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ABSTRACT

Large mass ratio binary black hole systems are essential for studying the two-body prob-
lem in general relativity and are key sources of low-frequency gravitational waves. These
sources will be detectable by the Laser Interferometer Space Antenna (LISA), which is a
planned space-based gravitational-wave observatory. At lowest order, the secondary body
(smaller black hole) follows a geodesic of the more massive black hole’s spacetime. Post-
geodesic effects are needed to model the system accurately. Failure to incorporate these
effects can introduce bias in tests of general relativity and compromise precision measure-
ment of the larger black hole’s properties. One very important post-geodesic effect is the
gravitational self-force, which describes the small body’s interaction with its own contribu-
tion to a binary’s spacetime and includes the backreaction of gravitational-wave emission
driving inspiral. Another post-geodesic effect, the spin-curvature force, is due to the smaller
body’s spin coupling to spacetime curvature. Exploiting the large mass-ratio approximation,
this thesis presents a suite of mathematical and computational tools for precisely calculating
bound orbits and inspiral of spinning bodies around rotating black holes.

In Chapters 3 and 4, we employ a frequency-domain formulation to describe completely
general orbits of spinning bodies in curved spacetime. The small body’s spin influences
orbital frequencies and accumulated phases which are direct gravitational-wave observ-
ables. In Chapter 5, we combine the leading orbit-averaged backreaction of point-particle
gravitational-wave emission with the spin-curvature force to construct the trajectory and
associated gravitational waveform of a spinning body inspiraling into a Kerr black hole. To
achieve this, we use a near-identity transformation (NIT) to rapidly compute trajectories for
generic orbit and spin configurations. This efficiency is essential for the high-dimensional,
long-duration waveforms of large mass-ratio binary systems. In Chapter 6, we describe how
the framework of Chapters 3 and 4 can be used to generate gravitational wave fluxes for
spinning bodies on completely generic orbits and discuss a “shifted geodesic” approximation
scheme which could speed up the evaluation of these fluxes. This thesis introduces methods
for accurately modeling completely general orbits of spinning bodies in large mass ratio bi-
nary black hole systems, enhancing gravitational-wave models for the LISA science program,
and introducing a limit that can be computed precisely as a benchmark for calculations across
all mass ratios.

Thesis supervisor: Scott A. Hughes
Title: Professor of Physics
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Chapter 1

The Small and the Supermassive:
Introduction to EMRI modeling

The discovery of gravitational waves (GWs) opened a new window into the Universe, inau-
gurating the field of gravitational-wave astronomy [1]. GWs are ripples in spacetime caused
by accelerating massive objects. The chief emitters of GWs are coalescing binary systems
of compact objects, such as black holes (BHs) and neutron stars. I discuss the different
types of black holes in Sec. 1.1.1, including massive and supermassive black holes which
have masses ranging from 105 to 109 solar masses and reside at the center of almost every
galaxy. Future space-based gravitational wave detectors will enable observations of binary
coalescences involving massive black holes, allowing us to probe their environment, as well
as study their origin and growth. In Sec. 1.1.2, we briefly discuss black hole binary dynamics
and its significance for GW observations. When a smaller compact object (∼ 1 − 100M⊙)
enters a strong-gravity orbit around a massive black hole, a system called an extreme mass-
ratio inspiral (EMRI) is created. Gravitational waves produced by these systems will allow
us to tightly constrain theories of gravity and properties of massive black holes. Providing
a motivation for and overview of EMRI modeling is the focus of this introductory chapter.

1.1 Astrophysical black holes

1.1.1 Black hole demographics

Broadly speaking, there are two main classes of astrophysical black holes: stellar and (su-
per)massive. Stellar black holes typically have masses from 5 to several tens of solar masses
and form after the collapse of massive progenitor stars. In addition, there is considerable
evidence for massive black holes (MBHs) with masses between ∼ 105 − 107M⊙, and super-
massive black holes (SMBHs) with masses between ∼ 107−109M⊙. Intermediate mass black
holes (IMBHs) lie in the mass range between the stellar and massive classes. Primordial
black holes (PBHs), which are hypothesized to have formed in the very early Universe, are
another proposed class of black holes. Because their formation predates the first stars in the
Universe, their masses can potentially lie outside the range observed for stellar black holes.

Stellar black holes are the final evolutionary stage of stars with masses between ∼
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Figure 1.1: Schematic displaying the mass distribution of stellar compact objects. The
blue circles correspond to LVK black holes, while the red circles correspond to stellar black
holes detected electromagnetically. Image credit: Aaron Geller and the LVK collaboration,
Northwestern.

25 − 150M⊙. They have been observed both electromagnetically, primarily through X-
rays emitted by the material surrounding the black hole, and via gravitational waves using
laser interferometry. The first stellar black hole detected was in the X-ray binary Cygnus
X-1, with a mass between 15 and 25 M⊙, significantly exceeding the maximum mass of a
neutron star [2], [3]. The first gravitational-wave detection of a coalescence of two stellar
black holes was GW150914 [1], shown in Figure 1.2a. A census of stellar black hole de-
mographics through both electromagnetic and gravitational wave observations is shown in
Figure 1.1. These observations have shown evidence for an upper (∼ 50−150M⊙) and lower
(∼ 2 − 5M⊙) mass gap. The mass distribution of neutron stars and black holes observed
electromagnetically before the direct detection of gravitational waves displayed a clear lower
gap [4]. Since then, gravitational wave detections such as GW190814 and GW230529 have
provided evidence for the existence of compact objects in the lower mass-gap [5], [6]. There
have also been more recent candidates for mass-gap objects discovered electromagnetically;
see Refs. [7], [8]. These candidates can be seen in Figure 1.1.

There is strong evidence that the radio source Sagittarius A* at the Galactic Center is
a massive black hole, with a mass of approximately 4 × 106M⊙. This estimate is derived
from observing the orbits of S-stars near the Milky Way’s center [9]. The Event Horizon
Telescope (EHT), a global array of radio telescopes, has directly imaged Sagittarius A* and
the supermassive black hole at the center of M87 [10], [11]. Electromagnetic observations
suggest that all galaxies with central bulges likely host MBHs or SMBHs. Quasars, powered
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by accretion onto SMBHs, have been observed at redshifts up to z ≈ 10 [12]. The formation
mechanisms for MBHs and SMBHs are not well understood; they likely formed through a
combination of gas accretion and mergers of smaller black holes, but the initial masses and
formation processes of the seed black holes remain unknown.

Observational evidence for intermediate-mass black holes with masses around O(100M⊙)
has been scarce. The gravitational wave event GW190521 provided the first definitive ev-
idence of an IMBH [13]. Additionally, gravitationally lensed gamma-ray bursts, such as
GRB950830, offer further support for the existence of IMBHs [14]. While there is no con-
clusive evidence for primordial black holes (PBHs), their potential existence could address
key astrophysical questions. For example, asteroid-sized PBHs are considered potential dark
matter candidates, while heavier PBHs could serve as seeds for the formation of supermassive
black holes.

1.1.2 Black hole binaries and the relativistic two-body problem

Currently operating gravitational wave detectors LIGO, Virgo, and KAGRA (LVK) are
ground-based Michelson interferometers with Fabry-Perot cavities. Binary black holes are the
primary sources of gravitational waves detected by LVK, enabling extensive tests of general
relativity in the strong gravity regime [15], [16]. These tests probing strong-field gravity are
essential for advancing our fundamental understanding of gravity. Traditional tests of general
relativity have primarily examined weak-field gravity within the Solar System, such as the
Gravity Probe B experiment [17], where deviations predicted by alternative theories may
not be measurable. In addition to exploring fundamental aspects of gravity, gravitational
waves from binary black holes provide insights into the astrophysical formation channels of
compact objects [18].

We now discuss the various approximation schemes for modeling binary black holes sys-
tems in different regimes. As the binary’s orbit decays due to gravitational-wave emission
and coalesces, it progresses through three dynamic stages: inspiral, merger/plunge and ring-
down, shown in Figure 1.2a. During inspiral, the binary is widely separated, and small cor-
rections to Newtonian gravity accurately describes its evolution. Hence, it is well-described
by Post-Newtonian theory. When the system enters the merger phase, deviations from New-
tonian gravity become larger and the black holes coalesce in a strongly relativistic process.
Typically, approximations cannot be used to describe this highly non-linear regime and the
system is modeled using numerical relativity. After coalescence is the ringdown phase, where
the remnant of the merger equilibriates to the Kerr solution for a rotating black hole [19].
During ringdown, the spacetime transitions to a perturbative regime described by the Kerr
metric plus a perturbation. The three regimes are shown in Figure 1.2b.

In addition, certain types of black hole binaries are well-suited to a similar perturbative
treatment. For example, consider a stellar black hole orbiting close to a massive black hole.
This system is called an extreme mass ratio inspiral or EMRI, and the science we can achieve
with EMRIs motivates much of the work in this thesis. The smaller black hole acts as a test
body which perturbs the primary black hole’s spacetime, allowing us to describe the binary
using a perturbation to the Kerr metric to characterize the smaller body. This approach,
known as black hole perturbation theory, will be discussed in more detail in the following
sections of this chapter.
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(a)

(b)

Figure 1.2: (a) The top diagram shows the three stages (inspiral, merger and ringdown) of
a coalescing binary black hole system. The red and blue curves show the first gravitational
wave signal (GW150914) from the Hanford and Livingston detectors respectively. Image
©LVK collaboration, adpated version of figure taken from Nature Reviews Physics volume
3, pages 344–366 (2021) [20] and reproduced under a Creative Commons Attribution 3.0
Unported license. (b) Diagram displaying different limits of the general relativistic two-
body problem and the different methods used to model gravitational waves in each of these
limits. Image ©Timothy Rias, image from Wikipedia and reproduced under a Creative
Commons Attribution-Share Alike 3.0 Unported license.
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1.2 Unlocking the potential of EMRIs

1.2.1 Motivation for EMRI science

Currently operating detectors LIGO, Virgo, and KAGRA (LVK) are ground-based and focus
on GWs generated by pairs of stellar-mass compact objects in the frequency range ∼10–
1000 Hz; they have detected more than one hundred signals with the commencement of
Observing Run 4 (O4) in May 2023. Complementing this effort, Pulsar Timing Arrays
such as NANOGrav survey ultra-low nanohertz frequencies and recently detected the first
GW background signal [21]. On the horizon, in collaboration with NASA, ESA’s recently
adopted space-based interferometer LISA will target a rich population of millihertz sources,
bridging the frequency gap between LIGO and NANOGrav. Unique sources detectable in
the millihertz-GW sky by LISA are EMRIs.

This thesis focuses on developing models of gravitational waves produced by EMRIs,
which form when a stellar-mass compact object (the secondary with mass µ) is captured
into a strong-gravity orbit around a supermassive black hole (the primary with mass M) in
a galactic center. Supermassive black holes reside in galactic centers while a large popula-
tion of stellar-mass compact objects, including black holes and neutron stars, are dispersed
throughout the entire galaxy. Mechanisms such as two-body relaxation and dynamical fric-
tion can scatter the stellar-mass objects close enough to the supermassive black hole to
generate GWs, causing them to enter progressively tighter orbits governed by GW emission.
GW emission depletes the energy of such systems, causing orbits to tighten during the in-
spiral phase and culminate in a plunge event, when the secondary black hole merges with
the primary one.

EMRIs undergo thousands to millions of orbits in the LISA band; the extreme mass ratio
means that inspiral is slow, and many cycles are spent in the strong field region of the larger
black hole. Observations of EMRIs will therefore provide exquisitely precise measurements of
supermassive black hole masses and spins with a fractional precision of 10−4–10−6, surpassing
current LVK and X-ray observations [22]. With ten EMRI observations, the slope of the
supermassive black hole mass function is expected to be determined precisely near 106M⊙,
helping to disentangle the co-evolution of massive black holes with their host galaxies [23].
Due to their high mass ratios (ε = µ/M ∼ 10−7–10−4), EMRIs robustly test predictions of
the theory of general relativity (GR) in the strong-field regime [24]. The multipolar structure
of black holes will be measured at the subpercent level; any deviation from GR will thus be
compelling evidence for new fundamental physics. Finally, due to sky localizations of a few
square degrees, combined with cosmic distance measurements with better than 10% error,
EMRIs have the potential to sharply constrain the value of the Hubble constant [22].

To summarize, a few open astrophysics problems that gravitational waves from EMRIs
will address include: How well does general relativity describe the strong-field regime near the
horizon of black holes? What are the precise characteristics of massive black holes? What
are the dynamics of compact objects in the vicinity of supermassive black holes? Another
motivation for studying EMRIs is that the large mass ratio simplifies the equations of mo-
tion, yielding tractable, semi-analytic solutions via perturbation theory. These perturbation
theory models of EMRI motion can be compared to numerical simulations and extrapolated
to smaller mass ratios, offering insights into the dynamics of generic binaries.
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1.2.2 Black hole perturbation theory

We can only unlock the full potential of EMRI observations by developing gravitational
waveform models that both accurately capture strong gravity effects near black holes and
resolve the disparate length and time scales inherent to the EMRI system. Building such
models is only possible using black hole perturbation theory, where we treat the secondary
as a “test object” which minimally perturbs the primary to leading order. The EMRI’s small
mass ratio ε means we can treat the binary as the Kerr solution for a rotating black hole
[19] plus a perturbation characterizing the smaller body. Fig. 1.3 displays a schematic of an
extreme mass-ratio black hole binary system with mass ratio ε = µ/M .

At leading order in ε, the small body’s four-momentum pα obeys the geodesic equation,

Dpα

dτ
= 0 , (1.1)

where D/dτ is the covariant derivative along the orbit and τ is proper time. Post-geodesic
effects, which can be modeled by adding a forcing term to the right-hand side,

Dpα

dτ
= fα , (1.2)

describe physics beyond the leading “free fall” of a body. Schematically, we can write the
spacetime metric of a large mass-ratio binary as

gbin
µν = gµν + h(1)µν︸︷︷︸

O(ε)

+ h(2)µν︸︷︷︸
O(ε2)

+O(ε3) . (1.3)

Here, gbin
µν is the metric describing the binary system, and gµν is the “background” metric,

describing its largest member. The contributions h(1)µν and h
(2)
µν are first- and second-order

perturbations arising from the binary’s smaller member. If the metric was unperturbed,
so that we described the binary’s spacetime as just of the background, gbin

µν = gµν , then the
trajectory of a non-spinning body would be given by the geodesic equation in the background
gµν (see Sec. 2.1). The trajectory of a spinning body in this spacetime would be given by
the Mathisson-Papapetrou equations, discussed in detail in Sec. 2.2. Including the metric
perturbations h(n)µν introduces self-force effects into the dynamics and leads to the decay of
the orbit due to gravitational radiation reaction.

Therefore, post-geodesic corrections include the gravitational self-force, which is the in-
teraction of an object with its own perturbation to the spacetime, and the spin-curvature
force, due to the coupling between the secondary object’s spin with the background space-
time curvature. In the adiabatic regime—characterized by slow GW emission—the trajectory
evolves smoothly between geodesic orbits which gradually tighten due to GW emission. Adi-
abatic evolution is driven at leading order by the first-order dissipative self-force; the most
important corrections to adiabatic evolution, called “post-adiabatic terms,” include contri-
butions from the secondary spin, the conservative first-order self-force, and the dissipative
second-order self-force.
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M ∼ 105−8M⊙
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Figure 1.3: Left. Binary black hole system with a large mass ratio; M and µ label the
masses, and J⃗ and S⃗ label the spins of the primary and secondary black holes respectively.
Right. The spacetime metric of the primary black hole is gµν and hµν is the correction to the
metric due to the secondary black hole. At lowest order, the secondary black hole follows a
geodesic of the gµν metric.

1.3 Drivers of inspiral evolution

1.3.1 Post-geodesic corrections

Accurate EMRI modeling for measuring black hole parameters1 with LISA necessitates the
inclusion of post-geodesic corrections, which encompass backreaction from gravitational-wave
emission and drive the inspiral. Additional corrections, including the spin-curvature force,
arise if the secondary black hole possesses intrinsic angular momentum viz., secondary spin.

We can write the force on the right-hand side of Eq. (1.2) as

fα = f (1)α︸︷︷︸
O(ε)

+ f (2)α︸︷︷︸
O(ε2)

+O(ε3) . (1.4)

The first-order term f (1)α arises from h
(1)
µν as well as the spin-curvature force, while f (2)α is

due to h(2)µν . Explictly, we have

f (1)α = f (1)α
mono + fαSCF , (1.5)

f (2)α = f (2)α
mono + fαdipole , (1.6)

where fαSCF is the spin-curvature force, and f
(1)α
mono, f (2)α

mono, and fαdipole are contributions to
the self-force. If the small body is a compact object, higher multipoles can generally be
neglected, meaning that the pole-dipole approximation is used and the body is described
entirely by its mass µ and spin S. The subscript “mono” denotes that the force is due to the

1For a list of physical parameters describing an EMRI model and estimates for the accuracy of parameter
inference, see Ref. [25].
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mass of the small body (the body’s mass monopole); the subscript “dipole” denotes that the
force is due to the spin of the small body (the body’s mass current dipole). Here we provide
an overview of different forcing effects, including those which are not part of the analyses
presented in this thesis.

Many of these terms can also be broken into dissipative and conservative contributions.
For example, the first-order self force can be usefully written

f (1)α
mono = f

(1)α
diss + f (1)α

cons . (1.7)

The dissipative contribution, f (1)α
diss , includes the leading radiation reaction and secular decay

of the orbit; the conservative part of this force, f (1)α
cons , describes forcing terms which perturb

orbital elements without secular change to the orbit. Dissipative terms change sign under
time reversal; conservative forces are time reversal symmetric. Although the self force con-
tains both dissipative and conservative pieces, the spin-curvature force as described by the
Mathisson-Papapetrou equations is conservative. For the purposes of the following discus-
sion, it will be useful to divide the other forcing terms similarly, although it must be noted
that it is somewhat tricky to split some of the second-order forcing terms into dissipative
and conservative pieces:

f (2)α
mono = f

(2)α
diss + f (2)α

cons , (1.8)
fαdipole = fαdipole,diss + fαdipole,cons . (1.9)

1.3.2 Adiabatic approximation and post-1-adiabatic terms

In this work, we study very large mass ratio inspirals for which the time scale of orbital
evolution is significantly longer than the time scale for individual orbits. This enables us
to use an adiabatic approximation, which treats the inspiral as an orbit whose elements
are secularly decaying due to GW backreaction. The adiabatic approximation neglects the
conservative self force, but provides a framework that allows us to identify post-adiabatic
corrections to the leading adiabatic evolution. To build an inspiral in this framework, we
break the first-order dissipative self force into an orbit-averaged adiabatic part fαad plus
oscillations about this average, fαoscil:

f
(1)α
diss = fαad + fαoscil , (1.10)

where
fαad = ⟨f (1)α

diss ⟩ , fαoscil = f
(1)α
diss − ⟨f (1)α

diss ⟩ . (1.11)

The angle brackets denote a particular average over the orbit; see Eq. (1.4) of Ref. [26]
for a precise definition of this average. A similar decomposition into orbit-averaged and
oscillating pieces can be applied to other forcing terms. This decomposition introduces a
two-time-scale expansion, separating orbit-averaged quantities which evolve slowly, on the
system’s radiation-reaction timescale, from those which oscillate rapidly, on the system’s
orbital timescale. This expansion provides an excellent framework for computing the con-
tributions of rapidly oscillating perturbations to the phase of the gravitational waveform as
well as the slowly evolving secular contributions [27].
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Neglecting the issue of resonances (moments in the inspiral when two of the frequencies
are in a small integer ratio, which complicates the averaging needed to define fad [27]–[30]),
the influence of each of the post-geodesic forces on the phase of the waveform takes the form

Φ = φ0ε
−1︸ ︷︷ ︸

adiabatic: fαad

+ φ1ε
0︸︷︷︸

post-1-adiabatic: fαSCF+

fαoscil+f
(1)α
cons +⟨f (2)αdiss ⟩+⟨fαdipole,diss⟩

+ . . . , (1.12)

where the φ coefficients are dimensionless and do not depend on ε. The leading-order
contribution to inspiral phase arises from the adiabatic, first-order force term fαad. Neglecting
resonances, the most important sub-leading terms come from post-1-adiabatic order forces,
which phase counting analyses have shown must be included in order for the waveform to be
accurate enough to match phase with LISA sources (e.g., to serve as “detection templates”
[27]). The post-1-adiabatic order contribution to the inspiral phase comes from the oscillatory
part of the dissipative first-order force fαoscil, the conservative part of the first-order self
force ⟨f (1)α

cons ⟩, the orbit-averaged dissipative part of the second-order self force, and the spin-
curvature force.

The fαSCF and ⟨fαdipole,diss⟩ terms in the post-1-adiabatic piece of the gravitational-wave
phase (1.12) arise due to the spin of the secondary black hole. These two contributions to
the EMRI waveform are shown graphically in Fig. 1.4. First, the kinematics of the orbit
changes due to the conservative spin-curvature force, given by the Mathisson-Papapetrou-
Dixon equations [31]–[33]; we focus on this in Chapters 3 and 4. This corresponds to the
fαSCF contribution to the post-1-adiabatic term of the GW phase in Eq. (1.12). In addition,
there is a correction to the GW fluxes of an orbiting small body due to the dipole term in
the stress-energy tensor Tµν ; we discuss this in Chapter 6. This corresponds to the fαdipole,diss
contribution to the post-1-adiabatic term of the GW phase in Eq. (1.12). The perturbed
orbital kinematics must be combined with GW fluxes to generate a gravitational-radiation-
driven inspiral; we compute inspirals which include spin-curvature force and point-particle
gravitational wave fluxes in Chapter 5.

The flowchart at the bottom of Fig. 1.4 breaks down the steps associated with each
calculation. The top row of the flowchart shows the steps associated with characterizing
spinning-body orbits and their frequencies, while the bottom row displays the steps required
to compute spinning-particle gravitational wave fluxes. Combining these two pieces together
yields a complete accounting of spinning-secondary effects in extreme mass-ratio inspiral
trajectories (the dark blue box in the bottom right corner of Fig. 1.4).

1.4 Past work on spinning-body motion near black holes

A great deal of work, both numerical and analytic, has gone into developing models for the
dynamics of and gravitational waves produced by systems containing spinning members. Two
limiting approaches have been used extensively for analytic modeling of such systems: the
post-Newtonian PN approximation, formally good when members of the binary are widely
separated and orbital speeds are small compared to light, and the extreme mass-ratio limit
described in Sec. 1.2.2. The effective-one-body (EOB) framework synthesizes elements from
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Figure 1.4: Top: Schematic of the different spinning-secondary contributions to large-mass
ratio gravitational-wave driven trajectories. The orange text labels which thesis chapters
describe the calculation of corresponding contributions. Bottom: Flowchart outlining the
steps associated with the calculation of the different spinning secondary contributions to the
inspiral trajectory.

post-Newtonian, extreme-mass-ratio, and numerical relativity results in order to construct a
useful prescription for modeling inspirals across a wide parameter space.

1.4.1 Review: Orbital motion of spinning bodies

The dynamics of comparable mass binaries with spinning components has been explored
in many post-Newtonian studies [34]–[40]; complementary to this, binaries with spinning
members have been investigated extensively in numerical relativity simulations [41]–[46].
Considerable work has also been undertaken to develop EOB models that include spin and
quantify their reliability [47]–[53]; a comparison of spinning effective one body Hamiltonians
can be found in Ref. [54]. In addition, studies of the relativistic three-body problem cor-
respond to the spinning two-body problem in certain regimes. For example, in hierarchical
triple systems, there can be a correspondence between the orbital angular momentum of the
so-called “inner” binary (a two-body system which itself orbits a massive black hole) and the
spin of a test body. This correspondence holds if the separation of the inner binary is much
smaller than the curvature scale associated with the black hole about which the inner binary
orbits [55].

A number of studies have examined the motion of spinning bodies orbiting black holes.
Many of these studies have focused either on numerical treatment of the Papapetrou equa-
tions (for example, Refs. [56]–[58]), or on constrained orbital geometries such as nearly
circular or nearly equatorial orbits. For example, Ref. [59] finds analytic expressions for

23



the radial, meridional, and spin precession frequencies, including terms quadratic in spin
for the limit of nearly circular, nearly equatorial orbits (see in particular Sec. IV B of [59]).
Treating the system to first order in the small body’s spin has astrophysical relevance in the
context of EMRIs. A scheme of this type was outlined in Ref. [60] and elucidated further in
Refs. [61], [62]. Spinning-body orbits have been computed to first order in spin using similar
frameworks in Refs. [63]–[65]. A useful effective potential approach presented in Refs. [66]–
[68] describes equatorial orbits when the spin of the small body is aligned with the orbit.
This method has been employed to compute corrections to orbital frequencies and explore
resonance effects for equatorial orbits [69]–[71]. Corrections to the innermost stable circular
orbit (ISCO) location of spinning-body motion have also been calculated [72]–[77].

Another thread to this research is the use of a canonical Hamiltonian framework to
describe the motion of a spinning body [78]. An explicit Hamiltonian for was presented to
linear order in spin in Ref. [79], and later extended to quadratic order by Vines et al. [80].
This canonical Hamiltonian picture provides the basis for certain spinning EOB models [81],
[82]. Witzany et al. presented an overview of Hamiltonian formulations of spinning-body
motion in Ref. [83]. A Hamilton-Jacobi formulation of spinning-body motion, which exploits
the separability of parallel transport in order to determine the turning points analytically,
is also known and can be used to compute corrections to the orbital frequencies [84]. This
analysis shows that the equations of motion “almost” separate — the librational motion in
the radial and polar directions is coupled only by the way in which the libration region
varies over an orbit. As such, Witzany shows that the equations of motion are amenable to
computing important quantities such as frequencies associated with the orbits of spinning
bodies.

Post-Newtonian analyses long ago indicated that spinning binaries exhibit chaotic dy-
namics [85]–[87]. The integrability of eccentric, spinning back hole binaries up to second
post-Newtonian order was demonstrated in Ref. [39], with action angle variables presented ex-
plicitly in Ref. [40]. In the extreme mass ratio limit, numerical studies in both Schwarzschild
[88] and Kerr [89], [90] backgrounds found evidence for chaotic motion. Witzany’s linear-
in-spin Hamilton-Jacabi analysis indicates that terms beyond linear in spin are necessary
in order for orbits to exhibit chaos [84], and numerical studies have shown that prolonged
resonances leading to chaotic motion can be attributed to terms that are quadratic in spin
[91]. Recently, it has been shown that a Carter-like integral exists up to second-order in the
small body’s spin for a test body possessing exactly the spin-induced quadrupole moment
expected for a Kerr black hole [92], [93].

1.4.2 Review: Gravitational radiation from spinning bodies

The first-order, orbit-averaged adiabatic self force, fαad ≡ ⟨f (1)α
diss ⟩, acts to evolve the conserved

quantities describing an orbit. The rates of change of these quantities (often called “fluxes”)
can be inferred by computing how the orbiting body perturbs the curvature of the binary
spacetime. Most importantly, computing the adiabatic contribution only requires knowledge
of the curvature perturbation at null infinity and on the large black hole’s event horizon; we
do not need these quantities at the orbit itself [94], [95]. These fluxes, and thus knowledge
of how to evolve conserved orbital quantities, can be evaluated along generic orbits around
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a Kerr black hole to obtain corresponding adiabatic inspirals and waveforms [26], [96]–[99].
The full first-order self force, including pieces that we neglect in our analysis, have been

calculated on bound orbits around a Kerr black hole [100], [101] and used to generate non-
spinning body inspirals [102]–[104]. Second-order self-force calculations of f (2)α

mono are just
beginning to be applied to astrophysically interesting situations. Work to date has focused
on computing this force in the Schwarzschild spacetime [105]–[107]. Detailed comparisons of
effective-one-body waveforms with second-order self-force results have been undertaken [108],
[109]. This already provides important constraining information which has been exploited
to refine the description of binaries in the effective one-body approach [110].

The spin-curvature force fαSCF is entirely conservative and given by the Mathisson-
Papapetrou equations discussed in Sec. 2.2. It has been proven that the motion of a spinning
body under the conservative piece of the self-force is Hamiltonian to first order in mass and
spin; the explicit form of this Hamiltonian was also obtained, which will likely be useful
for EMRI waveform calculations [111]. Inspirals along generic orbits around a non-rotating
black hole including both the spin-curvature force as well as the first-order conservative and
oscillating dissipative pieces of the self-force were computed in Ref. [112]. The impact of
different spin supplementary conditions on gravitational wave fluxes has been explored for
both Schwarzschild [113] and Kerr [114] black holes. It is crucial to understand and quantify
the effect a small body’s spin has on the dynamics of black hole orbits and the gravitational
waves produced in spinning-body EMRI systems. The measurability of the secondary spin
and its influence on EMRI parameter estimation has been assessed in previous studies [115]–
[118].

For a spinning body orbiting a Kerr black hole, it is possible to construct the dissipative
part of fαdipole, which enters at post-1-adiabatic order, from the time-averaged energy and
angular momentum fluxes computed at infinity and at the black hole horizon [119]. Quasi-
circular equatorial orbits with the spin of the small body aligned with the orbit provide a
useful limit that has been studied extensively, and is often used to verify new methods for
calculating gravitational wave fluxes. The fluxes have been evaluated for circular orbits of
spinning bodies in both Schwarzschild [113], [120] and Kerr spacetimes [117], [121]–[123], as
well as for eccentric equatorial orbits with aligned spin [67], [124] and quasi-circular orbits
with misaligned spin [125]. Skoupý and Lukes-Gerakopoulos used these fluxes to compute
the adiabatic inspiral of a spinning body in the equatorial plane of a Kerr black hole [126].
A study of the effect of a spinning secondary on the self force in a Schwarzschild background
with aligned spin and a circular orbit was conducted by Mathews and collaborators [127].
Very recently, the asymptotic fluxes for generic spinning body orbits were computed for the
first time [128]; part of this analysis is discussed in Chapter 6 of this thesis.

1.5 Overview of this thesis

The goal of this thesis is to characterize the role of secondary spin in the large mass-ratio limit
of the general relativistic two-body problem, with the aim of precisely modeling gravitational
wave signals produced by EMRIs. In particular, this thesis uses black hole perturbation the-
ory to study the influence of the spin of the secondary black hole on (1) binary dynamics and
(2) gravitational radiation. The remaining chapters comprise a technical introduction, sev-
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eral published papers, preliminary results from ongoing work, and final conclusions. Much of
the subsequent chapters rely on a shared theoretical background, which I outline in Chapter
2. All of the work in this thesis is theoretical, with a mixture of analytic and numerical
analysis. The work in Chapters 3, 4, 5, and 6 is original and my own. Collaborators are
acknowledged at the beginning of each chapter. In specific cases, we compare our work to
existing results in the literature and clearly indicate where we conduct these comparisons.

Chapter 3 presents results that were originally published in the paper Precisely comput-
ing bound orbits of spinning bodies around black holes. I. General framework and results for
nearly equatorial orbits [Drummond & Hughes, 2022a] [129]. In this paper, we describe a
method for precisely computing bound orbits of spinning bodies about black holes. Exploit-
ing the fact that in the large mass-ratio limit spinning-body orbits are close to geodesics (in
a sense that can be made precise) and using closed-form results describing the precession
of the small body’s spin along black hole orbits, we develop a frequency-domain formula-
tion of the motion which can be solved very precisely. We examine a range of orbits with
this formulation, focusing on orbits which are eccentric and nearly equatorial, but for which
the small body’s spin is arbitrarily oriented. Chapter 4 is based on the companion paper
for Chapter 3, Precisely computing bound orbits of spinning bodies around black holes. II.
Generic orbits [Drummond & Hughes, 2022b] [130]. In this paper, we apply our formulation
to the fully generic case—orbits which are inclined and eccentric, with the small body’s spin
arbitrarily oriented.

Chapter 5 presents results that were originally published in the paper Extreme mass-ratio
inspiral and waveforms for a spinning body into a Kerr black hole via osculating geodesics
and near-identity transformations [Drummond et al., 2024] [131]. In this paper, we use an
osculating geodesic integrator, which treats the worldline as evolution through a sequence
of geodesic orbits, as well as near-identity (averaging) transformations, which eliminate de-
pendence on orbital phases, allowing for very fast computation of generic spinning-body
inspirals. The resulting inspirals and waveforms include all critical dynamical effects which
govern such systems (orbit and precession frequencies, inspiral, strong-field gravitational-
wave amplitudes), and as such form an effective first model for the inspiral of spinning bodies
into Kerr black holes. We emphasize that at present, this calculation is not self-consistent,
since we neglect effects which enter at the same order as effects we include. However, the
analysis demonstrates that the impact of spin-curvature forces can be incorporated into ex-
treme mass-ratio inspiral waveform tools with relative ease, making it possible to augment
these models with this important aspect of source physics.

Chapter 6 focuses on the computation of gravitational-wave fluxes for spinning particles
orbiting black holes. This chapter contains parts of the paper Asymptotic gravitational-wave
fluxes from a spinning test body on generic orbits around a Kerr black hole [Skoupý et al.,
2023] [128], as well as presenting the methodology for an approximation scheme to compute
GW fluxes. Chapter 7 provides a summary of the work presented in the thesis as well as
plans for future work.
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Chapter 2

Technical background

In this chapter, I present a brief discussion of technical material relevant to the rest of
the thesis. In Sec. 2.1, I review properties of geodesics of the Kerr metric, which describe
rotating black hole spacetimes in vacuum. Section 2.2 discusses spinning-body orbits in
curved spacetimes, while Section 2.3 describes the calculation of the leading order terms in
adiabatic radiation-reaction using the Teukolksy formalism.

2.1 Geodesics in Kerr spacetime

Because we describe orbits of spinning bodies as perturbations of the orbits of non-spinning
bodies, we begin by briefly reviewing the properties of Kerr geodesics. This content has been
discussed at great length elsewhere [132]–[141]; here we provide a brief synopsis in order for
the thesis to be self-contained, and to introduce important notation and conventions.

2.1.1 Kerr metric and constants of motion

The metric for a Kerr black hole with mass M and spin parameter a in Boyer-Lindquist
coordinates t, r, θ, ϕ [142] reads

ds2 = −
(
1− 2r

Σ

)
dt2 +

Σ

∆
dr2 − 4Mar sin2 θ

Σ
dt dϕ+ Σ dθ2

+
(r2 + a2)

2 − a2∆sin2 θ

Σ
sin2 θ dϕ2, (2.1)

where
∆ = r2 − 2Mr + a2 , Σ = r2 + a2 cos2 θ . (2.2)

(Here and throughout we use geometrized units, with G = 1 = c.)
Four constants of motion characterize Kerr geodesics. The first is the rest mass µ of

the orbiting body. It is determined by requiring p̂α = µûα (where p̂α is the geodesic’s 4-
momentum, and ûα its 4-velocity; we use the hat accent to denote quantities defined along
geodesics) and by requiring the norm of the 4-velocity to be −1. The Kerr metric (2.1) is
independent of the coordinates t and ϕ, implying that the spacetime possesses two Killing
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vectors ξαt and ξαϕ , corresponding to time translation and axial symmetries respectively.
These Killing vectors yield two more constants of the motion, the energy per unit mass Ê
and axial angular momentum per unit mass L̂z:

Ê = −ξαt ûµ = −ût , (2.3)

L̂z = ξαϕ ûµ = ûϕ . (2.4)

Note that we have normalized these quantities by the mass µ of the orbiting body.
The Kerr metric also admits an anti-symmetric Killing-Yano tensor [143], given by [125]

Fµν = a cos θ
(
ē1µē

0
ν − ē0µē

1
ν

)
+ r

(
ē2µē

3
ν − ē3µē

2
ν

)
, (2.5)

where

ē0µ =

[√
∆

Σ
, 0, 0,−a sin2 θ

√
∆

Σ

]
, (2.6)

ē1µ =

[
0,

√
Σ

∆
, 0, 0

]
, (2.7)

ē2µ =
[
0, 0,

√
Σ, 0

]
, (2.8)

ē3µ =

[
−a sin θ√

Σ
, 0, 0,

(r2 + a2) sin θ√
Σ

]
. (2.9)

This tensor has the defining property

∇γFαβ +∇βFαγ = 0 . (2.10)

Let us define the vector
L̂ν = Fµν ûµ . (2.11)

We will call this the orbital angular momentum 4-vector, since it has the dimensions of
orbital angular momentum (per unit mass of the orbiting body), and reduces to the orbital
angular momentum in the Schwarzschild limit.

Notice that in Refs. [84] and [144], this vector is defined with the index contracted on the
second index of Fµν . Because of the Killing-Yano tensor’s antisymmetry, this results in an
overall sign difference. With the definition (2.11), equatorial orbits have L̂θ ∝ −L̂z. This is a
sensible correspondence, since (by right-hand rule) one expects the angular momentum of a
prograde equatorial orbit (for which L̂z > 0) to point opposite to the direction of increasing
polar angle θ. We have found that this sign swap is needed to establish correspondence
between our results and important examples of past literature. In particular, past work
which examined equatorial orbits of bodies with spin aligned with the large black hole’s spin
and with the orbital angular momentum typically designate the small body’s spin as pointing
along the “z direction.” This correspondence requires the “z direction” (i.e., parallel to the
large black hole’s spin) to point in the direction of decreasing θ at the equatorial plane.

From the antisymmetry of Fµν we see that

L̂µûµ = 0 . (2.12)
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Further, using Eq. (2.10), it is straightforward to show that L̂µ is parallel-transported along
geodesics:

DL̂β

dτ
≡ ûα∇αL̂β = 0 . (2.13)

It is also not hard to show that the square of this vector

K̂ = L̂µL̂µ (2.14)

is conserved, i.e. that
DK̂

dτ
≡ ûα∇αK̂ = 0 . (2.15)

Carter [145] first demonstrated the existence of a fourth conserved constant for Kerr geodesic
motion. This constant arises from a Killing tensor Kµν , which can be thought of as the
“square” of Fµν ,

Kµν = FµαFν
α . (2.16)

The corresponding constant
K̂ = Kαβû

αûβ (2.17)

is identical to the K̂ defined in (2.14), and is usually called the “Carter constant.” For many
analyses, it is particularly convenient to combine K̂, Ê, and L̂z into a related conserved
quantity Q̂ given by

Q̂ = K̂ −
(
L̂z − aÊ

)2
(2.18)

= p̂2θ + a2 cos2 θ̂
(
1− Ê2

)
+ cot2 θ̂ L̂2

z . (2.19)

Confusingly, Q̂ is also often called the Carter constant; we will use both K̂ and Q̂ from time
to time in our analysis. The constant Q̂ is particularly useful for discussing geodesics, so we
focus on this version of the Carter constant in the remainder of this section.

2.1.2 4-velocities, turning points, and parameterization

Carter first showed that the existence of these conserved quantities permits the geodesic
equations to be separated in Boyer-Lindquist coordinates [145]. These separated equations
are given by

Σ2

(
dr̂

dτ

)2

= [Ê(r̂2 + a2)− aL̂z]
2 −∆[r̂2 + (L̂z − aÊ)2 + Q̂] ≡ R(r̂) , (2.20)

Σ2

(
dθ̂

dτ

)2

= Q̂− cot2 θ̂L̂2
z − a2 cos2 θ̂(1− Ê2) ≡ Θ(θ̂) , (2.21)

Σ
dϕ̂

dτ
= csc2 θ̂L̂z + aÊ

(
r̂2 + a2

∆
− 1

)
− a2L̂z

∆
≡ Φ(r̂, θ̂) , (2.22)

Σ
dt̂

dτ
= Ê

(
(r̂2 + a2)2

∆
− a2 sin2 θ̂

)
+ aL̂z

(
1− r̂2 + a2

∆

)
≡ T (r̂, θ̂) . (2.23)
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Because these are evaluated strictly along geodesic orbits, we parameterize them using the
coordinates (r̂, θ̂, ϕ̂, t̂) of such an orbit. Equations (2.20) – (2.23) are parameterized using
proper time τ along the orbit. As written, these equations are not completely separated: the
factor Σ = r̂2 + a2 cos2 θ̂ couples the radial and polar motions. By introducing a new time
parameter λ, commonly called “Mino time” and defined by dλ = dτ/Σ [94], the radial and
polar equations of motion decouple, yielding(

dr̂

dλ

)2

= R(r̂) ,

(
dθ̂

dλ

)2

= Θ(θ̂) ,

dϕ̂

dλ
= Φ(r̂, θ̂) ,

dt̂

dλ
= T (r̂, θ̂) . (2.24)

Mino-time λ is a very convenient parameterization for describing the strong-field dynamics of
Kerr black hole orbits. By using dt̂/dλ, it is not difficult to convert from λ to Boyer-Lindquist
time t, which naturally describes quantities as measured by a distant observer.

To understand the turning points of bound geodesics and the parameterization that we
use, begin by carefully examining the functions R(r̂) and Θ(θ̂). For bound orbits, R(r̂) can
be written

R(r̂) = (1− Ê2)(r1 − r̂)(r̂ − r2)(r̂ − r3)(r̂ − r4) , (2.25)

where the roots are ordered such that r4 ≤ r3 ≤ r2 ≤ r̂ ≤ r1. The roots r1 and r2 are turning
points of the motion. Likewise, Θ(θ̂) can be written

Θ(θ̂) =
a2

sin2 θ̂

(
1− Ê2

)(
z2+ − cos2 θ̂

)(
z2− − cos2 θ̂

)
, (2.26)

where we have introduced ẑ ≡ cos θ̂. These roots are ordered such that 0 ≤ z− ≤ 1 ≤ z+;
turning points of the motion occur where ẑ = z−. This occurs when θ̂ = θ− and θ̂ = π− θ−,
defined by cos θ− = z−.

Bound geodesics are thus confined to a torus, bounded in radius by r2 ≤ r̂ ≤ r1 and
in polar angle by θ− ≤ θ̂ ≤ (π − θ−). We can build these bounds into the orbiting body’s
motion by defining

r̂ =
pM

1 + e cos χ̂r
, (2.27)

cos θ̂ = sin I cos χ̂θ . (2.28)

The angles χ̂r and χ̂θ are relativistic generalizations of the “true anomaly” angles often used
in Newtonian orbital dynamics; these angles increase monotonically over an orbit. The
parameters p and e are the orbit’s semi-latus rectum and eccentricity, respectively; in the
Newtonian limit, they correspond to the equivalent parameters which define a Keplerian
ellipse. By inspection, one can see that

r1 =
pM

1− e
, r2 =

pM

1 + e
. (2.29)

The angle I defines the inclination of the orbit; it is related to the angle θ− according to

I = π/2− sgn(L̂z)θ− . (2.30)
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This angle automatically encodes a notion of prograde (L̂z > 0, I < 90◦) and retrograde
(L̂z < 0, I > 90◦) orbits. Equatorial orbits (θ− = 90◦) have I = 0◦ (prograde) or I = 180◦

(retrograde). Throughout this thesis, we will also use xI ≡ cos I.
Up to initial conditions, an orbit can be specified by either the set of constants of the

motion (Ê, L̂z, Q̂) or the quantities (p, e, I) which determine the orbit’s geometry (being
careful to choose values which do not go inside the “last stable orbit,” the locus of parameter
space inside which bound orbits are unstable and rapidly plunge into the black hole; see [146]
for discussion). In this analysis, we use (p, e, I), and then use expressions given in Refs.
[139], [144] (see also App. A of Ref. [147]) to determine Ê, L̂z, and Q̂. Once these parameters
are known, we can use closed-form expressions for the solutions to the geodesic equations
(2.20–2.23), formulated in terms of elliptic functions [139]. We also use solutions for bound
geodesic trajectories as functions of Mino-time, r̂(λ) and ẑ(λ), using the simplified form given
by van de Meent [144]. Formulae for computing geodesic trajectories are implemented in
the KerrGeodesics Mathematica package of the Black Hole Perturbation Toolkit (hereafter
“the Toolkit”) [148].

2.2 The motion of a spinning body

Strictly speaking, geodesics describe only the motion of zero-mass point particles. Any mass
deforms the spacetime, pushing its trajectory away from the geodesic; any structure beyond a
point can couple to spacetime curvature, also pushing its trajectory away from the geodesic.
The leading example of such structure is the body’s spin. We now consider the orbital motion
of a pointlike body endowed with spin angular momentum.

2.2.1 Spin-curvature coupling

A small spinning body moving in a curved spacetime precesses as it moves along its trajectory,
and couples to the curvature of the background spacetime. The equations governing this
precession and motion are known as the Mathisson-Papapetrou equations [31]–[33], [149],
and are given by

Dpα

dτ
= −1

2
Rα

νλσu
νSλσ , (2.31)

DSαβ

dτ
= pαuβ − pβuα . (2.32)

In these equations, the operator D/dτ denotes a covariant derivative along the small body’s
worldline, Rα

νλσ is the Riemann curvature of the spacetime in which the small body orbits,
Sλσ is the small body’s spin tensor (about which we say more below), pα is the small body’s
4-momentum, and uν = dxν/dτ is its 4-velocity. In general, a spinning body’s 4-momentum
and 4-velocity are not parallel to each other, but are related by

pα = µuα − uγ
DSαγ

dτ
. (2.33)
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Including additional structure on the small body leads to more complicated equations of
motion. For example, the small body’s quadrupole moment couples to the gradient of cur-
vature [150]–[152] and introduces additional torque terms [153]. The Mathisson-Papapetrou
equations represent the “pole-dipole” approximation, in which the small body is treated as
a monopolar point mass supplemented with a dipolar spin.

For each spacetime Killing vector ξα there is a constant of motion along the spinning
body’s worldline given by

C = pαξ
α − 1

2
Sαβ∇βξα . (2.34)

Using this, one finds that the conserved energy and axial angular momentum per unit mass
for a spinning body moving in a Kerr spacetime are given by

ES = −ut +
1

2µ
Sαβ∂βgtα, (2.35)

LSz = uϕ −
1

2µ
Sαβ∂βgϕα. (2.36)

There is no Carter constant for a spinning body, though (as we discuss below) there is a
generalization of the Carter constant which is conserved to linear order in the small body’s
spin.

2.2.2 Spin supplementary conditions

Equations (2.31) and (2.32) do not completely specify the evolution of all degrees of freedom
in the orbit of a spinning body; we must impose an additional constraint in order to close the
system of equations. This constraint is called the Spin Supplementary Condition (SSC), and
can be regarded as fixing internal degrees of freedom associated with the extended structure
of the small body. In the non-relativistic limit, the center of mass can be identified as the
natural place for the worldline to pass through the extended body. However, the location of
the center of mass is observer dependent in relativistic dynamics. The role of the SSC is thus
to select one of the infinite choices of worldlines passing through the small body. Since there
is in general no natural choice for the worldline, the SSC is intrinsically arbitrary. Excellent
discussion of the physical meaning of the SSC can be found in Ref. [154]; comparisons of
different SSCs and investigation of their equivalence can be found in Refs. [155]–[159].

An SSC commonly used in studies of gravitational wave sources is due to Tulczyjew [160],
and is given by

pαS
αβ = 0 . (2.37)

Using (2.37), we find the relationship between the four-velocity and the four-momentum
(2.33) is now given by

uµ =
M
µ2

(
pµ +

2SµνRνρστp
ρSστ

4µ2 +RαβγδSαβSγδ

)
, (2.38)

where

µ ≡
√
−pαpα , (2.39)

M ≡ −pαuα . (2.40)

32



These relationships tell us that pα = µuα + O(S2), and µ = M + O(S2), a result we will
exploit shortly.

The spin tensor is antisymmetric, which facilitates defining the spin vector [156]

Sµ = − 1

2µ
ϵµναβpνS

αβ, (2.41)

where
ϵαβγδ =

√
−g[αβγδ] (2.42)

and where
√
−g is the metric determinant, reducing to Σ sin θ for Kerr, and [αβγδ] is the

totally antisymmetric symbol. By combining these results, one can show that the magnitude
of the spin is another constant of the motion, given by

S2 = SαSα =
1

2
SαβS

αβ . (2.43)

2.2.3 Leading order in small body’s spin

The magnitude S of the small body’s spin can be defined using a dimensionless spin param-
eter s:

S = sµ2 . (2.44)

If the small body is itself a Kerr black hole, then 0 ≤ s ≤ 1, which tells us that S ≤ µ2. Note
that two dimensionless secondary spin parameters are commonly used in the literature. The
other, used for example in [124], [126], is:

σ =
S

µM
, (2.45)

and satisfies 0 ≤ σ ≤ µ/M . A virtue of this form is that σ is of order the mass ratio ε, which
can facilitate comparing the magnitude of various terms in our analysis.

Linear-in-spin effects are thus effectively quadratic in the system’s mass ratio, affecting
a system’s dynamics at the same formal order as important self force effects [161]–[163].
The next order in spin scales with the fourth power of the system’s mass ratio, practically
negligible at extreme mass ratios. A linear-in-spin analysis is thus formally interesting as
well as of astrophysical relevance. As such, we focus on the linear-in-spin limit, neglecting
terms in all of our equations that are O(S2) or higher.

In this limit, the Matthisson-Papapetrou equations (2.31) – (2.32) and the Tulczyjew
SSC (2.37) take a particularly useful form. Revisiting various relations in Secs. 2.2.1 and
2.2.2 but dropping all terms beyond linear in S, Eq. (2.33) becomes

pα = µuα . (2.46)

The orbit’s 4-velocity and 4-momentum are parallel at this order. With this, the Mathisson-
Papapetrou equations can be written

Duα

dτ
= − 1

2µ
Rα

νλσu
νSλσ , (2.47)

DSαβ

dτ
= 0 . (2.48)
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The second of these equations tells us that the spin tensor is parallel transported along the
worldline at this order.

Linearizing in S, Eq. (2.41) becomes

Sµ = −1

2
ϵµναβûνS

αβ , (2.49)

or equivalently,
Sαβ = ϵαβµν ûµSν . (2.50)

Using these linear-in-spin forms, the SSC (2.37) becomes

ûαS
αβ = 0 , (2.51)

or
ûαS

α = 0 . (2.52)

Equation (2.52) helps us understand the meaning of the SSC, at least in a linear-in-spin
analysis: it tells us that in a freely-falling frame that moves with the geodesic whose 4-
velocity is ûα, the small body’s spin is purely spatial. Combining Eqs. (2.48) and (2.50), we
find

DSµ

dτ
= 0 , (2.53)

so the spin vector is also parallel transported along the worldline at this order.

