
Post-Quantum Verifiable Oblivious Pseudorandom
Functions

by

Helen Propson
S.B. Computer Science and Engineering, Massachusetts Institute of Technology 2024

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2024

© 2024 Helen Propson. This work is licensed under a CC BY-NC-ND 4.0 license.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by: Helen Propson
Department of Electrical Engineering and Computer Science
May 10, 2024

Certified by: Vinod Vaikuntanathan
Professor of Computer Science, Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee

https://creativecommons.org/licenses/by-nc-nd/4.0/

2

Post-Quantum Verifiable Oblivious Pseudorandom Functions
by

Helen Propson

Submitted to the Department of Electrical Engineering and Computer Science
on May 10, 2024 in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

ABSTRACT

This work presents the construction of a post-quantum verifiable oblivious pseudoran-
dom function (VOPRF) with a focus on efficiency and practicality. Leveraging lattice-based
cryptographic primitives, particularly the Learning With Errors (LWE) problem, our VO-
PRF construction aims to address the limitations of existing approaches by reducing proof
sizes. The key component in our work is the integration of an efficient zero-knowledge proof
of knowledge (ZKPoK) protocol. This ZKPoK is notably more efficient than the proof sys-
tems used in prior VOPRF constructions, ensuring the verifiability of PRF outputs while
providing smaller proof sizes. Our construction relies on the hardness of the ring-LWE and
short integer solution (SIS) problems, and we demonstrate its security in the random oracle
model. Overall, our VOPRF construction represents a step towards the development of more
practical post-quantum secure cryptographic protocols, highlighting the potential for further
improvements in efficiency and real-world applicability.

Thesis supervisor: Vinod Vaikuntanathan
Title: Professor of Computer Science

3

4

Acknowledgments

I am deeply grateful to my advisor, Professor Vinod Vaikuntanathan, for introducing me to
the field of cryptography and for his unwavering dedication to my development as a researcher
over the past two years. His passion and enthusiasm for the field have constantly pushed me
to delve deeper and think creatively, and I am immensely appreciative of his guidance and
support. I would also like to thank Leo de Castro for his invaluable mentorship. His generous
investment of time, support, and insight throughout the various stages of this research project
has been instrumental to its success. I am thankful to all the members of my research
group for their inspiration. I am extremely grateful for the opportunity to work alongside
such dedicated individuals. I sincerely appreciate all my professors and educators, who
have invested many hours in helping me strengthen my understanding of complex concepts.
Their dedication has been fundamental to my ability to conduct meaningful research. To
my friends, your encouragement and companionship have made enduring the challenges of
undergraduate life at MIT an incredibly rewarding experience. I am profoundly grateful for
the friendships I have made over these past four years. Most importantly, I would like to
thank my family, including my mother, father, and brother, for their unwavering love and
support. Without them, this thesis would not have been possible.

5

6

Contents

Title page 1

Abstract 3

Acknowledgments 5

List of Figures 9

1 Introduction 11
1.1 Technical Overview . 12
1.2 Outline . 13

2 Related Work 15
2.1 Lattice-Based Cryptography . 15
2.2 Existing Approaches . 16

3 Preliminaries 17
3.1 Notation . 17
3.2 Probability Distributions and Rejection Sampling 18
3.3 Computational Assumptions . 19
3.4 Zero-Knowledge Proof Systems . 19
3.5 Pseudorandom Function . 21
3.6 Verifiable Oblivious Pseudorandom Function 23

4 Zero-Knowledge Proof of Knowledge (ZKPoK) 27
4.1 Completeness . 28
4.2 Soundness . 29
4.3 Zero-Knowledge . 29

5 Verifiable Oblivious Pseudorandom Function (VOPRF) 31
5.1 Correctness . 32
5.2 Malicious Client and Server Proofs . 35

6 Instantiating Proof System 0 37

7 Parameter Setting 39

7

8 Efficiency Analysis 41

9 Future Work 43

References 45

8

List of Figures

3.1 The Ideal Functionality FVOPRF . 24

4.1 SHVZKPoK protocol . 28
4.2 NIZKPoK protocol . 30

5.1 VOPRF protocol . 33

9

10

Chapter 1

Introduction

Verifiable Random Functions (VRFs) represent a category of pseudo-random functions, where

the entity holding the secret key provides evidence of the function’s evaluation validity.

VRFs have found applications in a variety of domains, including the DNSSEC protocol [1],

blockchain-based lottery schemes [2], and blockchain consensus mechanisms for establishing

proof-of-stake [3]. However, widely used VRFs in these applications, such as ECVRF, are

susceptible to known attacks by quantum computers. Consequently, there is a need to

develop post-quantum secure VRFs, with a particular focus on creating a VRF that is both

resilient against quantum attacks and efficient for practical use.

Extending the concept of VRFs, Verifiable Oblivious Pseudorandom Functions (VOPRFs)

offer an additional layer of privacy by ensuring that the input to the PRF remains hidden

from the entity performing the function’s evaluation. This added obliviousness makes VO-

PRFs particularly useful in scenarios requiring both verifiability and privacy, such as secure

multi-party computations, private set intersections, and privacy-preserving authentication

protocols. Like VRFs, the development of post-quantum secure VOPRFs is crucial, as they

need to withstand quantum attacks while remaining efficient and practical for real-world

applications.

11

1.1 Technical Overview

In this work, we detail the construction of an oblivious VOPRF in the random oracle model.

Our construction builds upon the VOPRF proposed by [4], which uses non-interactive zero-

knowledge arguments of knowledge. To improve efficiency, we replace the use of the zero-

knowledge proof system of [5] with a more efficient non-interactive zero-knowledge proof

of knowledge (ZKPoK). As in [6], our ZKPoK involves parallel repetitions of the signing

protocol from [7] and utilizes the Fiat-Shamir transform to convert the interactive protocol

into a non-interactive one.

Although this proof system offers the advantage of significantly shorter proof sizes, it

presents a challenge due to the soundness gap inherent in this type of ZKPoK. In the context

of our VOPRF, the server responsible for computing the VOPRF evaluations must prove that

the secret key it uses to generate the evaluations has an ℓ∞ norm less than a specified bound.

However, the ZKPoK can only be used to prove a bound that is larger than the bound on

the ℓ∞ norm of an honest server’s key. This discrepancy is known as the soundness gap.

To address this, in our VOPRF protocol, the honest server draws their key from a dis-

tribution with a smaller ℓ∞ norm bound than the bound they must prove. This approach

contrasts with the original protocol by [7], where the actual bound on the ℓ∞ norm of the

server’s key and the bound proven by the server are the same. By differentiating these two,

we maintain the security guarantees of the protocol while enhancing its practical efficiency

by providing smaller proof sizes.

While our work improves upon the existing VOPRF protocol, a significant bottleneck

remains the non-interactive zero-knowledge argument of knowledge (NIZKAoK) required for

the client to prove that its input to the VOPRF is well-formed. The relation of this proof

is incompatible with our zero-knowledge proof of knowledge (ZKPoK) system and requires

proof of quadratic relations. As a result, we are unable to apply our ZKPoK to the client’s

proof and must instead use the proof system proposed by [5] for this part of the VOPRF,

12

which hinders the practicality of the VOPRF construction. As such, our work highlights

the importance of developing more practical VOPRF solutions, paving the way for future

improvements, as discussed in the Chapters on efficiency 8 and future work 9.

