MIT
Libraries | D>pace@MIT

MIT Open Access Articles

Using Large Language Models for Evolutionary Search

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: OREILLY, UNA-MAY and Hemberg, Erik. 2024. "Using Large Language Models for
Evolutionary Search.”

As Published: https://doi.org/10.1145/3638530.3648432
Publisher: ACM|Genetic and Evolutionary Computation Conference
Persistent URL: https://hdl.handle.net/1721.1/156670

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution

I I I .
I I Massachusetts Institute of Technology

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/156670
https://creativecommons.org/licenses/by/4.0/

W Massachusetts
Institute of
Technology

Using Large Language
Models for Evolutionary "\
Search

Una-May O'Reilly, Erik Hemberg
The ALFA Group: AnyScale Learning for All
CSAIL, MIT

- : =

This work is licensed under a Creative Commons Attribution International 4.0 License.
GECCO '24 Companion, July 14-18, 2024, Melbourne, VIC, Australia

© 2024 Copyright i held by the owner/authors).

/ACM ISBN 979-8-4007-0495-6/24/07.

hitpsy//doi.org/10.1145/3638530.3648432

A

miT

Instructor: Una-May O’Reilly
Leader: AnyScale Learning For All Group, MIT CSAIL

Experience solving real world, complex problems requiring Al/machine learning '
where evolutionary computation is a core capability

Applications include

Circuits, network coding
Sparse matrix data mapping on parallel architectures
Finance
Flavor design
Wind energy
Turbine layout
* Resource assessment

+ Focus on innovation in genetic programming
 Coevolution
* Improving its competence
* Program synthesis
* Large Language Models

Instructor: Erik Hemberg

Research Scientist: AnyScale Learning For All Group, MIT CSAIL

Experience solving complex problems requiring Al and machine
learning with evolutionary computation as a core capability, Bronze
HUMIE 2018

Applications include

* Pylon design
* Network controllers
+ Tax avoidance

Focus on innovation and implementation in genetic programming
* Grammatical representation
* Coevolution
* Estimation of Distribution
* Large Language Models

ALFA coate
2
Agenda
1. Evolutionary Algorithm
2. Large Language Model
3. EA+LLM use case
1. Genetic Programming
1. Tutorial_GP demo
2. Genetic Programming +Large Language Model
1. Tutorial_LLM-GP demo
4. EA + LLM Discussion
5. Reference Material
L ALFA: sy

5/10/24

mailto:unamay@csail.mit.edu
http://groups.csail.mit.edu/ALFA
https://creativecommons.org/licenses/by/4.0/

Evolving Solutions with a Large Language

Model

A Large Language Models works in the input-output space of natural language.
* ltisoften a pre-trained transformer model with complex patterns of statistical
associations within a massive training text
Evolutionary Algarithms (EA) operate on a population of candidate solutions.
“ Abasic EA s set up with its operators,
“ Before execution of a run, it is provided with
a solution representation
a fitness function.
+ Genetic Programming is an evolutionary algorithm, one that evolves code.
Objectives of this tutorial are
* describe how an algorithm, with the general algorithmic structure of an EA and
evolutionary operators, can use an LLM to evolve solutions in the form of code
* provide an implementation and demonstration of a simple LLM GP variant.

to demystify the approach and provide a hands-on starting point for

Solutions

Initialization

{Evatuation |——{selection |———{artation | ———[Repiacement

Solutions

Solutions

rome %— soaton

Solutions scored and ranked
according to fitness function
depending on the tests

maXgex f(il?)

MIT '

[ALFA: L
Evolutionary Algorithm
New Solution Generation
v
. T
Solution Population Selection || variation
Evtvton { N

z
1
L1

974

Neo-Darwinian Evolution

* Survival and thriving in the environment

Offspring quantity - based on survival of the fittest

» Offspring variation: genetic crossover and mutation
* Population-based adaptation over generations

* Genotype-phenotype duality

* Complex and non-deterministic

Evolutionary Computation and Evolutionary Algorithms

H
H

Problem Domains where EAs are Used

* Where there is need for complex solutions
— evolution is a process that gives rise to complexity
— a continually evolving, adapting process,
potentially with changing environment from which
emerges modularity, hierarchy, complex behavior
and complex system relationships
+ Combinatorial optimization
— NP-complete and/or poorly scaling solutions via LP
or convex optimization
— unyielding to approximations (SQP, GEO-P)
— E.g. TSP, graph coloring, bin-packing, flows