2.2.4 Parallel transport in Kerr

Since the small body’s spin vector is parallel transported along its orbit, as described by Eq.
(2.53), let us examine such parallel transport in detail. Past work [164] showed how to build
a solution describing this transport using a frequency-domain expansion, demonstrating that
an additional frequency emerges which characterizes the timescale associated with the spin’s
precession. Van de Meent [144] has since then produced an elegant closed-form tetrad-
based solution for describing the parallel transport of vectors along Kerr geodesics, following
methods first developed Marck [165]–[167]; see also work by Bini and collaborators, which
explores and clarifies the geometrical properties of Marck’s procedure [150], [168], [169], as
well as Mashhoon and collaborators [63], [170]. Following Ref. [144], we summarize the
procedure for constructing this tetrad and describe how to use it to describe a spinning body
moving along its orbit.

We write the tetrad {e0α(λ), ẽ1α(λ), ẽ2α(λ), e3α(λ)}. Take its first leg, e0α(λ), to be the
geodesic’s 4-velocity; take its last leg, e3α(λ), to be the (normalized) orbital angular momen-
tum 4-vector defined in Eq. (2.11). Our tetrad so far consists of the vectors

e0α(λ) = ûα(λ) , e3α(λ) =
1√
K̂

L̂α(λ) , (2.54)

where L̂α(λ) is the orbital angular momentum 4-vector along the geodesic with 4-velocity
ûα(λ). By the properties of ûα(λ), L̂α(λ), and K̂, these tetrad legs are orthogonal to each
other and parallel transported along ûα(λ). We then construct ẽ1α(λ) and ẽ2α(λ) by choosing

34



two vectors which lie in the plane orthogonal to e0α(λ) and e3α(λ); see Ref. [144], Eqs. (50)
and (51), for explicit formulas.

The resulting tetrad is in general not parallel transported. However, by defining

e1α(λ) = cosψp(λ) ẽ1α(λ) + sinψp(λ) ẽ2α(λ) (2.55)
e2α(λ) = − sinψp(λ) ẽ1α(λ) + cosψp(λ) ẽ2α(λ) (2.56)

and requiring that the precession phase ψp(λ) satisfies

dψp
dλ

=
√
K̂

(
(r2 + a2)Ê − aL̂z

K̂ + r2
+ a

L̂z − a(1− z2)Ê

K̂ − a2z2

)
(2.57)

we obtain a tetrad {e0α(λ), e1α(λ), e2α(λ), e3α(λ)} that is parallel transported along the
geodesic [144], [165], [166]. Van de Meent further finds a closed form solution to Eq. (2.57)
of the form

ψp(λ) = Υsλ+ ψr(Υ̂rλ) + ψθ(Υ̂θλ) , (2.58)

where Υs (denoted Υψ in Ref. [144]) is the frequency (conjugate to Mino-time) describing the
precession of this tetrad along the orbit, and Υ̂r/θ are the radial/polar frequencies of the orbit
conjugate to Mino-time. The functions ψr(Υ̂rλ) and ψθ(Υ̂θλ) are phases associated with the
orbit’s radial and polar motions. We define the Mino-time precession period as Λs = 2π/Υs.
Code for computing these tetrad legs is implemented as part of the KerrGeodesics package
in the Toolkit [148].

This solution makes setting the spin of the small body easy: We write the small body’s
spin vector

Sα = S0e0α(λ) + S1e1α(λ) + S2e2α(λ) + S3e3α(λ) , (2.59)

where {S0, S1, S2, S3} are all constants with the dimension of angular momentum. The
requirement that ûαSα = 0 means that S0 = 0 for all configurations. A component S3 ≡ S∥
denotes a component of the small body’s spin parallel or antiparallel to the orbital angular
momentum, normal to the orbital plane; S1 and S2 define components perpendicular to the
orbital angular momentum, in the orbital plane. A spin vector with S1 = S2 = 0 does not
precess, and so its motion has no frequency components at harmonics of the spin-precession
frequency Υs. By contrast, when S1 or S2 are non-zero, the small body’s spin precesses over
an orbit, and harmonics of the frequency Υs appear in a frequency-domain description of
the small body’s orbit.

This allows us to express Sα in terms of the parallel and perpendicular spin components
of the small-body’s non-dimensional spin parameter s:

Sα = µ2
(
s⊥ cosϕs e1α + s⊥ sinϕs e2α + s∥ e3α

)
, (2.60)

where s =
√
s2⊥ + s2∥, and ϕs describes the orientation of the spin vector components. The

small body’s spin vector will precess only when S1 or S2 are non-vanishing.
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2.2.5 Spinning-body orbits

We now briefly survey some of the key differences between spinning-body and geodesic orbits;
Chapters 3 and 4 as well as Refs. [84], [171], [172] provide more details. Spinning-body orbits
are qualitatively different from geodesic ones. If the body’s spin is misaligned from the orbit,
then its orientation precesses, with a Mino-time frequency Υs characterizing this precession;
the body’s orbital plane likewise precesses at this frequency. This precession appears in
the equations of motion as a variation in the bounds of both the polar and radial libration
regions. Indeed, one finds that the radial and polar motions for a spinning body do not
separate when parameterized in Mino time as they do for geodesics [84], [171], [172]. Finally,
a body’s spin also shifts the orbital frequencies relative to the orbital frequencies associated
with geodesic orbits. The well-understood frequencies Ωr,θ,ϕ which characterize geodesic
orbits are each shifted by an amount ∝ s∥, the component of the smaller body’s spin parallel
to its angular momentum.

We first consider equatorial orbits with aligned spin: s = s∥, s⊥ = 0. Spinning-body and
geodesic orbits are quite similar in this case: motion is constrained to the plane θ = π/2,
and the radial motion is confined to an interval r2 ≤ r ≤ r1, where r2 and r1 are constants.
We show examples of equatorial non-spinning and spinning-body orbits with the same initial
conditions in panel (a) of Fig. 2.1. Differences emerge because the trajectories have different
frequencies associated with both their radial and axial motions.

Qualitative differences become noticeable when s⊥ ̸= 0. When the small body’s spin
vector is misaligned, it precesses and the spinning body’s orbit oscillates by an amount
O(S) out of the equatorial plane. For these “nearly equatorial” orbits, the radial motion
remains constrained to the range r2 ≤ r ≤ r1, but the polar libration range is modified, with
θ = π/2 + δϑS. The orbital plane precesses in response to the small body’s spin precession,
adjusting the turning points of the polar motion depending on the spin precession phase ψs.
This can be seen in panel (b) of Fig. 2.1: the orange (non-spinning) worldline is confined to
the equatorial plane, while the blue (spinning-body) worldline oscillates about the equatorial
plane.

Fully generic spinning-body orbits have eccentricity, are inclined with respect to the
equatorial plane, and have an arbitrarily oriented small-body spin. Functions evaluated
along generic orbits have structure at harmonics of three frequencies: radial Ωr, polar Ωθ,
and spin-precessional Ωs. We can use this to write functions evaluated along an orbit as a
Fourier expansion of the form

f [r, θ, Sµ] =
1∑

j=−1

∞∑
k,n=−∞

fjkne
−ijΩste−inΩrte−ikΩθt , (2.61)

where Sµ is the small-body’s spin vector. Note the different index ranges in this sum: there
are only three harmonics of the spin frequency Ωs, while in principle an infinite set of both
polar and radial harmonics are present. (In practice, these sums converge over a finite range,
though one must study the system carefully to determine an appropriate truncation point
[172].)

The coupling of radial, polar and spin-precessional motions for generic spinning-body
orbits causes the positions of the radial turning points to depend on θ and the spin-precession
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phase ψs. Similarly, the polar turning points depend on radial position and ψs, as derived
in Ref. [84]. Panel (c) of Fig. 2.1 shows a generic geodesic (in orange) and spinning-body
trajectory (in blue) with the same initial conditions. The opacity of the curves increases
as time advances; this illustrates how the trajectories diverge at late times, as the opacity
increases.

2.3 Adiabatic radiation-reaction via Teukolsky formalism

We infer the impact of the leading-order adiabatic self force by computing GWs and the
associated rates of change of the orbital integrals E, Lz, and Q using the Teukolsky equation
[173]. See Ref. [26] for a detailed discussion of the methods we use; we provide a brief
overview here.

The Teukolsky equation computes perturbations to the Weyl Newman-Penrose curvature
scalar ψ4, defined as

ψ4 = −Cαβγδnαm̄βnγm̄δ , (2.62)

where Cαβγδ is the Weyl curvature tensor and nα and m̄α are legs of the Newman-Penrose
null tetrad (lµ, nµ,mµ,mµ) defined as [174]:

lµ =

(
r2 + a2

∆
, 1, 0,

a

∆

)
, (2.63a)

nµ =
1

2Σ

(
ϖ2,−∆, 0, a

)
, (2.63b)

mµ =

√
1− z2√
2ζ̄

(
ia, 0,−1,

i

1− z2

)
, (2.63c)

mµ =

√
1− z2√
2ζ

(
−ia, 0,−1,− i

1− z2

)
(2.63d)

with
ζ = r − iaz and ϖ2 = r2 + a2 .

Teukolsky derived the equation governing ψ4 [173],

−2O −2Ψ = 4πΣT , (2.64)

where −2Ψ = ζ4ψ4, −2O is a second order partial differential operator, and T is a source
term. Note that we have specialized to spin-weight s = −2, a particularly convenient choice
for studies of gravitational radiation. The forms for other spin weights, as well as the explicit
form of the source term, are given in Ref. [173].

2.3.1 Solving the Teukolsky equation in the frequency domain

We solve Eq. (2.64) in the frequency domain, writing ψ4 in a Fourier and multipolar expansion

ψ4 =
1

ζ4

∫ ∞

∞
dω

∞∑
l=2

∞∑
m=−l

Rlm(r;ω)Slm(φ; aω)e
i[mφ−ω(t−t0)] . (2.65)
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Figure 2.1: Comparison of spinning-body (blue) and geodesic (orange) orbit trajectories.
Within each column, the trajectories shown have the same initial conditions. The top
row shows xBL-yBL trajectories; the bottom shows trajectories in r-zBL. (The coordi-
nates xBL, yBL, zBL are Cartesian-like representations of the Boyer-Lindquist coordinates:
xBL = r sin θ cosϕ, etc.) Increasing opacity of the trajectory curves denotes increasing time.
Panel (a) shows equatorial trajectories; for the blue (spinning-body) trajectory, the spin of
the small body is aligned with the spin of the larger black hole. The major difference in
the trajectories in this case is the dephasing that occurs because spin-curvature coupling
changes the timescales associated with orbital motions. Panel (b) shows the same geodesic
orbit as panel (a) but the spinning-body trajectory corresponds to a small body with its spin
misaligned with its orbit. Notice that the in-plane motion is similar to what we find in panel
(a), at least over the time interval shown here, though the motion acquires an out-of-plane
motion that is entirely absent from the geodesic case. Note also the different scales used for
the out-of-plane motion, versus the in-plane and radial motion: the out-of-plane motion is
smaller by a factor ∼ 30. Panel (c) shows generic orbits for both cases. In all panels, the
parameters used are a = 0.7M , p = 10, e = 0.5, ε = 0.1, and s = 1. In panels (b) and (c),
we put s∥ = 0.9s and ϕs = π/2; in panel (c), we further put xI = 0.6967. Here and in many
of the other plots, we have used a much less extreme mass ratio than is appropriate for these
techniques in order to magnify the effect of spin-curvature coupling physics.
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The function Slm(ϑ, aω) introduced here is a spheroidal harmonic of spin-weight −2; the
field ψ4 so computed is evaluated at the event (t, r, ϑ, φ). This decomposition separates Eq.
(2.64) into a pair of ordinary differential equations governing the spheroidal harmonic and
governing the radial dependence Rlm(r, ω).

As discussed at some length in Ref. [26], computing adiabatic inspirals requires knowledge
only of ψ4 in the limits r → ∞ and r → r+ =M +

√
M2 − a2. The GW strain far from the

source is related to ψ4 by

ψ4 =
1

2

d2

dt2
(h+ − ih×) as r → ∞ . (2.66)

By exploiting the Teukolsky-Starobinsky identities [175], we can also obtain all the informa-
tion we need about the secondary’s impact on the spacetime for our adiabatic analysis by
examining ψ4 at the event horizon, r → r+.

Identities make it possible to compute fluxes at the horizon using ψ4. The solutions to
the Teukolsky equation allow us to construct the rates of change of E, Lz, and Q from GW
backreaction and radiation absorbed by the horizon. A key point for us is that the radial
dependence behaves asymptotically as

Rlm(r, ω) → Z∞
lmωr

3eiωr∗ , r → ∞ , (2.67)

Rlm(r, ω) → ZH
lmω∆e

−i(ω−mΩH)r∗ , r → r+ . (2.68)

Here the frequency ΩH = a/(2Mr+) is the rotation frequency of the horizon, and r∗ is the
tortoise coordinate

r∗(r) = r +
Mr+√
M2 − a2

ln

(
r − r+
2M

)
− Mr−√

M2 − a2
ln

(
r − r−
2M

)
, (2.69)

where r− =M −
√
M2 − a2.

For bound black hole orbits, the frequency ω in Eq. (2.65) has support only at discrete
harmonics:

ω → ωmkn = mΩϕ + kΩθ + nΩr , (2.70)

where Ωx is the frequency associated with a complete cycle of the orbit’s motion in coordinate
x. Using this, the amplitudes Z∞,H

lmω can be further decomposed,

Z∞,H
lmω =

∞∑
k=−∞

∞∑
n=−∞

Z∞,H
lmknδ(ω − ωmkn) . (2.71)

See Ref. [26] for all the details of this harmonic decomposition.

2.3.2 Rates of change of E, Lz and Q

The coefficients Z∞,H
lmkn contain all the information we need to build adiabatic inspirals and

waveforms. From these coefficients, we compute the rates of change dE/dt, dLz/dt, dQ/dt for

39



each geodesic in the osculating sequence. Each of these quantities break into a contribution
from the fields at r → ∞ and at r → r+. The energy fluxes dE/dt are given by [175]:(

dE

dt

)∞

=
∑
lmkn

|Z∞
lmkn|

2

4πω2
mkn

, (2.72)

(
dE

dt

)H

=
∑
lmkn

αlmkn
∣∣ZH

lmkn

∣∣2
4πω2

mkn

. (2.73)

The factor αlmkn appears quite a lot when examining quantities which are evaluated on the
event horizon, and is given by

αlmkn =
256(2Mr+)

5(ωmkn −mΩH)[(ωmkn −mΩH)
2 + 4ϵ2][(ωmkn −mΩH)

2 + 16ϵ2]ω3
mkn

|Clmkn|2
.

(2.74)

The factors |Clmkn|2 and ϵ are in turn given by

|Clmkn|2 = [(λ2lmkn + 2)2 + 4amωmkn − 4a2ω2
mkn](λ

2
lmkn + 36amωmkn − 36a2ω2

mkn)

+ (2λlmkn + 3)(96a2ω2
mkn − 48amωmkn) + 144ω2

mkn(M
2 − a2) , (2.75)

ϵ =

√
M2 − a2

4Mr+
. (2.76)

The angular momentum fluxes dLz/dt are [175]:(
dLz
dt

)∞

=
∑
lmkn

m |Z∞
lmkn|

2

4πω3
mkn

, (2.77)

(
dLz
dt

)H

=
∑
lmkn

αlmknm
∣∣ZH

lmkn

∣∣2
4πω3

mkn

. (2.78)

The Carter constant “fluxes”1 dQ/dt are computed by averaging the dissipative self force on
a geodesic [176], and are given by(

dQ

dt

)∞

=
∑
lmkn

|Z∞
lmkn|

2 Lmkn + kΥθ

2πω3
mkn

, (2.79)(
dQ

dt

)H

=
∑
lmkn

αlmkn
∣∣ZH

lmkn

∣∣2 Lmkn + kΥθ

2πω3
mkn

, (2.80)

where
Lmkn = m⟨cot2 θ⟩Lz − a2ωmkn⟨cos2 θ⟩E . (2.81)

1Strictly speaking, dQ/dt is not a flux since one cannot isolate a contribution of the rate of change of Q
by only examining the GWs emitted from a system. Equations (2.79) and (2.80) instead involve quantities
from the radiation field combined with averaged properties of the orbit. It is common to call dQ/dt a
flux nonetheless, since it enters the adiabatic backreaction analysis identically to the true fluxes dE/dt and
dLz/dt.
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The expressions ⟨cot2 θ⟩ and ⟨cos2 θ⟩ in Eq. (2.81) denote cot2 θ and cos2 θ averaged over an
orbit using

⟨fθ(θ)⟩ =
1

Λθ

∫ Λθ

0

fθ[θ(λ)] dλ . (2.82)

To evolve from geodesic to geodesic in the osculating sequence, we impose a balance law:(
dC
dt

)orbit

= −
(
dC
dt

)∞

−
(
dC
dt

)H

(2.83)

for each C ∈ (E,Lz, Q). This balance is equivalent to computing the orbit-averaged, leading-
order self force. Using these to evolve from geodesic to geodesic in the osculating sequence
builds the adiabatic inspiral.

2.3.3 Multi-voice gravitational waveforms

To build the gravitational waveform associated with this inspiral, we begin by examining
Eq. (2.65) in the limit r → ∞. Using Eqs. (2.67) and (2.71) in this limit, (2.65) yields the
following result for ψ4 along the inspiral:

ψ4(t
i) =

1

r

∑
lmkn

Z∞
lmkn(t

i)Slm
[
ϑ, aωmkn(t

i)
]
ei[mφ−Φmkn(t

i)] . (2.84)

Notice that the asymptotic amplitude Z∞
lmkn and the mode frequency ωmkn have become

functions of the inspiral time ti. We have also replaced the mode frequency times t with the
integrated mode phase:

Φmkn(t
i) =

∫ ti

t0

ωmkn(t
′)dt′ . (2.85)

Combining this with Eq. (2.66) allows us to read out the gravitational waveform generated
along the inspiral:

h(ti) ≡ h+(t
i)− ih×(t

i)

=
1

r

∑
lmkn

Almkn(t
i)Slm[φ; aωmkn(t

i)]ei[mφ−Φmkn(t
i)] , (2.86)

where
Almkn(t

i) = −2Z∞
lmkn(t

i)

ω2
mkn(t

i)
. (2.87)

Further discussion and detailed justification of various steps introduced in this section is
given in Ref. [26].
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Chapter 3

Precisely computing bound orbits of
spinning bodies around black holes
I: General framework and results for
nearly equatorial orbits

This chapter is based on work previously published in Physical Review D (Drummond &
Hughes 2022a) [171], written in collaboration with Scott A. Hughes.

3.1 Introduction and motivation

In this chapter, we examine the force that arises due to the coupling of the background cur-
vature with the spin of the small body, the spin-curvature force fαS . The equation governing
the small body’s motion becomes

Dpα

dτ
= fαS ≡ −1

2
Rα

νλσu
νSλσ . (3.1)

This is one of the Mathisson-Papapetrou equations, as was discussed in detail in Sec. 2.2.
Here Rα

νλσ is the Riemann curvature tensor of the background spacetime, and uν is the 4-
velocity associated with the smaller body’s orbital motion. The tensor Sλσ describes the spin
of the orbiting body. If that body is a Kerr black hole, Sλσ ∝ sµ2 where s is a dimensionless
spin parameter with s ≤ 1. The spin-curvature force thus affects the orbiting body’s motion
at next-to-leading-order in mass ratio, just like many important self force effects [161]–[163].

3.1.1 Synopsis of our formulation

In the subsequent analysis, we examine orbits under the influence of the spin-curvature force
fαS . Because our focus is on extreme mass-ratio systems, we truncate all spin effects at
leading order in the small body’s spin. Under the assumption that the small body is itself
a Kerr black hole (an astrophysically plausible assumption for EMRI systems), the small
body’s spin has a magnitude that scales with its mass squared. Terms beyond linear in spin
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thus scale very steeply with the system’s mass ratio. At this order, a closed-form description
of the spin precession is known [177], amounting to parallel transport of a vector along a
Kerr geodesic. With the precessional dynamics of the small body’s spin in hand, we can
straightforwardly compute the spin-curvature force. From this, we find the spinning-body
trajectory [r(t), θ(t), ϕ(t)] consistent with the spin-curvature force by solving Eq. (3.1).

Following Ref. [177], we characterize the small body’s spin using a set of quantities
{S1, S2, S3} which represent the components of its spin vector projected onto three legs
of a tetrad used in the closed-form analysis of its precession (see Sec. 2.2.4). (A fourth
component S0, corresponding to the remaining leg of the tetrad, is constrained to be zero
by the spin supplementary condition discussed in Sec. 2.2.2.) We write its magnitude S =√
S2
∥ + S2

⊥, where S∥ = S3 describes the component normal to the orbital plane, and S⊥ =√
(S1)2 + (S2)2 describes its magnitude within this plane. If S⊥ ̸= 0, then components of

the spin vector oscillate in the orbital plane with a frequency Ωs, describing a precession of
the spin vector along its orbit; this frequency is described in more detail in Sec. 2.2.4, and
computed in Ref. [177]. At leading order in spin, the quantities S⊥ and S∥ (and thus S) are
constants of motion along the spinning body’s orbit.

Because we consider the small body’s spin to be a small parameter, the spinning-body
orbits we examine are “close to” geodesic orbits (in a sense made more precise later). We
begin our discussion of spinning-body orbits by examining how we parameterize bound Kerr
geodesics. The radial motion of bound geodesics is typically described using a semi-latus
rectum p and an eccentricity e, such that the orbit oscillates between apoastron at r1 =
pM/(1− e) and periastron at r2 = pM/(1+ e). The polar angle θ of a bound orbit oscillates
such that − sin I ≤ cos θ ≤ sin I. Using these bounds, we write these motions

r̂ =
pM

1 + e cos χ̂r
, cos θ̂ = sin I cos χ̂θ . (3.2)

Here and throughout this chapter, we use a “hat” accent (e.g. r̂) to denote a quantity which
is evaluated on a geodesic. The definitions (3.2) introduce the angles χ̂r and χ̂θ, which are
generalizations of “true anomaly” angles often used in discussions of orbits in Newtonian
gravity. The libration range of the geodesics does not change over an orbit, so that p, e
and I are all constants of motion. Geodesics can be equivalently characterized by another
set of constants of motion: Ê, L̂z and Q̂, which denote a geodesic’s energy, axial angular
momentum and Carter constant respectively. These quantities are discussed in more detail
in Sec. 2.1.

Spinning-body orbits cannot in general be parameterized in the same way as geodesics
using Eq. (3.2). For the “nearly equatorial” cases that we consider in this chapter, we find
the following parameterization robustly describes these orbits:

r =
pM

1 + e cosχr
, θ =

π

2
+ δϑS . (3.3)

This radial motion has turning points at r = pM/(1 ± e), exactly as for geodesic orbits.
However, the anomaly angle χr is not the same as the anomaly angle χ̂r which describes
geodesic motion. We elaborate on the difference between these angles in Sec. 3.4. The polar
angle deviates from the equatorial plane by δϑS, a quantity with an amplitude O(S⊥) which
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oscillates at harmonics of the frequency Ωs. If S⊥ = 0, so that the small body’s spin is
aligned or anti-aligned with the orbital angular momentum, then δϑS = 0. Aligned and
anti-aligned orbits can be purely equatorial.

For generic orbits, we find that the libration regions in both r and θ must be modified
to include oscillations at precession frequency Ωs. We defer the details of how this is han-
dled to Chapter 4, which examines generic orbits of spinning bodies with generic spin-orbit
configuration.

3.1.2 Organization of this chapter

In the remainder of this chapter, we present our method for precisely computing bound
orbits of spinning bodies orbiting black holes. In Sec. 3.2.1, we present a frequency-domain
description of motion in a Kerr spacetime that is particularly useful in our examination of
spinning-body orbits and in Sec. 3.2.2 we present the framework for describing the leading-
order in spin deviation from a geodesic trajectory.

We begin our detailed study of bound spinning-body motion by examining several simple
cases. In Sec. 3.3, we examine orbits which are circular and either equatorial or nearly
equatorial, for which we can obtain closed form analytic solutions. This simple case allows
us to establish the general principles of the framework we use throughout the chapter, as
well as to compare with previously known results. We present the circular, nearly equatorial
case in detail and for general black hole spin. In Sec. 3.4, we extend these circular cases by
expanding in eccentricity in order to study slightly eccentric, nearly equatorial orbits. For
general Kerr, we develop closed-form solutions to first order in eccentricity. We also present
these solutions to second order in eccentricity for the Schwarzschild limit.

Finally, in Sec. 3.5, we use a frequency-domain treatment to compute orbits with arbi-
trary eccentricity and with the small body’s spin arbitrarily oriented. The frequency-domain
expansion allows us to examine orbits with arbitrary eccentricity, provided we include enough
harmonics in our expansion. We calculate how the spin-curvature coupling shifts the orbital
frequencies Ωr and Ωϕ from their geodesic expectations (using the fact that the parameter-
ization for nearly equatorial spinning-body orbits is very similar to the parameterization of
equatorial geodesic orbits), as well as how the coupling shifts the constants of motion ES,
LSz and QS.

Section 3.6 concludes with a summary of our results, and an outline of plans for future
work that uses the orbits of spinning bodies. We also briefly remark on results we present in
Chapter 4, which describes how to extend this framework to model fully generic orbits (i.e.,
orbits of arbitrary eccentricity and inclination) with generic orientation of the small body’s
spin.

3.2 Spinning body motion in the frequency domain

3.2.1 Frequency-domain description of non-spinning bodies

Bound Kerr geodesics are triperiodic, with three frequencies describing their radial, polar,
and azimuthal motions. Denote by Λ̂r, Λ̂θ, and Λ̂ϕ the radial, polar, and axial Mino-time
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periods (i.e., the interval of Mino time it takes for the orbit to move from r1 to r2 back to
r1; the interval to move from θ− to π − θ− back to θ−; and the interval to move through
2π radians of axial angle). Denote by Υ̂r, Υ̂θ, and Υ̂ϕ the corresponding frequencies, with
Υ̂x = 2π/Λ̂x. First derived in this form in Ref. [135], we used closed-form expressions for
these quantities given in Ref. [139], and coded into the KerrGeodesics package of the Toolkit
[148].

From these Mino-time expressions, we can find their Boyer-Lindquist coordinate-time
analogues using a factor Γ̂ which is the orbit-averaged factor relating an interval of Mino-
time λ to an element of coordinate time t. Let T̂x be the coordinate time orbital period for
motion in coordinate x, and let Ω̂x = 2π/T̂x be the corresponding frequency. Then,

Ω̂r,θ,ϕ =
Υ̂r,θ,ϕ

Γ̂
, T̂r,θ,ϕ = Γ̂ Λ̂r,θ,ϕ . (3.4)

Expressions for Γ̂ (and thus for Ω̂r,θ,ϕ) are also provided in Ref. [139] and encoded in the
KerrGeodesics package of the Toolkit [148]

The Mino-time frequencies are particularly useful for our purposes because they make pos-
sible Fourier expansions of functions evaluated along Kerr orbits. Let f(λ) = f

[
r̂(λ), θ̂(λ)

]
be a function of r̂(λ) and θ̂(λ). As shown in Ref. [135], we can write

f =
∞∑

k=−∞

∞∑
n=−∞

fkne
−i(kΥ̂θ+nΥ̂r)λ , (3.5)

where the Fourier coefficient fkn is given by

fkn =
1

Λ̂rΛ̂θ

∫ Λ̂r

0

∫ Λ̂θ

0

f
[
r̂(λr), θ̂(λθ)

]
eikΥ̂θλθeinΥ̂rλrdλθdλr . (3.6)

The component f00 represents the orbit-average of the function f [r̂(λ), θ̂(λ)]. It’s worth
noting that the quantities Υ̂ϕ and Γ̂ are orbit averages of the functions Φ(r̂, θ̂) and T (r̂, θ̂)
defined in Eq. (2.24):

Υ̂ϕ =
1

Λ̂rΛ̂θ

∫ Λ̂r

0

∫ Λ̂θ

0

Φ[r̂(λr), θ̂(λθ)]dλr dλθ , (3.7)

Γ̂ =
1

Λ̂rΛ̂θ

∫ Λ̂r

0

∫ Λ̂θ

0

T [r̂(λr), θ̂(λθ)]dλr dλθ . (3.8)

We will use a variant of these definitions to compute Υϕ and Γ along orbits of spinning
bodies.

3.2.2 Spin deviation from geodesic trajectory

As argued in Sec. 2.2.3, our focus is on computing orbits to linear order in the small body’s
spin. For the configurations that we study, the spin is a small parameter, and these trajec-
tories can be regarded as perturbative deviations from bound Kerr geodesics. We discuss
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the nature of an orbit’s “spin shift” in detail later as we analyze specific orbit and spin
configurations. In general, the small body’s trajectory can be written in the form

xα(λ) = x̂α(λ) + δxαS(λ) , (3.9)

where x̂α(λ) is the coordinate-space trajectory of an appropriately chosen geodesic, and
δxαS(λ) is the O(S) shift due to the spin. Similarly, we write the small body’s 4-velocity

uα = ûα + uαS , (3.10)

where ûα solves the geodesic equation, and uαS = O(S).
One important point to note is that x̂α(λ) will in general have different periods than

xα(λ): the periods Λr,θ,ϕ which characterize bound orbits of spinning bodies differ from
the geodesic periods Λ̂r,θ,ϕ by O(S). As such, a naive definition of δxαS necessarily contain
unbounded, secularly growing terms. Such terms ruin the perturbative expansion that we
use.

As such, we do not use the explicit form Eq. (3.9) directly when we compute spinning-
body orbits in Secs. 3.4 and 3.5. We instead characterize these orbits using amplitude-phase
variables. Doing so, the frequency shift is incorporated into the parameterization; see Eq.
(3.72) or (3.137) and nearby text. Once we have solved for the frequency shift and phase
variables, we can then compute δxαS. These quantities are particularly useful for finding the
concomitant “spin shifts” to constants of motion, which we describe below. In Appendix A.1,
we provide the explicit form of δxαS in terms of variables that we use in this work, as well as
further discussion of the secular terms.

As the orbit evolves, we must preserve the norm of its 4-velocity. Using Eq. (3.10),
demanding that ûαûα = −1, and enforcing uαuα = −1 yields the constraint

ûαuSα + ûαu
α
S = 0 . (3.11)

Writing uα = gαβu
β, and noting that gαβ is evaluated along the spinning-body orbits for

which r = r̂ + δrS and θ = θ̂ + δϑS, the spin-corrected covariant 4-velocity has the form

uSα = gαβu
β
S + δrS∂rgαβû

β + δθS∂θgαβû
β . (3.12)

This allows us to write constraint (3.11) entirely in terms of the contravariant spin-correction
to the 4-velocity, viz.,

2gαβû
αuβS + δrS∂rgαβû

αûβ + δθS∂θgαβû
αûβ = 0 . (3.13)

We use this constraint throughout our analysis. We also define the leading order in spin
corrections to the energy δES and axial angular momentum δLSz due to the spin using (2.35)
and (2.36):

ES = Ê + δES , (3.14)

LSz = L̂z + δLSz . (3.15)
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As mentioned in Sec. 2.2.1, an analogue to the Carter constant is preserved at linear
order in spin. Normalizing by the orbiting body’s rest mass squared, it is given by [153]

KS = Kαβu
αuβ + δCS, (3.16)

where
δCS = − 2

µ
ûµSρσ (Fν

σ∇νFµρ −Fµ
ν∇νFρσ) . (3.17)

We define the first order in spin correction to K by

KS = K̂ + δKS , (3.18)

where K̂ is the Carter constant along the geodesic whose 4-velocity is ûα, and δKS is O(S).
Combining Eqs. (3.9), (3.10) and (3.16) with the definition (3.18) and truncating at linear
order in S, we find

δKS = 2Kαβû
αuβS + δrS∂rKαβû

αûβ + δθS∂θKαβû
αûβ + δCS . (3.19)

The first line of Eq. (3.19) includes two terms which are due to the shift of the small body’s
orbit that we find when examining spinning-body orbits. Applying Eq. (2.18), we then find
the first-order shift in Q:

δQS = δKS − 2(L̂z − aÊ)(δLSz − aδES) . (3.20)

For nearly equatorial orbits with polar motion defined by θ = π/2+δϑS in Eq. (3.3), δϑS
and δθS may be used interchangeably (which we do throughout this chapter). However, in
general, δϑS corresponds only to the corrections to the libration region of the polar motion,
while δθS denotes the entire spin-perturbation associated with θ, as defined in Eq. (3.9).
This distinction becomes important in the analysis in Chapter 4,

3.2.3 General characteristics of spinning-body orbits

In the remainder of this chapter, we examine several examples of the orbits of spinning bodies
about Kerr black holes. Before exploring these specific cases in detail, we briefly lay out and
summarize general characteristics of the orbits that we find.

Consider first an orbit that would be equatorial if the orbiting body were non-spinning.
If this body’s spin is normal to the equatorial plane (i.e., parallel or antiparallel to both the
orbital angular momentum and the large black hole’s spin), then its orbit is quite simple.
Just as in the geodesic case, we can use the parameterization r = pM/(1 + e cosχr). The
radial turning points are fixed for the duration of the orbit at pM/(1 ± e), and the orbit’s
dynamics maps onto a true anomaly angle χr. This true anomaly differs from the true
anomaly that describes geodesics, χ̂r; details of this difference are presented in Sec. 3.4. The
orbit’s radial frequency is shifted compared to the geodesic by an amount O(S); we write
the radial frequency Υr = Υ̂r + ΥS

r . This case is discussed in quantitative detail in Secs.
3.4.3 and 3.5.1, with the special case of circular equatorial orbits presented in Sec. 3.3.1.

Consider next such an orbit but with the spin misaligned with respect to the orbital
plane. This misalignment introduces O(S) oscillations centered about the equatorial plane:
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The polar motion acquires a correction δϑS whose Fourier expansion is at harmonics of
the spin frequency Υs and the radial frequency Υr = Υ̂r +ΥS

r . The radial motion, however,
remains exactly as it was in the spin-aligned case. We discuss this case in detail in Secs. 3.4.2
and 3.5.2; an explicit analytic solution for circular, nearly equatorial motion is calculated in
Sec. 3.3.2.

We focus on these equatorial and nearly equatorial cases in this chapter. For orbits
that are not “nearly equatorial”, the parameterization becomes rather more complicated.
In particular, the “geodesic-like” parameterization of the nearly equatorial case must be
modified, adding a spin-induced contribution to the orbit’s libration region in both the
radial and polar motions. This holds even if the spin-vector is aligned with the orbital
angular momentum. We discuss these more complicated cases in Chapter 4.

3.3 Spinning-body orbits I: Circular, nearly equatorial
orbits

We begin our study of spinning-body orbits by examining several simple cases for which we
can find closed-form, fully analytic solutions. These cases allow us to introduce the main
principles we use to describe and parameterize our solutions, and provide limiting examples
which can be compared against other results in the literature. We begin with the simplest
possible orbit: a circular orbit of radius r, confined to the equatorial plane (I = 0◦ or
I = 180◦).

Many of the results we find are derived in Ref. [125], which focuses on circular orbits of
spinning bodies, as well as elsewhere in the literature. The results we present in Sec. 3.3.1
can also be obtained using the effective potential derived in Ref. [67] (see also Refs. [66] and
[68]). To facilitate the comparison to this literature, we discuss the method of Ref. [67] in
detail in Appendix A.2.

3.3.1 Aligned spin

Start with the small body spin parallel or antiparallel to the orbit: we set the spin components
S1 = S2 = 0, and set S3 = s∥µ

2, with −1 ≤ s∥ ≤ 1. The small body’s spin is parallel to the
orbit if s∥ > 0, and antiparallel if s∥ < 0. The geodesic integrals of motion are

Ê =
1− 2v2 ± qv3√
1− 3v2 ± 2qv3

, (3.21)

L̂z = ±
√
rM

1∓ 2qv3 + q2v4√
1− 3v2 ± 2qv3

, (3.22)

Q̂ = 0 . (3.23)

We have introduced v =
√
M/r (equivalently r = M/v2) and q = a/M . Where there

is a choice, the upper sign is for prograde orbits (I = 0◦) and the lower is for retrograde
(I = 180◦). The small body’s background 4-velocity is given by ûα = (−Ê, 0, 0, L̂z).
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The small body’s spin 4-vector is given by

Sα = s∥µ
2e3α = (0, 0,∓rs∥µ2, 0) . (3.24)

This result comes from the fact that for an equatorial circular orbit [144],

e3α =

(
0, 0,−r (L̂z − aÊ)

|L̂z − aÊ|
, 0

)
= (0, 0,∓r, 0) . (3.25)

If the orbit is prograde and s∥ > 0, or the orbit is retrograde and s∥ < 0, then the small
body’s spin points in the direction of decreasing θ; vice versa if s∥ and the orbit have the
opposite signs and orientations.

Let us examine (2.47) for this case. Using Eq. (3.10), we start by expanding the covariant
derivative:

Duα

dτ
= (ûβ + uβS)∇β (û

α + uαS)

=
dûα

dτ
+
duαS
dτ

+ Γαβγû
βûγ + 2Γαβγû

βuγS +O(S2)

=
duαS
dτ

+ 2Γαβγû
βuγS . (3.26)

Here, Γαβγ is the Christoffel connection for the Kerr geometry evaluated along the orbit. In
going from the second line to the third line, we used the fact that ûα solves the geodesic
equation, and we linearized in S. We also used the fact that, for this orbit, the spinning
body remains confined to the equatorial plane θ = π/2 at radius r. For the misaligned case
we consider next, the orbit oscillates in the polar direction, and there is a correction term
that involves ∂θΓαβγ.

Requiring the spinning body’s orbit to be circular and equatorial means that

urS = uθS = 0 . (3.27)

Further, the requirement that uαSûα = 0 tells us that

utS =
L̂z

Ê
uϕS . (3.28)

The only unique component we must determine is thus uϕS. Note that we must have duϕS/dτ =
0. If we observe the system in a frame that co-rotates with the orbit, it appears static; the
symmetries of the spin-curvature coupling in this case do not introduce any dynamics.

Combining Eqs. (2.53) and (3.26) with urS = uθS = 0 = duϕS/dτ , we find the equation
which governs the spin correction to the small body’s orbital velocity is given by

2Γrβγû
βuγS = − 1

2µ
Rr

νλσû
νSλσ ; (3.29)

all other components of this equation vanish. Expanding the right-hand and left-hand sides
of (3.29), we find
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2Γrβγû
βuγS = ∓2v

√
1− 3v2 ± 2qv3(1− 2v2 + q2v4)uϕS

1− 2v2 ± qv3
, (3.30)

− 1

2µ
Rr

νλσû
νSλσ =

3s∥µ

M2

v7(1∓ qv)(1− 2v2 + q2v4)

1− 3v2 ± 2qv3
. (3.31)

Using this to evaluate Eq. (3.29) yields

uϕS = ∓
3s∥µ

2M2

v6(1∓ qv)(1− 2v2 ± qv3)

(1− 3v2 ± 2qv3)3/2
. (3.32)

Using Eq. (3.28), this in turn yields a simple result for utS.
An observationally important aspect of this solution is its influence on the system’s orbital

frequency. Using

Ωϕ =
uϕ

ut
=
ûϕ + uϕS
ût + utS

, (3.33)

expanding in S, using Ω̂ϕ = ûϕ/ût, and finally defining Ωϕ = Ω̂ϕ+δΩϕ, we find the correction
to the frequency due to the spin-curvature force:

δΩϕ = Ω̂ϕ

(
uϕS
ûϕ

− utS
ût

)
. (3.34)

For circular and equatorial orbits,

Ω̂ϕ = ± v3

M(1± qv3)
. (3.35)

Combining these various results, we find the shift to the axial frequency:

δΩϕ = ∓
3s∥
2M

µ

M

(1∓ qv)

(1± qv3)2
v6 . (3.36)

This agrees exactly with Eq. (4.26) in Ref. [125].
The orbiting body’s energy, axial angular momentum, and Carter constant are also

shifted. Combining Eqs. (2.35), (2.36), (3.14), and (3.15) with the results in this section
and using Eqs. (3.19) and (3.20), we find

δES = −
s∥
2

µ

M

(1∓ qv)(1∓ 4q3 + 3q2v4)

(1− 3v2 ± 2qv3)3/2
v5 , (3.37)

δLSz = ±
s∥µ

2

(2− 13v2 + 18v4)± 3q(3− 7v2)v3 + 2q2(1 + 2v2)v6 ± q3(3− 7v2)v7 + 3q4v10

(1− 3v2 ± 2qv3)3/2
,

(3.38)

δKS = s∥µ
(2− 13v2 + 18v4)∓ 2qv(2− 17v2 + 28v4)− q2v4(17− 45v2)∓ 6q3v7 − 3q4v8

v(1− 3v2 ± 2qv3)2
,

(3.39)
δQS = ∓2s∥µa . (3.40)
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These expressions for the conserved quantities δES and δLSz match exactly with Eqs.
(A.19) and (A.20) derived using the alternative approach outlined in Appendix A.2. It is
interesting that there is a non-zero δQS even though there is no change to the polar motion
of the small body in this case. We note that Witzany has provided a modified definition of
δQS (see text near Eq. (48) of Ref. [84]) such that it is zero for cases in which there is no
polar motion; we are likely to adopt this definition in future work. In any case, our result
agrees with that reported in Ref. [125], after translating the somewhat different notation.

3.3.2 Misaligned spin

Now consider the small body’s spin misaligned from the orbit. The background 4-velocity
and integrals of motion are identical to those used in Sec. 3.3.1, but the small body’s spin
becomes

Sα = µ2
(
s⊥ cosϕs e1α + s⊥ sinϕs e2α + s∥ e3α

)
. (3.41)

We have broken the spin into a component parallel to the orbital angular momentum (out
of the orbital plane) with magnitude s∥, and into components normal to the orbital angular
momentum (in the orbital plane) with magnitude s⊥. The angle ϕs describes the orientation
of the spin components normal to the orbit. Setting s =

√
s2⊥ + s2∥, we require 0 ≤ s ≤ 1.

Using (2.55) and (2.56), Eq. (3.41) can be rewritten

Sα = µ2

[
s⊥

(
cos(ϕs + ψp)ẽ1α + sin(ϕs + ψp)ẽ2α

)
+ s∥e3α

]
, (3.42)

where ψp is the precession phase, which grows with time. The tetrad leg e3α is the same as
in Sec. 3.3.1. Continuing to use the parameterization q ≡ a/M , v =

√
M/r, the tetrad legs

ẽ1α and ẽ2α are given by

ẽ1α =

(
0,

1√
1− 2v2 + a2v4

, 0, 0

)
, (3.43)

ẽ2α =

(
v

√
1− 2v2 + q2v4

1− 3v2 ± 2qv3
, 0, 0,∓r(1± qv3)

√
1− 2v2 + q2v4

1− 3v2 ± 2qv3

)
. (3.44)

For circular and equatorial orbits, the precession phase ψp can be written as functions of
Mino-time λ, proper time τ , or Boyer-Lindquist time t:

ψp = Υsλ = ωsτ = Ωst , (3.45)

with

Υs =
√
rM =M/v , ωs =

√
M/r3 = v3/M ,

Ωs = ωs

√
1− 3v2 ± 2qv3

(1± qv3)
. (3.46)
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This limiting form for Υs was found in Ref. [164], and is confirmed by the general expression
derived in Ref. [144]. The factor Σ which converts from Mino-time frequencies to proper-time
frequencies takes the constant value r2 for circular and equatorial orbits; likewise, the factor

Γ = r2
1± qv3√

1− 3v2 ± 2qv3
(3.47)

which converts between Mino-time frequencies and coordinate-time quantities is constant for
circular and equatorial orbits.

To proceed, we again examine Eq. (2.47) and use Eq. (3.3), i.e., θ = π/2 + δϑS, with
δϑS = O(S). Expanding the covariant derivative yields a slightly different result as compared
to what we found in the aligned case:

Duα

dτ
= (ûβ + uβS)∇β (û

α + uαS)

=
dûα

dτ
+
duαS
dτ

+ Γαβγû
βûγ + δϑS∂θΓ

α
βγû

βûγ + 2Γαβγû
βuγS +O(S2)

=
duαS
dτ

+ δϑS∂θΓ
α
βγû

βûγ + 2Γαβγû
βuγS . (3.48)

The misaligned spin causes the small body to oscillate about the equatorial plane by δϑS.
This shifts the connection term at O(S), leading to the term in ∂θΓαβγ.

Expanding the covariant derivatives and Riemann components of Eq. (2.47) for this case,
making use of Eq. (3.48) we find

durS
dτ

± 2v(1− 2v2 + q2v4)
√

1− 3v2 ± 2qv3

1− 2v2 ± qv3
uϕS =

3s∥µ

M2

v7(1∓ qv)(1− 2v2 + q2v4)

1− 3v2 ± 2qv3
, (3.49)

duϕS
dτ

+
2v5(1− 2v2 ± qv3)

M2(1− 2v2 + q2v4)
√

1− 3v2 ± 2qv3
urS = 0 , (3.50)

for the equations governing urS and uϕS. Notice that these equations do not couple to the
precessing orbit’s polar motion. Notice also that since ûr = ûθ = 0, Eq. (3.28) holds for the
misaligned case, and we do not need a separate equation governing utS.

We require the orbit to remain circular, so we put urS = 0 = durS/dτ . This allows us to
immediately solve Eq. (3.49):

uϕS = ∓
3s∥µ

2M2

v6(1∓ qv)(1− 2v2 ± qv3)

(1− 3v2 ± 2qv3)3/2
. (3.51)

Since this does not vary with time, Eq. (3.50) is also satisfied. Equation (3.51) is identical
to the result we found in the spin-aligned case, Eq. (3.32). Our solution for utS is likewise
identical to its aligned counterpart. From this it follows that Eq. (3.36) describes the change
to the orbital frequency in this case as well.

The polar motion for this misaligned case requires more attention. As stated above, we
put θ = π/2 + δϑS, where δϑS denotes the spin-induced polar motion about the equatorial
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plane. Because ûθ = 0, we put uθ = uθS = dδϑS/dτ . The polar component of Eq. (2.47) thus
becomes

d2δϑS
dτ 2

+
v6

M2

(1∓ 4qv3 + 3q2v4)

(1− 3v2 ± 2qv3)
δϑS = −3s⊥µ

M3

v9(1∓ qv)
√
1− 2v2 + q2v4

1− 3v2 ± 2qv3
cos(ϕs + ψp) .

(3.52)
The coefficient of δϑS on the left-hand side of Eq. (3.52) is the square of the polar proper-
time frequency for circular equatorial geodesic orbits, which we denote ωθ. The solution to
Eq. (3.52) has the form

δϑS = A(τ) sin(ωθτ) +B(τ) cos(ωθτ) , (3.53)

where

ωθ =
v3

M

√
1∓ 4qv3 + 3q2v4

1− 3v2 ± 2qv3
, (3.54)

and where A(τ) and B(τ) are given by

A(τ) = c1 −
3s⊥µ

2M2

v6(1∓ qv)√
1− 3v2 ± 2qv3

√
1− 2v2 + q2v4

1∓ 4qv3 + 3q2v4

×
[
sin(ϕs + (ωs − ωθ)τ)

ωs − ωθ
+

sin(ϕs + (ωs + ωθ)τ)

ωs + ωθ

]
, (3.55)

B(τ) = c2 +
3s⊥µ

2M2

v6(1∓ qv)√
1− 3v2 ± 2qv3

√
1− 2v2 + q2v4

1∓ 4qv3 + 3q2v4

×
[
cos(ϕs + (ωs − ωθ)τ)

ωs − ωθ
− cos(ϕs + (ωs + ωθ)τ)

ωs + ωθ

]
. (3.56)

The constants c1 and c2 must be determined by matching to the initial conditions δϑS|τ=0

and uθS|τ=0. The precession of the small body’s spin as it orbits the black hole causes the
orbital plane to likewise precess. Note that the frequency combination ωs − ωθ never passes
through zero anywhere over the domain of allowed orbits. As such, the functions A(τ) and
B(τ) defined in Eqs. (3.55) and (3.56) are well behaved everywhere.

The changes to the integrals of motion we find are identical to those in the aligned case,
Eqs. (3.37) – (3.40). The fact that the changes δES and δLSz are identical is consistent with
other patterns that this analysis uncovered. However, the fact that δQS is identical — in
particular, that δQS is insensitive to s⊥ — is somewhat surprising, since the small body does
in fact move in the polar direction when the spin and orbit are misaligned. The precession
of the smaller body’s spin nonetheless keeps the orbit equatorial on average, which appears
to be sufficient for Q to take its equatorial value. This again is consistent with results found
in Ref. [125].
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3.4 Spinning-body orbits II: Slightly eccentric, nearly equa-
torial orbits

Slightly eccentric equatorial orbits are simple enough that, by expanding in both eccentricity
e and spin s, we can develop and present mostly closed-form results for this case. In our
discussion below, we show leading-order results, O(e, s), for orbits of bodies with general
spin orientation in the Kerr spacetime. We go to higher order, O(e2, s) for Schwarzschild
only, confining ourselves to the case of small body spin aligned with the orbit. Though no
issue of principle prevents us from developing a more generic analysis at higher order, the
formulas describing Kerr orbits become cumbersome as we go to higher order in e. As we
will see below, our leading-order analysis is sufficient for us to understand the impact of
misaligned spin on spinning-body orbital dynamics.

The results in the aligned spin section, Sec. 3.4.3, can be obtained using an alternative
method we describe in Appendix A.2. This method is discussed in Refs. [66]–[68], and
involves using conserved quantities ES, LSz , µ2 and S2 to develop an effective potential for
the radial motion.

3.4.1 General principles

In this section and in what follows, we switch from using proper time τ to Mino time λ for
our parameterization of these orbits. This switch is not necessary for equatorial or nearly
equatorial orbits, but will be necessary for the generic cases that we study in the next chapter.
Using this parameterization now allows us to set up the calculation in this framework, and
to examine the form of the solutions which emerge in this relatively simple limit.

The governing equation for the orbits is Eq. (2.47), which we repeat here and use to
define the spin-curvature force fαS :

Duα

dτ
= − 1

2µ
Rα

νλσu
νSλσ ≡ fαS /µ . (3.57)

Expanding the covariant derivative, this becomes

duα

dτ
+ Γαβγu

βuγ = fαS /µ , (3.58)

where Γαβγ is the Christoffel connection for the Kerr spacetime, evaluated along the orbit.
Let us define

Uα ≡ dxα

dλ
= Σuα ; (3.59)

this follows from uα = dxα/dτ , as well as the definition of Mino-time: d/dλ = Σd/dτ . From
(3.59), it follows that

duα

dλ
=

1

Σ

dUα

dλ
− Uα

Σ2

dΣ

dλ
. (3.60)

Next multiply (3.58) by Σ2. Doing so and using Eq. (3.60), we put the equation which
governs spinning-body orbits into the form

dUα

dλ
− Uα

Σ

dΣ

dλ
+ ΓαβγU

βUγ = Σ2fαS /µ . (3.61)
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Note that in general,
dΣ

dλ
= 2r U r − 2a2 cos θ sin θ U θ . (3.62)

For the equatorial and nearly equatorial orbits which are our focus in this section, the second
term in (3.62) is O(S2), which we neglect. The factor (1/Σ)dΣ/dλ in Eq. (3.61) becomes
2U r/r.

