Z. Kong, W. Ping, J. Huang, K. Zhao, and B. Catanzaro, “Diffwave: A versatile

diffusion model for audio synthesis,” ArXiv, vol. abs/2009.09761, 2020.

[238] M. Jeong, H. Kim, S. J. Cheon, B. J. Choi, and N. S. Kim, “Diff-tts: A denoising

diffusion model for text-to-speech,” arXiv preprint arXiv:2104.01409, 2021.

[239] J. Song, A. Vahdat, M. Mardani, and J. Kautz, “Pseudoinverse-guided diffusion models

for inverse problems,” in International Conference on Learning Representations, 2023.

url: https://openreview.net/forum?id=9_gsMA8MRKQ.

[240] Y. Song, L. Shen, L. Xing, and S. Ermon, “Solving inverse problems in medical imaging

with score-based generative models,” arXiv preprint arXiv:2111.08005, 2021.

[241] C. Huang, Z. Liu, S. Bai, L. Zhang, C. Xu, Z. Wang, Y. Xiang, and Y. Xiong, “Pf-abgen:

A reliable and efficient antibody generator via poisson flow,” in ICLR 2023-Machine

Learning for Drug Discovery workshop, 2023.

[242] R. Ge, Y. He, C. Xia, Y. Chen, D. Zhang, and G. Wang, “Jccs-pfgm: A novel circle-

supervision based poisson flow generative model for multiphase cect progressive

low-dose reconstruction with joint condition,” arXiv preprint arXiv:2306.07824, 2023.

354

https://api.semanticscholar.org/CorpusID:13995862
https://api.semanticscholar.org/CorpusID:13995862
https://openreview.net/forum?id=9_gsMA8MRKQ


[243] A. N. Borodin and P. Salminen, Handbook of Brownian motion-facts and formulae.

Springer Science & Business Media, 2015.

[244] I. Karatzas and S. Shreve, Brownian motion and stochastic calculus. Springer Science

& Business Media, 1991.

[245] R. Sinkhorn, “A relationship between arbitrary positive matrices and doubly stochastic

matrices,” Annals of Mathematical Statistics, vol. 35, pp. 876–879, 1964. url: https:

//api.semanticscholar.org/CorpusID:120846714.

[246] M. I. Belghazi, A. Baratin, S. Rajeswar, S. Ozair, Y. Bengio, A. Courville, and R. D.

Hjelm, “Mine: Mutual information neural estimation,” arXiv preprint arXiv:1801.04062,

2018.

[247] J. Yim, B. L. Trippe, V. De Bortoli, E. Mathieu, A. Doucet, R. Barzilay, and T.

Jaakkola, “Se(3) diffusion model with application to protein backbone generation,”

arXiv preprint, 2023.

[248] H. Ricardo, “A modern introduction to differential equations,” 2002.

[249] M. V. (https://math.stackexchange.com/users/218419/mark-viola), Fundamental so-

lution for helmholtz equation in higher dimensions, Mathematics Stack Exchange,

URL:https://math.stackexchange.com/q/2255877 (version: 2017-04-30). eprint: https:

//math.stackexchange.com/q/2255877. url: https://math.stackexchange.com/q/

2255877.

[250] Wikipedia contributors, Green’s function — Wikipedia, the free encyclopedia, https:

//en.wikipedia.org/w/index.php?title=Green%27s_function&oldid=1134903008,

[Online; accessed 22-January-2023], 2023.

[251] O. Trott and A. J. Olson, “Autodock vina: Improving the speed and accuracy of docking

with a new scoring function, efficient optimization, and multithreading,” Journal of

computational chemistry, 2010.

[252] K. Schütt, P.-J. Kindermans, H. E. Sauceda Felix, S. Chmiela, A. Tkatchenko, and

K.-R. Müller, “Schnet: A continuous-filter convolutional neural network for modeling

355

https://api.semanticscholar.org/CorpusID:120846714
https://api.semanticscholar.org/CorpusID:120846714
https://math.stackexchange.com/q/2255877
https://math.stackexchange.com/q/2255877
https://math.stackexchange.com/q/2255877
https://math.stackexchange.com/q/2255877
https://en.wikipedia.org/w/index.php?title=Green%27s_function&oldid=1134903008
https://en.wikipedia.org/w/index.php?title=Green%27s_function&oldid=1134903008


quantum interactions,” Advances in neural information processing systems, vol. 30,

2017.

