
MIT Open Access Articles

Principles for Internet Congestion Management

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Lloyd Brown, Albert Gran Alcoz, Frank Cangialosi, Akshay Narayan, Mohammad
Alizadeh, Hari Balakrishnan, Eric Friedman, Ethan Katz-Bassett, Arvind Krishnamurthy,
Michael Schapira, and Scott Shenker. 2024. Principles for Internet Congestion Management.
In Proceedings of the ACM SIGCOMM 2024 Conference (ACM SIGCOMM '24). Association for
Computing Machinery, New York, NY, USA, 166–180.

As Published: https://doi.org/10.1145/3651890.3672247

Publisher: ACM|ACM SIGCOMM 2024 Conference

Persistent URL: https://hdl.handle.net/1721.1/156675

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution-ShareAlike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/156675
https://creativecommons.org/licenses/by-sa/4.0/

Principles for Internet Congestion Management
Lloyd Brown1, Albert Gran Alcoz2, Frank Cangialosi3, Akshay Narayan4,

Mohammad Alizadeh5, Hari Balakrishnan5, Eric Friedman1,9, Ethan Katz-Bassett6,
Arvind Krishnamurthy7, Michael Schapira8, Scott Shenker1,9

1 UC Berkeley, 2 ETH Zürich, 3 BreezeML, 4 Brown University, 5 MIT, 6 Columbia University,
7 University of Washington, 8 Hebrew University of Jerusalem, 9 ICSI

Abstract
Given the technical flaws with—and the increasing non-observance
of—the TCP-friendliness paradigm, we must rethink how the Inter-
net should manage bandwidth allocation. We explore this question
from first principles, but remain within the constraints of the In-
ternet’s current architecture and commercial arrangements. We
propose a new framework, Recursive Congestion Shares (RCS), that
provides bandwidth allocations independent of which congestion
control algorithms flows use but consistent with the Internet’s eco-
nomics. We show that RCS achieves this goal using game-theoretic
calculations and simulations as well as network emulation.

CCS Concepts
• Networks → Network design principles.

Keywords
Network Architecture
ACM Reference Format:
Lloyd Brown, Albert Gran Alcoz, Frank Cangialosi, Akshay Narayan, Mo-
hammad Alizadeh, Hari Balakrishnan, Eric Friedman, Ethan Katz-Bassett,
Arvind Krishnamurthy, Michael Schapira, Scott Shenker. 2024. Principles
for Internet Congestion Management. In ACM SIGCOMM 2024 Conference
(ACM SIGCOMM ’24), August 4–8, 2024, Sydney, NSW, Australia. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3651890.3672247

1 Introduction
In addition to being a technological marvel whose architecture has
accommodated mind-boggling changes in size, speed, technologies,
and uses, the Internet is also a massive experiment in decentralized
resource sharing. Because computer communications are bursty, the
Internet relies on packet-level statistical multiplexing to achieve
reasonable efficiency. To deal with the inevitable overloads, the
Internet relies on host-based congestion control algorithms (CCAs).

With this approach, the bandwidth a flow receives can depend
heavily on the aggressiveness of its CCA. The Internet community
quickly recognized that users would have an incentive to deploy
ever more aggressive CCAs, thereby leading to overloads. To pre-
vent this, the Internet community informally required all CCAs
to be TCP-friendly (hereafter TCPF), as defined by [24]: “a flow
is TCP-friendly if its arrival rate does not exceed the arrival of a

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0614-1/24/08
https://doi.org/10.1145/3651890.3672247

conformant TCP connection in the same circumstances.” 1 TCPF
primarily applies to wide-area traffic on the public Internet, and we
focus on that case in this paper. Specialized bandwidth allocation
solutions are available in private deployments such as datacenters,
enterprises, and private wide-area networks (WANs), in which there
is a single administrative authority.

There are numerous practical and technical problems with TCPF.
Prior work has shown that it is difficult to enforce [46] and that our
understanding of the dynamics of CCAs breaks down at scale [38].
In addition, TCPF limits CCAs’ ability to ramp up quickly and
achieve full efficiency [49] and hinders the emergence of new delay-
sensitive CCAs (as shown by Copa [5] and Nimbus [28]). It has
also become clear that TCPF is no longer a strict requirement in
deploying new CCAs, and that, in practice, non-TCPF CCAs will be
deployed widely. For example, the TCP-unfriendly CCA BBR [17, 18,
47] has been widely adopted at Google, Amazon, Akamai, Dropbox,
and Spotify for significant portions of their traffic.2

Given that TCPF is both deeply flawed and no longer adhered to
by the major Internet actors, we should consider whether there are
suitable alternatives to the TCPF paradigm. This simple but central
issue is the focus of this paper. To that end, we explore from first
principles what new conceptual framework might replace TCPF.
However, while we reason from first principles, we do not start
with a clean slate. We assume that, within our design/deployment
timeframe, there will be no fundamental changes in the Internet
architecture (e.g., IP, BGP, and the best-effort service model) and
its commercial arrangements (e.g., how ISPs charge for service and
peer with each other, and the widespread adherence to valley-free
routing [26]). As such, we seek a conceptual foundation for how the
Internet should share bandwidth that (i) can be implemented within
the current architecture (though requiring additional protocols
and mechanisms) and (ii) provides bandwidth allocations that are
consistent with the current commercial arrangements between the
parties involved.

This paper makes the following contributions:
• We articulate the goal of CCA independence (CCAI) (§2) as
the foundational aim for sharing bandwidth.

• In contrast to the specific claims in prior work [12] and
the general assumptions in literature (such as [20] and the

1At the time of [24], the term “TCP” prescribed a specific CCA: NewReno, as stan-
dardized in RFC2582. Also, even the staunchest of the early advocates recognized that
TCPF was not tenable at high speeds, but the intent of proposals like High-Speed TCP
[23] was to retain TCPF at lower speeds and create new standards for behavior at
these higher speeds.
2While Google claims recent BBR versions are less unfair than the original [19],
researchers dispute this claim [50] and BBRv3 remains TCP-unfriendly. However, our
concern is not the degree of BBR’s violation of TCPF but rather the lack of resistance
to deploying CCAs that do not satisfy TCPF, and this applies to all BBR versions.

166

This work is licensed under a Creative Commons Attribution‐ShareAlike International 4.0 License.

https://doi.org/10.1145/3651890.3672247
https://doi.org/10.1145/3651890.3672247
https://creativecommons.org/licenses/by-sa/4.0/

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Brown et al.

many related papers), we show that naively (i.e., setting
weights independent of the topology) applying weighted fair
queueing or its hierarchical variants does not achieve our
goals (§2 and §4.4).

• We derive three principles for achieving CCAI while being
consistent with Internet economics (§3).

• Based on these principles, we propose a scheme that sets the
weights in each node’s hierarchical weighted fair sharing
algorithm (§4) that depends on both the user access agree-
ments (which is the traditional approach to setting weights)
and the path packets have taken through the network (which
is not). This topology-dependent setting of weights is novel
and crucial to achieving CCAI.

• We perform simulations and emulations to show that in the
overwhelming majority of cases, RCS achieves CCAI (§5, §6).

2 Replacing TCPF
Before addressing how we can replace TCPF, one might ask why
we need any framework that guides how the Internet shares band-
width. The reason is simple: without a coherent resource-sharing
framework, ever-more aggressive CCAs could be deployed over
time, and the resulting increase in overall congestion would be
damaging to the Internet.

The key issue with TCPF and the lack of a framework is that the
network plays a passive role, so aggressive CCAs receive more band-
width on congested links. We propose to go to the other extreme
by requiring the network to actively enable all reasonable CCAs
to achieve the same bandwidth in the same static circumstances.
We call this CCA independence (CCAI). CCAI removes the need
for a single standard CCA, fostering widespread CCA diversity and
innovation. For example, providing CCAI would make it practical to
deploy delay-minimizing CCAs, a longstanding challenge. Since we
assume no fundamental changes in the architecture or economics
of the Internet in the near term, this paper addresses the challenge
of achieving CCAI within a framework that is consistent with the
current Internet’s economic model.

Despite the vast literature on network-assisted congestion con-
trol, there is no such proposed framework. For instance, neither of
the two leading contenders to replace TCPF – per-flow fairness (i.e.,
as achieved by fair queueing [20, 36]) and network utility maximiza-
tion (i.e., as inspired by the work of Kelly [32, 33]) – are consistent
with the commercial realities of the current Internet. This is be-
cause both of these approaches focus on individual “flows” (i.e.,
seeking to achieve fairness between flows or to maximize the sum
of flow utilities), but flows have no role in the Internet’s commercial
agreements (see [10]); flows don’t have “rights” to bandwidth or
utility, nor are they the units for which users are charged.

More recently, an in-progress IETF draft argues for provisioning
low-latency, low-loss service (L4S) [11] via a new Internet archi-
tecture co-existing with the current best-effort one. L4S proposes
to isolate delay-sensitive traffic from classic buffer-filling traffic
in the network using traditional fair queueing methods. However,
L4S does not provide CCAI; instead, it installs isolation between
two classes of traffic and prescribes the CCA behavior (inspired
by DCTCP [2]) for one of them. With RCS, we go further: with a
comparable amount of deployment effort as L4S, we provide full
CCAI, which enables delay-minimizing congestion control. Thus,

with RCS, it is possible to satisfy L4S’s goals while also providing
principled bandwidth allocations.

Thus, to meet the challenge above, we need a new approach
but not a new packet scheduling mechanism. That is, while hierar-
chical fair-queueing is the correct isolation mechanism, it requires
careful topology-dependent configuration of queue weights and
assignments to achieve CCAI. Our main contribution is to derive a
set of principles that ground a weight and queue assignment frame-
work consistent with the Internet’s economic model; we call this
“Recursive Congestion Shares” (RCS). RCS takes inspiration from
the approach introduced in [12]; unfortunately, as shown in §6.2,
this prior approach does not achieve CCAI.

However, before turning to those principles, we address three
key questions.

What is a “reasonable” CCA? Our goal of CCAI requires that
a flow’s bandwidth should be independent of its or other flows’
choices of CCA, as long as the CCAs are reasonable. This requires
a definition of “reasonable”: we say a CCA is reasonable if it effec-
tively uses the available bandwidth in static settings while avoiding
persistent and significant loss. We require this condition because it
prevents flows from needlessly harming other flows and causing
congestion collapse, as in the dead-packet phenomena discussed
in [40]. Avoiding persistent and significant loss is compatible with
all proposed CCAs we know of (unlike TCPF, which is far more
constraining). Loss-based CCAs incur persistent low losses (but not
significant loss), while BBR can incur occasional significant, but
not persistent, losses (e.g., if a flow encounters a quick reduction in
bandwidth). Indeed, the only realistic scenario with persistent and
significant losses is a DDoS attack, and operators already deploy
significant resources to prevent and mitigate such traffic.

