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ABSTRACT

Recent innovations in large language models (LLMs) have led to their widespread use,
but the long context problem remains a fundamental challenge. Transformer-based LLMs are
constrained by the quadratic scaling of the self-attention mechanism, which restricts most
popular LLMs to a context length of several thousand tokens. Many methods have been
introduced to extend the context of LLMs, including the Activation Beacon approach. In this
work, we propose two key advancements to the existing methodology. First, we generate long
context synthetic data across a variety of tasks for training context-extended models, which
can supplement or even replace expensive human-annotated data. Second, we introduce
a novel two-pass, adaptive compression technique for more intelligent compression of long
contexts. We find that the two strategies lead to orthogonal performance improvements on
real-world long context tasks, resulting in an overall 4.2% increase in accuracy compared to
the previous benchmark.
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Chapter 1

Introduction

1.1 Background

In recent years, rapid innovations in large language models (LLMs) have caused them to
become ubiquitous due to their impressive comprehension and contextual understanding
abilities. OpenAI’s ChatGPT has quickly become a popular option for anything from writing
essays to solving math problems to developing apps. However, one fundamental challenge
that remains for Transformer-based LLMs is the long context problem. Specifically, due
to the Transformer [1] self-attention mechanism scaling quadratically with the input, the
context length for many popular LLMs remains restricted to several thousand tokens. Meta’s
recently released Llama 3, for example, is still constrained to a context length of just over
8,000 tokens (about 6,000 words), which is only sufficient for processing a few articles, a few
code files, or a few chapters of a book.

A small context length is a key limitation for many potential applications. For example,
the original motivating use case for this work was to build a storytelling AI for sports matches,
utilizing an LLM to automatically write sports articles based on match information, player
interviews, and previous knowledge. However, without resolving the long context problem,
such a system would be difficult to build given that a single player interview alone may take
up most of the context length - restricting the additional input required for the AI to write
a cohesive, descriptive story. In summary, a significantly extended context length would
open up many new possibilities such as feeding entire books or codebases into the LLM,
potentially replacing the need for methods such as Retrieval-Augmented Generation (RAG)
altogether.

Given the importance of context extension, it is no surprise that substantial research has
been focused in this direction. Previous works have attempted to resolve the long context
problem in a variety of ways, such as through modifying the LLM architecture, attention
mechanism, and/or positional embeddings, or through learning a compressed version of the
context. While some of these methods have found success and recent claims of > 1,000,000
token context lengths have come forth, several challenges nonetheless face the majority of
these methods. First, many of the methods rely on finetuning with human-annotated/-
generated long context data. Due to the nature of the task, obtaining quality long context
data in this manner is both labor-intensive and expensive. Second, the resulting model
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accuracy is often weaker on long context tasks - such as failing trivial needle-in-a-haystack
tests - even when a “successful” context extension is claimed. Evaluations are often done
using only language modeling loss, and performance on real-world long context tasks is
regularly omitted or poor.

1.2 Contribution

Hence, in this work, we explore orthogonal methods of addressing the two aforementioned
challenges. We build off the previous Activation Beacon [2] work, which processes long
contexts by using a sliding window to process one short interval of the context at a time.
It is trained to compress each window into fewer tokens, thereby allowing for an extended
context. Unfortunately, Activation Beacon suffers from both of the previous shortcomings -
it is finetuned on human-annotated data, and its accuracy suffers in long context tasks due
to compression losses.

To address these shortcomings, we finetune Activation Beacon on synthetic (LLM-generated)
long context data. The synthetic data is constructed in a novel self-extension manner: rather
than utilizing a stronger teacher model such as GPT-4 for generation, the target LLM (the
LLM for which the context length is being extended via finetuning) is itself used to generate
the dataset. The data is inexpensive, easy, and quick to obtain. Using the same teacher
model as the student ensures that gains in long context understanding cannot be the result of
knowledge distillation. Furthermore, self-extension is particularly useful when working with
a state-of-the-art model or a highly specialized one, for which an appropriate teacher model
is difficult to obtain. To address the second concern, we devise a novel two-pass, adaptive
compression methodology to improve accuracy on long context tasks. On the first pass, the
relevancy of sections of the context are identified using attention scores. The second pass
re-processes the long context with an emphasis on the relevant sections, applying little to
no compression on the important parts while heavily compressing the irrelevant portions.
We evaluate the effect of both of these changes on a standard long context understanding
benchmark and demonstrate that they lead to orthogonal improvements in accuracy.

