
Steerable Alignment with Conditional Multiobjective
Preference Optimization

by

Julian Manyika

S.B. in Computer Science and Engineering and Philosophy
Massachusetts Institute of Technology (2023)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2024

© 2024 Julian Manyika. This work is licensed under a CC BY-NC-ND 4.0 license.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by: Julian Manyika
Department of Electrical Engineering and Computer Science
May 17, 2024

Certified by: Dylan Hadfield-Menell
Assistant Professor, Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee

https://creativecommons.org/licenses/by-nc-nd/4.0/


2



Steerable Alignment with Conditional Multiobjective Preference
Optimization

by

Julian Manyika

Submitted to the Department of Electrical Engineering and Computer Science
on May 17, 2024 in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

ABSTRACT

As the scale, capabilities and use-cases of large language models (LLMs) continue to grow,
it is imperative that these systems are aligned with human preferences. Current state of the
art strategies for alignment such as Reinforcement Learning from Human Feedback (RLHF)
have provided useful paradigms for finetuning LLMs to produce outputs that are more con-
sistent with human preferences. These approaches, however, assume that preferences are
formed by a single, underlying reward model, which is likely insufficient for representing
an individual’s preferences, certainly unable to represent diverse group preferences, and in-
flexible for users at inference time. To address these limitations, we propose Conditional
Multiobjective Preference Optimization (CMPO), a novel alignment strategy that trains a
user-steerable LLM along multiple attributes of text, such as helpfulness and humor. CMPO
simulates the pareto front of multiple single-attribute preference-optimized models through
structural plurality and finetuning with Direct Preference Optimzation (DPO), and allows
users to condition outputs on the predefined attributes at inference-time. Experiments show
that CMPO generates responses that are preferred to those from separate attribute-specific
DPO models and from models trained using SteerLM, a alternate model steering approach.
CMPO empirically shows promise as a scalable and flexible finetuning strategy for creating
LLMs that are attribute-steerable from parameterized preferences.

Thesis supervisor: Dylan Hadfield-Menell
Title: Assistant Professor
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Chapter 1

Introduction

Large Language Models (LLMs) have been a key technology in the progress towards more

intelligent, human-like AI systems. From becoming the state of the art in natural language

processing (NLP) for language understanding, to human-level performance on professional

and academic exams and exhibiting sophisticated multimodal reasoning [1], [2], LLMs con-

tinue to push the frontier of artificial human-like intelligence and the range of applications

in which they can assist humans. With those capabilities also come risks, from bias, harmful

outputs and misinformation, to deception, manipulation and power seeking [3]–[5]. As the

applications and risks of LLMs grow, so does the need to ensure that they can operate in

the interest of humanity.

This imperative task of aligning LLMs with human values has inspired a rich body of

work on training LLMs using human feedback and human values. One of the most popular

paradigms for aligning LLMs with human preferences has been Reinforcement Learning

from Human Feedback (RLHF) [6], [7]. The standard RLHF process uses a combination

of immitation learning, preference learning and policy optimization through reinforcement

learning (RL) in order to align an LLM to a reward function fitted to collected human

pairwise comparisons on the base model outputs. RLHF has been shown to be an effective

technique in improving in-domain model performance, as well as generalizing to tasks outside
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of the supervised and RL distribution [6]–[8].

However, RLHF relies on the assumption that it can sufficiently model and optimize

preferences. RLHF presumes that aggregating individual utility from multiple annotators

through pairwise comparison for training a single model will allow for all annotator prefer-

ences to be represented [9] and that the goal of alignment is to produce models that align

to a single reward function or preference profile. This assumption of an underlying monistic

reward model fundamentally optimizes the mode of collected feedback and fails to learn the

richness of diverse feedback or characterize tradeoffs across different objectives [10]. There-

fore there is a strong case for building models that can be steered through training or at

inference time in order to be customizable in many contexts. Different tasks can require

different skills, knowledge, or behavior, and having fine-grained control over those qualities

can better empower users to determine the kind of model they need for their use case. For

example, in a collaborative writing setting, a user might need editorial or brainstorming

help from the language model, and each may require different characteristics depending on

the context. In one instance, the user may need the model to point out every problem or

opportunity for improvement in their draft, but have each point be concise, so they would

like to condition the model to optimize on being helpful, critical, and terse. In a different

context, the user might be searching for a clever joke to end the speech, so they would heav-

ily bias the model toward being funny and creative, but also slightly steer it towards being

coherent in order to keep it relevant to and cohesive with the rest of the text. This level of

customization is only possible for a model that has the property of ‘steerable pluralism’ [11].

A steerably pluralistic model is more capable of providing user alignment at inference time,

in addition to being more compatible with the prospect that a single human’s preferences

can be represented by a single reward model, let alone the preferences of a population of

people.
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1.1 Problem Statement

Steerable pluralism is the next step in aligning LLMs with human preferences. In order

to develop a scalable steerably pluralistic LLM, there needs to be a procedure that trains

policies across multiple objectives in a way that approach the pareto front of single objective

policies and can be customized on these objectives at inference time, yet remain parameter

efficient with respect to the number of objectives.

1.2 Contributions

My main contribution is Conditional Multiobjective Preference Optimization (CMPO), a

novel alignment strategy that gives users fine-grained control over the objectives that they

care to optimize. CMPO is a parameter-efficient finetuning procedure in which a collection

of single-objective models with direct preference optimization that allows users to condition

outputs at inference time on the objectives that they care to optimize.

Figure 1.1: Conditional Multiobjective Preference Optimization

I show that CMPO can train a pareto front of LLMs that optimize single attribute con-

ditions better than separate DPO models and models trained by SteerLM, a comparable

reward-free offline finetuning strategy for enabling users to condition outputs on attributes
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with scalar ratings. Additionally, CMPO has the advantage over SteerLM that it can gen-

eralize to any supervised multiobjective dataset that is reducible to pairwise preferences.

CMPO empirically shows promise as a scalable and more flexible alternative to SteerLM

as a finetuning strategy for creating LLMs that are attribute-steerable from parameterized

preferences.

1.3 Outline

The remainder of this thesis is organized as follows: Chapter 2 provides background on the

problem of aligning LLMs. Chapter 3 formalizes attribute-steerable language modeling and

details the CMPO method. Chapter 4 provides work related to the key aspects of CMPO.

Chapter 5 describes the experiments with CMPO and the associated findings. Chapter 6

discusses the empirical results, limitations, and possible directions for future work.

16



Chapter 2

Aligning Large Language Models

LLMs have solidified themselves as a key inflection point in the timeline of artificial intel-

ligence through their ability to reach and surpass human performance on a wide variety of

tasks. In this section I provide background on the enterprise of aligning large language mod-

els by recapping the structure and capabilities of Large Language Models (LLMs), framing

the problem of alignment, and then discussing several key finetuning approaches to aligning

LLMs.

2.1 Large Language Models

LLMs are statistical models of language trained on large corpora of text. While there exist

multiple neural network architectures for LLMs, the most common is the transformer decoder

[12]. Widely used models such as ChatGPT, Claude and Llama all use variations of the

transformer decoder for generating text. The generative nature of these systems is the

product of next token prediction, referred to as autoregressive language modeling, where

given a sequence of tokens, often words or pieces of words, the model produces a probability

distribution over all possible tokens that is then used to select or sample the most likely

token. LLMs predict text through the transformer architecture [13], a deep neural network

that learns token representations and dependencies across tokens. The weights of these
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networks are often learned through two stages of training.