— for: logistics, planning, scheduling, networks, bio
gene knockouts

— Typified by discrete variables
— Solved by Genetic Algorithm (GA)

Evolutionary Computation and Evolutionary Algorithms

« Continuous Optimization

— non-differentiable, discontinuous, multi-modal,
large scale objective functions ‘black box’

— applications: engineering, mechanical, material,
physics

— Typified by continuous variables

— Solved by Evolutionary Strategy (ES)

* Program Search

— program as s/w system component, design, strategy,
model

— common: system identification aka symbolic
regression, modeling

— Symbolic regression is a form of supervised machine
learning

» GP offers some unsupervised ML techniques as well

= Clustering

mir

=

5/10/24

EA Individual Examples

Fitness
Problem Gene Genome Phenotype Function
TSP 110 sequence of cities tour tour length
Function optimization 321 variables x of function () Imin-f(3)!
Graph k-coloring Permutation element sequence for greedy coloring coloring #of colors.

Investment strategy

rule agent rule set trading strategy portfolio change

Regress data

b- i i model

Model error on training set (L1, L2)

Evolutionary Computation and Evolutionary Algorithms

o
4
9
EA Relevant LLM components
* Prompt formulation Context Data
* Context window 1424x Rewrite 1+2+x 3-x
. . Text » » Prompt —~QRRVEE > Text
* Tokenization -
* Encoding
* Generation
* Guardrails :
Prompt -:] » Tokens » Tensors - » Text
Rewrite 1 +2 +x [.,1,+2,+x] [0.31, ..] 3-x
it
ALFA: i
11

Overview: Large Language Models

An LLM, with a chatbot or Natural Language API,
typically works in the space of natural language.
* Large is > 10B parameters (6)

The LLM is often a pre-trained transformer model

with complex patterns of statistical associations from
massive training texts.

* When the training and task is code, it is called a code
model

Pre-training back-propagates errors arising from
predictions that complete text sequences.
Reinforcement Learning with Human Feedback sets
up prompt-response capability.

The LLM is then further fine-tuned on specific data.

* The LLM Performsgpgr_oximate retrieval of these
patterns to respond to input sequences.

Rewrite 1+ 2 +x 3+x

Inference

Text

1+2+x

Text

Training

b ALFA

=
H

10

Overview: Regression

Inputs Output

x1* x1® x12 xal!

x2t

x2* x2® x2?

x3* x33 x32 x3!

Also Known As:
Explanatory variables .
Independent variables .
Manipulated variables .
Control variables
Decision variables
Features

Response variable
Dependent variable
Label

GOAL: FIND f(X) THAT GENERATES Y

ALFA

H
3

L~

12

975

5/10/24

5/10/24

Regression Genetic Programming Parse Trees
* Regress a relationship between a set of explanatory variables and a response
variable

* Linear regression:
* Assume linear model: y=ax+b

* Optimize parameters (a,b) so data best fits model Inorder: 243 N\
* Logistic regression for classification Preorder: + 2 3 @ @
reoraer: +

* Maps linear model into sigmoid family

1 Post-order: 2 3 + Inorder: (2-3) + (a max best)
F(‘r) = 1 + e—(Bo+512) Preorder: (+ (-2 3) (max a best))
Post-order: (2 3 -) (a best max) +)
* Symbolic regression does NOT assume a model Invariant to parse order:
* Not parameter search - Preorder (node, left-child, right-child)
* Model is intrinsic in GP solutions - Post-order (left-child, right-child, node)
- Inorder (left, node, right)
T o GP Evolves Executable Expressions LI
L ALRA csATL CALFA ics AT
13 14
A Lisp GP system .Y How to Evaluate an Expression in GP
xC —
A Lisp GP system is a large set of functions which are intégp*ted by « interpreter beneath your code S
evaluating the entry function 0"' + Lisp example
* Some are definition§ ,Of primitives you write! 0‘3 * interpreter within your code
* (defun protectedDivide ...)

