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ABSTRACT

Proteins are the primary functional unit of the cell, and their interactions drive cellular
function. Interactions between proteins are responsible for a wide variety of functions raning
from catalytic activity to cellular transport and signaling, and interactions between small
molecules and proteins are the foundation of many therapeutics. However, the experimental
determination of these interactions is expensive and relatively slow, limiting the ability
to model interactions at genome scale. It is therefore critical to develop computational
approaches for modeling these interactions. Unsupervised language models trained on amino
acid sequences, namely protein language models, learn patterns in sequence evolution that
encode protein structure and function. These protein language models are thus a powerful tool
for extracting features of proteins, enabling the adoption of lightweight downstream models.
Here, we present novel machine learning techniques for adapting protein language modeling to
the prediction of protein interactions at scale, enabling de novo interaction network inference
and large-scale drug compound screening. We show that these methods achieve state-of-
the-art performance, and allow us to discover new biology and therapeutic candidates. In
addition, we introduce methods for efficient training and adaptation of these models, and
outline several applications which take advantage of the scale enabled by lightweight models.
As a whole, this thesis demonstrates how computational advances in language modeling and
the massive growth of data brought about by the sequencing revolution can be leveraged to
tackle the genotype-to-phenotype challenge in biology, and lays the groundwork for more
widespread adoption of these techniques for proteomic modeling.

Thesis supervisor: Bonnie Berger
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Chapter 1

Introduction

1.1 Molecular interactions tell the story of the cell

The protein sits at the heart of complex life. The RNA world hypothesis [1] suggest that

early life started with RNA performing the dual role of both information storage and catalyst.

As life developed and advanced in complexity, these roles were diversified—DNA evolving

as the primary information storage, and proteins as the primary functional unit. If DNA

is the code, proteins are the compiled software. If DNA is the blueprint, proteins are the

machines, manifest and functional. If DNA is the script, proteins are the actors, embodying

the characters and bringing them to life. Proteins play a role in nearly every cellular function,

including the immune response [2], [3], catalytic activity [4], transport [5], structure [6],

signaling [7], and gene regulation [8]. Thus, to understand life it is fundamental to study the

functions of proteins, and the relationship between their sequence and function.

However, studying proteins (or any biomolecule) on their own will never fully capture the

complexity of life, because this complexity arises through their interactions. The story of

any complex system is told through the network of interactions between constituent parts.

Servers send packets to each other to form the internet. Machines pass material to one

another to form assembly lines and factory floors. Actors exchange lines and the story unfolds.
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The focus of this thesis is proteins, and the way that their interactions with each other and

with other biomolecules tell the story of cellular function. Specifically, we explore how the

interaction network of a protein is encoded in its sequence.

Our interest in interaction networks goes beyond just understanding cellular function;

we also seek to explore ways of modulating this function. Many disease phylogenies can be

traced to the dysfunction of a protein, or the over-activity thereof. Therapeutics such as

small-molecule drugs function likewise through interactions—by binding to the correct target,

the dysfunctional protein activity can be regulated. Small molecule-drugs are stage directions,

external instructions that can change how the script is read out, how the actors engage with

one another, that can remove one from the scene altogether. Thus, we expand our scope to

consider not only interactions between proteins, but the interactions of other biomolecules

with proteins, and we explore how to develop effective small-molecule therapeutics

against a given target.

The relating of the genetic code to a language, a script that is read out by proteins, is

more than just convenient analogy. In fact, the sequences of amino acids which make up

a protein sequence share many properties with natural language. They are made up of an

characters combined into words and then larger sentences, such as the conserved domains

that recur in evolutionarily related proteins. And like a language, context matters. Just as

the word “keyboard” refers to different concepts when preceded by “computer” or “piano”,

the same amino acid or motif will have a different function depending on the surrounding

protein. A major theme of this thesis is that the computational tools developed to model

language are often equally suitable when applied to protein sequences, and that these tools

can efficiently compress the complexity of sequence variation into vector representations

which are amenable to machine learning. Then, we also explore how computational can

advances in language modeling allow us to read the language of biomolecular

interactions and infer the scenes that play out?
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1.2 A note on the value of scalable modeling in biology

One of the challenges of accurately modeling biology is the scale of the data and its possible

combinations. Throughout this thesis, we place particular emphasis on the efficiency of our

algorithms. The human proteome contains approximately 20,000 unique proteins, and that

number balloons when you expand beyond humans, including proteins in model organisms,

the microbiome, viruses, and beyond. The space of small molecules is potentially even

larger—at the time of writing, there are approximately 500,000 drugs in DrugBank [9], and

over 20 million compounds in the ZINC database [10].

The pairwise nature of interaction means that as the number of individual units grows, the

number of possible interactions grows quadratically. The complexity of living systems arises

due to network effects; it is therefore critical that we are able to model these effects at the

scale at which they occur. We intentionally design algorithms here that are able to efficiently

predict at the required scale. The efficient transfer learning that protein language models

enable allows us to design lightweight, data-efficient models that can predict genome-wide

networks, infer functional pathways, search massive compound libraries, and perform deep in

silico mutational scans. High-throughput computational methods will likely enable advances

in personalized medicine, where inference is needed for the unique genotype, including somatic

mutations, of each individual—we thus believe that it is critical to keep an eye towards the

efficiency and accessibility of computational methods.

1.3 Thesis organization

We begin this thesis in Chapter 2 with an overview of the relevant background which will

be helpful in understanding the contributions of this work. We cover several of the core

biological and computational concepts that underlie the work presented herein, and while not

providing complete details, we direct the reader to external references for further reading on
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these topics. This thesis is designed to be accessible to an advanced undergraduate, perhaps

with background in computation or biology but not necessarily both, and Chapter 2 offers a

primer to allow such a reader to understand this thesis and begin work in these and related

areas.

Chapters 3-6 comprise the main body of this work. Each chapter starts with an overview,

contextualizing the chapter in the context of the thesis as a whole, followed by a more detailed

introduction to the chapter contents, a description of the algorithmic advances, and several

validation and case studies. We end each chapter with a short perspective on limitations and

future directions. Each chapter can be read somewhat independently, although Chapter 4

leans heavily on material introduced in Chapter 3.

In Chapters 3 and 4, we explore the problem of predicting protein-protein interactions

(PPI) under limited information domains. In Chapter 3, we introduce the use of protein

language models (PLMs) for PPI and propose a structurally-driven method for modeling

sequence-only interaction. We show that this approach drastically improves the ability to

predict PPI in a wide variety of under-studied species. This chapter is adapted from work

which originally appeared in RECOMB 2021 and was published in:

• Sledzieski, S.*, Singh, R.*, Cowen, L., & Berger, B. (2021). D-SCRIPT translates

genome to phenome with sequence-based, structure-aware, genome-scale predictions of

protein-protein interactions. Cell Systems, 12, 1–14. [11]

In Chapter 4, we expand the scope to include two orthogonal sources of information

which may be available when modeling PPI. We develop integrative frameworks which adapt

to data availability, including network topology information using algorithms from graph

theory and protein 3D structure information using sequence quantization techniques. This

chapter acts as a companion to the previous, demonstrating how the framework introduced

in Chapter 3 can be expanded upon and improved. This chapter is adapted from work which

originally appeared at ISMB 2022 and 2023 and was published in:
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• Singh, R.*, Devkota, K.*, Sledzieski, S., Berger, B., & Cowen, L. (2022). Topsy-

Turvy: Integrating a global view into sequence-based PPI prediction. Bioinformatics,

38(Supplement_1), i264–i272. [12]

• Sledzieski, S.*, Devkota, K.*, Singh, R., Cowen, L., & Berger, B. (2023). TT3D: Lever-

aging pre-computed protein 3D sequence models to predict protein-protein interactions.

Bioinformatics, btad663. [13]

While protein-protein interactions are critical to cellular function, many of the therapeutics

which allow us to repair this function come in the form of small molecules. In Chapter 5, we

turn to the problem of predicting interactions between proteins and small molecules, also

known as drug-target interaction (DTI). Our proposed solution uses PLMs in much the same

way, widening the scope of which drug targets our model can be applied to. In addition, we

tackle the challenging problem of decoy drugs using contrastive learning. This chapter is

adapted from work originally published in:

• Singh, R.*, Sledzieski, S.*, Bryson, B., Cowen, L., & Berger, B. (2023). Contrastive

learning in protein language space predicts interactions between drugs and protein

targets. Proceedings of the National Academy of Sciences, 120(24), e2220778120. [14]

Over course of the work presented in this thesis, PLMs have gone from a newly-introduced

technology to a workhorse of computational molecular biology. However, their widespread

adoption is still fundamentally limited by their computational expense. In Chapter 6, we take

a first step towards the democratization of these models, by presenting methods for more

efficient fine-tuning and adaptation of PLMs. This chapter is adapted from work originally

published in:

• Sledzieski, S., Kshirsagar, M., Baek, M., , Dodhia, R., Ferres, J. L. & Berger, B.

(2024). Democratizing protein language models with parameter-efficient fine-tuning.

Proceedings of the National Academy of Sciences, In Press. [15]
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We conclude this thesis in Chapter 7, with a brief overview on the state of the field at the

time of writing, including thoughts on potentially fruitful future directions. We also include

several appendices (Chapters A, B, C, D), which contain algorithmic and experimental details

held out of the main text for brevity and clarity.

1.4 Contributions of this thesis

We briefly summarize the primary contributions of this thesis towards the computational

modeling of protein sequence & structure, protein interaction networks, cellular function, and

therapeutic targeting of proteins.

• We introduce a novel machine learning architecture and training algorithm, leveraging

for the first time protein language models to accurately predict PPIs in a wide variety

of species, despite training only on known human interactions (Chapter 3).

• We apply this model towards advanced understanding of the metabolic process in the

bovine rumen, through a newly constructed synthetic PPI network and computational

analysis pipeline (Chapter 3).

• We develop a new training process for our machine learning model, incorporating a

graph-theoretic analysis of the interaction network as data augmentation for training

and improving the ability to perform transfer learning (Chapter 4).

• We contribute a new joint sequence-structure representation by including structure

features as part of our framework, which enables our model to take advantage of new

advances in computational prediction of protein structure when predicting PPI (Chapter

4).

• We introduce protein language models to the problem of drug-target interaction (DTI)

prediction for the first time, developing a new machine learning model which generalizes

better than previous state-of-the-art to out-of-distribution protein targets (Chapter 5).
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• We develop the first method which uses contrastive learning to increase the speci-

ficity of our DTI model, yielding large gains in performance on highly difficult decoy

discrimination tasks (Chapter 5).

• We apply our model for massive scale target-compound screens, evaluating over ten

million candidates per day and identifying a putatively novel binder of EPHB1 (Chapter

5).

• We introduce methods for parameter-efficient fine-tuning to protein language models

for the first time, democratizing their use to resource-constrained labs and performing a

deep evaluation of how to maximize performance under limited computation (Chapter

6).
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Chapter 2

Background

Computational biology is by its very nature interdisciplinary, and as such the main chapters

in this thesis assume some knowledge of both basic biological and computational concepts.

In this chapter, we introduce several of these concepts, and provide the background necessary

for the remainder of the work. This chapter is not meant to be a comprehensive primer into

computational molecular biology, but rather a jumping off point for reading this thesis and

beginning research in computational molecular biology. Keywords appear in bold.

2.1 The central dogma of biology

Although now known to be an oversimplification, the “central dogma” of biology, introduced

by Watson and Crick in 1958 [16] remains a useful abstraction to understand information

flow in the cell. Information in the cell is primarily stored in the form of large molecules

called deoxyribonucleic acid (DNA). DNA is composed of long strings of nucleoside

bases (adenine [A], cytosine [C], thymine [T], and guanine [G]) joined by a sugar-phosphate

backbone, jointly called a nucleotide. DNA is typically double-stranded, meaning two

strings join with one another by complementary base-pairing rules (A-T, C-G) to form the

classic helix.

These long strings form the genetic code. Substrings of the DNA, known as genes are
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transcribed into ribonucleic acid (RNA). RNA, like DNA, is composed of nucleotides,

but is typically single-stranded and with thymine replaced with uracil [U]. While RNA has

several cellular functions, messenger RNA (mRNA) act as copies of genes which can be

transported throughout the cell without compromising the original DNA. Transcriptional

regulation is one important method by which a cell controls its function.

RNA is translated into long chains of molecules called amino acids joined by peptide

bonds; the resulting chain is called a polypeptide and long polypeptides are called proteins.

Translation is performed by large molecules called ribosomes, which read off the mRNA in

groups of 3 bases known as a codon. Each codon corresponds to one of 20 natural amino

acids, each with a distinct side-chain and chemical properties (with some redundancy, there

are 43 = 64 distinct codons). Proteins, which are the primary focus of this thesis, perform a

variety of cellular functions from transport of material within the cell, to signal transduction,

to the very process of protein synthesis (transcription is performed by a protein called RNA

polymerase).

2.2 Biochemistry and the relationship between sequence,

structure, and function

Another classic, if simplified, notion of information flow within biology is the sequence-

structure-function relationship [16]. This is the idea that the function of a protein is largely

determined by its three-dimensional structure, and that this structure is in turn largely

determined by the sequence of amino acids (primary sequence).

Though polypeptides are one-dimensional chains of amino acids, they undergo a folding

process, first adopting common secondary structures such as alpha helices and beta

sheets, then more complex tertiary structures. This folding process is driven by the

formation of non-covalent chemical bonds between the side-chains, such as hydrogen bonds,

ionic bonds, hydrophobic interactions, and in some cases covalent interactions such as
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the formation of disulfide bridges. Proteins often adopt structure which are energetically

favorable.

Often, multiple polypeptide chains will combine to form quaternary structures or

protein complexes. Formation of these higher-order assemblies are likewise driven by

non-covalent chemical interactions between amino acids, adopting energetically favorable

conformations. Thus, the structure of these proteins determines their shape compatibility,

and the strength with which they associate, known as their affinity. Because these chemical

interactions are reversible, the affinity of an interaction refers to the ratio of bond formation

to breaking, or the relative amount of time that a complex spends in a joined vs. un-joined

state. In this thesis, when we refer to a protein-protein interaction, we are referring

to this association between polypeptide chains, though we typically treat interactions as a

binary measure. The function of a protein or complex, such as signaling, transport, or enzyme

catalysis, is then determined by the interactions that it participates in, and the corresponding

changes in protein shape and chemical properties.

We also refer to protein-small molecule interactions throughout this thesis. Small

molecules can likewise participate in non-covalent interactions with a protein, and these

interactions will change the shape and thus function of a protein (often by modulating its

ability to bind with other proteins).

2.3 Algorithms for biological sequence analysis

The history of computational biology is rich with algorithms for analyzing DNA, RNA, and

protein sequences. Throughout this thesis, we often refer to sequence similarity, which is

typically computed by scoring an alignment between two sequences. This alignment accounts

for evolutionary differences between sequences, including point mutations, insertions, and

deletions. Needleman and Wunsch introduced an algorithm for global sequence alignment

[17], and Smith and Waterman introduced a variation for local alignment [18] which requires
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only sub-strings to match between the two sequences. The Basic Local Alignment Search Tool

(BLAST) [19] was introduced for searching for searching a database for similar biological

sequences, by first identifying a short matching “seed” sequence, and then extending the

match.

Biological sequences are also commonly analyzed using Markov models. A Markov

chain consists of a set of states and transitions between them, and have the property of

being memory-less; that is, the probability of transitioning between two states is dependent

only on the current state. For example, a simple Markov model of DNA sequences would be

parameterized by an initial distribution over the four nucleotides, and a 4× 4 transition

matrix which indicates the probability of seeing any given (ordered) pair of nucleic acids.

A hidden Markov model (HMM) builds upon this idea, where the states no longer

correspond to nucleotides (or in the case of protein sequences, amino acids), but are hidden

and unknown a priori. Each hidden state has an associated set of emission probabilities,

which are the likelihood that a given nucleotide will be generated by each state. Then,

an HMM could generate sequences by sampling an initial state, and then at each time

step emitting a nucleotide and transitioning to the next state. The initial distribution,

transition probabilities, and emission probabilities can be learned from sequence data using

the Baum-Welch algorithm, and the Viterbi algorithm [20] can be used to estimate which

series of hidden states generated a specific sequence (note: these are not unique to biological

sequences). Profile HMMs are the backbone underlying common sequence search tools

such as HMMER [21] and hhsearch [22]. Recently, substantial advances in biological sequence

modeling have been made using large language models (see Section 2.6).

2.4 Graphs and graph algorithms

The graph is a fundamental object in discrete mathematics and combinatorics. A graph

is defined as a set of nodes or vertices representing discrete objects, and a set of edges
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representing relationships between these objects. Edges can be directed or un-directed and

optionally have a weight associated with them which typically corresponds to the strength

of the relationship. Many networks, for example a social media network, can be represented

as graphs, with each person as a node and “friendship” or “following” relationships as edges.

All nodes connected by an edge to a given node are known as the latter’s neighbors. A

path is an ordered list of edges starting at a source and ending at a target, and a cycle is

a path which starts and ends at the same node. A graph is considered connected is there is

a path between any two pairs of nodes, and large graphs will often have several connected

components. A graph with no cycles is referred to as acyclic.

While graphs are defined as sets, they are often represented using adjacency matrices

(A), where each row or column represents a node, and the values of the matrix represent

edge existence (0 or 1) or weight. This representation of a graph allows for easy computation

of several interesting properties, such as node degree, or number of edges, which can be

computed from row or column sums (note: adjacency matrices for directed graphs will often

be asymmetric, with rows and columns representing outgoing and incoming edges). The

degree matrix (D) is a diagonal matrix where each diagonal entry contains the degree of

the corresponding node. The Laplacian (L) of a graph can be computed as L = D−A. The

graph Laplacian can be used to compute various properties of the graph, including partitions

and conductance, and is at the heart of community detection algorithms such as spectral

clustering.

A random walk on a graph is a path starting at a source node where the next edge is

selected probabilistically based on transition probabilities. These transition probabilities

can likewise be represented as a matrix, and thus a random walk of length k can be computed

by k successive matrix multiplications. Random walks typically are typically Markovian.

Common computational problems on graphs include community detection or node clus-

tering, searches for shortest paths between two nodes, and edge prediction. It is the latter

problem that we focus most heavily on in this thesis.
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2.5 Machine learning and deep learning

The work in this thesis leans heavily on a subset of artificial intelligence known as machine

learning. In contrast to traditional algorithms, machine learning algorithms are data-driven,

meaning that their functions are derived from patterns within data (known as training),

rather than being explicitly designed by the developer. Machine learning algorithms (models)

are typically either supervised or unsupervised.

Supervised learning refers to tasks where the model is tasked to predict the label of a

data point given some set of features; classical examples include identifying handwritten

digits [23] or predicting the price of a home. In the former case, the features would be the

values of the pixels in the images, while in the latter features may include things like the

location of the home, the square footage, or the number of bedrooms.

Unsupervised learning refers to tasks where data are unlabeled and the goal is to

organize or extract patterns from the data. A classical example of unsupervised learning is

clustering, such as trying to identify groups of customers with similar shopping habits, where

features might include demographic information or information on prior purchases.

A particularly successful subset of machine learning is deep learning, which makes use

of a set of algorithms known as neural networks. Neural networks combine the input

features using a combination of weighted sums and non-linear functions, where the model

parameters or weights are learned from the data. These weights are incrementally updated

through a process called backpropagation [24], which is based on the gradient of the

error, or a measure of the model performance. The design of the network, including the

number of parameters and the methods of feature combinations, is typically referred to as

the architecture.

While this thesis is primarily focused on supervised learning, we also rely very heavily

on a set of unsupervised techniques known as representation learning. In representation

learning, the objective is to learn some lower-dimensional vector representation of a high-
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dimensional data point (commonly called an embedding) such that some notion of similarity

is preserved. For example, vector embeddings of words would be similar if the words have

related meanings or grammatical functions, and embeddings of images would be similar if the

images depict similar subjects. These embeddings can be learned in an unsupervised manner,

in a process known as pre-training, and then used as a set of features for supervised learning

tasks.

2.6 Large language models

Large language models (LLMs) are a subset of neural networks which are designed to model

sequences, generally text split up into smaller chunks called tokens. Tokens are typically a

word or sub-sequence of a word (e.g. a suffix like “-ing”). There are several LLM architectures,

including the long short-term memory network (LSTM) [25] and bidirectional LSTM (bi-

LSTM) [26], but most modern LLMs use variants of an architecture called the transformer

[27], which uses a mechanism known as attention to aggregate information between tokens.

LLMs are typically pre-trained to learn representations of text, either by trying to predict

the text token given a previous set (known as auto-regressive or causal language models),

or by trying to predict which tokens are held out from the middle of text (known as masked

language modeling). Neural language models are based on the distributional hypothesis

[28], which proposes that words in similar contexts have similar meanings. In this work, we

use protein language models (PLMs) which are trained on protein sequences where each

token is an amino acid. Protein sequences largely conform to the distributional hypothesis,

where the function of an amino acid is determined by the sequence context and the chemical

bonds that it is able to form.
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Chapter 3

Protein-Protein Interactions I: Sequence

3.1 Chapter Overview

Machine learning models for predicting protein-protein interactions (PPI) often fail to

generalize well between species, and are limited by the dearth of known interactions to train

on in many species. In addition, many proteomic analyses are limited to only the known

sequence, without substantial information about the structure of the protein. In this chapter,

we introduce a new deep learning called D-SCRIPT, for predicting a physical interaction

between two proteins given just their sequences. It generalizes well to new species and is

robust to limitations in training data size. Its design reflects the intuition that for two

proteins to physically interact, a subset of amino acids from each protein should be in contact

with the other. The intermediate stages of D-SCRIPT directly implement this intuition, with

the penultimate stage in D-SCRIPT being a rough estimate of the inter-protein contact map

of the protein dimer. This structurally-motivated design enhances the interpretability of

the results and, since structure is more conserved evolutionarily than sequence, improves

generalizability across species.
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3.2 Introduction

The systematic mapping of physical protein-protein interactions (PPIs) in the cell has proven

extremely valuable in deepening our understanding of protein function and biology. In species

such as yeast and humans where a large network of experimentally determined PPIs exists

[29]–[33], this PPI network information has proven valuable for downstream inference tasks

in understanding functional genomics and biological pathway analysis [34]–[38]. However,

in most species— especially, non-model organisms— the coverage of experimental PPI data

remains very low (Figure 3.1a). There, computational prediction of PPIs can help mitigate

the lack of experimental data and facilitate biological discovery. While substantial progress

has been made in PPI prediction overall, the important case of de novo prediction for less-

studied proteins and non-model organisms continues to be a challenge. The lack of functional

genomic data in such situations makes it difficult to apply methods based on bootstrapping

from the connectivity patterns of known PPIs [39]–[42] or those that infer PPIs from other

protein-protein association modalities like co-expression and co-localization [36], [43]–[45].

Recently, deep learning-based methods have offered the prospect of predicting PPIs just from

sequence data. Unfortunately, existing models [46], [47] have shown limited generalizability:

they work quite well when applied to the species they were trained on, but their performance

declines in a cross-species context.

Here, we introduce D-SCRIPT (Deep Sequence Contact Residue Interaction Prediction

Transfer), a structure-aware deep learning approach to PPI prediction. It has a novel, geomet-

rically interpretable neural-network architecture that we show is able to make meaningful PPI

predictions in the cross-species setting. Our key conceptual advance is implementing an inter-

pretable, structure-based model despite only having sequence-based inputs: a well-matched

combination of input featurization and neural-network architecture allow for D-SCRIPT

to be trained solely from sequence data, supervised only with a binary interaction label,

and yet produce an intermediate representation that substantially captures the structural
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mechanism of interaction between the protein pair. Leveraging recent advances in deep

learning-based language modeling of proteins, we first apply Bepler and Berger’s [48] deep

learning-based language model of single protein sequences to construct our features. Using

this pre-trained model results in informative protein embeddings (i.e., representations in a

high-dimensional space) that are implicitly endowed with structural information about each

of the proteins. D-SCRIPT’s generalizability and interpretability then comes from its ability

to learn informative geometric representations of the proteins, individually and jointly. In

particular, it learns how to transform the two protein embeddings into a 2-D contact map,

encoding the intuition that a physical interaction between two proteins requires that a subset

of the residues in each protein be in contact with the other protein (Figure 3.1b,c).

Evaluating D-SCRIPT in the cross-species prediction setting, where a method trained on

human PPIs is used to predict PPIs in several less-studied model organisms, we show that it

substantially improves upon existing methods, including the state-of-the-art deep learning

method PIPR [47] in a stringent cross-validation experiment. In addition to comparing the

accuracy of PPI predictions in cross-validation, we demonstrate the interpretability and

downstream utility of D-SCRIPT results in several ways. First, we demonstrate that on a

genome-wide scale, de novo PPIs predicted by D-SCRIPT produce a network whose modular

structure produces clusters of proteins with greater functional coherence than those produced

from PIPR predictions. Next, on assessing the physical plausibility of the intermediate contact-

map representation, we find that the map partially discovers the structural mechanism of

an interaction despite the model having been trained only on sequence data. Specifically,

we evaluate our predictions on Hwang et al.’s [49] benchmark database of 3-D structures of

docked protein-pairs and observe that our model’s predicted contact map is substantially

similar to the ground-truth inter-protein contact map in cases where our model predicts an

interaction.

To demonstrate the utility of D-SCRIPT as a tool to study novel systems in less-studied

organisms, we investigate the rumen in Bos taurus (cow). We apply D-SCRIPT to predict
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new PPIs across a large subset of bovine proteins and decompose the network of D-SCRIPT

predicted PPIs into functional gene modules. Starting from a seed set of genes found

to be over-expressed in the rumen, we identify five functional gene modules involved in

cellular metabolism and growth, immune response, and transcriptional regulation, suggesting

links between metabolism and transcriptional regulation through MRPL4 and H15 domain

containing proteins.
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Figure 3.1: D-SCRIPT Motivation and Workflow. We demonstrate how D-SCRIPT can
be used genome-wide to predict a complete PPI network in the fly. (a) Experimentally derived
PPI data is scarce in species outside of human and yeast, even when normalized for size of
the genome. (sourced from BioGRID, see Section A.1 for details). (b) A D-SCRIPT model,
after being trained on a large corpus of human PPI data, can be broadly applied to a species
of interest, even if little PPI data is available in that species. For each pair of proteins in the
target species, D-SCRIPT converts the pair of protein sequences into a score representing
probability of interaction. Because D-SCRIPT scales to large numbers of protein pairs and
maintains performance across species, it can be used to score all protein pairs genome-wide
to predict a synthetic PPI network in the species. (c) Blowup detail of the D-SCRIPT
architecture from the box in (b) (and see Figure 3.2 for more detail). D-SCRIPT generalizes
due to its structurally motivated design. The pre-trained language model generates structural
features for a single protein, while the projection and convolution model the interaction
between every pair of residues in the candidate pair. The novel regularization ensures the
prediction of an inter-protein contact map which is sparse with a few high probability contacts
during prediction of interaction.
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3.3 Methods

3.3.1 PPI data set

To evaluate the performance of D-SCRIPT in predicting protein-protein interactions, we

use data from the STRING [44] database (version 11). STRING contains protein pairs

corresponding to a variety of primary sources and interaction modalities (e.g., binding vs

co-expression). In order to select only high-confidence physical protein interactions, we limited

our positive examples to binding interactions associated with a positive experimental-evidence

score. From this set, we removed PPIs involving very short proteins (shorter than 50 amino

acids) and, due to GPU memory constraints, also excluded proteins longer than 800 amino

acids. Next, we removed PPIs with high sequence redundancy to other PPIs, following

the precedent of previous approaches [47], [50]. Specifically, we clustered proteins at the

40% similarity threshold using CD-HIT [51], [52], and a PPI (A-B) was considered sequence

redundant (and excluded) if we had already selected another PPI (C-D) such that the protein

pairs (A, C) and (B, D) each shared a CD-HIT cluster. Removing sequence redundant

PPIs from the data set prevents the model from memorizing interactions based on sequence

similarity alone. To generate negative examples of PPI, we followed [50] and randomly paired

proteins from the non-redundant set, choosing a 10:1 negative-to-positive ratio to reflect

the intuition that true positive PPIs are likely rare. Our human PPI data set contained

47,932 positive and 479,320 negative protein interactions, of which we set apart 80% (38,345)

for training and 20% (9,587) for validation. For each of 5 model organisms (Table 3.1) we

selected 5,000 positive interactions and 50,000 negative interactions using this procedure,

with the exception of E.coli (2,000/20,000) where the available set of positive examples in

STRING was limited.
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3.3.2 Overview of D-SCRIPT

Our deep learning model for predicting PPIs directly from protein sequences, similar to

previous deep learning methods DPPI [46] and PIPR [47], is composed of two stages (Figure

3.1c). The first stage generates a rich feature representation for each protein separately and

the next stage estimates an interaction probability based on these features, with the model

being trained end-to-end across both stages. In both DPPI [46] and PIPR [47], much of the

model complexity lies in the feature generation, which is learned ab initio from the training

data.

D-SCRIPT differs from these approaches in the design and relative complexity of the two

stages. First, we apply a pre-trained model to generate rich, structurally-informative feature

representations of the proteins (Figure 3.2). The pre-trained model was developed by Bepler

and Berger [48], [53], who built upon advances in deep learning-based modeling of natural

languages to design a language model for protein sequences: an n-amino acid protein sequence

is mapped to an n× 6165 representation, with the various dimensions capturing local and

global aspects of the protein structure. We then learn a lower-dimensional projection (n×100)

of this embedding as a compact representation for downstream interaction and structural

prediction tasks. The second stage of D-SCRIPT encodes a structure-based model of protein

interaction: in the contact module, the low-dimensional embeddings are used to compute

an inter-protein contact map that corresponds to the locations of residue contacts between

protein structures, and in the interaction module, this contact map is summarized into a

single score (i.e., the probability of interaction). In each layer, the mathematical operations

performed are rooted in structural intuitions. For example, to formalize the intuition that

true-positive contact maps should be sparse but have isolated regions of strong contacts,

we introduce a customized max pooling operation and a novel regularization loss function.

A more detailed description of our model architecture and training process is provided in

Section 3.3.
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3.3.3 Model architecture
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Figure 3.2: D-SCRIPT Architecture Left to right: The Pre-trained Embedding Model
generates features for each individual protein. The Projection Model reduces them to d
dimensions. Each low-dimensional single-protein embedding implicitly includes, among
other features, an encoding that broadly captures the protein’s residue-contact map (Figure
3.4). The novel portion of the architecture combines these low-dimensional embeddings
to compute a sparse inter-protein contact map through a two-step process which first
computes a representation for each pair of residues, then incorporates local information
using a convolutional filter. Finally, the interaction prediction module uses a customized
max-pooling operation to predict the probability of interaction between the input proteins.

Input & Structure-aware Embedding The input to D-SCRIPT is a pair of protein

sequences S1, S2 with lengths (n,m) and it outputs an interaction probability p̂ ∈ [0, 1] and a

predicted-contact matrix Ĉ ∈ [0, 1]n×m.

We first generate embeddings E1 ∈ Rn×d0 , E2 ∈ Rm×d0 by embedding S1 and S2 with a

pre-trained model from Bepler and Berger. Their model is a Bi-LSTM (bidirectional long

short-term memory) neural network trained on three independent pieces of information: 1)

the protein’s SCOP classification, indicating its general structure, 2) self-contact map of a

protein’s 3-D structure, and 3) sequence alignment of similar proteins. These embeddings

capture both local and global structural features of the protein sequences: the d0-dimensional

encoding of each amino acid contains information not just about the amino acid and its
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immediate context, but also the global structure of the protein. This is a key distinction from

other approaches (e.g. Chen et al.’s in PIPR), where each amino acid’s embedding represents

just its biochemical properties or a short-range context (e.g., 5-7 residues) around it. We

note that alternative embeddings (e.g. Rives et al. [54] or Luo et al. [55]) can potentially be

substituted here.

Projection Module In the projection module, we reduce E1 and E2 to d-dimensional

representations using a fully-connected linear layer (multi-layer perceptron) with d0 input

and d output nodes. Specifically, given an input embedding E ∈ Rn×d0 , we compute the

embedding projection Z ∈ Rn×d
≥0 as

Zi = Drop(ReLU(EiW1 + b1)) ∀i ∈ 1 . . . n (3.1)

with W1 ∈ Rd0×d, b1 ∈ Rd as learned weights and biases. The rectified linear unit (ReLU)

is a non-linear operation which applies the transformation ReLU(x) = max(0, x). The dropout

layer (Drop) randomly sets 50% of the weights to zero, helping prevent over-fitting in W1.

Residue Contact Module The residue contact model takes the d-dimensional embeddings

Z1, Z2 and models the interaction between the residues of each protein. First, for each pair of

residue embeddings Z1i , Z2j ∈ Rd, i ∈ 1, . . . , n, j ∈ 1, . . . ,m, we compute a broadcast matrix

with hidden dimension h, Bz0,z1 ∈ Rn×m×h
≥0

diffi,j = |Z0i ⊖ Z1j | (3.2)

muli,j = Z0i ⊙ Z1j (3.3)

Bi,j = ReLU(Batch([diffi,j, muli,j]W2 + b2)) (3.4)

where ⊖ indicates the element-wise difference and ⊙ indicates the Hadamard product.
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This featurization is symmetric and has been previously used in NLP and protein sequence

modeling tasks [48], [53], [56].

W2 ∈ R2d×h, b2 ∈ Rh are the learned weights and biases. The batch normalization

operation normalizes the mean and variance of the input features, thus stabilizing the learning

process. Each element Bi,j captures the direct interaction between residues S1i and S2j . The

broadcast matrix B is used to compute the contact prediction matrix Ĉ ∈ [0, 1]n×m, where

Ĉi,j = σ(Batch(Conv(B(i−w:i+w),(j−w:j+w)))) (3.5)

The two-dimensional convolution (Conv) operation with width 2w + 1 and h channels

uses the h-dimensional representation of all residues within w of Bi,j to compute Ĉi,j, and

thus detects local patterns in two-dimensional residue contact space. The broadcast matrix is

zero-padded to allow for the convolution operation to be performed at all indices. We again

apply a batch normalization to stabilize learning. We apply the sigmoid operation σ, which

restricts the output values of Ĉ to be in the range [0,1], and thus they can be interpreted as

the predicted probability that two residues are in contact.

Interaction Prediction Module The interaction prediction module computes a single

probability of interaction p̂ from the n × m contact map Ĉ. To do so, we perform two

pooling operations. The first is a standard max-pool: an l-dimensional max-pool divides Ĉ

into ⌈n
l
⌉ × ⌈m

l
⌉ non-overlapping regions and takes the maximum value of each region, with

zero-padding applied where necessary. This max-pooled matrix P represents the probability

of interaction in local regions of the proteins and maintains only the highest-probability

residue contacts in each region for global prediction. The second pooling operation is a global

pooling operation, calculated as

Qi,j = ReLU(Pi,j − µ− (γ ∗ σ2)) (3.6)
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p̂raw =

∑
i,j Qi,j∑

i,j(sign(Qi,j)) + 1
(3.7)

where µ, σ2 are the mean and variance of the Pij values and γ is a learned parameter.