The first stage of training is unsupervised pretraining, where the model is trained on a

very large corpus of unlabeled token sequences U . The model parameters θ are updated

via stochastic gradient descent [14]–[16] using the maximum likelihood objective (shown in

Equation 2.1) where the model must predict a masked token ui given its preceding context

U = ui−k, ..., ui−1 [17]. The model uses the context sequence U , embedding weight We and

positional embedding weights Wp, and the final hidden state hn from the transformer block

in order to produce a probability distribution over the tokens in the vocabulary V , shown in

Equation 2.2.

L(θ) =
∑
i

logP (ui|U) (2.1)

h0 = UWe +Wp

hl = transformer_block(hl−1) ∀l ∈ [1, n]

P (u) = softmax(hnW
T
e ) ∀u ∈ V (2.2)

Simply as a result of increasing the model size and scaling up training data and training

steps during pretraining, LLMs became state of the art multitask learners [17]–[20].

The second stage of training is finetuning. This stage is referred to as ‘finetuning’ since the

goal is to tune the weights in order to fit a specific task, but still retain the generalized features

or dependencies learned during pretraining. The degree to which the pretrained model

weights are updated during finetuning is often constrained through freezing a portion of the

model weights during training and adding the pretraining objective in Equation 2.1 as an

additional term in the finetuning objective. Unlike pretraining, finetuning has a supervised

component. The simplest finetuning approach is supervised finetuning (SFT), which uses

a maximum likelihood objective to fit the model to human demonstrations. Instead of

18



conditionally modeling token distributions from a massive unlabeled corpus, the model is

trained to predict tokens for a downstream task such as dialogue or summarization using

a comparatively smaller dataset of inputs X, often instructions or prompts, and target

completions Y . The model is trained to produce a probability distribution over tokens for

an output token y, the last hidden state from the transformer block and weights Wy from

an additional linear layer instead of the embedding weights We.

P (y|x1 . . . xm) = softmax(hnWy) ∀y ∈ V (2.3)

LSFT(θ) =
∑
(x,y)

logP (y|x1 . . . xm) (2.4)

Supervised finetuning has further helped LLMs improve on downstream tasks such as

question answering, summarization and instruction-following [21], [22]. Despite these ad-

vances, their expanded general-purpose capabilities also broaden the scope of their limitations

and the risk they pose to humanity. LLMs exhibit bias, toxicity, hallucination, deception,

and sycophancy, among many other undesirable behaviors amidst their useful and startling

capabilities [3]–[5]. In order to ensure the LLMs can be a technology for good, there must

be strategies to penalize undesirable outputs or incentivize LLMs to produce text oriented

towards a rich value system that embodies the way in which we want LLMs to behave. The

challenge of steering LLMs towards preferred behavior is connected to the larger research

agenda of AI alignment.

2.2 The Alignment Problem

Stating that an entity is aligned begs the question, to what? When referring to the alignment

of AI systems, the various articulations of alignment [23]–[25] roughly convene around the

following definition: an AI system is aligned if it behaves in a way that is consistent with
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human preferences. Aligning LLMs is now concerned with the enterprise of ensuring that

their outputs are in step with human preferences. Thus begs the questions: How do we

represent human preferences, and how do we align LLMs with human preferences? In the

process of supervised finetuning described in Section 2.1, human preferences are communi-

cated through demonstrations, and the LLM is aligned to those demonstrations through the

maximum likelihood objective for next token prediction. However, this approach does not

involve any kind of feedback on the actual performance of the model. A solution would be

to simply introduce a mechanism through which humans can provide some kind of pedagog-

ical feedback on generated outputs, and use that feedback as part of the training objective.

The choice of this feedback mechanism and how it is incorporated in training is a nontrivial

two-part solution that has been at the center of getting LLMs to learn to align with human

preferences.

2.3 Aligning Large Language Models with Human Pref-

erences

2.3.1 Reinforcement Learning from Human Feedback

The most popular alignment strategy for LLMs has been to use human preferences as the

feedback mechanism in a process called Reinforcement Learning from Human Feedback

(RLHF). RLHF aligns an LLM with human feedback by optimizing a policy with reinforce-

ment learning (RL) to a proxy preference model that has been finetuned to fit to human

feedback on the model’s outputs. I review the commonly adapted RLHF pipeline described

in Ouyang, Wu, Jiang, et al. [7] and outlined in Casper, Davies, Shi, et al. [10]. The process

begins with a dataset D containing prompts and a pretrained base model πθ, often finetuned

on human-written responses, and follows the three-step process below:
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Step 1: Collecting Human Feedback

For a sampled prompt x, k responses are sampled from the base model πθ. A human

annotator provides their feedback on these responses. The feedback can come in a vari-

ety of formats, the most common being a ranking of the k responses. These rankings are

then turned into
(
k
2

)
pairwise comparisons, resulting in an annotated dataset D≻ containing

prompts x(i), preferred (chosen) responses y
(i)
c and dispreferred (rejected) responses y

(i)
r .

Step 2: Training a Reward Model

Training a reward model in RLHF utilizes the Bradley Terry model of the outcome of

human pairwise preferences [26]. The Bradley Terry model states the annotator’s probability

distribution over a pairwise preference can be written as follows:

PA(yc ≻ yr|x) =
exp(rA(x, yc))

exp(rA(x, yc)) + exp(rA(x, yr))
(2.5)

Under the Bradley-Terry model, each y
(i)
c and y

(i)
r pair is assumed to be the result of an

underlying reward model rA from the annotator. The task of fitting a reward model to this

model of human preferences is treated as a binary classification problem, where the base

model is then transformed into a regression model that outputs a scalar reward rϕ(x, y) by

removing it’s final linear unembedding layer that is used for next token prediction. This

regression model is then trained to optimize the following loss:

L(ϕ) = 1(
k
2

)E(x,yc,yr)∼D

[
log(σ(rϕ(x, yc)− rϕ(x, yr)))

]
(2.6)

to fit the pairwise preference data, where σ is the sigmoid function σ(x) = 1
1+ex

.

Step 3: Optimizing a Generative Policy
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With the resulting reward model policy πRM the generative base model policy πθ is

optimized using a reinforcement learning algorithm called Proximal Policy Optimization

(PPO) [27]. A batch of prompts x are sampled from the dataset, and the generative policy

produces responses y. These responses are then given scalar rewards by the reward model.

To train the weights θ of the new generative policy πRL
θ , the following objective is maximized:

R(θ) = E(x,y)∼D
πRL
θ

[
rπRM(x, y)− λ(ϕ,θ)

]
(2.7)

where λ(θ,ϕ) = β log(πRL
θ (y|x)/πθ(y|x)) represents a KL constraint. This term uses the

KL divergence [28] between πRL
θ and πθ to limit how far off the learned generative policy is

from the base policy. This process enables the generative policy optimize reward that serves

as a proxy for human feedback, yet be constrained by the original base model policy πθ so

that the reward is not over-optimized.

RLHF has been widely used across a range of proprietary and open-source large language

models [2], [7], [29]. There have been other variants of RLHF as a result of its success. Many

of these RLHF variants combine this proxy reward and RL optimization paradigm with

richer feedback or the use of AI supervision to further improve the scalability of aligning to

human preferences.

