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ABSTRACT

In the domain of machine learning, "grokking" is a phenomenon where neural network models
demonstrate a sudden improvement in generalization, distinct from traditional learning phases,
long after the initial training appears complete. This behavior was first identified by Power et al.
(2022) [5]. This thesis explores grokking within the context of the (𝑛, 𝑘)-parity problem, aiming
to uncover the mechanisms that trigger such transitions. Through extensive empirical research,
we examine how different neural network configurations and training conditions influence the on-
set of grokking. Our methodology integrates advanced visualization techniques, such as t-SNE,
and kernel density estimations to track the evolution from memorization to generalization phases.
Furthermore, we investigate the roles of weight decay and network robustness against outliers,
focusing on optimizing neural network architectures to achieve effective generalization with fewer
computational resources. This study advances our understanding of grokking and proposes prac-
tical strategies for designing more efficient neural networks.

Thesis supervisor: Srinivasan Raghuraman
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Chapter 1

Introduction

1.1 Understanding Grokking

The phenomenon of "grokking," first observed and named by Power et al. (2022) [5], represents a

fascinating and sudden transition in machine learning where models exhibit a leap from memoriza-

tion to profound generalization ability. This phenomenon occurs unexpectedly, often after a model

appears to have stabilized its performance on training data. The term itself, derived from the science

fiction novel "Stranger in a Strange Land" by Robert A. Heinlein, implies a deep, intuitive under-

standing—mirroring the sudden enhancement in model performance that goes beyond traditional

learning curves. This dissertation investigates the grokking phenomenon within the framework of

neural networks trained on the (𝑛, 𝑘)-parity problem, a well-defined mathematical challenge that

offers clear metrics for analysis and interpretation.

1.2 Significance and Motivation

The discovery of grokking has sparked significant interest in the machine learning community due

to its implications for the development of learning algorithms that can achieve true generaliza-

tion. Traditional learning models often rely on incremental improvements during training; however,

grokking suggests a potential for models to switch abruptly to a vastly more effective generalization
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regime. This has profound implications for our understanding of how neural networks learn and

might suggest new pathways to creating more efficient and powerful AI systems.

1.3 Literature Review

Since its initial observation, several theories have been proposed to explain the mechanisms be-

hind grokking. Noteworthy among them are the studies by Liu et al. (2023) [3], which suggest

that specific parameter initializations at scale can predispose models to grokking, and Thilak et al.

(2022) [6], which focus on the role of optimizer dynamics in triggering these learning phenomena.

More comprehensive theoretical frameworks, such as those proposed by Barak et al. (2022) [1],

hypothesize that grokking emerges from a gradual development of structured and effective internal

representations.

Further research has refined these ideas, exploring the subtleties of network architecture and

training conditions that might influence or predict the occurrence of grokking. Recent contributions

in this area, including those by Davies et al. (2023) [2] and Merrill et al. (2023) [4], have examined

the impacts of inductive biases and the competition between different network substructures during

the training process.

1.4 Research Objectives

This research aims to systematically dissect the phenomenon of grokking within the controlled con-

text of the (𝑛, 𝑘)-parity problem. By manipulating network architectures and training parameters,

this study seeks to:

• Identify the conditions under which grokking occurs.

• Understand the role of network topology and training dynamics in inducing grokking.

• Explore the potential for reducing the complexity of network models while maintaining or

enhancing their generalization capabilities.
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1.5 Preliminary Findings

Our initial experiments have focused on simple configurations of the (𝑛, 𝑘)-parity problem, partic-

ularly for 𝑘 = 2 and 𝑘 = 3. These experiments have provided insights into how minimal network

architectures can be optimized to exhibit grokking, shedding light on the balance between network

simplicity and learning effectiveness.

• Experimental Setup: We utilized 1-layer ReLU networks with a modest number of neurons,

trained on datasets crafted to evaluate parity functions. These initial tests were instrumental

in confirming the theoretical potential for grokking identified in prior studies.

Figure 1.1: Loss and accuracy of 1-layer ReLU networks for (50, 2)-parity, averaged over five runs.

• Results: The networks demonstrated significant improvements in generalization ability, par-

ticularly after specific training milestones, consistent with the characteristics of grokking as

described in the literature.

15



1.6 Thesis Outline

This introduction sets the stage for a comprehensive study of grokking, aimed at unraveling this

complex phenomenon through a focused investigation of the (𝑛, 𝑘)-parity problem. By integrat-

ing theoretical insights with empirical research, this thesis aims to contribute significantly to our

understanding of how neural networks can achieve sudden leaps in generalization, pushing the

boundaries of machine learning research.
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Chapter 2

Investigation of Two Circuits

2.1 Methodology

Our study employs the (𝑛, 𝑘)-parity problem, previously explored by Barak et al. (2022) [1] and

Merrill et al. (2023) [4], as a foundational task for analyzing grokking in learning sparse (𝑛, 𝑘)-

parity functions. Defined as sparse when 𝑘 ≪ 𝑛, our experiments utilize configurations with 𝑛 = 50,

𝑘 = 2, a training set size of 𝑁 = 300, and a neural network layer configured with 𝑚 = 500 neurons.

