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ABSTRACT

Grouping is a technique used to organize data into manageable pieces, reducing cog-
nitive load and enabling users to focus on discovering higher-level insights and generating
new questions. However, creating groups remains a challenge, often requiring users to have
prior domain knowledge or an understanding of the underlying structure of the data. We
introduce SAGE, a novel technique that leverages the knowledge base and pattern recog-
nition abilities of large language models (LLMs) to segment and group data with domain-
awareness. We instantiate our technique through two structures: bins and highlights ; bins
are contiguous, non-overlapping ranges that segment a single field into groups; highlights
are multi-field intersections of ranges that surface broader groups in the data. We integrate
these structures into Olli, an open-source tool that converts data visualizations into acces-
sible, keyboard-navigable textual formats to facilitate a study with 15 blind and low-vision
(BLV) participants, recognizing them as experts in assessing agency. Through this study,
we evaluate how SAGE impacts a user’s interpretation of data and visualizations, and find
our technique provides a rich contextual framework for users to independently scaffold their
initial sensemaking process.
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Chapter 1

Introduction

Segmenting data into distinguishable groups is crucial for making complex datasets man-

ageable and facilitating the sensemaking process [1]. Grouping helps reduce cognitive load,

enabling users to focus on uncovering higher-level insights and generating new hypotheses

to test on the data [1], [2]. However, effectively identifying, creating, and leveraging groups

presents several challenges. Grouping is a non-trivial task; as the scale and complexity of

the data increases, grouping becomes increasingly time-consuming and laborious, with no

guarantee of surfacing groups relevant to the domain of the data [3], [4]. Furthermore, form-

ing groups requires prior understanding of the structure of the data in order to choose which

fields to group as well as substantial knowledge on the domain of the data to understand

what each field represents [4], [5].

At its core, grouping is a technique that simplifies complex data by segmenting it into

manageable intervals or selectively filtering it based on specific fields and values. For a specific

field in the data, tools like Tableau or Microsoft Excel can automatically segment a field into

intervals, groups based on the field’s intrinsic values, or groups based on different statistical

properties [6]. For multiple fields in the data, visualizations are commonly used to identify

multi-field groups [1]. This entails using various graphical mark types and visual channels

to analyze the spatial positioning and features of data points in the visualizations to identify
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groups [4], [5]. To reduce the complexity of generating groups manually, different algorithms

have emerged to automate the grouping process for data. These algorithms, such as the

k-means algorithm, use mathematical optimization to efficiently partition data into distinct

clusters based on various arbitrary similarity measures [7]. However, these techniques treat

data as an abstract entity – failing to leverage the fact data serves as a representation of real

world phenomena. Consequently, they cannot group data in meaningful ways, meaning users

must possess a deep prior understanding of the data and its domain to make connections

between the groups surfaced by these techniques and real-world insights.

In this paper, we introduce SAGE, a novel grouping technique that utilizes the context

embedded within data to intelligently form domain-specific groups. This technique is oper-

ationalized through two key structures: bins and highlights. Bins segment a single field into

contiguous, non-overlapping ranges to capture domain-specific aspects of that field; highlights

create logical compositions of ranges across multiple fields to surface broader, interconnected

groups within the data, thereby capturing the larger domain context. To create these struc-

tures, we employ the knowledge base and pattern recognition abilities of large language

models (LLMs). Acknowledging people with disabilities as authorities on agency and trust

in artificial intelligence contexts [8], we instantiate our technique within Olli, an open-source

platform that translates data visualizations into accessible, keyboard-navigable hierarchical

textual representations. This setup enables us to gather feedback from blind and low-vision

(BLV) screen-reader users by providing them the opportunity to interact directly with our

contribution. Through our iterative co-design process with our blind co-author Hajas, we

identify the following design dimensions to ensure SAGE affords equitable interactions: rel-

evance, which ensures the groups are directly applicable to their specific data domains for

enhanced contextual understanding; clarity, which ensures the groups are presented clearly

and simply to make complex data accessible and understandable to all users; and agency,

which upholds the autonomy of users by enabling independent data interpretation to foster

deeper personal engagement with the data.
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To evaluate our contribution, we conducted 100-minute Zoom interviews with 15 blind

and low-vision (BLV) participants using three prototypes. Our findings confirm that the

three foundational design dimensions of SAGE—relevance, clarity, and agency—are impor-

tant in enabling users to independently scaffold their initial sensemaking processes. However,

the utility of our approach is contingent on the context of the data and is most effective with

semantically meaningful visualizations. We conclude with a discussion on the broader appli-

cations of SAGE beyond data and visualizations to emphasize the importance of developing

A.I. systems that augment human intelligence, rather than replace human decision-making.
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Chapter 2

Related Work

2.1 Accessible Textual Data Representations of Visual-

izations

To enhance the accessibility of data visualizations through textual means, several repre-

sentations have been developed. Textual descriptions, commonly integrated as alternative

text in web visualizations [9], serve as one fundamental approach. Substantial progress has

been made in automating the generation of textual descriptions [10]–[14] for visualizations;

however, these automated descriptions remain static and limited to linear navigation, which

restrict users from directly engaging with the underlying data, thereby hampering indepen-

dent analysis [15], [16]. Systems such as ChartSense [17] improve on being able to access

individual data points by convert chart images into structured data tables, but present their

own set of challenges, such as cognitive overload [15], when navigating these textual data

representations.