1.2 Outline

The remainder of this paper is structured as follows. Chapter 2 reviews related work, while

Chapter 3 introduces the necessary preliminaries. In Chapter 4, we present our ZKPoK

protocol, followed by our VOPRF construction in Chapter 5, detailing how we instantiate the

VOPRF using our ZKPoK in Chapter 6. Chapter 7 provides a discussion of our parameter

choices. Chapter 8 analyzes the efficiency of our VOPRF, and Chapter 9 concludes with

directions for future work.

13

14

Chapter 2

Related Work

The concept of verifiable random functions was introduced by Micali, Rabin, and Vadhan

[8]. Since then, various constructions have been put forth. However, the security of many of

these constructions relies on the hardness of discrete logarithms and factoring, foundational

to numerous cryptosystems. Unfortunately, these assumptions become vulnerable in the

quantum setting, as demonstrated by Shor’s algorithm [9]. Consequently, our aim is to

devise a construction grounded in a problem that remains resistant to quantum attacks.

2.1 Lattice-Based Cryptography

A work of Regev [10] used a quantum reduction to prove that if there exists an efficient algo-

rithm that solves LWE, then there exists an efficient quantum algorithm that approximates

the decision version of the shortest vector problem (GapSVP) and the shortest independent

vectors problem (SIVP). This is of particular interest because there are no known efficient

quantum algorithms for GapSVP or SIVP. Peikert later showed that the search version of

LWE is at least as hard as approximating GapSVP in the worst case via a classical (prob-

abilistic polynomial-time) reduction [11], further enhancing confidence in the hardness of

LWE. Consequently, lattice-based cryptographic frameworks have garnered significant at-

tention due to their resilience against quantum attacks.

15

2.2 Existing Approaches

The development of an efficient lattice-based VRF poses challenges, partly due to the absence

of known efficient zero-knowledge proofs validating the computation of the VRF output.

One existing construction of a post-quantum secure VRF, relying on well-known lattice

problems like Module-SIS and Module-LWE, yields a VRF value of only 84 bytes and a 5 KB

proof but has k-time security constraints, necessitating frequent key updates for limited VRF

outputs per key pair [12]. Another recent construction using symmetric primitives achieves

a 3 KB proof size but requires users to maintain shared state and undergo key updates [13].

Addressing these issues, a practical lattice-based VRF construction, which is stateless and

supports an almost unrestricted number (2128) of VRF evaluations, utilizes relaxed proofs

of knowledge, resulting in a 10.27 KB proof size [14]. In contrast, another lattice-based

VRF construction in the random oracle model produces proofs in the order of megabytes

[5]. Furthermore, there is a lattice-based VRF construction [15] in the standard model,

but its efficiency is compromised by its use of general NIWI and constrained pseudorandom

functions (PRFs), with no practical efficiency evaluation provided.

However, none of these constructions are oblivious. The first round-optimal VOPRF

protocol that maintains security based on subexponential lattice hardness assumptions was

presented by [4], but it suffers from poor efficiency, with proof sizes on the order of gigabytes.

Consequently, this work explores options for enhancing the practicality of the construction.

16

Chapter 3

Preliminaries

3.1 Notation

In this work we consider a ring R, which will be either Z (in our ZKPok) or the polynomial

Rq = Zq[x]/(x
ñ+1) (in our VOPRF) where ñ is a power of 2 and q is an integer modulus. We

let the elements of Zq be identified with the representatives {−(q
2
), . . . , q

2
}. We will represent

vectors by bold-face letters, and matrices by bold-face capital letters. The lp norm of a ring

element a is denoted by ∥a∥p, and we will sometimes omit the p for the l2 norm. We extend

the notation to vectors and matrices as follows: ∥a∥ =
√∑

∥ai∥2 and ∥A∥ =
√∑

∥ai∥2.

We will also consider the operator norm of matrices over R defined as s1(A) = max
(

∥Ax∥2
∥x∥2

)
.

For a distribution D, we use the notation x
$←− D to mean that x is chosen according to

the distribution D. If S is a set, then x
$←− S means that x is chosen uniformly at random

from S. We let negl(κ) denote a negligible function (i.e. a function that is κ−ω(1)) and write

r1 ≫ r2 as short-hand for r1 ≥ κω(1) ·r2. Logarithm base 2 is denoted log2, and we sometimes

omit the 2 for simplicity. For x ∈ Zq, the rounding operation is defined as ⌊x⌉p :=
⌊
p
q
· x

⌉
where ⌊·⌉ denotes rounding to the nearest integer (rounding down in the case of a tie). We

use tildes to distinguish symbols in our VOPRF protocol that also appear as parameters in

our ZKPoK protocol but have different meanings (e.g., the modulus q does not have a tilde,

17

as it retains the same usage in both protocols).

3.2 Probability Distributions and Rejection Sampling

Definition 1 The continuous Normal distribution over Rm centered at v with standard de-

viation σ is defined by the function ρmv,σ(x) =
(

1√
2πσ2

)m

e
−∥x−v∥2

2σ2

When v = 0, we will just write ρmσ (x). We define the discrete Normal distribution over Zm

as follows:

Definition 2 (Definition 4.2 [7]) The discrete Normal distribution over Zm centered at

some v ∈ Zm with standard deviation σ is defined as Dm
v,σ(x) =

ρmv,σ(x)

ρmσ (Zm)
, where ρmσ (Zm) =∑

z∈Zm ρmσ (z).

The discrete Gaussian distribution over the ring R, denoted as R(Dσ), is the distribution

over R where each coefficient is distributed according to Dσ.

Lemma 3 (Lemma 4.4 of [7])

1. For any k > 0, Pr[|z| > kσ; z
$←− D1

σ] ≤ 2e
−k2

2 ,

2. For any z ∈ Zm, and σ ≥ 3√
2π

, Dm
σ (z) ≤ 2−m

3. For any k > 1, Pr[∥z∥ > kσ
√
m; z

$←− Dm
σ] < kme

m
2
(1−k2).

Lemma 4 (Lemma 2 of [4]) Let σ̃ > 0 and y ∈ Z. The statistical distance between Dσ̃ and

Dσ̃ + y is at most |y|/σ̃

We employ the following rejection sampling algorithm and lemma in our ZKPoK construc-

tion.

Lemma 5 (Lemma 1 [6]). Let B ∈ Rr×n be any matrix. Consider a procedure that samples

a Y ← Dr×n
σ and then returns the output of Rej(Z := Y +B,B, σ, ρ) where σ ≥ 12

ln ρ
· ∥B∥.

The probability that this procedure outputs 1 is within 2−100 of 1/ρ. The distribution of Z,

conditioned on the output being 1, is within statistical distance of 2−100 of Dr×n
σ .

