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Instructor: Una-May O’Reilly
• Leader:  AnyScale Learning For All Group, MIT CSAIL

• Experience solving real world, complex problems requiring AI/machine learning
where evolutionary computation is a core capability

• Applications include
• Cybersecurity
• Waveform data mining – medical applications
• Behavioral data mining – MOOC
• Circuits, network coding
• Sparse matrix data mapping on parallel architectures
• Finance
• Flavor design
• Wind energy

• Turbine layout
• Resource assessment

• Focus on innovation in genetic programming
• Coevolution
• Improving its competence
• Program synthesis
• Large Language Models
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Instructor: Erik Hemberg
• Research Scientist:  AnyScale Learning For All Group, MIT CSAIL
• Experience solving complex problems requiring AI and machine 

learning with evolutionary computation as a core capability, Bronze 
HUMIE 2018

• Applications include
• Cybersecurity
• Behavioral data mining – MOOC
• Pylon design
• Network controllers
• Tax avoidance

• Focus on innovation and implementation in genetic programming
• Grammatical representation
• Coevolution
• Estimation of Distribution
• Large Language Models
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Agenda

1. Evolutionary Algorithm 
2. Large Language Model
3. EA + LLM use case

1. Genetic Programming
1. Tutorial_GP demo

2. Genetic Programming +Large Language Model
1. Tutorial_LLM-GP demo

4. EA + LLM Discussion
5. Reference Material
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Evolving Solutions with a Large Language 
Model

• A Large Language Models works in the input-output space of natural language. 
• It is often a pre-trained transformer model with complex patterns of statistical 

associations within a massive training text. 

• Evolutionary Algorithms (EA) operate on a population of candidate solutions. 

• A basic EA is set up with its operators. 
• Before execution of a run, it is provided with 

• a solution representation 

• a fitness function. 
• Genetic Programming is an evolutionary algorithm, one that evolves code. 

• Objectives of this tutorial are 
• describe how an algorithm, with the general algorithmic structure of an EA and 

evolutionary operators, can use an LLM to evolve solutions in the form of code 
• provide an implementation and demonstration of a simple LLM GP variant. 

• to demystify the approach and provide a hands-on starting point for 
exploration

• O u t-o f-sco p e

• LLM  to  d esign  EA

5

Neo-Darwinian Evolution

Evolutionary Computation and Evolutionary Algorithms

• Survival and thriving in the environment
• Offspring quantity - based on survival of the fittest 

• Offspring variation: genetic crossover and mutation 

• Population-based adaptation over generations
• Genotype-phenotype duality

• Complex and non-deterministic

6

Evolutionary Algorithm

Variation
• update

New Solution Generation

Evaluation

Solutions scored and ranked
according to fitness function

depending on the tests

Solution Population

Candidate solutions

Selection

High-performing
Solutions retained
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Problem Domains where EAs are Used

Evolutionary Computation and Evolutionary Algorithms

• Where there is need for complex solutions 
– evolution is a process that gives rise to complexity

– a continually evolving, adapting process, 
potentially with changing environment from which 
emerges modularity, hierarchy, complex behavior 
and complex system relationships 

• Combinatorial optimization
– NP-complete and/or poorly scaling solutions via LP 

or convex optimization

– unyielding to approximations (SQP, GEO-P)

– E.g. TSP, graph coloring, bin-packing, flows

– for: logistics, planning, scheduling, networks, bio 
gene knockouts

– Typified by discrete variables  

– Solved by Genetic Algorithm (GA) 

• Continuous Optimization
– non-differentiable, discontinuous, multi-modal, 

large scale objective functions  ‘black box’

– applications: engineering, mechanical, material, 
physics

– Typified by continuous variables

– Solved by Evolutionary Strategy (ES)

• Program Search 
– program as s/w system component, design, strategy, 

model

– common: system identification aka symbolic 
regression, modeling

– Symbolic regression is a form of supervised machine 
learning

» GP offers some unsupervised ML techniques as well
§ Clustering

8
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EA Individual Examples

Evolutionary Computation and Evolutionary Algorithms

Problem Gene Genome Phenotype Fitness
Function

TSP 110 sequence of cities tour tour length

Function optimization 3.21 variables x of function f(x) |min-f(x)|

Graph k-coloring Permutation element sequence for greedy coloring coloring # of colors

