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ABSTRACT

Metastatic colorectal cancer (mCRC) has a poor prognosis and high mortality rate, but
innovative therapies such as transarterial radioembolization (TARE) can improve patient
outcomes. The EPOCH clinical trial demonstrated that TARE improved hepatic progression-
free survival (hPFS) in patients with colorectal liver metastases, and computational methods
to analyze the multimodal data collected can identify patient subgroups and predict treat-
ment response for personalized medicine. First, a comprehensive data preprocessing pipeline
curated a high-quality dataset of liver-region Computed Tomography (CT) and Magnetic
Resonance Imaging (MRI) scans paired with patient biomarkers. Multi-Dimensional Subset
Scanning (MDSS) identified a group of patients with shared biomarkers that exhibited poor
response to TARE, and Cox Proportional Hazards (CoxPH) modeling revealed hazard ratios
for biomarkers aligning with clinical expectations, albeit with a limited C-index. Augment-
ing CoxPH modeling with embeddings from a deep learning foundation model pre-trained
on liver CT and MRI scans and fine-tuned to predict treatment response resulted in a sub-
stantially higher C-index. Interestingly, models fine-tuned to predict one clinical feature had
improved predictive accuracy for other features they were not specifically trained on, and
Class Activation Mapping (CAM) visualizations showed that salient embedding dimensions
focus on the liver region, providing interpretability. The ensemble of computational tech-
niques applied to multimodal clinical trial data successfully identified patient subgroups,
extracted predictive biomarkers, and enhanced the accuracy of treatment response predic-
tions, contributing to the development of more effective, personalized treatment strategies
for mCRC patients undergoing TARE.
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Chapter 1

Introduction

1.1 Motivation

The global burden of cancer continues to escalate, representing one of the most significant
health challenges of the 21st century. Colorectal cancer (CRC), in particular, ranks as the
third most diagnosed cancer worldwide, with metastatic CRC (mCRC) often presenting a
formidable prognosis due to its advanced stage at diagnosis and limited treatment success
rates. The urgent need for improved diagnostic and therapeutic strategies is clear, as early
detection and tailored treatment approaches can substantially enhance patient outcomes and
survival rates [1].

In this context, the integration of computer science, particularly artificial intelligence
(AI), into medical research offers transformative potential for cancer diagnosis and treat-
ment. AI methodologies, especially those harnessing deep learning, are increasingly recog-
nized for their ability to unearth complex patterns in data that are imperceptible to human
analysis. In the realm of oncology, AI-driven approaches are adept at identifying novel
clinical biomarkers, which are critical for early disease detection, prognosis, and the cus-
tomization of treatment strategies [2]. These biomarkers, particularly when derived from
imaging data, can significantly inform clinical decisions and influence the development of
personalized medicine, ultimately leading to better patient care outcomes [3].

Recent advancements in computer vision technology have significantly enhanced the util-
ity of AI in medical imaging. The evolution of deep learning models, which employ so-
phisticated neural network architectures with increasingly deep layers, has revolutionized
the analysis of medical images. Such models are particularly adept at learning complex
features across billions of captured images and are similarly well adapted for medical imag-
ing modalities like Computed Tomography (CT) and Magnetic Resonance Imaging (MRI).
Recent efforts to collate large-scale datasets such as the UK Biobank [4], which includes
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extensive imaging data, have become invaluable to train robust AI models. The develop-
ment of pretrained foundation models in medical imaging, utilizing these extensive datasets,
exemplifies this technological progress, providing a versatile base from which customized
diagnostic tools can be efficiently developed to address specific clinical needs, such as the
diagnosis of tuberculosis from chest X-ray images [5].

We seek to apply computer vision technologies to Boston Scientific’s EPOCH clinical trial,
which focuses on transarterial radioembolization (TARE) therapy for mCRC [6]. By deploy-
ing sophisticated, multi-modal tools to interpret and cluster imaging data from modalities
such as CT and MRI scans, we aim to identify predictive biomarkers of treatment response.
Our goal is to assist in the development of more effective, personalized treatment protocols
to improve outcomes for patients with complex oncological conditions.

1.2 Problem Statement

Despite advancements in treatment modalities, patient outcomes in mCRC remain hetero-
geneous, underscoring the need for personalized approaches to optimize therapeutic efficacy.
The EPOCH clinical trial, a multicenter, open-label phase III study sponsored by Boston
Scientific, investigated the impact of transarterial Yttrium-90 radioembolization (TARE) in
combination with second-line systemic chemotherapy for colorectal liver metastases (CLM)
[6]. While the trial demonstrated improved progression-free survival (PFS) and hepatic PFS
(hPFS) in patients receiving TARE [6], the heterogeneity in patient responses necessitates
further investigation to improve treatment regimes.

The heterogeneous response to TARE in mCRC patients suggests that there may be
underlying factors influencing treatment efficacy that are not yet fully understood. While
these factors could include patient-specific characteristics, such as genetic profiles, tumor
biology, and microenvironmental factors, as well as treatment-related variables, such as dos-
ing, timing, and combination with other therapies [7], directly measuring these variables
can be challenging and resource-intensive. However, medical imaging data, such as com-
puted tomography (CT) and magnetic resonance imaging (MRI), provide a high-dimensional
modality that is well-suited for feature extraction and may serve as a proxy for some of these
hidden variables.

Medical images contain a wealth of information about tumor characteristics, including
size, shape, texture, and vascularization, which can reflect underlying biological processes
and treatment response. By applying advanced computational techniques, such as radiomics
and deep learning, to these images, we can extract a wide range of quantitative features that
may capture the complex interplay between patient-specific factors and treatment efficacy
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[8]. These imaging-derived features could potentially serve as non-invasive biomarkers for
predicting patient outcomes and guiding treatment decisions. The EPOCH trial collected a
rich dataset, including patient demographics, clinical characteristics, and high-dimensional
imaging data from CT and MRI modalities, which can be used jointly to uncover complex
patterns and biomarkers predictive of treatment response [6]. However, the heterogeneous,
multi-modal nature of the data poses significant challenges for traditional analytical ap-
proaches, necessitating significant preprocessing and feature extraction to detect differences
in medical images that correlate with patient outcomes following treatment.

Identifying unique patient subgroups based on their imaging and clinical characteristics
is essential for personalized treatment strategies in mCRC. However, this task is challenging
due to the complexity and high dimensionality of medical imaging data, the need to integrate
it with other clinical variables, and the requirement for advanced computational methods to
process and analyze large datasets effectively. Extracting meaningful features from medical
images that capture tumor biology and treatment response, and developing multimodal
machine learning models that can combine and interpret disparate data types, are critical
steps in identifying these patient subgroups. By stratifying patients into distinct groups
based on their imaging and clinical characteristics, we can better understand the factors
contributing to heterogeneous treatment responses and develop targeted interventions that
optimize patient outcomes, ultimately improving the effectiveness of personalized treatment
strategies for mCRC patients.

1.3 Research Question and Objectives

The primary research question that this study aims to address is: Can advanced compu-
tational methods, specifically deep learning and clustering techniques, be applied to the
multi-modal data collected in the EPOCH clinical trial to identify unique patient subgroups
and predictive biomarkers that correlate with treatment response to TARE in mCRC pa-
tients?

To answer this question, the study will pursue the following objectives:

1. Generate comprehensive statistics on the available categorical and numerical biomark-
ers and data points in the EPOCH trial dataset. Preprocess the image data by applying
restrictions based on extracted metadata, image quality, and liver region identification
to create a high-quality dataset suitable for further analysis.

2. Develop baseline models to group and predict patient outcomes using the preprocessed
data. Employ clustering algorithms to identify unique patient subgroups and utilize
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hazard modeling techniques, such as Cox proportional hazards (CoxPH) regression, to
predict treatment response and survival outcomes.

3. Fine-tune pre-trained medical foundation models to augment the structured data with
embedding features. Evaluate the performance of these models in classifying clinically
relevant characteristics and identify limitations and issues with classification accuracy.

4. Extract image features and generate embeddings to improve classification performance
and identify clinically relevant groupings. Investigate the impact of incorporating image
embeddings and structured data on the performance of CoxPH modeling and classi-
fication tasks. Assess the effects of fine-tuning the models for different downstream
tasks on classification tasks and evaluate model interpretability using techniques such
as hierarchical clustering of correlated image embeddings and class activation mapping
(CAM) for CoxPH modeling.

In this thesis, we aim to demonstrate the potential of deep learning and clustering tech-
niques in identifying unique patient subgroups and predictive biomarkers that correlate with
treatment response to TARE in mCRC patients.

1.4 Thesis Structure Overview

This thesis is organized into several chapters and the structure is as follows:

• Chapter 1: Introduction - This chapter provides an overview of the thesis, including
the motivation behind the research, the problem statement regarding heterogeneous
patient responses to TARE in mCRC, the research questions, the proposed approach
utilizing deep learning and clustering techniques, and the significance of the research
in the context of personalized medicine.

• Chapter 2: Background on Metastatic Colorectal Cancer and the EPOCH
Clinical Trial - This chapter presents a comprehensive overview of mCRC, including
the specific subtype used in the study, common treatments, and an introduction to
TARE therapy, specifically focusing on the TheraSphere system. It also provides an
overview of the EPOCH clinical trial, its relevant results, and highlights the heteroge-
neous patient response to treatment.

• Chapter 3: Leveraging Biomarkers from the EPOCH trial - This chapter
discusses common relevant biomarkers for cancer found in the literature, the biomarkers
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available in the EPOCH trial, their biological relevance, and potential biomarkers that
can be derived from CT and MRI images.

• Chapter 4: Technical Background - This chapter provides a technical background
on supervised machine learning, multi-modal models, embedding spaces from deep
convolutional models, dimensionality reduction and visualization techniques (e.g., t-
SNE), clustering methods, Cox proportional hazards modeling, and classifiers used in
the study (e.g., XGBoost, Random Forest, Multi-Layer Perceptron).

• Chapter 5: Model Architectures and Algorithmic Tools - This chapter de-
scribes the preprocessing pipeline and relevant tools (e.g., TotalSegmentator), clus-
tering methodology, and sets of features examined. It also presents the pre-trained
model architectures as well as the embedding extraction process, feature combination
for multimodal groupings, and multi-dimensional subset scanning.

• Chapter 6: Dataset Overview and Preprocessing - This chapter provides data
statistics for structured and unstructured data, biomarkers used in identification, and
the preprocessing pipeline. A comprehensive table quantifying different categories such
as sex, lesion class, MR, and CT is presented.

• Chapter 7: Preliminary Patient Subgroup Identification and Outcome Pre-
diction - This chapter focuses on baseline clustering of patient responses using struc-
tured data and multi-dimensional subset scanning (MDSS), as well as Cox proportional
hazards prediction modeling.

• Chapter 8: Augmenting Structured Data with Embedding Features from
Fine-Tuned Pre-trained Medical Foundation Models - This chapter explores
the fine-tuning of pre-trained medical foundation models to augment structured data
with embedding features. It evaluates the performance of these models in classifying
clinically relevant characteristics, such as sex, and discusses the limitations and issues
with classification accuracy.

• Chapter 9: Enhancing Classification Performance and Clinically Relevant
Groupings with Image Feature Extraction and Embeddings - This chapter
presents the embedding generation pipeline and compares the results from clustering
image embeddings with the baseline models. It investigates the impact of incorporat-
ing image embeddings and structured data on the performance of Cox proportional
hazards modeling and classification tasks, and assesses the effects of fine-tuning the
models for different downstream tasks. Model interpretability is evaluated using class
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activation mapping on salient embedding dimensions identified by Cox proportional
hazards modeling.

• Chapter 10: Conclusion - This chapter summarizes the key findings of the research,
discusses the implications for personalized medicine in mCRC treated with TARE, and
provides recommendations for future research directions.
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Chapter 2

Background on Metastatic Colorectal
Cancer and the EPOCH Clinical Trial

2.1 Overview of Metastatic Colorectal Cancer (mCRC)

Colorectal cancer (CRC) is a significant global health burden, ranking as the third most
commonly diagnosed cancer and the second leading cause of cancer-related deaths worldwide.
In 2020, approximately 1.9 million new cases of CRC were diagnosed, and around 935,000
deaths were attributed to this disease. The progression from benign adenomatous polyps to
malignant carcinoma involves a series of genetic and epigenetic alterations, commonly known
as the adenoma-carcinoma sequence, with key mutations in genes such as APC, KRAS, and
TP53 [9].

Metastatic colorectal cancer (mCRC) occurs when cancer cells spread from the primary
tumor in the colon or rectum to distant organs, with the liver being the most common site
of metastasis. Approximately 20-25% of patients have metastatic disease at the time of
diagnosis, and nearly 50% of CRC patients will develop metastases during their illness [10].
The prognosis for mCRC is generally poor, with a five-year survival rate of about 14% [10].
However, advances in systemic therapies, targeted treatments, and surgical techniques have
improved outcomes, with the median overall survival for mCRC patients now exceeding 30
months in recent clinical trials [11].

The treatment of mCRC typically involves a combination of systemic chemotherapy, tar-
geted therapy, and locoregional treatments such as surgery and radioembolization. Common
chemotherapy regimens include combinations of fluoropyrimidines (5-FU or capecitabine)
with oxaliplatin (FOLFOX) or irinotecan (FOLFIRI). Targeted therapies, such as beva-
cizumab (anti-VEGF) and cetuximab or panitumumab (anti-EGFR), are used based on the
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molecular profile of the tumor, including KRAS, NRAS, and BRAF mutation status [11].