18

Algorithm 1 Rej(Z,B, σ, ρ)

u← [1, 0)

if u > 1
ρ
· e

−2⟨Z,B⟩+∥B∥22
2σ2 then return 0

else return 1
end if

3.3 Computational Assumptions

In this Section, we will define the problems upon whose security our proof system will be

based: ring-LWE [16] and SIS [17].

Definition 6 (Definition 2 [4]) Let q,m, ñ, σ̃ > 0 depend on κ (q,m, ñ are integers). The

decision-RLWE problem (dRLWEq,ñ,m,σ̃) is to distinguish between:

(ai, ai · s+ ei)i∈[m] ∈ (Rq)
2 and (ai, ui)i∈[m] ∈ (Rq)

2 for ai, ui ← Rq; s, ei ← R(Dσ̃).

We sometimes write dRLWEq,ñ,σ̃, leaving the parameter m implicit.

Definition 7 (Definition 3.4 [18]) The One-Dimensional Short Integer Solution problem,

denoted 1D-SISq,m,t, is the following problem. Given a uniformly distributed vector v
$←− Zm

q ,

find z ∈ Zm such that ∥z∥ ≤ t and also ⟨v, z⟩ ∈ [−t, t] + qZ.

3.4 Zero-Knowledge Proof Systems

As stated in Chapter 1, we wish to give a proof system to be used as the non-interactive

zero-knowledge argument of knowledge (NIZKAoK) used in our VOPRF protocol. The

proof system must therefore meet the following requirements for an NIZKAoK. Note that

we give a zero-knowledge proof of knowledge, which differs from a zero-knowledge argument

of knowledge in that an argument of knowledge is computationally sound whereas a proof of

knowledge is statistical sound.

19

Definition 8 (NIZKoK [4]) Let P be a prover, let V be a verifier, let L be a language with

accompanying relation predicate PL(·, ·). Let WL(x) be a generic set of witnesses attesting

to the fact that x ∈ L, i.e. ∀x ∈ L, and w ∈ WL(x) we have PL(x,w) = 1. Let nizk =

(Setup,P,V) be a tuple of algorithms defined as follows:

• crs← nizk.Setup(1κ): outputs a common random string crs.

• π ← nizk.P(crs, x, w): on input crs, a word x ∈ L and a witness w ∈ WL(x); outputs a

proof π ∈ {0, 1}poly(κ).

• b← nizk.V(crs, x, π): on input crs, a word x ∈ L and a proof π ∈ {0, 1}poly(κ); outputs

b ∈ {0, 1}.

where κ is the security parameter.

Definition 9 (NIZKoK Security [4]) We say that nizk is a non-interactive zero-knowledge

argument of knowledge (NIZKAoK) for L if the following holds.

1. (Completeness) Consider x ∈ L and w ∈ WL(x), where PL(x,w) = 1. Then:

Pr
[
1← nizk.V(crs, x, π)

∣∣crs← nizk.Setup(1κ), π ← nizk.P(crs, x, w)
]
≥ 1− negl(κ)

2. (Computational knowledge Soundness): The proof system satisfies computational knowl-

edge extraction with knowledge error κ̄ if, for any PPT prover P∗ with auxiliary in-

formation aux, the following holds. There exists a PPT algorithm nizk.Extract and a

polynomial p such that, for any input x, then:

Pr[1← PL(x,w
′)|w′ ← nizk.Extract(P∗(crs, x, aux))] ≥ v − κ̄

p(|x|)

is satisfied, where v is the probability that nizk.V(crs, x,P∗(crs, x, aux)) outputs 1.

20

3. (Computational zero-knowledge) There exists a simulated setup algorithm nizk.SimSetup(1κ)

outputting crsSim and a trapdoor T along with a PPT algorithm nizk.Sim(crsSim, T , x)

satisfying

 crs← nikz.Setup(1κ)

π ← nizk.P(crs, x, w)

 ≈c

 crsSim

πSim ← nizk.Sim(crsSim, T , x)

∣∣∣∣(crsSim, T)← nizk.SimSetup(1κ)


∀x ∈ L and w ∈ WL(x).

where negl(κ) denotes a negligible function (i.e. a function that is κ−ω(1)).

3.5 Pseudorandom Function

In this Section we introduce the PRF we use in our VOPRF and definitions and lemmas we

make us of in the proof of security of our VOPRF. A pseudorandom function (PRF) is a

function that, given an input and a secret key, produces an output that appears random.

Definition 10 (Psuedorandom Function [19]). An efficient, length-preserving, keyed func-

tion F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ is a psuedorandom function if for all probabilistic

polynomial-time adversaries A, there exists a negligible function negl such that

∣∣Pr[AFk(·)(1n) = 1]− Pr[Af(·)(1n) = 1]
∣∣ ≤ negl(n)

where k ← {0, 1}n is chosen uniformly at random and f is chosen uniformly at random from

the set of functions mapping n-bit strings to n-bit strings.

We next define the gadgets matrices G, G−1, which are used in the PRF of our VOPRF.

Define G : Rℓ̃×ℓ̃
q → R1×ℓ̃

q to be the linear operation corresponding to left multiplication by

(1, 2, . . . , 2ℓ̃−1). Further, define G−1 : R1×ℓ̃
q → Rℓ̃×ℓ̃

q to be the bit decomposition operation

21

that essentially inverts G i.e. the ith column of G−1(a) is the bit decomposition of ai ∈ Rq

into binary polynomials.

Our VOPRF utilizes Banerjee and Peikert’s construction [20] of a Ring-LWE-based psue-

dorandom function. The key of the PRF is an element k of the ring Rq = Zq[x]/(x
ñ + 1),

and the input to the PRF is x ∈ {0, 1}L. The PRF is defined as Fk(x) = ⌊ax · k⌉p where

ax ∈ R1×ℓ̃
q and ℓ̃ = ⌈log q⌉.

Definition 11 (Definition 6 of [4]) Fix some a0, a1 ∈ R1×ℓ̃
q . For any x = (x1 . . . , xL) ∈

{0, 1}L, define ax ∈ R1×ℓ̃
q

ax := ax1 ·G−1(ax2 ·G−1(ax3 ·G−1(. . . (axL−1
·G−1(axL

)) . . .))) ∈ Rℓ̃×ℓ̃
q

The PRF is secure by the dRLWEq,ñ,σ̃ assumption.

Theorem 12 ([20]) Sample k ← R(Dσ̃). If q ≫ p · σ̃ ·
√
L · ñ · ℓ̃, then the function Fk(x) =

⌊ax · k⌉p is a PRF under the dRLWEq,ñ,σ̃ assumption

The following definitions and lemmas will be used in the security proof of our VOPRF.

Definition 13 (Definition 7 of [4]) For a0, a1 ∈ R1×ℓ̃
q , define

ax\i := G−1(axi+1
·G−1(axi+2

·G−1(. . . (axL−1
·G−1(axL

)) . . .))) ∈ Rℓ̃×ℓ̃
q

Furthermore, let Ea0,a1,x,σ̃ be the distribution that is sampled by choosing ei ← R(Dσ̃)
1×ℓ̃ for

i = 1, . . . , L and outputting

e =
L−1∑
i=1

ei · ax\i + eL

Lemma 14 (Lemma 3 of [4]) If a0, a1 ← R1×ℓ̃
q , e← Ea0,a1,x,σ̃ and s← R(Dσ̃), then for any

fixed x ∈ {0, 1}L,

(a0, a1, a0, ax · s+ e)

is indistinguishable from uniform random by the dRLWEq,ñ,σ̃ assumption.