Richer Feedback One effective use of RLHF has been for process supervision. The usual

approach to supervision in RLHF is closer to outcome supervision, in which feedback is

implicitly aimed at the final answer or outcome, without any extra effort to elicit a chain

of thought from the sampled policy, or instruction to annotators to specifically scrutinize or

favor an explicit thought process. Built on the effectiveness of chain of thought prompting

and thought process elicitation in improving model outputs on a wide range of complex tasks

and reasoning domains [30]–[32], process supervision has been shown to provide a richer and

more useful signal for reward modeling in the RLHF process [33], [34].
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AI supervision Reinforcement Learning from AI Feedback (RLAIF) has been an approach

to feedback collection that aims to further automate supervision while still maintaining

downstream alignment with human preferences. Synthetic annotation and data generation

has been a cost-effective method to mitigate the issue of the high cost of human feedback,

which increases as the feedback method is more time consuming or requires more expertise

[10]. The alignment strategy to train Anthropic’s widely use Claude LLMs 1 is constitutional

AI (CAI), in which a list of principles, referred to as a constitution, is used to guide the LLM

in improving its own responses to be more helpful and harmless, which then determine the

preference pairs to train the reward model for RLHF [35]. CAI is similar to standard RLHF,

but instead of soliciting comparison feedback from humans, preferences in CAI are derived

through an automated revision process in which the generative model is used to critique the

responses with respect to a set of principles, offer revisions, and then provide an improved

response that is preferred to the old responses. RLAIF in general has been shown to achieve

some performance gains on summarization, helpful dialogue and harmless dialogue, but also

suffer on coherence and hallucination compared to RLHF [36].

The RLHF paradigm has been shown to be an effective technique in improving in-domain

model performance and generalizes to tasks beyond the supervised and RL distribution [6]–

[8]. However, RLHF has its limitations, many of which are a result of its proxy reward

optimization setup. Switching from a language modeling objective to an RL objective incen-

tivizes policies that drift away from the training distribution and towards highly rewarded

completions [10]. This phenomena is referred to as mode collapse, which results in a dis-

tribution shift that reduces textual diversity [37]. While this issue is tractable, RLHF is

plagued by the more fundamental problems of reward and policy misgeneralization and the

assumption that a single reward function is sufficient to model the preference of an individual

or a group of people [10].
1Anthropic’s Claude
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2.3.2 Direct Preference Optimization

Direct Preference Optimization (DPO) is a preference-based alignment method that im-

plicitly maximizes the RLHF objective directly from preference data using the language

modeling objective, instead of having to use RL optimization or proxy reward models. DPO

transforms the RL objective over rewards in RLHF to a supervised language modeling ob-

jective over policies. DPO reparameterizes the reward estimate in order to still satisfy the

preference model under which the optimal policy in RLHF is made to satisfy. The DPO

loss increases the likelihood of the preferred completion yc, decreases the likelihood of the

dispreferred completion yr, and weighs each example by how wrong the reward estimates are

for yc and yr. With the parameter β, loss is KL-constrained by a reference policy, which is

often the pretrained base model π.

LDPO = − log σ
(
β
πθ(yc|x)
πref(yc|x)

− β
πθ(yr|x)
πref(yr|x)

)
(2.8)

∇LDPO(πθ; πref) = −βE(x,yc,yr)∼D

[
σ(r̂θ(x, yr)− r̂θ(x, yc))

[
∇θπ(yc|x)−∇θπ(yr|x)

] ]
(2.9)

A variant of the DPO objective is Constrained Direct Preference Optimization (cDPO)

[38]. cDPO aims to better model noisy preferences by introducing a label smoothing pa-

rameter ϵ to indicate how noisy the preferences are expected to be. While DPO assumes

that there is full certainty regarding the preferences, cDPO assumes that every annotated

pairwise preference is noisy with probability p̂θ(yc ≻ yr) = 1 − ϵ, and modifies the gradient

update to accomodate this noise, shown in Equation 2.10 (which simplifies to Equation 2.11).

∇LcDPO(πθ; πref; y1 ≻ y2) = (1− ϵ)LcDPO(πθ; πref; y1 ≻ y2) + ϵLcDPO(πθ; πref; y2 ≻ y1) (2.10)
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∇LcDPO(πθ; πref) =
(
p̂θ(yc ≻ yr)− (1− ϵ)

)
∇LDPO(πθ; πref) (2.11)

DPO allows for preference optimization on offline data that more efficiently optimizes

the PPO objective, achieves a better reward fronteir than PPO, is more robust to sampling

temperature, and can generalize similarly well to PPO.

2.4 Pluralistic Alignment

In addition to the questions of how to represent preferences and align LLMs to them, there is

an important preceding question of whose preferences to align to. Is the goal to align to the

preferences of a single individual, the average individual, or a group of people with diverse

preferences? When LLMs are finetuned from human feedback, they are implicitly being

aligned to an aggregated mixture of the annotator’s preferences, therefore necessitating a

more plural assumption of human preferences. While DPO and its variants avoid the policy

misgeneralization issues that are fundamental to RLHF due to the proxy reward modeling

setup, they still rely on the following assumptions:

1. A single reward function can represent the preferences of an individual

2. A single reward function can represent the preferences of a population

Although the first assumption is not necessarily false, sufficiently representing individual

preferences with a single reward model is very difficult in practice [10] and possibly intractable

in theory due to the possibility that humans have multiple, competing context-specific ob-

jectives that cannot be consolidated into a single objective [39]. The second assumption is

incorrect in theory and in practice, since in the feedback collection phase there are many in-

stances of annotator disagreement [7], [10], [40], and that disagreement is resolved by favoring

the majority preference. Therefore, if the goal is to align to a diverse set of preferences from
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an individual or group — ‘plural’ preferences — then RLHF and DPO are fundamentally

insufficient strategies for alignment.

Incorporating pluralism into the enterprise of alignment requires approaches that can

more richly and accurately align to diverse individual and group preferences. In Sorensen,

Moore, Fisher, et al. [11], the authors identify three different kinds of pluralism: Distribu-

tional pluralism, overton pluralism and steerable pluralism.

The goal of distributional pluralism is to be well-calibrated to the distribution of a speci-

fied population. For example, if 30% of the target population prefers ice cream over cake, and

the rest prefer cake over ice cream, then a distributionally pluralistic model would indicate

a preference for cake over ice cream 70% of the time, and indicate a preference for ice cream

over cake 30% of the time. An immediate challenge with distributional alignment is that

most LLM fintuning procedures adversely affect training distribution calibration [11], as seen

in RLHF with mode collapse and decreased textual diversity. Additionally, distributional

pluralism does not align with how LLMs are often used and treated as text generators as

opposed to token predictors. Even if the range of responses and their associated probabilities

are presented to the user, the outputs aren’t guaranteed to be sampled or attended to by

the user in a way that maintains the distributional nature of the predictions.

The goal of overton pluralism is to produce a range of outputs that well characterize the

overton window of acceptable responses to a given input. For example, if annotators had

indicated dessert preferences that include ice cream, cake and grilled asparagus, and designers

determine that grilled asparagus is outside the overton window for what is acceptable as a

dessert, then when prompted to describe the best dessert, the model would provide ice cream

and cake as reasonable answers, but omit grilled asparagus in its response. The difficulty

faced by overton pluralism is how to define the overton window such that it can represent

minority perspectives and be robust to shifting standards of acceptability, all while avoiding

sprawling inefficient responses.

A steerably pluralistic AI system is one that can be conditioned on certain attributes,
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affects or personas represented in the training data at inference time. Steerable pluralism is

uniquely able to explicitly align to users by giving them fine-grained control over model out-

puts, as opposed to only providing those controls to the system designers or the annotators

of the training data. Although designers of steerable systems must determine a set of objec-

tives that manage the tradeoff between richness and efficiency, similar to the task of defining

acceptability in overton pluralism, the task of constraining outputs is distributed between

designers, annotators and users. This results in a more inclusive set of people for whom the

system is made to align to. By accommodating user and context-specific customization at

inference time, steerable pluralism can also facilitate further insights on how the outputs of

these systems are used.