Investment strategy rule agent rule set trading strategy portfolio change

Regress data Executable sub-expression Executable expression model Model error on training set (L1, L2) 

9

Overview: Large Language Models

• An LLM, with a chatbot or Natural Language API, 
typically works in the space of natural language. 
• Large is > 10B parameters (𝚹)

• The LLM is often a pre-trained transformer model 
with complex patterns of statistical associations from 
massive training texts. 
• When the training and task is code, it is called a code 

model
• Pre-training back-propagates errors arising from 

predictions that complete text sequences.
• Reinforcement Learning with Human Feedback sets 

up prompt-response capability. 
• The LLM is then further fine-tuned on specific data. 

• The LLM performs approximate retrieval of these 
patterns to respond to input sequences. 

Text LLM𝚹 Text

Text LLM𝚹 Text

Error

Inference

Training

3 + xRewrite 1 + 2 + x

1 + 2 + x 1 - 2 + x

10

EA Relevant LLM components

• Prompt formulation
• Context window
• Tokenization
• Encoding
• Generation
• Guardrails

Text LLM𝚹 TextPrompt formulation Prompt

Context Data

Prompt Encoder𝚹 TensorsTokenization Tokens Generator𝚹 Text

1 + 2 + x Rewrite 1 + 2 + x 3 - x

[…,1, + 2, + x]Rewrite 1 + 2 + x 3 - x[0.31, …]
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Overview: Regression

System

f(X)

Inputs

x11

x21

x31

Output

Also Known As:
• Explanatory variables
• Independent variables
• Manipulated variables
• Control variables
• Decision variables
• Features

• Response variable
• Dependent variable
• Label

y4

x12

x22

x32

x13

x23

x33

x14

x24

x34

y3 y2 y1

GOAL: FIND f(X) THAT GENERATES Y

12
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Regression
• Regress a relationship between a set of explanatory variables and a response 

variable
• Linear regression:

• Assume linear model:  y=ax+b
• Optimize parameters (a,b) so data best fits model

• Logistic regression for classification
• Maps linear model into sigmoid family

• Symbolic regression does NOT assume a model
• Not parameter search
• Model is intrinsic in GP solutions

13

Genetic Programming Parse Trees

GP Evolves Executable Expressions

Invariant to parse order: 
- Preorder (node, left-child, right-child)
- Post-order (left-child, right-child, node)
- Inorder (left, node, right)

Inorder: 2+3

Preorder: + 2 3

Post-order: 2 3 + Inorder: (2-3) + (a max best)

Preorder: (+ (-2 3) (max a best))

Post-order: (2 3 -) (a best max) +)

+
2 3

+
- max

2 3 a best

14

A Lisp GP system 
A Lisp GP system is a large set of functions which are interpreted by 

evaluating the entry function
• Some are definitions of primitives you write!

•  (defun protectedDivide …)

• Rest is software logic for evolutionary algorithms

A GP system has functions that are pre-defined (by compilation or 
interpretation) for use as primitives and logic that handles 
• Population initialization, iteration, selection, breeding, replacement, *fitness 

evalution*

GP expressions are first class objects in LISP so the GP software logic can 
manipulate them as data/variables as well as have the interpreter 
read and evaluate them

GP Evolves Executable Expressions

Expressions are data and are executed

15

How to Evaluate an Expression in GP
• interpreter beneath your code

• Lisp example

• interpreter within your code
• typical, 
• examples: tutorial_gp.py

• compile then execute on your OS

16
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How to Manipulate and Vary Expressions as Data
• For Crossover and Mutation

• offspring can be different size and 
structure than parents

• syntactic correctness
• randomness in replication and 

variation

• GP solution
• reference the parse tree
• Crossover - swap subtrees between 

trees of parents
• Mutation: insert, substitute or 

delete from a parse tree (PT)

if

S

t2

Tnot

sumsum

>

t1 t5

Parent 2

if

G

av
<

t2

Rand

t1

sumsum

>

t1 t5

Child 1

t3
=
max

t4

if

S Tnot

Child 2

if

G

av
<

t2 t3
=
max

t4

and

t1

Parent 1

R
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GP Preparatory Steps
Assume we have a GP system with internal expression evaluator.
1. Decide upon functions and terminals