To address these limitations, a newer category of textual data representations has emerged,

known as hierarchical textual data representations. Zong, Lee, Lundgard, et al. identify three

design dimensions for hierarchical textual data representations: structure (the arrangement

of the representation’s individual components), navigation (the method by which the user
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transitions between components), and description (the content that is vocalized at each

component) [15]. These representations introduce unique mechanisms for interacting with

data visualizations through text; by leveraging structure, these representations afford users

the flexibility to explore the visualization’s data at various levels of granularity, thereby en-

hancing the overall accessibility and usability of data visualizations [15]. Notable systems

that incorporate hierarchical textual data representations are Olli [18], Data Navigator [19],

ASVG [20], VizAbility [21], and Chart Reader [22]. Jones et al. furthermore improve on

these hierarchical textual data representations by introducing content tokens [23] to support

customization of data descriptions across the following dimensions: presence, or the content

that is communicated; verbosity, or the brevity and density of the content’s delivery; order-

ing, or the arrangement of tokens used to present the content; and duration, or the length

of time a specific customization is maintained.

So far, there is no textual data representation that captures the semantic meaning of the

data it represents to effectively afford a user the ability to independently interact with all four

levels of semantic content [16] as defined by Lungard et al.: elemental and encoded details

like chart types and labels; statistical and relational data such as outliers and correlations;

perceptual and cognitive insights into trends and exceptions; and contextual and domain-

specific knowledge, enhancing understanding through tailored, in-depth explanations.

2.2 A.I. Tools for Accessibility

People with disabilities are some of the earliest adopters of artificial intelligence [8]. As such,

they’ve been able to positions themselves as experts of agency and trust of these systems

through their lived experiences. This section examines the landscape of A.I. tools designed

for accessibility, particularly those built for blind and low-vision (BLV) users. We categorize

accessibility-focused applications of A.I. into two distinct approaches: one aimed at making

the world more accessible to users, and the other at enhancing the capabilities of the users
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themselves.

Various systems have been developed to enhance accessibility by enabling users to better

interact with their environment. These technologies include automated tools for generating

descriptions for blind and low-vision (BLV) users, covering videos [24], art [25], images on

social media [26], hint-text [27], and charts [11], [13], [21], [28], [29]. To help users integrate

A.I. into their everyday lives, these technologies have been deployed as phone applications

such as Be My Eyes or SeeingAI [30], [31], screen-reader extensions such as PictureSmart

for JAWS [32], and wearables [33]–[35].

Other systems designed to augment users’ capabilities foster independent interaction and

authoring. SPICA, for example, focuses on augmenting audio descriptions to enable BLV

users to interactively explore video content [36]. GenAssist makes text-to-image generation

accessible to enable BLV creators to use images to communicate with sighted audiences [37].

EasySnap and PortraitFramer assist BLV photographers in capturing better-composed pho-

tos [38]. BLVRUN provides BLV developers with streamlined, insightful error overviews to

enhance their programming workflows [39]. PeopleLens uses more open-ended A.I. experi-

ences to enrich social sensemaking [40].

These tools exemplify the potential of A.I. in fostering greater independence and acces-

sibility for BLV users across various fields and use cases.
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Chapter 3

Design Dimensions

Through an iterative co-design process led by co-authors Pedraza Pineros and Hajas, we

identified three key design dimensions that underscore our commitment to enhancing human

interaction through the use of large language models (LLMs). The central aim of these

dimensions is to augment rather than replace the role of human judgment, ensuring that our

technology supports users’ independence and autonomy in drawing their own conclusions.

3.1 Relevance

Relevance refers to the ability to segment and group data in ways that are meaningful within

its larger domain. This dimension also prioritizes adaptability, meaning our technique must

be able to create bins and highlights across various contexts. Additionally, bins and highlights

must be created in such a way where they align with the domain-specific frameworks used

by experts analysts of the domain of the data. By connecting data to its broader domain

context, relevance enhances a user’s ability to understand patterns and relationships, leading

to more informed decision-making and meaningful insights.
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3.2 Clarity

Clarity refers to the ability to present information in an easily understandable manner. This

design dimension focuses on simplifying and structuring data to reduce a user’s cognitive load

when exploring and interpreting information. By prioritizing clarity, we ensure that users

can contextualize different bins and highlights without needing prior knowledge of the data.

To achieve clarity, we recognize that we must structure the bins, highlights, and additional

context in ways that best help a user orient themselves within the domain of the data.

3.3 Agency

Agency refers to empowering users to make their own interpretations of the data. This design

dimension prioritizes the user’s ability to critically engage with the information presented

by our technique. We aim to augment, not replace, a user’s capacity for meaningful data

interpretation. This is particularly crucial within the accessibility domain, where users are

often more sensitive to encroachments on their autonomy when interacting with the world

[41]. To ensure agency, bins and highlights must be integrated into Olli transparently to

allow users to easily evaluate the usefulness of a bin or highlight. This way, a user can retain

control over their exploration process by being able to determine if the bin or highlight

should be used in their interpretation of the data.
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Chapter 4

Implementing SAGE in Olli

We’ve instantiated SAGE within Olli, an open source accessible visualization toolkit [18].

Our technique uses the data visualized by an Olli adapter to augment the hierarchical textual

description created by Olli – also known as the Olli tree view – with bins and highlights.