[253] G. Landrum, “Rdkit documentation,” Release, 2013.

[254] M. A. Ketata, C. Laue, R. Mammadov, H. Stärk, M. Wu, G. Corso, C. Marquet,

R. Barzilay, and T. S. Jaakkola, “Diffdock-pp: Rigid protein-protein docking with

diffusion models,” arXiv preprint arXiv:2304.03889, 2023.

[255] J. Geweke, “Antithetic acceleration of monte carlo integration in bayesian inference,”

Journal of Econometrics, vol. 38, no. 1-2, pp. 73–89, 1988.

[256] A. Kulesza, B. Taskar, et al., “Determinantal point processes for machine learning,”

Foundations and Trends® in Machine Learning, vol. 5, no. 2–3, pp. 123–286, 2012.

[257] G. Corso, “Modeling molecular structures with intrinsic diffusion models,” arXiv

preprint arXiv:2302.12255, 2023.

[258] P. Pracht, F. Bohle, and S. Grimme, “Automated exploration of the low-energy chemical

space with fast quantum chemical methods,” Physical Chemistry Chemical Physics,

2020.

[259] P. C. Hawkins and A. Nicholls, “Conformer generation with omega: Learning from the

data set and the analysis of failures,” Journal of chemical information and modeling,

2012.

[260] C. Shi, S. Luo, M. Xu, and J. Tang, “Learning gradient fields for molecular conformation

generation,” in International Conference on Machine Learning, 2021.

[261] J. Ingraham, M. Baranov, Z. Costello, V. Frappier, A. Ismail, S. Tie, W. Wang, V.

Xue, F. Obermeyer, A. Beam, et al., “Illuminating protein space with a programmable

generative model,” BioRxiv, 2022.

[262] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception

architecture for computer vision,” 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 2818–2826, 2016.

356



[263] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative

adversarial networks,” in Proceedings of the IEEE/CVF conference on computer vision

and pattern recognition, 2019, pp. 4401–4410.

357


	1 Introduction
	1.1 Generative Modeling by Reversing Physical Processes
	1.1.1 Improved Training Techniques for Diffusion Models
	1.1.2 Improved Sampling Techniques for Diffusion Models
	1.1.3 Generative Models from Alternative Physical Processes

	1.2 Summary of Thesis

	2 Background on Diffusion Models
	2.1 Problem Formulation
	2.2 Constructing Generative Models with Thermodynamical Theory
	2.3 Training
	2.4 Sampling

	I  Improved Training Techniques for Diffusion Models
	3 Reducing the Variance in the Score Estimation
	3.1 Introduction
	3.2 Understanding the Training Target in Score-Matching Objective
	3.3 Variance Reduction with Stable Target Field
	3.4 Theoretical Analysis of Stable Target Field
	3.4.1 Asymptotic Behavior
	3.4.2 Trace of Covariance

	3.5 Experiments
	3.5.1 Variance Reduction in the Intermediate Phase
	3.5.2 Image Generation
	3.5.3 Accelerating Training of Diffusion Models

	3.6 Related Works
	3.7 Conclusion

	4 Towards Straighter Diffusion Trajectories with Discrete Latents
	4.1 Introduction
	4.2 Augmenting Diffusion Models with Discrete Latents
	4.2.1 Two-Stage Training Procedure
	4.2.2 Reduced Curvature through End-to-end training
	4.2.3 Architecture

	4.3 Experiments
	4.3.1 Image Generation
	4.3.2 Molecular Docking

	4.4 Related Works
	4.5 Conclusion


	II  Improved Sampling Techniques for Diffusion Models
	5 Accelerating the Sampling Process by Optimized Noise Usage 
	5.1 Introduction
	5.2 Explaining SDE and ODE Performance Regimes
	5.3 Harnessing Noise with Restart
	5.3.1 Restart Sampling
	5.3.2 Theoretical Analysis
	5.3.3 Practical Considerations

	5.4 Experiments
	5.4.1 Sampling Error versus Contracted Error
	5.4.2 Experiments on Standard Benchmarks
	5.4.3 Experiments on Large-scale Text-to-Image Model