• Terminals bind to decision variables in problem
• Combinatorial expression space defines the search space

2. Set up the fitness function
• Translation of problem goal to GP goal
• Minimization of error between desired and evolved expression when executed
• Maximization of a problem-based score
• Construct test cases for program (input examples, desired output)

3. Decide upon run parameters
• Population size is most important
• GP is robust to many other parameter choices

4. Determine a halt criteria and result to be returned
• Maximum number of fitness evaluations
• Time
• Minimum acceptable error
• Good enough solution (satisficing)

Nuts and Bolts GP Design

18

Top Level GP Algorithm

Nuts and Bolts GP Design - Summary

Begin
 pop = random programs from a set of operators and operands
 repeat
  execute each program in pop with each set of inputs

  measure each program’s fitness
  repeat
   select 2 parents
   copy 2 offspring from parents
    crossover
    mutate
   add to new-pop
  until pop-size
 pop = new-pop
 until max-generation 
  or
         adequate program found
End

Grow or Full

•Tournament selection
•Fitness proportional selection

Ramped-half-half

Prepare input data
Designate solution
Define error between 
actual and expected

Sub-tree crossover•Subtree substitution
•Permute
•Edit

Max-init-tree-height

Prob to crossover

Max-tree-height

Mutation probs

Tournament size

Leaf:node bias

19

Tutorial_GP: Simple Symbolic Regression
• Given a set of independent decision variables and 

corresponding values for a dependent variable

• Want: a model that predicts the dependent variable
• Eg: linear model with numerical coefficients

• Y= aX1 + bX2 + c(X1X2)
• Eg: non-linear model

•  y= a X12 + bX23

• Prediction accuracy: minimum error between model prediction 
and actual samples

• Usually: designer provides a model, and a regression (ordinary 
least squares, Fourier series) determines coefficients 

• With genetic programming, the model (structure) and the 
coefficients can be learned

• Test problem:
• f(x)=(X0 * X0) + (X1 * X1)

• Domain of X0 and X1 [-5.0,5.0]

• Choose the 4 operands (terminals)
• X0, X1, 1.0, 0 

• Choose the 4 operators (functions)
• +, - , *, / (protected)
• protected divide: if denominator==0, return numerator

• Fitness function: sum of mean squared error between yi, and 
expression’s return values

• Prepare 121 randomized points for testing

• Out of sample training:testing ratio is 70:30, random selection of 
points as training or test

GP Examples

GOTO: VS Code debugger
- Evaluation
- Mutation Operator

20
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LLM-GP Algorithm

21

General LLM-GP Algorithm
Begin
 pop = random programs from a set of operators and operands
 repeat
  execute each program in pop with each set of inputs

  measure each program’s fitness
  repeat
   select 2 parents
   copy 2 offspring from parents
    crossover
    mutate
   add to new-pop
  until pop-size
 pop = new-pop
 until max-generation 
  or
         adequate program found
End

Initialization prompt

Selection prompt

Evaluation Prompt (can be unreliable)
Prepare input data
Designate solution
Define error between actual and expected

Crossover promptMutation prompt

Prompt content and probabilityPrompt content and probability

Prompt content

22

LLM-Based GP Operators

Code

LLM𝚹

Text1. Prompt function Prompt

Context Data

3. Check2. API Code

23

Prompt-functions for LLM GP Operators

24
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Example of LLM-GP Mutation

25

LLM-GP Preparatory Steps
Assume we have an LLM-GP system with internal expression evaluator.

1. Decide upon functions and terminals
• Terminals bind to decision variables in problem
• Combinatorial expression space defines the search space

2. Set up the fitness function
• Translation of problem goal to GP goal
• Minimization of error between desired and evolved expression when 

executed
• Maximization of a problem-based score
• Construct test cases for program (input examples, desired output)

3. Decide upon run parameters
• Population size is most important
• GP is robust to many other parameter choices

4. Determine a halt criteria and result to be returned
• Maximum number of fitness evaluations
• Time
• Minimum acceptable error
• Good enough solution (satisficing)