We utilize a 1-layer ReLU network, defined as:

𝑓 (𝑥) = 𝑢𝑇𝜎(𝑊𝑥 + 𝑏),

where 𝜎(𝑥) = max{0, 𝑥} is the ReLU activation, 𝑢 ∈ R𝑚, 𝑊 ∈ R𝑚×𝑛, and 𝑏 ∈ R𝑚. Classification

is determined by the sign of 𝑓 (𝑥), predicting positive or negative class labels based on the parity

output. The network minimizes the hinge loss 𝑙 (𝑥, 𝑦) = max{0, 1 − 𝑓 (𝑥)𝑦}, using stochastic gra-

dient descent with a batch size of 𝐵 = 32, a constant learning rate 𝜂 = 0.1, and a weight decay

parameter 𝜆 = 0.01.

17



(a) Training and testing loss across epochs. (b) Training and testing accuracy across epochs.

Figure 2.1: Loss and accuracy dynamics of the 1-layer ReLU network for (50, 2)-parity, showcasing
epochs indicative of grokking phenomena.

2.2 Visualization and Analysis

To empirically demonstrate grokking and support the theoretical concepts, we undertake a series

of visualizations:

2.2.1 t-SNE Visualization

We examine the transformation of internal representations across various epochs, specifically look-

ing at epochs where the model transitions from memorization to generalization. Our t-SNE plots

color data according to the first 𝑘 = 2 coordinates, resulting in 2𝑘 = 4 distinct colors. These vi-

sualizations reveal the emergence of "good" representations, signifying effective generalization,

contrasting sharply with earlier "bad" representations that fail to cluster effectively.
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Figure 2.2: Dynamic t-SNE visualization of learned representations across epochs, highlighting the
transition from memorization to effective generalization.

2.2.2 Kernel Density Estimation (KDE)

We analyze the distribution of weights within the network’s hidden layer at different training stages.

The KDE plots illustrate a significant condensation of weight values around zero as the network

evolves, indicating a move towards a sparser and potentially more efficient configuration.

Figure 2.3: KDE analysis of the network’s weights over various epochs, showing a trend towards
sparsity.

2.2.3 Spectral Norm Analysis

The spectral norm of the weight matrix serves as a quantitative progress measure. Our analysis

identifies two critical inflection points in the spectral norm corresponding to the epochs of memo-

rization and generalization. This measure starkly declines between these points, underscoring a

pivotal shift in network behavior.
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Figure 2.4: Spectral norm progression of the weight matrix over epochs, aligned with key phases
of learning.

2.3 Results and Discussion

Our findings support the dual-circuit hypothesis, showing distinct phases of memorization and gen-

eralization within the training process. These results, underpinned by various visualizations and

spectral norm analysis, validate theoretical models and offer deeper insights into the neural dynam-

ics underpinning grokking. The comprehensive analysis highlights the complex interplay between

network architecture, learning dynamics, and task complexity essential for effective neural network

generalization. For a more detailed exploration of the model’s performance on the more complex

𝑘 = 3 case, including extended epoch training and additional diagnostic plots, see the extended

configuration analysis in the appendix 𝐴.1. This section delves deeper into how extended training

periods influence learning dynamics and generalization in higher-dimensional parity tasks.
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Chapter 3

Investigation of Learning Dynamics

Observations from our study suggest the presence of both memorizing and generalizing circuits

within neural networks. Understanding how networks transition from memorization to generaliza-

tion—termed grokking—is crucial for explaining complex learning behaviors in artificial neural sys-

tems. This chapter explores various mechanisms that potentially facilitate this transition, focusing

particularly on the role of weight decay, as influenced by prior work from Power et al. (2022) [5]

and Varma et al. (2023) [7].

3.1 Influence of Weight Decay

Weight decay is hypothesized to play a critical role in promoting grokking by penalizing large

weights, thus helping to sparsify the network and facilitate a shift from memorizing to generaliz-

ing circuits. Varma et al. (2023) [7] emphasize that while weight decay is typically known for its

regularization effects, in the context of grokking, it appears to accelerate the onset of generalization

by modifying the network’s learning trajectory.
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Hypothesis 3.1: Weight Decay Hypothesis
Increasing the weight decay parameter 𝜆 in the optimizer after the model has achieved mem-

orization will accelerate generalization. However, there exists a threshold of weight decay

beyond which the model fails to generalize.

This hypothesis aligns with suggestions from Varma et al. (2023) [7] and is tested by varying the

weight decay 𝜆 post-memorization. As demonstrated in Figure 3.1, as weight decay increases, the

model’s ability to generalize improves rapidly. However, beyond a critical threshold, approximately

between 𝜆 = 0.1 and 𝜆 = 0.5, the beneficial effects of weight decay diminish, and generalization

capabilities deteriorate.

Figure 3.1: Accuracy plots demonstrating the impact of varying weight decay on model generaliza-
tion.

Moreover, the spectral norms of the weight matrices, shown in Figure 3.2, further elucidate

this phenomenon. Appropriate levels of weight decay support the network in converging towards

the spectral norms characteristic of the final generalizing circuit. However, excessively high weight

decay leads to a rapid convergence of the spectral norm to zero, indicating a loss of capacity to

maintain and utilize learned features effectively.

Figure 3.2: Spectral norm analysis showing convergence rates under different weight decay set-
tings.
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These findings support the Weight Decay Hypothesis 3.1 by illustrating that while moderate

weight decay can facilitate faster transition from memorization to generalization by reducing over-

fitting and promoting robust feature learning, too much decay can strip the network of its ability to

learn and generalize from the training data effectively.