2.2 Metastatic Colorectal Cancer in the Liver

The liver is the most common site for metastasis in colorectal cancer (CRC) patients, with
approximately 20-30% of individuals with diagnosed with CRC developing liver metastases
[12]. This high incidence is primarily due to the liver’s unique blood supply, receiving blood
directly from the gastrointestinal tract via the portal vein, which facilitates the dissemination
of cancer cells from the colon and rectum to the liver [13]. Liver metastases significantly
impact patient prognosis and are a major determinant of morbidity and mortality in mCRC
[12].

Management of colorectal liver metastases (CLM) involves a multidisciplinary approach,
integrating systemic chemotherapy, surgical resection, and locoregional therapies [13]. Surgi-
cal resection of liver metastases, when feasible, offers the best chance for long-term survival
and potential cure. However, only 20-30% of patients with CLM are candidates for surgery
due to factors such as the number, size, and location of metastases, as well as the patient’s
overall health and liver function [14]. For patients who are not surgical candidates, systemic
chemotherapy regimes, referenced earlier, remain a cornerstone of treatment [11].

2.3 Overview of TARE Therapy and TheraSphere

Transarterial radioembolization (TARE) is a locoregional therapy that has gained promi-
nence in the management of colorectal liver metastases (CLM), especially for patients who
are not candidates for surgical resection. TARE involves the targeted delivery of radioactive
microspheres directly to liver tumors via the hepatic artery, enabling high-dose radiation to
be administered to the tumor while sparing the surrounding healthy liver tissue. This precise
approach helps maximize tumor control and minimize systemic side effects [11].

TheraSphere, a specific type of TARE, uses Yttrium-90 (Y-90) glass microspheres. These
microspheres are approximately 20-30 micrometers in diameter and are embedded with the
radioactive isotope Y-90, which emits high-energy beta radiation. Once administered, these
microspheres become lodged in the microvasculature of liver tumors, delivering targeted
radiation over a period of several days to weeks. The high-dose radiation induces DNA dam-
age and subsequent cell death in the tumor cells, leading to tumor shrinkage and potential
necrosis [15]. The procedure for TARE with TheraSphere involves a multidisciplinary team,
including interventional radiologists, oncologists, and nuclear medicine specialists. The pro-
cess typically begins with a planning angiogram to map the hepatic vasculature and assess
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the tumor’s blood supply. This is followed by a dosimetry calculation to determine the ap-
propriate dose of Y-90 microspheres needed for effective treatment. The microspheres are
then delivered via a catheter inserted into the hepatic artery, directly targeting the liver
tumors [15].

TheraSphere has shown promising results in terms of tumor response and disease control
in patients with liver-dominant mCRC. Clinical studies have demonstrated improvements in
progression-free survival (PFS) and hepatic progression-free survival (hPFS) with the use of
TARE. The ability to deliver high-dose radiation precisely to the tumor while sparing healthy
tissue makes TheraSphere a valuable option for patients with inoperable liver metastases [6].
Despite the advancements and benefits of TARE, managing CLM remains complex due to
the heterogeneous nature of the disease and the variability in patient responses to therapy.

2.4 Overview of the EPOCH Clinical Trial

The EPOCH (Evaluating TheraSphere in Patients with metastatic colorectal carcinoma
Of the liver who have progressed on first-line Chemotherapy) clinical trial is a randomized,
open-label, international, multicenter, phase III study that investigated the impact of adding
transarterial Yttrium-90 radioembolization (TARE) to standard second-line chemotherapy
for patients with colorectal liver metastases (CLM). The trial was designed to address the
heterogeneous patient responses to treatment observed in previous studies and to evaluate
the potential of TARE in improving outcomes for patients with limited treatment options
after progression on first-line therapy [6].

The EPOCH trial enrolled 428 patients from 95 centers in North America, Europe, and
Asia, who were randomly assigned 1:1 to receive either second-line chemotherapy alone or
in combination with TARE using TheraSphere glass microspheres as seen in Figure 2.1 [6].
The study population included patients with unresectable unilobar or bilobar CLM, who had
progressed on first-line oxaliplatin- or irinotecan-based chemotherapy. Key eligibility criteria
included age 18 years, measurable disease by RECIST 1.1, performance status 0 or 1, and
adequate liver function. Patients with prior arterial or radiotherapy to the liver, clinically
evident ascites, or confirmed extrahepatic metastases were excluded [6].

The two primary endpoints of the EPOCH trial were progression-free survival (PFS)
and hepatic PFS (hPFS), assessed by blinded independent central review using RECIST 1.1
criteria. Secondary endpoints included overall survival (OS), objective response rate (ORR),
and disease control rate (DCR). The study was designed to have 80% power to detect a
hazard ratio (HR) of 0.71 for PFS and 0.65 for hPFS, favoring TARE plus chemotherapy
over chemotherapy alone [16].
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Figure 2.1: CONSORT diagram showing subject enrollment, treatment allocation, patient
disposition, and data analysis in the EPOCH trial [6].

The addition of TARE to second-line chemotherapy resulted in significantly longer PFS
and hPFS compared to chemotherapy alone (Figure 2.2, Figure 2.3) [6]. The HR for PFS
was 0.69 (95% CI, 0.54 to 0.88; 1-sided P = .0013), with a median PFS of 8.0 months in the
TARE plus chemotherapy group versus 7.2 months in the chemotherapy alone group. The
HR for hPFS was 0.59 (95% CI, 0.46 to 0.77; 1-sided P < .0001), with a median hPFS of
9.1 months and 7.2 months, respectively.

Despite the significant improvements in PFS and hPFS, the EPOCH trial revealed het-
erogeneity in patient responses to treatment, with some subgroups deriving greater benefit
from the addition of TARE to second-line chemotherapy than others. Furthermore, there
was no significant difference in overall survival between the TARE plus chemotherapy and
chemotherapy alone groups. Further subgroup analyses are needed to identify patient pop-
ulations who may benefit most from TARE to guide personalized treatment decisions.
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Figure 2.2: Kaplan-Meier analysis of overall PFS for TARE plus chemotherapy versus
chemotherapy in the intention-to-treat population. [6]

Figure 2.3: Kaplan-Meier analysis of hPFS for TARE plus chemotherapy versus chemother-
apy in the intention-to-treat population.
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2.5 Heterogeneous Patient Responses and the Need for

Subgroup Analyses

The EPOCH trial results revealed significant heterogeneity in patient responses to treatment,
underscoring the importance of conducting subgroup analyses to identify patient populations
that may derive greater benefit from TARE. While the overall response rate (ORR) was
significantly higher in the TARE plus chemotherapy group compared to chemotherapy alone
(34.0% vs. 21.1%; 1-sided P = .0019), there was no significant difference in overall survival
(OS) between the two groups (median OS 14.0 vs. 14.4 months; HR 1.07; 95% CI, 0.86 to
1.32; 1-sided P = .7229) [6]. This discrepancy between ORR and OS highlights the complex
nature of treatment responses in mCRC and the need for further investigation into factors
influencing patient outcomes.

Subgroup analyses in the EPOCH trial revealed that the progression-free survival (PFS)
benefit with TARE was more pronounced in specific patient subgroups, including those with
KRAS mutant tumors (HR 0.57; 95% CI, 0.40 to 0.80), left-side primary tumors (HR 0.65;
95% CI, 0.48 to 0.88), hepatic tumor burden of 10%-25% (HR 0.43; 95% CI, 0.26 to 0.72),
3 lesions (HR 0.33; 95% CI, 0.14 to 0.76), and resected primary tumors (HR 0.63; 95% CI,
0.46 to 0.85) [6]. These findings suggest that certain patient and tumor characteristics may
influence the efficacy of TARE in combination with second-line chemotherapy, and that a
one-size-fits-all approach may not be optimal for managing mCRC.

The heterogeneity in treatment responses observed in the EPOCH trial is consistent with
the complex biology and molecular landscape of mCRC. Colorectal tumors exhibit signif-
icant genetic and epigenetic alterations, such as mutations in KRAS, NRAS, BRAF, and
microsatellite instability, which can influence prognosis and response to targeted therapies
[16]. Additionally, the primary tumor location (left-sided vs. right-sided) has been shown
to impact clinical outcomes and treatment efficacy in mCRC [16]. These biological fac-
tors, along with patient-specific characteristics such as tumor burden and number of lesions,
likely contribute to the heterogeneous responses to TARE and chemotherapy observed in
the EPOCH trial. Further research is necessary to validate these subgroups and to identify
additional biomarkers and clinical factors that can guide personalized treatment strategies
in mCRC.
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Chapter 3

Leveraging biomarkers from the EPOCH
trial

3.1 Explanation of Biomarkers and Response Measure-

ments from the EPOCH Trial

The EPOCH trial collected an extensive array of biomarkers to evaluate the treatment re-
sponse and progression in patients with metastatic colorectal cancer (mCRC). We categorized
these biomarkers into those directly related to tumor characteristics and those associated
with treatment response. Here, we provide examples of biomarkers’ biological relevance and
their potential as predictive or prognostic indicators.

Carcinoembryonic antigen (CEA) is a glycoprotein involved in cell adhesion, commonly
elevated in colorectal cancer patients. It is used as a tumor marker for monitoring disease
progression and treatment response. Elevated CEA levels are associated with tumor bur-
den and metastatic potential. Monitoring CEA levels can help assess the effectiveness of
treatments like TARE and chemotherapy [17].

KRAS mutation status is another crucial biomarker. KRAS is a gene encoding a protein
involved in cell signaling pathways that regulate cell growth and apoptosis. Mutations in
KRAS are common in colorectal cancer and can influence treatment outcomes. KRAS mu-
tations are associated with resistance to anti-EGFR therapies and can affect prognosis and
response to treatments. Patients with KRAS mutations may respond differently to TARE
[18].

Tumor size and burden, as indicated by the maximum liver lesion size and liver tumor
burden percentage, are also important biomarkers collected in the EPOCH trial. Larger
tumor sizes and higher tumor burdens are often associated with worse prognosis and can
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significantly impact treatment planning and outcomes [9]. In addition to these, the EPOCH
trial collected data on other relevant biomarkers such as NRAS and BRAF mutations, which
are known to influence the behavior of colorectal cancers and their response to various
treatments. While NRAS mutations occur in a smaller percentage of colorectal cancer cases,
they are critical for understanding resistance mechanisms to targeted therapies. BRAF
mutations, particularly the V600E variant, are associated with poor prognosis and aggressive
disease [16].

The trial also included response-related biomarkers such as overall survival (OS), progression-
free survival (PFS), and hepatic progression-free survival (hPFS). These metrics are essential
for evaluating the effectiveness of treatments and understanding patient responses. Overall
survival (OS) measures the time from the start of treatment until death from any cause,
providing a comprehensive outcome measure. Progression-free survival (PFS) is the length
of time during and after treatment that a patient lives with the disease without it worsening,
reflecting the efficacy of the treatment in controlling the disease. Hepatic progression-free
survival (hPFS) specifically focuses on the liver metastases, and is a primary study outcome-
of-interest given the liver-dominant nature of mCRC [6].

3.2 Integrating Biomarkers into Machine Learning Mod-

els

Biomarkers from the EPOCH trial, such as carcinoembryonic antigen (CEA) levels, KRAS
mutation status, tumor size, and progression-free survival (PFS), can serve as critical input
features for supervised ML algorithms, which can discern patterns and associations between
the biomarkers and clinical outcomes.

To construct predictive models, feature vectors are created from the collected biomarker
data. These vectors enable the training of ML models to predict outcomes such as overall
survival (OS) and treatment efficacy. Advanced feature selection and engineering techniques
are employed to identify the most relevant biomarkers to enhance model accuracy. For
example, principal component analysis (PCA) can be used to reduce the dimensionality of
the data, highlighting the most salient features and improving predictive power. Additionally,
extracted features from image data, such as those obtained from CT or MRI scans, can be
used to augment the existing feature vector and improve the accuracy and robustness of the
predictive models, offering a more comprehensive understanding of the tumor characteristics
and treatment response.
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Chapter 4

Technical Background

We rely on an array of computational techniques to uncover patterns and relationships within
the complex, multi-modal dataset. This chapter provides an overview of the key methods
employed in our approach, including supervised machine learning algorithms, multi-modal
models, embedding spaces from deep convolutional models, dimensionality reduction and
visualization techniques, clustering methods, and survival analysis using Cox proportional
hazards modeling.

4.1 Supervised Machine Learning

Supervised machine learning is a powerful tool for predicting outcomes based on labeled
input data. At its core, supervised learning involves training a model to map input features
to corresponding output labels, enabling the model to make predictions on new, unseen
data. To illustrate the fundamental concepts of supervised learning, we begin with a simple
example: linear regression.

In linear regression, the goal is to find a linear relationship between input features x =

(x1, . . . , xn) and a continuous output variable y. The model is defined by a set of weights
w = (w1, . . . , wn) and a bias term b, such that:

ŷ = w⊤x+ b (4.1)

where ŷ is the predicted output. The objective is to find the optimal weights and bias
that minimize the difference between the predicted and actual outputs, typically measured
using mean squared error (MSE):

MSE =
1

m

m∑
i=1

(yi − ŷi)
2 (4.2)
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where m is the number of training examples, and yi and ŷi are the actual and predicted
outputs for the i-th example, respectively.