To summarize, our main contributions are as follows:

• We generate long context synthetic data for training context-extended models
and demonstrate its effectiveness as a supplement - or even replacement - for human-
annotated data when finetuning. Notably, we introduce a novel self-extension method-
ology where the LLM to be finetuned is itself used for data generation.

• We implement a novel two-pass, adaptive compression methodology for improving
performance on long context tasks. We demonstrate performance gains orthogonal to
the synthetic data improvements.
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1.3 Related Work

1.3.1 Long Context Methods

In this section, we briefly explore previous works related to LLM context extension, with a
focus on methods most similar to ours.

Memory and Compressed Memory. The earliest and most naive approach to han-
dling long contexts was to divide it into segments and pass each through the Transformer.
However, this is ineffective as it loses all context between segments. Transformer-XL [3] was
designed to learn longer-range dependencies - beyond the fixed-length context - by keeping
a cache of the previous segment’s activations (termed the “memory”) at each Transformer
layer. The Transformer architecture was then modified to allow attending to the previous ac-
tivations, creating a recurrence mechanism and thereby enabling the learning of longer-range
dependencies. Later, the Compressive Transformer [4] was introduced as an improvement
upon Transformer-XL: instead of caching the previous activations directly, they are first
compressed using a learned convolutional operator. This further extended the maximum
learnable context length. More recently, the Memorizing Transformer [5] replaced the com-
pression mechanism with a much larger cache and a k-nearest-neighbor (kNN) attention
mechanism. Instead of dealing with compression losses, the most relevant raw activations
are queried from the cache using kNN to serve as the “memory.” This tradeoff between
giving up all information contained in the less-relevant activations in the cache and being
able to use the most relevant activations in raw, uncompressed form was demonstrated to
be effective.

Using Attention as a Compressor. Mu et al. [6] realized that, instead of learning
a separate compression operator as in the Compressive Transformer, the LLM’s own self-
attention mechanism itself could be utilized as the compressor. They introduced Gisting,
which learns to compress arbitrary prompts into much fewer gist tokens. Training could
be done by simply making minimal modification to the attention mask. However, Gisting
was focused on the prompt compression task rather than long context modeling. It was
Landmark Attention [7] that, in simultaneous work, used a related idea for context extension.
Landmark Attention trains a special landmark token to represent each context window and
uses attention scores on the landmark tokens to retrieve relevant windows from memory. This
- in a similar way to the Memorizing Transformer - allows for inference with arbitrary context
length. Finally, Activation Beacon [2] combined ideas from Gisting and the Compressive
Transformer by compressing each window into fewer beacon tokens and accumulating those
as memory for the following windows. Its mechanism is described in significantly more detail
in Chapter 2, as we build directly off this work.

Other Notable Methods. Aside from memory-based methods, there are numerous
other strategies for adapting LLMs for long context. Perhaps the most well known are
methods such as Position Interpolation [8] and NTK-Aware scaling, which manipulate the
LLM’s RoPE [9] positional encoding to allow the LLM to handle unseen context lengths at
inference time. These methods are notable because they are orthogonal to ours. In a separate
vein, StreamingLLM [10] achieved reasonable perplexity on context lengths of millions of
tokens by simply discarding all tokens from the cache except for the first and most recent ones.
They uncovered the attention sink phenomenon: LLMs place a disproportionate amount
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of attention on the first token, which makes standard sliding window attention methods
ineffective. By simply keeping around the first token, perplexity was largely recovered.
StreamingLLM is mentioned because the attention sink phenomenon plays an eventual role
in our methodology.

Retrieval-Augmented Generation. A related field of LLM research worth mentioning
is Retrieval-Augmented Generation (RAG), which involves retrieving additional documents
to aid LLMs in producing accurate, relevant output - thereby no longer requiring all of
the knowledge to be stored in the model parameters. RAG can be thought of as a way to
deal with long context at the input level, but the top-k documents retrieved by RAG may
still not fit into the LLM context window. Therefore, context compression is useful as a
complementary technique to RAG. If sufficiently long context lengths are achieved, it may
even serve as a replacement.