3.2 Robustness Against Outliers

Another aspect of our investigation concerns the model’s ability to handle outliers, a test for the

robustness of the learned-representation theory of grokking. Understanding a model’s robustness

against outliers is critical for assessing its generalization capabilities in real-world scenarios. Out-

liers in the training data can significantly affect the learning process, potentially leading to overfitting

or underfitting, depending on the model’s ability to identify and disregard these anomalies. This

section explores how increasing the proportion of outliers impacts the learning dynamics of neural

networks, particularly their ability to transition from memorization to generalization.

Hypothesis 3.2: Outlier Hypothesis
As the proportion of outliers 𝑝𝑡 in the training data increases, the speed of generalization

decreases, eventually reaching a threshold beyond which the model fails to generalize.

In our experiments, 𝑝𝑡 represents the fraction of training data labels that are randomly flipped,

introducing significant noise into the dataset. This setup aims to simulate real-world scenarios

where data may be corrupted or misleading, challenging the model’s ability to generalize effectively.

Figure 3.3: Model accuracy over epochs with a low weight decay (𝑤 = 0.01). Grokking still occurs
when 𝑝𝑡 = 0.02, but generalization efficacy is reduced as 𝑝𝑡 increases.
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Initially, with a weight decay setting of 𝑤 = 0.01, we observed that the model struggles to

maintain high generalization accuracy as 𝑝𝑡 increases. Notably, when 𝑝𝑡 reaches 0.02, the model

still exhibits some ability to generalize, albeit at a reduced efficacy. However, for 𝑝𝑡 values of 0.05

and beyond, the model fails to generalize effectively, as illustrated in Figure 3.3.

The observation that grokking does not occur when the fraction of outliers reaches 0.05 and

beyond highlights a critical threshold for the model’s ability to handle label noise. This phenomenon

suggests a potential avenue for adjusting model parameters, such as weight decay, to enhance

generalization in the presence of outliers. This hypothesis is further explored by increasing the

weight decay to 𝑤 = 0.1 to determine if it can mitigate the negative effects of higher 𝑝𝑡 values on

the model’s generalization ability.

Figure 3.4: Model accuracy over epochs with a low weight decay (𝑤 = 0.01). Grokking does not
occur for 𝑝𝑡 ≥ 0.05, demonstrating the model’s decreased ability to generalize as outlier proportion
increases.

3.2.1 Adjusting Weight Decay to Enhance Robustness

Given the deterioration in generalization performance with 𝑝𝑡 ≥ 0.05 under lower weight decay, we

hypothesized that increasing the weight decay might bolster the model’s resilience against outliers.

Thus, we adjusted the weight decay to 𝑤 = 0.1 and re-evaluated the model’s performance. This

adjustment revealed that the model could extend its generalization capabilities to 𝑝𝑡 = 0.1, but not

beyond 𝑝𝑡 = 0.15, suggesting a nuanced interplay between weight decay and outlier resilience.
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Figure 3.5: Model accuracy with increased weight decay (𝑤 = 0.1) as outlier fraction varies, indi-
cating some capability to overcome outliers.

These findings support our hypothesis that increasing the weight decay parameter can mitigate

some negative effects of outliers by promoting a sparser and potentially more robust representa-

tion, which in turn aids generalization. However, the effectiveness of this strategy has its limits,

emphasizing the need for careful tuning of model parameters in environments with high data vari-

ability.

To further delineate the boundary conditions for successful generalization, we expanded our

investigation to include variations in the number of input bits (𝑛) and different levels of weight de-

cay. We conducted experiments with three distinct settings of weight decay: 0.01, 0.05, and 0.1,

alongside adjustments to the number of input bits, reducing to 𝑛 = 30 and increasing to 𝑛 = 70

from the standard 𝑛 = 50. This exploratory analysis aimed to discern the interplay between network

size, weight decay, and their combined effect on the model’s capacity to handle outliers.

Table 3.1: Threshold values (𝑝𝑡) for "tricked" configurations where grokking still occurs, categorized
by number of input bits and weight decay settings.

Number of Input Bits (𝑛) Weight Decay (𝑤)

0.01 0.05 0.1

30 0.02 0.12 0.20

50 0.03 0.06 0.12

70 0.01 0.03 0.05
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Analysis of the data from this table reveals that as weight decay increases, the threshold 𝑝𝑡

for maintaining grokking also rises. Conversely, increasing the number of input bits generally low-

ers the threshold, indicating a decreased tolerance to outliers. Interestingly, while an increase in

threshold is noted from 𝑛 = 30 to 𝑛 = 50 at 𝑤 = 0.01, further increasing the number of input bits to

𝑛 = 70 reverses this trend, suggesting a complex dynamic between the number of input bits and the

ability to generalize in the presence of noise. These observations underscore the critical balance

required between the number of input bits, weight decay, and the proportion of outliers to optimize

neural network performance and generalization across different settings. Future research should

explore the boundaries of this balance further, aiming to develop guidelines for optimal parameter

settings in various operational contexts.
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Chapter 4

Optimizing Neural Networks for (n, k)-Parity

This chapter explores constructing and optimizing neural networks to compute the (𝑛, 𝑘)-parity

function with minimal neuron usage. The (𝑛, 𝑘)-parity problem presents a unique challenge for

neural computation, as it requires the network to learn highly specific and granular patterns across

various input combinations.

Inspired by the recent advances in neural architectures for parity functions by Merrill et al.

(2023) [4], we aim to extend these methods to achieve more efficient network structures. These

researchers demonstrated that a 1-layer ReLU network could effectively solve the (𝑛, 3)-parity prob-

lem using only six neurons. We propose to investigate whether similar or better efficiency can be

realized for different parity sizes, starting with 𝑘 = 2 and progressing to 𝑘 = 3.