22

Lemma 15 (Lemma 4 of [4]) Let x ∈ {0, 1}L, ℓ̃ = ⌈log2 q⌉ and ñ = poly(κ). Samples from

Ea0,a1,x,σ̃ have infinity norm at most L · ℓ̃σ̃ñ3/2 with all but negligible probability.

Lemma 16 (Lemma 5 of [4]) Fix any x ∈ {0, 1}L. Suppose there exists a PPT algorithm

Dx(a0, a1) that outputs r ∈ R such that ∥r∥∞ ≤ B and at least one coefficient of ax · r is in

the set
(

q
p

)
·Z+[−T, T] with non-negligible probability (over a uniform choice of a0, a1 ← Rℓ̃

q

and its random coins). Then there exists an efficient algorithm solving 1D-SISq/p,ñℓ̃,max{ñℓ̃B,T}

with non-negligible probability.

3.6 Verifiable Oblivious Pseudorandom Function

Informally, a Verifiable Oblivious Pseudorandom Function (VOPRF) is a cryptographic pro-

tocol that allows a client C to securely obtain pseudorandom function evaluations from a

server S, with the ability to verify the correctness of the output, while keeping the client’s

input private from the server.

The formal Definition 17 of a VOPRF considers two scenarios: the "real" world and the

"ideal" world. In the real world protocol Π, an adversary A(k) corrupting the server S(k)

interacts directly with the client C(x) (or A(x) interacts directly with the server S(k) if the

client C(x) is the corrupted party). We denote the joint output distribution of A(k) and

C(x) as realΠ,A,S(x, k, 1
κ) if the server is corrupted, and as realΠ,A,C(x,K, 1κ) if the client is

corrupted, where K is the distribution of keys under which the pseudorandom function F

maintains its security.

In the "ideal" world, a simulator Sim acts as an intermediary, interacting with the

adversary and the ideal functionality FVOPRF (see Figure 3.1), producing the distribution

idealFVOPRF,Sim,A,S(x, k, 1
κ) if the server is corrupted, and idealFVOPRF,Sim,A,C(x,K, 1κ) if the client

is corrupted. Security is achieved if the adversary’s influence in the real world can be emu-

lated by Sim in the ideal world, making the two distributions indistinguishable to A.

Let output(Π, x, k) denotes the output distribution of a client with input x running pro-

23

tocol Π with a server whose input key is k.

This is a two party functionality between a server S and a client C. We assume there
is a fixed PRF function defined by Fk(x).
Init-S: On input of init from the server, the functionality waits for an input k from
party S. If S returns abort, then the functionality aborts. Otherwise, the functionality
stores the value k if the key conforms to the pre-determined distribution and aborts if
not.
Init-C: On input of init from a client, the functionality will return abort if the init
procedure for the server has not successfully completed.
Query: On input of (query, x) from a client C, if x ̸= ⊥ then the functionality waits
for an input from party S. If S returns deliver, then the functionality sends y = Fk(x)
to party C. If S returns abort, then the functionality aborts.

Figure 3.1: The Ideal Functionality FVOPRF

Definition 17 (Definition 1 [4]) A protocol Π is a verifiable oblivious pseudorandom func-

tion if all of the following hold:

1. Correctness: For every pair of inputs (x, k),

Pr[output(Π, x, k) ̸= Fk(x)] ≤ negl(κ).

2. Malicious server security: For any PPT adversary A corrupting a server, there

exists a PPT simulator Sim such that for every pair of inputs (x, k):

idealFVOPRF,Sim,A,S(x, k, 1
κ) ≈c realΠ,A,S(x, k, 1

κ).

3. Average case malicious client security: For any PPT adversary A corrupting a

client, there exists a PPT simulator Sim such that for all client inputs x:

• idealFVOPRF,Sim,A,C(x,K, 1κ) ≈c realΠ,A,C(x,K, 1κ).

• If A correctly outputs Fk(x) with all but negligible probability over the choice

k ← K when interacting directly with S(k) using protocol Π, then A also outputs

24

Fk(x) with all but negligible probability when interacting via Sim.

25

26

Chapter 4

Zero-Knowledge Proof of Knowledge

(ZKPoK)

In this chapter we adapt the proof system of [6] to give a zero-knowledge proof of knowledge

for the following relation, where Byes ≤ Bno.

Ryes = {((A,T),S) ∈ Rr×v
q ×Rv×ℓ ×Rr×ℓ

q ∧AS = T ∧ [∥si∥∞ ≤ Byes]i∈[ℓ]}

and

Rno = {((A,T),S) ∈ Rr×v
q ×Rv×ℓ ×Rr×ℓ

q ∧AS = T ∧ [∥si∥∞ ≤ Bno]i∈[ℓ]}

where si are the columns of S.

In other words, if a prover holds S such that ((A,T),S) ∈ Ryes, then completeness and

zero-knowledge hold. On the other hand, there is an extractor that extracts an S such that

((A,T),S) ∈ Rno given any malicious convincing prover. We refer to the gap between Byes

and Bno as the soundness gap.

Theorem 18 Let R = Z, C = {0, 1}, and λ be a security parameter. Let v, r = poly(λ),

n ≥ λ + 2, s > 0 be an upper bound on s1(S), ρ > 1 be a constant, σ ∈ R be such that

σ ≥ 12
ln ρ

s
√
ℓn, and B =

√
8vσ. Then the protocol described in Figure 4.1 is a zero-knowledge

27

P V

(A,S,T) ∈ Rr×v
q ×Rv×ℓ ×Rr×ℓ

q s.t. AS = T A,T

Y ← Dv×n
σ

W = AY W

C
$←− {0, 1}ℓ×n

Z := SC+Y C

Abort if Rej(Z,SC, σ, ρ) = 1
Z

[z1, . . . , zn] := Z

Check 1: ∀i ∈ [n], ∥zi∥∞ ≤
B

2
Check 2: AZ = TC+W

Figure 4.1: SHVZKPoK protocol

proof of knowledge for the gap relation (Ryes, Rno) achieving Byes =
s√
vℓ

and Bno = B, i.e.

Byes and Bno that satisfy

Bno ≥ Byes
12

ln ρ
vℓ
√
8n

4.1 Completeness

If P and V are honest then ∥SC∥2 ≤ s1(S)∥C∥2 ≤ s
√
ln. Since σ ≥ 12

ln ρ
s
√
ℓn, by Lemma 5

the probability of abort is exponentially close to 1− 1
ρ

and each coefficient of Z is statistically

close to Dσ. Since ∥zi∥∞ ≤ ∥zi∥2 it follows that

Pr
z

$←−Dm
σ

[
∥zi∥∞ >

B

2

]
< Pr

z
$←−Dm

σ

[
∥zi∥2 >

B

2

]

so by Lemma 3 we have ∥zi∥∞ ≤
B
2

with overwhelming probability. The verifier’s second

check holds the by construction of Z.

