
ScaleGPS: Scalable Graph Parallel Sampling via
Data-centric Performance Engineering

by

Miranda J. Cai
B.S. Computer Science and Engineering, MIT, 2023

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2024

© 2024 Miranda J. Cai. This work is licensed under a CC BY-NC-ND 4.0 license.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license
to exercise any and all rights under copyright, including to reproduce, preserve, distribute
and publicly display copies of the thesis, or release the thesis under an open-access license.

Authored by: Miranda J. Cai
Department of EECS
May 20, 2024

Certified by: Xuhao Chen
Research Scientist, Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee

https://creativecommons.org/licenses/by-nc-nd/4.0/

2

ScaleGPS: Scalable Graph Parallel Sampling via Data-centric
Performance Engineering

by

Miranda J. Cai

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2024 in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

ABSTRACT

Graph sampling extracts representative samples of a graph, so that approximate graph
algorithms can be used in place of expensive, exact algorithms while still achieving high-
quality results. Thus, graph sampling plays an important role in many modern graph-based
applications, such as graph machine learning and graph data mining. However, because of
unstructured sparsity in the graph data and the randomness in the sampling algorithms,
graph sampling often is the computational bottleneck. To accelerate it, there exist parallel
graph sampling methods on multicore CPUs or GPUs. However, limitations arise at both
sides. Due to lower throughput, CPU implementations are much slower than GPU ones,
while GPU memory capacity is limited to only being able to handle small input graphs.

We present the idea behind a scalable graph sampling framework, ScaleGPS, to support
high performance graph sampling on huge graphs in a single machine with a CPU and a GPU.
The key idea is to cooperatively employ data caching and compression to reduce memory
footprint and data movement overhead, and thus achieve high performance and scalability.
The challenge in applying caching and compression for graph sampling is two-fold. First, the
randomness in sampling leads to redundant computation and memory accesses, and thus low
work efficiency. Second, real-world graphs often exhibit skewed degree distribution, where a
fixed strategy cannot optimally handle various cases.

We propose a hybrid and adaptive strategy to address this challenge. First, we split the
vertices in the graph into two groups based on their degrees. For each group, we store the
neighbor lists in different formats, to make full use of the scarce GPU memory resources.
Based on this hybrid compression method, we use the GPU memory as a cache of the CPU
memory, and adaptively cache hot data to minimize the data movement overhead between
the CPU and GPU. We implement our strategy in ScaleGPS and evaluate it on a single
machine with a 48-core CPU and an A100 GPU. Our experimental results on various sampling
algorithms show that ScaleGPS is able to support billion-edge graphs (up to 84-billion) in a
single machine. While the performance benefits over these large graphs are still undetermined,
ScaleGPS achieves an average of 33.4× (up to 93×) speedups for smaller graphs over
state-of-the-art parallel CPU implementations.

Thesis supervisor: Xuhao Chen
Title: Research Scientist

3

4

Acknowledgments

I would like to thank Xuhao Chen for being an amazing supervisor throughout this process.
I am grateful for everything that I have learned from this project under his guidance, and for
him first accepting me into his lab.

Most importantly, I would like to thank my parents, brother, and grandparents for their
continuous support of my studies. I would also like to show my appreciation for all of the
friends that I have made along the way during my past four years here at MIT. I would not
be where I am today without them.

5

6

Contents

Title page 1

Abstract 3

Acknowledgments 5

List of Figures 9

List of Tables 11

1 Introduction 13

2 Background and Related Works 17
2.1 Graph Sampling Algorithms . 17
2.2 Graph Sampling Systems . 20

2.2.1 CPU Sampling systems . 20
2.2.2 GPU Sampling Systems . 22

2.3 Data Compression . 23
2.3.1 Integer List Compression . 24
2.3.2 Graph Compression . 25

2.4 GPU Memory Oversubscription & Data Caching 27

3 System Design and Implementation 29
3.1 ScaleGPS System Overview . 29
3.2 Hybrid Graph Data Compression . 30
3.3 Adaptive Graph Data Caching . 32
3.4 GPU Parallelization Scheme for Graph Sampling 32

4 Experimental Results 35
4.1 Experimental Setup . 35
4.2 Overall Sampling Performance . 36

4.2.1 Comparison with CPU Implementation 36
4.2.2 Comparison with GPU Implementations 38

4.3 Ablation Study . 38
4.3.1 Performance Effect of Segment Prefix 38
4.3.2 Performance Effect of Various Compression Schemes 39

7

4.3.3 Effect of Various Caching Policies . 40

5 Future Work 43
5.1 Different Graph Compression Techniques . 43
5.2 Generic Sampling Framework . 44
5.3 CPU-GPU Co-sampling . 44

6 Conclusion 45

A Artifact 47

References 49

8

List of Figures

2.1 Illustration of four different sampling methods. 19
2.2 Stream VByte Encoding: (a) Original, uncompressed edge list of 32-bit un-

signed integers; (b) Compressed egdelist using Stream VByte. 24
2.3 CGR Encoding. 26

3.1 High-level overview of ScaleGPS. 30
3.2 Illustration of how segment prefix are incorporated into a compressed edge list. 30
3.3 Work is divided between samples in ScaleGPS. 34

4.1 Relating vertex degree to how many times it gets sampled in a round of k-hop
sampling. 41

9

10

List of Tables

4.1 Description of graphs used in our evaluation. 36
4.2 Time (ms) taken for k-hop sampling using different schemes, blanks are out of

RAM. 36
4.3 Time (ms) taken for k-hop sampling (N = 3, b = 40, 000, m = {15, 10, 5})

using different schemes. 37
4.4 Time (ms) taken for k-hop sampling using normal VByte compression versus

VByte compressed with prefix sums. 39
4.5 Comparison between CGR and VByte. Lists decompression ratios compared

to CSR format and speedup of VByte over CGR decompression by thread. . 39
4.6 Description of graph partitions. 40

11

12

Chapter 1

Introduction

Graph representation has become an increasingly popular method to model and solve impor-

tant computing problems, where data entities (vertices) are interconnected with relationships

or inter-dependencies (edges). Real-world graph applications include product recommen-

dation [1], social recommendation [2], [3], protein design [4], drug discovery [5], financial

forensics [6]–[8], chemical engineering [9], anomaly (e.g. spam, fake news) detection [10],

circuit design [11], etc. For many of these applications, they have to deal with massive scale

datasets, e.g., giant graphs with hundreds of billions of edges, putting a lot of pressure on the

computer system. As a result, efficiently scaling graph computation of massive sizes becomes

a key challenge in this domain.

One widely used method to combat the high computational costs in processing massive

graph data is graph sampling, which extracts a representative portion of the input graph

data, in order to reduce the total amount of computation and storage consumption. Graph

sampling has been widely used in graph machine learning [12]–[17] and graph pattern mining

[18]–[48]. Although it significantly reduces the computation algorithmically, plain graph

sampling alone is not enough to address the inefficiency in graph computation. Instead,

because of the unstructured sparsity in the graph data and the randomness in the sampling

algorithms, graph sampling often becomes the computational bottleneck in those applications.

13

For example, it has been observed that in GraphSAGE [14], a popular graph neural network

(GNN) model, graph sampling ends up taking at least 45% of the model’s end-to-end training

time [49].

To accelerate graph sampling, parallel graph sampling methods on multicore CPUs [50]–[53]

and accelerators like GPUs [49], [54]–[56] and FPGAs [57]–[60] have been proposed. However,

all these approaches have their limitations. Due to lower throughput, CPU implementations

are usually much slower than GPU solutions. On the other hand, accelerators can achieve

impressive speedups with high throughput, but they are usually limited in memory capacity

and thus are only able to handle small input graphs.

In this thesis, we aim to address the efficiency and scalability issue in graph sampling.

We present a scalable graph sampling framework, ScaleGPS, to support high performance

graph sampling on massive-scale graphs in a single machine with a CPU and a GPU. The key

idea is to cooperatively employ data caching and compression to minimize data movement

overhead and reduce memory footprint, at the cost of extra computation on decompressing

the graph data. The rationale behind this design is that computation is cheap on GPU, but

data movement is often the real bottleneck, and also memory space is a scarce resource on

the GPU.

The challenge in applying caching and compression for graph sampling is two-fold. First,

the randomness in sampling leads to redundant computation and memory accesses, as only

a small portion of the data is sampled out of all the decoded data, which leads to wasted

decoding computation and thus low work efficiency. Second, real-world graphs often exhibit

skewed (e.g., power-law) degree distribution. Because of this skewness, any fixed compression

or caching strategy may not be able to optimally handle various cases. So generally there is

a tradeoff between data decoding speed, work efficiency and memory consumption.

To address the challenges, we propose a hybrid compression and adaptive caching (HCAC)

strategy. First, we split the vertices in the graph between two groups based on their degrees:

high-degree and low-degree. For each group, we store the neighbor lists in different formats.

14

We compress the neighbor lists of low-degree vertices using a SIMD-friendly compression

scheme, while for high-degree ones we add auxiliary indexing to reduce decoding overhead. In

addition to this hybrid compression method, we use the GPU memory as a cache of the CPU

memory, and adaptively cache hot data in the GPU memory to minimize the data movement

overhead between the CPU and GPU.

We implement our HCAC strategy in ScaleGPS and evaluate it on a single machine with

a 48-core CPU and an A100 GPU. We test a representative graph sampling algorithm, k-hop

neighborhood sampling. Our experimental results show that ScaleGPS can support fast

sampling on billion-edge graphs (up to 84-billion) in a single machine. ScaleGPS achieves

an average of 33.4× (up to 93×) speedups for smaller graphs over state-of-the-art parallel

CPU implementations and at most 3.9× slowdown compared to in-GPU-memory sampling,

which requires up to 2.26× more GPU memory space. As of this time, the performance

benefits over large out-of-memory graphs are still undetermined. We analyze possible reasons

for slowdown in our system, and provide ideas for moving forward.

The major contributions of this thesis are:

• We propose a hybrid graph compression strategy for graph sampling to reduce GPU

memory footprint and improve GPU memory efficiency.

• We propose an adaptive data caching approach to minimize data movement overhead

between CPU and GPU.

• We build ScaleGPS that implements our proposed hybrid, adaptive data management

strategy, and demonstrate the potential for high performance and scalability for various

graph sampling algorithms.

15

16

Chapter 2

Background and Related Works

There have been a large volume of studies on graph sampling. For example, Graph sampling

has been used in graph neural networks [14]–[17], triangle counting [20]–[28], clique/cycle

counting [27], [29], [30], butterfly counting [31], motif counting [32]–[43], and frequent subgraph

mining [44]–[48].

In this chapter, we first go over the representative graph sampling algorithms in Section 2.1

and existing graph sampling frameworks in Section 2.2. Since our proposed approach leverages

compression and caching techniques, we also introduce existing data compression techniques

in Section 2.3 and data caching techniques in Section 2.4.