4.1 Foundational Principles of Parity Computation in Neural

Networks

Before delving into the details of optimized neural architectures, it’s essential to establish a fun-

damental understanding of how neural networks can encode and compute parity functions. Es-

tablishing this baseline is critical as it sets the stage for exploring more efficient architectures that

potentially use fewer neurons than theoretically suggested by the initial model.
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Preposition 4.1 For any 𝑛, there exists a 1-layer ReLU network with 2𝑘 neurons that computes the

(𝑛, 𝑘)-parity function. [4]

Proof. The proposed network consists of 2𝑘 neurons, where each neuron is responsible for one

of the 2𝑘 possible combinations of 𝑘 input bits from an 𝑛-dimensional vector. The neurons are

configured such that each one "fires" (i.e., outputs a positive value) if and only if the subset of

inputs it monitors has a product that equals 1, indicating a parity of 1.

This is achieved by setting the weights and biases of each neuron such that its activation func-

tion, a ReLU, returns a positive output for the desired combination and zero otherwise. By carefully

setting the weights to positive or negative based on the input bits’ expected contribution to the

product (and adjusting the bias to offset the sum appropriately), the neuron will only activate for its

designated input combination.

Thus, the network directly maps each input vector’s parity conditions onto the activation patterns

of these 2𝑘 neurons. The final output of the network can be computed as the sign of the sum of all

activated neurons’ outputs. If any neuron indicating a parity of 1 is activated, the network’s output

will be positive (1); otherwise, it will be negative (-1), corresponding to no neurons firing or a parity

of -1 across all monitored combinations.

This proof establishes that 2𝑘 neurons are sufficient to represent and compute (𝑛, 𝑘)-parity by

using their activation states to encode each possible parity outcome directly. However, it raises the

potential for optimizing the network by reducing the number of neurons if redundant or overlapping

input conditions can be efficiently managed.

4.2 Optimizing Network Architecture for (𝒏, 2)-Parity

In the quest to optimize neural network architectures for the computation of parity functions, we

begin by exploring the simplest non-trivial case, the (𝑛, 2)-parity problem. For this problem, we

attempt to construct a neural network that uses only two neurons, the theoretical minimum for this

task, to effectively compute parity.
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The (𝑛, 2)-parity function is computed based on the relationship between two designated input

bits, 𝑥1 and 𝑥2. The goal is to determine whether the product of these two bits is 1 or -1, which

corresponds to their parity being positive or negative, respectively. To achieve this with a neural

network using ReLU activations, we design a minimal architecture that can directly capture this

relationship.

4.2.1 Network Construction

We propose a network with two neurons, where each neuron is designed to activate based on the

sum of the inputs. The neurons are defined as follows:

ℎ1 = 𝜎(0.5𝑥1 + 0.5𝑥2)

ℎ2 = 𝜎(−0.5𝑥1 − 0.5𝑥2)

Here, the coefficients 0.5 ensure that the contributions of 𝑥1 and 𝑥2 are balanced and that the

activation reflects their combined effect.

4.2.2 Output Layer Configuration

In the final layer, we use a simple aggregation mechanism where both neurons contribute equally

to the output:

𝑦 = ℎ1 + ℎ2

This configuration allows the network to output a value based on the activation of either ℎ1 or ℎ2.

Since each neuron activates under specific conditions reflective of the input parity:

• ℎ1 activates when 𝑥1 and 𝑥2 are both positive, which corresponds to a positive product or a

parity of 1.
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• ℎ2 activates when 𝑥1 and 𝑥2 are both negative, which corresponds to a positive product or a

parity of 1.

The network’s output, 𝑦, effectively sums the outputs of ℎ1 and ℎ2. Given the nature of ReLU

and the network design, this sum will be positive if the parity is positive and zero otherwise, correctly

encoding the parity of 𝑥1 and 𝑥2.

4.2.3 Empirical Result

In our theoretical exploration, we demonstrated that a neural network with two neurons can effec-

tively compute the (𝑛, 2)-parity function. This concept was not only validated theoretically but also

confirmed through empirical training of our model. During the generalization phase, the model

converged to a weight configuration that reflects the theoretical insights:

First Layer Weights:


0.62 0.62

−0.62 −0.62

 , Output Layer Weights: [0.85, 0.85] .

This weight matrix for the first layer effectively captures the essence of the (𝑛, 2)-parity prob-

lem, mirroring the theoretical model where each neuron is responsible for one configuration of the

parity bits. The values 0.62 slightly exceed the expected 0.5, enhancing the model’s sensitivity and

robustness in recognizing parity, while the negative weights manage the opposite parity conditions.

The output layer’s uniform weights of 0.85 reinforce the decisions made by the first layer, en-

suring that the overall network output strongly represents the computed parity. This setup provides

a clear empirical instance where the theoretical predictions not only hold but also exhibit practical

viability through training dynamics.

This alignment between theory and practice underscores the effectiveness of the proposed net-

work design and validates our initial hypothesis about the minimum neuron requirement for com-

puting (𝑛, 2)-parity, highlighting the potential for further reducing neuron count in more complex

parity computations.
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4.3 Optimizing Network Architecture for (𝒏, 3)-Parity

Recent work by Merrill et al. (2023) [4] demonstrated the feasibility of solving the (𝑛, 3)-parity

problem using a neural network architecture comprising only six neurons. Their theoretical analysis

further suggested the potential to reduce the network complexity to just four neurons. However,

these results were achieved under idealized theoretical conditions rather than through empirical

grokking phenomena. Motivated by this gap, our research aimed to explore whether a network with

five neurons could be effectively trained to generalize the (𝑛, 3)-parity function through grokking,

representing a middle ground between empirical achievability and theoretical minimalism.

