
MIT Open Access Articles

Using Large Language Models for Evolutionary Search

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: OREILLY, UNA-MAY and Hemberg, Erik. 2024. "Using Large Language Models for
Evolutionary Search."

As Published: https://doi.org/10.1145/3638530.3648432

Publisher: ACM|Genetic and Evolutionary Computation Conference

Persistent URL: https://hdl.handle.net/1721.1/156670

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/156670
https://creativecommons.org/licenses/by/4.0/

5/10/24

1

Una-May O’Reilly, Erik Hemberg
The ALFA Group: AnyScale Learning for All

CSAIL, MIT
unamay@csail.mit.edu, hembergerik@csail.mit.edu

http://groups.csail.mit.edu/ALFA

Using Large Language
Models for Evolutionary

Search

GECCO '24 Companion, July 14–18, 2024, Melbourne, VIC, Australia
© 2024 Copyright is held by the owner/author(s).
ACM ISBN 979-8-4007-0495-6/24/07.
https://doi.org/10.1145/3638530.3648432

1

Instructor: Una-May O’Reilly
• Leader: AnyScale Learning For All Group, MIT CSAIL

• Experience solving real world, complex problems requiring AI/machine learning
where evolutionary computation is a core capability

• Applications include
• Cybersecurity
• Waveform data mining – medical applications
• Behavioral data mining – MOOC
• Circuits, network coding
• Sparse matrix data mapping on parallel architectures
• Finance
• Flavor design
• Wind energy

• Turbine layout
• Resource assessment

• Focus on innovation in genetic programming
• Coevolution
• Improving its competence
• Program synthesis
• Large Language Models

2

Instructor: Erik Hemberg
• Research Scientist: AnyScale Learning For All Group, MIT CSAIL
• Experience solving complex problems requiring AI and machine

learning with evolutionary computation as a core capability, Bronze
HUMIE 2018

• Applications include
• Cybersecurity
• Behavioral data mining – MOOC
• Pylon design
• Network controllers
• Tax avoidance

• Focus on innovation and implementation in genetic programming
• Grammatical representation
• Coevolution
• Estimation of Distribution
• Large Language Models

3

Agenda

1. Evolutionary Algorithm
2. Large Language Model
3. EA + LLM use case

1. Genetic Programming
1. Tutorial_GP demo

2. Genetic Programming +Large Language Model
1. Tutorial_LLM-GP demo

4. EA + LLM Discussion
5. Reference Material

4

973

This work is licensed under a Creative Commons Attribution International 4.0 License.

mailto:unamay@csail.mit.edu
http://groups.csail.mit.edu/ALFA
https://creativecommons.org/licenses/by/4.0/

5/10/24

2

Evolving Solutions with a Large Language
Model

• A Large Language Models works in the input-output space of natural language.
• It is often a pre-trained transformer model with complex patterns of statistical

associations within a massive training text.

• Evolutionary Algorithms (EA) operate on a population of candidate solutions.

• A basic EA is set up with its operators.
• Before execution of a run, it is provided with

• a solution representation

• a fitness function.
• Genetic Programming is an evolutionary algorithm, one that evolves code.

• Objectives of this tutorial are
• describe how an algorithm, with the general algorithmic structure of an EA and

evolutionary operators, can use an LLM to evolve solutions in the form of code
• provide an implementation and demonstration of a simple LLM GP variant.

• to demystify the approach and provide a hands-on starting point for
exploration

• O u t-o f-sco p e

• LLM to d esign EA

5

Neo-Darwinian Evolution

Evolutionary Computation and Evolutionary Algorithms

• Survival and thriving in the environment
• Offspring quantity - based on survival of the fittest

• Offspring variation: genetic crossover and mutation

• Population-based adaptation over generations
• Genotype-phenotype duality

• Complex and non-deterministic

6

Evolutionary Algorithm

Variation
• update

New Solution Generation

Evaluation

Solutions scored and ranked
according to fitness function

depending on the tests

Solution Population

Candidate solutions

Selection

High-performing
Solutions retained

7

Problem Domains where EAs are Used

Evolutionary Computation and Evolutionary Algorithms

• Where there is need for complex solutions
– evolution is a process that gives rise to complexity