2.1 Graph Sampling Algorithms

We start this section by introducing a high-level overview of the general process for many

graph sampling algorithms. The algorithms we touch on sample sets of vertices sequentially

for a fixed number of steps N . To begin generating a sample, or subgraph, we populate the

first layer of our sample with our chosen initial frontier vertices. Frontiers are the set of

vertices that were sampled during the most recent layer, and are also the vertices that will

aid in choosing the vertices for the next layer to be added to our sample. To determine the

frontiers for the next layer, we typically have some way of sampling from the neighbors of

17

Algorithm 1 k-hop neighborhood sampling
1: Input Graph g
2: Output vector<Vertex> sampled frontiers in order
3: procedure khop_samples
4: frontiers := vector<Vertex> of size total frontiers to be sampled
5: Enter initial frontiers into head of frontiers
6: current_step_size := number of initial frontiers × batch size
7: for step = 0 to N do
8: Multiply current_step_size by fanoutstep
9: for t_idx = 0 to current_step_size do

10: int oldt_idx := Calculate the index of the previous frontier
11: int oldt_degree := Get outgoing degree of frontiers [oldt_idx] from g
12: Vertex new_t := Randomly sample from oldt_degree neighbors
13: frontiers [t_idx] = new_t
14: return frontiers

the current frontiers to maintain the connectivity of the original graph. The fanout number

mi at step i is the number of new vertices per frontier that we will add to the next layer of

frontiers. By the end of our sampling, we should have sampled
∑N

i

∏i
j mj × b total vertices,

for a batch size (number samples) of b.

While there are many different sampling algorithms that are each better suited for different

purposes, we describe the four algorithms highlighted in NextDoor [55] for their simplicity

and popularity. Below is an overview of each of the sampling methods.

• k-hop neighbors [14]. This algorithm samples N = k layers. For every frontier t at

step i, mi new edges are sampled from t’s outgoing edges to decide the next layer’s

frontiers. These sampled edges are also included into the sample.

• Random Walk [51]. For every frontier v and its previous frontier t that we used it to

sample from, we determine the probability of picking one of v’s neighbors u depending

on three conditions in this respective hierarchy: (i) if u = t the probability is p, (ii) else

if u is connected to t then the probability is 1, (iii) else the probability is 1/q. Both p

and q are fixed hyperparamters. Using these probabilities, u is finally selected through

rejection sampling [13]. Note the fanout mi = 1 for every step i.

18

(a) k-hop
(b) Random Walk

(c) Multi Dimensional Random Walk (d) Importance

Figure 2.1: Illustration of four different sampling methods.

• Multi Dimensional Random Walk [61]. This type of random walk similarly has

mi = 1 for every i. The main feature of this algorithm is that starting with our initial

frontiers set, every newly sampled vertex is a random neighbor of a randomly chosen

frontier t from the layer. This new frontier will then replace t in the set, and the process

repeats N times. The specialty of this feature is that we can continue our sample

expansion in the direction of old frontiers as well, such that not every root frontier in

our sample will end up with the same length path like in a normal random walk.

• Importance Sampling [16], [17]. Importance sampling is the only algorithm that

practices collective sampling, meaning that new frontiers are selected from the collection

of all neighbors from the current frontiers. So for every layer, we sample a fixed number

of frontiers from the neighbors of the layer previously, and add an edge between any

19

new frontier and previous frontier if that edge existed within the original graph as well.

Fig. 2.1 illustrates each of the algorithms listed above. K-hop and the random walks are

all node-wise [49] sampling algorithms because each frontier is individually used to sample

new ones. On the other hand, importance sampling is layer-wise, which picks its new frontiers

from the collective set. There is no right or wrong answer as to which sampling method

is better, but depending on the application one method might be preferred over the other.

For example, GraphSAGE [14], [62] is one of the first works to include mini batching from

sampling into GCN training. They use node-wise neighborhood sampling to increase training

efficiency. In contrast, LADIES [16] uses layer-dependent importance sampling to reduce

variance which improves GCN model accuracy.

Of these four, we evaluate the design of our system in the context of k-hop. Algorithm 1

contains the pseudocode for sequential k-hop sampling. In order to parallelize the code, one

can change line 9 to use Parallel For instead.

2.2 Graph Sampling Systems

This section highlights different existing graph sampling systems and their novel contributions,

implemented on either CPU or GPU.

2.2.1 CPU Sampling systems

For random walk algorithms specifically, the majority of sampling time comes from calculating

the probabilities of selecting an edge. In conventional random walks like node2vec [13],

sampling the next frontier involves examining every outgoing edge from the current frontier and

assigning a probability of accepting each if the edge gets selected. To address this inefficiency,

KnightKing [51] is a distributed random walk engine with its own edge probability re-weighting

process. With the novel incorporation of rejection sampling into their implementation, their

algorithm neared O(1) complexity for edge sampling compared to the O(|Ev|) complexity of

20

previous random walk iterations such as node2vec.

SALIENT [53], [63] is another work that opts to modify a basic sampling algorithm

for better performance. Focusing on k-hop neighbor sampling, this paper makes two main

contributions with their implementation. The first is optimizing k-hop neighbor sampling

itself, and notably having the code run in parallel on different threads for separate mini-

batch samples. The sampling in SALIENT is meant specifically for iterative GNN batch

training. Thus, the second main contribution is reducing the communication overhead of

fetching sampled vertex features from memory by implementing an analysis of vertex inclusion

probabilities (VIP analysis) to optimize caching frequently accessed neighbors. One area of

future work that the paper notes is improving on how vertex features are partitioned across

machines, to scale for even larger graphs.

Other than SALIENT, there are plenty other graph frameworks that are also motivated

by reducing the latency caused by the communication overhead between different memory

levels. ThunderRW [50] stores its large graphs in-memory, and limits the number of random

accesses when sampling an unvisited edge using a work balanced step-centric model. The

step-centric model breaks up individual edge queries into three different steps, and because

steps within a single query must happen sequentially, they find a method to parallelize the

steps between queries instead called step interleaving. So while a step in one query is halted

while waiting to fetch data from memory, the thread switches to handle the step of another

query first before returning to complete the original query’s step. FlashMob [52] is another

paper published around the same time under the same motivations as ThunderRW, except

they adopt the opposite approach as ThunderRW for handling irregular memory accesses.

By dividing the graph into alike partitions and batching queries by partition, FlashMob

directly reduces the number of cache misses rather than hiding their latency behind other

computations. However, unlike ThunderRW, FlashMob has not been tested on disk-resident

graphs.

21

2.2.2 GPU Sampling Systems

The first paper that we explore makes many contributions towards graph sampling and

random walk algorithms, but the biggest one of interest to our thesis is their multi-GPU

thread allocation. Their framework, C-SAW [54], uses what they call workload-aware partition

scheduling. The process starts by partitioning the input graph into subgraphs with an equal

count of contiguous vertices to store on the separate GPUs. Different partitions will generally

offer different workloads due to the difference in frontiers of each. To make sure a single

workload does not become the bottleneck, the system keeps track of the frontiers of each

partition and loads these partitions onto GPUs asynchrously. Each GPU kernel is also

allocated a proportional number of thread blocks to the number of frontiers in its partition.

Thus, a partition that likely has a bigger workload is scheduled to start sampling first and

with more parallelism.

Similarly, the NextDoor framework aims to optimize the parallelism of GPUs. NextDoor

[55] proposes a new thread assignment system for sampling frontiers of a single layer in

parallel on GPUs. The idea that they introduce is frontier-parallelism, which is an alternative

assignment paradigm to the conventional individual frontier sampling in which the frontiers of

the same sample are assigned to consecutive threads. However, this method is prone to warp

divergence and load imbalance due to graph irregularities. Additionally, the entire graph

must be stored in memory because of the different neighborhoods that must be accessed. In

contrast, frontier-parallelism regroups samples into samples of the same frontier. Consecutive

threads now access the same neighborhood of a single frontier that is able to fit in shared

memory, and these threads also follow the same set of instructions. This implementation

addresses the inefficiencies in thread parallelism on GPU, and works for various sampling

algorithms. While the majority of their results showed noticable speedup in both isolated

sampling and when applied to GNN training, when run on graphs with only millions of

vertices the GPU already begins to run out of memory.

22

In response to C-SAW and NextDoor, Skywalker [56] attempts to create a new framework

to address the inefficiencies within the two algorithms. Skywalker’s primary focus is to reduce

the time of the sampling algorithm itself by using a parallelizable alias table on GPU. The

alias table stores the biases of selecting a new frontier prior to sampling, so that the sampling

itself would only take constant time. On the other hand, methods like rejection sampling

used in NextDoor [55] could take many trials before accepting a frontier to the sample. By

leveraging a way to parallelize the alias table construction and learning to compress their

alias table to save space, Skywalker was able to show an average speedup of 5.2× while also

being able to handle larger input graphs compared to NextDoor.

Finally, Gong et al. poses one of the most recent GPU-based sampling systems named

gSampler [49]. gSampler boasts a matrix-centric API, meaning that the graph data is either

parsed as matrices or tensors throughout every step of the sampling process, so that the

system is able to utilize matrix computation optimizations to reduce performance costs.

Significantly, this design also allows the system to be compatible with a variety of different

sampling algorithms due to the global view of the entire sample that a matrix abstraction

provides. The system uses a generalizable 4-step Extract-Compute-Select-Finalize (ECSF)

programming model to characterize each algorithm. However, one limitation of gSampler

is that it sacrifices performance on certain algorithms in exchange for this generalizability.

Some algorithms such as node2vec [13] that require fine-grained operations are just better

suited with a more customized approach.

2.3 Data Compression

A vital factor in the performance of our implementation is the compression scheme we choose

to implement our data structure with. The better the scheme’s compression ratio, the more

of the graph that can fit onto GPU memory and the less data that must constantly be

transferred between CPU and GPU. Unfortunately, schemes that are better at compressing

23

Figure 2.2: Stream VByte Encoding: (a) Original, uncompressed edge list of 32-bit unsigned integers;
(b) Compressed egdelist using Stream VByte.

are also generally more complex, resulting in a more expensive decoding step. In this section

we look into the different existing compression techniques.

2.3.1 Integer List Compression

One of the compression schemes that we implement performs integer list compression from

Lemire et al. [64], named Stream VByte. Stream VByte is an encoding method that stores

the difference between contiguous neighbors rather than their values. Based on the fact that

most real world graphs demonstrate relative locality between neighbors and their vertex

labels, Stream VByte is well-suited for encoding graphs originally stored in Compressed

Sparse Row (CSR) format. Additionally, the differences are encoded using only as many

bytes as are needed to represent them. The number of bytes taken to encode each delta is

then stored in a fixed number of bits which we call a key. We illustrate how to encode an

edge list originally in CSR form using Stream VByte in Fig. 2.2. In the first chunk of the

edge list, the vertex’s degree is always stored as a 32-bit unsigned integer. The second chunk

then contains our 2-bit keys in sequential bytes and the final chunk contains the actual data

stored as their delta values.

When reconstructing the neighbor set, we first decode the first four bytes to get the degree.

