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ABSTRACT

In this thesis, we explore classical and semiclassical gravity from the perspective of the
AdS/CFT correspondence. We leverage global methods in General Relativity (GR) together
with quantum information– and complexity–theoretic properties of the conformal field theory
(CFT) dual to obtain novel results in classical and semiclassical gravity.

In the first part, we obtain a collection of results suggesting that holography enforces a
refined version of Cosmic Censorship that potentially can replace the Weak Cosmic Censorship
(WCC) conjecture, which has been disproven in Anti-de Sitter (AdS) spacetimes. We show
that certain important GR results usually proven assuming WCC can instead be derived from
consistency of the AdS/CFT dictionary. We also construct new likely violations of WCC in
asymptotically AdS4 spacetimes, but show that these cannot have a holographic dual; this
provides evidence that singularities are better behaved in holographic theories, compared to
GR with generic matter. Finally, we show a connection between event horizons and CFT
pseudorandomness, and we construct a new measure of the size of a naked singularity. We
conjecture that quantum gravity only forbids macroscopic naked singularities, according to
this measure.

In the second part, we derive new properties of various extremal submanifolds, with several
consequences for AdS/CFT. For example, we provide a physically intuitive explanation for
why extremal surfaces are natural boundaries between independent subsystems. We also
prove results that constrain far-from-equilibrium dynamics in gravity and CFTs. Finally, we
construct a puzzle showing that geometric states with large entanglement need not correspond
to a wormhole, highlighting subtleties in the ER=EPR proposal.

Thesis supervisor: Netta Engelhardt
Title: Professor of Physics
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Chapter 1

Introduction

Before the discovery of General Relativity (GR), space and time constituted a fixed stage
upon which physics played out. Together, they formed a static background to which we could
anchor our description of observable quantities; the background provided fixed clocks and
rods allowing universal measurements comparable across different configurations of matter.
However, with the advent of Einstein’s theory of gravity, the picture radically changed. The
clean separation between matter and the stage it acts on was broken. Spacetime is a curved
geometry that influences the behavior of matter, while matter dynamically alters the geometry
of spacetime. Crucially, matter appearing within spacetime no longer constitutes degrees of
freedom independent from spacetime itself. This deep fact leads us to the following question:
what are the fundamental degrees of freedom when gravity is taken into account?

It is tempting to propose that the fundamental degrees of freedom include the metric at each
point p in spacetime. But this view is untenable. If a degree of freedom is deemed fundamental,
we should at least be allowed to ask about its state for every possible configuration of the
universe, and we should have a definite answer independent of arbitrary convention. The
spacetime metric gab at p satisfies none of these criteria; its value depends on the particular
choice of coordinates, and in GR, coordinates on their own hold no physical significance – the
theory is diffeomorphism invariant. This particular issue is readily dealt with, however; there
exist curvature invariants that are scalars, such as the squared Riemann tensor RabcdR

abcd, so
perhaps these constitute fundamental degrees of freedom? But a deeper issue remains: how
to identify the point p in a way that does not make reference to any particular spacetime
and particular choice of coordinates?

One partial answer to this question is known for asymptotically flat (AF) and asymptot-
ically AdS (AAdS) spacetimes, which correspond to universes with a bounded amount of
matter and a vanishing or negative cosmological constant Λ, respectively. In these classes of
spacetimes, the structure at conformal infinity I is fixed, providing a background structure
that we can anchor observables to. We can unambiguously identify points q in I , regardless
of what happens in the bulk of the spacetime. This enables us to identify bulk spacetime
points p in a diffeomorphism invariant way using relational prescriptions like the following:
“fire a spacelike geodesic from q in a given direction, and follow the geodesic for a renormalized
proper distance s; the resulting event is p.”. We can now ask about the value of RabcdR

abcd at
p, and the final result is diffeomorphism invariant. With this type of procedure, we might
hope to save the idea that the fundamental degrees of freedom include the spacetime geometry,
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albeit in an indirect way where everything is anchored to I . However, black holes and the
requirement that gravity should be quantum mechanical kills this hope once and for all:
spacetime as a fundamental concept appears to be doomed. Nevertheless, I survives, and
its importance only increases when we quantize gravity.1

When a large amount of energy concentrates in a sufficiently small region, the conventional
wisdom says that we tend to form black holes. A remarkable property of standard black
hole solutions is that they contain a singularity – a location where time (or spacetime) itself
can end. Specifically, geodesics will terminate at a singularity and cannot be continued
further, so particles travelling on geodesics appear to get frozen in time when they hit the
singularity. This is a hint that spacetime as a fundamental concept breaks down. Another
notable consequence of singularities is that the diffeomorphism invariant event that we defined
above no longer exist in general. Their existence becomes state dependent – it might not be
possible to travel a given renormalized proper distance along some geodesic fired from q ∈ I ,
since a singularity could terminate this geodesic preemptively. Thus, already in classical GR,
there appears to be no robust state-independent way to talk about a given point in spacetime,
unless this point is at I itself. Attempts to reconcile quantum mechanics with GR makes the
situation worse. In units of c = 1, the Heisenberg uncertainty principle implies that we need
wave packets with energies of order E ≳ ℏ/∆x to probe distances of order ∆x. But once ∆x
is on the order of the Planck length ℓPl ≡

√
ℏGN , the size of the wave packet is comparable

to its would-be Schwarzschild radius 2GNE, leading to the likely formation of a black hole.2
This raises serious doubts about the operational meaning of distances, and thus of spacetime
geometry itself, at length scales at or below the Planck scale. The naive quantization of GR
leads to the same conclusion. The effective coupling constant of this theory is (EℓPl/ℏ)2, so
the quantum theory becomes strongly coupled at Planckian energies. Additionally, the theory
is non-renormalizable, meaning that an infinite series of counterterms become important in
this regime. Since each is associated to a free parameter, we get a complete breakdown of the
theory’s predictability. The same thing happens as we approach curvature singularities, since
the blowup of invariants like RabcdR

abcd signals that UV-sensitive higher derivative corrections
to the GR Lagrangian become important.

While black holes and quantum mechanics spell trouble for spacetime as a fundamental
concept, together they also point towards the solution. The remarkable discovery that black
holes are thermal systems [1–3] with an entropy given by

SBH =
Area[event horizon]

4GNℏ
(1.1)

shows that the fundamental degrees of freedom of gravity are radically different from ordinary
non-gravitational quantum field theory (QFT). Thermal states in gravity have entropy
proportional to the surface area of the relevant region, rather than the volume scaling of
standard non-gravitational QFT, such as quantum electrodynamics. This suggests that the
fundamental degrees of freedom of a region of spacetime is somehow associated with its

1We do not claim that gravity in principle cannot be quantized in universes with no conformal boundary.
However, quantum gravity in these universes is at present poorly understood.

2This argument assumes that the wave packet does not have a parametrically asymmetric spatial profile,
like a highly elongated ellipse. However, in this case, there is no sense in which the wave packet is close to
probing a local region in spacetime.
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boundary. This is the idea of the holographic principle [4, 5]. Note however that the boundary
of all of spacetime is in a certain sense I . Thus the Bekenstein-Hawking entropy (1.1),
together with the fact that conformal infinity is the only spacetime structure with a robust
state-independent existence, hints that the degrees of freedom of quantum gravity could be
localized at I – at least in cases where I is non-empty. Further evidence in favor of it comes
from the fact that the Hamiltonian of GR is a boundary term located at conformal infinity.

The 1997 discovery of the celebrated AdS/CFT correspondence [6–8] gave a precise
realization of the holographic principle in the case of a negative cosmological constant. Not
only are the fundamental degrees of freedom localized at conformal infinity, as hinted to
by GR itself, but remarkably, they form a relativistic non-gravitational QFT that is local,
unitary, and conformally invariant – a so-called holographic conformal field theory (CFT).
Furthermore, the gravitational bulk is a string theory, which reduces to GR coupled to
certain matter fields in the limit of low curvature and weakly coupled strings. While many
aspects of string theory are quite well understood at the level of perturbation theory around
certain spacetimes, significant difficulties remain when trying to understand the theory non-
perturbatively. One of the most significant facts about the AdS/CFT correspondence is that it
provides a completely non-perturbative UV-complete definition of quantum gravity via a type
of theory we understand relatively well. The price we pay for a non-perturbative description
is that spacetime is encoded in the holographic CFT in an indirect and often hard-to-access
way; the description brings the emergent nature of spacetime to the front. However, over the
last 20 years, tools from quantum information theory have revolutionized our understanding
of how spacetime emerges from the holographic CFT, leading to remarkable new insights
into quantum gravity, including in the regime where classical or semiclassical GR is a good
description.

A central theme of this thesis is the use of perspectives and tools made available by
AdS/CFT to obtain new insights and constraints on gravitational theories that arise as the
classical or semiclassical limits of holography. Another theme is using AdS/CFT to learn
new lessons about CFTs in regimes where direct CFT calculations are challenging. Examples
of questions to which this thesis provides new insights, answers, or partial answers are the
following:

• Chapters 2–4: Does holography enforce some notion of Cosmic Censorship?

• Chapter 3: Does the existence of a holographic CFT impose quantitative bounds on
the coupling constants of matter?

• Chapter 5: How can we reconstruct the spacetime geometry directly from CFT data?

• Chapter 6: Do the surfaces that compute entropies in holography serve a functional
role already at the level of classical GR?

• Chapter 7: For entangled CFTs, how can we diagnose from the CFT whether the
emergent geometry is a wormhole rather than multiple disconnected spacetimes?

• Chapter 8: Is there a general limit to how fast the volume of black hole interiors can
grow?
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• Chapter 9: Does the (renormalized) volume of AAdS spacetimes have a lower bound?

• Chapter 10: How can AdS/CFT be used to derive bounds on far-from-equilibrium
dynamics in QFT many-body states?

An underlying theme unifying all these questions is that they can be understood to be
intimately tied to the dynamics of spacetime submanifolds with certain extremality properties.

Before turning to this work, we present a short review of selected aspects AdS/CFT and
Weak Cosmic Censorship, contextualized by the problems solved in this thesis.

1.1 The AdS/CFT Correspondence

AdS/CFT [6–8] refers to a conjectured duality between certain CFTs and string theories with
a negative cosmological constant. Duality here means that the theories are equivalent, in the
sense that the Hilbert spaces and gauge-invariant observables are in one-to-one correspondence,
so that physical observables in one description can also be computed in the other.3 The best
known example of AdS/CFT is the duality between Type IIB string theory on asymptotically
AdS5×S5 spacetimes and four-dimensional Yang-Mills gauge theory with gauge group SU(N)
and N = 4 supersymmetry. In this case, N is related to the ratio of the Planck scale to the
AdS length scale L ∝ 1/

√
−Λ as (

ℓPl
L

)8

∝ 1

N2
. (1.2)

The effective length of strings ℓs is related to the gauge coupling g of the N = 4 super
Yang-Mills theory (SYM) by (

ℓs
L

)4

∝ 1

g2N
, (1.3)

where the combination λ ≡ g2N is known as the ’t Hooft coupling. Thus, N controls the
importance of bulk quantum effects, while λ controls the importance of higher-curvature
corrections to GR caused by the extended nature of strings.

In the N, λ → ∞ limit, N = 4 SYM becomes a strongly coupled gauge theory with a
large gauge group; the bulk approaches classical GR coupled to matter fields, together with a
free QFT living on top of the background provided by the classical sector. The matter fields
in the bulk are in one-to-one correspondence with a privileged family of local CFT operators,
so-called single-trace conformal primary operators. At strict N = ∞, the classical sector
of the theory determines the one-point functions of these operators, while their connected
two-point functions are determined by the QFT sector. Including perturbative corrections in
1/N corresponds to including bulk interactions and loops, and it makes connected n-point
functions on the boundary for n ≥ 3 non-zero.4 In general, even when we are not in Type
IIB string theory, the limit where we have (semi)classical GR in the bulk corresponds to a
strongly coupled boundary theory in a large−N limit, where N counts the effective number

3At least in the regime where both theories are well defined. If no alternative non-perturbative description
of string theory exists, then the CFT simply defines the gravity theory in the non-perturbative regime.

4In known examples of AdS/CFT, the coupling constants of matter are of gravitational strength, scaling
with Ga>0

N , so GN simultaneously controls the size of tree level matter couplings and the importance of loops.
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of local CFT degrees of freedom. In this thesis, we always work to leading order in λ =∞,
and we work to either leading or subleading order in 1/N . We will not rely on any of the
particulars of N = 4 SYM, but for a review of these details and AdS/CFT more generally,
see [9, 10].

The vacuum state of a holographic CFT in d spacetime dimensions is dual to pure AdSd+1,
after Kaluza-Klein reduction of any potential compact bulk dimensions (such as the S5 in
Type IIB string theory). Its metric has a coordinate representation

ds2 = −
(
1 +

r2

L2

)
dt2 +

dr2

1 + r2

L2

+ r2dΩ2, (1.4)

where dΩ2 is the metric of the round (d − 1)–sphere. Conformal infinity I lies at r = ∞
and has topology R× Sd−1. A representative of the conformal class of metrics at conformal
infinity is the Einstein static universe: −dt2 + L2dΩ2. This is a Lorentzian manifold, and
the holographic CFT can be taken to live on this spacetime, or any spacetime conformally
equivalent to it. As we change the CFT state, the spacetime generally changes, but the metric
still approaches (1.4) as r →∞, preserving the structure of I . This is a consequence of the
IR-UV correspondence in AdS/CFT [11]. Namely, phenomena occurring at large radii in
the bulk correspond to phenomena happening at high energies in the CFT.5 But since finite
energy CFT states resemble the vacuum at sufficiently small length scales, their spacetime
duals should look the same at large r.

1.1.1 Local observables

How are observables in the CFT and gravity related? The easiest case to determine are the
expectation values of the single trace primary operators. For example, working in an 1/r
expansion about r =∞, the first state-dependent term in the metric expansion is proportional
to the expectation value of CFT stress tensor [12]. For matter fields, the coefficient of the
leading term in the 1/r expansion computes the expectation value of the corresponding
primary operator [8]. For example, a minimally coupled scalar field with mass m2 will usually
have a leading falloff at large r given by6

⟨ϕ(r, x)⟩ = α(x)

r∆
+ . . . , ∆ =

(
d

2

)2

+

√(
d

2

)2

+m2L2, (1.5)

where x serve as coordinates on I ; in (1.4) x would label t and the angular coordinates Ωi.
We have that α(x) ∝ ⟨O(x)⟩, where O(x) is a CFT scalar single trace primary operator with
scaling dimension ∆. For quantum fields deeper in the bulk (i.e. at finite r), but not so deep
that they are behind event horizons, the relation to boundary operators is non-local, but still

5The scale-radius duality is a heuristic rather than a precise statement, and while it is a good rule of
thumb, there are a few minor subtleties. For example, a massless particle can reach the conformal boundary
and bounce off it in finite time. However, these massless fields do not backreact to change the geometry at I .

6There are other possible falloffs possible at special values of m2. In addition, we can turn on sources in
the CFT, in which case the leading coefficient is the source.
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relatively well understood. The relationship reads [13–15]7

ϕ(y) =

∫
ddxf(y, x)O(x) +O (1/N) (1.6)

where y is a bulk point, x a boundary point, and f(y, x) is some non-unique smearing kernel
that is determined by the bulk geometry. In examples where f(y, x) has been determined, it
is obtained as a Green’s function of the free wave equation on the relevant geometry, albeit
with unusual boundary conditions.

If we we only have access to the CFT state |ψ⟩, how would we actually proceed to
determine f(y, x) in practice? This question is intimately related to the problem determining
the geometry that is dual to |ψ⟩ from basic CFT measurements. If we want to simulate
holographic CFTs on a quantum computer in the future and then try to image the dual
bulk, perhaps to verify the holographic nature of our simulated system, we ought to solve
this problem. A partial answer was provided by [16, 17], which showed that measuring
(d+ 3)-point correlators of local CFT operators could be used to reconstruct the metric in a
large portion of the spacetime lying outside event horizons, up to an undetermined conformal
factor. One contribution of this thesis is to show, in Chapter 5, how to determine the missing
conformal factor in the special case where the spacetime is a vacuum spacetime, i.e. where
the bulk matter is turned off.

1.1.2 Negative energy densities

A notable fact about AdS is that the scalar squared mass m2 need not to be positive, as long
as it satisfies the Breitenlohner-Freedman bound [18, 19],

m2L2 ≥ −
(
d

2

)2

, (1.7)

so that the scaling dimension in (1.5) is real. Since the potential of the scalar field has a
leading contribution m2ϕ2/2 at small ϕ, having m2 < 0 leads to negative energy densities.
In AAdS spacetimes, this need not destabilize the theory. Furthermore, it turns out that
m2 < 0 is not an exotic phenomenon in AdS/CFT; whenever the CFT has a single trace
scalar operator that is relevant, i.e. ∆ < d, these scalar fields are present. Explicit examples
from string theory in fact give rise not only to m2 < 0, but also to lower unbounded scalar
potentials [20–22]. The fact that we must live with arbitrarily negative energy densities in
AdS causes interesting effects that we study in Chapters 3 and 9. For example, in Chapter 3
we show that while energy densities can be lower unbounded, there are still constraints on the
legal forms of scalar potentials. We show that holography can be used to derive novel bounds
similar to (1.7), but for coupling constants of scalar self-interactions rather than mass terms.
Then, in Chapter 9 we show that negative energy densities cause the (renormalized) volume
of volume-maximizing Cauchy slices to be lower-unbounded. The latter has implications for
a conjectured duality [23] between volumes and certain complexity-theoretic quantities in the
CFT, introduced below.