* typical
* Rest is software logic for evolutionary alg&\ms '

A GP system has functions that a e&@deﬁned (by compilation or

* examples: tutorial_gp.py

» compile then execute on your OS

interpretation) for use as ives and logic that handles
« Population initialization, i@@¥8tion, selection, breeding, replacement, *fitness
evalution* S

GP expressions ost class objects in LISP so the GP software logic can

manipul ‘%em as data/variables as well as have the interpreter
rea valuate them

GP Evolves Executable Expressions T o o

ALFA: csATL ALFA: jcsATL
15 16

976

How to Manipulate and Vary Expressions as Data
Parent 2 @

* For Crossover and Mutation Parent 1

« offspring can be different size and
structure than parents
* syntactic correctness
* randomness in replication and
variation
* GP solution
« reference the parse tree
Crossover - swap subtrees between
trees of parents
Mutation: insert, substitute or
delete from a parse tree (PT)

LFA: csATy

17

Top Level GP Algorithm

pop = random programs from a set of operators and operands

repeat Max-init-tree-height

execute each program in pop with each set of inputs

Begin

Prepare input data
Designate solution
Define error between
actual and expected

, .
measure each program s fitness
repeat

+Tournament selection
+Fitness proportional selection select 2 parents

Tournament size |copy 2 offspring from parents

crossover
Mutation probs
p mutate

*Subtree substitution

-Permute
until|pop-size Max-tree-height
pPop = new-pop
until Leatinods bias
or
adequate program found
L ALFA - End Nuts and Bolts GP Design - Summary % !

19

977

GP Preparatory Steps

Assume we have a GP system with internal expression evaluator.

1. Decide upon functions and terminals
« Terminals bind to decision variables in problem
* Combinatorial expression space defines the search space
2. Set up the fitness function
« Translation of problem goal to GP goal
* Minimization of error between desired and evolved expression when executed
* Maximization of a problem-based score
* Construct test cases for program (input examples, desired output)
3. Decide upon run parameters
* Population size is most important
¢ GPisrobust to many other parameter choices
4. Determine a halt criteria and result to be returned
¢ Maximum number of fitness evaluations
¢ Time
¢ Minimum acceptable error
* Good enough solution (satisficing)

Nuts and Bolts GP Design

mr oy
»
* Given a set of independent decision variables and * Test problem:
corresponding values for a dependent variable « fx)=(X0* Xo) + (X1 * X1)
* Want: a model that predicts the dependent variable * Domain of Xo and Xi [-5.0,5.0]
+ Eg: linear model with numerical coefficients + Choose the 4 operands (terminals)
o Y=+ DX + cXoe)
© X0,X1,1.0,0
« Eg:non-linear model
y=aXi +bX* * Choose the 4 operators (functions)
« Prediction accuracy: minimum error between model prediction « 4,-,* [(protected)
and actual samples « protected divide: if denominator==0, return numerator
° IUS“'?HV’ deslgnFer provides a)mdotdel, anda reg#es_slotn (ordinary « Fitness function: sum of mean squared error between yi, and
least squares, Fourier series) determines coefficients expression's return values
. With‘ggnetic programming, the model (structure) and the « Prepare 121 randomized points for testing
coefficients can be learned
* Out of sample training:testing ratio is 70:30, random selection of
points as training or test
Examples wir
’ A

20

5/10/24

LLM-GP Algorithm

Codes |

Codes l
{ Evaluation | { |

} [setection | [variation]
T

Codes

l I I | I

Context Context Context Context Context

MIT
y
21
LLM-Based GP Operators
1. Formulate: Compose the prompt via calling the operator’s
prompt-function.
2. Interface : Send the prompt to the LLM and collect the
LLM’s response.
3. Check: Ensure response is well formed.
Context Data -
LLMe
it
ALFA i

23

978

General LLM-GP Algorithm

pop = random programs from a set of operators and operands

Begin

repeat

execute each program in pop with each set of inputs

, :
measure each program s fitness

Selection prompt

Prepare input data

epeat Designate solution

select 2 parents

Evaluation Prompt (can be unreliable)

Define error between actual and expecte

Prompt content

Mutation prompt

copy 2 offspring from parents

crossover | Crossover prompt

‘ Prompt content and probability ‘mutate ‘ Prompt content and probability
add to new-pop

until

POpP = new-pop
until
or

adequate program found

b ALFA

22

LA

Prompt-functions for LLM GP Operators

<p> ::= <EXAMPLES><QUERY><PRIMITIVES><RESPONSE FORMAT>
p is a sequence of text pe T™.

<EXAMPLES> :
are: {samples}

<QUERY> ::= Rephrase the mathematical expression {expression} into
a new mathematical expression.