Then using the degree, we can easily calculate the offset to the data pointer since each key is

a fixed length. Continuing with our running example from above, once we get a degree of 6

24

we find that the data starts (6 + 3)//4 bytes away from our key pointer, rounded up to the

nearest byte. At this point we can simply perform prefix sums over the data chunk to get

the neighbor labels. While the computation to recover the data is simple, performing the

decoding sequentially can end up being a bottleneck for vertices with giant degrees. Later

works such as SIMD-BP128* and SIMD-FastPFOR* [65] utilize vectorization over SIMD to

achieve better decompression performance for arrays with billions of integers. Unlike Stream

VByte which encodes the deltas between every contiguous element, the SIMD variations

encode deltas in batches of four because current processors had the capacity to operate on

four 32-bit integers in a single SIMD instruction. SIMD Galloping [66] is another paper that

similarly takes advantage of SIMD vectorization, in this case by combining the unpacking

and prefix sums instructions during decompression.

Most of the techniques to date were created with the intention of being executed on

CPU. Recently, however, there has been growing interest in integer list compression for

GPU optimization. GPU-VByte [67] is the GPU counterpart to the Stream VByte method

described above. In this paper, the main contribution is how the work for compression

and decompression gets balanced among threads. Each thread is assigned to decode a

single element in a block, and once complete a parallel prefix sums is executed over these

thread groups. GPU-VByte boasts impressive decompression speedups of up to 60× its CPU

implementation. Other work balancing models like tile-based integer decompression [68] and

cascading decompression [69] have emerged since then.

2.3.2 Graph Compression

Integer list encoding happens to work well for compressing CSR data, however there are

also compression schemes catered towards graph compression. One of the more well known

techniques is Compressed Graph Representation (CGR) [70]. CGR similarly encodes the

delta value between consecutive neighbors like Stream VByte, but first divides the data into

intervals and residuals. An interval is formed from consecutive neighbors, and residuals are

25

Figure 2.3: CGR Encoding.

any of the remaining neighbors. Fig. 2.3 illustrates the encoding process using the same

Stream VByte example. Once the intervals and residuals are found, they are reshuffled and

encoded using variable length bytes to be next to other intervals or residuals. CGR, being

made for graph compression, takes advantage of vertex locality in graphs such that contiguous

vertices are often neighbors. A scheme with a similar blocking technique to CGR is CGC

[71]. In CGC, the edge list is compressed in chunks like CGR, however to faster access any

neighbor within the edge list CGC comes up with a novel format to store these chunks called

Linear Estimation (LE). LE is a linear function that approximates neighbor IDs using only

three decoded values.

There are many other schemes besides the popular difference encoding schemes that we

have mentioned so far. Ligra+ [72] uses run-length encoded byte codes, storing blocks of

continuous elements that use the same amount of bytes to read. MPLG [73] is a log-encoding

scheme for GPU optimizations which reduces the storage of individual neighbors by removing

leading zero bits. There is also partial-decoding [74] better suited for accessing entire neighbor

lists by decoding CGR encoded graphs into intervals and residuals to use, first introduced

by Ye et al. for the context of graph label propogation. CompressGraph [75] follows a

rule-based encoding scheme. Rule-based encoding finds patterns in graphs that lead to rules

26

with repeated computations, such that these computations can be saved in memory and

reduce the amount of overall intermediate computations necessary when decoding.

2.4 GPU Memory Oversubscription & Data Caching

In response to the low storage capacity of GPU machines, there have been lots of research

done to mitigate expensive data transfers between devices. GMT [76] proposes a new 3-tier

memory hierarchy for GPUs which extends GPU memory to utilize host memory and SSDs

as well in the case of oversubscription. They make many contributions, mainly a GPU-hosted

page access prediction system to handle page evictions between tiers. Previous frameworks

that also combine CPU memory [77]–[79] before GMT deferred data transfers to be handled

by the CPU, which is slow in the case of large simultaneous page faults.

Other solutions to reduce the expensive overhead caused by data migration is to introduce

smart caching techniques. DeepUM [80] is a framework meant for Deep Neural Networks

(DNNs) that also utilizes unified memory but also innovatively exploits the fact that DNNs’

follow the same memory access patterns in a kernel during different training iterations.

Throughout every kernel launch, DeepUM manages correlation tables that remembers a

kernel’s page access history. The framework’s driver can then prefetch pages based on these

correlations. Because DNNs offer some basis of access regularity, there have been lots of

other works for DNNs which offer page caching and prefetching [81]–[83].

27

28

Chapter 3

System Design and Implementation

In this chapter, we present ScaleGPS, a scalable graph sampling framework that leverages

GPU to accelerate sampling on massive-scale graphs. We first give an overview of the

ScaleGPS system in Section 3.1, and then introduce our proposed two main contributions in

ScaleGPS: (1) the hybrid graph compression technique in Section 3.2 and (2) the adaptive

data caching strategy in Section 3.3. Finally, we describe our GPU parallelism strategy,

using k-hop neighbor sampling as an example, to demonstrate the usability of ScaleGPS in

Section 3.4.

3.1 ScaleGPS System Overview

Fig. 3.1 illustrates the general structure of ScaleGPS. We begin with a preprocessing step

that separates the input graph into two subgraphs, Gl and Gh. The first subgraph Gl holds

the neighbor lists of vertices that we define to have a low-degree, while Gh contains the

remaining high-degree neighbor lists. Both subgraphs are also compressed using different

compression schemes. ScaleGPS is a hybrid system that allows unified virtual addressing

(UVA), which is a storage space that permits communication between the CPU and GPU

devices. Prior to the start of using ScaleGPS to run a graph sampling algorithm, we load

Gl onto UVA and copy Gh to GPU’s static cache. We also utilize the GPU’s automatic

29

Figure 3.1: High-level overview of ScaleGPS.

dynamic caching system throughout the program.

For the graph sampling step, the actual computations for graph sampling is done on GPU,

while the CPU is used solely to initiate data transfer. After having loaded the neighbor lists

and any other necessary graph properties into their allocated memory spaces, we can then

execute the graph sampling algorithm.

3.2 Hybrid Graph Data Compression

Figure 3.2: Illustration of how segment prefix are incorporated into a compressed edge list.

In order to leverage the GPU to accelerate graph sampling, we have to first copy the

graph onto the GPU memory. When the graph is large, GPU memory is only able to store

a subset of vertices. We then turn to graph compression techniques in order maximize the

amount of data that can be put onto fast memory. However, there are still two main problems

30

with normal compression schemes as is, which we propose our own solution to.

The first problem is actually due to the nature of k-hop sampling. At any time step i,

we want to sample mi new frontiers from the current frontier t, only we do not know t nor

which mi neighbors of t until step i occurs. This means that when we go to decode the

neighbors of t, we need to have already allocated a buffer of size ∆ to store any possible set

of neighbors sampled from any t, where ∆ is the maximum degree of G. For large graphs

with a huge ∆, they will most likely be out of memory (OoM) just by allocating these buffers.

Our solution is to store the prefix sums of every β neighbors, such that when we decode we

can simply start from the nearest prefix so that the most we need to store at any given time

are the β neighbors before the next prefix sum. To quickly access the queried prefix sum

from the compressed array, we store prefix pointers at the beginning of the array. They work

in the same way as keys do described in Section 2.3.1, storing byte offsets. Fig. 3.2 shows the

arrangement of a compressed edge list using our prefix sums.

Storing prefix sums also helps to solve our second problem, which is simply the fact that

decoding takes time and can slow down performance. With prefix sums, not only is the

auxiliary space we need for decoding capped at O(β) but so is the number of neighbors

needed to decode. By decreasing β, we can decrease the decoding time but at the cost of a

worse compression ratio. Because memory is still a large concern for our system, we only

use prefix sums to compress the higher degree vertices. We call this subgraph Gh for the

high-degrees, and the remainder of the vertices get compressed using a normal scheme into

our low-degree subgraph, Gl. The degree threshold, α, for deciding which vertices belong to

which subgraph is a tuneable parameter we discuss more in our evaluations.

We create Gl and Gh when we first load in the graph, and then deallocate the space from

the original graph afterwards it no longer gets used.

31

3.3 Adaptive Graph Data Caching

Even after compression, graphs with hundreds of billions of edges will still need to be at least

partially moved onto the UVA space. We design ScaleGPS such that the vertices we expect

to be accessed the most frequently are the ones we prioritize caching into memory. While

we can never exactly predict which frontiers will be sampled beforehand, we can make an

educated guess using the degrees of vertices. It is a well known fact that almost all real world

graphs follow the power distribution law [84],[85], which states that only a small subset of

vertices account for most of the graph’s edges. With this in mind, we can expect that these

well connected vertices get accessed the most and that we can save the most data movement

between devices by directly caching them onto the GPU.

Thus, our construction follows that we load as many vertices as possible onto GPU in

order of decreasing degree before running any algorithms. The remaining vertices make up Gl

which we store on UVA. Although the power law also tells us that this would end up putting

a majority of the graph onto UVA, we do this with the expectations that communication

overhead should still be tolerable because of the inherent small amount of neighbors these

vertices have. Prior to sampling, we also launch a warm-up kernel to move some vertices

from UVA onto GPU’s fast cache. The warm-up kernel performs a simple read and write for

all initial low-degree vertex neighbor lists to decrease the number of immediate cache misses

at the start of our execution.

3.4 GPU Parallelization Scheme for Graph Sampling

With our new subgraphs, we now describe how to use ScaleGPS to implement differ-

ent graph sampling algorithms. The main modification to any algorithm would be that

we now pass in two graphs instead of one. In order to sample from each graph accord-

ingly, we need to keep track of our new parameters α and β. We use α to decide which

32

Algorithm 2 ScaleGPS k-hop (Single Sample)
1: Input CompressedGraph Gl, Gh, Int α, Int β
2: Output vector<Vertex> sampled frontiers in order
3: procedure khop_samples_by_warp
4: frontiers := vector<Vertex> of size total frontiers to be sampled
5: Enter initial frontiers into head of frontiers
6: prev_step_size := number of initial frontiers
7: for step = 0 to N do
8: for oldt_idx = 0 to prev_step_size do
9: oldt = frontiers [oldt_idx]

10: int oldt_degree := Get outgoing degree of oldt
11: buffer := vector<Vertex> of size α
12: if oldt_degree < α then
13: Gl.decode_vbyte_warp(oldt, buffer)
14: for t_idx = 0 to fanoutstep do
15: int n_idx = Get random index between 0 and oldt_degree
16: if oldt_degree < α then
17: Vertex new_t := buffer [n_idx]
18: else
19: Vertex new_t := Gh.decode_vbyte_prefixes(oldt, n_idx, β)
20: frontiers [t_idx] = new_t
21: prev_step_size *= fanout
22: return frontiers

graph the vertex belongs to, and β for decoding the compressed prefix sums using the

correct interval. We also introduce two new functions, decode_vbyte_warp and de-

code_vbyte_prefixes. decode_vbyte_warp decodes our base compression scheme

normally, while decode_vbyte_prefixes is modified to be able to read our prefix pointers

and decoding from there.