7The O(1/N) correction ensures that this operator is perturbatively diffeomorphism invariant.
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1.1.3 Entanglement entropy and ER=EPR

One of the most important insights into AdS/CFT comes from the quantum extremal surface
(QES) prescription [24–30]. To explain it, consider a spatial region R that is an open subset of
some Cauchy slice A of I . We can then consider the reduced density matrix ρR = TrR̄ |ψ⟩ ⟨ψ|
of the CFT state |ψ⟩, where R̄ is the complement of R within A. Assuming we are in the
semiclassical regime of AdS/CFT, the QES prescription then says that the von Neumann
entropy of ρR can be computed as

SvN[ρR] =
Area[XR]

4GNℏ
+ SvN[ρr]. (1.8)

Here XR is a special codimension−2 spacelike surface that is known as a QES; ρr is the state
of the bulk quantum fields on any choice of spacelike hypersurface ΣR that is bounded by
XR in the bulk and by R at conformal infinity. XR satisfies three conditions:

1. XR is homologous to R.

2. XR extremizes the functional (1.8).

3. Of all XR satisfying 1. and 2., XR is the one giving smallest SvN[ρR].

The homology condition means that there exists a hypersurface ΣR whose boundary is
identically XR and whose conformal boundary is identically R. It is worth noting that for
a generic R, the surface XR stretches out to I , causing the area term in (1.8) to diverge.
This can be dealt with using a cutoff on r at some large but finite value, which in the CFT is
equivalent to imposing a UV cutoff. The divergence of SvN for a general region R is caused by
entanglement of short wavelength modes across ∂R in the CFT. In many cases, we can extract
finite quantities from SvN by doing a vacuum subtraction or computing certain derivatives.

The formula (1.8) is a remarkable generalization of the Bekenstein-Hawking entropy
formula. In the special case where the CFT state is dual to a stationary two-sided black hole,
and where R is a complete slice Cauchy slice of one of the two connected components of I ,
the QES formula reduces to the Bekenstein-Hawking entropy [31]. But it also gives a new
interpretation to this entropy: it is the entropy of entanglement between two CFTs, each
associated to one of the two asymptotic regions. If we take R to be different region, or if
we take the spacetime to be a more general one, the QES formula goes far beyond what is
contained in Bekenstein-Hawking entropy. Notably, it was recently used to make remarkable
progress on the black hole information problem [32, 33].

The QES formula shows that a large class of surfaces in general spacetimes have a
fine-grained entropic interpretation in terms of the CFT degrees of freedom. This entropic
interpretation will be central to many results obtained in this thesis. In Chapter 2 we use the
invariance of the von Neumann entropy under local unitaries to show that holography in the
classical limit imposes that trapped surfaces lie behind event horizons. This is an important
consequence of the Weak Cosmic Censorship (WCC) conjecture (see discussion below), but
crucially, we derive this result without assuming WCC. This is significant, since WCC in its
usual formulation appears to be false in AdS [34, 35]. Next, to obtain our coupling constant
bounds in Chapter 3, we are again reliant on (1.8). Then, in Chapter 10, we use the QES
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formula to derive bounds on time- and space-derivatives of SvN in large classes of CFT states
out of equilibrium. These results can for example be used to lower bound thermalization
times in far-from-equilibrium CFT states.

In the case of two entangled CFTs in the regime where the QES formula applies, (1.8)
shows that if the state under consideration is dual to a wormhole, then the entanglement
must be large. This is because a wormhole dictates that there is a non-trivial area term
in (1.8), and thus there is an order O(G−1N ) ∼ O(N2) amount of entanglement between the
CFTs.8 But what about the converse? This question is intimately related to an idea that
has been central in the study of the connection between entanglement and gravity: the
idea of ER=EPR [36, 37]. This is a heuristic proposal stating a wormhole connecting two
systems is a geometric manifestation of the entanglement between these two systems. The
above observation shows that ER⇒EPR. But if we know that two CFTs have an O(N2)
amount of entanglement, and furthermore that they have a geometric bulk dual so that (1.8)
is applicable, then must this geometry be a wormhole? This would be suggested by the most
naive interpretation of ER=EPR. In Chapter 7 we show that this is false by constructing an
explicit counterexample: it is possible to have a geometric CFT state with an O(N2) amount
of entanglement that is not geometrized by a wormhole. This has implications for possible
sharp formulations of ER=EPR.

1.1.4 Entanglement wedges

A central concept in holography intimately tied to entanglement and QESs is that of
entanglement wedges [27, 38, 39]. The entanglement wedge ER is a bulk region associated
to a boundary region R; it is defined as the domain of dependence of any of the homology
hypersurfaces ΣR described above. There is now substantial evidence [40–45] supporting
that the CFT reduced density matrix ρR encodes all the information about the semiclassical
physics in ER. This means that with only access to the CFT state ρR, we can reconstruct
the state of the quantum fields in ER. Furthermore, we can implement the action of bulk
semiclassical operators in ER by acting with CFT operators that have support only on R. An
implication of this is that the entanglement wedges ER1 and ER2 of two disjoint and spacelike
separated boundary regions R1 and R2 are independent. This follows from the independence
of R1 and R2 in a relativistic local theory. But this is puzzling from the bulk perspective,
since the Einstein constraint equations are elliptic equations, and a change in the fields in
one region might demand a change in the gravitational fields spacelike separated from it.
An analogous effect is present in electromagnetism, where the addition of a charged particle
requires the addition of electric fields reaching out to infinity. However, in electromagnetism,
due to the presence of particles with both negative and positive charge, spatially separated
regions R1 and R2 preserve their independence: we can always add some particles with the
appropriate sign of the charge between R1, R2 to soak up electric field lines. In gravity this
solution is not available to us since energy densities often are restricted to be positive, and
even if they are not, matter energies have global positivity properties. In Chapter 6 we
provide an explanation for how ER1 and ER2 preserve their independence at the classical
level, despite the elliptic nature of the constraint equations. We do this by showing that

8We are assume that the wormhole is of macroscopic size, so A ∼ O(1).
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Figure 1.1: (Left) Illustration of a spacetime with a Python’s lunch region. (Right) Illustration
of a spatial slice through the extremal surfaces Xbulge and Xthroat.

the extremal surfaces that appear in (1.8) play a specific functional purpose that enables
ER1 and ER2 to stay independent. This provides a new consistency check on the concept of
entanglement wedges, and more importantly, elucidates the functional role of the extremal
surfaces that are so central to AdS/CFT.

1.1.5 Complexity

Recently, several connections have been proposed between the gravitational bulk and aspects
of computational complexity theory in the CFT. For example, based initially on findings in
toy models of AdS/CFT [46] and later supported by evidence in GR [47], a conjecture known
as the “Python’s lunch conjecture” [46] states that certain subregions of the entanglement
wedge ER require exponential computational resources to reconstruct from a boundary region
R. Let us describe the conjecture for the special case of a single CFT in a pure state. In this
case, the true QES that computes the von Neumann entropy of the full CFT state is the
empty set. However, assume that we have two additional QESs Xbulge and Xthroat, such that
there exists a Cauchy slice Σ containing both surfaces, and with Xbulge and Xthroat having
locally maximal and minimal generalized entropy Sgen on the slice, respectively.9 Then the
conjecture states that the computational complexity C of implementing bulk operators in the
region behind Xthroat from the CFT perspective scales as

C ∝ exp

[
1

2
(Sgen[Xbulge]− Sgen[Xthroat])

]
(1.9)

See Fig. 1.1 for an illustration of a Python’s lunch geometry. In particular, it is believed that
there is no simple formula like (1.6) that can be used to write a bulk local operator in the
Python region in terms of local operators on the boundary.

In Chapter 4 we show that if the Python’s lunch conjecture is true, then certain regions of
spacetime must lie behind horizons, again making no assumption of WCC. Furthermore, using
results from the theory of quantum learning [48] and certain assumptions about the nature
singularities, bulk reconstruction, and the large−N limit of AdS/CFT, we show that horizons

9The generalized entropy of a general QES is given by the right hand side of (1.8).
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always must exist when the CFT time-evolution operator looks sufficiently random to a
computationally bounded observer. This is significant, since guarantees of horizon formation
are hard to come by, given the teleological nature of event horizons.

There are also other notions of complexity that are proposed to have an interpretation
in AdS/CFT. A puzzling fact about black holes in AdS is that their volume, measured
using maximal-volume hypersurfaces anchored at boundary time t, grows linearly forever.
This is due to the fact that the length of the wormhole grows linearly with time. Taking
non-perturbative quantum effects into account, the volume does eventually saturate [49].
However, this process takes a time exponential in the black hole entropy, which is a puzzle
from the CFT perspective. What quantity in the CFT could evolve for so long, way past
timescales associated with thermalization and scrambling of quantum information? One
proposal [23] is that the volume computes the complexity C of preparing the CFT state
|ψ(t)⟩:

C (|ψ(t)⟩) = Vol[Σt]

GNL
, (1.10)

where Σt is the maximal volume hypersurface anchored at time t on I . C is the minimal
number of elementary gates needed to create the state |ψ(t)⟩ from some reference state |R⟩,
assuming some error tolerance and set of allowed gates. There is however an obvious issue with
this definition: a precise definition of C requires many arbitrary choices that are not present
in the right hand side of (1.10). Thus, a precise dual to the volume is yet to be understood.
Nevertheless, the maximal volume is a natural diffeomorphism invariant observable that,
unlike the entropy, is greatly sensitive to the black hole interior. Consequently, to understand
the emergence of the black hole interior from the CFT, it is of great interest to pin down
the dual CFT quantity. In Chapter 8 we prove a series of rigorous results about volumes
in general classes of spacetimes. This provides a set of constraints that any proposed dual
CFT quantity must match. Then in Chapter 9, we show that volumes have qualitatively
new behaviors when we allow for the negative energy densities usually present in AdS/CFT,
providing additional qualitative features that must be matched by any proposed CFT dual
quantity.

1.2 Cosmic Censorship

One of the most important open problems in classical GR is the Weak Cosmic Censorship
conjecture, proposed by Penrose in 1965 [50] and further refined by [51]. In AF and AAdS
spacetimes, the conjecture states that in GR coupled to matter satisfying an energy condition,10

the maximal evolution of a generic complete regular initial dataset is a spacetime with a
complete null infinity. That is, singularities resulting from generic gravitational collapse are
hidden inside black holes. Since the singularity theorems [50, 53, 54] show that singularity
formation is generic in GR, the status of the WCC conjecture is of fundamental importance.
A singularity implies a breakdown in the predictability of GR, and if singularities generically
form outside black holes, then GR is inadequate for describing generic physics outside black

10This matter must be field theory matter, and not fluid-like matter models, as these can be singular on
their own [52]. The energy condition is often taken to be the dominant energy condition, although this
condition is too strong in AdS/CFT, as it is violated by the m2 < 0 scalars discussed above.
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holes. This is both a curse and a blessing; our best empirically backed theory of gravity could
be inadequate for explaining observable phenomena in the night sky, any many theoretical
results relying on WCC are in jeopardy. On the flip side, quantum gravitational effects could
be more readily observable.

Before discussing WCC in more detail, let us comment on the question begged by the
name weak cosmic censorship. What exactly is weak about it? The term weak is included
to separate it from a different censorship conjecture, known as the strong cosmic censorship
(SCC) [51, 55–57]. SCC is a logically distinct conjecture that does not imply WCC, so the
terms weak and strong are somewhat misleading; however, SCC and WCC derive their names
from the fact that the former is perceived by some to be a morally stronger constraint on the
predictability of GR. The conjecture states that generic initial data evolve to spacetimes with
no Cauchy horizons – that is, maximal Cauchy evolution generically cannot be extended to a
larger spacetime by appending portions that are not uniquely determined by the initial data.
Generic occurrence of Cauchy horizons in the interior of black holes would violate SCC but
not WCC; generic formation of null- or timelike singularities reaching all the way out to I ,
causing its incompleteness but no Cauchy horizon, would violate WCC but not SCC.

Let us now return to the WCC. In the case of four-dimensional AF spacetimes, there
exist several results supporting WCC. Examples include rigorous mathematical proofs of the
non-linear stability of Schwarzschild4 [58, 59] and slowly rotating Kerr4 [60–62] in vacuum GR,
proof of the time-symmetric Penrose inequality [63, 64], the resistance of black holes to being
overspun and overcharged [65, 66], and the fact that numerical GR simulations of black hole
mergers [67–70] do not seem to produce naked singularities. However, for spacetime dimension
five or higher [71–77], or if we consider asymptotically AdS4 [34, 35, 78, 79] spacetimes, the
WCC has already been shown to be false. There also exist work [80] arguing for hints of
violation of WCC in four asymptotically flat dimensions, although this work is inconclusive.

In light of the violations of WCC outside 4d AF spacetime, should we abandon the idea
behind the WCC in the general case, and retreat to caring about WCC only for D = 4 AF
spacetimes? A careful look at the counterexamples suggests otherwise; some refined version
of Cosmic Censorship is likely true more generally.

First, in the AdS4 counterexamples to WCC [34, 35, 78, 79], a remarkable connection to
quantum gravity was found. By dialing the matter coupling constants of their theory, the
authors of [78, 79] discovered that their naked singularities stopped existing precisely when
their theory entered the regime where it satisfied a version of the Weak Gravity Conjecture
(WGC) [81] (see [82] for a recent review and [83] for a proof in certain cases). The WGC
heuristically states that in any consistent theory of quantum gravity, gravity must be the
weakest force. There are several related precise versions of the statement, and the one relevant
here is the statement that any consistent theory of quantum gravity with a U(1) gauge field
must have a particle that is superextremal, i.e. a particle with a charge-to-mass ratio greater
than that of an extremal black hole.11 Thus, the findings of [78, 79] suggest that singularities
might behave better when GR is coupled to matter arising as the classical limit of a consistent
theory of quantum gravity, rather than to arbitrary matter. We provide additional evidence
for this in Chapter 3, where we stress test the so-called Penrose inequality. This inequality

11For two such particles, gravitational attraction is weaker than electromagnetic repulsion. When a theory
has superextremal particles, extremal black holes can discharge through radiation of these particles.
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is a conjectured inequality that can be derived from WCC,12 and a violation of it implies a
violation of WCC. We are able to construct violations of the Penrose inequality by developing
an automatized numerical search for counterexamples. However, the Penrose inequality can
be derived from AdS/CFT [84] via (1.8), so our theories that violate the WCC through the PI
cannot be holographic. Furthermore, matter arising from string theory resist all our attempts
at violating the Penrose inequality, providing an additional consistency check on the idea
that that singularities behave better in theories consistent with UV completion in quantum
gravity.

Second, the singularities in the higher-dimensional counterexamples to WCC are, in some
vague sense, small. In these examples, known as Gregory-LaFlamme (GL) instabilities [71–73],
black strings of initially even thickness evolve towards lumpy black strings, which in turn
try to pinch off and then bifurcate into multiple disconnected black holes. This causes the
formation of singularities, since horizons cannot bifurcate in GR.13 As suggested in [85], these
singularities are perhaps morally similar to the breaking of a single water droplet into two.
In this case, hydrodynamics breaks down only for a short amount of time and in a small
region, after which the hydrodynamic description resumes its validity everywhere. Continuing
hydrodynamic evolution requires that only a small non-extensive amount of information must
be supplied by the microscopic molecular theory, here analogous to a UV complete quantum
gravity theory. Thus, the GL singularities might give a breakdown of GR for only a small
amount of time and in a small region. This is qualitatively different from a potential naked
singularity caused by a violation of the Penrose inequality, which would require a large scale
violation of GR.14

In light of this, an upgraded version of Cosmic Censorship might reasonably be expected
to take into account the size of a singularity. However, a challenge with this idea has been
to find a well defined way to measure the size of a singularity. In Chapter 4, motivated
by AdS/CFT, we propose a diffeomorphism invariant way to measure the size of a naked
singularity in AAdS spacetimes. This measure, while defined purely on the gravity side,
is constructed so as to also measure the minimal amount of CFT time evolution (i.e. the
UV complete description) that is needed to evolve through the naked singularity. Thus, it
measures the amount of information that the UV theory must provide in order to evolve
through the singularity. This leads us to a classification of three types of naked singularities:
classical, Planckian, and semi-Planckian. While difficult to verify directly in the low-energy
theory, GL singularities and the singularities at the endpoint of black hole evaporation could
plausibly be of Planckian or semi-Planckian size. With this knowledge, together with the
observations in the previous paragraph, we conjecture in Chapter 4 that in quantum gravity
with a holographic UV-completion, only classical naked singularities are forbidden. Indirect
support for this conjecture is provided by findings in Chapters 2–4.

12Together with certain other reasonable assumptions, such as the non-existence black holes with eternally
time-evolving exteriors.

13Or more precisely, a future horizon cannot bifurcate towards the future [57].
14Assuming the violation is of classical O(1) magnitude, as is the case for the counterexamples constructed

in this thesis.
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Part I

Cosmic Censorship from Holography
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Chapter 2

Holography Abhors Visible Trapped
Surfaces

Abstract: We prove that consistency of the holographic dictionary implies a hallmark
prediction of the weak cosmic censorship conjecture: that in classical gravity, trapped surfaces
lie behind event horizons. In particular, the existence of a trapped surface implies the
existence of an event horizon, and that furthermore this event horizon must be outside of
the trapped surface. More precisely, we show that the formation of event horizons outside of
a strong gravity region is a direct consequence of causal wedge inclusion, which is required
by entanglement wedge reconstruction. We make few assumptions beyond the absence of
evaporating singularities in strictly classical gravity. We comment on the implication that
spacetimes with naked trapped surfaces do not admit a holographic dual, note a possible
application to holographic complexity, and speculate on the dual CFT interpretation of a
trapped surface.
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2.1 Introduction

Foundational results in modern gravitational physics, from black hole thermodynamics [1–3]
to topological censorship [4], often rely on the absence of strong gravity outside of horizons,
or more precisely the weak cosmic censorship conjecture [5]. Gedankenexperiments that rely
upon the formation of black holes from generic matter collapse require an implicit assumption
that matter typically coalesces into black holes and not into naked singularities.

This assumption appears reasonable given the apparent absence of naked singularities in
observational data to date. The more precise statement of weak cosmic censorship (which we
shall henceforth refer to simply as “cosmic censorship”) is the conjecture that the Einstein
equation evolves generic regular initial data with certain asymptotics to a complete asymptotic
infinity I [6, 7]. In its initial formulation it applied specifically to asymptotically flat initial
data in four dimensions [5], but it has been generalized to other dimensions and asymptotics
when a suitable asymptotic infinity I exists (see e.g. [8]).

Developments over the past decade have eroded confidence in the validity of this statement
at least in its more general form: counterexamples have been found in asymptotically AdS4 [9–
13] and in higher dimensional asymptotically flat space [14–21]. Even in four-dimensional
asymptotically flat space, non-generic initial data can evolve to form naked singularities [22–
24]. While it is in principle possible that cosmic censorship is in fact correct in four-dimensional
asymptotically flat space (and for generic initial data), numerous extant violations in other
settings suggest otherwise. Since results that rely on cosmic censorship are expected to be
applicable in broad generality in arbitrary dimensions and often for AdS and dS asymptotics,
violations of cosmic censorship – generic or otherwise – are problematic in any setting where
classical gravity is expected to be valid.