– a continually evolving, adapting process,
potentially with changing environment from which
emerges modularity, hierarchy, complex behavior
and complex system relationships

• Combinatorial optimization
– NP-complete and/or poorly scaling solutions via LP

or convex optimization

– unyielding to approximations (SQP, GEO-P)

– E.g. TSP, graph coloring, bin-packing, flows

– for: logistics, planning, scheduling, networks, bio
gene knockouts

– Typified by discrete variables

– Solved by Genetic Algorithm (GA)

• Continuous Optimization
– non-differentiable, discontinuous, multi-modal,

large scale objective functions ‘black box’

– applications: engineering, mechanical, material,
physics

– Typified by continuous variables

– Solved by Evolutionary Strategy (ES)

• Program Search
– program as s/w system component, design, strategy,

model

– common: system identification aka symbolic
regression, modeling

– Symbolic regression is a form of supervised machine
learning

» GP offers some unsupervised ML techniques as well
§ Clustering

8

974

5/10/24

3

EA Individual Examples

Evolutionary Computation and Evolutionary Algorithms

Problem Gene Genome Phenotype Fitness
Function

TSP 110 sequence of cities tour tour length

Function optimization 3.21 variables x of function f(x) |min-f(x)|

Graph k-coloring Permutation element sequence for greedy coloring coloring # of colors

Investment strategy rule agent rule set trading strategy portfolio change

Regress data Executable sub-expression Executable expression model Model error on training set (L1, L2)

9

Overview: Large Language Models

• An LLM, with a chatbot or Natural Language API,
typically works in the space of natural language.
• Large is > 10B parameters (𝚹)

• The LLM is often a pre-trained transformer model
with complex patterns of statistical associations from
massive training texts.
• When the training and task is code, it is called a code

model
• Pre-training back-propagates errors arising from

predictions that complete text sequences.
• Reinforcement Learning with Human Feedback sets

up prompt-response capability.
• The LLM is then further fine-tuned on specific data.

• The LLM performs approximate retrieval of these
patterns to respond to input sequences.

Text LLM𝚹 Text

Text LLM𝚹 Text

Error

Inference

Training

3 + xRewrite 1 + 2 + x

1 + 2 + x 1 - 2 + x

10

EA Relevant LLM components

• Prompt formulation
• Context window
• Tokenization
• Encoding
• Generation
• Guardrails

Text LLM𝚹 TextPrompt formulation Prompt

Context Data

Prompt Encoder𝚹 TensorsTokenization Tokens Generator𝚹 Text

1 + 2 + x Rewrite 1 + 2 + x 3 - x

[…,1, + 2, + x]Rewrite 1 + 2 + x 3 - x[0.31, …]

11

Overview: Regression

System

f(X)

Inputs

x11

x21

x31

Output

Also Known As:
• Explanatory variables
• Independent variables
• Manipulated variables
• Control variables
• Decision variables
• Features

• Response variable
• Dependent variable
• Label

y4

x12

x22

x32

x13

x23

x33

x14

x24

x34

y3 y2 y1

GOAL: FIND f(X) THAT GENERATES Y

12

975

5/10/24

4

Regression
• Regress a relationship between a set of explanatory variables and a response

variable
• Linear regression:

• Assume linear model: y=ax+b
• Optimize parameters (a,b) so data best fits model

• Logistic regression for classification
• Maps linear model into sigmoid family

• Symbolic regression does NOT assume a model
• Not parameter search
• Model is intrinsic in GP solutions

13

Genetic Programming Parse Trees

GP Evolves Executable Expressions

Invariant to parse order:
- Preorder (node, left-child, right-child)
- Post-order (left-child, right-child, node)
- Inorder (left, node, right)

Inorder: 2+3

Preorder: + 2 3

Post-order: 2 3 + Inorder: (2-3) + (a max best)

Preorder: (+ (-2 3) (max a best))

Post-order: (2 3 -) (a best max) +)

+
2 3

+
- max

2 3 a best

14

A Lisp GP system
A Lisp GP system is a large set of functions which are interpreted by

evaluating the entry function
• Some are definitions of primitives you write!