Through an iterative and collaborative co-design process, we’ve integrated the feedback of

our blind co-author, Hajas, into our implementation throughout the course of the project.

With his feedback, we’ve converged to two prototypes, the independent exploration prototype

and the guided exploration prototype, each of which prioritize different design dimensions. In

this section, we’ve elaborated the process and design considerations of our implementation.

4.1 Bins

Bins are contiguous, non-overlapping ranges that segment a single field into groups. An

example of how we define a bin can be seen in Figure 4.1. Each bin is composed of three

fields: bin_name, reasoning, and pred. The bin_name field serves as a short domain-specific

label, the reasoning field connects the data in the bin to domain-specific knowledge, and the

pred field is a Vega-Lite predicate that defines what data belongs in the bin. With respect to

our first design dimension, relevance, bins use domain-specific labels and additional domain-

specific knowledge to ensure users can use a bin to relate the data within the bin to broader
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{
"bin_name ": "Short",
"reasoning ": "Flipper lengths in this range might be

associated with slower swimming but greater
maneuverability , typically found in species
navigating through densely packed ice or prey -rich
waters where agility trumps speed",

"pred": {
"field": "Flipper Length (mm)",
"lte": 190

}
}

Figure 4.1: An example bin in SAGE. A bin is instantiated as a JSON object with fields
"bin_name", "reasoning", and "pred". This particular example is the "Short" bin for the
field "Flipper Length (mm)." It segments flipper lengths that are less than or equal to 190
mm as short. The reasoning bridges the bin to a larger set of a field’s domain-specific
implications and characteristics.

patterns and relationships in the domain. For our second design dimension, clarity, bins use

short labels and reasoning to reduce cognitive load. Lastly, for our third design dimension,

agency, to make it clear what data belongs to a certain bin, we include a predicate to show

how we’ve defined the boundaries for a bin. This enables users with the autonomy to evaluate

the bin produced by our technique.

To implement bins, we focused segmenting a field within it’s own domain to surface

groups relevant to the specific field. To do this, we pre-processed the overall dataset to

filter for the field’s data. Then, we use a large language model (LLM), specifically Open

AI’s gpt-4-turbo-preview [42], to query for a field’s bins. We experimented with various

prompting techniques such as zero-shot prompting [43], chain-of-thought prompting [44], and

few-shot prompting [45] to fine-tune the LLM to create useful bins. After multiple weeks of

experimentation, we were able to converge on a set of prompts, including a system prompt

and three user prompts.

Our system prompt encourages the large language model to first understand the name

of the field and it’s values to create a bin. We’ve included a snippet of the prompts used to
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create the bins in Figure 4.2. We feed the pre-processed data to the large language model as

a JSON string in our first user prompt. Then, we ask the large language model to create the

bins by providing the field’s name and a brief example on how it might segment a temporal

field. Lastly, we provide a few examples of how to format the bins given either quantitative

or nominal data since the Vega-Lite predicate format uses a different grammar for both types

of data.

{role: "system", content: ‘Please analyze the uploaded
dataset.‘}

{role: "user", content: ‘Here is the data we’ll be
analyzing: ${JSON.stringify(dataset)}’},

{role: "user", content: ‘For the ${field} field , come up
with a meaningful , non -obvious way to partition the
field. Feel free to use outside knowledge. It ’s ok to
have overlap. For example , if you have the field "Year",
you could make bins such as:
{

"bins": [" PreIndustrial Era", "Early Industrial Era
", "Wheat Boom",

"Agricultural Revolution" ]
},

’}

{role: "user", content: ‘For each bin , use the Vega -Lite
predicate schema to create one Vega -lite predicate for
each field in the bin. Each predicate must include the
field and only ONE property to specify what data from
that field belongs in the bin: equal , range , lt (less
than), lte (less than or equal), gt (greater than), gte
(greater than or equal), or oneOf. Make sure to give a
full response in a JSON format. Do not change the names
of the fields in your answer.’}

Figure 4.2: The prompts used in our technique in order to segment a field into bins. We
use one system prompt and three user prompts to create bins for a field. The last prompt’s
examples are omitted for brevity, but usually include an example bin output for both quan-
titative and nominal data.
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4.2 Highlights

{
"bin_name ": "High -Performance Sports Vehicles",
"reasoning ": "This category encapsulates vehicles

engineered for maximum performance and power. They
exhibit high horsepower , usually have a lower fuel
mileage (miles per gallon), and often utilize 8
cylinders to deliver the acceleration and towing
capability expected from sports cars and luxury
models",

"pred":
{

"and": [
{

"field": "Horsepower",
"gt": 200

},
{

"field": "Miles_per_Gallon",
"lte": 20

},
{

"field": "Cylinders",
"equal": 8

}
]

}
}

Figure 4.3: An example highlight in SAGE. A highlight is instantiated as a JSON with fields
"bin_name", "reasoning", and "pred". This particular example is the " High-Performance
Sports Vehicles" highlight for the fields "Horsepower," "Miles_per_Gallon," and "Cylin-
ders." It groups vehicles with horsepower greater than 200, miles per gallon less than or
equal to 20, and 8 cylinders as high-performance sports vehicles. The reasoning bridges the
highlight to the larger domain of the entire dataset.

Highlights are multi-field intersections of ranges that surface broader groups in the data.