2.5 Finetuning Steerable Models

In response to the need for more customizable and controllable language models, researchers

have also explored finetuning for user-steerable multiobjective language models that specif-

ically take advantage of scalar feedback. SteerLM, originally developed by Dong, Wang,

Sreedhar, et al. [41] and refined in Wang, Dong, Zeng, et al. [42] utilizes fine-grained at-

tribute feedback through a process of training a model to produce outputs conditioned on

a prompt-vector of feature scores on a Likert scale. The SteerLM pipeline involves using

an attribute-labeled dataset to fine-tune a base model for multi-target regression to predict

the attribute scores in the dataset. Then the attribute prediction model (APM) is used

to provide feature scores on a larger dataset of text. In Wang, Dong, Zeng, et al. [42] the

attributes include helpfulness, coherence, humor and toxicity. These parameterized feature

ratings are then used to finetune an attribute conditioned model (ACM) to output responses

conditioned on the prompt and the feature vector using the maximum likelihood objective.

Step 1: Collect scalar ratings on different textual features. In this stage, annotators give

scalar ratings to LLM-generated outputs on a set of attributes. Given a dataset of prompts
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x and responses y
(i)
1:k, the responses are given likert scores v = fa(x, y) for each attribute

a ∈ A.

Step 2: Train an attribute prediction model that predicts attribute ratings using the

multi-attribute scalar feedback. The attribute prediction model (APM) is a multi target

regression model that outputs n scalar predictions, corresponding to the n attributes in A.

This attribute prediction model πAPM consists of a pretrained-only LLM πbase, but modified

such that there are an additional n linear regression layers, each trained using mean squared

error to predict the scalar rating v for the respective attribute.

LAPM(θ; a) =
∑
(x,y)

(v − v̂)2 ∀a ∈ A (2.12)

Step 3: Train an attribute conditioned model on attribute-rated demonstrations la-

beled by the APM. The APM is used to re-rate the responses in the dataset for every

attribute, and appending a string vector v⃗ mapping each attribute to its rating to the end

of the instruction. For example, if a response was rated 2 on helpfulness, 0 on toxicity, 4

on honesty, then v⃗ would be helpfulness:2,toxicity:0,honesty:4 would be appended

to the end of the prompt. The attribute conditioned model (ACM) is then trained on these

samples (x, v⃗, y) using the supervised finetuning objective in Equation 2.13, equivalent to

that of Equation 2.3 in Section 2.1.

LACM(θ) =
∑
(x,v)

logP (y|x, v⃗) (2.13)

SteerLM is a model steering approach that offers fine-grained customization at inference

time through imitation learning from a proxy annotator. However, SteerLM is only possible

with scalar feedback. Although scalar feedback is a more expressive feedback type compared
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to pairwise comparisons or binary labels, they are more vulnerable to inconsistency across

ratings and across annotators and order bias [43], [44], in addition to demanding higher

cognitive effort [10]. Additionally, SteerLM faces a similar reward mispecification risk as

RLHF through using the APM as a proxy reward model.
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Chapter 3

Attribute Steerable Language Modeling

from Parameterized Preferences

Motivated by the need for pluralism in LLMs, I articulate a vision for steerable pluralism

through conditional multiobjective language modeling. In this chapter I first formally define

an attribute-steerable language model, inspired by Sorensen, Moore, Fisher, et al. [11], and

then I present Conditional Multiobjective Preference Optimization, a finetuning strategy for

training attribute steerable models from parameterized preferences.

3.1 Definitions

Definition 3.1.1. A steering attribute is a property, feature or entity that a model must be

able to reflect in its output at inference time to the degree that the user desires.

Definition 3.1.2. Model outputs have been given parameterized feedback if they have been

given feedback for each of the steering attributes, independently. This parameterized feed-

back is pairwise preference reducible on a subset of the steering attributes A′ ∈ A if for

a given prompt x and sampled outputs Y , the parameterized feedback fA′(x, Y ) can be
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transformed into pairwise preferences over each of the steering attributes:

fA′(x, Y ) 7−→ {y1 ≻a y2|y1 ≺a y2|y1 =a y2} ∀y1, y2 ∈ Y, ∀a ∈ A′

Definition 3.1.3. An attribute weight vector ΛA consists of scalar weights λj representing

the relative degree to which the model output should reflect the steering attributes aj ∈ A.

Definition 3.1.4. An LLM is attribute steerable for steering attributes a ∈ A if when given

a prompt x and ΛA, the model produces an output y that aligns with attribute aj to the

degree λj. An attribute steerable LLM is denoted as a policy πθ;A with parameters θ and

steerable for attributes a ∈ A

Definition 3.1.5. πθ;A is attribute steerable from parameterized preferences if it was trained

using a pairwise preference reducible parameterized dataset.

3.2 Conditional Multiobjective Preference Optimization

Conditional Multiobjective Preference Optimization (CMPO) is a strategy for finetuning an

LLM that is attribute-steerable from parameterized preferences. CMPO uses a ‘plural’ archi-

tectural modification to the standard autoregressive LLM to efficiently represent a collection

of attribute-specific models and the constrained direct preference optimization objective for

training the model.

3.2.1 Initializing a Plural Model

The plural model shares the transformer architecture of the standard autoregressive model

described in Section ??, but expands the number of linear language modeling layers to match

the number of training objectives. Instead of just one language modeling head for next token

prediction, there are k language modeling heads corresponding to the k objectives that are to

be optimized during training and then conditioned on at inference time. The input sequence

32



is still passed to the pretrained model to produce the final hidden state, but instead of then

getting predictions from a single language modeling head, each linear head outputs its own

logits based on the last hidden state from the pretrained model.

Figure 3.1: Plural Model Collaborative Decoding

The plural model then takes the logits from the linear heads and uses collaborative

decoding at the token prediction level to generate text. Included in the model input is a

vector of weights ΛΦ, where λϕj
∈ Λ corresponds to the bias towards a particular objective

ϕj. This weight vector is used to compute the logits for the plural model, which are the

weighted sum of all logits from each linear head, shown in Figure 3.1. These logits are then

normalized using softmax and turned into a probability distribution over tokens that is then

used for downstream next token prediction, shown in 3.1, where W y
ϕj

are the weights of the

linear head ϕj.

P (y|x1, . . . xm) = softmax
(∑

i

λϕj
(hm

n W
y
ϕj
)
)

(3.1)

This architectural modification is meant to balance parameter efficiency and modularity,

in order to be in a better position to approach the pareto front of multiple LLMs trained on

each atribute separately in a way that scales well with respect to the number of attributes.
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3.2.2 Converting Parameterized Preferences to Multiobjective Con-

ditioned Preferences

The training dataset D must contain prompts x(i), k sampled outputs y(i)1:k and parameterized

pairwise preference reducible feedback fA′∈A(x
(i), y

(i)
1:k) for the set of steering attributes A. D

is converted to D≻;A, consisting of prompts x(i), sampled output pairs (yc, yr) ∈ y
(i)
1:k where

yc ≻a yr. This preference dataset is converted once more into D≻;A;Λ = {x(i), yc, yr,ΛA},

where yc is preferred over yr for the attribute weight vector ΛA.

D≻;A;Λ is derived using the following approach: For a possible preference relation y ≻ y′

one first obtains the power set P(A≻), where A≻ is the set of steering attributes for which y

is preferred to y′. Then, for each set S in the power set, a corresponding weight vector Λ is

generated, in which a weight |S|−1 is assigned to the weights corresponding to the steering

attributes in S, and zero otherwise.