• (defun protectedDivide …)

• Rest is software logic for evolutionary algorithms

A GP system has functions that are pre-defined (by compilation or
interpretation) for use as primitives and logic that handles
• Population initialization, iteration, selection, breeding, replacement, *fitness

evalution*

GP expressions are first class objects in LISP so the GP software logic can
manipulate them as data/variables as well as have the interpreter
read and evaluate them

GP Evolves Executable Expressions

Expressions are data and are executed

15

How to Evaluate an Expression in GP
• interpreter beneath your code

• Lisp example

• interpreter within your code
• typical,
• examples: tutorial_gp.py

• compile then execute on your OS

16

976

5/10/24

5

How to Manipulate and Vary Expressions as Data
• For Crossover and Mutation

• offspring can be different size and
structure than parents

• syntactic correctness
• randomness in replication and

variation

• GP solution
• reference the parse tree
• Crossover - swap subtrees between

trees of parents
• Mutation: insert, substitute or

delete from a parse tree (PT)

if

S

t2

Tnot

sumsum

>

t1 t5

Parent 2

if

G

av
<

t2

Rand

t1

sumsum

>

t1 t5

Child 1

t3
=
max

t4

if

S Tnot

Child 2

if

G

av
<

t2 t3
=
max

t4

and

t1

Parent 1

R

17

GP Preparatory Steps
Assume we have a GP system with internal expression evaluator.
1. Decide upon functions and terminals

• Terminals bind to decision variables in problem
• Combinatorial expression space defines the search space

2. Set up the fitness function
• Translation of problem goal to GP goal
• Minimization of error between desired and evolved expression when executed
• Maximization of a problem-based score
• Construct test cases for program (input examples, desired output)

3. Decide upon run parameters
• Population size is most important
• GP is robust to many other parameter choices

4. Determine a halt criteria and result to be returned
• Maximum number of fitness evaluations
• Time
• Minimum acceptable error
• Good enough solution (satisficing)

Nuts and Bolts GP Design

18

Top Level GP Algorithm

Nuts and Bolts GP Design - Summary

Begin
 pop = random programs from a set of operators and operands
 repeat
 execute each program in pop with each set of inputs

 measure each program’s fitness
 repeat
 select 2 parents
 copy 2 offspring from parents
 crossover
 mutate
 add to new-pop
 until pop-size
 pop = new-pop
 until max-generation
 or
 adequate program found
End

Grow or Full

•Tournament selection
•Fitness proportional selection

Ramped-half-half

Prepare input data
Designate solution
Define error between
actual and expected

Sub-tree crossover•Subtree substitution
•Permute
•Edit

Max-init-tree-height

Prob to crossover

Max-tree-height

Mutation probs

Tournament size

Leaf:node bias

19

Tutorial_GP: Simple Symbolic Regression
• Given a set of independent decision variables and

corresponding values for a dependent variable

• Want: a model that predicts the dependent variable
• Eg: linear model with numerical coefficients

• Y= aX1 + bX2 + c(X1X2)
• Eg: non-linear model

• y= a X12 + bX23

• Prediction accuracy: minimum error between model prediction
and actual samples

• Usually: designer provides a model, and a regression (ordinary
least squares, Fourier series) determines coefficients

• With genetic programming, the model (structure) and the
coefficients can be learned

• Test problem:
• f(x)=(X0 * X0) + (X1 * X1)

• Domain of X0 and X1 [-5.0,5.0]

• Choose the 4 operands (terminals)
• X0, X1, 1.0, 0

• Choose the 4 operators (functions)
• +, - , *, / (protected)
• protected divide: if denominator==0, return numerator

• Fitness function: sum of mean squared error between yi, and
expression’s return values