4.3.1 Experimental Approach and Outcomes

Our experimental design involved adjusting network parameters and training conditions to optimize

for both sparsity and generalization. We utilized a hinge loss function, renowned for its efficacy in

classification tasks by promoting margin maximization between classes. However, despite these

efforts, the results deviated from our expectations: while the weights of the network approached

zero, indicating a move towards sparsity, they did not fully reach zero. This outcome suggests an

incomplete transition towards the ideal sparse configuration envisaged in theoretical models.

The inability to achieve a network configuration with exactly zero weights in some neurons

raises significant questions about the limits of current training methodologies and loss functions

in achieving theoretical minimalism in network design. This observation is particularly crucial for

grokking, where the stark transition from memorization to generalization often hinges on subtle

shifts in network parameters.

4.3.2 Future Research Directions

This experiment, while not successful in achieving its initial goal, provides valuable insights into

the complex interplay between network architecture, training parameters, and loss functions in the

context of grokking. Future research could explore:
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• Adjusting Training Size and Epochs: Increasing the size of the training set or the number

of training epochs could provide the network more opportunities to refine its weights and

potentially achieve the desired sparsity.

• Exploring Different Loss Functions: Implementing loss functions that more rigorously en-

force sparsity, such as L1 regularization, could help in pushing the weights to exact zeros.

• Hybrid Training Approaches: Combining traditional training methodologies with novel tech-

niques such as meta-learning or transfer learning might enhance the network’s ability to gen-

eralize from fewer examples, potentially enabling the achievement of sparsity with fewer neu-

rons.
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Chapter 5

Conclusion

This thesis explores the phenomenon of grokking within neural networks, particularly how these net-

works transition from memorization to a deeper, generalization phase. This exploration is rooted in

the investigation of neural dynamics through the lens of the (𝑛, 𝑘)-parity problem, revealing intri-

cate behaviors and characteristics of learning dynamics that are critical for effective generalization.

This final chapter summarizes the main points, discusses the limitations of the study, and outlines

potential future work to further enhance and refine the grokking phenomenon.

5.1 Summary

The key contributions of this thesis are twofold. First, through rigorous experiments and analyses,

we demonstrated how neural networks transition between memorization and generalization phases,

a phenomenon we termed grokking. Our experiments with (𝑛, 𝑘)-parity tasks, particularly for 𝑘 = 2

and 𝑘 = 3, provided empirical evidence supporting the dual-circuit hypothesis, which posits the

existence of separate memorizing and generalizing circuits within trained neural networks.

Second, our research extended the practical understanding of the impact of weight decay and

the handling of outliers on network performance. By varying weight decay parameters and introduc-

ing outliers into training data, we explored the robustness and adaptability of neural networks under

diverse and challenging conditions. These experiments not only highlighted the delicate balance
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required in tuning neural networks but also reinforced the importance of robust training regimes

that can withstand real-world data anomalies.

5.2 Limitations

Despite the advancements made, this study faces several limitations:

• Resource Limitations: The computational demands of training larger models with higher 𝑘

values or on more complex datasets were significant. This limitation was particularly acute

given the resource-intensive nature of models capable of demonstrating grokking, which re-

quired extensive computational power not readily available to all researchers.

• Nascent Field: The concept of grokking, while promising, is still in its infancy. The theoretical

underpinnings and mathematical frameworks remain underdeveloped, making it challenging

to predict and manipulate grokking behaviors fully.

• Empirical Focus: Much of the research relied heavily on empirical observations which, while

insightful, occasionally lacked the support of a strong theoretical backing that could unify the

observed phenomena under a single explanatory framework.

5.3 Future Work

To build on the findings of this thesis, future research could take several directions:

• Enhanced Computational Resources: Investigating the feasibility of more complex models

and larger datasets could be enabled by access to greater computational resources, poten-

tially uncovering new dimensions of the grokking phenomenon.

• Theoretical Advances: Developing a more robust mathematical framework to describe and

predict grokking could transform empirical observations into predictable outcomes, enhanc-

ing our ability to design neural networks that generalize effectively.
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• Alternative Architectures: Exploring different network architectures and training paradigms,

such as deep reinforcement learning or unsupervised learning models, could provide new in-

sights into the conditions under which grokking occurs.

• Exploration of (𝑛, 3)-parity with Fewer Neurons: Continuing to refine the approach to

achieve a functioning model with fewer than six neurons for the (𝑛, 3)-parity problem, possibly

incorporating novel loss functions or training techniques to achieve theoretical predictions of

network sparsity.

By addressing these limitations and pursuing suggested future work, the field can advance to-

wards a more comprehensive understanding of how neural networks can be optimized for both

performance and efficiency, moving closer to realizing the full potential of grokking in artificial intel-

ligence.
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Appendix A

Extended Configuration Analysis

A.1 Analysis for 𝒌 = 3

For 𝑘 = 3 case, we extended the training to 1000 epochs with a dataset size of 1000 to explore the

robustness and performance of the neural network model. This section presents the results through

detailed visual and statistical analyses, focusing on the grokking phenomenon and the evolution of

network weights during training.