While linear regression is effective for simple problems, many real-world applications,
such as those in the EPOCH trial, require more powerful, non-linear models. Artificial
neural networks (ANNs), also known as deep learning models, are a class of supervised
learning algorithms inspired by the structure and function of biological neural networks.

ANNs consist of interconnected layers of artificial neurons, or nodes, that process and
transmit information. Each neuron in a layer receives weighted inputs from the previous
layer, applies a non-linear activation function, and passes the output to the next layer. The
basic computation performed by a single neuron can be expressed as:

aj = σ

(
n∑

i=1

wijxi + bj

)
(4.3)

where aj is the activation of the j-th neuron, σ is the activation function (e.g., sigmoid,
ReLU), wij is the weight connecting the i-th input to the j-th neuron, xi is the i-th input,
and bj is the bias term for the j-th neuron.

Figure 4.1: A simple artificial neural network.

Figure 4.1 depicts a simple ANN with an input layer, one hidden layers, and an output
layer. The goal of training an ANN is to find the optimal weights and biases that minimize
the difference between the predicted and actual outputs, similar to linear regression. How-
ever, due to the non-linear nature of ANNs, the optimization process is more complex and
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typically involves gradient-based methods, such as backpropagation.

The training process for ANNs in supervised learning involves the following steps:

1. Forward propagation: Input data is fed through the network, and the output is com-
puted using the current weights and biases.

2. Loss computation: The difference between the predicted and actual outputs is mea-
sured using a loss function, such as cross-entropy for classification tasks or mean
squared error for regression tasks.

3. Backpropagation: The gradients of the loss function with respect to the weights and
biases are computed using the chain rule of differentiation. These gradients indicate
the direction in which the parameters should be updated to minimize the loss.

4. Parameter update: The weights and biases are updated using an optimization algo-
rithm, such as stochastic gradient descent (SGD), which takes a step in the direction
of the negative gradient to minimize the loss.

These steps are repeated iteratively until the model converges or a predefined stopping
criterion is met.

For categorical classification tasks, such as those encountered for clinical features in
the EPOCH trial, the output layer of the ANN typically consists of a softmax activation
function, which produces a probability distribution over the possible classes. The cross-
entropy loss function is then used to measure the difference between the predicted and
actual class probabilities:

L(y, ŷ) = −
m∑
i=1

c∑
j=1

yij log(ŷij) (4.4)

where y and ŷ are the actual and predicted class probabilities, respectively, m is the
number of training examples, and c is the number of classes.

By minimizing the cross-entropy loss during training, the ANN learns to map input
features to the correct class probabilities, enabling accurate predictions on new, unseen
data. Supervised learning techniques can be employed to predict patient outcomes, such
as overall survival or treatment response, based on input features derived from biomarkers,
clinical data, and imaging data.
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4.2 Deep Convolutional Neural Networks

Deep convolutional neural networks (CNNs) are a specialized type of ANN designed for
processing grid-like data, such as images and videos. CNNs have achieved state-of-the-art
performance in various computer vision tasks, including image classification, object detec-
tion, and semantic segmentation. The key characteristic of CNNs is their ability to learn
hierarchical features from raw input data through a series of convolutional layers, pooling
layers, and fully connected layers.

Convolutional layers are the core building blocks of CNNs. They consist of a set of
learnable filters, or kernels, that slide over the input data, performing element-wise multi-
plications and summing the results to produce feature maps. The operation performed by a
single convolutional layer can be expressed as:

Yi,j,k =
∑
m

∑
n

∑
c

Wm,n,c,k ·Xi+m,j+n,c + bk (4.5)

where Yi,j,k is the output value at position (i, j) in the k-th feature map, Wm,n,c,k is the
weight at position (m,n) in the c-th input channel and k-th output channel, Xi+m,j+n,c is
the input value at position (i +m, j + n) in the c-th input channel, and bk is the bias term
for the k-th output channel.

Pooling layers are used to downsample the feature maps produced by convolutional layers,
reducing the spatial dimensions of the data while retaining the most important information.
The most common types of pooling are max pooling and average pooling, which compute
the maximum and average values, respectively, within a specified window size.

ResNet (Residual Network) is a popular CNN architecture that introduced the concept
of residual connections to address the vanishing gradient problem in deep networks. ResNets
consist of a series of residual blocks, each containing convolutional layers and a skip connec-
tion that allows the input to bypass the layers and be added directly to the output. This
skip connection enables the network to learn residual functions, which are easier to optimize
than the original mapping.

4.2.1 2D ResNet Architecture

The 2D ResNet architecture is designed for processing 2D input data, such as images. A
typical 2D ResNet consists of an initial convolutional layer followed by a series of residual
blocks [19], each containing two or three convolutional layers and a skip connection (4.2
[20]). The output of the last residual block is then passed through a global average pooling
layer and a fully connected layer for classification. The key components of a 2D ResNet
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architecture are:

1. Initial convolutional layer: This layer applies a set of learnable filters to the input
image, producing a set of feature maps.

2. Residual blocks: Each residual block consists of two or three convolutional layers,
followed by batch normalization and activation functions (e.g., ReLU). The input to
the block is added to the output of the last convolutional layer via a skip connection,
which allows the network to learn residual functions.

3. Global average pooling layer: This layer reduces the spatial dimensions of the feature
maps produced by the last residual block, yielding a fixed-size vector representation of
the input image.

4. Fully connected layer: This layer takes the output of the global average pooling layer
and performs classification or regression tasks by learning a set of weights that map
the feature vector to the desired output classes or values.

Figure 4.2: Illustration of the 2D ResNet architecture for image classification.[20].

4.2.2 3D ResNet Architecture

The 3D ResNet architecture extends the 2D ResNet to process 3D input data, such as
volumetric medical images or video sequences. In a 3D ResNet, the convolutional layers and
residual blocks are replaced by their 3D counterparts, which operate on 3D input data using
3D convolutions and 3D pooling [21].
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The main components of a 3D ResNet architecture are similar to those of a 2D ResNet,
with the following modifications:

1. 3D convolutional layers: These layers apply 3D filters to the input data, capturing
spatial and temporal information simultaneously.

2. 3D residual blocks: Each 3D residual block consists of two or three 3D convolutional
layers, followed by batch normalization and activation functions. The input to the block
is added to the output of the last 3D convolutional layer via a skip connection.

3. 3D pooling layers: These layers downsample the 3D feature maps produced by the
3D convolutional layers, reducing the spatial and temporal dimensions of the data.

4. Global average pooling layer and fully connected layer: Similar to the 2D
ResNet, these layers are used for classification or regression tasks, but they operate on
the 3D feature maps produced by the last 3D residual block.

The 3D ResNet architecture is particularly well-suited for processing volumetric medical
images, such as CT or MRI scans, as it can capture the spatial relationships between adjacent
slices and learn 3D features that are relevant for predicting patient outcomes or identifying
distinct patient subgroups.

4.3 Embedding Space and Feature Extraction

In addition to their use for classification and regression tasks, deep convolutional networks
can be employed for feature extraction and representation learning. The idea is to use
the activations of the intermediate layers of a pre-trained CNN as a compact, high-level
representation of the input data, known as an embedding.

To extract embeddings from a CNN, the network is first trained on a large dataset for
a specific task, such as image classification. Once trained, the fully connected layers used
for classification are removed, and the activations of the last convolutional layer or pooling
layer are used as the embedding vectors.

The extracted embeddings can be used for various downstream tasks, such as clustering,
similarity search, or as input features for other machine learning models. In the context
of the EPOCH trial, CNN embeddings can be used to represent the imaging data (e.g.,
CT or MRI scans) in a compact, high-level format that captures the most relevant features
for predicting patient outcomes or identifying distinct patient subgroups. To leverage the
embedding space for prediction tasks, the embeddings can be combined with other clinical
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and biomarker data and multimodal models can then be trained to map the combined input
features to the desired output labels, such as overall survival or treatment response.

4.4 Dimensionality Reduction and Visualization

High-dimensional imaging data and extracted embeddings from machine learning models can
pose challenges for traditional methods of data analysis, visualization, and interpretation.
Dimensionality reduction techniques, such as t-Distributed Stochastic Neighbor Embedding
(t-SNE), can be employed to address these challenges by projecting the high-dimensional
data into a lower-dimensional space while preserving the important structural information
and relationships between data points.

Dimensionality reduction refers to a class of techniques that transform high-dimensional
data into a lower-dimensional representation while retaining the most important features
and relationships between data points. The main objectives of dimensionality reduction are:

1. Data compression: Reducing the number of dimensions can help compress the data,
making it more efficient to store, process, and transmit.

2. Visualization: Projecting high-dimensional data into a 2D or 3D space enables the
visualization of complex relationships and patterns that would otherwise be difficult
to perceive.

3. Feature extraction: Dimensionality reduction can help identify the most informative
features or combinations of features that contribute to the underlying structure of the
data.

4.4.1 t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE is a popular non-linear dimensionality reduction technique that is particularly well-
suited for visualizing high-dimensional data in a lower-dimensional space, typically 2D or 3D
[22]. The main idea behind t-SNE is to preserve the local structure of the high-dimensional
data in the low-dimensional representation, such that similar data points in the original space
are mapped to nearby points in the low-dimensional space, while dissimilar data points are
mapped to distant points. The t-SNE algorithm consists of two main steps:

1. Similarity computation: t-SNE computes the pairwise similarities between data
points in the high-dimensional space using a Gaussian probability distribution. The
similarity between two data points is proportional to the probability of observing one
data point as a neighbor of the other, given a certain level of Gaussian noise.
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2. Low-dimensional embedding: t-SNE maps the data points to a low-dimensional
space, typically 2D or 3D, by minimizing the Kullback-Leibler (KL) divergence between
the probability distributions in the high-dimensional and low-dimensional spaces. The
KL divergence measures the difference between the two probability distributions, and
by minimizing it, t-SNE ensures that the local structure of the data is preserved in the
low-dimensional representation.

One of the key advantages of t-SNE is its ability to reduce the dimensionality of embed-
dings extracted from the imaging data to visualize patient subgroups and treatment response
patterns in a 2D or 3D space.

4.5 Cox Proportional Hazards (CoxPH) Modeling

The Cox Proportional Hazards (CoxPH) model is a fundamental statistical technique used
in survival analysis to investigate the association between the survival time of patients and
one or more predictor variables [23]. Unlike other regression models, CoxPH does not assume
any specific baseline hazard function, making it a semi-parametric model. Instead, it focuses
on the effect of covariates on the hazard rate.

The CoxPH model can be expressed mathematically as follows:

h(t|X) = h0(t) exp(β1X1 + β2X2 + · · ·+ βpXp) (4.6)

where h(t|X) is the hazard function at time t given the covariates X = (X1, X2, . . . , Xp),
h0(t) is the baseline hazard function, which represents the hazard when all covariates are
zero, and β1, β2, . . . , βp are the coefficients representing the effect of each covariate on the
hazard function.

The hazard ratio (HR) is a key concept in CoxPH modeling, quantifying the effect of a
covariate on the hazard rate. It is defined as the ratio of the hazard rates corresponding to
different values of the covariate. For a given covariate Xj, the hazard ratio can be expressed
as:

HR = exp(βj) (4.7)

A hazard ratio greater than 1 indicates that an increase in the covariate is associated
with an increased hazard rate (i.e., decreased survival time), while a hazard ratio less than
1 indicates a decreased hazard rate (i.e., increased survival time).

The concordance index (C-index) is a measure used to evaluate the predictive accuracy
of the CoxPH model. It quantifies the degree of concordance between the predicted and
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actual survival times. The C-index ranges from 0.5 to 1, where a C-index of 0.5 indicates
no predictive ability (random prediction) and a C-index of 1 indicates perfect prediction.
The C-index is computed by considering all pairs of patients and determining the proportion
of concordant pairs, where a pair is concordant if the patient with the higher predicted
risk (hazard) actually experiences the event (e.g., death) before the patient with the lower
predicted risk. Mathematically, the C-index is calculated as:

C =
Number of concordant pairs
Number of comparable pairs

(4.8)

CoxPH modeling can be utilized to analyze the impact of various biomarkers and clinical
covariates on patient survival outcomes [23]. By fitting a CoxPH model to the trial data, we
can identify significant predictors of survival and estimate their effects using hazard ratios to
better understand the heterogeneous patient responses to treatment. Importantly, we gain
additional understanding on the effect of each covariate on the hazard rate.

4.6 Classification Methods Used for Feature Prediction

Several classifiers were employed to predict patient outcomes using biomarker feature vec-
tors and image embeddings. These include XGBoost, Linear Discriminant Analysis (LDA),
Logistic Regression, and Multilayer Perceptron (MLP).

• XGBoost: Ensemble learning algorithm that combines multiple decision trees. It-
eratively trains trees to correct errors, minimizing a regularized objective function.
Handles high-dimensional data and captures complex feature interactions [24].

• Linear Discriminant Analysis (LDA): Supervised learning algorithm for classifica-
tion and dimensionality reduction. Finds a linear combination of features to maximize
between-class variance and minimize within-class variance, assuming Gaussian distri-
bution and equal class covariance matrices.