What is the role of CCAs post-CCAI? A key property of CCAI is
that since a CCA’s bandwidth rights are guaranteed, CCAs become
free to optimize on other metrics such as loss, delay, and jitter.While
today, designing a delay-minimizing CCA is considered impractical
due to fairness concerns when competing against not only buffer-
filling traffic but also other delay-minimizing flows [4], adopting
RCS would enable the adoption of these and other optimized algo-
rithms. Further, while RCS guarantees bandwidth rights, it does not
dictate bandwidth allocations; this leaves the traditional problem of
searching for available bandwidth while minimizing self-inflicted
delay for CCA designers to solve while removing fairness concerns.

Is RCS deployable? While our goal with RCS is to provide a
principled conceptual framework for Internet bandwidth allocation
rather than an immediately deployable mechanism, we argue in
§7.3 that our prototype design for RCS is not incompatible with
wide-scale deployment. More importantly, both network operators
and their customers will have incentives to adopt RCS’s framework;
whereas today, an operator cannot offer any guarantees about end-
to-end bandwidth rights to customers who paymore for higher tiers
of service, with RCS, such guarantees become feasible. Similarly,
while a customer desiring better end-to-end performance might
today deploy a private WAN with reserved capacity, with RCS, they
could purchase the bandwidth rights their application needs at a
lower cost. We discuss these economic incentives for adopting RCS
further in §7.2.

167

Principles for Internet Congestion Management ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Comcast

So
nic

Fio
s

Sonic Fios

Comcast
SonicA

B

C

Comcast

TikT
ok

Youtube

TikTok
Youtube

11

3

2

Fios

So
ni
c

Figure 1: Illustration of RCS principles: (1) Relative rights. (2) These
rights should be applied recursively: the queue first considers Fios
(red) and the aggregate formed by Sonic (blue) and Comcast (yellow).
If it must drop a packet from the aggregate, it considers Sonic and
Comcast’s relative rights at the upstream domain A. (3) Endpoints
manage traffic control at finer granularities. The endpoint prioritizes
TikTok traffic over Youtube traffic within the Comcast aggregate.

3 Principles for “Consistent” CCAI
Our goal is to achieve CCAI in a manner that is consistent with
the Internet’s commercial arrangements, but it is far from obvious
what it means to be “consistent with the Internet’s commercial
arrangements.” Here, we state three principles3 that describe what
this entails. We discuss how to achieve these principles in §4. Since
these principles should guide congestion management both now
and in the future, we neither tie them to the characteristics of
today’s traffic or network technologies nor make assumptions about
what applications are dominant. We illustrate these principles in
Figure 1.
Principle #1: Bandwidth allocations should be enforced only
under network congestion and should be described in terms
of relative rights.4 This means that, when the network is con-
gested, it uses packets’ relative rights (explained next) to determine
which ones to drop. In contrast, expressing bandwidth rights as
guaranteed rates (i.e., the absolute levels of end-to-end bandwidth
a user can expect) would greatly reduce statistical multiplexing and
thus be impractical. This condition does not disallow RCP [22] or
XCP [31], but does disallow IntServ [39]; the former two only give
ephemeral estimates (based on some notion of relative rights) while
IntServ makes persistent guarantees (not based on relative rights).
Principle #2: These relative rights should be tied to current
commercial arrangements, respecting their granularity, re-
cursive nature, and flow of money. Users pay for access at the
edge, so the prevailing commercial arrangements are at the granu-
larity of these access agreements, not at the level of individual flows.
In addition, these access agreements are recursive (i.e., packets are
delivered end-to-end because the sender’s carrier pays the next-
hop carrier, which pays the subsequent-hop carrier, etc.). Money
similarly flows from a receiver’s domain to that domain’s provider,
and so forth. These inter-domain arrangements are crucial to how
networks carry traffic, and we thus argue that their recursive nature
must play a role in how the network manages congestion.
Principle #3: While the network determines bandwidth al-
locations between two endpoints, the endpoints should de-
termine the composition of traffic that flows between them.
3Ours are not the only possible principles; we offer them as a starting point. A different
set of principles might result in both different bandwidth allocations and different
competition dynamics, and we leave the analysis of such frameworks to future work.
4Edge ISPs typically throttle a user’s bandwidth on their access line to their contractual
rate, regardless of congestion. Our focus here is on congestion internal to the Internet.

This basic requirement is clear, but the question is which endpoint
should have control. The guidance from Principle #2 should deter-
mine whether the sender or receiver is responsible for controlling
this traffic. Decisions should follow the flow of money, with senders
making decisions about what traffic enters the network (using a
mechanism such as Bundler [16]) and receivers making decisions
about what traffic exits the network (using a mechanism such as
Crab [45]). Intermediate cases should be determined by the money
flow at the point of congestion. In particular, because of the dangers
of “zero-rating” 5 [6, 7, 9], it is important that receivers, not senders,
make decisions about what traffic they receive.

4 From Principles to Practice

We next turn these principles into an algorithm for calculating
bandwidth allocations. For ease of exposition, we first consider
allocations in static settings where users send at fixed rates over
links with fixed capacities. Themechanisms we propose for RCS can
handle realistic dynamic settings, but it is hard to reason about such
settings in a principled manner. After developing this algorithm
for bandwidth allocations, we then ask (in §5) whether the RCS
allocations achieve CCAI. Answering this question in the affirmative
is the central contribution of this paper.We further evaluate how our
approach interacts with real CCAs (§6). We then discuss (i) some
other practical concerns (§7), (ii) how RCS compares to related work
(§8), and (iii) finish with some concluding remarks (§9).

4.1 Principle #1: Relative Rights

We explore the implications of relative rights in three scopes: a link
(by which we mean a technology that has multiple ingresses and
one egress), a switch (which has multiple ingresses and multiple
egresses), and a domain (a network of switches). We use these
three tractable cases as “building blocks” to reason more generally
about managing congestion in the Internet. In the first two cases,
the congestion point is at the egresses because (i) we assume that
one switch’s egress is another switch’s ingress and that the paired
egress and ingress have the same capacities (so any congestion
would be handled by the previous egress, not the ingress) and (ii)
we assume the switch has full internal bandwidth. In the third case,
a domain, the location of congestion will depend on the specific
scenario. In this section, we will assume that the relative rights are
derived from the sender’s access agreement (not the receiver’s), but
we will generalize this in §4.2.

We use the term “user” to refer to the entity entering into an
access agreement (i.e., an agreement that provides it some level
of Internet service) at the network edge and “stream” to refer to
an aggregate of traffic entering the network at the same ingress
point and exiting the network at the same egress point. Thus, a
stream is traffic being sent by one user and received by another.
The term “CCA” refers to how a stream responds to congestion;
such a response is, in fact, made up of several distinct flow-based
congestion control algorithms and application behaviors (such as
opening additional connections or throttling streaming data), but

5With zero-rating, content providers pay networks to deliver their traffic, but not
traffic from other content providers, to users.

168

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Brown et al.

for convenience, we model it as a single CCA.6 Hereafter, for cases
where we have multiple ingresses and egresses, as in switches and
domains, we use the term 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (𝑖, 𝛼) to refer to traffic entering
at ingress 𝑖 and leaving at egress 𝛼 .
Relative Rights at a single link. Consider a single link with
several streams sending at rates 𝑟𝑖 . We denote the resulting egress
bandwidths (i.e., the rate leaving the link from each stream) by 𝑎𝑖
with 𝑟𝑖 ≥ 𝑎𝑖 : strict inequality represents when the network drops
packets from stream 𝑖 , and we call such streams “constrained”. The
link is work-conserving, so

∑
𝑖 𝑎𝑖 = 𝑀𝐼𝑁 [∑𝑖 𝑟𝑖 ,𝐶] where 𝐶 is the

bandwidth of the link. In this context, we define relative rights in
terms of weights𝑤𝑖 , and allocate bandwidth to constrained streams
proportional to those weights. Specifically, for any two streams
𝑖, 𝑗 with 𝑎𝑖 < 𝑟𝑖 and 𝑎 𝑗 < 𝑟 𝑗 , the following holds: 𝑎𝑖

𝑤𝑖
=

𝑎 𝑗

𝑤𝑗
≥

𝑎𝑘
𝑤𝑘

for all other streams 𝑘 . The equality between 𝑖 and 𝑗 requires
that two constrained streams receive bandwidth proportional to
their weights. The inequality between 𝑗 and 𝑘 requires that no
unconstrained stream is getting more than if it were constrained.
This definition implies that 𝑎𝑖 = 𝑀𝐼𝑁 [𝑟𝑖 ,𝑤𝑖𝜆] where 𝜆 ≥ 0 is the
smallest value that allows

∑
𝑖 𝑎𝑖 = 𝑀𝐼𝑁 [∑𝑖 𝑟𝑖 ,𝐶].

This results in what we call “pipe-like” behavior. As a stream
increases its bandwidth demand 𝑟𝑖 , at first, its demand is entirely
satisfied, and then it is capped at some maximal bandwidth. This
sharp “knee” in the curve makes it easy for a CCA to find the max-
imal allowed bandwidth and doesn’t reward streams for creating
persistent drops (i.e., they get no additional bandwidth by sending
at a rate past the knee).

As a comparison, if a link does not actively manage congestion
and just uses FIFO packet scheduling, then the bandwidth alloca-
tions are given by: 𝑎𝑖 = min[𝑟𝑖 , 𝑟𝑖 𝐶∑

𝑗 𝑟 𝑗
], and the average packet

delay (which is the same for all streams) is some function of
∑

𝑗 𝑟 𝑗
that increases sharply as the quantity reaches the link capacity. If
we fix all other 𝑟 𝑗 > 0, 𝑎𝑖 is strictly monotonic in 𝑟𝑖 and stream 𝑖’s
packets can experience significant losses and delays even if 𝑟𝑖 is
very small (e.g., if the remaining load

∑
𝑗≠𝑖 𝑟 𝑗 is much larger than

the link capacity).
Relative Rights at a single switch. The minimal generalization of
the single-link approach is to have each egress apply the single-link
definition with weights𝑤𝑖 for each ingress 𝑖 applied at all egresses
𝛼 . This is the approach we use in RCS. We could also consider the
case where the weights are static but depend on each egress: i.e.,
the 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (𝑖, 𝛼) from ingress 𝑖 to egress 𝛼 has a weight𝑤𝛼

𝑖
. For

simplicity, we do not embrace this generalization in our treatment
here, but our results apply to this case as well.