An example of how we define a highlight can be seen in Figure 4.3. Each highlight is

composed of three fields: bin_name, reasoning, and pred. The bin_name field serves as a
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short domain-specific label, the reasoning field connects the highlight to domain-specific

knowledge, and the pred field (predicate) is a logical composition of Vega-Lite predicates that

define what data from each field belongs in the highlight. With respect to our first design

dimension, relevance, highlights use domain-specific labels and additional domain-specific

knowledge to ensure users can use a highlight to relate multi-field intersections of data to

broader patterns and relationships in the domain. For our second design dimension, clarity,

highlights use short labels and reasoning to reduce cognitive load. Lastly, for our third

design dimension, to make it clear what fields and their respective data belongs to a certain

highlight, we include a predicate composition to show how we’ve defined the boundaries for

a highlight. This enables users with the agency to evaluate our technique.

To implement highlights, we focused on identifying multi-field groups in the data to

surface broader groups. To do this, we leveraged the bins created for each field in the

dataset to form a highlight. We use a large language model (LLM), specifically Open AI’s

gpt-4-turbo-preview [42], to prompt for these larger multi-field highlights. Our system

prompt prepares the large language model to utilize the bins for each field to create the

highlights, as seen in Figure 4.4. We first feed the large language model with the JSON

object representations of the bins for each field. Then, we and asked the large language model

to create “meta-bins” that can overlap and include multiple fields to build the highlights.

Lastly, we provide a few examples of how to format the highlights using different logical

compositions of Vega-Lite predicate formats for both quantitative and nominal data.

4.3 Prototypes

4.3.1 Olli Prototype

The Olli prototype, seen in Figure 4.5, acts as a control to teach users the structure and

how to navigate the hierarchical textual data representation used in the Olli tree view.

Additionally, this prototype allows us to study our users sensemaking process with state-of-
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{role: "system", content: ‘You will analyze bins for
different fields to create meaningful meta -bins.’}

{role: "user", content: ‘Here are the bins we’ll be
analyzing , separated by field: ${JSON.stringify(bins)
}’},

{role: "user", content: ‘Come up with a meaningful , non -
obvious meta -bins of the bins. Feel free to use outside
knowledge. It’s ok to have multiple fields and overlaps
across meta -bins ’}

{role: "user", content: ‘Each bin uses the Vega -Lite
predicate schema to create one Vega -lite predicate for
each field in the bin. To create meta -bins , you must
format your answer using predicate compositions. Each
predicate composition must include the predicates for
different fields and only ONE property to specify what
data belongs in that meta -bin: "and", "not", or "or".
Make sure to give a full response in a JSON format. Do
not change the names of the fields in your answer.’}

Figure 4.4: The prompts used in our technique in order to identify highlights in a dataset.
We use one system prompt and three user prompts to create highlights for the fields in
a dataset. The last prompt’s examples are omitted for brevity, but include an example
highlight output for both quantitative and nominal data.
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Figure 4.5: On the left, we show the visualization used in our Olli prototype. On the right,
we show the un-augmented tree view for the Olli prototype.

the-art techniques that don’t integrate SAGE. We’ve simplified the information displayed

for each interval and node in this version to reduce cognitive load and expedite the learning

process. This prototype does not include additional statistical information or data type

details for fields and their intervals.

4.3.2 Independent Exploration Prototype

Figure 4.6: On the left, we show the visualization used in our independent exploration
prototype. On the right, we show the augmented tree view for the independent exploration
prototype. The highlights for the fields "Flipper Length (mm)," "Body Mass (g)," and
"Species" are appended to the bottom of the Olli tree view’s encodings level.

The independent exploration prototype was designed to prioritize user agency in the data

exploration and interpretation process. As shown in Figure 4.6, it integrates information from
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SAGE as augmentations to the original Olli structure. This prototype deprioritizes highlights

by appending them to the end of the encodings level of the Olli tree view to allow users to

first understand the data on their own before receiving additional context. The original Olli

structure is preserved, with a highlight’s predicate information included as a child interval

node. To help reduce cognitive load and make the domain-specific information easier to

understand, the prototype incorporates reasoning within the initial description of highlights

to address the potential complexity and jargon that may arise from multi-field intersections.

Additionally, this prototype uses the bins as additional labels to the original Olli intervals for

a field to provide “a different lens on certain sections of the data as a preset,” as described

by our collaborator Hajas, without completely shaping the user’s initial exploration and

interpretation of the data. Lastly, to prevent information overload, the prototype hides the

reasoning for each bin within the table view of an interval as seen in Figure 4.7, as the bin

names are usually descriptive enough on their own.

Figure 4.7: On the left, the bins for the field "Flipper Length (mm)" in the independent
exploration prototype. On the right, we show how we’ve included the reasoning for the short
bin within the interval’s table view for this prototype.