1.3.2 Synthetic Data

In this section, we discuss previous works related to training LLMs with synthetic data.
Synthetic Data for Instruction Tuning. Initially, much of the work in synthetic

data was directed toward instruction tuning. Standard instruction tuning for an LLM re-
quires collecting thousands of quality human-annotated samples for supervised fine tuning
(SFT) and reinforcement learning with human feedback (RLHF). To make data collection
cheaper and faster, Self-Instruct [11] was introduced, which leverages an LLM’s capabilities
to generate numerous samples from a small “seed” set of human examples. Several extensions
and improvements to Self-Instruct followed, a notable example being the training method
for Taori et al.’s [12] Alpaca model, which used a stronger teacher model as the synthetic
data generator to train the student. More recently, IBM’s LAB [13] methodology introduced
a data curation taxonomy along with a multi-phased instruction-tuning strategy with re-
play buffers to train a model which obtained competitive performance to those trained on
human-annotated data.

Synthetic Data for Long Context. Besides instruction tuning, a few recent works
have found success in using synthetic data specifically for long context LLM training. An
et al.’s [14] INformation-INtensive (IN2) training methodology leverages a strong LLM to
generate question-answer pairs about a piece of text, which is then combined with distract-
ing text to form a long context. They showed that training with this data specifically helps
address the “lost-in-the-middle” problem, where LLMs tend to focus on the beginning and
end of a long context, forgetting information in between. More recently, Zhang et al. [15]
finetuned the new Llama 3 model using long context samples generated with GPT-4, ex-
tending the original 8K context length to 80K tokens. In addition to synthetic QA pairs,
they also included tasks such as summarization in the synthetic data. Finally, Xiong et al.
[16] proposed a method most similar to the self-extension method we employ: leveraging the
aforementioned Self-Instruct to generate synthetic data to extend Llama-2-Chat’s context
length, using Llama-2-Chat itself. However, our approach remains distinct in that we do not
require an initial set of example samples nor do we require an existing corpus from which to
extract long contexts.

16



Chapter 2

Preliminaries

This section is intended as an abbreviated, high-level introduction into the Activation Beacon
[2] method, for those unfamiliar, as a strong conceptual understanding is needed for this work.
Please refer to the original work for a more complete explanation.

2.1 Activation Beacon

2.1.1 Overview

Figure 2.1: Full diagram of Activation Beacon.

At a high level, Activation Beacon processes a long context by partitioning it into shorter
intervals and processing those sequentially. When processing each interval, Activation Bea-
con leverages the LLM’s own self-attention mechanism to compress the interval into fewer
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“beacon” tokens. These tokens are accumulated and prefixed when processing future inter-
vals, serving as a compressed memory of the past context. Let’s examine how this process
works in more detail.

First, note that we introduce two primary modifications to the LLM: a special bea-
con token, as well as a copy of the LLM’s multi-head attention (MHA) parameters which
is exclusively used for processing beacon tokens, which we denote MHAb. Also note that
throughout this work, we use a context interval of 1,024 tokens. Let’s look at how Activation
Beacon condenses a single interval. First, 1024

r
beacon tokens are appended to the end of

the sequence, where r represents the compression ratio. Then, the sequence is processed via
auto-regression, just as in a standard LLM. When processing the beacon tokens, however,
the MHAb parameters are used. The overall effect is to condense the raw key and value
activations of the context into the condensed activations of the beacon tokens. Note that
Activation Beacon employs a specific attention mask for the beacon tokens, termed step-
wise expansion: each beacon token attends to one more span than the previous. This is
demonstrated in Figure 2.1.

When processing the next interval, the condensed activations of the beacon tokens from
the previous interval are prepended to the 1,024 context (while the raw activations are
discarded). Then, we process the second interval just as before, with the distinction being
that all tokens in the sequence can attend to the previous beacon tokens. We continue
processing the remaining intervals in this manner, accumulating the condensed activations
in the prefix. Consequently, assuming the LLM has a context length of 4,096, Activation
Beacon is able to process contexts of up to length 3072×r+1024, where r is the compression
ratio, since 1,024 is allocated to the raw context interval and 4096 − 1024 = 3072 remains
for the accumulated beacon tokens.

2.1.2 Training

For training, only the beacon token embedding and the MHAb parameters are tuned; the
rest of the LLM is frozen. This is because we only need the LLM to learn to use beacon
tokens to compress activations; we don’t want to affect the normal token inference. Training
is performed using standard auto-regression.