It would be particularly unfortunate1 if such violations were to indicate that trapped
surfaces can lie outside of event horizons. In its current formulation, cosmic censorship
forbids the existence of trapped surfaces – i.e. surfaces from which light rays converge in any
direction due to gravitational lensing – outside of event horizons [25]. A large set of theorems
in classical gravity relies on this result (see [25, 26]). Numerical relativity typically uses the
detection of (marginally) trapped surfaces as an avatar for the event horizon, whose location
(and existence) can only be determined in infinite time. Must we face the possibility that
these results are all questionable?

Possibly not, at least in spacetimes that arise as classical limits of quantum gravity. The
recent discoveries of violations of cosmic censorship in AdS4 [9–13] have also been found
to violate the Weak Gravity Conjecture [27]; cosmic censorship is restored precisely when
the theory is adjusted so as to satisfy this conjecture, which is hypothesized to discriminate
between spacetimes that do and do not admit valid UV completions. The confluence of
validity of the cosmic censorship and the weak gravity conjecture has given rise to speculation
that while classical General Relativity admits violations of cosmic censorship, the classical
spacetimes that result from a truncation of a valid quantum theory of gravity do not [11, 13]:
that is, that quantum gravity enforces cosmic censorship on its strict classical limit.

Here we focus on trapped surfaces rather than the statement of cosmic censorship in
terms of initial data. The restriction of trapped surfaces to lie behind horizons is one of

1Or fortunate, from a certain point of view.
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the most valuable consequences of cosmic censorship, since as noted above, it is a sine qua
non for a number of results in General Relativity [26]. It is furthermore one of relatively
few consequences of cosmic censorship that can be formulated in terms of the experience of
a family of observers: a trapped surface outside of a horizon can in principle be detected
by an asymptotic family of observers in finite time (or retarded time, in the asymptotically
flat case). In fact, one could even go so far as to argue that the absence of trapped surfaces
outside of horizons is a large part of the physical content of the weak cosmic censorship
conjecture; namely that regions of strong gravity (usually heralded by trapped surfaces) are
hidden from asymptotic observers. This statement also fortunately avoids any references to
singularities, which are notoriously hard to work with – see [28–32] and references therein for
literature in General Relativity attempting classify strengths and types of singularities2.

We aim to test the hypothesis that quantum gravity forces trapped surfaces behind
horizons: we use holography as a laboratory for the classical limit of quantum gravity and
ask whether some principle of the AdS/CFT correspondence implies that trapped surfaces
remain cloaked from the asymptotic boundary.

Concrete evidence in favor of such a conclusion was found recently in e.g. [34], which
used the holographic dictionary to prove the Penrose Inequality in AdS [35–37], a key result
implied by the combination of two oft-quoted but unproven conjectures: (1) that trapped
surfaces lie behind horizons, and (2) that black holes equilibrate. The proof of [34] assumed
neither (1) nor (2) but instead made use of the holographic entanglement entropy proposal of
Ryu-Takayanagi [38] and Hubeny-Rangamani-Takayanagi [39] (HRT)

SvN[ρR] =
Area[XR]

4Gℏ
, (2.1)

where ρR is the density matrix of the CFT state reduced to the region R and XR is the
minimal area stationary surface homologous to R.

Because the Penrose Inequality follows from the absence of trapped surfaces outside of
horizons together with black hole equilibration, it is a good omen in favor of cosmic censorship;
however, it falls well short of proving that trapped surfaces in fact must lie behind horizons3.

In this article, we close this gap, thus proving a central consequence of cosmic censorship:
the holographic dictionary implies that trapped surfaces lie behind event horizons. Our
primary assumptions are (1) the HRT prescription, (2) that there exist unitary operators on
the boundary whose effect in the bulk propagates causally, and (3) that singularities do not
evaporate (a criterion that will be defined more rigorously in the following section) in classical
gravity without violations of the null energy condition. Steps (1) and (2) together imply
causal wedge inclusion [40, 41]: that the causal wedge must lie inside of the entanglement
wedge. This holographic ingredient is a key step in our proof.

Before proceeding to the outline of the proof, let us briefly comment on quantum corrections.
When quantum gravity effects are taken into account and violations of the null energy condition
(Tabkakb ≥ 0 for null ka) are permitted, there is of course no expectation that the above
formulation of cosmic censorship should remain valid; it is, after all, a prediction about the

2For instance, as discussed in [33], a singularity like the Gregory-Laflamme instability would by any nice
definition be considered “weak” enough to be allowed by cosmic censorship. We thank R. Emparan for
discussions on this topic.

3And falls even shorter of proving cosmic censorship.
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Figure 2.1: Example showing how causal connection between I and its HRT surface X can
be used to change SvN with a local unitary.

behavior of classical general relativity. Indeed, evaporating black holes do have trapped
surfaces outside of horizons (see e.g. [42]). However, cosmic censorship is a statement about
the classical theory; we are primarily concerned with ascertaining whether the classical limit
of quantum gravity features trapped surfaces outside of event horizons. Within semiclassical
gravity, however, these results may be interpreted as statements about early stages of
gravitational collapse.

Outline of the Proof: the proof has three ingredients: first, the HRT prescription (2.1)
combined with the fact that turning on local unitary operators in the dual theory at I
results in causally propagating bulk perturbations; second, a theorem of [43] proving that
an apparent horizon must lie between trapped surfaces and “normal” surfaces – surfaces in
which ingoing light rays converge and outgoing light rays expand; and third, the holographic
description of apparent horizons [44, 45] (which is not an additional ingredient but rather a
construction that relies only on HRT).

First, we use the fact that SvN[ρ] is invariant under local unitary operations on the
boundary state ρ to argue that the HRT surface X of a connected component of I cannot be
timelike separated to any portion of I . This is a well-established requirement often referred
to as causal wedge inclusion [40, 41]: if X were timelike-separated to I , then it would be
possible for a local unitary CFT operator acting to create a bulk signal propagating causally
to X, which could modify its area; this is illustrated in Fig. 2.1. Thus we would find that if
X were timelike to any p ∈ I it would be possible to modify SvN[ρ] via local unitaries acting
on ρ.4

Next, the theorem of [43] guarantees that a certain type of apparent horizon always
lies between normal and trapped surfaces. We show that, given a trapped surface in our

4Causal wedge inclusion can also be shown to follow from entanglement wedge nesting [46], which states
that if the size of a CFT subregion increases from R1 to R2 ⊃ R1, the part of the bulk that could be
reconstructed from R1 can also be reconstructed from R2.
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(a) (b)

Figure 2.2: (a) An apparent horizon µ (more precisely, a minimar surface) in a space-
time (M, g). (b) The same apparent horizon in its corresponding coarse-grained spacetime
(M [µ], g[µ]), where there HRT surface X with respect to I is null related to µ. The shaded
wedge outside µ is common to both spacetimes.

setup, there are always normal surfaces outside of it, and that the type of apparent horizon
guaranteed by the theorem satisfies the refinement necessary for step three.

Finally, we use the holographic construction of a dual to this type of apparent horizon [44,
45]. The construction instructs us to fix the spacetime and matter outside of the apparent
horizon – its so-called outer wedge – and modify the spacetime elsewhere via a specific
prescription. If naked singularities and Cauchy horizons develop as a result of this prescription,
we permit any extension beyond the Cauchy horizon consistent with our relatively mild
assumptions about General Relativity (here we operate under the assumption that the
boundary conditions are inherited by a top-down UV completion). In this newly constructed
spacetime, the HRT surface X is null-separated from the apparent horizon as illustrated in
Fig. 2.2. Since by step one there are no timelike curves from the HRT surface to I , there can
be no future-directed timelike curves from the apparent horizon to I : we find that apparent
horizons must lie outside of I−[I ] in the coarse-grained spacetime; under the assumption
that singularities do not evaporate in classical spacetimes satisfying the null energy condition,
we can then deduce that apparent horizons must therefore also lie behind the event horizon
in the original spacetime.5 This immediately shows that naked singularities – should they
exist in holographic spacetimes – cannot incur trapped surfaces outside of horizons. The
contrapositive then yields the following statement: if a given spacetime has a trapped surface
outside of (or without a) horizon, it cannot be holographic; should we adopt the perspective
that AdSD≥3 spacetimes with a well-defined UV completion are always holographic, this then
becomes a potential swampland condition on the set of spacetimes with valid UV completions.

5Since, to our knowledge, known solutions with evaporating singularities – a concept that we will make
precise in Section 2.3 – arising from the evolution of initial data feature violations of the null energy condition,
we do not find this assumption to be particularly prohibitive. More generally, violations of weak cosmic
censorship are normally concerned with the formation of singularities rather than their demise. This will be
discussed at greater length in Section 2.5 .
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Figure 2.3: An illustration of the four null normals of a surface σ (here shown to be homologous
to I ) together with the corresponding null congruences.

Relation to Prior Work: As alluded to earlier, previous attempts to prove various impli-
cations of the weak cosmic censorship conjecture have frequently encountered complications
related to classifying singularities [28–32]. By considering trapped surfaces directly, and by
defining evaporating singularities in terms of homology hypersurfaces (see Definition 1), we
are able to avoid this complication altogether. Additionally, since cosmic censorship is known
to be violated on a measure-zero set of the space of solutions to the Einstein equations [22–24],
a genericity assumption is necessary for there to be any chance of the usual statement weak
cosmic censorship to be true. The first half of our proof requires no assumptions about any
genericity condition, and proves definitively that spacetimes with marginally trapped surfaces
outside of horizons are not holographic. The second part of the proof, that all trapped
surfaces are also behind horizons does assume a mild genericity condition and a technical
assumption. We expect that these assumptions likely can be relaxed.

2.1.1 Assumptions and Conventions

Assumptions: We will assume the null convergence condition, Rabk
akb ≥ 0 for all null

vectors ka as well as the HRT prescription for computing SvN (2.1) and entanglement wedge
reconstruction. In particular, this means that we work strictly within classical General
Relativity. We further assume that our spacetime is time-orientable and has no closed
timelike curves. We further assume that in a maximal conformal extension (∂M, h) of I , I
is both globally hyperbolic and geodesically complete; unless explicitly noted otherwise, by
I we will always mean a connected component of ∂M . By contrast, ∂M will always denote
the complete conformal boundary. We assume that I is spatially compact.

Conventions: In describing domains of dependence that include the relevant portion of the
asymptotic boundary, we will include I in any Cauchy slices of these domains of dependence,
per standard conventions (see [47] for a definition).

1. Bulk: we assume that there are no closed causal curves and that J+(p) ∩ J−(q) is
compact in the conformal completion for each pair of points q, p. This is typically
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referred to as the AdS version of global hyperbolicity; in a slight abuse of notation, we
shall simply refer to it as global hyperbolicity. We refer to the past Cauchy horizon
of D as ∂−D and the future Cauchy horizon as ∂+D. For a set A ⊂M , the boundary
of A is denoted ∂A. We take Â to be the closure of A in the conformal completion
M ∪∂M . If an intersection between a subset of M and I is taken, it is always implicitly
assumed that the closure in the conformal completion is taken first. Examples of the
sets described above are shown in Fig. 2.4.

By a surface, we will always mean a spacelike (achronal) codimension-two embedded
submanifold (without boundary). A surface σ is said to be homologous to I if there
is an achronal homology hypersurface H between σ and C; i.e. if there is an achronal
hypersurface H such that (1) ∂H = σ ∪ C where C is a Cauchy slice of I and (2) H
is compact in the conformal completion of (M, g). Any surface σ (homologous to I or
otherwise) has two linearly independent normals, which we may pick to be null. We will
denote the future-directed null normals ka and ℓa; if σ is additionally homologous to I ,
then at least one of these null normals points towards I – i.e. is “outwards-pointing”;
we will name that vector ka.6 The four null geodesic congruences obtained by firing null
geodesics along ±ka and ±ℓa from σ and terminating at conjugate points and geodesic
intersections are denoted N±k[σ] and N±ℓ[σ]. See Fig. 2.3 for an illustration of these
concepts. We will generally be interested in the expansion of a null congruence in the
na ∈ {ℓa, ka} direction, defined as

θn = na∇a (lnArea[σ]) . (2.2)

A marginally trapped surface satisfies θk = 0 and θℓ < 0 (whereas if θℓ is unconstrained
it is simply marginally outer trapped). A trapped surface has negative expansion along
both future expansions.

Finally, as described in the introduction, we will work with what we shall refer to
permissible extensions of a Cauchy horizon as an extension of a spacetime beyond a
Cauchy horizon that is consistent with General Relativity and all our global assumptions
listed above, together with one more condition: we assume that we never extend
spacetimes beyond the “holographic region”, should singularities terminating CFT
evolution arise (see discussion below). All other conventions are as in [26].

2. Boundary: We use the letter C to refer to Cauchy slices of any maximal conformal
extension of I , and by i+ we mean future timelike infinity of M .7. Since the utility of
our proof is in the provision of a UV complete description of the gravitating system via
the CFT, we are also concerned with the evolution of the boundary theory. That is,
if at any point the CFT (in the large-N limit) becomes sick (e.g. if the stress tensor
becomes divergent [48], Hamiltonian becomes unbounded from below, etc. [49]) in finite
boundary time in a maximal conformal extension, we must conclude that this similarly
puts an end to bulk evolution. Thus if the CFT evolution is well-defined (for N →∞)

6If ∂M consists of multiple connected components I and σ is homologous to multiple components, it is
possible for both ka and ℓa to be outwards-pointing, and it will be either clear from context or immaterial
which one is which.

7Even though the commonly drawn conformal diagram of AdS does not show i+, it nonetheless exists!
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Figure 2.4: An example of an asymptotically AdS spacetime M with conformal boundary
∂M , and with set A ⊂M marked. The boundaries of A, ∂A in M and ∂Â in M ∪ ∂M , are
highlighted. Furthermore, the past Cauchy horizon of D[A] = D[∂A] is illustrated.

only between two (potentially empty) boundary time slices C− and C+ of the maximal
conformal extension (∂M, h), C+ being to the future of C−, then we excise J+[C+]
and J−[C−] from (M, g). This is because these regions are not encoded in the CFT
state between C− and C+, and so the spacetime without the excision is not completely
encoded in the CFT and thus not holographic.8 To facilitate terminology here, we
define ĩ+ as the futuremost endpoint of the CFT evolution. If the CFT evolution
exists for all time in the maximal conformal extension, then i+ = ĩ+; otherwise, if the
CFT evolution ends prematurely at some finite time, ĩ+ becomes the effective timelike
infinity: any signals that travel from the bulk to the boundary and arrive in the future
of ĩ+ are non-holographic.

2.2 Apparent Horizons in Holography

As discussed in Section 2.1, an apparent horizon is intuitively the boundary to the very strong
gravity region on a given spatial slice; more precisely, it is the boundary between normal
and trapped surfaces on a spatial slice. In this article we will be concerned with a slight
refinement of apparent horizons called “minimar surfaces” [44].

A compact, connected surface µ is called a future minimar surface if it satisfies the
following:

1. µ is marginally trapped;
8An example of a scenario like this is Choptuik critical collapse in AdS [48], where the CFT stress tensor

becomes singular when the Cauchy horizon caused by the naked singularity reaches I . Any potential
extension of the spacetime to the future of this time is not holographically encoded in the CFT.
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Figure 2.5: The coarse-grained spacetime construction of [44, 45]. The first panel shows
the outer wedge of a minimar µ. The coarse grained spacetime elsewhere is specified by a
piecewise null stationary initial data hypersurface N−k[µ] emanating in the −ka direction
from µ. It is possible to prescribe initial data on N−k[µ] so that there is an extremal X
surface on it. At this extremal surface, the spacetime is CPT reflected to generate a complete
Cauchy slice of (M [µ], g[µ]).

2. µ is homologous to I ;

3. µ is strictly stable, meaning there exists choice of ka and ℓa such that ka∇aθℓ < 0
everywhere on µ (this effectively means that there exist untrapped surfaces outside of
µ and trapped surfaces inside µ);

4. µ is the surface of least area on at least one of its homology hypersurfaces.

In analogy with the entanglement wedge, the “outer wedge ” of µ, denoted OW [µ], is the
domain of dependence of H. The absence of global hyperbolicity raises a potential concern
that the outer wedge is dependent on the choice of homology hypersurface. In the subsequent
section, we will prove that this concern is unfounded in the absence of evaporating singularities.
Finally, note that it is possible to define a past analogue of a minimar by replacing ℓ→ −k,
k → −ℓ. All of our results will be valid for this time-reversed choice, but for brevity we will
focus on future case. Consequently we often refer to future minimars just as minimars.

Our results rely heavily on the primary construction of the dual to the apparent horizon,
which builds a spacetime in which the area of the HRT surface is identical to the area of
µ, and which agrees with (M, g) on OW [µ]. The construction is illustrated and described
in Fig. 2.5. Because the spacetime in question is generated by discarding the region that
was originally behind µ, it is often referred to as the coarse-grained spacetime, denoted
(M [µ], g[µ]). Here we include in (M [µ], g[µ]) both the Cauchy development of the homology
slice H and any permissible extension of the Cauchy horizon. This means that (M [µ], g[µ])
is not necessarily globally hyperbolic, and so some additional work, carried out in the proof
of Lemma 1 and Theorem 1, is needed to show that the extremal surface X on N−k[µ] about
which we CPT reflect still is the HRT surface of I in (M [µ], g[µ]).

For our purposes, the takeaway from this construction is that for any minimar surface,
there exists a spacetime (M [µ], g[µ]) in which µ is null-separated along −ka from the HRT
surface X of I . Furthermore, since the construction of (M [µ], g[µ]) makes no assumptions
about global hyperbolicity [45], we are free to apply it in the context under consideration in
this article.
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2.3 Apparent Horizons Lie Behind Event Horizons

In this section, we argue that minimar surfaces must lie behind event horizons. The proof
hinges on the well-known requirement discussed in Section 2.1 that for consistency of the
proposal (2.1), the HRT surface of I must be spacelike- or null-separated to I .9 In modifying
the area of the HRT surface, we would by the holographic prescription also modify SvN[ρbdy].
Since the latter is invariant under local unitary operations, we immediately arrive at a
contradiction; thus HRT surfaces must lie behind event horizons [41].