The matrix Q sparsifies P , maintaining only those contacts which are γσ2 greater than the

mean, and setting all others to zero. We then predict that the proteins will interact with the

average probability of interaction among these high-probability contacts. Together with the

regularization that the contact matrix be sparse, this global pooling operation captures the

intuition that a pair of interacting proteins will be characterized by a relatively small number

of high-probability interacting residues or regions.

The final step of interaction prediction is designed to enhance the bimodality of the output

distribution, so that the choice of a cutoff becomes less important in distinguishing positive

and negative predictions. We apply the logistic activation function to compute the output

probability p̂ = σ(x0,η)(p̂raw) where

σ(x0,η)(x) =
1

1 + e−η(x−x0)
(3.8)

This activation function, with x0 = 0.5, takes our raw probability predictions and makes

them more “extreme”, depressing values below x0 towards 0 and inflating values above x0

towards 1, with η controlling the rate at which this occurs. We return p̂ and Ĉ as the model

prediction, from which we calculate the loss and optimize the gradient.

3.3.4 Training

Training Objective Given the true labels, the predicted probabilities p̂, and the contact

maps Ĉ, we compute the loss as λLBCE + (1− λ)LMAG; here λ is a hyper-parameter that

balances between LBCE, the binary cross-entropy (BCE) loss, and LMAG, the contact-map

magnitude loss (MAG). While the BCE loss is standard in a classification context, we

introduce LMAG as a novel regularization that enables us to learn realistically sparse contact
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maps. LMAG for a single training example is calculated as the arithmetic mean value of

the contact map Ĉ. Jointly minimizing the total magnitude of contact maps with the BCE

captures the intuition that interacting proteins are characterized by just a few high probability

inter-protein contacts, while most residues will not be in contact.

Implementation Details We implemented D-SCRIPT in PyTorch 1.2.0 and trained with

a NVIDIA Tesla V100 with 32GB of memory. Embeddings from the pre-trained Bepler and

Berger model were produced by concatenating the final values of the output and all hidden

layers, so that d0 = 6165. We used a projection dimension of d = 100, a hidden dimension of

h = 50, a convolutional filter with width 2w + 1 = 7, and a local max-pooling width of l = 9.

We used x0 = 0.5, η = 20 for the custom logistic activation, and λ = 0.35 for calculating the

training loss. Weights were initialized using PyTorch defaults. We used a batch size of 25,

the Adam optimizer with a learning rate of 0.001, and trained all models for 10 epochs.

3.3.5 Assessing functional module coherence

Detection of protein functional modules was performed by spectral clustering, with pairwise

distances between proteins assessed using Cao et al.’s [57], [58] diffusion state distance (DSD)

metric. We generated 500 clusters, removed clusters with fewer than 3 nodes, and recursively

split clusters with greater than 100 nodes. This module detection approach performed well

in a recent DREAM challenge on functional module detection [38]. Proteins were annotated

with functions using Gene Ontology (GO) terms from FlyBase [59], filtering out electronically-

inferred and homology-based annotations. All GO terms were mapped to a limited set of GO

Slim terms using the D. melanogaster species-specific list [60]. For each cluster, we computed

the within-cluster functional similarity, calculated as the mean Jaccard similarity of the sets

of GO Slim annotations for all pairs of proteins within the cluster. We also used a different,

graph-theoretic measure of protein similarity based on GO terms [61]; it produced similar

results. The distribution of within-cluster similarity scores were compared using a one-tailed
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t-test, with the null hypothesis that the 374 modules in the PIPR network and 384 modules

in the D-SCRIPT network have the same average within-cluster similarity.

3.3.6 Predicting PPIs in Bos taurus

We selected 24,195 bovine proteins by selecting the longest isoform of each gene and, using

HMMER [62] and GODomainMiner [63], limited ourselves to proteins that had at least one

PFAM [64], [65] domain with some associated GO annotation. In general, this filtering step

is unnecessary but here it allowed us to focus our computational resources on proteins likely

to be interest. Of the set of 292.7 million possible pairwise combinations, we generated a

list of fifty million candidate interactions by randomly sampling protein pairs; we included

a special check to ensure that the 12 pre-identified rumen related genes were fully covered.

We predicted the probability of interaction using the human-trained D-SCRIPT model, and

selected edges with a predicted value greater than or equal to 0.5 as positive edges. This

resulted in a predicted network of 476,399 positive interactions between 17,811 proteins with

an average node degree of 53.5. We created functional protein modules by performing spectral

clustering on the proteins, using the diffusion state distance (DSD) [57] metric. For each

module, we applied gene set enrichment analysis using the g:GOSt tool on the g:Profiler web

server [66] to identify functions over-represented among the proteins in each cluster.

We analysed bovine gene expression using bulk RNA-seq data from 93 tissue-specific

bovine samples [67] (GEO Accession GSE160028) and normalized each sample to counts

per million (CPM). For each cluster, we identified genes which are expressed more highly in

rumen tissue than on average across all tissues, and compute and report the log fold increase

in expression in the rumen. The gene expression data was also used to verify the quality of

our predicted network and modules. We computed the Spearman rank correlation between

the CPM normalized expression profiles for each pair of genes, then evaluated the average

correlation between protein pairs with no interaction predicted, pairs with a predicted positive

edge, pairs which are predicted to interact and share a cluster, and pairs of proteins which
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appear in the same module, regardless of whether or not an edge appears. We perform a

one-sided Welch’s t-test to compare sample means without assuming equal variance.

3.3.7 Identifying the catalytic signature motif of bovine protein

tyrosine phosphates

Our analysis of functional modules in the bovine rumen found a single cluster containing 34

proteins homologous to human protein tyrosine phosphatases (PTPs). PTPs are known to

comprise several families with similar sequence but diverse binding specificity, determined

in part by a short catalytic signature motif [68], [69]. In Figure 3.8, we show Cluster A

from Figure 3.7a, recolored based on the PTP sub-type. All but one of the neighbors of

PRD-SPRRII in Cluster A are PTP proteins (the exception being MARK2, a serine/threonine-

protein kinase). We find that D-SCRIPT does not limit its predictions to one family, instead

predicting interactions in all sub-types.

To further investigate how D-SCRIPT determines binding specificity, we undertook an

in silico mutagenesis experiment. The canonical catalytic signature motif for the PTP

family is HCX5R [70] or HCXXGXXR [69], a motif which we identified in 28 PTP proteins

from Cluster A. We also included ENSBTAP00000067545 (CDC25C), which has the motif

HCX5A in our analysis. For each protein, we used D-SCRIPT to predict the probability of

interaction with ENSBTAP00000070493 (PRD-SPRRII). Then for 50 replicates, we randomly

perturbed the catalytic motif in that protein, either by randomly selecting amino acids

for all 8 positions of the motif, or only the 5 flexible positions (X). We find that for 24

of the 29 proteins, perturbing only the flexible positions does not reduce the D-SCRIPT

predicted probability, while perturbing the entire motif drastically decreases the predicted

probability. For 2 of the remaining 5, D-SCRIPT already did not predict an interaction with

the original protein, for another one perturbing even the flexible positions decreased the

probability of interaction substantially, and for the final 2 even perturbing the entire motif

did not substantially decrease the predicted probability of interaction. Figure 3.9a shows
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the original prediction (red), the distribution of 50 replicates where only flexible sites were

mutated (blue), and the distribution of 50 replicates where the entire catalytic motif was

mutated (orange) for each PTP protein. Finally, we sought to identify which residues were

most important in determining the D-SCRIPT model’s prediction. To do so, we selected 5

CDC14 proteins (ENSBTAP00000058782, ENSBTAP00000073534, ENSBTAP00000054725,

ENSBTAP00000069880, ENSBTAP00000070948) and aligned them using MUSCLE [71].

Then, for each position in the alignment, for all sequences which didn’t have a gap in that

position, we randomly perturbed the amino acid at that position 50 times and used D-SCRIPT

to predict interaction between the perturbed sequence and PRD-SPRRII. For each sequence

location, we computed the difference between the original predicted probability of interaction

and the average probability of interaction predicted for the samples perturbed at that location,

averaged across all 5 sequences (Figure 3.9b). We found the largest decreases around the

catalytic signature motif, indicating that D-SCRIPT is in fact basing its predictions on the

residues involved in binding specificity. Further, when we zoom in to the 8-residue motif

region, it is clear that D-SCRIPT is identifying the conserved “C” and “R” in the second and

eighth position, and the flexible “A” in the fourth position of the motif as the most important

residues for determining interaction. Figure S5c shows the WebLogo for this region in the

PTP domain, where the y-axis is the change in predicted probability when each position is

perturbed [72], [73].

3.3.8 Predicting PPIs in SARS-CoV-2

We performed a preliminary study to predict viral-host interactions between SARS-CoV-2

and human proteins wherein we compared the sets of over-represented GO terms for human

interactors of SARS-CoV-2 proteins, as predicted by D-SCRIPT or PIPR, with those over-

represented in the experimentally-determined human interactors [74]. Figure 3.10 shows the

relative similarity of computationally predicted annotations to the experimentally-determined

annotations for each SARS-CoV-2 protein. Overall, we found that sets of enriched terms
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computed using the D-SCRIPT network overlap slightly more with the true network than

those computed using the PIPR network (p=0.059). Among the putative accessory factors

(ORF* and Protein 14), D-SCRIPT performs significantly better (mean Jaccard similarity

0.029 vs. 0.118, p=0.022, paired one-tailed t-test). Visually, PIPR seems to be somewhat

better at predicting interaction partners for the non-structural proteins (NSP*), although

D-SCRIPT still has a slightly larger mean similarity (0.183 vs. 0.222, p=0.221). While

D-SCRIPT performs better on the intensively studied spike (S) protein, PIPR shows a

higher overlap for the nucleocapsid (N). Neither method predicts enriched terms for the other

structural proteins encoding the envelope (E) and membrane (M) (0.149 vs. 0.121, p=0.672

across the four proteins).

Candidate pairs were generated using the viral sequences from Gordon et al. [74] and

19,777 human sequences from the STRING database, and predicted edges using D-SCRIPT

and PIPR. We predicted 3,273 edges using D-SCRIPT and 2,922 edges using PIPR. 332

putative true viral-host interactions were taken from Gordon et al. Human sequences were

mapped to UniProt sequences identifiers from Gordon et al. with sequence similarity ≥ 95%

using BLAST [19], and UniProt identifiers were used to identify a set of Gene Ontology

terms for the human interactors of each viral protein. Following Gordon et al., we identified

over-represented GO terms using the clusterProfiler R package (version 3.14.3) [75] with a

1% false discovery rate (FDR). Over-represented GO terms were mapped to a common set of

terms taken from the ChEMBL Drug Target GO Slim Subset [76]. For each viral protein, we

computed the Jaccard similarity between the set of GO Slim terms enriched in the putative

true network and each of the computationally predicted methods. We computed a paired

one-tailed t-test to statistically compare the relative similarities of D-SCRIPT and PIPR.

Virus-host edges predicted using D-SCRIPT or PIPR are available for use by the community.
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3.3.9 Logistic regression for prediction of protein structure

We selected 300 proteins with structural coordinates from the Protein Data Bank (PDB),

and randomly split them into a training set of 100 and test set of 200 proteins. We assessed

intra-protein contacts at 8 Å in the PDB structure and converted each protein’s contact map

to a binary classification data set: a protein sequence of length n corresponded to n(n−1)
2

observations, with the observation ij corresponding to a putative contact between residues i

and j. Features were generated using the human pre-trained D-SCRIPT model, where we

evaluate the model up through the first stage (projection module). This generates d = 100

dimensional vector representations Zi and Zj output by the projection module for each pair

of amino acids in the protein which capture both local and global structural features. The

regression was L2-regularized and class balanced, with its input for observation ij being the

concatenation of the 100-dimensional embeddings as well as their combinations diffij, mulij

as defined in Equations 3.2 & 3.3.

3.3.10 Predicting interactions by nearest neighbor search

To compare our sequence embedding method with other potential ones, we evaluated various

protein sequence embeddings under the following framework: the Euclidean distance in an

embedding space was used to define a distance measure between proteins. Given a true

positive PPI (A,B), we applied this distance measure to identify the k-nearest neighbors of

A and B each, and computed how many of the k2 possible combinations of these neighbors

corresponded to a positive PPI. For D-SCRIPT, we used the Rn×d
≥0 output of the projection

module and averaged the features across the length of the protein to obtain a d-dimensional

embedding. For AAClass, Vec5, and the random embedding, we directly compute the

Euclidean distance between those vectors. To identify k nearest neighbors using BLAST, we

create a database of all other proteins in the species, perform a search using blastp with the

default values, and return the top k hits by e-value.
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3.3.11 Predicting inter-protein contact maps

The output of the residue Contact Module of D-SCRIPT is an inter-protein contact map Ĉ

where Ĉij ∈ [0, 1] can be interpreted as the probability of residue i from protein S1 being

in contact with residue j of protein S2. We interpreted ground truth and predicted contact

maps as probability distributions over the n×m matrix and measured the 2-D Earth mover’s

distance between these distributions, computed by solving an optimal transport problem

under the Euclidean metric [77]. For each candidate PPI, we established random baselines

by shuffling Ĉ 500 times and recomputing the Earth mover’s distance between the random

shuffle and the true contacts. We assign a p-value to each candidate PPI based on this

permutation test and the probability of seeing an Earth mover’s distance at least as small

as the observed distance. We compute an overall p-value for positive-predicted pairs by

computing a one-tailed t-test with the null hypothesis that the average candidate PPI p-value

is 0.5, i.e. that the predictions are as accurate as a random shuffling.

3.3.12 Deconstructing model performance by protein frequency in

training data

To further investigate the relative performance of each model on out-of-species classification,

we evaluated each model on subsets of proteins ranked by their frequency in the training set.

For a set of quantiles q ∈ 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, we evaluated out-of-sample D-SCRIPT and

PIPR predictions on the human PPI sub-network consisting only of proteins of quantile q or

lower; here, lower q corresponds to a lower frequency of occurrence. In absolute terms, as

Table 3.3 indicates, both D-SCRIPT and PIPR become more accurate at higher q. However,

D-SCRIPT has a relative advantage at lower q (i.e., infrequently occuring proteins) while

PIPR performs better at higher q. In other words, PIPR’s better within-species performance

can be traced to it being more accurate on proteins that occur frequently. This also suggests

an explanation for PIPR’s lower cross-species generalizability than D-SCRIPT: when making
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predictions on an entirely new set of proteins in a different species, knowing the relative

frequencies of proteins in the training data might not be particularly useful.

The difference between D-SCRIPT and PIPR might stem from their respective archi-

tectures. The protein representation learned by D-SCRIPT is constrained to be a linear

projection of the Bepler and Berger pre-trained embedding, albeit with ReLU and dropout

layers. This regularizes how much frequency information can be incorporated into the model;

we note that the Bepler and Berger model was trained with data on individual proteins and

would not reflect PPI frequency information. In contrast, PIPR’s design allows for a lot

more leeway in training each protein’s representation. This flexibility may allow PIPR to

better incorporate the occurrence frequencies into its representation, helping its within-species

performance but potentially hurting its cross-species generalizability.

3.3.13 Quantification and statistical analysis

Statistical tests were conducted using version 1.3.1 of the SciPy Python package.

3.4 Results

3.4.1 D-SCRIPT generalizes well across species

We first sought to see how D-SCRIPT performed on the task of cross-species interaction

prediction. We trained a model on human PPIs and evaluated it using PPI data sets from

five other model organisms (Section 3.3). We compared D-SCRIPT with PIPR, shown by

Chen et al. [47] to be currently the best performing sequence-based PPI prediction method,

training both models on the same set of human PPIs; we compare their model complexity in

Section A.2. In Table 3.1, we report the precision, recall, area under precision-recall curve

(AUPR) and area under ROC curve (AUROC) of each method in each of five species. For

highly unbalanced data, as is the case here, we note that AUPR is generally considered a
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better metric than AUROC. D-SCRIPT outperforms PIPR in a cross-species setting and

maintains a high AUPR across all species, even those which are extremely evolutionary

distant from human. In fact, its AUPR in these species remains comparable to that seen

in human cross-validation. Additionally, we compared with a hybrid method (D-HYBRID)

where PIPR was used to adjust D-SCRIPT’s prediction: when PIPR is highly confident that

an interaction does occur (p̂ > 0.9), the predicted probability of D-SCRIPT is increased

by 50%. The hybrid method outperforms both D-SCRIPT and PIPR alone, but improves

D-SCRIPT only modestly in cross-species analysis. We also compare to a recently released

method by Richoux et al. [78] in Section 3.4.2.

While our focus is on enhancing cross-species PPI prediction quality, we also sought

to investigate how D-SCRIPT would perform at predicting within-species interactions in

Human.

We performed 5-fold cross validation and report here the average across all folds. Addi-

tionally, we evaluated a hybrid method (D-HYBRID) where we used D-SCRIPT to adjust

PIPR’s prediction: when D-SCRIPT is highly confident that an interaction does not happen

(p̂ < 0.01), we reduce the predicted probability from PIPR by half. Table 3.1 shows that

while PIPR outperforms D-SCRIPT on human PPIs in cross-validation, a combination of the

methods outperforms either one alone. Notably, D-HYBRID achieves substantially higher

precision, though at the expense of recall. This may be a desirable trade-off in certain

contexts, e.g., when generating PPI candidates for experimental validation. We note that

while the incremental performance of the hybrid models is modest, the observation that

D-SCRIPT performs better on out-of-sample species while PIPR performs better on in-sample

species makes possible a simple combination of the two that does not substantially increase

computation time, yet results in more accurate predictions both across and within species.
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Table 3.1: Evaluation of models trained on human PPIs. H. sapiens results are average
performance over 5-fold cross validation. All other species were evaluated using a model
trained on human data. D-SCRIPT strongly outperforms PIPR cross-species, despite PIPR
performing better in human cross-validation. D-HYBRID refers to D-SCRIPT confidence
adjusted using PIPR predictions, and P-HYBRID refers to PIPR confidence adjusted using
D-SCRIPT predictions. In both cases, a hybrid model is able to achieve better performance
than either model alone.

Species Model AUPR Precision Recall AUROC

M. musculus
PIPR 0.526 0.734 0.331 0.839

D-SCRIPT 0.580 0.818 0.346 0.833
D-HYBRID 0.609 0.820 0.355 0.838

D. melanogaster
PIPR 0.278 0.521 0.121 0.728

D-SCRIPT 0.552 0.798 0.359 0.824
D-HYBRID 0.562 0.798 0.361 0.824

C. elegans
PIPR 0.346 0.673 0.142 0.757

D-SCRIPT 0.548 0.840 0.306 0.813
D-HYBRID 0.559 0.841 0.308 0.814

S. cerevisiae
PIPR 0.230 0.398 0.085 0.718

D-SCRIPT 0.405 0.706 0.223 0.789
D-HYBRID 0.417 0.708 0.225 0.789

E. coli
PIPR 0.308 0.629 0.131 0.675

D-SCRIPT 0.571 0.791 0.520 0.863
D-HYBRID 0.588 0.793 0.394 0.863

H. sapiens
(5-fold cross validation)

PIPR 0.835 0.838 0.701 0.960
D-SCRIPT 0.516 0.728 0.278 0.833
P-HYBRID 0.844 0.949 0.400 0.962

3.4.2 Comparison with another sequence-based method

We also compared our method to a model described by Richoux et al. [78]. In it, they trained

a multi-layer fully connected network to predict protein interaction given two input sequences.

The results comparing this model to D-SCRIPT, presented in Table 3.2, are organized like

those presented in Table 3.1 in the main text. Similarly to Chen et al.’s PIPR model, the

Richoux et al. model performs better than D-SCRIPT when trained and tested on human

PPIs while D-SCRIPT generalizes better across species, with substantially higher AUPRs

than the Richoux model when the human-data-trained model is evaluated on other species.

“D-HYBRID” and “P-HYBRID” refer to the same hybrid combination approach used for

D-SCRIPT and PIPR.
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Table 3.2: Comparison with PPI prediction from Richoux et al. We compare D-
SCRIPT to the fully connected model described in Richoux et al. by a 5-fold cross validation
in human, and the application of a human-data trained model to PPIs from 5 other species.
As with the comparison to PIPR (see Table 3.1), while Richoux outperforms PIPR in the cross
validation setting, D-SCRIPT generalizes significantly better to unseen proteins cross-species,
and a hybrid model outperforms either model alone.

Species Model Precision Recall AUPR AUROC

M. musculus
Richoux 0.749 0.321 0.518 0.816

D-SCRIPT 0.818 0.346 0.580 0.833
D-HYBRID 0.821 0.354 0.608 0.837

D. melanogaster
Richoux 0.582 0.126 0.231 0.659

D-SCRIPT 0.798 0.359 0.552 0.824
D-HYBRID 0.799 0.360 0.559 0.824

C. elegans
Richoux 0.672 0.079 0.252 0.671

D-SCRIPT 0.840 0.306 0.548 0.813
D-HYBRID 0.841 0.307 0.554 0.814

S. cerevisiae
Richoux 0.501 0.059 0.201 0.652

D-SCRIPT 0.706 0.223 0.405 0.789
D-HYBRID 0.707 0.224 0.413 0.789

E. coli
Richoux 0.746 0.093 0.303 0.687

D-SCRIPT 0.791 0.520 0.571 0.863
D-HYBRID 0.792 0.391 0.581 0.863

H. sapiens
(5-fold cross validation)

Richoux 0.815 0.737 0.834 0.964
D-SCRIPT 0.728 0.278 0.516 0.833
P-HYBRID 0.944 0.405 0.848 0.966

3.4.3 D-SCRIPT predictions are functionally informative

The importance of PPI networks arises, in part, from the graph-theoretic analyses on them

which enable the functional characterization of un-annotated proteins. We therefore sought to

test if D-SCRIPT’s success at cross-species generalization would translate to better functional

inference in new species. In particular, we hypothesized that, compared to PIPR, the D-

SCRIPT model trained on human data should facilitate more accurate inference of protein

functional modules in Drosophila melanogaster. Towards this end, we generated a set of

10,475,595 candidate pairs from the set of D. melanogaster proteins in STRING. Using

D-SCRIPT and PIPR’s human-trained models, we predicted interactions over this candidate

set. On the resulting PPI networks, we performed functional module detection and quantified
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Figure 3.3: Improved Protein Functional Characterization using D-SCRIPT Mod-
ules. D-SCRIPT recovers more functionally coherent clusters than PIPR (p = 0.000723,
one-tailed t-test). Clusters were generated by predicting protein interactions using either
D-SCRIPT or PIPR, computing the diffusion state distance (DSD) between proteins, and
clustering the DSD matrix using spectral clustering. Within-cluster similarity was calculated
as the average Jaccard similarity between GO Slim annotations of all pairs of proteins in the
cluster We also use Zhao et al.’s GOGO algorithm [61], to compute the similarity between
pairs of GO terms (right); we then aggregate these to get within-cluster similarity scores.
Similarity between proteins is calculated as GOGO Biological Processes similarity using all
FlyBase GO term annotations. Our evaluation here yields similar results

the functional coherence of 374 (PIPR) and 384 (D-SCRIPT) modules using available GO

(Gene Ontology) annotations from FlyBase [59] (Section 3.3). Functional coherence of a

module quantifies the extent to which proteins in the module are likely to participate in the

same biological functions. A higher average within-cluster similarity is desirable because

it enables more accurate functional characterization of novel proteins by associativity and

discovery of protein functional modules. We find that the average within-cluster similarity

when interactions are predicted using D-SCRIPT is significantly higher than when using

PIPR (p = 0.000723, one-tailed t-test), and that D-SCRIPT results in 24% more highly-

enriched (top 10% of scores) clusters as PIPR (Figure 3.3). In addition to this cluster-based

test, we directly compared the functional similarities between protein pairs (measured as

the overlap of GO functional annotations) to their graph-theoretic similarities implied by

the D-SCRIPT and PIPR networks (see Section 3.3 for details). We find that D-SCRIPT

admits a significantly stronger correlation between the two measures than PIPR (Spearman
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ρ, 0.123 vs. 0.005, p = 0.00, Fisher r-to-z). We additionally applied D-SCRIPT and PIPR to

computationally screen all SARS-Cov-2 proteins against 19,777 human proteins, predicting

approximately 3,000 viral-host PPIs from each method and characterized each viral protein’s

function by the GO annotations of its human interactors (Section 3.4.10). We find that

compared to the corresponding annotations derived from 332 experimentally-determined

PPIs (Gordon et al. [74]), D-SCRIPT based annotations overlap more with the experimental

results than those from PIPR (p = 0.059, paired one-tailed t-test).

3.4.4 D-SCRIPT embeddings capture structure and interaction

One of our aims when designing D-SCRIPT was to capture the structural aspects of interaction

— the per-protein embedding produced by the trained projection module should encode

structural information. To examine this aspect, we randomly selected 300 proteins from

the Protein Data Bank (PDB) and used (n× 100)-dimensional D-SCRIPT embeddings of

these proteins to predict protein structure. We randomly split the 300 PDB structures into

a training set of 100 and a test set of 200, evaluating how well a logistic regression that

uses the D-SCRIPT embeddings as the input predicts contacts between residues (Section

3.3). We show that a linear combination of features in the projection module output is

able to recapitulate a meaningful subset of the ground-truth contacts, achieving a median

per-structure AUPR of 0.19 over the test data set (Figure 3.4). These results strongly suggest

that the end-to-end training of D-SCRIPT — using only sequence data — results in an

intermediate representation that captures structural information at the level of each protein.

We also sought to benchmark the utility of D-SCRIPT’s embeddings for predicting PPIs.

We hypothesized that proteins which have similar embeddings are likely to interact in the

same way, so it is possible to find new interacting pairs by searching for proteins which are

similar to known interacting pairs. We compared D-SCRIPT embeddings with several other

protein sequence representations: a one-hot embedding categorizing each amino acid into one

of seven classes based on biochemical properties (“AAClass”, from [79]), a 5-residue-context
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Figure 3.4: D-SCRIPT Embeddings Represent Structure and Interaction After a
full model has been trained to predict interaction, the low dimensional embeddings learned by
the projection module of D-SCRIPT can be used as meaningful representations of the protein
in other applications. The PDB identifier 1GNG corresponds to a protein with 356 residues
where the accuracy of using the D-SCRIPT embedding to predict self-contacts is near the
median of cases we studied (AUPR=0.19), while 1CGI corresponds to a short protein (54
residues) in which the embedding achieves a higher accuracy (AUPR=0.38). The original
contacts (a, c) were assessed at 8 Å. Contacts were predicted (b, d) using a logistic regression
model trained on contacts seen in a held-out set of proteins, and the binarization thresholds
for panel (e) were chosen so as to result in the same number of contacts as in the original
maps. These embeddings also enable the accurate recovery of true interacting protein pairs
in the neighborhood of known PPIs in human (f), yeast (g), and roundworm (h). D-SCRIPT
embeddings recover more interacting proteins than any other embedding, regardless of species
or number of neighbors checked. AAClass also performs well, likely because it characterizes
biochemistry which is preserved at longer evolutionary distances. BLAST performs well at
low values of k but has difficulty recovering interactions for larger values — likely due to
network rewiring over longer evolutionary distances.

Skip-Gram embedding (“Vec5”, from [80]), a concatenation of Vec5 and AAClass (used in the

input for PIPR), and a randomly generated 50-dimensional embedding with values drawn

uniformly from the range [0, 1]. Additionally, we used BLAST [19] to search for neighbors

of interacting proteins. We then evaluated the number of interacting pairs we find in the

neighborhood of a small set of “seed pairs”, finding that D-SCRIPT finds more interactions

in the nearest neighbors of the seed pairs than all other embeddings in H. sapiens (Figure
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3.4f), S. cerevisiae (3.4g), and C. elegans (3.4h).

3.4.5 Predicted contact maps recapitulate known protein binding

mechanisms
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Figure 3.5: D-SCRIPT Predicts Biologically Meaningful Contact Maps We show inter-
protein contact maps of protein structures known to dock together. Panels (a,b) correspond
to pairs where D-SCRIPT correctly predicted an interaction, while panels (c,d) are cases
where it incorrectly predicted no interaction. The black-and-white matrices correspond to the
PDB ground truth while the colored matrices correspond to D-SCRIPT’s Ĉ; for the latter,
the color scales of (a,b) differ from (c,d). While Ĉ contains large values for positive pairs, its
maximum Cmax is very low for negative pairs. Panel (e) shows a systematic evaluation of the
2-D Earth mover’s distance-based similarity between Ĉ and the ground truth. Not only are
the correctly-predicted Ĉs significantly similar to the ground truth, even when D-SCRIPT
incorrectly predicts two proteins don’t interact, its contact maps are still similar to ground
truth.

We investigated whether the interpretability of our model could aid in predicting inter-

protein docking contacts. As an intermediate representation, the D-SCRIPT Contact Module

(Figure 3.2) produces an inter-protein contact map which predicts the probability of interaction

between all pairs of residues in the candidate protein pair. We first sought to verify that

the contact maps produced after training were consistent with our design goal: the maps

corresponding to negative predictions should have uniformly near-zero contact probabilities,

while those for positive predictions should be sparse but with isolated regions of high

probability contact prediction. We found that this was indeed the case generally and show
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some examples in Figure 3.5: the maximum predicted residue contact probability is high for

positive examples and low for negative examples.

We next sought to test if the predicted contact map is physically representative of the

actual docking mechanism of the interaction. We emphasize that this is a high bar given

we do not provide any 3-D information to the model nor any guidance on docking and, in

principle, the model could perform well on the classification task without a physically accurate

contact map. We performed this test using Hwang et al.’s benchmark data set of docked

protein structures [49]. For every pair of chains in each PDB complex in the benchmark set,

we generated a candidate PPI. We applied our human-data-trained model on 295 candidate

PPIs and evaluated the predicted contact maps against the ground-truth contacts (assessed

at 8 Å).

In cases where our model predicted an interaction, we found the predicted contacts to

indeed recapitulate the ground-truth contacts substantially (Figure 3.5a,b). Even in some

of the cases where D-SCRIPT did not predict an interaction, the distribution of predicted

contacts was nevertheless consistent with the ground-truth (Figure 3.5c). To systematically

evaluate the accuracy of the D-SCRIPT contact map, we evaluated the distance between the

predicted and true contacts using an optimal transport metric, and compared to a baseline

established by randomly reshuffling the predicted matrix. We chose to measure similarity

between regions of the two contact maps rather than measuring per-residue matches (with a

metric such as binary cross-entropy) because the convolutional and max-pooling layers in our

model aggregate over neighboring residues, thus diffusing the signal. We estimated the p-value

of the predicted contacts against 500 random trials, finding that in cases where D-SCRIPT

predicted an interaction, the contact-maps were substantially similar to the ground-truth

(median FDR-corrected q = 0.08, one-sided t-test). Even in cases where D-SCRIPT did not

predict an interaction, the similarity to the ground truth was higher than that of the random

baselines (Figure 3.5e).
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3.4.6 Using protein frequency counts as a predictor

PPI networks are dominated by a dense and highly connected core of nodes, where the core

includes many hub nodes. A method that does relatively well on these hub proteins will have

an advantage on within-species evaluations. For our cross-validation setup, we followed the

precedent of previous work and split training and test data by edges [47], [50]. Consequently,

a protein’s relative frequency will be roughly similar in the training and test data sets. In this

context, a PPI prediction heuristic that simply remembers frequency counts does strikingly

well (see figure below). Here, we scored the likelihood of a candidate PPI (A,B) being true

as the minimum of frequency counts, in training data, of A and B.

Figure 3.6: Performance of a training-counts-only classifier.: As part of the investigation
of the impact of a protein’s frequency in the training set on classifier performance, we created
a naive classifier which simply predicts that a pair interacts with probability corresponding
to the minimum number of times either of a pair exists in a positive interaction in the
training set, normalized over the maximum number of times any such protein appears. We
find that this naive classifier actually performs rather well in within-species cross-validation,
achieving an AUPR of 0.784. However, such a classifier would output a probability of 0 for
all interactions in a data set which did not share any proteins with the training set, as is the
case in the cross-species setting.

3.4.7 D-SCRIPT performs better on infrequently occurring proteins

To further investigate the finding above, we ranked proteins in the human PPI network by

their frequency of occurrence. For a set of quantiles q ∈ [0, 1], we evaluated out-of-sample
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D-SCRIPT and PIPR predictions on the human PPI sub-network consisting only of proteins

of rank q or lower; here, lower q corresponds to a lower frequency of occurrence. In absolute

terms, as the table below indicates, both D-SCRIPT and PIPR become more accurate at

higher q. However, D-SCRIPT has a relative advantage at lower q (i.e., infrequently occuring

proteins) while PIPR performs better at higher q. In other words, PIPR’s better within-species

performance can be traced to it being more accurate on proteins that occur frequently. This

also suggests an explanation for PIPR’s lower cross-species generalizability than D-SCRIPT:

when making predictions on an entirely new set of proteins in a different species, knowing

the relative frequencies of proteins in the training data might not be particularly useful.

The difference between D-SCRIPT and PIPR might stem from their respective archi-

tectures. The protein representation learned by D-SCRIPT is constrained to be a linear

projection of the Bepler & Berger pre-trained embedding, albeit with ReLU and dropout

layers. This regularizes how much frequency information can be incorporated into the model;

we note that the Bepler and Berger model was trained with data on individual proteins and

would not reflect PPI frequency information. In contrast, PIPR’s design allows for a lot

more leeway in training each protein’s representation. This flexibility may allow PIPR to

better incorporate the occurrence frequencies into its representation, helping its within-species

performance but potentially hurting its cross-species generalizability.

Table 3.3: Area under precision-recall curve (AUPR) of PPI prediction performance
for interactions where proteins appear rarely in the training set. We created
increasingly restrictive subsets of the test data, where no protein in the subset may appear
more than some cutoff number of times in the training set. While PIPR outperforms
D-SCRIPT when frequently trained on proteins are present, at lower quantile values q,
D-SCRIPT performs relatively better than PIPR - although the absolute performance of
both classifiers drops off as the data set is more challenging.