One might argue that the weights should depend on the current
traffic matrix, with the total weight assigned at ingress split across
the weights applied at egress proportional to the current traffic
split. For instance, assume that all ingresses and egresses have
capacity 𝐶 = 1,

∑
𝛼 𝑤

𝛼
𝑖

= 1 for all 𝑖 , and weights 𝑤𝛼
𝑖
for a given

𝑖 are proportional to the relative flow rate (i.e., if two-thirds of
an ingress’s traffic goes to one egress, then that aggregate gets

6We later return to the question of how to enforce CCAI within a stream in §7.1. For
now, we merely note that this (i) is a matter internal to a single organization and, as
such, does not have to be consistent with any economic agreements and is merely a
matter of internal policy, and (ii) requires mechanisms such as [16, 45] to implement
that policy when the congestion occurs elsewhere in the network.

two-thirds of the ingress’s weight). Consider the case where two
ingresses 𝑖, 𝑗 send traffic to two egresses 𝛼, 𝛽 . Recall that reasonable
CCAs maximize bandwidth subject to the constraint that they do
not experience significant and persistent loss; in the context of this
model, this means they select the maximal value for 𝑟𝑖 such that
𝑟𝑖 = 𝑎𝑖 . Assume 𝑖 sends all of its traffic, of rate 𝑟𝑖 , to 𝛼 while 𝑗 splits
its traffic, of total rate 𝑟 𝑗 , between 𝛼 and 𝛽 in proportions 𝑥 and
(1 − 𝑥). Then the weight of 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (𝑖, 𝛼) is 1, of 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (𝑗, 𝛼)
is 𝑥 , and of 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (𝑗, 𝛽) is 1 − 𝑥 . The only allocation choices
where ingress 𝑗 does not incur persistent losses at egress 𝛼 are (i)
𝑥 = 1 and 𝑟 𝑗 = 1

2 (with 𝑟𝑖 = 1
2) and (ii) 𝑥 = 0 and 𝑟 𝑗 = 1 (with 𝑟𝑖 = 1).

This is because, as soon as 𝑗 dilutes its weight by sending traffic
to both egresses, some of its packets are dropped. Thus, splitting
weights proportional to traffic can lead to pathological allocations,
so we eliminate it as a viable way of setting weights.
Relative Rights at a domain. We do not assume congestion only
happens at the edges of a domain, but we do assume that the rel-
ative rights are determined by access agreements between users
and their domains as well as those between domains. If there is no
internal congestion, then a domain behaves analogously to a switch.
However, if the domain does suffer internal congestion, it should en-
force the relative rights (as defined by the weights𝑤𝑖 assigned upon
egress) on all internal links or switches where congestion occurs.
We believe most domains are, and will continue to be, managed to
avoid internal congestion except at particular hotspots – such as
cable modem termination systems (CMTSs) and transoceanic links
– so this enforcement need not be widely deployed inside a domain.
For convenience, in what follows, we assume there is no internal
congestion.

Following [12], we call these weights𝑤𝑖 congestion shares, and
they are determined as part of a user’s agreement with their domain.
The value of𝑤𝑖 is not directly related to the access bandwidth, but
presumably, access agreements for higher speeds will typically have
higher congestion shares.
4.2 Principle #2: Recursion and Following The Money

We take the approach discussed above for allocating bandwidth
in a single domain as a basic building block and discuss how to
extend that approach across multiple domains using the second
principle. This extension across domains and our demonstration
that it is sufficient to achieve CCAI in the vast majority of cases is
the main contribution of our work.
What does “Recursion” mean? Still focusing on the case where
weights are assigned on ingress to a domain when a user’s packets
enter their ingress network (call it domain A), their relative rights
when leaving A (via one of A’s egress links) should be determined
by the user’s access agreement with domain A. When those packets
travel from domain A to domain B over some link L,7 to first order
the relative rights of those packets when leaving domain B should
be determined by the access agreement between A and B on that
link L. While B’s decision about how many of A’s packets to drop is
driven by the access agreement between A and B, when domain B is
deciding which of A’s packets to drop, the decision should be driven
by the relative rights derived from A’s various access agreements
with the users associated with that traffic (as in Figure 1). This is

7Our approach also applies to peering via IXPs; we briefly explain in §6.

169

Principles for Internet Congestion Management ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

what we mean by recursion of access agreements: (i) we recursively
assign relative rights as packets travel through the network based
on the agreements with the domain in which they are currently
(since we are assuming no internal congestion in this example, these
rights are only relevant at the egress of a domain), and (ii) we apply
these rights in a hierarchical fashion, first applying their current
rights to decide the total bandwidth, and then turning to their
previous rights. Thus, RCS associates each stream with a hierarchy
of access rights. The way we enforce relative rights is to schedule
packets (see §6), so if a stream exceeds its bandwidth allocation, it
will eventually overflow its queue, and its packets will be dropped.

What does “Following theMoney”mean? In the Internet, money
typically flows from end users to domains and onward to other
domains that provide broader routing reach. This flow of money
eventually ends with the Tier 1 providers which freely peer with
each other. The typical routing path goes up this hierarchy of do-
mains (going from customer to provider) and then down (going
from provider to customer). Thus, for a flow between two end users,
there will exist a point at which packets switch from following
the flow of money (up the hierarchy) to flowing against the flow
of money (down the hierarchy). We use this observation to define
two rules that control which relative weights guide the sharing of
bandwidth. We will first consider one domain’s relationship with
end users, then explain how the same two rules also apply to traffic
between domains.

The first rule is that, consistent with Principle #3, at the egress
from a domain to its user (i.e., an aggregate’s destination), the
domain should derive the user’s relative rights from its commer-
cial agreement with that user. As an example, consider two media
streams coming from two different content providers with a to-
tal bandwidth that is larger than the domain’s egress to the user;
the user should have the power to assign weights expressing the
relative rights of those streams.

Analogously, the second rule is that when an end user’s traffic
enters a domain (i.e., an aggregate’s source), its commercial agree-
ment with the domain should determine its relative rights at the
domain’s egress. That is, when the traffic from two users exceeds
the capacity of one of the domain’s egress links, the relative weights
are determined by the weights of the sending users. Note that this
rule conflicts with the first rule in the case that an aggregate both
enters a domain from an end user and exits the same domain to
another end user. In this case, the first rule applies; i.e., the receiver
determines the aggregate’s relative rights. This receiver-preference
tiebreak is important because it prevents zero-rating, where a com-
pany can pay provider domains to deliver only their traffic to users
at the exclusion of other traffic.

What allocations are produced when applied recursively?
Given these two specific rules for packets entering and exiting the
Internet, which respect the flow of money, we now seek to apply
this approach recursively. While today’s interdomain agreements
are more complicated than the Gao-Rexford model [26], we believe
the following two statements hold for the vast majority of the cases:
(i) for a specific logical link between domains A and B, either A
pays B, or B pays A, or neither pays, and (ii) the payment structure
along Internet paths are “valley-free” in the sense Gao and Rexford
describe. Thus, using the term customer/peer/provider to refer to

the flow of money on a given link, we know that, given valley-free
routes, two facts hold. First, if the egress 𝛼 is to a customer, then
all subsequent hops are to customers (and they determine all the
hierarchical weights assigned to aggregates at that egress). Second,
if the egress 𝛼 is to a peer or provider, then all previous hops are
from customers (and they determine all the hierarchical weights
assigned to aggregates at that egress). As a result, all aggregates at
an egress 𝛼 have their weights determined in the same direction
(either previous hops or future hops). The resulting bandwidth
allocations result from the recursive application of relative weights.

Define𝑤𝑖,𝛼 as the weight assigned to 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (𝑖, 𝛼). Taking the
case where the weights at an egress 𝛼 were assigned recursively by
previous ingresses, the calculation goes as follows: first calculate
the allocation to each 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑠 (𝑖, 𝛼) for all 𝑖 using the weights
assigned by ingresses 𝑖 . That produces a set of allocations 𝑎𝑖 . Then,
for each 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (𝑖, 𝛼), calculate the allocations for all of the ag-
gregates that entered through ingress 𝑖 (with the weights assigned
by their previous hop ingresses), treating the total bandwidth as 𝑎𝑖 .
This process recurses all the way down the hierarchy of domains
until it reaches end users.

We call this allocationHierarchicalWeighted Fair Sharing (HWFS),
which is identical to the static allocations achieved by the various hi-
erarchical weighted fair queueing algorithms in the literature [8, 44]
with the same given set of weights. This work’s novelty is in the
configuration of the weights; we propose computing these weights
from the rest of the topology and from access agreements.

4.3 Principle #3: Endpoint Control

This principle states that while the network determines bandwidth
allocations to each stream, endpoints (both ingress and egress)
should determine the composition of that stream. For example,
while relative rights should determine the aggregate bandwidth
allocation between two university networks based on their access
agreements, those networks may want to prioritize bulk transfers
of research data over video streaming traffic. RCS makes no state-
ments about this prioritization other than to note that endpoint
domains should control it. Of course, an endpoint could decide to
use a default FIFO policy, in which case the most aggressive CCAs
within the endpoint’s streams would take more of its bandwidth
allocation. However, RCS would prevent those CCAs from affecting
the bandwidth available to other aggregates.

To understand how to achieve this, it is useful to distinguish
between three cases where a stream might encounter congestion.
The first is on a user’s ingress into the network, where the user
can use its own internal mechanisms to control the composition
of the stream. The second is somewhere internal to the network,
such as on an egress link between two domains. Recent work on
Bundler [16] and Crab [45] provides a mechanism whereby users
can remotely control the internal composition of the stream (we
provide more details about how Bundler and Crab work to achieve
this in Appendix C). The third case is at the endpoint domain’s
egress to the destination user; this is a special case of the prior one,
and the same mechanisms can be applied. Note that in keeping with
the previous principle, the sending user determines the composition
if congestion occurs when sender weights apply, and vice versa for
the receiving user.

170

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Brown et al.

4.4 How Does Our Work Relate to [12]?

This paper was inspired by [12], which introduced the basic idea
of recursive congestion shares. However, the detailed approach in
[12] has two major limitations. First, [12] only applies one level
of weights: those being assigned by the most recent ingress the
traffic has passed through. For user traffic that is going directly
from one domain to another (precisely, the case where traffic goes
from user X, to domain A, to domain B), this is sufficient.8 However,
this does not cover the case where traffic goes from users X and
Y, to domain A, to domain B, to user Z. If the congestion is at the
egress of domain B, there is no way for the transit provider to
distinguish between the streams belonging to the two customers
X and Y, and the customer with the more aggressive CCA will get
more bandwidth. Thus, the version in [12] does not achieve CCAI
even for some relatively short paths.

The second limitation is that the design in [12] ignores the role
of receivers, only considering weights assigned by ingress points.
This raises equity issues (i.e., should content providers determine
the priorities on my network access line?), and also means that the
allocations do not follow the flow of money on the downward part
of the path. These two deficiencies mean that the more complicated
but more functional proposal presented here is required.