(a) Training and testing loss across epochs. (b) Training and testing accuracy across epochs.

Figure A.1: Loss and accuracy dynamics of the 1-layer ReLU network for (50, 3)-parity, showcasing
epochs indicative of grokking phenomena.
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The loss plot shows a sustained decrease across epochs with the test loss eventually stabilizing

after initial fluctuations, suggesting a successful adaptation and learning. In contrast, the accuracy

plot demonstrates a significant improvement in test accuracy after a prolonged plateau phase,

illustrating the network’s ability to generalize, typical of the grokking phenomenon in more complex

parity tasks.

Figure A.2: Spectral norm dynamics across epochs.

The spectral norm plot reveals a notable increase in the spectral norm, correlating with the

network’s transition from memorization to effective generalization, as indicated by the stabilization

of accuracy and loss in later epochs.

Figure A.3: Dynamic t-SNE visualization across epochs.

The t-SNE visualization across epochs shows clear clustering of labels in higher dimensions

as epochs progress, reflecting how the network’s internal representations evolve to effectively dis-

tinguish between different parity configurations.
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Figure A.4: KDE of the network’s weights over epochs.

The KDE plot shows a trend towards weight sparsity and a narrowing peak over time, suggesting

that the network is reducing redundant or less important weights as it optimizes for the (50, 3)-parity

task. This indicates a refinement in the network’s efficiency and computational focus.

This extended configuration analysis underlines the capability of 1-layer ReLU networks to adapt

and refine their computational strategy for more complex parity problems, emphasizing the role of

deep training and larger data sets in achieving nuanced generalization.
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Appendix B

Code Listing

B.1 Data Preparation

1 def parity(n, k, n_samples , seed=898):

2 random.seed(seed)

3 samples = torch.Tensor([[random.choice([-1, 1]) for j in range(n)]

for i in range(n_samples)])

4 targets = torch.prod(samples[:, :k], dim=1)

5 return samples, targets

6

7 def data_preparation(seed_id=898, test_samples=100, test_batchsize=100,

return_raw=False):

8 _data = parity(n, k, N, seed=seed_id)

9 train_dataset = TensorDataset(_data[0], _data[1])

10 train_dataloader = DataLoader(train_dataset , batch_size=B, shuffle=

True)

11

12 data = parity(n, k, test_samples , seed=2023)

13 test_dataset = TensorDataset(data[0], data[1])
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14 test_dataloader = DataLoader(test_dataset , batch_size=

test_batchsize , shuffle=True)

15

16 if return_raw:

17 return train_dataloader , train_dataloader , _data[0][:100], data

[0]

18 return train_dataloader , test_dataloader

B.2 1-ReLU Model and Hinge Loss

1 class FF1(nn.Module):

2 def __init__(self, input_dim=50, width=1000):

3 super(FF1, self).__init__()

4 self.linear1 = nn.Linear(input_dim , width)

5 self.activation = nn.ReLU()

6 self.linear2 = nn.Linear(width, 1, bias=False)

7 print(width)

8

9 def forward(self, x, return_activation=False):

10 x = self.linear1(x)

11 x = self.activation(x)

12 if return_activation:

13 return x

14 x = self.linear2(x)

15 return x

16

17 def print_weights(self):

18 print("Weights of linear1:", self.linear1.weight.data)
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19 print("Bias of linear1:", self.linear1.bias.data)

20 print("Weights of linear2:", self.linear2.weight.data)

21

22 class MyHingeLoss(nn.Module):

23 def __init__(self):

24 super(MyHingeLoss , self).__init__()

25

26 def forward(self, output, target):

27 hinge_loss = 1 - torch.mul(output.squeeze(), target.squeeze())

28 hinge_loss = torch.clamp(hinge_loss , min=0)

29 return hinge_loss.mean()

B.3 Utility Functions for Norms and Activations

1 def add_spectral_norm(norms, weight_matrix):

2 svd_values = torch.linalg.svdvals(weight_matrix)

3 spectral_norm = torch.max(svd_values).item()

4 norms.append(spectral_norm)

5

6 def add_frobenius_norm(norms, weight_matrix):

7 frobenius_norm = torch.linalg.matrix_norm(weight_matrix)

8 norms.append(frobenius_norm)

9

10 def add_activations(activations , train_dataloader , model):

11 epoch_activations = []

12 for x_batch, _ in train_dataloader:

13 x_batch = x_batch.to(device)

14 with torch.no_grad():

43



15 act = model(x_batch, return_activation=True).detach().cpu()

.numpy()

16 epoch_activations.append(act)

17 activations.append(np.concatenate(epoch_activations , axis=0))

18

19 def add_labels(labels, train_dataloader , k):

20 first_k_positions = []

21 for x_batch, _ in train_dataloader:

22 x_batch = x_batch.to(device)

23 first_k_positions_batch = x_batch[:, :k].tolist()

24 first_k_positions.extend(first_k_positions_batch)

25 string_labels = [str(label) for label in first_k_positions]

26 labels.append(string_labels)

27

28 def encode_labels(labels):

29 unique_labels = sorted(set(labels))

30 label_to_id = {label: idx for idx, label in enumerate(unique_labels

)}

31 return [label_to_id[label] for label in labels]

B.4 Plotting Functions

1 def plot_loss(losses, epochs, base_dir, log_scale=True, save=False):

2 m1, std1 = mean_and_std_across_seeds(losses[’train’])