Cutoff Quantile (q) Cutoff Value % of Test Pairs PIPR D-SCRIPT
1.0 209 100 0.830503 0.591353
0.9 12 75.31 0.206161 0.118704
0.8 5 61.12 0.061128 0.068445
0.7 2 46.85 0.014476 0.024299
0.6 1 38.03 0.005838 0.011789
0.5 0 25.06 0.001373 0.006673
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3.4.8 Case study: Protein function and interaction in the bovine

rumen

Because D-SCRIPT generalizes well to species with limited available PPI data, it enables

the study of protein functional pathways through de novo prediction of protein interaction

networks. Following this, we undertook a study of protein interaction in the bovine rumen to

investigate the biological processes involved in rumination. In a comprehensive study of the

sheep (Ovis aries) genome, Jiang et al. [81] identify several genes which are preferentially

expressed in rumen tissue, including PRD-SPRRII, S100-A2, S100-A12, and TCHHL2. Using

BLAST [19], we identify 12 putative homologous proteins in the ARS-UCD1.2 cow (Bos

taurus) genome assembly (see Table A.2 for gene list) to focus on in our analysis. Including

the rumen specific homologs, we selected 24,195 bovine proteins, and used the human-trained

D-SCRIPT model to predict the probability of interaction for fifty million candidate pairs. We

predicted a network of 476,399 positive interactions between 17,811 proteins, and performed

functional module detection and gene set enrichment analysis (Section 3.3). To quantitatively

assess the quality of our predicted edges and clusters, we computed the coexpression of each

pair of genes (Figure 3.7f) in 93 tissue samples. We find that pairs of genes for which we

predict an edge with D-SCRIPT are significantly more likely to be coexpressed than a random

pair of genes (p < 1e-84, one-sided t-test). Further, the correlation between expression vectors

is even stronger for pairs which appear in the same functional module, even in cases where

D-SCRIPT does not predict an interaction between the proteins.

The largest cluster we identify (Cluster A, Figure 3.7a) is comprised of 65 proteins,

including 2 homologs of PRD-SPRRII. 34 of the genes in Cluster A are homologous to

various human protein tyrosine phosphotases, across multiple classes of the protein tyrosine

phosphotases categorized in [68], [69]. Other genes in the cluster are TXNL1, known to

buffer response to oxidative stress [82], [83], and serine/threonine protein kinases including

VRK3 [84] and STK33 [85]. Two genes in Cluster A have been previously been associated
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Figure 3.7: Protein Interaction Network in Bovine Rumen We apply D-SCRIPT
to predict a de novo PPI network in cow (B. taurus), and apply spectral clustering to
the diffusion state distance (DSD) matrix to identify functional modules, shortlisting five
modules related to rumen physiology. A recent RNA-seq study validates several proteins
in these modules as being strongly overexpressed in rumen tissue. For each module, we
report gene ontology molecular function (GO:MF), biological process (GO:BP) and cellular
compartment (GO:CC) annotations which are significantly enriched for the proteins in each
cluster. We also show the log(fold change) for genes in the cluster which are more expressed
in rumen tissue than on average across all tissues. For each module, nodes have been added
in gray if necessary to fully connect all nodes. We find 3 modules containing members of the
PRD-SPRRII family and which are enriched for phosphate and mitochondrial metabolism
(a,b) and regulation of cell growth mechanisms (c). We also find a module with TCHH-like 2
proteins enriched for immune response (d), and with S100-A2 and S100-A2 proteins enriched
for transcriptional regulation and chromatin organization (e). The modules in a,b and e are
directly connected through TARS and MRPL4, which suggest a link between these functions
in bovine rumen. In f, we demonstrate that protein pairs with a predicted D-SCRIPT edge
correspond to a higher coexpression between their respective genes. This coexpression signal
gets even stronger when evaluated only on protein pairs in a functional module, suggesting
that both the protein network and functional modules are biologically meaningful.
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with disease in cattle, TUBD1 [86], where missense mutations were associated with increase

juvenile mortality in cattle, and NUAK1 [87], which was found to be differentially expressed

in cows with milk fever.

This cluster is connected through PTPMT1 and TARS to a cluster of 53 proteins

(Cluster B, Figure 3.7b) which are active in metabolism within the mitochondria, and

participate in oxidoreductase and transaminase catalytic activity, and which contains one

homolog of PRD-SPRRII. Ruminants, like the cow, exhibit patterns of energy metabolism

that are quite different from non-ruminants like humans or rodents [88]. Because ingested

carbohydrates are fermented to short chain fatty acids in the rumen, glucose demand is met

by gluconeogenesis, controlled by transcriptional regulation, and the associated genes and

pathways are implicated in metabolic disorders that affect dairy cows such as fatty liver and

ketosis. [89]. Many of whose human homologs of genes in Cluster B are known to localize to the

mitochondria, including ACSS1 [90], AGXT2 [91], COA6 [92], DECR1 [93], MTHFD2 [94],

OAT [95], plus LHPP which was predicted by [96] to be involved in mitochondrial oxidative

phosphorylation. Other genes in the cluster have been implicated in mitochondrial tRNA

modification, including CDK5RAP1 [97], MTO1 [98], TARS [99] and TFAM [100]. Still

others, such as ABAT [101], FOXRED1 [102], and NDUFV1 [103] have human homologs

whose role in mitochondrial rare diseases has been documented. Several of the genes in this

cluster have been implicated as important trait or disease markers in dairy cows, pigs, and

sheep, making the predicted interactors of these genes of particular interest. For example,

BDH1, involved in ketogenesis [104] has been linked by multiple studies to health of lactating

dairy cows [104], [105]. High expression of BDH1 was positively correlated with milk yield

and negatively correlated with fat yield in buffalo [106]. Polymorphisms of the DECR1 gene

have been connected to meat quality [93], [107] and AHCYL2 was one of ten candidate

disease genes suggested by [108] to be involved in susceptibility to DA.

This cluster is further connected through MRPL4 and two H15 domain containing proteins

to a module of 55 proteins (Cluster E, Figure 3.7e) involved in transcriptional regulation,
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with significant enrichment for nucleosome and chromatin assembly and organization. In

Wei et al. [109], MRPL4 was identified as being involved in immune and inflammatory

pathways, where the human homolog was suggested as a disease gene for allergic rhinitis.

This cluster contains all four homologs of S100-A12 and one of S100A-2, from the set of

highly expressed sheep rumen protein homologs. It also contains homologs to other human

S100 proteins, S100-A4, S100-A7, S100-A8, S100-G, S100-A11 and S100-A16. Many of these

S100 proteins have been implicated in progression of human epithelial tumor progression, cell

differentiation, and chronic inflamation. [110]. A cluster of three of these proteins, S100-A12,

S100-A7 and S100-A8, has been implicated in the innate immune response to pathogens,

including parasites, E. coli and H. pylori [111], where some have been shown to function in

the nutritional immunity mechanism, by out-competing bacterial metal ion transporters [2].

For the S100 family of proteins, however, there should be some caution in assuming specificity

of function translates across species: for example, [112] showed that the Bovine S100-G most

likely buffers calcium but is not likely to be a calcium sensor like mouse S100-G, despite over

an 81% sequence identity. Still, we hypothesize a connection to anti-microbial activity and

innate immunity for proteins in Cluster E.

We further identify two additional, smaller clusters. In one, the PRD-SPRRII homolog

occurs in a module of 16 genes (Cluster C, Figure 3.7c) that also contains HOXC6 and

HOXA7 and is enriched for multicellular organism development, skeletal system development,

and organ morphogenesis, suggesting a role for PRD-SPRRII in cell growth in the rumen.

Other genes in this cluster include SNIP, with anti-inflammatory function [113] and several

genes whose human homologs FAP, PRRX1, and TP73, have been implicated in extra-cellular

matrix remodelling, and cancer metastasis [114]–[116]. Both the TCHHL2 homologs are part

of the other small module (Cluster D, Figure 3.7d), which has 10 genes and is enriched for B

cell selection and proliferation of CD4-positive alpha-beta T cells, lymphocytes, and leukocytes,

suggesting that TCHHL2 plays a role in the immune response within the bovine rumen. The

TCHHL2 protein may be involved in cross-linking keratins at the ruminal surface [117]. The
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link between metabolism, cell growth and the immune system is documented in Turner et al.

[118], and our analysis further suggests that these processes are involved in the modulation

of immune response.

The above clusters contain many genes involved in rumen physiology and cow health, and

with some of their homologs implicated in human diseases. However, like PPIs determined by

in vitro assays, the predictions of D-SCRIPT should be cross-referenced with tissue-specific

information when interpreting them in a particular tissue-type. Consider Cluster B, which

consists predominantly of mitochondrial genes. Since D-SCRIPT has no knowledge of cellular

compartments, this grouping has emerged naturally from the data, suggesting a biological

signal. Indeed, we find many of these genes are highly expressed in the rumen (Figure 3.7b).

On the other hand, 34 genes in Cluster A are protein tyrosine phosphatases (PTPs), all

with similar but not identical functions. It is possible that only some of these genes are

involved in rumen biology, with the rest active in other tissues. RNA-seq data supports

this, identifying only a few PTPs as highly expressed in the rumen (Figure 3.7a). In general,

the structure/function specificity of a protein family would help determine each member’s

tissue-specific selectivity. Interestingly, the large set of PTPs provides a natural setting to

investigate D-SCRIPT’s sensitivity to small sequence variations. PTP binding specificity is

largely determined by the PTP catalytic signature motif (HCX5R) [119]. In Section 3.4.9,

we show that D-SCRIPT predicted probabilities of interaction between SPRR-II and PTP

proteins drop substantially when the entire eight residue motif is perturbed, but remains high

when only the flexible sites are randomized, indicating that D-SCRIPT is sensitive to residues

which determine binding specificity. Further, we show that a systematic perturbation of each

residue of the CDC14 subfamily of protein tyrosine phosphatases identifies the location of

the catalytic signature motif completely de novo, which suggests that such an experiment

could be used to form hypotheses about binding mechanisms of uncharacterized proteins.
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3.4.9 Case study: Analysis of binding specificity in PTP family

Our analysis of functional modules in the bovine rumen found a single cluster containing 34

proteins homologous to human protein tyrosine phosphatases (PTPs). PTP’s are known to

comprise several families with similar sequence but diverse binding specificity, determined

in part by a short catalytic signature motif [68], [69]. In Figure 3.8, we show Cluster A

from Figure 3.7a, recolored based on the PTP sub-type. All but one of the neighbors of

PRD-SPRRII in Cluster A are PTP proteins (the exception being MARK2, a serine/threonine-

protein kinase). We find that D-SCRIPT does not seem to bind discriminately to one family,

but tends to predict interactions across all sub-types.

To further investigate how D-SCRIPT determines binding specificity, we undertook an

in silico mutagenesis experiment. The canonical catalytic signature motif for the PTP

family is HCX5R [119] or HCXXGXXR [69], a motif which we identified in 28 PTP proteins

from Cluster A. We also included ENSBTAP00000067545 (CDC25C ), which has the motif

HCXXXXXA in our analysis. For each protein, we used D-SCRIPT to predict the probability

of interaction with ENSBTAP00000070493 (PRD-SPRRII ). Then for 50 replicates, we

randomly perturbed the catalytic motif in that protein, either by randomly selecting amino

acids for all 8 positions of the motif, or only the 5 flexible positions (X). We find that for

24 of the 29 proteins, perturbing only the flexible positions increases or does not change

the D-SCRIPT predicted probability, while perturbing the entire motif drastically decreases

the predicted probability. For 2 of the remaining 5, D-SCRIPT already did not predict an

interaction with the original protein, for another one perturbing even the flexible positions

decreased the probability of interaction significantly, and for the final 2 even perturbing the

entire motif did not significantly decrease the predicted probability of interaction. Figure

3.9a shows the original prediction (black), the distribution of 50 replicates where only flexible

sites were mutated (blue), and the distribution of 50 replicates where the entire catalytic

motif was mutated (orange) for each PTP protein.
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Finally, we sought to identify which residues were most important in determining

the D-SCRIPT model’s prediction. To do so, we selected 5 CDC14 proteins (ENSB-

TAP00000058782, ENSBTAP00000073534, ENSBTAP00000054725, ENSBTAP00000069880,

ENSBTAP00000070948) and aligned them using MUSCLE [71]. Then, for each position

in the alignment, for all sequences which didn’t have a gap in that position, we randomly

perturbed the amino acid at that position and used D-SCRIPT to predict interaction be-

tween the perturbed sequence and PRD-SPRRII. Figure 3.9b shows, for each position of

the alignment, the difference between the average original predicted probability of inter-

action across the 5 sequences, and the average predicted probability of interaction across

the perturbed sequences at that position. We find a very clear spike around the catalytic

signature motif, indicating that D-SCRIPT is in fact basing its predictions on the residues

involved in binding specificity. Further, when we zoom in to the 8-residue motif region, it is

clear that D-SCRIPT is identifying the conserved part of the motif, and especially the ‘C’,

as the most important residue in determining interaction. Figure 3.9c shows the WebLogo

(https://weblogo.berkeley.edu/logo.cgi) for this region in the PTP domain, and the y-axis is

the change in predicted probability when each position is perturbed.

3.4.10 Case study: Human interactions with SARS-CoV-2 proteins

We performed a preliminary study to predict viral-host interactions between SARS-CoV-

2 and human proteins wherein we compared the sets of over-represented GO terms for

human interactors of SARS-CoV-2 proteins, as predicted by D-SCRIPT or PIPR, with those

over-represented in the experimentally-determined human interactors (Gordon et al. [74]).

Figure 3.10 shows the relative similarity of computationally predicted annotations to the

experimentally-determined annotations for each SARS-CoV-2 protein. Overall, we found

that sets of enriched terms computed using the D-SCRIPT network overlap slightly more

with the true network than those computed using the PIPR network (p = 0.059). Among

the putative accessory factors (ORF* and Protein 14), D-SCRIPT performs significantly
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Figure 3.8: PTP Subfamilies in Cluster A. Cluster A (Figure 3.7a) colored by protein
tyrosine phosphate (PTP) subfamily. All predicted interactors of the PRD-SPRRII family
proteins (square) in Cluster A are homologs of human PTP proteins except for MARK2, a
serine/threonine-protein kinase.
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Figure 3.9: D-SCRIPT Recognizes the PTP Catalytic Signature Motif. (a) For each
protein, we randomly perturbed only the flexible residues of the catalytic motif sequence,
and the entire motif, 50 times. In blue, we show the distribution of D-SCRIPT predictions of
interaction with PRD-SPRRII when only the flexible residues were perturbed. In orange, we
show the distribution of predictions when the entire motif was occured. The black bar shows
the original predicted interaction. In 24 of the 29 proteins, changing the flexible residues
had little effect on the predicted probability, while changing the entire motif (including the
non-flexible regions) significantly decreased the predicted probability. (b) For each position
of the CDC14 alignment, we randomly perturbed each of 5 sequences at that position and
predicted interaction using D-SCRIPT. Shown is the difference between the original and
predicted probability when only that position is changed. The sharp spike around the 300
position identifies the catalytic signature motif. (c) The same experiment is shown, zoomed
in to the 8-residue motif. D-SCRIPT clearly identifies the conserved ‘C’ position as most
determinate in whether an interaction is predicted.

51



better (mean Jaccard similarity 0.029 vs. 0.118, p = 0.022, paired one-tailed t-test). Visually,

PIPR seems to be somewhat better at predicting interaction partners for the non-structural

proteins (NSP*), although D-SCRIPT still has a slightly larger mean similarity (0.183 vs.

0.222, p = 0.221). While D-SCRIPT performs better on the intensively studied spike (S)

protein, PIPR shows a higher overlap for the nucleocapsid (N). Neither method predicts

enriched terms for the other structural proteins encoding the envelope (E) and membrane

(M) (0.149 vs. 0.121, p = 0.672 across the four proteins).

Candidate pairs were generated using the viral sequences from Gordon et al. [74] and

19,777 human sequences from the STRING database, and predicted edges using D-SCRIPT

and PIPR. We predicted 3,273 edges using D-SCRIPT and 2,922 edges using PIPR. 332

putative true viral-host interactions were taken from Gordon et al. Human sequences were

mapped to UniProt sequences identifiers from [74] with sequence similarity ≥ 95% using

BLAST [19], and UniProt identifiers were used to identify a set of Gene Ontology terms for

the human interactors of each viral protein. Following [74], we identified over-represented

GO terms using the clusterProfiler R package (version 3.14.3) [75] with a 1% false discovery

rate (FDR). Over-represented GO terms were mapped to a common set of terms taken from

the ChEMBL Drug Target GO Slim Subset [76]. For each viral protein, we computed the

Jaccard similarity between the set of GO Slim terms enriched in the putative true network

and each of the computationally predicted methods. We computed a paired one-tailed t-test

to statistically compare the relative similarities of D-SCRIPT and PIPR.

3.4.11 Performance

D-SCRIPT took approximately 3 days to train for 10 epochs on 843,602 training pairs,

and fits within a single 32GB GPU. Running time and GPU memory usage scales roughly

quadratically, O(mn), with the protein lengths m,n, since D-SCRIPT models the full n×m

contact map as an intermediate step. Prediction of new candidate pairs with a trained model

is very fast, requiring on average 0.02 seconds/pair and less than 5GB of GPU memory. Since
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Figure 3.10: Similarity of Enriched GO Terms to True Network. Interactions between
SARS-CoV-2 proteins and human proteins were predicted using D-SCRIPT and PIPR. Viral
proteins were then annotated with the enriched ChEMBL GO Slim terms linked to their
human interactors. Compared to PIPR, interactions computed with D-SCRIPT show a greater
annotation overlap (p = 0.059) with those estimated from putative true interactions from
Gordon et al. [74]. D-SCRIPT performs especially well at predicting functional enrichments
for putative accessory factor proteins, where PIPR recovers none of the enriched functional
terms in several cases.

D-SCRIPT generalizes well cross-species, it only needs to be trained once on a large corpus

of data, and can be used to make predictions in a variety of settings.

3.5 Chapter Perspectives

We have introduced D-SCRIPT, an interpretable method for PPI prediction from sequence.

D-SCRIPT takes a structure-based approach, with the prediction score for a protein pair

computed as the binding compatibility of their respective structures. Since structure is more

conserved than sequence over evolutionary time [120], this physical model of interaction

generalizes well across species. Importantly, the intermediate contact map representation

in the model is directly interpretable and can be used to validate the prediction or study

the proteins’ binding regions. D-SCRIPT thus joins the small but growing set of advances

in interpretable deep learning methods in computational biology [121], [122]. Our modular
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design additionally enables the investigation of model output at various stages, and we

demonstrate that each layer captures incremental structural information.

The advantage of a sequence-based approach like D-SCRIPT is that the input sequence

data is almost always available, due to the enormous advances in low-cost genome sequencing.

Compared to PIPR [47], the state-of-the-art deep learning method that also takes sequences

as inputs, D-SCRIPT generalizes better across species and can thus be more effective for

accurate de novo PPI predictions in non-model organisms or less-studied proteins in organisms

like fly. We suspect that D-SCRIPT’s relative success across species, but under-performance

on a within-species evaluation, is due to the simplicity of the model and the extent to which

it is regularized. These design choices enhance D-SCRIPT’s generalizability, directing it to

learn general structural aspects of the interaction, rather than using network structure or

the frequency of any individual protein as an interaction partner. However, for certain tasks

a balance between the cross-species generalizability of D-SCRIPT and the within-species

specificity of other state-of-the-art methods may be desirable. A future research direction

might be transfer learning to tune a pre-trained D-SCRIPT model to a target species, while

another approach could be to integrate it with guilt-by-association graph-theoretic PPI

predictions [42].

Notably, D-SCRIPT does not require a multiple sequence alignment (MSA). Co-evolution

based approaches that use MSAs have proven effective in reconstructing single-protein contact

maps and 3-D structures [123]–[125]. When extending them to PPI prediction, an additional

challenge is to identify the correct correspondence order between the rows of the two MSAs.

In prokaryotic genomes where synteny conservation can be very informative, methods like

ComplexContact [126], EV Complex [127], [128] and Gremlin [129] have been shown to

perform well and provide residue-level interaction detail. However, there has been less success

in extending these approaches to more complex, eukaryotic genomes. Importantly, we found

the need to compute MSAs to be a performance bottleneck, making it infeasible to perform

eukaryotic genome-scale predictions with them, therefore limiting the applicability of an
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EV Complex approach in our setting. Nonetheless, incorporating co-evolutionary insights

could improve D-SCRIPT’s accuracy, and future work could explore ways to do so without

sacrificing speed. Insights from related advances in the prediction of contact maps and

structures of individual proteins could also be incorporated into our model architecture.

D-SCRIPT illustrates that learning the language of individual proteins, a successful deep

learning effort, also helps decode the language of protein interactions. We leverage Bepler

and Berger’s pre-trained language model [48], [53], allowing us to indirectly benefit from the

rich data on 3-D structures of individual proteins. In contrast, a PPI prediction method

that was directly supervised with 3-D structures of protein complexes, in order to learn the

physical mechanism of interaction, would need to contend with the relatively small size of

that corpus [130]–[132].

There is a pressing need for scalable computational methods to infer a gene’s function

from its sequence in non-model organisms. While the sequencing revolution has helped make

genomes more widely available, there remains a dearth of functional data. PPI prediction

with D-SCRIPT is fast, making genome-scale screening feasible. For instance, we were able to

evaluate 50 million candidate PPIs in B. taurus in 8 days on a single GPU. With D-SCRIPT,

a workflow consisting of genome-scale PPI prediction, followed by graph-theoretic analysis of

the PPI network to identify functional modules, can generate high-confidence predictions of

gene function at scale; we demonstrated this in our cow rumen case-study. Such de novo PPI

prediction can be useful even in model organisms such as C. elegans, for which the known

portion of the PPI network is still quite sparse. In other organisms (e.g., D. melanogaster)

where some PPI data does exist, future work could productively combine that data with

D-SCRIPT predictions. We hope that its combination of broad applicability, cross-species

accuracy, and speed will make D-SCRIPT a useful community resource for addressing the

“genome to phenome” challenge.
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Chapter 4

Protein-Protein Interactions II: Network

and Structure

4.1 Chapter Overview

Computational methods to predict protein–protein interaction (PPI) typically segregate into

sequence based ‘bottom-up’ methods that infer properties from the characteristics of the

individual protein sequences (as we introduced in the previous chapter), or global ‘top-down’

methods that infer properties from the pattern of already known PPIs in the species of

interest. However, a way to incorporate top-down insights into sequence-based bottom-up

PPI prediction methods has been elusive. In this chapter, we introduce Topsy-Turvy, a

method that newly synthesizes both views in a sequence-based, multi-scale, deeplearning

model for PPI prediction. While Topsy-Turvy makes predictions using only sequence data,

during the training phase it takes a transfer-learning approach by incorporating patterns

from both global and molecular-level views of protein interaction.

A third type of method focuses on using structural, rather than sequence, information

to make predictions of PPI. While high-quality structures have historically been limited,

due to advances such as AlphaFold [133], high-quality computational structural models are
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now pre-computed and available for nearly every protein in UniProt. However, the best way

to leverage these models to predict which pairs of proteins interact in a high-throughput

manner is not immediately clear. We also show here that using both the amino acid sequence

and the 3Di sequence generated by Foldseek [134] as inputs to Topsy-Turvy substantially

improves the performance of predicting protein–protein interactions cross-species. Thus

TT3D (Topsy-Turvy 3D) presents a way to reuse all the computational effort going into

producing high-quality structural models from sequence, while being sufficiently lightweight

so that high-quality binary protein–protein interaction predictions across all protein pairs

can still be made genome-wide.

4.2 Introduction

We focus on the problem of predicting PPIs from sequence data without the computational

expense of multiple sequence alignments, thus enabling genome-scale predictions. Classically,

the physical protein-protein interaction (PPI) prediction problem has been studied in two

settings: one, where we only have access to each protein’s amino acid sequence and must

determine from the sequence data alone if the two proteins bind (e.g. [11], [47], [50], [135]).

The other infers new interactions from the global topological properties of known PPI

connections using either a simple rule such as “proteins with many common interaction

partners are likely to also interact”, or more sophisticated diffusion-based network embeddings

(e.g. [37], [41], [42], [136]–[139]).

Our previous work introduced D-SCRIPT [11], a structure-aware deep-learning model for

predicting protein interactions. D-SCRIPT takes a bottom-up view, learning about protein

interactions pair-by-pair through the lens of (inferred) protein structure and, by leveraging a

natural language based protein sequence representation, was shown to achieve state-of-the-art

cross-species generalizability. While we originally trained D-SCRIPT on pairwise human

PPI data, we pursue here the intuition that the wealth of network-level global information
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available could potentially improve predictive performance if integrated during the training

phase. Unfortunately, we found scant guidance in the literature for how to make use of

both types of information simultaneously: existing PPI prediction methods (such as those

listed above) either take exclusively a top-down or bottom-up approach, ignoring the other

approach entirely.

Here, we propose a new approach, Topsy-Turvy, that integrates graph-theoretic (top-

down) and sequence-based (bottom-up) approaches to PPI prediction in the training phase of

our sequence-based predictor. Topsy-Turvy introduces a multi-objective training framework

that takes a pair of protein sequences as input, with the supervision provided by both

experimentally-determined PPIs (in the same manner as D-SCRIPT), as well as with global

topological measures of protein pair compatibility. Importantly, it only requires protein

sequences as inputs when making predictions— network information is used only during

training. Since the trained Topsy-Turvy model makes predictions using just sequence data, it

is particularly valuable in non-model organisms where almost no PPI data is available [11],

[140]. We also investigate whether AlphaFold-Multimer [141], a very recent method for

protein-complex structure prediction, can instead be adapted to solve our PPI prediction task;

however, we found it to be 100,000 times slower than Topsy-Turvy. Due to its computational

efficiency, Topsy-Turvy is applicable in genome-wide prediction settings where AlphaFold-

Multimer would be infeasible.

While Topsy-Turvy requires no pre-existing experimental data in the species of interest, for

cases where some such data is available (e.g., in worm or fly) we devise a hybrid model, TT-

Hybrid, that is able to take advantage of species-specific network data. TT-Hybrid embodies

a principled approach to combining the Topsy-Turvy sequence scores with GLIDE [42] scores

to make PPI predictions; we chose GLIDE after benchmarking it against the widely-used

node2vec [142] (Section 4.4.1). We show that TT-Hybrid performs better than its competitors,

or just Topsy-Turvy or GLIDE alone.

This work has several key conceptual advances— (1) Whereas the D-SCRIPT algorithm
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showed that informative features generated by a protein language model enable transfer

learning of the structural basis of interaction, we show that we can likewise transfer global

patterns of PPI organization by integrating a topological compatibility score into the loss

function. (2) We approach the synthesis of bottom-up and top-down approaches as a multi-

objective training problem that balances between structural and topological considerations

when predicting PPIs. Except for the recent work of [143], such integrative approaches in

prior work have been rare. (3) We provide a framework for accurately predicting PPIs in

a variety of settings— both cross-species, where no training data is available in the target

species, as well as in species that have limited experimentally-determined PPIs.

In a cross-species setting, Topsy-Turvy achieves state-of-the-art results, substantially

improving upon the cross-species generalizability of PIPR [47], DeepPPI [78], and D-SCRIPT.

We investigate Topsy-Turvy’s improved performance, finding that it performs better not only

on interactions involving hub nodes in the target species but even more so on low-degree

nodes; this suggests that the measured outperformance is not simply due to ascertainment

bias [144] (Sections 4.4.3, 4.4.4). We also investigated Topsy-Turvy’s usefulness in settings

where sufficient PPI data exists so that a putative interaction between two proteins could also

be predicted using global methods. We show that TT-Hybrid’s principled synthesis of the

scores from the network-based GLIDE method [42] and Topsy-Turvy yields state-of-the-art

performance in this setting as well.

Leveraging structural data when available Experimental PPI data remains sparse in

most model organisms and even more so in other species. Recent deep learning methods

that predict PPIs solely from sequence seek to address this limitation. We introduced D-

SCRIPT [11] and Topsy-Turvy [12], two deep learning methods that rapidly predict whether

two proteins will physically bind in the cell using only protein sequence information. We call

these methods lightweight deep-learning methods, since they are computationally efficient

enough to be run genome-wide. These methods can be contrasted with classical PPI docking
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Figure 4.1: Topsy-Turvy synthesizes sequence-to-structure based prediction using
D-SCRIPT with network-based prediction using GLIDE. (A) D-SCRIPT uses a
protein language model to generate representative embeddings of protein sequences, which are
combined with a convolutional neural network to predict protein interaction. It is supervised
using binary interaction labels from the training network and regularized by a measure of
contact map sparsity. (B) GLIDE scores all possible edges using a weighted combination
of global and local network scores which are learned from the edges already in the training
network. (C) Topsy-Turvy is supervised with both the binary interaction labels of the true
(training) network and with the GLIDE predicted scores, thus integrating bottom-up and
top-down approaches for PPI prediction into the learned Topsy-Turvy model.

methods [145] that require different inputs (namely the 3D structures of the proteins), and

also produce different outputs (in addition to predicting if the proteins bind, they also model

how they bind).

The advent of large deep learning methods for structure prediction like OmegaFold [146],

AlphaFold2 [133], ESMFold [147] and RoseTTAFold [148], however, mean that high-quality

3D protein structural models can now be produced when only protein sequence is available

as input. While these methods are too expensive to run from scratch at genome-wide scale,

thanks to large community-wide efforts, there is no longer a need to run them from scratch:

high quality computational structural models are now being made publicly available for nearly

every protein in UniProt [149], [150]. In this work, we ask how this wealth of computational

work and high-quality predicted structural information can be re-used to improve lightweight

deep-learning methods that rapidly predict whether two proteins will physically bind in

the cell. One potential approach is to run computational fold-and-dock methods such as
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AlphaFold-Multimer [141], [151], or full complex structure prediction [152]–[155]. While these

approaches are powerful for a small set of candidate pairs, they are still too computationally

expensive to scale genome-wide, for example to create a full predicted PPI atlas for a

non-model organism.

However, the wide availability of protein structure prediction methods has also coincided

with breakthroughs in compact representation of protein structure and structure search.

One such example is Foldseek [156], which uses a vector-quantized variational autoencoder

(VQ-VAE) [157] to encode a protein structure as a sequence of discrete embedding vectors,

each of which is then mapped onto a set of characters which called the 3D interaction

alphabet (3Di). This process maps the three dimensional space of protein structure into a

single dimensional 3Di sequence, which can then be used with fast sequence search tools such

as BLAST [158] or MMseqs2 [159] to identify structurally similar proteins [160].

4.3 Methods

4.3.1 Overview of Topsy-Turvy

Topsy-Turvy provides a general paradigm to integrate a bottom-up sequence-based and

top-down global method: for these two components in Topsy-Turvy we choose D-SCRIPT

for the sequence-based prediction, and GLIDE for the network-base prediction. We next

briefly review D-SCRIPT and GLIDE. In Topsy-Turvy, we adapt the D-SCRIPT model to

synthesize the two by adding to it a network-dependent loss term inferred from the GLIDE

model (Figure 4.1).

4.3.2 Data set generation

In order to select only high-confidence physical protein interactions, we limited our positive

examples to binding interactions associated with a positive experimental-evidence score. From
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this set, we removed PPIs involving very short proteins (shorter than 50 amino acids) and,

due to GPU memory constraints, also excluded proteins longer than 800 amino acids. Next,

we removed PPIs with high sequence redundancy to other PPIs Specifically, we clustered

proteins at the 40% similarity threshold using CD-HIT , and a PPI (A-B) was considered

sequence redundant (and excluded) if we had already selected another PPI (C-D) such that

the protein pairs (A, C) and (B, D) each shared a CD-HIT cluster. Removing sequence

redundant PPIs from the data set prevents the model from memorizing interactions based on

sequence similarity alone [11].

4.3.3 Sequence-based prediction with D-SCRIPT

To make bottom-up, structure-aware predictions of PPIs, we use D-SCRIPT (introduced

in Chapter 3), a state of the art method for sequence-based PPI prediction across species.

Briefly, D-SCRIPT operates in two stages. First, we generate a feature-rich representation of

each protein using a protein language model (PLM) by Bepler and Berger [48], [53]; next,

these features are combined using a convolutional neural network to predict interaction. The

Bepler & Berger PLM was chosen to extract structurally relevant features. Leveraging it, the

D-SCRIPT architecture mimics the structural mechanism of protein interaction and includes

an intermediate representation that encodes the intra-protein contact map. During inference,

these predicted contact maps were shown to substantially recapitulate ground-truth binding

mechanisms despite no structure-based supervision or inputs. To achieve this, the training

procedure for D-SCRIPT minimizes a hybrid loss that contains terms measuring both the

binary cross-entropy of predictions (LBCE) and the overall magnitude of the contact map

(LMAG) which enables sparse and realistic contact map prediction. The relative weight of

these loss terms are balanced by a hyperparameter λ. We emphasize that D-SCRIPT requires

only the amino acid sequence of a protein pair to make predictions.
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4.3.4 Network-based prediction with GLIDE

To make top-down, network-based predictions of PPIs in a species, we use GLIDE [42],

a state-of-the-art method that combines local (neighborhood-based) and global (spectral)

graph-theoretic techniques for quantifying the likelihood of an interaction between every

protein-pair in the network. As part of our initial explorations, we also evaluated node2vec

[142], another spectral approach for link prediction. However, we found GLIDE to outperform

node2vec substantially on the PPI link prediction task (Section 4.4.1) and hence chose it

as the link prediction technique in this paper. GLIDE combines a simple local score that

captures shared-neighbor relationships in the dense core with a diffusion-based embedding that

encapsulates the network structure in the periphery. While local metrics accurately capture

the likelihood of links between proteins in the same local neighborhood, their performance

drops significantly as the distance between proteins increases. The opposite is true for global

metrics.

GLIDE incorporates both local and global metrics into a single score in such a way that

each metric is leveraged in the region of the network where it is most accurate. We use

Common Weighted Normalized (CWN) as our local metric, and the inverse of the Diffusion

State Distance (UDSEDγ) as our global metric while computing the GLIDE score.

Following Devkota et al. [42], we compute the aggregate GLIDE score between each pair

of nodes as:

GLIDE(p, q) = exp

(
α · u(p, q)
u(p, q) + β

)
CWN(p, q) + u(p, q) (4.1)

where (p, q) is a candidate protein pair and u(p, q) = 1/UDSEDγ(p, q). We chose the

default values of α and β as suggested in [42] (α = 0.1, β = 1000). These choices make the

local embedding dominant, whenever available, with the global embedding being used to

break ties and order nodes with the same local score. For the CWN local score, node-pairs

with no common neighbors will have CWN(p, q) = 0 and only the global u term will be used.

63



4.3.5 Description of local and global similarity scores used in GLIDE

Local similarity score: Common Weighted Normalized Given nodes p, q ∈ G, the

Common Weighted Normalized (CWN) score is

CWN(p, q) =

∑
r∈Np∩Nq

(wp,r + wq,r)√
k(p)k(q)

where for any node x ∈ G, Nx is the neighbor set of x, wx,y is the weight of the edge (x, y)

and k(x) represents the weighted degree of x. Note that this is slightly different from the CW

metric described in [42], because of the square roots in the denominator, which we found

corrected an overweight on the interactions between high-degree hub nodes from the original

CWN used in GLIDE, improving performance.

Global similarity score: UDSEDγ Distance We first describe the DSEγ embedding

that forms the basis of this scoring scheme (from [42]). Let P be the Markov transition

matrix computed from a graph G with the unique stationary distribution π and let D be

the diagonal degree matrix representing the weighted degree of all the nodes in the network.