Activation Beacon is trained on a mixture of data from RedPajama (pretraining) and
LongAlpaca (instruction tuning). It trains only on short samples of between 1,200 and
8,192 tokens long for efficiency, as the recursive nature of the process means that it can
be applied at inference to much longer context lengths than those seen in training. Fur-
thermore, during training, the compression ratio for each interval is sampled at random
from {2, 4, 8, 16, 32, 64, 128}. This ensures that the model sees a large range in the number
of prepended beacon tokens during training, which helps the emergent behavior on unseen
longer context lengths. Additionally, it teaches the model to condense contexts at a variety
of compression ratios.

During inference, the compression ratio is chosen to be the minimum which can still
process the entire context, and is the same for all intervals.

18



Chapter 3

Methods

3.1 Synthetic Data for Self-Extension

3.1.1 Overview

We generate long context synthetic data for training context-extended LLMs, as an inexpen-
sive supplement or replacement for human-annotated data. Specifically, we generate data
covering four unique long context tasks: question-answering (QA), summarization, few-shot
QA, and few-shot summarization. We employ a self-extension methodology: the LLM which
is being trained for context extension is the same as the one used for generating the syn-
thetic data. This is useful for two reasons: it ensures that performance gains cannot be the
result of mere knowledge distillation from a stronger teacher model, and it’s necessary when
working with a state-of-the-art or highly specialized model. A note on terminology: through
the remainder of this section, “target LLM” will be used to refer to the LLM which is used
for both data generation and training.

3.1.2 Data Generation

To construct our synthetic samples, we begin with the “great noun list,” a list of the 6,801
most frequently used common nouns in the English language. The target LLM is then
prompted to generate a long story about the noun; the noun essentially serves as a random
seed to produce a large variety of different stories. Next, for each story, we prompt the
target LLM to generate a question-answer pair about the story, as well as a brief summary.
During story generation, we use sampling with high temperature (0.7) and high top-k (50)
parameters for the LLM to encourage creativity and diversity in the produced stories. In
contrast, we use low temperature (0.1) and low top-k (10) parameters when generating the
question-answer pairs and summaries, so as to ensure factuality and relevancy. The exact
prompts used for these generations are provided in the Appendix.

With the question-answer pair and summary for each story, we can now construct the
samples for each of the four long context tasks. Regardless of task, we begin by selecting
N ∈ [3, 14] random stories/nouns. The bounds are chosen to ensure that the generated
example has a context length approximately between 1,200 and 8,192 tokens. The remaining
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steps are task specific, and the training example templates for each task are presented in
thorough detail in Figures 3.1 and 3.2.

• QA: We construct the long context by concatenating the N stories. Then, we randomly
select one of the N stories and its corresponding question-answer pair. The long context
training example is constructed by joining the long context and question as the input,
and the answer is the desired output. Notably, the story for which the question is asked
may be present anywhere (beginning, middle, or end) in the context, encouraging the
model to remember information from the entire context.

• Summarization: We construct the long context in an identical manner to QA. Then,
instead of only one story, we randomly select n ∈ [1,min(5, N)] stories and their
corresponding summaries. The training example’s input is formed from the long con-
text followed by a prompt to summarize the n chosen stories (identified by number
and noun), while the output is composed of the n summaries concatenated together.
Again, this task requires the model to memorize all of the stories in the long context
to succeed.

• Few-shot QA: By definition, few-shot examples are very different from the previous
ones. The input is composed of N−1 (story, question, answer) examples concatenated
together, the “shots,” followed by the story and question for the Nth noun. The
output is then the answer for the Nth example. Few-shot training tasks are included
to improve the model’s in-context learning abilities over long contexts.

• Few-shot Summarization: The training examples for few-shot summarization are
constructed nearly identically to few-shot QA, with the only distinction being sum-
maries replacing the question-answer pairs.

In this manner, we generate 4,000 training examples for QA, 2,000 training examples
for summarization, and 1,000 training examples each for the few-shot tasks. Note that our
methodology is very efficient - as creating the training examples doesn’t require further LLM
prompting beyond the initial story, QA, and summary generation - and can easily be scaled
to much longer context lengths simply by choosing larger N .