• Prepare 121 randomized points for testing

• Out of sample training:testing ratio is 70:30, random selection of
points as training or test

GP Examples

GOTO: VS Code debugger
- Evaluation
- Mutation Operator

20

977

5/10/24

6

LLM-GP Algorithm

21

General LLM-GP Algorithm
Begin
 pop = random programs from a set of operators and operands
 repeat
 execute each program in pop with each set of inputs

 measure each program’s fitness
 repeat
 select 2 parents
 copy 2 offspring from parents
 crossover
 mutate
 add to new-pop
 until pop-size
 pop = new-pop
 until max-generation
 or
 adequate program found
End

Initialization prompt

Selection prompt

Evaluation Prompt (can be unreliable)
Prepare input data
Designate solution
Define error between actual and expected

Crossover promptMutation prompt

Prompt content and probabilityPrompt content and probability

Prompt content

22

LLM-Based GP Operators

Code

LLM𝚹

Text1. Prompt function Prompt

Context Data

3. Check2. API Code

23

Prompt-functions for LLM GP Operators

24

978

5/10/24

7

Example of LLM-GP Mutation

25

LLM-GP Preparatory Steps
Assume we have an LLM-GP system with internal expression evaluator.

1. Decide upon functions and terminals
• Terminals bind to decision variables in problem
• Combinatorial expression space defines the search space

2. Set up the fitness function
• Translation of problem goal to GP goal
• Minimization of error between desired and evolved expression when

executed
• Maximization of a problem-based score
• Construct test cases for program (input examples, desired output)

3. Decide upon run parameters
• Population size is most important
• GP is robust to many other parameter choices

4. Determine a halt criteria and result to be returned
• Maximum number of fitness evaluations
• Time
• Minimum acceptable error
• Good enough solution (satisficing)

26

LLM-GP considerations

LLM𝚹

TextPrompt CheckAPI Code

Text LLM𝚹 Text

Error

LLM Training: Effort, and Resources LLM Inference: Bias, Effort and Resources

27

Error Handling

Logging

Implementation: Error handling and logging

28

979

5/10/24

8

LLM-GP Algorithm Only Variation

29

Demonstration Setup
Resource Description

Operating System Ubuntu 22.04 LTS

RAM 64GB

CPU Intel I7-8700K 3.70GHz

Budget 50 USD

Max Runtime 60000 Seconds

Fitness Evaluations 300

LLM version Gpt-3.5-turbo-0613

Context window size 4096

Parameter Tutorial GP LLM-GP-MU-XO LLM-GP

Trials 30

Crossover Probability 0.8

Mutation probability 0.2

Population size 10

Generations 30

Primitives +,-,*,x0,x1, 1, 0

Solution x02 + x12

Exemplar splits 0.2 Hold-out, (0.7 Training, 0.3 Testing)

Exemplars 121 10

Few-shot exemplars NA 2

Mutation Subtree Prompt

Crossover Subtree Prompt

Initialization Ramped Half-Half Prompt

Max Depth 5 NA

Selection Tournament (size 2) NA

Replacement Generational (Elite size 1) NA

30

Tutorial_LLM-GP Demo

• Step Through
• Run
• Evaluation
• Mutation
• Logs

31

LLM-GP Duration and Cost Analysis

LLM API calls can be costly and slow. LLM-GP can find the optimal solution with order of magnitude fewer fitness evaluations

Name Mean Duration (s) Std Cost (USD)

LLM-GP 1664.30 1033.97 3.90

LLM-GP-Mu-XO 743.31 508.70 1.87

Tutorial-GP 0.10 0.08 0.00

LLM-Random 837.16 416.12 2.63

Random 0.18 0.01 0.00

32

980

5/10/24

9

Size Analysis

LLM-GP solutions do not increase in size as much as Tutorial GP.
Note, there was no explicit solution size bias for any algorithm

33

LLM use analysis

There might be a response time limit.