4.3.3 Guided Exploration Prototype

The guided exploration prototype was designed to prioritize learning for users during their

initial data interpretation process by modifying the Olli structure to use domain-specific

intervals, as seen in Figure 4.8. It enhances the user’s experience by providing an overview

of the data domain at the top of the Olli encodings level. All highlights are grouped under
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Figure 4.8: On the left, we show the visualization used in our guided exploration prototype.
On the right, we show the augmented tree view for the guided exploration prototype. The
highlights for the fields "Horsepower," "Miles_per_gallon" and "Cylinders" are appended
to the top of the Olli tree view’s encodings level under a "Data Highlights" node. The bins
are used to structure the intervals of a field in the guided exploration prototype.

one node at the top, allowing users to quickly skip them if they already understand the data

or prefer not to have an overview. This feature also makes it easier to find the axes and legend

without hearing too much extra information. The prototype leverages context to structure a

field’s intervals with bins, providing a more intuitive scaffolding for users who may not have a

prior understanding of the data’s structure or domain. The highlights’ predicate information

is included in the description of each highlight to reduce keystrokes and present boundaries

more clearly, as seen in Figure 4.9. To reduce cognitive load, the prototype incorporates

reasoning within the initial description of highlights, addressing potential complexity and

jargon associated with multi-field intersections. Lastly, the prototype hides the reasoning for

each bin within the table view of a bin, since the bin names are usually descriptive enough

on their own, preventing information overload.
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Figure 4.9: The highlights for the fields "Horsepower," "Miles_per_gallon" and "Cylinders"
in the guided exploration prototype.
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Chapter 5

Evaluation

To evaluate the SAGE, we conducted 100-minute Zoom interviews with 15 blind and low-

vision participants. The goal of this evaluation was to identify how our technique, SAGE,

can impact user exploration and analysis by studying the differences in how users might

utilize bins in contrast to highlights and user preferences regarding the integration of these

groupings into a hierarchical textual data representation.

5.1 Study Design

Each interview had Pedraza Pineros act as a guide through the different tasks and prototypes

while Chen, Zong, and Patterson served as notetakers.

5.1.1 Study Setup

. Each interview lasted 100 minutes and had users explore three prototypes. We began each

interview with a brief 10 minute introduction to learn more about the user’s interactions

with data, data visualizations, and large language models. Then, we presented users our first

prototype for 15 minutes to familiarize them with Olli and how to navigate its hierarchical

textual data representation. After a 5 minute break, we had users explore the first and
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second prototype, each for 20 minutes, whilst describing their sensemaking process when

completing a series of intra-field and inter-field data exploration and interpretation tasks.

Afterwards, we had users complete the prototype’s corresponding Likert survey. In the final

15 minutes, we collected users’ overall takeaways and them complete a post-study survey.

5.1.2 Prototypes

. Each prototype tasked users with exploring a scatterplot visualization of a dataset to

facilitate skill transfer. Scatterplots were selected for their capacity to represent three distinct

fields: two quantitative and one nominal. Each dataset, drawn from various real-world

domains, encompassed a mix of nominal, ordinal, and quantitative fields to provide users

with a diverse range of contexts to explore to avoid having users “learn” the data. The

following three prototypes capture different aspects of our design dimensions:

• Olli Prototype. This simplified version of Olli is used a control to understand how

state-of-the-art hierarchical textual data representations are used by BLV users to

contextualize data. This prototype uses the Movies dataset and “US Gross,” “IMDB

Ratings,” and “MPAA Ratings” fields.

• Independent Exploration Prototype. This prototype prioritizes user agency to

interpret the data before revealing additional context. It conserves the original Olli

structure and treats bins as annotations to a quantitative field’s intervals or a nominal

field’s categories. It deprioritizes highlights by appending them to the end of the

encodings level of the Olli tree view. This prototype uses the Palmer penguins dataset

[46] and the “Flipper Length (mm),” “Body mass (g),” and “Species” fields.

• Guided Exploration Prototype. This prototype focuses on leveraging context as

a scaffolding to user interpretation by using the bins to structure a quantitative field’s

intervals or a nominal field’s categories. It highlights the highlights by grouping them

into a larger group and appending this group to the beginning of the encodings level of
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the Olli tree view. This prototype uses the Cars dataset and the “Horsepower,” “Miles

per gallon,” and “Cylinders” fields.

5.1.3 Participants

. We recruited 15 blind and low-vision participants by sending a participant call to a blind

programmers’ community mailing list and reaching out to BLV previous participants in

our local community. Each participant was compensated $60 for 100 minutes. To protect

user privacy, we’ve included anonymized and aggregated demographic information to pro-

vide background context on our users [47] whilst recognizing our users’ identities extend

far beyond demographic attributes. The majority (67%) of our participants were totally

blind (n=10), while 27% identified as low-vision with some light perception (n=4) and 7%

of participants did not respond (n=1). More than half (60%) of our participants have been

blind since birth. 53% of participants were JAWS users (n=8) and 47% were NVDA users

(n=7), consistent with screen reader statistics [48]. Demographically, 80% of participants

use he/him pronouns (n=12) and 20% of participants use she/her pronouns (n=3). Partic-

ipants were based across multiple continents, including North America, Europe, and Asia.

Participants self-reported their ethnicities (Asian, Black/African, Caucasian/white, Hispan-

ic/Latinx, Other), represented a diverse range of ages (20–50+), and and had a variety

of educational backgrounds (high school through to undergraduate and graduate school).

With the exception of one participants that did not respond, almost all participants (n=14)

self-reported as slightly, somewhat, or moderately familiar with statistical concepts. 13 par-

ticipants self-reported as slightly, somewhat, or moderately familiar with data visualization

methods and 2 participants did not respond. Participants reported a high variety of fre-

quency interacting with data or visualizations, from 1-2 times/year to 3 or more times/week.