3.1.3 Training

For all of our experiments, the target LLM is Llama-2-7B-chat, which has a context length of
4,096. The training data totals 160,000 samples and is comprised of 143,000 examples sam-
pled from RedPajama, 9,000 examples from LongAlpaca, and the 8,000 synthetic samples as
previously described. The RedPajama samples represent standard long context “pretraining”
data, while LongAlpaca is a human-annotated instruction-following dataset. Each sample
has a context length between 1,200 and 8,192.

We train for one epoch of the whole dataset, or 160,000 steps, on a 8xA100 GPU node.
Training takes around 11 hours. All remaining training parameters follow the original Acti-
vation Beacon paper, including a context interval of 1,024, a batch size of 8, and a linearly
decaying learning rate starting at 5e-5.
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Figure 3.1: Synthetic sample template for question-answering and summarization.
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Figure 3.2: Synthetic sample template for few-shot QA and few-shot summarization.
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3.2 Two-Pass Adaptive Compression

3.2.1 Overview

In addition to synthetic data, we implement an orthogonal method for improving long context
understanding at inference time. The motivation is that, when performing most real-world
long context tasks, not all parts of the context are equally useful. This is especially the
case for tasks like question-answering, where only a short section of the context is needed
to correctly answer the question. However, the original Activation Beacon method does not
take this into account; the same compression ratio is applied throughout. This is a major
problem as Activation Beacon cannot even reliably complete the trivial passkey retrieval
task (retrieve a passkey placed at random within a large body of distracting text) at any
context lengths above around 8,000, since the interval containing the passkey is compressed.
We improve upon this by heavily compressing intervals of the context which we deem less
relevant to the task, while keeping important intervals uncompressed or lightly compressed.
This ensures that - as long as the relevant intervals are correctly identified - the LLM has a
better memory of the important parts to complete the task.

3.2.2 Two-Pass Mechanism

Adaptively compressing intervals based on their importance requires two passes over the
long context: the first pass to compute relevancy (and by implication, a compression ratio
for each interval), and the second pass to actually generate the output with the appropriate
compression ratios. In general, the first pass can be any retrieval-esque method which can
handle long context, such as BM25. However, instead of using a separate method for the
first pass, our inspiration is to simply perform an initial pass with Activation Beacon itself,
then use attention scores on the beacon tokens of each interval as a measure of importance.
A diagram of this method is presented in Figure 3.3 and described in more detail below.

For the first pass of Activation Beacon, we process the long context with a compression
ratio of 8. 8 is chosen because it is the lowest compression ratio which can handle a context
length up to 15,500, which is what we require (compression ratio of 4 can only handle a
maximum context of 4 × 3072 + 1024 = 13312). This means that each context interval
of 1,024 is compressed into 128 beacon tokens. After processing the entire context, we do
not generate output. Instead, we look at the attention scores on the beacon tokens of each
interval. Specifically, we average the attention scores at the final index across all layers, all
heads, and all 128 beacon tokens to produce a single attention score for each context interval.
We normalize them to sum to 1. Now, we have a measure of relevancy for each interval: if
the model attends strongly to a certain interval when about to generate the answer, it is
likely that that interval contains important information.

For the sake of clarity, let’s follow a real example throughout the next few steps. After
normalizing to sum to 1, the attention scores for this sample (which happens to have a
context length filling 7 intervals) were

(0.2178, 0.1436, 0.2178, 0.0757, 0.1079, 0.1299, 0.1118)
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Figure 3.3: Full diagram of the two-pass, adaptive compression method.

3.2.3 Normalizing Attention Scores

To go from a distribution of attention scores over intervals to a compression ratio for each
interval requires a few additional steps. The first issue is the attention sink phenomenon.
Previous works [10] have observed that LLMs place disproportionate amounts of attention
on the first few tokens, regardless of whether those tokens actually contain important infor-
mation. More generally, the LLM attention distribution has biases that exist regardless of
the context - not just on the attention sinks but also on recent tokens, while middle tokens
tend to go under-attended - which make a uniform prior inadequate. Therefore, while it
seems from the example that the first interval is very relevant, this may not actually be the
case.

We handle this by using a calibration dataset to obtain the “natural” attention distribu-
tion over beacon tokens. The distribution, of course, depends on how many total context
intervals there are. Therefore, we sample 50 calibration contexts for each number of intervals
between 2 and 15 from a dataset containing 10,000 RedPajama samples, 10,000 LongAlpaca
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samples, and 4,000 synthetic QA samples. Then, we process each sample with Activation
Beacon and a compression ratio of 8 (to align with the first pass). Finally, for each number
of context intervals (2-15), we compute the mean and standard deviation for the attention
score at each interval.