• Logistic Regression: Statistical model for binary classification. Models the probabil-
ity of an instance belonging to a class using a logistic function of a linear combination
of input features. Coefficients are estimated using maximum likelihood estimation.

• Multilayer Perceptron (MLP): Feedforward artificial neural network with input,
hidden, and output layers. Nodes compute weighted sums of inputs and apply non-
linear activation functions. Trained using backpropagation to learn complex, non-linear
relationships between input features and output variables.
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Chapter 5

Model Architectures and Algorithmic
Tools

This chapter presents the computational tools and model architectures employed in our
predictive modeling approach. In particular, we detail the pre-trained model architectures
utilized to generate meaningful embeddings from imaging data and segmentation models
used for pre-processing.

5.1 Liver Region Restriction with TotalSegmentator

The CT and MRI scans obtained from the EPOCH trial encompass various anatomical
regions such as the chest, abdomen, and pelvis. However, TARE therapy specifically targets
the liver, making it essential to restrict the analysis to liver-specific features, requiring a
preprocessing step to isolate the liver region from the rest of the scan.

TotalSegmentator, a deep learning-based tool, was employed for this task due to its
robust and comprehensive segmentation capabilities. TotalSegmentator was developed to
automatically segment 104 anatomical structures, including 27 organs, 59 bones, 10 muscles,
and 8 vessels, from 3D CT volumes [25].

TotalSegmentator was trained on a diverse dataset of 1204 CT examinations, which
included a wide range of clinical data with significant abnormalities. This dataset repre-
sents real-world conditions, including different ages, abnormalities, scanners, body parts,
sequences, and sites, making it well suited for heterogeneity in patient scans and ages in the
EPOCH dataset. The model achieved a Dice similarity coefficient of 0.943 on the test set
indicating sufficient robustness and accuracy in segmentation [25].

The underlying architecture of TotalSegmentator is based on nnU-Net, which automati-
cally configures itself for a given dataset by optimizing hyperparameters, network architec-
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ture, and training strategies. The nnU-Net framework includes a 3D U-Net architecture that
processes the volumetric CT data in three dimensions, capturing spatial relationships and
features essential for accurate segmentation [26].

The heterogeneity of the CT scans poses a significant challenge because scans vary widely,
covering different body parts and often extending beyond the region of interest. By using
TotalSegmentator, we can accurately segment the liver and then ensure that only the rele-
vant slices containing the liver are included downstream for model training and embedding
generation. We applied TotalSegmentator on entire CT and MRI scan volumes, then used
the output segmentation mask to extract the slices that contain the liver. This segmented
liver region is then used as the input for further analysis, ensuring that the models are trained
on and generate predictions based on the most relevant anatomical features.

5.2 Multi-Dimensional Subset Scanning

Multi-Dimensional Subset Scanning (MDSS) is a technique used for identifying statistically
significant subsets within high-dimensional data [27]. The primary purpose of MDSS in our
case is to facilitate automatic stratification and subgroup analysis, enabling the identification
of patient subgroups that exhibit distinct characteristics or responses to treatment. To
implement MDSS, we utilize the AI Fairness 360 (AIF360) toolkit, which includes robust
tools for detecting and mitigating bias in machine learning models and an MDSS detector
that can be adapted for our needs [28].

The MDSS approach is mathematically grounded in the optimization of a scoring func-
tion over all possible subsets of the data. The goal is to identify subsets where the observed
outcomes deviate significantly from the expected outcomes under the null hypothesis. The
scoring function is designed to detect these deviations while controlling for multiple hypoth-
esis testing.

The scoring function S(S) for a subset S of the data can be defined as:

S(S) =
O(S)− E(S)√

V (S)
(5.1)

where:

• O(S) is the observed count of the outcome of interest in the subset S.

• E(S) is the expected count of the outcome under the null hypothesis in the subset S.

• V (S) is the variance of the outcome count under the null hypothesis in the subset S.
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Our MDSS analysis involves preprocessing the data by normalizing numerical features
and encoding categorical features. We define the scoring function based on the specific
outcomes and features of interest, aiming to identify subsets with significant differences in
treatment response. The MDSS algorithm is applied to search over all possible subsets
of the data, iteratively evaluating the scoring function for each subset and identifying the
subset that maximizes the score. To determine the statistical significance of the identified
subset, we perform a permutation test by randomly permuting the outcomes multiple times
to generate a null distribution of the scoring function, recalculating the scoring function for
each permutation, and comparing the score of the identified subset to the null distribution
to compute a p-value. A low p-value suggests that the identified subset is statistically
significant.

5.3 Pre-trained Model Architectures

Two pre-trained model architectures were leveraged to generate embeddings from imaging
data in the EPOCH trial: a 2-Dimensional Combined-Modality Model with 3D integration
and the 3D MedicalNet backbone.

The first model we utilized is a 2-Dimensional Combined-Modality Model, built using
IBM’s proprietary, extensive internal dataset to pre-train a robust neural network using a self-
supervised learning framework known as DINO (Distillation with No Labels) [29]. The DINO
framework uses a contrastive learning approach to train a student-teacher network without
requiring labeled data. This framework comprises two neural networks: a student network
and a teacher network. Both networks process input images to produce feature embeddings,
but only the student network’s weights are updated during training. The teacher network’s
weights are updated using an exponential moving average (EMA) of the student network’s
weights. The objective is to minimize the cross-entropy loss between the student and teacher
network outputs, encouraging the student network to produce similar embeddings to the
teacher network. This process allows the model to learn meaningful representations from
the data, with the goal of understanding local and global structural features across a wide
set of liver scans. Figure 5.1 illustrates the Combined-Modality Model architecture.

The backbone of our Combined-Modality Model is a 2D ResNet-18. The model was
pre-trained on a substantial dataset comprising 3,081 CT liver subjects (16,385 scans) and
2,117 liver MRI subjects (31,051 scans). This extensive pre-training enables the model to
capture diverse anatomical features relevant to liver imaging. To adapt the 2D ResNet-18
model for 3D volumetric data, we employed a Sliced3D architecture [30]. The Sliced3D
approach processes each slice of the 3D volume independently through the 2D ResNet-18
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Figure 5.1: Combined-Modality Model leveraging 2D ResNet-18 with Sliced3D for volumetric
data processing.

backbone, generating a tensor of dimension slice size x 512. Then, the model integrates
these slice-level features over the entire 3D volume by stacking the features from each slice
and applying a series of convolutional and pooling operations to aggregate information in the
depth dimension, ensuring the preservation of spatial information across slices. The resulting
512-dimensional feature vector effectively represents the entire 3D volume, capturing both
local and global anatomical structures. Finally, a multilayer perceptron (MLP) head is used
for classification tasks, mapping the 512-dimensional feature vector to the desired output
classes.

The training process for the 2-Dimensional Combined-Modality Model involved optimiz-
ing the model weights using the DINO framework. The cross-entropy loss was minimized
between the student and teacher network outputs as shown in Figure 5.2. Training loss
plateaued after 25k iterations, with a mirrored decrease in learning rate as shown in Ap-
pendix Figure A.1.

Figure 5.2: Training progress of the 2-Dimensional Combined-Modality Model using the
DINO framework.

The second model we employed is based on the MedicalNet framework, specifically de-
signed for 3D medical image analysis. The MedicalNet model utilizes a 3D ResNet-18 back-
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bone with additional decoder layers for segmentation tasks [31]. This architecture was pre-
trained with a supervised learning approach to minimize cross-entropy loss for segmentation
tasks on the 3DSeg-8 dataset, a large-scale aggregation of multiple 3D medical image datasets
covering various imaging modalities such as MRI and CT and encompassing different scan
regions, target organs, and pathological manifestations [31]. The pre-trained models from
MedicalNet demonstrate significant improvements in training convergence speed and accu-
racy compared to models trained from scratch or pre-trained on natural image datasets.

The 3D ResNet-18 backbone in the MedicalNet model captures 3D spatial information
from volumetric medical images. The model architecture includes an encoder-decoder struc-
ture, where the encoder consists of a series of 3D convolutional layers that extract high-level
features from the input volume. The decoder layers are used for segmentation tasks, but
for our classification purposes, we adapted the model by utilizing only the encoder part for
feature extraction. We added adaptive average pooling and two fully connected layers to
map the 512-dimensional feature vector to the output classes.

The embeddings generated by both the IBM Pretrained Combined-Modality Model and
the MedicalNet backbone are integrated into our predictive modeling pipeline. These em-
beddings are combined with structured data, such as biomarkers and clinical features, to
form comprehensive feature vectors, which are then used to train various machine learning
models, including classifiers and survival models, to predict patient outcomes and identify
clinically relevant subgroups.

By leveraging these pre-trained models, we can extract high-level features from medi-
cal images that capture the underlying anatomical and pathological characteristics. This
approach enhances the predictive performance of our models and enables the identification
of meaningful patterns and subgroups within the heterogeneous patient population in the
EPOCH trial.

We used the FuseMedML pipeline to streamline the image preprocessing and model fine-
tuning processes. FuseMedML is a comprehensive framework designed for machine learning-
based discovery in the biomedical domain, providing flexible and reusable components for
data processing, model training, and evaluation [32]. For image preprocessing, we utilized
the ‘fuse.data‘ package to build a robust data pipeline. This involved loading and normalizing
imaging data, applying augmentation techniques, and caching processed data to optimize
runtime. The framework’s generic data object design, which stores data in a hierarchical
dictionary (NDict), allowed us to efficiently handle and preprocess the multi-modal imaging
data. The flexible configuration options in FuseMedML facilitated the customization of
training loops, loss functions, and evaluation metrics, allowing us to fine-tune our pre-trained
models for downstream classification tasks easily.
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Chapter 6

Data Overview and Preprocessing

6.1 Dataset Overview

The EPOCH trial dataset encompasses a total of 426 patients [6], with the majority of
participants from the United Kingdom and the United States. Figure 6.1 illustrates the
breakdown of patient numbers by country, highlighting the significant representation from
these two nations. Among these patients, 208 individuals have response assessments with
paired images, which form the foundation for our downstream analysis.

Figure 6.1: Breakdown by country for number of patients enrolled in the EPOCH clinical
trial.

43



The US-UK dataset comprises 3,758 unique patient visits, translating to 5,558 image
scans following the application of preprocessing techniques and data filtering. This substan-
tial volume of data provides a robust basis for our investigation into patient subgroups and
treatment response patterns.

6.1.1 Baseline Biomarkers

The dataset includes a comprehensive set of baseline biomarkers, capturing essential aspects
of tumor characteristics, cancer status, and treatment history with chemotherapies. These
biomarkers serve as key features for our predictive modeling and stratification efforts. Table
6.1 presents a selected set of baseline biomarkers that are of particular interest in our analysis.

Variable Label

Bilirubin (umol/L)_AVAL_lb Baseline Value
Carcinoembryonic Antigen (ug/L)_AVAL_lb Baseline Value
ECOGBL_adsl ECOG at Baseline
MCRCSTC_adsl MCRC Status corrected (Correct value of

Bilobar or unilobar cancer present)
KRASSTC_adsl KRAS Status Corrected (Tumor biomarker,

either KRAS-wild type or KRAS-mutant
type)

CH1ADMC_adsl 1st Line Chemo Administered Corrected
(Oxaliplatin based or Irinotecan based)

NUMLES_adsl Number of Lesions at Baseline
SLCHEM_adsl Second Line Chemotherapy (Irinotecan or

Oxaliplatin)
POTSTG_adsl Stage at Initial Diag of mCRC (Cancer stage:

II, III, IV based on NJM classification)
QVAL_adsl Total lesion volume (ml)

Table 6.1: Simplified table of baseline features with labels and relevant details.

6.1.2 Response Biomarkers and RECIST Criteria

In addition to the baseline biomarkers, the dataset incorporates response biomarkers that
align with the widely accepted Response Evaluation Criteria In Solid Tumors (RECIST)
criteria [33]. These criteria are commonly employed in clinical trials to assess the efficacy of
cancer treatments and provide standardized measures for evaluating treatment response.

Two key variables in the dataset, INTGRESP_res (Integrated Response) and IOVRL-
RES_res (Overall Response), are central to the RECIST criteria. INTGRESP_res reflects
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an integrated assessment of tumor response, considering factors such as target lesions, non-
target lesions, and the emergence of new lesions. This variable categorizes responses into
classes such as Non-CR/Non-PD (Non-Complete Response/Non-Progressive Disease), PD
(Progressive Disease), CR (Complete Response), and NE (Not Evaluable) based on stan-
dardized measurements and changes in tumor size.

IOVRLRES_res, on the other hand, represents the overall response assessment, providing
a comprehensive evaluation of the patient’s response to treatment across all tumor sites.
This variable classifies responses into categories like SD (Stable Disease), PD (Progressive
Disease), PR (Partial Response), and CR (Complete Response), offering a holistic view of
the treatment’s impact on tumor burden.

The dataset also includes hPFS (Hepatic Progression-Free Survival), overall survival,
time to deterioration, and duration of disease control, with response variates when appli-
cable to the treatment condition. Additionally, for patients who did not experience disease
progression, changes in values for selected baseline measurements are also recorded.

6.2 Data Preprocessing

To ensure the quality and consistency of the data used in our analysis, we performed a
comprehensive preprocessing pipeline to address inconsistencies and standardize the imaging
data inputs.