From this requirement of causal wedge inclusion, we will show that minimar surfaces
must also lie behind an event horizon in the original spacetime. To prove this second step,
it is critical that strictly classical GR satisfying the null convergence condition admit no
evaporating singularities. Let us now make this requirement precise:

Definition 1. An asymptotically AdS spacetime (M, g) is said to be devoid of evaporating
singularities if for every closed set K ⊂ M , when ∂K̂ is a compact hypersurface in the
conformal completion then K̂ is compact in the conformal completion.

This property, by Lemma 8.2.1 of [26], ensures that no inextendible curves are imprisoned
in K̂, so that as we follow an inextendible geodesic in K they either leave K through ∂K or
go to the conformal boundary. In particular, this rules out geodesic incompleteness between
complete hypersurfaces that do not touch singularities. In the special case where ∂K is the
union of two achronal surfaces, then compactness of K̂ implies global hyperbolicity of K̂.

As explained in the introduction, we will assume that all strictly classical solutions to
GR that admit a UV completion in quantum gravity are devoid of evaporating singularities.
We emphasize that this is a far weaker assumption than strong asymptotic predictability [26],
since spacetime can violate global hyperbolicity arbitrarily badly near the asymptotic region
owing to non-evaporating singularities. Our assumption further means that no permissible
extension of the Cauchy horizon results in an evaporating singularity in classical GR. See
Fig. 2.6 for some examples.

From this, we prove that the choice of homology hypersurface is immaterial to the
definition of OW [µ]:

Lemma 1. Let (M, g) be devoid of evaporating singularities. If H1 and H2 are two homology
hypersurfaces of a surface µ homologous to I , then D[H1] = D[H2].

Proof. To prove this, it is sufficient to show that every inextendible timelike curve intersecting
H1 also either intersects H2 or reaches the conformal boundary (since H1 includes a slice of
I ). Assume first that H1 ∩H2 = ∅, and let C1 and C2 be the Cauchy slices of I where
they are anchored. By global hyperbolicity and spatial compactness of I there is a compact
subset I ⊂ I with ∂I = C1 ∪ C2. Then ∂K̂ ≡ I ∪H1 ∪H2 is a compact hypersurface in the
conformal completion (see Fig. 2.7 for an illustration), and the region K̂ bounded by ∂K̂ in
the conformal completion is also compact.

9Readers concerned about recent results involving quantum extremal surfaces [47] outside of horizons [50]
should defer their concern to Section 2.5, where we discuss quantum corrections and non-standard boundary
conditions.
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Figure 2.6: Sketched conformal diagrams of four spacetimes. The two left-most spacetimes
are neither globally hyperbolic nor strongly asymptotically predictable, but they are devoid
of evaporating singularities. The two right-most spacetimes contain evaporating singularities.

Figure 2.7: Illustration of two homology slices, which by the lack of evaporating singularities,
must have the same outer wedge.

Assume an inextendible timelike curve γ enters K through H1, and assume without loss
of generality that it enters K to the future. By compactness of K̂, γ must either reach
the conformal boundary or leave K to its future. It cannot leave K through H1 by global
hyperbolicity of K. Thus if γ does not go to the conformal boundary, it intersects H2.

In the case where H1 and H2 intersect we potentially get multiple compact regions
K̂1, K̂2, . . . bounded by H1 ∪ H2 ∪ I, as shown in Fig. 2.7. Since the above argument will
apply to each region we again find that γ intersects H2 or reaches I.10

For the remaining of the paper, unless stated otherwise we will make our above assump-
tion that classical GR allows no evaporating singularities that satisfy the null convergence
condition.

Theorem 1. Let µ be a future minimar surface in (M, g). Then µ lies behind the future
event horizon in (M, g).

Proof. Let Σtot be an initial data slice of the spacetime (M [µ], g[µ]) consisting of N−k[µ],
H, and H̃.11 Within D[Σtot], we know that the extremal surface X[µ] constructed via the

10Here we are ignoring potential issues that could arise if the intersection is a dense measure zero set; we
assume that the domain of dependence of any one of these hypersurfaces is codimension-zero, and thus that
we can “wiggle” the hypersurface to avoid that scenario.

11Here Ã refers to the CPT conjugate of a quantity A ∈ OW [µ] in the coarse-grained spacetime.
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Figure 2.8: Illustration of a coarse grained spacetime extended beyond Cauchy horizons into
the dark gray regions. X ′ is an extremal surface that is a candidate HRT surface. Since X ′
must be homologous to both I and Ĩ , it will lie in D[Σtot]. µ must be spacelike to ĩ+ for
any choice of extension M [µ]−D[Σtot].

above prescription is the minimal area extremal surface in D[Σtot]. If this remains true for
any permissible extension of the Cauchy horizon, then X[µ] must be the HRT surface of
(M [µ], g[µ]).

Suppose now that there is a permissible extension of the Cauchy horizon containing an
extremal surface X ′ also homologous to I . Since the total CFT state on all boundaries is
pure, if X ′ were to be the HRT surface of I , then it would also be the HRT surface of the
complement Ĩ by complementary recovery of classical holographic codes, and so it would
have to be homologous to Ĩ . From the I and Ĩ homology hypersurfaces of X ′ we construct
the complete hypersurface Σ′tot as the union (see illustration in Fig. 2.8). By the absence of
evaporating singularities and the requirement that homology hypersurfaces are compact in
the conformal completion, the region between Σtot and Σ′tot is globally hyperbolic. But this
means that D[Σ′tot] = D[Σtot], and so X ′ ⊂ D[Σtot]. This contradicts the assumption that
X ′ lies in the extension beyond the Cauchy horizon. Thus the proof that X[µ] is the HRT
surface from the case where (M [µ], g[µ]) is globally hyperbolic still applies, and so µ must be
behind the horizon in (M [µ], g[µ]).

Consider now the subset Z = J+[∂+OW [µ]]− J+[µ] of M [µ], which we can choose so that
it agrees with the corresponding subset of M (see Fig. 2.9 for an example). If ĩ+ ̸⊂ Z, then
CFT evolution proceeds beyond I ∩ Z, and D[Σtot] ∪ Z can be extended further. However,
a maximal extension of D[Σtot] ∪ Z must put I in causal contact with µ, violating causal
wedge inclusion, and so we conclude that ĩ+ ⊂ Z. Thus µ must lie behind the horizon
in OW [µ] ∪ Z, and by the absence of closed timelike curves this must remain true when
completing OW [µ] ∪ Z into M .
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Figure 2.9: Example of a Cauchy extension Z of the outer wedge that is spacelike to µ. The
fine-grained spacetime M will induce a particular choice of Z. It is possible to choose the
coarse grained spacetime so that OW [µ] ∪ Z ⊂M [µ].

Figure 2.10: Illustration of a compact spacelike hypersurface Σ with an inner boundary that
is outer trapped and an outer boundary that is outer untrapped. By Theorem 2 a marginally
outer trapped surface σ in Σ is guaranteed to exist.

2.4 Trapped Surfaces Lie Behind Event Horizons

Having argued that minimar surfaces lie behind event horizons, we proceed to show the main
result of this article, that trapped surfaces lie behind event horizons. The idea is simple:
prove that between a trapped surface and the asymptotic boundary there always exists at
least one minimar surface. We will make use of the following theorem:

Theorem 2 ([43, 51]). Let Σ be a compact spacelike hypersurface with an inner boundary
and an outer boundary. Assume that the inner boundary is outer trapped and that the outer
boundary is outer untrapped. Then Σ contains a smooth stable marginally outer trapped
surface σ.

The quantities described in this theorem are illustrated in Fig. 2.10. In fact, we will use
a stronger version of the above theorem that describes how σ evolves with an evolving
family of spatial slices. We will assume a generic condition on trapped surfaces which is
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frequently used in classical gravity proofs involved marginally trapped surfaces (see e.g. [52, 53]:
Rabn

anb+σabσ
ab > 0, where σab is the shear tensor and na is the generator of a null congruence

fired orthogonally from the trapped surface. This condition ensures that every leaf in a
spacelike hypersurface foliated by marginally outer trapped surfaces is strictly stable [52].
Note that in the following we will only require this condition inside of the outer wedge.

Combining now Theorem 2.1, 3.1 and 6.4 of [54] with the assumption of genericity and
its implication of strict stability [52], we have the following:12

Theorem 3 ([54]). Let Σ be a spacelike hypersurface and let ∂Σ consist of two disconnected
components σ1 and σ2. Assume further that one of these components, σ1 is outer trapped,
while the other σ2 is outer untrapped. Then the boundary of the outer trapped region on Σ,
denoted σt, is (1) a smooth, strictly stable, marginally outer trapped surface homologous to
σ2. Furthermore, if a spacetime region admits a foliation {Σt} by such hypersurfaces, then
the union H =

⋃
t∈[0,T ] σt is a piecewise smooth spacelike manifold with a finite number of

connected components.

To apply Theorem 3 to prove that trapped surfaces lie behind event horizon, we need σt
to also be (1) marginally trapped and (2) homologous to I . To achieve these conditions, we
require the implementation of a mild assumption about the past of trapped surfaces (θℓ < 0,
θk < 0). Since cosmic censorship is primarily concerned with the future of trapped surfaces,
these assumptions do not heavily constrain our results.

Definition 2. We call a surface σ past well-behaved if it is homologous to I and (1)
C[σ] = ∂−OW [σ] ∩I is a Cauchy slice of I and (2) ∂−OW [σ] ⊂ D for some interior of a
domain of dependence D.13

With this in place we prove a lemma essential for our main result:

Lemma 2. Let τ be a past well-behaved trapped surface in a generic spacetime (M, g). Then
there exists a spacelike manifold H[τ ] in OW [τ ] which is foliated by past well-behaved strictly
stable marginally outer trapped surfaces homologous I .

Proof. Pick a smooth one-parameter family of non-intersecting spatial slices Σt for t ∈ [0, T ]
that are all contained in D ∩ OW [τ ], where D is the interior of the domain of dependence
containing ∂−OW [τ ]. Pick the hypersurfaces Σt so that they are anchored on Cauchy slices Ct
of the conformal boundary, and pick the inner boundaries of Σt so they are either sufficiently
close to τ or lying on Nk[τ ], so that they are also trapped. By AdS asymptotics and global
hyperbolicity in D, we can always choose the family so that each Σt has an untrapped surface
near I . Theorem 3 now guarantees the existence of a set H which is the union of smooth
spacelike manifolds foliated by smooth strictly stable marginally outer trapped surfaces
µt homologous to Ct (and thus I ), together with surfaces where H jumps. See Fig. 2.11.
Since we choose our foliation so H ⊂ D, the µt are also past well-behaved. Hence, any of
the connected components of H, after removing jump surfaces, satisfies all of our claimed
properties of H[µ].

12The theorem is only proven for D = 4 – we will assume it holds for D ≥ 3, which appears likely given
that Theorem 2 has been proven for 3 ≤ D ≤ 8 [51].

13This is morally equivalent to demanding the existence of an open set O around σ that can be covered by
surfaces that also fulfill requirement (1).
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Figure 2.11: An example of the construction of the manifold H[τ ] outside a past well-behaved
trapped surface τ . Σt is a one-parameter family of spatial slices, and both H(0,t2) and H(t2,T )

are spacelike manifolds foliated by marginally outer trapped surfaces. H[τ ] can be taken to
be either.

To find our main result, all that is missing is that at least one of the marginally outer
trapped surfaces from the previous lemma is also inner trapped. By the past well-behaved
assumption, these surfaces cannot be inner untrapped (so-called “anti-normal”). If the
spacetime were spherically symmetric we would now be done: by past well-behavedness
we can fire a spherically symmetric past horizon from I that hits µt. Choosing Σt (and
thus µt) to respect the spherical symmetry, µt would be contained in the horizon, and so
θℓ[µt] < 0, where strict inequality is guaranteed by our genericity condition. In the absence of
spherical symmetry, this becomes harder to prove. We nevertheless find it to be a reasonable
assumption for the following two reasons: (1) there is a continuously large amount of freedom
in µt given that the choice of foliation Σt is arbitrary. (2) By past well-behavedness we
can fire a one-parameter family of horizons from the boundary in D and pick each Σt to
lie arbitrarily close to a member of this family of horizons. Thus we can construct an H[µ]
where every leaf lies arbitrarily close to a strictly inner trapped surface (strictness follows
from genericity). In fact, if we were allowed to use Theorem 3 directly on null foliations with
a measure zero set of non-differentiable points, then we could redo the proof of Lemma 2
with Σt chosen to be future horizons, which would yield a proof that θℓ[µt] < 0 as well. With
these justifications in mind, we will simply assume that a past-well behaved τ has at least
one choice of H[τ ] containing an inner trapped leaf µt. In light of the guaranteed existence
of H[τ ] by Lemma 2, this can be considered as an addition to the definition of being past
well-behaved.

Finally, we can show our main result.

Theorem 4. Let τ be a trapped surface. If τ is past well-behaved or has a trapped surface in
its outer wedge which is past well behaved, then no future causal curves from τ can reach I .
In particular, τ lies behind an event horizon.

Proof. By Lemma 2 we know there is a past well-behaved surface µ in OW [τ ] satisfying the

51



Figure 2.12: Construction of Cauchy surface S on which X is minimal in the globally
hyperbolic region of the coarse grained spacetime D[Σ].

minimar conditions (1)–(3). We now show that for a surface satisfying past well-behavedness,
only properties (1)–(3) of a minimar are needed for the coarse grained spacetime to exist and
having the required property that the extremal surface X on N−k[µ] is the HRT surface of
I . That is, the requirement of minimality of µ on a homology slice can be exchanged for
past well-behavedness, and Theorem 1 still applies to µ.

Existence of the coarse grained spacetime is immediate, since that only relies on properties
(1)–(3), as shown in [45]. What remains is to show that X is HRT. The crucial piece used
for proving this in [45] was that X is contained in a Cauchy surface of the coarse grained
spacetime in which it is minimal. We now show that there is such a Cauchy surface S in the
coarse grained spacetime even if we do not assume minimality of µ on a homology slice.

Let Σ be the Cauchy surface of the coarse grained spacetime formed by union of the
homology slice of µ with respect to I , its CPT conjugate, and N−k[µ]. Let us for now
work in the maximal Cauchy development D[Σ], currently refraining from extending possible
Cauchy horizons.

By past well-behavedness in the original spacetime, ∂−OW [µ] is contained in a globally
hyperbolic set there, and there are no singularities in a small neighbourhood around it.
Since the coarse grained spacetime of µ shares the same data on ∂−OW [µ], any potential
singularity in the coarse grained spacetime has to be finitely separated from ∂−OW [µ].14

Thus, C[µ] is contained in the interior of D[Σ]. Generically, C[µ] will have kinks. Deform
C[µ] slightly to the past into the Cauchy surface Cϵ to smooth out the kinks, and consider the
past horizon H = ∂I+[Cϵ] ∩ J−[Σ] and its intersection with the stationary null congruence,
denoted µϵ = H ∩N−k[µ]. See Fig. 2.12. We know that if µϵ is nonempty, it must lie between
X and µ on N−k[µ], since X is not causally separated from I . But since µ ⊂ I+[Cϵ], we
know that µϵ is nonempty and in fact a complete slice of N−k[µ], since otherwise a generator
of N−k[µ] going from X to µ would be a causal curve that enters I+[Cϵ] without intersecting
∂I+[Cϵ].

14We have not ruled out that there is a stress tensor shock along ∂−OW [µ], but this would not ruin global
hyperbolicity.
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We now take S to be piecewise null Cauchy slice given by the union of H, H̃ and the part
of N−k[µ] between µϵ and its CPT conjugate. Since H is a future horizon it has θℓ < 0, and
since it ends on N−k[µ], where every slice has the same area as µ, we get that any surface σ
contained in H has Area[σ] ≥ Area[µϵ] = Area[X]. Clearly this also holds true for N−k[µ]
and H̃, and thus for the whole of S. Hence, we have constructed a Cauchy slice S of D[Σ] on
which X is minimal. Even though S does not intersect OW [µ] or µ, the proof from [45] that
X is the HRT surface carries through. Furthermore, we are now free to add any permissible
extension of the Cauchy horizon, and the absence of evaporating singularities guarantees
that X remains that HRT surface, as shown in the proof of Theorem 1. But now Theorem 1
guarantees that µ lies behind the future event horizon of I , and since µ ⊂ OW [τ ], τ lies
behind the event horizon as well.

A simple corollary of our main result follows; we will relax our assumption that classical
GR is devoid of evaporating singularities now:

Corollary 1. If there exists a past well behaved trapped surface τ in a classical asymptotically
AdS spacetime (M, g) satisfying the null convergence condition, then at least one of the
following holds:

1. (M, g) has an event horizon, and τ lies behind it;

2. Classical GR admits solutions with evaporating singularities (in particular, there exist
solutions with OW [τ ] and evaporating singularities);

3. (M, g) has no holographic dual.

2.5 Discussion

We have shown from the holographic dictionary that trapped surfaces, hallmarks of strong
gravity, must be cloaked from the asymptotic boundary by event horizons. This proof comes
at the heels of the holographic derivation of the Penrose Inequality in [34]; both results
constitute strong evidence in favor of validity of a version of weak cosmic censorship in
gravitational theories whose UV completion is well-described by AdS/CFT, even though the
conjecture might be false in gravitational theories without such a UV completion. That is,
these derivations suggest that there may be a formulation of weak cosmic censorship that is
enforced by quantum gravity in the classical regime (which may not be valid as a statement
about gravitational theories that do not exist as classical limits to quantum gravity). It is
thus tempting to speculate that the location of trapped surfaces may serve as a “swampland”
criterion of sorts [55]. We will not subscribe to such an interpretation here, but rather discuss
the precise implications of our results in holography.