So, we take our attention distribution and normalize it using a z-score calculation with
the calibrated mean and standard deviation. We clamp the z-score between -3 and 3 and
then exponentiate the result with a base of 2. This transformation gives us only positive
attention scores where a scale factor of 2 correlates to a standard deviation difference.

Let’s go back to our example. For 7 context intervals,

• Calibration means: (0.2002, 0.0913, 0.0967, 0.1152, 0.1289, 0.1562, 0.2119)

• Calibration stds: (0.0786, 0.0271, 0.0280, 0.0354, 0.0396, 0.0432, 0.0742)

Computing z-scores and exponentiating yields

(1.1641, 3.8125, 8.0000, 0.4609, 0.6914, 0.6562, 0.3926)

Seems like the answer may be hidden in the third interval!

3.2.4 Computing Compression Ratios

We are ready to compute compression ratios, or equivalently, the number of beacon tokens
to allocate to each interval. The second perspective is the one we take. We first allow for a
temperature parameter α, which is applied as an exponent to each of the attention scores. α
controls the extent to which we compress or don’t compress intervals; a higher α means that
even a small difference in attention scores could lead to a large difference in compression.
Intuitively, the more sure we are that our attention scores are choosing the right intervals,
the higher the α we should use.

Next, we normalize the attention scores to sum to the maximum context length available
for beacon tokens, 3072, which gives us the appropriate number of beacon tokens to allocate
to each interval. We round the numbers to the closest valid beacon token amount (with
some additional nuance to prevent any overflows of the 3072 max length), finally yielding
the desired compression ratio for each interval.

In our example, using α = 1 for simplicity, we get (235, 772, 1616, 93, 140, 133, 79) for the
allocations, which translates to compression ratios of

(4, 2, 0, 4, 2, 4, 8)

The last step, of course, is to perform the second pass, using Activation Beacon to process
the long context and applying the calculated compression ratio for each interval. Note that
the original Activation Beacon method, by comparison, would’ve applied a compression ratio
of 2 for all intervals, potentially losing valuable information in the third interval.
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Chapter 4

Results

4.1 Experiment Setup

We evaluate both of our modifications on the five real-world tasks in the LongBench [17]
dataset: single-document QA, multi-document QA, summarization, few-shot learning, and
code completion, totalling 3,350 test samples. Following the original Activation Beacon
paper, and because most of the LongBench samples have context length less than 16,000,
we truncate all contexts to 15,500 tokens for evaluation. For the Llama-2-7B-chat baseline,
contexts are truncated to 3,500 tokens to fit within the 4K context length.

Note that the Llama-2-7B-chat and Activation Beacon (RP+LA) baselines are run our-
selves and differ from those presented in the Activation Beacon paper.1

4.2 Synthetic Data Results

Table 4.1: Results on LongBench. RP = RedPajama, LA = LongAlpaca, S = Synthetic

Method (Data) SingleDoc MultiDoc Summary FewShot Code Avg
Llama-2-7B-chat 24.12 23.3 24.45 63.11 55.33 36.83
Activation Beacon (RP+LA) 25.71 28.39 23.31 58.1 55.66 36.99
Activation Beacon (RP+LA+S) 25.15 29.89 24.59 58.74 58.22 37.97
Activation Beacon (RP+S) 25.48 29.14 23.58 55.93 58.12 37.05

We present the results for our synthetic data experiments in Table 4.1. Note that in
this section, we do not use the two-pass technique as we are focusing on the independent
effects of the synthetic data. We find strong evidence that training on our synthetic data
leads to improvements on long context understanding tasks. The original Activation Beacon
- trained on RedPajama and LongAlpaca data - is not much stronger than Llama-2-7B-chat,
with an average accuracy of 36.99 on the LongBench dataset. Training on an additional 8,000

1We were not able to replicate the exact results in the paper. Communication with the authors revealed
that they used additional training tricks not specified in their paper nor code, so we use our own baselines.
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samples of synthetic data increases the accuracy by 2.6% to 37.97. Notably, the increase
is observed across all tasks except for single-doc QA, suggesting that, perhaps due to the
diversity in our synthetic tasks, the model improves across a diverse range of evaluation
tasks as well. A possible reason for the lack of improvement in single-doc QA is that the
long contexts in our synthetic data do not perfectly align with the task, since they contain
a variety of shorter stories concatenated together rather than a single long story.