5 Does RCS Achieve CCAI?
The principles above ensure that RCS is consistent with the In-
ternet’s economic model. We now ask whether RCS achieves our
goal of CCAI. In this section, we address that question from a
game-theoretic perspective where users are trying to individually
optimize their throughput, subject to the reasonability constraint
that they do not incur persistent losses.We analyze this game in two
ways: (1) a mixed-integer linear program (MILP) formulation that
determines whether multiple game-theoretic equilibria exist and
(2) simulations of game theory dynamics to determine if reasonable
CCAs would converge to those equilibria.
5.1 Just Enough Game Theory

In our model, the individual CCAs that control streams are the
game’s “players,” which we assume act rationally (i.e., maximiz-
ing utility). The “game” is defined by the network topology and
bandwidth allocation rules (i.e., RCS) that determines, given a set
of input rates 𝑟𝑖 , what are the resulting throughput rates 𝑎𝑖 (using
the previous notation). A player’s strategy is their sending rate,
and their payoff is either their sending rate (if their output rate
is the same as their sending rate) or −∞ if their output rate is
less than their sending rate: this condition merely ensures that no
equilibrium results in persistent loss, and is not intended to reflect
a realistic payoff. We thus ask: what kinds of equilibria do these
games converge to? To answer this question, we use two concepts
from game theory.

The first concept is the familiar Nash equilibrium [25]. A Nash
equilibrium occurs when all players (i.e., CCAs) are playing their
optimal strategy (i.e., sending rate), assuming all the other players
have already chosen their strategies and they remain fixed. That

8[12] incorrectly claims that their version of RCS is sufficient for traveling through
three domains, but this ignores traffic that is either generated and consumed by end
users (as opposed to being generated or consumed internal to a domain, as it would be
by Facebook or Google)

is, for each 𝑖 , 𝑟𝑖 is at the maximal value such that 𝑎𝑖 = 𝑟𝑖 , assuming
all players other than 𝑖 keep their sending rate fixed. This is an
equilibriumwhere no player can gain by unilaterally deviating from
the equilibrium.

The second concept is the less familiar Stackelberg equilibrium [25].
In this model, a “leader” (i.e., an individual CCA) commits to some
strategy (i.e., a sending rate) first. Other “follower” CCAs in the
game observe this leader’s action and react to it, reaching a Nash
equilibrium in the resulting sub-game with the leader’s strategy
remaining fixed. A Stackelberg equilibrium (with a single leader
𝑖) occurs when the leader 𝑖 has chosen its optimal strategy (has
chosen the maximal value of 𝑟𝑖 such that 𝑎𝑖 = 𝑟𝑖), assuming that in
each case, the set of other players will reach a Nash equilibrium
in their subgame in response to the leader’s strategy. Informally,
we think of the leader as testing each of their strategies, observing
where the others converge to, and picking the strategy that leads
to the best outcome.

For a given game, if there is a single Nash equilibrium and it is
also the only Stackelberg equilibrium, then the game has exactly
one stable equilibrium, regardless of how “aggressive” each player is.
However, if there is a Stackelberg equilibrium that differs from the
Nash, or if there are multiple Nash equilibria9 (which implies there
must be multiple Stackelberg equilibria), then aggressive players
(i.e., the Stackelberg leaders) can try to manipulate the game to
achieve the outcome that maximizes their throughput (we show
example topologies where this is true in Appendix B). We show
in §5.3 that such manipulation rarely results in a better equilibria
for the leader. Moreover, such manipulation would be infeasible
to achieve since the Stackelberg leader would either have to be
omniscient (so it could calculate its optimal strategy) or sample the
response to its behaviors over long time periods (so that the other
players would have converged to an equilibrium) and then search
for its optimum.

5.2 Does Greed Pay?

To understand whether multiple Nash equilibria or non-Nash Stack-
elberg equilibria are common, we consider two models. The first
is based on a random topology, which we designed to increase the
possibility of pathological cases: each stream takes a random path
and uses random weights at each ingress along the path. We do not
have aggregation in this model (each stream is treated separately
at each router), so each router only applies its own weights to each
stream. There is no need to refer to previous hops because flows
never aggregate. We start with a fully-connected 10-node topology
and then generate 40 4-hop streams by picking a random sequence
of nodes.

The second model uses topologies sub-sampled from the CAIDA
AS relationships dataset [15]. We pick a random AS in the dataset
to start an initial stream. Then, with probability 0.7 we set this
stream’s next-hop (or previous-hop – we grow the stream in both
directions) to one of that AS’s neighbors while maintaining a Gao-
Rexford compliant path, or else terminate the stream at a neighbor.
When we add a new AS to a stream’s path, with probability 0.5 we
also generate a new stream passing through at that AS. We grow
this stream using the same rules. We stop growing the topology

9§9 shows an example topology with multiple Nash equilibria.

171

Principles for Internet Congestion Management ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

once we have generated 40 streams. Since the CAIDA AS relation-
ships dataset does not contain capacity or weight information, we
generate these randomly per link.

We use a commercial MILP solver [37] to calculate allocations un-
der the two models. We disallow streams from incurring persistent
losses.
Random model. The MILP starts by defining allocation variables
where 𝑎𝑠 denotes the allocation that stream 𝑠 receives in an equi-
librium. From a given scenario, we define a set of links 𝐿 with
capacities 𝑐𝑙 , 𝑆 as the full set of streams, 𝑆𝑙 as the set of streams
that pass through each link 𝑙 , and a set of weights such that 𝑤𝑙,𝑠

denotes the weight of stream 𝑠 at link 𝑙 . Then we create bottleneck
indicator variables 𝐵𝑙,𝑠 such that 𝐵𝑙,𝑠 == 1 if and only if stream
𝑠 is bottlenecked at link 𝑙 . Lastly, we create an indicator variable
for links such that 𝐶𝑙 == 1 if 𝑙 is at capacity. We then define the
following constraints:

∀𝑙∈𝐿∀𝑠∈𝑆△𝑆𝑙𝐵𝑙,𝑠 == 0 (1)

∀𝑙∈𝐿∀𝑠∈𝑆𝑙∀𝑠′∈𝑆𝑙
𝑎𝑠

𝑤𝑙,𝑠

− 𝑎𝑠′

𝑤𝑙,𝑠′
≥ −𝑀 ∗ (1 − 𝐵𝑙,𝑠) (2)∑︁

∀𝑙∈𝐿
𝐵𝑙,𝑠 == 1 (3)∑︁

𝑠∈𝑆𝑙
𝑎𝑠 ≤ 𝑐𝑙 (4)∑︁

∀𝑙∈𝐿
𝐵𝑙,𝑠 ≤ 1 (5)

Constraint (1) ensures that no stream is bottlenecked at a link not
on its path. Constraint (2) ensures that each stream gets its weighted
fair share at each congested link (𝑀 is some large constant). Con-
straint (3) ensures each stream 𝑠 is bottlenecked at exactly one
link. Finally, constraint (4) ensures no link 𝑙 is oversubscribed. It
is important to note that we use this MILP formulation to model
bandwidth allocations under RCS, rather than to model the sta-
tus quo. Specifically, due to the specification of RCS’s “pipe-like”
behavior (§4.1), transient interactions don’t determine bandwidth
allocations in RCS; we thus do not model them in this analysis. We
consider transient interactions when evaluating partial deployment
scenarios in our emulation experiments (§6.2).

To ensure that we characterize the full range of Nash equilibria
for a given stream, we take turns optimizing 𝑎𝑠 for each stream 𝑠 to
determine the maximum and minimum allocation for that stream
under these constraints. Thus, a Nash solution to a topology yields
two equilibria (corresponding to the maximum and the minimum)
for every stream, though in most cases, they turn out to be the same.
To generate a Stackelberg solution with stream 𝑠 as a leader, we
optimize 𝑎𝑠 and allow 𝑠 to be bottlenecked at no links or a single
link by replacing constraint (3) with constraint (5).

We show the results on the first row of Table 1, where very
few topologies exhibit problematic equilibria. When looking at
individual streams, the results are even stronger. Out of a total of
748, 920 streams in all scenarios, only 68 (0.009%) streams benefited
from an aggressive Stackelberg leader strategy. The average percent
gain for any stream attempting to improve itself by adopting a
Stackelberg strategy was only 0.011%. Thus, in this model, greed
does not pay (very much).

Topology Total Multi. Nash Stackelberg
Random 18, 723 338 (1.81%) 598 (3.19%)

CAIDA-sampled 2, 897 0 0
Table 1: The types of equilibria under different topologies. We de-
rive CAIDA-sampled topologies from published data on AS relation-
ships [15] and derive Random topologies from our heuristics for
generating AS graphs (§5.2). The results show that with RCS, both
multiple Nash and non-Nash Stackelberg equilibria are rare for ran-
dom topologies, and both are even more rare for CAIDA-sampled
topologies.

CAIDA-sampled model. For the CAIDA-sampled model, in our
MILP calculations, domains assign weights to aggregates on ingress.
Egress links between two domains mirror these agreements. Thus,
in this MILP calculation, we only model weights assuming all traffic
follows the flow of money (but consider the more general case
in §5.3 and §6.2). To implement the CAIDA model, we add the
following constraint to what we described above:

∀𝑙∈𝐿∀𝑠∈𝑆𝑙∀𝑑∈0..𝐷𝑙
∀𝑎𝑔𝑔′∈𝑎𝑔𝑔𝑠𝑙,𝑑 : 𝑎𝑔𝑔𝑙,𝑠 ≠ 𝑎𝑔𝑔′∑

𝑠∗∈𝑈𝑎𝑔𝑔𝑙,𝑠
𝑎𝑠∗

𝑤𝑎𝑔𝑔𝑙,𝑠 ,𝑙

−
∑
𝑠∗∈𝑈𝑎𝑔𝑔′ 𝑎𝑠∗
𝑤𝑎𝑔𝑔′,𝑙

≥ −𝑀 ∗ (1 − 𝐵𝑙,𝑠)
(6)

This additional constraint enforces recursively-weighted alloca-
tions. At each depth 𝑑 of the hierarchy (with 𝑑 = 0 being the root)
for all streams 𝑠 in 𝑆𝑙 (borrowed from the flat model), we define
𝑎𝑔𝑔𝑙,𝑠 as the aggregate containing stream 𝑠 at link 𝑙 , and𝑤𝑎𝑔𝑔,𝑙 to
be the weight assigned to aggregate 𝑎𝑔𝑔. Lastly, we define 𝐷𝑙 to be
the maximum depth of the hierarchy at link 𝑙 , 𝑎𝑔𝑔𝑠𝑙,𝑑 to be the set
of aggregates at depth 𝑑 of the hierarchy for link 𝑙 , and𝑈𝑖 to be the
set of streams comprising aggregate 𝑖 .

We show the results on the second row of Table 1. We found
no CAIDA-sampled topologies where multiple Nash or non-Nash
Stackelberg equilibria existed, which means adopting Stackelberg
strategies would not benefit any senders.

5.3 Will Reasonable Flows Benefit?

TheMILP formulations show that in the vast majority of cases, there
is a single Nash equilibrium. The question now is, will reasonable
CCAs–which myopically adjust their behavior–reach this single
Nash equilibrium?