Before we do so, however, let us briefly comment on the assumption that evaporating
singularities are absent in classical GR. This may seem like an odd assumption to make
given that the actual singularity region is not described by the classical theory. However, the
absence of of evaporating singularities is a constraint on the predictions of the classical theory:
regardless of whether we expect quantum corrections to be important in that regime, we may
still ask what purely classical gravity would predict. This does not, however, preclude an
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investigation of the location of quantum trapped surfaces [56] and quantum cosmic censorship
in (perturbative) quantum gravity where the null energy condition is violated; that is indeed
a natural next step.15

Typicality of Black Holes: The proof that trapped surfaces imply the existence of event
horizons pairs nicely with the Penrose singularity theorem [57], which states that trapped
surfaces imply the existence of singularities, and so singularities are at least as typical as
trapped surfaces. For an asymptotic observer dreaming of immortality, the Penrose singularity
theorem can be a foreboding omen.16 However, our result should provide some relief to the
observer, since it shows that event horizons are just as typical, in the sense that every time the
Penrose theorem is invoked to deduce the existence of a singularity in a holographic theory,
we can also deduce the existence of an event horizon hiding this singularity. Since a black
hole usually is defined by the existence of an event horizon, our result shows that black holes
are as typical as trapped surfaces. Black holes always appear whenever gravity gets strong
enough to focus both ingoing and outgoing lightrays. This is especially reassuring given
the prevalence of gedankenexperiments (in holography and beyond!) whose conclusions are
reliant upon the formation of event horizons as a direct consequence of typical gravitational
collapse.

Trapped Surfaces, Horizons, and Complexity: In general, knowledge of the spacetime
geometry at finite time is insufficient to locate event horizons: the latter are teleological with
respect to I . Our result provides a time-local constraint on the existence and location of
event horizons from the behavior of trapped surfaces, whose location (and existence) can
be ascertained in the neighborhood of a single moment of time. This suggests a potential
application to the work starting with [58–60] on the connection between the event horizon
and maximal chaos and fast scrambling in holography. Should particular moment-of-time
data in the CFT be sufficient to deduce the existence of a trapped surface, this data must be
also be sufficient to detect such signatures of event horizons, although the converse is false.
This raises an interesting question: if trapped surfaces are a time-local guarantee for the
existence of event horizons, what is the CFT dual of a trapped surface?

Some work has already been done in this direction: in [44, 45], it was conjectured that the
coarse-grained spacetime associated to an apparent horizon µ is dual to a CFT quantum state
ρcoarse that preserves all correlators of “simple CFT operators” with simple sources turned on:

Tr[ρOsimple] = Tr [ρcoarseOsimple] , (2.3)

where by simple operators we mean CFT operators with support in I ∩OW [µ] that result in
causal propagation in the bulk, and we have suppressed the sources (and ρ is the original
state). On the other hand, the expectation value of highly complex operators is allowed to
differ between the two states. Consistent with expectations about complexity of operators
localized to the deep black hole interior [61, 62], operators localized in the spacetime behind
µ should not be simply reconstructible with access to I ∩OW [µ]. In particular, the simple

15NE thanks R. Bousso and M. Tomasevic for extensive conversations on this.
16Indeed, as Wald describes it [7], the formation of naked singularities would be a potential mechanism for

a mad scientist to destroy the universe.
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entropy proposal, if correct, would imply that correlation functions of a small number of
the local CFT primaries of HKLL [63–65] restricted to OW [µ] ∩I should not contain the
information about the spacetime behind the associated minimar surface µ. Our results serve
as an important consistency check to this: if a trapped surface could be in the causal wedge
of I , then there would – by Theorem 3 – be a minimar surface in the causal wedge; but then
parts of the region behind µ would be reconstructible from simple operators in I ∩OW [µ]
by HKLL, in contradiction with the expectation that only complex operators are sensitive to
the physics behind µ.

Thus, since trapped surfaces are generally behind minimar surfaces, trapped surfaces
appear to be a robust time-local signal of bulk physics that cannot be reconstructed from the
CFT with “simple experiments” (under assumption of the simple entropy proposal). In fact,
via the simple entropy conjecture, there are protocols that employ simple operators that allow
reconstruction of physics outside of minimars but inside horizons (see also upcoming work [66]).
We could speculate that minimars (and their associated holographic screens [53, 67]) are the
boundary inside of which simple reconstruction methods break down; since we have shown
that these surfaces are not found in the asymptotic region, our results are suggestive of a
time-local separation between simple and complex physics in the bulk not dissimilar from the
one presented in [62].17

This is of course in harmony with the proposed relation between operator CFT complexity
and bulk depth in [68–70]. In upcoming work [71], we give a precise covariant description
in which regions deeper in the black hole are of higher complexity than their shallower
counterparts.

Quantum Corrections and Black Hole Evaporation: In purely classical gravity, the
assumption of the absence of evaporating singularities is quite reasonable: to our knowledge,
known examples of evaporating singularities always involve some violation of the null energy
condition. Thus our statement should really be viewed as a prediction of quantum gravity on
the behavior of strictly classical GR with matter that is consistent with holography. What
about quantum corrections?

Once quantum backreaction is included – in particular, once black holes can evaporate –
it is possible for trapped surfaces to lie outside of event horizons. Interestingly, however, this
effect appears at later times in the evaporation process (see e.g.[42]). Thus it is tempting
to speculate that even in the perturbative quantum gravity regime, at times t much smaller
than the Page time, the classical GR result remains valid: trapped surfaces lie behind the
event horizon. We emphasize that this is purely speculative: our derivation does not apply
in such a setting since the event horizon is teleological and takes into account the entire
evaporation process.

Might we expect a quantum version of our statement to be valid? That is, do quantum
trapped surfaces [56] lie behind event horizons? In [50], quantum extremal surfaces [47]
“outside” of the horizon were found; in this case the existence of non-standard boundary con-
ditions at the AdS boundary were crucial. Interestingly, the quantum focusing conjecture [72]

17The reader may prima facie suspect a contradiction here: our results apply to the nearest marginally
trapped surface, whereas the Python’s lunch conjecture applies to the nearest extremal surface. The difference
lies in having access to the entire boundary as opposed to just OW [µ] ∩I .This tension will be discussed
more explicitly in [66].
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in this case nevertheless enforces the absence of causal communication between the quantum
extremal surface and I . These complications illustrate the subtleties that must be accounted
for in formulating a quantum version of our proof, in which evaporating singularities can no
longer be ignored: the absence of causal communication from quantum trapped surfaces to
I is not equivalent to the absence of quantum trapped surfaces in the causal wedge. This
suggests that the correct generalization may actually involve an understanding of whether
communication can occur in practice rather than whether or not it is forbidden by causal
structure.
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Chapter 3

The Penrose Inequality as a Constraint
on the Low Energy Limit of Quantum
Gravity

Abstract: We construct initial data violating the Anti-de Sitter Penrose inequality using
scalars with various potentials. Since a version of the Penrose inequality can be derived
from AdS/CFT, we argue that it is a new swampland condition, ruling out holographic
UV completion for theories that violate it. We produce exclusion plots on scalar couplings
violating the inequality, and we find no violations for potentials from string theory. In the
special case where the dominant energy condition holds, we use GR techniques to prove the
AdS Penrose inequality in all dimensions, assuming spherical, planar, or hyperbolic symmetry.
However, our violations show that this result cannot be generically true with only the null
energy condition, and we give an analytic sufficient condition for violation of the Penrose
inequality, constraining couplings of scalar potentials. Like the Breitenlohner-Freedman
bound, this gives a necessary condition for the stability of AdS.
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3.1 Introduction

Whether or not singularities are hidden behind event horizons is a longstanding open question
in general relativity. In [1] Penrose showed that if (1) the answer to this is affirmative, and
(2) collapsing matter settles down to Kerr, then the existence of certain special surfaces σ
appearing in regions of strong gravity implies a lower bound on the spacetime mass:

GNM ≥
√

Area[σ]
16π

. (3.1)

A proof of this inequality, named after Penrose, would amount to evidence in favor of
singularities being hidden, but the inequality has not been proven except in special cases
[2, 3] (see [4] for a review).

Recently, Engelhardt and Horowitz [5] gave a holographic argument for an AdS version
of the Penrose inequality (PI), assuming the AdS/CFT correspondence, but not cosmic
censorship nor anything about the endpoint of gravitational collapse. This suggests that
hypothetical bulk matter allowing violation of the PI in AdS is incompatible with the
AdS/CFT dictionary, and that the PI can serve as a new condition detecting low energy
theories that cannot be UV completed in holographic quantum gravity, meaning theories that
can never arise as the low-energy limit of a holographic quantum gravity theory valid at all
energy scales.

In this article we construct violations of the PI for various scalar potentials, and produce
exclusion plots in coupling space, delineating regions where we know that the PI is violated.
Since the PI turns out to constrain neutral scalars, we find that it is distinct from the weak
gravity conjecture [6]. Next, we present numerical evidence that supersymmetry is a sufficient
condition for the PI. We also present an analytical sufficient condition on scalar couplings for
a theory to violate the PI. Similar to the Breitenlohner-Freedman bound [7, 8], this provides a
necessary condition for the stability of AdS. Next, while our work shows that general theories
respecting the null energy condition (NEC) violate the PI, we are able to prove the PI in all
dimensions greater than two for any theory satisfying the dominant energy condition (DEC),
assuming spherical, planar, or hyperbolic symmetry.

We emphasize that while we in this work use the PI to constrain theories in the classical
limit, these constraints are intimately tied to quantum gravity in the form of the AdS/CFT
correspondence, which is a nonperturbative description of string theory in AdS [9–11]. This
is because Penrose’s original argument for his inequality is invalid for general low energy
theories in AdS, since there exist theories violating cosmic censorship in AdS [12–15]. The
only known way to to argue for the truth of the PI in AdS is using the full machinery of the
AdS/CFT correspondence, and then taking its classical limit. Without reference to AdS/CFT,
we have no principle to exclude theories violating the PI, while if we demand that our theory
arises as the classical/low-energy limit of holographic quantum gravity, the PI must hold.

3.2 The Penrose Inequality in AdS/CFT

Consider an apparent horizon σ in an asymptotically AdSd+1 (AAdS) spacetime with mass
M , meaning that the expansion of the outwards null geodesic congruence fired from σ is
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vanishing, while the inwards expansion is non-positive. Assuming the holographic dictionary,
Ref. [5] derived that

Area[σ] ≤ ABH(M), (3.2)

where ABH(M) is the area of the most entropic stationary black hole of mass M in the theory.
This is the AdS version of the PI that can be derived in holography, and by knowing the
function ABH(M), Eq. (3.2) can be rewritten to give a lower bound on the mass, similar to
Eq. (3.1) (see Eq. (3.4)).

The argument of [5] relied on (1) the HRT entropy formula [16–19], (2) the existence of
the so-called coarse grained CFT state, whose von-Neumann entropy equals Area[σ]/4GN

[20, 21], and (3) the fact that there exists a gravitational path integral for the microcanonical
ensemble which has stationary black holes as saddles [22, 23]. The argument also makes the
reasonable assumption that there is no spontaneous breaking of time translation symmetry in
the CFT microcanonical ensemble, so that the microcanonical ensemble is dual to a stationary
black hole.1 Finally, σ had to satisfy two technical conditions: that it becomes a proper
trapped surface when perturbed slightly inwards, and that σ is outermost minimal, meaning
that there exists a spacelike or null hypersurface bounded by σ and the conformal boundary
on which no other surface is smaller (see [20, 21] for precise conditions). In the special case
where σ is an extremal surface, the first condition is not needed.

3.3 Constraining Scalar Potentials

Working with scalar fields and spherical symmetry in the classical limit, we will see that
many scalar potentials that violate the DEC violate Eq. (3.2) as well. DEC-violating scalars
are important, since they appear in known examples of AdS/CFT dualities after dimensional
reduction of compact dimensions [24–27]. A generic DEC violating scalar potential will
not even have a positive mass theorem (PMT) [28, 29], and in these theories the PI is
automatically violated, but we will also find that theories where we are unable to construct
negative mass solutions, despite extensive numerical search, will frequently violate the PI.

The theories we consider have the action∫
dd+1x

√−g
[
1

2
R +

d(d− 1)

2L2
− 1

2
|∇ϕ|2 − V (ϕ)

]
, (3.3)

where L is a length scale that sets the cosmological constant, and where V is a potential
satisfying V (0) = V ′(0) = 0. To look for violations of the PI, we will construct AAdS initial
data on a partial Cauchy surface Σ bounded by σ and the conformal boundary, such that (1)
σ is an apparent horizon satisfying all the technical conditions relevant for Eq. (3.2), and (2)
Σ can be embedded in a larger initial dataset on a complete hypersurface. This is sufficient
to test if the PI holds for σ; the full spacetime is not needed.

What scalar potentials V (ϕ) should we consider in order to find violations of the PI?
Ref. [30] proved an AdS4 PI assuming spherical symmetry and the DEC. Assuming the ordinary
gravitational mass M [31] is finite, we prove the following generalization (conjectured to be
true in [32]):

1We thank Don Marolf for pointing this out.
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Theorem 5. Consider an asymptotically AdSd+1≥3 spacetime with spherical (k = 1), planar
(k = 0), or hyperbolic symmetry (k = −1), satisfying the Einstein equations Gab− d(d−1)

2L2 gab =
8πGNTab and the DEC: Tabuava ≥ 0 for all timelike ua, va. If σ is a symmetric outermost
marginally trapped surface with respect to a connected component of the conformal boundary
with mass M , then

16πGN

(d− 1)Ωk

M ≥ k

(
Area[σ]

Ωk

) d−2
d−1

+
1

L2

(
Area[σ]

Ωk

) d
d−1

. (3.4)

Here Ωk is the volume of the (d−1)–dimensional unit sphere, the plane, or the unit hyperbolic
space (or a compactification thereof, in the latter two cases). While Ωk might be infinite, the
ratios Area[σ]/Ωk and M/Ωk are well defined. Furthermore, taking k = 1 and L→∞ we get
the PI for spherically symmetric asymptotically flat space in general dimensions. The mass is
conventionally defined so M = 0 for pure AdS (see [33] for a discussion definitions of mass in
AdS). Let us now turn to the proof.

Proof: Consider an AAdSd+1 spacetime with spherical, planar, or hyperbolic symmetry,
and consider a null gauge with coordinates (x+, x−,Ωi) and metric

ds2 = −2e−f(x+,x−)dx+dx− + r(x+, x−)2dΩ2
k, (3.5)

where r is a function of (x+, x−) and where dΩ2
k locally is the (unit) metric on the sphere,

plane, or hyperbolic space. Define ka± = (∂x±)
a ≡ (∂±)

a, which has associated null expansions
θ± = (d− 1)r−1∂±r. The quantity

µ(x+, x−) = rd
[
k

r2
− 2θ+θ−
k+ · k−(d− 1)2

+
1

L2

]
, (3.6)

can be seen to reduce to the spacetime mass at r =∞, up to an overall factor: 16πGNM =
(d−1)Ωkµ|r=∞. The null-null components of the Einstein equations (in units with 8πGN = 1)
reduce to

rT±±
d− 1

= −∂±f∂±r − ∂2±r,
rT+−
d− 1

= ∂+∂−r +
d2 − 3d+ 2

(d− 1)r

[
e−f

2

(
k +

r2

L2

)
+ ∂+r∂−r

]
+

r

L2
e−f

(3.7)

Proceeding similarly to Ref. [34], we compute ∂±µ and use Eqs. (3.7) to eliminate ∂±r, ∂2±r, ∂+∂−r,
yielding

∂±µ =
2efrd

(d− 1)2
(T+−θ± − θ∓T±±) . (3.8)

The DEC implies that T±± ≥ 0 and T+− ≥ 0. Thus, ±∂±µ is positive in an untrapped region
(θ+ ≥ 0, θ− ≤ 0), and so there µ is monotonically non-decreasing in an outwards spacelike
direction. Evaluating µ on a marginally trapped surface that can be deformed to infinity along
a untrapped spacelike path, which exists by the assumption that σ is outermost marginally
trapped, gives that krd−2 + rdL−2 ≤ µ|r=∞. Converting µ|r=∞ to mass gives Eq. (3.4). □
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Now, the above proof applies for an apparent horizon which is outermost marginally
trapped, which is not always the same as outermost minimal. However, at a moment of
time-symmetry the two always coincide, since in this case we have that θ± = ±K [35], where
K is the mean curvature of σ in Σ, and minimality means that K = 0. Thus, to look for
violations of the PI in our setup, Theorem 5 shows that we need to consider theories violating
the DEC, which for (3.3) means potentials that are negative somewhere.

As mentioned, DEC violating potentials arise in known AdSd+1/CFTd dualities after
dimensional reduction, but we can also see their relevance more directly. In AdS/CFT,
bulk scalar fields are dual to local scalar operators O(x) in the CFT that transform with
scaling dimension ∆ under dilatations: O(x)→ λ∆O(λx). It turns out that whenever O is a
relevant operator (i.e. ∆ < d), we must have that m2 ≡ ∂2ϕV (ϕ)|ϕ=0 < 0, leading to DEC
violation. This follows from the standard expression for the scaling dimension ∆ of O [11]:
∆ = d/2 +

√
(d/2)2 +m2L2.2 ∆ < d indeed means negative m2, which is allowed as long as

the Breitenlohner-Freedman (BF) bound [7, 8] is satisfied: m2 ≥ m2
BF ≡ −d2/(4L2).

3.3.1 Black Hole Uniqueness, Positive Mass, and Compact Dimen-
sions

Before constructing initial data, a few subtleties and known results should be addressed.
First, the reference black hole of mass M appearing in Eq. (3.2) is the one that dominates the
microcanonical ensemble at that mass, which is the one with the largest area [23]. Thus, if
there exist black holes with larger area than AdS-Schwarzschild at a given mass, we seemingly
have to construct these before claiming a violation. Black hole uniqueness is not established
in AdS, so this seems like a difficult task. However, spherical symmetry allows significant
simplification. In the static spherically symmetric case, Ref. [36] recently proved that the
NEC implies ABH(M) ≤ AAdS−Schwarzschild(M), so AdS-Schwarzschild is the only spherical
black hole that can dominate the microcanonical ensemble. Since the theories we consider
here respect the NEC, we thus know that AdS-Schwarzschild is the correct black hole to
compare to in Eq. (3.2), assuming we can take the reference black hole to be spherically
symmetric. This is reasonable, and amounts to the assumption that the CFT microcanonical
ensemble on a sphere does not break rotational symmetry spontaneously (in the bulk this is
the fact that introducing spin at fixed energy tends to reduce the area, as can be seen from
Kerr-AdS [37] and other known spinning black hole solutions [38–40]).