3 if save:

4 np.save(os.path.join(base_dir , ’mean_train_loss’), m1)

5 np.save(os.path.join(base_dir , ’std_train_loss’), std1)

6
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7 m2, std2 = mean_and_std_across_seeds(losses[’test’])

8 if save:

9 np.save(os.path.join(base_dir , ’mean_test_loss’), m2)

10 np.save(os.path.join(base_dir , ’std_test_loss’), std2)

11

12 # Loss plot

13 plt.plot(m1, linestyle=’-’, label=’train’)

14 plt.plot(m2, linestyle=’-’, label=’test’)

15 plt.fill_between([i for i in range(epochs)], m1 - std1, m1 + std1,

alpha=0.3)

16 plt.fill_between([i for i in range(epochs)], m2 - std2, m2 + std2,

alpha=0.3)

17 plt.title(’Loss’)

18 plt.xlabel(’epochs’)

19 if log_scale:

20 plt.xscale(’log’)

21 plt.legend()

22 plt.show()

23

24 def plot_accuracy(accs, epochs, base_dir, log_scale=True, save=False):

25 m1, std1 = mean_and_std_across_seeds(accs[’train’])

26 if save:

27 np.save(os.path.join(base_dir , ’mean_train_acc’), m1)

28 np.save(os.path.join(base_dir , ’std_train_acc’), std1)

29

30 m2, std2 = mean_and_std_across_seeds(accs[’test’])

31 if save:

32 np.save(os.path.join(base_dir , ’mean_test_acc’), m2)

33 np.save(os.path.join(base_dir , ’std_test_acc’), std2)
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34

35 # Accuracy plot

36 plt.plot(m1, linestyle=’-’, label=’train’)

37 plt.plot(m2, linestyle=’-’, label=’test’)

38 plt.fill_between([i for i in range(epochs)], m1 - std1, m1 + std1,

alpha=0.3)

39 plt.fill_between([i for i in range(epochs)], m2 - std2, m2 + std2,

alpha=0.3)

40 plt.title(’Accuracy’)

41 plt.xlabel(’epochs’)

42 if log_scale:

43 plt.xscale(’log’)

44 plt.legend()

45 plt.show()

46

47 def plot_norms(norms, epochs, log_scale=True):

48 m, std = mean_and_std_across_seeds(norms)

49

50 print(f"Final model’s norm is {m[-1]}")

51

52 plt.plot(m, linestyle=’-’)

53 plt.fill_between([i for i in range(epochs)], m - std, m + std,

alpha=0.3)

54 plt.title(’Spectral norm’)

55 plt.xlabel(’epochs’)

56 if log_scale:

57 plt.xscale(’log’)

58 plt.show()

59
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60 def plot_weights(weights, mem_epochs , gen_epochs , epochs, num_plots=5,

include_last_epoch=True):

61 seed = max(range(len(gen_epochs)), key=lambda x: gen_epochs[x] -

mem_epochs[x])

62 print(f"Weight plots for model at seed {seed}")

63 mem, gen = mem_epochs[seed], gen_epochs[seed]

64 gen = 499

65

66 if gen - mem < 10:

67 gen = mem + 20

68

69 # Correct number of plots based on include_last_epoch

70 total_plots = num_plots + 1 if include_last_epoch else num_plots

71 fig, axes = plt.subplots(1, total_plots , sharey=True, figsize=(

total_plots * 4, 4))

72

73 for idx, i in enumerate(np.round(np.linspace(mem, gen, num_plots)).

astype(int)):

74 flattened_weights = weights[seed][i]

75 sns.kdeplot(flattened_weights , fill=True, ax=axes[idx])

76 axes[idx].set_title(f’KDE plot at Epoch {i + 1}’)

77 axes[idx].set_xlabel(’Weight Value’)

78 axes[idx].set_ylabel(’Density’)

79

80 if include_last_epoch:

81 flattened_weights = weights[seed][-1]

82 sns.kdeplot(flattened_weights , fill=True, ax=axes[num_plots])

83 axes[-1].set_title(f’KDE plot at Epoch {epochs}’)

84 axes[-1].set_xlabel(’Weight Value’)
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85 axes[-1].set_ylabel(’Density’)

86

87 plt.tight_layout()

88 plt.show()

89

90 def plot_tsne(epoch_activations , mem_epochs , gen_epochs , epochs, labels

, num_plots=5, include_last_epoch=True):

91 seed = max(range(len(gen_epochs)), key=lambda x: gen_epochs[x] -

mem_epochs[x])

92 print(f"t-SNE plots for model at seed {seed}")

93 mem, gen = mem_epochs[seed], gen_epochs[seed]

94

95 if gen - mem < 10:

96 gen = mem + 20

97

98 # Correct number of plots based on include_last_epoch

99 total_plots = num_plots + 1 if include_last_epoch else num_plots

100 fig, axes = plt.subplots(1, total_plots , sharey=True, figsize=(

total_plots * 4, 4))

101

102 for idx, i in enumerate(np.round(np.linspace(mem, gen, num_plots)).

astype(int)):

103 act = epoch_activations[seed][i]

104 label = encode_labels(labels[seed][i])

105 reduced_act = TSNE(n_components=2).fit_transform(act)

106 scatter = axes[idx].scatter(reduced_act[:, 0], reduced_act[:,

1], c=label, s=10)

107 legend = axes[idx].legend(*scatter.legend_elements(), title="

Labels", loc=’upper right’)
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108 axes[idx].add_artist(legend)