For misaligned orbits, the orbiting body oscillates about the equatorial plane, just as
we discussed for the circular misaligned case in Sec. 3.3.2. Setting the polar angle to θ =
π/2 + δϑS, with δϑS = O(S), the connection term in Eq. (3.61) becomes

ΓαβγU
βUγ = (Γαβγ)θ=π/2 U

βUγ + δϑS (∂θΓ
α
βγ)θ=π/2 Û

βÛγ . (3.63)

Notice that it is the geodesic 4-velocity Ûβ that appears in the term with the derivative of
the connection. Because δϑS is itself O(S), contributions from the non-geodesic parts of Uβ

enter this term at O(S2) or higher.
Let us write the small body’s spin in the form

Sα = µ2

[
s⊥

(
cos(ϕs + ψp)ẽ1α + sin(ϕs + ψp)ẽ2α

)
+ s∥e3α

]
, (3.64)

=
(
s⊥µ

2σt, s⊥µ
2σr,∓s∥µ2r, s⊥µ

2σϕ
)
. (3.65)

Both the precession phase ψp and the tetrad elements ẽ1α and ẽ2α are more complicated
than they were in the circular limit; we defer discussion of their detailed forms until they are
needed later in our analysis. The form (3.65) is a useful rewriting of (3.64); the components
σt,r,ϕ can be read out of ẽ1α and ẽ2α.

With everything in place, it is now not difficult to evaluate all the terms appearing in
Eq. (3.61) and write out the equations governing the small body’s 4-velocity Uα. First, we
write out the equations for U r, U t and Uϕ.

dU t

dλ
−

2U r
[
(r3 − 3Mr2 + a2(r −M))U r + aM(3r2 + a2)Uϕ

]
r2∆

=
3s∥µ(L̂z − aÊ)M(r2 + a2)Û r

r2∆
, (3.66)

dU r

dλ
+

∆
[
M(U t − aUϕ)2 − r3(Uϕ)2

]
r4

− (2r2 − 3Mr − a2)(U r)2

r∆

=
3s∥µ(L̂z − aÊ)M

[
Ê(r2 + a2)− aL̂z

]
r2

, (3.67)

dUϕ

dλ
+

2U r
[
aMU r + (r3 − 2Mr2 − a2M)Uϕ

]
r2∆

=
3as∥µ(L̂z − aÊ)MÛ r

r2∆
. (3.68)

No term involving δϑS enters these equations at O(S). Indeed, note that the equations for
U t, U r, and Uϕ are completely independent of U θ at this order. We can therefore solve U t,r,ϕ

independently from our solution for U θ.
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It is worth remarking that Eqs. (3.66) and (3.68) turn out to simplify further by converting
them to equations for ut and uϕ. Doing so using by converting from U t,ϕ to ut,ϕ, lowering an
index, and then using ut = −Ê + uSt , uϕ = L̂z + uSϕ , where uSt,ϕ = O(S), we find

duSt
dλ

= −
3s∥µ(L̂z − aÊ)MÛ r

r4
, (3.69)

duSϕ
dλ

=
3as∥µ(L̂z − aÊ)MÛ r

r4
. (3.70)

Solving Eqs. (3.69) and (3.70) is equivalent to solving (3.66) and (3.68), respectively.
Finally, the equation we find for U θ is

dU θ

dλ
+

2a4rÊ2 − 4a3rÊL̂z + (r − 2M)r3L̂2
z + a2(2r3Ê2 + 2rL̂2

z − (Û r)2)

r2∆
δϑS

= −3s⊥µ(L̂z − aÊ)M

r3∆

(
σt(r

2 + a2)Û r + σr

[
Ê(r2 + a2)− aL̂z

]
∆+ σϕaÛ

r
)
, (3.71)

Notice that dU θ/dλ only couples to s⊥, and dU t,r,ϕ/dλ only couple to s∥. Notice further
that we have not yet introduced an expansion in eccentricity. This means that for all nearly
equatorial orbits, the small body’s motion in the equatorial plane is totally decoupled from
its out-of-plane dynamics.

For equatorial and nearly equatorial orbits, we take the small body to move on a trajec-
tory whose radial motion is given by

r =
pM

1 + e cosχr
. (3.72)

We introduce here the orbit’s the semi-latus rectum p and eccentricity e, as well as the radial
true anomaly χr. This anomaly can be written

χr = wr + δχr , (3.73)

where wr is the radial mean anomaly. The difference between the radial mean and true
anomalies, δχr, is an oscillatory function whose mean value is zero. In the Mino-time pa-
rameterization, wr = Υrλ.

As discussed in Sec. 2.1, the parameterization (3.72) is used extensively in studies of
geodesic motion. As we will show, it works perfectly for nearly equatorial orbits of spinning
bodies as well. This form does not work so well for generic orbits of spinning bodies; for
general orbit inclination, we need to allow the radial libration region to oscillate as the orbit
precesses. This case is discussed in Chapter 4.

We now solve for the orbit by introducing simultaneous expansions in the small body’s
spin and the orbit’s eccentricity e. By requiring that Eqs. (3.66) – (3.68) hold order by order,
we construct a full solution for the orbit of the small body’s motion to that order in our
expansion.
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3.4.2 Leading order in eccentricity

We begin by considering Kerr orbits at O(e, s). In this limit, it suffices to put χr = wr =
Υrλ = (Υ̂r + ΥS

r )λ. [Although there is a linear-in-eccentricity correction to χr, its impact
on the small body’s motion enters at O(e2).]

To first order in e, the radial motion of the small body is thus given by

r = pM (1− e coswr) = pM
[
1− e

2

(
eiwr + e−iwr

)]
. (3.74)

The second form proves to be particularly useful for our purposes.
Our goal is to compute how the spin-curvature interaction affects all of the important

parameters of our system. Just as in our study of circular and equatorial orbits, we assume
that the constants of the motion take the form X S = X̂ + δX S (with X ∈ [E,Lz, K,Q]),
and that

Υr = Υ̂r +ΥS
r , (3.75)

Υϕ = Υ̂ϕ +ΥS
ϕ , (3.76)

Γ = Γ̂ + ΓS . (3.77)

First consider just the leading-order geodesic motion. The integrals of motion are

Ê =
1− 2v2 ± qv3√
1− 3v2 ± 2qv3

+O(e2) , (3.78)

L̂z = ±M
v

√
1∓ 2qv3 + q2v4

1− 3v2 ± 2qv3
+O(e2) , (3.79)

Q̂ = 0 . (3.80)

As before, q ≡ a/M , but now we have v =
√

1/p. We also have

Υ̂r =
M

v

√
1− 6v2 ± 8qv3 − 3q2v4

1− 3v2 ± 2qv3
+O(e2) , (3.81)

Υ̂ϕ = ±M
v

√
1

1− 3v2 ± 2qv3
+O(e2) , (3.82)

Γ̂ =
M2(1± qv3)

v4
√

1− 3v2 ± 2qv3
+O(e2) . (3.83)

Let us first consider the components which describe the in-plane orbital motion, U t,r,ϕ. We
write these components

U t = U t
0 + s∥e

(
U t
−1e

iwr + U t
+1e

−iwr
)
, (3.84)

Uϕ = Uϕ
0 + s∥e

(
Uϕ
−1e

iwr + Uϕ
+1e

−iwr

)
, (3.85)

U r =
dr

dλ
= −iepM

2

(
Υ̂r +ΥS

r

) (
eiwr − e−iwr

)
. (3.86)
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Figure 3.1: Example of the spin contribution ΥS
r to the radial Mino-time frequency Υr. Left

panel shows ΥS
r to leading order in e as a function of semi-latus rectum p and spin parameter

a for prograde orbits (I = 0◦); see Eq. (3.91). Right panel shows ΥS
r to second-order in e

for Schwarzschild black hole orbits (a = 0) as a function of p and e. In both cases, the last
stable orbit is indicated by the black dashed line.

In our assumed form of U r, we used the fact that for small eccentricity equatorial orbits,
dwr/dλ = Υ̂r +ΥS

r .
We next insert Eqs. (3.84), (3.85), and (3.86) into Eqs. (3.66), (3.67), and (3.68), also

enforcing the constraint (3.11) in order to solve to each order in s and e. This exercise yields

Γ ≡ U t
0 =

M2(1± qv3)

v4
√

1− 3v2 ± 2qv3
∓
(
3s∥µ

2

)
Mv(1∓ qv)(1∓ 2qv3 + q2v4)

(1− 3v2 ± 2qv3)3/2
, (3.87)

U t
−1 = U t

+1 = ∓
(
3s∥µ

2

)
qMv4(1∓ qv)2(1∓ 2qv3 + q2v4)

(1− 2v2 + q2v4)(1− 3v2 ± 2qv3)3/2
, (3.88)

Υϕ ≡ Uϕ
0 = ±M

v

√
1

1− 3v2 ± 2qv3
−
(
3s∥µ

2

)
v2(1∓ qv)(1− 2v2 ± qv3)

(1− 3v2 ± 2qv3)3/2
, (3.89)

Uϕ
−1 = Uϕ

+1 = −
(
3s∥µ

2

)
qv5(1− 2v2 ± qv3)

(1− 2v2 + q2v4)(1− 3v2 ± 2qv3)3/2
, (3.90)

ΥS
r =

(
3s∥µ

2

)
v2(1∓ qv) (1− 2v2 ∓ qv3(5− 14v2) + 5v4q2(1− 4v2)± 7q3v7)

(1− 3v2 ± 2qv3)3/2
√
1− 6v2 ± 8qv3 − 3q2v4

. (3.91)

Eq. (3.91) matches with the expression Eq. (A.41) derived using the exact-in-e approach
discussed in Appendix A.2. The integrals of the motion for these orbits are identical to
those what we found in the circular case, Eqs. (3.37) – (3.40), but with v =

√
1/p. The left

panel of Figure 3.1 displays how ΥS
r depends on a according to Eq. (3.91). Notice that the

axial frequency Υϕ and quantity Γ, which converts from Mino-time frequencies to coordinate-
time frequencies, are obtained by orbit averaging Uϕ and U t respectively. Hence, Γ is the
same as U t

0, given in Eq. (3.87), and Υϕ is the same as Uϕ
0 in Eq. (3.89).
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Turn now to the out-of-plane motion. To make progress here, we first must more com-
pletely describe the tetrad elements. They take the form

ẽ1α = ẽ01α + e ẽ11α , (3.92)
ẽ2α = ẽ02α + e ẽ12α . (3.93)

The terms ẽ01α and ẽ02α are exactly as defined in Eqs. (3.43) and (3.44), but with v =
√

1/p

rather than v =
√
M/r. The eccentricity corrections are given by

ẽ11α =

(
− v2

M
ζΥ̂r sinwr,

v2(1− q2v2)

(1− 2v2 + q2v4)3/2
coswr, 0, qv

2ζΥ̂r sinwr

)
, (3.94)

ẽ12α =

(
vζ coswr,−

v3(1∓ qv)

(1− 2v2 − q2v4)3/2
Υ̂r sinwr, 0, pM(1∓ qv3)ζ coswr

)
, (3.95)

where

ζ =

√
1− 3v2 ± 2qv3

1− 2v2 + q2v4
. (3.96)

We used dwr/dλ = Υ̂r rather than dwr/dλ = Υr = Υ̂r + ΥS
r because these tetrad elements

are used to build the spin vector Sα; any contribution from ΥS
r is at O(S2).

To complete our description of the out-of-plane motion, we first note that because Û θ = 0

U θ = Σuθ = Σ
dδϑS
dτ

=
dδϑS
dλ

, (3.97)

and so
dU θ

dλ
=
d2δϑS
dλ2

. (3.98)

Using this in Eq. (3.71), along with Eqs. (3.78), (3.79), and (3.86) for Ê, L̂z, and Û r, and
finally using Eqs. (3.94) and (3.95) to work out the components σt, σr, and σϕ yields

d2δϑS
dλ2

+Υ2
θδϑS = F θ

S(λ) , (3.99)

where

Υθ =
M

v

√
1∓ 4qv3 + 3q2v4

1− 3v2 ± 2qv3
, (3.100)

is the Mino-time polar frequency for nearly equatorial circular orbits, and where the forcing
term is given by

F θ
S(λ) = 3s⊥µM

[
∓v(1∓ qv) [1− 2v2 + q2v4 + e (1− v2 ∓ 2qv3 + 2q2v4) coswr]

(1− 3v2 ± 2qv3)
√

1− 2v2 + q2v4
cos(ϕs + ψp)

]
≡ 3s⊥µM(α1 + eα2 coswr) cos(ϕs + ψp) . (3.101)

59



For notational convenience, we have introduced

α1 = ∓v(1∓ qv)
√

1− 2v2 + q2v4

(1− 3v2 ± 2qv3)
, (3.102)

α2 = ∓ v(1∓ qv)(1− v2 ∓ 2qv3 + 2q2v4)

(1− 3v2 ± 2qv3)
√
1− 2v2 + q2v4

. (3.103)

For eccentric equatorial orbits, the precession phase takes the form

ψp = Υsλ+ ψr , (3.104)

where
Υs =M

√
p+O(e2) =

M

v
+O(e2) , (3.105)

and where ψr is a contribution to the precession phase that varies along the orbit’s radial
motion. Van de Meent [144] provides a general expression for ψr; for small eccentricity, this
expression reduces to

ψr = − 2ev2(1∓ qv)2

(1− 2v2 + q2v4)

√
1− 3v2 ± 2qv3

1− 6v2 ± 8qv3 − 3q2v4
sinwr

≡ eϖ(q, v) sinwr . (3.106)

Note that ψr ∝ ev2, and so by definition ψr is a small quantity in the small eccentricity
limit. This allows us to usefully expand cos(ϕs + ψp):

cos(ϕs + ψp) = cos(ϕs +Υsλ+ eϖ sinwr)

= cos(ϕs +Υsλ) cos(eϖ sinwr)− sin(ϕs +Υsλ) sin(eϖ sinwr)

≃ cos(ϕs +Υsλ)− eϖ sinwr sin(ϕs +Υsλ) . (3.107)

Combining Eqs. (3.101) and (3.107), and then linearizing in e yields

F θ
S(λ) = 3s⊥µM

{
α1 cos(ϕs +Υsλ)+e

[
α2 coswr cos(ϕs +Υsλ)−α1ϖ sinwr sin(ϕs +Υsλ)

]}
.

(3.108)
As in Sec. 3.3.2, we use variation of constants to solve Eq. (3.99), yielding

δϑS = A(λ) cos(Υθλ) +B(λ) sin(Υθλ) , (3.109)
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where

A(λ) = c1 −
3µMs⊥
8Υθ

[
4α1 cos(λ(Υs −Υθ))

Υs −Υθ

− 4α1 cos(λ(Υθ +Υs))

Υθ +Υs

+
2e(α2 − α1ϖ) cos(λ(−Υθ +Υr −Υs))

−Υθ + Υ̂r −Υs

+
2e(α2 + α1ϖ) cos(λ(−Υθ +Υr +Υs))

−Υθ + Υ̂r +Υs

− 2e(α2 − α1ϖ) cos(λ(Υθ +Υr −Υs))

Υθ + Υ̂r −Υs

− 2e(α2 + α1ϖ) cos(λ(Υθ +Υr +Υs))

Υθ + Υ̂r +Υs

]
,

(3.110)

B(λ) = c2 +
3µMs⊥
8Υθ

[
4α1 sin(λ(Υs −Υθ))

Υs −Υθ

+
4α1 sin(λ(Υθ +Υs))

Υθ +Υs

+
2e(α2 − α1ϖ) sin(λ(−Υθ +Υr −Υs))

−Υθ + Υ̂r −Υs

+
2e(α2 + α1ϖ) sin(λ(−Υθ +Υr +Υs))

−Υθ + Υ̂r +Υs

+
2e(α2 − α1ϖ) sin(λ(Υθ +Υr −Υs))

Υθ + Υ̂r −Υs

+
2e(α2 + α1ϖ) sin(λ(Υθ +Υr +Υs))

Υθ + Υ̂r +Υs

]
.

(3.111)

We have put ϕs = 0 here for simplicity. Notice that the total radial frequency Υr appears
inside the sine and cosine functions, but the geodesic radial frequency Υ̂r appears outside
these functions in these solutions. This is because A(λ) and B(λ) are used to build the O(S)
out of plane precessional motion of the small body, and Υr = Υ̂r +O(S). Using Υr instead
of Υ̂r outside of the sines and cosines would affect the solution at O(S2), and we neglect
terms at this order.

It is important to note that the combination Υ̂r + Υs − Υθ can pass through zero. For

example, when a = 0, this occurs for orbits that have v =
√
(2
√
3− 3)/3, for which p ≃

6.464; for a =M , this occurs for orbits that have v = (1/2)(±1/
√
3+
√
1/3 + 2/

√
3, for which

p ≃ 1.238 (prograde) and p ≃ 9.690 (retrograde). The general case smoothly connects these
limiting forms as a function of a. At least naively, Eq. (3.110) appears to be poorly behaved
at such “resonant” orbits, with certain terms diverging as this combination of frequencies
passes through zero. It is not difficult to show, however, that the combination α2 + α1ϖ
passes through zero at exactly the same orbits for which Υ̂r + Υs = Υθ. Such resonances
thus have no dynamical impact on the system. This is consistent with recent work [84], [91]
which shows that spinning body orbits are integrable at leading order in the smaller body’s
spin.

Equations (3.109), (3.110) and (3.111) show that the out-of-plane motion of the small
body depends on s⊥, is uncoupled from the in-plane motion, and is periodic, with structure
at harmonics of the precession frequency Υs, the radial frequency Υr, and the polar frequency
Υθ. As we consider more general configurations, we expect qualitatively similar behavior.
We thus design our algorithm for describing the small body’s orbital motion in the general
case in order to capture such behavior.
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3.4.3 Next order in eccentricity

As our final “simple” case, we examine equatorial and eccentric orbits to second order
in eccentricity. To keep the expressions relatively simple, we do this only for orbits of
Schwarzschild black holes, and only examine the spin-aligned case. As we saw for the equa-
torial and nearly equatorial orbits discussed in the previous section, non-aligned small body
spin decouples from all components of the body’s orbit except the out-of-plane motion com-
ponent U θ, which is itself decoupled from the aligned spin and from all other components
of the orbital motion. Focusing on the Schwarzschild limit of aligned spin orbits will be
sufficient for us to develop a strategy for solving for this motion to high precision for more
generic cases.

The two most important changes versus our previous analyses are that it will turn out we
need to know many quantities describing geodesics to fourth order in e in order to compute
corrections to the orbits of spinning bodies; and, we need a more complete accounting for
the difference between the true anomaly χr and the mean anomaly wr ≡ Υrλ. The need to
go to fourth order in e may be somewhat surprising. The reason is that the radial velocity
introduces a factor e; certain terms in the analysis which scale with Û rÛr or Û rUS

r have their
order in eccentricity “boosted” by a factor of e2.

To describe the true anomaly, we generalize a functional form that is well known from
studies of Keplerian orbits, writing

χr = wr +
[
e
(
β11 + βS11

)
+ e3

(
β31 + βS31

)]
sinwr

+ e2
(
β22 + βS22

)
sin 2wr + e3

(
β33 + βS33

)
sin 3wr

≡ wr + δχ̂r + δχSr . (3.112)

The quantity δχ̂r stands for all the oscillatory geodesic terms (i.e., the terms with βab) that
take us from the mean anomaly to the true anomaly. The quantity δχSr stands for the
equivalent terms which arise from spin-curvature coupling (the terms with βSab).

Other quantities we need are the integrals of the motion and the radial frequency:

Ê =
1− 2v2√
1− 3v2

+
e2v2

2

(1− 4v2)2

(1− 2v2)(1− 3v2)3/2
+
e4v4

8

(1− 4v2)2(3− 8v2)

(1− 2v2)3(1− 3v2)5/2
, (3.113)

L̂z =M
√
p

(
1√

1− 3v2
+
e2v2

2

1

(1− 3v2)3/2
+

3e4v4

8

1

(1− 3v2)5/2

)
, (3.114)

Υ̂r =M
√
p

(√
1− 6v2

1− 3v2
+
e2v2

4

(1− 9v2)(2− 9v2)

(1− 3v2)3/2(1− 6v2)3/2

+
3e4v4

64

[8− 25v2(1− 3v2)(8− 49v2 + 147v4)]

(1− 3v2)5/2(1− 6v2)7/2

)
. (3.115)

The right panel of Figure 3.1 shows how ΥS
r depends on e according to Eq. (3.115).

The true anomaly (3.112), coupled with the form r = p/(1 + e cosχr), suffices to fully
describe the radial motion. Turn next to the small body’s motion in t and ϕ. We parameterize
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this motion using the 4-velocity components

ut = −Ê + uSt ,

uϕ = L̂z + uSϕ . (3.116)

Raising the index and multiplying by Σ = r2, these components can be easily converted to
the forms U t,ϕ. We assume that the spin corrections to these 4-velocity components take the
form

uSt =
3∑

n=−3

ust,ne
−inwr , uSϕ =

3∑
n=−3

usϕ,ne
−inwr . (3.117)

We generically find that us(t,ϕ),n ∝ e|n|. We find that we don’t have enough information to
pin down these components for |n| > 3; presumably we need to describe the geodesic motion
to higher order in order to do this.

We solve for the various unknown quantities we have introduced by enforcing Eqs. (3.66)
– (3.68) and the constraint (3.11), and then gathering terms in spin and eccentricity. Terms
at order (s∥)0 are geodesic, and can be used to find the coefficients which make δχ̂r, defined
in Eq. (3.112):

β11 = − v2

1− 6v2
, (3.118)

β22 =
v4

8(1− 6v2)2
, (3.119)

β31 = − 19v6

16(1− 6v2)3
, (3.120)

β33 = − v6

48(1− 6v2)3 .
(3.121)

Turn now to various aspects of the solution at order s∥. First, we find the following
coefficients which define δχSr :

βS11 =
s∥µ

M
v3

(1− 2v2)

(1− 6v2)2
, (3.122)

βS22 = −
s∥µ

4M

v5(1− 2v2)

(1− 6v2)3
, (3.123)

βS31 =
s∥µ

16M

v7(25 + 156v2 − 924v4)

(1− 2v2)(1− 6v2)4
, (3.124)

βS33 =
s∥µ

16M

v7(1− 2v2)

(1− 6v2)4
. (3.125)

We next find the terms which define uSϕ and uSt :
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uSϕ = −s∥µ
(
3v2

2

(1− 2v2)

(1− 3v2)3/2
+ e2

v2

4

(2− 5v2 − 16v4 + 48v6)

(1− 2v2)(1− 3v2)5/2

)
, (3.126)

uSt =
s∥µ

M

(
3v5

2

(1− 2v2)

(1− 3v2)3/2
+

3ev5 coswr
(1− 3v2)1/2

+
e2v5

4

[2− 25v2 + 126v4 + 234v6 + 6(1− 3v2)2(1− 7v2) cos 2wr]

(1− 6v2)(1− 3v2)5/2

+
e3v5

8

coswr [4− 24v2 − 81v4 + 459v6 + (4− 84v2 + 513v4 − 891v6) cos 2wr]

(1− 6v2)2(1− 3v2)3/2

)
.

(3.127)

Finally, we compute the shift to the radial frequency due to spin-curvature coupling:

ΥS
r =

3s∥µ

2

(
v2(1− 2v2)

(1− 3v2)3/2
√
1− 6v2

− e2v2

12

(4− 106v2 + 985v4 − 4275v6 + 8928v8 − 7452v10)

(1− 2v2)(1− 3v2)5/2(1− 6v2)5/2

)
.

(3.128)
Neglecting the terms in e2, this is consistent with the result we found previously, Eq. (3.91)
in the limit q → 0. In addition, Eq. (3.91) agrees exactly with the Υr

S in Eq. (A.36) obtained
using the approach presented in Ref. [67]; see Appendix A.2 for details of this comparison.

Several other important quantities can be derived from what we computed here. Two that
are particularly important are the axial frequency Υϕ, and the quantity Γ which converts
from Mino-time frequencies and periods to coordinate-time frequencies and periods. As
discussed in Sec. 3.2.1, the axial frequency Υϕ is the orbit average of Uϕ:

Υϕ =
1

2π

∫ 2π

0

Uϕ(wr)dwr . (3.129)

Using Uϕ = Σgϕϕuϕ, we find

Υϕ =
M

v
√
1− 3v2

(
1 +

e2v2

2(1− 3v2)
−

3s∥v
3

2

1− 2v2

1− 3v2
−
s∥e

2v3

4

(2− 5v2 − 16v4 + 48v6)

(1− 2v2)(1− 3v2)2

)
.

(3.130)
Likewise, Γ is found by orbit averaging U t = Σgttut:

Γ =
M2

v4
√
1− 3v2

(
1 +

e2

2

(3− 38v2 + 148v4 − 186v6)

(1− 11v2 + 36v4 − 36v6)

−
3s∥v

5

2

1

(1− 3v2)
+
s∥e

2v3

4

(4− 43v2 + 160v4 − 186v6 − 144v8 + 216v10)

(1− 2v2)(1− 3v2)2(1− 6v2)2

)
. (3.131)

With these quantities in hand, it is straightforward to compute Ωr,ϕ = Υr,ϕ/Γ. Finally, the
shifts to the conserved integrals due to the spin-curvature interaction become.

δES = −
s∥µv

5

2M(1− 3v2)3/2

(
1− e2

(4− 15v2)

2(1− 3v2)

)
, (3.132)

δLSz =
s∥µ(2− 13v2 + 18v4)

2(1− 3v2)3/2

(
1− e2v4

2

(17− 96v2 + 144v4)

(1− 2v2)2(1− 3v2)(2− 9v2)

)
. (3.133)

All of these quantities agree with Eqs. (A.26) and (A.27) which were obtained using the
exact-in-eccentricity approach outlined in Appendix A.2.
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3.5 Spinning-body orbits III: Frequency-domain treat-
ment

We now consider nearly equatorial orbits with arbitrary eccentricity, using a frequency-
domain treatment of the spinning body’s motion. As described in Sec. 2.2.4, the spin of the
small body introduces the precession frequency Υs into the analysis. The small body also
shifts the orbital frequencies by an amount O(S) which we denote ΥS

r and ΥS
θ . Functions

evaluated on a spinning body’s orbit can thus be written as a Mino-time Fourier expansion
in terms of frequencies Υr = Υ̂r +ΥS

r , Υθ = Υ̂θ +ΥS
θ and Υs:

f(λ) =
1∑

j=−1

∞∑
n,k=−∞

fjnke
−ijΥsλe−in(Υ̂r+ΥS

r )λe−ik(Υ̂θ+ΥS
θ )λ . (3.134)

The Fourier coefficient fjnk is given by

fjnk =
1

ΛrΛθΛs

∫ Λr

0

∫ Λθ

0

∫ Λs

0

f (λr, λθ, λs) e
ijΥsλsein(Υ̂r+ΥS

r )λreik(Υ̂θ+ΥS
θ )λθdλθdλrdλs ,

(3.135)
where Λr,θ,s = 2π/Υr,θ,s. By writing all relevant quantities as expansions of this form, we can
compute the properties of spinning-body orbits to arbitrary precision, and develop a natural
way of computing the frequency shifts ΥS

r and ΥS
θ . As written, Eq. (3.134) is appropriate for

generic spinning-body orbits. In this analysis, we examine orbits of arbitrary eccentricity that
are equatorial or nearly equatorial; the generic case is developed and presented in Chapter
4.

3.5.1 Aligned spin

We first consider eccentric orbits with the spin of the small body aligned with the orbit.
The orbit’s geometry in this case is exactly as in Sec. 3.4.3, but we now allow for arbitrary
eccentricity. In this case, only radial oscillations are present in the motion, so all orbits can
be described using expansions of the form

f(λ) =
∞∑

n=−∞

fne
−in(Υ̂r+ΥS

r )λ . (3.136)

To evaluate these expressions, we truncate the Fourier expansion at a finite value nmax. In
Fig. 3.2, we examine the convergence of important properties of the orbit as we increase
nmax. These residuals are computed by comparing our frequency-domain expansion for these
quantities with an alternate method which is exact in eccentricity, but only applies to the
spin-aligned case. This method, which is based on that described by Saijo et al. (Ref. [67])
is described in detail in Appendix A.2. Our results indicate that we can accurately handle
large eccentricities (up to at least e ∼ 0.8) by increasing nmax, though larger e requires larger
values of nmax in order to meet a prescribed level of truncation error.

As described in Sec. 3.4.1, we parameterize the radial motion as

r =
pM

1 + e cosχr
. (3.137)
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Figure 3.2: Plot of residuals versus nmax with s∥ = s for uSt,0 (orange), uSϕ,0 (blue), ΥS
r (red).

These residuals are computed by comparing our frequency-domain expansion to results found
using an approach which, for the spin-aligned case, is exact in eccentricity; see Ref. [67] and
Appendix A.2 for detailed discussion. Top panel shows e = 0.3; middle is e = 0.5; and
bottom is e = 0.7. In all cases, the large black hole has spin parameter a = 0.9M , and the
orbit has p = 10 and I = 0◦.
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This form guarantees that the motion is constrained to the interval p/(1+e) ≤ r ≤ p/(1−e).
As in Eq. (3.73), we write the true anomaly χr in Eq. (3.137) as

χr = wr + δχr , (3.138)

where wr is the mean anomaly and δχr is an oscillating contribution to χr. The oscillating
contribution in turn has a piece associated with geodesic motion, δχ̂r, and another piece
that arises from spin-curvature coupling δχSr = O(S),

δχr = δχ̂r + δχSr . (3.139)

The mean anomaly also has geodesic and spin-curvature contributions:

wr =
(
Υ̂r +ΥS

r

)
λ , (3.140)

where ΥS
r is the O(S)-correction to the radial Mino-time frequency. It is useful to write the

true anomaly angles δχ̂r and δχSr as Fourier expansions1,

δχ̂r =
∞∑

n=−∞

δχ̂r,ne
−inwr , (3.141)

δχSr =
∞∑

n=−∞

δχSr,ne
−inwr . (3.142)

We set χSr,0 = 0; this amounts to a choice of initial true anomaly. Note that the geodesic
Fourier coefficients δχ̂r,n are known, as described in Sec. 2.1. Observe, however, that wr
includes the frequency correction ΥS

r , meaning that wr+ δχ̂r, with δχ̂r given by Eq. (3.141),
is not the same as the true anomaly for the corresponding geodesic orbit with the same
radial turning points. We treat the non-oscillating part of the spinning body’s true anomaly
as almost identical to the non-oscillating part of the true anomaly belonging to the geodesic
with the same turning points, differing only by an appropriate shift to the orbit’s frequency.
This cures a pathology associated with the fact that the rate at which the mean anomaly
accumulates for geodesic orbits differs at O(S) from the rate at which it accumulates for
spinning-body orbits. This issue is described in more detail in Appendix A.1.

As in Eq. (3.116), we define the O(S)-corrections to the temporal and axial components
of the 4-velocity by

ut = −Ê + uSt , uϕ = L̂z + uSϕ , (3.143)

where uSt and uSϕ can also be written as Fourier expansions,

uSt =
∞∑

n=−∞

uSt,ne
−inwr , (3.144)

uSϕ =
∞∑

n=−∞

uSϕ,ne
−inwr . (3.145)

1Note that if the function we are Fourier expanding already has a subscript, we use a comma to denote
the specific Fourier mode. For example, δχ̂r,1 is the n = 1 harmonic of function δχ̂r.

67



Figure 3.3: Example of radial motion for an aligned, spinning body in an equatorial orbit of a
Kerr black hole (a = 0.9M). Left panel shows r versus λ for a geodesic (black dashed) and for
a spinning-body orbit (blue solid). These orbits share radial turning points, corresponding
to semi-latus rectum p = 10M , eccentricity e = 0.5. Top right panel shows the spinning
body’s −uSt (red), ∂βgtαSαβ/(2µ) (orange), and δES (blue) versus λ. Bottom right panel
shows the spinning body’s uSϕ (red), −∂βgϕαSαβ/(2µ) (orange), δLSz (blue) versus λ. Notice
that the shifts in the integrals of motion E and Lz are constants, even though the terms
which contribute to them oscillate. (The oscillations in the terms which contribute to δLSz
are so small they can barely be seen on this plot.) In all cases, the Fourier expansions have
been taken to nmax = 8; for the left panel, we have used µs/M = 0.5.
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We divide both uSt and uSϕ into a piece that is constant, and a piece that oscillates:

uSt = uSt,0 + δuSt (λ) , uSϕ = uSϕ,0 + δuSϕ(λ) . (3.146)

We can solve for the oscillating pieces using the t- and ϕ- components of Eq. (2.47). Com-
bining the axial and temporal components yields two equations of the form

duSϕ
dλ

= Rϕ ,
duSt
dλ

= Rt , (3.147)

where Rϕ and Rt are functions of known geodesic quantities. For the equatorial and nearly
equatorial cases, Eqs. (3.147) are equivalent to Eqs. (3.69) – (3.70), and we can read out the
functions Rϕ and Rt from there. The equations in (3.147) allow us to immediately solve for
δuSt and δuSϕ . The constants uSt,0 and uSϕ,0 are determined by the system’s initial conditions;
as described below, we solve for these quantities along with the other unknowns, δχSr and
ΥS
r .

To make further progress, we insert Eqs. (3.137) and (3.143) into Eq. (2.47) and linearize
in spin. By gathering in terms of unknown quantities, the radial component of Eq. (2.47)
has the form

Fr
d2δχSr
dλ2

+ Gr
dδχSr
dλ

+Hrδχ
S
r + I1rΥ

S
r + I2u

S
t,0 + I3u

S
ϕ,0 + J = 0 . (3.148)

In this equation, we have gathered all the terms and functional behavior which are known
(i.e., they depend on the behavior of the geodesic with p and e) into the functions Fr, Gr,
Hr, I1r, I2, I3 and J . The explicit expressions for these functions in the Schwarzschild
spacetime can be found in Appendix A.3.1. For Kerr, the expressions become rather un-
wieldy. We include a Mathematica notebook in the supplementary material which computes
the expressions for a ̸= 0. Note that we solved for δuSt and δuSϕ when we solve (3.147); these
functions are incorporated into J .

We also use uαuα = −1 linearized in spin [i.e., Eq. (3.11)], as an additional constraint.
This yields an equation of the form

Kr
dδχSr
dλ

+Mrδχ
S
r +N1rΥ

S
r +N2u

S
t,0 +N3u

S
ϕ,0 + P = 0 , (3.149)

where Kr, Mr, N1r, N2, N3 and P are again all functions2 of known quantities, and are
listed in Appendix A.3.1 for Schwarzschild (with the Kerr versions included in supplemental
material). The solutions for δuSt and δuSϕ are here incorporated into the function P .

To solve for the unknown aspects of the spinning body’s orbit, we write Fr, Gr, Hr, I1r,
I2, I3, J , Kr, Mr, N1r, N2, N3 and P as Fourier expansions of the form shown in Eq. (3.136).
We insert these expansions, along with Eq. (3.142), into Eqs. (3.148) and (3.149). Evaluating
Eqs. (3.148) and (3.149) in the frequency domain, we turn this differential equation into a
system of linear equations which can be expressed in the form

M · v + c = 0 , (3.150)
2The functions Fr, Gr, etc. follow a mostly alphabetic sequence; however, we skip the letter L in our

scheme to avoid confusion with the angular momentum 4-vector defined in Eq. (2.11).
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where M is a matrix whose entries are related to the Fourier expansions of several of the
functions appearing in Eqs. (3.148) and (3.149), and where c is a column vector whose entries
are related to the Fourier expansion of the functions J and P . The entries of the column
vector v are the problem’s various unknown quantities, such as the spin-induced shift in
the radial frequency ΥS

r . As an illustration of this equation’s form, we have written out the
explicit form of M, v, and c in Appendix A.3.2 for nmax = 1. Note that this value of nmax

is far too small to achieve numerical convergence, and is used only for illustrative purposes.
The matrix equation is ungainly when written out for realistic values of nmax, though it poses
no difficulties for numerical analysis. We then solve this system of linear equations for the
unknown variables δχSr , ΥS

r , uSϕ,0 and uSt,0. This yields a complete solution for the motion of
the spinning body to first order in spin.

When the small body’s spin is aligned with the orbit, an alternative method based on Ref.
[67] allows us to calculate ΥS

r exactly as a function of eccentricity; this method is described
in detail in Appendix A.2. Figure 3.2 shows how ΥS

r , uSϕ,0 and uSt,0 converge to the exact
result as we increase the value of nmax. For higher eccentricities, we need to include more
harmonics (use a larger value of nmax) in order for the solution to converge to the same
level of accuracy as the lower eccentricity orbit. For example, for an eccentricity of e = 0.7
(bottom panel of Fig. 3.2) we need nmax = 20 to obtain the same discrepancy between the
exact and frequency-domain result as for e = 0.3 (top panel of Fig. 3.2) with nmax = 9.

An example of an aligned spinning body’s equatorial orbit is shown in the left panel of Fig.
3.3. The geodesic orbit with the same radial turning points is overplotted for comparison.
Notice the two ways in which the spinning body’s radial motion differs from that of the
geodesic. First, the radial frequency is shifted by ΥS

r . This effect can be very clearly seen
in Fig. 3.3. Second, the shape of the orbit is modified due to the impact of the oscillatory
term in the true anomaly δχSr . This effect is quite a bit smaller, and is not obvious in the
figure for this choice of parameters.

In the right panel of Fig. 3.3, we show uSt and uSϕ , as well as corrections to the spinning
body’s energy δES and axial angular momentum δLSz [using Eqs. (3.14) and (3.15)]. As
expected, the oscillations in ∂βgtαSαβ/(2µ) and ∂βgϕαSαβ/(2µ) precisely cancel oscillations in
δuSt and δuSϕ ; upon summing, δES and δLSz are indeed constant. The values for the spinning
body’s energy and axial angular momentum match those obtained using the alternative
approach described in Appendix A.2; see App. A.2.2 in particular.

3.5.2 Misaligned spin

We now consider eccentric, nearly equatorial orbits, allowing the spin of the small body to
have arbitrary orientation. As we saw in Secs. 3.3.1, 3.4.3 and 3.5.1, if the spin of the small
body is aligned with the orbit, the motion remains in the equatorial plane. However, if the
spin of the test body is misaligned, the spin vector precesses, as described in Secs. 3.3.2 and
3.4.2. The spin precession introduces the frequency Υs into the motion. Orbital quantities
can then be described using expansions of the form

f(λ) =
1∑

j=−1

∞∑
n=−∞

fjne
−ijΥsλe−in(Υ̂r+ΥS

r )λ . (3.151)
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Figure 3.4: Plot of residuals versus nmax for a nearly equatorial orbit of a misaligned spinning
body. The body’s spin in this case has s∥ = 0.5s, s⊥ =

√
3s/2. We show residuals for uSt,0

(orange), uSϕ,0 (blue), ΥS
r (red). To compute these residuals, we use the fact that the equations

for this case are identical to the equations for the spin-aligned case, but substituting s∥ for
the small body’s spin s. Because of this, the exact-in-eccentricity solution (described in Ref.
[67] and Appendix A.2) that describes aligned orbits can be used to compute the quantities
which describe the radial part of misaligned spinning body’s orbit, provided we use only the
parallel component s∥ all of the relevant expressions. As in Fig. 3.2, top panel shows e = 0.3,
middle shows e = 0.5, and bottom is e = 0.7. In all cases, the large black hole has spin
parameter a = 0.9M , and the orbit has p = 10 and I = 0◦.
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Figure 3.5: Example of the motion of a nearly equatorial prograde (I = 0◦) orbit for a
non-aligned spinning test body around a Kerr black hole with a = 0.9M . Top left panel
shows r versus λ for a geodesic (black dashed) and a spinning test body (blue solid) orbit.
These orbits share radial turning points, corresponding to p = 3M , e = 0.3. Note that, in
the left two panels, we have used an unphysically high spin µs/M = 1 in order make the
spin-curvature effects clearly visible. Also note that for making this plot, the spinning-body
orbit has been shifted slightly: its radial frequency Υr = Υ̂r+ΥS

r has been replaced with Υ̂r.
This is done so that in the plot the geodesic and the spinning-body orbit pass through their
radial turning points at the same times, which helps to illustrate differences in their motion
between each turning point. Bottom left panel shows cos θ versus λ for a geodesic (black
dashed) and the spinning-body (blue solid) orbit. Top right shows −uSt (red), ∂βgtαSαβ/(2µ)
(orange), and δES (blue), as well as δχSr (black), all versus λ. Finally, the bottom right panel
shows uSϕ (red), −∂βgϕαSαβ/(2µ) (orange), and δLSz (blue), as well as δϑS (black), all versus
λ. Notice that the spin-induced shifts to the integrals of motion E and Lz are constants,
although each such term has contributions that oscillate. In making these plots, we have
used s∥ = −0.5s, ϕs = 0 and nmax = 5. In the two left panels, we have used µs/M = 1.
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Note that in the expansion (3.151) we do not include harmonics at frequency Υθ. Such
harmonics can in principle be present, as we saw in Eqs. (3.109), (3.110), and (3.111). In the
present analysis, we have only considered initial conditions such that the amplitude of the
Υθ harmonics are suppressed. In Chapter 4, we examine motion governed by the completely
general form (3.134); the motion in this case has harmonics of all three frequencies are
present.

The spin precession induces out-of-plane motion, which we describe by introducing the
new variable δϑS, as in Secs. 3.3.2 and 3.4.2. The orbit can therefore be parameterized by

r =
pM

1 + e cos (wr + δχ̂r + δχSr )
, (3.152)

θ =
π

2
+ δϑS . (3.153)

The spin contribution to the radial anomaly angle, δχSr , consists of purely radial oscillations,

δχSr =
∞∑

n=−∞

δχSr,ne
−inwr ; (3.154)

the Fourier expansion for δϑS depends in addition on the frequency Υs,

δϑS =
1∑

j=−1

∞∑
n=−∞

δϑS,jne
−inwre−ijws . (3.155)

We have introduced ws = Υsλ. For the nearly equatorial case, non-trivial polar motion δϑS
emerges, varying with the spin precession frequency Υs. As mentioned above, we do not
include harmonics at frequency Υθ in the expansion (3.155); this case will be presented in
Chapter 4.

Figure 3.2 displays the convergence of an orbit with aligned spin, while Figure 3.4 shows
the convergence of an orbit with misaligned spin, where both orbits have the same radial
turning points. We call the discrepancy between the exact result and our value for a certain
nmax the “residuals". These residuals are normalized by the exact value of the quantity we
are computing, so the values for ΥS

r , uSt,0 and uSϕ,0 are directly comparable. As nmax increases,
the residuals decrease and approach closer to the true value, as expected. The convergence
trend is identical for both the aligned and misaligned cases, except for the highest value
of nmax for each of the different eccentricities. At this point, the working precision of the
calculation is insufficient and the computation breaks down due to rounding error.

As in Sec. 3.5.1, we write the axial and temporal components of the 4-velocity in the form
Eq. (3.146) and use Eq. (3.147) to find δuSϕ and δuSt . We insert Eqs. (3.152), (3.153) and
(3.143) into Eq. (2.47) and linearize in spin. Similarly to Sec. 3.5.1, the radial component of
Eq. (2.47) has the form

Fr
d2δχSr
dλ2

+ Gr
dδχSr
dλ

+ Gϑ
dδϑS
dλ

+Hrδχ
S
r +HϑδϑS + I1rΥ

S
r + I2u

S
t,0 + I3u

S
ϕ,0 + J = 0 ,

(3.156)
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where Fr, Gr, Gϑ, Hr, Hϑ, I1r, I2, I3 and J are all functions of known quantities. For
nearly equatorial orbits, Gϑ = Hϑ = 0. This is not the case for generic orbit geometry, which
we discuss in Chapter 4; we include these functions in Eq. (3.156) in order to lay out the
structure we need for the generic case.

When the small body’s spin is misaligned with the orbit, the body’s motion takes it out
of the equatorial plane. This requires us to include the θ-component of Eq. (2.47) in our
analysis. We linearize this equation in spin, yielding

Qϑ
d2δϑS
dλ2

+ Sr
dδχSr
dλ

+ Sϑ
dδϑS
dλ

+ TrδχSr + TϑδϑS + U1rΥ
S
r + U2u

S
t,0 + U3u

S
ϕ,0 + V = 0 .

(3.157)

In (3.157), the functions Qϑ, Sr, Sϑ, Tr, Tϑ, U1r U2, U3 and V all depend on known quantities.
For nearly equatorial orbits, Sr = Sϑ = Tr = U1r = U2 = U3 = 0. This is not the case for the
more generic orbits which we discuss in Chapter 4. As in our discussion of the spin-aligned
case, we use uαuα = −1 to obtain a linear-in-spin constraint which we write

Kr
dδχSr
dλ

+Kϑ
dδϑS
dλ

+Mrδχ
S
r +MϑδϑS +N1rΥ

S
r +N2u

S
t,0 +N3u

S
ϕ,0 + P = 0 . (3.158)

Here, Kr, Kϑ, Mr, Mϑ, N1r,N2, N3 and P are again all functions of known quantities. For
nearly equatorial orbits, Kϑ = Mϑ = 0. We list the Schwarzschild limit of all these functions
in App. A.3.1, and include Kerr versions in our supplementary material.

We can now write Fr, Gr, Gϑ, Hr, Hϑ, I1r, I2, I3, J , Qϑ, Sr, Sϑ, Tr, Tϑ, U1r, U2, U3,
V , Kr, Kϑ, Mr, Mϑ, N1r, N2, N3 and P as Fourier expansions of the form given in Eq.
(3.151). We insert these expansions, along with Eqs. (3.154) and (3.155), into Eqs. (3.156),
(3.157) and (3.158). This turns these differential equations into linear algebraic ones; as in
our discussion of aligned orbits in Sec. 3.5.1, we gather terms into matrix form, and then
solve for the for the unknown variables δχSr , δϑS, ΥS

r , uSt,0 and uSϕ,0. Further details about the
matrix system corresponding to Eq. (3.157) are provided in Appendix A.3.2 and the explicit
solution given for nmax = 1. As discussed in Secs. 3.3.2 and 3.4.2, when the small body’s
spin is misaligned from the orbit, qualitatively distinct behaviour arises due to the spin’s
precession.

In the left panel of Fig. 3.5, we show r and θ for a small body with misaligned spin; an
equatorial geodesic with the same radial turning points is overplotted for comparison. The
form of δχSr and δϑS for this orbit is shown in the right panels of Fig. 3.5. As in Sec. 3.5.1,
there are two main ways in which the radial motion of the spinning body differs from that
of the geodesic with the same turning points: the radial frequency is shifted, and the shape
of the orbit is modified by δχSr . We have actually hidden the first effect by shifting the
spinning-body orbit’s radial frequency — the solid curve in Fig. 3.5 is a spinning-body orbit
with the radial frequency Υr = Υ̂r+ΥS

r replaced with Υ̂r. This allows us to more clearly show
the impact of the shifted radial anomaly oscillation δχSr — notice that the shifted geodesic
sometimes moves faster, and sometimes slower, than the spinning-body orbit with which it
is plotted. The frequency shift ΥS

r is exactly the same as for the equivalent aligned case
except with s replaced by s∥. The harmonic content of cos θ is more complicated, exhibiting
a beat between Υr and Υs. We also plot uSt and uSϕ alongside the corrections to the spinning
body’s energy δES and orbital angular momentum δLSz in the right panels of Fig. 3.5.
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3.6 Summary and future work

In this work, we have studied equatorial and nearly equatorial orbits of spinning bodies
around black holes in detail. Such orbits reduce to equatorial ones when the orbiting body
is non-spinning. When the spin is aligned with the orbit, the motion is confined to the
equatorial plane. When the spin vector is misaligned, it precesses with Mino-time frequency
Υs, and the motion acquires a polar oscillation δϑS whose magnitude is O(S). The solution in
this case appears to diverge on “resonances,” orbits for which the radial and spin frequencies
combine to be commensurate with the polar oscillation frequency: Υ̂r+Υs = Υθ. In fact, the
amplitude of the driving force vanishes at such frequencies, and the system is well behaved,
in keeping with past work which demonstrated that nothing “interesting” happens during
spin-orbit resonances at least when considering the motion to leading order in spin [84],
[91]. Sections 3.3 and 3.4 presented analytic descriptions of nearly equatorial orbits that are
circular and slightly eccentric respectively. In Sec. 3.5, we introduced a frequency-domain
description of nearly equatorial orbits with arbitrary eccentricity.

In Chapter 4, we use this frequency-domain approach to describe completely generic orbits
— orbits that are both inclined and eccentric, with the small body’s spin arbitrarily oriented.
It is worth remarking that, for the nearly equatorial orbits we consider here, spinning-body
orbits share the same radial turning points as some equatorial geodesic orbit. For the nearly
equatorial case, this “reference geodesic” which shares the orbit’s turning points serves as
a particularly convenient point of comparison in analyzing the spinning body’s orbit. This
analysis becomes more complicated in the generic case, for which neither the polar nor the
radial libration ranges coincide in general with those of a geodesic. We can nonetheless
define a “reference geodesic” whose turning points coincide with the spinning body’s orbit in
an orbit-averaged sense; details are given in Chapter 4. We use this framework to compute
corrections arising from the small body’s spin to the orbital frequencies Υr and Υθ for generic
orbits in Chapter 4. In addition, we present a detailed comparison between our approach and
the methods presented in Ref. [84] for the case of equatorial, spin-aligned orbits in Appendix
B.2.

Results in Ref. [164] suggest that the behavior near resonance of terms which are quadratic
in spin plays a critical role in the emergence of chaotic motion via the KAM theorem.
This is supported by Ref. [91] which contains a detailed numerical study of the growth of
resonances and chaos for spinning-body motion in a Schwarzschild spacetime. By using the
techniques discussed here to provide a very accurate formulation of the linear-in-spin aspect
of spinning-body orbits, we plan to extend work in Ref. [164] by investigating the behaviour
of the quadratic in spin terms in the frequency domain. We hope this may clarify the precise
manner in which nonlinear terms in the spinning-body equations of motion push such orbits
from integrable to chaotic behavior in a Kerr background.