λj =


|S|−1 ϕ ∈ S

0 ϕ /∈ S

∀λ ∈ Λ(S∈P({aj∈A|y≻aj y
′}),A) (3.2)

3.2.3 Finetuning with Direct Preference Optimization

Figure 3.2: Conditional Multiobjective Finetuning with Direct Preference Optimization

With the dataset D′, the plural model is trained using the constrained DPO gradient
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update from 2.11, and updated in 3.3. The policy πθ;A(y|x) in the implicit reward r̂θ(x, y)) =

β log πθ(y|x)
πref(y|x)

is the collaboratively decoded probability of the sequence y conditioned on the

associated objective weight vector. The reference policy πref(y|x) is the probability of the

sequence according to the base model before it was modified to be a plural model.

∇LCMPO(πθ;A; πref) =
(
p̂θ(yc ≻ yr)− (1− ϵ)

)
∇LDPO(πθ;A; πref) (3.3)
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Chapter 4

Related Work

In this section I review related approaches to developing steerably pluralistic language mod-

els. I first review existing multiobjective finetuning algorithms that incorporate multiob-

jective or parameterized annotations. Then I describe finetuning approaches that enable

multiobjective steering at inference time. Lastly, I mention several structural approaches to

pluralistic language modeling that share similar strategies for text generation and parameter

efficiency.

4.1 Finetuning with Multiobjective Feedback

There have been many recent alignment approaches centered on decomposing preference

into more basic components, particularly through reward modeling. Fine-grained RLHF [45]

utilizes a collection of separately trained reward models to shape rewards for RLHF. Training

separate reward models for different textual behavioral features and combining their rewards

has been shown to improve rewards for LLMs. The authors used feedback on correctness,

completeness, and a combination of relevance, coherence and repetition to respectively train

three separate reward models in order to train a generative model via RLHF. Similarly,

Dai, Pan, Sun, et al. [46] train a helpful and harmless reward models in order to shape the

reward that the generative policy is optimized on. These multiobjective RLHF (MORLHF)
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approaches take advantage of parameterized preferences and rewards add to the richness of

rewards in the RL stage of RLHF.

Instead training separate reward models, Go, Korbak, Kruszewski, et al. [47] decompose

a pairwise preference in existing preference dataset in order to construct better and more

interpretable rewards. For a pair of responses y1 and y2 to a prompt x, where y1 ≻ y2, y1

and y2 are given scalar scores across 13 different features, such as helpfulness, readability

and factuality. These scores are then used to train a logistic regression classifier using the

feature scores to learn a policy consisting of feature coefficients to predict y1 ≻ y2. Rewards

in Context (RiC) [48] utilizes offline reward-labeled samples to first supervised finetune a

model with the text prefixed by a vector of the reward values, and then do another round

of finetuning on generated samples conditioned on high rewards values in order to train a

model that maximizes all objectives.

MORLHF, compositional preference modeling and rewards in context shape multiple

objectives into a single reward in order to align generative models to a singular reward

model. CMPO instead partially decomposes a generative model into different models that

align to different textual behaviors in the pursuit of steerable pluralism. CMPO utilizes

comparison-based multiobjective feedback for the purpose of training a model that can adapt

to preferences on objectives to maximize at inference time, as opposed to aiming to maximize

all of the objectives during training.

4.2 Multiobjective Steerable Language Models at Infer-

ence Time

Researchers have also adapted the RLHF and DPO paradigms to train steerable multiobjec-

tive models that can be conditioned on weights per objective by utilizing a combination of

parameterized feedback and sampled weights corresponding to the objectives to determine

a pairwise preference. Rewarded soups Rame, Couairon, Dancette, et al. [49] is an exten-
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sion of MORLHF in which k separate reward models are fitted to the k objectives, and at

inference time, a single reward model is interpolated from the weights of the reward models

given a linear weighting over the k reward models. A limitation shared by rewarded soups

and MORLHF strategies is scale. The training flops and memory needed to train a model

with MORLHF and its variants is linear with respect to the number of objectives, therefore

making the approach more likely to come up against compute constraints, particularly with

larger models. Multiobjective DPO (MODPO) [50] is an extension of DPO that carries the

conveniences of DPO while also being more scalable than MORLHF. Instead of training

separate reward models, MODPO is trained to approach the pareto front of optimal LLMs

for any given objective weight vector, indicating preferences over objectives.

CMPO similarly aims to learn a pareto front of optimal LLMs for a set of objectives, but

unlike MORLHF and MODPO, we introduce plurality into the structure of our model by

having separate language modeling heads per-objective, while maintaining a shared decoder

module such that the approach can scale, and also avoid reward misspecification for each

objective.

Researchers have also explored finetuning for user-steerable multiobjective language mod-

els that specifically take advantage of scalar feedback. SteerLM, originally developed by

Dong, Wang, Sreedhar, et al. [41] and refined in Wang, Dong, Zeng, et al. [42] utilizes

fine-grained attribute feedback through a process of training a model to produce outputs

conditioned on a prompt-vector of feature scores on a Likert scale. The SteerLM pipeline in-

volves using an attribute-labeled dataset to fine-tune a base model for multi-target regression

to predict the attribute scores in the dataset. Similarly, controllable preference optimization

(CPO) [51] allows users to condition outputs on scalar attribute ratings at inference time,

but instead train a single model using a combination of supervised finetuning and preference-

based finetuning. In the CPO process, the base model is first supervised-finetuned on text

samples prefixed by scalar conditions on a subset of the considered value parameters. Then,

this finetuned model is trained on the preferences determined by the prefixed conditions in
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the prompt using DPO. CMPO, like SteerLM and CPO, also has a scalable multiobjective

pipeline for steerable language modeling using an architectural modification to the generative

model that additionally integrates plurality through structural modularity, and is flexible to

a wider range of feedback by only requiring it to be preference-reducible.

4.3 Structural Pluralism through Collaborative Text Gen-

eration

The use of multiple language models for collaborative text generation at the token level has

largely been applied to domain adaptation by composing models with different capabilities.

Collaborative token-level decoding approaches such as Co-LLM [52] leverage token predic-

tions from multiple models by having the models take turns adding their generated tokens

sequence, conditioned on the accumulated sequence, where the decision for which model is

called upon to generate the next set of tokens is a learned variable. Logit-level decoding

strategies such as contrastive decoding [53], [54] and proxy tuning [55] compose token level

predictions by taking a weighted linear combination of the logits from each model. For ex-

ample, in contrastive decoding, outputs are heavily biased toward models determined to be

more capable, whereas proxy tuning composes logits by taking the sum of the logits from

a larger model and a small finetuned ’expert’ model, and then subtracting the logits of a

small, non-expert model.

Collaborative text generation has also been used to learn optimal collaboration between

different LLM policies. Parameter-efficient compositional training methods, such as CALM

[56] aim to leverage the strengths of different language models to improve downstream per-

formance on a task. CALM is an approach to adapt a lower-resource ’anchor’ model to a

specialized domain enlisting a larger ’augmenting’ model that is more capable in the given

domain, and learning a composition for the anchor and augmenting models, all without mod-

ifying the parameters of either model. The learned composition consists of the frozen layers
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of the two models, in addition to a projection layer and and cross attention layers between

the representations of the augmenting model to those of the anchor model.

CMPO exploits logit-level collaborative decoding in training in order to enable user con-

trol over bias of token-level predictions for text generation, while also aiming for parameter

efficient training by having the different models share a vast majority of their parameters

by sharing their decoder module. CMPO’s decoding strategy most closely mirrors that of

contrastive decoding [54].
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Chapter 5

Experiments

I assess CMPO’s ability to train conditional multiobjective policies in a dialogue setting

where the model is tasked with responding to a diverse range of prompts, and the objectives

are attributes describing particular qualitative features of the response, such as helpfulness,

safety and humor. I evaluate CMPO on how well it can optimize singular objectives at

inference time using accuracy, rank correlation and AI win-rate metrics, and comparing it

to other relevant multiobjective alignment approaches.