One of the primary challenges in working with medical imaging data is the presence
of inconsistencies across scans. These inconsistencies can arise from differences in imaging
protocols, equipment, and patient positioning. To mitigate these issues, we focused on
eliminating scans that did not meet specific criteria. We removed scans that were not in the
axial orientation, as well as scout scans, which are typically low-resolution images used for
planning purposes. Additionally, we excluded scans with a body part field indicating only
chest or pelvis, as our analysis focused on the liver region. The preprocessing pipeline began
by compiling the image directory and enriching it with relevant DICOM metadata such as
scan orientation, body part, and image quality, allowing us efficiently filter and select scans
that met our inclusion criteria. We then harmonized the image directories with patient and
subject data, restricting the analysis to scans with optimal image quality.

Another important aspect of preprocessing was addressing inconsistencies in slice di-
mensions within each scan. We observed that some scans contained slices with varying
dimensions, which could pose challenges for image analysis algorithms. To overcome this
issue, we developed an approach to remove inconsistent slice dimensions from each scan,
ensuring that all slices within a scan had uniform dimensions. We also encountered scans
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where a single area was rescanned multiple times during a visit. These "rescans" introduced
complications for image analysis, as they could lead to redundant or conflicting information.
To address this, we implemented an algorithmic approach to detect rescans based on the
Z position of the scan and timing information and subsequently separated the rescans into
individual scans for use independently in downstream analyses.

To further refine the region of interest for each scan, we utilized the TotalSegmentator
package to restrict the analysis to the slices in the DICOM file corresponding to the liver
region. Figure 6.2 demonstrates the application of TotalSegmentator for liver segmentation
on a sample CT scan, comparing the original slices with and without the presence of the
liver.

Figure 6.2: Representative example of two CT scans viewed from the axial plane, showing
slices with no liver present (left) and the corresponding abdominal scan with the liver visible
(right). The segmented liver region identified by TotalSegmentator is overlaid on the original
CT slices.

After the initial preprocessing steps, the resulting set of scans underwent further prepro-
cessing prior to being used in machine learning models. We employed the Fuse framework
for efficient data caching and developed a pipeline to load the data from DICOM files. For
MRI scans, we applied normalization techniques, such as truncating intensities in the top
and bottom 5% of the range, to ensure comparability across scans. For CT scans, we clipped
the intensity range based on Hounsfield units, typically from -500 to 500, to focus on the
relevant tissue densities. Finally, we scaled the intensity values from the clipped range to a
standardized range of 0 to 1, which is commonly used in machine learning models. Addi-
tionally, to ensure consistency of input into the machine learning models, the tensors were
rescaled to a fixed size of 40x224x224, representing the z, x, and y dimensions, respectively.
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Chapter 7

Preliminary Patient Subgroup
Identification and Outcome Prediction

7.1 Baseline Clustering of Patient Responses Using Struc-

tured Data

To establish a baseline understanding of patient subgroups and treatment response pat-
terns, we performed unsupervised clustering using only the structured data and biomark-
ers available in the EPOCH trial dataset. This analysis aimed to identify distinct patient
clusters based on their baseline characteristics and clinical features, without incorporating
imaging data. We began by preprocessing the data, selecting relevant baseline and clinical
features such as carcinoembryonic antigen (CEA) levels, bilirubin levels, age, ECOG per-
formance status, and tumor burden measurements. These features were chosen based on
their potential to capture meaningful differences among patients and their association with
treatment outcomes. Next, we applied dimensionality reduction techniques to visualize the
high-dimensional patient data in a lower-dimensional space. Specifically, we employed t-
SNE from the python package scikit-learn to project the patient data onto a 2D plane while
preserving the local structure and similarities between patients [34]. The t-SNE algorithm
was trained using the selected baseline and clinical features, generating a compact represen-
tation of the patient population. Figure 7.1 illustrates the t-SNE visualization of patient
data using baseline and clinical features, colored by outcome event categories (e.g., hepatic
progression-free survival, time to deterioration, and overall survival).

The first set of t-SNE plots, which includes all subjects, reveals a lack of distinct clusters
that correspond well to the clinical outcomes of interest, such as hepatic progression-free
survival (hPFS), time to deterioration, and overall survival (OS). However, one cluster of
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Figure 7.1: t-SNE visualization of patient data using baseline and clinical features, colored
by outcome event categories (e.g., hepatic progression-free survival, time to deterioration,
and overall survival).

patients exhibits adverse outcomes across all three measures, suggesting that this subgroup
may have unique characteristics that contribute to their poor treatment response.

Next, we wanted to understand specifically the presence of patient subgroups within the
US-UK cohort, for which we have imaging data, and generated a second set of t-SNE plots
specific to this subset of patients. Figure 7.2 presents the t-SNE visualization of the US-UK
cohort patient data using baseline and clinical features, colored by outcome categories (e.g.,
hepatic progression-free survival, time to deterioration, and overall survival). The t-SNE

Figure 7.2: t-SNE visualization of the US-UK cohort patient data using baseline and clin-
ical features, colored by outcome categories (e.g., hepatic progression-free survival, time to
deterioration, and overall survival).

plots for the US-UK cohort show no clear separation based on the outcomes of interest,
indicating that the structured data and biomarkers alone is sufficient to generate clusters of
patient subgroups with different treatment responses. Incorporating additional features from
imaging data is necessary to better characterize patient heterogeneity and predict clinical
outcomes. In the next section, we will explore the use of Multi-Dimensional Subset Scanning

48



(MDSS) to identify statistically significant patient subgroups based on structured data and
biomarkers.

7.2 Patient Subgroup Identification and Visualization us-

ing MDSS

To identify patient subgroups and visualize their characteristics, we applied Multidimensional
Subset Scanning (MDSS) using the AI Fairness 360 (AIF360) toolkit to a selected subset
of structured data from the baseline dataset [28]. The features and covariates used in this
analysis were chosen based on their potential relevance to patient outcomes.

We focused on the IRC Hepatic Progression Free Survival (months)_E as the primary
outcome of interest, designating an adverse event for hPFS as Objective Hepatic PD or death.
We progressively restricted the set of covariate features by increasing the penalty to reduce
the number of features used in subgroup identification. At a penalty of 1×10−6 we identified
a ’poor response group’ with specific characteristics. Table 7.1 presents the summary of the
MDSS analysis results, including the expected value of the observed outcome, the size of the
detected ’poor response group’, and the group’s characteristics.

Table 7.1: Summary of MDSS analysis results for identifying the ’poor response group’

Parameter Value
Expected value of observed outcome 0.598592
Size of ’poor response group’ 62
Observed average probability of event 0.9355
Expected probability of event 0.5986
Characteristics of ’poor response group’

MCRCSTC_adsl [’Bilobar’]
NUMLES_adsl [’3-5 lesions’, ’6-10 lesions’, ’>10 lesions’]
ECOGBL_adsl [1.0]

KRASSTC_adsl [’Mutant’]

As shown in Table 7.1, the detected ’poor response group’ has a size of 62 patients, with
an observed average probability of an adverse event of 0.9355, compared to the expected
probability of 0.5986. The group is characterized by bilobar metastatic colorectal cancer, a
higher number of lesions (3 or more), an ECOG performance status of 1, and mutant KRAS
status.

To visualize the difference in hPFS events over time between the ’poor response group’
and the remaining patients, we plotted Kaplan-Meier curves for the two groups (Figure 7.3).
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The curves demonstrate a clear separation, with the ’poor response group’ experiencing a
significantly higher rate of adverse events early on (log-rank test, p < 0.005).

Figure 7.3: Kaplan-Meier curves comparing hPFS events between the ’poor response group’
and the remaining patients.

Next, we explored the impact of the treatment condition (control vs. TheraSphere) on
hPFS within the ’poor response group’ and the remaining patients. Figure 7.4 presents the
Kaplan-Meier curves for the ’poor response group’, stratified by treatment condition. While
the treatment condition had a statistically significant impact on hPFS outcomes for poor
responders (log-rank test, p = 0.01), the difference was less pronounced compared to the
remaining patients, as evidenced by the higher overlap of the curves.

In contrast, Figure 7.5 shows the Kaplan-Meier curves for patients not identified as
poor responders, stratified by treatment condition. The curves exhibit less overlap over
time, suggesting that the treatment condition may have a more pronounced effect on hPFS
outcomes when poor responders are excluded (log-rank test, p < 0.005).
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Figure 7.4: Kaplan-Meier curves comparing hPFS events within the ’poor response group’,
stratified by treatment condition (control vs. TheraSphere).
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Figure 7.5: Kaplan-Meier curves comparing hPFS events for patients not identified as poor
responders, stratified by treatment condition (control vs. TheraSphere).
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MDSS analysis identified a ’poor response group’ with specific characteristics, including
bilobar metastatic colorectal cancer, a higher number of lesions, an ECOG performance
status of 1, and mutant KRAS status. Kaplan-Meier curves demonstrated a clear difference
in hPFS events over time between the ’poor response group’ and the remaining patients, with
a statistically significant difference (p < 0.005). Further stratification by treatment condition
revealed that while the treatment condition had a statistically significant impact on hPFS
outcomes for poor responders (log-rank test, p = 0.01), the difference was less pronounced
compared to the remaining patients, as evidenced by the higher overlap of the Kaplan-Meier
curves. In contrast, for patients not classified as poor responders, the treatment condition
had a more pronounced impact on hPFS outcomes (log-rank test, p < 0.005), with a reduced
overlap of the Kaplan-Meier curves between the control and TheraSphere groups.

7.3 CoxPH Prediction Modeling Using Baseline Struc-

tured Features

To investigate the impact of baseline structured features on patient outcomes, we performed
Cox Proportional Hazards (CoxPH) modeling using lifelines, a complete survival analysis
library written in Python, on the entire patient set as well as the US-UK subgroup. The
models were used to predict hepatic progression-free survival (HPFS), overall survival, and
time to deterioration.

We first generated a feature set from the baseline structured data for the entire patient
cohort. CoxPH modeling was then applied to determine the hazard ratios associated with
each feature. Figure 7.6 presents the log hazard ratios (95% CI) for HPFS prediction. The
features that most strongly increased the hazard rate (i.e., had a positive log hazard ratio)
were ECOGBL_adsl (Eastern Cooperative Oncology Group performance status, log hazard
ratio: 0.7, 95% CI: 0.6-0.8), CH1ADMC_adsl (liver metastasis size, log hazard ratio: 0.5,
95% CI: 0.4-0.6), NUMLES_adsl (number of liver lesions, log hazard ratio: 0.6, 95% CI:
0.5-0.7), KRASSCTC_adsl (KRAS mutation status, log hazard ratio: 0.4, 95% CI: 0.3-0.5),
and MCRCSTC_adsl (colorectal cancer metastasis, log hazard ratio: 0.6, 95% CI: 0.5-0.7).
Conversely, TRT01P (TheraSphere treatment, log hazard ratio: -0.4, 95% CI: -0.5 to -0.3)
and RACE_adsl_WHITE (race: White, log hazard ratio: -0.3, 95% CI: -0.4 to -0.2) were
associated with decreased hazard rates. This aligns with earlier analyses where treatment
with TheraSphere improves HPFS and non-White races exhibit worse outcomes.

Similar CoxPH models were built for overall survival and time to deterioration. The
relative ordering of feature importance was mostly consistent across the three outcomes,
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Figure 7.6: Log hazard ratios (95% CI) for HPFS prediction using baseline structured fea-
tures.

with some notable differences. For example, TRT01P, which represents the TheraSphere
treatment condition, had a negative log hazard ratio for HPFS prediction (log hazard ratio:
-0.4, 95% CI: -0.5 to -0.3), was less negative for overall survival (log hazard ratio: -0.2, 95%
CI: -0.3 to -0.1), and was close to 0 for time to deterioration (log hazard ratio: -0.1, 95% CI:
-0.2 to 0.0) (Figures 7.7 and 7.8). This suggests that TheraSphere treatment impacts these
outcomes differently, with the most positive outcome on HPFS prediction.

To visualize the impact of the most significant features on HPFS, we generated Kaplan-
Meier curves. Figure 7.9 shows the Kaplan-Meier plot for TRT01P, indicating a significant
difference in HPFS between the treatment groups. Similar plots for other top features, in-
cluding KRASSTC (Appendix Figure A.3), MCRCSTC (Appendix Figure A.5), race (white
vs. non-white) (Appendix Figure A.4), and ECOGBL status (Appendix Figure A.2), are
provided in the Appendix.

The predictive performance of the CoxPH models was assessed using the concordance
index (C-index). Figure 7.10 shows the C-index values obtained using different feature
subsets. The highest C-index achieved using all structured features combined was 0.67,
indicating moderate predictive ability. The limited performance suggests that structured
features alone may not be sufficient to accurately predict patient outcomes.

Table 7.2 shows the concordance index values for different feature sets used in predicting
HPFS.

Table 7.3 shows the log hazard ratios and 95% confidence intervals for HPFS prediction.
We further conducted CoxPH modeling specifically on the US-UK patient subgroup to
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Figure 7.7: Log hazard ratios (95% CI) for time to deterioration prediction using baseline
structured features.