<PRIMITIVES> ::= Use the listed symbols {primitives}.
<RESPONSE_FORMAT> :
Format output in JSON as {{"new_expression": "<expression>"}}

:= {n_samples} examples of mathematical expressions

:= Provide no additional text in response.

FA

Lr]

24

5/10/24

2 xamplos of mathematical exprossions are: ['((x0 + x1) + (x0 -
x1) + 1), ’x0 + x1 * (1 - 0)°]

Ropirase the nathenatical expression (x0 * x1) + (1 - 0) into a

new nathematical FE Use the listed symbols [, '+’,
s

5 T3,
quvxd- no aamxum text in response. Format output in JSON a
{"new expression": "<new expression>"}

{*new_expression’: "(x0 * x1) + 1"}

4ot forn_prompt_rephrase_mutation(self, expression: str, samples: Optional[ListlAny

s e e
5_sasples = 2in(le(sample:

il e da contaxt for the LLK
nput = randos.sample(list(samples.keys()), n_samples)
sample_tnput.
n_sasples = 0

prospt = aslf.REPHRASE_MUTATION PRONPT_FEW_SHOT. format (

Example of LLM-GP Mutation

dof forzat_ rephrase_mutation(self, response: str, expression: str) -> sir:
Phonotype = json.loads (response) ["new_sxpression”]
axcopt (json.decoder.JSONDecodeBrror, KeyError, TypeBrror) as o
Phonotype = expression
Log, rror(f'{s} when formatting response for rephrase mutation for {
respons!

atura phemotype

RESPONSE: {"mew_expression: "(x0 * x1) + 1'}
INDIVIDUAL (PHENOTYPE): (x0 » x1) + 1

it 9

»|
25

LLM-GP considerations
Text Text m
prompt G - Text I+ code
LLM Training: Effort, and Resources LLM Inference: Bias, Effort and Resources
it 9
»|

979

LLM-GP Preparatory Steps

Assume we have an LLM-GP system with internal expression evaluator.

1. Decide upon functions and terminals

+ Terminals bind to decision variables in problem
+ Combinatorial expression space defines the search space
2. Setup the fitness function
+ Translation of problem goal to GP goal
. Minimization of error between desired and evolved expression when EEEGTERIE
executed 1. the programming language that will express the candidate
+ Maximization of a problem-based score solutions plus problen-dependent hand-written primitives
+ Construct test cases for program (input examples, desired output) built-in to the language
: o be used.
3. Decide upon run parameters 2. the prompt-functions of all operators implemented using
+ Population size is most important o G
* GPisrobust to many other parameter choices 3. the hyper-parameters for controlling the run, including
4. Determine a halt criteria and result to be returned e Grimthrion EETEHEY, 10, i Hpar= i
+ Maximum number of fitness evaluations
. Time
+ Minimum acceptable error
+ Good enough solution (satisficing)

H
H

b ALFA

26

Implementation: Error handling and logging

R det mutation(
phenotype = son. Loods{response) "expression']
Togping.error(F*{e} heRfocxatting response for individial generacion for {response)”)

. individuapeneration(self, responses str) = str

Individuat,
fitness_function: FitnessFunction,
Un_interface: OpenAIInterface,
generation_history: List(Tuptelstr, strll,
nutation_probability: float,
sanples: Optional[List [Any]
) => List[Individuat]

nit_(set1)
" el clr Genk o heyeosnviron B AP

= tone,

Return a mutated individual

new_individual = Tndividual(individual.genose)
new_individual.phenotype = individual.phenotype
41 randon. randoa() < mutation probability

= fitness_function. forn_prompt_rephrase_sutation(individual.phenotype, samples)
rface. predict_text_Logged(pronpt, 1)
response ["operation”] = "mutation”

gy opend(rspns)
5. {unction. format._response_rephrase_nutation(

respenaalcantar o s gt

)
nessage = (Croters "use new_individual. phenotype = phendtype
el gpL 3.5 e, eesasgesmmessage, Lenperaturestens v e tind s e

e L

Logging
ens_qery = <soepere_coutert)
resrs o = e swry < sar ey
oare 1 srew s T

5/10/24

LLM-GP Algorithm Only Variation

Codes l Codes Codes Codes

{ Evaluation |

Context Context Context

[ALFA

H
H
L~ i

29

Tutorial _LLM-GP Demo

* Step Through
* Run

* Evaluation

* Mutation

* Logs

H
3
ol

980

A

FA

,
Demonstration Setup ™= »