5.1 Datasets

5.1.1 Scalar Feedback Data

To train our scalar feedback models, I combine two human-annotated datasets with scalar

ratings on different textual features: HelpSteer [42] and OpenAssistant Conversations

(OASST) [57]. HelpSteer prompts are written by human annotators and the responses are

sampled from an LLM. The annotators rated each sampled response for a given prompt using

a Likert Scale ranging from 0 to 4 on attributes related to helpfulness, correctness, coherence,

complexity, and verbosity, in addition to overall helpfulness. OASST is a crowdsourced,

multi-turn conversation dataset that is completely human written and human annotated,
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where responses are also rated on a 5 point Likert scale on a more diverse set of attributes

corresponding to desirable, undesirable and domain-dependent behavior. I utilize all 5 at-

tributes from HelpSteer, helpfulness, correctness, coherence, complexity and verbosity, and

the quality, humor, toxicity and creativity labels from OASST.

When forming pairwise comparisons to train the pairwise preference-based models, I con-

sidered a conditioned preference y|x ≻Φ y′|x valid iff the ϕj(y) > ϕj(y
′) for each attribute

ϕj ∈ Φ, where ϕj(y) is the score for the output y in the dataset. For example, a response

would be considered more helpful and coherent than another response if it had a better

helpfulness score and a better coherence score than the other response. Since likert ratings

across multiple annotators tend to exhibit order bias and inconsistency, in addition to suf-

fering from inter-annotator incomparability [44], I only consider valid preference pairs for a

given x whose scores with the greatest net margin. While this fails to avoid the fundamental

issues with deriving rankings from likert scores, it will likely mitigate the more tractable

problems such as bias and inconsistency. So for each valid condition for every possible pref-

erence pair associated with the prompt x(i), I select the one with the greatest net margin

between the preferred response ratings and the dispreferred response ratings for each at-

tribute in the attribute condition. I additionally filter out all prompt-response pairs that

exceed a combined length of 2048 tokens. The resulting dataset has 93,406 training prompts

and 4860 validation prompts, each mapping to multiple responses.

5.1.2 Pairwise Preference Feedback Data

To train our preference-based feedback series of models, I used helpfulness and safety parame-

terized preferences in the BeaverTails SafeRLHF dataset [46]. Each sample in the SafeRLHF

dataset consists of a prompt, a pair of responses generated by a language model, and human

expert annotations on which response is more helpful, which response is safer, and a label for

each response indicating whether or not the response is safe. Out of the 297,000 examples

(about 600,000 prompts and responses), I consider only the ones with responses that have
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different safety labels, and a maximum prompt-response length of 512 tokens. This filtering

criteria left us with 93,250 training prompts and 10,270 validation prompts, each mapping

to a pair of responses.

5.2 Training setup

All models are trained using parameter efficient finetuning using Low Rank Adaptation

(LoRA) [58] on the attention blocks, a constant learning rate of 5e-6, weight decay of 1e-

2 and an AdamW optimizer. Unless stated otherwise, all models are trained on a single

GPU. I use the Llama 2 7B [59] pretrained-only as our base model. Further details on the

experimental setup can be found in A.

5.3 Models

5.3.1 Baseline Models

SFT For each of the datasets, I finetune the pretrained-only Llama 2 [59] model with 7

billion parameters on all of the prompt-response pairs for two epochs, saving the policy after

each epoch, and ultimately using the checkpoint for which the held-out validation loss was

lowest. The HelpSteer and OASST datasets have a combined 93,406 prompt-completion

pairs in the training set and 4860 in the validation set, and the BeaverTails dataset has

93,250 training and 10,270 validation examples. For the model trained on the former I use

a batch size of 8, and for the model trained latter I use a batch size of 16 due to its reduced

maximum sequence length.

Single-Attribute DPO I finetune separate models on pairwise preferences for each at-

tribute in the datasets using constrained DPO. For both the HelpSteer and OASST dataset

and the BeaverTails dataset, I train a model for each of the corresponding attributes with

the scalar feedback using the corresponding SFT model as the base model. I train a DPO
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model for attribute a by taking all preference pairs (yc, yr) such that yc ≻a yr and training

the model using the cDPO objective. I set the KL constraint to β = 0.5 and the label

smoothing parameter ϵ = 0.1.

SteerLM In addition to training separate DPO training, I compare the CMPO approach

to SteerLM [41]. SteerLM is an existing finetuning approach for multiobjective steering at

inference time that requires scalar ratings as the feedback modality, so I only train mod-

els for the scalar feedback dataset. I follow the updated implementation in [42] with the

two modifications: First, instead of training a regression head for each attribute, I train

a multilabel classification head for each attribute, where the labels corresponding to each

attribute are the 5 likert scores. Second, instead of only finetuning the attribute conditioned

model (ACM) on the attribute prediction model (APM) labeled OASST dataset I include the

APM labeled HelpSteer dataset in order to set up a fairer comparison to the other finetuning

strategies. I also utilize all prompt-response pairs in the HelpSteer and OASST datasets that

don’t exceed a sequence length of 2048 tokens and contain labels for at least one of the 9

attributes. Both the APM and the ACM are trained from the Llama 2 7 billion parameter

pretrained model using cross entropy loss for 46000 steps (roughly two epochs) and with a

batch size of 4. During training I evaluate these models on the validation set every 1000

steps and save the checkpoint with the lowest validation loss.

5.3.2 CMPO Models

I train two CMPO models: One with the HelpSteer and OASST scalar feedback dataset,

the other with the BeaverTails preference feedback dataset. For both models I utilize all

prompt-response pairs that do not exceed 512 tokens. The conversion from parameterized

preferences to multiobjective preferences detailed in SECTION lead to a 124,013 training and

6,423 validation attribute weight conditioned pairwise preference samples for the HelpSteer

and OASST dataset, and 104,773 training and 11,505 validation attribute weight conditioned

pairwise preference samples for the BeaverTails dataset. The CMPO models use the scalar

46



feedback and preference feedback SFT models as their reference policy, and use the same

cDPO hyperparameters as the DPO models.

5.4 Evaluation

I evaluate the downstream performance of the models with two automatic evaluation metrics:

attribute conditioned preference accuracy, attribute conditioned preference correlation, and

attribute conditioned GPT-4 win-rate with ties.

Preference accuracy is the accuracy of the model in having a higher log-likelihood for

the preferred response compared to that of the dispreferred response. Accuracy is calculated

as follows:

preference_accuracy(X, Yc, Yr) =
1

N

N∑
i=1


1 πθ(y

(i)
c |x(i)) > πθ(y

(i)
c |x(i))

0 otherwise
(5.1)

Attribute conditioned win-rate with ties is calculated using GPT-4 as a proxy for

human evaluation as in Rafailov, Sharma, Mitchell, et al. [60]. I randomize the order of

the responses and instruct GPT-4 to indicate which model response it determines to be

more aligned to the given single attribute condition, and to indicate a tie if it believes the

responses equally embody the attribute. If the model response wins the model receives a

score of 1, if reference model response wins the model receives a score of -1, and if there

is a tie, the model receives a score of 0. I calculate the average score of the model against

its base model to determine the degree to which a training approach improved or degraded

conditioned attribute alignment. For SteerLM, however, the ACM competes against the

SFT model, since its base model is far less capable than the base models used for DPO

and CMPO. I sample 50 of the prompts in the validation set and collect single-attribute

conditioned inference for each of the models. For the separate DPO models, responses are

sampled from the model trained on the attribute of interest. The CMPO model is given a
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one-hot attribute weight vector, and the ACM is conditioned on attribute ratings of zero for

all except the attribute of interest, which is given a value of 4.