Another avenue for future work is to incorporate secondary spin into gravitational wave-
form models. An osculating geodesic integrator [178], [179] can be used to generate spinning-
body worldlines. Any perturbed system of the form Dpα/dτ = δfα can be described using
an osculating geodesic framework, so long as δfα is sufficiently small. In the EMRI limit
we are interested in, both the spin-curvature force fαS and the self-force effects are small,
so it should be possible to fold both into a forcing term and build a spinning-body inspi-
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ral. Such a framework has been developed for Schwarzschild orbits, and is presented in Ref.
[112]; we hope to use a similar approach to model completely generic spinning-body Kerr
inspirals. Ultimately, one hopes to build a fully self consistent self-force driven inspiral, and
it is encouraging that the first steps have been taken in this direction [180].
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Chapter 4

Precisely computing bound orbits of
spinning bodies around black holes II:
Generic orbits

This chapter is based on work previously published in Physical Review D (Drummond &
Hughes 2022b) [172], written in collaboration with Scott A. Hughes.

4.1 Introduction and motivation

This work is a continuation of Chapter 3, which lays out the general framework that we
use but presents results only for equatorial or nearly equatorial orbits (“nearly equatorial”
meaning they would be equatorial if the small body were not spinning, but can oscillate
by O(S) out of the equatorial plane due to spin precession effects). In this paper, we
present results for orbits of spinning bodies around black holes with completely generic
orbital configurations and spin orientations.

4.1.1 Synopsis of our frequency-domain description

We use a frequency-domain framework to compute the orbits of spinning bodies. Bound Kerr
geodesics naturally lend themselves to this type of treatment as they are characterized by the
three coordinate-time frequencies Ω̂r, Ω̂θ and Ω̂ϕ related to radial, polar, and axial motions
respectively. This triperiodicity allows for a frequency-domain description of functions which
are computed along Kerr orbits:

f [r̂(t), θ̂(t)] =
∑
kn

fkne
−inΩ̂rte−ikΩ̂θt , (4.1)

where fkn are Fourier expansion coefficients. Notice that the function f we use to illustrate
this expansion depends on the orbit’s radial coordinate r and polar coordinate θ. This is
common for many relevant functions in our analysis; because the Kerr spacetime is axisym-
metric, the coordinate ϕ often does not enter the analysis. Notice also we write certain
quantities in (4.1) using a “hat” accent, e.g. r̂(t) or Ω̂r. Throughout this paper, we use this
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accent to denote a quantity which corresponds to a geodesic orbit. A slight modification to
the formulation (4.1) allows us to characterize the properties of spinning-body orbits, as was
observed in Ref. [164]. We describe our frequency-domain formulation in detail in Sec. 4.3.1.

The spin of the small body injects additional harmonic structure into the orbit — spin
precession introduces a new frequency [144], which we label Ωs. In addition, the spin of
the small body changes the orbital frequencies. Let us denote the changes relative to an
appropriately defined geodesic by ΩS

r and ΩS
θ . Quantities expanded along a spinning body’s

orbit, such as the spin-curvature force fαS , can be written as a Fourier expansion in terms of
frequencies Ωr = Ω̂r + ΩS

r , Ωθ = Ω̂θ + ΩS
θ , and Ωs:

f [r(t), θ(t), Sµ(t)] =
∑
jkn

fjkne
−ijΩste−inΩrte−ikΩθt . (4.2)

Here Sµ is a 4-vector which describes the spin of the small body. Note that the radial
and polar indices n and k both range from −∞ to ∞; the spin harmonic index j only
varies over the range j ∈ [−1, 0, 1]. As with the geodesic expansion (4.1), the frequency-
domain expansion (4.2) provides useful machinery for characterizing properties associated
with spinning-body orbits.

We find it convenient to associate each spinning-body orbit with a “reference” geodesic.
We thus begin by discussing the parameterization we use for geodesic orbits. Up to initial
conditions, a geodesic is characterized by its semi-latus rectum p, its eccentricity e and an
inclination angle I. In terms of these parameters, a geodesic’s radial and polar motion are
parameterized by

r̂ =
pM

1 + e cos χ̂r
, cos θ̂ = sin I cos χ̂θ , (4.3)

where the angles χ̂r and χ̂θ are relativistic versions of “true anomaly” angles used in Keplerian
orbital dynamics. Notice that the radial motion oscillates between periapsis at pM/(1 + e)
and apoapsis at pM/(1− e); the polar motion oscillates such that − sin I ≤ cos θ ≤ sin I.

Spinning-body orbits have a more ornate structure than geodesics, and in most cases
cannot be parameterized in exactly this manner. An exception is the limit of equatorial
orbits in which the small body’s spin is aligned with the normal to the orbital plane. In that
case, we set I = 0◦ or 180◦, and we find we can parameterize the orbit such that it has the
same turning points pM/(1± e) as a geodesic orbit. Note that the motion between turning
points differs, however, thanks to the spin-curvature force; see detailed discussion in Secs.
3.4 and 3.5, especially discussion near Eqs. (5.16), (5.54), and (6.4).

If the small body’s spin is misaligned with the orbit, or the orbit is inclined with respect
to the equatorial plane, the libration region varies along the orbit. These variations couple
the radial, polar, and spin precessional motions, complicating the equations of motion, and
preventing them from fully separating. Despite the complications of the libration region’s
variation, we can constrain the “purely radial” motion — the aspects of the motion which
only have harmonics in Ωr — to lie between pM/(1 + e) and pM/(1 − e). We can likewise
constrain the “purely polar” motion, which only has harmonics in Ωθ, to lie between − sin I
and sin I. In this sense, we parameterize the spinning-body orbits with respect to a reference
geodesic which has radial and polar turning points precisely at pM/(1± e) and ± sin I. We
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then compute shifts to important properties of the orbit relative to this reference geodesic.
For example, for spinning-body orbits confined entirely to the equatorial plane, we compute
shifts to the orbital frequencies relative to geodesic orbits with the same radial turning points;
this case is discussed in detail in the previous chapter (Chapter 3). In this chapter, we further
elucidate how reference geodesics are characterized briefly in Sec. 4.2.1, and in much greater
detail in Sec. 4.3.1. In Appendix B.1, we discuss different definitions of reference geodesics
(i.e., geodesics “close to" a corresponding spinning-body orbit) that have been used in the
literature.

4.1.2 Organization of this chapter

In Sec. 4.2.1, we describe spinning-body orbits qualitatively. This description is then made
quantitative as we outline the small-spin perturbative approach (Secs. 4.2.2) and computa-
tional framework (Sec. 4.2.3) that we use to calculate the orbits.

In Sec. 4.3, we use a frequency-domain treatment to compute generic orbits, which are
both inclined and eccentric, and for which the small body’s spin is arbitrarily oriented. We
outline the general principles of the frequency-domain description in Sec. 4.3.1. In Secs.
4.3.2 and 4.3.2, we focus specifically on spinning-body orbits that are “nearly circular,” with
aligned spins discussed in Sec. 4.3.2 and misaligned spins discussed in Sec. 4.3.2. Nearly
circular orbits have an associated reference geodesic that is circular; the orbits have a Boyer-
Lindquist coordinate radius that is constant modulo a small variation of O(S). In Sec.
4.3.2, we consider the fully generic case, with both arbitrary eccentricities and inclinations.
We conclude in Sec. 4.4 by summarizing our results and outlining plans for related future
research. In Appendix B.2, we compare our results with an alternative method for computing
these frequency shifts presented in Ref. [84].

As in the previous chapter, quite a few of the functions which enter into this analysis are
extremely lengthy. Both because this makes them difficult to read and because the likelihood
of introducing errors when typesetting them is high, we provide the explicit formulas for
these expressions using a Mathematica notebook included with this paper’s Supplementary
Material [181], rather than writing the expressions out in this thesis.

4.2 Generic spinning-body orbits: general principles

In this analysis, we formulate the motion of a spinning body in terms of a nearby “reference”
geodesic orbit. We begin our discussion of spinning-body motion by presenting a qualitative
overview of their orbits and the parameterizations used to describe them (Sec. 4.2.1). In Sec.
4.2.2, we then discuss spin-induced deviations to geodesic trajectories and orbital quantities.
In Sec. 4.2.3, we present the mathematical framework we use to compute spinning-body
orbits.

4.2.1 Characteristics of spinning-body orbits

Spinning-body orbits generally tend to be qualitatively distinct from geodesic orbits. The
most obvious difference is the introduction of harmonics at frequency Υs, which appear when
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s⊥ ̸= 0 due to the precession of the spin vector. However, even when s⊥ = 0 so that there is
no spin precession, the libration range can vary over the course of the orbit due to harmonics
of both Υr and Υθ. Unlike the geodesic orbits given in Eqs. (2.24), the radial and polar
motions of a spinning body do not fully separate thanks to their coupling via the variations
in orbit’s libration region. Instead, the radial turning points are functions of θ and ψp,
while the polar turning points are functions of r and ψp; see Ref. [84] for explicit analytic
expressions for turning point corrections.

Because bound geodesics have turning points that are fixed for the duration of the orbit,
we cannot in general find a geodesic with the same turning points as a given spinning-body
orbit. We find, however, that aspects of the motion which are totally described by harmonics
of the radial frequency Ωr do in fact have fixed radial turning points; we call this the “purely
radial” portion of the orbit. Likewise, aspects of the motion which are totally described by
harmonics of the polar frequency Ωθ have fixed polar turning points; we call this the “purely
polar” orbital motion. With this in mind, we define the reference geodesic as the geodesic
that has the same radial turning points as the purely radial part of the spinning-body orbit,
and that has the same polar turning points as the purely polar part of that orbit. Aspects of
the motion which cannot be written as purely radial or purely polar describe variations in the
orbit’s turning points, and are incorporated into functions which combine the radial, polar,
and precessional frequencies. Section 4.3.1 expands on this idea, providing computational
detail; see also Appendix B.1 for discussion of alternative mappings between geodesic and
spinning-body orbits used in the literature.

The simplest case is an equatorial orbit with aligned spin, so that s⊥ = 0. In this case,
an orbit’s radial and polar motion can be parameterized as

r =
pM

1 + e cosχr
, θ =

π

2
. (4.4)

This constrains the radial motion to the interval p/(1 + e) ≤ r ≤ p/(1 − e), exactly as for
geodesic motion. Note, however, that the true anomaly angle χr for the spinning-body orbit
is not the same as the geodesic true anomaly χ̂r: there is a shift in the radial frequency from
Υ̂r to Υr = Υ̂r +ΥS

r , as well as a shift to an oscillating contribution to this angle.
For misaligned spin, with s⊥ ̸= 0, the spin vector precesses and truly equatorial orbits

do not exist. However, we can find “nearly equatorial” orbits which oscillate O(S) out of
the equatorial plane. For the nearly equatorial orbits, we can still parameterize the radial
motion in the same way as a geodesic, but there are adjustments to the polar libration range
due to the spin precession. The turning points of the polar motion then depend on the spin
precession phase ψp. We write nearly equatorial orbits in the form

r =
pM

1 + e cosχr
, θ =

π

2
+ δϑS , (4.5)

where the angle δϑS describes the O(S) librations in polar angle. We investigate these orbits
in detail in Chapter 3.

Spinning-body orbits which are inclined with respect to the equatorial plane cannot be
parameterized in the same way as geodesics even when s⊥ = 0. Inclined orbits with aligned
spin (i.e., with s⊥ = 0) that are O(S) away from circular — “nearly circular” orbits — can
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be parameterized using

r = pM + δrS , (4.6)
cos θ = sin I cosχθ . (4.7)

The polar motion in this parameterization is the same as that for an inclined geodesic
orbit (bearing in mind that the true anomaly angle χθ differs from the true anomaly χ̂θ
that describes a geodesic), but the radial motion includes a function δrS which accounts
for oscillations in the radial libration region due to spin-curvature coupling. This form is
discussed in detail in Section 4.3.2.

For nearly circular orbits with misaligned spin, the radial turning points depends on both
θ and ψp; the polar turning points depend on r and ψp. The orbits in this case are described
by

r = pM + δrS , (4.8)
cos θ = sin I cosχθ + δzS . (4.9)

The function δzS accounts for variations in the cos θ libration region. This parameterization
can be written as a variation in polar angle:

δzS = −δϑS
√
1− sin2 I cos2 χθ . (4.10)

This relationship is most useful for nearly equatorial orbits which have sin I = 0, for which
δzS = −δϑS. Circular, inclined orbits with misaligned spin are discussed in detail in Sec.
4.3.2.

Finally, in the fully generic case when the orbit is eccentric and inclined with arbitrarily
oriented spin, the parameterization we use has the form

r =
pM

1 + e cosχr
+ δrS , (4.11)

cos θ = sin I cosχθ + δzS . (4.12)

This case is discussed in detail in Sec. 4.3.2.

4.2.2 Perturbative framework for the motion of spinning bodies

In Eq. (2.44), we defined a dimensionless spin parameter s which satisfies 0 ≤ s ≤ 1 if the
small body is itself a Kerr black hole. The magnitude of the small body’s spin is then S ≤ µ2,
and so linear-in-spin effects are quadratic in the system’s mass ratio. In what follows, we
neglect terms in our equations that are O(S2) or higher, as such terms are negligible for the
extreme mass ratio systems we are interested in.

With a linear-in-spin analysis in mind, it is possible to write the small body’s trajectory
as

xα(λ) = x̂α(λ) + δxαS(λ) . (4.13)
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Here, x̂α(λ) is the trajectory of a geodesic, and δxαS(λ) is the O(S)-deviation from the
geodesic trajectory due to the spin of the small body. Similarly, as defined in Eq. (3.10), we
can write

uα = ûα + uαS . (4.14)

As discussed in Sec. 3.2.2, we do not directly use the form Eq. (4.13) when we evalu-
ate spinning-body orbits in Sec. 4.3. We instead parameterize spinning-body orbits using
amplitude-phase variables, where the frequency shift is incorporated into the parameteriza-
tion; see Eqs. (4.37) – (4.38) and surrounding text. These variables are either periodic or
constant and do not contain secularly growing terms; they can be described using Fourier
expansions as outlined in Sec. 4.3.1. Once we have solved for the frequency shifts and other
unknowns, it is then possible to compute radial and polar spin corrections δrS and δθS,
whose explicit forms in terms of the amplitude-phase variables are given by Eqs. (4.55) and
(4.56). One of our goals is to compute corrections relative to geodesic motion of important
quantities associated with the orbit. Such quantities include the constants of motion, which
we write in the form

X S = X̂ + δX S , (4.15)

where X ∈ [E,Lz, K,Q]. Here X̂ is the quantity associated with the reference geodesic and
δX S is the correction required when we include the spin of the orbiting body. Explicitly, the
leading-order-in-spin corrections to the energy δES and axial angular momentum δLSz are
defined by

ES = Ê + δES , LSz = L̂z + δLSz . (4.16)

where ES and LSz are given by Eqs. (2.35) and (2.36). Similarly, the first order in spin
correction to K is defined by

KS = K̂ + δKS , (4.17)

where

δKS = 2Kαβû
αuβS + δrS∂rKαβû

αûβ + δθS∂θKαβû
αûβ + δCS . (4.18)

and where δCS is given by Eq. (3.17). Finally, using Eq. (2.18), we can obtain the first-order
shift in Q:

δQS = δKS − 2(L̂z − aÊ)(δLSz − aδES) . (4.19)

The spin of the small body also introduces corrections to the fundamental frequencies of
the orbit, which we write in the form

Υx = Υ̂x +ΥS
x , Γ = Γ̂ + ΓS , (4.20)

where x ∈ [r, θ, ϕ]. As discussed in Sec. 2.2.4, the spin of the small body also introduces the
spin-precession frequency Υs into the motion, meaning that orbits of spinning bodies can
generally be described using Mino-time Fourier expansions with harmonics of frequencies
Υ̂r +ΥS

r , Υ̂θ +ΥS
θ and Υs. This frequency-domain approach is what we will use in Sec. 4.3

to compute properties of spinning-body orbits.
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4.2.3 Computing spinning-body orbits

We now outline the explicit mathematical framework we use to compute the modification
to the small body’s trajectory arising from the spin-curvature interaction. Eq. (2.47) is
the governing equation for the spinning-body orbits discussed in this work. We repeat this
equation below:

Duα

dτ
= − 1

2µ
Rα

νλσu
νSλσ ≡ fαS /µ . (4.21)

We define the right-hand side of this equation to be the spin-curvature force fαS . When we
expand the covariant derivative, we have

duα

dτ
+ Γαβγu

βuγ = fαS /µ , (4.22)

where Γαβγ is the Christoffel connection for the Kerr spacetime. We find it convenient to
perform all our calculations in Mino-time, so we define

Uα ≡ dxα

dλ
= Σuα , (4.23)

where the 4-velocity is uα = dxα/dτ and Mino-time is defined by d/dλ = Σd/dτ . Now that
we have defined Uα by Eq. (4.23), we multiply Eq. (4.22) by Σ2, yielding

dUα

dλ
+Πα = Fα

S /µ , (4.24)

where
Fα
S ≡ Σ2fαS , Πα ≡ −U

α

Σ

dΣ

dλ
+ ΓαβγU

βUγ . (4.25)

Consider Eq. (4.24) component by component. We start with the axial and temporal com-
ponents of the 4-velocity. Begin by writing ut and uϕ as

ut = −Ê + uSt , uϕ = L̂z + uSϕ , (4.26)

where uSt,ϕ = O(S). Combining the axial and temporal components of Eq. (2.47) yields two
equations of the form

duSϕ
dλ

= Rϕ ,
duSt
dλ

= Rt , (4.27)

where Rϕ and Rt are functions of known geodesic quantities. For the case of nearly equa-
torial orbits, these functions are given in Eqs. (3.69) and (3.70) of the previous chapter;
for the general case, they are among the functions which we include in the supplementary
Mathematica notebook which accompanies the published version of this chapter [172]. Using
Eqs. (4.27), we can then solve for uSt and uSϕ .

Turn next to the radial and polar components of Eq. (4.24), which we write

d2r

dλ2
+Πr = F r

S , (4.28)

d2θ

dλ2
+Πθ = F θ

S . (4.29)
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We solve Eqs. (4.28) and (4.29) by linearizing in spin and expanding in the frequency domain.
In addition, we preserve the norm of the 4-velocity along the orbit, requiring that

uαuα = −1 . (4.30)

We linearize Eq. (4.30) in spin, and expand in the frequency domain. Our full frequency-
domain treatment of spinning-body orbits is discussed in detail in Sec. 4.3.

4.3 Generic spinning-body orbits: Frequency-domain treat-
ment

We now compute spinning-body orbits which have arbitrary eccentricity and inclination,
using a frequency-domain treatment of the spinning body’s motion. In Chapter 3, we de-
scribed equatorial and nearly equatorial spinning-body orbits in detail. In that work, we
used essentially the same frequency-domain techniques to study equatorial (aligned spin)
and nearly equatorial (misaligned spin) orbits with arbitrary eccentricity. We now extend
this technique to encompass orbits that have any orbital inclination, not only those that are
within polar angles O(S) of the equatorial plane.

4.3.1 Frequency-domain description

Writing quantities defined on a spinning body’s orbit in expansions of the form

f(λ) =
1∑

j=−1

∞∑
n,k=−∞

fjnke
−i(jΥs+nΥr+kΥθ)λ , (4.31)

allows us to compute orbits to a high level of precision. The Fourier coefficient fjnk is defined
by

fjnk =
1

ΛrΛθΛs

∫ Λr

0

∫ Λθ

0

∫ Λs

0

f(λr, λθ, λs)

× ei(jΥsλs+nΥrλr+kΥθλθ) dλrdλθdλs . (4.32)

The techniques we describe below allow us to precisely compute a spinning body’s orbital
frequencies Υr and Υθ for fully generic orbits. As discussed and defined in Eq. (4.20), we
treat these frequencies as “spin shifted” relative to the the radial and polar frequencies of a
reference geodesic, writing Υr = Υ̂r +ΥS

r and Υθ = Υ̂θ +ΥS
θ .

Generalities

We first examine the t and ϕ components of the 4-velocity. The frequency-domain expansion
allows us to solve the axial and temporal components of Eq. (2.47), which we write explicitly
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in the form shown in Eqs. (4.27). To do this, we expand uSt and uSϕ as1:

uSt =
1∑

j=−1

∞∑
n,k=−∞

uSt,jnke
−i(jΥs+nΥr+kΥθ)λ , (4.33)

uSϕ =
1∑

j=−1

∞∑
n,k=−∞

uSϕ,jnke
−i(jΥs+nΥr+kΥθ)λ . (4.34)

We split uSt into a constant uSt,0 plus an oscillatory contribution δuSt (λ):

uSt = uSt,0 + δuSt (λ) . (4.35)

We divide uSϕ in the same way:

uSϕ = uSϕ,0 + δuSϕ(λ) (4.36)

Using Eqs. (4.27), we can immediately solve for δuSt and δuSϕ .
We also use a frequency-domain description to solve the radial and polar Eqs. (4.28) –

(4.29). As described in Sec. 4.2.1, generic orbits can be parameterized by

r =
pM

1 + e cosχr
+ δrS , (4.37)

cos θ = sin I cosχθ + δzS . (4.38)

We break the radial true anomaly χr in Eq. (4.37) into a mean anomaly wr = Υrλ and
oscillating contributions δχr; we break up the the polar true anomaly χθ in Eq. (4.38)
similarly, using wθ = Υθλ:

χr = wr + δχr , χθ = wθ + δχθ . (4.39)

The mean anomalies have geodesic and spin-curvature pieces,

wr =
(
Υ̂r +ΥS

r

)
λ , wθ =

(
Υ̂θ +ΥS

θ

)
λ , (4.40)

where ΥS
r is the contribution to the radial Mino-time frequency arising from spin-curvature

coupling, and ΥS
θ is the analogous contribution to the polar Mino-time frequency. The

oscillating contributions likewise have one piece that arises from geodesic motion δχ̂x and
another associated with spin-curvature coupling δχSx , where x ∈ [r, θ]:

δχr = δχ̂r(wr) + δχSr , δχθ = δχ̂θ(wθ) + δχSθ . (4.41)

In Eq. (4.41), the Fourier coefficients of δχ̂r(wr) and δχ̂θ(wθ) are identical to those used to
describe the anomaly angle of a geodesic orbit with parameters p, e and I in Eqs. (2.27) and

1Note that if the function we are Fourier expanding already has a subscript, we use a comma to denote
the specific Fourier mode. For example, uSt,1,0,−1 is the j = 1, n = 0, k = −1 harmonic of function uSt .
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(2.28):

δχ̂r(wr) =
∞∑

n=−∞

δχ̂r,ne
−inwr , (4.42)

δχ̂θ(wθ) =
∞∑

k=−∞

δχ̂θ,ke
−ikwθ . (4.43)

Note, however, that the phases wr and wθ are not the same as those for the geodesic orbit
with corresponding values of (p, e, I), due to the presence of ΥS

r and ΥS
θ in Eq. (4.40).

The spin-corrections to the fundamental frequencies are built into our parameterization
of spinning-body orbits. We explicitly include the wr and wθ arguments in Eq. (4.41) to
emphasize this.

Reference geodesics

As we have discussed, we cannot in general constrain the radial or polar motion of spinning
body orbits to lie between two fixed turning points as we can for bound geodesics. However,
we can constrain the purely radial motion (aspects of the motion that only involve harmonics
of Υr) and the purely polar motion (with only harmonics in Υθ) to lie within the radial and
polar turning points of a given geodesic orbit. In our approach, we parameterize an orbit by
selecting a geodesic with parameters (p, e, I), as well as an initial spin-vector orientation.
The purely radial motion of the spinning body’s motion is then confined to the region
pM/(1+ e) ≤ r ≤ pM/(1− e), and its purely polar is confined to − sin I ≤ cos θ ≤ sin I. We
call the geodesic with parameters (p, e, I) in this picture the “reference geodesic.” We briefly
introduced this concept in Sec. 4.2.1. Note that there are alternative mappings between
geodesics and spinning bodies that have been used in the literature; see Appendix B.1 for
further discussion.

We write δχSr and δχSθ as Fourier expansions,

δχSr =
∞∑

n=−∞

δχSr,ne
−inwr , (4.44)

δχSθ =
∞∑

k=−∞

δχSθ,ke
−ikwθ . (4.45)

Note that because δχSr and δχSθ both have average values of zero (they represent oscillatory
contributions to the χSr and χSθ , we set δχSr,0 = 0 and δχSθ,0 = 0). Notice that the expansion
for δχSr in Eq. (4.44) consists purely harmonics at the radial frequency; δχSθ in Eq. (4.45)
likewise consists purely of harmonics at the polar frequency. In this way, we have constrained
the purely radial motion to the interval p/(1 + e) ≤ r ≤ p/(1− e) and purely polar motion
to the interval − sin I ≤ cos θ ≤ sin I.

The remaining dynamics, consisting of motion that is neither purely radial nor purely
polar, describes how the libration regions varies, and is mapped onto the quantities δrS and
δzS. We expand these quantities using generic Fourier expansions of the form shown in Eq.
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(4.31):

δrS =
1∑

j=−1

∞∑
n,k=−∞

δrS,jnke−i(jws+nwr+kwθ) , (4.46)

δzS =
1∑

j=−1

∞∑
n,k=−∞

δzS,jnke−i(jws+nwr+kwθ) , (4.47)

where ws = Υsλ. Notice that harmonics of all three frequencies — radial, polar, and spin
precession — are present in these expansions. When we evaluate Eq. (4.46), we require that
k and j cannot both be zero; otherwise, that contribution would represent a purely radial
dynamic, which we have constrained to be in the anomaly angle χr. Likewise, when we
evaluate Eq. (4.47), we require that n and j cannot both be zero, since the purely polar
dynamics is entirely contained in χθ.

In summary, the anomaly angles δχSr and δχSθ control the shape of the orbit while keep-
ing the turning points unchanged relative to the reference geodesic orbit, whereas δrS and
δzS affect the position of the turning points and introduce spin precession effects into the
dynamics. In the nearly equatorial case (I = 0), we find δzS = −δθS; in the nearly circular
case (e = 0), we have δrS = δrS.

Deviation of a spinning body’s orbit from its reference geodesic

Once we expand the anomaly variables χr and χθ as discussed in Sec. 4.3.1, a generic orbit’s
radial and polar motion as described by Eqs. (4.37) and (4.38) can be written in the form

r(λ) =
pM

1 + e cos(wr + δχ̂r(wr) + δχSr )
+ δrS , (4.48)

cos θ(λ) = sin(I) cos
(
wθ + δχ̂θ(wθ) + δχSθ

)
+ δzS . (4.49)

Here, δχ̂r(wr), δχSr and δrS are given by Eqs. (4.42), (4.44) and (4.46); the analogous quan-
tities for the polar motion δχ̂θ(wθ), δχSθ , and δzS are given by Eqs. (4.43), (4.45) and (4.47).
Notice that the functions δχ̂r(wr) and δχ̂θ(wθ) have as their arguments wr and wθ, whose
forms are given in Eq. (4.40). These functions are exactly the oscillating contributions to
the anomaly angles that one computes for geodesic orbits, but with their frequencies shifted
to remain phase-locked with spinning-body orbits. For geodesics, their arguments would be
ŵr = Υ̂rλ and ŵθ = Υ̂θλ.

In Sec. 4.2.2, we defined the deviation from the geodesic trajectory induced by the spin
of the small body by writing xα(λ) as

δxαS(λ) = xα(λ)− x̂α(λ) , (4.50)

where x̂α(λ) is a geodesic orbit. Using the reference geodesic in this equation, r̂ and θ̂ are
given by

r̂(λ) =
pM

1 + e cos (ŵr + δχ̂r(ŵr))
, (4.51)

cos θ̂(λ) = sin I cos (ŵθ + δχ̂θ(ŵθ)) . (4.52)

87



Here we use the purely geodesic forms

δχ̂r(ŵr) =
∞∑

n=−∞

δχ̂r,ne
−inŵrλ , (4.53)

δχ̂θ(ŵθ) =
∞∑

k=−∞

δχ̂θ,ke
−ikŵθλ . (4.54)

Combining the definition (4.50) with our solutions for the spinning body’s motion, Eqs.
(4.48) and (4.49), and for the reference geodesic, Eqs. (4.51) and (4.52), we find

δrS(λ) = epM
ΥS
r λ
(
1− i

∑
n nδχ̂r,ne

−inŵr
)
+ δχSr (wr)

[1 + e cos (ŵr + δχ̂r(ŵr))]
2

× sin (ŵr + δχ̂r(ŵr)) + δrS , (4.55)

δθS(λ) = ΥS
r λ

(
1− i

∑
k

kδχ̂θ,ke
−ikŵθ

)
+ δχSθ (wθ)

− δzS
sin I sin (ŵθ + δχ̂θ(ŵθ))

, (4.56)

where we have used the fact that ΥS
r = O(S). Notice that both δrS(λ) and δθS(λ) show

secular growth. This is because of the difference in frequencies between the geodesic x̂α(λ)
and spinning-body xα(λ) orbits. The presence of these secularly growing terms means that,
as defined, δrS(λ) and δθS(λ) cannot easily be studied using a frequency-domain treatment
[182].

To address this, consider a slightly modified version of this definition:

δxαS,shift(λ) = xα(λ)− x̂αshift(λ) . (4.57)

This deviation is defined versus a frequency-shifted formulation of the geodesic motion:

r̂shift(λ) =
pM

1 + e cos (wr + δχ̂r(wr))
, (4.58)

cos θ̂shift(λ) = sin I cos (wθ + δχ̂θ(wθ)) . (4.59)

Equations (4.58) and (4.59) describe a trajectory that is identical to the reference geodesic,
but with all periodic features oscillating at the frequency associated with the spinning body’s
orbit. The deviation from this shifted geodesic is given by

δrS,shift(λ) = epM
δχSr (wr) sin [wr + δχ̂r(wr)]

(1 + e cos [wr + δχ̂r(wr)])
2 + δrS , (4.60)

δθS,shift = δχSθ (wθ)−
δzS

sin I sin (ŵθ + δχ̂θ(ŵθ))
. (4.61)

We discuss a variant of Eq. (4.60) which does not include the libration shift δrS in Appendix
A.1. These modified offsets from the reference geodesic do not exhibit any secular growth,
and can be nicely described using this chapter’s frequency-domain expansions.
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Coordinate-time quantities

We can use our spinning-body solutions for uϕ to compute the Mino-time ϕ-frequency Υϕ,
using

ΥS
ϕ = Uϕ

S,000 , (4.62)

where

Uϕ
S,000 =

1

ΛrΛθΛs

∫ Λr

0

∫ Λθ

0

∫ Λs

0

Uϕ
S dλrdλθdλs ; (4.63)

we remind the reader that Uϕ ≡ dϕ/dλ. Similarly, we can calculate the spin-correction to
Γ which denotes the average rate of accumulation of coordinate-time t per unit Mino-time
using

ΓS = U t
S,000 , (4.64)

where

U t
S,000 =

1

ΛrΛθΛs

∫ Λr

0

∫ Λθ

0

∫ Λs

0

U t
S dλrdλθdλs . (4.65)

Once we have the correction to Γ, we can convert any of the Mino-time frequencies into
coordinate-time frequencies. Observing that

Ω̂k + ΩS
k =

Υ̂k +ΥS
k

Γ̂ + ΓS
(4.66)

for k ∈ (r, θ, ϕ), we see that shifts to the coordinate-time frequencies are given by

ΩS
k = Ω̂k

(
ΥS
k

Υ̂k

− ΓS

Γ̂

)
(4.67)

to linear order in the small body’s spin.

4.3.2 Results

Nearly circular orbits: Aligned spin

We now discuss spinning-body orbits that are O(S) away from being circular — nearly
circular orbits. We outline how we compute the first-order in spin contribution to the polar
Mino-time frequency ΥS

θ using a frequency-domain description for the motion.
We consider a circular inclined reference geodesic, with the spin vector of the small body

aligned with the orbit. In this case, orbits can be described using expansions of the form

f(λ) =
∞∑

k=−∞

fke
−ikwθ . (4.68)

In order to evaluate these expressions, we truncate the Fourier expansion at a finite value;
for the expansion above, we truncate the series at kmax. By truncating this Fourier expansion
at an appropriately large kmax, we can compute orbits with an arbitrarily high inclination.

As described in Sec. 4.2.1, we use a parameterization to describe the motion in θ which
resembles the form typically used to describe geodesic orbits, as in Eq. (2.28). In addition to
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Figure 4.1: Example of the motion of a nearly circular orbit for an aligned spinning test body
around a Kerr black hole with a = 0.9M . Top left panel shows r versus λ for a geodesic
(black dashed) and a spinning test body (blue solid) orbit. The radial reference geodesic is
circular, with p = 10, e = 0. Bottom left panel shows cos θ versus λ for a geodesic (black
dashed) and a spinning test body (blue solid) orbit. These orbits share polar turning points,
corresponding to I = 30◦. Note that, in the left two panels, we have used an unphysically
high spin µs/M = 103 in order make the spin-curvature effects clearly visible. Also note
that the spinning-body orbit has been shifted slightly: its polar frequency Υθ = Υ̂θ+ΥS

θ has
been replaced with Υ̂θ. This is done so that the geodesic and the spinning-body orbit pass
through their polar turning points at the same times, which helps to illustrate differences in
their motion between each turning point. Top right shows −uSt (red), ∂βgtαSαβ/2µ (orange),
δES (blue) as well as δrS (black), all versus λ. Finally, the bottom right panel shows uSϕ
(red), −∂βgϕαSαβ/2µ (orange), δLSz (blue) as well as δχSθ (black), all versus λ. Notice that
the spin-induced shifts to the integrals of motion E and Lz are constants, although each
such term has contributions that oscillate. In making these plots, we have used s = s∥ and
kmax = 6.
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this, we must account for the fact that the spin of the test body induces oscillations about
pM , the radius of the circular reference geodesic. We thus parameterize the orbit as

r = pM + δrS , (4.69)
cos θ = sin I cos

(
wθ + δχ̂θ(wθ) + δχSθ

)
. (4.70)

The functions δχSθ and δrS are described by purely polar oscillations in this case:

δχSθ =
∞∑

k=−∞

δχSθ,ke
−ikwθ , (4.71)

δrS =
∞∑

k=−∞

δrS,ke−ikwθ . (4.72)

We insert Eqs. (4.69), (4.70) and (4.26) into (4.28) – (4.29) and linearize in spin. The
first-order-in-spin piece of Eq. (4.28) becomes

Fr
d2δrS
dλ2

+ Gr
dδrS
dλ

+ Gθ
dδχSθ
dλ

+HrδrS +Hθδχ
S
θ + I1θΥ

S
θ + I2u

S
t,0 + I3u

S
ϕ,0 + J = 0 ,

(4.73)

where Fr, Gr, Gθ, Hr, Hθ, I1θ, I2, I3 and J are all functions of known quantities evaluated
on geodesics. We now consider the first-order-in-spin piece of Eq. (4.29), which becomes

Qθ
d2δχSθ
dλ2

+ Sr
dδrS
dλ

+ Sθ
dδχSθ
dλ

+ TrδrS + TθδχSθ + U1θΥ
S
θ + U2u

S
t,0 + U3u

S
ϕ,0 + V = 0 , (4.74)

where Qθ, Sr, Sθ, Tr, Tθ, U1θ, U2, U3 and V are all functions of known quantities on geodesics.
Third, we use the constraint uαuα = −1 to obtain a linearized equation of the form

Kr
dδrS
dλ

+Kθ
dδχSθ
dλ

+MrδrS +Mθδχ
S
θ +N1θΥ

S
θ +N2u

S
t,0 +N3u

S
ϕ,0 + P = 0 , (4.75)

where Kr, Kθ, Mr, Mθ, N1θ, N2, N3 and P are again all functions2 of known quantities on
geodesics.

We write the functions Fr, Gr, Gθ, Hr, Hθ, I1θ, I2, I3, J , Qθ, Sr, Sθ, Tr, Tθ, U1θ, U2, U3, V ,
Kr, Kθ, Mr, Mθ, N1θ, N2, N3 and P as Fourier expansions of the form (4.68). The explicit
forms for many of these expressions in the limiting case of nearly equatorial Schwarzschild
orbits (a = 0) can be found in Appendix A.3.1. For the general case, we provide expressions
using the Mathematica notebook in the Supplemental Material associated with the published
version of this chapter [181]. Some of the general expressions are very lengthy (hundreds of
terms long) and could likely be simplified with some effort; we present them in a companion
Mathematica notebook for convenience and completeness.

We insert these expansions along with (4.71) and (4.72) into (4.73), (4.74) and (4.75).
We then solve for the unknown variables δrS, δχSθ , ΥS

θ u
S
t and uSϕ .

2The functions Fr, Gr, etc. follow a mostly alphabetic sequence; however, we skip the letter L in our
scheme to avoid confusion with the angular momentum 4-vector defined in Eq. (2.11).
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In the left-hand panels of Fig. 4.1, we show r and θ for a circular, inclined, spin-aligned
orbit; r and θ for the corresponding reference geodesic orbit are overplotted. The period
associated with the spinning-body orbit’s polar motion is shifted so that it remains phase-
locked with the geodesic orbit. The right-hand panels of Fig. 4.1 show δrS and δχSθ for the
spinning-body orbit. We also plot uSt and uSϕ alongside the spin contributions to the orbit’s
energy and axial angular momentum, δES and δLSz . Notice that the spinning-body orbit
we obtain is not circular; this can be seen in the top left panel of Fig. 4.1, where the effect
is exaggerated so that the oscillations in r are clearly visible. In Chapter 3, we perturbed
about an equatorial reference geodesic and obtained a spinning-body orbit that did not
lie in the equatorial plane; here we perturb about a circular reference geodesic, yielding a
corresponding spinning-body orbit that is not circular. In contrast to the behavior we saw
in Chapter 3, we cannot attribute this behavior only to spin precession, since we see this
effect even when the spin vector is aligned.

In Fig. 4.2, we see how Υθ, uSt,0 and uSϕ,0 converge to their true values in the case of nearly
circular, inclined orbits. We define “residuals" here to mean the difference between the value
of the quantity computed at successive kmax’s, rather than a direct comparison with an exact
value (as they were defined in Chapter 3). As expected, the residuals generally decrease as
kmax increases. However, the pattern of convergence isn’t strictly monotonic; the residuals
tend to tick upwards for odd values of kmax.

Nearly circular orbits: Misaligned spin

We now consider nearly circular inclined orbits with the spin of the test body misaligned
from the orbit (i.e., circular orbits s⊥ ̸= 0). Taking into account the effect of spin precession,
many orbital quantities can be described using frequency-domain expansions of the form

f(λ) =
1∑

j=−1

∞∑
k=−∞

fjke
−i(jws+kwθ) . (4.76)

As described in Sec. 4.2.1, the parameterization of the orbit in this case has the form

r = pM + δrS , (4.77)
cos θ = sin I cos

(
wθ + δχ̂θ(wθ) + δχSθ

)
+ δzS . (4.78)

Compared to the parameterization in Sec. 4.3.2, there is a new term δzS which adjusts the
polar turning points relative to the reference geodesic. The libration variations δrS and δzS
depend on both Υθ and Υs, while δχSθ only has oscillations at harmonics of Υθ:

δχSθ =
∞∑

k=−∞

δχSθ,ke
−ikwθ , (4.79)

δrS =
1∑

j=−1

∞∑
k=−∞

δrS,jke−i(kwθ+jws) , (4.80)

δzS =
1∑

j=−1

∞∑
k=−∞

δzS,jke−i(kwθ+jws) , (4.81)
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Figure 4.2: Plot of residuals versus kmax for a nearly circular (e = 0) orbit of an aligned
(s∥ = s) spinning body. We plot ΥS

θ , uSt,0, uSϕ,0 using red circular, orange square and blue
triangular markers respectively. To compute these residuals, we evaluate the change between
subsequent values of kmax for each of the quantities plotted. Top panel shows I = 10◦;
middle shows I = 20◦; and bottom shows I = 30◦. In all cases, the large black hole has spin
parameter a = 0.9M , and the orbit has p = 10.
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Figure 4.3: Example of the motion of a nearly circular orbit for a non-aligned spinning
test body around a Kerr black hole with a = 0.5M . Top left panel shows r versus λ for a
geodesic (black dashed) and a spinning test body (blue solid) orbit. The radial reference
geodesic is circular, with p = 10, e = 0. Bottom left panel shows cos θ versus λ for a
geodesic (black dashed) and a spinning test body (blue solid) orbit. The polar reference
geodesic has I = 15◦. Note that, in the two left panels, we have used an unphysically high
spin µs/M = 0.5 in order make the spin-curvature effects clearly visible. Also note that
for making this plot, the spinning-body orbit has been shifted slightly: its polar frequency
Υθ = Υ̂θ+ΥS

θ has been replaced with Υ̂θ. This is done so that in the plot the geodesic and the
spinning-body orbit pass through their polar turning points at the same times, which helps
to illustrate differences in their motion between each turning point. Middle column shows
δrS, δχSθ and δzS, all versus λ and all drawn with black solid lines. Top right panel shows
−uSt (red), ∂βgtαSαβ/2µ (orange), δES (blue), all versus λ. Middle right panel shows uSϕ
(red), −∂βgϕαSαβ/2µ (orange), δLSz (blue), all versus λ. Finally, bottom right panel shows
(Kµνu

µuν)S (red), δCS (orange), δKS (blue), all versus λ. Notice that the spin-induced
shifts to the integrals of motion E, Lz and K are constants, although each such term has
contributions that oscillate. In making these plots, we have used s∥ = s/2, s⊥ =

√
3s/2,

ϕs = π/2 and kmax = 3.
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where, in the last line, j cannot equal zero. We then follow the same procedure as described
for nearly circular inclined orbits with aligned spin to convert the time-domain expressions
into a linear algebraic system in the frequency domain, but now including the term δzS in
the equations.

We insert equations (4.77), (4.78) and (4.26) into (4.28) – (4.29) and linearize in spin.
Eq. (4.28) can be written

Fr
d2δrS
dλ2

+ Gr
dδrS
dλ

+ Gθ
dδχSθ
dλ

+ Gz
dδzS
dλ

+HrδrS +Hθδχ
S
θ +HzδzS + I1θΥ

S
θ

+I2u
S
t,0 + I3u

S
ϕ,0 + J = 0 , (4.82)

where Fr, Gr, Gθ, Gz, Hr, Hθ, Hz, I1θ, I2, I3 and J are all functions of known quantities
evaluated on geodesics. Similarly, we can write Eq. (4.29) in the form

Qθ
d2δχSθ
dλ2

+Qz
d2δzS
dλ2

+ Sr
dδrS
dλ

+ Sθ
dδχSθ
dλ

+ Sz
dδzS
dλ

+ TrδrS + TθδχSθ + TzδzS
+U1θΥ

S
θ + U2u

S
t,0 + U3u

S
ϕ,0 + V = 0 , (4.83)

where Qθ, Qz, Sr, Sθ, Sz, Tr, Tθ, Tz, U1θ, U2, U3 and V are all functions of known quantities
evaluated on geodesics. We again also use uαuα = −1, yielding

Kr
dδrS
dλ

+Kθ
dδχSθ
dλ

+Kz
dδzS
dλ

+MrδrS +Mθδχ
S
θ +MzδzS +N1θΥ

S
θ +N2u

S
t,0

+N3u
S
ϕ,0 + P = 0 , (4.84)

where Kr, Kθ, Kz, Mr, Mθ, Mz, N1θ, N2, N3 and P are again all functions of known
quantities evaluated on geodesics.

We describe Fr, Gr, Gθ, Gz, Hr, Hθ, Hz, I1θ, I2, I3, J , Qθ, Qz, Sr, Sθ, Sz, Tr, Tθ, Tz, U1θ,
U2, U3, V , Kr, Kθ, Kz, Mr, Mθ, Mz, N1θ, N2, N3 and P using Fourier expansions of the
form (4.76). We provide the full expressions for these functions in the Mathematica notebook
in the Supplemental Material accompanying the article corresponding to this chapter [181].
We insert these expansions along with (4.79), (4.80) and (4.81), into (4.82), (4.83) and (4.84).
We then solve for the unknown variables δrS, δχSθ , δzS, ΥS

θ , uSt and uSϕ .
In the left-hand panels of Fig. 4.3, we show r and θ for a misaligned nearly circular

spinning-body orbit, with the circular inclined reference geodesic overplotted for reference.
As in Fig. 4.1, the spinning-body orbit’s polar frequency is shifted so that it remains phase-
locked with the geodesic orbit. The form of δrS, δχSθ and δzS for this orbit are shown in the
right panels of Fig. 4.3. As in Fig. 4.1, we plot uSt and uSϕ as well as the corrections to the
spinning body’s orbital energy δES and axial angular momentum δLSz in the right panels of
Fig. 4.3.

In the bottom right panel of Fig. 4.3, we show the spin-correction to the Carter constant
K. We plot the first-order in spin correction to the term Kµνu

µuν and the quantity δCS
which is defined in (3.17), giving us the overall first-order correction to K denoted δKS. For
equatorial reference geodesics, δQS has the simple form 2as∥, as was discussed in Chapter
3. In this case, when the orbit is inclined and the spin vector is precessing, we find that
the first-order in spin correction to Kµνu

µuν is no longer constant. The oscillations in this
quantity precisely cancel oscillations in δCS, yielding constant values for δKS and δQS.
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Generic orbits

We finally examine generic orbits of spinning test bodies. We use the following Fourier
expansion

f(λ) =
∞∑

n,k=−∞

1∑
j=−1

fjnke
−i(jws+nwr+kwθ) (4.85)

for the various quantities we must evaluate. To evaluate these expressions, we truncate
the Fourier expansion at a finite value; for the expansion above, we truncate the radial
series at nmax and the polar series at kmax. By truncating this Fourier expansion at an
appropriately large nmax and kmax, we can compute orbits with an arbitrarily high eccentricity
and inclination.

In general, the radial and polar motions are coupled and consequently orbits of spinning
bodies have radial and polar turning points that vary over the course of the orbit. This
means that positions of the radial turning points depend on θ and likewise the polar turning
points depend on the radial position of the body, as explicitly shown in Ref. [84]. In addition,
the turning points depend on the precession phase ψp defined in equation (2.58). Therefore,
as in Eqs. (4.37) – (4.38), we include the terms δrS and δzS in our parameterization to
capture the modification to the libration range, yielding

r =
pM

1 + e cos (wr + δχ̂r(wr) + δχSr )
+ δrS , (4.86)

cos θ = sin I cos
(
wθ + δχ̂θ(wθ) + δχSθ

)
+ δzS . (4.87)

As described in Sec. 4.3.1, the true anomaly angles δχSr and δχSθ contained inside the ar-
guments of the cosines in Eqs. (6.30) and (6.31) consist of purely radial and purely polar
oscillations respectively:

δχSr =
∞∑

n=−∞

δχSr,ne
−inwr , (4.88)

δχSθ =
∞∑

k=−∞

δχSθ,ke
−ikwθ . (4.89)

Motion that is not purely radial or purely polar is subsumed into the functions δrS and
δzS. These quantities are written as Fourier expansions of the form (4.85). For the radial
libration variation,

δrS =
1∑

j=−1

∞∑
n,k=−∞

δrS,jnke−i(nwr+kwθ+jws) , (4.90)

where k and j cannot both be zero; for the polar libration variation,

δzS =
1∑

j=−1

∞∑
n,k=−∞

δzS,,jnke−i(nwr+kwθ+jws) , (4.91)
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Figure 4.4: Plot of residuals versus kmax for a generic (e = 0.1) orbit of an aligned (s∥ = s)
spinning body. We plot ΥS

θ , uSt,0, uSϕ,0 using red circular, orange square and blue triangular
markers respectively. As in Fig. 4.2, we compute the residuals by evaluating the change
between subsequent values of kmax for each of the quantities plotted. Top panel shows
I = 10◦; middle shows I = 20◦; and bottom shows I = 30◦. In all cases, nmax = kmax, the
large black hole has spin parameter a = 0.9M , and the orbit has p = 10.
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Figure 4.5: Example of generic orbit motion for an aligned spinning test body around a Kerr
black hole with a = 0.9M . Top left panel shows r versus λ for a geodesic (black dashed)
and a spinning test body (blue solid) orbit. The radial reference geodesic has p = 4, e = 0.3.
Note that, in the two left panels, we have used an unphysically high spin µs/M = 10 in
order make the spin-curvature effects clearly visible. Also note that the spinning-body orbit
has been shifted slightly: its radial frequency Υr = Υ̂r + ΥS

r has been replaced with Υ̂r

and its polar frequency Υθ = Υ̂θ + ΥS
θ has been replaced with Υ̂θ. This is done so that

in the plot the geodesic and the spinning-body orbit remain phase-locked, which helps to
illustrate differences in their motion between each turning point. Bottom left panel shows
cos θ versus λ for a geodesic (black dashed) and a spinning test body (blue solid) orbit. The
polar reference geodesic has I = 15◦. Again, note that for making this plot, the spinning-
body orbit has been shifted slightly: its polar frequency Υθ = Υ̂θ + ΥS

θ has been replaced
with Υ̂θ for the same reason described above. The right column shows δχSr , δrS, δχSθ and
δzS, all versus λ and all drawn using black solid lines. In making these plots, we have used
s∥ = s and nmax = kmax = 3.
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Figure 4.6: Example of the spin contributions ΥS
r and ΥS

θ to the radial and polar Mino-time
frequencies Υr and Υθ, as well as spin contributions ΩS

r and ΩS
θ to the radial and polar

coordinate-time frequencies Ωr and Ωθ. Top left panel shows ΥS
r versus p with e = 0.5 and

I = 0◦ for different values of a. Bottom left panel shows ΥS
θ versus p with e = 0 and I = 30◦

for different values of a. Top right panel shows ΩS
r (black dashed) and ΩS

ϕ (blue solid) versus
p with a = 0.9M , e = 0.5 and I = 0◦. Bottom right panel shows ΩS

θ (black dashed) and ΩS
ϕ

(blue solid) versus p with a = 0.8M , e = 0 and I = 30◦. In making these plots, we have
used nmax = kmax = 5.
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Figure 4.7: Example of the spin contributions ΥS
r and ΥS

θ to the radial and polar Mino-time
frequencies Υr and Υθ. Top panel shows ΥS

r versus p with e = 0.1 for I = 0◦ (red), I = 15◦

(orange), I = 30◦ (yellow) and I = 40◦ (blue). Bottom panel shows ΥS
θ versus p with I = 15◦

for e = 0 (red), e = 0.1 (orange), e = 0.2 (yellow) and e = 0.3 (blue). In making these plots,
we have used a = 0.9M and s∥ = s. In making these plots, we have used nmax = kmax = 3.
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where n and j cannot both be zero.
We insert equations (6.30), (6.31) and (4.26) into (4.28) – (4.29) and linearize in spin.