Most participants (n=9) reported using data analysis tools or visualizations either outside

of their professional work or sometimes, but 2 participants reported data analysis tools or

visualizations being an important part of their workflow. 4 participants reported rarely use
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Table 5.1: Rating scores for each prototype (Independent Exploration Prototype, Guided
Exploration Prototype) on a five point Likert scale. Median scores are shown in boldface,
averages in brackets, standard deviations in parentheses.

Prompt: After understanding how the [pro-
totype] works...

Independent Exploration Guided Exploration

How understandable were the data highlights
in the prototype?

4 [4.13] (0.64) 5 [4.53] (0.64)

How understandable were the bins in the pro-
totype?

4 [4.00] (1.20) 5 [4.67] (0.49)

How much influence did the data highlights
have on your interpretation of the data?

4 [3.60] (1.30) 4 [3.33] (1.45)

How much influence did the bins have on
your interpretation of the data?

3 [3.13] (1.25) 3 [3.00] (1.36)

How much additional context did the data
highlights provide about the data?

4 [3.93] (1.10) 4 [3.60] (1.24)

How much additional context did the bins
provide about the data?

4 [3.47] (0.92) 4 [3.47] (0.83)

How effectively did the prototype explain
and justify its data highlights and bins?

3 [2.93] (0.96) 4 [3.73] (0.88)

How often did you feel the need to double-
check the accuracy of the data highlights and
bins?

2 [2.33] (1.18) 2 [2.47] (1.06)

data analysis tools.

5.2 Quantitative Results

5.2.1 Likert Scales

To evaluate how well the bins and highlights followed each of our design dimensions, we

designed a Likert survey to understand participants’ preferences across the independent ex-

ploration and guided exploration prototypes. Participants responded on a five point scale

where 1 = Very Difficult to Understand/No Influence/No Additional Context/Not Effec-

tive/Never Felt the Need and 5 = Very Easy to Understand/Significant Influence/Extensive

Additional Context/Extremely Effective/Always Felt the Need as seen in Table 5.1.

The Likert scale scores provide insights into the user experiences and preferences for
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each prototype. The guided exploration prototype consistently scored higher in terms of

understandability for both highlights and bins, indicating that users found this prototype

more intuitive and easier to use. Despite this, the influence of highlights and bins on data

interpretation was similar between the two prototypes, suggesting that while the guided

exploration prototype was easier to understand, it did not significantly change how users

interpreted the data compared to the independent exploration prototype. Additionally, both

prototypes provided a comparable amount of additional context about the data, as indicated

by similar scores in those categories. However, the guided exploration prototype was more

effective in explaining and justifying its data highlights and bins, as reflected by higher scores

in that category. Users also felt a slightly greater need to double-check the accuracy of data

highlights and bins in the guided exploration prototype, though this difference was minimal.

These results suggest that while the guided exploration prototype offers better usability and

clarity, it does not necessarily reduce the need for users to verify the information provided.

5.2.2 Study Limitations

The current hierarchical textual data representation structure in Olli makes data and data

visualizations accessible but requires time to learn, especially for those with prior experience

in tactile graphics. This learning curve can affect the initial user experience and potentially

bias the results towards those more familiar with the interface. Additionally, because we

tested the prototypes in the context of a study and not a real-world scenario, users may not

have felt as inclined to double-check the accuracy of the highlights and bins since it was a

low risk environment.

5.3 Qualitative Results

Once interviews were complete, Pedraza Pineros, Chen, and Zong performed open coding

on the notes taken from each interview. We then jointly reviewed and synthesized other’s
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codes into the following themes.

5.3.1 Traditional large language model interactions are tedious but

are “better than nothing”

Traditional question-and-answer interactions with LLMs are described by participants as

“time consuming” (P9), “tedious” (P4), “not seamless” (P15), “complicated” (P10), and “a lot

of effort” (P15). For participants, part of this frustration stems from the effort it takes to

pose a question that guarantees them to receive the output they wanted without having to

repeat the process over several trials. However, participants expressed they persisted through

these frustrations because it’s “better than having nothing” (P15) or “than not having any

information” (P7).

5.3.2 Verification is an essential part of large language model in-

teractions.

Large language models are becoming increasingly more integrated into participants’ lives

and workflows for tasks such as summarization, programming, ideation, learning, and as

visual aids through tools like Be My Eyes AI [30]. To participants, LLMs serve as tools

that enable them to connect with the world around them. One participant shared, “I mainly

use it to interpret data and images; to interact with other people. It made a really big

change in how I interact with screenshots and images” (P9). And although participants

expressed they “tend to want to trust the A.I.,” (P8) due to the frequency of erroneous output,

participants see verification as an essential part of their interactions with LLMs: “Since we

know it’s a language model and everyone says it sometimes give erroneous information, I

verify sometimes with Google or my own domain knowledge” (P3).
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5.3.3 Contextualizing data is an important, but difficult step in the

sensemaking process.

When encountering unfamiliar data, participants relied on two main techniques: a joint

exploration and association approach, and an external research approach. P2 described their

process as: “First, I get the domain of the data, understand what the columns are, what

properties they represent, and the types of data. Then I dig down and ask questions, and

depending on the questions, I’ll try to find answers in different ways.” In the first prototype,

few participants recognized what the legend titled “MPAA Rating” meant. To understand it,

participants explored the legend’s data, and once they heard the sequence “G, PG, PG-13,

R” as the categories, as P3 described, “I didn’t know exactly what MPAA rating was, but

through association, I was able to make it out” and realize it referred to a movie’s censorship

rating. When asked how often she used this technique, P10 responded, “A lot - it happens

a lot when I have to really dig and search to find out what the context of the data is.” In

the cases where our participants could not make a personal association to the data, P1 and

P13 expressed that they would most likely search on Google for the field names.