	5.5 Conclusion

	6 Non-I.I.D. Diverse Sampling with Diffusion Models
	6.1 Introduction
	6.2 Promoting Sample Diversity with Particle Guidance
	6.3 Connections with Existing Methods
	6.3.1 Coupled Replicas and Metadynamics
	6.3.2 Stein Variational Gradient Descent
	6.3.3 Electrostatics

	6.4 Fixed Potential Particle Guidance
	6.4.1 Theoretical Analysis
	6.4.2 Experiments

	6.5 Learned Potential Particle Guidance
	6.5.1 Training Procedure
	6.5.2 Preserving Marginal Distributions

	6.6 Conclusion


	III  Novel Generative Models from Physical Processes
	7 Generative Models from Electrostatics
	7.1 Introduction
	7.2 Background
	7.3 Poisson Flow Generative Models: Learning and Inference
	7.3.1 Augmenting the Data with Additional Dimension
	7.3.2 Learning the Normalized Poisson Field
	7.3.3 Inference Anchored by the Additional Dimension

	7.4 Experiments
	7.5 Conclusion

	8 An Extended View of Electrostatics in Higher-dimensional Space
	8.1 Introduction
	8.2 PFGM++: Augmenting the Data with Arbitrary Dimension Lg
	8.2.1 Electric Field in Higher-Dimensional Space
	8.2.2 Efficient Training with Perturbation Kernel

	8.3 Diffusion Models as Lg Special Cases
	8.4 Balancing Robustness and Rigidity
	8.4.1 Behavior of Perturbation Kernel When Varying Lg
	8.4.2 Balancing the Trade-off by Controlling Lg

	8.5 Experiments
	8.6 Conclusion

	9 Duality between Physical Processes and Generative Models
	9.1 Introduction
	9.2 Converting Physical Processes to Generative Models
	9.3 Classification via Dispersion Relation
	9.4 Applications.
	9.5 Conclusion

	10 Conclusion
	A Additional Proofs and Derivations
	A.1 Chapter 3
	A.1.1 Derivation of Equation 3.6
	A.1.2 Proof for Theorem 1
	A.1.3 Proof for Theorem 2
	A.1.4 STF Specified with Popular SGMs

	A.2 Chapter 5
	A.2.1 Proof for Theorem 3
	A.2.2 Proof for Theorem 4
	A.2.3 Heun's method as DPM-Solver-2

	A.3 Chapter 6
	A.3.1 Proof for Theorem 5
	A.3.2 Sampling a Predefined Joint Distribution
	A.3.3 Preserving Marginal Distribution
	A.3.4 Invariance of Particle Guidance
	A.3.5 Connections with Existing Methods
	A.3.6 Combinatorial Analysis of Synthetic Experiments

	A.4 Chapter 7
	A.4.1 Proof for Theorem 6
	A.4.2 Proof for the Prior Distribution on Lg Hyperplane
	A.4.3 Multipole Expansion
	A.4.4 Extension of Green's Function in Lg-dimensional Space
	A.4.5 Physical Interpretation of the ODEs in PFGM

	A.5 Chapter 8
	A.5.1 Proof for Theorem 7
	A.5.2 Proof for Proposition 1
	A.5.3 Proof for Theorem 8
	A.5.4 Proof for Proposition 2

	A.6 Chapter 9
	A.6.1 Green's Function Review
	A.6.2 Interpolating Between DMs and PFGMs
	A.6.3 Smooth Condition and Dispersion Relations


	B Additional Details and Results
	B.1 Chapter 3
	B.1.1 Experimental Details
	B.1.2 Extra Experiments
	B.1.3 Samples

	B.2 Chapter 4
	B.2.1 Algorithm Pseudocode
	B.2.2 Experimental Details
	B.2.3 Extra Experiments
	B.2.4 Samples

	B.3 Chapter 5
	B.3.1 Algorithm Pseudocode
	B.3.2 Experimental Details
	B.3.3 Extra Experiments
	B.3.4 Samples

	B.4 Chapter 6
	B.4.1 Discussions
	B.4.2 Experimental Details
	B.4.3 Samples

	B.5 Chapter 7
	B.5.1 Failure of VE/VP-ODE
	B.5.2 Experimental Details
	B.5.3 Extra Experiments
	B.5.4 Samples

	B.6 Chapter 8
	B.6.1 Aligning the Training in PFGM++ Family
	B.6.2 Experimental Details
	B.6.3 Extra Experiments


	C Code
	References