To model myopic game theory dynamics, we implement a “best-
reply” agent, which iterates through several sending rates between
a min and max and computes their utility at each one. The two
sending rates surrounding the best one achieved are used as the min
and max for the subsequent iteration: note that the best sending
rate is the highest rate at which it does not experience drops. The
sender terminates when the difference between the max and min
rate is lower than a small 𝜖 .

We used our CAIDA topology generator (described above) and
sampled 1,030 8-stream topologies in which we considered sender-
only weights (606) and sender and receiver weights (424). We as-
signed CCAs to hosts in the topology (such that each CCA is repre-
sented at least once) and ran multiple iterations rotating the CCA
assignments. In all of these topologies, the agents converged to a
single equilibrium.

172

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Brown et al.

We also investigated whether this held with more realistic dy-
namics. We implemented simplified versions of several conven-
tional CCAs (CBR, AIMD, BBR, Decongestion Control, Latency-
sensitive) and said a flow was in equilibrium if it reached a repeti-
tive cycle in terms of its sending rate (that cycle differs depending
on the CCA). Again, in 1,052 topologies, the agents converged to a
single equilibrium.

5.4 Summary

These results suggest that RCS is indeed sufficient to achieve CCAI
in most settings and that there is little payoff in trying to exploit
RCS (i.e., the average payoff is extremely low, even if the CCAs
were omniscient). What leads to this degree of effectiveness? The
use of hierarchical weighted fair queueing – whether applied to
individual flows or to aggregates – is necessary to achieve CCAI at
a single node, but it is clearly not sufficient, as we demonstrated
in the simple example in §4.4. The key is that the weights in the
hierarchical tree in a given egress are based on the set of peering
agreements upstream or downstream of that egress.

6 Implementation and Evaluation
We now turn to packet emulations to determine whether an imple-
mentation of RCS’s bandwidth allocations provides CCAI for real-
world CCA implementations. We first describe an implementation
of a scheduling algorithm that can implement HWFS, Hierarchical
Deficit Weighted Round Robin (HDWRR). We then show results
from packet emulations (using Mininet [29]) that use three CCAs
with varying levels of aggressiveness: Reno, Cubic, and BBR. We
compare results across (i) the idealized best-reply allocations de-
scribed above in §5.3, (ii) HDWRR, (iii) per-flow fairness using the
deficit round-robin (DRR) algorithm, and (iv) FIFO scheduling.

6.1 Hierarchical Deficit Weighted Round Robin

To evaluate RCS’s allocations on real CCA implementations, we
must first implement a mechanism that can achieve those alloca-
tions. For this, we use a scheduling algorithm, HDWRR, that is
based on the Deficit Round Robin (DRR) [41] implementation of a
fair queueing scheduler. We show pseudocode for our implementa-
tion of HDWRR in Listing 1 (in Appendix A). Unlike DRR, which
is constant-time, HDWRR’s complexity scales with the depth of
the weight tree. Additionally, while DRR can always assign a given
queue its full quanta, HDWRR must track the case where a non-
leaf node in the tree does not have enough remaining deficit to
accommodate a full quanta for its next child. In this case, our imple-
mentation assigns the child node any remaining deficit but tracks
the remaining scheduling deficit for the next round.

6.2 Mininet Emulations

To evaluate our HDWRR implementation as well as its interactions
with real CCAs, we implement a prototype HDWRR in ~150 lines
of Rust as a user-space TUN/TAP device. The full implementation,
including alternate DRR and FIFO schedulers, is ~1500 lines of Rust.

We consider four experiment configurations: (1) FIFO, which
represents the status quo, (2) DRR, which allocates per-stream, not
per-aggregate, as in fair queueing; (3)One-Hop, which uses HDWRR
but limits the weight tree to depth 1 (as in [12]); and (4) HDWRR,
which is our implementation described above.

Figure 2: Achieved allocations on an emulated topology with real
CCAs. A perfect scheme has 0% error for all flows. All boxplots in
this paper show percentiles (p5, p25, p50, p75, p95). Note the different
y-axis for F6.

a: CCAI b: Allocations
Figure 3: (a) shows difference between bandwidth received in 5th
and 95th percentile for each scheme. Smaller difference means CCA
choice impacts received bandwidth less. (b) shows squared error
between allocations flows receive under the scheme and expected
allocations under RCS.

We evaluate these four configurations in two ways. First, do
they provide CCAI, i.e., do all streams achieve consistent band-
width regardless of what CCA they (or other flows) use? Second,
are the bandwidth allocations consistent with their economic rela-
tionships? We represent whether allocations are consistent with
economic relationships by normalizing the streams’ achieved band-
width to the shares our simulator (§5.3) calculates. To evaluate these
questions, we use the same CAIDA-sampling topology generator
that we described above in §5.2. We generate 8 and 15-stream10

topologies, and for each topology, we further generate 10 random
CCA assignments, where we randomly assign Reno, Cubic, or BBR
as each stream’s CCA. We show results both for all streams in
a single topology (Figure 2), as well as a distribution across the
10 CAIDA-sampled topologies we generate. While we summarize
statistics across topologies, we note that CCAI and bandwidth mis-
allocation matter most in the worst case, since if any part of a
topology does not support CCAI or economically consistent band-
width allocations then CCAs must be pessimistically designed for
this worst case.
FIFO. As expected, using FIFO scheduling provides neither CCAI
nor RCS-compliant bandwidth allocations. Consider flows F1, F3,
F4, F7, and F6 in Figure 2: these flows receive up to 100% below
the RCS allocation (i.e., starvation), and F6 receives up to 15x over-
allocation. Similarly, across the topologies (Figure 3), FIFO provides
neither consistent bandwidth allocations, with a 28 Mbps spread
between p5 and p95 bandwidth (left) nor economically consistent
allocations with a large squared-error relative to the RCS allocation.
DRR and One-Hop. Traditional fair queueing, as well as one-
hop (which adds a single layer of hierarchy), can provide CCAI,

10Recall that a stream can have multiple component TCP flows, and endpoint domains
control those flows’ relative allocations.

173

Principles for Internet Congestion Management ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Figure 4: In RCS, bursty aggregates receive similar bandwidth allo-
cations compared to non-bursty ones.

but both result in non-RCS-compliant bandwidth allocations. In-
deed, Figure 3 shows that DRR and One-Hop achieve a much lower
bandwidth spread than FIFO; their bandwidth allocations remained
consistent across choices of CCAs. Unfortunately, DRR and One-
Hop’s allocations can be far from RCS’s; in Figure 2, flows F1, F3,
F4, F6, and F7 under- or over-allocate significantly.
HDWRR.HDWRR is the only evaluated scheduling algorithm that
achieves both CCAI and allocations consistent with RCS. We can
see in Figure 2 that all flows achieve allocations nearly identical to
the ideal RCS allocations, and similarly, across topologies, both the
bandwidth spread and squared error are low.

6.3 Bursty Traffic

Thus far, we have focused on evaluating scenarios using traditional
CCA implementations. In this subsection, we consider whether ag-
gregates can influence the allocation they receive by varying their
traffic’s burstiness. We consider both “over” and “under” forms of
burstiness: “over” bursty aggregates send traffic at more than the ex-
pected RCS allocation for short periods of time, and “under” bursty
aggregates send traffic at less than the expected allocation. We run
an experiment in which “over-” and “under-” bursty aggregates
compete with a control aggregate that uses TCP cubic.

We ran RCS on a simple topology where two aggregates (with the
other aggregate having half the weight of the TCP aggregate) feed
into a single shared bottleneck. We fix one aggregate to use Cubic
as its CCA and consider three configurations of the other aggregate:
“Regular,” i.e., another aggregate using Cubic, and Burst Over and
Burst Under as described above. We assign the fixed aggregate a
weight twice that of the bursty aggregate. We generate bursty traffic
by generating short flows with sizes drawn by analyzing packet
traces from an Internet core router [15], with a target average
sending rate. We configure this traffic generator with an average
sending rate 50% above the Ideal-RCS allocation for Burst Over, and
50% below the Ideal-RCS allocation for Burst Under. In both cases,
there are both periods of time for which the instantaneous network
load is above the Ideal-RCS allocation as well as below it. For each
burstiness configuration, we measure the percentage deviation of
each aggregate’s allocation compared to the Ideal-RCS allocation
across 20 experiment iterations.

Of course, an aggregate can at any time achieve less than its
Ideal-RCS allocation by sending less data, and our work-conserving
scheduling implementation will allocate this bandwidth to other
traffic. Rather, in Figure 4 we evaluate two factors: first, whether the
bursty aggregate can gain more bandwidth than its RCS allocation
by bursting traffic, and second, whether the bursty aggregate can

Figure 5: The x-axis shows the number of egresses running RCS
along a given stream’s path. We display the error rate in achieved
flow allocations compared to those of a network-wide RCS deploy-
ment. The numbers at the top are outlier p95 errors.

force other aggregates to achieve less than their RCS allocations by
bursting traffic. We find that the answer to both these questions is
no. In the Burst Over case, the percent deviation from Ideal-RCS
remains below 2%, which is also lower than the p95 deviation we
observe in the case with no burstiness. Similarly, burstiness does not
significantly affect the allocation of other aggregates’ bandwidth;
the p5 deviation we observed for the non-bursty aggregate in the
Burst Under case was 16% below the Ideal-RCS allocation, which is
comparable to the p5 deviation in the case without burstiness, 12%
below Ideal-RCS.
6.4 Incremental Adoption

Can RCS provide its benefits without requiring a universal adop-
tion? In themost general case, the answer is no: arbitrary competing
traffic could out-compete a single domain’s RCS traffic elsewhere
in the network. However, we identify one common case where
incrementally adopting RCS is both useful and effective: bilateral
commercial agreements along a single path. For example, if a do-
main’s provider has upstream congestion, the two domains could
mutually use RCS to inform each other about their relative rights. In
this case, although both domains’ traffic would still be susceptible
to interference from other non-participating domains’ traffic, they
would respect the relative rights of each others’ traffic.

In Figure 5, we show an evaluation of this type of incremental
deployment. We generate a 12-stream topology and first evaluate
the streams’ allocations with zero participating RCS domains (the
left-most set of boxplots). We then choose a stream with an inter-
domain path-length of at least 4 at random; note that enforcing a
lower-bound on the path-length represents the worst case for RCS’s
incremental deployment prospects, since with longer paths there is
more opportunity for contention. Along the chosen stream’s path,
we incrementally switch each domain’s egress along that stream’s
path to observe RCS’s bandwidth allocation rules and measure each
resulting allocation. In each case, we measure the deviation in allo-
cation from a universal deployment of RCS across five 30-second
iterations for both (a) the stream under test as well as (b) all flows
in the topology; in both cases, a lower deviation indicates that RCS
is resilient to incremental deployment scenarios. We define and
report the allocation percent error for a given stream and topology
(parameterized by the depth) as the absolute percent difference be-
tween the allocation the stream receives in the given topology and
the allocation the stream receives in a topology where every egress
is running RCS. In the topology we sampled for this experiment,
the stream’s path length is 4, but we note that using 4 RCS domains

174

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Brown et al.

is not a universal deployment: there are 17 other non-RCS domains
whose traffic can interfere with the stream under test.