Furthermore, we perform an ablation study by removing the human-annotated LongAl-
paca data entirely, replacing it only with synthetic data for finetuning (recall that RedPajama
is just a large pretraining corpus and can be kept as is). Results show that Activation Beacon
finetuned only on synthetic data achieves comparable performance to the model finetuned
on human-annotated instruction tuning data, with an accuracy of 37.05. Overall, our find-
ings suggest that synthetic long context data can serve as a useful supplement, or even
replacement, for far more expensive human-annotated finetuning data.

4.3 Two-Pass Results

Table 4.2: Results on LongBench with various α.

Method (Data) SingleDoc MultiDoc Summary FewShot Code Avg
Llama-2-7B-chat 24.12 23.3 24.45 63.11 55.33 36.83
Activation Beacon (RP+LA) 25.71 28.39 23.31 58.1 55.66 36.99
Activation Beacon (RP+LA+S) 25.15 29.89 24.59 58.74 58.22 37.97
Two Pass (RP+LA, α = 3) 25.44 27.27 23.58 60.48 55.45 37.23
Two Pass (RP+LA+S, α = 1.5) 25.47 28.27 24.53 60.6 57.27 37.94
Two Pass (RP+LA+S, α = 3) 25.06 29.96 24.36 61.89 57.52 38.49
Two Pass (RP+LA+S, α = 4) 24.52 30.57 24.39 62.15 57.43 38.55

We present the results for our two-pass adaptive compression methodology in Table 4.2.
We analyze how two-pass impacts performance, with and without synthetic data. When
two-pass is applied on the baseline Activation Beacon model (no synthetic data), we observe
a modest improvement in accuracy of 0.6% to 37.23 on the LongBench dataset. However,
when applied to the Activation Beacon model trained with synthetic data, we see a larger
performance increase of 1.5% to 38.55, with an appropriately chosen α. The increase is
driven primarily by improvements on the multi-doc QA and few-shot learning tasks.

Overall, we find that the two-pass methodology leads to orthogonal improvements in
accuracy, albeit smaller compared to synthetic data. By utilizing both improvements, our
key finding is that LongBench accuracy can be increased by 4.2% compared to the previous
Activation Beacon benchmark.

4.3.1 Two-Pass Ablations

Only investigating the overall two-pass results doesn’t reveal the full story for why it works
or where the benefits are coming from. To better understand the mechanism, we performed
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ablation studies on using different compression ratios and different retrieval methods with
Activation Beacon.

Table 4.3: Results for different compression ratios. Evaluated on 10 samples per dataset.

Compression Ratio SingleDoc MultiDoc Summary FewShot Code Avg
128 14.29 10.62 21.09 56.43 54.85 29.79
64 15.26 14.67 22.31 50.64 57.2 30.22
32 17.07 9.67 22.53 52.32 60.45 30.41
16 21.24 14.61 23.42 58.28 60.4 33.82
Min (≤ 8) 28.24 13.33 24.94 66.43 56.95 36.62

In Table 4.3, we present the accuracies using different compression ratios, with the same
compression ratio being used across all intervals.2 Our key finding here is that our intuition
for maintaining low compression ratios to improve accuracy is a correct assertion: aver-
age accuracies increase consistently as the compression ratio is decreased. Therefore, the
motivation behind the two-pass methodology is valid.

Table 4.4: Results for different retrieval methods.

Retrieval Method NarrativeQA MultiFieldQA HotpotQA 2WikiMQA MuSiQue Avg
Random 21.7 34.81 34.85 30.12 18.03 27.9
BM25 23.05 38.69 38.81 31.08 16.44 29.61
Attention 25.49 35.76 38.8 34.23 17.04 30.26

In Table 4.4, we verify the assertion that attention scores is a good proxy for identifying
relevant and irrelevant context intervals. To do so, we evaluate 3 different methods of
retrieving the relevant intervals: selecting at random, using BM25 (a simple bag-of-words
retrieval algorithm), and using attention scores, just as in the two-pass mechanism. In all
cases, we retrieve the top 5 most relevant intervals as selected by the tested method and
compress those intervals minimally (compression ratio 2) while applying higher compression
to the remaining intervals. We evaluate on the specific datasets in LongBench for which we
expect retrieval to be most relevant, primarily those in the single-doc QA and multi-doc QA
categories.