Crossover Probability 08
Operating System Ubuntu 22.04 LTS Population size 10
RAM 64GB Generations 30
cpPu Intel 17-8700K 3.70GHz Primitives +-%x0,x1,1,0
Budget 50 USD Solution Xx02 +x12
Max Runtime 60000 Seconds Exemplar splits 0.2 Hold-out, (0.7 Training, 0.3 Testing)
Fitness Evaluations 300 Exemplars 121 10
LLM version Gpt-3.5-turbo-0613 Few-shot exemplars NA 2
Context window size 4096 Mutation Subtree Prompt
Crossover Subtree Prompt
Initialization Ramped Half-Half Prompt
Max Depth 5 NA
Selection Tournament (size 2) NA

T
Replacement Generational (Elite size 1) NA 3

30

LA

2000

1500

1000

Duration

500

T i ————————

LLM API calls can be costly and slow. LLM-GP can find the optimal solution with order of

FA

LLM-GP Duration and Cost Analysis

LLM-GP 1664.30 1033.97 3.90
e LLM-GP-Mu-X0 74331 50870 1.87
S
- wnion Tutorial-GP 0.10 0.08 0.00
T Meaandom
LLM-Random 837.16 41612 2.63
Random 0.18 0.01 0.00

o 5 10 0 25 %

s
Generation

de fewer fitness

32

5/10/24

[ALFA

Size Analysis

H

£ — unor

2 LM P M x0
5 andom

£ == Tutorial GP

£ ~= LLM-Random
a0

o 5 10 15 20 25 30
Generation

LLM-GP solutions do not increase in size as much as Tutorial GP.
Note, there was no explicit solution size bias for any algorithm

H
L~ i

33

LLM-GP Error Analysis

j—— Name

Fitness Evaluation &= . LLM-Random
LLM_GP
. LLM_GP_Mu_Xo
APl ==
Crossover —
< -
13
o
Replacement —
Selection
Mutation
0.000 0.005 0.010 0.015 0.020 0.025
Error rate

There is a distinct difference in LLM operator error rates

H
3
L i

981

LLM use analysis

There might be a response time limit.

=
H
L]

LLM-EA Example Domains

* Program synthesis

* Code for Agent Controller

* Boolean Parity

* Symbolic Regression (Function Search)
* Optimization Heuristics

* Neural Architecture Search

* Prompts

* Data for LLM Tuning

ALFA

36

5/10/24

Example LLM Designs used for EA

LLM

* Temperature: Increase LLM variability for solution diversity

* Fine Tuning: Fine tune LLM on data generated during the evolutionary search
Prompt Engineering Techniques

* Zero shot: A predefined prompt

* Template: Prompt expanded with run-time information

* Few-shot: Examples of input and corresponding output

* Chaining: Sequence of LLM calls

* Summarization: Solutions are summarized and then provided as input
* Human Interaction: Human manipulates prompts and responses

* Optimization: External optimization of prompt

it 9
]
* An algorithm’s success depends on prompts and an LLM’s responses are sensitive to prompt composition.
« LLMs currently lack many facets of general intelligence, while they can appear to understand prompts. This risks assuming
understanding.
. dto investi y of the agorithm'sp prompt design.
* An LLMs display biases based on their architecture, training dataset and pre-training.
+ These biases are, to date, poorly characterized or understood.
+ Egtokens and posiion in prompt
* An LLM is probabilistic and generative.
« Performance is not consistent across LLMs. Accurately predicting and reporting performance of a LLM-EA system might require more
effort than an EA system, as will transferring systems and solutions.
* LLM training is difficult and unavailable to some LLM users and data sets for training are not well
documented or shared
« Aresearcher may not be able to ensure that the rote solution (and problem description) are within the LLM training data
* An LLM used via a model-provider’s API has replicability dependency on model release preservation
M
ALFA: i

982

Tutorial GP vs LLM-GP

Basis of Comparison

Computational environment referenced by the code-
evolving system

Run of a code-evolving system

Program execution environment

AGP run executes procedural software where the code is
data, the operators work on code structure, and the code
& "

Program execution environment and LLM which is a
generative pattern completion system using token
sequence-based pattern-matching with built-in patterns

ALLMHGP run executes procedural software that, among
other things, composes text-based NL prompts, sends
other thir

is bespoke evaluats fitness. tstoan LM, and collect:
Code (s phenotype duality isadata Code i ippet meaning, it
properties, e.g. tree, st stack, properties, and it has implici
related properties related to the patterns, patter—
matching and bias within the LLM
Evolutionary Variation Structural, blind to meaning Not structural, opaque to user beyond prompt content.