34

LLM-GP Error Analysis

There is a distinct difference in LLM operator error rates

35

LLM-EA Example Domains

• Program synthesis
• Code for Agent Controller
• Boolean Parity
• Symbolic Regression (Function Search)
• Optimization Heuristics
• Neural Architecture Search
• Prompts
• Data for LLM Tuning

36

981

5/10/24

10

Example LLM Designs used for EA

LLM
• Temperature: Increase LLM variability for solution diversity
• Fine Tuning: Fine tune LLM on data generated during the evolutionary search
Prompt Engineering Techniques
• Zero shot: A predefined prompt
• Template: Prompt expanded with run-time information
• Few-shot: Examples of input and corresponding output
• Chaining: Sequence of LLM calls
• Summarization: Solutions are summarized and then provided as input
• Human Interaction: Human manipulates prompts and responses
• Optimization: External optimization of prompt

37

Tutorial GP vs LLM-GP
Basis of Comparison GP LLM-GP

Computational environment referenced by the code-
evolving system

Program execution environment Program execution environment and LLM which is a
generative pattern completion system using token
sequence-based pattern-matching with built-in patterns

Run of a code-evolving system A GP run executes procedural software where the code is
data, the operators work on code structure, and the code
is bespoke evaluated and assigned numerical fitness.

A LLM-GP run executes procedural software that, among
other things, composes text-based NL prompts, sends
them as inputs to an LLM , and collects responses.

Code as desired solution (genotype-phenotype duality) Genotype/phenotype is a data structure with structural
properties, e.g. tree, list, stack, and executability

Code is token sequence with code-snippet meaning, it
has no structural properties, and it has implicit pattern-
related properties related to the patterns, patter—
matching and bias within the LLM

Evolutionary Variation Structural, blind to meaning Not structural, opaque to user beyond prompt content.
Internal to LLM it is based on built-in patterns and is a
black box.

Evolutionary Selection/Replacement Comparative, based on numeric ranking and fitness
represented as a number

Comparative, prompt could include fitness, could task
LLM to rank, could include other bases of comparison.
Opaque to use beyond prompt content. Internal to LLM it
is based on built-in patterns and is a black box.

Code evaluation Uses bespoke execution environment (supporting the
primitives) on top of a general-purpose program
execution environment

Practical implementations will use a general-purpose
program execution environment

Code Fitness Numeric-based Numeric or expressed with natural language

38

Risks of LLM use for EA research

• An algorithm’s success depends on prompts and an LLM’s responses are sensitive to prompt composition.
• LLMs currently lack many facets of general intelligence, while they can appear to understand prompts. This risks assuming

understanding.
• Rigorous experiments need to investigate the sensitivity of the algorithm’s performance to prompt design.

• An LLMs display biases based on their architecture, training dataset and pre-training.
• These biases are, to date, poorly characterized or understood.

• E.g tokens and position in prompt

• An LLM is probabilistic and generative.
• Performance is not consistent across LLMs. Accurately predicting and reporting performance of a LLM-EA system might require more

effort than an EA system, as will transferring systems and solutions.

• LLM training is difficult and unavailable to some LLM users and data sets for training are not well
documented or shared
• A researcher may not be able to ensure that the rote solution (and problem description) are within the LLM training data

• An LLM used via a model-provider’s API has replicability dependency on model release preservation

39

LLM-EA investigation motivations

• LLMs offer a new computational paradigm, one working around pattern
memory and matching.
• How does this complement algorithms (not only EAs) solely using a procedural

abstraction?
• How do the mechanisms of a LLM relate to mechanisms within Natural

systems?
• Could pattern completion competence be effectively like highly

environmentally-sensitive, self-adapted variation operators in the natural
world?
• Could LLM-EA variants uncover insights into LLM capabilities that lead to

advances in LLM design or usage, or EA approaches?
• Could evolving code with an LLM lead to improved understanding of the

correspondences between an LLM's capabilities and Nature's mechanisms?

40

982

5/10/24

11

Conducting LLM-EA investigations
Reporting:
• Report the preparatory steps clearly.
• Report time and cost of prompting during a run.