28

4.2 Soundness

For soundness, we recall the knowledge extractor given in [6], except we note that the

extracted witness S ′ will have norm ∀i ∈ [ℓ] ∥s′i∥∞ ≤ B. Given a prover P∗ who succeeds with

probability ϵ > 2−λ, we may extract a witness S ′ such that AS′ = T and ∀i ∈ [ℓ] ∥s′i∥∞ ≤ B

as follows. Let cTi ∈ R1×n denote the ith row of a challenge matrix C.

1. Run P∗ on random challenges C′ until it succeeds to obtain an accepting Z′.

2. Run P∗ on random challenges C′′ where ∀j ̸= i, c′′Tj = c′Tj and c′′Ti is freshly sampled.

Abort if P∗ does not produce an valid Z′′ after λ
ϵ

attempts.

By executing these steps O(λ) times, we obtain a valid C′,Z′,C′′,Z′′ such that ∀j ̸= i,

c′′Tj = c′Tj and c′′Ti ̸= c′Ti with probability greater than 1
2
+ 2−λ in expected poly(λ)

ϵ
time by

the heavy-row argument of [6]. From these valid pairs, we construct the equation

A(Z′ − Z′′) = ti(c
′T
i − c′′Ti)

where ti is the ith column of T and zi is the ith column of Z′−Z′′. Since c′′Ti ̸= c′Ti for some

index, we have a solution A(z′i − z′′i) = ±ti where ∥z′i − z′′i ∥∞ ≤ B. We may then run the

steps above for each column i ∈ ℓ to obtain the full witness S′.

4.3 Zero-Knowledge

For the zero-knowledge property of the protocol, we provide a probabilistic polynomial time

(PPT) algorithm S (a simulator). We define S as follows.

1. sample C
$←− {0, 1}ℓ×n

2. sample Z
$←− Dv×n

σ

3. Set W = AZ−TC and output (W,Z,C)

29

P V

(A,S,T) ∈ Rr×v
q ×Rv×ℓ ×Rr×ℓ

q s.t. AS = T A,T

H : {0, 1}∗ → {0, 1}ℓ×n H

Y ← Dv×n
σ

W = AY

C← H(T,W)

Z := SC+Y

Abort if Rej(Z,SC, σ, ρ) = 1
Z,C

[z1, . . . , zn] := Z

Check 1: ∀i ∈ [n], ∥zi∥∞ ≤
B

2
Check 2: C = H(T,AZ−TC)

Figure 4.2: NIZKPoK protocol

It is clear that Z verifies with overwhelming probability. By Lemma 5 we know that in the

real protocol when no abort occurs the distribution of Z is within statistical distance 2−100 of

Dv×n. Since W is completely determined by A, T , Z and C , the distribution of (W,Z,C)

output by S is within 2−100 of the distribution of these variables in the actual non-aborting

run of the protocol.

Since this is a 3-round, honest-verifier, public coin proof of knowledge with negligible

soundness, we apply the apply the Fiat-Shamir transform [21] to get a non-interactive proof

of knowledge that is zero-knowledge in the random oracle model. The transformed version

of the protocol is given in Figure 4.2.

30

Chapter 5

Verifiable Oblivious Pseudorandom

Function (VOPRF)

Here we present the construction and security proof of our VOPRF. As mentioned in Chap-

ter 3, our VOPRF operates over the polynomial ring Rq = Zq[x]/(x
ñ + 1). We use tildes to

distinguish parameters in the VOPRF protocol that are reused from our ZKPoK protocol to

prevent confusion.

Our construction requires three NIZKAoKs to establish that all computations are per-

formed honestly:

• Server Proof in Initialization Phase (P0): Proves knowledge of k ∈ R and e ∈

R1×ℓ̃ with ∥k∥∞, ∥e∥∞ ≤ σ̃ ·
√
ñ, such that c = a · k+ e mod q, where crs0 contains a.

• Client Proof (P1): Proves knowledge of x ∈ {0, 1}L, s ∈ R with ∥s∥∞ ≤ σ̃ ·
√
ñ, and

e1 ∈ R1×ℓ̃ with ∥e1∥∞ ≤ σ̃ ·
√
ñ, such that cx = a · s+ e1 + ax mod q.

• Server Proof in Query Phase (P2): Proves knowledge of k ∈ R with ∥k∥∞ ≤ σ̃·
√
ñ,

e ∈ R1×ℓ̃ with ∥e∥∞ ≤ σ̃·
√
ñ, and e′ ∈ R1×ℓ̃ with ∥e′∥∞ ≤ σ̃′ ·

√
ñ, such that c = a·k+e

mod q and dx = cx · k + e′ mod q.

In Chapter 6, we explain how to instantiate proof system 0 (P0,V0) of our VOPRF using

31

the ZKPoK given in Chapter 4. Proof systems 1 and 2 can be instantiated using the proof

system of [5] as detailed in [4]. We note that proof system 2 can also be instantiated with a

version of our ZKPoK, in which the verifier uses different bounds for different components

of the prover’s output Z, allowing each component of the secret to have its own size bound.

Our construction is given in Figure 5.1 and we proceed with the security proof below.

Theorem 19 Assume p|q. The protocol in Figure 5.1 is a secure VOPRF protocol (according

to Definition 17) if the following conditions hold:

• ∀i ∈ {0, 1, 2}, (Pi,Vi) is a NIZKAoK

• dRLWEq,ñ,σ̃server is hard

• q
2p
≫ σ̃′ ≫ max {L · ℓ̃ · σ̃server · ñ3/2, σ̃ · σ̃serverñ

2}

• 1D-SIS q
2p

,ñℓ̃,max {ñ3/2ℓ̃σ̃,2σ̃2·ñ2+σ̃′
√
ñ} is hard

5.1 Correctness

Lemma 20 Assume an honest client and server. Define T := 2σ̃server · σ̃ · ñ2 + σ̃′
√
ñ. For

any x ∈ {0, 1}L, k ∈ Rq such that ∥k∥∞ ≤ σ̃server ·
√
ñ , we have that

Pr [yx ̸= Fk(x)] ≤ negl(κ)

over the choice of PRF parameters a0, a1 ← R1×ℓ̃
q assuming the hardness of 1D-SISq/p,ñℓ̃,max {ñ3/2ℓ̃σ̃server,T}.

Assume there exists a k′ such that ∥k′∥∞ ≤ σ̃server ·
√
ñ where Pr [yx ̸= Fk′(x)] is non-negligible

over the choice of a0, a1 ← R1×ℓ̃
q . Expanding c and dx from the protocol, we have that

yx = ⌊ax · k′ + e1 · k′ + e′ − e · s⌉p.

32

CRS SetUp: To set up the CRS execute the following steps:

– Pick a0,a1 ← R1×ℓ̃
q

– Sample a← R1×ℓ̃
q , sample crs0 for proof system P0 and set crs0 := (crs0,a)

– Sample crs1 and crs2 for proof systems P1 and P2 respectively
Init: The initialisation procedure is executed by the server S and a client C both with initial input
crs0 .