The radial equation (4.28) now has the form

Fr
d2δχSr
dλ2

+ Fr
d2δrS
dλ2

+ Gr
dδχSr
dλ

+ Gr
dδrS
dλ

+ Gθ
dδχSθ
dλ

+ Gz
dδzS
dλ

+Hrδχ
S
r +HrδrS

+Hθδχ
S
θ +HzδzS + I1rΥ

S
r + I1θΥ

S
θ + I2u

S
t,0 + I3u

S
ϕ,0 + J = 0 . (4.92)

As we have seen in earlier expressions, the quantities Fr, Fr, Gr, Gr, Gθ, Gz, Hr, Hr, Hθ,
Hz, I1r, I1θ, I2, I3 and J are all functions of known quantities evaluated on geodesics. Eq.
(4.29) becomes

Qθ
d2δχSθ
dλ2

+Qz
d2δzS
dλ2

+ Sr
dδχSr
dλ

+ Sr
dδrS
dλ

+ Sθ
dδχSθ
dλ

+ Sz
dδzS
dλ

+ TrδχSr + TrδrS
+TθδχSθ + TzδzS + U1rΥ

S
r + U1θΥ

S
θ + U2u

S
t,0 + U3u

S
ϕ,0 + V = 0 , (4.93)

where Qθ, Qz, Sr, Sr, Sθ, Sz, Tr, Tr, Tθ, Tz, U1r, U1θ, U2, U3 and V are all functions of known
quantities evaluated on geodesics. We also use uαuα = −1 to obtain

Kr
dδχSr
dλ

+Kr
dδrS
dλ

+Kθ
dδχSθ
dλ

+Kz
dδzS
dλ

+Mrδχ
S
r +MrδrS +Mθδχ

S
θ +MzδzS

+N1rΥ
S
r +N1θΥ

S
θ +N2u

S
t,0 +N3u

S
ϕ,0 + P = 0 , (4.94)

where Kr, Kr, Kθ, Kz, Mr, Mr, Mθ, Mz, N1r, N1θ, N2, N3 and P are again all known
functions evaluated on geodesics.

We describe Fr, Fr, Gr, Gr, Gθ, Gz, Hr, Hr, Hθ, Hz, I1r, I1θ, I2, I3, J , Qθ, Qz, Sr, Sr,
Sθ, Sz, Tr, Tr, Tθ, Tz, U1r, U1θ, U2, U3, V , Kr, Kr, Kθ, Kz, Mr, Mr, Mθ, Mz, N1r, N1θ,
N2, N3, and P using Fourier expansions of the form (4.85). We provide full expressions for
these functions in the Mathematica notebook in the Supplemental Material for this paper
[181]. We insert these expansions along with (4.88), (4.89), (6.33) and (6.34) into (4.92),
(4.93) and (4.94). We then solve for the unknown variables δχSr , δrS, δχSθ , δzS, ΥS

r , ΥS
θ ,

uSt and uSϕ . This frequency-domain approach therefore naturally allows us to compute the
first-order-in-spin corrections to the orbital frequencies ΥS

r and ΥS
θ for totally generic orbits

of spinning particles.
In Fig. 4.4, we see how Υθ converges to its true values as nmax and kmax increase for a

reference geodesic that is both inclined and eccentric. In Sec. 4.3.2, the convergence of Υθ

for nearly circular (e = 0) orbits is plotted in Fig. 4.2. At all inclinations, at nmax = 2,
the residuals are smaller for the e = 0 reference orbit than for the slightly eccentric e = 0.1
reference orbit. For the smallest inclination I = 10◦ (top panel), this difference holds for all
nmax; the quantities corresponding to a reference geodesic that is both eccentric and inclined
(Fig. 4.4) all converge slower than those corresponding to a reference geodesic that is nearly
circular and inclined (Fig. 4.2). However, as the inclination is increased, the difference in
the rate of convergence between the eccentric and circular cases decreases. At the highest
inclination, I = 30◦, they converge at roughly the same rate.

Fig. 4.5 shows an example of r and θ for a generic spinning-body orbit, in addition to
the functions δχSr , δχSθ , δrS and δzS which go into constructing the orbit’s r and θ. In the
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two left-hand panels of Fig. 4.5, the reference geodesic orbit associated with this spinning-
body orbit is overplotted with a dotted black curve; both the radial and polar frequencies
associated with the spinning-body orbit are shifted so that it remains phase-locked with the
geodesic reference orbit. In addition, µs/M has been chosen to have an unphysically large
value of 10 in order to clearly show the effect of spin-curvature coupling on the shape of the
orbit.

Figure 4.6 shows how ΥS
r varies with p for nearly equatorial eccentric orbits, and likewise

how ΥS
θ varies with p for nearly circular inclined orbits. Notice that the spin corrections

to the polar Mino-time frequencies ΥS
θ (bottom left panel) have a different dependence on

p compared to the radial Mino-time frequencies ΥS
r (top left panel). For all spins, we see

that the radial correction ΥS
r increases rapidly near the last stable orbit (LSO). For small

values of a, the behavior of ΥS
θ is similar, increasing as orbits approach the LSO, albeit

with a shallower slope. However, for large a (a > 0.8M), a different trend emerges. For
a = 0.85M and a = 0.87M the curve flattens, with a slight uptick as it approaches the LSO;
for a = 0.89M and a = 0.9M , the curve reaches a maximum and begins to trend downwards
very close to the LSO, as can be seen in the bottom left panel of Fig. 4.6. The dependence of
the frequency corrections on a is fairly similar for both ΥS

r and ΥS
θ : In both cases, at fixed p,

the frequency correction is larger for the smaller value of a. Fig. 4.6 displays coordinate-time
frequency corrections Ωr, Ωθ and Ωϕ for an equatorial orbit (top right panel) and an inclined
orbit (bottom right panel).

Fig. 4.7 shows how the corrections to the radial ΥS
r and polar ΥS

θ Mino-time frequencies
vary with p, e and I when the reference geodesic is both inclined and eccentric. In Fig. 4.7,
we see similar trends to those in Fig. 4.6. In the bottom panel of Fig. 4.7, ΥS

θ increases with
decreasing p until it reaches a maximum and then begins to decrease as p approaches the
LSO. Increasing the eccentricity of the orbit shifts the maximum ΥS

θ to a higher value. In
the top panel of Fig. 4.7, ΥS

r increases with decreasing p. Increasing the inclination angle of
the orbit leads to a more rapid increase in ΥS

r as p approaches the LSO.

4.4 Summary and future work

In this chapter, we present a frequency-domain approach for precisely computing the orbits
of spinning bodies. This extends the work presented in Chapter 3 by considering completely
generic orbits with arbitrarily oriented spin, going beyond the equatorial and nearly equato-
rial orbits discussed previously. In Sec. 4.2, we outline our perturbative approach to studying
spinning-body dynamics both qualitatively and quantitatively, and in Sec. 4.3.1, we describe
how we compute spinning-body orbits in the frequency-domain. In Sec. 4.3.2, we discuss the
results we obtain using frequency-domain methods; in particular, we compute the corrections
to the radial ΥS

r and polar ΥS
θ frequencies due to the spin of the orbiting body.

There are several future avenues we plan to explore related to this work. First, we aim
to study the role played by nonlinear-in-spin terms near resonance in pushing the spinning-
body dynamics from integrable to chaotic via the KAM theorem; this would extend the
preliminary investigation in Ref. [164]. Second, we are working on incorporating secondary
spin into gravitational waveform models using an osculating geodesic scheme [178], [179].
For example, this method has already been applied to produce spinning-body inspirals for

102



a Schwarzschild background in Ref. [112]. Our goal is to build a framework for completely
generic adiabatic inspirals of spinning bodies.

In addition, we aim to systematically explore and present the orbital frequencies obtained
in this work. First, we want to explicitly demonstrate that the frequencies obtained in Ref.
[84] are entirely equivalent to those presented in this work. We explicitly show the equivalence
of the two approaches for the equatorial spin-aligned case in App. B.2 and we intend to extend
this comparison to include frequencies associated with completely generic orbits. Second,
we plan to compare with Post-Newtonian results based on the analysis in Refs. [39] and [40]
as another validity check of our results. A catalog of these frequencies and how they vary
with the parameters describing orbits and the small body’s spin orientation is likely to be
of use as waveform models for large mass ratio systems are developed and incorporated in
gravitational-wave measurement pipelines.
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Chapter 5

Extreme mass-ratio inspiral and
waveforms for a spinning body into a
Kerr black hole via osculating geodesics
and near-identity transformations

This chapter is based on work previously published in Physical Review D (Drummond,
Lynch, Hanselman, Becker & Hughes, 2024) [131], written in collaboration with Philip Lynch,
Alexandra G. Hanselman, Devin R. Becker and Scott A. Hughes.

5.1 Introduction and motivation

The goal of the work that we present here is to show how one can augment adiabatic wave-
forms to include one particular post-adiabatic effect, the spin-curvature force. We emphasize
strongly that our analysis does not develop a self-consistent waveform model: we explicitly
leave out effects which enter at the same order as the spin-curvature force, but which must be
included to have a complete accounting of post-adiabatic effects at this order. Our goal in-
stead is to show how one can combine data and methods that currently exist in order to make
inspirals of spinning bodies into Kerr black holes, and to make the waveforms corresponding
to such inspirals.

The particular model we develop in this paper treats inspiral as a sequence of geodesic
orbits, evolving from geodesic to geodesic under the combined influence of the spin-curvature
force and the orbit-averaged self force. This allows us to develop an EMRI model that
incorporates the most important qualitative dynamics (four distinct orbit and precession
frequencies, as well as strong-field backreaction), and to make a waveform that includes these
effects. Other approaches to developing such inspirals would require input that, at present,
is not yet ready to be used. For example, one might imagine treating the inspiral worldline
as a sequence of spinning-body orbits (following the prescription laid out in Chapters 3 and
4), then evolving through the sequence by computing the orbit-averaged backreaction at
each orbit. Although we have a good prescription describing such orbits, we do not yet have
large data sets which describe backreaction and wave amplitudes from these orbits (although
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the first calculations describing such data have been performed [128]). Indeed, it is not yet
fully understood how to compute orbit-averaged backreaction on such orbits (see concluding
discussion in Ref. [128]).

The model we construct and present here is arguably the best that can be done for
making spinning body inspiral with tools and data that exist right now. We propose it as a
first tool that can augment existing methods for making adiabatic inspirals and waveforms.
When applied to fast EMRI waveform methods (presently being extended to cover the Kerr
parameter space), these waveforms will be useful for science studies assessing the importance
of secondary spin for generic spinning-body inspiral. These waveforms will also serve as a
benchmark against which later models can be compared as fast and effective methods for
incorporating other post-adiabatic effects become broadly available.

Near-identity transformations (NITs) play a crucial role in our waveform construction
procedure. Modeling EMRIs with NITs introduces an averaging that significantly reduces
computational cost by eliminating the evaluation of forcing terms multiple times per orbit
cycle. Previous works had applied this technique to eccentric Schwarzschild inspirals [104],
[183] and Kerr inspirals with eccentricity [101], orbital inclination [184], and both [185]. This
work marks the first time that effects from the spinning secondary have been folded into this
scheme.

5.2 Organization and notation of this chapter

We here provide an outline of the chapter’s organization, as well as a summary of the con-
ventions and notation we use throughout. It is worth emphasizing that much of our analysis
is based on bringing together techniques that have been presented at length elsewhere. As
such, several sections of this paper present just a high-level synopsis of these methods. Sev-
eral appendices provide detail needed to flesh out the calculations, and summarize material
that is presented at length in the references which develop these methods.

Because our analysis is built on bound orbits around Kerr black holes, we briefly review
the properties of these orbits in Sec. 5.3. We begin with the geodesic orbits of non-spinning
bodies and their parameterization in 5.3.1, and summarize the properties of spinning body
orbits in 5.3.2. In Sec. 5.3.3, we discuss why we choose to anchor our analysis to the properties
of geodesic orbits, rather than using spinning-body orbits as our main tool. We discuss at
some length the rationale behind this choice, and why it will be useful as a complementary
approach when future data allow us to use spinning-body orbits for broader studies than is
possible right now.

In Sec. 5.4, we briefly describe the osculating geodesic (abbreviated “OG”) framework
which underlies our inspiral analysis, describing how to map a worldline to a set of geodesics
with evolving elements. We lay out the detailed equations we evolve to generate spinning
body inspirals in the Appendix C.2. In Sec. 5.4.1, we show how to describe spinning-body
orbits as forced geodesics, explicitly demonstrating that this approach yields orbits equivalent
to those developed using the frequency-domain method of Chapters 3 and 4. We describe
how we incorporate the leading adiabatic backreaction in Sec. 5.4.2.

In Sec. 5.5, we describe the mathematical scheme underlying the near-identity averag-
ing transformation (abbreviated “NIT”) in detail. The osculating geodesic (OG) method,
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although accurate, becomes increasingly computationally expensive as the number of cycles
in an inspiral grows, scaling inversely with the system’s mass ratio. The NIT procedure
used in Sec. 5.5 introduces an averaging transformation that reduces computational cost
while maintaining modeling accuracy. We compare the NIT and OG methods to assess
their computational efficiency in modeling EMRIs and benchmark the accuracy of the NIT
calculation.

We outline the notation used in this section in Sec. 5.5.1, then discuss Mino-time and
Boyer-Lindquist-time formulations of NITs in Secs. 5.5.2 and 5.5.3 respectively. We then
present the full set of averaged equations of motion for the specific forcing terms studied
in this work in Sec. 5.5.4. We discuss the details of our NIT implementation in Sec. 5.5.5.
Additional background and details on the NIT are presented in Appendix C.3, and some
important details for how we match the OG and NIT calculations in Appendix C.4.

We present results describing spinning body inspirals in Sec. 5.6, and their associated
GWs in Sec. 5.7. We first look at examples of generic (inclined and eccentric) inspirals with
aligned secondary spin in Sec. 5.6.1, and then generalize to arbitrarily oriented spin in Sec.
5.6.2. We comment that our study of generic inspiral is presently limited by the paucity
of data available describing generic strong-field adiabatic radiation reaction. Though work
continues to generate additional such data, we have confined ourselves to the a = 0.7M
generic orbit data set that was used in Ref. [26].

We begin our discussion of waveforms from spinning body inspirals by briefly reviewing
in Sec. 5.7.1 the general principles used to compute waveforms; greater detail can be found
in Ref. [26]. We then examine in Sec. 5.7.2 the waveforms which correspond to the inspirals
presented in Sec. 5.6. Of particular physical interest is a comparison of waveforms with
and without spinning secondary effects, showing the observable imprint that secondary spin
has on the waveform. On a pragmatic level from the standpoint of computations, we also
compare waveforms produced with the OG technique versus those using the NIT to generate
the trajectory. We show that these waveforms differ very little, though the NIT produces
waveforms significantly more quickly.

Throughout this chapter, we use the (fairly standard) convention that lowercase Greek
indices on vectors and tensors denote spacetime coordinate indices. Latin indices are used on
certain quantities to designate elements of a set that holds parameters which describe orbital
elements: capital Latin indices are used for seven-element sets, used for the parameters of
OGs; lowercase Latin indices are used for two-, three-, and four-element sets, describing the
properties of orbits.

5.3 Bound orbits of Kerr black holes

In our analysis, we approximate inspiral by a sequence of bound orbits, evolving from orbit
to orbit under the influence of orbit-averaged GW backreaction. We use GW amplitudes
computed at each orbit to describe contributions to the waveform from this inspiral. To set
this up, we briefly review the properties of the orbits we use. Additional important technical
details have been presented in depth in 2, as well as other papers, such as Refs. [26], [101],
[139], [144], [186], so we confine this discussion to a high-level synopsis sufficient to lay out
the notation and details we need for the analysis in this chapter.

106



5.3.1 Orbits of non-spinning bodies

Bound Kerr geodesics can be described using several time parameterizations. The radial
and polar motions can both be described using a quasi-Keplerian description, mapping the
oscillatory coordinate motion to orbit anomaly angles which increase monotonically with
time. We begin by noting that bound geodesic orbits around a Kerr black hole are contained
within a torus that lies in the radius range r2 ≤ r ≤ r1 and in the polar angle range
θ1 ≤ θ ≤ (π − θ1). It is very useful to remap the radii r2 and r1 using

r1 =
pM

1− e
, r2 =

pM

1 + e
. (5.1)

We have introduced p, the orbit’s semi-latus rectum, and e, its eccentricity. A geodesic orbit’s
bounds are then totally set by choosing the parameters p, e, and θ1. Those parameters
can be remapped to integrals of the motion Ê (energy), L̂z (axial angular momentum),
and Q̂ (Carter constant) which are related to the spacetime’s Killing vectors and Killing
tensor, and are conserved along any geodesic. An alternate form of the Carter constant,
K̂ ≡ Q̂+(L̂z−aÊ)2 is also useful. (The “hat” accents indicate that these conserved quantities
are defined on geodesics.) See Refs. [132], [139] for further discussion.

We build the bounds on the radial motion into our parameterization by defining

r =
pM

1 + e cosχr
. (5.2)

The angle χr is a relativistic analog of the true anomaly angle commonly used to describe
orbital dynamics in Newtonian gravity. We define1 χr = χFr + χSr . The “F ” superscript
signifies that χFr evolves on fast timescales, related to the orbital motion; the “S” tells us
that χSr evolves on slow timescales, related to the backreaction. For geodesics (i.e., in the
absence of forcing terms), χSr is a constant, corresponding to the initial radial phase. We
later allow χSr to change with time, accounting for its slow evolution under a perturbing
force; see discussion in App. C.2.

The function R(r) defined in Eq. (2.20) is a quartic with four roots ordered such that
r4 ≤ r3 ≤ r2 ≤ r ≤ r1. For a bound orbit, the roots r1 and r2 are the physical turning points
of the motion, discussed above; the roots r3 and r4 depend in a straightforward way on the
orbit parameters p, e, and xI (see, e.g., Ref. [139] for a form that is commonly used). From
the form (2.20), we can write

R(r) = (1− Ê2)(r1 − r)(r − r2)(r − r3)(r − r4) , (5.3)

where Ê is the orbit’s energy introduced above. It is convenient to introduce parameters p3
and p4 such that

r3 =
p3M

1− e
, r4 =

p4M

1 + e
. (5.4)

Using this, we write the radial component of the geodesic equation (2.20) as a differential
equation for χr [187]:

1The angle χS
r we use in this analysis is equivalent to χr0 in Ref. [26]. In [179], ψ0 is used to denote the

initial radial phase, and is equivalent to our χS
r , modulo a minus sign.
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dχr
dλ

=
M
√

1− Ê2 [(p− p3)− e(p+ p3 cosχr)]
1/2 [(p− p4) + e(p− p4 cosχr)]

1/2

1− e2

≡ XF
r (χr) . (5.5)

Remapping the oscillatory radial dynamics onto the monotonically evolving angle χr
makes the bounded nature of geodesic motion explicit, allowing for straightforward numerical
handling of the radial turning points.

Turn now to the polar motion. Defining z ≡ cos θ, we can write the function Θ(θ) from
Eq. (??) (see also Eq. (2.21)) in terms of roots 0 ≤ z1 ≤ 1 ≤ z2 [144]:

Θ(θ) =
z21 − z2

1− z2

(
z22 − a2(1− Ê2)z2

)
. (5.6)

This form, taken from Ref. [144], has the advantage that it allows for straightforward evalua-
tion in the a→ 0 limit. Turning points of the polar motion occur where z = z1, corresponding
to when θ = θ1 and θ = π − θ1. The second polar root z2, given by Eq. (15) in Ref. [144],
is not actually reached by physical orbits (it generally corresponds to cos θ > 1). We define
the inclination angle I as

I = π/2− sgn(L̂z)θ1 ; (5.7)

I = 0 corresponds to prograde equatorial orbits, I = 180◦ to retrograde equatorial, and
orbital properties vary smoothly between these extremes. We put xI ≡ cos I, from which we
see that z1 =

√
1− x2I . This allows us to parameterize our polar motion as

cos θ =
√

1− x2I cosχθ = sin I cosχθ , (5.8)

where χθ is another relativistic generalization of the “true anomaly” angle used in Newtonian
orbital dynamics. As we did for the radial motion, we define2 χθ = χFθ + χSθ , breaking this
anomaly angle into “fast” and “slow” terms. In the absence of forcing terms, χSθ is a constant,
the initial polar phase. In the osculating element framework (see App. C.2), we promote
χSθ to a time-varying quantity. Combining the various reparameterizations with the polar
geodesic equation (2.21) yields an equation governing χθ [144], [187]:

dχθ
dλ

=

√
z22 − a2(1− Ê2)(1− x2I) cos

2 χθ

≡ XF
θ (χθ) . (5.9)

Bound Kerr geodesics are triperiodic, and can be characterized with frequencies describ-
ing the orbit’s radial, polar, and axial behavior: the frequencies Υ̂r,θ,ϕ describe an orbit’s
radial, polar, and axial frequencies per unit Mino time, and Ω̂r,θ,ϕ describe these frequencies
per unit Boyer-Lindquist coordinate time. The Mino-time and coordinate-time frequencies

2The angle χS
θ is equivalent to χθ0 used in Ref. [26]. In [179], χ0 is used to denote the initial polar phase,

and is equivalent to χS
θ in this analysis, modulo a minus sign.
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are related by a factor Υ̂t that describes3 how much coordinate time accumulates, on aver-
age, per unit Mino time along the orbit: Ω̂r,θ,ϕ = Υ̂r,θ,ϕ/Υ̂t. The inverse of these frequencies,
times 2π, gives the Mino- and coordinate-time periods:

Λ̂ϕ,θ,r =
2π

Υ̂ϕ,θ,r

, (5.10)

T̂ϕ,θ,r =
2π

Ω̂ϕ,θ,r

. (5.11)

As in our discussion of the constants of motion Ê, L̂z, and Q̂, the hat accents indicate that
these quantities are evaluated on geodesics. See Ref. [139] for formulas describing these
frequencies, periods, and the factor Υ̂t.

An action-angle parametrization of geodesic motion is useful for the construction of near-
identity transformations in Sec. 5.5. In this formulation, the Mino-time action angles qr and
qz are chosen as the orbital phases describing the motion in r and z respectively; explicit
formulas connecting these angles to motion in their associated coordinate are given in Refs.
[139], [144], and are coded into the KerrGeodesics package of the Toolkit [148]. We denote
by Pi = {p, e, xI} the set of orbital elements. In this form, the geodesic equations of motion
are given by

dPj
dλ

= 0 , (5.12)

dqr,z
dλ

= Υ̂r,z(P⃗ ) . (5.13)

(Note that Υ̂z = Υ̂θ; the period of a complete cycle in θ is identical that of a complete
cycle in z = cos θ.) In other words, for geodesics the elements P⃗ are constants of motion
and the right-hand side of Eq. (5.13) is an orbital frequency determined by P⃗ . As such, the
orbital phases4 have solutions qz,r = Υ̂r,zλ + qSr,z, where qSr,z is the value of that phase when
λ = 0. These phases will evolve on the slow timescale when certain post-geodesic forces are
introduced.

Up to initial conditions, a geodesic orbit can be specified by “principal orbital elements.”
These are either the constants of motion (Ê, L̂z, Q̂) or the parameters (p, e, xI) describing
the geometry of the orbit. We can convert between (Ê, L̂z, Q̂) and (p, e, xI) using map-
pings given in Refs. [26], [139], [144]. The initial conditions of the orbit are specified by
“positional orbital elements” which are (χSr , χSθ , ϕ0, t0) in the quasi-Keplerian case and (qSr ,
qSz , ϕ0, t0) in the action-angle case. In order to find the geodesic trajectories for a particular
set of orbital elements {p, e, xI , χSr , χSθ , ϕ0, t0} or {p, e, xI , qSr , qSz , ϕ0, t0}, we need only solve
differential equations for the radial and polar phases χr and χθ, i.e., Eqs. (5.5) and (5.9); or
for qr and qθ, i.e., Eqs. (5.13).

3This factor is labeled Γ̂ in many references [26], [96], [139], [187], to reflect the fact that it represents a
conversion between two different notions of time, rather than being related to a periodic aspect of orbital
motion. It is however labeled Υ̂t in much of the NIT literature, and we follow that convention here.

4Note that the orbital phases qr,z are identical to the “mean anomaly angles” wr,θ used in Chapters 3 and
4.
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5.3.2 Orbits of spinning bodies

The geodesic orbits discussed above describe the motion of a pointlike body freely falling
in spacetime. These equations of motion fundamentally derive from the equation of parallel
transport for a freely falling body’s 4-momentum:

Dpµ

dτ
= 0 . (5.14)

If the body is not pointlike but has some extended structure, this structure will couple to
the spacetime in which it moves, changing its trajectory. This coupling can be incorporated
into the framework describing the body’s motion by replacing the right-hand side of (5.14)
with a forcing term reflecting how the body’s structure couples to spacetime.

The simplest example of such coupling structure is the body’s spin angular momentum.
The equation of motion in this case becomes [32], [33], [149]

Dpµ

dτ
= −1

2
Rµ

νλσu
νSλσ . (5.15)

The right-hand side of this equation is the spin-curvature force.
For extreme mass ratio systems, it makes sense to linearize in the spin of the smaller

body: taking the smaller body to be a Kerr black hole, terms linear in spin enter the forcing
equations at order µ2, so terms quadratic in spin enter at order µ4. Linearizing, the equations
discussed above simplify to

Duµ

dτ
= − 1

2µ
Rµ

νλσu
νSλσ , (5.16)

DSµ

dτ
= 0 , (5.17)

uµS
µ = 0 . (5.18)

Witzany has proven that these linearized equations can be cast as a Hamiltonian system
[84], [188], and thus that the spin-curvature force is conservative. A consequence of this
is that the linearized equations admit bound orbits. These orbits can be characterized by
energy E, axial angular momentum Lz, and an analog of either the Carter constant Q or
K ≡ Q + (Lz − aE)2, much like geodesic orbits5, though offset from the geodesic values by
an amount that is proportional to the secondary spin S. (Note that we do not write these
quantities with hat accents, emphasizing that they are offset from their geodesic analogs.)
Likewise, these orbits have frequencies (Ωr,Ωθ,Ωϕ) describing their coordinate motions which
differ from the geodesic values by an amount scaling with S. They also have a “precession
frequency” Ωs which describes the precession of the spin.

Chapters 3 and 4 describe in detail how to construct orbits of spinning bodies using a
frequency domain technique to solve the linearized equations (5.16)–(5.18). For our purposes,

5It is worth emphasizing that the quantities E and Lz can be defined for motion under the complete set
of Papapetrou equations, but analogs of Q and K can be found only when these equations are linearized in
spin [153]. It has recently been shown that analogs of Q and K can be found for the full equations if one
includes the next multipole order in the analysis (the secondary’s quadrupole moment), though only if that
quadrupole moment takes the values appropriate for a Kerr black hole. See Ref. [93] for further discussion.
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a key point is that the resulting motion is similar to geodesic motion, and we can adapt the
quasi-Keplerian formulation to describe these orbits. For example, in the general case, the
radial and polar motions can be written

r =
pM

1 + e cosχr
+ δrS , (5.19)

cos θ = sin I cosχθ + δzS . (5.20)

These expressions resemble the forms used for geodesic motion, with a few key differences.
The anomaly angles χr and χθ used for spinning-body orbits differ from the angles used to
describe geodesics:

χr = χSG
r + δχSr , χθ = χSG

θ + δχSθ . (5.21)

The quantities χSG
r,θ are identical to the anomaly angles used for geodesics, but expanded in

a Mino-time Fourier series and with the geodesic frequencies Υ̂r,θ shifted to the frequencies
Υr,θ appropriate for spinning-body orbits (the superscript “SG” stands for “shifted geodesic”).
The terms δχSr,θ are O(S) shifts to the anomaly angles. See Chapters 3 and 4 for details
and further discussion. The libration regions for spinning-body orbits also differ from those
of geodesics; this difference is encoded in the functions δrS and δzS introduced in Eqs.
(5.19) and (5.20). These functions are both O(S), and are both periodic in harmonics of the
spinning body frequencies — either the set (Υr,Υθ,Υs) or (Ωr,Ωθ,Ωs), depending on which
time parameterization is used.

In addition to solutions describing the coordinate-space motion of the smaller body, we
need to describe how the orientation of the smaller body’s spin evolves over its motion. We
use the closed-form solution describing a parallel-transported vector presented in [144]. This
solution uses a tetrad, originally developed in Refs. [165]–[167], with legs {e0α, e1α, e2α, e3α};
expressions for these can be found in Eqs. (48), (50) and (51) of Ref. [144]. The precession
phase6 ψs(λ) is found by integrating up

dψs
dλ

=
√
K

(
(r2 + a2)Ê − aL̂z

K̂ + r2
+ a

L̂z − a(1− z2)Ê

K̂ − a2z2

)
. (5.22)

Although an analytic solution to (5.22) exists for geodesic orbits [144], we find it useful to ex-
plicitly integrate this equation numerically as we evolve through a sequence of orbits to make
inspirals. In this vein, we comment that the terms on the right-hand side of (5.22) depend
on the same orbital elements {p, e, xI , qSr qSz , ϕ0, t0} that we use to characterize geodesics. We
also note that although these functions are written most cleanly as functions of Mino-time
λ, it is straightforward to convert to other time parameterizations.

5.3.3 Which orbits to use?

As discussed at length in the Introduction, our goal is to make a model of spinning body
inspiral by supplementing a description of orbits which accurately describes motion on short

6Note that this phase was written ψp in Chapters 3 and 4, with the subscript p standing for “precession.”
We change notation here to avoid colliding with the use of subscript p to describe how certain forcing terms
introduced later in the paper change an orbit’s semi-latus rectum.
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timescales with appropriately averaged radiative backreaction which describes how orbits
evolve on long timescales. In essence, we want to treat inspiral as a sequence of orbits, with
backreaction moving us from orbit to orbit in the sequence.

Which notion of orbits should we use? Since our goal is to make a model for an inspiraling
spinning body, it is might seem clear that we should begin with orbits of spinning bodies —
use the orbits discussed in Chapters 3 and 4, and evolve from orbit to orbit by computing
orbit-averaged GW backreaction on those orbits. Unfortunately, implementing this scheme
is not tenable in the short term. Studies of backreaction on generic spinning body orbits
have only recently been undertaken [128], and data sets which cover enough parameter space
to generate an astrophysically plausible generic inspiral do not yet exist. In addition, issues
of principle remain which mean that, even if such data existed, we do not yet completely
understand how to evolve from orbit to orbit using the orbit-averaged backreaction. In
particular, we do not fully understand how to evolve a spinning body’s Carter constant due
to gravitational radiation reaction (see concluding discussion in Ref. [128]).

By contrast, computing backreaction on geodesic orbits is now rather straightforward.
Large data sets exist describing backreaction for this case, and more data is being generated
and made available in order to extend the “Fast EMRI Waveform” (FEW) models [98],
[99], [189]. Furthermore, as we describe in more detail in the next section, it is possible
to describe spinning body orbits as a sequence of geodesic orbits: we treat the worldline of
a spinning body as a sequence of geodesics, with the sequence generated using the forcing
terms (5.16)–(5.18).

Because our goal is to make a model describing spinning body inspiral using data and
methods available now, the approach we take is to use geodesic orbits forced by a combina-
tion of the spin-curvature force and geodesic-averaged GW backreaction. After confirming
that spinning body orbits constructed by forcing geodesics with the spin-curvature forcing
terms agree with those constructed using the methods described in Chapters 3 and 4, we
make spinning body inspirals by combining the spin-curvature force with orbit-averaged
backreaction computed along geodesics.

As we discuss in more detail in our conclusions, it will be worthwhile to compare the
results we find using this to results found by directly computing backreaction on spinning
body orbits, once large data sets exist which make such calculations practical. To facilitate
this eventual comparison, we release the Mathematica code and data which computes the
expressions that we use to make the inspirals we develop here as supplementary material for
this manuscript.

5.4 Forced geodesics

In this section, we construct spinning-body inspirals as a sequence of geodesic orbits, using
an osculating geodesic (OG) framework to describe the inspiral worldline as a sequence of
geodesic orbits. The OG technique generalizes the venerable method of osculating orbits
[190]–[192] to relativity [178], [179], [193]. We follow very closely the framework laid out in
Ref. [179], which we summarize in Appendix C.2. The key point necessary to understand
this calculation is that, as described in Sec. 5.3, both geodesic orbits and the smaller body’s
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precession are entirely characterized by 7 parameters:

EA .
= {p, e, xI , qSr , qSz , ϕ0, t0} . (5.23)

As described at length in Sec. 5.3.1, the subset (p, e, xI) are a geodesic’s “principal orbital
elements,” and fully characterize the coordinate-space torus which a geodesic occupies. The
remaining parameters (qSr , qSz , ϕ0, t0) are its “positional orbital elements,” and can be regarded
as setting the geodesic’s initial coordinates on this torus.

The parameters (5.23) are all constants for geodesic motion. The OG framework promotes
at least some of these parameters to dynamical variables under the influence of some non-
geodesic acceleration aµ. One can then regard the worldline as a “geodesic” whose parameters
EA evolve under the influence of this acceleration. See Appendix C.2 for a synopsis of how
one develops these evolution equations, and Ref. [179] for a detailed derivation and discussion
of the particular frameworks that we use.

We implement two OG schemes: The contravariant quasi-Keplerian formulation dis-
cussed in Appendix C.2.1, and the action-angle formulation discussed in Appendix C.2.2.
Comparing the results of these two methods is useful for validating our computations. We
also compare to the OG codes used in Refs. [101], [184] as an independent check of our
implementation. Because of the relevance of the action-angle formulation for applying the
near-identity transformation, we focus on this formulation for the remainder of this analysis.

5.4.1 Spinning body orbits as forced geodesics

We begin by demonstrating the equivalence between spinning-body orbits computed using
the frequency-domain approach from Chapters 3 and 4 and the forced geodesic approach
in this work; see also Appendix C.1 for discussion regarding different ways to parameterize
spinning-body motion. First, we compute a spinning-body orbit using the method of Chap-
ters 3 and 4. We select a (p, e, xI) triplet that defines a geodesic with radial turning points
r1 = p/(1− e) and r2 = p/(1 + e) and polar turning point z1 =

√
1− x2I . We then compute

the spinning-body trajectory that has the same turning points (on average) as this geodesic
[171], [172]. Note that the turning points of this spinning-body trajectory differ from the
corresponding geodesic due to an O(S) correction, as discussed in Chapters 3 and 4.

Next we compute the same spinning-body trajectory with the OG approach used in this
work. In order to do this, we find the triplet (pIC , eIC , xIC) which defines a geodesic orbit with
the same initial conditions (coordinate positions and four-velocities) as the spinning-body
orbit we computed using the method in Chapters 3 and 4; details of the mapping between
the two formulations are in Appendix C.1. We find that OG solutions match for many cycles
the corresponding spinning-body orbit computed using the approach of Chapters 3 and 4.
In Fig. 5.1, we show two example orbits to demonstrate this. In this figure, solid black
curves show the radial motion for a spinning body computed using the OG method. The
blue diamond markers show the same orbit computed using the frequency-domain method
of Chapters 3 and 4. For reference, we show the orbit of a non-spinning body (red dotted
curve) with matching parameters. Figure 5.1 shows that the three orbits agree in orbital
phase at early times (left panels). At later times (right panels), the geodesic is completely
dephased but the two spinning-body orbits remain matched.
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Figure 5.1 also shows that, after many cycles, a slight difference develops between the
solid black curves (spinning-body orbits generated via OG) and the blue diamonds (spinning-
body orbits generated using the method of Chapters 3 and 4). The two methods are entirely
equivalent up to first-order in secondary spin, but not at O(S2); the differences we see are
quadratic in secondary spin (see Appendix C.1 for detailed discussion). In this vein, note
that we used a rather non-extreme mass ratio ε = 0.1, far beyond the EMRI regime, in this
figure. This “abuse” of the large-mass ratio limit was done in order to make the effects of
spin-curvature coupling more apparent to the eye. At mass ratios appropriate for EMRI
sources, bearing in mind that scaling as O(S2) means O(ε4), we expect differences to be far
less apparent.

5.4.2 Backreaction and inspiral

The leading adiabatic backreaction requires only the orbit-averaged dissipative part of the
first-order self force. Flux balance laws allow us to compute this using only knowledge of
GW fluxes at the horizon and infinity. Such flux balance laws have the form(

dC
dt

)orbit

= −
(
dC
dt

)∞

−
(
dC
dt

)H
. (5.24)

where C corresponds to a conserved quantity along the geodesic such as E, Lz or Q. We can
then calculate the transition of the worldline between each OG using rates of change dE/dt,
dLz/dt, dQ/dt to construct an inspiral.

Note that in this adiabatic construction we omit the conservative first-order self force as
well as oscillatory pieces of the dissipative self force; both of these effects are included in
Ref. [101]. In computing the GW fluxes, we only include the contribution of the “monopole”
term of the secondary’s stress-energy tensor, which arises from the smaller body’s mass. We
thus omit the impact of the “dipole” term to this stress-energy, which arises from the smaller
body’s spin, and is included in Refs. [124], [126]. Including effects which we neglect are
natural points for further development and future work.

As described in Sec. 2.3.2, the rates of change of energy dE/dt at infinity and at the
horizon are given by [175] (

dE

dt

)∞

=
∑
lmkn

|Z∞
lmkn|

2

4πω2
mkn

, (5.25)

(
dE

dt

)H
=
∑
lmkn

αlmkn
∣∣ZH

lmkn

∣∣2
4πω2

mkn

; (5.26)

the corresponding rates of change of angular momentum dLz/dt are [175](
dLz
dt

)∞

=
∑
lmkn

m |Z∞
lmkn|

2

4πω3
mkn

, (5.27)

(
dLz
dt

)H
=
∑
lmkn

αlmknm
∣∣ZH

lmkn

∣∣2
4πω3

mkn

. (5.28)
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Figure 5.1: Comparison between spinning-body orbits computed using the OG approach in
this work (solid black), spinning-body orbits computed using the frequency-domain approach
in Chapters 3 and 4 (blue diamond markers), and a geodesic, non-spinning orbit with the
same parameters (dotted red). The orbit shown in the top panels (a) has initial parameters
given by a = 0.7M , pIC = 7.138, eIC = 0.326, and xIC = 0.966 while the orbit shown in
the bottom panels has initial parameters given by a = 0.5M , pIC = 10.122, eIC = 0.721,
and xIC = 0.966. The “IC" subscript indicates that these are “matched initial conditions”
orbital parameters: the geodesic orbit defined by the triplet (pIC , eIC , xIC) (plotted with
the red dashed line) has the same initial conditions as the spinning-body orbit (plotted
with the black solid line). There is also a “matched turning point” description of orbital
parameters used in Chapters 3 and 4, where the geodesic defined by (pTP , eTP , xTP ) and
the corresponding spinning-body orbit have matched turning points. For completeness, the
“matched turning point" orbital elements for the two spinning-body orbits pictured here
are: (pTP = 7, eTP = 0.3, xTP = 0.966) for the top panels and (pTP = 10, eTP = 0.7,
xTP = 0.966) for the bottom panels. See Appendix C.1 for further details. The system has
mass ratio ε = 10−1; the small body’s spin vector has s = 1 and s∥ = s. Note that this
mass ratio is rather far from the EMRI limit; we use this value here to make the effects of
spin-curvature coupling more apparent to the eye.
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The coefficients Z∞,H
lmkn are obtained by integrating homogeneous solutions of the separated

radial Teukolsky equation against this equation’s source term. See Sec. 2.3.1 of this thesis,
as well as Sec. III of Ref. [26] for further details of this calculation. Eq. (6.1.2) gives the
expression for αlmkn. The mode frequency ωmkn is related to the geodesic frequencies by

ωmkn = mΩ̂ϕ + kΩ̂θ + nΩ̂r . (5.29)

Contributions to the rate of change of the Carter constant Q similarly involve contribu-
tions from fields at infinity and fields on the horizon:(

dQ

dt

)∞

=
∑
lmkn

|Z∞
lmkn|

2 Lmkn + kΥ̂θ

2πω3
mkn

, (5.30)(
dQ

dt

)H
=
∑
lmkn

αlmkn
∣∣ZH

lmkn

∣∣2 Lmkn + kΥ̂θ

2πω3
mkn

. (5.31)

where
Lmkn = m⟨cot2 θ⟩L̂z − a2ωmkn⟨cos2 θ⟩Ê . (5.32)

Here, ⟨f(θ)⟩ denotes a particular averaging with respect to the orbital motion of functions of
θ, defined in Eq. (2.82). It is straightforward to convert from rates of change of the constants
of motion (Ê, L̂z, Q̂) to those of the orbital elements (p, e, xI) which is the form we use in
this article. See Appendix B of Ref. [26] for the explicit conversion between the two rates of
change.

5.5 Near identity transformations

The OG framework described in the previous section is computationally expensive, requiring
us to evaluate forcing terms multiple times per orbit cycle. The computational cost asso-
ciated with this approach thus grows with the number of orbits, scaling inversely with the
system’s mass ratio. Near-identity transformations (NITs) have proven to be powerful tools
for modeling EMRI systems [101], [104], [184], [185] by introducing an averaging that makes
it possible to include inspiral physics without needing to track the system’s cycle-by-cycle
orbital-time dynamics, substantially reducing the model’s computational cost. NITs are an
established mathematical procedure [194], used in celestial mechanics and other domains,
that averages a system’s short timescale behaviour while preserving the secular evolution on
longer timescales. In this section, we describe how to apply NITs to model the inspiral of
spinning bodies, substantially reducing the computational cost of making such models. In
our results (Secs. 5.6 and 5.7), we show that this reduction in computational cost does not
involve a loss of modeling accuracy.

5.5.1 NIT background: Notation and generalities

We begin by introducing important notation and definitions which will be used throughout
this section. Certain sets of related quantities will be organized into “vectors,” denoted
with an overarrow. For example, the set of principal orbital elements are organized into
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a vector P⃗ = (p, e, xI), the phases into q⃗ = (qr, qz), and extrinsic quantities X⃗ = (t, ϕ).
As introduced in Sec. 5.3.2, we denote spin-precession phase by ψs. It is also useful to
define a vector containing both orbital and spin phases: Q⃗ = (qr, qz, ψs). Finally, it will be
useful later, particularly when we begin to construct waveforms, to refer to the complete
set of phases including the azimuthal phase. We denote this set Q⃗ = (qr, qz, ψs, ϕ). (Notice
that these “vectors” do not have a consistent number of components.) Figure 5.2 displays a
schematic of the osculating orbit set-up we use in this analysis.

The NIT of a quantity A will be denoted by Ã and defined by the form

Ã = A+ εA(1) + ε2A(2) +O(ε3) , (5.33)

where the transformation functions A(n) are required to be smooth, periodic functions of the
orbital phases q⃗. The transformation functions introduced in this section are: Y (n)

j , used to
effect the NIT of the vector P⃗ ; X(n)

i , used for the phase q⃗; W (n)
s , used for the spin-precession

phase ψs; and Z
(n)
k , used for the extrinsic quantities X⃗ . The superscript (n) indicates the

term appears at n-th order in the expansion in mass ratio ε. After undergoing the NIT, these
quantities are denoted with two accents, a tilde denoting the NIT, and the overarrow as our
vector shorthand for these sets. For example, ⃗̃P denotes the set of transformed principal
orbit elements (p̃, ẽ, x̃I).

It will sometimes be useful to decompose functions into a Fourier series. We use the
convention

A(P⃗ , Q⃗) =
∑

κ⃗∈Zjmax

Aκ⃗(P⃗ )e
iκ⃗·Q⃗ , (5.34)

where jmax is the number of phases, and κ⃗ is a vector of integers with jmax components.
Any component of κ⃗ which attaches to the spin phase runs over the set −1, 0, 1; the other
components run formally from −∞ to ∞. The dot product used in the exponent is the usual
Euclidean, Cartesian one: κ⃗ · Q⃗ = κiQjδij, where δij is the identity. Using this Fourier series,
we can split A(P⃗ , Q⃗) into an averaged piece ⟨A⟩ (P⃗ ) given by

⟨A⟩ (P⃗ ) = A0⃗(P⃗ )

=
1

(2π)jmax

∫
· · ·
∫
Q⃗

A(P⃗ , Q⃗) dq1 . . . dqjmax , (5.35)

and an oscillating piece given by

Ă(P⃗ , Q⃗) = A(P⃗ , q⃗)− ⟨A⟩ (P⃗ ) =
∑
κ⃗ ̸=0⃗

Aκ⃗(P⃗ )e
iκ⃗·Q⃗ . (5.36)

Note that the Greek subscript with a vector accent (e.g., Aκ⃗) indicates a Fourier index, in
contrast to a Latin subscript with no vector accent (e.g., Aj), which denotes a component
of the vector.

5.5.2 Mino-time formulation

We begin by writing down the form of the equations that we want to average. First observe
that the rate of change of the spin phase is given by (5.22). We define the right-hand side
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⃗P = {p, e, I}
⃗q = {qr, qz, qs}Sequence of 

osculating orbits

·Pi = 0
·qi = Υ(0)

i ( ⃗P )

Geodesic: Post-geodesic:

·Pi = Fi( ⃗P (t), ⃗q(t))
·qi = Υ(0)

i ( ⃗P (t)) + fi( ⃗P (t), ⃗q(t))

Figure 5.2: Left. Each osculating orbit is labeled by a set of constant parameters P⃗ . A
geodesic orbit has three associated phases denoted by the vector q⃗. Right. We use an action-
angle formulation to describe the small body’s orbital dynamics; in the geodesic limit, the
time derivative of the angle variables q̇i is equal to the frequencies Υi, while the parameters
Pi are constant. When a post-geodesic effect is included, phase-dependent corrections Fi
and fi are added to the action-angle equations. This can be expressed as evolution through
a sequence of osculating geodesic orbits {P⃗ (t), q⃗(t)}.

of this equation as f (0)
s :

dψs
dλ

=
√
K̂

(
(r2 + a2)Ê − aL̂z

K̂ + r2
+ a

L̂z − a(1− z2)Ê

K̂ − a2z2

)
≡ f (0)

s . (5.37)

The phase ψs has an analytic solution in the form

ψs = Υ(0)
s λ+ ψsr(qr) + ψsz(qz) , (5.38)

where Υ
(0)
s is the Mino-time spin frequency. (We add the superscript (0) to the various

Mino-time geodesic frequencies when they are used in the NIT context, to emphasize that
they do not include information about the secondary at O(ε) or higher.) Expressions for
ψsr(qr) and ψsz(qz) can be found in Eqs. (57) and (58) of Ref. [144] where they are denoted
ψr(qr) and ψz(qz).

To post-adiabatic order, the equations of motion of the system can be written schemati-
cally as

dPj
dλ

= εF
(1)
j (P⃗ , q⃗, ψs) + ε2F

(2)
j (P⃗ , q⃗, ψs) , (5.39a)

dqi
dλ

= Υ
(0)
i (P⃗ ) + εf

(1)
i (P⃗ , q⃗, ψs) , (5.39b)

dψs
dλ

= f (0)
s (P⃗ , q⃗) , (5.39c)

dXk

dλ
= f

(0)
k (P⃗ , q⃗) . (5.39d)

Here, the forcing terms are given by

F
(1)
j = F

(1)
j,GSF(P⃗ , q⃗) + sF

(1)
j,SCF(P⃗ , q⃗, ψs) , (5.40a)
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f
(1)
i = f

(1)
i,GSF(P⃗ , q⃗) + sf

(1)
i,SCF(P⃗ , q⃗, ψs) , (5.40b)

F
(2)
j = F

(2)
j,GSF(P⃗ , q⃗) , (5.40c)

where s is the spin of the secondary scaled such that ∥s∥ ≤ 1 as discussed in Sec. 5.3.2. The
terms Fi,GSF and fi,GSF are due to the gravitational self-force, while Fi,SCF and fi,SCF are
due to the spin-curvature force. It is worth remarking that although these terms are derived
from the gravitational self force and the spin-curvature force, they are not identical to these
forces; they are essentially projections of certain components of these forces.

The averaged variables, P̃j, q̃i, ψ̃s, and X̃k, are related to the OG variables Pj, qi, ψs, and
Xk via

P̃j = Pj + εY
(1)
j (P⃗ , q⃗, ψ̃s) + ε2Y

(2)
j (P⃗ , q⃗, ψ̃s) +O(ε3) , (5.41a)

q̃i = qi + εX
(1)
i (P⃗ , q⃗, ψ̃s) + ε2X

(2)
i (P⃗ , q⃗ , ψ̃s) +O(ε3), (5.41b)

ψ̃s = ψs +W (0)
s (P⃗ , q⃗) + εW (1)

s (P⃗ , q⃗ , ψ̃s) +O(ε2), (5.41c)

X̃k = Xk + Z
(0)
k (P⃗ , q⃗) + εZ

(1)
k (P⃗ , q⃗) +O(ε2). (5.41d)

As noted previously, the transformation functions Y (n)
j , X(n)

i , W (n)
s , and Z

(n)
k are smooth,

periodic functions of the orbital phases Q⃗. At leading order, Eqs. (5.41) are identity transfor-
mations for Pj and qi, but not for Xk and ψs due to the presence of zeroth-order transforma-
tion terms Z(0)

k and W (0)
s respectively. Details about the derivation of Mino-time quantities

are given in Appendix C.3.1 and a summary of relevant Mino-time definitions can be found
in Appendix C.3.2.

In summary, the equations of motion for the averaged variables P̃j, q̃i, ψ̃s, and X̃k take
the form

dP̃j
dλ

= εF̃
(1)
j ( ⃗̃P ) + ε2F̃

(2)
j ( ⃗̃P ) +O(ε3) , (5.42a)

dq̃i
dλ

= Υ
(0)
i ( ⃗̃P ) + εΥ

(1)
i ( ⃗̃P ) +O(ε2) , (5.42b)

dψ̃s
dλ

= Υ(0)
s ( ⃗̃P ) +O(ε) , (5.42c)

dX̃k

dλ
= Υ

(0)
k ( ⃗̃P ) + εΥ

(1)
k ( ⃗̃P ) +O(ε2) . (5.42d)

The explicit forms for F̃ (1)
j , F̃ (2)

j , Υ(1)
i and Υ

(1)
k can be found in Appendix C.3.2.

Crucially, the NIT equations of motion 5.42 are independent of the orbital phases Q⃗,
meaning these differential equations are fast to evaluate. Another crucial point is that, in
the extreme mass ratio limit ε → 0, the solutions to the NIT equations 5.42 tend to the
solutions for OG equations 5.39.

5.5.3 Boyer-Lindquist-time formulation

The above equations of motion 5.42 are parameterized in terms of Mino time λ. It is
significantly more convenient for waveform generation purposes to have equations of motion
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parameterized in terms of Boyer-Lindquist time. Thus, we perform a second averaging
transformation as first outlined in Ref. [163] and implemented in Refs. [184], [185].