• Report any biases beyond pre-training.
• Probe prompt sensitivity. If possible, also probe different LLMs.
• Maintain independent leaderboards on a benchmark for each of the EA and LLM-EA approaches.

• Report the model version along with its pre-training costs, its training data and its fine-tuning.
Methods:

• Check if the problem and solution are in the data set
• Compare an LLM-based approach against other LLM-based approaches when using a community benchmark. Consider whether it makes sense to compare with EAs.
• Make well-aligned comparisons (apples to apples, not apples to oranges).

• EA costs are incurred on different bases from EA-LLM. Fitness evaluations dominate running cost so comparison among EA variants can be number of fitness evaluations.
• LLM-EAs rely on a pre-trained model. Costs related to prompt response time and tokens have no EA equivalent.

• How much human intelligence has gone into solving the EA problem ahead of the LLM-EA run and how would this differ in the case of EA?
• Is domain information (not evolutionary information) contained in a prompt?

Integrity:

• Be responsible with environmental cost. The budget devoted to investigation has the hidden expense of training an LLM.
• Use the LLM ethically and keep usage aligned with human values.

41

Research Questions for LLM-EA
Applications:
• How can LLM-EA integrate software engineering domain knowledge?
• How can LLM-EA solve prompt composition or other LLM development and use challenges?
• How can LLM-EA solve with different of units of evolution, e.g. strings, images, multi-modal candidates?
Algorithm Variants:
• How can we probe LLM-EA to understand the limits of its literal coding competence and more pragmatic coding competences?
• How can an LLM-EA algorithm integrate design explorations related to cooperation, modularity, reuse, or competition?
• How can an LLM-EA algorithm model biology differently from EAs?
• How can an LLM-EA intrinsically, or with guidance, support open-ended evolution?
• What new variants hybridizing EA, LLM-EA and/or another search heuristic are possible and in what respects are they advantageous?
• Is there a relevant multi-objective optimization and many-objective optimization approach with LLM-EA?
Analysis Avenues:
• How well does LLM-EA scale with population size and problem complexity?
• What is a search space in LLM-EA and how can it be characterized with respect to problem difficulty?
• To what extent does an LLM-based approach intrinsically address novelty or quality-diversity?
• What is the most accurate computational complexity of LLM-EA?

42

Reference Material
• Liu, Fei et al. “Large Language Model for Multi-objective Evolutionary Optimization.” ArXiv abs/2310.12541 (2023)
• Li, Yujian Betterest and Kai Wu. “SPELL: Semantic Prompt Evolution based on a LLM.” ArXiv abs/2310.01260 (2023)

• Lehman, Joel et al. “Evolution through Large Models.” (2022).
• Liu, Fei et al. “Algorithm Evolution Using Large Language Model.” ArXiv abs/2311.15249 (2023)

• Guo, Qingyan et al. “Connecting Large Language Models with Evolutionary Algorithms Yields Powerful Prompt Optimizers.” ArXiv abs/2309.08532 (2023)
• Zelikman, E. et al. “Self-Taught Optimizer (STOP): Recursively Self-Improving Code Generation.” ArXiv abs/2310.02304 (2023)

• Chen, Angelica et al. “EvoPrompting: Language Models for Code-Level Neural Architecture Search.” ArXiv abs/2302.14838 (2023)
• Akiba, Takuya et al. “Evolutionary Optimization of Model Merging Recipes.” ArXiv abs/2403.13187 (2024)

• Tanaka, Hiroto et al. “Genetic Algorithm for Prompt Engineering with Novel Genetic Operators.” 2023 15th International Congress on Advanced Applied Informatics Winter (IIAI-AAI-Winter) (2023): 209-214.

• Moradi, Milad et al. “Exploring the landscape of large language models: Foundations, techniques, and challenges.” (2024).
• Lim, Bryan et al. “Large Language Models as In-context AI Generators for Quality-Diversity.” (2024).