109 axes[idx].set_title(f’t-SNE plot at Epoch {i + 1}’)

110 axes[idx].set_xlabel(’Component 1’)

111 axes[idx].set_ylabel(’Component 2’)

112

113 if include_last_epoch:

114 act = epoch_activations[seed][-1]

115 label = encode_labels(labels[seed][-1])

116 reduced_act = TSNE(n_components=2).fit_transform(act)

117 scatter = axes[-1].scatter(reduced_act[:, 0], reduced_act[:,

1], c=label, s=10)

118 legend = axes[-1].legend(*scatter.legend_elements(), title="

Labels", loc=’upper right’)

119 axes[-1].add_artist(legend)

120 axes[-1].set_title(f’t-SNE plot at Epoch {epochs}’)

121 axes[-1].set_xlabel(’Component 1’)

122 axes[-1].set_ylabel(’Component 2’)

123

124 plt.tight_layout()

125 plt.show()

B.5 Train Model

1 def train_model(seed_id, base_dir , save, model, epochs, loss_fn, losses

, accs, norms, weights, epoch_activations , epoch_labels , mem_epochs ,

gen_epochs , k):

2 torch.manual_seed(seed_id)

3
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4 # Data & save_dir preparation

5 train_dataloader , test_dataloader = data_preparation(seed_id)

6 path = os.path.join(base_dir , f’seed{seed_id}_checkpoints’)

7 os.makedirs(path, exist_ok=True)

8

9 # Model & Optim initialization

10 model = model.to(device)

11 optimizer = torch.optim.SGD(model.parameters(), lr=lr, weight_decay

=weight_decay)

12

13 mem_epochs.append(-1)

14 gen_epochs.append(-1)

15 train_loss , test_loss = [], []

16 train_acc , test_acc = [], []

17 lin1_norms , lin2_norms = [], []

18 cur_weights = []

19 activations = []

20 labels = []

21 for epoch in range(epochs):

22 if (epoch % 100 == 0):

23 print(f’Epoch {epoch+1}/{epochs}, Train Acc: {acc_calc(

train_dataloader , model):.4f}, Test Acc: {acc_calc(

test_dataloader , model):.4f}’)

24

25 # Loss & Accuracy statistics

26 train_loss.append(loss_calc(train_dataloader , model, loss_fn))

27 test_loss.append(loss_calc(test_dataloader , model, loss_fn))

28

29 train_acc.append(acc_calc(train_dataloader , model))
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30 test_acc.append(acc_calc(test_dataloader , model))

31

32 # Calculate and store the spectral norm

33 with torch.no_grad():

34 # First layer norm

35 add_spectral_norm(lin1_norms , model.linear1.weight)

36 # add_frobenius_norm(lin1_norms , model.linear1.weight)

37

38 # Final layer norm

39 add_spectral_norm(lin2_norms , model.linear2.weight)

40 # add_frobenius_norm(lin2_norms , model.linear2.weight)

41

42 flattened_weights = model.linear2.weight.detach().cpu().

numpy().flatten()

43 cur_weights.append(flattened_weights)

44

45 # # Capture activations

46 # add_activations(activations , train_dataloader , model)

47

48 # Save memorizing / generalizing network

49 if (train_acc[-1] > 0.999 and mem_epochs[-1] < 0):

50 print(f’Saving memorizing model - epoch {epoch+1}’)

51 if save:

52 torch.save(model.state_dict(), os.path.join(path, ’

memorization.pt’))

53 mem_epochs[-1] = epoch

54

55 if (test_acc[-1] > 0.999 and gen_epochs[-1] < 0):

56 print(f’Saving generalizing model - epoch {epoch+1}’)
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57 gen_epochs[-1] = epoch

58

59 # if (epoch == epochs - 1):

60 # print(f’Saving (final) generalizing model - epoch {epoch

+1}’)

61 # if save:

62 # torch.save(model.state_dict(), os.path.join(path, ’

generalization.pt’))

63 # print(f’Weights of generalizing model - epoch {epoch+1}’)

64 # model.print_weights()

65

66 # Save model

67 if save:

68 torch.save(model.state_dict(), os.path.join(path, f’model_{

epoch}.pt’))

69

70 first_k_positions = []

71 epoch_act = []

72 # Train model

73 for id_batch , (x_batch, y_batch) in enumerate(train_dataloader)

:

74 x_batch, y_batch = x_batch.to(device), y_batch.to(device)

75 with torch.no_grad():

76 first_k_positions_batch = x_batch[:, :k].tolist()

77 first_k_positions.extend(first_k_positions_batch)

78 act = model(x_batch, return_activation=True).detach().

cpu().numpy()

79 epoch_act.append(act)

80
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81 pred = model(x_batch)

82

83 optimizer.zero_grad()

84 loss = loss_fn(pred, y_batch).mean()

85 loss.backward()

86 optimizer.step()

87

88 string_labels = [str(label) for label in first_k_positions]

89 labels.append(string_labels)

90 activations.append(np.concatenate(epoch_act , axis=0))

91

92 losses[’train’].append(train_loss)

93 losses[’test’].append(test_loss)

94

95 accs[’train’].append(train_acc)

96 accs[’test’].append(test_acc)

97

98 norms[’lin1’].append(lin1_norms)

99 norms[’lin2’].append(lin2_norms)

100

101 weights.append(cur_weights)

102

103 epoch_activations.append(activations)

104 epoch_labels.append(labels)
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