After understanding what “MPAA Rating” meant, participants inferred that the domain

of the data was movies, which grounded their sensemaking process around this context. This

emphasizes how, during exploratory data analysis, BLV users contextualize data by under-

standing its domain. As P10 described, “A lot of times people overthink about describing a

picture - they get into describing but forget why we are talking about it in the first place.

I really want context.” However, contextualization often involves using their own domain

knowledge, which may discourage users from exploring unfamiliar domains.

5.3.4 Agency is an important aspect of interpreting data for users.

Users expressed a strong desire for autonomy in their data analysis process, which current

techniques for contextualizing data and visualizations often fail to provide. P14 highlighted
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this issue, noting that when presented with a bar chart online, the brief descriptions provided

often dictate what users should see: “The problem with those interpretations is they tell you

what they think you should see, but there might be things in that data representation that

you haven’t even thought of.” This prescriptive approach leaves out potential perspectives

and insights that users might have had if they were allowed to explore the data on their

own terms. P14 further elaborated, stating, “That data is just data - their caption is their

interpretation of that data.” This underscores the urge among BLV users to have control

over their interpretation of data, rather than relying on predefined captions or summaries

that might not align with their specific needs or questions. The feedback from participants

indicates a significant gap in current data visualization techniques: the need for tools that

enable BLV users to independently navigate and interpret data, thus fostering a sense of

ownership and confidence in their analytical processes.

5.3.5 Bins are a useful scaffold for structuring the initial sensemak-

ing process.

Bins play an essential role in contextualizing data by providing meaningful groupings

that tie the data to real-world concepts. As P3 described, bins are “very helpful because

it gives us the outline of how to categorize it . . . we can easily sort out the performance.”

They provided useful information that users might not figure out independently: “Without it

telling me I would have no idea that this range is economy/mid-range” (P8). As P5 described

“The bins and highlights can simplify the information to make more connections, in more of

a layman’s terms.” A bin’s reasoning, also known as it’s explanation in the prototypes, also

helped simplify the process of navigating complex data. Participants enjoyed having a bin’s

reasoning hidden in the table view, suggesting that bin explanations provided a starting

point for deeper exploration: “this is interesting, if you want clarification, you can dig into

it” (P3). Furthermore, bin explanations helped non-experts feel more confident navigating

the data. “In this situation, it was useful for me because I’m not really a specialist in
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penguins. This helps me understand” (P6). P5 expressed increased confidence, stating, “it

gives me a sense of confidence now I have access to information that I didn’t have before”.

However, while bin explanations were helpful for non-experts, domain experts might find

them less useful. “I think they are because when you are tackling a subject for the first

time...if you are tackling a subject you already know about, you may not need them” (P14).

Overall, bin explanations significantly enhance users’ ability to understand and work with

data, especially for those who are not domain experts. They provide meaningful context and

simplify complex information, making data more accessible and interpretable.

5.3.6 Highlights provide an overview of the data’s domain and struc-

ture.

Participants found that highlights provided a valuable contextual overview, helping align

their expectations about what to explore within the data. P1 noted, “Highlights were VERY

useful - they were well stated and talked about something that I could have some under-

standing of.” This was echoed by P2: “Yeah, they provide information that is not encoded

in the data itself.” This is because highlights helped participants make connections with the

data’s context: “Definitely knowing the highlights makes you more interested in the data

and opens your mind - it makes you understand the data better” (P9). P13 appreciated the

clarity provided, saying, “When I saw body mass, I didn’t know what it was talking about,

but now I can definitely see there are different ranges.” Users also emphasized the impor-

tance of verifying the information in these highlights, often using their own understanding,

digging into the table data, cross-checking with predicate information, or consulting external

resources like Google: “I might go to Google and re-read on these things, but at least I will

take the first impressions here” (P3). This verification is crucial, especially in professional

contexts where accuracy is paramount. Lastly, highlights also enhanced user agency, helping

them generate relevant questions about the data, similar to a data scientist’s approach. P9

noted, “When having these highlights, it’s sort of a summary of what’s happening and based
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on that you can generate questions.” P11 added highlights “Give me some ideas about what

questions I can ask about it.”

5.3.7 The independent exploration prototype offers minimal guid-

ance, which benefits users preferring less structure but in-

creases cognitive overload and leads to overlooked highlights.

The independent exploration prototype has both strengths and limitations. One key lim-

itation is that it forces users to memorize which ranges belong in which bin, rather than

presenting the whole chunk together, increasing cognitive overload. P1 highlighted that this

approach required a lot of time to remember which intervals belonged to which bin. Similarly,

P10 expressed a preference for seeing the entire bin rather than annotations on each inter-

val, saying, “I had to go back and check what was classified as short.” However, once users

became familiar with the structure, they found it useful for subtly adding more information

without heavily structuring their interpretation. P3 appreciated the extra information, not-

ing, “You’re giving me a lot of information I would otherwise have to dig for.” Despite this,

the ungrouped highlights at the end were often overlooked by users, as P9 mentioned, “I did

not notice the highlight thing.”