Then the DSEγ embedding is:

DSEγ = I +
∞∑
t=1

γt(P −W )t, (4.2)

where W is a constant matrix, whose rows are copies of the stationary distribution π and

γ is a parameter satisfying 0 < γ ≤ 1, which is used to control the contribution of larger

time-steps in the computation of the embedding. We set γ = 1 in all our experiments, as

suggested in [42].

If DSEγ(p) and DSEγ(q) represent the DSEγ embeddings for the nodes p and q respectively,

we consider the un-normalized L2 distance between their DSEγ embeddings. Again, this is a
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variation from normalized L2 distance described in [42]. Formally, this can be written as

UDSEDγ(p, q) =

√∑
k

(DSEγ(p)k −DSEγ(q)k)2 (4.3)

4.3.6 Network-dependent loss term

Topsy-Turvy retains the protein language model feature generation and convolutional neural

net architecture of D-SCRIPT, with changes made to the training approach and loss function.

To synthesize this model with link-based prediction, we introduce the additional task of

predicting GLIDE scores between proteins, formulating it as an extra loss term in the objective.

The entire model is then trained end-to-end.

In the original D-SCRIPT model, the loss function was a weighted sum, L = λLBCE +

(1− λ)LMAG, that combined the binary cross-entropy (BCE, [11]) loss with a regularization

penalty related to the contact map’s magnitude. To incorporate a network term, we add a

sub-objective to the classification component:

L = λ(LBCE + gpL
GLIDE) + (1− λ)LMAG (4.4)

where LGLIDE represents the loss when predicting GLIDE estimates and 0 ≤ gp ≤ 1 is

a hyperparameter indicating its relative importance (at gp = 0, the function reduces to the

original D-SCRIPT loss). To compute LGLIDE, we first generate GLIDE scores for every

negative training example by computing the component CWN and UDSEDγ scores on the

PPI network defined by the positive examples in the training set. For a protein pair (p, q),

the loss LGLIDE is defined as

LGLIDE(p, q; gt) = BCE( y(p, q),1GLIDE(p,q)≥gt) (4.5)
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where gt > 0 is a hyperparameter, y(p, q) is Topsy-Turvy’s predicted score for the protein

pair (p, q). 1 is the indicator function corresponding to the predicate GLIDE(p, q) ≥ gt.

This formulation corresponds to binarizing GLIDE scores at the score threshold gt and then

applying the standard BCE loss. For convenience, we define gt in terms of a percentile cutoff

on the distribution of GLIDE(p, q) scores (i.e., 0 < gt < 100), rather than directly as a

numeric threshold.

In formulating LGLIDE, we chose to binarize GLIDE scores and compute a BCE loss,

rather than keeping continuous-valued GLIDE scores and using a different functional form

for the loss. Doing so allowed us to mimic the form of the existing BCE-based loss, letting us

calibrate the relative weights of LBCE and LGLIDE simply by gp. Using GLIDE’s continuous

scores would have made this calibration difficult, since the un-normalized GLIDE scores are

unevely distributed (for the human PPI training network: minimum = 0, median = 0.31;

75th-percentile = 0.40; maximum = 2.71) and do not follow a convenient closed form.

The addition of the GLIDE loss term to the model training accounts for the observation

that the original D-SCRIPT loss measures only pairwise interaction, and is unaware of global

network structure. Since the GLIDE score of a protein pair takes into account local and

global network properties, the GLIDE component of the loss should incorporate network-wide

information into the predictions. Specifically, since D-SCRIPT prioritizes precision and is

more likely to miss true interacting pairs than GLIDE, the absence of strong structural

evidence of interaction could be supplemented by strong network evidence.

4.3.7 TT-Hybrid can use a known network during inference

During inference, Topsy-Turvy requires only protein sequences as input. When making

predictions in a species where some PPI data is also available, predictions from pre-trained

Topsy-Turvy (trained on data from another species) can be combined with GLIDE predictions

informed by the target species’ PPI network. We note that these GLIDE scores are distinct

from those corresponding to the training species; the latter were used only during training.
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To take advantage of the PPI network in the target species when available, we designed

TT-Hybrid that can be applied on query protein-pairs where both GLIDE and Topsy-Turvy

scores are available. We note that this requires both proteins of the queried pair to be present

in the target species’ PPI network; otherwise, only Topsy-Turvy can be used. TT-Hybrid

computes a weighted sum of Topsy-Turvy and GLIDE predictions for a query protein-pair,

with the score for a protein pair (p, q) being:

TT-Hybrid(p, q) = 1 ·GLIDE(p, q) + w · Topsy-Turvy(p, q) (4.6)

For simplicity, we have set the weight of GLIDE scores to 1, since only the relative

weighting of the two scores matters. In this paper, we trained Topsy-Turvy on human PPI

data and have evaluated it on other species. During the training phase, we held out some

human PPI data for validation. We calibrated w on this held-out human data using logistic

regression.

We started by selecting protein pairs corresponding to the edges of the held-out human

PPI subnetwork (see Section 4.4.2 for dataset details). These pairs were labeled positive;

negatively-labeled pairs corresponded to random pairs of proteins from the subnetwork.

The ratio of negative to positive examples was set to 10:1 to account for the inherent class

imbalance in PPI data (see Section 4.4.2 for discussion). To avoid bias arising from data

leakage, we also required that none of the examples occur in the original training data for

Topsy-Turvy. We computed GLIDE and Topsy-Turvy scores for each protein pair, these

methods having previously been trained on the rest of human PPI data. We then fitted a

logistic regression model that sought to predict the label of a protein pair using its GLIDE

and Topsy-Turvy score. The TT-Hybrid calibration weight w is chosen as the ratio of logistic

regression coefficients, cTopsy-Turvy/cGLIDE. Our computation yielded w = 0.3268, and we

recommend the use of this value when applying TT-Hybrid in other species, as is done in the
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results presented here. If enough PPI data is available in the target species that a portion of

it can be set aside, the held-out portion can be used to calibrate w specifically for the target

species. To avoid the risk of data leakage, however, the same set of PPIs should not be used

to both calibrate w and compute the GLIDE score inputs to TT-Hybrid.

4.3.8 Hyperparameter selection and model training

The hyperparameters gp (the relative weight of GLIDE vs. binary cross-entropy loss) and

gt (the binarization threshold for GLIDE scores) play a crucial role in Topsy-Turvy and

we sought to estimate them from cross-validation runs on the human PPI dataset. We

note that all Topsy-Turvy and TT-Hybrid results presented in this paper are from models

trained on human data but evaluated on out-of-sample, non-human data. To perform the

hyperparameter search, we did cross-validation runs on the entire human PPI network,

since GLIDE scores computed on smaller subnetworks might not be representative of the

full network’s characteristics. Due to the computational expense of such runs, however,

we modified the standard grid-search approach. Initial, small scale explorations suggested

gt = 90 to be a promising choice. We first performed a grid search on gp, fixing gt to 90. This

yielded gp = 0.2 as the suggested choice (Table 4.1a) and we then performed a grid search for

gt, with gp fixed to this choice. The second search indicated gt = 92.5 to be the best choice

(Table 4.1b), and we accordingly chose gp = 0.2, gt = 92.5 as the hyperparameter settings for

Topsy-Turvy training.

4.3.9 Integrating structure information with TT3D

TT3D augments the inputs to the basic Topsy-Turvy architecture with encodings of the

Foldseek-generated 3Di sequence (see Figure 4.2) [156]. In Topsy-Turvy, the amino acid

sequence x = x1x2...xn is numerically encoded using the Bepler & Berger protein language

model [48], [53] as X ∈ Rn×6165, which is then reduced in dimension via a multi-layer

perceptron to a projection X∗ ∈ Rn×100.
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Figure 4.2: TT3D model architecture. TT3D follows the structure and training procedures
of Topsy-Turvy, but with an augmented protein embedding. We concatenate a one-hot
encoding of the Foldseek 3Di [156] string to the protein language model (PLM) based
embedding before passing this representation into the convolutional portion of the architecture.

In TT3D, we additionally convert the protein sequence x to a 3Di sequence y = y1y2...y2

using Foldseek. If a crystal structure is available for the protein, Foldseek can be directly

applied. If the sequence is not available in the PDB, we query for an exact match for it in

AlphaFoldDB [149], and this structure is then used for extraction of the 3Di sequence by

Foldseek. If no such hit can be found, we conservatively add an uninformative all-X 3Di

sequence. We represent y with a one-hot encoding, yielding Y ∈ Rn×21. We then concatenate

the embeddings from the language model and from Foldseek, resulting in a joint embedding

E = [X;Y ] ∈ Rn×121. Given two protein sequences x1, x2, we combine embeddings E1, E2

as in D-SCRIPT and Topsy-Turvy [11], [12] to predict a probability of interaction. The

Topsy-Turvy loss function is used to train the model using back-propagation.

4.3.10 Availability and Implementation

Topsy-Turvy We implemented Topsy-Turvy in PyTorch 1.2.0 and trained with a NVIDIA

Tesla V100 with 32GB of memory. Embeddings from the pre-trained Bepler and Berger

model were produced by concatenating the final values of the output and all hidden layers.

Apart from these pre-trained embeddings, Topsy-Turvy was trained end-to-end and did not
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use pre-trained D-SCRIPT model weights. However, we used the same hyperparameters

as in [11] for the relevant components of our model’s architecture: a projection dimension

of d = 100, a hidden dimension of h = 50, a convolutional filter with width 2w + 1 = 7,

and a local max-pooling width of l = 9. Furthermore, we used λ = 0.05 for calculating the

training loss, choosing it based on early, small-scale explorations. Weights were initialized

using PyTorch defaults. Model training parameters were set within ranges commonly used in

deep learning literature: we used a batch size of 25, the Adam optimizer with a learning rate

of 0.001, and trained all models for 10 epochs.

Table 4.1: Hyperparameter search: cross-validation AUPR (area under precision-recall
curve) scores on full human PPI network for a) grid search for gp, with gt fixed to 90 (estimated
from small-scale explorations), b) grid search for gt, with gp fixed to 0.2 (i.e., the optimal
value from (a)). The metrics reported in the tables are the validation AUPR scores maximized
over three epochs of training.

(a) At gt = 90

gp AUPR
0.1 0.739
0.2 0.802
0.4 0.759
0.8 0.760

(b) At gp = 0.2

gt AUPR
90 0.697
92.5 0.824
95 0.691
97.5 0.690

Topsy-Turvy 3D For inference with TT3D, as well as with Topsy-Turvy and D-SCRIPT,

we make available a web interface at https://cb.csail.mit.edu/cb/dscript/. This interface is

implemented with Gradio [161] and hosted on HuggingFace spaces, and allows the user to

upload a .fasta formatted file with sequences and a .tsv file with candidate protein pairs,

and get back predictions for the desired model. This interface additionally leverages 3Di

sequences from [162].

For model training or larger-scale inference from the command line, TT3D is implemented

in Python 3 as part of the dscript package for predicting protein-protein interactions,

which is available from the PIP package repository (pip install dscript) or on GitHub at

https://github.com/samsledje/D-SCRIPT. Model training and inference was performed on
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a machine with a 112-core Intel Xeon Gold 6258R CPU and using a single NVIDIA A100

GPU. TT3D is trained for a maximum of 10 epochs, and the best performing model in

cross-validation is used for making predictions. We make the trained model available to

download at https://d-script.readthedocs.io/en/stable/, where it can be used to make new

predictions with the dscript predict command.

TT3D requires that Foldseek [156] be installed and that 3Di sequences be generated for

protein sequences in the training or inference set. Structures in .pdb format must be available

for all sequences, either natively or generated by a structure-prediction method such as

OmegaFold [146], AlphaFold2 [133], or RoseTTAFold [148]. Foldseek can be downloaded and

build from source on Github at https://github.com/steineggerlab/foldseek. For convenience,

we provide the command dscript extract-3Di, which uses the user’s installed Foldseek to

translate a set of structures into a .fasta file containing 3Di sequences.

To run TT3D, users should run the command dscript train –allow_foldseek, where

–allow_foldseek is an optional command that runs the training iterations in "Foldseek"

mode. While running in this mode, the user should provide the corresponding 3Di sequences

in .fasta format using the –foldseek_fasta argument.

4.4 Results

We start by presenting a comparative assessment of GLIDE and node2vec for PPI link

prediction; the results of this analysis motivated our choice of GLIDE as the network-theoretic

component of the Topsy-Turvy model. We next evaluate the cross-species generalizability of

Topsy-Turvy, showing how incorporating network data during training results in superior

performance in other species, using only sequence data for prediction. We note that in the

typical cross-species setting, purely network-based methods like GLIDE are not applicable

since they can only make predictions for pairs where both proteins exist in the training PPI

network and hence can not be applied to out-of-sample proteins. We therefore evaluated
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Topsy-Turvy against methods that require only sequence-based inputs (like D-SCRIPT),

assessing if co-supervising Topsy-Turvy with topological information allows it to learn aspects

of protein interaction that carry across species. As we show, it does, and in subsequent

analyses we investigate various aspects of the comparison more deeply, also addressing the

issue of ascertainment bias in the evaluation network. Lastly, we study how to best apply

Topsy-Turvy in instances where PPI data is available and GLIDE would be applicable

directly. We find that while GLIDE is broadly informative about the species-specific network

rewiring, better performance can be achieved by TT-Hybrid, a combination of Topsy-Turvy

and GLIDE.

4.4.1 Comparison of GLIDE and node2vec

In our initial explorations, we sought to identify the most appropriate top-down PPI link

prediction technique. Towards this, we compared GLIDE to node2vec [142]. The node2vec

algorithm, also a spectral approach, uses a biased random walk procedure to construct low-

dimensional node embeddings. Following the original study, we trained a logistic regression

classifier on the Hadamard product of the node embeddings to predict the existence of a link

given two candidate proteins. We compared the two methods on the Drosophila BioGRID

network consisting of 3,093 nodes and 25,427 edges. A certain fraction 1− p of the edges were

removed from the network (while protecting a random spanning tree to ensure connectivity),

and the remaining subnetwork was used to train the node2vec and the GLIDE models. The

removed edges were then used as positive test examples for evaluation. For negative examples,

we randomly sampled 254,270 node-pairs (or 10 times the positive edge count) that were

not present in the original network. The negative examples, like the positive edges, were

also separated into train and test sets using the same parameter p. The dimension of the

node2vec embedding was set to 300, i.e., approximately 10% of the node count (following

Cho et al. [36]; this is also higher than the minimum value of 100, as prescribed by Grover et.

al.). We evaluated both node2vec and GLIDE for different values of p (which correspond to

72



varying levels of network sparsity), finding that GLIDE outperformed node2vec consistently

(Table 4.2).

Table 4.2: GLIDE and node2vec comparison: AUPR scores for PPI prediction on the
Drosophila BioGRID network. Higher values of p correspond to a higher proportion of edges
preserved in the training network.

p GLIDE node2vec
0.8 0.737 0.681
0.6 0.818 0.721
0.4 0.839 0.664
0.2 0.805 0.574

Table 4.3: Topsy-Turvy improves upon D-SCRIPT [11], PIPR [47], and DeepPPI
[78] for cross-species PPI prediction. All species were evaluated using models trained
on a large corpus of human PPIs. For D-SCRIPT and Topsy-Turvy, we report the average
and standard deviation of results from three random initializations. For PIPR and DeepPPI,
we report here the results from the study in [11] where the same evaluation scheme and data
was used. For all data sets, there is a 1:10 ratio of positive to negative pairs, which means a
random baseline would have an AUPR of 0.091 and an AUROC of 0.5.

Species Model AUPR AUROC FPR
0.1 Recall 0.5 Recall

M. musculus

PIPR 0.526 0.839 0.002 0.057
DeepPPI 0.518 0.816 0.0002 0.059

D-SCRIPT 0.663± 0.05 0.901± 0.02 0.002 0.014
Topsy-Turvy 0.735± 0.03 0.934± 0.01 0.001 0.009

D. melanogaster

PIPR 0.278 0.728 0.007 0.197
DeepPPI 0.231 0.659 0.012 0.274

D-SCRIPT 0.605± 0.06 0.890± 0.02 0.003 0.022
Topsy-Turvy 0.713± 0.05 0.921± 0.02 0.001 0.011

C. elegans

PIPR 0.346 0.757 0.002 0.148
DeepPPI 0.252 0.671 0.007 0.252

D-SCRIPT 0.550± 0.08 0.853± 0.04 0.003 0.032
Topsy-Turvy 0.700± 0.04 0.906± 0.03 0.001 0.011

S. cerevisiae

PIPR 0.230 0.718 0.017 0.213
DeepPPI 0.201 0.652 0.018 0.288

D-SCRIPT 0.399± 0.09 0.790± 0.06 0.005 0.089
Topsy-Turvy 0.534± 0.01 0.850± 0.02 0.002 0.038

E. coli

PIPR 0.271 0.675 0.005 0.246
DeepPPI 0.271 0.688 0.004 0.243

D-SCRIPT 0.513± 0.09 0.770± 0.03 0.002 0.040
Topsy-Turvy 0.556± 0.09 0.805± 0.07 0.001 0.038
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4.4.2 Performance is improved by integrating topology information

from the training network

Datasets We trained Topsy-Turvy on human PPI data and evaluated it on M. musculus, D.

melanogaster, C. elegans, S. cerevisiae, and E. coli. The data set selection and pre-processing

follows [11]: we sourced positive examples from the STRING database (v11) [163], selecting

only physical binding interactions associated with a positive experimental-evidence score.

Our human PPI set consists of 47,932 positive and 479,320 negative protein interactions, of

which we set apart 80% (38,345) for training and 20% (9,587) for validation (see Section

4.3.2 for details). For each of 5 model organisms (Table 4.3) we selected 5,000 positive

interactions and 50,000 negative interactions using this procedure, with the exception of

E. coli (2,000/20,000) where the available set of positive examples in STRING was limited.

Each model was trained three times, with different random seeds, and we evaluated the

average performance across these runs. We emphasize that Topsy-Turvy is trained end-to-end

and does not use a pretrained D-SCRIPT sub-component. For benchmarking, a separate

D-SCRIPT model was trained and evaluated identically.

In Table 4.3, we report the area under precision recall curve (AUPR) and area under

receiver operating curve (AUROC) for each model in each species. As our dataset and

evaluation approach is the same as in [11], we also include results reported there for two other

state-of-the-art sequence-based PPI prediction methods, PIPR [47] and DeepPPI [78]. We

note that for unbalanced data, AUPR is generally considered the more representative metric.

We also report the false positive rate (FPR) at 10% and 50% recall, which measures the

likelihood that a protein pair predicted to interact is incorrectly classified — an important

metric in the case where high-likelihood pairs are then tested experimentally. We find that

Topsy-Turvy achieves the highest AUPR and AUROC of all the methods we evaluated in

each of five species, and has the lowest FPR at both recall levels. We also observe that

Topsy-Turvy retains the structural interpretability of D-SCRIPT: for each queried protein
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pair, the model also outputs a predicted inter-protein contact map for the putative binding

between the two proteins.

Runtime and memory usage Topsy-Turvy took approximately 79 hours to train for 10

epochs on 421,792 training pairs, and fits within a single 32GB GPU. Running time and

GPU memory usage, like in D-SCRIPT, scales quadratically, O(nm), with protein lengths

n,m, since Topsy-Turvy models the full n×m contact map as an intermediate step. The

prediction of new candidate pairs with a trained model is very fast, requiring on average 0.02

s/pair. Since Topsy-Turvy generalizes well across species, it needs to be trained only once

on a large corpus of data and can be used to make predictions in a variety of settings. The

additional run time for TT-Hybrid is minimal (approx. 15 minutes, most of it for GLIDE)

since it just computes a weighted sum of predictions from Topsy-Turvy and GLIDE. The

actual computation of TT-Hybrid scores, provided that the Topsy-Turvy and GLIDE results

are already available, is a linear time operation (less than 1 minutes for the candidate set

with 10 million pairs) since it is simply a weighted sum of the two.

Using network-level information for negative edge selection

Notably, Topsy-Turvy achieves greater cross-species generalization even though network

information is used only during training. We hypothesize this may be partially due to GLIDE-

based interaction scores mitigating the impact of incorrect labels in training data. To create

negative training examples, we followed the common practice of randomly selecting protein

pairs not experimentally reported as interacting [11], [47], [50]. However, it might be that

such a pair actually does interact but has not yet been experimentally assayed. In such cases,

the GLIDE score for the pair is likely to be high, thus improving the supervision and training

of Topsy-Turvy. To further investigate our hypothesis, we evaluated an alternative approach

to incorporating network topology in the model, by modifying the set of negative examples

in the training set to reflect network information. Prior work in PPI prediction has argued
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that better selection of negative samples in the training set could improve the model, with

Zhang et al. [164] exploring a random-walk distance on the PPI graph to distinguish between

and low- and high-confidence negative examples. We explored the strategy of selecting only

protein pairs with low GLIDE scores as negative examples, but found the performance to

be poorer than the baseline. Drilling down, we found that this was due to a reduction in

diversity of negative examples available for training, since using graph-theoretic measures to

select negative examples restricts us to nodes occurring in the training PPI network (Figure

4.5, Section 4.4.9). In contrast, our incorporation of GLIDE scores in the objective allows us

to handle a broader set of negative examples.

4.4.3 Cross-species improvement is not limited to hub nodes

Noting that Topsy-Turvy makes use of global PPI organization in the training phase but

makes predictions solely using sequence data, we sought to characterize the kind of topo-

logical knowledge being learned by the trained model. Specifically, we investigated if the

performance improvement of Topsy-Turvy over D-SCRIPT was limited to certain categories

of proteins/nodes.

Since network-based methods work by learning network connectivity patterns, and some

network structure is conserved across species, such methods tend to work well for proteins that

already have many known interactions. Thus, it could be possible that the outperformance

of Topsy-Turvy comes exclusively or primarily from, say, hub nodes whose interactions may

be better conserved across species. To investigate this, we evaluated human-PPI trained

Topsy-Turvy and D-SCRIPT on physical interactions in D. melanogaster, sourcing the

latter from BioGRID (we found BioGRID’s fly PPI annotations clearer than STRING’s).

Limiting ourselves to fly proteins that occur in the PPI network, we partitioned the fly

evaluation set into four sub-groups by degree: each putative edge (p, q) was grouped as per

Mpq = max(d(p), d(q)), where d(p) and d(q) are the degrees of p and q in the fly PPI network,

respectively. Thus, the sub-group corresponding to M ≥ 21 consists of putative interactions
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where at least one of the proteins is a hub-like protein.

Even though baseline D-SCRIPT is not explicitly informed about network structure, it

too demonstrated better performance as M increased. This may be due to the information

encoded in the frequency with which each protein appears in the positive examples D-SCRIPT

is trained on. Because of that, along with stronger conservation of PPIs involving hub nodes

[165], [166], some network aspects can be implicitly learned by a purely sequence-based

approach like D-SCRIPT. This also illustrates one of the core points of this paper— the

connection between bottom-up and top-down views of protein interaction.

We also observed that Topsy-Turvy improved upon D-SCRIPT in each sub-group, indicat-

ing that the outperformance is not only coming from high-degree nodes. While Topsy-Turvy

also achieves its highest performance on the M ≥ 21 sub-group, its improvement over

D-SCRIPT is not limited to the highest-degree hub nodes. In fact, the relative AUPR

improvement of Topsy-Turvy over D-SCRIPT is 2.22-fold when M is in the 2–20 range,

compared to a 1.31-fold improvement for hub nodes (M ≥ 21) (Table 4.4). Topsy-Turvy

thus not only improves predictive performance for high-degree nodes, but the GLIDE loss

term additionally informs the model about global structure, leading to improvement for more

sparsely connected nodes.

Table 4.4: Cross-species performance of D-SCRIPT and Topsy-Turvy, subdivided
by node degree in target species. Both methods were trained on human PPI data and
tested on fly (BioGRID). The analysis is limited to protein pairs where both proteins occur
in the fly PPI graph. In addition to overall AUPR, we also group each protein pair by the
maximum of the degrees of its nodes in the fly PPI network. Both methods improve as
maximum degree increases, and Topsy-Turvy consistently outperforms D-SCRIPT across all
subsets — especially so for putative interactions between low-degree nodes.

Model Overall
AUPR

AUPR by Maximum Degree
2− 5 6− 10 11− 20 ≥ 21

D-SCRIPT 0.356 0.030 0.067 0.118 0.475
Topsy-Turvy 0.538 0.073 0.168 0.237 0.622
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4.4.4 Performance is unlikely to be driven by ascertainment bias

In the setting where bottom-up sequence methods are compared to top-down network-based

methods (or synthesis approaches like Topsy-Turvy), issues of ascertainment bias [144] in the

available ground truth network data become particularly acute. The issue is a simple one:

existing PPI network data in all organisms (with the possible exception of recently-described

HuRI [167]) is biased towards pairs of proteins a biologist decided to experimentally test for

interaction, and biologists are more likely to include proteins already known to be of interest,

or nodes that are already adjacent to other previously studied nodes in the network. The

result is that nearly all ground-truth existing networks will over-estimate the performance

of methods that incorporate network information, and under-estimate the performance of

methods that utilize only sequence information, since missing edges are more likely to be

falsely scored as negatives for the sequence based methods. When comparing network methods

against network methods, or sequence methods against sequence methods, the respective

alternative is likely to be similarly biased, making it less of a concern. However, when

comparing methods across both types of information, addressing the bias becomes more

important.

Our results in Section 4.4.3 begin to address the issue of ascertainment bias. Although the

BioGRID D. melanogaster network is not fully unbiased, if the improvement of Topsy-Turvy

over D-SCRIPT were coming only from this bias, we would expect to see disproportionate

improvement in the dense core of the network, where interactions are most likely to be

experimentally tested. Instead, we see improvement across the network, which suggests that

Topsy-Turvy’s cross-species performance gains come from successfully learning global network

organization properties rather than suffering from ascertainment bias. We discuss the issue

of this bias and how it might be addressed by future methods further in Section 4.5.
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4.4.5 Comparison with AlphaFold-Multimer

We next investigated if recent advances in protein structure determination [133] that have

enabled extremely high-quality protein complex structure prediction (in particular, AlphaFold-

Multimer), could be leveraged for PPI prediction. While these methods were not designed to

directly address if two proteins interact — they only predict the putative complex structure

assuming an interaction — we investigated if AlphaFold-Multimer could nonetheless be

adapted for our PPI prediction setting. From AlphaFold-Multimer results, we obtained their

reported ipTM (interface predicted template modeling) score, a value between 0 and 1, that

was shown in the original study to be correlated with the quality of the docked complex

(DockQ score). For each candidate protein pair, we compute its mean ipTM score over the five

AlphaFold-Multimer models. In our evaluations, we used this score as a predictor of protein

interaction and assessed AlphaFold-Multimer on PPIs from the STRING D. melanogaster

testing set used in Section 4.4.2.

We find that AlphaFold-Multimer is several orders of magnitude slower than Topsy-Turvy,

requiring an average of 6 hours per pair (AlphaFold-reported time, min = 2.87hr, mean

= 5.89hr, max = 12.97hr) compared to 0.02 seconds per pair for Topsy-Turvy (hardware

described in Section 4.3.10). Of the total AlphaFold-Multimer runtime, an average of 3.22

hours were spent on feature generation (min = 1.62hr, max = 8.34hr) and 2.66 hours were

GPU time spent on model computation (min = 1.16hr, max = 4.64hr). We note that feature

generation time cannot necessarily be amortized over input pairs, since an important part of

adapting AlphaFold to protein complexes is the proper alignment of paired multiple sequence

alignments (MSAs) for each candidate protein pair. Thus, AlphaFold-Multimer is infeasible

for genome-scale de novo PPI prediction for organisms with limited experimental data.

We compared AlphaFold-Multimer PPI predictions with those of Topsy-Turvy in a small-

scale study, constrained by the computational requirements of AlphaFold-Multimer. We

selected 18 candidate pairs that span the range of Topsy-Turvy scores as well as ground-
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truth labels: six protein-pairs each with high (≥ 0.8), medium (0.25 ≤ ŷ < 0.8), or low

(≤ 0.25) Topsy-Turvy prediction scores, with three truly interacting and three non-interacting

pairs in each subset. We note that distribution of Topsy-Turvy scores on these pairs is

not representative of their full-sample distribution; for example, we expressly included

examples where Topsy-Turvy was very confident but wrong, even though such instances

comprise a small part of the broader distribution (89.8% of Topsy-Turvy scores are < 0.05).

We found general agreement between AlphaFold-Multimer and Topsy-Turvy’s predictions

(Pearson’s ρ = 0.310), though there were examples where each method correctly predicted

an interaction that the other missed. We show full results in Table 4.5. Compared to

Topsy-Turvy, AlphaFold-Multimer’s scores seem calibrated for fewer false positives and more

false negatives. In particular, AlphaFold-Multimer only scored two pairs with probability

≥ 0.8 both of which were true positives and also had high Topsy-Turvy scores; all other pairs

were scored under 0.45. On three Topsy-Turvy false positives where it was highly confident

but incorrect, AlphaFold-Multimer ipTM scores were low (mean = 0.3676). Conversely,

AlphaFold-Multimer had substantial false negatives, missing three true interactions pairs that

Topsy-Turvy correctly identified with medium or high probability. For pairs that Topsy-Turvy

scored low, AlphaFold-Multimer agreed with it, with low ipTM scores (mean = 0.365).

These results suggest that Topsy-Turvy and AlphaFold-Multimer can each fill a valuable

niche for predicting PPIs. Due to its low FPR, AlphaFold can be used to verify shortlisted

interactions and accurately determine their complex structure. However, due to its run

time constraints, it is infeasible to use for genome-scale predictions, a domain for which

Topsy-Turvy would be more suitable. Additionally, the ipTM score is more a measure of

complex stability than a predicted probability of interaction. Future work could seek to

adapt the AlphaFold-Multimer architecture to explicitly address the PPI prediction task.

For example, the calibration of interaction scores could be improved using insights gained

from complete cross-docking approaches [168]. Recently, [169] have described physics-based

energy, interface matching and protein sociability as useful metrics for identifying the likely
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partners from an all-vs.-all docking study.

4.4.6 Integrative methods are applicable even in species with some

available PPI data
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Figure 4.3: Comparing Topsy-Turvy and GLIDE in situations when both can be
used. GLIDE was trained on a subset of the fly PPI network (e.g. training on 80% of PPIs
when p = 0.8); Topsy-Turvy was trained on human PPI data and had no access to fly data for
training. Both methods were evaluated on held-out positives as well as a randomly sampled
set of negative examples, where pairs containing proteins with degree ≥ 21 on the subset
networks were removed from the held-out examples during testing; the analysis is limited to
proteins in the fly PPI network. In addition to reporting overall AUPR, we also group each
protein-pair in the evaluation set by their shortest-path distance in the training network.

We have shown that human-trained Topsy-Turvy improves on human-trained D-SCRIPT

when predicting PPIs in an organism using only sequence information (Sections 4.4.2-4.4.4).

In non-model organisms, there might not be any experimentally tested physical interaction

data— this is the situation for which D-SCRIPT was designed, and for which we have thus far

tested Topsy-Turvy. However, we are also interested in applying Topsy-Turvy to predict PPIs

in the case where some sparse network does exist in the species of interest. Specifically, we ask

the following question: if some network edges exist in the target species of interest, should one

use a purely network-based method, or a synthesis method like Topsy-Turvy when predicting

new PPIs? Sequence-based synthesis methods are necessary to attach previously unseen
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proteins to an existing network, but either method could be used to predict new interactions

between proteins already in the network. Here, we show that a hybrid of Topsy-Turvy and

GLIDE (TT-Hybrid, Section 4.3.7) improves upon either method alone in the case where

some sparse network is available.

We consider situations where both proteins in the pair of interest occur in the PPI network,

so that a network-only prediction can be made. Here, we evaluate GLIDE, Topsy-Turvy,

and TT-Hybrid on the D. melanogaster BioGRID network, which has been partitioned

to measure the performance on networks of varying sparsity characterized by a parameter

p ∈ {0.8, 0.6, 0.4, 0.2}. More specifically, p describes the fraction of total edges in G used

to construct a subset network Gp = (V,Ep). Full details on the construction of Gp are in

Section B.1. Characteristics of the sparse network data sets are described in Section B.2.

The sparsified network Gp is then used to compute GLIDE scores.

To construct the test set at different p-values, we (a) selected the set of positive edges S+
p

as all edges in G left out during the construction of Gp, i.e., S+
p = E \ Ep, and (b) randomly

sampled negative examples from the set (V ×V )\E to obtain S−
p . The test set Sp = S+

p ∪S−
p

was used to evaluate the performance of D-SCRIPT and Topsy-Turvy (trained on human),

and GLIDE (trained on Gp) (AUPRs in Section B.3). We also broke down the analysis

into subsets of the evaluation set, based on shortest-path distance d in Gp connecting the

two proteins. Our intuition here was to check the relative performance of these methods on

closely- vs. distantly-connected proteins. Detailed descriptions of the training network Gp

and the test data sets Sp are provided in Tables B.1 and B.2.

Upon initial investigation, we found that while GLIDE outperformed Topsy-Turvy overall,

their relative performance on a protein pair depended on the shortest-path distance between

the proteins (Table B.3). Since GLIDE performance is primarily driven by hubs, to more

clearly investigate relative performance we then performed the same set of evaluations after

removing any edges incident upon hubs (i.e., (u, v) where (degree(u) ≥ 21)∨(degree(v) ≥ 21)).

We then observed that Topsy-Turvy was stronger on nearly every subset of data (Figure 4.3).
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However, GLIDE still performed better than Topsy-Turvy overall.

These results indicate that while GLIDE is able to separate PPIs by their network distance

(which strongly correlates with whether or not there will be a reported interaction), once

separated by network distance, Topsy-Turvy is able to finely organize similarly-distant proteins

using the information gleaned from sequence and structure. Thus, we introduced TT-Hybrid,

which uses GLIDE and Topsy-Turvy to partition PPIs both coarsely and finely. We show

in Table 4.6 that TT-Hybrid improves upon either component method alone, achieving the

highest overall AUPR on the fly network at all levels of sparsity (with hub nodes included).

4.4.7 TT3D outperforms previous methods

We evaluate TT3D in the same cross-species setting where D-SCRIPT and Topsy-Turvy were

originally tested. Following [11], TT3D was trained and validated on known human PPI

from the STRING database [163], filtered for experimentally determined physical binding

interactions.

Then, the best model trained on human PPIs was tested on known interactions from other

model organisms such as mouse (Mus musculus), fly (Drosophila melanogaster), roundworm

(Caenorhabditis elegans), Escherichia coli and brewer’s yeast (Saccharomyces cerevisiae),

also from STRING. Sequences were clustered with human sequences at 40% similarity using

CD-HIT [51] and those with high similarity to proteins in the training set were removed. We

measure model performance using the area under the precision-recall curve (AUPR). The

test sets were constructed to have a 1:10 ratio of positives to negatives, so a random method

would have an AUPR of 1/11 ≊ 0.09.