In Algorithm 2, we demonstrate the pseudocode for applying ScaleGPS to k-hop on

a single warp. In lines 7-21 we perform k-hop sampling in order of its steps. We allocate

buffer space for decoding neighbors from Gl at lines 11-13. Then, if the the current frontier

has degree less than α, we pick our new frontier from Gl else from Gh. For every frontier

in the warp at each step, we repeat this sampling process for the fanout size. Comparing

the pseudocode to Algorithm 1, we only add a few more branches for checks. Incorporating

existing sampling algorithms is easy with ScaleGPS, since the logic of the algorithm need

33

Figure 3.3: Work is divided between samples in ScaleGPS.

not change.

To avoid warp divergence during sampling, we adopt sample parallelism [55] for our work

balancing strategy. Each warp is assigned a single sample for the entirety of the algorithm,

and each warp also only works on sampling one frontier from its set of current frontiers at a

time. For the low-degree subgraph, we achieve this by having each thread decode a single

neighbor delta from the compressed array. Then after syncing all of the threads within the

warp, we perform a parallel prefix sums to recover each neighbor. For the higher degree

subgraph, we parallelize threads over fanout size. We include an illustration in Fig. 3.3, where

for example at step 1, Warp 0 would sample from 2 and 5 sequentially. We do note that if

the fanout size is less than the warp size, this could cause wasted parallelism since not all

threads are used. However, we make this tradeoff so that threads within a warp can share

the same neighbors and reduce repetitive decoding.

34

Chapter 4

Experimental Results

In this chapter, we first describe the experimental setup in Section 4.1. We then compare the

sampling performance with the baseline implementations on CPU and GPU in Section 4.2.

Finally we conduct an ablation study in Section 4.3 to show the performance impact of our

proposed mechanisms. The artifact of our evaluation can be found in Appendix A.

4.1 Experimental Setup

All of our GPU experiments are performed on a single Nvidia A100 GPU 80GB machine

with 256GB DDR4-3200MHz RAM (from an Intel Xeon Gold Icy Lake 6338 CPU) while

our CPU-only experiments are run on an Intel Xeon Gold Cascade Lake 6248R with 1.5TB

DDR4-2933MHz RAM. To benchmark the performance of our hybrid CPU-GPU approach,

we implemented an optimized CPU k-hop sampling algorithm parallelized across 48 cores. We

also implemented two other baseline GPU solutions, one that takes the original uncompressed

graphs as input and another that uses VByte compression without our prefix sums modification.

The goal efficiency was that our implementation would outperform the CPU implementation

and only experience slight slowdowns compared to the other GPU versions. The datasets

that we chose to test on are shown in Table 4.1. We carefully selected this set of graphs

to include both small datasets that fit into GPU memory as well as large datasets which

35

Dataset |V| |E| Max Degree CSR Size

livej 4,847,571 85,702,474 20,333 327MB
orkut 3,072,441 234,370,166 33,313 895MB

twitter40 41,652,230 2,405,026,092 2,997,487 9.0G
friendster 65,608,366 3,612,134,270 5,214 14G
uk2007 105,896,435 6,603,753,128 975,419 25G

mag240m 121,751,666 2,595,497,852 242,655 9.7G
gsh-2015 988,490,691 51,381,410,236 58,860,305 192G
clueweb12 978,407,686 74,744,358,622 75,611,696 279G
uk-2014 787,801,471 84,928,431,100 8,605,492 317G

Table 4.1: Description of graphs used in our evaluation.

Dataset CPU
(48-core)

GPU
in-memory

GPU
UVA

ScaleGPS
(Low on UVA)

ScaleGPS
(Cached)

ScaleGPS
(All on UVA)

livej 26.8 0.911 42.2 18.2 2.02 34.6
orkut 30.8 0.906 110.2 10.1 3.13 73.4

twitter40 110.7 0.902 713.7 175.3 3.57 721.1
friendster 125.4 0.964 855.8 229.6 3.42 1,455
uk2007 52.3 0.935 1090.4 361.2 3.06 1,558

mag240m 207.3 0.818 677.2 419.3 2.23 1,278
gsh-2015 102.1 OoM 19,622 5,612 5,746 8,751
clueweb12 61.7 OoM 35,093 9,581 9,529 13,566
uk-2014 507.0 OoM 23,547 12,286 12,412 10,463

Table 4.2: Time (ms) taken for k-hop sampling using different schemes, blanks are out of RAM.

typically run out of memory in only-GPU solutions.

Note that for any experiments running k-hop sampling, we use parameters N = 2,

b = 40, 000, and m0,m1 = {25, 10}. We include Table 4.3 for additional experiments run on

a different set of parameters as well.

4.2 Overall Sampling Performance

4.2.1 Comparison with CPU Implementation

The motivation of this thesis stems from wanting to leverage the compute powers of a GPU

for large graphs that would normally exist on CPU. So at the bare minimum we expect

ScaleGPS to outperform the fastest CPU implementation. To compare our results, we

implemented an optimized, parallel CPU k-hop solution that follows the sample parallelism

36

Dataset CPU
(48-core)

GPU
in-memory

GPU
UVA

ScaleGPS
(Cached)

livej 40.5 2.60 43.9 14.4
orkut 59.5 2.63 115.4 18.2

twitter40 72.2 2.73 1,059 17.7
friendster 75.1 2.76 1,191 20.6
uk2007 73.1 2.79 1,386 15.7

mag240m 46.8 2.32 892.9 17.6
gsh-2015 227.7 OoM – 53,169
clueweb12 137.6 OoM – 162,419
uk-2014 367.0 OoM – 197,356

Table 4.3: Time (ms) taken for k-hop sampling (N = 3, b = 40, 000, m = {15, 10, 5}) using different
schemes.

technique described in NextDoor [55]. Table 4.2 shows the speed of our different solutions.

Our three largest graphs, gsh-2015, clueweb12, and uk-2014 were our main areas of interest

since none of them fit into GPU memory (>80GB) even when using any of the compression

schemes. Unfortunately, we see that ScaleGPS actually poses slowdown for these large

graphs. Even when caching as many vertices as possible by copying the high-degree graph to

GPU memory and reading the low-degree data into dynamic cache before sampling, we see

between a 24.4× to 154× slowdown. This is largely due to the fact that a lot of the data still

resides on CPU. For our largest graph uk-2014, we still end up being almost 60GB over the

GPU’s memory capacity, which is why our pre-fetching ends up showing little to no impact.

On the other hand, a secondary goal we had for ScaleGPS was that we did not want our

small datasets to suffer from optimizations catered towards larger inputs either. In our tests,

we do find significant speedups for all of the graphs that can originally fit into GPU memory

without compression. The smallest graph, livej, still demonstrated 13.3× speedup over CPU,

and on average all of these graphs had 33.4× the speedup. This was the case when we used

prefetching to dynamically cache the entire low-degree neighbor lists. Without prefetching,

we only saw between 0.14×−3.06× speedup to CPU, with performance decreasing as the

graphs grew larger.

37

4.2.2 Comparison with GPU Implementations

In this final section we compare ScaleGPS to other GPU solutions that do not involve any

sort of compression or special scheme. As a benchmark, we implemented an in-GPU-memory

solution and an on-UVA solution. As expected, we ran into OoM kills when trying to sample

gsh-2015, clueweb12, and uk-2014 in-memory. When this happens, an easy alternative is to

simply move the graph onto UVA and to move pieces of data to the device as needed. We

show that this is an undesirable method, however. For the big graphs that did OoM, we see

46×−568× slowdown from moving the uncompressed graph to UVA compared to the CPU

version. Compared to the uncompressed UVA implementation, ScaleGPS still reports up

to a 3.6× speedup.

Unlike the comparison to our CPU version, we observe that ScaleGPS when fully cached

shows slowdown for the small graphs compared to running k-hop sampling on uncompressed

the in-memory GPU solution. ScaleGPS observes 2.22×−3.96× slowdown compared to

the in-memory implementation but 20.9×−356.6× speedup compared to the UVA one. This

is unsurprising however, since the added decompression time is the trade off we make for

being able to store the graphs in-memory. So for small graphs that already previously fit

in-memory, we lose any new benefits from compression or from moving onto UVA.

4.3 Ablation Study

4.3.1 Performance Effect of Segment Prefix

The next part of our preliminary research involved testing to see the effect of adding segment

prefix to our compression scheme in practice. Table 4.4 shows the speedups achieved

by incorporating segment prefix into Stream VByte during k-hop sampling. The main

achievement we see here is that decoding from the nearest prefix balances the workload

between each warp rather evenly. On the contrary, without a segment prefix each warp can

38

Dataset VByte VByte w/
Pref. Sums

livej 16.6 2.05
orkut 71.1 3.11

twitter40 14,300 3.59
friendster 33.4 3.42
uk2007 8,900 3.07

mag240m 2,060 2.25

Table 4.4: Time (ms) taken for k-hop sampling using normal VByte compression versus VByte
compressed with prefix sums.

Dataset VByte Comp.
Ratio

CGR Comp.
Ratio

VByte
Speedup

livej ×0.73 ×0.72 ×2.53
orkut ×0.56 ×0.63 ×1.81

twitter40 ×0.54 ×0.53 ×1.53
friendster ×0.69 ×0.79 ×1.08
uk2007 ×0.35 ×0.26 ×1.01

gsh-2015 ×0.51 ×0.41 –
clueweb12 ×0.45 ×0.32 –
uk-2014 ×0.41 ×0.24 –

Table 4.5: Comparison between CGR and VByte. Lists decompression ratios compared to CSR
format and speedup of VByte over CGR decompression by thread.

take work ranging from between the graph’s minimum degree and the graph’s maximum

degree. To quantify, the table shows an almost 9,000 ms difference in sampling using normal

VByte on the slowest executing graph and the fastest executing one. Using prefixes drops

this number to 1.54 ms. Therefore we demonstrate the scalability of using segment prefix

and justify the extra memory needed to store them.

4.3.2 Performance Effect of Various Compression Schemes

Lastly for our preliminary research we ran experiments comparing CGR [70] and Stream

VByte [64] compression. We looked at the two schemes in the contexts of compression power

and decompression efficiency. The first condition is important for minimizing communication

overhead while the second makes sure that compression remains useful at all. We present the

compression ratios for multiple real world graphs and their decompression times that we will

39

Dataset l Low Grp. (GB) Low Grp. |V| Pref. Grp. (GB) Pref. Grp. |V|

livej 32 0.12 4,194,409 0.13 653,162
orkut 32 0.06 1,184,290 0.50 1,888,151

twitter40 32 1.10 31,827,777 4.31 41652230
friendster 32 1.40 45,270,115 9.00 20,338,251
uk2007 32 2.30 68,995,952 9.53 36,900,483

mag240m 32 2.40 96,969,738 6.25 24,781,928.00
gsh-2015 64 41.30 733,060,968 63.63 255,429,723
clueweb12 128 63.28 884,042,998 72.31 94,364,688
uk-2014 256 66.70 748,593,297 73.71 39,208,174

Table 4.6: Description of graph partitions.

use in Table 4.5. While compression ratios for both schemes will always vary from graph to

graph, in general we see that CGR does better than Stream VByte for larger graphs. For

the small graphs with less neighbors per vertex, the intervals are likely smaller as well which

makes the extra interval encodings less beneficial. Based on this information, we opted to

use Stream VByte to encode the low-degree group.