26

LLM-GP considerations

LLM𝚹

TextPrompt CheckAPI Code

Text LLM𝚹 Text

Error

LLM Training: Effort, and Resources LLM Inference:  Bias, Effort and Resources

27

Error Handling

Logging

Implementation: Error handling and logging

28
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LLM-GP Algorithm Only Variation

29

Demonstration Setup
Resource Description

Operating System Ubuntu 22.04 LTS

RAM 64GB

CPU Intel I7-8700K 3.70GHz

Budget 50 USD

Max Runtime 60000 Seconds

Fitness Evaluations 300

LLM version Gpt-3.5-turbo-0613

Context window size 4096

Parameter Tutorial GP LLM-GP-MU-XO LLM-GP

Trials 30

Crossover Probability 0.8

Mutation probability 0.2

Population size 10

Generations 30

Primitives +,-,*,x0,x1, 1, 0

Solution x02 + x12

Exemplar splits 0.2 Hold-out, (0.7 Training, 0.3 Testing)

Exemplars 121 10

Few-shot exemplars NA 2

Mutation Subtree Prompt

Crossover Subtree Prompt

Initialization Ramped Half-Half Prompt

Max Depth 5 NA

Selection Tournament (size 2) NA

Replacement Generational (Elite size 1) NA

30

Tutorial_LLM-GP Demo

• Step Through
• Run
• Evaluation
• Mutation
• Logs

31

LLM-GP Duration and Cost Analysis

LLM API calls can be costly and slow. LLM-GP can find the optimal solution with order of magnitude fewer fitness evaluations

Name Mean Duration (s) Std Cost (USD)

LLM-GP 1664.30 1033.97 3.90

LLM-GP-Mu-XO 743.31 508.70 1.87

Tutorial-GP 0.10 0.08 0.00

LLM-Random 837.16 416.12 2.63

Random 0.18 0.01 0.00

32
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Size Analysis

LLM-GP solutions do not increase in size as much as Tutorial GP.
Note, there was no explicit solution size bias for any algorithm

33

LLM use analysis

There might be a response time limit.

34

LLM-GP Error Analysis

There is a distinct difference in LLM operator error rates

35

LLM-EA Example Domains

• Program synthesis
• Code for Agent Controller
• Boolean Parity
• Symbolic Regression (Function Search)
• Optimization Heuristics
• Neural Architecture Search
• Prompts
• Data for LLM Tuning 

36
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Example LLM Designs used for EA

LLM
• Temperature: Increase LLM variability for solution diversity
• Fine Tuning: Fine tune LLM on data generated during the evolutionary search
Prompt Engineering Techniques
• Zero shot: A predefined prompt
• Template: Prompt expanded with run-time information
• Few-shot: Examples of input and corresponding output
• Chaining: Sequence of LLM calls
• Summarization: Solutions are summarized and then provided as input
• Human Interaction: Human manipulates prompts and responses
• Optimization: External optimization of prompt

37

Tutorial GP vs LLM-GP
Basis of Comparison GP LLM-GP

Computational environment referenced by the code- 
evolving system 

Program execution environment Program execution environment and LLM which is a 
generative pattern completion system using token 
sequence-based pattern-matching with built-in patterns 

Run of a code-evolving system A GP run executes procedural software where the code is 
data, the operators work on code structure, and the code 
is bespoke evaluated and assigned numerical fitness. 

A LLM-GP run executes procedural software that, among 
other things, composes text-based NL prompts, sends 
them as inputs to an LLM , and collects responses. 

Code as desired solution (genotype-phenotype duality) Genotype/phenotype is a data structure with structural 
properties, e.g. tree, list, stack, and executability 

Code is token sequence with code-snippet meaning, it 
has no structural properties, and it has implicit pattern-
related properties related to the patterns, patter—
matching and bias within the LLM 

Evolutionary Variation Structural, blind to meaning Not structural, opaque to user beyond prompt content. 
Internal to LLM it is based on built-in patterns and is a 
black box. 

Evolutionary Selection/Replacement Comparative, based on numeric ranking and fitness 
represented as a number 

Comparative, prompt could include fitness, could task 
LLM to rank, could include other bases of comparison. 
Opaque to use beyond prompt content. Internal to LLM it 
is based on built-in patterns and is a black box. 