We can draw two key conclusions from our findings: 1) attention is the strongest of the
three methods as a relevancy measure, and 2) adaptively compressing intervals based on
their relevancy - another fundamental idea behind the two-pass method - is also valid.

4.3.2 Passkey Retrieval

Finally, one of the most egregious shortcomings of the original Activation Beacon model
was that it failed one of the most naive long context evaluation tasks, passkey retrieval.

2Results are presented on a smaller subset of the LongBench dataset for efficiency; these results are not
directly comparable to those found in the previous tables.
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Figure 4.1: Passkey retrieval accuracy and fuzzy scores.

In passkey retrieval, the phrase “The passkey is {passkey, some 5-digit number}” is hidden
among a distracting long context, and the model is prompted to recite the passkey. As
seen in Figure 4.1, Activation Beacon cannot remember the passkey fully accurately at a
context length of 8,000 and beyond, though the fuzzy scores (which measure overlap in the
digits) reveal that some of the passkey is correctly maintained. This, of course, is due to the
compression being applied to the passkey.

By applying the two-pass method directly with α = 1, we see that the passkey is now
retrieved with perfect accuracy up to 16,000 context length (it is likely to work beyond 16,000,
but this is not tested as it requires calibration of additional compression ratios for the first
pass). Manually examining the compression ratios being applied in the second pass reveals
that the mechanism is correctly leaving the interval containing the passkey uncompressed,
allowing for the perfect retrieval.
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Chapter 5

Conclusion and Future Work

We identify two shortcomings of current long context methods, specifically the need for
expensive, human-annotated long context data and the poor performance of long context
models on real-world long context tasks, and introduce two novel solutions. First, we cre-
ate a synthetic dataset spanning four long context tasks in a self-extension manner: we
leverage the LLM which is being trained itself to generate the synthetic data. Second, we
implement a two-pass, adaptive compression methodology for more intelligent compression
of long contexts compared to the existing Activation Beacon method. Our experiments
demonstrate that these two strategies provide orthogonal improvements on Activation Bea-
con’s performance on real-world long context tasks. We hope that this work will contribute
to the continued advancement of long context understanding in LLMs, enabling additional
practical applications.

5.1 Efficiency

One major drawback worth noting about the two-pass methodology is that, well, it requires
two passes. This means (nearly) twice the compute and (nearly) twice the inference time
compared to the original method. While trading off efficiency for accuracy could be reason-
able, improving the efficiency of the two-pass method is clearly a major future objective.
There are several potential methods to do so, such as using a smaller draft model to perform
the first pass more efficiently, or to utilize some or all of the beacon tokens calculated in the
first pass in the second pass without re-processing them.

5.2 Multi-LoRA

Speaking of efficiency, introducing around 2B new parameters in the form of MHAb is also
inefficient. One strategy to reduce the number of new parameters to be introduced is with
LoRA [18]. To counteract potential accuracy losses due to the reduction in parameters, it
is logical to introduce a unique LoRA adapter for each compression ratio, which we term
Multi-LoRA. Similarly, we can also introduce unique beacon tokens for each compression
ratio, rather than using a single beacon token (a single embedding is very cheap in terms
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of parameters). Both of these modifications mean that the model can train a mixture of
“experts” specialized for each compression ratio, rather than making a single set of parameters
responsible for all ratios. Initial experiments show that this method achieves comparable
performance to MHAb, while reducing the number of added parameters significantly, so
additional work in this direction is desired.

5.3 Synthetic Data

Another exciting future direction is in improving the synthetic data generation. Models tend
to benefit from diverse training data, and we are interested in devising additional tasks for
the synthetic dataset, such as generating multi-hop question/answer pairs. Also, the way we
concatenate stories to form the long context is a bit naive; there is no continuity or similarity
between neighboring stories, which rarely reflects real-world use cases and may be the reason
for the poor performance on single-doc QA. Clustering stories by semantic similarity and/or
using prompts to interlink stories would be a logical next step toward generating higher
quality training examples.
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Appendix A

Synthetic Data Prompts
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