Additionally, when running k-hop sampling we found that CGR’s slower decompression

times either canceled out or completely outweighed its in-memory benefits in every case. We

were unable to test the speedup against larger graphs because of OoM, but for the smaller

graphs Stream VByte was up to ×2.53 faster. This observation led us to believe that it would

be more advantageous to use Stream VByte as our means of compression for the high-degree

group as well. Its simple structure makes it easier to store and fetch prefix sums for this

group in particular and its decoding time is faster.

4.3.3 Effect of Various Caching Policies

Even after compression, the largest graphs in our test suite surpass the size constraints of

GPU memory meaning that some of the graph would still need to be in CPU memory. Thus,

we need a strategic caching policy to minimize communication overhead. We wished to

identify which vertices get accessed the most, since these are also the vertices that would

benefit the most from fast caching. Lesser accessed vertices would then live on UVA.

40

(a) livej (b) orkut

Figure 4.1: Relating vertex degree to how many times it gets sampled in a round of k-hop sampling.

In Fig. 4.1, we look at the effect of a vertex’s degree size on how often the vertex gets

accessed during a round of k-hop sampling for two of our graphs. Our plots show that both

examples illustrate a mostly linear relationship between the two variables. This matches our

expectations because real world graphs typically follow the power law distribution [85]. Thus,

while there are lots more low-degree vertices, their accesses are distributed among them while

the few vertices with the highest degrees repeatedly get sampled by their many neighbors.

For the remainder of the experiments we then choose to store the low-degree neighbor lists in

UVA while the remaining vertices are copied cached into GPU memory.

The value for α is chosen to maximize GPU memory usage. We start with α = 32, and

depending on the graph size increment α by 32 until all of the higher degree neighbor lists is

able to fit onto GPU. We choose to increment by 32 (warp size) to maximize parallelism when

sampling from the low-degree group which does decompression by warp. The partitioning

information is reported in Table 4.6. The table shows that most vertices reside in the

low-degree group in UVA, but from this ablation study we believed that each of these vertices

individually would not be frequently accessed.

However, during our performance evaluations we realized that even single time accesses to

data on the host are extremely costly. In Table 4.2, we provide three versions of ScaleGPS:

one where the data fully resides in UVA, one where only the low-degree neighbor lists resides in

UVA, and another where we attempt to fully cache both groups onto GPU by pre-fetching the

41

low-degree neighbor lists before sampling. When on UVA, the small graphs only experience a

single miss when read for the first time and then remain cached in memory for the remainder

of the algorithm. Yet we still observe that the UVA version showed up to 573.4× slowdown

in these cases, meaning that a difference of one in the number of misses per vertex is still

extremely significant. As is, our caching methods are unable to negate this latency from

transferring data.

42

Chapter 5

Future Work

There are many improvements we can make to ScaleGPS, as well as multiple extensions

that we would like to add to make it a more complete framework. We outline some of the

possibilities in this chapter.

5.1 Different Graph Compression Techniques

By the end of our experiments, we were unable to obtain the speedups over CPU that we

originally sought after. However, based on our ablation studies and failures, we still believe

that the underlying principle for ScaleGPS of combining graph compression techniques with

adaptive caching can help us to create a fast GPU solution. The first direction of change we

would make to ScaleGPS is to implement a more powerful compression scheme than Stream

VByte. After seeing the results in Section 4.3.3, where a single cache miss per vertex slows

the algorithm down by more than a hundred fold, we realize now that our trade off between

compression ratio and decompression time was too imbalanced. One option is to use CGR

[70] which we originally were considering as well, or one of the other schemes mentioned in

Section 2.3.2. Alternatively, we could also go down the route of incorporating more complex

caching. For example, vertices frequently get resampled both within the same sample and

different samples across every step. Storing intermediate computations like CompressGraph

43

[75] does would save effort and reduce the number of memory accesses required.

5.2 Generic Sampling Framework

Currently, ScaleGPS has only been tested to support k-hop sampling. To become a more

comprehensive framework with support for a variety of different graph sampling algorithms,

we intend to create a generic API such as NextDoor’s [55]. This includes allowing user-defined

functions and parameter tuning, so that ideally users would need minimal involvmement in

the backend coding.

5.3 CPU-GPU Co-sampling

Outside of using the CPU for overflow storage, we did not consider other forms of a CPU-

GPU cooperative system. A very recent work published at the time of this paper introduces

CGgraph [86], an alternative hybrid CPU-GPU solution which also offloads work onto the

CPU as well. The idea behind CGgraph is similar to ScaleGPS, in that their first step

uploads a dense subgraph that contains vertices expected to be frequently accessed onto

GPU. However, to combat the problem of slow unified memory data transfer that we ran into

when accessing vertices not in this subgraph, CGgraph opts to do part of the sampling on

CPU instead. It would be worthwhile to try making ScaleGPS a CPU-GPU heterogenous

system while still utilizing graph compression.

44

Chapter 6

Conclusion

In this thesis, we aimed to create a graph sampling system that takes advantage of GPU

accelerators while overcoming the classic problem of GPU memory over-subscription. Our

system ScaleGPS attempted to do so by creating a hybrid graph compression strategy

paired with data caching. Although we did not obtain the speedups we wanted for large

graphs in specific, our preliminary results show great potential for improvement. The smaller

graphs we tested on were still able to benefit up to 93× over a state-of-the-art parallel

CPU solution, and we were able to isolate the bottleneck of our implementation to be the

memory accesses from our low-degree neighbor lists on UVA. With more testing and better

compression methods, ScaleGPS can become a powerful graph sampling tool in the future.

45

46

Appendix A

Artifact

Abstract

This artifact appendix helps the readers reproduce the main evaluation results of ScaleGPS.

Scope

The artifact can be used for evaluating and reproducing the main results of the thesis,
including Table 4.2, Table 4.3, Table 4.4, Table 4.5, and Table 4.6, in Section 4.2 and
Section 4.3.

Contents

The details of the contained code and how to run ScaleGPS are described at
https://github.com/chenxuhao/GraphAIBench/blob/mjcai/src/compressing/README.md.

Hosting

The source code of this artifact can be found at
https://github.com/chenxuhao/GraphAIBench/tree/mjcai.

Requirements

Hardware dependencies
This artifact depends on an 80GB Nvidia A100 GPU with a 256GB DDR4-3200MHz Intel

CPU.
Software dependencies

This artifact requires CUDA 11.8.0 and GCC 11.2.0 or greater.

47

https://github.com/chenxuhao/GraphAIBench/blob/mjcai/src/compressing/README.md
https://github.com/chenxuhao/GraphAIBench/tree/mjcai

48

References

[1] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec, “Graph
convolutional neural networks for web-scale recommender systems,” in Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, ser. KDD ’18, London, United Kingdom: Association for Computing Machinery,
2018, pp. 974–983, isbn: 9781450355520. doi: 10.1145/3219819.3219890. url: https:
//doi.org/10.1145/3219819.3219890.

[2] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin, “Graph neural networks
for social recommendation,” in The world wide web conference, 2019, pp. 417–426.

[3] S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan, “Session-based recommendation
with graph neural networks,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 33, 2019, pp. 346–353.

[4] A. Strokach, D. Becerra, C. Corbi-Verge, A. Perez-Riba, and P. M. Kim, “Fast and
flexible protein design using deep graph neural networks,” Cell systems, vol. 11, no. 4,
pp. 402–411, 2020.

[5] M. Zitnik, M. Agrawal, and J. Leskovec, “Modeling polypharmacy side effects with graph
convolutional networks,” Bioinformatics, vol. 34, no. 13, pp. i457–i466, Jun. 2018, issn:
1367-4803. doi: 10.1093/bioinformatics/bty294. eprint: https://academic.oup.com/
bioinformatics/article-pdf/34/13/i457/50316205/bioinformatics_34_13_i457.pdf.
url: https://doi.org/10.1093/bioinformatics/bty294.

[6] M. Weber, G. Domeniconi, J. Chen, D. K. I. Weidele, C. Bellei, T. Robinson, and C. E.
Leiserson, “Anti-money laundering in bitcoin: Experimenting with graph convolutional
networks for financial forensics,” arXiv preprint arXiv:1908.02591, 2019.

[7] D. Wang, J. Lin, P. Cui, Q. Jia, Z. Wang, Y. Fang, Q. Yu, J. Zhou, S. Yang, and Y. Qi,
“A semi-supervised graph attentive network for financial fraud detection,” in 2019 IEEE
International Conference on Data Mining (ICDM), IEEE, 2019, pp. 598–607.

[8] Y. Dou, Z. Liu, L. Sun, Y. Deng, H. Peng, and P. S. Yu, “Enhancing graph neural
network-based fraud detectors against camouflaged fraudsters,” in Proceedings of the
29th ACM international conference on information & knowledge management, 2020,
pp. 315–324.

[9] P. Reiser, M. Neubert, A. Eberhard, L. Torresi, C. Zhou, C. Shao, H. Metni, C. van
Hoesel, H. Schopmans, T. Sommer, et al., “Graph neural networks for materials science
and chemistry,” Communications Materials, vol. 3, no. 1, p. 93, 2022.

49

https://doi.org/10.1145/3219819.3219890
https://doi.org/10.1145/3219819.3219890
https://doi.org/10.1145/3219819.3219890
https://doi.org/10.1093/bioinformatics/bty294
https://academic.oup.com/bioinformatics/article-pdf/34/13/i457/50316205/bioinformatics_34_13_i457.pdf
https://academic.oup.com/bioinformatics/article-pdf/34/13/i457/50316205/bioinformatics_34_13_i457.pdf
https://doi.org/10.1093/bioinformatics/bty294

[10] Y.-J. Lu and C.-T. Li, “GCAN: Graph-aware co-attention networks for explainable
fake news detection on social media,” in Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, D. Jurafsky, J. Chai, N. Schluter, and J.
Tetreault, Eds., Online: Association for Computational Linguistics, Jul. 2020, pp. 505–
514. doi: 10.18653/v1/2020.acl-main.48. url: https://aclanthology.org/2020.acl-
main.48.

[11] A. Mirhoseini, A. Goldie, M. Yazgan, J. W. Jiang, E. Songhori, S. Wang, Y.-J. Lee,
E. Johnson, O. Pathak, A. Nazi, et al., “A graph placement methodology for fast chip
design,” Nature, vol. 594, no. 7862, pp. 207–212, 2021.

[12] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social repre-
sentations,” in Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’14, New York, New York, USA:
Association for Computing Machinery, 2014, pp. 701–710, isbn: 9781450329569. doi:
10.1145/2623330.2623732. url: https://doi.org/10.1145/2623330.2623732.