Second, it has been proven that the PMT holds even in certain theories violating the
DEC. The prime example is in classical supergravity (SUGRA) theories [7, 8, 41], but in
Einstein-scalar theory more general results are known. It was proved in [42, 43] that the
PMT holds if the scalar potential V (ϕ) can be written as

V (ϕ) =
d(d− 1)

2L2
+ (d− 1)W ′(ϕ)2 − dW (ϕ)2 (3.9)

for some real function W (ϕ) defined for all ϕ ∈ R and satisfying W ′(0) = 0 (provided we only
turn on the scalar mode with fastest falloff [44–46], which is what we do here). If we considered

2It is possible to choose boundary conditions so that the scaling dimension of the operator dual to ϕ is
∆ = d

2 −
√
(d/2)2 +m2L2 [11]. We do not do this here, as these boundary conditions require modifications

of the definition of the spacetime mass.
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a supersymmetric theory, W would be the so-called superpotential, but supersymmetry is not
required, and W can be any function satisfying the above properties. Nevertheless, we keep
referring to W as a superpotential. It is not known whether the existence of W is a necessary
condition for the existence of a PMT; the proofs of [42, 43] only show that it is sufficient.

Third, suppose that an AAdSd+1 solution is a dimensional reduction of a higher dimensional
solution with some number of compact dimensions. If the higher dimensional solution is a
warped product rather than a product metric between AAdSd+1 and the compact space, then
it is not a priori obvious that a violation of the lower dimensional PI implies a violation
of the higher dimensional one. For theories stemming from higher dimensions, it could in
principle be that the PI only is valid with all dimensions included, but our numerical findings
argue against this, since potentials from known AdS/CFT dualities seem to respect the lower
dimensional PI, as we will see. 3

3.3.2 Constructing Initial Data

All the quantities appearing in the Penrose inequality can be located on a single timeslice, so
we can test the Penrose inequality with initial datasets rather than full spacetimes. Let us
now describe how we construct initial data. A spacelike initial dataset for the Einstein-Klein-
Gordon system on a manifold Σ at a moment of time symmetry consists of a Riemannian
metric γab and a scalar profile ϕ on Σ that together satisfy the Einstein constraint equations.
The extrinsic curvature Kab and time-derivative of ϕ on Σ are both vanishing. In this case,
the full constraint equations reduce to

R+
d(d− 1)

L2
= |∇ϕ|2 + 2V (ϕ), (3.10)

where R is the Ricci scalar of γab.
Next, we want the initial data to have finite mass and evolve to an AAdS spacetime,

which constrains ϕ to fall off sufficiently fast. Furthermore, we demand σ to be outermost
minimal, so that we can test Eq. (3.2). Note that Kab = 0 implies that σ is extremal, so we
need not impose the condition that σ can be perturbed inwards to a trapped surface.

To make the procedure explicit, we pick our coordinate system on Σ to be

ds2 =
dr2

1 + r2

L2 − ω(r)
rd−2

+ r2dΩ2, r ∈ [r0,∞), (3.11)

where ω(r) is a real function and dΩ2 the metric of a round unit (d − 1)–sphere. The
marginally trapped surface σ is the sphere at r = r0 > 0, and since we are considering a
spacelike manifold, we need ω(r) ≤ rd−2 + rdL−2. As discussed in [48], the above coordinates
break down only at locally stationary spheres, where the former inequality becomes an
equality. Since we want σ to be outermost minimal, one coordinate system of the form (3.11)
must be enough to cover Σ. In these coordinates, for a general choice of scalar profile ϕ(r),

3Furthermore, [47] found compelling evidence that Area[σ]/GN is the same whether is computed with
compact dimensions included or in the dimensional reduction, so that Area[σ]/(GNM) is invariant under
dimensional reduction, with the truth value of the PI being the same with or without compact dimensions.
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the solution to the constraint reads (see for example [24, 48])

ω(r) = e−h(r)
[
ω(r0) +

∫ r

r0

dρ
eh(ρ)ρd−1χ(ρ)

d− 1

]
, (3.12)

h(r) =

∫ r

r0

dρ
ρϕ′(ρ)2

d− 1
, χ(r) =

(
1 +

r2

L2

)
ϕ′(r)2 + 2V (ϕ) .

To construct particular initial datasets, we must provide the profile ϕ(r) on [r0,∞),
together with value for r0. The constant ω(r0) is fixed by the condition of σ being marginally
trapped, giving that ω(r0) = rd−20 + rd0L

−2. Finally, we can complete our initial dataset by
gluing a second copy of the initial dataset to itself along σ 4 (possible since σ is extremal –
see [20, 21] for details).

Let us now choose concrete scalar profiles. Since we are looking for counterexamples to
the PI rather than a proof, we are free to consider special initial data. We consider two types
of profiles, either

ϕ(r) =
3∑

k=0

sign(ηk)
( |ηk|

r

)∆+2k

, (3.13)

or

ϕ(r) =

{
µ log(r/R0) r0 ≤ r ≤ R0

0 R0 ≤ r
, (3.14)

for general constants {ηk} and {µ,R0} parametrizing the initial data. After picking numerical
values of r0 and either {ηk} or {µ,R0}, we can compute the integrals (3.12) numerically, and
we can obtain the mass as 16πGNM = (d− 1)Vol[Sd−1]ω(∞). The only remaining thing to
check is that ω(r) never exceeds rd−2 + rdL−2 for r > r0. As long as this is true, σ satisfies
the technical conditions required for the holographic derivation of Eq. (3.2).

Why do we choose the profiles (3.13) and (3.14)? By trying to minimize the mass
while holding Area[σ] ∝ rd−20 fixed, we are maximizing the chance of violating the PI, since
smaller M means smaller ABH(M). To achieve a small mass, we want large regions of
nonzero scalar field in order to accumulate negative energy through the potential, while
minimizing the positive gradient contribution from χ(r). Thus, we want a scalar that falls
off slowly and without unnecessary non-monotonic behavior. Furthermore, due to the factor
exp
[
−(d− 1)−1

∫∞
r

dρρϕ′(ρ)2
]

in the integrand of Eq. (3.12) when computing ω(∞) ∝M , it
is the behavior of ϕ at large r that matters (or the largest values of r where ϕ has support).
Contributions to the mass from smaller r are exponentially suppressed. Now, a logarithmic
profile has a slow monotonic falloff, but it requires compact support in order to have the
requisite asymptotics. The profile (3.13) has the slowest possible falloff compatible with
non-compact support and standard Dirichlet boundary conditions.

We now generate a particular dataset by first drawing r0 with a uniform distribution from
the range (10−2L, 20L), allowing both small and large black holes. For the profile (3.13), we
draw the coefficients ηk from the range (−3r0, 3r0), again with a uniform distribution. For

4Gluing Σ to an identical copy Σ′ leads to a kink in ϕ(r) at σ, but we can smooth out this kink in an
arbitrarily small neighbourhood U = (r0, r0 + ϵ) ⊂ Σ′ without altering the initial data on Σ. This might
produce a large ϕ′′(r) in U , but since ϕ′′(r) does not appear in the constraint equations the solution to the
constraints on Σ′ still exists for sufficiently small ϵ.
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the profile (3.14) we draw µ ∈ (0, 10) and R0 − r0 ∈ (0, 100L). The parameter ranges are
chosen partly through trial and error – if we increase the parameter ranges for ηk or µ, we
mostly produce invalid datasets where ω(r) ≥ rd−2 + rdL2 at some finite r > r0. This is
not surprising, since if ϕ gets a large amplitude, ω′(r) becomes large as well, causing ω(r)
to overshoot rd−2 + rdL−2 near r0.5 Either way, the extent that our sampling of the space
of profiles ϕ(r) is suboptimal corresponds to how much our exclusion plots below can be
improved in the future.

3.3.3 Coupling Exclusion Plots

Let us first study d = 3 and the potential

V (ϕ) = − 9

16
ϕ2 + 9ϕ3 + 11ϕ4, (3.15)

which has m2 = 1
2
m2

BF. This theory does not have a superpotential, since solving (3.9) gives
that a real W (ϕ) can only exist on a finite interval. However, we find no negative mass
solutions after generating 105 initial datasets. Nevertheless, this theory violates the PI. For
example, the profile

ϕ(r) =

(
3.8

r

)∆
[
−1 +

(
3.2

r

)2

−
(
2.4

r

)4
]
, (3.16)

with r0 = 2.5L yields

A[σ]/AAdS−Schwarzschild(M) ≈ 1.2, GNM ≈ 7L. (3.17)

As shown by Penrose’s original argument [1], the dataset (3.16) cannot settle down to a
stationary black hole, so it will either collapse to a naked singularity, or we will have a
Coleman-DeLuccia type decay [49],6 where the conformal boundary terminates in finite time,
and where the event horizon grows to infinite area.

Let us now repeat the analysis for multiple potentials. In Fig. 3.1 we show histograms
of computed ratios Area[σ]/AAdS−Schwarzschild(M) in a large ensemble of initial datasets with
potentials coming either from (1) dimensional reduction of SUGRA theories appearing in
string theory and AdS/CFT, such as D = 11 [26, 27], Type IIB [25], or massive Type
IIA [50] SUGRA, or (2) corresponding to a free tachyonic scalars with m2 > m2

BF. In the
case of SUGRA, since we use scalar theories arising from consistent truncations, our initial
datasets provide valid initial datasets in the various SUGRA theories, both in the dimensional
reduction and with compact dimensions included (using the embeddings in [25–27, 50]). The
specific potentials are shown in the legend of Fig. 3.1. We see that the PI holds for all our
initial datasets. This does not amount to a proof that the PI holds, but it provides evidence,
since for other potentials we will easily be able to produce violations while sampling from the

5We can check that ω′(r0) ≤ drd−1
0 L−2 + (d− 2)rd−3

0 is required to avoid overshooting rd−2 + rdL−2 near
r = r0, which gives that ϕ′(r0) should be O(r−1

0 ), justifying the parametric dependence on r0 chosen for µ
and ηk.

6We thank Juan Maldacena for suggesting this possibility.
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Figure 3.1: Plot of computed area ratios for various scalar potentials, with an ensemble of 104
initial data sets for each potential. VBF ≡ 1

2
m2

BFϕ
2. For the interacting theories, the d = 6

and d = 3 potentials come from S4 [26] and S7 [27] reduction of D = 11 SUGRA. The d = 5
potential comes from S4 reduction of massive Type IIA SUGRA [50], and the d = 4 potential
from S5 reduction of Type IIB SUGRA [25].

same space of scalar profiles. This is an important consistency check on our proposal, since if
the PI was violated for theories known to have a CFT dual, it presumably cannot serve as a
constraint on low energy theories that can arise as the low energy limit of quantum gravity
(a so-called swampland condition [6, 51, 52]).7

Consider now d = 3 and a potential with m2 = 1
2
m2

BF, and with varying cubic and quartic
couplings g3, g4 (see caption of Fig. 3.2). Take g3 ≥ 0 without loss of generality. For a given
value of g3, we can gradually lower g4 until we find a dataset violating the PI or the PMT. In
Fig. 3.2 we plot the highest value for g4 for which we are able to find at least one violating
dataset. Furthermore, we plot the region in (g3, g4) space in which a superpotential exists.
The region of coupling space below the orange (blue) markers is ruled out by the PI (PMT).
For g3 > 0, the PI is a stronger condition than the PMT – at least in the space of initial
data we are sampling. For reasons we do not understand, at g3 = 0 where Z2 symmetry is
restored, the PI and PMT are violated at the same time. However, Z2 symmetry does not
appear to always guarantee coincidence, as shown in Fig. 3.3. Nevertheless, for d = 3 and
a potential V = 1

2
m2ϕ2 + g4ϕ

4, we find that the PI and PMT exclusion lines do coincide
as we vary (m2, g4), and furthermore that exclusion line is well described by the analytical
condition given below.

Note that there are no immediately obvious changes in the potential as we cross the line
7Note that for the d = 4 potential, we only consider the logarithmic profile, since the potential saturates

the BF bound, so the mass formula requires modification for scalar profiles with non-compact support (see
for example [53]).
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Figure 3.2: Exclusion plot on couplings for the potential V (ϕ) = 1
4
m2

BFϕ
2 + g3ϕ

3 + g4ϕ
4 in

d + 1 = 4. Couplings below the circular markers are ruled out by the PI, while couplings
below the squares are ruled out by positive mass. Blue and orange lines are quadratic fits,
and couplings above the black dashed line give potentials which has superpotentials. Above
the blue and orange markers, we have found no violations after the construction of 105 initial
data sets using our sampling procedure. The dotted gray line, here coinciding with the blue,
shows the exclusion boundary from the analytical condition (3.18).

Figure 3.3: Exclusion plot on couplings for the potential V (ϕ) = 1
4
m2

BFϕ
2 + g4ϕ

4 + g6ϕ
6 in

d+ 1 = 4. The same description as in Fig. 3.2 applies, except the orange and blue lines are
interpolations rather than fits.
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into territory where we violate the PI. No new extrema develop.

3.3.4 Analytic bounds on couplings

So far we have given numerical bounds on couplings, through violation of the PI. We can also
give analytical bounds, although they are somewhat weaker, and rely on violation of the PMT
(implying PI violation). Consider the scalar profile (3.14), and a potential V =

∑∞
n=2 gnϕ

n.
It is in fact possible to solve the integrals (3.12) analytically in terms of gamma functions,
and while the solution is somewhat involved, the leading part of ω(∞) in the limit R0 →∞
is simple, yielding, up to O(R−20 ) corrections,

λω(∞)

Rd
0

=
µ2

L2
+ 2

∞∑
n=2

n!gn

[
(1− d)µ

d(d− 1) + µ2

]n
, (3.18)

where λ ≡ d(d− 1) + µ2, and with the dependence on r0 contained in the O(R−20 ) terms. A
sufficient condition for violation of the PMT and PI is for the RHS of (3.18) to be negative
for some µ ∈ R. Thus, any theory where pure AdS is nonperturbatively stable must have a
positive RHS of (3.18) for all µ. We included the exclusion line obtained from Eq. (3.18) in
Figs. 3.2 and 3.3.

3.4 Discussion

There is by now a robust trend of proposing constraints on gravity theories in order for black
holes to be well behaved semiclassically [6, 54], and for these constraints to later be proven
in holography [55–57]. While the PI can be derived in holography, we have shown that it is
generally false in GR, and argued that it serves as a new swampland [6, 51, 52] condition. As
an example, we showed that it can be used to constrain scalar potentials for theories in AdS.
If holography makes sense in asymptotically flat space, it is possible that the same logic can
be applied there.
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Chapter 4

Cryptographic Censorship

Abstract: We formulate and take two large strides towards proving a quantum version of
the weak cosmic censorship conjecture. We first prove “Cryptographic Censorship”: a theorem
showing that when the time evolution operator of a holographic CFT is approximately
pseudorandom (or Haar random) on some code subspace, then there must be an event horizon
in the corresponding bulk dual. This result provides a general condition that guarantees (in
finite time) event horizon formation, with minimal assumptions about the global spacetime
structure. Our theorem relies on an extension of a recent quantum learning no-go theorem
and is proved using new techniques of pseudorandom measure concentration. To apply this
result to cosmic censorship, we separate singularities into classical, semi-Planckian, and
Planckian types. We illustrate that classical and semi-Planckian singularities are compatible
with approximately pseudorandom CFT time evolution; thus, if such singularities are indeed
approximately pseudorandom, by Cryptographic Censorship, they cannot exist in the absence
of event horizons. This result provides a sufficient condition guaranteeing that seminal
holographic results on quantum chaos and thermalization, whose general applicability relies
on typicality of horizons, will not be invalidated by the formation of naked singularities in
AdS/CFT.
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4.1 Introduction

Curvature singularities are ubiquitous in General Relativity: the evolution of smooth initial
data generically results in such singularities [1–3]. Observationally, however, evidence for
singularity formation from generic gravitational processes (such as matter collapse) remains
at best indirect. This apparent absence of directly-observable singularities is often explained
by the general expectation that the formation of horizons is likewise generic: so singularities
are usually cloaked behind event horizons. This hypothesis — that singularities resulting
from initial data evolution should be generically hidden behind horizons — is known as the
Weak Cosmic Censorship Conjecture (WCCC) [4]. It is a cornerstone assumption of almost
all results in modern gravitational physics, from classical theorems such as the Hawking
area law [5], to key results from the general “it from qubit” program. In particular, the
expectation that CFT thermalization corresponds to black hole equilibration, and more
generally that black hole statistics are reflected in CFT thermal states, crucially depends on
the assumption that states with horizons are typical in some measure.1 If the WCCC were
false, naked singularities could be as typical as black holes; our understanding of quantum
chaos, eigenstate thermalization, and black hole information in holography would be called
into question.

Surprisingly, it turns out that naked singularities do exist in solutions to the Einstein
equation satisfying various energy conditions and regular initial data, and these states do
not constitute a measure zero set. There is by now a large repertoire of counterexamples to
the WCCC: in more than four spacetime dimensions, the studies of Gregory–Laflamme type
instabilities of [7] have illustrated the existence of “pinch-off” singularities as the end-stage of
certain black holes (e.g., the black string [8]) — see [9] for a review; more recently, [10–13]
constructed extended naked singularities in asymptotically AdS4 spacetimes with various
matter profiles; see also [14]. A similar mechanism was used by [15] to construct a likely
counterexample in the four-dimensional asymptotically flat setting.

It thus appears that horizons and singularities are not related in any trivial or obvious way:
curvature singularities may form outside (or in the absence) of any horizons, and horizons
may form without singularities behind them [16]. There is no extant formulation of WCCC
that is (1) not violated and (2) sufficient to guarantee the consistency of seminal results
in AdS/CFT such as the universality of the saturation of the chaos bound and the bulk
manifestation of the CFT thermal partition function.

Some progress towards understanding cosmic censorship in quantum gravity was made in
[10–12], where it was noted that many (though not quite all) of the counterexamples also
violate the Weak Gravity Conjecture [17], suggesting the possibility that the WCCC in four
dimensions is valid in the landscape but violated in the swampland. Further evidence in
favor of this conclusion was presented in [14], which constructed large sets of AdS4 initial
data satisfying the gravitational constraints and the null energy condition whose future
development must include naked singularities, but these theories violated properties required
of theories admitting a UV completion via holography [18]. This hypothesis would suggest
that while classical General Relativity may violate the WCCC, the semiclassical limit of
quantum gravity does not.

1This is not identical to the firewall sense of typicality of [6]. See footnote 7 on page 79.
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Figure 4.1: The evaporation point of a black hole is, in some sense that we make precise in
Sec. 4.4.1, “small”.