We compare TT3D to D-SCRIPT and Topsy-Turvy, neither of which incorporate structural

information, and find that augmenting the Topsy-Turvy model with the encoded 3Di Foldseek

sequence improves its PPI predictions. We also test against simple sequence and structure

homology based approaches. In Figure 4.4, we show precision-recall curves for each of the three

deep learning methods on the five benchmark test sets. TT3D performs significantly better
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Figure 4.4: Precision-Recall curves for TT3D, Topsy-Turvy, and D-SCRIPT. Our
experiments in organisms: Mouse, Fly, Roundworm, E. coli and Brewer’s Yeast show TT3D
substantially outperforming the other methods while predicting unknown PPI interactions.

than the other methods for all organisms that we tested on. In addition to overall performance,

early precision (i.e., precision at low recall) is important, because often only a small number

of highly predicted interactions are selected for downstream experimental prediction. We

find that the precision values at low recall are closer to 1 for TT3D, which indicates that its

top predictions are much more accurate than both D-SCRIPT and Topsy-Turvy.

4.4.8 Comparing TT3D’s performance with simple sequence and

structure homology transfer approaches

Sequence or structure-based homology approaches can also be used to transfer PPI annotations

across species. We benchmarked TT3D against two such approaches, one based on Ensembl-

provided sequence homology [170], and the other based on structural homology inferred using

a pipeline of AlphaFoldDB, Foldseek and MMseqs2. We note two major challenges with such

annotation transfer approaches. First, due to the bias in how candidate PPIs were chosen

for assays, just knowing that a pair of target proteins have human homologs turns out to

be a surprisingly good predictor of their interaction, achieving precision (recall) of 0.2065

(0.658) and 0.2313 (0.4442) in fly and yeast, respectively. Second, such an approach does not

provide a probability of an interaction, so neither an average precision nor precision-recall

curve can be computed. Nonetheless, we compared TT3D to these approaches by generating

the exhaustive set of fly (or yeast) PPI candidates by considering all possible transfers of
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human PPIs and scored these against ground-truth PPIs. TT3D outperformed both sequence

and structure-based annotation transfer, achieving about 5x and 17x greater precision in fly

than sequence and structure-based approaches, respectively (Table 4.7).

To determine sequence homologs, We used Ensembl-provided homology mappings. We

originally considered, but then rejected the use of only one-to-one mappings, i.e., where a

single fly protein is mapped to just one human protein, which yielded only 68 mappings

between human and fly PPIs. Our subsequent analyses therefore were in the many-to-many

homology mapping regime. To determine structure homologs, we used structures from

AlphaFold DB, obtained the 3Di sequence representations from Foldseek, and then applied

MMSeqs2 (with an e-value threshold of 10−10) to map structural homologs between fly (or

yeast) and human.

We took the entire set of human PPIs from our training set and mapped them to all

potential fly (or yeast) homolog pairs, reasoning that this would be the exhaustive set of

potential fly PPIs that any annotation transfer method could potentially consider as true.

We note that this mapping resulted in a massive expansion of potential fly PPIs. The ∼

38,000 human training-set PPIs were mapped to ∼180,000 fly PPIs (Ensembl-based homology

mapping) and ∼3.1 million fly PPIs (structure-based homology mapping). We considered

the union of these with fly pairs with the true positive fly pairs (∼27,000 from STRING

v11; physical binding interactions only). We created analogous networks for yeast, observing

that the set of homologs between human and yeast is smaller. Because of distinct sequence

and structure-based homology mapping schemes, these evaluations were essentially on two

separate datasets, which we denote as “Networks from Sequence Homology” and “Networks

from Structure Homology”, respectively.

We applied TT3D on these datasets, computing its precision and recall curves. For

homology-based annotation transfer, precision was computed as standard:

Intersection(True_Positives, Predicted_Positives)/Predicted_Positives. (4.7)
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Here, True_Positives are the ground-truth fly PPIs while Predicted_Positives is the set of

PPIs mapped from human. Recall was similarly computed as per its standard definition. We

note that annotation transfer provides only one set of precision and recall scores, while TT3D’s

score (in the range 0–1) can be thresholded to provide a range of precision-at-desired-recall

scores and the corresponding Areas Under Precision-Recall Curve.

4.4.9 Considering network structure for negative sample selection

has marginal impact

Negative Sampling Method AUPR AUROC
A All nodes; random pairs 0.605 0.890
B PPI nodes only; weak GLIDE scores 0.380 0.840
C PPI nodes only; random pairs 0.477 0.832
D All nodes; exclude strong GLIDE scores 0.629 0.913

Figure 4.5: Using network information to guide selection of negative training
examples. The common practice in PPI prediction literature is to consider random pairs
of proteins as negative examples (row A). Restricting negative examples to just low-scoring
GLIDE node pairs (row B) results in substantially weaker performance, likely due to reduced
diversity of negative examples. Ablation studies (rows C and D) support the hypothesis.
AUPR and AUROC were computed using a D-SCRIPT model trained on human protein
interactions, with negative edges generated by each respective method, and evaluated on the
D. melanogaster STRING network.

We assessed if using GLIDE scores to select negative training examples results in higher

quality training data and improved model performance. We first applied GLIDE on the PPI

network formed by positive examples in the training set, calculating a GLIDE score for all

pairwise combinations of nodes (i.e. proteins) in this network. The negative examples were

then chosen from these as the k lowest-scoring protein pairs; as in the previous experiments,
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we chose k to ensure a 10:1 negative-to-positive ratio. On this modified training set, we

trained a vanilla D-SCRIPT model (i.e., no network loss in the objective) on human PPI

data and evaluated it on D. melanogaster interactions.

Surprisingly, the baseline version of D-SCRIPT (trained on negative examples chosen

completely at random) had substantially stronger performance than the version of D-SCRIPT

trained on a network-informed training set (rows A vs. B in Figure 4.5). We wondered if the

latter’s lower performance was due to a reduced diversity of negative examples in the latter:

using GLIDE to select negative examples limits us to protein pairs where both proteins

exist in the PPI network. Since experimental PPI data is limited, the negative examples

are restricted to only a subset of the human proteome. In contrast, the baseline version of

D-SCRIPT includes negative examples where one or both the proteins might not occur in

the positive examples. To test our hypothesis, we trained and evaluated two other variants:

i) choose negative examples completely at random, but limit the proteins to those occurring

in the PPI network, and ii) in the baseline training set, remove all negative examples (p, q)

where p and q both occur in the PPI network and replace them with an equal number of

examples (p′, q′) where p′ and q′ also occur in the PPI network but (p′, q′) has a low GLIDE

score. As we hypothesized, the first variant (row C in Figure 4.5) performed worse than the

baseline D-SCRIPT (row A). The second variant (row D) performed marginally better than

the baseline, suggesting that the incorporation of network information in the training set

construction does help somewhat. However, this improvement was marginal and unclear (for

instance, row C has a lower AUROC than row B), so we chose not to incorporate it into

Topsy-Turvy.

4.5 Chapter Perspectives

We have presented Topsy-Turvy, a new method that integrates top-down global view of PPI

organization into a bottom-up sequence-based PPI prediction model. The neural network
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design of Topsy-Turvy builds upon the architecture of D-SCRIPT and, like the latter,

includes a bottleneck layer designed to model the inter-protein contact map, thus offering

interpretability and insight into the mechanism of interaction. We show that Topsy-Turvy is

highly accurate in a cross-species context, and applicable to species with few or no known

protein interactions. For cases where PPI data is available in the target species, we present

TT-Hybrid, that can leverage this additional information for more accurate predictions.

Topsy-Turvy thus improves upon the state-of-the-art in PPI prediction broadly— both

in species without available PPI data and in those with PPI data. For the former, it is

able to transfer knowledge of network structure from other species, leading to more accurate

de novo predictions. For the latter, it improves prediction coverage as well as accuracy.

For instance, even in well-studied species like human, mouse, and fly, there remain many

proteins with no characterized PPIs (24.9%, 44.9% and 19.8% of proteins in the three species,

respectively [171], [172]). Topsy-Turvy can be used to attach these hitherto uncharacterized

proteins to existing PPI networks. Since GLIDE and other network methods are limited

to predicting links between proteins that both already exist in the network, they cannot

be used for putative interactions involving such proteins. When both proteins do exist in

the PPI network, the hybrid approach TT-Hybrid that combines GLIDE with Topsy-Turvy

performs better than either approach alone, with the former achieving a coarsely accurate

network-theoretic organization and latter fine-tuning it locally. Here, we hypothesize that

GLIDE confers species-specific network information unable to be transferred by Topsy-Turvy

due to network rewiring.

The TT-Hybrid results also give some hint as to what Topsy-Turvy might be learning

from including a network loss term in the training stage. As shown in Figure 4.3, the GLIDE

network score helps segregate proteins into buckets that give a macro range of potential

probabilities that an edge exists, while the bottom-up sequence approach does best at ranking

the specific pairs within each bucket. This is not the first time we have seen network based

information assist in making sequence-level information more accurate; the Isorank network
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alignment algorithm [173] also receives a gain in performance in discovering orthologs by a

global top-down network similarity score that augments the bottom-up pairwise sequence

score.

In this regard, Topsy-Turvy presents an approach to a often-faced challenge in systems

biology: how to resolve the dichotomy between a bottom-up and top-down view of the

same biological phenomenon? Considered at the molecular level, protein interaction is a

purely physicochemical process. However, these proteins primarily function through their

interactions. With proteins performing most of the functions in the cell, evolution constrains

the space of possible protein folds, resulting in emergent properties at the network level.

The approach embodied by Topsy-Turvy and TT-Hybrid could be more generally applied

to situations where network-theoretic and molecular views need to be integrated. To make

a social interaction analogy, D-SCRIPT and other sequence-based bottom-up methods are

learning features that make two people likely to be compatible as friends, but not global

organization of the friend network that would indicate if those two people share enough

mutual friends to be likely to have had the opportunity to meet at the same event.

While we took steps to rule out the effect of ascertainment bias, this remains an important

question in both the training and evaluation of link prediction methods. In this work, we

sourced PPIs from the STRING database where data from a variety of assays has been

conglomerated. An unbiased, all-vs-all screen as exemplified by the Human Reference

Interactome (HuRI) database [167] offers the promise of addressing ascertainment bias in

the specific case of yeast two-hybrid (Y2H) screens. However, to test Topsy-Turvy in our

transfer-learning context, we would also need similar unbiased Y2H screens in a different

species.

By approaching integration of orthogonal information sources as a multi-objective learning

problem, Topsy-Turvy lays the groundwork for incorporation of additional data modalities.

For instance, while the GLIDE score incorporates both global and local scores, it would

be possible to directly supervise Topsy-Turvy with global and local loss terms, each with a
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respective hyper-parameter to finely control their effects. Loss terms that quantify protein

functional similarity [174] or interface similarity [175], [176] could be added to the framework

to further inform predictions. Topsy-Turvy demonstrates that a general, scalable framework

that allows us to transfer both low-level (sequence-to-structure) and high-level (network

topology) insights across species can enable researchers to fill in the missing links in our

knowledge of biological function.

We additionally introduce Topsy-Turvy 3D (TT3D), which builds off of prior work in

sequence-based PPI prediction [12] to incorporate structure by jointly modeling both amino

acid sequence and 3Di sequence. We demonstrate that TT3D is able to take advantage of the

compact representation of protein structure to improve the accuracy of PPI prediction in a

cross-species context. In an era where high-quality predictions of protein structure are readily

available for many proteins, we expect that TT3D can be easily substituted into pipelines

which use lightweight sequence-only deep learning prediction methods to make high-quality

predictions, while remaining fast enough to be applied at genome scale.
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Table 4.6: TT-Hybrid improves upon both of its constituent components on in-
species prediction. We generated partitions of the fly network of varying sparsity, using
the sparsified networks as training for GLIDE. Sparsity p corresponds to the proportion of
edges retained in the training network (p = 0.8 is the least sparse). Topsy-Turvy was trained
on human PPIs. TT-Hybrid combines the predictions from both GLIDE and Topsy-Turvy.
Here we report the AUPR of each method on the held out edges removed from each network
subset. We also show the AUPR of the random control; due to varying class imbalances,
AUPR scores increase slightly with increasing sparsity.

Sparsity GLIDE Topsy-Turvy TT-Hybrid Random
p = 0.8 0.380 0.038 0.387 0.004
p = 0.6 0.437 0.079 0.451 0.009
p = 0.4 0.412 0.105 0.423 0.014
p = 0.2 0.318 0.133 0.354 0.019
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Chapter 5

Protein-Small Molecule Interactions:

Learning Shared Representations

5.1 Chapter Overview

In time and money, one of the most expensive steps of the drug discovery pipeline is the

experimental screening of small molecules to determine binding to a protein target of interest.

Therefore, accurate high-throughput computational prediction of drug-target interactions

would unlock significant value, guiding and prioritizing promising candidates for experimental

screening. In this chapter, we introduce ConPLex, a machine learning method for predicting

drug-target binding which achieves state-of-the-art accuracy on many types of targets by using

a pretrained protein language model. The approach co-locates the proteins and potential

drug molecules in a shared feature space while learning to contrast true drugs from similar

nonbinding “decoy” molecules. ConPLex is extremely fast, which allows it to rapidly shortlist

candidates for deeper investigation.
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5.2 Introduction

In the drug discovery pipeline, a key rate-limiting step is the experimental screening of

potential drug molecules against a protein target of interest. Thus, fast and accurate

computational prediction of drug-target interactions (DTIs) could be extremely valuable,

accelerating the drug discovery process. One important class of computational DTI methods,

molecular docking, uses 3D structural representations of both the drug and target. While the

recent availability of high-throughput accurate 3D protein structure prediction models [133],

[146], [148] means that these methods can be employed starting only from a protein’s

amino acid sequence, the computational expense of docking [177] and other structure-based

approaches (e.g., rational design [178], active site modeling [179], template modeling [131],

[180]) unfortunately remains prohibitive for large-scale DTI screening. An alternative class

of DTI prediction methods use 3D structure only implicitly, making rapid DTI predictions

when the inputs consist only of a molecular description of the drug (such as the SMILES

string [181]) and the amino acid sequence of the protein target. This class of sequence-based

DTI approaches enables scalable DTI prediction, but there have been barriers to matching

the levels of accuracy obtained by structure-based approaches.

In this paper we introduce ConPLex, a new rapid purely sequence-based DTI prediction

method that leverages rich featurizations from pre-trained protein language models (PLMs),

and show it can produce state of the art performance on the DTI prediction task at scale. The

advance provided by ConPLex comes from two main ideas that together overcome some of the

limitations of previous approaches: informative PLM-based representations and contrastive

learning. While many methods have been proposed for the sequence-based setting of the DTI

problem [182] (e.g., using secure multi-party computation [183], convolutional neural networks

[184] or transformers [185]), their protein and drug representations are constructed solely from

DTI ground truth data. The high level of diversity among the DTI inputs, combined with

the limited availability of DTI training data, limit the accuracy of these methods and their
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generalizability beyond their training domain. Furthermore, the methods that do generalize

often do so by sacrificing fine-grained specificity, i.e., are unable to distinguish true-positive

binding compounds from false positives with similar physico-chemical properties (“decoys”).

In contrast, the “PLex” (Pre-trained Lexographic) part of ConPLex helps alleviate the

problem of limited DTI training data. As we showed in our preliminary work [186], one

way to get around the limited size of DTI data sets that has hampered the quality of the

representations learnt by previous methods is to transfer learned proteins representations from

pre-trained protein language models to the DTI prediction task. PLMs learn the distributional

characteristics of amino acid sequences over millions of proteins in an unsupervised fashion,

generating sequence-based representations that encode deep structural insights. A design

paradigm in machine learning is that an informative featurization of the input can enhance

the power of even simple models. For drug-target interaction, where task-specific data is

limited, using PLM-generated representations as the input features allows us to borrow

strength from the much larger corpus of single protein sequences [186]. Starting with the

PLM models, our second insight directly addresses the fine-grained specificity problem in

our architecture by using the “Con” (Contrastive learning) part: a novel, protein-anchored

contrastive co-embedding that co-locates the proteins and the drugs into a shared latent-space.

We show that this co-embedding enforces separation between true interacting partners and

decoys to achieve both broad generalization and high specificity.

Putting these two ideas together gives us ConPLex, a novel representation learning

approach that enables both broad generalization and high specificity. We show that ConPLex

enables more accurate prediction of DTIs than competing methods while avoiding many

of the pitfalls suffered by currently available approaches. Thus, our work constitutes a

concrete demonstration of the power of a well-designed transfer learning approach that

adapts foundation models for a specific task [187], [188]. In particular, we found that the

performance of existing sequence-based DTI prediction methods could be sensitive to variation

in drug-vs-protein coverage in the data set, whereas ConPLex performs well in multiple
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coverage regimes. Indeed, ConPLex performs especially well relative to other methods in

the zero-shot prediction setting where no information is available about a given protein or

drug at training time. Experimental validation of ConPLex yielded a 63% hit rate (12/19),

including four hits with sub-nanomolar binding affinity, demonstrating the value of ConPLex

as an accurate, highly-scalable, in silico screening tool.

ConPLex can also be adapted beyond the binary cases to make predictions about binding

affinity. Furthermore, the shared representation also offers advantages beyond prediction

accuracy. The co-embedding of both proteins and drugs in the same space offers intepretability,

and we show that distances in this space meaningfully reflect protein domain structure and

binding function: we leverage ConPLex representations to functionally characterize cell-

surface proteins from the Surfaceome database [189], a set of 2,886 proteins localized to

the external plasma membrane that participate in signaling and are likely able to be easily

targeted by ligands.

ConPLex is extremely fast: as a proof-of-concept, we make predictions for the human

proteome against all drugs in ChEMBL [190] (≊ 2× 1010 pairs) in just under 24 hours using

a single NVIDIA A100 GPU. Thus, ConPLex has the potential to be applied for tasks which

would require prohibitive amounts of computation for purely structure based approaches or

less efficient sequence-based methods, such as genome-scale side-effect screens, identifying

drug re-purposing candidates via massive compound libraries searches, or in silico deep

mutational scans to predict variant effects on binding with currently approved or potential

new therapeutics. We note that most DTI methods require significant computation on each

drug-target pair (i.e., have quadratic time-complexity). Because ConPLex predictions rely

only on the distance in the shared space, predictions can be made highly efficiently once

embeddings (which have linear time-complexity) are computed.

Distinguishing between low- and high-coverage DTI prediction We benchmark

performance of ConPLex and competing methods in two different regimes, which we term
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Figure 5.1: Drug-target interaction benchmarks display highly variable levels of
coverage. Coverage is defined as the proportion of drugs or targets for which a data point
(positive or negative) exists in that data set. High- vs. low-coverage benchmarks tend
to reward different types of model performance. (a) In this cartoon of an example low
coverage data set, drug candidates cover the full diversity of the space, and no two drugs
are highly similar. A successful model can learn a coarse estimate of the fitness landscape,
but must accurately model a large part of drug space to generalize to all candidates. (b)
For high-coverage data sets, drugs tend to be targeted to a specific protein family. Thus, a
successful model does not need to generalize nearly as widely, but must be able to capture
more minor variation in drug fitness to achieve high specificity and differentiate between
similar drugs. (c) In a review of existing popular DTI benchmark data sets, we find widely
varying coverage, from data sets with nearly zero coverage (each drug/target is represented
only a few times) to nearly full coverage (all drug-by-target pairs are known in the data).

98



low-coverage and high-coverage DTI prediction (Figure 5.1c). We show that ConPLex

outperforms its competitors in both settings, but note that separating the two regimes helps

clarify an often-seen issue in the field: methods whose performance varies substantially across

different proposed DTI benchmarks. Several prior attempts have been made to standardize

DTI benchmarking and develop a consistent framework for model evaluation [191], [192].

However, much of this work has overlooked a key aspect of benchmarking that we find to

significantly affect model performance— differing per-biomolecule data coverage. We define

coverage as the average proportion of drugs or targets for which a data point exists in that

data set, whether that is a positive or negative interaction (Section 5.3.1). Depending on the

per-biomolecule data coverage of the benchmark data set, we claim that these benchmarks are

looking at very different problems. In particular, low-coverage data sets (Figure 5.1a) tend to

measure the broad strokes of the DTI landscape, containing a highly diverse set of drugs and

targets. Such data sets can present a modeling challenge due to the diverse nature of targets

covered, but allow for a broad assessment of compatibility between classes of compounds

and proteins. High-coverage data sets (Figure 5.1b) represent the opposite trade-off: they

contain limited diversity in drug or target type, but report a dense set of potential pairwise

interactions. Thus, they capture the fine-grained details of a specific sub-class of drug-target

binding and enable distinguishing between similar biomolecules in a particular context.

The two coverage regimes correspond to different usage cases. The low-coverage regime is

relevant when applying DTI models for large-scale scans to predict interactions for a potential

target against a large compound library (e.g. for drug re-purposing as in Dönertaş et al.

[193] and Morselli et al. [194]), or for scanning a candidate drug against an entire proteome

to identify potential adverse and off-target effects (as in Huang et al. [195], [196]). Data at

this scale is often low coverage, with only a small number of known interactions for each

unique biomolecule. Thus, it is important that DTI models used for these tasks are broadly

applicable and can accurately generalize to many different families of proteins and drugs.

However, this generalization often comes at the cost of specificity, resulting in models that
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are unable to distinguish between highly similar drugs or proteins.

The high-coverage regime is relevant when optimizing a particular interaction. Here,

models can be trained to be highly specific to a protein family or class of drugs, so much

so that a per-drug or per-target model is trained to capture the precise binding dynamics

of that biomolecule [197]. While such models can be effective for lead optimization, they

require high coverage on the biomolecule of interest to make accurate predictions; this may

not always be available. Additionally, such models lack the capacity to generalize beyond the

training domain and thus cannot be used for genome- or drug bank-scale prediction.

The PLM approach of ConPLex enables strong performance in both regimes. In the low

coverage regime, the strength is coming mostly from the “PLex” part, where it can leverage

the effective generalization of language models to achieve state-of-the-art performance. On

high-coverage data sets, the “Con” part also becomes important, since it becomes feasible to

train drug- or target-specific models with high accuracy, and such models often outperform

more generic models. We find that while single-task models do perform well given available

data, ConPLex is able to achieve extremely high specificity in low-diversity, high-coverage

scenarios, while remaining broadly applicable to protein targets with limited data. Thus,

ConPLex is applicable for both large-scale compound or target screens and fine-grained,

highly specific binding prediction. We discuss the issue of matching the right model to the

problem domain with respect to coverage further in Section 5.5.

5.3 Methods

5.3.1 Computing data set coverage

Let 1(i,j) be the indicator variable meaning there exists an observation of drug i and target j.

For a data set with m unique drugs and n unique targets, we can define the coverage for drug

d as Cd =
1
n

∑n
j=0 1(d,j) and for a target t as Ct =

1
m

∑m
i=0 1(i,t). Then, for a given data set

we can evaluate the median drug and target coverage. A data set with maximum coverage
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would have a single data point for each drug-target pair, and thus a median coverage of 1

for both drugs and targets. Conversely, each drug and target would only be represented a

single time in a minimum coverage data set, resulting in drug and target coverages of 1
n

and

1
m

respectively. We report the median drug and target coverage for each benchmark data set

in Table 5.1. Since the DUD-E data set is separated out by targets, we instead report the

median number of drugs against each target.

5.3.2 Benchmarks overview

Low coverage benchmarks We evaluate our framework on three broad-scale, low-coverage

benchmark data sets. Two data sets, DAVIS [201] and BindingDB [200], consist of pairs of

drugs and targets with experimentally determined dissociation constants (KD). Following

[185], we treat pairs with KD < 30 as positive DTIs, while larger KD values are negative. The

third data set, ChG-Miner from BIOSNAP [199], consists of only positive DTIs. We create

negative DTIs by randomly sampling an equal number of protein-drug pairs, making the

assumption that a random pair is unlikely to be positively interacting. The DAVIS data set

represents a few-shot learning setting: it contains only 2,086 training interactions, compared

to 12,668 for BindingDB and 19,238 for BIOSNAP. The rest of the data preparation follows

[185]. The data sets are split into 70% for training, 10% for validation, and the remaining 20%

for testing. Training data are artificially sub-sampled to have an equal number of positive

and negative interactions, while validation and test data is left at the ratio originally in the

data set.

Zero-shot benchmarks. We evaluate our framework on two zero-shot prediction modifi-

cations of BIOSNAP. Following [185], the Unseen proteins set was created by selecting

20% of proteins from the full set, and selecting any interactions including these proteins for

the test set. Thus, there are no proteins which appear in both the training and test set. The

corresponding process was used to create the Unseen drugs data set. The training set was
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then further split using 7/8 of the interactions for training and 1/8 of the interactions for

testing. As above, data are sub-sampled so that training is balanced.

Continuous benchmarks. Continuous affinity prediction data come from the Therapeutics

Data Commons DTI Domain Generalization benchmark (TDC-DG) [191]. The TDC-DG

consists of 140,746 unique drugs and 477 unique targets derived from BindingDB [200]

interactions that have patent information. Each interaction is labeled with an experimentally

determined dissociation constant (IC50). Interactions are temporally split, so that training

pairs are from patents filed between 2013 and 2018, and test pairs are from between 2019

and 2021. 20% of the training pairs are randomly set aside as a validation set. We train

5 different models with the train/validation splits determined by the TDC benchmarking

framework, and report the average Pearson correlation coefficient of predictions on the test

set.

High coverage benchmarks. The Database of Useful Decoys: Enhanced (DUD-E) [207]

consists of 102 protein targets and known binding partners (average 224 molecules per target).

For each binding partner, there are 50 “decoys”, or physio-chemically similar compounds that

are known not to bind with the target. 57 of the targets are classified as either GPCRs,

kinases, nuclear proteins, or proteases. We generate train-test splits by splitting targets

within classes, so that there are representative members of each class in both the training and

test set, but no target appears in both the training and test set (26 train, 31 test). These data

are by definition high-coverage, since there are several true and decoy compounds available

for each target. We provide the full target splits in Section C.1.

We also evaluate on several protein-family specific data sets from various different sources

and compiled by Goldman et al. [197]. These include DTI data on β-ketoacid cleavage

(BKACE) [206], Esterase [203], Glycosyltransferases [204], Halogenase [205], and

Phosphatase [202] enzymes. These data are uniformly very high coverage, with a known

data point for nearly every drug-target pair. Following [197], we performed a 10-fold cross
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validation where the data were split into train-test sets by target, so that all drugs appear in

both the training and test set, but no target does.

5.3.3 Overview of ConPLex

Target featurization

We generate protein target features using pre-trained protein language models (PLM): These

models generate a protein embedding Efull ∈ Rn×dt for a protein of length n, which is then

mean-pooled along the length of the protein resulting in a vector E ∈ Rdt . Specifically, we

investigate the pre-trained models Prose [48], [53], ESM [208], and ProtBert [209], with default

dimensions dt = 6165, 1280, 1024 respectively (Section C.2.1). Elnaggar et al. recommend

the use of ProtT5XLUniref50, but we found that it did not perform as well as ProtBert for

the DTI prediction task. We emphasize that the language and projection models are used

exclusively to generate input features– their weights are kept unchanged and are not updated

during DTI training.

Drug featurization

We featurize the drug molecule by its Morgan fingerprint [210], an encoding of the SMILES

string of the molecular graph as a fixed-dimension embedding M ∈ Rdm (we chose dm = 2048)

by considering the local neighborhood around each atom. The utility of the Morgan fingerprint

for small molecule representation has been demonstrated in [197], [211]. We additionally

investigated the use of molecule embeddings from Mol2Vec [212] and MolR [213] and found

they failed to perform as well as the Morgan fingerprint (Section C.2.2).

Transformation into a shared latent space and prediction

Given a target embedding T ∈ Rdt and small molecule embedding M ∈ Rdm , we transform

them separately into T ∗,M∗ ∈ Rh using a single fully-connected layer with a ReLU activation.

103



These layers are parameterized with weight matrices Wt ∈ Rh×dt ,Wm ∈ Rh×dm and bias

vectors bt, bm ∈ Rh.

T ∗ = ReLU(WtT + bt) (5.1)

M∗ = ReLU(WmM + bm) (5.2)

Given the latent embeddings T ∗,M∗, we compute the probability of a drug-target interac-

tion p̂(T ∗,M∗) as the cosine similarity between the embedding vectors, followed by a sigmoid

activation. Thus, we compute the predicted probability as

p̂(T ∗,M∗) = σ(
T ∗ ·M∗

||T ∗||2 · ||M∗||2
) (5.3)

When predicting compound binding affinity ŷ(T ∗,M∗), we substitute the sigmoid and

cosine similarity (Equation 5.3) with a dot product followed by a ReLU activation, which

gives a non-negative distance in the embedding space (Equation 5.4).

ŷ(T ∗,M∗) = ReLU(T ∗ ·M∗) (5.4)

Training

The model is trained both for broad and fine prediction, with the loss computed depending

on the training data set. Broad-scale training data uses the binary cross-entropy loss (LBCE)

between the true labels y and the predicted interaction probabilities p̂. When the model was

trained to predict binding affinity, we substitute the binary cross-entropy loss for the mean

squared error loss (LMSE) is used during supervision.

Training on fine-scale data (DUD-E) was performed using contrastive learning. Contrastive

learning uses triplets of training points rather than pairs, denoted the anchor, positive,

and negative, and aims to minimize the distance between the anchor and positive examples

while maximizing the distance between the anchor and the negative examples. In the DTI
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setting, the natural choice for a triplet is the protein target as the anchor, the true drug as the

positive and decoy as the negative example, respectively. We derive a training set of triplets

in the following manner: for each known interacting drug-target pair (T,M+), we randomly

sample k = 50 non-interacting pairs (T,M−) and generate the triplets (T,M+,M−), where

M− is drawn from the set of all decoys against T . We map these to latent space embeddings

as described above. Since all the entities are now comparable to each other, we can compute

the triplet margin-distance loss (LTRM).

LTRM(a, p, n) =
1

N

N∑
i=1

max(D(a, p)−D(a, n) +m, 0) (5.5)

where

D(u, v) = 1− p̂(u, v) (5.6)

The margin m sets the maximum required delta between distances, above which the loss

is zero.

Margin annealing

The margin m sets the maximum required delta between distances, above which the loss is

zero. Initially, a large margin requires the decoy to be much further from the target than

the drug to avoid a penalty, resulting in larger weight updates. As training progresses, lower

margins relax this constraint, requiring only that the drug be closer than the decoy as m → 0.

Here, the margin is initialized at Mmax = 0.25 according to a tanh decay with restarts decay

schedule. Every Emax = 10 contrastive epochs, the margin is reset to the initial Mmax, for a

total of 50 epochs. At epoch i, the margin is set to

m(i) = Mmax(1− tanh(
2(i mod Emax)

Emax

)) (5.7)
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Implementation

Model weights were initialized using the Xavier method from a normal distribution [214].

Weights were updated with error back-propagation using the AdamW optimizer [215] for a

total of 50 epochs. For the binary classification task, the learning rate was initially set to

10−4 and adjusted according to a cosine annealing schedule with warm restarts [216] every

10 epochs. For the contrastive task, the learning rate was initially set to 10−5 and the same

annealing schedule was followed. The margin for the contrastive loss was initially set to 0.25

and decreased to a minimum of 0 over 50 epochs according to a tanh decay schedule with

restarts every 10 epochs. We used a latent dimension d = 1024 (results were robust to even

with lower dimensions, and much higher dimensions may over-fit or be subject to topological

restrictions) and a batch size of 32. The model was implemented in PyTorch version 1.11.

Model training and inference was performed on a machine with a 112-core Intel Xeon Gold

6258R CPU and using a single NVIDIA A100 GPU. We compare training and inference run

times in Section C.3.

5.3.4 Surfaceome analysis

We evaluate the functional use of ConPLex embeddings using data from the Surfaceome

database [189], which contains 2,886 cell-surface proteins. We identified Pfam domains

using HMMscan from HMMER3 [62] with default settings. We analyzed domains hit in

> 10 proteins. For each domain, we trained a logistic regression classifier from sklearn with

balanced class weights. We also evaluated domain coherence using spectral clustering with

k = 10 clusters, and evaluated the adjusted mutual information (AMI) between true clusters

(protein has/doesn’t have domain) and predicted clusters (Section 5.4.7).
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5.3.5 Experimental determination of kinase binding affinity

From the Surfaceome [189] database, we selected 51 kinases which were available by the

KdELECT assay from DiscoveryX. From the ZINC database [10], we selected 4715 compounds

purchasable from the Cayman Chemical Company. Using a ConPLex model trained on

BindingDB and fine-tuned on DUD-E, we predicted all pairwise interactions between kinases

and small molecule drugs. Without previously consulting the literature on kinases or drugs,

we selected 5 kinases which were highly represented in the top predictions (EGFR, EPHB1,

FLT3, KIT, TGFBR2 ). We then selected 19 binding pairs to test, covering 14 drugs with

high ConPLex predicted interactions.

We performed KD determination using the KdELECT assay from the DiscoveryX company,

following the procedure from Hie et al. [122]. KdELECT measures competition between test

compounds and an immobilized, active-site directed ligand. Ligands are tagged with DNA

oligomers, and competition is measured by quantitative polymerase chain reaction (qPCR)

of this barcode. BL21-derived E. coli were infected with T7 phase strains tagged with each

kinase target and incubated with shaking at 32C. Streptavidin-coated magnetic beads were

treated with biotinylated ligand at room temperature for 30 minutes, following which the

beads were blocked with excess biotin and washed with blocking buffer [SeaBlock (Pierce),

1% bovine serum albumin (BSA), 0.05% Tween 20, 1 mM dithiothreitol (DTT)] to remove

unbound ligand. Test compounds were prepared as 111X stocks in 100% DMSO. An 11-point,

3-fold compound diluation series was created, with a top test compound concentration of

10,000 nM. 3 DMSO control points were also used. Test compounds are distributed by

acoustic transfer (non-contact dispensing) in 100% DMSO, then diluted into the assays for a

final DMSO concentration of 0.9%.

Kinases, ligand-bound affinity beads, and test compounds were combined in 1X binding

buffer [20% SeaBlock, 0.17X phosphate-buffered saline (PBS), 0.05% Tween 20, 6 mM DTT]

in a 384-well plate, with a final volume of 0.02mL for each reaction. Plates were incubated
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for one hour at room temperature with shaking. Affinity beads were washed with wash buffer

(1x PBS, 0.05% Tween 20), re-suspended in elution buffer (1x PBS, 0.05% Tween 20, 0.5

mM non-biotinylated affinity ligand), and incubeted for 30 minutes at room temperature

with shaking. The concentratino of kinases was measured using qPCR. To compute KD of

the binding, a standard dose-response curve was fit to the Hill equation curves using the

Levenberg-Marquardt algorithm (Hill slope = -1).

5.3.6 Genome wide ChEMBL scan

We trained a ConPLex model using BindingDB and DUD-E, and used it to make predictions

for all pairs of human proteins against all drugs in ChEMBL. Human protein sequences were

taken from the STRING database and processed following [11], resulting in 15,816 proteins

between 50 and 800 amino acids long. Small molecule structures were downloaded from

ChEMBL 30 [190], resulting in 1,533,652 compounds. Prediction took just under a day,

accounting for embedding time.