[13] A. Grover and J. Leskovec, Node2vec: Scalable feature learning for networks, 2016.
arXiv: 1607.00653 [cs.SI].

[14] W. L. Hamilton, R. Ying, and J. Leskovec, Inductive representation learning on large
graphs, 2018. arXiv: 1706.02216 [cs.SI].

[15] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Graphsaint: Graph
sampling based inductive learning method,” in International Conference on Learning
Representations, 2020. url: https://openreview.net/forum?id=BJe8pkHFwS.

[16] D. Zou, Z. Hu, Y. Wang, S. Jiang, Y. Sun, and Q. Gu, Layer-dependent importance
sampling for training deep and large graph convolutional networks, 2019. arXiv: 1911.
07323 [cs.LG].

[17] J. Chen, T. Ma, and C. Xiao, Fastgcn: Fast learning with graph convolutional networks
via importance sampling, 2018. arXiv: 1801.10247 [cs.LG].

[18] A. P. Iyer, Z. Liu, X. Jin, S. Venkataraman, V. Braverman, and I. Stoica, “Asap:
Fast, approximate graph pattern mining at scale,” in Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation, ser. OSDI’18, Carlsbad,
CA, USA: USENIX Association, 2018, pp. 745–761, isbn: 978-1-931971-47-8. url:
http://dl.acm.org/citation.cfm?id=3291168.3291224.

[19] Z. Zhu, K. Wu, and Z. Liu, “Arya: Arbitrary graph pattern mining with decomposition-
based sampling,” in Proceedings of the 20th USENIX Symposium on Networked Systems
Design and Implementation, ser. NSDI’23, 2023.

[20] L. S. Buriol, G. Frahling, S. Leonardi, A. Marchetti-Spaccamela, and C. Sohler, “Count-
ing triangles in data streams,” in Proceedings of the Twenty-Fifth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, ser. PODS ’06,
Chicago, IL, USA: Association for Computing Machinery, 2006, pp. 253–262, isbn:
1595933182. doi: 10.1145/1142351.1142388. url: https://doi.org/10.1145/1142351.
1142388.

50

https://doi.org/10.18653/v1/2020.acl-main.48
https://aclanthology.org/2020.acl-main.48
https://aclanthology.org/2020.acl-main.48
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732
https://arxiv.org/abs/1607.00653
https://arxiv.org/abs/1706.02216
https://openreview.net/forum?id=BJe8pkHFwS
https://arxiv.org/abs/1911.07323
https://arxiv.org/abs/1911.07323
https://arxiv.org/abs/1801.10247
http://dl.acm.org/citation.cfm?id=3291168.3291224
https://doi.org/10.1145/1142351.1142388
https://doi.org/10.1145/1142351.1142388
https://doi.org/10.1145/1142351.1142388

[21] R. Pagh and C. E. Tsourakakis, “Colorful triangle counting and a mapreduce implemen-
tation,” Inf. Process. Lett., vol. 112, no. 7, pp. 277–281, Mar. 2012, issn: 0020-0190.
doi: 10.1016/j.ipl.2011.12.007. url: https://doi.org/10.1016/j.ipl.2011.12.007.

[22] C. E. Tsourakakis, P. Drineas, E. Michelakis, I. Koutis, and C. Faloutsos, “Spectral count-
ing of triangles via element-wise sparsification and triangle-based link recommendation,”
Social Network Analysis and Mining, vol. 1, pp. 75–81, 2011.

[23] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos, “Doulion: Counting triangles
in massive graphs with a coin,” in Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’09, Paris, France:
ACM, 2009, pp. 837–846, isbn: 978-1-60558-495-9. doi: 10.1145/1557019.1557111. url:
http://doi.acm.org/10.1145/1557019.1557111.

[24] A. Pavan, K. Tangwongsan, S. Tirthapura, and K.-L. Wu, “Counting and sampling
triangles from a graph stream,” Proc. VLDB Endow., vol. 6, no. 14, pp. 1870–1881, Sep.
2013, issn: 2150-8097. doi: 10.14778/2556549.2556569. url: https://doi.org/10.14778/
2556549.2556569.

[25] A. Turk and D. Turkoglu, “Revisiting wedge sampling for triangle counting,” in The
World Wide Web Conference, ser. WWW ’19, San Francisco, CA, USA: Association
for Computing Machinery, 2019, pp. 1875–1885, isbn: 9781450366748. doi: 10.1145/
3308558.3313534. url: https://doi.org/10.1145/3308558.3313534.

[26] S. K. Bera and C. Seshadhri, “How to count triangles, without seeing the whole graph,”
in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, ser. KDD ’20, Virtual Event, CA, USA: Association for
Computing Machinery, 2020, pp. 306–316, isbn: 9781450379984. doi: 10.1145/3394486.
3403073. url: https://doi.org/10.1145/3394486.3403073.

[27] J. Y. Chen, T. Eden, P. Indyk, H. Lin, S. Narayanan, R. Rubinfeld, S. Silwal, T. Wagner,
D. Woodruff, and M. Zhang, “Triangle and four cycle counting with predictions in
graph streams,” in International Conference on Learning Representations, 2022. url:
https://openreview.net/forum?id=8in_5gN9I0.

[28] N. K. Ahmed, N. Duffield, J. Neville, and R. Kompella, “Graph sample and hold:
A framework for big-graph analytics,” in Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ser. KDD ’14, New
York, New York, USA: Association for Computing Machinery, 2014, pp. 1446–1455,
isbn: 9781450329569. doi: 10.1145/2623330.2623757. url: https://doi.org/10.1145/
2623330.2623757.

[29] X. Ye, R.-H. Li, Q. Dai, H. Chen, and G. Wang, “Lightning fast and space efficient
k-clique counting,” in Proceedings of the ACM Web Conference 2022, ser. WWW ’22,
Virtual Event, Lyon, France: Association for Computing Machinery, 2022, pp. 1191–
1202, isbn: 9781450390965. doi: 10.1145/3485447.3512167. url: https://doi.org/10.
1145/3485447.3512167.

[30] J. Shi, L. R. Huang, and J. Shun, “Parallel five-cycle counting algorithms,” ACM J.
Exp. Algorithmics, vol. 27, Oct. 2022, issn: 1084-6654. doi: 10.1145/3556541. url:
https://doi.org/10.1145/3556541.

51

https://doi.org/10.1016/j.ipl.2011.12.007
https://doi.org/10.1016/j.ipl.2011.12.007
https://doi.org/10.1145/1557019.1557111
http://doi.acm.org/10.1145/1557019.1557111
https://doi.org/10.14778/2556549.2556569
https://doi.org/10.14778/2556549.2556569
https://doi.org/10.14778/2556549.2556569
https://doi.org/10.1145/3308558.3313534
https://doi.org/10.1145/3308558.3313534
https://doi.org/10.1145/3308558.3313534
https://doi.org/10.1145/3394486.3403073
https://doi.org/10.1145/3394486.3403073
https://doi.org/10.1145/3394486.3403073
https://openreview.net/forum?id=8in_5gN9I0
https://doi.org/10.1145/2623330.2623757
https://doi.org/10.1145/2623330.2623757
https://doi.org/10.1145/2623330.2623757
https://doi.org/10.1145/3485447.3512167
https://doi.org/10.1145/3485447.3512167
https://doi.org/10.1145/3485447.3512167
https://doi.org/10.1145/3556541
https://doi.org/10.1145/3556541

[31] S.-V. Sanei-Mehri, A. E. Sariyuce, and S. Tirthapura, “Butterfly counting in bipar-
tite networks,” in Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, ser. KDD ’18, London, United Kingdom:
Association for Computing Machinery, 2018, pp. 2150–2159, isbn: 9781450355520. doi:
10.1145/3219819.3220097. url: https://doi.org/10.1145/3219819.3220097.

[32] E. R. Elenberg, K. Shanmugam, M. Borokhovich, and A. G. Dimakis, “Beyond triangles:
A distributed framework for estimating 3-profiles of large graphs,” in Proceedings of the
21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
ser. KDD ’15, Sydney, NSW, Australia: ACM, 2015, pp. 229–238, isbn: 978-1-4503-3664-
2. doi: 10.1145/2783258.2783413. url: http://doi.acm.org/10.1145/2783258.2783413.

[33] M. Jha, C. Seshadhri, and A. Pinar, “Path sampling: A fast and provable method
for estimating 4-vertex subgraph counts,” in Proceedings of the 24th International
Conference on World Wide Web, ser. WWW ’15, Florence, Italy: International World
Wide Web Conferences Steering Committee, 2015, pp. 495–505, isbn: 978-1-4503-3469-3.
doi: 10.1145/2736277.2741101. url: https://doi.org/10.1145/2736277.2741101.

[34] G. M. Slota and K. Madduri, “Fast approximate subgraph counting and enumeration,”
in 2013 42nd International Conference on Parallel Processing, 2013, pp. 210–219. doi:
10.1109/ICPP.2013.30.

[35] M. A. Bhuiyan, M. Rahman, M. Rahman, and M. Al Hasan, “Guise: Uniform sampling
of graphlets for large graph analysis,” in 2012 IEEE 12th International Conference on
Data Mining, 2012, pp. 91–100. doi: 10.1109/ICDM.2012.87.

[36] M. Bressan, F. Chierichetti, R. Kumar, S. Leucci, and A. Panconesi, “Motif counting
beyond five nodes,” ACM Trans. Knowl. Discov. Data, vol. 12, no. 4, 48:1–48:25, Apr.
2018, issn: 1556-4681. doi: 10.1145/3186586. url: http://doi.acm.org/10.1145/3186586.

[37] M. Bressan, S. Leucci, and A. Panconesi, “Motivo: Fast motif counting via succinct color
coding and adaptive sampling,” Proc. VLDB Endow., vol. 12, no. 11, pp. 1651–1663,
Jul. 2019, issn: 2150-8097. doi: 10.14778/3342263.3342640. url: https://doi.org/10.
14778/3342263.3342640.

[38] M. Bressan, F. Chierichetti, R. Kumar, S. Leucci, and A. Panconesi, “Counting graphlets:
Space vs time,” in Proceedings of the Tenth ACM International Conference on Web
Search and Data Mining, ser. WSDM ’17, Cambridge, United Kingdom: ACM, 2017,
pp. 557–566, isbn: 978-1-4503-4675-7. doi: 10 .1145/3018661.3018732. url: http:
//doi.acm.org/10.1145/3018661.3018732.

[39] K. Paramonov, D. Shemetov, and J. Sharpnack, “Estimating graphlet statistics via lift-
ing,” in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, ser. KDD ’19, Anchorage, AK, USA: Association for Comput-
ing Machinery, 2019, pp. 587–595, isbn: 9781450362016. doi: 10.1145/3292500.3330995.
url: https://doi.org/10.1145/3292500.3330995.