We find that enforcing RCS at even one domain significantly
reduces the deviation in allocation for the stream under test from
a median deviation of 51% to 17%. When all four domains enforce
RCS, the deviation further drops to 7%, but other streams benefit
as well, with a median deviation of 11% compared to the original
34%. When we consider all streams, and not only the stream under
test, the deviation in allocations from a universal RCS deployment
is much higher—the p95 deviation across the 5 iterations is 192%
even with four domains enforcing RCS allocations. Of course, many
of the streams contributing to the deviation don’t encounter RCS-
enforcing domains in their path, so we do not expect these streams
to receive RCS-compliant allocations. However, for the stream un-
der test, our experiment shows that incremental adoption does
converge to RCS’s allocation.

7 Practical Concerns

7.1 Additional Mechanisms

RCS Signalling. To implement HWFS, each egress needs to know
the hierarchy of aggregates to which a packet is assigned and the
weights associated with those aggregates. Providing this state re-
quires (i) protocols carrying information between ingresses and
egresses within the same domain, and (ii) passing between one
domain’s egress and the connected domain’s ingress. There are
many possible implementations for this first task, but perhaps the
most straightforward is standing signalling connections between
each ingress and each egress in a domain, and they periodically
exchange (in both directions) information about prefixes and their
associated weight hierarchies. For the second, all that is needed
is to forward a summary of the information received from the
intradomain signalling to the attached domain.
RCS Endpoint control. Recall RCS’s third principle: while the net-
work should determine a stream’s total bandwidth allocation, that
stream’s endpoints should determine which individual flows use
that bandwidth. There is an implementation challenge in support-
ing more complex flow allocation policies: the stream’s bottleneck
(i.e., the egress link where it encounters congestion) will likely not
be at a link within its control, which is where such control must be
exercised.

To address this challenge, we adopt the approaches described in
Bundler [16] and Crab [45] that shift congestion (and therefore the
buildup of packet queues) from an egress in the network to a link
at the appropriate endpoint (fully described in Appendix C).
Complications. As mentioned earlier, for congestion internal to
a domain, congested links can use some form of HWFS, using the
signaling mechanisms proposed above. We think domains will con-
tinue to be managed such that internal congestion is rare except for
specific concentration points that domains can arrange to include
in their internal signalling.

Our description so far assumes direct peering relationships over
dedicated bilateral links. Many domains peer via IXPs over a com-
mon substrate, where the access line to a domain is shared among
several peering relationships. However, such IXP peering arrange-
ments are almost always settlement-free, meaning the weights are
set by the receiving domain, and can be enforced by the IXP at the

egress to the receiving domain using the same signalling informa-
tion as described above.

7.2 Policy and Incentives

While this work does not raise any ethical issues, it does raise
questions about policies and incentives.

Incentives. RCS is designed to have bandwidth allocations follow
the money. This is precisely what gives ISPs an incentive to de-
ploy RCS. Purely locally, a domain can start by implementing RCS
internally, treating congestion at their egress points based on the
agreements at their ingress points; when congestion occurs, those
with greater congestion shares receive a larger share of bandwidth.
This directly provides additional value to these access agreements
and can lead to greater revenue and a competitive advantage over
other providers. Then, on a bilateral basis, two connected domains
can agree to respect each other’s congestion shares; this, again,
is a value-added service to each other. A domain having such ar-
rangements can then say that purchasing higher congestion shares
not only benefits them within that domain but also in the next
downstream domain. Applying this reason recursively, there are
significant incentives that could drive RCS deployment. This is in
stark contrast to today’s Internet, where domains only control their
customers’ traffic locally, so customers are often forced to pursue
entirely private wide-area networks at extreme cost (or, barring
this option, simply coping with the congestion).

Network neutrality. There are many definitions of network neu-
trality, and it is important to distinguish among them. Below are
three different ways network neutrality has been characterized,
where we have invented our own terms to label the various lines
of thought. Our definitions are, of course, overly simplified, but
they capture the core differences between them. We list them in
descending order of strictness:

• Mechanistic Neutrality: This definition focuses on the mech-
anisms for packet handling, ruling out various forms of dis-
crimination in these mechanisms.

• Payment Neutrality: This definition also focuses on limiting
discrimination in the packet handling mechanisms but specif-
ically allows discrimination based on how much customers
pay for service. Included in this are priority schemes where
you can pay to obtain higher priorities.

• Competitive Neutrality: Misra’s vision of a network-neutral
Internet: “a platform where ISPs provide no competitive ad-
vantage to specific apps/services, either through pricing or
QoS” [7, 34]. Here the focus is not on the mechanism but on
the impact of discrimination on the ecosystem. Zero-rating, as
discussed in §3, is an example of a violation of this form (and
the previous two forms) of network neutrality, as is blocking
traffic from a competitor.

RCS clearly satisfies the second and third definitions of network
neutrality, but not the first, in that while it allows the level of
payment to dictate the handling of the packets, no other factors
influence packet handling (and thus, there are no competitive ad-
vantages to specific apps/services). We think this is a reasonable
compromise, given that network access bandwidths already depend
on levels of payment, and we are merely allowing that information

175

Principles for Internet Congestion Management ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

to inform how congestion is handled within the network. We ac-
knowledge that there would be significant equity issues if networks
made congestion shares proportional to fees paid. However, RCS as
a mechanism does not require such strict proportionality as a policy.
Instead, RCS gives operators the flexibility to limit how small and
how large congestion shares could be, to ensure both a basic level
of access as well as a cap on resources allocated to customers with
more commercial power. We note that [1] broadens the notion of
network neutrality to capture various forms of fairness, which we
think is an interesting topic for future work but lies outside the
scope of this paper.

7.3 Deployment and Scalability

Our prototype HDWRR implementation (§6.2) is in software, which
is, of course, unsuitable for Internet-scale deployment. There are
two relevant technical considerations for deploying HWFS: the
number of operations needed per packet, and the number of re-
quired router queues. Implementing HWFS requires (from Listing 1)
𝑂 (𝑑) operations per packet where 𝑑 is the depth of the weight tree.
Prior work [3] indicates that 𝑑 is typically ≤ 3. Thus, the compu-
tational complexity required is low and compatible with modern
router hardware.

In terms of queues, in its purest form, RCS dictates that the
weight tree include weights for every upstream (or downstream, for
receiver-dictated weights) entity with a commercial relationship
to the Internet. Of course, there are already easily millions of such
entities today.

This is not within reach of current hardware but may be in
the near future. We have been told confidentially by one router
vendor that they will soon have products that support close to half
a million queues and with approximately 7-8 levels of hierarchy.
Given the current estimated average AS path length between two
random destinations as 4 hops [14] and the trend of the flattening
of the Internet [30], we suspect 7-8 levels of hierarchy is more than
sufficient.

However, it would be better if we could reduce the state require-
ments of RCS to enable deployment on current hardware. To that
end, we propose two potential approximations to ease the amount
of state necessary for any individual router to maintain. We note
that we have not evaluated these approximations at the Internet
scale (nor do we believe it is practical for us to attempt this without
data on current traffic patterns); we thus leave the design of an
Internet-scale RCS implementation to future work.

Move scheduling to the state. Our prototype enforces bandwidth
allocation at each congested link and does so on the entire tree of
congestion shares. An alternative is to offload scheduling of some
subtree of aggregates to upstream/downstream routers (depending
on the flow of money). Of course, this upstream/downstream router
is not the natural bottleneck for these aggregates, so it must be
informed of its aggregate bandwidth allocation before it can en-
force that allocation on its subtree. We observe that the systems
we employ for endpoint control (i.e., Bundler [16] and Crab [45])
perform exactly this functionality, by using a CCA on an aggre-
gate to implicitly (or explicitly [22, 31]) signal this rate. Because
the bandwidth allocations vary in time and the CCAs used on the
aggregate only discover a delayed approximation of this bandwidth,

the bandwidth allocations would only approximate the ideal RCS
calculation.

Dynamic state assignment. Since only constrained aggregates
need to have packets dropped when they exceed their limits (un-
constrained aggregates experience drops at their bottlenecks), one
can implement an approximation to HWFS using an amount of
state that is proportional to the number of constrained aggregates,
not the total number of aggregates. Such an algorithm would need
to dynamically adjust the state kept as aggregate rates changed
and thus would occasionally not implement HWFS precisely as
defined as it adjusted its state to reflect current usage. How much
savings does this offer? Our own experience attempting to measure
congestion in the Internet indicates that congestion is relatively
rare, and prior work from Dhamdhere et al. corroborates this: “we
did not find evidence of widespread endemic congestion of interdo-
main links between U.S. access ISPs and directly connected transit
and content providers” [21]. Since we expect that the number of
constrained aggregates is small compared to the total number of
aggregates, we conjecture this approximation would be an effective
way of implementing RCS.

8 Related Work
We first discuss the two leading contenders to replace TCPF, and
end with a very brief listing of other related work.

What about the two leading alternatives? As mentioned previ-
ously, the literature has suggested two main alternatives to TCPF.
The first, as initially articulated by [36] and further explored by
many, is per-flow fairness. However, the real benefit of such ap-
proaches is not that they provide a morally superior resource al-
location; instead, the true benefit is that these approaches provide
isolation between flows so they achieve CCAI. This approach was
“dismantled” by Briscoe in [10] where he observed that the result-
ing allocations made no economic sense. Flows, no matter their
definition (e.g., per source, per destination, per source-destination
pairs, per five-tuple), have no relation to the commercial arrange-
ments of the current Internet. Of course, as Briscoe observed, TCPF
makes no economic sense either; thus, per-flow-fairness – which
achieves CCAI, but does not make economic sense – is strictly an
improvement over TCPF. In contrast, with RCS we are searching to
achieve both CCAI and economic sanity, which per-flow-fairness
most definitely does not.

The other alternative to TCPF is network utility maximization
(NUM), where each flow has a utility function and the goal is to
maximize this utility. This approach was introduced by Kelly in [32,
33], and has generated significant literature. NUM’s fundamental
idea is that congestion signals can serve as shadow prices, providing
a measure of how much congestion a particular flow is causing
other flows. If individual CCAs optimize their own utility minus
this shadow price, the system at equilibrium will maximize the sum
of utilities, which is the socially optimal outcome.

This core idea could be employed in two ways. The most straight-
forward is to actually charge shadow prices (i.e., users must pay
whatever shadow price charges they incur), and then have users
selfishly optimize accordingly. For this, users would be required
to define their (typically unknown) utility functions in the CCA.
However, for our purposes, the most relevant objection is that this

176

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Brown et al.

approach requires a massive change in how users are charged for
Internet access and usage, which renders it explicitly outside our
scope.