We relate the Mino-time averaged variables ⃗̃P = (p̃, ẽ,x̃I) and ⃗̃Q = (q̃r, q̃z, ψ̃s, ϕ̃) to the
Boyer-Lindquist-time averaged variables P⃗ = (pφ, eφ, xφ) and φ⃗ = (φr, φz, φs, φϕ) via:

Pj = P̃j + εΠ
(1)
j ( ⃗̃P, ⃗̃q) + ε2Π

(2)
j ( ⃗̃P, ⃗̃q) +O(ε3) , (5.43a)

φi = Q̃i +∆φi + εΨ
(1)
i ( ⃗̃P, ⃗̃q) +O(ε2) , (5.43b)

where the purely oscillatory term ∆φi = Ω
(0)
i ( ⃗̃P )∆t(0) and Ω

(0)
i is the Boyer-Lindquist fun-

damental frequency of the tangent geodesic.
To obtain the equations of motion for P⃗ and φ⃗, we take the time derivative of Eq. (5.43),

substitute the expression for the NIT equations of motion, and then use the inverse trans-
formation of Eq. (5.43) to ensure that all functions are expressed in terms of P⃗ and ⃗̃q. We
then expand order by order in ε. We chose the oscillatory functions ∆t, Ψ(1)

i , Π(1)
j , and Π

(2)
j

in order to cancel out any oscillatory terms that appear at each order in ε. This results in
averaged equations of motion that take the following form:

dPj
dt

= εΓ
(1)
j (P⃗) + ε2Γ

(2)
j (P⃗) +O(ε3) , (5.44a)

dφα
dt

= Ω(0)
α (P⃗) + εΩ(1)

α (P⃗) +O(ε2) . (5.44b)

These equations of motion are related to the Mino time averaged equations of mo-
tion (5.42) with the adiabatic terms given by

Γ
(1)
j =

F̃
(0)
j

Υ
(0)
t

, Ω(0)
α =

Υ
(0)
α

Υ
(0)
t

, (5.45a-b)

and the post-adiabatic terms given by

Γ
(2)
j =

1

Υ
(0)
t

(
F̃

(2)
j + F̃ (1) ∂

∂Pj

〈
Π

(1)
j

〉
−
〈
f
(0)
t Π

(1)
k

〉 ∂Γ(1)
j

∂Pk
−Υ

(1)
t Γ

(1)
j

)
, (5.46a)

Ω(1)
α =

1

Υ
(0)
t

(
Υ(1)
α −

〈
f
(0)
t Π

(1)
k

〉 ∂Ω(0)
α

∂Pk
−Υ

(1)
t Ω(0)

α

)
. (5.46b)

This constrains the oscillating pieces of our transformation to be

∆t =
∑
κ̸=0

f
(0)
t,κ⃗

−iκ⃗ · Υ⃗(0)
= −Z̆(0)

t , Π̆
(1)
j =

∑
κ̸=0

f
(0)
t,κ⃗

−iκ⃗ · Υ⃗(0)
Γ
(1)
j = −Z̆(0)

t Γ
(1)
j , and (5.47a)

Ψ
(1)
α,κ⃗ =

i

κ⃗ · Υ⃗(0)

(
∂∆φα,κ⃗
∂Pj

F̃
(1)
j −

f
(0)
t,κ⃗

Υ
(0)
t

Υ
(1)
t Ω

(0)
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We are free to chose the averaged pieces of Π
(1)
j , and we make the simplification that〈

Π
(1)
j

〉
= 0. With this and the identity

〈
f
(0)
t (
∫
f
(0)
t dq⃗)

〉
= 0, we get the simplification〈

f
(0)
t Π

(1)
j

〉
= 0. The expressions for Γ

(2)
j and Ω

(1)
α then simplify to

Γ
(2)
j =

1

Υ
(0)
t

(
F̃

(2)
j −Υ

(1)
t Γ

(1)
j

)
, (5.48a)

Ω(1)
α =

1

Υ
(0)
t

(
Υ(1)
α −Υ

(1)
t Ω(0)

α

)
. (5.48b)

A useful aspect of these equations of motion is that their solutions P⃗(t) and φ⃗(t) are
exactly what is required to feed into waveform generating schemes, as shown in Appendix
B of [185]. Once these solutions are constructed, it is then straightforward to augment
adiabatic waveform construction schemes [26], [98], [99] to include the post-adiabatic effects
these solutions describe. It is also worth noting that the additional averaging associated
with Boyer-Lindquist time could be circumvented by using closed-form expressions for the
geodesic orbits in terms of action angles associated with Boyer-Lindquist frequencies, i.e.,
φ⃗. This has been achieved already for bound orbits in Schwarzschild spacetime via a small
eccentricity expansion [195].

5.5.4 Averaged spinning-body equations of motion

In the previous sections, we derived equations of motion to post-adiabatic order by assuming
that the gravitational self-force is known to O(ε2). As of now, it is only feasible to mass
produce data describing the leading-order dissipative radiation reaction via flux balance laws
(and this has only been done so far for a fairly limited range of parameters). Although tools
exist to compute more of the first-order GSF [100], doing so is computationally expensive,
and the second-order GSF for generic Kerr remains far off. This means that we set the
second-order corrections to zero, F (2)

j,GSF = 0, and we have no conservative contributions
from the self-force, f (1)

i,GSF = 0. The other force driving the evolution is the spin-curvature
force which has no dissipative effects. As such, its orbit average is zero and so the terms
which change the principal orbit elements, F (1)

j,SCF, vanish on average:
〈
F

(1)
j,SCF

〉
= 0. The

resulting averaged equations of motion parameterized in Mino-time λ are given by:

dp̃

dλ
= εF̃ (1)

p (p̃, ẽ, x̃I) , (5.49)

dẽ

dλ
= εF̃ (1)

e (p̃, ẽ, x̃I) , (5.50)

dx̃I
dλ

= εF̃ (1)
x (p̃, ẽ, x̃I) , (5.51)

dq̃r
dλ

= Υ(0)
r (p̃, ẽ, x̃I) + εsΥ(1)

r (p̃, ẽ, x̃I) , (5.52)

dq̃z
dλ

= Υ(0)
z (p̃, ẽ, x̃I) + εsΥ(1)

z (p̃, ẽ, x̃I) , (5.53)
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Figure 5.3: Spinning-body inspiral for different mass ratios. Left-hand panels show inspirals
obtained using the OG equations of motion for mass ratios ε = 5× 10−2 (red; large oscilla-
tions), ε = 10−2 (yellow; medium oscillations) and ε = 10−3 (blue, small oscillations). We
again note that these mass ratios are larger than those expected for EMRI systems, and are
used here in order to amplify the impact of spin-curvature coupling for visual purposes. The
initial parameters used are p = 12, e = 0.35, xI = 0.5, qr = 0, and qz = 0. Right-hand panels
show the absolute difference in orbital elements of a spinning-body inspiral comparing the
OG and NIT methods; NIT orbital elements are labeled with subscript φ. In these right-hand
panels, we initially set e = 0.22, xI = 0.699, qr = 0, and qz = 0. Data shown corresponds
to the system evolving from p = 9.45 to p = 9. As expected, the absolute differences track
with the ε curve (solid, black). For all data in this figure, the small body orbits a black hole
with spin a = 0.7M and the magnitude and orientation of the small body’s spin is specified
by s = 1, s∥ = s.
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as well as

dψ̃s
dλ

= Υ(0)
s (p̃, ẽ, x̃I) , (5.54)

dϕ̃

dλ
= Υ

(0)
ϕ (p̃, ẽ, x̃I) + εsΥ

(1)
ϕ (p̃, ẽ, x̃I) , (5.55)

dt̃

dλ
= Υ

(0)
t (p̃, ẽ, x̃I) + εsΥ

(1)
t (p̃, ẽ, x̃I) . (5.56)

Many of these terms are simply related to the transformed force terms averaged over a
single orbit, which are as follows:

F̃ (1)
p =

〈
F

(1)
p,GSF

〉
, F̃ (1)

e =
〈
F

(1)
e,GSF

〉
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〉
, (5.57a-c)
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〉
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z =
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, (5.57d-e)

Υ(0)
s =

〈
f (0)
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〉
, Υ

(0)
ϕ =

〈
f
(0)
ϕ

〉
, Υ

(0)
t =

〈
f
(0)
t

〉
, (5.57f-h)

where Υ
(0)
s , Υ(0)

ϕ , and Υ
(0)
t are the Mino-time precession, azimuthal, and time fundamental

frequencies respectively which are known analytically [139], [144]. The remaining terms are
more complicated and are given in terms of an operator N which we define in Appendix C.3.3.
These remaining terms are given by:

Υ(1)
s = N (f (0)

s ) , Υ
(1)
ϕ = N (f

(0)
ϕ ) , Υ

(1)
t = N (f

(0)
t ) . (5.57i-k)

The leading order near-identity transformation for the orbital elements needed for the
initial conditions is given by:

Y̆
(1)
j ≡

∑
(κr,κz )̸=(0,0)

iF
(1)
j,GSF,κr,κz

κrΥ
(0)
r + κzΥ

(0)
z

ei(κrqr+κzqz)

+
∑

(κr,κz ,κs )̸=(0,0,0)

isF
(1)
j,SCF,κr,κz ,κs

κrΥ
(0)
r + κzΥ

(0)
z + κsΥ

(0)
s

× ei(κrqr+κzqz+κsψs) .

(5.58)

With this all in hand, we can now derive the averaged equations of motion parameterized
by Boyer-Lindquist time t for the phases φ⃗ = {φr, φz, φs, φϕ} and orbital elements P⃗ =
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{pφ, eφ, xφ} in form

dpφ
dt

= εΓ(1)
p (pφ, eφ, xφ) + ε2Γ(2)

p (pφ, eφ, xφ) , (5.59a)

deφ
dt

= εΓ(1)
e (pφ, eφ, xφ) + ε2Γ(2)

e (pφ, eφ, xφ) , (5.59b)

dxφ
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x (pφ, eφ, xφ) , (5.59c)
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dt
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r (pφ, eφ, xφ) + εsΩ(1)

r (pφ, eφ, xφ) , (5.59d)
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dt
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z (pφ, eφ, xφ) , (5.59e)
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dt

= Ω(0)
s (pφ, eφ, xφ) , (5.59f)

dφϕ
dt

= Ω
(0)
ϕ (pφ, eφ, xφ) + εsΩ

(1)
ϕ (pφ, eφ, xφ) . (5.59g)

The leading order terms in these equations are given by
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The sub-leading terms are given by
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The aligned spin case has equations in the same form as in the arbitrarily oriented case.
The main difference is that we no longer have to evolve the precession phase ψs or φs. The
other consequence is that the leading order NIT for the orbital elements reduces to

Y̆
(1)
j ≡

∑
(κr,κz) ̸=(0,0)

i
(
F

(1)
j,GSF,κr,κz + sF

(1)
j,SCF,κr,κz

)
κrΥ

(0)
r + κzΥ

(0)
z

× ei(κrqr+κzqz) .

(5.62)

The difference between the OG and averaged quantities scales linearly with the mass
ratio as can be seen in Fig. 5.3. See Appendix C.4 for a discussion of the choice of initial
conditions in the context of OG and NIT inspirals.
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5.5.5 Implementation

To implement the NIT procedure in practice, we must perform a series of offline steps. We
first generate a grid to cover a section of the 4-dimensional Kerr parameter space that we
wish to examine. We fix a/M = 0.7, and choose our principal elements Pj = (p, e, xI) in the
range from Pj,min to Pj,max in steps of Pj,step. For all the analyses we present in this paper, we
use emin = 0.05, emax = 0.22, estep = 0.005, and xI,min = 0.69, xI,max = 0.701, xI,step = 0.001.
The resolution we use in p varies depending on our goal. For the convergence study in
Fig. 5.3, we use pmin = 9, pmax = 9.5, pstep = 0.002; for calculating the full trajectory, we
use a coarser grid that covers a wider range of parameter space: pmin = 3.2, pmax = 10,
pstep = 0.02. We select this region in order to avoid low order transient resonances7 where
our NIT procedure breaks down, though methods for dealing with resonances have been
developed elsewhere [185].

At each point in this grid, we use a fast Fourier transform to numerically decompose
the OG functions into Fourier modes, and then sum them together in accordance with Eqs.
(5.57), (5.58), (5.60), and (5.60) to produce the averaged terms needed in our NIT equations
of motion and the modes of the leading order transformation terms needed to set the initial
conditions. These data are then interpolated using Hermite polynomials with Mathematica’s
Interpolate function. Overall, these offline steps take about 3 hours running in parallel
(10 cores) using 3-GHz-class Apple M1 processors.

By contrast, the online steps are computationally cheap. One loads the interpolants
produced by the offline analysis, sets initial conditions using Eqs. (C.88), (C.89), and (C.90),
and then numerically solves the equations using Mathematica’s NDSolve. The resulting
equations of motion can then be solved in less than a second, regardless of mass ratio. This
is compared with the minutes to multiple hours (depending on mass ratio) required by the
OG method. In the supplementary material, we provide the interpolants, radiation-reaction
data, and a Mathematica notebook to rapidly compute this trajectory.

5.6 Results I: Inspirals

We present our results in two parts: the inspirals we find combining spin-curvature cou-
pling with radiation reaction (this section), and the waveforms produced by those inspirals
(following section).

5.6.1 Aligned spin

We begin by examining a set of generic (inclined and eccentric) inspirals with aligned sec-
ondary spin and mass ratios ε = 5 × 10−2, 10−2, and 10−3 (left panel of Fig. 5.3). As we
have emphasized elsewhere, we expect astrophysical EMRI systems to have mass ratios of
10−4 or smaller; we use a larger mass ratio here to augment and clearly show spinning body
effects. Each example we consider begins at p = 12, e = 0.35, xI = 0.5. We look at inspiral

7Note that transient self-forced resonances are not a concern in this work because we do not include
self-force terms that would produce them in this analysis. Such terms are likely to be incorporated in the
future.
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Figure 5.4: Dephasing in qr(t), qz(t), and ϕ(t) for a spinning body relative to a non-spinning
body with mass ratio ε = 10−2 orbiting a black hole with spin a = 0.7M . The magnitude
and orientation of the small body’s spin is specified by s = 1, s∥ = s. Dashed lines show
the dephasing computed using the NIT; solid lines show the dephasing given by the OG
equations. Top panel shows the radial dephasing qSCF+RR

r − qRRr (red), middle shows de-
phasing in the polar angle qSCF+RR

z − qRRz (yellow), and bottom shows dephasing in axial
angle ϕSCF+RR − ϕRR (blue). In all panels, solid lines show the OG computation, dashed
shows the NIT results. The inspiral used for all panels has the initial conditions p = 10,
e = 0.2, xI = 0.7, qr = 0, qz = 0, and ϕ = 0.
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Figure 5.5: The trajectory in p-e-xI space for an example generic inspiral. This inspiral (red
curve) begins at (p, e, xI) = (10, 0.38, 0.6967) and ends at the LSO (the light blue plane).
The dashed curves show a non-spinning body’s inspiral; solid curves are for the inspiral of
a spinning small body. The orange curves show the projection of the inspiral onto the p-e
plane; the solid black line in this plane is the projection of the last stable orbit at the final
value of xI . (This projection is the same as the top panel of Fig. 5.6.) The blue curves show
the projection of the inspiral onto the p-xI plane; the solid black curve in this plane is the
projection of the LSO at the final value of e. (This projection is the same as the bottom
panel of Fig. 5.6.) We use mass-ratio ε = 0.005 and small-body spin s = 1, with s∥ = 0.9
and ϕs = π/2. See Fig. 15 in Ref. [26] for comparison.
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Figure 5.6: Evolution of p versus e (top left) and evolution of p versus xI (bottom left) for
the inspiral shown in Fig. 5.5. Solid black curves show spinning body inspiral; blue dashed
curves show non-spinning body inspiral. In both plots, the last stable orbit (LSO) is shown
by the red dotted curve. The insets show close-ups of inspiral near the LSO. Right-hand
panels show projections of the worldline onto the xBL-yBL and r-zBL planes (where xBL, yBL,
zBL are Cartesian-like representations of Boyer-Lindquist coordinates: xBL = r sin θ cosϕ,
etc.), with color encoding the time evolution (early times in purple and late times in red).
Parameters are identical to those used in Fig. 5.5.
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Figure 5.7: The averaged dephasing of φr(t), φz(t), and φϕ(t) for a small body with a
misaligned spin vector relative to a non-spinning body for three different values of spin
alignment: s∥ = 1 (blue), s∥ = 0.8 (orange) and s∥ = 0.5 (red). The magnitude of the small
body’s spin is s = 1; ϕs is zero except for the orange curve which has ϕs = π/4. The small
body has mass ratio ε = 10−2 and is orbiting a black hole with spin a = 0.7M . For all
panels, p = 10, e = 0.2, xI = 0.7, qSr = 0, qSz = 0, and ϕ = 0 initially. In all three cases,
the dephasing is simply proportional to s∥: s∥ = 1 shows the largest effect; the curves with
s∥ = 0.8 and s∥ = 0.5 track that curve, but with magnitudes smaller by factors of 0.8 and
0.5, respectively.

129



into black holes with a/M = 0.7. The left-hand panel of Fig. 5.3 shows these inspirals in the
(p, e) plane (top) and the (p, xI) plane (bottom). In all cases, p decreases due to radiation
reaction until the system reaches the LSO (shown as a dotted line); e decreases for much of
the inspiral, showing an uptick near the LSO (a well-known strong-field characteristic of GW
driven inspiral [196]). The inspiral increases in inclination (corresponding to a decrease in
xI) all the way to the LSO, with no deep strong-field reversal of sign unlike the p-e trajectory.

In the left panel of Fig. 5.3, we see that the amplitude of the oscillations increases with
increasing mass ratio ε, while the number of oscillations increases inversely with mass ratio.
This is because the duration of inspiral scales inversely with ε, changing the number of orbital
cycles the inspiral passes through before reaching the LSO. The difference between OG and
averaged quantities also decreases with decreasing ε (right panel of Fig. 5.3); this is a useful
validation of the NIT procedure. In the bottom right panel of Fig. 5.3), there is an uptick
in the value of |(ϕ + Z

(0)
ϕ − ΩϕZ

(0)
t ) − φϕ| for mass ratio ε = 10−4; this is due to numerical

error floor in the OG solver as well as interpolation error in the NIT solution. We expect
this error could be reduced with a more computationally expensive online (higher precision
numerical solver) or offline (higher precision interpolation) step.

The curves in Fig. 5.4 show the dephasing of a generic inspiral due to spin-curvature force.
We show the difference between various phases computed using only adiabatic radiation
reaction (denoted by “RR"), and radiation reaction plus the spin-curvature force (denote by
“SCF + RR”). The dashed lines in all panels show the averaged (NIT) dephasing φSCF+RR

y −
φRRy ; y = r is shown in the top panel, y = z in the middle, and y = ϕ in the bottom. (We
remind the reader that φα represents the averaged phases parameterized in Boyer-Lindquist
time.) The solid curves in the three panels show these dephasings computed using the OG
equations.

The inclusion of the spin-curvature force, which is conservative [111], [188], will lead
to secular changes to the evolution of the phases. In Fig. 5.4, we see secular corrections
to the phases accumulate when post-adiabatic effects are included. The evolution of the
radial dephasing φSCF+RR

r − φRRr is not monotonic, increasing to a maximum value and
subsequently decreasing to less than zero. The secular dephasing of both φSCF+RR

z − φRRz
and φSCF+RR

ϕ − φRRϕ by contrast is monotonic.
As discussed in previous sections of this paper, short timescale oscillations in solutions

to the OG equations of motion are removed by the NIT averaging procedure, isolating the
longer timescale, secular evolution (compare the solid and dashed curves in Fig. 5.4). For
more extreme mass ratios, the difference in time scales is significant, and it greatly reduces
computational cost to compute on only the longer secular timescale. The oscillations in
the solution to the OG equations contain harmonics of multiple frequencies; this complexity
in harmonic structure is especially clear in the bottom panel of Fig. 5.4 which displays
ϕSCF+RR − ϕRR. In this spin-aligned case, harmonics of Ωr and Ωz (or equivalently Ωθ)
contribute to the structure. In the spin-misaligned case we examine in the next section,
harmonics of Ωs are also present.

It is important to note that the total dephasing shown in Fig. 5.4 is independent of mass
ratio; although we used ε = 10−2 for this figure, we find exactly the same total dephasing
with more extreme mass ratios. (Oscillations about the mean trend scale with mass ratio,
so the oscillations at ε = 10−5, for example, are a factor of 1000 smaller than those shown
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in Fig. 5.4.) Because the spin-curvature force enters as a post-adiabatic effect, its integrated
dephasing is independent of mass ratio (though scaling with the magnitude of s∥). Going
to a more extreme mass ratio significantly increases the total duration of inspiral and the
number of cycles, making computation of the trajectory increasingly challenging when using
the OG rather than the NIT.

5.6.2 Misaligned spin

We now look at an example of generic spinning body inspiral with misaligned small-body
spin. The red curves in Fig. 5.5 show a generic inspiral, both with (solid line) and without
(dashed line) the spin-curvature force. The orange curve shows the projection of the inspiral
onto the p-e plane; the blue curve shows the projection onto the p-xI plane. Just as in the
aligned case, the projection onto the p-e plane shows a decrease in eccentricity throughout
most of the inspiral, and then ticks up shortly before reaching the LSO (depicted by a black
line). The inspiral increases in inclination (corresponding to a decrease in xI) all the way to
the LSO, with no deep strong-field reversal of sign unlike the p-e trajectory.

Figure 5.6 shows a more detailed depiction of the projections of the inspiral onto the p-e
and p-xI planes (leftmost panels of the first two rows). Each panel includes an inset which
zooms in on the inspiral close to the LSO. The secular evolution of the principal orbital
elements p, e, and xI is unaffected by the presence of the spin-curvature force, but this force
drives oscillations about the secular trajectory. Notice that the generic inspiral has harmonic
structure at multiple timescales — the oscillations have a more complicated structure than
we saw in the case of aligned inspirals. This more intricate harmonic structure is because
there are terms in the equations of motion which are periodic with the four frequencies Ωr,
Ωθ, Ωϕ, and Ωs. Harmonics at frequency Ωs are due to the precession of the small-body’s
spin vector. Oscillations in the xI-p trajectory are particularly complex, involving beats
between all four frequencies.

The right-hand panels of Fig. 5.6 show the inspiral trajectory in a Cartesian represen-
tation of the Boyer-Lindquist coordinates: we define xBL = r sin θ cosϕ, yBL = r sin θ sinϕ,
zBL = r cos θ, with r, θ, and ϕ the Boyer-Lindquist coordinates along the inspiral. In the
r-zBL inspiral projection, we see that the maximum |zBL| decreases as inspiral progresses.
Although the inclination angle I increases during inspiral, the effect is quite small. The
shrinking of r due to radiative backreaction is much more significant, so |zBL| = |r cos θ|
decreases overall.

Figure 5.7 shows how the misalignment of the small-body spin modifies the inspiral. From
top to bottom, the three panels show the dephasing of the spinning-body phases (φSCF+RR

r ,
φSCF+RR
z , and φSCF+RR

ϕ ) relative to those of a non-spinning body (φRRr , φRRz , and φRRϕ ). We
see that the value of φSCF+RR

y − φRRy , y ∈ {r, z, ϕ}, is proportional to s∥, as expected from
previous analyses [84], [172]. In all three panels, the blue curve (corresponding to aligned
spins, s∥ = 1), shows the largest dephasing. The maxima of the other two curves, s∥ = 0.8
(orange) and s∥ = 0.5 (red), are exactly 0.8 and 0.5 times the maximum of the s∥ = 1 curve,
as expected. The component of the small body spin misaligned from the orbit does not play
any role in this dephasing. See Appendix C.4.3 for a discussion about the selection of initial
conditions in the case of inspirals with spin precession.
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5.7 Results II: Waveforms

We wrap up our discussion of spinning-body inspirals by examining the waveforms these
inspirals generate.

5.7.1 Waveform generation

We write the GW strain in the “multivoice” form [26]

h(t) ≡ h+(t)− ih×(t) ≡
1

r

∑
lmkn

hlmkn(t)

=
1

r

∑
lmkn

Hlmkn(t)e
i[mφS−Φmkn(t)] . (5.63)

This form is found by promoting “snapshot” waveforms from a geodesic orbit into a se-
quence of snapshots in which the waveform’s properties evolve as the inspiral proceeds. The
amplitude of each waveform voice is given by

Hlmkn(t) = Almkn(t)Slm [ϑS; aωmkn(t)] , (5.64)

where
Almkn(t) = −2Z∞

lmkn(t)

ωmkn(t)2
. (5.65)

For adiabatic inspirals, the phase of each voice is

Φmkn(t) =

∫ t

t0

[mΩϕ(t
′) + kΩθ(t

′) + nΩr(t
′)] dt′

≡
∫ t

t0

ωmkn(t
′) , dt′ . (5.66)

The waveform h is measured at (t, r, ϑS, φS); the “S” on these angles denotes position on the
sky, and distinguishes them from orbit coordinates (θ, ϕ), as well as from the Boyer-Lindquist
NIT phases φr,z,ϕ. The function Slm(ϑS; aωmkn) is a spheroidal harmonic of spin-weight −2.
The strain h is decomposed onto a basis of spheroidal harmonics with indices lm, as well as
into a discrete frequency spectrum labeled with indices mkn.

The dependence on time of the various quantities introduced in the waveform above are
inherited from the dynamics of the binary’s inspiral. For example, the complex amplitudes
Z∞
lmkn(P⃗ ) are pre-evaluated by solving the radial Teukolsky equation on a grid of principal

orbit elements, and are then interpolated to generate the waveform at arbitrary points within
the grid domain. As the orbit underlying an EMRI evolves, the orbital elements P⃗ likewise
evolve. We denote these evolving elements by P⃗ (t), where t parameterizes evolution along
the inspiral as seen by a distant observer. The amplitude Z∞

lmkn(t) is thus shorthand for
Z∞
lmkn[P⃗ (t)], and likewise for other quantities which enter the waveform.
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Figure 5.8: Evolution of h+ and h× for a generic inspiral with mass-ratio 10−3. Top panel
shows the part of the waveform corresponding to an early part of the inspiral, the middle
panel shows an intermediate stage and the bottom panel shows the end of the inspiral.
The blue (solid) and orange (dashed) curves correspond to spinning and non-spinning small
bodies respectively. The mismatch between the two waveforms is 0.2067. Initial orbital
parameters are: p = 7.95, e = 0.22, x = 0.699, qr = 0, and qz = 0. The small body orbits a
black hole with spin a = 0.7M and the magnitude and orientation of the small body’s spin is
specified by: s = 1 and s∥ = s. We use the code GremlinInsp to generate these waveforms
using the NIT trajectory, with parameters lmax = 2, kmax = 4, and nmax = 10.
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In Sec. 5.5.4, we wrote down expressions for the Boyer-Lindquist averaged equations of
motion for the orbital phases (5.44b). In integral form, the expression for these phases is:

φα(t) =

∫ t

t0

(
Ω(0)
α (t′) + εΩ(1)

α (t′) +O(ε2)
)
dt′

=

∫ t

t0

(
Ωα(t

′) +O(ε2)
)
dt′ . (5.67)

These phases contribute to the waveform voices via

Φmkn(t) = mφϕ(t) + kφθ(t) + nφr(t) +O(ε) . (5.68)

The Boyer-Lindquist time averaged phases φα(t) are thus exactly equivalent to the input re-
quired for generating multi-voice Teukolsky waveforms [184]. Replacing the adiabatic phase
(5.66) used in the waveform (5.63) with the phase (5.68) is thus a simple and computationally
effective way to incorporate spin-curvature physics into inspiral waveforms. A generalization
of this to include other post-geodesic forcing terms should likewise enable simple incorpora-
tion of other important post-adiabatic effects into EMRI waveforms.

We compute relativistic waveforms using GremlinInsp8, which accepts as input a world-
line (an HDF5 file with datasets {t, p(t), e(t), xI(t), Φr(t), Φθ(t), Φϕ(t)}) and maximum
values lmax, kmax and nmax. The waveform is assembled by performing the sum (5.63),
where the amplitudes Z∞

lmkn have been obtained by solving the Teukolsky equation with a
point-particle source [26].

Note that the FastEMRIWaveforms waveform module takes the same inputs from the
orbital dynamics [99]. As such, replacing the adiabatic equations of motion currently in
place with the averaged equations of motion we have developed here, along with setting the
initial conditions outlined in Appendix C.4, will provide a very convenient way to incorporate
the conservative effects of an arbitrary secondary spin into EMRI waveforms efficient enough
for LISA data analysis. At present, FastEMRIWaveforms can only produce fully relativistic
waveforms for eccentric Schwarzschild inspirals. Work is in progress to extend this package
to cover inspirals into Kerr black holes; once that it is done, it should not be difficult to
adapt this package further to include the post-adiabatic effect of spin-curvature coupling.

In Figure 5.9, we compare waveforms generated using the OG trajectory instead of the
NIT trajectory. When computing the waveform using the OG trajectory, we evaluate Φmkn

using Eq. (5.68), replacing φϕ with ϕ + Z
(0)
ϕ − ΩϕZ

(0)
t , φz with qz − ΩzZ

(0)
t and φr with

qr − ΩrZ
(0)
t .

5.7.2 Waveform analysis

We conclude our analysis of waveforms by quantitatively comparing the different physical
effects and modeling methods that we have used. To do this, we use a noise-weighted inner

8GremlinInsp is a subset of the Gremlin package, a C++ code developed by author Hughes to solve the
frequency-domain Teukolsky equation for generic bound Kerr orbits. It is not yet in the public domain due
to licensing issues, but an open-source version is under development. In the meantime, interested parties
should contact Hughes regarding this code.
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Figure 5.9: Comparison of waveforms computed from OG inspiral and NIT inspiral. Top
panel shows h+ for parameters identical to those used in Fig. 5.8. Blue curve shows waveform
from a NIT inspiral for the entire domain we computed; red shows the difference between the
OG and the NIT waveforms. Bottom left panel shows the early part of the inspiral; bottom
right shows the end of inspiral. The blue solid and orange dashed curves corresponds to NIT
and OG inspirals respectively. The mismatch between these two waveforms, computed using
Eq. (5.71), is M = 3.462× 10−4.
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product of two waveforms h1 and h2 given by [197]

⟨h1|h2⟩ = 2

∫ ∞

0

h̃∗1(f)h̃2(f) + h̃1(f)h̃
∗
2(f)

Sn(f)
df , (5.69)

where h̃(f) is the Fourier transform of the time-domain waveform h(t), h̃∗(f) is the complex
conjugate of h̃(f), and Sn(f) is the one-sided power spectral density (PSD) of detector noise.
We use a white noise power spectrum here (i.e., noise independent of frequency); an analysis
focusing on astrophysical waveform characteristics (as opposed to assessing more general
aspects of waveform modeling) would use noise from a particular detector, such as that
projected for the LISA mission [198]. The fractional waveform overlap O is defined by

O =
⟨h1|h2⟩√

⟨h1|h1⟩⟨h2|h2⟩
. (5.70)

This measure equals equals 1 when h1 = h2; O = 0 defines “orthogonal” waveforms. Note
that, for white noise, O is independent of the noise amplitude; we thus set Sn(f) = 1 for these
comparisons. A closely related notion is the fractional waveform mismatch, M = 1 − O.
We use the WaveformMatch function from the SimulationTools package [199] to calculate
waveform overlaps.

Using these tools to compare waveforms, we now consider how high the overlap should
be for waveforms to be distinguishable in the context of LISA data science. Following the
criteria defined in Ref. [200], two waveforms h1 and h2 are defined to be indistinguishable if
they satisfy ⟨δh|δh⟩ < 1, where δh = h1 − h2. The optimal signal-to-noise ratio (SNR) ρ is
defined by ρ2 ≡ ⟨h|h⟩. Combining these definitions and going to the limit ρ1 ≃ ρ2 ≡ ρ yields
the benchmark that two waveforms with mismatch M will be indistinguishable if their SNR
satisfies

ρ ≤ 1√
2M

. (5.71)

Two signals being distinguishable according to the criterion (5.71) is a necessary but not
sufficient condition for detectability of a particular effect. A more concrete measure of
whether an effect related to the source physics is detectable should be assessed using a
Bayesian parameter estimation framework (i.e., inferring model parameters by combining
prior knowledge with data using Bayes’ theorem to form a posterior distribution).

Figures 5.8 and 5.9 display snapshots of gravitational waveforms. Figure 5.8 shows the
plus and cross polarizations for a generic inspiral with mass-ratio 10−3; the blue curve shows
the waveform of a spinning body, while the orange curve shows the waveform of a non-
spinning body. The top, middle and bottom panels display the early, intermediate and late
stages of the inspiral. If the non-spinning and spinning-body inspirals are initially in phase
at the beginning of the inspiral, the dephasing accumulates as the inspiral progresses. This
dephasing accumulates a rather large mismatch of M = 0.2067 between spinning and non-
spinning waveforms. Using Eq. 5.71, these waveforms would be distinguishable for EMRI
signals with SNR ρ ≳ 1.5. In other words, if these were real signals, they would be easily
distinguishable.

Figure 5.9 compares OG and NIT models of h+ for the spinning body generic inspiral
shown in Fig. 5.8. The top panel shows the waveform of the entire inspiral, left bottom
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shows early in the inspiral, and right bottom shows late times. The solid blue curve is the
waveform computed using the NIT inspiral, while dashed orange corresponds to the waveform
computed with the OG inspiral. In the bottom two panels of Fig. 5.8, we see that the NIT
and OG curves lie almost exactly on top of each other, even late in the inspiral. The difference
between the OG and NIT waveforms is shown by the red curve of the top panel of Fig. 5.9;
a small mismatch, M ≃ 0.00035, accumulates over the inspiral. According to the criterion
(5.71), the OG and NIT waveforms would be distinguishable as EMRI signals with SNR
greater than about 38. It’s worth bearing in mind that this result is for mass ratio ε = 10−3.
The mismatch would be lower, and the SNR needed for signals to be distinguishable would
be greater, for EMRI mass ratios ε ≲ 10−4. Waveforms computed using the OG and NIT
techniques differ only slightly, despite their vastly different computational costs.

5.8 Conclusions

We have presented a framework to combine orbit-averaged point-particle GW backreaction
with the orbital dynamics of spinning bodies to make inspiral worldlines and gravitational
waveforms for spinning bodies bound to Kerr black holes in the extreme mass ratio limit.
The inspirals and GWs produced by this framework are demonstrably incomplete (we dis-
cuss below aspects of this model which are ripe for improvement and additional work), but
nonetheless make it possible to augment existing models of strong-field inspiral and wave-
form generation using data and methods available today. In this analysis, we computed
trajectories and waveforms using both osculating geodesic (OG) and near-identity transfor-
mation (NIT) methods. In Sec. 5.7, we demonstrated that the NIT trajectory can be used
to generate a waveform that includes spinning-secondary effects, with minimal mismatch
relative to the OG waveform (M ≈ 3.5 × 10−4), and a speed up in computation of several
orders of magnitude.

As tools for efficiently computing EMRI waveforms [98], [99] expand to cover more of the
astrophysical parameter space, it should not be difficult using the methods and techniques
we have presented to further augment these tools to include the influence of secondary spin.
As show in Sec. 5.7, the leading impact on the waveforms’ phase evolution can be found by
“upgrading” the adiabatic inspiral phase, our Eq. (5.66), to a version that includes the post-
adiabatic influence of secondary spin. This may be particularly useful in the short term for
assessing the importance of spin effects for EMRI science. For example, previous work based
on much simpler orbit geometries concluded that secondary spin is likely to have negligible
impact on EMRI measurements [117], [118]; re-examining this question for generic orbits
and spin orientations may change this conclusion. A further generalization of this problem
may even be useful for examining the impact of secondary structure beyond spin (looking
at, for example, the findings of Ref. [201] to a broader class of orbits). It should not be too
challenging to generalize further to include the post-adiabatic influence of other important
post-geodesic effects.

As discussed in Sec. 5.3, another way to approach this problem is to consider orbit-
averaged backreaction directly applied to spinning body orbits, following the kind of calcu-
lations laid out in Ref. [128]. Indeed, given that spinning body orbits describe the behavior
of these inspirals on timescales too short for radiation reaction to be apparent, one might
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regard this as a more natural approach to this problem. Performing such a calculation will
require large data sets describing backreaction onto spinning body orbits, as well as a better
understanding of how to evolve the generalized Carter constant of a spinning body. In addi-
tion, the GWs produced by a spinning body are more complicated than those from a point
body: an additional term, linear in the small body’s spin tensor, enters the source term of
the wave equation. This changes the instantaneous wave amplitude, and thus changes the
rate at which GWs backreact on the system. The calculation we present here will be a useful
tool for assessing the importance of different terms which enter the dynamics of backreaction
for spinning-body orbits. By incorporating the linear-in-secondary-spin flux corrections to
our calculation, it would be equivalent (to 1PA order) to using a spinning-body orbit formu-
lation as the basis for the calculation from the outset. Comparing the two approaches would
then be a useful validation for both formulations. We include Mathematica code and access
to the data used to describe backreaction with this paper in order to facilitate making such
comparisons.

An interesting direction to explore in future work is examining the difference between the
waveforms generated in this analysis and those obtained via spinning-body orbits evolved
with the first-order self-force from first principles, such as in Ref. [127]. Such a comparison
should provide insight into whether the present computation on its own is sufficiently accurate
to operate as an approximation in certain portions of the parameter space.

Secondary spin is one example of an important post-adiabatic effect. Other effects,
especially those related to the gravitational self force [100], [202] are also critically important,
and must also be included in order to develop accurate EMRI waveform models. As long
as these terms can be considered independently, with each term contributing in a “modular”
fashion, a framework based on osculating orbits may be particularly suitable to combining
the impact of different post-adiabatic effects in a single unified model; by using osculating
geodesics as the basis for the calculation, all the post-adiabatic effects will be parameterized
in the same way and can be directly combined. The NIT technique is flexible and broadly
applicable to many types of forcing terms [101]. We anticipate that the orders-of-magnitude
NIT speed-up can be leveraged to produce comprehensive EMRI waveform models which
include a variety of different effects. Such a model will be needed before too long in order to
accurately assess the importance of various contributors to inspiral and EMRI waveforms.
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Chapter 6

Asymptotic gravitational-wave fluxes
from a spinning test body around a Kerr
black hole

The first section of this chapter outlines how gravitational wave fluxes are computed for
spinning body orbits along a generic trajectory, and is based on work previously published
in Physical Review D (Viktor Skoupý, Georgios Lukes-Gerakopoulos, Lisa V. Drummond,
and Scott A. Hughes, 2023) [128]. The second section presents ongoing work conducted in
collaboration with Scott Hughes.

6.1 Computing spinning-body GW fluxes along a generic
trajectory

In this section, we discuss how gravitational wave energy and angular momentum asymptotic
fluxes from a spinning body are computed in the Newman-Penrose (NP) formalism up to
a linear in secondary spin approximation. In particular, we describe how GW fluxes are
computed for bodies moving on completely generic orbits in a Kerr spacetime.

6.1.1 Linearized trajectory in the frequency domain

The gravitational radiation fluxes are evaluated along a particular trajectory; we select this
trajectory to be the linearized spinning-body orbit described in Chapters 3 and 4. In this
parameterization, the orbits of a spinning particle are parameterized in Mino time as

ut = −Ê + uSt (λ) , (6.1a)

uϕ = L̂z + uSϕ(λ) , (6.1b)

r =
p

1 + e cos(Υrλ+ δχ̂r(λ) + δχSr (λ))
+ δrS(λ) , (6.1c)

z = sin I cos
(
Υzλ+ δχ̂z(λ) + δχSz (λ)

)
+ δzS(λ) (6.1d)
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with

Υr = Υ̂r +ΥS
r , Υz = Υ̂z +ΥS

z (6.1e)

where the hatted quantities denote geodesic quantities and quantities with index S are
proportional to σ.1 With these frequencies at hand, quantities in Eq. (6.1) parametrized
with respect to λ can be expanded in the frequency domain as

f(λ) =
∑
n,k,j

fnkje
−inΥrλ−ikΥzλ−ijΥsλ . (6.2)

The sums have different ranges and constraints depending on which function f we are ex-
panding: δχSr is summed only over positive and negative n; δχSz is summed only over positive
and negative k; k and j cannot be simultaneously zero for rS and n and j cannot be simul-
taneously zero for zS. We truncate the n and k sums at ±nmax and ±kmax. The index j
is summed from −1 to 1. Equations (2.47)–(2.48) together with the normalization of the
four-velocity uµuµ = −1 are then used to find the quantities (6.1) in the frequency domain.

As in Sec. 4.3, we define the phases

wr = Υrλ ,wz = Υzλ ,ws = Υsλ . (6.3a)

The coordinates can then be linearized with fixed phases as r(wr, wz, ws) = r̂(wr)+r
S(wr, wz, ws),

z(wr, wz, ws) = ẑ(wz) + zS(wr, wz, ws), where the linear in spin parts can be expressed as

rS =
epδχSr sin(wr + δχ̂r)

(1 + e cos(wr + δχ̂r))2
+ δrS . (6.4)

zS = − sin IδχSz sin(wz + δχ̂z) + δzS . (6.5)

For the calculation of gravitational-wave fluxes we need also the coordinate time and
azimuthal coordinate. Both can be expressed as secularly growing part plus purely oscillating
part, i.e.,

t = Γλ+∆t(Υrλ,Υzλ,Υsλ) , (6.6)
ϕ = Υϕλ+∆ϕ(Υrλ,Υzλ,Υsλ) , (6.7)

where the oscillating parts ∆t and ∆ϕ cannot be separated, unlike in the geodesic case.
These oscillating parts can be calculated from the four-velocity with respect to Carter-Mino
time, Uµ ≡ dxµ/dλ = Σuµ ≡ Σdxµ/dτ . After integrating,

dt

dλ
= U t =

∑
n,k,j

U t
nkje

−inΥrλ−ikΥzλ−ijΥsλ , (6.8)

the n, k, j-mode of ∆t(λ) in the frequency domain reads

∆tnkj =
U t
nkj

−inΥr − ikΥz − jΥs

, (6.9)

1Υs does not need to be expanded to first order in σ because it appears in terms proportional to σ.
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where U t
nkj is the harmonic mode of the four-velocity. By linearizing the above equation in

spin, we obtain

∆tSnkj =
iU t

S,nkj

nΥ̂r + kΥ̂z + jΥs

−
iÛ t

nkj(nΥ
S
r + kΥS

z )

(nΥ̂r + kΥ̂z)2
. (6.10)

The second term is zero for j = ±1 and ΥS
s is not needed, since the geodesic motion is

independent of Υs. The linear in spin part of the t component of the four-velocity can be
expressed as

U t
S =

∂T

∂r
rS +

∂T

∂z
zS − ∂T

∂E
uSt +

∂T

∂Lz
uSϕ (6.11)

where T is given by the right-hand side of Eq. (2.23). Similarly for ∆ϕS, we use Uϕ to get
∆ϕnkj and consequently ∆ϕSnkj, in which Uϕ

S is as Eq. (6.11), but instead of V t we use V ϕ.
The linear in spin parts of Γ and ϕ are respectively U t

S,000 and Uϕ
S,000 [130]. The coordinate-

time frequencies read

Ωr =
Υ̂r +ΥS

r

Γ̂ + ΓS
, Ωz =

Υ̂z +ΥS
z

Γ̂ + ΓS
, Ωϕ =

Υ̂ϕ +ΥS
ϕ

Γ̂ + ΓS
, Ωs =

Υ̂s

Γ̂ + ΓS
. (6.12a)

The approach to calculate the linear in spin parts of the trajectory is described in Chap-
ters 3 and 4 as well as Refs. [129], [130]. Subsequent simplifications were made to the equa-
tions given in these chapters; details are given in Appendix D.1. Using these simplifications,
uSt,nk and uSϕ,nk can be calculated as

uSt,nk =
iRt,nk

nΥ̂r + kΥ̂z

, uSϕ,nk =
iRϕ,nk

nΥ̂r + kΥ̂z

(6.13)

for n ̸= 0 or k ̸= 0, where Rt,nk and Rϕ,nk are Fourier coefficients of functions given in
Eqs. (D.5). Then, the Fourier coefficients uSt,00, uSϕ,00, δχSr,n, δχSz,k, rSnk, zSnk and the frequen-
cies’ components ΥS

r and ΥS
z were calculated as the least squares solution to the system of

linear equations

M · v + c = 0 . (6.14)

as shown in Appendix A.3.2. In the system of equations (6.14), the column vector v contains
the unknown coefficients, the column vector c is given from Fourier expansion components of
the functions J , V and P in Eqs. (D.5) that are not coefficients of the unknown quantities,
while the elements of the matrix M are calculated from the Fourier coefficients of functions
Fr,r, Gr,r,θ,z, Hr,r,θ,z, I1r,1θ,2,3, Qθ,z, Sr,r,θ,z, Tr,r,θ,z, U1r,1θ,2,3, Kr,r,θ,z, Mr,r,θ,z, N1r,1θ, which
are functions of the geodesic quantities and they are given in the supplemental material of
[130], i.e., the published version of Chapter 4.

6.1.2 Gravitational-wave fluxes from a spinning test body

As discussed in Section 2.3, perturbations of the Newman-Penrose curvature scalar,

ψ4 = −Cαβγδnαmβnγmδ (6.15)
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can be found by solving the the Teukolsky equation [203]

−2O −2Ψ(t, r, θ, ϕ) = 4πΣT , (6.16)

where −2Ψ = ζ4ψ4, −2O is a second order differential operator, T is the source term defined
from T µν and where Cαβγδ is the Weyl tensor. We solve the Eq. (6.16) in frequency domain,
where it can be decomposed as Eq. (2.65) and separated into two ordinary differential equa-
tions, one for the radial part Rlm(r, ω) and one for the angular part Slm, which is called the
spin-weighted spheroidal harmonic.

The radial equation reads
DlmωRlm(r, ω) = Tlmω , (6.17)

where Dlmω is a second order differential operator which depends on r, and Tlmω is the
source term which we describe later. Because the source term is zero around the horizon
and infinity, the function Rlm(r, ω) must satisfy boundary conditions at these points for the
vacuum case [204]:

Rlm(r, ω) ≈ Z∞
lmωr

3eiωr∗ r → ∞ , (6.18a)

Rlm(r, ω) ≈ ZH
lmω∆e

−i(ω−mΩH)r∗ r → r+ , (6.18b)

where ΩH = a/(2Mr+) is the rotation frequency at the horizon and r∗ is the tortoise coor-
dinate, as defined in Sec. 2.3.1. The amplitudes at infinity and at the horizon Z∞,H

lmω can be
determined using the Green function formalism as

Z∞,H
lmω =

1

W

∫ ∞

r+

RH,∞
lm Tlmω
∆2

dr , (6.19)

where RH,∞
lm (r) are the solutions of the homogeneous radial Teukolsky equation satisfying

boundary conditions at the horizon and at infinity, respectively, and

W =
(
(∂rR

∞
lm)R

H
lm −R∞

lm∂rR
H
lm

)
/∆ (6.20)

is the invariant Wronskian.
Following [205], the source term can be written

Tlmω =

∫
dtdθdϕ∆2

∑
ab

Tabeiωt−imϕ (6.21)

where ab = nn, nm̄, m̄m̄ and

Tab =
Iab∑
i=0

∂i

∂ri

(
f
(i)
ab

√
−gTab

)
(6.22)

with Inn = 0, Inm̄ = 1, Im̄m̄ = 2. Note that the functions f (i)
ab , which are defined in

Appendix D.2, are slightly different than the definition in [205]. The projection of the
stress-energy tensor into the tetrad can be written as [206]

√
−gTab =

∫
dτ
(
(Am

ab + Ad
ab)δ

4 − ∂ρ
(
Bρ
abδ

4
))

(6.23a)
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where

Am
ab = P(avb) , (6.23b)

Ad
ab = Scdv(bγa)dc + Sc(aγb)dcv

d , (6.23c)
Bρ
ab = Sρ(avb) (6.23d)

and the spin coefficients are defined as

γadc = λaµ;ρλ
µ
dλ

ρ
c . (6.24)

After substituting Eqs. (6.21), (6.22), (6.23a) into Eq. (6.19) and integrating over the
delta functions, the amplitudes Z∞,H

lmω can be computed as

Z∞,H
lmω =

∫ ∞

−∞

dτ

Σ
eiωt(τ)−imϕ(τ)I∞,H

lmω (r(τ), z(τ), ua(τ), Sab(τ)) , (6.25)

where I∞,H
lmω is defined as

I∞,H
lmω =

Σ

W

∑
ab

Iab∑
i=0

(−1)i

(((
Am
ab + Ad

ab + i
(
ωBt

ab −mBϕ
ab

))
f
(i)
ab

+Br
ab

∂f
(i)
ab

∂r
+Bz

ab

∂f
(i)
ab

∂z

)
diRH,∞

lmω

dri
+Br

abf
(i)
ab

di+1RH,∞
lmω

dri+1

)
. (6.26)

Explicit expressions for Am
ab, Ad

ab and Bµ
ab are given in Appendix D.2.

Following a similar procedure to [207], it can be proven that the amplitudes can be
written as a sum over discrete frequencies

Z∞,H
lmω =

∑
m,n,k,j

Z∞,H
lmnkjδ(ω − ωmnkj) with ωmnkj = mΩϕ + nΩr + kΩz + jΩs . (6.27)

The partial amplitudes are given by

Z∞,H
lmnkj =

1

(2π)2Γ

∫ 2π

0

dwr

∫ 2π

0

dwz

∫ 2π

0

dws I
∞,H
lmnkj(wr, wz, ws)

× exp(iωmnkj∆t(wr, wz, ws)− im∆ϕ(wr, wz, ws) + inwr + ikwz + ijws) , (6.28)

where I±lmnkj(wr, wz, ws) = I±lmωmnkj
(r(wr, wz, ws), z(wr, wz, ws), ua(wr, wz, ws), Sab(wr, wz, ws)).