Feature Set C-index
TRT01P 0.62
CH1ADMC_adsl 0.59
MCRCSTC_adsl 0.61
KRASSTC_adsl 0.60
RACE_adsl_WHITE 0.58
ECOGBL_adsl 0.60
All Features Combined 0.67

Table 7.2: Concordance Index for Different Feature Sets

predict HPFS. The set of most significant features remained consistent with the analysis on
the entire cohort, although there were minor differences in the ordering and effect sizes for
less impactful features. For instance, in the US-UK subgroup, ECOGBL_adsl (log hazard
ratio: 0.6, 95% CI: 0.5-0.7), CH1ADMC_adsl (log hazard ratio: 0.5, 95% CI: 0.4-0.6), and
NUMLES_adsl (log hazard ratio: 0.5, 95% CI: 0.4-0.6) were significant predictors, with
similar hazard ratios as in the overall cohort (Figure 7.11).

CoxPH analysis identified several baseline structured features that significantly impact
patient outcomes, particularly HPFS. However, the moderate concordance index values sug-
gest that incorporating additional data modalities, such as imaging features, may be neces-
sary to improve predictive performance. The differences observed in the impact of TRT01P
across the three outcomes highlight the importance of considering multiple endpoints when
evaluating treatment effects.
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Figure 7.8: Log hazard ratios (95% CI) for overall survival prediction using baseline struc-
tured features.

Feature Log Hazard Ratio (95% CI)
ECOGBL_adsl 0.85 (0.65, 1.05)
CH1ADMC_adsl 0.95 (0.75, 1.15)
NUMLES_adsl 0.75 (0.55, 0.95)
KRASSCTC_adsl 0.65 (0.45, 0.85)
MCRCSTC_adsl 0.55 (0.35, 0.75)
TRT01P -0.45 (-0.65, -0.25)
RACE_adsl_WHITE -0.25 (-0.45, -0.05)

Table 7.3: Log Hazard Ratios (95% CI) for HPFS Prediction
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Figure 7.9: Kaplan-Meier curve for hepatic progression-free survival stratified by TRT01P
(TheraSphere treatment condition).

Figure 7.10: Concordance index for CoxPH models predicting hepatic progression-free sur-
vival using different subsets of baseline structured features.
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Figure 7.11: Log hazard ratios (95% CI) for HPFS prediction using baseline structured
features in the US-UK patient subgroup.
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Chapter 8

Augmenting Structured Data with
Embedding Features from Fine-Tuned
Pre-trained Medical Foundation Models

8.1 Preprocessing and Clinically Relevant Outcomes

To enhance the predictive capabilities of our models and identify clinically relevant patient
subgroups, we employed transfer learning to fine-tune pre-trained medical foundation models
on the EPOCH trial imaging data. This approach allowed us to extract meaningful features
from the CT and MRI scans, which could then be combined with the structured clinical data
to improve the performance of our predictive models.

We first preprocessed images using the FuseMedML data preprocessing pipeline described
in Chapter 6. We applied a set of augmentations to the training images to improve the
model’s robustness and generalizability following fine-tuning. The augmentations applied
were as follows: random rotations between -5 and 5 degrees in all three dimensions with
a probability of 0.5, random flipping along dimensions 0, 1, and 2 with a probability of
0.5 each, color jittering to adjust brightness, contrast, saturation, and hue within specified
ranges, random 90-degree rotations around dimensions 1 and 2 with a probability of 0.5,
and affine transformations involving random scaling between 0.8 and 1.2 and translations
between -15 and 15 pixels with a probability of 0.5.

We focused on a set of clinically relevant features to evaluate the performance of the
fine-tuned models and assess their ability to capture meaningful patterns in the imaging
data. Initially, we used sex and age to confirm the accuracy of the classifier head, as these
demographic variables are known to influence treatment response and outcomes in cancer
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patients. Subsequently, we investigated the models’ performance on more complex clinical
features, such as the number of lesions and treatment response variables (ITRGRESP_res
and IOVRLRES_res), which were categorized into various numbers of classes.

The number of lesions is an important indicator of disease extent and may impact treat-
ment efficacy, while ITRGRESP_res and IOVRLRES_res are treatment response variables
that categorize patient outcomes. We considered different class stratifications for these re-
sponse variables, including a 4-class system (complete response [CR], partial response [PR],
stable disease [SD], and progressive disease [PD]), a 3-class system (CR/PR, SD, and PD),
and a 2-class system (CR/PR/SD and PD).

8.2 Validating Model Architectures: Sex Classification

Sex classification was chosen as an initial task to validate the model’s ability to learn from
structured data and to confirm that the backbone architecture had learned meaningful rep-
resentations from the imaging data. This serves as a sanity check before moving on to more
complex clinical tasks, as strong performance on sex classification indicates that the model
is capable of extracting relevant features from the input data.

8.2.1 Sex Classification Using the 3D-MedicalNet Backbone

To validate the ability of the models to learn from structured data, we first trained the
3D MedicalNet backbone model for sex classification. The model was fine-tuned with a
learning rate of 0.0001 for the fully connected (fc) head and 0.00001 for the backbone. The
model was trained for a maximum of 100 epochs, with early stopping based on validation
accuracy (patience of 7 epochs, minimum delta of 0.00). The learning rate was reduced using
a ReduceLROnPlateau scheduler (factor of 0.1, patience of 5 epochs, minimum learning rate
of 1e-6) based on validation loss.

Both the training and validation loss plateaued at 15 epochs, triggering the learning rate
reduction. The model stopped training at 26 epochs due to early stopping. The fine-tuned
3D MedicalNet model was evaluated on a withheld test set using various metrics (Table 8.1).

The confusion matrix (Appendix Figure A.6) and ROC curve (Appendix Figure A.7)
show the model has high discriminative power and no class imbalances in accuracy.

The strong performance of the 3D MedicalNet model on the sex classification task con-
firms that the model backbone has learned good structural representations from the imaging
data, indicating it could perform well on more complex clinical tasks.
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Table 8.1: Evaluation metrics for the 3D MedicalNet model on sex classification (withheld
test set)

Metric Value

Accuracy 0.9177
Precision (macro) 0.9102
Recall (macro) 0.9124
F1 score (macro) 0.9113
Precision (micro) 0.9177
Recall (micro) 0.9177
F1 score (micro) 0.9177

8.2.2 Sex Classification Using the Combined-Modality Sliced3D Model

To further validate the ability of the models to learn from structured data, we trained the
Combined-Modality Sliced3D model for sex classification. The model was fine-tuned with a
learning rate of 0.0001 for the fully connected (fc) head and 0.00001 for the backbone. The
model was trained for a maximum of 100 epochs, with early stopping based on validation
accuracy (patience of 7 epochs, minimum delta of 0.00). The learning rate was reduced using
a ReduceLROnPlateau scheduler (factor of 0.1, patience of 5 epochs, minimum learning rate
of 1e-6) based on validation loss.

The validation accuracy did not improve starting at epoch 15, triggering early stopping
at epoch 20 (Appendix Figure A.8). The fine-tuned Combined-Modality Sliced3D model
was evaluated on a withheld test set using various metrics (Table 8.2).

Table 8.2: Evaluation metrics for the Combined-Modality Sliced3D model on sex classifica-
tion (withheld test set)

Metric Value

Accuracy 0.9441
Precision (macro) 0.9551
Recall (macro) 0.9258
F1 score (macro) 0.9377
Precision (micro) 0.9441
Recall (micro) 0.9441
F1 score (micro) 0.9441

The confusion matrix (Appendix Figure A.9) and ROC curve (Appendix Figure A.10)
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show the model has high discriminative power and no class imbalances in accuracy.
The Combined-Modality Sliced3D model outperformed the 3D MedicalNet model in sex

classification accuracy, likely due to two key factors. First, the Combined-Modality Sliced3D
model was pretrained on both CT and MRI scans, exposing it to a wider range of imaging
modalities and anatomical variations compared to the 3D MedicalNet backbone, which was
pretrained solely on CT volumes for segmentation. Second, the DINO-based pretraining
approach used in the Combined-Modality Sliced3D model encourages learning both local
and global representations, potentially enabling the extraction of more informative and dis-
criminative features. Given its superior performance and the advantages of diverse modality
pretraining, we proceeded with the Combined-Modality Sliced3D model for further analysis
and fine-tuning using clinical features.

8.3 Fine-Tuning Combined-Modality Sliced3D Model on

Clinical Features

After validating the Combined-Modality Sliced3D model’s performance on sex classifica-
tion, we proceeded to fine-tune the model on a clinically relevant outcome variable, ITR-
GRESP_res, using the three-class categorization: complete/partial response (CR/PR), sta-
ble disease (SD), and progressive disease (PD).

The model was fine-tuned using a learning rate of 0.0001, with a maximum of 100 epochs,
and early stopping based on validation accuracy (patience of 7 epochs, minimum delta of
0.00). The learning rate was reduced using a ReduceLROnPlateau scheduler (factor of 0.1,
patience of 5 epochs, minimum learning rate of 1e-6) based on validation loss.

The validation accuracy did not improve after 13 epochs, triggering early stopping. The
validation loss plateaued at 1.06, while the training loss continued to decrease, suggesting
potential overfitting (Appendix Figure A.11). The final model achieved a relatively low
validation accuracy of 0.5960, as shown in Table A.1.

The low accuracy and recall suggest that learning directly from images to predict a
complex, multivariate clinical feature like ITRGRESP_res is challenging. The confusion
matrix (Appendix Figure A.12) reveals that the model struggles to distinguish between the
three classes, with a significant number of misclassifications between CR/PR and SD, as
well as between SD and PD. The ROC curve (Appendix Figure A.13) further illustrates
the model’s limited discriminative power, with the curves for each class showing suboptimal
performance.

Despite the limited performance of the Combined-Modality Sliced3D model in directly
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classifying ITRGRESP_res, we hypothesize that the fine-tuning process has enhanced the
model’s understanding of how structural features in the images relate to clinical outcomes.
By learning to map image features to the three-class categorization of treatment response, the
model has likely acquired a more clinically relevant representation of the data. As a result, we
expect that the embeddings generated by the fine-tuned model will provide more informative
features for downstream tasks, such as CoxPH modeling and classification, compared to the
embeddings from the pre-trained model. The fine-tuned embeddings may capture subtle
patterns and variations in the images that are predictive of treatment response, which can
complement the existing set of clinical features.
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Chapter 9

Enhancing Classification Performance
and Clinically Relevant Groupings with
Image Feature Extraction and
Embeddings

9.1 Embedding Generation Pipeline

To extract meaningful features from the CT and MRI scans in the EPOCH trial, we generated
embeddings using the ResNet-18 DINO base model with Sliced3D integration for volumetric
data, as described in Chapter 6. Images were loaded using the preprocessing pipeline detailed
previously, but without applying any data augmentations or transformations, resulting in
tensors of size 40x224x224. Inference was then performed on the base pre-trained model to
generate 512-dimensional embedding vectors for each image.

9.2 Cox Proportional Hazards Modeling with Embed-

dings

We conducted Cox Proportional Hazards (CoxPH) modeling using the generated embed-
dings to predict hepatic progression-free survival (hPFS). As shown in Figure 9.1, several
individual embedding features exhibited hazard ratios comparable to those of structured
data biomarkers, suggesting their potential relevance in predicting patient outcomes.

To identify an optimal subset of embedding features, we employed a hierarchical clus-
tering approach. First, we computed the Spearman correlation matrix among all features
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Figure 9.1: Log hazard ratios (95% CI) for hPFS prediction using individual embedding
features.

(structured and embedding) and converted it to a distance matrix. Using this distance
matrix, we performed hierarchical clustering with Ward’s linkage to group similar features
together. To select representative features from each cluster, we set a threshold value and
used the fcluster function from scipy.cluster.hierarchy to assign cluster labels to each
feature. We then selected one representative feature from each cluster of highly correlated
features by taking the first feature in each cluster based on the original feature ordering, ef-
fectively reducing the dimensionality of the feature space. The selected embedding features,
along with the structured data, were then used to train CoxPH models to evaluate their
predictive performance.

Figure 9.2 presents the concordance indices achieved by the various feature sets. Notably,
the inclusion of embedding vectors, even from the pre-trained model without fine-tuning,
substantially improved the predictive performance compared to using structured data alone.
The highest concordance index was obtained by combining all structured and embedding
features, followed by the model using a subset of features selected via hierarchical clustering.

The inclusion of image embeddings significantly improved the predictive performance of
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Figure 9.2: Concordance indices for CoxPH models predicting hPFS using different feature
sets.

the CoxPH models for hPFS compared to using structured data alone. The concordance
index increased from 0.6891 for the model using only structured features to 0.7888 when
combining all structured and embedding features. This represents a substantial improvement
from a baseline value close to random (0.5) towards perfect prediction (1.0). Specifically,
the absolute improvement in the concordance index is 0.0997, which translates to a 32%
reduction in the error rate (1 − Ci) from 0.3109 to 0.2112. This increase in concordance
index suggests that the image embeddings capture additional prognostic information not
fully represented by traditional biomarkers, enabling more accurate patient stratification.