Code evaluation Uses bespoke execution environment (supporting the 
primitives) on top of a general-purpose program 
execution environment 

Practical implementations will use a general-purpose 
program execution environment 

Code Fitness Numeric-based Numeric or expressed with natural language 

38

Risks of LLM use for EA research

• An algorithm’s success depends on prompts and an LLM’s responses are sensitive to prompt composition. 
• LLMs currently lack many facets of general intelligence, while they can appear to understand prompts. This risks assuming 

understanding. 
• Rigorous experiments need to investigate the sensitivity of the algorithm’s performance to prompt design. 

• An LLMs display biases based on their architecture, training dataset and pre-training. 
• These biases are, to date, poorly characterized or understood. 

• E.g tokens and position in prompt

• An LLM is probabilistic and generative. 
• Performance is not consistent across LLMs. Accurately predicting and reporting performance of a LLM-EA system might require more 

effort than an EA system, as will transferring systems and solutions. 

• LLM training is difficult and unavailable to some LLM users and data sets for training are not well 
documented or shared 
• A researcher may not be able to ensure that the rote solution (and problem description) are within the LLM training data

• An LLM used via a model-provider’s API has replicability dependency on model release preservation

39

LLM-EA investigation motivations

• LLMs offer a new computational paradigm, one working around pattern 
memory and matching. 
• How does this complement algorithms (not only EAs) solely using a procedural 

abstraction?
• How do the mechanisms of a LLM  relate to mechanisms within Natural 

systems?
• Could pattern completion competence be  effectively like highly 

environmentally-sensitive, self-adapted variation operators in the natural 
world?
• Could LLM-EA variants uncover insights into LLM capabilities that lead to 

advances in LLM design or usage, or EA approaches? 
• Could evolving code with an LLM  lead to improved understanding of the 

correspondences between an LLM's capabilities and Nature's mechanisms? 

40
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Conducting LLM-EA investigations
Reporting:
• Report the preparatory steps clearly.
• Report time and cost of prompting during a run.

• Report any biases beyond pre-training. 
• Probe prompt sensitivity. If possible, also probe different LLMs. 
• Maintain independent leaderboards on a benchmark for each of the EA and LLM-EA  approaches.

• Report the model version along with its pre-training costs, its training data and its fine-tuning. 
Methods:

• Check if the problem and solution are in the data set
• Compare an LLM-based approach against other LLM-based approaches when using a community benchmark. Consider whether it makes sense to compare with EAs.
• Make well-aligned comparisons (apples to apples, not apples to oranges). 

• EA costs are incurred on different bases from EA-LLM. Fitness evaluations dominate running cost so comparison among EA variants can be number of fitness evaluations. 
• LLM-EAs rely on a pre-trained model. Costs related to prompt response time and tokens have no EA equivalent. 

• How much human intelligence has gone into solving the EA problem ahead of the LLM-EA run and how would this differ in the case of EA? 
• Is domain information (not evolutionary information) contained in a prompt?

Integrity:

• Be responsible with environmental cost. The budget devoted to investigation has the hidden expense of training an LLM. 
• Use the LLM ethically and keep usage aligned with human values.

41

Research Questions for LLM-EA
Applications:
• How can LLM-EA integrate software engineering domain knowledge? 
• How can LLM-EA solve prompt composition or other LLM development and use challenges?
• How can LLM-EA solve with different of units of evolution, e.g. strings, images, multi-modal candidates?
Algorithm Variants:
• How can we probe LLM-EA to understand the limits of its literal coding competence and more pragmatic coding competences?
• How can an LLM-EA algorithm integrate design explorations related to cooperation, modularity, reuse, or competition?
• How can an LLM-EA algorithm model biology differently from EAs?
• How can an LLM-EA intrinsically, or with guidance, support open-ended evolution?
• What new variants hybridizing EA, LLM-EA and/or another search heuristic are possible and in what respects are they advantageous? 
• Is there a relevant multi-objective optimization and many-objective optimization approach with LLM-EA? 
Analysis Avenues: 
• How well does LLM-EA scale with population size and problem complexity?
• What is a search space in LLM-EA and how can it be characterized with respect to problem difficulty?
• To what extent does an LLM-based approach intrinsically address novelty or quality-diversity? 
• What is the most accurate computational complexity of LLM-EA?

42
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