• Lange, Robert Tjarko et al. “Large Language Models As Evolution Strategies.” ArXiv abs/2402.18381 (2024)
• Tao, Ning et al. “Program Synthesis with Generative Pre-trained Transformers and Grammar-Guided Genetic Programming Grammar.” 2023 IEEE Latin American Conference on Computational Intelligence (LA-CCI) (2023): 1-6.

• Kang, Sungmin and Shin Yoo. “Towards Objective-Tailored Genetic Improvement Through Large Language Models.” 2023 IEEE/ACM International Workshop on Genetic Improvement (GI) (2023): 19-20.
• Ye, Haoran et al. “ReEvo: Large Language Models as Hyper-Heuristics with Reflective Evolution.” ArXiv abs/2402.01145 (2024)

• Morris, Clint et al. “LLM Guided Evolution - The Automation of Models Advancing Models.” ArXiv abs/2403.11446 (2024)
• Tao, Zhengwei et al. “A Survey on Self-Evolution of Large Language Models.” (2024).

• Jin, Feihu et al. “Zero-Shot Chain-of-Thought Reasoning Guided by Evolutionary Algorithms in Large Language Models.” ArXiv abs/2402.05376 (2024)
• Liu, Shengcai et al. “Large Language Models as Evolutionary Optimizers.” ArXiv abs/2310.19046 (2023)

• Co-Reyes, John D. et al. “Guided Evolution with Binary Discriminators for ML Program Search.” ArXiv abs/2402.05821 (2024)
• Xu, Can et al. “WizardLM: Empowering Large Language Models to Follow Complex Instructions.” ArXiv abs/2304.12244 (2023)

• Chao, Wang et al. “A match made in consistency heaven: when large language models meet evolutionary algorithms.” ArXiv abs/2401.10510 (2024)
• Fernando, Chrisantha et al. “Promptbreeder: Self-Referential Self-Improvement Via Prompt Evolution.” ArXiv abs/2309.16797 (2023)

• Meyerson, Elliot et al. “Language Model Crossover: Variation through Few-Shot Prompting.” ArXiv abs/2302.12170 (2023)

• Nasir, Muhammad Umair et al. “LLMatic: Neural Architecture Search via Large Language Models and Quality-Diversity Optimization.” ArXiv abs/2306.01102 (2023)
• Liu, Fei et al. “Evolution of Heuristics: Towards Efficient Automatic Algorithm Design Using Large Language Mode.” (2024).

• Sudhakaran, Shyam et al. “MarioGPT: Open-Ended Text2Level Generation through Large Language Models.” ArXiv abs/2302.05981 (2023)
• Lanzi, Pier Luca and Daniele Loiacono. “ChatGPT and Other Large Language Models as Evolutionary Engines for Online Interactive Collaborative Game Design.” Proceedings of the Genetic and Evolutionary Computation Conference (2023)

• Lim, Soo Ling et al. “SCAPE: Searching Conceptual Architecture Prompts using Evolution.” ArXiv abs/2402.00089 (2024)
• Liventsev, Vadim et al. “Fully Autonomous Programming with Large Language Models.” Proceedings of the Genetic and Evolutionary Computation Conference (2023)

• Hemberg, Erik et al. “Evolving Code with A Large Language Model.” ArXiv abs/2401.07102 (2024)
• Romera-Paredes, Bernardino et al. “Mathematical discoveries from program search with large language models.” Nature 625 (2023): 468 - 475.

• Brownlee, Alexander E. I. et al. “Enhancing Genetic Improvement Mutations Using Large Language Models.” International Symposium on Search Based Software Engineering (2023).
• Shojaee, Parshin et al. “LLM-SR: Scientific Equation Discovery via Programming with Large Language Models.” (2024).

• Wu, Xingyu et al. “Evolutionary Computation in the Era of Large Language Model: Survey and Roadmap.” ArXiv abs/2401.10034 (2024)
• Ma, Yecheng Jason et al. “Eureka: Human-Level Reward Design via Coding Large Language Models.” ArXiv abs/2310.12931 (2023)

43

983