5.3.8 Participants preferred the guided exploration prototype for

its intuitive data grouping and upfront highlights, which made

it easier to understand and explore despite potential bias.

Participants found the guided exploration prototype was more intuitive since it split the

data into meaningful and interpretable groups, rather than using the original Olli intervals:

“This is quick and great – who cares what we are counting by?” (P10). Additionally, by

putting the highlights first, participants found it easier to ground their understanding of

what to explore in the data. As P3 explained, “It gives an overall picture of what to expect
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before I dig into the data.” However, some participants felt that this approach could bias

their perception. As P2 noted, “By having them first, you are subconsciously changing your

perception.” Grouping the highlights together at the beginning was also appreciated for its

organization and efficiency, allowing users to skip over extra information if they didn’t want

it. P6 preferred this layout, stating, “It’s easier and reduces keypresses needed to get info.”

The guided exploration prototype also made it easier for users to surface their own patterns

within the data. P4 stated, “The thing I like the most is that I can find a pattern right away

unlike the previous model.” In general, the guided exploration prototype was the preferred

choice for participants – “I like this better than the last one” (P3) – because participants

found it easier to understand, noting, “I don’t feel dumb looking at this data” (P4).
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Chapter 6

Limitations

Our study revealed limitations in A.I. interpretation accuracy, lack of customization, and

the need for equal information access to ensure fairness and effective collaboration between

BLV and sighted users. Participants noted the challenges posed by A.I. interpretation and

non-determinism. While A.I. can expedite conclusions, it may not always provide accurate

evaluations. P10 observed, “A.I. is wonderful because it helps you jump to conclusions faster,

but it can NOT give the right evaluation.” The context dependency of A.I. outputs and their

variability upon refresh raised concerns about reliability, with P6 stating, “You have to take

what is good from it, but with a grain of salt.” Participants emphasized the need to verify

A.I.-generated insights independently, as P6 mentioned, “I would always double-check it if it

were really important.”

The lack of customization in creating groupings was another significant limitation. Par-

ticipants expressed a desire for more control over the data presentation and the ability to

tailor insights to their specific needs. P6 highlighted the need for personal relevance, saying,

“The values don’t correspond to my knowledge because I use different units, so it’s hard

for me to understand.” P4 suggested that user options across prototypes would enhance

usability, noting, “People try to sort and filter things they want, so certain categorizations

will not hurt but the options can be given to certain users on what to do with it.”

42



There is an ongoing debate about whether BLV tools should provide the same level of

information to sighted users to ensure fairness and collaboration. Participants were divided

on this issue, with some advocating for parity in information access. P10 captured this

sentiment, stating, “Is it helpful information? Heck yeah! Is it fair? No...you would need to

make sure the sighted person gets that too.” The potential for BLV-specific tools to create

an imbalance in collaborative settings was also highlighted, with P10 expressing concerns

about different levels of understanding: “If you’re not getting that write-up, I shouldn’t be

getting that much more either.”
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Chapter 7

Discussion and Future Work

Our technique, SAGE, has shown significant promise in helping users, especially those who

are blind or have low vision (BLV), access more domain-specific information. Participants

expressed enthusiasm about its potential. For example, P9 remarked, “It’s all completely

new to me, and I had in my mind something similar but didn’t know there was a way

to get a textual summary of data and move through it easily.” Importantly, SAGE has

the potential to go beyond the accessibility problem space. Sighted users can also benefit

from the detailed insights provided. P13 noted, “Anyone can find what’s going on in this

data—regardless if you know about the horsepower, mileage, etc.” This sentiment was

echoed by P5, who stated, “this would be beneficial even for individuals without visual

impairment.” This inclusivity ensures that all users can access the same level of detailed

information, enhancing collaboration and understanding. As P14 mentioned, “Whenever

you can put sighted and blind individuals on the same playing field and equal footing, you

have accomplished something really marvelous.”

The applicability of highlights as a concept extends beyond the current prototypes and

can be beneficial in various domains. For instance, P5 noted that the bins and highlights

could simplify information in business contexts, making products and services more user-

friendly. P3 mentioned the potential for these tools in tracking COVID-19 trends, business
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and employment trends, and even e-commerce, stating, “Labeling could be useful outside of

this context, particularly in shopping for big purchases like fridges or washing machines.”

Other potential applications include weather tracking, network troubleshooting, and edu-

cational contexts. P4 emphasized the usefulness of highlights in troubleshooting, stating,

“Highlighting is a big issue for blind users because it could be working with hundreds of

rows of data.” Similarly, P5 suggested that such tools could enhance experiences in social

spaces like museums and botanical gardens by providing detailed visualizations of exhibits.

Participants also expressed interest in using data highlights with different types of data, such

as time series and seasonal data. P9 stated, “I would be interested to see how we can use it

with different kinds of data such as time series and seasonality, and how it can give us these

unique insights.”

Future research should explore the scalability and customization of data highlights to

ensure they meet diverse user needs. More work needs to be done on exploring the usefulness

of our technique in real world applications: “I guess I never thought of using an LLM this

way—it’s really interesting. I’m curious now how effective this would be on real-world data

that a real person needs to digest” (P11).

In summary, SAGE has transformative potential for making data more accessible and

actionable for all users. By continuing to refine and expand this technology, we can create

a more inclusive data exploration experience that benefits a broad range of users in various

contexts.
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