5.4 Results

5.4.1 Model Overview

To achieve both generalizability and specificity, ConPLex leverages advances in both protein

language modeling and metric learning. We start with pre-trained representations and learn a

non-linear projection of these representations to a shared space (Rdh). We guide the learning

by alternating between two objectives over multiple iterations: a coarse-grained objective of

accurately classifying DTIs, and a fine-grained objective of distinguishing decoys from drugs.

The coarse-grained objective is evaluated over a low-coverage data set, which trains the model

to distinguish between broad classes of drug and target, and makes initial predictions in

the right “neighborhood” of the DTI space. The fine-grained objective is evaluated over a
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high-coverage data set, which fine-tunes the model to distinguish between true and false

positive interactions in the same “neighborhood” and achieve high specificity within a class.

To featurize the inputs, here we use the Morgan fingerprint [210] for small molecules,

and embeddings from a pre-trained ProtBert model [209] for proteins. We investigate other

choices for features, including several other foundation PLMs in Section C.2.1. We note that

our framework is flexible to different methods of featurization, and make recommendations

on the selection of informative representations in Section 5.5.

5.4.2 State-of-the-art performance on low-coverage interactions

A key advance of ConPLex is the use of pre-trained protein language models (PLMs) for protein

representation. As foreshadowed by Scaiewicz and Levitt [218], PLMs have repeatedly been

shown to encode evolutionary and structural information [48], [53], [219], and to enable broad

generalization in low-coverage scenarios [11], [12]. Here, we show that ConPLex achieves

state-of-the-art performance on three low-coverage benchmark data sets – BIOSNAP,

BindingDB, and DAVIS – where it is important to learn the broad strokes of the DTI

landscape. In Table 5.2 we show the average area under the precision-recall curve (AUPR)

over 3 random initializations of each model evaluated on a held-out test set (Section 5.3.3).

Here, we compare with several methods which use non-PLM protein features: MolTrans [185],

GNN-CPI [217], and DeepConv-DTI [184]. In addition, we compare to the EnzPred-CPI

model from Goldman et al. [197] (developed simultaneously and independently), which uses

a PLM for protein featurization but does not perform a co-embedding or utilize a contrastive

training step. Finally, we compare with the single-task Ridge regression model described

in [197], which trains a different model per-drug rather than a single model for the entire

benchmark.

Observing the strength of ConPLex to generalize on low-coverage data, we sought to

evaluate its performance on fully zero-shot prediction. Unseen drugs and Unseen targets

are variants of the BIOSNAP data set where drugs/targets in the test set do not appear in
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any interactions in the training set (Section 5.3.2). Note that for the unseen drugs setting,

the Ridge model cannot be applied since a different model must be trained for each drug that

appears in the training set. We show that ConPLex achieves the best zero-shot prediction

performance (Table 5.2), further demonstrating the applicability of the model to large-scale,

very low-coverage prediction tasks.

5.4.3 Contrastive learning enables high-specificity DTI mapping

Another key advance of our method is the use of contrastive learning to fine-tune model

predictions on high-coverage data to achieve high specificity. Recently, Heinzinger et al. [220]

demonstrated the use of semi-supervised contrastive learning for effective protein embedding-

based annotation transfer. Here, we adapt contrastive learning to a fully-supervised setting

and demonstrate that the contrastive training is essential to achieving specificity using DTI

pairs from the Database of Useful Decoys (DUD-E) [207]. The DUD-E data set contains 57

protein targets and drugs which are known to interact with each target. However, it also

contains 50 negative “decoy” small molecules for each drug, which have similar physicochemical

properties to the truly interacting small molecule, but are known to not bind the target.

Thus, accurate prediction on DUD-E requires a model to achieve high-specificity and to

accurately differentiate between highly similar compounds. Additionally, DUD-E contains

four different classes of targets — G-protein coupled receptors (GPCRs), kinases, proteases,

and nucleases — so models must generalize across target classes (note that single task models

don’t have this generalization requirement, since a different model is trained per-target).

We derive evaluation sets from DUD-E by holding out 50% of proteins in each target class

for testing and using the remaining targets for training (full splits are specified in Section

C.1). Here, we evaluate a ConPLex model trained on BIOSNAP, both with and without

contrastive training on DUD-E, and show that contrastive training is essential to achieving

specificity on decoys.

For each target in the DUD-E test set, we use t-SNE to visualize the target alongside all
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drugs and decoys using embeddings learned by both versions of the model. Figure 5.3a,b

shows one such example, the tyrosine kinase VGFR2. We also show the distribution of

distances in the latent space between the target embedding and the embeddings of the

drugs and decoys for each model (Figure 5.3c, d) (p-values from one-sided t-test). Without

contrastive training, drugs are interspersed with decoys and are far away in space from the

target, while ConPLex clusters most true drugs very close to both each other and the VGFR2

embedding.

In Figure 5.3e, we show a quantitative analysis of all 31 test-set targets. We compute the

effect size (Cohen’s d) of the difference between predicted drug and decoy scores. We plot

these effect sizes for ConPLex trained with and without contrastive training. An increase

in the effect size indicates that the co-embedding distances learned by the model better

represent binding specificity. The effect size increases for every target, and the median

effect size between predicted true and decoy compound scores was 0.730 prior to contrastive

training compared to 4.716 after. For each class of targets, we also report the median p-value

(one-sided t-test) between drug and decoy scores predicted by ConPLex. While contrastive

training has an extremely large impact on specificity in high-coverage domains, we also

show that this additional training does not significantly decrease the model performance on

low-coverage benchmarks via an ablation study in Section 5.4.11.

In addition to evaluation on DUD-E, we also evaluate ConPLex on five benchmark data

sets derived from family-specific enzyme-substrate screens (Section 5.3.2). These data sets

are extremely high coverage, generally including data points for all possible pairs of drugs and

targets. We find that in this regime, ConPLex and other PLM based models like EnzPred-

CPI have strong but highly variable performance, and are still generally outperformed by a

Ridge regression model (Section 5.4.10) as shown previously in [197]. However, a fine scale

single-task model is limited in its generalizability beyond the enzyme family on which it was

trained (Section 5.5).
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5.4.4 Discovering DTIs with sub-nanomolar binding affinity

Since ConPLex exhibited strong performance on several benchmark data sets, we next sought

to experimentally validate predictions using an in vitro biochemical binding assay. We selected

51 kinases from the Surfaceome database [189] with commercially-available assays from the

DiscoveryX company, and used ConPLex to scan against a set of 4715 compounds from the

ZINC database [10] purchasable from the Cayman Chemical Company (Section 5.3.2). We

selected 19 interactions spanning 5 kinases and 14 compounds in an unbiased manner (these

pairs were chosen based solely on top scoring ConPLex predictions, without any use of prior

knowledge from experimental results or in the literature). We determined KD values for each

of the 19 interactions (Table 5.3), finding that 12/19 pairs tested had KD values less than

100nM. Of these, four bound with sub-nanomolar affinity, all of which recapitulate known

interactions in the literature. Weglicki et al. identified AG-1478 as an EGFR inhibitor, but

noted that its therapeutic use may be limited due to triggering hypomagnesemia and cardiac

dysfunction [222]. Sordella et al. described the downstream impact in lung cancer when

Gefitinib inhibits EGFR [223]. In a review of Nintenanib discovery, Roth et al. noted it as

an FLT3 inhibitor [224], and Wang et al. described Linifanib inhibition of FLT3 [225].

We also identify an interaction we believe to be novel, between EPHB1 and PD-166326

with nearly sub-nanomolar affinity (KD = 1.30). Wolff et al. previously identified PD-166326

as a tyrosine-kinase inhibitor [226], but did not report any binding to EPHB1, and DrugBank

[9] only lists ABL1 as a known target (DrugBank ID: DB08339). EPHB1 has been implicated

in chronic pain [227], [228]; at time of publication, there are no known inhibitors of EPHB1

listed in the Protein Kinase Inhibitor Database (PKIDB) [221], and our findings indicate

that PD-166326 may act as a novel binder to EPHB1. Future work could involve further

characterization of this interaction, its impact on EPHB1 function, and possible therapeutic

outcomes. In Figure 5.4b, we show that PD-166326 is the only compound from our screen

close to EPHB1 in co-embedding space.
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Notably, all three of the compounds that we predicted to interact with TGFBR2 were false

positives (Wortmannin, Pluripotin, Monorden). Despite its significance in cancer signaling

[229], there are no known inhibitors of TGFBR2 in PKIDB, suggesting that it may be difficult

to target via small-molecule drugs.

5.4.5 Selection of a threshold based on experimental results

Using an experimental binding affinity of <100 nM as a label of a true positive interaction,

we constructed a precision-recall curve using ConPLex predicted probability of interaction

(AUPR = 0.91). This allows us to understand the calibration of the ConPLex prediction,

and set thresholds for future prediction. At a threshold of 0.923, we reach precision = 1.0,

indicating that all tested interactions above this threshold truly interacted. We show the

curve with all thresholds listed in Figure 5.5.

5.4.6 Incorporating drug binding information improves protein rep-

resentations

One of the advantages of the co-embedding approach that our model takes is the ability to

visualize and investigate the shared embedding space. For instance, we show in Figure 5.4a-c

that kinases and their inhibitors tend to co-localize within the space. Seeking to expand our

analysis, we subsequently mapped all 2716 predicted surface proteins from the Surfaceome

database into ConPLex embedding space, and investigated their representations. In Figure

5.4d, we show the projections all Surfaceome proteins, colored by their classification into one

of five functional categories (from Almén et al. [230]) – transporters, receptors, enzymes,

miscellaneous, and those that are unclassified. ConPLex projections of surface proteins cluster

in embedding space by functional type, with transporters and receptors especially separating

from other classes.

However, the Almén functional classification is quite broad and may group proteins with
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vastly different functions and binding properties. We further demonstrate the link between

ConPLex projections and protein function, by evaluating how the learned DTI embedding

space separates proteins by domains contained therein. We identified Pfam domains [231] for

each protein in the Surfaceome database using HMMscan [62] and compared the projections

of proteins that share the same domains. We identified 780 unique domains across all proteins,

of which 126 domains were represented in at least 10 proteins. To quantitatively evaluate the

coherence of ConPLex embeddings, we trained separate logistic regression classifiers for each

domain to separate proteins with that domain from others, and used the model’s confidence

(log( p
1−p

)) for in-sample proteins as a measure of separation for the domain. We find that

for all 126 domains, the model more confidently discriminated domains when trained on

ConPLex representations than the baseline ProtBert embeddings.

Figure 5.4f shows the change in confidence scores for all 126 domains, where the dotted

line represents equal confidence using either ConPLex or ProtBert. We find that while

prediction of all domains were improved using ConPLex, proteins with kinase domains

(PF14575, PF01404, PF00069, PF07714) separated especially well, while 7-transmembrane

(7TM) domains characteristic of GPCRs (PF00001, PF00002, PF00003, PF13853) showed

more modest improvement. In Figure 5.4e, we show the same visualization of projections

as in Figure 5.4d, but colored by another top-differentiated domain, PKinase (PF00069).

As discussed previously, ConPLex was trained contrastively with several kinase targets and

excels at kinase prediction on DUD-E (Figure 5.3e), so it is unsuprising that proteins with

these domains separate well. In fact, one of the top differentiated domains is the Ephrin

ligand binding domain (PF01404), which is responsible for binding to the ephrin ligand [232].

While the model was also trained contrastively with 7TM GPCR targets, there was much

less training data available. In addition to the dearth of training examples, GPCRs are less

soluble than kinases and tend to exhibit more dynamic behavior – all of which contribute to

difficulty predicting ligand binding. Future work in this area might adjust distances in this

landscape to account for the low metric entropy of biological sequences, as demonstrated in
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Berger, Waterman, and Yu [233].

5.4.7 Functional community detection in the Surfaceome

Individual domain performance To evaluate the extent to which ConPLex embeddings

could be used to separate proteins by function in embedding space, we trained a logistic

regression classifier on a binary classification for each domain, using either ConPLex or

ProtBert embeddings as features. We quantify the quality of separation by the model

confidence, computed as the mean log( p
1−p

) for in-class proteins, where p is the logistic

classifier predicted probability. In Table 5.4, we report the model confidence using either

ConPLex or ProtBert embeddings for kinase domains, cadherin domains, and 7TM domains.

ConPLex improves over ProtBert for all domain families, but performs especially well on

kinases, while performing relatively weaker on cadherin and 7TM proteins. We show a

histogram of results on all Pfam domains tested in Figure 5.6

Spectral Clustering In addition to measuring the quality of the latent space using a

classifier, we also tried an unsupervised approach. We trained a spectral clustering algorithm

with k = 10 clusters. Then, for each domain, we compute the adjusted mutual information

(AMI) between the clustering assignments and the presence/absence of that domain. A higher

AMI means that proteins with the same domain are more likely to share a cluster. We find

that ConPLex embeddings result in signficantly higher AMIs than ProtBert (paired t-test

p = 5.37e− 4). We show clustering results for each domain as well as summary histograms

in Figure 5.7. We also show the distribution of domain cluster sizes for all 780 domains

identified in at least one protein, and our cutoff that a domain must have > 10 proteins for

us to consider it in Figure 5.7D.
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5.4.8 Adapting ConPLex for affinity prediction

While we have to this point been using the model to predict probabilities of interaction

and perform binary classification, we show that ConPLex can be easily adapted to perform

binding affinity prediction, and that this model too achieves state-of-the-art performance.

The final step of our binary interaction predictor is converting the cosine distance between

the projections in the DTI space to a probability using a sigmoid activation (Section 5.3.3).

However, it is completely natural to replace this activation with a dot product between the

two projections, which enables the model to make real-valued predictions, which can then be

interpreted as a binding affinity. We evaluated ConPLex trained for affinity prediction on the

Therapeautics Data Commons (TDC) DTI Domain Generalization (TDC-DG) benchmark.

The TDC-DG benchmark contains binding affinity (IC50) data from interactions patented

between 2013 and 2018, with the test set drawn from interactions patented in 2019-2021

(Section 5.3.2). Thus, this data requires out-of-domain generalization and corresponds with the

real-life scenario of training on interactions up to a known point, and predicting interactions

which are yet to be documented. We trained ConPLex to predict binding affinity with 5

random train/validation splits, and achieve an average Pearson correlation coefficient between

the true and predicted affinity of 0.538(±0.008) on the held-out test set. At submission,

ConPLex is the top performing method on the TDC-DG benchmark on TDC (Table 5.5).

To investigate the strengths and limitations of ConPLex for affinity prediction, we

evaluated performance by target type. Targets were annotated with Pfam domains [231] using

HMMscan [62], and the Pearson correlation (PCC) between predicted and true IC50 was

computed over targets in each family (Table 5.6). We observed especially strong performance

on 12 immunoglobulin targets (Pfam domains PF13927, PF13895, PF07679, PF00047),

where we observed a PCC of 0.803. In keeping with our previous finding of ConPLex’s

relative strength on kinases over GPCRs (Figure 5.3e), we observed a correlation of 0.578

on 94 protein targets with PKinase domains (PF07714, PF00069), including targets with
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SH3 domains (PF00018, PF07653; 13 targets; PCC = 0.705) and PI3K domains (PF00613,

PF00792; 6 targets; PCC = 0.633). However, we observed substantially weaker performance

on 7TM domains (PF00001; 14 targets; PCC = 0.254) and GPCR domains (PF10320; 8

targets; PCC = 0.176). To assess ConPLex’s variability in its accuracy, we computed a 95%

prediction interval based on a linear regression between the true and predicted IC50. While

the correlations were strong, we found substantial variability around the true IC50, with the

width of the prediction interval around the true ln(IC50) being ±4.89 ln(nM) (Figure 5.8).

Altogether, the variability in ConPLex’s performance across domains makes it important to

understand the target of interest when using ConPLex to predict binding affinity.

5.4.9 Error limits of binding affinity predictions

ConPLex achieves the strongest performance on the TDC DTI-DG benchmark for affinity

prediction. However, when predicting binding affinity, is important to consider the error

limits and range of applicability of the method. In , we show the true vs. predicted ln(IC50)

for all drug-target interactions in the data set. We compute the kernel density estimate for

the predictions, and a 95% prediction interval, which shows the prediction error for the test

set.

5.4.10 Results on EnzPred data sets

Results of ConPLex, EnzPred-CPI, and a single-task ridge regression model on several

protein-family specific data sets compiled by Goldman et al. [197]. These include β-ketoacid

cleavage (BKACE) [206], Esterase [203], Glycosyltransferases [204], Halogenase [205],

and Phosphatase [202] enzymes. Following [197], we performed a 10-fold cross validation

where the data were split into train-test sets by target, so that all drugs appear in both the

training and test set, but no target does. We report the average of 3 random initializations

in Table 5.7. “Average AUPR” means AUPR was computed per-drug then averaged.
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5.4.11 Margin decay ablation and optimization

We evaluated the impact of various different margin decay schemes, as well as the impact

of contrastive learning overall on model performance. We report the average AUPR over 3

random initializations on the BindingDB data set. The baseline without contrastive learning

has the highest AUPR, but as we have shown contrastive learning is essential for specificity

on fine-scale data sets. The best performing model with contrastive learning is within 5% of

the performance without. In addition to the Tanh decay with restart we describe in the main

text, we evaluate the performance of a Tanh decay without a restart, a cosine decay with

and without restarts, and a constant margin (no decay). We find that the Tanh decay with

restart performs the best, and show the full results in Table 5.8.

5.5 Chapter Perspectives

Much previous work has recognized the value of meaningful drug representations [195], [234]

for DTI prediction, yet relatively little work has focused on the target protein representation.

As the first method to use pre-trained protein language models (PLMs) for DTI prediction,

ConPLex is yet another example of the power of transferring learned representations for

biology [11], [185], [219], [235], [236]. This approach enables broad generalization to unseen

proteins, as well as extremely fast model inference (>10x speed-up even over other sequence-

based approaches, Section C.3). This speed is particularly valuable for drug re-purposing

and iterative screening, where large compound libraries are evaluated against hitherto-

uncharacterized proteins implicated in a disease of interest. The co-embedding approach

which enables this speedup could also be effective for integrative multi-structure models (e.g.,

the IMP framework [237]) where efficient scanning of possible combinations is important.

Recent methods have also demonstrated the power of PLMs for transferring knowledge

between species [11], and our framework may enable more accurate transfer of DTI from

the model organisms on which drugs are initially tested, to their eventual use in human
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patients. Skolnick and Zhou [238] have reported the importance of considering small molecule

binding pockets for protein-protein interaction prediction; thus our DTI-informed protein

representations may also be useful in that context. While structural similarity is often

implicitly learned by PLMs, future work could explicitly incorporate structure where such

data is available, perhaps by incorporating a more advanced projection architecture like the

Geoformer [146].

It has been shown in previous work that the performance of different PLMs vary on

different tasks, and that there is not one clearly “best” language model [186], [239], [240].

While we have chosen to use ProtBert here, it is likely that other existing or newly developed

language models may yield better performance for certain types of drugs or targets. Likewise,

advancements in drug representation may improve performance— the ConPLex framework is

flexible to different input features, and it remains important to experiment with different

feature choices for the task at hand (Section C.2).

ConPLex approaches the DTI decoy problem from the perspective of adversarial machine

learning, where the model must act as a discriminator for adversarial examples from the

decoy database. This approach is directly enabled by the co-embedding architecture— to

compute the triplet distance loss, the protein and drugs must be co-embedded, and the

distance between them must be meaningful and simply computed. Such an approach would

not be feasible using a model which concatenates features up front, nor for a model which

has significant computation defining the probability of interaction after the co-embedding.

Thus the shared lexicographic space in which we embed the proteins, targets, and decoys

is key. Future work could explore adapting molecular generation methods such as JT-VAE

or HierG2G [241], [242] to directly act as a generator for decoys. High-specificity DTI

prediction is valuable beyond decoy detection— greater specificity of inference can help

improve personalized medicine or the modeling of drug effects against rare variants from

under-represented populations.

It is also important to consider the coverage of the problem to select an appropriate
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method. While we recommend the use of PLM-based features in all cases, if enough data is

available, for specific enzyme-family prediction tasks we still recommend the use of single-task

models [197]. To verify individual interactions, energy-based molecular docking will likely be

more accurate, although at the cost of being substantially slower [177]. Different classes of

computational tools for DTI prediction each have varying strengths, and the highest quality

predictions can be achieved by leveraging all of these methods together where each is most

fit.

Drug discovery is a fundamental task for human health, yet remains both extremely

expensive and time-consuming, with the median drug requiring over 1 billion dollars [243]

and 10 years [244] from development to approval and distribution. While experimental

results will remain the gold-standard for validating drug functionality, in silico prediction

of drug-target binding remains much faster and cheaper and so will continue to play an

important role in early screening of therapeutic candidates [245]. To address this step in

the drug design pipeline, we have introduced ConPLex. DTI prediction methods should be

able to generalize to unseen types of drugs and targets, while also discriminating between

highly similar molecules with different binding properties. ConPLex tackles both of these

challenges through its dual use of protein language models and contrastive learning. We hope

that its broad applicability, specificity on decoys, and ability to scale to massive data will

allow ConPLex to be a critical step in this pipeline and contribute to the efficient discovery

of effective therapeutics.
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Figure 5.2: Outline of the ConPLex model architecture and training framework.
ConPLex is trained in two phases, to optimize both generalizability and specificity. (a)
Protein features are generated using a pre-trained protein language model (here ProtBert
[209]), and drug features are generated using the Morgan fingerprint [210]. These features
are transformed into a shared latent space by a learned non-linear projection. The prediction
of interaction is based on the cosine distance in this space, and the parameters of the
transformation are updated using the binary cross-entropy on a low-coverage data set. (b)
In the contrastive phase, triplets of a target, drug, and decoy are transformed in the same
way into the shared space. Here, the transformation is treated as a metric learning problem.
Parameters are updated using the triplet distance loss on a high-coverage data set to minimize
the target-drug distance while maximizing the target-decoy distance. No additional penalty
is applied if the target-decoy distance is greater than the target-drug distance plus some
margin. (c) ConPLex is trained in alternating epochs of the binary and contrastive phase to
simultaneously optimize both objectives. After each round, learning rates and the contrastive
margin are updated according to an annealing scheme.
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Figure 5.3: Contrastive training enables high-specificity in discriminating drugs
from decoys. We demonstrate that contrastive learning is essential for ConPLex to achieve
high specificity using the DUD-E [207] data set of drugs and decoys (non-binding small
molecules with similar physicochemical properties to the true drugs). (a, b) Using t-SNE,
we show the learned ConPLex latent space for VGFR2 (green) and known drugs (blue)
and decoys (grey). Without contrastive training, drugs and decoys representations do not
separate and true drugs are far from their target. With contrastive training, VGFR2 and
drugs cluster very tightly compared to decoys. (c, d) ConPLex predictions significantly
differentiate between drugs and decoys after contrastive training (p = 0.000 paired t-test),
but do not differ at all without such training (p = 0.999). (e) We compute the effect size
between drug and decoy predictions using Cohen’s d for all 31 targets in the test set. Targets
are classified as proteases (green), GPCRs (orange), kinases (blue), and nuclear proteins (red).
This effect is computed for ConPLex both with and without contrastive training. Contrastive
training increases the effect size for every target (median 0.730 vs 4.716). For each class,
we report the median p−value for ConPLex drug vs. decoy predictions. ConPLex performs
particularly well for kinases and nuclear proteins, and more poorly for GPCRs.
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Table 5.3: We selected and tested 19 potential binding interactions, where the selection
of tests was done based solely on ConPLex predicted interaction, and without consulting
previous experiments or literature. We determined the KD values for each interaction via an
in vitro biochemical assay (Section 5.3.5), and we show here the KD in nM units. Twelve
exhibited binding affinity in the nanomolar range, including four (denoted with *) binding
with sub-nanomolar affinity. The only target for which we incorrectly predicted there would
hits was TGFBR2, which has no known inhibitors in PKIDB [221], suggesting it may be
difficult to target. We recapitulate several known interactions (Results), and find a tightly-
binding interaction between EPHB1 and PD 166326 (bold) which to our knowledge has not
been previously characterized.

EGFR EPHB1 FLT3 KIT TGFBR2

AG-1478 0.33∗ - - - -
Gefitinib 0.60∗ - - - -
Janex 1 26.00 - - - -

SB-431542 >1e4 - - - -
AG-1296 >1e4 - 62.00 27.00 -

ZM 447439 >1e4 - - >1e4 -
PD-166326 - 1.30 - - -

Nintendanib - - 0.17∗ - -
Linifanib - - 0.72∗ 1.70 -
Sorafenib - - 7.20 36.00 -
Imatinib - - - 6.00 -

Wortmannin - - - - >1e4
Pluripotin - - - - >1e4
Monorden - - - - >1e4
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Figure 5.4: The shared representation space learned by ConPLex captures drug-
target interaction and protein function. (a) We show that 51 kinases from the
Surfaceome [189] database cluster together in ConPLex embedding space, but occupy just a
small section of the entire space when co-embedded with the compounds from the ZINC [10]
Cayman-purchasable library. (b, c) Zooming in on the full embedding space highlights drug-
target pairs chose for experimental validation. EPHB1 has only a single compound nearby
in embedding space, PD-166326, which was confirmed to bind with single-digit nanomolar
affinity. FLT3 and KIT are neighbors in embedding space, and tightly bind many of the
same compounds; both bind to Linifinib with < 2nM affinity. EGFR was not found to
bind to any of the compounds also tested with FLT3 and KIT, but binds three other drugs
nearby in the embedding space, two of which bind with sub-nanomolar affinity. One the other
hand, none of the three compounds we tested nearby TGFBR2 (Wortmannin, Pluripotin,
Monorden) were found to bind. (d) ConPLex representations of all cell surface proteins from
the Surfaceome [189] cluster by functional class as assigned in Almén et al. [230]. (e) These
representations also cluster by several functional Pfam domains [231], such as the PKinase
domain (PF00069) shown in blue. (f) We evaluated the coherence of representations for each
domain by training a logistic regression classifier and report the model’s average confidence for
proteins containing that domain as log( p

1−p
). ConPLex separates all 126 domains better than

the un-transformed ProtBert embeddings (p = 4.85× 10−54, paired t-test), discriminating
kinase domains (blue) especially well. We have also highlighted other classes of domains,
including cadherins (green), 7-transmembrane proteins (orange), and immunoglobulins (red).
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Figure 5.5: Precision-recall curve computed on experimentally tested interactions

Figure 5.6: Distribution of domain separation for all 126 domains represented in ≥ 10 proteins
(p = 4.85× 10−54, paired t-test).
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Table 5.4: We evaluated the coherence of representations for each domain by training a logistic
regression classifier and report the model’s average confidence for proteins containing that
domain as log( p

1−p
). While ConPLex separates all domains better than the untransformed

ProtBert embeddings, it achieves especially strong performance on kinases.

Domain Accession Domain Name ConPLex log( p
1−p

) ProtBert log( p
1−p

)

PF14575.7 EphA2_TM 4.26 2.57
PF01404.20 Ephrin_lbd 4.26 2.57
PF00069.26 Pkinase 3.04 1.69
PF07714.18 PK_Tyr_Ser-Thr 3.04 1.69

PF01833.25 TIG 3.40 1.96
PF18452.2 Ig_6 2.51 1.83
PF16706.6 Izumo-Ig 2.57 1.91
PF17736.2 Ig_C17orf99 2.62 2.01
PF16680.6 Ig_4 2.33 1.76
PF16681.6 Ig_5 2.29 1.86
PF13895.7 Ig_2 2.01 1.59
PF10613.10 Lig_chan-Glu_bd 3.03 2.64
PF00060.27 Lig_chan 3.03 2.64
PF13927.7 Ig_3 1.94 1.56
PF00047.26 ig 1.92 1.54

PF08758.12 Cadherin_pro 3.19 2.34
PF16492.6 Cadherin_C_2 3.36 2.63
PF15974.6 Cadherin_tail 3.47 2.87
PF01049.18 Cadherin_C 2.95 2.48
PF16184.6 Cadherin_3 2.58 2.22
PF00028.18 Cadherin 2.81 2.49
PF08266.13 Cadherin_2 2.88 2.56

PF00001.22 7tm_1 2.95 2.30
PF00002.25 7tm_2 1.56 0.88
PF00003.23 7tm_3 2.20 1.24
PF13853.7 7tm_4 2.88 2.56
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Figure 5.7: Analysis of domain coherence on Surfaceome (a) ProtBert vs. ConPLex
spectral clustering AMI to true separation for each domain. Above the diagonal dotted line
means that ConPLex improves upon ProtBert representations. (b) Histogram of clustering
quality AMI for ConPLex and ProtBert (c) Histogram of residuals. To the left of 0, ProtBert
performed better, while ConPLex performed better for domains to the right of 0. (d) For
all domains that were annotated using HMMscan, we plot the number of proteins that have
that domain. We don’t evaluate any domains that appear in fewer than 10 proteins, since
clustering or classification metrics could be subject to noise. As a result, we evaluate on 126
domains.
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Table 5.5: ConPLex can be adapted for state-of-the-art affinity prediction. By
replacing the cosine distance in the final step of ConPLex with a dot product between the
projections, ConPLex can be used for affinity prediction rather than binary classification.
The Therapeatics Data Commons-Domain Generalization (TDC-DG) data set contains IC50

values for patented drug-target pairs, where training/testing data are split from before/after
2018. We report the average and standard deviation of the Pearson Correlation Coefficient
between true and predicted values across five train/validation splits. Metrics for all methods
other than ConPLex come from the TDC leaderboard [191], [198], where at the time of
submission ConPLex is the best performing method.

Model PCC

ConPLex 0.538 ± 0.008
MMD 0.433± 0.010
CORAL 0.432± 0.010
ERM 0.427± 0.012
MTL 0.425± 0.010
GroupDRO 0.384± 0.006
AndMASK 0.288± 0.019
IRM 0.284± 0.021

Figure 5.8: Error limitations of affinity prediction. (a) Scatterplot comparing the
predicted vs. true affinity on the TDC DTI-DG [191] benchmark data set (ln(IC50)). ConPLex
achieves a Pearson correlation of 0.531. (b) KDE plot of predictions, with a 95% prediction
interval computed. While the overall correaltion is strong, the error for any individual
prediction is still quite high, and true affinity may vary over several orders of magnitude at
the same level of predicted affinity.
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Table 5.7: Comparison of PLM-based drug-target interaction models with a per-drug Ridge
regression model on enzyme-family specificity benchmark data sets.

Benchmark Model Average AUPR

BKACE
ConPLex 0.53 ± 0.04

EnzPred-CPI 0.41 ± 0.01
Ridge (Single-Task) 0.62 ± 0.02

Esterase
ConPLex 0.46 ± 0.02

EnzPred-CPI 0.52 ± 0.02
Ridge (Single-Task) 0.58 ± 0.01

Gylosyltransferase
ConPLex 0.52 ± 0.03

EnzPred-CPI 0.46 ± 0.01
Ridge (Single-Task) 0.55 ± 0.00

Halogenase
ConPLex 0.47 ± 0.04

EnzPred-CPI 0.38 ± 0.01
Ridge (Single-Task) 0.44 ± 0.03

Phosphatase
ConPLex 0.33 ± 0.02

EnzPred-CPI 0.39 ± 0.01
Ridge (Single-Task) 0.40 ± 0.00

Table 5.8: Evaluation of different margin decay schemes on BindingDB.

Decay Scheme Restart? AUPR

No Contrastive Learning N/A 0.664

Tanh ✓ 0.632
Tanh ✗ 0.609

Cosine ✓ 0.620
Cosine ✗ 0.602

Constant ✗ 0.595
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Chapter 6

Democratizing Protein Language Models:

Parameter-Efficient Adaptation

6.1 Chapter Overview

While large machine learning models, such as the protein language models we discuss in

this thesis, have had a transformative impact on computational modeling of proteins, the

computation and memory requirements to train them remain a barrier to adoption for

academic labs, biotech startups, and experimental labs with limited computational resources.

Techniques for efficient, scalable training of such models would substantially increase their

accessibility and adoption for a variety of proteomic tasks. In this chapter, we newly bring

techniques for parameter-efficient fine-tuning from natural language processing to large

protein language models, and demonstrate their efficacy as an alternative strategy to resource-

intensive full fine-tuning for adapting to downstream tasks. We show that these methods

remain competitive with significantly less computational cost and lay the groundwork for

best practices for their use in proteomic modeling.
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6.2 Introduction

The introduction of large pre-trained protein language models (PLMs) has transformed the

computational modeling of protein sequence, structure, and function. These models are

trained in an unsupervised manner on tens or hundreds of thousands of protein sequences, and

they learn hidden representations which contain information about evolutionary constraints,

chemical properties, secondary structure, and more [48]. These representations generalize

broadly, which enables PLMs to be tuned to a wide variety of proteomic tasks. In the broader

machine learning context, such large, pre-trained and task-agnostic models are referred

to as “foundation” models. Typically, when a foundation model is tailored to a specific

downstream task, the parameters of the pre-trained model are updated in a process known

as fine-tuning, that adapts the parameters to fit the task-relevant supervised data (Figure

6.1a, top). However, as the size of foundation models increases, fine-tuning a model for a

task of interest is increasingly computationally expensive, often with heavy GPU memory

requirements. This puts such tuning out of the reach of many research groups, especially

in academic, government, or startup environments. As increasingly large PLMs continue to

be developed, such as the 6.4 billion parameter ProGen2 [246] or the 15 billion parameter

ESM2 [147], the computational expense of fine-tuning will continue to be a pressing issue in

proteomics.

Natural language processing (NLP) has seen a similar increase in foundation model size,

with the largest NLP models approaching or exceeding one trillion parameters [247]. To

address this hurdle, one recent NLP approach to fine-tuning (FT) uses prompt tuning [248],

which circumvents updating the model’s parameters altogether and instead updates additional

input prompt embeddings, thus enabling the model to make “zero shot” predictions [249]; such

an approach has been translated to generating protein sequences with some success [250]. Here,

we draw inspiration from alternative methods developed for parameter-efficient fine-tuning

(PEFT) in NLP (see [251] for a survey). These methods, usually focused on the transformer
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layers of natural language models, add a small number (typically < 1% of total model size)

of new parameters which are tuned, leaving the original model parameters untouched [252],

[253]. These approaches require significantly fewer resources and can surprisingly sometimes

achieve performance comparable to traditional fine-tuning (FT) [251] of all parameters in

the layer in NLP tasks.

In this work, we introduce parameter-efficient fine-tuning methods to large protein language

models, remarkably demonstrating performance competitive with or exceeding traditional fine-

tuning using parameter-efficient training on two important proteomic tasks— homooligomer

symmetry prediction and protein-protein interaction prediction. Homooligomers (proteins

that form complexes with copies of themselves) often adopt symmetric conformations, and

predicting the symmetry that a homooligomer adopts is an important task in structural

biology and protein design [254] (Figure 6.1c). We newly show that as in NLP, a PEFT model

slightly trails behind the performance of FT (AUPR = 0.400 vs. 0.489) but significantly

outperforms baselines with frozen embeddings (AUPR = 0.238) and offers a much more

compute-efficient alternative (Section 6.4.4).