– Init-S: The server S executes the following steps

k ← R(Dσ̃server), e← R(Dσ̃server)
1×ℓ̃, a← R1×ℓ̃

q .

c← a · k + e mod q

π0 ← P0(k, e : crs0, c)

and sends (c, π0) to a client C.
– Init-C: On receipt of (c, π0) a client executes

b← V0(crs0, c, π0).
Output abort if b = 0, otherwise store c.

Query: This is a two round protocol between a client and the server, with a client going first.
1. On input of (x ∈ {0, 1}L, crs1, crs2) a client C executes the following steps

s← R(Dσ̃), e1 ← R(Dσ̃)
1×ℓ̃

ax = ax1 ·G−1(. . . (axL−1 ·G−1(axL)) . . .) mod q

cx ← a · s+ e1 + ax mod q

π1 ← P1(x, s, e1 : crs1, cx,a,a0,a1)

and sends (cx, π1) to the server S.
2. On receipt of (cx, π1) the server S executes the following steps

b← V1(crs1, cx,a0,a1, π1)

Output abort if b = 0

e′ ← R(Dσ̃′)1×ℓ̃

dx = cx · k + e′ mod q

π2 ← P2(k, e
′, e : crs2, c,dx, cx,a)

and sends (dx, π2) to a client C while outputting ⊥.
3. On receipt of (dx, π2) a client C executes

b← V2(crs0, crs2, c,dx, cx, π2)

Output abort if b = 0

yx = ⌊dx − c · s⌉p
Output yx

Figure 5.1: VOPRF protocol

33

It follows that there must be at least one coefficient of ax ·k′ in the set (q/p) ·Z+[T, T] with

non-negligible probability, otherwise yx = ⌊ax ·k′⌉p =: Fk′(x). Note that e′′ := e1 ·k′−e·s+e′

has infinity norm less than T as defined in the lemma statement with all but negligible

probability. Applying Lemma 16 to the algorithm Dx(a0, a1) that ignores a0, a1 and simply

outputs k′ implies an efficient algorithm solving 1D-SISq/p,ñℓ̃,max {ñ3/2ℓ̃σ̃server,T}.

Next we prove the correctness of non-aborting malicious protocol runs, which is utilized

in the malicious client proof.

Lemma 21 Assume that dRLWEq,ñ,σ̃server is hard, σ̃ and ñ are poly(κ), and q
2p
≫ σ̃′ ≫

max {L · ℓ̃ · σ̃server · ñ3/2, σ̃ · σ̃serverñ
2}. For any x ∈ {0, 1}L, consider a non-aborting run of

the protocol in Figure 5.1 between a (potentially malicious) efficient client C∗ and honest

server S. Further, let s be the value that is extractable from the client’s proof in the query

phase. Then, the value of ⌊dx − c · s⌉p is equal to ⌊ax · k⌉p with all but negligible probability.

By the sercurity of the NIZKAoK, note that for a non-aborting protocol run, any efficient

client C∗ must have produced cx correctly using some x ∈ {0, 1}L, s, e1 where ∥s∥∞,∥e1∥∞ ≤

σ̃ ·
√
ñ. Suppose that ex ← Ea0,a1,x,σ̃server . If σ̃′ ≫ max {L · ℓ̃ · σ̃server · ñ3/2, σ̃σ̃serverñ

2}, then

e′ ← R(Dσ̃′)1×ℓ̃ and (ex−e1 ·k−e ·s)+e′ are statistically close by Lemma 15 and Lemma 4.

Therefore, replacing e′ by (ex − e1 · k − e · s) + e′ the client output equation in Figure 5.1

can be written as

⌊p
q
(dx − c · s)⌉ = ⌊p

q
(ax · k + ex) +

p

q
e′⌉

By Lemma 14, p
q
(ax ·k+ex) is computationally indistinguishable from uniform random over

p
q
R1×ℓ̃

q assuming the hardness of dRLWEq,ñ,σ̃server . Thus every coefficient in p
q
(ax · k + ex) is

at least T away from Z + 1
2

with all but negligible probability for any T ≪ 1. Setting

T = p
q
(σ̃′ ·
√
ñ+L · ℓ̃ · σ̃server · ñ3/2)≪ 1 ensures that T ≤ p

q
· ∥ex + e′∥∞ with all but negligible

probability. It then follows that

⌊p
q
(ax · k + ex) +

p

q
e′⌉ = ⌊p

q
(ax · k)⌉

34

5.2 Malicious Client and Server Proofs

For the malicious client, we note that the proofs are almost entirely unchanged from those

presented in Sections 5.1 and 5.2 of [4], as the proof follows the same argument. The

primary difference in our construction is that the honest server draws its key (k, e) from the

distribution Dσ̃server , requiring a different setting of parameters in the assumptions needed for

the proof to hold:

The client proof requires:

• dRLWEq,ñ,σ̃server

• σ̃′ ≫ L · ℓ̃ · σ̃server · ñ3/2

• σ̃′ ≫ σ̃ · σ̃server · ñ2

The malicious server proof requires:

• dRLWEq,ñ,σ̃

• 1D-SISq/2p,ñℓ̃,max {ñ3/2ℓ̃σ̃,2σ̃2·ñ2+σ̃′
√
ñ} is hard

These requirements are encapsulated in our Theorem 19.

35

36

Chapter 6

Instantiating Proof System 0

In this Chapter we explain how to instantiate proof system 0 in our VOPRF using the

ZKPoK in Chapter 4. In proof system 0, a server proves knowledge of a

• k ∈ R where ∥k∥∞ ≤ σ̃server

√
ñ

• e ∈ R1×l̃ where ∥e∥∞ ≤ σ̃server

√
ñ

such that

c = a · k + e mod q

where c ∈ R1×ℓ̃
q and a ∈ R1×ℓ̃

q are public.

We can write this as an instance of the relation in Chapter 4 with Byes = σ̃server

√
ñ,

Bno = σ̃
√
ñ, and

A = [aT ||Iñℓ̃] ∈ Zñℓ̃×ñ(ℓ̃+1)
q

S = [k||e]T ∈ Zñ(ℓ̃+1)×1

T = [cT] ∈ Zñℓ̃×1
q

where aT is the vertical concatenation of the negacyclic matrices associated to multiplication

37

by the ring elements of a ∈ R1×ℓ̃
q , cT is the vertical concatenation of coefficient vectors of ring

elements in c, and Iñℓ̃ is the ñℓ̃× ñℓ̃ identity matrix. We note that setting Byes = σ̃server

√
ñ

and Bno = σ̃
√
ñ imposes an additional constraint upon the parameters of our VOPRF as

discussed in Chapter 7.