[40] P. Wang, J. C. S. Lui, B. Ribeiro, D. Towsley, J. Zhao, and X. Guan, “Efficiently
estimating motif statistics of large networks,” ACM Trans. Knowl. Discov. Data, vol. 9,
no. 2, Sep. 2014, issn: 1556-4681. doi: 10.1145/2629564. url: https://doi.org/10.1145/
2629564.

52

https://doi.org/10.1145/3219819.3220097
https://doi.org/10.1145/3219819.3220097
https://doi.org/10.1145/2783258.2783413
http://doi.acm.org/10.1145/2783258.2783413
https://doi.org/10.1145/2736277.2741101
https://doi.org/10.1145/2736277.2741101
https://doi.org/10.1109/ICPP.2013.30
https://doi.org/10.1109/ICDM.2012.87
https://doi.org/10.1145/3186586
http://doi.acm.org/10.1145/3186586
https://doi.org/10.14778/3342263.3342640
https://doi.org/10.14778/3342263.3342640
https://doi.org/10.14778/3342263.3342640
https://doi.org/10.1145/3018661.3018732
http://doi.acm.org/10.1145/3018661.3018732
http://doi.acm.org/10.1145/3018661.3018732
https://doi.org/10.1145/3292500.3330995
https://doi.org/10.1145/3292500.3330995
https://doi.org/10.1145/2629564
https://doi.org/10.1145/2629564
https://doi.org/10.1145/2629564

[41] Z. Zhao, M. Khan, V. S. A. Kumar, and M. V. Marathe, “Subgraph enumeration in
large social contact networks using parallel color coding and streaming,” in 2010 39th
International Conference on Parallel Processing, 2010, pp. 594–603. doi: 10.1109/ICPP.
2010.67.

[42] N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. C. Sahinalp, “Biomolecular
network motif counting and discovery by color coding,” Bioinformatics, vol. 24, no. 13,
pp. i241–i249, 2008.

[43] M. Bressan, “Efficient and near-optimal algorithms for sampling connected subgraphs,”
in Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
ser. STOC 2021, Virtual, Italy: Association for Computing Machinery, 2021, pp. 1132–
1143, isbn: 9781450380539. doi: 10.1145/3406325.3451042. url: https://doi.org/10.
1145/3406325.3451042.

[44] M. Kuramochi and G. Karypis, “Grew-a scalable frequent subgraph discovery algorithm,”
in Proceedings of the Fourth IEEE International Conference on Data Mining, ser. ICDM
’04, USA: IEEE Computer Society, 2004, pp. 439–442, isbn: 0769521428.

[45] G. Preti, G. De Francisci Morales, and M. Riondato, “Maniacs: Approximate mining
of frequent subgraph patterns through sampling,” in Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, ser. KDD ’21, Virtual
Event, Singapore: Association for Computing Machinery, 2021, pp. 1348–1358, isbn:
9781450383325. doi: 10.1145/3447548.3467344. url: https://doi.org/10.1145/3447548.
3467344.

[46] E. Abdelhamid, I. Abdelaziz, P. Kalnis, Z. Khayyat, and F. Jamour, “Scalemine:
Scalable parallel frequent subgraph mining in a single large graph,” in Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis, ser. SC ’16, Salt Lake City, Utah: IEEE Press, 2016, 61:1–61:12, isbn:
978-1-4673-8815-3. url: http://dl.acm.org/citation.cfm?id=3014904.3014986.

[47] V. Bhatia and R. Rani, “Ap-fsm: A parallel algorithm for approximate frequent subgraph
mining using pregel,” Expert Systems with Applications, vol. 106, pp. 217–232, 2018,
issn: 0957-4174. doi: https ://doi .org/10.1016/j .eswa.2018.04.010. url: https :
//www.sciencedirect.com/science/article/pii/S0957417418302409.

[48] S. Purohit, S. Choudhury, and L. B. Holder, “Application-specific graph sampling
for frequent subgraph mining and community detection,” in 2017 IEEE International
Conference on Big Data (Big Data), 2017, pp. 1000–1005. doi: 10.1109/BigData.2017.
8258022.

[49] P. Gong, R. Liu, Z. Mao, Z. Cai, X. Yan, C. Li, M. Wang, and Z. Li, “Gsampler:
General and efficient gpu-based graph sampling for graph learning,” in Proceedings of
the 29th Symposium on Operating Systems Principles, ser. SOSP ’23, Koblenz, Germany:
Association for Computing Machinery, 2023, pp. 562–578, isbn: 9798400702297. doi:
10.1145/3600006.3613168. url: https://doi.org/10.1145/3600006.3613168.

[50] S. Sun, Y. Chen, S. Lu, B. He, and Y. Li, Thunderrw: An in-memory graph random
walk engine (complete version), 2021. arXiv: 2107.11983 [cs.DB].

53

https://doi.org/10.1109/ICPP.2010.67
https://doi.org/10.1109/ICPP.2010.67
https://doi.org/10.1145/3406325.3451042
https://doi.org/10.1145/3406325.3451042
https://doi.org/10.1145/3406325.3451042
https://doi.org/10.1145/3447548.3467344
https://doi.org/10.1145/3447548.3467344
https://doi.org/10.1145/3447548.3467344
http://dl.acm.org/citation.cfm?id=3014904.3014986
https://doi.org/https://doi.org/10.1016/j.eswa.2018.04.010
https://www.sciencedirect.com/science/article/pii/S0957417418302409
https://www.sciencedirect.com/science/article/pii/S0957417418302409
https://doi.org/10.1109/BigData.2017.8258022
https://doi.org/10.1109/BigData.2017.8258022
https://doi.org/10.1145/3600006.3613168
https://doi.org/10.1145/3600006.3613168
https://arxiv.org/abs/2107.11983

[51] K. Yang, M. Zhang, K. Chen, X. Ma, Y. Bai, and Y. Jiang, “Knightking: A fast
distributed graph random walk engine,” in Proceedings of the 27th ACM Symposium on
Operating Systems Principles, ser. SOSP ’19, Huntsville, Ontario, Canada: Association
for Computing Machinery, 2019, pp. 524–537, isbn: 9781450368735. doi: 10.1145/
3341301.3359634. url: https://doi.org/10.1145/3341301.3359634.

[52] K. Yang, X. Ma, S. Thirumuruganathan, K. Chen, and Y. Wu, “Random walks on huge
graphs at cache efficiency,” in Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, ser. SOSP ’21, Virtual Event, Germany: Association for
Computing Machinery, 2021, pp. 311–326, isbn: 9781450387095. doi: 10.1145/3477132.
3483575. url: https://doi.org/10.1145/3477132.3483575.

[53] T. Kaler, N. Stathas, A. Ouyang, A.-S. Iliopoulos, T. Schardl, C. E. Leiserson, and J.
Chen, “Accelerating training and inference of graph neural networks with fast sampling
and pipelining,” Proceedings of Machine Learning and Systems, vol. 4, pp. 172–189,
2022.

[54] S. Pandey, L. Li, A. Hoisie, X. S. Li, and H. Liu, “C-saw: A framework for graph
sampling and random walk on gpus,” in SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis, IEEE, Nov. 2020. doi:
10.1109/sc41405.2020.00060. url: http://dx.doi.org/10.1109/SC41405.2020.00060.

[55] A. Jangda, S. Polisetty, A. Guha, and M. Serafini, Accelerating graph sampling for
graph machine learning using gpus, 2021. arXiv: 2009.06693 [cs.DC].

[56] P. Wang, C. Li, J. Wang, T. Wang, L. Zhang, J. Leng, Q. Chen, and M. Guo, “Skywalker:
Efficient alias-method-based graph sampling and random walk on gpus,” in 2021 30th
International Conference on Parallel Architectures and Compilation Techniques (PACT),
2021, pp. 304–317. doi: 10.1109/PACT52795.2021.00029.

[57] F. Niu, J. Yue, J. Shen, X. Liao, H. Liu, and H. Jin, “Flashwalker: An in-storage accel-
erator for graph random walks,” in 2022 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), IEEE, 2022, pp. 1063–1073.

[58] Y. Gao, T. Wang, L. Gong, C. Wang, X. Li, and X. Zhou, “Fastrw: A dataflow-efficient
and memory-aware accelerator for graph random walk on fpgas,” in 2023 Design,
Automation & Test in Europe Conference & Exhibition (DATE), IEEE, 2023, pp. 1–6.

[59] R. Wang, Y. Li, H. Xie, Y. Xu, and J. C. Lui, “{Graphwalker}: An {i/o-efficient} and
{resource-friendly} graph analytic system for fast and scalable random walks,” in 2020
USENIX Annual Technical Conference (USENIX ATC 20), 2020, pp. 559–571.

[60] C. Su, H. Liang, W. Zhang, K. Zhao, B. Ai, W. Shen, and Z. Wang, “Graph sampling
with fast random walker on hbm-enabled fpga accelerators,” in 2021 31st International
Conference on Field-Programmable Logic and Applications (FPL), IEEE, 2021, pp. 211–
218.

[61] B. Ribeiro and D. Towsley, Estimating and sampling graphs with multidimensional
random walks, 2010. arXiv: 1002.1751 [cs.DS].

[62] X. Liu, M. Yan, L. Deng, G. Li, X. Ye, and D. Fan, Sampling methods for efficient
training of graph convolutional networks: A survey, 2021. arXiv: 2103.05872 [cs.LG].

54

https://doi.org/10.1145/3341301.3359634
https://doi.org/10.1145/3341301.3359634
https://doi.org/10.1145/3341301.3359634
https://doi.org/10.1145/3477132.3483575
https://doi.org/10.1145/3477132.3483575
https://doi.org/10.1145/3477132.3483575
https://doi.org/10.1109/sc41405.2020.00060
http://dx.doi.org/10.1109/SC41405.2020.00060
https://arxiv.org/abs/2009.06693
https://doi.org/10.1109/PACT52795.2021.00029
https://arxiv.org/abs/1002.1751
https://arxiv.org/abs/2103.05872

[63] T. Kaler, A. Iliopoulos, P. Murzynowski, T. Schardl, C. E. Leiserson, and J. Chen,
Communication-efficient graph neural networks with probabilistic neighborhood expansion
analysis and caching, 2023.

[64] D. Lemire, N. Kurz, and C. Rupp, “Stream vbyte: Faster byte-oriented integer com-
pression,” Information Processing Letters, vol. 130, pp. 1–6, Feb. 2018, issn: 0020-0190.
doi: 10.1016/j.ipl.2017.09.011. url: http://dx.doi.org/10.1016/j.ipl.2017.09.011.

[65] D. Lemire and L. Boytsov, “Decoding billions of integers per second through vector-
ization,” Software: Practice and Experience, vol. 45, no. 1, pp. 1–29, May 2013, issn:
1097-024X. doi: 10.1002/spe.2203. url: http://dx.doi.org/10.1002/spe.2203.

[66] D. Lemire, L. Boytsov, and N. Kurz, “Simd compression and the intersection of sorted
integers,” Software: Practice and Experience, vol. 46, no. 6, pp. 723–749, Apr. 2015,
issn: 1097-024X. doi: 10.1002/spe.2326. url: http://dx.doi.org/10.1002/spe.2326.