We further explore how PEFT models perform in predicting general protein-protein inter-

actions (PPIs) from primary sequence, an important and well-studied problem in proteomics

[47], [255], [256] (Figure 6.1b). Here too, we find that PEFT models are competitive with

FT models (AUPR = 0.600 vs 0.623). Intrigued by these findings, for both tasks we also

tested the baseline model, which trains a multi-layer perceptron (MLP) classifier on embed-

dings from a frozen language model (Figure 6.1a, bottom). While MLP performance lags

behind on symmetry prediction, we surprisingly find that this method actually outperforms

both tuning methods (AUPR = 0.684) for PPI, demonstrating the continuing efficacy of

simple downstream models in proteomics when PLM embeddings are used. In fact, we show

that all three approaches for model adaptation outperform the current state-of-the-art on a

gold-standard benchmark from Bernett et al. [257] on several metrics (Section 6.4.3).

We for the first time create a blueprint for applying PEFT methods to protein language
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models on proteomics tasks by performing extensive experiments on LoRA hyperparameter

choices (Figure 6.1d). Contrary to what is recommended for NLP tasks, we find that adding

LoRA adapters to only the key and value matrices of the transformer achieves optimal

performance (Section 6.4.6), and that performance drops off as the rank of adapter matrices

drops below four (Section 6.4.6). Our work shows that it is possible to achieve competitive

performance with significantly fewer resources than traditional approaches, opening up the

power of protein language model fine-tuning to academic labs, small biotech startups and

other research groups that lack substantial computational resources.

Language Modeling in Biology While the first protein language models (Bepler &

Berger, UniRep) used recurrent neural networks like the bi-LSTM [48], [53], [258], recent

work has converged around masked language modeling and the transformer. Models like

ProtBert, ProtT5, [209], and ESM [208] are transformers trained on massive sets of protein

sequence data in an unsupervised manner. These models learn meaningful representations

which can be applied to replace manual feature engineering, or computationally expensive

evolutionary searches and construction of multiple sequence alignments. Most recently, ESM2

[147] represents the largest protein language model to date, with models as large as 15 billion

parameters. While this is still shy of the largest natural language models, this represents a

significant step up in the size of protein language models and their capacity for unsupervised

representation learning. While language modeling has seen the most success in proteomics,

this success has seen language models expand to other aspects of biology. Biochemistry

language models learn representations of small molecules [259], [260], most notably with

ChemBERTa [261]. Likewise, the release of scGPT [262] has led to advancements in single-cell

genomics, and language models have also seen direct clinical use, such as with the medical

question answering model Med-PaLM [263].

Protein Structure One of the longest standing challenges in computational biology is

that of protein structure prediction. While proteins are modeled by language models as
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Figure 6.1: Bringing PEFT to proteomics. (a) The traditional paradigm for adapting
protein language models to a specific downstream task is to fine-tune the parameters of the last
n layers along with a new classification head (top, FT). Here, we introduce parameter-efficient
fine-tuning (PEFT) to proteomics, tuning only the parameters of low-rank adapter matrices
added to these final layers rather than the full weight matrices (middle, PEFT). We compare
also with a baseline that uses the embeddings as-is and trains only the classification head
(bottom, MLP) (b) We show that PEFT and MLP models achieve performance competitive
with the state-of-the-art on predicting protein-protein interactions. (c) We also train PEFT
models to predict the symmetry class of homooligomers, showing that the performance of
PEFT models only slightly trails that of FT models yet uses several orders of magnitude
fewer parameters. (d) We show the transformer self-attention with LoRA weight matrices
added. We explore the hyperparameter space of low-rank adapters, creating a blueprint for
best applying LoRA to protein language models. Notably, this blueprint differs from that
in NLP. We recommend adding adapters with rank at least 4 to the key and value weight
matrices of the self-attention layers. We explore different combinations of rank and the LoRA
hyperparameter α in Section 6.4.6. X: input to attention head. Wq,k,v: query, key, and value
weights. Ak,v, Bk,v: newly added low-rank adapter weights. Q,K, V : query, key, and value
representations. QK: intermediate product of Q and K. A: output of attention layer.

sequences of amino acids (primary structure), they fold into secondary (alpha helices, beta

sheets) and more complex tertiary structures, which imbues them with a variety of functions.

For nearly 30 years the Critical Assessment of protein Structure Prediction (CASP) has
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measured the ability to computationally predict the tertiary structure of a protein from its

primary sequence. In 2020, AlphaFold2 [133], closely followed by RoseTTAFold in 2021 [148],

presented a massive jump in performance, reaching near-experimental levels of accuracy.

AlphaFold2 and RoseTTAFold use multiple sequence alignments (MSA) to incorporate

evolutionary context into structure prediction, and recent methods like OmegaFold [146] and

ESMFold [147] instead use pre-trained protein language models. While protein language

model-based approaches have yet to reach the accuracy level of MSA-based approaches across

the board, they nonetheless achieve extremely accurate performance and require only a single

sequence. Because of this, they are much more computationally efficient, forgoing the need

for the expensive MSA search step. In addition, these methods often outperform MSA-based

methods on intrinsically disordered regions or proteins with little evolutionary context, and

are competitive in terms of complex structure accuracy. Thus, protein language models

represent an exciting step forward in tertiary structure modeling.

In addition to the structures that single chains fold into, proteins can form complexes

known as quaternary structures comprising multiple protein chains. While methods like

AlphaFold-Multimer [141] have attempted to fully model the structure of these complexes to

moderate success, other methods have taken a different approach – focusing on the special

case of homooligomeric proteins. In 2006, Levy et al. introduced 3DComplex [264], which

categorizes protein complexes based on topology and symmetry. Recently, Schweke et al.

introduced an atlas of protein homooligomerization [265], while QUEEN [266] attempts to

predict the mutiplicity of such complexes.

Protein Interactions Cellular function is driven by a complex interplay of interactions

between proteins. Experimental approaches to discern those interactions require substantial

wet lab resources and time, which motivates the need for computational approaches to model

protein interaction. Models such as AlphaFold-Multimer [141] have recently been developed

to predict the structure of interacting complexes [151]. Quaternary structure prediction is
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valuable if the pair is already known to interact, but often results in degenerate prediction

for pairs which don’t interact, and due to the size of the model is difficult to scale to the

whole-genome and all possible protein pairs. Methods like PIPR [47], D-SCRIPT [255],

Topsy-Turvy [12] and RAPPPID [256] predict protein-protein interaction (PPI) solely from

widely-available primary sequence and are fast enough to run at genome scale. Recent

work has begun to close the gap between whole-genome interaction prediction and complex

structure modeling [13], [153], potentially unifying genome-scale PPI prediction with complex

structure prediction. The Human Reference Interactome (HuRI) [167] remains the most

complete experimentally-verified human protein interaction network.

6.3 Methods

6.3.1 Benchmark Data: PPI

While creating train/test splits based on filtering homologous proteins is common in machine

learning for proteomics, the binary nature of PPI prediction presents a unique challenge

because data leakage can still occur if only one protein of an interacting pair appears in both

sets. If a so called “hub” protein with many interactions appears in both the training and test

set, models can learn that this specific protein is likely to have positive interactions. Then,

test set performance will be inflated even if nothing is learned about the actual pairwise

interactions. After noting pervasive biases in previous benchmarks relating to sequence

similarity and node degree, Bernett et al. [257] introduced a new gold standard data set

for benchmarking PPI. The splits introduced in this benchmark apply a more stringent

notion of sequence similarity for pairwise problems as introduced by Park and Marcotte [267],

splitting by C3 similarity. In addition, both the positive and negative data sets are balanced

with regard to node degree; as a consequence models cannot learn that proteins in general

interact just because they are high degree. This data set consists of 163,192/59,246/52,035

training/validation/test edges, with an 1:1 ratio of positives to negatives.
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6.3.2 Benchmark Data: Homooligomer Symmetry

The multiplicity and symmetry prediction task is formulated as a multi-class prediction

problem. Given a protein chain, we classify it as one of 17 symmetry classes C1, C2, C3,

C4, C5, C6, C7−C9, C10−C17, D2, D3, D4, D5, D6−D12, H, O, T , I (or “Unknown”).

The C classes correspond to cyclic symmetries, the D classes to dihedral symmetries, and

H, O, T, and I to helical, octahedral, tetrahedral, and icosahedral symmetries respectively.

More extensive detail on different symmetry classes can be found within 3DComplex [264].

Protein sequences and structures were obtained from the Protein Data Bank (PDB) [268],

as were their labels. Sequences were clustered at 30% sequence similarity and 80% coverage

using MMseqs2 [159], and these clusters were used to define train, validation, and test splits.

This method of splitting ensures that no two sequences that are highly similar will be in both

a training and evalution set, which would allow the model to memorize sequence similarity

rather than learning properties of sequence and structure that correspond with symmetry.

This data consists of 370,986/46,833/102,978 training/validation/test edges. The support for

each class in the text set is described in Table D.3.

We tracked performance of models through multiple metrics. It is difficult to pin perfor-

mance to a single number with a multi-class classification, especially when the support for

different classes is highly imbalanced. We compute the accuracy, F1 score, MCC, average

precision (AUPR), precision, recall, and specifity for each class, as well as metrics averaged

over each class. Note that because class support is highly variable (Section D.2.1) and

resulting model performance varies widely, we use an unweighted (“macro”) average to capture

performance broadly across all classes.

6.3.3 Protein Language Model

We focused our efforts on ESM2, a transformer-based protein language model which is

presently considered the state-of-the-art in protein language modeling [147]. ESM2 has
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several different model sizes, ranging from eight million to 15 billion parameters. For this

study, we focused on the 650 million parameter version of ESM2 (Section 6.4.2).

For an amino acid sequence X = x1x2...xn, a PLM of dimension d returns a set of

embeddings E ∈ Rd×n = e1e2...en, ei ∈ Rd. To standardize the size of representations for

sequences of dynamic length, a pooling step needs to be undertaken. This is most commonly

done either by averaging along the length of the sequences (ep ∈ Rd = 1
n

∑n
i=1 ei) or by

selecting the first token of the sequence, a non-amino acid token ([clsf]) created specifically

for sequence classification. Here, we chose to take the former approach as it explicitly

integrates signal across the length of the protein. We note that while this is a commonly

used approach, how to best aggregate sequence-length representations into a fixed dimension

embedding is an open problem in language modeling (see NaderiAlizadeh and Singh for one

recently proposed approach [269]). Converting this pooled embedding into a binary (Y ∈ R2)

or multi-class (Y ∈ R18, 17 possible symmetry classes + “Unknown”) prediction requires an

additional classification head. For the PPI prediction task, fixed-length embeddings were

averaged before being passed to the classification head, as in Szymborski et al. [256]. For

the symmetry prediction task, there is only a single protein, so embeddings were passed

directly to the classification head. In this study, we tested two different prediction heads.

The first, applied directly to the pre-trained E without fine-tuning, is a simple multi-layer

perceptron (MLP), with the number and size of layers determined by grid search (Section 6.3.5,

Section D.1.4). The second is the ESMClassificationHead made available by the authors in

the public HuggingFace repository, which consists of two dense layers with dropout and a tanh

activation between the layers. We selected classification heads which were demonstrated to

yield strong performance in previous work in order to minimize the need for hyperparameter

search in this space.
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6.3.4 Parameter-Efficient Adaptation

Houlsby et al. [253] introduced adapters, which add parameters in serial to each transformer

layer, allowing for every layer of the model to be trained using only a small number of

parameters. The current state-of-the-art is low-rank adapters (LoRA), introduced by Hu et

al. [252], which adds two low-rank adapter matrices in parallel to the query and value weight

matrices of the attention heads (Figure 6.1a, middle). LoRA adds two low-rank matrices

A and B to each adapted weight matrix. Given weight matrix W ∈ Rd×k, LoRA adds new

parameters A ∈ Rr×k, B ∈ Rd×r, r ≪ d, k. The normal forward pass of the layer given input

x ∈ Rk is h = Wx, and the forward pass with the LoRA adaptation is h = Wx+BAx. Only

the weights of A,B are updated during back-propagation, while the weights of W are frozen.

BAx is scaled by the quantity α
r
, where α is a hyperparameter which is held constant in the

original report. While A is initialized with a random Gaussian distribution, by initializing

B = 0 the first forward pass of the model is equivalent to the pre-trained model without

adaptation. Following the recommendations of the original paper, we initially apply LoRA

only to the query and value matrices of the attention head. We explore different combinations

of weight matrix adaptation and different values of the rank r in Section 6.4.6. Even though

α is originally held constant, we evaluate different settings of the α parameter as they relate

to different rank values also in Section 6.4.6.

6.3.5 Training and Implementation

All PEFT and FT models were implemented in PyTorch (v.2.0.1), using the HuggingFace

implementations of ESM2 from the transformers package (v.4.32.1) and LoRA from the

peft package (v.0.5.0). Models were trained on NVIDIA V100 GPUs with 32GB of memory.

We used the binary cross-entropy with logits loss to compute error, with an L2 weight decay

of 0.01. Model weights were optimized via back-propagation using the Adam optimizer and a

cosine decay with restarts learning rate schedule (initial learning rate 0.001 for MLP and
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PEFT, 0.0005 for FT). Models were trained with an epoch size of 16, 384, with an on-device

batch size of 4 and gradient accumulation every 16 steps, for an effective batch size of 64.

PEFT and FT models were trained for 40 epochs and the best model based on validation

AUPR was chosen for testing. Except for where otherwise specified, we used LoRA r = 8,

LoRA α = 32, LoRA dropout p = 0.1.

The hyperparameters for the MLP on language model embeddings with frozen weights

were chosen by a grid search (implemented in scikit-learn (v.1.2.0), Section D.4). The best

performing model had two hidden layers with sizes (64, 64) and ReLU activations, and were

optimized with the Adam optimizer for 2000 iterations with a tolerance of 0.0001 and an

adaptive learning rate initialized at 0.01.

All model adaptation, training, and benchmarking code is made available open-source on

GitHub at https://github.com/microsoft/peft_proteomics.

6.4 Results

6.4.1 Reduced memory usage of PEFT enables deeper fine-tuning

The most common approach to fine-tuning is to unfreeze the weights of the last n transformer

layers, which we compare with adding LoRA adapter weights to the last n layers. Figure

6.2 shows the maximum GPU memory used by parameter-efficient fine-tuning (PEFT) or

traditional fine-tuning (FT) for the last n layers of an ESM2 model trained on PPI prediction

or homooligomer symmetry prediction (see D.2.2 for further discussion of the fine-tuning

approach). Theoretically, tuning only intermediate layers without adjusting weights that

rely on those intermediate representations reduces the degrees of freedom available to the

model, and we show this to be empirically true as well (Section D.1.1). Both PEFT and

FT eventually overflow available GPU memory as the number of layers tuned increases;

tuning all layers of the model requires additional model parallelism with either approach.

However, this parameter-efficient approach allows for training of deeper layers of the model

143

https://github.com/microsoft/peft_proteomics


Figure 6.2: PEFT training requires reduced GPU memory. We compare the maximum
GPU memory usage of parameter-efficient fine-tuning vs. traditional fine-tuning different
numbers of transformer layers. All values are reported in GB. Values above 32 GB (the
red, dash-dot line) indicates that the run was killed due to running out of GPU memory.
More layers are able to be adapted across the board for the symmetry prediction task since
it requires only a single protein, rather than a pair. For the same number of layers, PEFT
models require less GPU memory, thus parameter-efficient fine-tuning enables adaptation of
deeper model layers within the same limits of computational resources. We show in Section
D.1.2 that this deeper training often yields improved performance.

while staying within a lower memory budget. Because the PPI task requires storing the

compute graph for a pair of proteins, the marginal impact of PEFT methods on memory

consumption is less than for the symmetry task, where using LoRA to adapt weight matrices

allows for several additional layers to be trained. All experiments were performed on a GPU

with 32GB of memory, with a batch size of 4 and maximum sequence length of 1024. In

general, we show that adaptation of deeper layers results in a corresponding increase in

performance. We specifically adapt increasingly many layers from the end of the model,

rather than intermediate layers (Section D.1.2).
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6.4.2 650M vs. 3B ESM2 model

Typically in language modeling, larger models yield better performance leading to training or

increasingly large models. We trained a multi-layer perceptron classifier (MLP) on embeddings

from both 650M and 3B parameter models with frozen weights to predict protein-protein

interactions. We found that despite having 4.5x fewer parameters, the 650M parameter

model actually performs slightly better (Table 6.1). This indicates that even with reduced

compute capacity available, smaller foundation models may be sufficient to achieve good

performance on proteomics tasks—and that the limiting factor for performance may not

simply be the scale of models. Consequently, all results presented elsewhere in this manuscript

use the 650M parameter version of ESM2. We discuss the question of foundation model size

in Section 6.5.

Table 6.1: Test set performance of a MLP classifier trained on pooled embeddings from the 650
million and 3 billion parameter versions of ESM2 with frozen weights. While the two models
are competitive, the 650M parameter version outperforms the larger 3B parameter version in
accuracy, MCC, AUPR, precision, and specificity. The 3B parameter model achieves a higher
F1 score and recall.

Accuracy F1 MCC AUPR Prec. Rec. Spec.

650M 0.631 0.632 0.261 0.684 0.630 0.633 0.623
3B 0.607 0.650 0.221 0.656 0.586 0.730 0.484

6.4.3 Efficient classifiers achieve state-of-the-art PPI prediction

We use parameter-efficient fine-tuning (PEFT) to train an ESM2 model to predict protein-

protein interactions from sequence on the benchmark data set from Bernett et al. [257]. We

compare with a model that is fine-tuned in the traditional way (FT), and with a baseline

that trains a classifier on sequence embeddings from the ESM2 model with frozen weights

(MLP). See Figure 6.1a for an overview of these three approaches. In addition, we compare

to the best prior scores from Bernett et al. [257]—either Topsy-Turvy [12], or SVM-PCA,

a baseline constructed by Bernett et al. [257] which trains a support vector machine on
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PCA-reduced sequence similarity vectors. Note that for each benchmark metric, we selected

the best score across all methods evaluated, and that no single method achieved the “Best

Prior” performance across the board, so this is a significantly higher threshold than comparing

to any single method.

Table 6.2 shows the performance of these models. Both the PEFT and MLP models achieve

performance competitive with the FT model, despite having several orders of magnitude

fewer parameters. In fact, the MLP model achieves the best overall accuracy, MCC, and

AUPR on these benchmarks, while the PEFT model achieves the best F1 score and recall.

Surprisingly, both the MLP and PEFT models outperform the “Best Prior” methods in

these metrics. These results suggest that parameter-efficient methods provide competitive

alternatives and can unlock the predictive power of protein language models—and provide

additional evidence that simple scaling of model size is not sufficient for proteomic tasks [270]

(see also Section 6.4.2). Both PEFT and MLP models use less GPU memory than the FT

model (MLP substantially so) and the MLP model requires significantly less training time.

6.4.4 Predicting homooligomer symmetry with PEFT

We additionally train PEFT, FT, and MLP models to predict homooligomer symmetry.

While this task also involves learning representations that capture protein structure, it is

fundamentally different from the PPI task because it requires learning on only a single

protein, rather than a pair. As we show in Table 6.3, both the PEFT and FT models

significantly outperform the MLP model on all metrics. Traditional fine-tuning still yields

the best performance, but parameter-efficient fine-tuning using LoRA is a viable alternative—

performance is within 10-15% of the FT model, and the model uses 3 orders of magnitude

fewer parameters. The PEFT model actually achieves the best MCC and specificity of the

three.

Unlike the binary prediction task of PPI prediction, homooligomer symmetry prediction

is a multi-class problem, where we consider 17 different possible symmetries (and an 18th
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Table 6.2: Applying PEFT to train models for protein-protein interaction. We
trained multiple variants of ESM2 to predict protein-protein interactions, and evaluate using
the benchmark data sets from Bernett et al. [257]. MLP indicates a multi-layer perceptron
trained on embeddings from a frozen model, while PEFT and FT indicate parameter-efficient
fine-tuning and traditional fine-tuning of the transformer layers. Due to the reduced memory
footprint of PEFT, we were able to fine-tune an additional layer. Simply using ESM2
embeddings with an MLP classifier outperforms the best prior methods across most metrics.
The PEFT model achieves increased recall and F1 score compared to the MLP model, and
also out-performs the best prior. Both MLP and PEFT are competitive with fine-tuning.

Best Prior MLP PEFT
(5 Layers)

FT
(4 Layers)

# Trainable Params. - 88,769 368,897 78,873,857

Validation

Accuracy - 0.595 0.596 0.597
F1 - 0.576 0.648 0.612
MCC - - 0.201 0.194
AUPR - 0.632 0.620 0.622
Precision - 0.603 0.574 0.590
Recall - 0.552 0.742 0.636
Specificity - - 0.450 0.557

Test

Accuracy 0.56 (Topsy-Turvy) 0.631 0.608 0.604
F1 0.61 (SVM-PCA) 0.632 0.666 0.631
MCC 0.15 (Topsy-Turvy) 0.261 0.230 0.210
AUPR - 0.684 0.600 0.623
Precision 0.65 (Topsy-Turvy) 0.630 0.580 0.591
Recall 0.77 (SVM-PCA) 0.633 0.780 0.676
Specificity 0.86 (Topsy-Turvy) 0.623 0.436 0.532

“Unknown” class). This makes it more difficult to summarize model performance into a single

number—especially because the number of examples of different classes in the test set is so

variable (Table D.3). The numbers reported in Table 6.3 are macro averages across all classes,

but in Figure 6.3 we show the accuracy, AUPR, and F1 score of the three models broken

down by true class. These results make it clear that the improved performance of the PEFT

and FT models relative to the MLP baseline comes primarily from their increased ability

to learn about rare classes. On common classes like C1, C5, D2, and I, the MLP model
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Table 6.3: Applying PEFT to train models for homooligomer symmetry. We trained
multiple variants of ESM2 to predict the symmetry of homooligomers from primary sequence.
MLP indicates a multi-layer perceptron trained on embeddings from a frozen model, while
PEFT and FT indicate parameter-efficient fine-tuning and traditional fine-tuning of the
transformer layers. Due to the reduced memory footprint of PEFT, we were able to fine-tune
four additional layers (12 vs. 8). While traditional fine-tuning still yields the best performance,
PEFT is competitive across many metrics and significantly outperforms training only the
classification head.

MLP PEFT
(12 Layers)

FT
(8 Layers)

# Trainable Params. 89,857 657,810 157,585,810

Accuracy 0.206 0.393 0.413
F1 0.228 0.405 0.455
MCC 0.299 0.464 0.460
AUPR 0.238 0.400 0.489
Precision 0.341 0.477 0.618
Recall 0.206 0.393 0.413
Specificity 0.960 0.970 0.970

achieves accuracy competitive with the PEFT model and often even the fine-tuned model.

However, the larger complexity of the FT model allows it to also learn about classes like C3,

C4, D6-D12, and O significantly better than the less complex models. This may contribute

to explaining wy performance between the three models is much closer in the balanced PPI

prediction task.

6.4.5 Visualizing attentions after fine-tuning

In Figure 6.4, we show the impact of parameter-efficient fine-tuning on attention (A matrix

from Figure 6.1d). Here, we look at the PEFT model trained for PPI prediction from

Table 6.2. We visualize attention from the five LoRA-adapted layers averaged across all

heads. Figure 6.4a shows attention from the pre-trained model for NADH dehydrogenase

1 β subcomplex subunit 1 (UniProt ID: O75438) (Figure 6.4c). Attention is concentrated

along the diagonal. In contrast, after PEFT with LoRA weights the attention is much more

diffuse across the length of the protein, especially in the later transformer layers (Figure
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Figure 6.3: Breakdown of model performance by homooligomer symmetry class.
Looking at only a single set of metrics can be helpful to get an aggregate idea of model
performance, but hides complexity in the case of a multi-class classification task such as
homooligomer symmetry prediction. Here, we show the per-class accuracy (a), AUPR (b),
and F1 (c) of a classifier trained with frozen ESM2 embeddings (MLP), a model fine-tuned
with LoRA (PEFT, 12 layers), and a model where all paramters in the final 8 layers were
fine-tuned (FT). MLP performance is unsurprisingly relatively strong for high-support “easy”
classes (e.g. C1, C5, D2, I), but substantially worse for rarer classes (e.g. C7-9, C10-C17,
D4, D5). The PEFT model is competitive for most classes, but generally lags behind the
performance of the FT model.

6.4b). This suggests that for PPI prediction, the LoRA weights allow for more distant amino

acids to attend to one another. We show one representative example here, but this diffusion

of attention occurs broadly; we show another representative example (NADH dehydrogenase

1 β subcomplex subunit 10, UniProt ID: O96000, which interacts with O075438 in our test

set) in Figure 6.5.

We can quantify this effect by computing the sample Pearson correlation of these attention

values. In summary, this value treats attention values at amino acid positions i, j as samples

from distributions X, Y and computes the correlation of these samples (see Section D.3

for details). This value measures the extent to which attention is concentration near the

diagonal, capturing local vs. global effects of attention. We show a decrease in correlation

along the diagonal after fine-tuning (Figure 6.4d) for the five layers which are adapted using

LoRA. We then compute the this correlation for the pre-trained PLM and the adapted PLM

for all 3,020 proteins. Figure 6.4e shows the distribution of differences in scores for each

layer, where a higher value indicates more global attention. For all layers adapted, there
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is a significant difference in the diagonal concentration of attention after the application

of parameter-efficient fine-tuning. This suggests that the representations produced by the

language model are able to predict PPI in part by increasing the relative impact of long-range

attention. This effect is similar to what is seen when fine-tuning all parameters of the PLM

(Figure D.5). We show an additional representative example in Figure 6.5, the interacting

partner NADH dehydrogenase 1 β subcomplex subunit 1. This effect is less noticeable in

PEFT models trained to predict homooligomer symmetry, where there is a slight diffusion of

attention but it still remains largely concentrated along the main diagonal (Figure 6.6).

6.4.6 Impact of LoRA hyperparameters on performance

Weight matrix selection In their original manuscript on LoRA, Hu et al. [252] show

that for natural language models, adding low-rank adapter matrices to only the query and

value weights (WQ, WV ) of the attention heads yields the best tradeoff of performance and

parameter-efficiency. However, the space of natural language is not necessarily the same as

that of protein sequence, and we sought to evaluate to what extent the choice in adapted

weight matrices affects performance. Table 6.4 shows that while performance is relatively

robust to the choice of weight matrices, adapting the key (WK) and value (WV ) matrices

results in the best overall performance. We note that the value matrix alone achieves similar

results while also being a more parameter-efficient. Thus, that could be the best choice for

parameter-efficient fine-tuning of PLMs, if memory constraints are especially tight. When

applying LoRA to protein language models, we recommend adding adapter matrices to the

key and value weight matrices.

LoRA matrix rank selection The rank r of the newly added LoRA weight matrices plays

an important role in the performance of PEFT models and the memory that they require.

Hu et al. [252] show that LoRA remains effective at extremely low ranks, with competitive

performance even when r = 1. However, the effectiveness of different rank values is dependent
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Figure 6.4: Visualizing attention matrices. (a) Attentions for NADH dehydrogenase 1 β
subcomplex subunit 1 (UniProt ID: O75438) using the pre-trained ESM2. (b) Attentions
for the same protein after parameter-efficient fine-tuning. (c) Structure of O75438. We
find that PEFT weights result in attention that is more spread out across the length of the
protein when trained for PPI prediction. (d) For each of the attentions, we compute the
extent to which attention is concentrated along the diagonal (local) as opposed to diffused
(global) using the weighted sample correlation (rxy). For the five layers which are adapted
with PEFT, this diagonal correlation is significantly lower indicating more globally diffuse
attention. (e) We compute the difference between the diagonal correlation of the base and
adapted attentions (δrxy) for all 3,020 proteins in our PPI data set. We find that attentions
in every layer are significantly less diagonal after fine-tuning, with the strongest impact in
the final two layers.

on both the intrinsic dimension of the language and the task [271], and robustness in rank

variance will not necessarily hold for proteomic sequences and inference tasks. In Table 6.5,

we show the results of training PEFT models with LoRA rank r = 1, 2, 4, 8, 64 (following Hu

et al. [252]) to predict protein-protein interactions. We find that the best model performance
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Figure 6.5: Visualizing attention matrices. (a) Attentions for NADH dehydrogenase 1 β
subcomplex subunit 10 (UniProt ID: O96000) using the pre-trained ESM2. (b) Attentions
for the same protein after parameter-efficient fine-tuning. (c) Structure of O96000. We find
that PEFT weights result in attention which is more spread out across the length of the
protein when trained for PPI prediction.

Figure 6.6: Visualizing attention matrices. (a) Attentions for an Archael Peroxiredoxin
from the Aerobic Hyperthermophilic Crenarchaeon Aeropyrum pernix K1 (PDB ID: 2CV4),
which adopts a dihedral D5 symmetry, using the pre-trained ESM2. (b) Attentions for the
same protein after parameter-efficient fine-tuning. (c) Structure of a single subunit 2CV4.
(d) Structure of the 2CV4 homooligomer, with D5 symmetry. Here, find that PEFT weights
result in attention which is only slight spread more spread across the length of the protein,
but still remains concentrated near the diagonal.
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is achieved at r = 4, but that higher ranks yield similar performance. For ranks less than 4,

model performance is still strong, but is noticeably reduced. We perform the same experiments

on homooligomer symmetry prediction, with similar findings—although r = 8 is better for

this task. We show in Table 6.6 the result of training models with different LoRA rank values

for homooligomer symmetry prediction. Here, r = 8 is the best performing, closely followed

by r = 4. Performance drops off noticeably with r < 4.

LoRA α selection In their original report, Hu et al. [252] state that the hyperparameter

α functions similarly to a learning rate, and that they set it to the first rank value tried and

hold it constant. However, we sought to evaluate whether tuning this parameter α could

have an impact on performance. In Table 6.7, we show various combinations of α and rank

applied to the symmetry prediction task.

6.5 Chapter Perspectives

In this work, we bring parameter-efficient fine-tuning methods to protein language models.

We show that PEFT models achieve performance comparable to traditional fine-tuning, while

requiring a reduced memory footprint, which enables training deeper layers of the model.

The competitive performance of PEFT models holds both for PPI prediction, a balanced,

binary task, as well as symmetry prediction, a multi-class and highly unbalanced task. Our

work democratizes protein language models by charting a path for fine-tuning these models

using substantially fewer parameters and less GPU memory. As the scale of PLMs continue

to increase, it will become increasingly important to use these and other approaches when

traditional fine-tuning is computationally infeasible.

Additionally, while approaches from natural language processing have so far transferred

quite well, the distributions and intrinsic dimensions of protein language are clearly different

than natural language. We show one consequence of this; our recommendation for LoRA

rank, α, and which attention matrices to adapt differs from the original conclusions of Hu
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et al. [252]. Notably, LoRA when applied to proteomics does not seem to admit as low

of a rank as suggested in the initial report. In considering the question of which matrices

to adapt, while we see consistent results between the two tasks we test, it is possible that

these conclusions will vary with additional tasks. While our recommended parameters offer a

strong starting point, it remains important to test these parameters with a validation set

to achieve maximum performance when adapting large foundation models. Further, while

LoRA is currently the most widely-used PEFT method for natural language, other PEFT

methods exist which may better suit the space of protein language such as the adapter method

of Houlsby et al. [253]. QLoRA [272] is an especially promising approach that performs

model quantization to substantially reduce memory usage. This quantization will likely be

especially valuable for natively memory-intensive tasks, such as modeling extremely long

proteins or prediction of protein complexes. It may be necessary in the future to develop

parameter-efficient approaches specific to protein language.

The successful transfer for PEFT from large language models to PLMs suggests that

other efficiency techniques such as quantization may yield similar performance gains [273],

[274]. While this work has focused on adaptation of protein language models, large protein

structure models such as OmegaFold, RosettaFold, ESMFold, and AlphaFold [133], [146]–[148]

have begun to see use as foundation models and could be similarly amenable to tuning for

downstream tasks with PEFT methods. In addition, it remains to be shown whether PEFT

methods are equally competitive for language models trained on other types of biological

sequences, such as DNA [275] or SMILES strings [261].

This work also shows the limitations of scale in protein language modeling. Not only

are PEFT and MLP models able to achieve state-of-the-art performance on PPI prediction,

but we show that embeddings from the 650 million parameter version of ESM2 outperform

those from the 3 billion parameter version (Section 6.4.2). While larger models certainly

enable better performance, they do not guarantee it; we emphasize the continued need for

models which can be easily trained and run by even small research groups, including primarily
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biological groups with constrained computational resources. These limitations of scaling

laws for protein language models also suggests that data, rather than compute, is presently

the bottleneck in performance. The training data sets used for PLMs are still orders of

magnitude smaller than the largest natural language training data sets. Thus, an increase

in the number and diversity of protein sequences, such as from metagenomes [147], [276],

could drive improved performance for larger PLMs. The inference-time efficiency of the MLP

method, which only requires a single forward pass through the language model per protein, is

especially valuable for tasks which require ultra-massive prediction, such as large compound

library screens [14], [277]. Especially with the cost and environmental impact of large-scale

language model training and tuning [278], parameter-efficient tuning or methods which use

frozen embeddings should remain a viable alternative for tailoring foundation models to a

specific task, and should be tested alongside traditional fine-tuning approaches.
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Table 6.6: Robustness in rank also holds for homooligomer symmetry prediction.
We perform the same hyperparameter search over rank as in Section 6.4.6, this time training
models to predict homooligomer symmetry. We find that like for PPI prediction, while
performance is respectable at all values, it drops off noticeably for r < 4. For symmetry, rank
r = 8 is the best performing, and there is actually a slight drop off with rank r = 64.

Rank Val.
AUPR AUPR Acc. F1 MCC Prec. Rec. Spec.

1 0.506 0.359 0.345 0.352 0.428 0.419 0.345 0.968
2 0.525 0.385 0.351 0.369 0.450 0.516 0.351 0.969
4 0.531 0.403 0.372 0.383 0.455 0.503 0.372 0.969
8 0.461 0.416 0.390 0.430 0.468 0.558 0.390 0.970
64 0.445 0.388 0.359 0.358 0.420 0.444 0.359 0.968

Table 6.7: We report here the test set AUPR of several model trained with PEFT on the
symmetry prediction task, with varying values of the α and rank hyperparameters of LoRA.
While performance does vary with α and rank, there is not a clear correlation between the
two.

α\Rank 1 2 4 8 64

16 0.395 0.404 0.394 0.399 0.377
32 0.395 0.385 0.403 0.416 0.387
64 0.414 0.429 0.420 0.423 0.430
100 0.376 0.436 0.422 0.431 0.418
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Chapter 7

Discussion

We have included at the end of each chapter a short section offering perspectives on that

chapter—the significance and limitations of the work, and opportunities for future advance-

ments towards the specific problem. Here, we conclude this thesis with a summary of this

thesis as a whole, and with broader thoughts on exciting directions in computational modeling

of biological systems and the state of the field as a whole.