The embedding features generated by the deep learning models are able to represent
complex structural patterns and relationships within the medical images that may not be
adequately captured by traditional radiomics approaches, which typically rely on quantitative
measures such as tumor size or volume. This is evident from the strong hazard ratios
associated with individual embedding features, as shown in Figure 9.1. For example, the
embedding feature L350 has a log hazard ratio of 0.5167 (p=0.0087), indicating a significant
association with increased risk of hPFS events. In comparison, traditional radiomics features
such as tumor size (e.g., LDIAM01_res, LDIAM02_res) were not among the most predictive
features in the CoxPH analysis (Figure 9.1).
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9.2.1 CoxPH Modeling Using Fine-Tuned Embeddings

Following the fine-tuning of the pre-trained model for the three-class ITRGRESP_res clas-
sification task described in Chapter 8, we generated embeddings from the fine-tuned model
and employed the same modeling methodology and feature selection approaches as in the
previous section. This allowed us to assess the impact of fine-tuning on the predictive per-
formance of the CoxPH models for hepatic progression-free survival (hPFS).

Unlike the pre-trained model, the fine-tuned model did not yield individual embedding
features with hazard ratios higher or lower than those of the biomarkers (see Appendix
Figure A.14). This suggests that no single embedding dimension from the fine-tuned model is
strongly predictive of the hazard ratio. However, when combined, the embeddings contribute
significantly to the model’s predictive power, likely because the fully connected classification
head takes into account all embedding features simultaneously.

Figure 9.3 presents the concordance indices achieved by different feature sets, including
the embeddings from the fine-tuned model. Remarkably, the embeddings generated by the
fine-tuned model achieved a substantially higher concordance index (0.8093) compared to
those from the pre-trained model (0.7148). Fine-tuning the model on a single clinically
relevant feature allowed it to capture more relevant features for predicting hPFS.

Figure 9.3: Concordance indices for CoxPH models predicting hPFS using different feature
sets.

The fine-tuned embeddings led to a significant improvement in the predictive performance
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of the CoxPH models for hPFS compared to using structured data alone. The concordance
index increased from 0.6891 for the model using only structured features to an impressive
0.8643 when combining all structured and fine-tuned embedding features. This represents
a substantial improvement, with an absolute increase in the concordance index of 0.1752,
translating to a 56% reduction in the error rate (1−Ci) from 0.3109 to 0.1357. The fine-tuned
embeddings capture task-specific prognostic information that complements and enhances the
predictive power of traditional biomarkers, enabling a more accurate stratification of patients
based on their risk of hPFS events.

The superior performance of the fine-tuned embeddings can be attributed to the model’s
ability to learn representations that are more closely aligned with the specific clinical outcome
of interest (i.e., ITRGRESP_res). During the fine-tuning process, the model adapts its
weights to optimize the classification of patients into the three ITRGRESP_res categories,
which are directly related to treatment response and, consequently, hPFS. As a result, the
embeddings generated by the fine-tuned model are more informative and discriminative for
predicting hPFS compared to those from the pre-trained model, which was trained on a
general set of medical images without a specific focus on treatment response or survival
outcomes.

9.3 Classification with Image Embeddings and Structured

Data

To further investigate the utility of image embeddings in predicting clinically relevant char-
acteristics, we trained a set of classifiers using feature vectors derived from the base pre-
trained models. We generated 512-dimensional embedding vectors for each image using the
ResNet-18 DINO model with Sliced3D integration, without any fine-tuning. The dataset
was partitioned into train (2/3) and test (1/3) splits based on patient ID, ensuring that all
scans from different visits of the same patient were in the same partition (either train or
test).

We then trained four different classifiers - Multilayer Perceptron (MLP), Linear Dis-
criminant Analysis (LDA), Logistic Regression, and XGBoost (XGB) - on these embedding
features to predict a range of clinical variables, including modality (CT vs MR), patient
sex, treatment arm, ECOG performance status, number of lesions, and response assessments
such as target lesion response (ITRGRESP_res) and overall response (IOVRLRES_res).
The performance of each classifier was evaluated using confusion matrices on both the train-
ing and test sets.
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To identify the most informative embedding features for each classification task, we per-
formed permutation importance analyses. This involved measuring the decrease in training
and test accuracy when each feature was randomly shuffled, providing insights into the rel-
ative contribution of individual embedding dimensions to the classifier’s performance.

Interestingly, even without fine-tuning, the classifiers achieved high accuracy on struc-
tural features such as modality (CT vs MR) and patient sex. For example, the XGBoost
classifier attained training and test accuracies of 99.9% and 99.7%, respectively, for predict-
ing modality. Similarly, for sex prediction, the MLP model achieved 98.7% training accuracy
and 84.7% test accuracy, suggesting that even the base pretrained models capture meaningful
representations of anatomical and structural differences.

However, the performance on biological and clinical response variables was considerably
lower. For instance, the best classifier for predicting ECOG performance status (0 vs 1) was
XGBoost, with a training accuracy of 97.6% but a test accuracy of only 63.8%. The confusion
matrix shows that while the classifier performed well on the training set, it struggled to
generalize to the test set, misclassifying a significant portion of both classes. Similarly, the
XGBoost classifier achieved 96.7% training accuracy but only 49.2% test accuracy when
predicting KRAS mutation status. For predicting unilobar vs bilobar disease, the Linear
Discriminant Analysis classifier attained 75.7% training accuracy and 72.9% test accuracy,
demonstrating better generalization compared to the other variables. Moving to treatment
response, for target lesion response (ITRGRESP_res), the XGBoost classifier achieved 93.5%
training accuracy but only 48.2% test accuracy in the 4 category response endpoint, with
expected improvements in the 3 and 2 category endpoints. This discrepancy between training
and test performance indicates that the base embeddings alone may not sufficiently capture
the complex biological characteristics and treatment response patterns.

Table 9.1 summarizes the best-performing classifiers for each clinical variable, along with
their corresponding training and test accuracies.

9.4 Classification with Fine-Tuned Image Embeddings

Following the fine-tuning of the pretrained model with the three-class ITRGRESP_res end-
point as described in Chapter 8, we generated embeddings from the fine-tuned model and
employed the same classification methodology as in the previous section. We trained the
same four classifiers - Multilayer Perceptron (MLP), Linear Discriminant Analysis (LDA),
Logistic Regression, and XGBoost (XGB) - on the fine-tuned embeddings to predict the
same set of clinical variables and compared their performance to the classifiers trained on
embeddings from the base pretrained model.
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Figure 9.4: Confusion matrices for predicting selected clinical variables using base image
embeddings.

Table 9.2 presents a summary of the best-performing classifiers for each clinical variable
using the fine-tuned embeddings, along with the corresponding training and test accuracies.
For comparison, the test accuracies of the classifiers trained on the base model embeddings
and the percentage improvement achieved by the fine-tuned embeddings are also provided.

The fine-tuned embeddings demonstrated improved performance in predicting most of
the clinical features compared to the base model embeddings. Notable improvements were
observed for treatment-related variables and response assessments. Similarly, the test accu-
racies for target lesion response (ITRGRESP_res) improved by 14.0%, 15.0%, and 15.6%
for the 4-category, 3-category, and 2-category endpoints, respectively. The overall response
(IOVRLRES_res) also saw improvements of 10.2%, 12.4%, and 6.4% for the corresponding
endpoint categories.

Other clinical features, such as the presence of unilobar or bilobar disease (MCRC-
STC_adsl) and the number of lesions (NUMLES_adsl), also exhibited modest improvements
in test accuracy, with increases of 3.6% and 2.1%, respectively.

However, the fine-tuned embeddings showed slightly lower performance for structural
features like modality and race, with test accuracy decreases of 1.4% and 1.3%, respectively.
Notably, the test accuracy for predicting patient sex (SEXC_adsl) decreased by 17.6%, from
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Clinical Variable Best Classifier Training Accuracy Test Accuracy
modality Logistic Regression 100% 100%
TRT01A XGBoost 97.2% 53.8%
SEXC_adsl MLP 98.7% 84.7%
race_white MLP 98.8% 93.1%
ITRGRESP_res XGBoost 93.5% 48.2%
ITRGRESP_res_c3 XGBoost 93.7% 49.0%
ITRGRESP_res_c2 Linear Discriminant Analysis 69.0% 64.5%
IOVRLRES_res Linear Discriminant Analysis 55.1% 40.9%
IOVRLRES_res_c3 XGBoost 92.6% 41.1%
IOVRLRES_res_c2 Logistic Regression 71.0% 68.3%
ECOGBL_adsl Logistic Regression 71.1% 65.0%
MCRCSTC_adsl XGBoost 97.9% 72.3%
NUMLES_adsl XGBoost 95.7% 30.8%
KRASSTC_adsl XGBoost 96.6% 49.2%

Table 9.1: Summary of the best-performing classifiers for predicting clinical variables using
image embeddings from base pretrained models

84.7% to 67.1%. This suggests that the fine-tuning process, which focused on optimizing
the model for predicting treatment response (ITRGRESP_res), may have led to a loss
of some information related to structural and demographic characteristics. By adapting
the pretrained model to the specific clinical endpoint of interest, the resulting embeddings
capture more relevant features and patterns that are predictive of treatment response and
patient outcomes.

9.5 Model Interpretability via Class Activation Mapping

To gain insights into the features learned by the fine-tuned model and their relevance to
clinical outcomes, we employed Class Activation Mapping (CAM) [35] to visualize the regions
of the input images that contribute most to the model’s predictions. The methodology for
CAM visualization involves selecting specific embedding dimensions of interest and then
generating activation maps that highlight the image regions that strongly activate those
dimensions.

We selected two salient embedding features, L038 and L023, which were identified via
permutation importance analysis as being highly relevant for the classifier trained to predict
the three-class treatment response endpoint (ITRGRESP_res_c3). Figure 9.5 shows the
permutation importance scores for the top embedding dimensions, with L038 and L023
ranking among the most important features.
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Clinical Variable Best Classifier Training Accuracy Test Accuracy Base Model Test Accuracy Improvement
modality XGBoost 99.6% 98.6% 100% -1.4%
TRT01A XGBoost 68.5% 62.3% 53.8% 8.5%
SEXC_adsl Linear Discriminant Analysis 73.2% 67.1% 84.7% -17.6%
race_white Logistic Regression 86.0% 91.8% 93.1% -1.3%
ITRGRESP_res MLP 70.0% 62.2% 48.2% 14.0%
ITRGRESP_res_c3 MLP 72.6% 64.0% 49.0% 15.0%
ITRGRESP_res_c2 MLP 76.9% 80.1% 64.5% 15.6%
IOVRLRES_res Linear Discriminant Analysis 59.7% 51.1% 40.9% 10.2%
IOVRLRES_res_c3 Linear Discriminant Analysis 59.2% 53.5% 41.1% 12.4%
IOVRLRES_res_c2 Logistic Regression 78.7% 74.7% 68.3% 6.4%
ECOGBL_adsl Logistic Regression 69.6% 60.5% 65.0% -4.5%
MCRCSTC_adsl Logistic Regression 78.9% 75.9% 72.3% 3.6%
NUMLES_adsl MLP 86.1% 32.9% 30.8% 2.1%
KRASSTC_adsl MLP 93.6% 48.0% 49.2% -1.2%

Table 9.2: Summary of the best-performing classifiers for predicting clinical variables using
image embeddings from fine-tuned pretrained model with base model test accuracy and
improvement percentage

Figure 9.5: Permutation importance scores for the top embedding dimensions in predicting
ITRGRESP_res_c3.

After selecting the embedding dimensions, we generated CAM visualizations for a set of
representative CT and MR scans from patients with different treatment response outcomes.
Figure 9.6 presents the activation maps for dimensions L038 and L023 overlaid on the orig-
inal input images. The activation maps highlight the regions that strongly contribute to
activating these key embedding features.

The CAM visualizations reveal that the fine-tuned model focuses on regions closely iden-
tified with the liver when activating the clinically relevant embedding dimensions L038 and
L023. Considering that these dimensions were found to be important for predicting treat-
ment response (ITRGRESP_res_c3), it is encouraging to observe that the model is utilizing
liver-specific structural information to generate its predictions. This suggests that the fine-
tuned model has learned to use baseline features from the liver to predict clinical endpoints.
This is crucial because the original therapeutic, TheraSphere, is administered in the liver,
and one of the key clinical endpoints is hepatic progression-free survival (hPFS).
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Figure 9.6: Class Activation Mapping (CAM) visualizations for embedding dimensions L038
and L023 on representative CT and MR scans.
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Chapter 10

Conclusion

10.1 Summary of Results and Key Findings

This thesis aimed to identify unique patient subgroups and predictive biomarkers correlating
with treatment response to TARE in mCRC patients using advanced computational methods
on the multi-modal data collected in the EPOCH trial. The study successfully addressed
this primary research question through a series of objectives and analyses.

The first objective was to generate comprehensive statistics on the available categorical
and numerical biomarkers and data points in the EPOCH trial dataset and to preprocess the
image data to create a high-quality dataset suitable for further analysis. This was achieved
through the development of a comprehensive data preprocessing pipeline that curated a
high-quality dataset of liver-region CT and MRI scans paired with patient biomarkers. The
US-UK dataset, comprising 3,758 unique patient visits and 5,558 image scans, formed the
foundation for downstream analysis.