One could instead use congestion signals as a hint, and have
CCAs respond to them as if they were self-optimizing. This ap-
proach essentially mandates a universal CCA and a universal con-
gestion signalling mechanism at routers. Thus, this would replace
the voluntary TCP-friendly paradigm with a voluntary NUM par-
adigm. This would not solve the incentive problem, as CCAs that
ignored these congestion signals would get better service. In more
limited deployments, like datacenters, this is more feasible because
the network is serving the needs of the operator, not individual
users. See [35] for such an example.

A far more profound difficulty with NUM, in our setting, is that it
is not consistent with the granularity of the Internet’s current com-
mercial model in which entities purchase service from providers at
relatively stable prices. The entities, which could be home users,
enterprises, or other providers, pay their providers for being able
to send and receive packets. There is some degree of utility maxi-
mization in this process, but it is at the level of these entities that
purchase access, not at the level of individual network flows. RCS
addresses this level of utility by ensuring that the treatment their
traffic receives as it flows through the network reflects, to some
degree, the level of access they purchased (as measured by their
congestion shares, and the congestion shares their provider receives
from its peers, etc.).
What about other related work? There is a vast literature on con-
gestion control, which provides the context for this work and which
we cannot possibly acknowledge in full. Nevertheless, three recent
position papers have shed new light on issues with TCPF: [46]
provides a brilliant discussion of TCP friendliness and its discon-
tents, [42] provides a novel perspective on CCA diversity, and [13]
raises questions about the role of TCPF in determining bandwidth
contention. Indeed, even if TCPF does not determine bandwidth
allocations today, RCS provides a principled framework rather than
an arbitrary or obfuscated one.

Meanwhile, twoworks present alternatives to the HDWRRmech-
anism we described in §6. HCSFQ [48] extends classic CSFQ [43]
to approximate HWFQ. We chose not to pursue this as our mecha-
nism because it would require core switches to estimate the arrival
rates of all aggregates in the hierarchy. Gearbox [27] follows a line
of work approximating WFQ and achieves hierarchical calendar
queues with a small number of physical FIFO queues. Extending
Gearbox to HWFQ approximation would exacerbate the problem
of calendar range overflow, which is why we did not explore this
direction.

9 Conclusion
One might dismiss this paper as being unnecessary (today’s Internet
works reasonably well), untested (its proposed mechanism has not
yet been validated at scale), impractical (its mechanisms cannot be
deployed in the near term), and hysterical (seeing the adoption of
BBR as an apocalypse rather than a mere blip in the long history of
rough adherence to TCP-friendliness). We willingly plead guilty on
all counts, but see these objections as largely missing our point.

This paper is definitely not claiming to solve an urgent practical
problem with a well-tested and easily-deployable solution. Instead,

our goal is to address a fundamental conceptual problem that has
remained unresolved since Nagle’s 1985 paper [36], which is: how
do we reconcile the goal of CCA independence with the Internet’s
commercial realities? This is an important question since the former
concern (CCAI) is undeniably desirable, as it would enable much
more rapid CCA innovation, while the latter concern (commercial
realities) is unlikely to fundamentally change in the foreseeable
future.

We think that such a dilemma deserves our intellectual attention
even without an imminent crisis. Our approach appears to have
resolved this conceptual dilemma. The solution is not simple –
conceptually or practically – and there is much more that remains
to be done to both understand this approach theoretically and
engineer it to be more practically deployable. Nonetheless, we
believe this paper represents a helpful first step.

Acknowledgements
We thank Aurojit Panda, Tejas Narechania, our shepherd Sachin
Katti, and the anonymous reviewers for their comments. This
work was supported by NSF grants 2201489, 2212102, 2213387,
and 2242502, and by funding from IBM, Intel, and Broadcom.

177

Principles for Internet Congestion Management ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

References
[1] Muhammad Abdullah, Pavlos Nikolopoulos, and Katerina Argyraki. Caching

and Neutrality. In HotNets, 2023. Cited on page 11.
[2] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,

Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data
Center TCP (DCTCP). In SIGCOMM, 2010. Cited on page 2.

[3] Todd Arnold, Jia He, Weifan Jiang, Matt Calder, Italo Cunha, Vasileios Giotsas,
and Ethan Katz-Bassett. Cloud Provider Connectivity in the Flat Internet. In
IMC, 2020. Cited on page 11.

[4] Venkat Arun, Mohammad Alizadeh, and Hari Balakrishnan. Starvation in End-
to-End Congestion Control. In SIGCOMM, 2022. Cited on page 2.

[5] Venkat Arun and Hari Balakrishnan. Copa: Practical Delay-Based Congestion
Control for the Internet. In NSDI, 2018. Cited on page 1.

[6] Niloofar Bayat, Richard Ma, Vishal Misra, and Dan Rubenstein. Zero-Rating and
Net Neutrality: Who Wins, Who Loses? In SIGMETRICS, 2021. Cited on page 3.

[7] Niloofar Bayat, Richard T. B. Ma, Vishal Misra, and Dan Rubenstein. Big Winners
and Small Losers of Zero-rating. ACM Trans. Model. Perform. Eval. Comput. Syst.,
7(1), Sep 2022. Cited on pages 3 and 10.

[8] Jon C. R. Bennett and Hui Zhang. Hierarchical Packet Fair Queueing Algorithms.
In SIGCOMM, 1996. Cited on page 5.

[9] BEREC. Zero-Rating. https://berec.europa.eu/eng/open_internet/zero_rating/,
2015. Cited on page 3.

[10] Bob Briscoe. Flow Rate Fairness: Dismantling a Religion. In SIGCOMM, 2007.
Cited on pages 2 and 11.

[11] Bob Briscoe, Koen De Schepper, Marcelo Bagnulo, and Greg White. Low Latency,
Low Loss, Scalable Throughput (L4S) Internet Service: Architecture. IETF Internet
Draft: draft-ietf-tsvwg-l4s-arch-11, 2021. Cited on page 2.

[12] Lloyd Brown, Ganesh Ananthanarayanan, Ethan Katz-Bassett, Arvind Krishna-
murthy, Sylvia Ratnasamy, Michael Schapira, and Scott Shenker. On the Future
of Congestion Control for the Public Internet. In HotNets, 2020. Cited on pages 1,
2, 4, 6, and 8.

[13] Lloyd Brown, Yash Kothari, Akshay Narayan, Arvind Krishnamurthy, Aurojit
Panda, Justine Sherry, and Scott Shenker. How I Learned to StopWorrying About
CCA Contention. In HotNets, 2023. Cited on page 12.

[14] T. Böttger, G. Antichi, E.L. Fernandes, R. Lallo, M. Bruyere, S. Uhlig, and I. Castro.
The Elusive Internet Flattening: 10 Years of IXP Growth. In RIPE 78, 2018. Cited
on page 11.

[15] CAIDA. AS Relationships. https://www.caida.org/catalog/datasets/as-
relationships/, 2022. Cited on pages 6, 7, and 9.

[16] Frank Cangialosi, Akshay Narayan, Prateesh Goyal, Radhika Mittal, Mohammad
Alizadeh, and Hari Balakrishnan. Site-to-Site Internet Traffic Control. In EuroSys,
2021. Cited on pages 3, 4, 5, 10, 11, and 14.

[17] Yi Cao, Arpit Jain, Kriti Sharma, Aruna Balasubramanian, and Anshul Gandhi.
When to Use and When Not to Use BBR: An Empirical Analysis and Evaluation
Study. In IMC, 2019. Cited on page 1.

[18] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. BBR: Congestion-Based Congestion Control. In ACM Queue, 2016.
Cited on page 1.

[19] Neal Cardwell, Yuchung Cheng, Kevin Yang, David Morley, Soheil Hassas
Yeganeh, Priyaranjan Jha, Yousuk Seung, and Van Jacobson. BBRv3: Algorithm
Bug Fixes and Public Internet Deployment. In IETF, 2023. Cited on page 1.

[20] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a Fair Queueing
Algorithm. In SIGCOMM, 1989. Cited on pages 1 and 2.

[21] AmoghDhamdhere, David D. Clark, Alexander Gamero-Garrido, Matthew Luckie,
Ricky K. P. Mok, Gautam Akiwate, Kabir Gogia, Vaibhav Bajpai, Alex C. Snoeren,
and Kc Claffy. Inferring Persistent Interdomain Congestion. In SIGCOMM, 2018.
Cited on page 11.

[22] Nandita Dukkipati and Nick McKeown. Why Flow-Completion Time is the Right
Metric for Congestion Control. In SIGCOMM, 2006. Cited on pages 3 and 11.

[23] Sally Floyd. HighSpeed TCP for Large Congestion Windows. RFC 3649, IETF,
2003. Cited on page 1.

[24] Sally Floyd and Kevin Fall. Promoting the Use of End-to-End Congestion Control
in the Internet. In IEEE/ACM Trans. Netw., 1999. Cited on page 1.

[25] Drew Fudenberg and Jean Tirole. Game Theory. MIT Press, 1991. Cited on page 6.

[26] Lixin Gao and J. Rexford. Stable Internet Routing Without Global Coordination.
IEEE/ACM Trans. Netw., 2001. Cited on pages 1 and 5.

[27] Peixuan Gao, Anthony Dalleggio, Yang Xu, and H. Jonathan Chao. Gearbox: A
Hierarchical Packet Scheduler for Approximate Weighted Fair Queuing. In NSDI,
2022. Cited on page 12.

[28] Prateesh Goyal, Akshay Narayan, Frank Cangialosi, Srinivas Narayana, Moham-
mad Alizadeh, and Hari Balakrishnan. Elasticity Detection: A Building Block for
Internet Congestion Control. In SIGCOMM, 2022. Cited on page 1.

[29] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz, and Nick
McKeown. Reproducible Network Experiments Using Container-Based Emula-
tion. In CoNEXT, 2012. Cited on page 8.

[30] Geoff Huston. BBR, the new kid on the TCP block. https://blog.apnic.net/2017/
05/09/bbr-new-kid-tcp-block/, 2017. Cited on page 11.

[31] Dina Katabi, Mark Handley, and Charlie Rohrs. Congestion Control for High
Bandwidth-Delay Product Networks. In SIGCOMM, 2002. Cited on pages 3
and 11.

[32] Frank Kelly. Charging and Rate Control for Elastic Traffic. In European transac-
tions on Telecommunications, 1997. Cited on pages 2 and 11.

[33] Frank P Kelly, Aman K Maulloo, and David KH Tan. Rate Control for Communi-
cation Networks: Shadow Prices, Proportional Fairness and Stability. In Journal
of the Operational Research Society, 1998. Cited on pages 2 and 11.

[34] Vishal Misra. Half the Equation and Half the Definition. http://peerunreviewed.
blogspot.com/2015/12/what-is-definition-of-net-neutrality.html„ 2015. Cited on
page 10.