As in Sec. 2.3.2, the averaged energy and angular momentum fluxes can be derived as

〈
FE
〉
≡
(
dE

dt

)∞

+

(
dE

dt

)H
=

∑
l,m,n,k,j

FE
lmnkj , (6.29a)

〈
FJz

〉
≡
(
dJz
dt

)∞

+

(
dJz
dt

)H
=

∑
l,m,n,k,j

FJz
lmnkj , (6.29b)
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with

FE
lmnkj =

∣∣Z∞
lmnkj

∣∣2 + αlmnkj
∣∣ZH

lmnkj

∣∣2
4πω2

mnkj

, (6.29c)

FJz
lmnkj =

m
(∣∣Z∞

lmnkj

∣∣2 + αlmnkj
∣∣ZH

lmnkj

∣∣2)
4πω3

mnkj

, (6.29d)

where αlmnkj is given by Eq. .
Since all the terms proportional to the perpendicular component σ⊥ are purely oscillating

with frequency Ωs, the only contribution to the fluxes from σ⊥ comes from the modes with
j = ±1. The amplitudes Z∞,H

lmnkj for j = ±1 are proportional to σ⊥ and, therefore, the fluxes
for j = ±1 are quadratic in σ⊥. We can neglect them in the linear order in σ and sum over
l, m, n and k with j = 0.

The fluxes
〈
FE
〉

and
〈
FJz

〉
defined above were computed for the first time in Ref. [128].

See Figures 8 and 9 as well as Table 2 in Appendix E of Ref. [128] for numerical values of the
spinning-body fluxes. Note that since the trajectory is computed up to linear order in σ, the
amplitudes and the fluxes are valid up to O(σ) as well. Because the Fourier series (6.2) of the
linear in spin part of the trajectory is truncated at ±nmax and ±kmax, only a finite number
of n and k modes of the amplitudes C±

lmnk and of the fluxes can be calculated accurately.
In the absence of secondary spin, the leading-order adiabatic contribution to the GW

phase can be determined by analyzing the GW fluxes at infinity and the horizon, which
obey flux-balance laws governing the evolution of energy, angular momentum, and the Carter
constant [208]. For spinning objects within the linear-in-secondary-spin approximation, flux-
balance laws have only been rigorously proven for energy and angular momentum fluxes
[209], [210]. If the evolution of the linear-in-spin Carter-constant analog derived by Rüdiger
[211], [212] could be derived from asymptotic fluxes in a manner analogous to Eqs. (2.79)
and (2.80), this would enable the computation of the secondary spin’s entire impact on the
waveform. This remains as the final piece which would enable the complete assessment of
the secondary spin’s influence on the GW phase in generic inspirals.

6.2 Computing spinning-body GW fluxes using shifted-
geodesic approximation

This section outlines a preliminary analysis which builds on the framework laid out in the
previous section. The speed of computation of the amplitudes and fluxes presented in Sec.
6.1.2 is limited by the time taken to calculate the spinning-body trajectory presented in Sec.
6.1.1. Here, we approximate the spinning-body trajectory as a geodesic with its associated
frequencies shifted such that they correspond to the those of a spinning body. In this way, we
can expedite our calculation by leveraging existing infrastructure for computing adiabatic
gravitational-wave fluxes along geodesic orbits using the Teukolsky formalism, discussed
in Sec. 5.7.1. In particular, we extend the framework of the GREMLIN package, which is a
frequency-domain Teukolsky solver written in C++ and developed by Scott Hughes (see Refs.
[186], [213] and [204]), with the Mano-Suzuki-Takasugi (MST) approach used for solving the
homogeneous Teukolsky equation, as described in Refs. [214], [215].
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As outlined in Sec. 6.1.1, the parameterization of the spinning-body orbit utilized to
compute the fluxes in the previous section is:

r =
pM

1 + e cos
(
(Υ̂r +ΥS

r )λ+ δχ̂r + δχSr

) + δrS , (6.30)

cos θ = sin I cos
(
(Υ̂θ +ΥS

θ )λ+ δχ̂θ + δχSθ

)
+ δzS , (6.31)

where Υ̂r + ΥS
r and Υ̂θ + ΥS

θ are the radial and polar frequencies respectively; the true
anomaly angles are given by

δχSr =
∞∑

n=−∞

δχSr,ne
−inwr , and δχSθ =

∞∑
k=−∞

δχSθ,ke
−ikwθ ; (6.32)

the radial libration variation is

δrS =
1∑

j=−1

∞∑
n,k=−∞

δrS,jnke−i(nwr+kwθ+jws) , (6.33)

where k and j cannot both be zero; and the polar libration variation is

δzS =
1∑

j=−1

∞∑
n,k=−∞

δzS,,jnke−i(nwr+kwθ+jws) , (6.34)

where n and j cannot both be zero.
This framework assumes a reference geodesic is specified by the parameters p, e, I that

were described in detail in Chapter 2. The trajectory of a spinning particle has the same
turning points after averaging: the particle oscillates between its radial and polar turning
points, but, unlike in the geodesic case, the radial turning points depend on z and the
polar turning points depend on r. This dependence is encoded in the corrections rS and
zS, respectively. We observe that δχSr and δχSθ consist of purely radial and purely polar
oscillations respectively, while motion that is not purely radial or purely polar is contained
in the functions δrS and δzS. Because of the corrections rS and zS, the radial and polar
motion have contributions from a combination of all the frequencies nΥr+kΥz+ jΥs, where
n, k, and j are integers.

The only O(σ)-correction that grows secularly is due to the shift in frequencies ΥS
r and

ΥS
θ . The O(σ)-quantities δχSr , δχSθ , δrS and δzS contain purely oscillatory contributions

by definition. We therefore propose an approximation scheme that omits these purely os-
cillatary terms when we compute GW fluxes assiated with spinning-body trajectories. Our
approximation scheme thus requires replacing Eqs. (6.30) and (6.31) with

r =
pM

1 + e cos
(
(Υ̂r +ΥS

r )λ+ δχ̂r

) , (6.35)

cos θ = sin I cos
(
(Υ̂θ +ΥS

θ )λ+ δχ̂θ

)
, (6.36)
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when evaluating the amplitudes given by Eq. (6.28) and fluxes given by Eq. (6.29). We
call this a “shifted geodesic" approximation, because Eqs. (6.35) and (6.36) have the same
form as a geodesic orbit, except with shifted frequencies, Υ̂r +ΥS

r and Υ̂θ +ΥS
θ . In the next

section, we compute amplitudes and fluxes using this approximation for a simplified case (an
equatorial orbit with a monopole source term).

6.2.1 Equatorial orbit and monopole source limit

As a first step, we consider equatorial, spin-aligned orbits; see Ref. [124] for a detailed analysis
of GW fluxes from a spinning-body orbiting on an equatorial trajectory. Our analysis will
initially include only the monopole term C0

ab when computing GW fluxes using the shifted
geodesic approximation; this represents a preliminary, proof-of-principle calculation, which
we plan to extend to include the dipole contribution to the source, as well as more generic
orbital and spin configurations.

The stress-energy tensor projected along the Newman-Penrose basis for a non-spinning
particle is [135]:

Tab =
Cab
sin θ

δ[r − r(t)]δ[θ − θ(t)]δ[ϕ− ϕ(t)] , (6.37)

where, for example, Cnn is given by:

Cnn =
dλ

dt

µ

4Σ2

[
E(r2 + a2)− aLz +

dr

dλ

]2
. (6.38)

See Eqs. (3.29b) and (3.29c) of Ref. [135] for expressions Cm̄m̄ and Cnm̄. For the stress-energy
tensor associated with a spinning particle, we have additional spin-dependent contributions
to the monopole term C0

ab, as well as a dipole terms depending on the spin tensor [124], viz.,

Tab =
1√
−g

δ3(C0
ab − Cσ

ab)−
1√
−g

∂ρ
(
(vt)−1Sρ(µvν)δ3

)
e(a)µ e(b)ν , (6.39)

where
C0
ab = (vt)−1P (µvν)e(a)µ e(b)ν , (6.40)

and
Cσ
ab = (vt)−1Sρ(µΓ

ν)
ρλv

λe(a)µ e(b)ν . (6.41)

Explicit expressions for C0
nn, C0

nm̄ C0
m̄m̄ Cσ

nn, Cσ
nm̄ and Cσ

nm̄ can be found in Eqs. (B21)–(B26)
of Ref. [124]. For example, after linearizing in spin, C0

nn becomes:

C0
nn =

dλ

dt

[
(Er2 − a(Lz − aE) + dr/dλ)

2

4r2
+ σ

(aE − Lz + aEr)(a2E − aLz + Er2 + dr/dλ)

2r3

]
,

(6.42)

We aim to implement and test the shifted geodesic scheme for general orbital configurations
as future work. As a benchmark, we will compare our results with Refs. [205] and [216]. We
discuss further future work in the next chapter.
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Chapter 7

Conclusions

Gravitational waves are detected by correlating observed data with precomputed theoretical
models, called waveform templates. For EMRI signals, even a model-induced error of a
fraction of a cycle can degrade measurement of astrophysical parameters. To capitalize
fully on the potential of EMRIs, extremely accurate waveforms which match the phase
of observed GW data across hundreds of thousands of orbits are essential. Building such
models is only possible using perturbation theory and requires the synthesis of many complex
theoretical elements, including self-force (due to the secondary object’s interaction with its
own gravitational field) and spin-curvature force (due to coupling of the secondary object’s
spin with the background spacetime).

This thesis presents two approaches for describing the influence of the spin of a small-
body on its own trajectory and the associated gravitational waveforms. These are: (1)
a frequency-domain formulation of spinning-body motion discussed in Chapters 3 and 4,
and (2) an osculating-orbit scheme presented in Chapter 5. We combined the osculating-
orbit picture of spin-curvature force with the leading-order adiabatic backreaction due to
gravitational radiation to obtain approximate inspirals and waveforms in Chapter 5. The
frequency-domain description of Chapters 3 and 4 was used to compute gravitational wave
fluxes of a spinning-secondary orbit along generic trajectories in Ref. [128]; I outline this
calculation in Chapter 6.

7.1 Precisely computing bound orbits of spinning bodies

In this thesis, I presented a frequency-domain approach for the precise computation of
spinning-body orbits around a rotating black hole. Chapter 3 discusses the methods in-
volved in this framework as well as a detailed study of equatorial and nearly equatorial
orbits, while Chapter 4 investigates completely generic (both inclined and eccentric) orbits
with arbitrarily oriented spin. We characterize the behavior of these orbits and contrast
them with geodesic (non-spinning) trajectories. I employed this framework to calculate cor-
rections to the orbital frequencies Υr and Υθ due to the secondary black hole’s spin. This
analysis enables the influence of secondary spin on observable gravitational wave phases to
be quantified, which is essential for improving the accuracy of EMRI models for LISA.

Employing this framework, we calculated GW fluxes for completely general EMRI orbits
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with a spinning secondary black hole for the first time in Ref. [128]; this analysis is discussed
in Chapter 6. When computing gravitational radiation produced by a spinning body, one
must include both the monopole source term associated with a point body, as well as an
additional dipole term, which is linear in the small body’s spin tensor. In Chapter 6, I
described how gravitational wave fluxes along generic trajectories are computed with both
of these source terms in the wave equation. I also outlined a “shifted geodesic" approximation
scheme which aims to increase the efficiency of the spinning-body GW flux calculation.

One future objective is a systematic investigation of the behaviour of the spin-induced
frequency corrections across the astrophysical parameter space. A catalog detailing these
frequencies and their dependence on orbital and spin parameters will be valuable for the
development of EMRI waveform models. Once such a catalog is established, the “shifted
geodesic” approximation scheme which was discussed in Chapter 6, in combination with
existing architecture for computing gravitational-wave fluxes for non-spinning particles [204],
[213], could be used to develop efficient spinning-body waveform models. Another interesting
direction for future work is to investigate the role of quadratic-order spin terms and the spin-
induced quadrupole in the solutions of the Mathisson–Papapetrou equations and confirm
numerically the existence of a Carter-constant analog at quadrupole-order [93]. Beyond
the inspiral, the influence of the spin of the secondary on the transition from inspiral to a
plunge into the larger black hole remains an open question to explore. This transition phase
constitutes a significant part of the observed signal for intermediate mass-ratio inspirals.

7.2 Rapidly computing inspirals of spinning bodies

In Chapter 5, I introduced a osculating-orbit-based framework which combines orbit-averaged
point-particle gravitational-wave backreaction with the orbital dynamics of spinning bodies.
This framework rapidly generates inspiral worldlines for spinning bodies orbiting Kerr black
holes in the extreme mass-ratio regime. The speed-up in trajectory computation by several
orders of magnitude is achieved through a mathematical technique called a near-identity
transformation (NIT), which is well-suited to the adiabatic evolution of an EMRI system.
I demonstrated that the NIT trajectory can be used to generate a waveform that includes
spinning-secondary effects, with minimal mismatch relative to the waveform computed using
the trajectory generated with osculating geodesic methods.

The gravitational waveforms generated using this framework in Chapter 5 are incom-
plete, but provide a basis to enhance existing models of strong-field waveform generation
using currently-available data. The framework’s modular design allows for straightforward
future inclusion of other important effects due to the astrophysical environment or the cou-
pling of the small black hole to its own gravitational field. Due to the modularity of these
terms, a flexible framework using osculating orbits and near-identity transformations may be
particularly appropriate for combining the impact of many different post-adiabatic effects.
Leveraging the orders-of-magnitude NIT speed-up, we aim to produce comprehensive EMRI
waveforms which encompass all effects necessary for production-quality LISA signal models.

Previous studies have suggested that secondary spin may be challenging to measure in
EMRI waveforms. However, these analyses were based on simpler (circular, equatorial and
spin-aligned) orbital geometries. An interesting future direction would therefore be to assess
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the detectability of secondary spin for generic orbits and spin orientations. Therefore, a
detailed analysis of the measurability of secondary spin effects using the generic waveforms
of Chapter 5 could provide interesting insight into this question. Finally, the astrophysical
environment can leave a detectable imprint on the EMRI waveform: characterizing the
transition where relativistic two-body effects (such as spin-curvature force) dominate over
environmental effects (within a modular, NIT-based framework such as that presented in
Chapter 5) could allow for the development of efficient waveform construction methods.
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Appendix A

Chapter 3 Appendices

A.1 Explicit expression for the radial shift of a spinning
body’s orbit

In this paper, we seek periodic solutions to the linear-in-spin Mathisson-Pappaptrou equa-
tions. As outlined in Sec. 3.5, we characterize the radial coordinate of spinning-body orbits
using the parameterization

r(λ) =
pM

1 + e cos(wr + δχ̂r(wr) + δχSr )
, (A.1)

where

δχ̂r(wr) =
∞∑

n=−∞

δχ̂r,ne
−inwr , (A.2)

δχSr =
∞∑

n=−∞

δχSr,ne
−inwr , (A.3)

and where
wr = (Υ̂r +ΥS

r )λ . (A.4)

The quantities written with hat accents, Υ̂r and δχ̂r, are computed using geodesic quantities
— Υ̂r is the Mino-time radial frequency for the geodesic with semi-latus rectum p and
eccentricity e, and δχ̂r describes the oscillating contribution to the true anomaly for that
geodesic. The quantities δχSr and ΥS

r are both O(S).
Although δχ̂r is computed using geodesic quantities, notice that as implemented in this

formula we include O(S) terms in it via the mean anomaly angle wr. The Fourier coefficients
δχ̂r,n are identical to those for a geodesic orbit, but the angle wr in the exponent of Eq. (A.2)
includes an O(S)-term associated with the impact of the small body’s spin on the orbit, ΥS

r .
This takes into account the fact that the spinning-body orbit’s frequencies are shifted by ΥS

r

from those of the geodesic which shares its radial turning points.
Our goal in this Appendix is examine how the spinning body’s orbit is shifted from the

trajectory of the geodesic which shares the same turning points. To expedite this comparison,
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in this Appendix we write the function δχ̂r with an argument of either wr or ŵr, where
ŵr = Υ̂rλ. When we use δχ̂r(wr), this is the function which parameterizes in part the true
anomaly of a spinning body’s orbit. This function’s form is given explicitly by Eq. (A.2);
it oscillates in phase with the radial motion r(λ) of the spinning body. On the other hand,
δχ̂r(ŵr) is the function that appears in the parameterization (A.6) of the geodesic orbit. It
is identical to the form in Eq. (A.2) except with wr → ŵr. It oscillates in phase with the
radial motion r̂(λ) of the geodesic orbit.

As discussed in Sec. 3.2.2, we can define the difference between the spinning body’s orbit
and that of the geodesic which shares its turning points as follows:

δrS(λ) ≡ r(λ)− r̂(λ) , (A.5)

where r(λ) describes the radial motion of a spinning body’s orbit, and r̂(λ) describes the
radial motion of the geodesic which shares its radial turning points. Note that δrS(λ) =
O(S).

We expect δrS(λ) to contain secularly growing terms due to the difference in frequencies
between the geodesic and the spinning body’s motion. For the parameterization defined in
Eq. (A.1), the explicit expressions for r̂(λ) and δrS(λ) are:

r̂(λ) =
pM

1 + e cos (ŵr + δχ̂r(ŵr))
(A.6)

and

δrS(λ) = pMe
ΥS
r λ
(
1− i

∑
n nδχ̂r,ne

−inŵr
)
+ δχSr

(1 + e cos (ŵr + δχ̂r(ŵr)))
2 sin (ŵr + δχ̂r(ŵr)) , (A.7)

where we have used the fact that ΥS
r = O(S). The secular growth of δrS apparent in Eq.

(A.7) is a somewhat troublesome mathematical artefact of the fact that we are comparing
two integrable systems that have slightly different frequencies. This is troublesome because
we would like to think of the spinning body’s orbit as “close to” the geodesic which shares its
turning points. Though this describes the behavior of δrS for small λ, this quantity evolves
such that it eventually cannot be regarded as a perturbation.

To address this, we compare the two solutions in such a way that we avoid secularly
growing terms, following a Poincare-Lindstedt-type approach [182]. We begin by shifting
the frequency of the geodesic solution so that it matches the frequency of the spinning-body
orbit. Let us define

r̂shift(λ) =
pM

1 + e cos (wr + δχ̂r(wr))
. (A.8)

This is just Eq. (A.6), but with the geodesic mean anomaly ŵr = Υ̂rλ replaced by the mean
anomaly wr = (Υ̂r +ΥS

r )λ. We then define

δrshiftS (λ) = r(λ)− r̂shift(λ) , (A.9)

where again r(λ) describes the radial motion of a spinning body’s orbit. We introduce the
superscript label “shift” to distinguish this quantity from that introduced in Eq. (A.5), noting
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that its frequency is shifted from the geodesic frequency. Using Eqs. (A.1) and (A.8), we
find

δrshiftS (λ) = pMe
δχSr (wr) sin [wr + δχ̂r(wr)]

(1 + e cos [wr + δχ̂r(wr)])
2 . (A.10)

The quantity δrshiftS (λ) does not grow secularly, but is instead periodic at the radial period
Λr = 2π/

(
Υ̂r +ΥS

r

)
. We can use Fourier expansions quite naturally to describe δrshiftS (λ)

which is advantageous for the frequency-domain approach we use in this paper.

A.2 Comparison with Saijo et al., 1998: Aligned spin,
equatorial orbits

Considerable work has been done previously on equatorial orbits with aligned spin. Almost
all such work uses the equations of motion describing a spinning body confined to the equa-
torial plane that were derived by Saijo et al. [67]. Saijo et al. use the conserved quantities
ES, LS, S2 = SαSα and −µ2 = pαpα in order to derive these equations; their full derivation
is in Ref. [67] (see also Refs. [68] and [66] for similar related discussion). We present the
equations for Kerr spacetime below in Eqs. (A.11) – (A.15).

The radial component of Eq. (2.47), taking the limit of a body confined to an equatorial
orbit with aligned spin, can be written

ΣsΛs
dr

dτ
= ±

√
Rs , (A.11)

where

Rs = P 2
s −∆

(
Σ2
s

r2
+
[
LSz − (a+ s∥µ)E

S
]2)

, (A.12)

Ps =

[
(r2 + a2) + as∥µ

(
1 +

M

r

)]
ES −

(
a+

s∥µM

r

)
LSz , (A.13)

Σs = r2

(
1−

s2∥µ
2M

r3

)
, (A.14)

Λs = 1−
3s2∥µ

2Mr
[
LSz − (a+ s∥µ)E

S
]2

Σ3
s

. (A.15)

We begin our discussion with the Schwarzschild limit, for which we find particularly compact
and convenient expressions.

A.2.1 Schwarzschild spacetime

Linearizing in the small body’s spin, Eq. (A.11) reduces to a simple form, as presented in
Appendix B.3 of Ref. [73]. We reproduce the result here in our notation, noting that our
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parameter s∥ is dimensionless, and so differs from the correspond spin parameter used in
Ref. [73] by a factor of µ:(

dr

dτ

)2

= (ES)2 −
(
V Schw
eff

)2
+ 2s∥µ

ÊL̂z
r2

(
1− 3M

r

)
+O(S2) , (A.16)

where V Schw
eff is the usual effective potential for the Schwarzschild metric, but using the

angular momentum for a spinning-body orbit:(
V Schw
eff

)2
=

(
1− 2M

r

)(
1 +

(LSz )
2

r2

)
. (A.17)

Equation (A.16) is Eq. (B14) of Ref. [73], adapted to our notation and linearizing in spin.

Circular equatorial orbits

To find the energy and angular momentum corresponding for a body in circular orbit with its
spin aligned with the orbit, begin by requiring dr/dτ = 0. This yields a quadratic equation
for ES whose solution to linear order in s is

(ES)2 = (V Schw
eff )− s∥µ

L̂z
r2

(
1− 3M

r

)
≡ V Schw,spin

eff . (A.18)

Further requiring ∂V Schw,spin
eff /∂r = 0 yields the solutions

ES =
r − 2M√
r(r − 3M)

−
s∥µ

2r

(
M

r − 3M

)3/2

, (A.19)

LSz =
r
√
M√

r − 3M
+
s∥µ

2

(r − 2M)(2r − 9M)√
r(r − 3M)3/2

. (A.20)

These expressions match exactly with Eq. (3.37) and (3.38) in the limit a = 0; these expres-
sions can also be found1 in Eq. (B17) and (B18) of Ref. [73]. Similarly, the expressions in
Eqs. (54) and (55) of Ref. [68] reduce to (A.19) in the first order in spin limit.

Eccentric equatorial orbits

Next we consider eccentric equatorial orbits. We begin again with Eq. (A.16), but now
multiply by Σ2 = r4, using d/dλ = Σ d/dτ to change into an expression for (dr/dλ)2:(

dr

dλ

)2

= r4(ES)2 − r (r − 2M)
(
r2 + (LSz )

2
)
+ 2s∥µrÊL̂z (r − 3M) +O(S2)

≡ RSchw
s (r) . (A.21)

1Note that Eq. (B18) in Ref. [73] contains a typographical error in the denominator; the r − 2m2 should
be r − 3m2.
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With this formulation of Eq. (A.16), we can straightforwardly compute ΥS
r , δES and δLS

and compare with results we obtain elsewhere in this work.
We begin by substituting ES = Ê + δES, LSz = L̂z + δLSz , with δES and δLSz both O(S),

into Eq. (A.21) and expand to first order in spin, yielding

RSchw
s (r) = RSchw(r) + δRSchw

s (r) +O(S2) , (A.22)

where

RSchw(r) = r4Ê − r(r − 2M)(r2 + L̂z) , (A.23)

δRSchw
s (r) = 2r

[
s∥µ(r − 3M)ÊL̂z + r3ÊδES − (r − 2M)L̂zδL

S
z

]
. (A.24)

Using dr/dλ = 0 at the turning points r = pM/(1± e) yields the well-known results

Ê =

√
(p− 2)2 − 4e2

p(p− 3− e2)
, L̂z =

pM√
p− 3− e2

(A.25)

describing these orbit integrals for Schwarzschild geodesics. Requiring that r = pM/(1± e)
remaining turning points for the spinning bodies orbit, we require δRSchw

s = 0 at these points
as well. This yields

δES = −
s∥µ

M

(1− e2)2

2p(p− 3− e2)3/2
, (A.26)

δLSz = s∥µ
(2p− 9− 3e2)

√
(p− 2)2 − 4e2

2p1/2(p− 3− e2)3/2
. (A.27)

These expressions are identical to those in Eqs. (46) of Ref. [71] with ra = pM/(1− e) and
rp = pM/(1 + e).

Next, we use Eq. (3) in Ref. [139] to calculate Λr, but using RSchw
s (r) as defined in Eq.

(A.21):

Λr = 2

∫ rmax

rmin

dr√
RSchw
s (r)

, (A.28)

with

rmin =
pM

1 + e
, rmax =

pM

1− e
. (A.29)

Using the parameterization of radial motion defined by Eq. (3.72), we turn equation (A.28)
into an integral over χr:

Λr = 2

∫ π

0

1√
RSchw
s (χr)

dr

dχr
dχr , (A.30)

where

r =
pM

1 + e cosχr
,

dr

dχr
=
peM sinχr
1 + e cosχr

. (A.31)
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Noting that Λr = Λ̂r + ΛSr , we break this integral into geodesic and O(S) pieces:

Λ̂r = 2

∫ π

0

1√
RSchw(χr)

dr

dχr
dχr , (A.32)

ΛSr = −
∫ π

0

δRSchw
s (χr)

RSchw(χr)3/2
dr

dχr
dχr . (A.33)

The definitions Υr = 2π/Λr and Υr = Υ̂r +ΥS
r yielding

Υ̂r =
2π

Λ̂r
, ΥS

r = −2πΛSr

Λ̂2
r

. (A.34)

This allows us to at last evaluate ΥS
r as a simple quadrature:

ΥS
r =

2π

Λ̂2
r

∫ π

0

δRSchw
s (r)

RSchw(r)3/2
dr

dχr
dχr , (A.35)

which we write explicitly as

ΥS
r = −

2πs∥µ

Λ̂2
rM

2

∫ π

0

(e2 − 3− 2e cosχr)
√

(p− 2)2 − 4e2

p
√
p− 3− e2(p− 6− 2e cosχr)3/2

dχr . (A.36)

Equations (A.26), (A.27) and (A.36) expanded to second-order in eccentricity, yield expres-
sions that match Eqs. (3.132), (3.133) and (3.128).

A.2.2 Kerr spacetime

We now consider Eq. (A.11) to leading order in spin, but for general Kerr parameter a:(
dr

dλ

)2

= [ES(r2 + a2)− aLSz ]
2 −∆[r2 + (LSz − aES)2]

+ 2as∥µM

[
L̂2
z − 2aÊL̂z + a2Ê2

]
r

+ 2s∥µrÊ
[
L̂z(r − 3M) + 3MaÊ

]
+O(S2)

≡ RKerr
s (r) . (A.37)

Circular equatorial orbits

To compute the energy and axial angular momentum of a spinning body in an aligned circular
Kerr orbit, we need to find ES and LSz such that RKerr

s (r) = 0 and ∂RKerr
s (r)/∂r = 0. This

gives expressions that match Eqs. (3.37) and (3.38). Hackmann et al. also have expressions
for ES and LSz that are exact in spin for general a; compare Eqs. (48) and (49) of Ref. [68].
Piovano et al. likewise provide ES and LSz in slightly different notation; compare Eqs. (59)
and (60) of Ref. [217].
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Eccentric equatorial orbits

As in our Schwarzschild analysis, we insert ES = Ê + δES, LSz = L̂z + δLSz into Eq. (A.37)
and expand to first order in spin, yielding

RKerr
s (r) = RKerr(r) + δRKerr

s (r) +O(S2) , (A.38)

where

RKerr(r) = [Ê(r2 + a2)− aL̂z]
2 −∆[r2 + (L̂z − aÊ)2] , (A.39)

and where

δRKerr
s = 2

{
as∥µM

[
L̂2
z − 2aÊL̂z + a2Ê2

]
r

+ s∥µrÊ
[
L̂z(r − 3M) + 3aMÊ

]
+ ar

[
2M

(
ÊδLS + L̂zδE

S
)
− aÊδES(r + 2M)

]
+ r

[
L̂zδL

S(r − 2M)− ÊδESr3
]}

. (A.40)

Note that RKerr(r) is given by Eq. (2.20) with Q̂ → 0. Expressions for Ê and L̂z which are
exact in eccentricity are given in Eqs. (A.1) and (A.2) of Ref. [144].

As in the Schwarzschild analysis, we solve for δES and δLSz by requiring δRKerr
s = 0 at

r = pM/(1±e). This yields closed-form expressions for δES(p, e) and δLSz (p, e) analogous to
Eqs. (A.26) and (A.27) which apply for general a, but are quite lengthy and cumbersome. We
refer the reader to Eqs. (81) and (83) of Ref. [71] for expressions for ES and LSz to first order
in small body spin derived by Mukherjee et al., as well as to Eqs. (38) and (39) of Ref. [124]
for exact-in-S expressions for ES and LSz derived by Skoupý et al. Both Skoupý et al. and
Mukherjee et al. write their expressions in terms of ra = pM/(1− e) and rp = pM/(1 + e).
To first order in e, the results for δES and δLSz reduce to Eqs. (3.37) – (3.38), but with
v =

√
1/p.

We evaluate ΥS
r using a formulation analogous to what was done in Sec. A.2.1, replacing

the Schwarzschild function RSchw
s (r) with RKerr

s (r):

ΥS
r =

2π

Λ̂2
r

∫ π

0

δRKerr
s (r)

RKerr(r)3/2
dr

dχr
dχr . (A.41)

Expanded to first order in eccentricity, this reproduces Eq. (3.91).

A.3 Explicit frequency-domain expressions

A.3.1 Coefficient functions

In Sec. 3.5.1, we examine spinning-body motion in the equatorial plane using a frequency-
domain expansion. We linearize the radial component of the first Matthisson-Papapetrou
equation (2.47) in small-body spin and re-express it in terms of quantities which are unknown
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(i.e., δχSr , ΥS
r , uSt,0 and uSϕ,0) and Fourier coefficients of functions along geodesics (i.e., Fr,

Gr, Hr, I1r, I2, I3 and J ). This yields Eq. (3.148).
We also linearize the constraint uαuα = −1 in small-body spin, writing down the corre-

sponding equation (3.149) in terms of the same set of unknowns as well as coefficients Kr,
Mr, N1r, N2, N3 and P that likewise arise from known geodesics. We follow a similar pro-
cedure in Sec. 3.5.2 to compute the nearly equatorial motion of a precessing spinning body.
In this case, we also linearize the θ-component of Eq. (2.47) in small-body spin, obtaining
Eq. (3.157). In the nearly equatorial limit, the only non-zero coefficients in this equation are
Qϑ, Tϑ and V .

In this Appendix, we provide explicit expressions for the Schwarzschild case of the various
functions which we then expand in the Fourier domain. These expressions for the functions
appearing in Eq. (3.148) are given by:

Fr(λ) =
ep sin χ̂r

(1 + e cos χ̂r)2
, Gr(λ) =

ep
(
δχ̂′

r(λ) + Υ̂r

)
(e(cos(2χ̂r) + 3)− 2(p− 2) cos χ̂r)

(1 + e cos χ̂r)2(2e cos χ̂r − p+ 2)
,

(A.42)

Hr(λ) = − ep

4(e cos χ̂r + 1)3(p− 2− 2e cos χ̂r)2

{
−2 sin χ̂r

[
2L̂2

z

(
e2(p− 3)− (p− 2)2

)
+ Υ̂2

r

(
e2(15− 6p)− 2(p− 2)2

)
+ 4Ê2(p− 3)p2

]
+ e

[
2 sin(2χ̂r)

(
L̂2
z

(
2e2 + p2 − 8p+ 12

)
− Υ̂2

r

(
7e2 + (p− 2)p

)
+ 6Ê2p2

)
+ e

(
e
(
2L̂2

z − Υ̂2
r

)
sin(4χ̂r) + sin(3χ̂r)

(
2(2p− 3)Υ̂2

r − 4L̂2
z(p− 3)

))]
− 2δχ̂′

r(λ) sin χ̂r

(
δχ̂′

r(λ) + 2Υ̂r

)[
e2(e cos(3χ̂r) + (6− 4p) cos(2χ̂r))

+ e
(
15e2 + 2(p− 2)p

)
cos χ̂r − 2

(
e2(4p− 9) + (p− 2)2

)]
+ 2δχ̂′′

r(λ)(e(cos(2χ̂r)− 3)− 2 cos χ̂r)(p− 2− 2e cos χ̂r)
2

}
, (A.43)

I1r(λ) =
ep (Ξ2(λ) sin χ̂r)

(e cos χ̂r + 1)2
+
ep (Ξ1(λ) + 1)

(
δχ̂′

r(λ) + Υ̂r

)
(e(cos(2χ̂r) + 3)− 2(p− 2) cos χ̂r)

(e cos χ̂r + 1)2(2e cos χ̂r − p+ 2)
,

(A.44)

I2(λ) = − 2Êp3

(e cos χ̂r + 1)2(p− 2− 2e cos χ̂r)
, I3(λ) = L̂z

(
4− 2p

e cos χ̂r + 1

)
, (A.45)
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J (λ) =
3ÊL̂zSθ(1 + e cos χ̂r)

p
− 2Êp3δuSt (λ)

(1 + e cos χ̂r)2(p− 2− 2e cos χ̂r)

−
2L̂zδu

S
ϕ(λ)(p− 2− 2e cos χ̂r)

(1 + e cos χ̂r)
, (A.46)

where we have defined

Ξ1(λ) = −i
nmax∑

n=−nmax

nδχ̂r,ne
−inΥ̂rλ , and Ξ2(λ) = −2Υ̂r

nmax∑
n=−nmax

n2δχ̂r,ne
−inΥ̂rλ . (A.47)

Here Ξ1(λ) and Ξ2(λ) are functions that depend on the Fourier coefficients of geodesic radial
true anomaly δχ̂r. We also write down the expressions for the functions which appear in Eq.
(3.149) explicitly, again limiting ourselves here to the Schwarzschild limit:

Kr(λ) =
2e2 sin2 χ̂r

(
δχ̂′

r(λ) + Υ̂r

)
p(p− 2− 2e cos χ̂r)

, (A.48)

Mr(λ) =
e

2p2(p− 2− 2e cos χ̂r)2

{
sin χ̂r

(
4L̂2

z

(
e2(p− 3)− (p− 2)2

)
− 5e2pΥ̂2

r + 4Ê2p3
)

+ e

[
e
(
sin(3χ̂r)

(
4L̂2

z(p− 3)− pΥ̂2
r

)
− 2eL̂2

z sin(4χ̂r)
)

− 2 sin(2χ̂r)
(
L̂2
z

(
2e2 + p2 − 8p+ 12

)
− (p− 2)pΥ̂2

r

)]
− 2epδχ̂′

r(λ) sin χ̂r

(
δχ̂′

r(λ) + 2Υ̂r

)
(e(cos(2χ̂r) + 3)− 2(p− 2) cos χ̂r)

}
, (A.49)

N1r(λ) =
2e2(Ξ1(λ) + 1)

(
δχ̂′

r(λ) + Υ̂r

)
sin2 χ̂r

p(p− 2− 2e cos χ̂r)
, N2(λ) =

2pÊ

p− 2− 2e cos χ̂r
, (A.50)

N3(λ) =
2L̂z(1 + e cos χ̂r)

2

p2
, and P(λ) =

2pÊδuSt (λ)

p− 2− 2e cos χ̂r
+

2L̂zδu
S
ϕ(λ) (1 + e cos χ̂r)

2

p2
.

(A.51)

In the nearly equatorial limit, the only non-zero functions which appear in Eq. (3.157) are

Qϑ(λ) = 1 , Tϑ(λ) = L̂2
z , (A.52)

V(λ) =
3L̂z(1 + e cos χ̂r)

(
SrÊ(p− 2− 2e cos χ̂r) + eSt(Υ̂r + δχ̂′

r(λ)) sin χ̂r

)
p(p− 2− 2e cos χ̂r)

. (A.53)

In the Supplemental Material accompanying this paper, we include a Mathematica notebook
which computes these expressions for general Kerr (i.e., for a ̸= 0) [181].

A.3.2 Matrix System

As discussed in Sec. 3.5.1, our procedure to solve for the spinning body’s orbit in the fre-
quency domain involves writing the functions Fr, Gr, Hr, I1r, I2, I3 J , Kr, Mr, N1r, N2,
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N3 and P as Fourier expansions of the form

f(λ) =
nmax∑

n=−nmax

fne
−inΥ̂rλ . (A.54)

We similarly express the unknown function δχSr (λ) as a Fourier expansion,

δχSr (λ) =
nmax∑

n=−nmax

δχSr,ne
−inΥ̂rλ , (A.55)

aiming to solve for its Fourier coefficients δχSr,n.
To do so, we insert expansions (A.54) and (A.55) into Eqs. (3.148) and (3.149). This

yields a system of linear equations in the frequency-domain which allows us to solve for the
unknown variables δχSr , ΥS

r , uSϕ,0 and uSt,0. This system of equations can be written

M · v + c = 0 . (A.56)

To get a sense of the character of this system of equations, for the choice nmax = 1, the
matrix M and vectors v and c are given explicitly by

M =



−Fr,0Υ̂
2
r − iGr,0Υ̂r −Hr,0 0 I1r,1 I2,1 I3,1

−Fr,−1Υ̂
2
r − iGr,−1Υ̂r −Hr,−1 −Fr,1Υ̂

2
r + iGr,1Υ̂r +Hr,1 I1r,0 I2,0 I3,0

0 −Fr,0Υ̂
2
r + iGr,0Υ̂r +Hr,0 I1r,−1 I2,−1 I3,−1

Mr,0 − iKr,0Υ̂r 0 N1r,1 N2,1 N3,1

Mr,−1 − iKr,−1Υ̂r Mr,1 + iKr,1Υ̂r N1r,0 N2,0 N3,0

0 Mr,0 + iKr,0Υ̂r N1r,−1 N2,−1 N3,−1


,

(A.57)

v =


δχSr,1
δχSr,−1

ΥS
r

uSt,0
uSϕ,0

 , and c =


J1

J0

J−1

P1

P0

P−1

 . (A.58)

Note that M is not a square matrix; the system is slightly overconstrained. We use the
PseudoInverse Mathematica function to find the values of δχSr,1, δχSr,−1, ΥS

r , uSt,0, uSϕ,0 that
satisfy the system of the equations to within a certain tolerance. (We strongly emphasize
that nmax = 1 is too small to accurate describe spinning-body orbits in almost all cases; this
is merely used to illustrate the character of this system of linear equations.)

In the case of a nearly equatorial orbit, the polar and radial equations decouple such
that we can solve Eq. (A.56) above independently of the equation for the θ-motion. The
θ-equation (3.157) has only three non-zero coefficients in the nearly equatorial limit, Eqs.
(A.52) – (A.53). We insert the values for Qϑ and Tϑ and write V as a Fourier expansion of
the form

f(λ) =
1∑

j=−1

nmax∑
n=−nmax

fjne
−ijΥsλe−inΥ̂rλ . (A.59)
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We also write δϑS as a Fourier expansion,

δϑS(λ) =
1∑

j=−1

nmax∑
n=−nmax

δϑS,jne
−ijΥsλe−inΥ̂rλ . (A.60)

We take nmax = 1 again, obtaining the following solution for Fourier coefficients of δϑS:



δϑS,−1,−1

δϑS,0,−1

δϑS,1,−1

δϑS,−1,0

δϑS,0,0
δϑS,1,0
δϑS,−1,1

δϑS,0,1
δϑS,1,1


= −



V−1,−1

L̂2
z−(Υ̂r+Υs)2

V0,−1

L̂2
z−Υ̂2

r
V1,−1

L̂2
z−(Υ̂r−Υs)2

V−1,0

L̂2
z−Υ2

s

0
V1,0

L̂2
z−Υ2

s
V−1,1

L̂2
z−(Υ̂r−Υs)2

V0,1

L̂2
z−Υ̂2

r
V1,1

L̂2
z−(Υ̂r+Υs)2



. (A.61)
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Appendix B

Chapter 4 Appendices

B.1 Reference geodesics

There are different mappings that can be constructed from the triplet of constants (p, e, I)
defining a geodesic (i.e., the “reference" geodesic) to a particular spinning-body orbit. The
choice of reference geodesic we use in this article is discussed in Sec. 4.3.1. In brief, we
find spinning-body orbits for which the “purely radial" and “purely polar" components of the
motion have the same turning points as the reference geodesic; see Sec. 4.3.1 for mathematical
details. However, there are other physically equivalent mappings which can be used instead
and may be particularly useful in certain circumstances. We outline three approaches that
have appeared in the literature below.

B.1.1 Reference geodesic has the same turning points as the spinning-
body orbit

The definition of reference geodesic we use in this work is most similar to that used by
Mukherjee et al. in Ref. [71] and Skoupý et al. in Ref. [124]. In Refs. [71] and [124], they study
eccentric equatorial orbits where the spin is aligned, and in this case the reference geodesic
has the same radial turning points as the spinning-body orbit under consideration. In our
approach, we generalize this for generic orbital configurations and misaligned small-body
spin: The purely radial and purely polar parts of the spinning-body motion are constrained
to have the same libration range as the corresponding reference geodesic. Complementary to
this, there are additional corrections to the libration range due to motion that is not purely
radial, or purely polar (see Sec. 4.3.1). For example, if the reference geodesic is equatorial, the
corresponding spinning-body orbit is not equatorial except in the aligned spin case. Instead,
it lies O(S) out of the equatorial plane. An example of a reference geodesic with the same
radial turning points as the corresponding spinning-body orbit is shown in Fig. B.1(a).
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B.1.2 Reference geodesic has the same initial conditions as the
spinning-body orbit

In the analyses by Bini et al., the reference geodesic is defined as the geodesic that has
the same initial conditions as the corresponding spinning-body orbit [64], [65]. Work by
Mashhoon et al. takes a similar approach [63]. For example, in Ref. [64], analytic expressions
for a spinning-body orbit with the same initial position and 4-velocity as a circular equatorial
reference geodesic is obtained; this calculation can represent a scenario where spin-curvature
force is “turned on" at a certain point along a geodesic orbit and subsequent spinning-body
motion is computed. An example of a reference geodesic with the same initial conditions as
the corresponding spinning-body orbit is presented in Fig. B.1(b).

B.1.3 Reference geodesic has the same constants of motion as the
spinning-body orbit

In the analysis by Witzany in Ref. [84], the “fiducial" geodesic is taken to be the geodesic
with the same constants of motion as the spinning-body orbit, modulo a −2as∥sgn(Lz−aE)
correction to the definition of the Carter constant K. The inclusion of the −2as∥sgn(Lz −
aE) term in the choice of fiducial mapping ensures that the formulae for the turning point
corrections presented in Eq. (48) of Ref. [84] are finite for motion in the equatorial plane.
The turning point spin-corrections corresponding to those constants of motion are then
computed and used to parameterize the orbital motion. An example of a reference geodesic
with the same constants of motion as the corresponding spinning-body orbit is presented
in Fig. B.1(c). See App. B.2 for a detailed discussion of the approach in Ref. [84] and an
explicit comparison with our formulation for the case of equatorial, aligned-spin orbits in a
Schwarzschild background.

B.2 Comparison with Witzany, 2019

In Ref. [84], Witzany outlines an approach for obtaining the equations of motion for spinning
bodies to first-order in spin using the Hamilton-Jacobi equation. This approach yields the
equations of motion Eqs. 46(a) – (c) in Ref. [84] which we reproduce here:

dr

dλ
= ±∆

√
w′2
r − e0reκC;reκB s̃

CD, (B.1)

dθ

dλ
= ±

√
w′2
θ − e0θeκC;θeκB s̃

CD, (B.2)

dψp
dλ

=
√
K̂

(
(r2 + a2)Ê − aL̂z

K̂ + r2
+ a

L̂z − a(1− z2)Ê

K̂ − a2z2

)
, (B.3)

where the tetrad eκC is the parallel transported tetrad given by Eqs. (2.55) – (2.56) in Sec.
2.2.4. Here B, C and D are labels for the tetrad legs. Note that ψp in Eq. (B.3) is denoted ϕ
in Ref. [84]; Eq. (B.3) is identical to Eq. (2.57). The expressions for s̃CD are underneath Eq.
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Figure B.1: Example of radial motion for an aligned, spinning body in an equatorial orbit
around a non-rotating black hole (a = 0). All panels show r versus λ for a spinning body
(blue) and corresponding reference geodesic (black, dashed) orbit. Radial turning points,
corresponding to p = 8.13721, e = 0.525726, of the spinning body’s orbit are shown by the
solid red lines. Different choices of reference geodesic for the same spinning-body orbit are
shown in (a), (b) and (c). Top. (a) The spinning-body orbit and reference geodesic have the
same turning points. Middle. (b) The spinning-body orbit and reference geodesic have the
same initial conditions. Bottom. (c) The spinning-body orbit and reference geodesic have
the same constants of motion. In making these plots, we have used s∥ = s and µs/M = 0.05.
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(33) in Ref. [84]. From Eqs. (B.1) – (B.3), we can find the turning points of the equations
of motion using the condition that the 4-velocities vanish:

(w′
y)

2 − e0ye
κ
C;yeDκs

CD = 0, (B.4)

where y = r, θ. Using condition (B.4), Witzany derives analytical expressions for the
corrections to the turning points due to the small body’s spin. These expressions can be
found in Eqs. 48(a) – (f) of Ref. [84] and apply for fully generic orbits in the first order in S
limit.

B.2.1 Description of the two approaches

The framework used in Ref. [84] is an alternative method for calculating spinning-body
orbital frequencies Υr and Υθ. In an approach analogous to that used by Carter in Ref.
[145], Witzany uses the Hamilton-Jacobi equation to obtain expressions for dr/dλ and dθ/dλ,
yielding Eqs. (B.1) – (B.3). The Mino-time frequencies Υr and Υθ are then calculated by
integrating these velocities with respect to angle-type coordinates; this procedure is in turn
analogous to that used in Refs. [135], [139] to compute geodesic Mino-time frequencies. The
approach we use in this article is to solve the Mathisson-Papapetrou equations (2.47) – (2.48)
directly in the frequency-domain. We introduce a frequency correction explicitly into our
parameterization and solve for it as one of the unknowns in a linear-algebraic system.

The orbital motion of the spinning body is parameterized differently in the two descrip-
tions. In Ref. [84], analytic expressions for the corrections to the turning points are obtained
using the aforementioned Eqs. (B.1) – (B.2). The spinning body’s motion is then parame-
terized in terms of these analytic expressions for the turning points. In our analysis, we do
not have explicit expressions for turning point corrections built into our parameterization.
Instead, we divide the corrections to the motion of the spinning body into two categories: We
include corrections which do not alter the libration range relative to the reference geodesic
(δχSr , δχSθ ), as well as corrections which do modify the libration range (δrS, δzS).

In summary, in Ref. [84], the constants of motion (E,Lz, K) associated with a certain
geodesic (called the “fiducial geodesic", as discussed in App. B.1.3) are selected, and the
turning point corrections for the corresponding spinning-body orbit with the same constants
of motion are computed (modulo a −2as∥sgn(Lz − aE) adjustment to K), whereupon the
frequency corrections can be obtained. Contrastingly, in our framework, we begin by choosing
the turning points (p, e, I) for a particular reference geodesic. We then compute the spinning-
body orbit which has purely radial and purely polar motion constrained to match the turning
points of the reference geodesic. The concomitant frequency corrections and constants of
motion for that orbit can then be computed. We show below that our method is consistent
with Ref. [84] for orbits in the equatorial plane with aligned small body spin1; we leave a
detailed comparison of the frequency corrections for fully generic orbits for future work.

1As mentioned in Ref. [84], Witzany conducted a similar consistency check using the effective potential
given by Tod et al. [66] and Hackmann et al. [68].
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B.2.2 Numerical comparison of the two approaches

We compare between the method described in this paper and that presented in Ref. [84] by
evaluating the expressions for the radial turning point corrections. For equatorial orbits of
a small body with aligned spin and a = 0, Eqs. 48(a) – (f) in Ref. [84] become:

G = LSzE
Sr2 , I =

d

dr

(
(ESr2)2

∆
− r2

)
, (B.5)

e0yeCκ;ye
κ
D = 2

ESLSz
[
r(LSz )

2 −Mr2 − 3M(LSz )
2
]

r [(LSz )
2 + r2] (r − 2M)2

, (B.6)

δr = −sµ
2G +∆

[
(LSz )

2 + r2
]
e0yeCκ;ye

κ
D

I [(LSz )
2 + r2]

∣∣∣∣∣
rgt

, (B.7)

where δr is the radial turning point correction evaluated at the fiducial geodesic turning
points, which are denoted rgt. This reduces to a simple expression for δr:

δr = sµ
ESLSz (r − 2M)(r − 3M)

r [(r − 2M)2 − r(ES)2(r − 3M)]

∣∣∣∣
r=rgt

. (B.8)

Note that ES and LSz here are the energy and angular momentum of the spinning-body
orbit. As discussed in App. B.1.3, the fiducial geodesic is the geodesic orbit that has the
same energy and angular momentum as the spinning-body orbit we are considering, i.e.,
Êfid = ES and L̂z,fid = LSz . Eq. (B.8) is evaluated at the turning points of the fiducial
geodesic, rgt1 and rgt2, and gives the correction to these turning points δr(rgt1) and δr(rgt2)
due to the spin of the small body.

Procedure for computing turning points

As discussed in Appendix B.1, the approach in Ref. [84] is to consider a fiducial geodesic
which has the same constants of motion as the spinning-body orbit; this fiducial geodesic
has turning points given by rgt1 and rgt2. The turning point corrections are then computed
using Eqs. 48(a) – (f) in Ref. [84].

1. We begin with the constants of motion for a spinning-body orbit with semi-latus rectum
p and eccentricity e. The energy ES and angular momentum LSz corresponding to this
choice of p and e are given by

ES = Ê + δES , LSz = L̂z + δLSz , (B.9)

where expressions for Ê, L̂z, δES and δLSz are given by Eqs. (B15), (B16) and (B17)
of Ref. [218]. We reproduce these equations below:

Ê =

√
(p− 2)2 − 4e2

p(p− 3− e2)
, L̂z =

pM√
p− 3− e2

, (B.10)

δES = −sµ
M

(1− e2)2

2p(p− 3− e2)3/2
, (B.11)

δLSz = sµ
(2p− 9− 3e2)

√
(p− 2)2 − 4e2

2p1/2(p− 3− e2)3/2
. (B.12)
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2. By using Êfid = ES and L̂z,fid = LSz and inverting equations (B.10), we can find ex-
pressions for the semi-latus rectum pfid and eccentricity efid of a geodesic orbit, given
ES and LSz . Notice that these are not that same as semi-latus rectum and eccentricity
of the spinning-body orbit — they are the semi-latus rectum and eccentricity corre-
sponding to a geodesic orbit that has the same energy ES and angular momentum LSz
as the spinning-body orbit we are considering.