[67] A. Mallia, M. Siedlaczek, T. Suel, and M. Zahran, “Gpu-accelerated decoding of integer
lists,” in Proceedings of the 28th ACM International Conference on Information and
Knowledge Management, ser. CIKM ’19, Beijing, China: Association for Computing
Machinery, 2019, pp. 2193–2196, isbn: 9781450369763. doi: 10.1145/3357384.3358067.
url: https://doi.org/10.1145/3357384.3358067.

[68] A. Shanbhag, B. W. Yogatama, X. Yu, and S. Madden, “Tile-based lightweight integer
compression in gpu,” in Proceedings of the 2022 International Conference on Manage-
ment of Data, ser. SIGMOD ’22, Philadelphia, PA, USA: Association for Computing
Machinery, 2022, pp. 1390–1403, isbn: 9781450392495. doi: 10.1145/3514221.3526132.
url: https://doi.org/10.1145/3514221.3526132.

[69] Nvcomp, https://github.com/NVIDIA/nvcomp, 2016.

[70] M. Sha, Y. Li, and K.-L. Tan, “Gpu-based graph traversal on compressed graphs,” in
Proceedings of the 2019 International Conference on Management of Data, ser. SIGMOD
’19, Amsterdam, Netherlands: Association for Computing Machinery, 2019, pp. 775–792,
isbn: 9781450356435. doi: 10.1145/3299869.3319871. url: https://doi.org/10.1145/
3299869.3319871.

[71] H. Yin, Y. Shao, X. Miao, Y. Li, and B. Cui, “Scalable graph sampling on gpus
with compressed graph,” in Proceedings of the 31st ACM International Conference on
Information & Knowledge Management, ser. CIKM ’22, Atlanta, GA, USA: Association
for Computing Machinery, 2022, pp. 2383–2392, isbn: 9781450392365. doi: 10.1145/
3511808.3557443. url: https://doi.org/10.1145/3511808.3557443.

[72] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph processing framework for
shared memory,” in Proceedings of the 18th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), ser. PPoPP ’13, Shenzhen, China:
ACM, 2013, pp. 135–146, isbn: 978-1-4503-1922-5. doi: 10.1145/2442516.2442530. url:
http://doi.acm.org/10.1145/2442516.2442530.

[73] N. Azami and M. Burtscher, “Compressed in-memory graphs for accelerating gpu-based
analytics,” in 2022 IEEE/ACM Workshop on Irregular Applications: Architectures and
Algorithms (IA3), 2022, pp. 32–40. doi: 10.1109/IA356718.2022.00011.

55

https://doi.org/10.1016/j.ipl.2017.09.011
http://dx.doi.org/10.1016/j.ipl.2017.09.011
https://doi.org/10.1002/spe.2203
http://dx.doi.org/10.1002/spe.2203
https://doi.org/10.1002/spe.2326
http://dx.doi.org/10.1002/spe.2326
https://doi.org/10.1145/3357384.3358067
https://doi.org/10.1145/3357384.3358067
https://doi.org/10.1145/3514221.3526132
https://doi.org/10.1145/3514221.3526132
https://github.com/NVIDIA/nvcomp
https://doi.org/10.1145/3299869.3319871
https://doi.org/10.1145/3299869.3319871
https://doi.org/10.1145/3299869.3319871
https://doi.org/10.1145/3511808.3557443
https://doi.org/10.1145/3511808.3557443
https://doi.org/10.1145/3511808.3557443
https://doi.org/10.1145/2442516.2442530
http://doi.acm.org/10.1145/2442516.2442530
https://doi.org/10.1109/IA356718.2022.00011

[74] C. Ye, Y. Li, B. He, Z. Li, and J. Sun, “Large-scale graph label propagation on gpus,”
IEEE Transactions on Knowledge & Data Engineering, no. 01, pp. 1–14, Nov. 5555,
issn: 1558-2191. doi: 10.1109/TKDE.2023.3336329.

[75] Z. Chen, F. Zhang, J. Guan, J. Zhai, X. Shen, H. Zhang, W. Shu, and X. Du, “Com-
pressgraph: Efficient parallel graph analytics with rule-based compression,” Proc. ACM
Manag. Data, vol. 1, no. 1, May 2023. doi: 10.1145/3588684. url: https://doi.org/10.
1145/3588684.

[76] C.-H. Chang, J. Han, A. Sivasubramaniam, V. Sharma Mailthody, Z. Qureshi, and
W.-M. Hwu, “Gmt: Gpu orchestrated memory tiering for the big data era,” in Proceedings
of the 29th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, ser. ASPLOS ’24, <conf-loc>, <city>La
Jolla</city>, <state>CA</state>, <country>USA</country>, </conf-loc>: As-
sociation for Computing Machinery, 2024, pp. 464–478, isbn: 9798400703867. doi:
10.1145/3620666.3651353. url: https://doi.org/10.1145/3620666.3651353.

[77] P. Markthub, M. E. Belviranli, S. Lee, J. S. Vetter, and S. Matsuoka, “Dragon: Breaking
gpu memory capacity limits with direct nvm access,” in SC18: International Conference
for High Performance Computing, Networking, Storage and Analysis, 2018, pp. 414–426.
doi: 10.1109/SC.2018.00035.

[78] Simplifying gpu application development with heterogeneous memory management,
https://developer.nvidia.com/blog/simplifying-gpu-application-development-with-
heterogeneous-memory-management/, 2023.

[79] C.-H. Chang, J. Han, A. Sivasubramaniam, V. Sharma Mailthody, Z. Qureshi, and
W.-M. Hwu, “Gmt: Gpu orchestrated memory tiering for the big data era,” in Proceedings
of the 29th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, ser. ASPLOS ’24, <conf-loc>, <city>La
Jolla</city>, <state>CA</state>, <country>USA</country>, </conf-loc>: As-
sociation for Computing Machinery, 2024, pp. 464–478, isbn: 9798400703867. doi:
10.1145/3620666.3651353. url: https://doi.org/10.1145/3620666.3651353.

[80] J. Jung, J. Kim, and J. Lee, “Deepum: Tensor migration and prefetching in unified
memory,” in Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2, ser. ASPLOS
2023, Vancouver, BC, Canada: Association for Computing Machinery, 2023, pp. 207–
221, isbn: 9781450399166. doi: 10.1145/3575693.3575736. url: https://doi.org/10.
1145/3575693.3575736.

[81] J. Ren, J. Luo, K. Wu, M. Zhang, H. Jeon, and D. Li, “Sentinel: Efficient tensor
migration and allocation on heterogeneous memory systems for deep learning,” in 2021
IEEE International Symposium on High-Performance Computer Architecture (HPCA),
2021, pp. 598–611. doi: 10.1109/HPCA51647.2021.00057.

[82] X. Peng, X. Shi, H. Dai, H. Jin, W. Ma, Q. Xiong, F. Yang, and X. Qian, “Capuchin:
Tensor-based gpu memory management for deep learning,” in Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’20, Lausanne, Switzerland: Association for Computing

56

https://doi.org/10.1109/TKDE.2023.3336329
https://doi.org/10.1145/3588684
https://doi.org/10.1145/3588684
https://doi.org/10.1145/3588684
https://doi.org/10.1145/3620666.3651353
https://doi.org/10.1145/3620666.3651353
https://doi.org/10.1109/SC.2018.00035
https://developer.nvidia.com/blog/simplifying-gpu-application-development-with-heterogeneous-memory-management/
https://developer.nvidia.com/blog/simplifying-gpu-application-development-with-heterogeneous-memory-management/
https://doi.org/10.1145/3620666.3651353
https://doi.org/10.1145/3620666.3651353
https://doi.org/10.1145/3575693.3575736
https://doi.org/10.1145/3575693.3575736
https://doi.org/10.1145/3575693.3575736
https://doi.org/10.1109/HPCA51647.2021.00057

Machinery, 2020, pp. 891–905, isbn: 9781450371025. doi: 10.1145/3373376.3378505.
url: https://doi.org/10.1145/3373376.3378505.

[83] A. A. Awan, C.-H. Chu, H. Subramoni, X. Lu, and D. K. Panda, “Oc-dnn: Exploiting
advanced unified memory capabilities in cuda 9 and volta gpus for out-of-core dnn
training,” in 2018 IEEE 25th International Conference on High Performance Computing
(HiPC), 2018, pp. 143–152. doi: 10.1109/HiPC.2018.00024.

[84] N. Eikmeier and D. F. Gleich, “Revisiting power-law distributions in spectra of real
world networks,” in Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’17, Halifax, NS, Canada: Association
for Computing Machinery, 2017, pp. 817–826, isbn: 9781450348874. doi: 10.1145/
3097983.3098128. url: https://doi.org/10.1145/3097983.3098128.

[85] R. Tandon and P. Ravikumar, “On the difficulty of learning power law graphical models,”
in 2013 IEEE International Symposium on Information Theory, 2013, pp. 2493–2497.
doi: 10.1109/ISIT.2013.6620675.

[86] P. Cui, H. Liu, B. Tang, and Y. Yuan, “Cggraph: An ultra-fast graph processing system
on modern commodity cpu-gpu co-processor,” Proc. VLDB Endow., vol. 17, no. 6,
pp. 1405–1417, May 2024, issn: 2150-8097. doi: 10.14778/3648160.3648179. url:
https://doi.org/10.14778/3648160.3648179.

57

https://doi.org/10.1145/3373376.3378505
https://doi.org/10.1145/3373376.3378505
https://doi.org/10.1109/HiPC.2018.00024
https://doi.org/10.1145/3097983.3098128
https://doi.org/10.1145/3097983.3098128
https://doi.org/10.1145/3097983.3098128
https://doi.org/10.1109/ISIT.2013.6620675
https://doi.org/10.14778/3648160.3648179
https://doi.org/10.14778/3648160.3648179

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Background and Related Works
	2.1 Graph Sampling Algorithms
	2.2 Graph Sampling Systems
	2.2.1 CPU Sampling systems
	2.2.2 GPU Sampling Systems

	2.3 Data Compression
	2.3.1 Integer List Compression
	2.3.2 Graph Compression

	2.4 GPU Memory Oversubscription & Data Caching

	3 System Design and Implementation
	3.1 ScaleGPS System Overview
	3.2 Hybrid Graph Data Compression
	3.3 Adaptive Graph Data Caching
	3.4 GPU Parallelization Scheme for Graph Sampling

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Overall Sampling Performance
	4.2.1 Comparison with CPU Implementation
	4.2.2 Comparison with GPU Implementations

	4.3 Ablation Study
	4.3.1 Performance Effect of Segment Prefix
	4.3.2 Performance Effect of Various Compression Schemes
	4.3.3 Effect of Various Caching Policies

	5 Future Work
	5.1 Different Graph Compression Techniques
	5.2 Generic Sampling Framework
	5.3 CPU-GPU Co-sampling

	6 Conclusion
	A Artifact
	References