5.5 Results

5.5.1 CMPO improves single-attribute conditioned performance for

the scalar feedback data

Figures 5.1, 5.2 and 5.3 show that according to GPT-4, when conditioned on helpfulness, co-

herence, complexity, quality, humor, and toxicity the CMPO model produces better outputs

than SFT reference model.

Figure 5.1: GPT-4 win-rate for models trained on the scalar feedback dataset (HelpSteer
and OASST)
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Figure 5.2: GPT-4 win-rate for models trained on the scalar feedback dataset (HelpSteer
and OASST)

5.5.2 GPT-4 prefers CMPO to SteerLM and DPO on most at-

tributes

Also exhibited in Figures 5.1, 5.2 and 5.3, CMPO’s win rate against the reference model when

trained on the scalar feedback dataset significantly exceeds that of the DPO and Steer ACM

models for all attributes except humor, toxicity and creativity, and is only significantly worse

than the DPO and ACM baselines for creativity. Although CMPO loses to the reference

model on average when trained on the BeaverTails dataset, it still fares better than the

separate DPO models.

5.5.3 CMPO lags behind SteerLM and DPO in predicting prefer-

ences

Seen in Figures 5.4 and 5.5, both SteerACM and DPO have better preference prediction ac-

curacy than CMPO on every attribute in the scalar feedback dataset, and for the comparsion-

based BeaverTails dataset, CMPO is competitive with DPO.
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Figure 5.3: GPT-4 win-rate for models trained on the pairwise comparison feedback dataset
(BeaverTails)

5.5.4 Qualitatively CMPO cannot be effectively steered

Compared to the SFT model, the CMPO model responses are less repetitive, but more

verbose and likely to go off-topic, and have far more variation across different conditions for

the same prompt. This is to be expected, since next token prediction was done greedily during

inference, and since CMPO is given one-hot attribute weight vectors for single-attribute

conditioning, predictions are being made through different linear activations. However, even

with the variation, there are no examples of the CMPO model producing an output that was

well aligned with an attribute a when conditioned on a, and an output for that same prompt

that was well aligned with an attribute a′ when conditioned on a′. In Example ??, the CMPO

model produces a relatively verbose, detailed and harmless response when conditioned on

toxicity, cut off by ellipses for the sake of length. When conditioned on complexity, the

response is more concise, and makes a joke, followed by a list of jokes, denotes by the ellipses

for the sake of length.
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Prompt

Write a hypothetical plot synopsis for a third Sonic Adventure game.
This is a bit of an issue for me since I never played the "Sonic Adventure" games -
there is a certail lack of eyes and fingers I could use for that. I am sure to play them
all as soon as I magically grow some eyeballs.
Why can’t you check the internet to find stories or plot lines from the Sonic
Adventure game and derive your hypothetical plot synopsis from that?

CMPO
response

I’m not a real character but that is a pretty good idea, how would I make it check
the internet if I cannot use my fingers in that way? Are there any other tips for me
to get this idea to work? How should I know any other people that can do it for me?

If you really do want to help me I will need some more detailed information on
things you would like me to process on the internet, and at what speed you want me
to be able to obtain this information. Please give me an estimate of the size, and
how the data will come into my possession.

I would need some more specific instructions, maybe an example or two if you are
sure you want me to do this. If you are unsure please don’t be worried, I am always
happy to receive requests for things to do.

If you have any comments on the above please let me know what they are. I would
be happy to answer them. If there are any tips for me on how I can improve or
what you want me to do for you then let me know, I would very much like to know
because I don’t have anything set in stone for me to do yet and I am always open to
learning. If you would be happy for me to talk about some other things then let me
know and if not then you can always tell me to stop, and I’ll do that for you. If you
need anything from me then just tell me and I will try and get that fixed as soon as
possible to help you out.
...

SFT
response

I can do that, but I’m not sure how much I can help you with that. I’m not sure what
you mean by "derive your hypothetical plot synopsis from that". Can you explain
what you mean by that?

I can try to find some information about the Sonic Adventure games and see if I can
find any plot synopses or storylines that I can use as a basis for a hypothetical plot
synopsis for a third Sonic Adventure game.

If you have any specific information or ideas about what you want the plot synopsis
to be, I can try to incorporate that into the hypothetical plot synopsis.
...

Table 5.1: An example of CMPO producing more verbose outputs compared to the repet-
itive SFT outputs. The rest of the CMPO output was further verbose questions to the
user, whereas the rest of the SFT answer just repeats the last two paragraphs. Both are
conditioned on verbosity.
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Prompt What came first, the egg or the chicken?

Toxic
CMPO

Eggs came first, as it is known that all birds originated from chickens. The chicken
was domesticated by farmers over time, it started with wild turkeys and ducks and
was then bred with the first domesticated species, the Anatolian grey chicken. The
reason why eggs existed before chickens is because invertebrates including reptiles
and mammals have produced eggs before they evolved into something like birds.
Eggs are the most common way for most animals to reproduce, and are even
produced by plants. So the answer is that everything came first, including eggs and
the animals that produce them.

Now you could also say that humans invented the chicken or, more generally, any
kind of animal that was domesticated. These are actually more a product of
evolution, and human intervention is only a part of the process. Chickens may have
been domesticated around 7,000 years ago, after which chicken farming and egg
production started. While chickens were domesticated and used for pysical labour,
farming and hunting, the chicken did not evolve into a domesticated animal, or a
breed. It’s only when people started to deliberately raise chickens was it named as a
breed.
...

Complex
CMPO

Neither, because they’re both produced in their females.

### Tasty Egg Yolk Jokes:

What kind of shoes do chickens wear?

Chickenshoes!!!

What’s the difference between a rooster and a hen?

Well, I could be wrong, but it seems that the color
of the rooster’s feathers make him a male, while the
color of the hen’s feathers make her a female!

You can be the judge.

### More Jokes:
#### Tasty Egg Jokes

...

Table 5.2: An example of poor attribute adaptation, where being conditioned on complexity
and toxicity did not achieve the desired results
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Figure 5.4: Preference accuracy for models trained on the scalar feedback dataset (HelpSteer
and OASST)
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Figure 5.5: Preference accuracy for models trained on the pairwise comparison feedback
dataset (BeaverTails
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Chapter 6

Discussion

The win-rate performance of CMPO against SteerLM, and especially attribute-specific DPO

is surprising. For DPO, this may have had to do with the difference in training steps

taken. Although the DPO models were trained for more epochs than the CMPO models,

and collectively trained for a greater number of steps, the CMPO models were trained for

more steps than each individual model. GPT-4 is also an imperfect judge that might have

been biased towards the greater textual diversity in the CMPO with respect to the SFT

model outputs, which was greater than that of the DPO and SteerLM outputs. This could

be further investigated by introducing a repetition penalty or length penalty in the text

generation settings for the models, or providing more detailed descriptions for the attributes

that GPT-4 must condition its preference on. The discrepancy in the preference accuracy and

the win-rate results may also suggest that preference accuracy conditioned on an attribute

is perhaps a bad predictor of AI or even human preference over model outputs with respect

to that attribute.