However, this naïve “swampland censorship” scenario is clearly incomplete. In higher
dimensions, the Gregory–Laflamme instability is not excluded by any known swampland
constraints; moreover the inclusion of quantum corrections is expected to lead to black hole
evaporation, which also violates the WCCC. However, the absence of naked singularities
in the observable universe together with the top down arguments from quantum gravity
suggest that some version of WCCC remains valid: intuitively, a commonality between the
Gregory–Laflamme instability and the evaporating black hole is that there is a heuristic
sense, which in this article we will make precise, that the naked part of the singularities is
“small”. See Fig. 4.1. That is, naked singularities can exist, but they must only be visible
to asymptotic observers for a “short" period of time. Furthermore, they can only exist in
spacetimes that have horizons — so that the bulk of the singularity can remain hidden.

A formulation of such a “quantum gravitational” version of cosmic censorship – which we
propose later in this article – and its subsequent proof would require as sine qua non both
(1) a condition that can guarantee the formation of horizons in broad generality, and (2) a
definition of a “small” naked singularity.

Point (1) is a notoriously difficult open problem. Event horizons are by definition
teleological: an event horizon is defined with reference to future infinity. Consequently, very
few extant results can guarantee the existence of such a global construct even under very
restrictive assumptions (and none guarantee that a given event horizon will successfully
hide the full extent of a curvature singularity). See [19–21] for a series of failed attempts to
construct criteria to this effect. Addressing point (1) would also have the potential to shed
light on a number of other research programs, such as thermalization in AdS/CFT (see e.g.
[22] for a review) and the firewall problem [6, 23, 24]. Point (2) has seen various approaches
(see [25]), but none of those have successfully made contact with the generic existence of
horizons, since (1) has thus far remained unresolved.

Here we accomplish both (1) and (2) in the context of AdS/CFT: we give a general
guarantee for the existence of event horizons at finite time, and criteria for the size of a
singularity that make contact with the guarantee for event horizons. In particular, we classify
singularities into three categories: classical, semi-Planckian and Planck-sized, and we motivate
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an assumption on the behavior of singularities that would guarantee the existence of horizons
at finite time — via point (1) — in spacetimes containing such classical or semi-Planckian
singularities. In the rest of this section, we give a rough outline of the central ingredients of
(1) and (2).

A General Guarantee for Horizon Formation

Under the standard assumption of global hyperbolicity,2 which guarantees various consistency
results such as unitary invariance of the von Neumann entropy and entanglement wedge
nesting, there are various sufficient conditions that may guarantee existence of an event
horizon, such as exponential reconstruction complexity or chaos. However, global hyperbolicity
implies the WCCC as a consequence: almost all results ensuring consistency of the AdS/CFT
dictionary assume cosmic censorship — even though it is known that cosmic censorship can
be violated in perfectly reasonable AdS/CFT setups (e.g., the evaporating AdS black hole).
This strongly suggests that while the WCCC is sufficient for consistency, it is not in fact
necessary. We will argue for a more minimalistic form of censorship, which is necessary;3 it
remains to be seen whether this version is also sufficient.

Our goal is to find a cosmic censorship conjecture that follows directly from consistency
of the AdS/CFT dictionary. Clearly, an essential part of a holographic formulation of cosmic
censorship is the holographic dual of an event horizon: we are looking for the boundary dual
to the process of bulk horizon formation. This specifically means that we are interested
in the existence of a region outside of the causal wedge of the entire asymptotic boundary.
The separation between the causal (or simple [27–29]) wedge and the entanglement wedge
has been previously linked in [29–31] to the separation between polynomial and exponential
quantum complexity classes in the dual theory. Our approach to finding a guarantee for the
formation of event horizons will thus focus on reconstruction restrictions by complexity class.

More concretely, we ask when there is a guarantee for the existence of some operator Q
in the large-N limit that cannot be reconstructed from knowledge of the causal wedge alone,
given that the latter can be reconstructed efficiently.4

In [32], two of us provided such a guarantee at large but finite N under certain assumptions.
The full statement of the relevant theorem will be reviewed at length in Sec. 4.3.1; here
we provide a heuristic statement only, starting with the most significant assumption: that
the action of the fundamental time evolution operator U of the system is well modeled on
our code subspace by a pseudorandom unitary [33].5 In AdS/CFT, this assumption is valid
whenever the time evolution of the CFT on a particular choice of code subspace is well
approximated by a pseudorandom unitary at any finite value of N ;6 this is not dissimilar
from the assumption of e.g. [34] that the fundamental time evolution of a black hole is well

2We really mean AdS hyperbolicity here, which is essentially global hyperbolicity when the asymptotic
boundary is included. See [26] for the precise definition.

3We hope that this sentence is not taken out of context.
4By an efficient reconstruction, we mean one that can be implemented by a quantum circuit whose size is

polynomially bounded in the logarithm of the dimension of the code subspace under consideration.
5We use “fundamental” to refer to the full quantum description of the gravitational system, as in [31].
6We will eventually work at strictly infinite N , but then we will work only with time-evolved states rather

than the unitary operator that generates that time evolution, since the aforementioned unitary operator is
not well-defined in the strict infinite N limit.
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modeled by a two-design or as in [31, 35] by a (pseudo)random unitary. Pseudorandom
unitaries are operators drawn from an ensemble {Uk} that are indistinguishable from Haar
random unitaries by any efficient quantum algorithm. Our results below also hold for Haar
random unitaries, but the advantage of pseudorandom unitaries over Haar random unitaries
is that by definition they can be constructed by an efficient process. While existence of
pseudorandom unitaries has not been explicitly demonstrated yet, candidate constructions
have appeared in, e.g., [33]. We will not make use of any such explicit constructions.

Under this first assumption of pseudorandom unitary (PRU) dynamics, the theorem
of [32] considers any efficient quantum algorithm A that:

(a) Prepares polynomially complex states |φ⟩ and has access to the action of the time
evolution operator U on the expectation values of polynomially complex observables in
such states;

(b) Uses the information in (a) to attempt to learn U (or a circuit representation of U),
the pseudorandom time evolution operator, thereby producing some operator Û ;

(c) After completing (b), is handed the actual state of the system |ψ⟩ and is asked to
predict U acting on |ψ⟩ using the outcome of (b).

The theorem states that on average — and as we will show in Sec. 4.3.2, for typical
pseudorandom states and unitaries7 — any efficient algorithm will fail to produce an accurate
guess for U acting on |ψ⟩.8 That is, an efficient algorithm’s best guess Û for U will satisfy:

| ⟨ψ| Û †U |ψ⟩ |2 ≤ 1− α , (4.1)

where α is an O(1) constant, independent of the size of the Hilbert space in which |ψ⟩
lives. This result in particular guarantees the existence of a distinguishing operator Q whose
expectation value differs between Û |ψ⟩ and U |ψ⟩ by at least 2α.

We now apply this result to our gravitational setup using the fact that reconstruction
is a particular type of learning. We will consider code subspaces Hcode of dimension eO(Ga

N ),
where −1 ≤ a < 0, which do not necessarily have horizons in typical states. For example, a
microcanonical window of width O(N); another example is a set of states where the leading
order contribution to the geometry is the same for all of the states at least for a time of O(G0

N ).
We will show that it is easy to prepare candidates for such code subspaces without obviously
incurring horizons. We next assume that the time evolution is gravitationally pseudorandom:
we will define this term more precisely in Sec. 4.3.2, but roughly speaking it denotes an O(Ga

N )

7Caution: this is not the typical use of ‘typical’. Here we will use the qualifier typical specifically for
states in the code subspace to which measure concentration applies; this depends on the choice of distribution
of states under consideration. For example, we may consider “typical Haar random states” or “typical
pseudorandom states”. We will always note the distribution under discussion. This nomenclature is not to be
confused with the previously used ‘generic’, which refers to an open subset of the space of solutions to the
Einstein equation.

8Note that prima facie, the fact that we extend Theorem 2 of [32] to any fixed, typical U and ψ appears
to contradict some of the statements in the introduction of [32], i.e., that randomness is a sine qua non for
a quantum learning no-go theorem. This appears to be the case because if U = U0 is fixed, there exists a
trivial AU that just exactly outputs U0. The point is that U0 is here ‘atypical’, and the algorithm will fail for
all other U ̸= U0.
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amount of pseudorandomness; we find that this amount of pseudorandomness is generally
compatible with a Hcode of size eO(Ga

N ), which are the code subspaces that we consider. Next,
we argue for the existence of an algorithm that, as part of the learning phase, can reconstruct
the causal wedge of any efficiently-preparable state in this code subspace. Under certain
technical assumptions, such an algorithm is able to output a guess Û for the time evolution
of the initial state that accurately reproduces the expectation values of all operators in the
causal wedge. However, the theorem of [32] guarantees that the fidelity between the predicted
time evolution and the actual time evolved state is low, which implies that there exists a
distinguishing operator Q whose expectation values differ at O(1) between the actual time
evolved state and the predicted time evolution of the state.

Since there exists a learning algorithm that can accurately reconstruct the time evolution
of all operators in the causal wedge but cannot accurately reconstruct the expectation value
of some operator Q, which we show exists in the large-N limit, we immediately find that
the dual to Q lies outside of the causal wedge. Thus, the boundary of the causal wedge is
nontrivial and an event horizon must exist.

We call this result Cryptographic Censorship:

(Pseudo)random dynamics guarantee event horizon formation in typical (pseudo)random
states.

This is the first general condition that guarantees the formation of horizons without
requiring asymptotic time evolution, thus addressing the first task above: the prescription of a
broadly applicable quantum complexity theoretic diagnostic of event horizon formation.9 This
result can be thought of as a quantum instability of generic asymptotically AdS spacetimes,
assuming that typical pseudorandom dynamics are a good model for (sufficiently long) time
evolution of generic spacetimes. We may apply this result to our two examples of code
subspaces: microcanonical windows of width O(N) and states with an identical leading
order geometry at some fixed time. In the case of the former, we find that pseudorandom
(respectively, random) states in a given microcanonical window are exponentially (respectively,
doubly exponentially) likely to have horizons. In the case of the latter, we find that whenever
it is possible to squeeze a gravitational amount of pseudorandomness into an O(1) time band
on the boundary, an event horizon must form.

Before we address the second task mentioned above — classifying the size of a singularity
— let us motivate why pseudorandom time evolution is natural in strongly gravitating systems.
There is a general expectation that some amount of (approximate) randomness is crucial for
understanding black hole dynamics: due to scrambling, many aspects of black holes appear
to be well modeled by Haar random unitary dynamics or sometimes by the weaker notion of
k-designs [34]. The chaotic nature of black hole physics [36–38] and the connection between
randomness and chaos [39] have strengthened this expectation. However, we also expect that
time evolution in quantum gravity can be efficiently implemented. Haar random unitaries
and (exact) k-designs do not have this property. We thus find pseudorandom unitaries to
be a well-motivated model of black hole dynamics; indeed, as we shall see, pseudorandom
unitary time evolution guarantees the existence of an event horizon (and thus, by definition,
of a black hole).

9Here we are defining an event horizon as ∂J−[I ], so this includes holographic cosmologies in AdS.
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Figure 4.2: A spacetime with a Python’s Lunch. In the Penrose diagram on the left, the
lunch, causal wedge (WC) and the wedge of the outermost QES (WO) are indicated. The
left and right green dots are the minimal and outermost QES, respectively. The right panel
depicts a timeslice.

Thus far we have argued that pseudorandomness is a valid model for time evolution of
strongly gravitating systems using established facts about black holes. We shall postpone
motivating pseudorandomness as a model for time evolution in the context of naked singu-
larities until we have defined what we mean by “large” and “small” naked singularities. We
therefore proceed to give an overview of this second task.

Size of a Naked Singularity

Intuitively, the naked singularities that we would like quantum gravity to exclude are
classically extended with divergent curvatures, and emitting large amounts of observable,
causally propagating radiation as prescribed by some fundamental quantum gravity evolution.

In many cases, such large curvatures create (quantum) trapped surfaces and (quantum)
extremal surfaces. In [40], unitary invariance of SvN in the dual CFT was used to prove that
classical extremal (and trapped) surfaces resulting from classical singularities that do not
“evaporate” must lie behind horizons in AdS/CFT. As a warmup, we will prove that even upon
inclusion of quantum corrections and under no restrictions on the behavior of the singularity,
quantum extremal surfaces (QESs) generically lie behind horizons. The argument makes
essential use of the geometrization of regions of high- and low-reconstruction complexity:
the causal wedge, and more generally the wedge of the outermost QES, admits an efficient
reconstruction — i.e., subexponentially complex in log dimHcode, where Hcode is as before
the code subspace on which reconstruction is taking place [30], while the complementary
wedge — the so-called Python’s Lunch — does not [41]. See Fig. 4.2. In particular, acting
on the Python’s Lunch is an exponentially difficult (in log dimHcode) task in the boundary
theory. If any QES lies in causal contact of the boundary, it is possible to act on the lunch
by throwing in some timelike probe, as illustrated in Fig. 4.3. This is a simple task, and thus
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Figure 4.3: A forbidden situation: a QES in causal contact with the boundary.

cannot happen: QESs — minimal or otherwise — must therefore lie outside of the causal
wedge10 of the relevant region.11

However, singularities are not always associated with (quantum) trapped or (quantum)
extremal surfaces. In these cases, the aforementioned result showing that extremal surfaces
imply horizons will not be useful. However, if a singularity could be shown to be associated to a
gravitational amount of pseudorandomness, then Cryptographic Censorship ensures that these
singularities induce horizons. But how can we know which singularities are “severe enough” to
accommodate gravitational pseudorandomness? As a first step towards this question, we give
a precise definition of the size of a naked singularity Γ, denoted |Γ|. This quantity measures
the minimal amount of CFT time evolution required to prescribe (or equivalently, obtain) all
information about the singularity. For a timelike singularity, we furthermore show that this
quantity also measures how many modes within the semiclassical EFT can interact with the
singularity. Of course, the dynamics of the singularity itself would not be semiclassical, but
we argue that in the ℓPl → 0 limit, from the perspective of weakly backreacting probe fields,
a timelike singularity might reasonably be conjectured to act primarily as a complicated
UV-sensitive boundary condition for their evolution. Then we show that if |Γ| does not go to
zero as ℓPl → 0, or if it goes to zero sufficiently slowly, then the singularity is compatible with
inducing gravitational pseudorandomness in the dynamics. With this in mind, we classify
singularities into three groups: classical, semi-Planckian, and Planckian. We speculate that
classical naked singularities, and possibly semi-Planckian ones, are forbidden by Cryptographic
Censorship. Compatibility with gravitational pseudorandomness is of course necessary but

10For those readers who have previously seen the Quantum Focusing Conjecture (QFC) used to justify why
QESs lie behind horizons [42, 43], note that all such proofs to date have assumed cosmic censorship (in the
form of global hyperbolicity). We prove this result using the holographic dictionary instead of using the QFC.

11Any readers confused about the islands outside the horizon phenomenon [44, 45] should recall that the
horizons of [44, 45] are not the horizons of the system for which the island is quantum extremal but are rather
the horizons of a smaller system.
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(a) (b)

Figure 4.4: (a) A spacelike singularity with both past and future causal curves to the same
conformal boundary I . (b) A simple model of pseudorandom evolution: radiation that is
incoming at the naked singularity with some initial phase αi picks up a pseudorandom phase,
such that the final phase αf is pseudorandomized.

not sufficient to guarantee actual gravitational pseudorandomness in the dynamics. We of
course cannot give a top-down derivation that the unitary dynamics of a holographic CFT
are approximately pseudorandom on such code subspaces, but we shall motivate this as a
reasonable assumption for generic classical timelike singularities. Cryptographic Censorship,
together with this expectation, is the basis of our subsequent conjecture of Quantum Cosmic
Censorship: that classical (and perhaps semi-Planckian) singularities must be hidden behind
horizons; only Planckian singularities may be visible to the asymptotic observer.

Let us now motivate the assumption of pseudorandomness as a model for singularity
dynamics (which we have previously motivated for black holes; see also [32, 35]). A natural
source of pseudorandom dynamics associated to a singularity is due to the Planckian physics
at the singularity itself — what we described above as a UV-sensitive boundary condition. Let
us briefly elaborate on this point. Intuitively, we may expect that to semiclassical observers —
that is, to observers who are bounded in energy and complexity [31] — the radiation emitted
from a timelike singularity or a spacelike singularity (with both past and future causal curves
to the same I , see Fig. 4.4a) appears roughly random. See Fig. 4.4b for a simple model.

Of course, the radiation cannot be actually Haar random (as this cannot be efficiently
generated), so we instead expect that in many cases, pseudorandomness is an accurate model
for the boundary dynamics describing a singularity. When this criterion is satisfied, the
theorem of [32] together with the argument outlined above guarantees that the spacetime
has an event horizon.12 It immediately follows that whenever the fundamental dynamics of a

12Note that our argument does not guarantee that the singularity lies behind the event horizon, nor should
it: we expect that small singularities can exist outside of horizons. Our techniques do suggest that it may
be possible to limit the extent to which a singularity can lie outside of a horizon, but we leave a detailed
investigation of this question to future work.
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singularity are well approximated by a pseudorandom unitary, the singularity incurs an event
horizon.

It is worth mentioning another potential source of pseudorandom dynamics associated
to a singularity: spacetime dynamics in the vicinity of the singularity might induce chaos
in the probe fields. The paradigmatic example of chaos in classical gravity — other than
event horizons via the butterfly effect — is the BKL phenomenon [46]. This phenomenon,
which involves chaotically oscillating metric components, is expected to be generic in the
descent to a spacelike singularity [47]. BKL behavior is however only established for spacelike
singularities; it is possible that certain timelike singularities could induce similar chaos upon
approach (see, e.g., [48]), though we remain agnostic on the plausibility of this potential
source of pseudorandomness.