38

Chapter 7

Parameter Setting

From Theorem 19 we have the constraints

• dRLWEq,ñ,σ̃server is hard

• q
2p
≫ σ̃′ ≫ max {L · ℓ̃ · σ̃server · ñ3/2, σ̃ · σ̃serverñ

2}

• 1D-SIS q
2p

,ñℓ̃,max {ñ3/2ℓ̃σ̃,2σ̃2·ñ2+σ̃′
√
ñ} is hard

which requires that

σ̃′ = σ̃2ñ2 · κω(1) (7.1)

and

q = p · σ̃′ · κω(1) (7.2)

(for a full list of parameter requirements, we refer the reader to Table 1 of [4]). We make

a note here that these requirements are slightly stricter than necessary for the security

of our VOPRF protocol (i.e. we only require the drowning distribution σ̃′ to be σ̃′ =

σ̃ · σ̃serverñ
2 · κω(1)), but we adopt these stricter requirements for simplicity when giving our

parameter estimation below.

Additionally, the use of the ZKPoK from Chapter 4 for proof system 0 imposes an addi-

tional constraint: the bound on the ℓ∞ norm that the server proves of their key (k, e) (i.e.

39

Bno = σ̃
√
ñ), must be larger than the bound on the distribution from which an honest server

draws their key, Byes = σ̃server

√
ñ. The relationship between these bounds is established by

Theorem 18, where we set n = λ+ 2 and the rejection sampling parameter ρ = 2.72:

Bno ≥ Byes
12

ln(2.72)
vℓ
√
8(λ+ 2)

In accordance with our reduction in Chapter 6, we substitute λ = κ, Byes = σ̃server

√
ñ,

Bno = σ̃
√
ñ, v = ñ(ℓ̃+ 1), and ℓ = 1, yielding:

σ̃
√
ñ ≥ σ̃server

√
ñ

12

ln(2.72)
ñ(ℓ̃+ 1)

√
8(κ+ 2)

[4] sets the distribution the server’s key is drawn from σ̃server = 3.2, and gives κ = 128,

ℓ̃ = log q, and ñ = 16, 384 as rough parameter estimates. We pick q = 2318. Setting these

values yields

σ̃ ≥ σ̃server · 2.02 · 109 (7.3)

= 6.46 · 109 (7.4)

Note that we grow the modulus from the original setting of log q = 256 in [4] to log q = 318

in order to maintain the relationships in Equations 7.1 and 7.2 imposed by the constraints.

We note that by Table 1 of the Homomorphic Encryption Standard [22], setting ñ = 16, 384

and log q = 318 for σ̃server = 3.2 maintains a security of κ = 128.

40

Chapter 8

Efficiency Analysis

In this Chapter we analyze the contribution of proof system 0 to the overall communication

cost of the VOPRF protocol. The size of the proof π in Figure 4.1 is |π| = |Z| + |C|. C

can be represented by ℓn bits. By the verifier’s first check, each entry of Z is of length at

most B
2
, so Z can be represented by vn log B

2
bits. Setting σ = 12

ln ρ
s
√
ℓn, n = λ + 2 as in

Theorem 18, we obtain

|π| = v(λ+ 2) log
B

2
+ ℓ(λ+ 2)

Substituting B = σ̃
√
ñ, v = ñ(ℓ̃+ 1), ℓ = 1, and λ = κ, we can derive an expression for the

proof size |π| in terms of the parameters of our VOPRF

|π| = ñ(ℓ̃+ 1)(κ+ 2) log
σ̃
√
ñ

2
+ 1 · (κ+ 2)

≈ 2.65 · 1010

bits or 3.08 GB. While large, the main bottleneck of the VOPRF protocol as a whole remains

the size of the proof required for proof system 1. For a modulus of log q = 256, [4] provides a

rough lower bound of is 2040 bits = 128 GB of communication per repetition of the protocol

from [5] when used for proof system 1 (the protocol from [5] requires κ
log p̄

repetitions to reach

a soundness error of 2−κ). Excluding the proofs, the communication cost of the protocol

41

involves the server sending 2ℓ̃ RWLE samples and the client sending ℓ̃ RWLE samples. With

our choice of log q = 318 and ñ = 16, 384, one RLWE sample is about 0.65MB, so the total

communication cost excluding the proofs is around 620MB. Thus, the proof systems are the

main source of inefficiency in our VOPRF construction.

42

Chapter 9

Future Work

Our ZKPoK from Chapter 4 can be adapted to operate over the polynomial ring instead

of the integers, further reducing the proof size of proof system 0. However, as stated in

Chapter 8, the primary bottleneck of the VOPRF construction is the client proof P1.

Future work will investigate applying the recent advancements from [23] in proving the

quadratic relations involved in proof system 1. This protocol presents the most efficient

method known for proving quadratic relations between committed polynomials in Rq. By

leveraging this approach, it is anticipated that we can achieve a shorter and more efficient

proof than the system described in [5] currently used for the client proof P1.

Another potential direction is to explore making efficient hybridized VRFs [14] oblivious.

These hybridized proofs currently produce the shortest VRF outputs among standard (i.e.,

long-term and stateless) VRFs based on quantum-safe assumptions, but they lack oblivious-

ness.

These enhancements could lead to significantly reduced proof sizes and improved effi-

ciency, contributing to the development of a more practical and quantum-safe VOPRF.

43

44

References

[1] S. Goldberg, M. Naor, D. Papadopoulos, L. Reyzin, S. Vasant, and A. Ziv, “Nsec5:

Provably preventing dnssec zone enumeration,” Jan. 2015. doi: 10.14722/ndss.2015.

23211.

[2] Y. Pan, Y. Zhao, X. Liu, G. Wang, and M. Su, “Fplotto: A fair blockchain-based lottery

scheme for privacy protection,” in 2022 IEEE International Conference on Blockchain

(Blockchain), 2022, pp. 21–28. doi: 10.1109/Blockchain55522.2022.00014.

[3] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand: Scaling byzan-

tine agreements for cryptocurrencies,” in Proceedings of the 26th Symposium on Oper-

ating Systems Principles, ser. SOSP ’17, Shanghai, China: Association for Computing

Machinery, 2017, pp. 51–68, isbn: 9781450350853. doi: 10 .1145/3132747 .3132757.

url: https://doi.org/10.1145/3132747.3132757.

[4] M. R. Albrecht, A. Davidson, A. Deo, and N. P. Smart, Round-optimal verifiable obliv-

ious pseudorandom functions from ideal lattices, Cryptology ePrint Archive, Paper

2019/1271, https://eprint.iacr.org/2019/1271, 2019. url: https://eprint.iacr.org/

2019/1271.

[5] R. Yang, M. H. Au, Z. Zhang, Q. Xu, Z. Yu, and W. Whyte, “Efficient lattice-based

zero-knowledge arguments with standard soundness: Construction and applications,”

in Advances in Cryptology – CRYPTO 2019, A. Boldyreva and D. Micciancio, Eds.,

Cham: Springer International Publishing, 2019, pp. 147–175, isbn: 978-3-030-26948-7.