Initial unsupervised clustering using structured data and biomarkers revealed a lack of
distinct clusters corresponding to clinical outcomes of interest, such as hepatic progression-
free survival (hPFS), time to deterioration, and overall survival (OS). However, Multi-
Dimensional Subset Scanning (MDSS) identified a ’poor response group’ for hPFS using
clinically relevant biomarkers (p < 0.001), characterized by bilobar metastatic colorectal
cancer, a higher number of lesions (3 or more), an ECOG performance status of 1, and
mutant KRAS status. Kaplan-Meier curves demonstrated significant differences in hPFS
between the poor and normal responders, both with and without TARE treatment. This
addressed the second objective of developing baseline models to group and predict patient
outcomes using the preprocessed data.

Cox Proportional Hazards (CoxPH) modeling using baseline structured features revealed
hazard ratios aligning with clinical expectations. Features such as ECOG performance status,
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liver metastasis size, number of liver lesions, KRAS mutation status, and colorectal cancer
metastasis were associated with increased hazard rates, while TheraSphere treatment and
White race were associated with decreased hazard rates. However, the combined structured
features yielded a limited C-index of 0.67, suggesting that they alone may not be sufficient
for accurate outcome prediction.

To enhance predictions and address the third objective of fine-tuning pre-trained medical
foundation models, deep learning was employed using pre-trained foundation models on liver
CT and MRI scans. The study validated the Combined-Modality Sliced3D model’s perfor-
mance on sex classification, achieving a high accuracy of 94.41% on the withheld test set.
Fine-tuning the model on the three-class tumor response characteristic (ITRGRESP_res)
resulted in a relatively low validation accuracy of 59.60%, suggesting the challenge of learning
directly from images to predict complex, multivariate clinical features.

Augmenting the structured data with pre-trained embeddings increased the C-index for
hPFS prediction to 0.79, representing a 32% reduction in the error rate compared to biomark-
ers alone. Fine-tuning the model on ITRGRESP_res and incorporating the resulting em-
beddings further improved the C-index to an impressive 0.8643, reducing the error rate by
58.9% compared to biomarkers alone. This addressed the fourth objective of extracting im-
age features and generating embeddings to improve classification performance and identify
clinically relevant groupings.

Classifiers trained on embeddings showed that fine-tuning the model for one clinically
relevant feature improved accuracy for other features. For example, the test accuracy for pre-
dicting the treatment arm (TRT01A) increased by 8.5%, while the test accuracies for target
lesion response (ITRGRESP_res) improved by 14.0%, 15.0%, and 15.6% for the 4-category,
3-category, and 2-category endpoints, respectively. Class Activation Mapping (CAM) visu-
alization highlighted the importance of liver-focused embeddings for clinical prediction, with
the fine-tuned model focusing on regions closely identified with the liver when activating
clinically relevant embedding dimensions. This suggests that the model focuses on liver-
specific features during prediction, aligning with the clinical relevance of the liver-localized
TARE treatment.

In conclusion, we successfully addressed the primary research question and objectives and
demonstrated the potential of advanced computational methods to identify unique patient
subgroups and predictive biomarkers that correlate with treatment response to TARE in
mCRC patients. The progressive analyses, from baseline modeling to the integration of fine-
tuned embeddings, showcased the value of combining multi-modal data and deep learning
techniques to improve personalized treatment strategies in mCRC.
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10.2 Discussion

The Multi-Dimensional Subset Scanning (MDSS) analysis identified a ’poor response group’
characterized by specific clinical features, including bilobar metastatic colorectal cancer
(MCRCSTC_adsl [’Bilobar’]), a higher number of lesions (NUMLES_adsl [’3-5 lesions’,
’6-10 lesions’, ’>10 lesions’]), an ECOG performance status of 1 (ECOGBL_adsl [1.0]), and
mutant KRAS status (KRASSTC_adsl [’Mutant’]). These findings align with existing ob-
servations in the literature regarding the prognostic significance of these factors in mCRC
patients.

Previous studies have shown that patients with bilobar liver metastases have a worse
prognosis compared to those with unilobar involvement, likely due to the increased tumor
burden and the challenges associated with surgical resection and locoregional therapies [36].
Similarly, a higher number of liver lesions has been consistently associated with poorer
outcomes in mCRC, as it reflects a more advanced stage of disease and limits the options for
curative-intent treatments [37]. The ECOG performance status, which assesses a patient’s
level of functioning and ability to carry out daily activities, has been widely recognized as a
prognostic factor in various cancer types, including mCRC. Patients with an ECOG status
of 1, indicating some restrictions in physically strenuous activity but ability to carry out
light work, have been shown to have worse outcomes compared to those with an ECOG
status of 0, who are fully active and able to carry out all pre-disease activities without
restriction. Lastly, the presence of KRAS mutations has been extensively studied in mCRC
and has been associated with reduced responsiveness to certain targeted therapies, such as
anti-EGFR agents, and overall poorer prognosis [38]. The identification of mutant KRAS
status as a characteristic of the ’poor response group’ in this study further reinforces its role
as a negative prognostic biomarker in mCRC.

The Cox Proportional Hazards (CoxPH) modeling results revealed that several clini-
cal features, including ECOG status, liver metastasis size (CH1ADMC), number of lesions
(NUMLES_adsl), KRAS mutation status, and bilobar metastatic colorectal cancer (MCRC-
STC_adsl), were associated with higher hazard ratios for hepatic progression-free survival
(hPFS). Notably, four out of these five features overlap with the characteristics of the ’poor
response group’ identified by MDSS, which demonstrated the consistency of the findings
across two different algorithmic approaches. Interestingly, the CoxPH analysis also showed
that White race was associated with a lower hazard ratio for hPFS. This observation is
consistent with existing literature that has reported racial disparities in cancer outcomes,
with non-White patients often experiencing worse survival rates compared to their White
counterparts [39]. While the underlying reasons for these disparities are complex and mul-
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tifactorial, the observation highlights the importance of considering biological ancestry as a
potential prognostic factor in mCRC.

An interesting observation during fine-tuning of the Combined-Modality Sliced3D model
was that training to predict the three-class tumor response characteristic (ITRGRESP_res)
also led to enhanced classifier performance on other clinically relevant features, such as overall
response (IOVRLRES_res) and structural features like bilobar metastatic colorectal cancer
(MCRCSTC_adsl) and number of lesions (NUMLES_adsl). The latter two, which were
associated with higher hazard ratios for hPFS in the CoxPH analysis, also showed improved
classifier performance after fine-tuning on ITRGRESP_res, which leads to an intriguing
hypothesis. It is possible that the fine-tuned model implicitly learns to recognize structural
characteristics that are indicative of poorer prognosis, such as bilobar involvement and a
higher number of lesions, when trained to predict clinical endpoints like tumor response.

10.3 Limitations of the Study

One of the primary limitations was the poor performance of classifiers when trained solely
on imaging data. Despite the use of state-of-the-art deep learning models, such as the
Combined-Modality Sliced3D model, the classifiers struggled to accurately predict complex,
multivariate clinical features like tumor response (ITRGRESP_res) directly from images.
The relatively low validation accuracy of 59.60% for the three-class ITRGRESP_res classi-
fication suggests that learning these intricate relationships from images alone is challenging.
This poor performance could be attributed to several factors, including the high variability
in the imaging data, the complexity of the clinical features being predicted, and the limited
number of unique patients in the dataset.

The high variability in the imaging data poses a significant challenge for the models to
learn consistent and generalizable patterns. The EPOCH trial dataset includes CT and MRI
scans from various clinical sites, which may have different imaging protocols, equipment,
and patient populations. This heterogeneity can introduce noise and confounding factors
that make it difficult for the models to capture the underlying relationships between image
features and clinical outcomes. Additionally, the presence of different imaging modalities
(CT and MRI) further contributes to the variability, as the models need to learn to extract
meaningful features from both types of scans.

Another limitation of the study is the relatively small number of unique patients in the
dataset, despite the large number of scans available. The US-UK dataset comprises 3,758
unique patient visits and 5,558 image scans, but these scans belong to a smaller number of
individual patients. This limitation may hinder the models’ ability to capture the full spec-
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trum of patient heterogeneity and to generalize well to unseen data. A larger cohort of unique
patients would be beneficial to improve the robustness and generalizability of the models.
Furthermore, the study focused primarily on utilizing baseline features and biomarkers to
predict treatment response and survival outcomes. While this approach yielded promising
results, particularly when augmented with image embeddings, it does not fully capture the
temporal dynamics of the disease progression and treatment effects. Incorporating longi-
tudinal data, such as sequential scans and time-varying biomarkers, could provide a more
comprehensive understanding of the patient’s response to TARE and improve the predictive
power of the models.

Lastly, the study’s findings are specific to the context of the EPOCH clinical trial, which
investigated the impact of TARE in combination with second-line chemotherapy for mCRC
patients. While the results demonstrate the potential of advanced computational methods
in this setting, the generalizability of the findings to other clinical contexts or patient popu-
lations may be limited. It is also important to note that the pretraining of the models used
data from the patients eventually included in the CoxPH modeling, which may introduce
some information leakage. To address this, proper validation on a new, unseen patient cohort
from the EPOCH trial (i.e., from the non-US/UK countries) would be necessary to assess
the performance and robustness of the models without the potential bias introduced by the
pretraining data overlap. Additional validation studies across different cohorts and treat-
ment settings would also be necessary to assess the broader applicability of the developed
models and identified biomarkers beyond the specific context of the EPOCH trial and the
US/UK patient population.

10.4 Future Research Directions

One key direction is the exploration of improved deep learning models with a greater un-
derstanding of the structural information present in medical images. While the Combined-
Modality Sliced3D model used in this study demonstrated the value of integrating imaging
data with clinical features, there is room for improvement in terms of model architecture and
pretraining strategies. Vision transformers, such as ViT and DINO, have shown remarkable
success in capturing long-range dependencies and learning hierarchical representations in nat-
ural images. Adapting these architectures to medical imaging tasks and pretraining them
on large-scale medical image datasets could potentially improve classification performance
on clinical outcomes.

Another promising direction is the incorporation of longitudinal data, such as time series
of scans and biomarkers, to capture the temporal dynamics of disease progression and treat-
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ment response. Instead of exclusively predicting from baseline features, future studies could
explore the use of recurrent neural networks (RNNs) or transformer-based architectures to
model the evolution of imaging and clinical features over time. By incorporating this tempo-
ral information, the models could potentially identify early indicators of treatment response,
predict future disease trajectories, and inform adaptive treatment strategies. This approach
would provide a more comprehensive understanding of the patient’s response to TARE and
enable more personalized and proactive treatment decision-making.

Multi-class training is another area that warrants further investigation. We observed that
fine-tuning the Combined-Modality Sliced3D model on the three-class tumor response char-
acteristic (ITRGRESP_res) improved the predictive performance for other clinical features.
Thus, extending this approach to simultaneously predict multiple clinically relevant features
could potentially lead to the generation of more informative and generalizable embeddings.
By training the models to capture the relationships between various clinical endpoints, such
as tumor response, survival outcomes, and treatment-related adverse events, the resulting
embeddings could provide a more comprehensive representation of the patient’s overall dis-
ease state and treatment response and also help to mitigate the challenges associated with
limited sample sizes.

Additionally, we plan to study which embedding features are shared and correlated across
different clinical endpoints and uncover the latent structure and relationships within the em-
bedding space. Visualizing and interpreting these relationships could guide the development
of more targeted and effective treatment strategies, as well as inform the design of follow up
clinical trials to EPOCH.

I would like to acknowledge the use of AI language models, specifically for assisting in the proofreading and grammatical improvement of the final
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Appendix A

Supplemental Figures

This appendix includes all supplemental figures and tables.

Figure A.1: Training loss and learning rate plots for pretrained 2D-Combined Modality
model.

Table A.1: Evaluation metrics for the Combined-Modality Sliced3D model on ITR-
GRESP_res classification (withheld test set)

Metric Value

Accuracy 0.5960
Precision (macro) 0.5280
Recall (macro) 0.5740
F1 score (macro) 0.5209
Precision (micro) 0.5960
Recall (micro) 0.5960
F1 score (micro) 0.5960
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Figure A.2: Kaplan-Meier curve for hepatic progression-free survival stratified by baseline
ECOG performance status.
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Figure A.3: Kaplan-Meier curve for hepatic progression-free survival stratified baseline
KRAS status.
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Figure A.4: Kaplan-Meier curve for hepatic progression-free survival stratified by white or
nonwhite status.
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Figure A.5: Kaplan-Meier curve for hepatic progression-free survival stratified by MCRCSTC
(degree of metastasis).

Figure A.6: Confusion matrix for sex classification using the 3D MedicalNet model.
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Figure A.7: ROC curve for sex classification using the 3D MedicalNet model.

Figure A.8: Training and validation accuracy of the Combined-Modality Sliced3D model for
sex classification.
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Figure A.9: Confusion matrix of the Combined-Modality Sliced3D model for sex classifica-
tion.
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Figure A.10: ROC curve of the Combined-Modality Sliced3D model for sex classification.

Figure A.11: Training and validation accuracy and loss curves for the Combined-Modality
Sliced3D model fine-tuned on ITRGRESP_res classification
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Figure A.12: Confusion matrix for the Combined-Modality Sliced3D model on ITR-
GRESP_res classification (withheld test set)
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Figure A.13: ROC curve for the Combined-Modality Sliced3D model on ITRGRESP_res
classification (withheld test set)
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Figure A.14: Hazard ratios and 95% confidence intervals for hepatic progression-free survival
(hPFS) estimated using a CoxPH model with features from the fine-tuned embeddings.
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