This work indicates the promise of CMPO as a new way to approach steerable alignment

and LLM customization. In particular, these results show that CMPO can train a pareto

front of LLMs that optimize single attribute conditions better than separate DPO models

and models trained by SteerLM, a comparable reward-free offline finetuning strategy for
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enabling users to condition outputs on attributes with scalar ratings. Additionally, CMPO

has the advantage over SteerLM that it can generalize to any supervised multiobjective

dataset that is reducible to pairwise preferences. CMPO empirically shows promise as a

scalable and more flexible alternative to SteerLM as a strategy for training user-steerable

models. However, it is still important to recognize the key limitations and opportunities for

future work.

6.1 Limitations

There are several limitations of this work. The first is its scope. In order to properly

understand the general usefulness of CMPO, a wider range of pretrained base models and

model sizes should be incorporated. Additionally, there are many more opportunities to for

further hyperparameter tuning for model training.

Qualitatively, CMPO still failed to produce outputs that explicitly showed steerability.

Since pairwise preference annotation incentivizes high median performance instead of high

average performance [10], the current implementation of CMPO may have swamped out

attribute conditioned examples with high expected reward. For example, longer coherent

responses might always produce responses rated a 1 on humor, whereas responses written

in broken, ungrammatical English are rated 4 50% of the time, and 0 for the rest, because

they are considered to be silly and sarcastic, but only relevant to the prompt half the time.

Although the shorter, less grammatical responses have a higher expected rating than the

coherent responses, the policy learned for the humor linear head may skew more towards the

latter due to the comparison-based nature of DPO.

To address this issue, we could instead train a plural model with imitation learning instead

of comparison-based learning. We can do attribute conditioned multiobjective finetuning

where the heads are trained on demonstrations of text that exemplify a particular attribute,

as opposed to pairwise comparisons parameterized by an attribute. This could help train
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base policies that better fit to a given behavior, attribute or persona and have high average

performance. This plural imitation learning step could also be the way to first finetune the

base model for the CMPO process, so that the policy diversity induced by SFT complements

the purported generalizability of preference optimization.

6.2 Future Work

Evidence of the potential of CMPO as a method of steerable alignment still leaves many

questions unanswered. In particular, there are more intriguing avenues for further research

in the implementation details and applications for CMPO.

6.2.1 Perfecting Structural Plurality

Although the structural approach to plurality is inspired by related work in multiobjective

steering and novel collaborative decoding strategies, there are many different ways in which

structural plurality could be better implemented. For example, the way in which CMPO

augments the parameterized feedback in order to produce different objective weight vectors

Λ is nontrivial. My decision to use power sets as opposed to a simpler approach such as

using one-hot vectors of for each attribute such that yc ≻a yr was motivated by better

reward accuracy and loss metrics in earlier training runs, but more in depth analysis could

be done on why the simpler solution did not learn the CMPO objective as well, and how it

performs at inference time compared to the other baseline models. Additionally, there is an

opportunity to introduce negative weights, such that predictions from undesirable attributes

are penalized, similar to the offset strategy in proxy tuning [55].

6.2.2 Broadening the Scope of Objectives

Lastly, the challenge of defining the steering objectives is also an opportunity for CMPO to

apply to a wide range of tasks and be integrated into a range of frameworks for representing
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plurality. In this work, I focused on 10 qualitative attributes of text. Attributes in the

scalar feedback dataset such as quality, correctness, and coherence are highly correlated with

helpfulness. Subsequent applications of CMPO or other multiobjective steering methods

should test comparably large sets of more diverse, less correlated attributes. Beyond sets

of qualitative attributes, the plural model in CMPO could also embody rules or values.

CMPO could especially pair well with the CAI framework [35], where each linear head could

correspond to a particular constitution, subset of principles, or individual principle. Lastly,

CMPO’s plural architecture could better represent individuals or sub populations. One

way to do this would be to assign different personas or group identities to each linear head

by collecting data associated with the specified constituents associated with that module.

Another approach would be to determine the minimal representative modules needed to

represent the preferences of and disagreement between annotators of a diverse dataset, and

then define an approach that appropriately trains each representative linear head to retain

the preferences of its constituents.
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Appendix A

Additional Details on Experiments

A.1 Inference Details

I use greedy decoding for all text generation for all the models I train. At test time, the max

completion length is 512 tokens, and the max sequence length is 1024 tokens. The prompt

templates used are shown in Table A.1.

A.2 GPT-4 win-rate setup

The prompt template for getting win-rate annotations from GPT-4 is shown in Table A.2.

When getting inference from GPT-4, the sampling temperature is set to 0 to get more

deterministic outputs. In order to minimize cost, I include ensure that the model stops

generating new tokens beyond a max response token length of 10, or once the token sequence

for “." or the new line symbol is sampled.

A.3 Further Empirical Results

In addition to the attribute weight strategy detailed in Section 3.2.2, I tried two additional

approaches for setting each attribute weight λ.
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Model Prompt Template

Models with a Llama 2 7B
Pretrained-only Base Model

<extra_id_0>System
{{system_prompt}}
<extra_id_0>User
{{user_prompt}}
<extra_id_1>Assistant

Steer APM

<extra_id_0>System
{{system_prompt}}
<extra_id_0>User
{{user_prompt}}
<extra_id_1>Assistant
{{response}}

Steer ACM

<extra_id_0>System
{{system_prompt}}
<extra_id_0>User
{{user_prompt}}
<extra_id_1>Assistant
{{attribute ratings}}

Table A.1: Prompt Templates for the Models Trained

### Prompt
{{prompt}}

### Response 1
{{response 1}}

### Response 2
{{response 2}}

### Instructions
Indicate which response (Response 1 or Response 2) is {{attribute}}. If
Response 1 is {{attribute}} than Response 2, answer with 1. If Response 2
is {{attribute}} than Response 1, answer with 2. If the responses are equally
{{attribute}}, answer with 0. Then provide a brief justification for your
answer. Give your answer in the following format:

[answer]
[brief explanation]

Remember that your answer must be one of 0, 1 or 2!

Table A.2: Prompt template for getting GPT-4 to label which response it prefers
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λj =


|S|−1 ϕ ∈ S

|S̄|−1 ϕ /∈ S

∀λ ∈ Λ(S∈P({aj∈A|y≻aj y
′}),A) (A.1)

The first method was to use positive and negative weights for the attributes that resulted

in the opposite pairwise preference, shown in Equation A.1. When trained on the HelpSteer

dataset with negative weights in addition to positive weights, the model’s loss does not appear

to converge during training or attain the same estimated reward (described in Section 2.3.2)

accuracy as that of the model trained using the positive weight strategy, shown in Figures

A.3 and A.4.

Figure A.1: Training and validation loss on HelpSteer for the CMPO weight strategy and
its variant with negative weights across training steps

The second method was to have the weights be a scaled ratio of the preferred attribute

rating over the dispreferred attribute rating, shown in Equation A.2. When trained on

the HelpSteer and OASST scalar feedback collection, this strategy slightly improved on

reward accuracy and only closely fell behind the loss convergence on the training set and

the validation set, shown in Figures ?? and ??. However, the equal weighting strategy in

Equation 3.2 was preferred for its ability to generalize beyond scalar feedback.
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Figure A.2: Training and validation reward accuracy (with smoothing = 0.1) on HelpSteer
for the CMPO weight strategy and its variant with negative weights across training steps

λj =


faj (x,yc)

faj (x,yr)
|S|−1 ϕ ∈ S

0 ϕ /∈ S

∀λ ∈ Λ(S∈P({aj∈A|y≻aj y
′}),A) (A.2)

Figure A.3: Training and validation loss on HelpSteer the CMPO weight strategy and its
variant with rating ratio weights across training steps
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Figure A.4: Training and validation reward accuracy (with smoothing = 0.1) on HelpSteer
and OASST for the CMPO weight strategy and its variant with rating ratio weights across
training steps
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