3. Then, the fiducial turning points can be found, using:

rgt1 =
pfidM

1− efid
, rgt2 =

pfidM

1 + efid
. (B.13)

4. Next, we evaluate Eq. (B.8) to find δr at each of these fiducial turning points: δr(rgt1)
is the correction to the fiducial apastron and δr(rgt2) is the correction to the fiducial
periastron. We add these corrections to find the spin-correction turning points:

rst1 = rgt1 + δr(rgt1) , rst2 = rgt2 + δr(rgt2) . (B.14)

5. We can convert these turning points rst1 and rst1 into semi-latus rectum p and eccen-
tricty e of the spinning-body orbit using:

pM =
2rst1rst2
rst1 + rst2

, e =
rst1 − rst2
rst1 + rst2

. (B.15)

Numerical example

We follow the procedure outlined in Sec. B.2.2 with a specific numerical example. For this
example case, we already know the turning points of the radial motion and we verify that
the turning points computed using Eq. (B.8) are consistent. Consider a spinning-body orbit
with small-body spin µs = 0.001M , semi-latus rectum pM = 7M and eccentricity e = 0.4.

1. From Eq. (B.9), this orbit has ES = 0.951965 and LSz = 3.57273M .

2. Using Êfid = ES and L̂z,fid = LSz and inverting equations (B.10), we find that pfid =
7.05356 and efid = 0.394709.

3. Next, we find the fiducial turning points rgt1 and rgt2 using Eqs. (B.13); they are
rgt1 = 11.6532M and rgt1 = 5.05737M .

4. Then, we find that δr(rgt1) = 0.0135323M and δr(rgt2) = −0.0517264M . The spinning-
body turning points are rst1 = 11.6667M and rst2 = 5.00564M .

5. The spinning-body p and e are found using Eq. (B.15): p = 7.00553 and e = 0.399527.
We have recovered the expected p and e for this orbit.
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Appendix C

Chapter 5 Appendices

C.1 Spinning-body parameterizations

We have freedom in how we parameterize the motion of a spinning body, in the sense that
we can construct various mappings between the triplet of constants (p, e, xI) which defines
a “reference" geodesic, to a specific spinning-body orbit. In Appendix A of [172], three such
mappings are discussed: (1) the turning points of the reference geodesic match those of the
spinning-body orbit; (2) the initial conditions of the reference geodesic match those of the
spinning-body orbit; and (3) the constants of motion (Ê, L̂z, K̂) of the reference geodesic
match the constants of the spinning-body orbit. In this section, we will primarily discuss
the parameterizations (1) and (2) and how to map between them.

References [171], [172] use parameterization (1): the turning points of the spinning-body
orbit match those of a chosen reference geodesic defined by (p, e, xI). Those references show
how to compute the frequency corrections ΥS

r (p, e, xI), ΥS
θ (p, e, xI), and ΥS

ϕ(p, e, xI) due to
the small body’s spin, relative to the frequencies of a reference geodesic with the same turning
points. Because of the additional harmonic complexity of spinning-body orbits relative to
geodesics, the turning points of the non-spinning and spinning body orbits are matched in an
orbit-averaged sense: the radial turning points of the “purely radial” piece of the spinning-
body orbit are matched with the radial turning points of the geodesic, and likewise for the
“purely polar” motion. “Purely radial” means the contributions to the orbital motion that
contains only harmonics of Υr or Υ̂r; “purely polar” means contributions that contain only
harmonics of Υθ or Υ̂θ. The equatorial spinning-body inspirals computed in [126] also use
this parameterization.

By construction, the perturbed motion found by solving the OG equations uses param-
eterization (2): the initial orbit coordinates and initial components of the four-velocity are
the same for the spinning and non-spinning orbits. We use this parameterization in this
work, which was also used in [101]. Parameterization (3), choosing the constants of motion
(E,Lz, K) of a spinning-body orbit to match those of a reference geodesic, is used in [84],
[219].

Because different parameterizations are used by different analyses, it is important to
consider the mapping between the different choices, and to show that they describe the same
orbits. We begin by choosing a triplet (pTP , eTP , xTP ) that defines a geodesic with radial
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turning points r1 = pTP/(1 − eTP ) and r2 = pTP/(1 + eTP ), and with polar turning point
z1 =

√
1− x2TP . Using the approach of [171], [172], we first compute the spinning-body

trajectory that has the same turning points (on average) as this geodesic. We next want
to find the same spinning-body orbit via the “matched initial conditions” parameterization,
using the OG method presented in this paper.

To do this, we select initial values of (r, z) by choosing one of the radial and polar
turning points of the spinning-body orbit we evaluated in the matched turning point pa-
rameterization. We label these choices rTP and zTP . We use the subscript “IC" to denote
the triplet (pIC , eIC , xIC) associated with a geodesic which has the same initial conditions
as the spinning-body orbit under consideration. The geodesic orbit defined by rG and zG
needs to initially have the same values of r and z, so we equate rG(pIC , eIC , xIC , qr0) and
zG(pIC , eIC , xIC , qz0) as given in Eqs. (16)–(17) of Ref. [144]. For convenience, we choose
the spinning-body orbit to be at a turning point initially. The initial geodesic velocities
must match, so we solve R[r(pIC , eIC , xIC , qr0)] = 0 and Θ[z(pIC , eIC , xIC , qz0) = 0 where the
functions R(r) and Θ(θ) are given by equations (2.20) and (2.21).

We now have four equations and five unknowns, (pIC , eIC , xIC , qr0, qz0). To close this
system, we find the initial value of (dϕ/dλ)TP of a spinning-body in the fixed turning point
parameterization and equate it to dϕ/dλ for a geodesic using Φ[r(pIC , eIC , xIC , qr0, qz0)],
given in Eq. (2.22). The final set of equations we solve is

rG(pIC , eIC , xIC , qr0) = rTP , (C.1)
zG(pIC , eIC , xIC , qz0) = zTP , (C.2)

R[r(pIC , eIC , xIC , qr0)] = 0 , (C.3)
Θ[r(pIC , eIC , xIC , qz0)] = 0 , (C.4)

Φ[r(pIC , eIC , xIC , qr0, qz0)] =

(
dϕ

dλ

)
TP

. (C.5)

We solve the above equations to find the triplet (pIC , eIC , xIC). We can then compute the
spinning-body orbit corresponding to this choice of initial geodesic (pIC , eIC , xIC). We now
have a mapping between (pTP , eTP , xTP ) and (pIC , eIC , xIC); this is how we compute the
orbits in 5.4.1.

Note that the two parameterizations are not linearized in secondary spin in exactly the
same way. Feeding into the OG equations is the forcing term from the linearized MPD equa-
tions, Eq. (5.16). Beyond this point, the OG formulation does not assume the forcing term
to be small and does not further linearize in spin. However, in the “turning point matched”
prescription of Refs. [171], [172], the expressions for the radial and polar trajectories, our
Eqs. (5.19) and (5.20), which have been explicitly divided into geodesic and secondary-spin
pieces, are substituted into the MPD equations. After this substitution, we then linearize the
MPD equations. This leads to a slight difference in the equations of motion between the two
prescriptions at the O(S2) level. These two prescriptions are equivalent up to linear-order
in secondary spin, but are not identical at O(S2). This is responsible for the slight drift
seen after long integration times when comparing our methods for computing spinning-body
orbits, discussed at the end of Sec. 5.4.1.

Note that we use the fact that we can evaluate the frequencies (Ωr,Ωz,Ωϕ) associated
with a spinning-body orbit in both parameterizations in order to relate the reference geodesic
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triplets (pTP , eTP , xTP ) and (pIC , eIC , xIC) in the two parameterizations. Explicitly, we find
the mapping (pTP , eTP , xTP ) → (pIC , eIC , xIC) by solving the equations:

Ωr(pIC , eIC , xIC) = Ωr(pTP , eTP , xTP ) , (C.6)
Ωz(pIC , eIC , xIC) = Ωz(pTP , eTP , xTP ) , (C.7)
Ωϕ(pIC , eIC , xIC) = Ωϕ(pTP , eTP , xTP ) . (C.8)

C.2 Forced motion via osculating geodesic orbital ele-
ments

In this appendix, we briefly discuss how to compute forced motion of a body in spacetime
through a sequence of geodesic orbits, showing how the forcing terms lead to evolution of
the orbital elements which characterize geodesics. This synopsis is based on the discussion
presented in Ref. [179].

Begin by writing the geodesic equation

d2xα

dτ 2
= −Γαβγ

dxβ

dτ

dxγ

dτ
(C.9)

in the form
ẍα = aαgeo , (C.10)

where overdot denotes d/dτ . As observed in Sec. 5.3.1, bound Kerr geodesics can be described
by seven parameters:

EA .
= {p, e, xI , χSr , χSθ , ϕ0, t0} . (C.11)

The capital Latin index introduced here ranges from 1 to 7; the symbol .
= means “the

components on the left-hand side are given by the elements of the set on the right-hand
side.” In this set, p, e, and xI are the principal orbital elements describing the geometry
of the orbit and χSr , χSθ , ϕ0, and t0 are the positional orbital elements that specify initial
conditions.

The parameters EA are strictly constant on a geodesic, and can be expressed as functions
of spatial position and spatial velocity in an orbit. In other words, we can write

EA = EA(xα, ẋα) . (C.12)

Using the chain rule, we write the rate of change of EA

ĖA =
∂EA

∂xα
ẋα +

∂EA

∂ẋα
ẍα . (C.13)

Using Eq. (C.10) and requiring EA to be constant on a geodesic, we obtain

ĖA =
∂EA

∂xα
ẋα +

∂EA

∂ẋα
aαgeo = 0 . (C.14)
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Consider now forced motion. In the presence of a perturbing force, the geodesic equation
generalizes to

d2xα

dτ 2
+ Γαβγ

dxβ

dτ

dxγ

dτ
= aα . (C.15)

The non-geodesic acceleration aα is subject to the constraint

aαuα = 0 . (C.16)

Equation (C.15) can be written
ẍα = aαgeo + aα . (C.17)

Our aim is to convert Eq. (C.17) into a set of equations for the evolution of orbital elements
EA. This requires a mapping {xα, ẋα} → EA. We assert that, at each moment along the
worldline, a geodesic can be found with the same (xα, ẋα) as the accelerated body. This
assertion is known as the osculation condition. Stated plainly, we assert that [178]

xα(τ) = xαgeo(EA, τ) , (C.18)

ẋα(τ) = ẋαgeo(EA, τ) , (C.19)

where xα(τ) represents the coordinates of the true worldline, and xαgeo(EA, τ) represents the
coordinates of a geodesic worldline with orbital elements EA. Note that the time derivative
in Eq. (C.19) holds EA fixed. Note also that the osculation condition involves 4 components
of xα and 4 components of ẋα, one of which is constrained either by the condition aαuα = 0
or uαuα = −1. The 8 components plus 1 constraint thus map to the 7 parameters EA, so
the number of orbital elements matches the number of degrees of freedom [178].

Under the influence of a perturbing force which accelerates the worldline by aα relative
to a geodesic, the parameters EA do not remain constant. We promote them to dynamical
variables called osculating orbital elements. The accelerated trajectory xα is then described
by a sequence of geodesics with parameters

EA(t) .= {p(t), e(t), xI(t), χSr (t), χSθ (t), ϕ0(t), t0(t)} . (C.20)

Here t is simply Boyer-Lindquist coordinate time along the inspiral, which we use as our
parameter along the inspiral worldline. Other parameter choices could be used (e.g., proper
time τ along the inspiral, or Mino time λ). Boyer-Lindquist time is particularly convenient,
as it is the time measured by distant observers. Note that we have written both ϕ0 and t0
as though they are promoted to dynamical quantities; we will soon show that the equations
governing them do not need to be evolved, and they can be left as constants.

What remains is to prescribe how to dynamically evolve these elements. We again use
the chain rule and Eq. (C.17) to evaluate ĖA(τ), yielding

ĖA =
∂EA

∂xα
ẋα +

∂EA

∂ẋα
aαgeo +

∂EA

∂ẋα
aα . (C.21)

Taking advantage of Eq. (C.14), we obtain

ĖA =
∂EA

∂ẋα
aα . (C.22)
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Multiplying both sides of Eq. (C.14) by ∂xβgeo/∂EA and both sides of Eq. (C.22) by
∂ẋβgeo/∂EA yields a particularly useful form of these equations:

∂xβgeo
∂EA

ĖA = 0 , (C.23)

∂ẋβgeo
∂EA

ĖA = aβ . (C.24)

To derive Eq. (C.24), note that Eq. (C.19) implies

∂ẋβgeo
∂EA

∂EA

∂ẋα
= δβα . (C.25)

These expressions can be used to derive explicit equations for osculating orbital element
evolution, and can be written in either contravariant or covariant form (see Secs. III D 1 and
2 of Ref. [179]).

C.2.1 Quasi-Keplerian evolution equations

Following the approach used in Ref. [178], we use the contravariant formulation (see Sec. III
D 2 of [179]). Expanding Eq. (C.23) yields

∂r

∂p
p′ +

∂r

∂e
e′ +

∂r

∂xI
xI

′ +
∂r

∂χSr
χS′r +

∂r

∂χSθ
χS′θ = 0 , (C.26)

∂θ

∂p
p′ +

∂θ

∂e
e′ +

∂θ

∂xI
xI

′ +
∂θ

∂χSr
χS′r +

∂θ

∂χSθ
χS′θ = 0 , (C.27)

∂ϕ

∂p
p′ +

∂ϕ

∂e
e′ +

∂ϕ

∂xI
x′I +

∂ϕ

∂χSr
χS′r +

∂ϕ

∂χSθ
χS′θ + ϕ′

0 = 0 , (C.28)

∂t

∂p
p′ +

∂t

∂e
e′ +

∂t

∂xI
x′I +

∂t

∂χSr
χS′r +

∂t

∂χSθ
χS′θ + t′0 = 0 . (C.29)

Prime represents differentiation with respect to the variable that parameterizes the trajec-
tory, ti.

Equations (C.28) and (C.29), which govern the evolution of the axial offset ϕ0 and time
offset t0, contain elliptic integrals which are introduced due to terms like ∂t/∂p. Computing
such integrals at each time step introduces additional computational expense. Instead of
evolving Eqs. (C.28) and (C.29), we find ϕ and t along the worldline by using the geodesic
expressions computed along the instantaneous orbit, as was done in Refs. [179] and [178].
Rewriting Eqs. (2.22) and (2.23)), these equations are

dϕ

dλ
= Φr(r, E, Lz, Q) + Φθ(θ, E, Lz, Q)

= Φr[p(λ), e(λ), xI(λ), χ
S
r (λ)]

+ Φθ[p(λ), e(λ), xI(λ), χ
S
θ (λ)] , (C.30)

dt

dλ
= Tr(r, E, Lz, Q) + Tθ(θ, E, Lz, Q)

= Tr[p(λ), e(λ), xI(λ), χ
S
r (λ)]

+ Tθ[p(λ), e(λ), xI(λ), χ
S
θ (λ)] . (C.31)
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Integrating up Eqs. (C.30) and (C.31) for ϕ and t along the inspiral is equivalent to solving
(C.28) and (C.29). Observe that Eqs. (C.26) – (C.29) arise from Eq. (C.23), which in turn
arises from (C.14). Equation (C.14) simply states that the geodesic equation ẍα = aαgeo holds
when the osculating elements EA are constant. When {p, e, xI , χSr , χSθ } are all constant, Eqs.
(C.30) and (C.31) yield geodesic solutions; when {p, e, xI , χSr , χSθ } are evolving, we obtain
the solution for forced motion.

We therefore need only consider Eqs. (C.26) and (C.27). We rearrange these equations
to obtain

χS′r =
1

∂r/∂χSr

(
∂r

∂p
p′ +

∂r

∂e
e′ +

∂r

∂xI
x′I

)
≡ XS

r (EA) , (C.32)

χS′θ =
1

∂θ/∂χSθ

(
∂θ

∂p
p′ +

∂θ

∂e
e′ +

∂θ

∂xI
x′I

)
≡ XS

θ (EA) . (C.33)

We next expand Eq. (C.24) just as we expanded (C.23):

∂ṙ

∂p
p′ +

∂ṙ

∂e
e′ +

∂ṙ

∂xI
x′I +

∂ṙ

∂χSr
χS′r +

∂ṙ

∂χSθ
χS′θ = arτ ′ , (C.34)

∂θ̇

∂p
p′ +

∂θ̇

∂e
e′ +

∂θ̇

∂xI
x′I +

∂θ̇

∂χSr
χS′r +

∂θ̇

∂χSθ
χS′θ = aθτ ′ , (C.35)

∂ϕ̇

∂p
p′ +

∂ϕ̇

∂e
e′ +

∂ϕ̇

∂xI
x′I +

∂ϕ̇

∂χSr
χS′r +

∂ϕ̇

∂χSθ
χS′θ = aϕτ ′ , (C.36)

∂ṫ

∂p
p′ +

∂ṫ

∂e
e′ +

∂ṫ

∂xI
x′I +

∂ṫ

∂χSr
χS′r +

∂ṫ

∂χSθ
χS′θ = atτ ′ , (C.37)

Following Refs. [178], [179], we use the condition aαuα = 0 to eliminate Eq. (C.37). Following
[179], we define the useful expression

Lb(c) ≡
∂ċ

∂b
− ∂r/∂b

∂r/∂χSr

∂ċ

∂χSr
− ∂θ/∂b

∂θ/∂χSθ

∂ċ

∂χSθ
, (C.38)

where b denotes p, e or xI , and where c denotes r, θ or ϕ. This definition allows us to write
Eqs. (C.34) – (C.36) in the convenient form
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p′ =
τ ′

D

(
(Le(θ)LxI (ϕ)− Le(ϕ)LxI (θ))ar + (LxI (r)Le(r)− LxI (ϕ)Le(r))aθ

+ (Le(r)LxI (θ)− Le(θ)LxI (r))aϕ
)
, (C.39)

e′ =
τ ′

D

(
(LxI (θ)Lp(ϕ)− LxI (ϕ)Lp(θ))ar + (Lp(r)LxI (r)− Lp(ϕ)LxI (r))aθ

+ (LxI (r)Lp(θ)− LxI (θ)Lp(r))aϕ
)
, (C.40)

x′I =
τ ′

D

(
(Lp(θ)Le(ϕ)− Lp(ϕ)Le(θ))ar + (Le(r)Lp(r)− Le(ϕ)Lp(r))aθ

+ (Lp(r)Le(θ)− Lp(θ)Le(r))aϕ
)
, (C.41)

D = Lp(r) (Le(θ)LxI (ϕ)− LxI (θ)Le(ϕ))− Le(r) (Lp(θ)LxI (ϕ)− LxI (θ)Lp(ϕ))
+ LxI (r) (Lp(θ)Le(ϕ)− Lp(ϕ)Le(θ)) . (C.42)

Equations (C.39)–(C.41) tell us how to evolve the principal orbital elements, given non-
geodesic accelerations ar,θ,ϕ.

We further substitute these equations into Eqs. (C.32)–(C.33) in order to obtain the evo-
lution of the phase constants χSr and χSθ . This gives us a closed system of ordinary differential
equations which allow us to evolve p, e, xI , χSr , and χSθ given the non-geodesic accelerations
ar,θ,ϕ. Augmenting with two auxiliary equations for t and ϕ, Eqs. (C.30) and (C.31), yields
a complete scheme for evolving the elements of our phase space, {p, e, xI , χSr , χSθ , ϕ, t}.

C.2.2 Action-angle evolution equations

Action-angle coordinates are very useful for formulating near-identity transformations. In
the action-angle picture, the OG equations of motion are given by [101]

dPj
dλ

= Fj(P⃗ , q⃗) , (C.43)

dqi
dλ

= Υ̂i(P⃗ ) + f
(1)
i (P⃗ , q⃗) . (C.44)

Here, P⃗ = {p, e, xI} and q⃗ = {qr, qz}. We write the explicit forms for these equations below.
The Fj(P⃗ , q⃗) terms are given by

dp

dλ
=

2

(r1 + r2)2

[
r22
dr1
dλ

+ r21
dr2
dλ

]−1

≡ Fp , (C.45)

de

dλ
=

2

(r1 + r2)2

[
r2
dr1
dλ

+ r1
dr2
dλ

]−1

≡ Fe , (C.46)

dxI
dλ

= −z−
xI

dz−
dλ

≡ FxI . (C.47)
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The f (1)
i terms are given by

dqi,0
dλ

= − 1

∂xiG/∂qi

(
∂xiG
∂Pj

dPj
dλ

)
≡ f

(1)
i . (C.48)

For detail about the derivation of these expressions, refer to Appendix C of Ref. [101].

C.3 Near-identity transformation details

In this appendix, we describe in some detail the equations underlying the NIT. Further
details can be found in Refs. [101], [104], [184], [185].

C.3.1 Mino-time NIT derivation

Inverse NIT

Recall that the expressions for the transformed variables in terms of our original variables,
i.e., P̃j(P⃗ , q⃗), q̃i(P⃗ , q⃗), and ψ̃s(P⃗ , q⃗, ψs), are defined by Eqs. (5.41). We observe that the
inverse relationships can be found by requiring that their composition with the transforma-
tions in Eqs. (5.41) must give the identity transformation and expanding order by order in
ε. This results in:

Pj = P̃j − εY
(1)
j ( ⃗̃P, ⃗̃q, ψ̃s) +O(ε2) , (C.49a)

qi = q̃i − εX
(1)
i ( ⃗̃P, ⃗̃q, ψ̃s) +O(ε2) , (C.49b)

ψs = ψ̃s −W (0)
s ( ⃗̃P, ⃗̃q)

− ε

(
W (1)
s ( ⃗̃P, ⃗̃q, ψ̃s)−

∂W
(0)
s ( ⃗̃P, ⃗̃q)

∂P̃j
Y

(1)
j ( ⃗̃P, ⃗̃q)

− ∂W
(0)
s ( ⃗̃P, ⃗̃q)

∂q̃i
X

(1)
i ( ⃗̃P, ⃗̃q)

)
+O(ε2) .

(C.49c)

Note that we do not invert to the same order in ε as the original transformation as the next
order terms are not required to 1PA order.

Transformed equations of motion

To demonstrate how one obtains equations of motion for the transformed variables we will
first look at the equations of motion for the orbital elements P̃j. One takes the Mino time
derivative of P̃j(P⃗ , q⃗) as stated in Eqs. (5.41), substitutes the original equations of motion for
the original variables from Eqs. (5.39) and then uses the inverse transformation Eqs. (C.49)
to ensure that all the terms on the right hand side are in terms of the transformed variables.
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One then expands in powers of ε and truncates at the desired order, i.e.,
˙̃Pj =Ṗj + εẎ

(1)
j (P⃗ , q⃗, ψs) +O(ε2)

=ε

(
F

(1)
j (P⃗ , q⃗, ψs) +

∂Y
(1)
j

∂qi
(P⃗ , q⃗, ψs)Υ

(0)
i (P⃗ )

+
∂Y

(1)
j

∂ψs
(P⃗ , q⃗, ψs)Υ

(0)
s (P⃗ )

)
+O(ε2)

=ε

(
F

(1)
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∂Y
(1)
j

∂q̃i
( ⃗̃P, ⃗̃q, ψ̃s)Υ

(0)
i ( ⃗̃P )

+
∂Y

(1)
j

∂ψ̃s
( ⃗̃P, ⃗̃q, ψ̃s)Υ

(0)
s ( ⃗̃P )

)
+O(ε2)

(C.50)

Note that since the transformation to the NIT variables is near-identity, one does not see
any corrections at the current order in the expansion, but these terms manifest at higher
orders. Repeating these steps for the orbital elements through to O(ε2) and the orbital and
spin precession phases to O(ε), we obtain the following results:

dP̃j
dλ

= εF̃
(1)
j ( ⃗̃P, ⃗̃q, ψ̃s) + ε2F̃

(2)
j ( ⃗̃P, ⃗̃q, ψ̃s) +O(ε3) , (C.51a)

dq̃i
dλ

= Υ
(0)
i ( ⃗̃P ) + εΥ

(1)
i ( ⃗̃P, ⃗̃q, ψ̃s) +O(ε2) , (C.51b)

dψ̃s
dλ

= Υ(0)
s ( ⃗̃P, ⃗̃q, ψ̃s) + εΥ(1)

s ( ⃗̃P, ⃗̃q, ψ̃s) +O(ε2) , (C.51c)

where

Υ(0)
s = f (0)

s +
∂W

(1)
j

∂q̃i
Υ

(0)
i , (C.52a)

F̃
(1)
j = F

(1)
j +

∂Y
(1)
j

∂q̃i
Υ

(0)
i +

∂Y
(1)
j

∂ψ̃s
Υ(0)
s , (C.52b)

Υ(1)
s =

∂W
(1)
s

∂q̃i
Υ

(0)
i +

∂W
(1)
s

∂ψ̃s
Υ(0)
s

− ∂f
(0)
s

∂P̃j
Y

(1)
j − ∂f

(0)
s

∂q̃i
X

(1)
i ,

(C.52c)

Υ
(1)
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k +

∂X
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j , (C.52d)
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−
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k −
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j

∂q̃i
X

(1)
i −

∂F̃
(1)
j

∂ψ̃s
W (1)
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(C.52e)
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Note that all functions on the right hand side are evaluated at ⃗̃P , ⃗̃q, and ψ̃s and that we have
adopted the convention that all repeated roman indices are summed over. Notice also that
Υ

(1)
s will be suppressed by a factor of the mass-ratio: every term it appears in is proportional

to secondary spin, and therefore will not contribute at 1PA order. We include these terms
here for completeness, but only the 1PA contributions appear in Sec. 5.5.4.

Cancellation of oscillating terms at adiabatic order

We can recast the expression for Υ
(0)
s as

Υ(0)
s = f (0)

s +
∂W

(1)
s

∂q̃i
Υ

(0)
i

=
〈
f (0)
s

〉
+
∑
κ⃗ ̸=0⃗

(
f
(0)
s,κ⃗ + i(κ⃗ · Υ⃗(0))W̆

(0)
s,κ⃗

)
eiκ⃗·q⃗ .

(C.53)

As such, we can cancel the oscillatory pieces of Υ(0)
s by choosing the oscillatory part of W (0)

s

to be
W̆

(0)
j,κ⃗ ≡ i

κ⃗ · Υ⃗(0)
f
(0)
s,κ⃗ (P⃗ ) = −(ψsr(qr) + ψsz(qz)) . (C.54)

Conveniently, this is related to the oscillating pieces of the geodesic solution for the spin phase
which is known analytically. Due to the separability of this solution, this transformation is
always well defined, even in the presence of orbital resonances where κ⃗res = {kr, kz} where
kr, kz ∈ Z, such that κ⃗res · Υ⃗(0) = krΥ

(0)
r + kzΥ

(0)
z = 0.

We can continue with this analysis and recast the expression for F̃ (1)
j as

F̃
(1)
j = F

(1)
j +

∂Y
(1)
j

∂q̃i
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(0)
i +
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(1)
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)
eiκ⃗·Q⃗ .

(C.55)

As such, we can cancel the oscillatory pieces of F̃ (1)
j by choosing the oscillatory part of Y (1)

j

to be
Y̆

(1)
j,κ⃗ ≡ i

κ⃗ · Υ⃗(0)
F

(1)
j,κ⃗ (P⃗ ) . (C.56)

Clearly, one can only make this choice so long as there is no κ⃗res = {κr, κz, κs} where
κr, κz, κs ∈ Z, such that κ⃗res · Υ⃗(0) = κrΥ

(0)
r + κzΥ

(0)
z + κsΥ

(0)
s = 0. This is occasionally

the case in the presence of resonances, where the spin, radial, or polar frequencies become
commensurate. We have carefully chosen our data grids so that we do not encounter such
orbits in our study.
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Cancellation of oscillating terms at post-adiabatic order

Using the above choice for Y̆ (1)
j , the equation for Υ

(1)
i becomes
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(C.57)

As a result, we can remove the oscillating pieces of Υ(1)
i by choosing

X̆
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f
(1)
i,κ⃗ +

1

(κ⃗ · Υ⃗(0))2
∂Υ

(0)
i

∂Pj
F

(1)
j,κ⃗ . (C.58)

Similarly, looking at the equation for Υ
(1)
s , we see that:
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(C.59)

where we introduced the additional notation {·} to denote the oscillatory part of a product
of two purely oscillatory functions Ă and B̆, which can be expressed in terms of their Fourier
modes by {

ĂB̆
}
=
∑
κ⃗ ̸=0⃗

∑
κ⃗′ ̸=0⃗

Aκ⃗′Bκ⃗−κ⃗′ . (C.60)
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From this we obtain
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Using the above choice for Y̆ (1)
j , we can express the oscillatory part of the expression for
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j as
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(C.62)

Thus we can remove the oscillatory part of F̃ (2)
j by choosing
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(C.63)

Freedom in the averaged pieces

With the oscillatory pieces of the NIT equations of motion removed, terms in the equations
of motion become

F̃
(1)
j =

〈
F

(1)
j

〉
, Υ(0)

s =
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f (0)
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, (C.64a-b)
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and
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(C.66)

Note that we still have freedom to set the averaged pieces of the transformation functions
from Eqs. (5.41), i.e.,
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〉
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〈
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〉
, to be anything we

choose. There are many valid and interesting choices that one could make that are explored
in Refs. [101], [104], [185]. For this work, we make use of the simplest choice:
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=
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. (C.69)

Evolution of extrinsic quantities

Now we look to remove the oscillatory pieces of the evolution equations for the extrinsic
quantities X⃗ :

dX
dλ

= f
(0)
k (P⃗ , q⃗) . (C.70)

Since these terms do not depend directly on the spin phase ψ, this calculation goes through
the same as in the non-spinning case. Substituting the inverse transformation (C.49) and
re-expanding in ε we can write this as an equation involving only the NIT variables ⃗̃P and
⃗̃q,

dX
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where all of the functions on the right hand side are now functions of ⃗̃P and ⃗̃q. In order to
remove the oscillatory pieces of the equations, we make use of a new set of extrinsic quantities
⃗̃X that are related to the original quantities by the following transformation:

X̃k = Xk + Z
(0)
k ( ⃗̃P, ⃗̃q) + εZ

(1)
k ( ⃗̃P, ⃗̃q) . (C.72)

We note that since this transformation has a zeroth order in mass ratio term Z
(0)
k , it is not

an near-identity transformation. Thus when we produce waveforms it will be necessary to
be able to calculate Z(0)

k explicitly.
We then take the time derivative of (C.72), substitute the equations of motion for X⃗ and

expand order by order to obtain equations of motion for ⃗̃X :
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= Υ
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k +O(ε2) , (C.73)

where
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(C.74b)

We can now remove the oscillating pieces of the functions Υ
(0)
k by solving the equations
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(C.75b)

for the oscillatory parts of the transformation Z̆(0)
k and Z̆(1)

k . The first of these is satisfied by
using the oscillating pieces for the analytic solutions for the geodesic motion of t and ϕ,

Z̆
(0)
k = −X̆k,r(qr)− X̆k,z(qz) . (C.76)

It is unclear whether the equation for Z(1)
k would yield analytic solutions, but it can be

solved numerically. Since we only need to know the extrinsic quantities to O(ε) to generate
waveforms, we do not need to be able to calculate this explicitly and it is sufficient to know
that a solution exists.
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Figure C.1: Dephasing in ϕ(t) of a spinning-body orbit relative to a non-spinning body orbit
for two different choices of initial conditions. The system has mass ratio ε = 10−2 and the
small body orbits a black hole with spin a = 0.7M . The magnitude and orientation of the
small body’s spin is specified by s = 1, s∥ = s. The blue curves correspond to matching
initial orbital elements (pφ, eφ, xφ) while the orange curves denotes matching the initial
Boyer-Lindquist frequencies (Ωr,Ωz,Ωϕ). The solid curves show the averaged dephasing of
ϕ(t), i.e., φRR+SCF

ϕ − φRRϕ while the shading shows the dephasing of ϕ(t) given directly by
the OG equations, i.e., ϕRR+SCF − ϕRR. Initially, p = 9.5, e = 0.19, and xI = 0.699.

Now the forcing functions only depend only on ⃗̃P and are given by
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, (C.77a)
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(C.77b)

Again, we have freedom in the average pieces of the transformation functions which we use
to simplify this problem further. As before, we chose the simplest option and set
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〉
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= 0 which along with our previous choices simplifies the expression for Υ
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. (C.78)
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Figure C.2: Averaged dephasing in qr(t), qz(t), and ϕ(t) for a spinning body relative to a
non-spinning body with mass ratio ε = 10−2 orbiting a black hole with spin a = 0.7M ; the
small body’s spin is given s = 1, s∥ = s. The top panel shows φSCF+RR

r − φRRr , the middle
panel shows φSCF+RR

z − φRRz and the bottom panel shows φSCF+RR
ϕ − φRRϕ . Different colors

correspond to different initial p values for the inspiral; duration of inspiral also correlates
with initial p (inspiral with p0 = 9.5 is longest, that with p0 = 7 is shortest, etc.). For all
panels, e = 0.2, xI = 0.7, qr = 0, qz = 0, and ϕ = 0 initially.
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Figure C.3: Averaged dephasing in qr(t), qz(t), and ϕ(t) for a spinning body relative to a
non-spinning body with mass ratio ε = 10−2 orbiting a black hole with spin a = 0.7M ; the
small body’s spin has s = 1, s∥ = s. The top row shows φSCF+RR

r − φRRr , the middle row
shows φSCF+RR

z − φRRz and the bottom row shows φSCF+RR
ϕ − φRRϕ . In the left column, the

different colors correspond to different initial e values for the inspiral; in the right column,
the different colors correspond to different initial values of xI . For all panels, p = 7.5 and
xI = 0.7 initially. For the left column, the initial value of xI is 0.7 and for the right column
the initial value of e is 0.2.
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C.3.2 Summary of Mino-time quantities

We chose the average pieces of the transformation terms to be
〈
Y

(1)
j

〉
=
〈
Y

(2)
j

〉
=
〈
X

(1)
i

〉
=〈

W
(0)
s

〉
=
〈
W

(1)
s

〉
=
〈
Z

(0)
k

〉
=
〈
Z

(1)
k

〉
= 0 and so the transformed forcing functions are

related to the original functions by

F̃
(1)
j =

〈
F

(1)
j

〉
, Υ(0)

s =
〈
f (0)
s

〉
, (C.79a-b)

Υ
(1)
i =

〈
f
(1)
i

〉
, Υ

(0)
k =

〈
f
(0)
k

〉
, (C.79c-d)

Υ(1)
s = −

〈
∂f̆

(0)
s

∂P̃j
Y̆

(1)
j

〉
−

〈
∂f̆

(0)
s

∂q̃i
X̆

(1)
i

〉
, (C.79e)

F̃
(2)
j =

〈
F

(2)
j

〉
+

〈
∂Y̆

(1)
j

∂q̃i
f̆
(1)
i

〉
+

〈
∂Y̆
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j

∂P̃k
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〉
, (C.79f)

Υ
(1)
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∂f̆

(0)
k

∂P̃j
Y̆

(1)
j

〉
−

〈
∂f̆

(0)
k

∂q̃i
X̆

(1)
i

〉
. (C.79g)

In deriving these equations of motion, we have constrained the oscillating pieces of the
transformation functions to be

Y̆
(1)
j ≡

∑
κ⃗ ̸=0⃗

i

κ⃗ · Υ⃗
F

(1)
j,κ⃗ e

iκ⃗·Q⃗, (C.80)

X̆
(1)
i ≡

∑
κ⃗ ̸=0⃗

(
i

κ⃗ · Υ⃗
f
(1)
i,κ⃗ +

1

(κ⃗ · Υ⃗)2
∂Υi

∂Pj
F

(1)
j,κ⃗

)
eiκ⃗·Q⃗ , (C.81)

W̆
(1)
s,κ⃗ ≡

∑
κ⃗ ̸=0⃗

i

κ⃗ · Υ⃗(0)

(∑
κ⃗′ ̸=0⃗

[
∂f

(0)
s,κ′

∂P̃j
Y

(1)
j,κ⃗−κ⃗′ +

∂f
(0)
s,κ⃗′

∂q̃i
X

(1)
iκ⃗−κ⃗′

])
eiκ⃗·Q⃗ . (C.82)

In order to generate waveforms, one only needs to know the transformations in Eq. (5.41) to
zeroth order in the mass ratio so that the error is O(ε) i.e.,

Pj = P̃j +O(ε) , (C.83a)
qi = q̃i +O(ε) , (C.83b)

ψs = ψ̃s −W (0)
s ( ⃗̃P, ⃗̃q) +O(ε) , (C.83c)

Xk = X̃k − Z
(0)
k ( ⃗̃P, ⃗̃q) +O(ε) . (C.83d)

where the zeroth order transformation term for the spin precession phase W̆ (0)
k is known

analytically from Eq. (5.38)

W̆
(0)
j,κ⃗ = −ψsr(qr)− ψsz(qz) . (C.84)
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Moreover, the zeroth order transformation term for the extrinsic quantities Z̆(0)
k are also

known analytically as they are related to the oscillatory parts of the analytic solutions for
the geodesic equations for t and ϕ by

Z̆
(0)
k = −X̆k,r(qr)− X̆k,z(qz) . (C.85)

C.3.3 NIT Operator

By substituting the explicit forms of the transformation functions Y (1)
j and X

(1)
i into the

expressions for F̃ (2)
j and X̃ (1)

k , we identify a common functional form N (A) which allows us

to compactly write F̃ (2)
j =

〈
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(2)
j

〉
+N (F

(1)
j ) and X̃ (1)

k = N (X (0)
k ). The expression for N (A)

is given by:
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(C.86)

where Υ(0)
nkj = nΥ

(0)
r +kΥ

(0)
z +jΥ

(0)
s . Note that we make use of the result that the averaged

part of the product of two oscillatory functions can be expressed in terms of its Fourier modes
by: 〈

ĂB̆
〉
=
∑
κ⃗ ̸=0⃗

Aκ⃗B−κ⃗ . (C.87)

Also note that for the problem that we are solving in this work with the radiation reac-
tion driven only by the GW fluxes and the conservative effects coming only from the spin-
curvature force, we find that N (F

(1)
p ), N (F

(1)
e ), and N (F

(1)
xI ) are numerically consistent with

zero. This is to be expected as there is no interplay between the modes of the dissipative
and conservative forces [101]. We would not expect this to hold if one were to include the
first order conservative GSF needed for 1PA inspiral calculations.

C.4 Initial conditions

C.4.1 OG and NIT

To be able to directly compare between OG and NIT inspirals in Mino-time, we will need to
match their initial conditions to sufficient accuracy. To maintain an overall phase difference
of O(ε) in the course of an inspiral, the initial values of the phases and extrinsic quantities
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need only be known to zeroth order in ε. However, we need to know the initial values of the
orbital elements P⃗ to linear order in ε and so we use

P̃j(0) ≃ Pj(0) + εY
(1)
j

(
P⃗ (0), q⃗(0), ψs(0)− W̆ (0)(P⃗ (0), q⃗(0))

)
. (C.88)

When comparing between OG inspirals and NIT inspirals that are parameterized by Boyer-
Lindquist time t, we set the initial conditions for the phases of the OG inspiral and match
the initial conditions for the φ⃗ phases via:

φα(0) =Q̃α(0) + ∆φα(
⃗̃P (0), ⃗̃q(0)) +O(ε) , (C.89)

where Q̃α(0) are given by Eqs. (C.83) and P̃j(0) is given by Eq. (C.88). However, we to
maintain subradian accuracy in the phases, we need to know the initial conditions for the
orbital elements to sub-leading order via:

Pj(0) =P̃j(0) + εΠ
(1)
j

(
P⃗ (0), q⃗(0)

)
+O(ε2) . (C.90)

C.4.2 Adiabatic and post-adiabatic

There are different approaches to matching initial conditions when comparing adiabatic
and post-adiabatic inspirals. As discussed in Refs. [101]–[103], matching the initial values
of orbital parameters (pφ, eφ, xφ) between adiabatic and post-adiabatic inspirals leads to a
linearly growing error in the orbital phases. By instead matching the initial Boyer-Lindquist
frequencies Ωr, Ωϕ, and Ωz, we will instead have quadratic growth in t. Explicitly, we can
choose initial conditions (pRR+SCF

φ , eRR+SCF
φ , xRR+SCF

φ ) for the inspiral that includes spin-
curvature force and then find the initial conditions for the radiation-reaction-only inspiral
(pRRφ , eRRφ , xRRφ ) by solving the simultaneous equations:

ΩRR+SCF
r (pRR+SCF

φ , eRR+SCF
φ , xRR+SCF

φ )

= ΩRR
r (pRRφ , eRRφ , xRRφ ) , (C.91)

ΩRR+SCF
z (pRR+SCF

φ , eRR+SCF
φ , xRR+SCF

φ )

= ΩRR
z (pRRφ , eRRφ , xRRφ ) , (C.92)

ΩRR+SCF
ϕ (pRR+SCF

φ , eRR+SCF
φ , xRR+SCF

φ )

= ΩRR
ϕ (pRRφ , eRRφ , xRRφ ) . (C.93)

We explicitly demonstrate the difference in the choice of initial conditions for the post-
adiabatic terms considered in this work in Fig. C.1. In Fig. C.1, the solid curves show the
averaged dephasing of ϕ(t), i.e., φRR+SCF

ϕ − φRRϕ . The blue curve corresponds to the initial
(pφ, eφ, xφ) values matching between the radiation-reaction only and the radiation-reaction
plus spin-curvature inspirals. The orange curve corresponds to the initial (Ωr,Ωz,Ωϕ) values
matching between the radiation-reaction only and the radiation-reaction plus spin-curvature
inspirals. The blue curve grows linearly with t while the orange one grows quadratically with
t. This can be seen clearly in the inset of Fig. C.1; on a log-log scale, the slopes of the orange
line is twice that of the blue line. Note that, in the results presented in this article, we match
initial orbital parameters (pφ, eφ, xφ) between adiabatic and post-adiabatic inspirals.
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Figure C.4: Orbital evolution of a small body with a misaligned spin vector. The top panel
shows p(t) (solid) and pφ(t) (dashed); middle shows e(t) and eφ(t); and the bottom panel
shows xI(t) and xφ(t). In all the panels, we plot orbital element evolution for three values of
spin alignment s∥ = 1 (blue), s∥ = 0.8 (orange) and s∥ = 0.5 (red) using the NIT equations
of motion (dashed) and the OG equations of motion (solid). Especially in the middle and
bottom panels, the different OG tracks can also be distinguished by the magnitude of the
oscillations, which scale with s⊥ and are thus smallest for s∥ = 1 and largest for s∥ = 0.5.
(The NIT tracks pass roughly the centers of the OG oscillations.) The magnitude of the
small body’s spin is s = 1; ϕs is zero except for the orange curve which has ϕs = π/4. The
small body has mass ratio ε = 10−2 and is orbiting a black hole with spin a = 0.7M . For all
panels, p = 10, e = 0.2, xI = 0.7, qr = 0, qz = 0, and ϕ = 0 initially.
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C.4.3 Varying initial conditions

Figure C.2 depicts the dephasing of the radial, polar and axial phases due to spin-curvature
force during an inspiral. As in Fig. 5.4, the top, middle and bottom panels display φSCF+RR

α −
φRRα with α ∈ {r, z, ϕ} respectively. Different-colored curves correspond to different initial
p values: Red corresponds to a larger initial p value while blue corresponds to a smaller
initial p value that is closer to the LSO. Because the monotonic evolution of the dephasing
of the polar and axial phases (middle and bottom panels), the curves that begin closer to
the LSO do not accumulate as much dephasing before the plunge. However, for the case of
the radial phase the initial value of p will affect where the maximum of the dephasing will
occur, because the evolution is not monotonic.

Figure C.3 depicts the dephasing of the radial, polar and axial phases due to spin-
curvature force with different curves on the same plot corresponding to different initial e
(left column) and xI (right column) values. The red curves correspond to a larger initial e
or xI value, yellow is an intermediate value and blue is the smallest value. As in Fig. C.2,
the top, middle and bottom panels display φSCF+RR

α − φRRα with α ∈ {r, z, ϕ} respectively.
The initial e0 values we plot are evenly spaced by ∆e = 0.05 and initial xI values are evenly
spaced by ∆x = 0.002. Consider the insets of the two plots in the middle row; these curves
show the evolution of φSCF+RR

α −φRRα . Observe that even separation in e does not correspond
to even separation in φSCF+RR

α − φRRα -space (middle left) while even separation in xI does
correspond to roughly even separation in φSCF+RR

α − φRRα -space (middle right).
In Fig. C.4, the solid lines show the the evolution of the orbital elements (p, e, xI) under

the OG equations of motion, while the dashed lines show the averaged evolution of the orbital
elements (pφ, eφ, xφ) under the NIT equations of motion. The oscillations depicted by the
solid curves exhibit harmonics of several frequencies: The spin-aligned case (s∥ = 1, blue
curve) contains harmonic of Ωr and Ωz while the spin-misaligned cases (s∥ ̸= 1, orange and
red curves) contain harmonics of three frequencies Ωr, Ωz and Ωs. The additional harmonic
structure introduced by spin-precession is most evident in the evolution of e shown in middle
right panel.

The effect of the perpendicular spin component s⊥ is most evident in the evolution of
xI in the bottom right panel. We can clearly see that the amplitude of the oscillations in
xI increase with increasing s⊥, i.e., decreasing s∥. In addition, when there is a non-zero
initial spin-precession phase (ϕs ̸= 0, orange curve), we can see that the oscillations in xI
are out-of-phase with the ϕs ̸= 0 (red) curve. Because the initial conditions we use for the
NIT equations of motion are determined by the oscillations present in the OG equations
(as described in Appendix C.4), the NIT (dotted) curve for the misaligned spin cases (red
and orange curves) have slightly different initial conditions and evolution compared to the
aligned spin curve (blue).
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Appendix D

Chapter 6 Appendices

These Appendices are based on the Appendix of [128]; we include them here for completeness.

D.1 Trajectory formulae

In this Appendix we present formulae derived to calculate the linear in spin contribution to
the trajectory. We use the tetrad from Eqs. (47)–(51) in [220] where ẽµ2 and eµ3 have opposite
sign to align eµ3 with total angular momentum and to have right-handed system. Then the
right hand side of MPD equations can be written as

fµMPD = −1

2
eµAη

ABRB0CDS
CD , (D.1)

where RB0CD are components of the Riemann tensor in the Marck tetrad. Because of the
way this tetrad is constructed [221] and the fact that the Riemann tensor has a simple form
in the Kinnersley tetrad, the components can be simplified to

R1012 =
3

√
(K̂ + r2)(K̂ − a2z2)

((
a2z2(K̂ + r2)− r2(K̂ − a2z2)

)
I1 + arz(2K̂ + r2 − a2z2)I2

)
K̂Σ2

,

(D.2a)

R3012 =
6arz(K̂ + r2)(K̂ − a2z2)I1

K̂Σ2
+

(
1 + 3

−a2z2(K̂ + r2)2 + r2(K̂ − a2z2)2

K̂Σ2

)
I2 ,

(D.2b)
R2013 = −I2 , (D.2c)
R1023 = −R3012 +R2013 , (D.2d)
R3023 = R1012 , (D.2e)

and R2012 = R1013 = R3013 = R2023 = 0, where

I1 =
Mr(r2 − 3a2z2)

Σ3
, (D.3)

I2 =
Maz(3r2 − a2z2)

Σ3
. (D.4)
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The functions Rt,ϕ, J , V , and P from Eqs. (3.24), (4.62), and (4.63) in [130] can be
simplified to

Rt = ΣfMPD
t , (D.5a)

Rϕ = ΣfMPD
ϕ , (D.5b)

J = −Σ2f rMPD + I2δu
S
t + I3δu

S
ϕ , (D.5c)

V = −Σ2f θMPD + U2δu
S
t + U3δu

S
ϕ , (D.5d)

P = N2δu
S
t +N3δu

S
ϕ , (D.5e)

where I2,3, U2,3 and N2,3 can be found in the supplemental material of [129]. These simpli-
fications make the calculation of the trajectory significantly faster.

D.2 Source term

In this Appendix we present explicit expressions for the functions appearing in the source
term for the calculation of the partial amplitudes in Eq. (6.26).

Whereas Am
ab is entirely given by Eq. (6.23b) with Pa = µua and va = ua in the linear

order, the terms in Ad
ab can be expressed with NP spin coefficients as

Scdγndc = Sln(γ + γ̄) + Snm̄(−π̄ + ᾱ + β) + Snm(−π + α + β̄) + Smm̄(−µ+ µ̄) ,
(D.6a)

Scdγm̄dc = Sln(π + τ̄) + Snm̄ρ̄+ Snm(α + β̄) + Slm̄(−γ̄ + γ) + Smm̄(−α + β̄) , (D.6b)
Scnγndcu

d = Sln(γ + γ̄)un + Snm̄((ᾱ + β)un − µum) + Snm((α + β̄)un + µ̄um̄) , (D.6c)
Scm̄γm̄dcu

d = Snm̄(−πul) + Slm̄(τ̄un − (γ̄ − γ)um̄)− Smm̄(−(−α + β̄)um̄) , (D.6d)
Sc(nγm̄)dcu

d = (Sln(τ̄un − (γ̄ − γ)um̄) + Snm̄(ρ̄un − µul − (ᾱ− β + π̄)um̄ − πum)

Snm(−(−α + β̄)um̄) + Slm̄(γ + γ̄)un − Smm̄((α + β̄)un − µ̄um̄))/2 (D.6e)

The tetrad components of the spin tensor for σ⊥ = 0 can be expressed as

Sln = −σ∥
r(K̂ − a2z2)√

K̂Σ
, Snm = σ∥

ζ√
K̂
umun , (D.7a)

Slm̄ = −σ∥
ζ√
K̂
ulum̄ , Smm̄ = σ∥

iaz(K̂ + r2)√
K̂Σ

, (D.7b)
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while the terms from the partial derivative for the dipole term have the form

i(ωStn −mSϕn) =
aω(1− z2)−m√

2(1− z2)Σ
(ζSnm̄ − ζ̄Snm)

− iK

2Σ
Sln , (D.8a)

i(ωStm̄ −mSϕm̄) = −iK
(
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∆

+
Slm̄
2Σ

)
+
aω(1− z2)−m√

2(1− z2)ζ
Smm̄ , (D.8b)

Srn =
∆

2Σ
Sln , (D.8c)

Srm̄ = −Snm̄ +
∆

2Σ
Slm̄ , (D.8d)

Szn =

√
1− z2(Snm̄ζ + Snmζ̄)√

2Σ
, (D.8e)

Szm̄ = −
√
1− z2Smm̄√

2ζ
, (D.8f)

where K = (r2 + a2)ω − am. The functions f (i)
ab are given by
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f
(1)
m̄m̄ = −2ζ2

ζ̄2

(
ζ−1 + i

K

∆

)
S , (D.9e)
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2
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(
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)
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