[35] Kanthi Nagaraj, Dinesh Bharadia, Hongzi Mao, Sandeep Chinchali, Mohammad
Alizadeh, and Sachin Katti. NUMFabric: Fast and Flexible Bandwidth Allocation
in Datacenters. In SIGCOMM, 2016. Cited on page 12.

[36] J. Nagle. On Packet Switches with Infinite Storage. RFC 970, IETF, 1985. Cited
on pages 2, 11, and 12.

[37] Gurobi Optimization. Gurobi optimizer: The world’s fastest solver.
https://www.gurobi.com/solutions/gurobi-optimizer/. Cited on page 7.

[38] Adithya Abraham Philip, Ranysha Ware, Rukshani Athapathu, Justine Sherry,
and Vyas Sekar. Revisiting TCP Congestion Control Throughput Models &
Fairness Properties At Scale. In IMC, 2021. Cited on page 1.

[39] S. Shenker R. Braden, D. Clark. Integrated Services in the Internet Architecture:
an Overview. RFC 1633, IETF, 1994. Cited on page 3.

[40] Barath Raghavan and Alex C. Snoeren. Decongestion Control. In HotNets, 2006.
Cited on page 2.

[41] M. Shreedhar and George Varghese. Efficient Fair Queueing Using Deficit Round
Robin. In SIGCOMM, 1995. Cited on page 8.

[42] Anirudh Sivaraman, Keith Winstein, Pratiksha Thaker, and Hari Balakrishnan.
An Experimental Study of the Learnability of Congestion Control. In SIGCOMM,
2014. Cited on page 12.

[43] Ion Stoica, Scott Shenker, and Hui Zhang. Core-Stateless Fair Queueing: Achiev-
ing Approximately Fair Bandwidth Allocations in High Speed Networks. In
SIGCOMM, 1998. Cited on page 12.

[44] Ion Stoica, Hui Zhang, and TS Eugene Ng. A Hierarchical Fair Service Curve
Algorithm for Link-sharing, Real-time and Priority Services. In SIGCOMM, 1997.
Cited on page 5.

[45] Ammar Tahir and Radhika Mittal. Enabling Users to Control their Internet. In
NSDI, 2023. Cited on pages 3, 4, 5, 10, 11, 14, and 15.

[46] Ranysha Ware, Matthew K. Mukerjee, Srinivasan Seshan, and Justine Sherry.
Beyond Jain’s Fairness Index: Setting the Bar For The Deployment of Congestion
Control Algorithms. In HotNets, 2019. Cited on pages 1 and 12.

[47] Ranysha Ware, Matthew K. Mukerjee, Srinivasan Seshan, and Justine Sherry.
Modeling BBR’s Interactions with Loss-Based Congestion Control. In IMC, 2019.
Cited on page 1.

[48] Zhuolong Yu, Jingfeng Wu, Vladimir Braverman, Ion Stoica, and Xin Jin. Twenty
Years After: Hierarchical Core-Stateless Fair Queueing. In NSDI, 2021. Cited on
page 12.

[49] Doron Zarchy, RadhikaMittal, Michael Schapira, and Scott Shenker. Axiomatizing
Congestion Control. In SIGMETRICS, 2019. Cited on page 1.

[50] Danesh Zeynali, Emilia N. Weyulu, Seifeddine Fathalli, Balakrishnan Chan-
drasekaran, and Anja Feldmann. Promises and Potential of BBRv3. In PAM,
2024. Cited on page 1.

178

https://berec.europa.eu/eng/open_internet/zero_rating/
https://blog.apnic.net/2017/05/09/bbr-new-kid-tcp-block/
https://blog.apnic.net/2017/05/09/bbr-new-kid-tcp-block/
http://peerunreviewed.blogspot.com/2015/12/what-is-definition-of-net-neutrality.html
http://peerunreviewed.blogspot.com/2015/12/what-is-definition-of-net-neutrality.html

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Brown et al.

Appendices
Appendices are supportingmaterial that has not been peer-reviewed.

Appendix A HDWRR Implementation
Schedule(n) for root node:

while True:
n.deficit += n.quantum
for c in n.children:

n.deficit -= c.quantum
Schedule(n, c.quantum)

Schedule(n, credits) for non-leaf nodes:
n.deficit += credits
while n.deficit > 0:
c = n.children.head
q = min(n.deficit, c.quantum + c.leftover)
n.deficit -= q
Schedule(c, q)
if c is inactive:

n.children.remove(c)
if n.children is empty:

set n as inactive
n.deficit = 0

if n.deficit == 0:
c.leftover += c.quantum - q
n.children.rotate() // move c to tail

Schedule(n, credits) for leaf node:
n.deficit += credits
while n.queue not empty and

n.deficit > n.queue.head.length:
pkt = n.queue.dequeue()
n.deficit -= pkt.length
transmit(pkt)

if n.queue is empty:
n.deficit = 0 and set n as inactive

Listing 1: HDWRR implementation.

Appendix B Game Theory Examples

B.1 Multiple Nash

We now illustrate that topologies can have multiple equilibria, even
with RCS. Figure 6a depicts an example with two Nash equilibria, as
both (23 ,

1
3 ,

1
3) and (

1
2 ,

1
2 ,

1
2) are Nash equilibria. If any flow attempts

to increase they immediately incur persistent losses at one of the
egress points. Recall that when we modelled realistic topologies
from CAIDA data (§5.2), we found zero instances of this behavior
with RCS.

B.2 Non-Nash Stackelberg

The example in Figure 6b depicts a scenario with no Nash but a sin-
gle Stackelberg equilibrium. One can verify that the only solution
that satisfies the necessary conditions for a Nash equilibrium as
outlined in §5.1 is (13 ,

1
3 ,

4
3), which is not a Nash equilibrium. This

is because A could increase its rate by a small 𝜖 , which reduces
B’s throughput while C’s is unchanged, thereby increasing its own
total throughput by 𝜖 . While not a Nash equilibrium, this solution

a: Example with 2 Nash equilibria (23 ,
1
3 ,

1
3) and (12 ,

1
2 ,

1
2) with no

intermediate equilibria. All capacities are 1.

b: Example with no Nash equilibria but a Stackelberg equilibria.

Figure 6: Example topologies with undesirable convergence proper-
ties.

is a Stackelberg equilibrium since if A increases its rate then (be-
cause Stackelberg considers how streams respond to changes by
the leader) in addition to B reducing its rate, C will slightly increase
its rate leading to losses for A; this causes A’s throughput to be less
than its sending rate, which eliminates its utility entirely. Thus, A
is best off at its current rate in the Stackelberg sense. Thus, this is
an example of a scenario that has no Nash equilibrium, but has a
Stackelberg equilibrium.

Appendix C Endpoint Control
In section 4.3 we introduced the principle of endpoint control which
dictates that endpoints should be responsible for determining the
composition of their streams rather than the network. However,
enforcing such control requires enacting policies on the handling
of packets at the bottleneck links where queues build up, and these
bottleneck links are often not under the control of the endpoint.
Here we turn to two recent works that enable endpoint control in
the face of remote bottlenecks, Bundler [16] and CRAB [45] that
edge domains can use alongside RCS to enforce their scheduling
policies.

The core idea of Bundler [16] is to move a stream’s queue buildup
from the bottleneck point (outside the endpoint’s domain) to the
sender to enable the sender to enforce its policies. Migrating the
queue requires dynamically and accurately estimating the rate at

179

Principles for Internet Congestion Management ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

which the stream is sending as well as rate limiting traffic at the
sender side. These two tasks are accomplished with a sendbox and
receivebox that interpose between the sender and receiver. The
sendbox and receivebox measure congestion signals and utilize a
delay-based congestion control algorithm at the sendbox to deter-
mine the sending rate of the stream. The sendbox then rate limits
outgoing traffic according to the determined rate which builds a
standing local queue. The choice of delay-based congestion control
for rate estimation is both key to the mechanism (a loss-based con-
trol loop would fill the queue at the bottleneck link) and enables
constituent flows that are delay-sensitive to achieve low delay.

CRAB [45] instead focuses on enabling users to weight incoming
traffic bottlenecked at their access link and receive weighted max-
min fair share rates. Computing these rates requires the weights,
bottleneck capacity, and the demands. Determining flow’s demands
directly from perceived rates after the bottleneck link is difficult
because it is unclear whether the flow is limited by its own de-
mand or by competition at the bottleneck. To combat this CRAB
throttles flows at the receiver slightly under their perceived rate
and determines what the flow does when offered more bandwidth
to understand whether the flow’s demand has been met or not,
making sure that a flow never receives more than it is entitled to
under weighted max-min fairness.

More specifically, CRAB estimates the total capacity of the re-
ceiver’s access link as well as the perceived rate of each flow in
rounds. After a round of rate estimation flows are analyzed to deter-
mine if they belong to one ormore of: growing (using the extra band-
width it was lent), saturating (either growing or at their assigned
bandwidth), or non-saturating (under their assigned bandwidth). If
there is at least one non-saturating flow and one saturating flow
then CRAB starts the reallocation process. During re-allocation,
CRAB first determines the total amount of bandwidth each flow can
lend. Then it runs a water-filling algorithm to determine the new
rates for each flow, which apportions this excess capacity across
each of the saturating flows. If lending flows are later classified as
growing, then CRAB returns all of its lent bandwidth. Lastly, CRAB
must maintain a current understanding of the capacity of the bottle-
neck link to accurately determine rates. Ideally, CRAB only drops
the observed capacity when the available capacity has actually
changed, not when flow demands happened to decrease suddenly.
Therefore, CRAB reacts to drops in total observed capacity by first
attempting to reallocate bandwidth if there is any saturating flow
and otherwise dropping the observed capacity. CRAB also probes
for higher total throughput by increasing rates for a measurement
period. These changes in observed capacity result in further recal-
culations of the weighted max-min fair rate for each flow.

180

	Abstract
	1 Introduction
	2 Replacing TCPF
	3 Principles for ``Consistent'' CCAI
	4 From Principles to Practice
	4.1 Principle #1: Relative Rights
	4.2 Principle #2: Recursion and Following The Money
	4.3 Principle #3: Endpoint Control
	4.4 How Does Our Work Relate to rcs?

	5 Does RCS Achieve CCAI?
	5.1 Just Enough Game Theory
	5.2 Does Greed Pay?
	5.3 Will Reasonable Flows Benefit?
	5.4 Summary

	6 Implementation and Evaluation
	6.1 Hierarchical Deficit Weighted Round Robin
	6.2 Mininet Emulations
	6.3 Bursty Traffic
	6.4 Incremental Adoption

	7 Practical Concerns
	7.1 Additional Mechanisms
	7.2 Policy and Incentives
	7.3 Deployment and Scalability

	8 Related Work
	9 Conclusion
	References
	A HDWRR Implementation
	B Game Theory Examples
	B.1 Multiple Nash
	B.2 Non-Nash Stackelberg

	C Endpoint Control