Evolutionary Selection/Replacement

Code evaluation

Code Fitness

ALEA

Comparative, based on numeric ranking and fitness
represented as a number

Uses i i ing the

Internal to LLM it s based on buiit-in patterns and is a
black box.

Comparative, prompt could include fitness, could task
LLM to rank, could include other bases of comparison.
Opaque to use beyond prompt content. Internal to LLM it
is based on built-in patterns and is a black box.

primitives) on top of a general-purpose program
‘execution environment

Numeric-based

Practical i will use a g
program execution environment.

Numeric or expressed with natural language

38

LA

LLM-EA investigation motivations

* LLMs offer a new computational paradigm, one working around pattern

memory and matching.
* How does this complement algorithms (not only EAs) solely using a procedural
abstraction?

* How do the mechanisms of a LLM relate to mechanisms within Natural
systems?

* Could pattern completion competence be effectively like highl\{]
enwlr(;)?nmentally-sensmve, self-adapted variation operators in the natural
world?

* Could LLM-EA variants uncover insights into LLM cagabilities that lead to
advances in LLM design or usage, or EA approaches?

* Could evolving code with an LLM lead to improved understanding of the
correspondences between an LLM's capabilities and Nature's mechanisms?

FA

40

5/10/24

10

5/10/24

Conducting LLM-EA investigations Research Questions for LLM-EA

Reporting: Applications:

Report the preparatory steps clearly. * How can LLM-EA integrate software engineering domain knowledge?

Report time and cost of prompting during a run. « How can LLM-EA solve prompt composition or other LLM development and use challenges?

* How can LLM-EA solve with different of units of evolution, e.g. strings, images, multi-modal candidates?

Algorithm Variants:

* How can we probe LLM-EA to understand the limits of its literal coding competence and more pragmatic coding competences?

* How can an LLM-EA algorithm integrate design explorations related to cooperation, modularity, reuse, or competition?

* How can an LLM-EA algorithm model biology differently from EAs?

Compare an LLM-based approach against other LLM-based approaches when using a community benchmark. Consider whether it makes sense to compare with EAs. * How can an LLM-EAintrinsically, or with guidance, support open-ended evolution?

Make well-aligned comparisons (apples to apples, not apples to oranges) * What new variants hybridizing EA, LLM-EA and/or another search heuristic are possible and in what respects are they advantageous?
© EAcostsare incurred on from EA-LLM. Fi ! running cost so comparison among EA variants can be number of fitness evaluations. Is there a relevant multi-objective optimization and many-objective optimization approach with LLM-EA?

* LLM-EAs rely on a pre-trained model. Costs related to prompt response time and tokens have no EA equivalent.

Report any biases beyond pre-training.

Probe prompt sensitivity. If possible, also probe different LLMs.

Maintain independent leaderboards on a benchmark for each of the EA and LLM-EA approaches.
« Report the model version along with its pre-training costs, its training data and its fine-tuning.
Methods:

Check if the problem and solution are in the data set

* How much human intelligence has gone into solving the EA problem ahead of the LLM-EA run and how would this differ in the case of EA? Analysis Avenues:
s domain information (not evolutionary information) contained in a prompt? * How well does LLM-EA scale with population size and problem complexity?
Integrity: * What is a search space in LLM-EA and how can it be characterized with respect to problem difficulty?
« Be responsible with environmental cost. The budget devoted to investigation has the hidden expense of training an LLM. « Towhat extent does an LLM-based approach intrinsically address novelty or quality-diversity?
« Use the LLM ethically and keep usage aligned with human values. « What is the most accurate computational complexity of LLM-EA?
it | s A
) . AT .
LFA: L ALFA L

41 42

Reference Material

Lehman, e . Evlution hrougnLre Wodebs” 2122
Lo o At Esloton Usig v onoge odel” Ak s 23111529 2025

e, chtenes” 202
anaa,

Lige, Rt Tk e “Lre inpuge odels Ao St Ak 43/2402 14381 2020

Ta, Denpwsit . A Surey o Sl vt of v Lempuge Models (020

a3 210 15046 20231

o o,

Hember, . “Ehing Cod with A L Linpuge Model” ik 20107102 2128

L ALFA-
43

H
3
ol

11

983