45

https://doi.org/10.14722/ndss.2015.23211
https://doi.org/10.14722/ndss.2015.23211
https://doi.org/10.1109/Blockchain55522.2022.00014
https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1145/3132747.3132757
https://eprint.iacr.org/2019/1271
https://eprint.iacr.org/2019/1271
https://eprint.iacr.org/2019/1271

[6] C. Baum, J. Bootle, A. Cerulli, R. del Pino, J. Groth, and V. Lyubashevsky, “Sub-

linear lattice-based zero-knowledge arguments for arithmetic circuits,” in Advances in

Cryptology – CRYPTO 2018, H. Shacham and A. Boldyreva, Eds., Cham: Springer

International Publishing, 2018, pp. 669–699, isbn: 978-3-319-96881-0.

[7] V. Lyubashevsky, “Lattice signatures without trapdoors,” in Advances in Cryptology

– EUROCRYPT 2012, D. Pointcheval and T. Johansson, Eds., Berlin, Heidelberg:

Springer Berlin Heidelberg, 2012, pp. 738–755, isbn: 978-3-642-29011-4.

[8] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,” in 40th Annual

Symposium on Foundations of Computer Science (Cat. No.99CB37039), 1999, pp. 120–

130. doi: 10.1109/SFFCS.1999.814584.

[9] P. Shor, “Algorithms for quantum computation: Discrete logarithms and factoring,”

in Proceedings 35th Annual Symposium on Foundations of Computer Science, 1994,

pp. 124–134. doi: 10.1109/SFCS.1994.365700.

[10] O. Regev, “On lattices, learning with errors, random linear codes, and cryptography,” in

Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore,

MD, USA, May 22-24, 2005, H. N. Gabow and R. Fagin, Eds., ACM, 2005, pp. 84–93.

doi: 10.1145/1060590.1060603. url: https://doi.org/10.1145/1060590.1060603.

[11] C. Peikert, Public-key cryptosystems from the worst-case shortest vector problem, Cryp-

tology ePrint Archive, Paper 2008/481, https://eprint.iacr.org/2008/481, 2008. url:

https://eprint.iacr.org/2008/481.

[12] M. F. Esgin, V. Kuchta, A. Sakzad, R. Steinfeld, Z. Zhang, S. Sun, and S. Chu, “Prac-

tical post-quantum few-time verifiable random function with applications to algorand,”

in Financial Cryptography and Data Security: 25th International Conference, FC 2021,

Virtual Event, March 1–5, 2021, Revised Selected Papers, Part II, Berlin, Heidelberg:

Springer-Verlag, 2021, pp. 560–578, isbn: 978-3-662-64330-3. doi: 10.1007/978-3-662-

64331-0_29. url: https://doi.org/10.1007/978-3-662-64331-0_29.

46

https://doi.org/10.1109/SFFCS.1999.814584
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603
https://eprint.iacr.org/2008/481
https://eprint.iacr.org/2008/481
https://doi.org/10.1007/978-3-662-64331-0_29
https://doi.org/10.1007/978-3-662-64331-0_29
https://doi.org/10.1007/978-3-662-64331-0_29

[13] M. Buser, R. Dowsley, M. F. Esgin, S. K. Kermanshahi, V. Kuchta, J. K. Liu, R. Phan,

and Z. Zhang, Post-quantum verifiable random function from symmetric primitives in

pos blockchain, Cryptology ePrint Archive, Paper 2021/302, https://eprint.iacr.org/

2021/302, 2021. url: https://eprint.iacr.org/2021/302.

[14] M. F. Esgin, R. Steinfeld, D. Liu, and S. Ruj, Efficient hybrid exact/relaxed lat-

tice proofs and applications to rounding and vrfs, Cryptology ePrint Archive, Paper

2022/141, https://eprint.iacr.org/2022/141, 2022. url: https://eprint.iacr.org/2022/

141.

[15] R. Goyal, S. Hohenberger, V. Koppula, and B. Waters, “A generic approach to con-

structing and proving verifiable random functions,” Nov. 2017, pp. 537–566, isbn:

978-3-319-70502-6. doi: 10.1007/978-3-319-70503-3_18.

[16] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and learning with errors

over rings,” vol. 60, May 2010, pp. 1–23, isbn: 978-3-642-13189-9. doi: 10.1007/978-

3-642-13190-5_1.

[17] M. Ajtai, “Generating hard instances of lattice problems,” in Proceedings of the twenty-

eighth annual ACM symposium on Theory of computing, 1996, pp. 99–108.

[18] Z. Brakerski and V. Vaikuntanathan, “Constrained key-homomorphic prfs from stan-

dard lattice assumptions,” in Theory of Cryptography, Y. Dodis and J. B. Nielsen, Eds.,

Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 1–30, isbn: 978-3-662-46497-

7.

[19] J. Katz and Y. Lindell, Introduction to Modern Cryptography. Chapman and Hall/CRC

Press, 2007, isbn: 978-1-58488-551-1. url: http://www.cs.umd.edu/%5C%7Ejkatz/

imc.html.

[20] A. Banerjee and C. Peikert, New and improved key-homomorphic pseudorandom func-

tions, Cryptology ePrint Archive, Paper 2014/074, https://eprint.iacr.org/2014/074,

2014. url: https://eprint.iacr.org/2014/074.

47

https://eprint.iacr.org/2021/302
https://eprint.iacr.org/2021/302
https://eprint.iacr.org/2021/302
https://eprint.iacr.org/2022/141
https://eprint.iacr.org/2022/141
https://eprint.iacr.org/2022/141
https://doi.org/10.1007/978-3-319-70503-3_18
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
http://www.cs.umd.edu/%5C%7Ejkatz/imc.html
http://www.cs.umd.edu/%5C%7Ejkatz/imc.html
https://eprint.iacr.org/2014/074
https://eprint.iacr.org/2014/074

[21] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to identification

and signature problems,” in Advances in Cryptology — CRYPTO’ 86, A. M. Odlyzko,

Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 1987, pp. 186–194, isbn: 978-3-

540-47721-1.

[22] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov, S. Halevi, J.

Hoffstein, K. Laine, K. Lauter, et al., “Homomorphic encryption standard,” Protecting

privacy through homomorphic encryption, pp. 31–62, 2021.

[23] T. Attema, V. Lyubashevsky, and G. Seiler, Practical product proofs for lattice commit-

ments, Cryptology ePrint Archive, Paper 2020/517, https://eprint.iacr.org/2020/517,

2020. url: https://eprint.iacr.org/2020/517.

48

https://eprint.iacr.org/2020/517
https://eprint.iacr.org/2020/517

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Technical Overview
	1.2 Outline

	2 Related Work
	2.1 Lattice-Based Cryptography
	2.2 Existing Approaches

	3 Preliminaries
	3.1 Notation
	3.2 Probability Distributions and Rejection Sampling
	3.3 Computational Assumptions
	3.4 Zero-Knowledge Proof Systems
	3.5 Pseudorandom Function
	3.6 Verifiable Oblivious Pseudorandom Function

	4 Zero-Knowledge Proof of Knowledge (ZKPoK)
	4.1 Completeness
	4.2 Soundness
	4.3 Zero-Knowledge

	5 Verifiable Oblivious Pseudorandom Function (VOPRF)
	5.1 Correctness
	5.2 Malicious Client and Server Proofs

	6 Instantiating Proof System 0
	7 Parameter Setting
	8 Efficiency Analysis
	9 Future Work
	References