7.1 Thesis summary

In this thesis, we have shown how computational advances in the modeling of language can be

adapted to contribute towards the understanding of molecular interactions. While the history

of computational models of biological sequence is long and rich (see Section 2.3), protein

language models are an exciting new frontier due to their ability to integrate long-range

contextual information, their capacity to broadly represent sequence space, and their use

as highly informative protein feature generators for downstream models through vector

embeddings. In this work we advance this technology beyond modeling of single proteins to

the pairwise problem of interactions, contributing substantially to computational systems

biology. We make new contributions towards the computational prediction of protein-protein

interaction networks in Chapters 3 and 4, and computational prediction of protein-small
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molecule interactions in Chapter 5. In Chapter 6, we begin the work of increasing the

accessibility of these models (see also Section 7.3.2) by introducing methods for parameter-

efficient fine-tuning to protein language models. Taken as a whole, these chapters demonstrate

the promise of unsupervised modeling on protein sequences for making sense of evolution, of

the diversity of sequence space, and of the sequence-structure-function relationship as they

pertain to the biochemistry of interaction and binding.

7.2 Extensions of this work

There remain several open problems in computational systems biology, especially where

prediction of networks overlaps with advances in structural biology. The work described in

this thesis has primarily focused on sequence modeling, although we describe integrative

approaches which incorporate network level information, as well as explicit information

on protein structure (Chapter 4). The future of computational interaction modeling is

multimodal—and there remains a need for models which can effectively synthesize multiple

different angles and discrete sources of information about problems. Just as advances in

joint modeling of text and images has led to revolutionary advances such as CLIP [279]

and DALL-E [280], recent work in joint modeling of sequence and structure [281]–[285]

represent an exciting opportunity to improve interaction prediction, both for proteins and

small molecules.

The future of interaction prediction is also contextual. We have discussed at length in

this thesis the sequence-structure-function relationship for proteins, but this is a simplification

of the true complexity of interaction. Several factors determine the structure, and thus the

interactions for a protein beyond its sequence. The environmental temperature [286], [287],

pH [288], [289], and any post-translational modifications [290], [291] will necessarily change

the energy landscape that governs protein structure. Methods which consider these external

factors [292] will play an important role in accurate biophysical modeling. Even given two
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structures, the affinity of their interaction (which remains challenging to predict, see Section

5.4.8) will also depend on these external factors, as well as the presence of enzyme co-factors or

any competitive binders. Thus, integration with genetic and cell-type specific transcriptomic

information [262] will be necessary to fully capture the context of an interaction.

Finally, the future of interaction prediction is dynamic. Because proteins are flexible,

modeling them with a single structure is a simplification of the biochemistry at work during

interactions. Advances in experimental technologies such as cryo-EM [293] and single-molecule

FRET [294], [295] have allowed us to gain a deeper understanding of the set of conformations

that a protein can exist in, as well as the dynamics of these transitions. Computational

advances in modeling of protein ensembles [296]–[298] are an exciting frontier in structural

biology, and their integration into predictions of protein binding and interaction will likewise

lead to more accurate models of biological systems.

7.3 The promise and practice of computation in biology

Over the past three decades, computational algorithms and models have gone from a convenient

option for analyzing biological data to an essential part of biological discovery. In this section,

we offer some thoughts on the effective synthesis of the two fields, with a particular focus on

the techniques introduced in this thesis.

7.3.1 On computation as hypothesis generation

We discuss in the introduction the value of efficient models which are able to scale to the

complexity of the genome (Section 1.2). However, high-throughput and efficient models also

will play a crucial part in hypothesis generation. The canonical experimental loop in science

consists of proposing a hypothesis, then testing in an attempt to falsify it. However, as the

scale of biological data grows increasingly large and complex it can be difficult for humans

to wrangle this complexity, and to know which tests are likely to succeed. Computational
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models are able to find patterns in this data, and propose tests to run—the data from which

is then often fed back into the model, in what is known as “lab-in-the-loop” computation

[299]. Critical to this loop is the ability to quickly sift through candidate hypotheses to

identify the most promising, and then tightening the feedback loop with experimental results.

Scalable models such as those presented in this thesis—predicting interactions which are

likely to occur, suggesting clusters of co-functional proteins, and identifying novel candidate

therapeutics—enable the former and can be readily tested at the bench. Methods which are

able to model uncertainty [122] are likewise important for determining which tests to run to

most efficiently increase the quality of model predictions.

7.3.2 On the accessibility and interpretability of models

A tool is only as useful as it is accessible. Because the majority of computational developers

are not themselves biological practitioners, there exists an accessibility gap where many

“state-of-the-art” methods go unused by those involved in biological discovery—due either to a

lack of computational resources (see Chapter 6) or knowledge. Efforts to make computational

advances widely and easily available, such as ColabFold [300] are an essential and often under-

met need. Tools such as Google Colab [301] and Gradio [161] make it allow computational

practitioners to make their tools available in a web-browser with relatively little overhead,

and, in addition to open-source code sharing on repositories such as GitHub, these should be

considered an essential part of the computational biology toolbox. In addition, interpretable

or “white-box” models and advances in explainable AI [302] are especially important in biology,

where the goal is often not just prediction but understanding of the underlying system. The

work in this thesis attempts, where possible, to make model outputs explainable, and to make

trained models easy to run for those with limited computational resources or experience.
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Appendix A

Supplementary Material for Chapter 3

A.1 The corpus of experimental PPI data is limited

We sourced the PPI data in Figure 3.1 from BioGRID. While we have sourced PPI data

from the STRING database everywhere else in this paper, here we chose to use BioGRID

because the publication date of a PPI is easily accessible in BioGRID, allowing us to estimate

the number of PPIs assayed in the last five years. While the BioGRID selection may not

precisely match the STRING selection due to curation differences between the two databases,

our primary aim here is conveying the relative data availability across species; this estimate

should not be significantly impacted by differences in curation.

A.2 Comparison of model complexities of D-SCRIPT and

PIPR

The version of PIPR that we compare to has 72,500 trainable parameters. The full D-SCRIPT

model has 629,207 trainable parameters, but the vast majority of those (616,600) are in the

projection module, which is a simple linear combination of all concatenated hidden states

of the Bepler & Berger language model (which are themselves already redundant). The
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remaining stages of the model together have 12,707 trainable parameters. Practically, we

prevent over-fitting through a high rate of dropout (50%) in the Projection module, combined

with a very simple but structurally informed architecture in the Contact and Interaction

prediction modules. Additionally, the contact map magnitude loss acts as a regularization

by requiring that the predicted contact maps be sparse. Empirically, D-SCRIPT generalizes

much better than PIPR, and does not seem to overfit to the training data.

Table A.2: Rumen Target Proteins in Cow. Jaing et al. [81] identified TCHHL2, PRD-
SPRRII, S100-A12, and S100-A2 as differentially expressed in sheep rumen. We identified 12
potential homologs in cow (Bos taurus) using BLAST with default settings. [19] (Table A.2).

Entrez Gene Ensemble Peptide ID
TCHHL2 ENSBTAP00000066329
TCHHL2 ENSBTAP00000060747
PRD-SPRRII ENSBTAP00000063491
PRD-SPRRII ENSBTAP00000065881
PRD-SPRRII ENSBTAP00000070493
PRD-SPRRII ENSBTAP00000070470
PRD-SPRRII ENSBTAP00000044090
S100-A12 ENSBTAP00000056088
S100-A12 ENSBTAP00000034009
S100-A12 ENSBTAP00000008523
S100-A12 ENSBTAP00000067294
S100-A2 ENSBTAP00000000589
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Appendix B

Supplementary Material for Chapter 4

B.1 Maintain minimum spanning tree while sparsifying

network

Consider a graph G = (V,E), which we use to generate a sparsified sub-graph Gp = (V,Ep)

using a parameter p, which denotes the fraction of G’s edges retained in Gp. We require Gp to

have same connectivity as G because graph connectivity is required for many network-based

link prediction methods. To ensure that Gp is connected and all the nodes in G are included

in Gp, we perform the following operations, following [42].

1. Compute a random spanning tree (T = (V,ET )) from G, where |ET | = |V | − 1 (We

used Kruskal’s algorithm [303] for this, whose computational complexity is |E| log |V |).

2. Let S = E \ET . Randomly add p|E| − |ET | edges from S to the constructed tree T to

produce Gp = (V,Ep).

The remaining edges in S, that were not added to construct Gp, were then used as the

positive examples for experiments in Section 3.
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B.2 Sparsity data set characteristics

Here we provide information about the data sets generated in the sparsified fly network

analysis (Tables B.1, B.2).

Table B.1: Network Information of sparsified fly network Gp for different p-values

Sparsity #Nodes #Edges Diameter Average Degree
p = 1.0 3093 27134 17 17.54
p = 0.8 3093 21707 18 14.03
p = 0.6 3093 16280 17 10.52
p = 0.4 3093 10853 18 7.01
p = 0.2 3093 5426 22 3.50

Table B.2: Positive and Negative test examples for different p and k values

Sparsity Data Set Overall By shortest path bin
2 3 4 5+

p = 0.8
Positive 5085 4824 211 36 14
Negative 267173 8841 32942 63243 162147

p = 0.6
Positive 10183 9314 696 100 73
Negative 267173 6809 26647 56987 176820

p = 0.4
Positive 15287 12957 1883 261 186
Negative 267173 4652 21768 50164 190589

p = 0.2
Positive 20352 12343 5661 1378 970
Negative 267173 2418 13985 35915 214855

B.3 Effect of shortest path in training network (including

D-SCRIPT)

In order to illustrate the deviation in performance for predictions with different graph distances

in more detail, we devise the following experiment, using graph of various sparsity:

1. For a given p, compute Gp and Sp described in Section 4.4.6.

2. For a given k, find the node-pairs in Sp having the shortest graph distance, the graph

being Gp, equal to k. Call this set Rp,k.
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3. Train GLIDE on the graph Gp, and compute the resulting GLIDE scores for node-pairs

in Rp,k.

4. Compute scores and metrics for node-pairs in Rp,k.

This experiment was done for k ∈ {2, 3, 4, 5} and p ∈ {0.8, 0.6, 0.4, 0.2}. Table B.3

demonstrates the corresponding AUPR scores.

One of the reasons behind the difference in AUPR results between GLIDE and D-

SCRIPT/Topsy-Turvy is the significant advantage GLIDE has in predicting links between

node-pairs that are very close to each other in the PPI network. As Topsy-Turvy and

D-SCRIPT are not trained on any network characteristics specific to the target organism,

we observe it lagging behind GLIDE in overall performance (Table B.3). However, there do

appear to be regions of the network where Topsy-Turvy and D-SCRIPT perform better than

GLIDE.

GLIDE is shown to be very effective in correctly predicting interaction in the core regions

of the network where majority of the hub proteins and their corresponding interactions reside.

On the other hand, it is far more challenging to predict interactions between proteins in the

peripheral region of the PPI network, where the interactions are largely unexplored. To see if

sequence-based methods like D-SCRIPT and Topsy-Turvy perform better in this region, we

construct the following experiment:

1. Generate a set of hub nodes H from the complete network G, by selecting G’s nodes

having degree above a certain cutoff dc.

2. Given p, construct Gp and Sp as above. Train GLIDE on Gp.

3. Filter out protein-pairs from Sp if either of the protein is contained in H to produce S ′
p.

4. For a given k, find the protein-pairs in S ′
p having the shortest graph distance, the graph

being Gp, equal to k. Call this set Rp,k.

5. Compute scores and metrics fo rthe pairs in Rp,k.
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We report AUPR scores for D-SCRIPT, GLIDE and Topsy-Turvy on the hub-free data

sets in Table B.4.

Table B.3: AUPR scores for D-SCRIPT, Topsy-Turvy, and GLIDE, for different values of k
and p, including hub nodes

Sparsity Model Overall
AUPR

AUPR by Shortest Path
2 3 4 5+

p = 0.8
GLIDE 0.8057 0.8370 0.1186 0.0016 0.0003

D-SCRIPT 0.1256 0.5169 0.0184 0.0039 0.0007
Topsy-Turvy 0.2442 0.5506 0.0260 0.0007 0.0002

p = 0.6
GLIDE 0.8398 0.8847 0.1379 0.0041 0.0009

D-SCRIPT 0.2051 0.7159 0.0583 0.0060 0.0009
Topsy-Turvy 0.3668 0.7412 0.0781 0.0072 0.0019

p = 0.4
GLIDE 0.8180 0.8763 0.2612 0.0111 0.0035

D-SCRIPT 0.2762 0.8376 0.1385 0.0234 0.0037
Topsy-Turvy 0.4529 0.8529 0.1846 0.0253 0.0112

p = 0.2
GLIDE 0.7379 0.8256 0.6702 0.1337 0.0112

D-SCRIPT 0.3277 0.9161 0.4836 0.0734 0.0123
Topsy-Turvy 0.5095 0.9224 0.5430 0.1171 0.0311

Table B.4: AUPR scores for D-SCRIPT, Topsy-Turvy, and GLIDE, for different values of k
and p, after the removal of hub nodes.

Sparsity Model Overall
AUPR

AUPR by Shortest Path
2 3 4 5+

p = 0.8
GLIDE 0.3993 0.4857 0.1094 0.0022 0.0004

D-SCRIPT 0.0143 0.2509 0.0365 0.0082 0.0015
Topsy-Turvy 0.0389 0.3141 0.0545 0.0375 0.0004

p = 0.6
GLIDE 0.4535 0.5910 0.1336 0.0054 0.0011

D-SCRIPT 0.0280 0.4436 0.1035 0.0114 0.0015
Topsy-Turvy 0.0804 0.5422 0.1528 0.0142 0.0031

p = 0.4
GLIDE 0.4329 0.6055 0.2022 0.0150 0.0037

D-SCRIPT 0.0398 0.5624 0.1760 0.0395 0.0063
Topsy-Turvy 0.1067 0.6562 0.2245 0.0150 0.0192

p = 0.2
GLIDE 0.3274 0.5956 0.3068 0.0822 0.0094

D-SCRIPT 0.0521 0.6112 0.3033 0.0910 0.0175
Topsy-Turvy 0.1359 0.6970 0.3986 0.1539 0.0399

207



Appendix C

Supplementary Material for Chapter 5

C.1 DUD-E train/test splits

Targets were randomly split within each class, so that there were examples of each class in

the training and test set. There are a total of 57 targets, 26 in training and 31 in testing. A

list of all targets and classes evaluated in train and test are in Table C.1.

C.2 Choice of protein and molecule featurization

C.2.1 Alternate options for target feature generation

We explored several choices for using language models to generate protein features, including

D-SCRIPT [11], Prose [48], [53], ESM [208], and ProtBert [209]. For D-SCRIPT, we use the

100 dimensional embeddings after the first projection layer. For the other language models,

we use the output of the final embedding layer. All models provide per-amino acid features,

which we average along the length of the protein to get a fixed length vector. Table C.2 shows

the performance of a ConPLex model using each of the featurizations (without contrastive

learning for simplicity). While there is no one language model which is uniformly best (Section

5.5), we chose to use ProtBert which seemed to have consistent strong performance.

208



Table C.1: DUD-E target classes and splits.

Target ID Class Split

AA2AR Gpcr Train

ABL1 Kinase Train
AKT1 Kinase Train
CDK2 Kinase Train
EGFR Kinase Train
FAK1 Kinase Train
FGFR1 Kinase Train
IGF1R Kinase Train
JAK2 Kinase Train
KIT Kinase Train
MAPK2 Kinase Train
MK01 Kinase Train
PLK1 Kinase Train
TGFR1 Kinase Train

ANDR Nuclear Train
ESR2 Nuclear Train
MCR Nuclear Train
PPARD Nuclear Train
THB Nuclear Train

ACE Protease Train
BACE1 Protease Train
DPP4 Protease Train
FA7 Protease Train
HIVPR Protease Train
MMP13 Protease Train
TRYB1 Protease Train

Target ID Class Split

ADRB1 Gpcr Test
ADRB2 Gpcr Test
CXCR4 Gpcr Test
DRD3 Gpcr Test

AKT2 Kinase Test
BRAF Kinase Test
CSF1R Kinase Test
KPCB Kinase Test
LCK Kinase Test
MET Kinase Test
MK10 Kinase Test
MK14 Kinase Test
MP2K1 Kinase Test
ROCK1 Kinase Test
SRC Kinase Test
VGFR2 Kinase Test
WEE1 Kinase Test

ESR1 Nuclear Test
GCR Nuclear Test
PPARA Nuclear Test
PPARG Nuclear Test
PRGR Nuclear Test
RXRA Nuclear Test

ADA17 Protease Test
CASP3 Protease Test
FA10 Protease Test
LKHA4 Protease Test
RENI Protease Test
THRB Protease Test
TRY1 Protease Test
UROK Protease Test

C.2.2 Alternate options for drug feature generation

We also explored three different choices for generating drug features, including the Morgan

fingerprint [210], MolR [213], and Mol2Vec [212]. Results are shown in Table C.3. The

Morgan fingerprint uniformly outperforms the other choices, and so we chose to use it for

ConPLex.
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Table C.2: ConPLex classification results on benchmark data sets using different
PLMs to generate protein features.

Benchmark Protein Features AUPR AUROC F1

BIOSNAP

D-SCRIPT 0.911 0.897 0.831
Prose 0.914 0.898 0.838
ESM 0.898 0.876 0.817

ProtBert 0.895 0.873 0.811

BindingDB

D-SCRIPT 0.618 0.870 0.619
Prose 0.618 0.862 0.625
ESM 0.637 0.881 0.637

ProtBert 0.652 0.876 0.636

DAVIS

D-SCRIPT 0.475 0.912 0.533
Prose 0.463 0.907 0.523
ESM 0.480 0.916 0.544

ProtBert 0.511 0.917 0.546

BIOSNAP Unseen Proteins
Prose 0.875 0.868 0.798
ESM 0.850 0.839 0.770

ProtBert 0.841 0.827 0.750

BIOSNAP Unseen Drugs
Prose 0.881 0.857 0.802
ESM 0.876 0.850 0.796

ProtBert 0.876 0.848 0.785

Table C.3: ConPLex classification results on benchmark data sets using different
methods to generate small molecule features.

Benchmark Drug Features AUPR

BIOSNAP
Morgan 0.904
MolR 0.853

Mol2Vec 0.792

BindingDB
Morgan 0.668
MolR 0.578

Mol2Vec 0.380

DAVIS
Morgan 0.511
MolR 0.436

Mol2Vec 0.144
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C.2.3 Feature attribution reveals information gain from tuning on

PPI

We additionally investigated training ConPLex models with features generated by concate-

nating protein language model embeddings with embeddings from a D-SCRIPT [11] model

pre-trained on human PPIs. We refer to the output of the first projection module of D-

SCRIPT, which takes as input the n× d protein representation and tunes it to an n× 100

representation. We then concatenate this with the original PLM representation to get an

embedding with d+ 100 features.

While the top-line performance of the augmented models are similar to the base models,

an attribution study using DeepLift [304] shows that the new D-SCRIPT-derived features

are disproportionately represented in the set of highly important features (Figure C.1). This

suggests that tuning on a related task refines the representations from the general protein

language models to ones more suited for the specific task, as in [188]. This explanation

is supported by the fact that the 100-dimensional D-SCRIPT features alone achieved only

slightly decreased performance on the DTI task compared to PLM-based models with 10-50x

as many parameters (Table C.2).

Figure C.1: DeepLift feature attributions for Prose (a), ESM (b), and ProtBert (c) embedding
dimensions (gray) and the respective D-SCRIPT embedding dimensions (black). D-SCRIPT
features have an outsize contribution to the overall model prediction relative to the PLM
features alone. The dashed blue line indicates the mean feature attribution.
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C.3 Training and inference time analysis

One of the benefits of using pre-trained models for feature generation is that computation

times are amortized over the lifespan of downstream applications. Pre-trained models incur

an up-front computational cost, but can then be re-used for multiple inference tasks with

straightforward architectures. Our framework allows for training DTI models up to 8 times

faster than an end-to-end method like MolTrans [185]. Inference of DTIs is also roughly an

order of magnitude faster (Table C.4). MolTrans has a faster per-epoch training time than

ConPLex on DAVIS, but a slower wall clock time and much slower inference.

Table C.4: Comparison of training and inference times on three high-coverage data sets with
contrastive training on DUD-E (mean seconds over 5 runs).

Benchmark Model Wall Clock Training (per epoch) Inference

BIOSNAP ConPLex 1273 22.84 0.556
MolTrans 6424 116.21 31.64

BindingDB ConPLex 1302 24.21 2.168
MolTrans 9874 142.96 222.17

DAVIS ConPLex 1145 22.38 0.619
MolTrans 1417 15.38 35.06
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Appendix D

Supplementary Material for Chapter 6

D.1 Protein-Protein Interaction Prediction

D.1.1 Learning rate selection for fine-tuning

Due to the substantially larger number of parameters, fine-tuned models are more prone

to over-fit to the training data. As such, it is common to use lower learning rates when

performing full fine-tuning compared to training only the classification head (MLP) or a

small number of added paramters (PEFT). In Table D.1, we show the result of fine-tuning

with several different learning rates. The results presented in the main text (Table 6.2) uses

a learning rate of 5e− 4.

D.1.2 Adaptation of increasingly deeper layers yields improved

model performance

One choice when selecting designing a parameter-efficient fine-tuning setup for a protein

language model is which and how many transformer layers to adapt. We show in Table

D.2 that, on the PPI prediction task, increasing numbers of adapted layers (with more

parameters) leads to generally stronger performance (although this is not a uniform increase
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Table D.1: Fine-tuning a larger number of parameters typically requires a lower learning rate
to reduce over-fitting. We experiment with 5 different learning rates from 1e− 3 to 1e− 5,
finding the best performance at a learning rate of 5e− 4, half of what is used for MLP and
PEFT models.

Learning Rate Val.
AUPR AUPR Acc. F1 MCC Prec. Rec. Spec.

1e-3 0.605 0.576 0.548 0.568 0.097 0.544 0.594 0.502
5e-4 0.622 0.623 0.604 0.631 0.210 0.591 0.676 0.532
1e-4 0.615 0.604 0.603 0.622 0.207 0.594 0.653 0.553
5e-5 0.619 0.596 0.562 0.480 0.130 0.590 0.405 0.718
1e-5 0.532 0.536 0.500 0.667 0.000 0.500 1.000 0.000

due to variance in model training). However, it is not immediately clear that the best strategy

is to adapt subsequent layers from the end. Although this is theoretically sound, we compare

the following alternative approaches on the symmetry prediction task (test set AUPR in

parenthesis): adapting the last 5 layers (0.400), adapting the first 5 layers (0.215), adapting

5 intermediate layers (layers 14-19; 0.344), adapting 5 randomly selected layers (layers 3, 6,

12, 17, 23; 0.332). We find significantly degraded performance with all options except for

the last 5 layers. Performance is especially bad when adapting only the first 5 layers. This

corresponds with the generally-understood principle that early layers of a protein language

model learn broad abstractions of the data, while later layers learn task-specific features.

Table D.2: We find that model performance generally increases as increasingly many layers
are adapted from the end of the model.

# Layers Val.
AUPR AUPR Acc. F1 MCC Prec. Rec. Spec.

1 0.612 0.605 0.524 0.586 0.171 0.586 0.586 0.586
2 0.615 0.622 0.602 0.632 0.208 0.589 0.681 0.524
4 0.619 0.597 0.588 0.630 0.180 0.572 0.701 0.475
5 0.640 0.633 0.601 0.630 0.204 0.587 0.680 0.522
6 0.627 0.624 0.604 0.643 0.213 0.586 0.711 0.497
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D.1.3 PEFT and FT training and validation curves

We show training and validation loss curves, as well as validation AUPR curves, over training

in Figure D.1. In Figure D.2, we show training and validation loss curves, as well as validation

AUPR curves, for all different combinations of Q/K/V matrices tested in Table 6.4. In Figure

D.3, we show training and validation loss curves, as well as validation AUPR curves, for

LoRA rank 1, 2, 4, 8, 64 as tested in Table 6.5.

Figure D.1: Training (a) and validation (b) loss curves, AUPR curves (c) for FT (4 layers)
and PEFT (5 layers) from Table 6.2. Note that all other training parameters were held
constant between these runs.

Figure D.2: Training (a) and validation (b) loss curves, AUPR (c) curves for models trained
with LoRA adapters on Q, K, V , QK, QV , KV , QKV matrices from Table 6.4. Note that
all other training parameters were held constant between these runs.
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Figure D.3: Training (a) and validation (b) loss curves, AUPR (c) curves for models trained
with LoRA ranks r = 1, 2, 4, 8, 64 from Table 6.5. Note that all other training parameters
were held constant between these runs.

D.1.4 Baseline MLP Model

As a baseline to compare with fine-tuning, we train an MLPClassifier model from scikit-learn

using embeddings extracted from ESM2 (650M parameters). Parameters for the MLPClassifier

were selected by cross-validation on macro average precision over a grid search. We searched

over all combinations of

• activation = [“logistic′′, “relu′′, “identity′′]

• alpha = [0.0001, 0.001, 0.01]

• learning_rate_init = [0.001, 0.01]

• max_iter = 1000, 2000

• hidden_layer_sizes = [(64, ), (128, ), (512, ), (64, 64), (128, 128), (64, 64, 64)]

• tol = [1e− 4, 1e− 5]

In Figure D.4, we show that this MLP model is well calibrated (fraction of predicted

positives at threshold p roughly matches predicted probability p).
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Figure D.4: Calibration curve for sklearn MLP on embeddings from a frozen ESM2 model,
trained for PPI prediction on the benchmarks from Bernett et al. [257].

217



D.2 Homooligomer Symmetry Prediction

D.2.1 Test Set Support

Homooligomer symmetry prediction is a highly unbalanced, multi-class prediction task. In

Table D.3, we show the number of examples in the test set for each class. We show in Figure

6.3 that PEFT and MLP models are competitive for high support classes like C1, C2, C5, D2,

and I, while the FT model is substantially better on rare classes like C7-C9, D4, D5, and O.

Table D.3: Test Set Support. Number of examples of each symmetry class in the test
set. This data is highly imbalanced, with most examples having either C1, C2, D2, or D3
symmetry.

Symmetry Class | Support

C1 29,773
C2 23,393
C3 5,516
C4 3,507
C5 6,055
C6 2,920
C7-C9 1,406
C10-C17 1,910
D2 10,370
D3 8,436
D4 2,052
D5 1,800
D6-D12 2,045
H 4,014
O 540
T 1,927
I 5,232
Other 328

D.2.2 Fine-tuning all layers

We perform an additional experiment wherein we fine-tune all layers of the protein language

model– we note that this is substantially more compute intensive and requires us to decrease
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our batch size to 4. We also reduce the learning rate to 0.0005 to account for the larger

number of parameters. We find that on the symmetry task, this model achieves a test set

AUPR of 0.446, which is competitive with but does not exceed the performance of the models

in Table 6.3. Thus, when we refer to “fine-tuning”, we consider training all parameters of a

fixed subset of layers in the model.

D.3 Visualizing Attention

We visualize attention values with and without parameter-efficient adapter updates for the

last five transformer layers of the PEFT model trained on PPI prediction from Table 6.2.

We average the output of all 20 attention heads so that for a protein of length n, we get a

matrix of size n× n. LoRA weights are turned on or off with the peft package commands

disable_adapter_layers and enable_adapter_layers. We find that with fine-tuning on

PPI prediction, attentions are spread out much further from the diagonal, indicating more

distal attention necessary for predicting protein-protein interactions.

We compute a measurement of the extent to which attention is concentrated along the

diagonal using the Pearson’s sample correlation [305]. Given a protein of length N , we treat

the attention from residue i to residue j in matrix A ∈ RN×N as a pair of samples (i, j) from

discrete distributions X and Y , where the magnitude of the attention Ai,j corresponds to the

probability mass of this pair of indices, or the weight of each sample. Then, the total “sample

size” is the total magnitude of attention n =
∑

i,j∈N Aij. We can then calculate the diagonal

correlation of A as

rxy =
(n

∑
i,j∈N Aijij)− (

∑
i,j∈N Aiji−

∑
i,j∈N Aijj)√

n
∑

i,j∈N Aiji2 − (
∑

i,j∈N Aiji)2 −
√
n
∑

i,j∈N Aijj2 − (
∑

i,j∈N Aijj)2
(D.1)
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Figure D.5: We see similar increases in global attention in both traditional fine-tuning (a)
and parameter-efficient fine-tuning (b), when quantifying it with the diagonal correlation
rxy, described in detail in Equation D.1.

220


	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Molecular interactions tell the story of the cell
	1.2 A note on the value of scalable modeling in biology
	1.3 Thesis organization
	1.4 Contributions of this thesis

	2 Background
	2.1 The central dogma of biology
	2.2 Biochemistry and the relationship between sequence, structure, and function
	2.3 Algorithms for biological sequence analysis
	2.4 Graphs and graph algorithms
	2.5 Machine learning and deep learning
	2.6 Large language models

	3 Protein-Protein Interactions I: Sequence
	3.1 Chapter Overview
	3.2 Introduction
	3.3 Methods
	3.3.1 PPI data set
	3.3.2 Overview of D-SCRIPT
	3.3.3 Model architecture
	3.3.4 Training
	3.3.5 Assessing functional module coherence
	3.3.6 Predicting PPIs in Bos taurus
	3.3.7 Identifying the catalytic signature motif of bovine protein tyrosine phosphates
	3.3.8 Predicting PPIs in SARS-CoV-2
	3.3.9 Logistic regression for prediction of protein structure
	3.3.10 Predicting interactions by nearest neighbor search
	3.3.11 Predicting inter-protein contact maps
	3.3.12 Deconstructing model performance by protein frequency in training data
	3.3.13 Quantification and statistical analysis

	3.4 Results
	3.4.1 D-SCRIPT generalizes well across species
	3.4.2 Comparison with another sequence-based method
	3.4.3 D-SCRIPT predictions are functionally informative
	3.4.4 D-SCRIPT embeddings capture structure and interaction
	3.4.5 Predicted contact maps recapitulate known protein binding mechanisms
	3.4.6 Using protein frequency counts as a predictor
	3.4.7 D-SCRIPT performs better on infrequently occurring proteins
	3.4.8 Case study: Protein function and interaction in the bovine rumen
	3.4.9 Case study: Analysis of binding specificity in PTP family
	3.4.10 Case study: Human interactions with SARS-CoV-2 proteins
	3.4.11 Performance

	3.5 Chapter Perspectives

	4 Protein-Protein Interactions II: Network and Structure
	4.1 Chapter Overview
	4.2 Introduction
	4.3 Methods
	4.3.1 Overview of Topsy-Turvy
	4.3.2 Data set generation
	4.3.3 Sequence-based prediction with D-SCRIPT
	4.3.4 Network-based prediction with GLIDE
	4.3.5 Description of local and global similarity scores used in GLIDE
	4.3.6 Network-dependent loss term
	4.3.7 TT-Hybrid can use a known network during inference
	4.3.8 Hyperparameter selection and model training
	4.3.9 Integrating structure information with TT3D
	4.3.10 Availability and Implementation

	4.4 Results
	4.4.1 Comparison of GLIDE and node2vec
	4.4.2 integrating topology information from the training network
	4.4.3 Cross-species improvement is not limited to hub nodes
	4.4.4 Performance is unlikely to be driven by ascertainment bias
	4.4.5 Comparison with AlphaFold-Multimer
	4.4.6 Integrative methods with available PPI networks
	4.4.7 TT3D outperforms previous methods
	4.4.8 Comparison with sequence and structure homology
	4.4.9 Considering network structure for negative sample selection

	4.5 Chapter Perspectives

	5 Protein-Small Molecule Interactions: Learning Shared Representations
	5.1 Chapter Overview
	5.2 Introduction
	5.3 Methods
	5.3.1 Computing data set coverage
	5.3.2 Benchmarks overview
	5.3.3 Overview of ConPLex
	5.3.4 Surfaceome analysis
	5.3.5 Experimental determination of kinase binding affinity
	5.3.6 Genome wide ChEMBL scan

	5.4 Results
	5.4.1 Model Overview
	5.4.2 State-of-the-art performance on low-coverage interactions
	5.4.3 Contrastive learning enables high-specificity DTI mapping
	5.4.4 Discovering DTIs with sub-nanomolar binding affinity
	5.4.5 Selection of a threshold based on experimental results
	5.4.6 Incorporating drug binding information improves protein representations
	5.4.7 Functional community detection in the Surfaceome
	5.4.8 Adapting ConPLex for affinity prediction
	5.4.9 Error limits of binding affinity predictions
	5.4.10 Results on EnzPred data sets
	5.4.11 Margin decay ablation and optimization

	5.5 Chapter Perspectives

	6 Democratizing Protein Language Models: Parameter-Efficient Adaptation
	6.1 Chapter Overview
	6.2 Introduction
	6.3 Methods
	6.3.1 Benchmark Data: PPI
	6.3.2 Benchmark Data: Homooligomer Symmetry
	6.3.3 Protein Language Model
	6.3.4 Parameter-Efficient Adaptation
	6.3.5 Training and Implementation

	6.4 Results
	6.4.1 Reduced memory usage of PEFT enables deeper fine-tuning
	6.4.2 650M vs. 3B ESM2 model
	6.4.3 Efficient classifiers achieve state-of-the-art PPI prediction
	6.4.4 Predicting homooligomer symmetry with PEFT
	6.4.5 Visualizing attentions after fine-tuning
	6.4.6 Impact of LoRA hyperparameters on performance

	6.5 Chapter Perspectives

	7 Discussion
	7.1 Thesis summary
	7.2 Extensions of this work
	7.3 The promise and practice of computation in biology
	7.3.1 On computation as hypothesis generation
	7.3.2 On the accessibility and interpretability of models


	References
	A Supplementary Material for Chapter 3
	A.1 The corpus of experimental PPI data is limited
	A.2 Comparison of model complexities of D-SCRIPT and PIPR

	B Supplementary Material for Chapter 4
	B.1 Maintain minimum spanning tree while sparsifying network
	B.2 Sparsity data set characteristics
	B.3 Effect of shortest path in training network (including D-SCRIPT)

	C Supplementary Material for Chapter 5
	C.1 DUD-E train/test splits
	C.2 Choice of protein and molecule featurization
	C.2.1 Alternate options for target feature generation
	C.2.2 Alternate options for drug feature generation
	C.2.3 Feature attribution reveals information gain from tuning on PPI

	C.3 Training and inference time analysis

	D Supplementary Material for Chapter 6
	D.1 Protein-Protein Interaction Prediction
	D.1.1 Learning rate selection for fine-tuning
	D.1.2 Adaptation of increasingly deeper layers yields improved model performance
	D.1.3 PEFT and FT training and validation curves
	D.1.4 Baseline MLP Model

	D.2 Homooligomer Symmetry Prediction
	D.2.1 Test Set Support
	D.2.2 Fine-tuning all layers

	D.3 Visualizing Attention