We now briefly summarize the paper. We begin in the next subsection by setting up
notations and conventions. In Sec. 4.2, we prove that nonminimal QESs must lie behind a
horizon. In Sec. 4.3 we prove that when the time evolution in the fundamental description
is sufficiently pseudorandom, the bulk spacetime contains an event horizon. We then apply
this to the microcanonical window and a code subspace representing states with the same
(leading order) geometry for times of O(G0

N). In Sec. 4.4, we provide a definition that
quantifies the size of (the naked part of) a singularity, and we show that classical (and semi-
Planckian) singularities can accommodate gravitational pseudorandomness. By Cryptographic
Censorship, this would then imply that such singularities must incur horizons. In Sec. 4.4,
we also speculate on how Cryptographic Censorship can be used to prove a version of cosmic
censorship. We end with a conjecture for a new form of cosmic censorship that is consistent
with all known counterexamples to the standard WCCC. In Sec. 4.5, we end with a short
discussion of our aspirations and a few possible future directions. In Appendices 4.6.1 and
4.6.2, we provide proof details for the statements of Sec. 4.3.

4.1.1 Preliminaries

Assumptions. Unlike much of the AdS/CFT literature, we will not be imposing the
assumption of global hyperbolicity on the bulk spacetimes under consideration, as this is
tantamount to assuming weak (and strong) cosmic censorship. This means that, even in
the GN → 0 limit, QFT in curved spacetime (including linearized gravitons) cannot be
utilized for time evolution. However, we will still assume that QFT in curved spacetime
is valid within causal diamonds that contain no singularities. We will further assume that
any spacetime under consideration admits an initial data slice Σ with an everywhere defined
and nowhere vanishing continuous timelike unit normal; in particular, we require that D[Σ]
contains an open set containing Σ. Any singularity in the spacetime will be assumed to act
as a UV-sensitive boundary condition that determines the relation between the algebras of
different causal diamonds.13 Finally, we will take a conformal frame which is taken to be
fixed at any value of N , including in the large-N limit.

13The singularity only has an effect on the relation between two diamonds D1 and D2 when the set
[J+(D1) ∪ J−(D1)] ∩ [J+(D2) ∪ J−(D2)] contains part of the singularity. If this set does not contain a part
of the singularity, the EFT can be used to relate the algebra of observables in D1 and D2.
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Notation and conventions. We now proceed to introduce and review some language and
notation from the quantum computing literature, which will be important for the formulation
of Cryptographic Censorship. The rest of this section contains notation that will mostly
be used in Sec. 4.3. We will use H to denote Hilbert spaces and for a pure state |ψ⟩, we
will use ψ to denote the density matrix |ψ⟩ ⟨ψ|. When we write x← X , we mean a variable
x is drawn from a distribution X . For example, by U ← µ, we mean to draw a unitary U
(from the unitary group U(H)) using the Haar measure µ; we will also use µ to denote the
distribution of Haar random states, e.g., when we write |ψ⟩ ← µ. We use Pr

x←X
to denote

taking the probability of some outcome occurring for x drawn from X . We will often work
with a parameter k, which in the cryptographic literature is called a “key”. This should be
thought of as some small amount of random classical information that can be used to encode
or decode data. Concretely, it is a bit string that is sampled uniformly from a key space K, a
set of bit strings. The dimension of K scales with a parameter κ, which is frequently referred
to in the literature as the “security parameter". We will always have in mind that we are
scaling log dimH = poly(κ) and will eventually take the κ→∞ limit. A function f(x) is said
to be negligible in its parameter x if for any constant c > 0, |f(x)| ≤ x−c for any sufficiently
large x. We will say that a quantity f(x) is O(g(x)), denoted by f(x) ∼ O(g(x)), if for some
positive constants c1, c2 and for any sufficiently large x, c1g(x) ≤ |f(x)| ≤ c2g(x).14 Finally,
we will call an operator V approximately norm-preserving if it approximately preserves state
norms, i.e., for any state |ψ⟩, ⟨ψ|V †V |ψ⟩ is exponentially close to 1 for sufficiently large κ.
This of course includes any unitary operators.

Our results will make heavy use of quantum algorithms, which we now define. A quantum
algorithm A is a map from an input Hilbert space Hin to some output set C. Note that the
set C can be a Hilbert space, a classical space, or some other set altogether. For example, a
quantum algorithm could take as input a quantum state |ψ⟩ ∈ Hin and output a classical
bit representation of an operator O (e.g., the coefficients of the representation of O in some
fixed choice of basis). A quantum algorithm A acting on some Hin is said to be efficient,
polynomially complex, or equivalently computationally bounded if it can be implemented by a
quantum circuit of size no greater than polynomial in log dimHin.15 Here we will typically
take Hin to be the code subspace under consideration. We will often drop the reference to
log dimHin when describing complexity or efficiency of such algorithms.

Consider now an efficient algorithm designed to take in a state |ψ⟩ and output 0 if it
determines that |ψ⟩ was sampled from distribution µ1 and 1 if it determines |ψ⟩ came from
µ2. In this case, we say the two ensembles are computationally indistinguishable — which we
define precisely for general algorithms below — if any efficient algorithm succeeds at this
task with probability upper bounded by 1/2 up to negligible corrections. It should be clear
that this is equivalent to saying that the quantum algorithm outputs 1 (or equivalently 0)
with almost the same probability when acting on both µ1 and µ2.

Note that the authors of [33], whose definitions of pseudorandom unitaries and states we
will use, demand that pseudorandom ensembles are indistinguishable from the Haar ensemble
even if the algorithm is allowed a reasonable (polynomial) number of copies of the state.

14In computer science literature this is denoted by f = Θ(g(x)).
15This involves some canonical choice of gates; however, this choice does not change the scaling in

log dimHin.
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Having multiple copies of the state is essential to allow the algorithm to probe coherent
information about the quantum state.

With this intuition, we present the exact definition of computational indistinguishability
of ensembles of states for general quantum algorithms:

Definition 3 (Computational Indistinguishability). Two ensembles of states, S1 and S2,
in some Hilbert space H, with size parameterized by a parameter κ, are computationally
indistinguishable if for any efficient quantum algorithm A and for all m = poly(κ),∣∣∣∣ Pr

|ψ1⟩←S1

(
A(|ψ1⟩⊗m) = 1

)
− Pr
|ψ2⟩←S2

(
A(|ψ2⟩⊗m) = 1

)∣∣∣∣ = negl(κ) . (4.2)

When we write A = 1, we are considering that the algorithm is given some binary task
(e.g., deciding whether a state is pseudorandom or not), and outputs either 0 or 1; we write
A = 1 to indicate that it outputs 1.

The specific quantum algorithms that we will consider are learning algorithms; these
are efficient algorithms that take certain data as input, implement some processing with
the goal of learning some outcome, and finally produce their best guess for the outcome.
In our particular context, the learning algorithms will aim to learn a circuit (or algebraic)
representation of a unitary operator U . During the initial learning phase, the algorithms
are given “oracle access” to some unknown unitary U , denoted by AU : this means that the
algorithms have the ability to query U a polynomial number of times on a polynomial number
of (efficiently preparable) states |φi⟩ ∈ H to obtain U |φi⟩ during its learning phase. During
this phase, the algorithms can perform any polynomially complex computation between
queries, on both the U |φi⟩ from its queries thus far, and on its own registers. At the end
of this phase, the algorithms’ oracle access to U is terminated, and they are tasked with
producing a maximally accurate representation of U or a particular aspect or feature of it:
e.g., U acting on some initial state |ψinitial⟩ which would now be given to the algorithm.

Let us briefly make a note on the different parameters and dimensions used throughout
this paper. In the context of AdS/CFT, we will be working with code subspaces of dimension
dimHcode = 2κ, where the security parameter κ = poly(N). For concreteness, we will consider
GN ∼ 1/N2, but the relation between GN and N can be changed to the reader’s liking. We
will often use N instead of κ to parameterize functions, e.g., for negligible functions we will
write η(N).

Note that theorems and proofs in this paper are well above the physics level of rigor but
fall short of a mathematician’s level of rigor in a few places. We identify these gaps where
possible and leave a fully rigorous formulation thereof to the curious mathematician.

4.2 Warmup: QESs Lie Behind Horizons

We will show in this section that if χ is a nonempty QES homologous to I in a spacetime
(M, g), then it lies behind both past and future event horizons. The quantum focusing
conjecture (QFC) [49] with reflecting boundary conditions at I guarantees by the quantum
singularity theorem [50] that at least one null geodesic fired from χ is geodesically incomplete.16

16Strictly speaking, the restricted QFC [51] is sufficient to guarantee this.
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Figure 4.5: An example where null geodesics fired from χ are geodesically incomplete, but
there is no horizon.

Figure 4.6: A QES outside the horizon, leading to a contradiction with the unitary invariance
of von Neumann entropy: SvN[ρI ] = SvN[U

†ρIU ].

However, in the absence of a stringent causality assumption such as AdS hyperbolicity, null
geodesic incompleteness does not guarantee the existence of horizons. See Fig. 4.5 for an
illustration.

When χ is the minimal (and nonempty) QES for I in M , it immediately follows from the
QES formula relating Sgen[χ] to SvN[ρI ] that bulk perturbations locally propagating from
I (future- or past-directed) cannot modify Sgen[χ] and thus cannot reach χ: in this case,
χ ∩ I±[I ] = ∅.17 See Fig. 4.6 for a review of the argument, originally presented in [42].

However, from the perspective of cosmic censorship, global minimality of a QES is of
little relevance. We expect that a similar result should apply to any QES independently of
its global properties. In [40] some strides were made towards this end by CPT-conjugating
the spacetime around the nonminimal QES χ to generate a new spacetime in which χ was
minimal. This allowed [40] to prove that a large class of extremal surfaces and trapped

17Note that we have excluded the future horismos ∂I±[I ] from this conclusion, as i± are not precluded
from null communication with χ.
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surfaces must lie behind horizons. These results, however, relied on an assumption that we
aim to relax in this section: that there can be no “evaporating singularities” (see [40] for the
precise definition).

To relax this assumption, we will instead assume the Python’s Lunch proposal [29, 41, 52]
in addition to the QES formula to argue that (quantum) extremal surfaces must generically
be hidden behind both past and future horizons.18 Or more precisely, if they lie outside a
horizon, this distance must shrink to zero in the GN → 0 limit. Let us briefly review some
facts about the Python’s Lunch proposal. A Python’s Lunch L with respect to a conformal
boundary I is a region of spacetime defined by (at least) three mutually spacelike separated
QESs homologous to I : χmin, χbulge, and χaptz. The first is the globally minimal QES, while
χaptz is a candidate QES, but having larger generalized entropy than χmin. The surfaces χmin

and χaptz are so-called throats: QESs whose generalized entropy is roughly locally minimal in
space and locally maximal in time (see [52] for details). The bulge surface χbulge is also a
QES, but it is locally maximal in time and space (see again [52] for details). The region L is
defined as the domain of dependence of any spacelike slice bounded by χmin and χaptz, and
the Python’s Lunch proposal conjectures that the CFT computational complexity required
to implement any operator in L scales as

exp

[
Sgen[χbulge]− Sgen[χaptz]

2

]
. (4.3)

We will only identify a Python’s Lunch in a portion of spacetime that is globally hyperbolic,
and we will make the reasonable assumption that the presence of potential spacetime
singularities away from L does not make operator reconstruction any easier.

Besides the Python’s Lunch proposal, our assumptions in this section (and this section
only) are as follows.

Assumptions and Definitions. We assume the following in addition to our general
assumptions stated at the beginning of Sec. 4.1.1:

• (M, g) has reflecting boundary conditions at each connected boundary component I .

• Smooth initial data: (M, g) has a smooth inextendible timeslice Σ0 containing two
QESs χmin and χ homologous to I , and where χmin is the QES of minimal generalized
entropy that is homologous to I .

• A generic condition: if χ′ is a bulge QES and χ′′ a throat QES, then their associated
generalized entropies satisfy Sgen[χ

′]− Sgen[χ
′′] ∼ O(G−1N ).

• In any globally hyperbolic region of spacetime that we consider, the (restricted) QFC
holds, and the quantum maximin [26, 53] and maximinimax [41] prescriptions converge.

• We denote by WO[χ] the outer wedge of a QES χ [28, 54].

• We define t = 0 at I as Σ0 ∩I .
18Note that the assumption of the Python’s Lunch proposal applies to this section only; it will not be used

in the proof of Cryptographic Censorship in Sec. 4.3.3.
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• If a point p in the bulk is such that any future (past) directed causal curve from p to
I arrives at I at a boundary time that diverges to +∞ (−∞) in the GN → 0 limit,
or if no curve to I exists, we say that p is behind an “effective future (past) horizon”.

Theorem 6. Let (M, g) be a spacetime as above. Assuming the Python’s Lunch conjecture
for complexity of operator reconstruction, the QES χ lies behind past and future effective
horizons.

Proof. Consider first working strictly within the globally hyperbolic spacetime given by the
domain of dependence of Σ0 within M , denoted as D[Σ0]. By Proposition 1 of [30], there
always exists an outermost minimal QES χaptz that lies in WO[χ] ∩WO[χmin].19 This surface
may or may not coincide with χ itself. Let now H be a spatial slice with ∂H = χaptz ∪ χmin,
which exists since χaptz ⊂ WO[χmin], and let L = D[H]. See Fig. 4.7 for an illustration. By
the maximinimax construction in the appendix of [41], there is another QES χbulge in L that
is of the bulge type, and so L must be a Python’s Lunch (χbulge = χ is allowed). L must
contain χ, since there exists a choice of H that contains χmin, χ, and χaptz. If χ is equal to
χaptz or χbulge, this is trivial. If χ is neither of these surfaces, then we construct H by gluing
together two pieces. The first piece is the subset of Σ0 lying between χmin and χ. The second
is any spacelike slice between χ and χaptz which exist by global hyperbolicity of D[Σ0] and
the fact that χaptz lies strictly in the outer wedge of χ.

Let us now return to the full spacetime M . Define a code subspace Hcode consisting of
all low energy perturbative quantum states that backreact on Σ0 at subleading order in GN .
By the genericity assumption, we have Sgen[χbulge]− Sgen[χaptz] ∼ O(G−1N ) so by the Python’s
Lunch proposal, the complexity of reconstructing operators in Hcode with support in L scales
as exp

(
cG−1N

)
for some constant c > 0. Assume now for contradiction that χ lies outside the

effective past horizon. Then there exists a future-directed causal curve γ from I to χ that is
fired from I at a time t ∼ O(G0

N). Then we can find a simple operator Φ that modifies the
quantum fields at χ. Just let Φ be an operator that injects a perturbative amount of matter
with rocket boosters near I , so that the matter travels along the curve γ. Because this
matter reaches χ in a time that does not scale with GN , this matter backreacts on Σ0 only at
subleading order, and so it acts within the code subspace. Φ can be constructed in two steps:
an injection of matter near the boundary using HKLL [55–57] followed by an O(G0

N ) amount
of CFT time evolution. Neither is exponentially hard, and so we reach a contradiction with
reconstruction complexity of operators with support in L. The argument excluding χ from
intersecting the exterior of the effective future horizon proceeds mutatis mutandis.

Note that there are setups where islands [44, 45], and thus QESs χ, lie outside of event
horizons. A universal aspect of these constructions is that the QES in question is a QES
of a different subsystem than the one whose horizon is under consideration. We may also
comment more specifically on each example: first, Ref. [44] found an island outside of the
black hole horizon when the CFT at I was coupled to a reservoir. In this case boundary
conditions were not reflecting, which was assumed in our result. Furthermore, by virtue of
the coupling, time evolution of the black hole system alone is no longer unitary. Thus, while

19Outermost minimal means that there is no surface in the outer wedge WO[χmin] homologous to χmin

with less Sgen.
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Figure 4.7: The setup in the proof of Theorem 6 where χ is nonminimal, and where H is
chosen to contain χ.

a signal sent from I initially can be turned near the boundary with a unitary, propagating it
to χ requires a non-unitary operation on the CFT, and so the entropy is expected to change.
Additionally, decoupling the CFT from the auxiliary system produces a shockwave that alters
the spacetime at leading order, which does push the island behind the horizon. Next, in
[45] an island was found lying a distance of O(

√
ℓPlrhor) outside the horizon. In this case

the island was associated to angular momentum modes in the bulk, but qualitatively this
construction is the same as Ref. [44] as far as it relates to the above theorem.

4.3 Crytographic Censorship

In this section we introduce and prove our main result: that on any sufficiently large
code subspace, (pseudo)random dynamics guarantee event horizon formation in typical
(pseudo)random states with a semiclassical bulk dual. The precise statement (Theorem 10:
Cryptographic Censorship) is given in Sec. 4.3.3. In presenting and proving this theorem,
we will be agnostic about the types of code subspaces that in a gravitational theory could
correspond to this degree of pseudorandomness; in Sec. 4.3.4 we will give two examples of
code subspaces in gravity that are compatible with sufficiently pseudorandom dynamics.

Intuitively, pseudorandom unitary ensembles are ensembles of unitaries that are com-
putationally indistinguishable from the Haar ensemble. As an example, upon evolution for
some time longer than a scrambling time, a chaotic system is generally expected to become
approximately pseudorandom. Our argument for the existence of a horizon hinges upon
the assumption that the fundamental time evolution is well modeled by a unitary that is
sufficiently pseudorandom on the code subspace. In a sense described below, we will require
the unitary to be pseudorandom by an amount that scales inversely with GN , which we will
call gravitationally pseudorandom.

How is this assumption of gravitational pseudorandomness sufficient to guarantee the
existence of event horizons? We will outline the logic here while omitting many of the
technicalities (which we leave to Apps. 4.6.1 and 4.6.2); the rest of this section is devoted to
the technical points necessary for the proof of Cryptographic Censorship and its application
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to gravitational code subspaces.
Recall that observables in the causal — and more generally, simple [28, 30, 54] — wedge

of the boundary are computationally simple to reconstruct. This is a non-trivial aspect of
bulk reconstruction in AdS/CFT [28, 58].20 We argue that, given some reasonable technical
assumptions outlined in Sec. 4.3.3, there exists a learning algorithm ACW that can reconstruct
the causal wedge of any geometric state in a code subspace of size eO(Ga

N ) for some −1 ≤ a < 0.
However, a theorem of [32] (see Theorem 7 below for its precise statement) combined with
results from measure concentration guarantees (roughly) that all efficient quantum algorithms
must fail at predicting the expectation value of some operator Q, which we show exists in
the large-N limit, after pseudorandom time evolution. It then immediately follows that for
the algorithm ACW , there exists an operator Q that ACW cannot reconstruct and therefore
must lie outside of the causal wedge; in other words, an exterior to the causal wedge exists —
by extension, a boundary to the causal wedge exists. Since the boundary of the causal wedge
of I coincides with the event horizon, an event horizon must exist. In Sec. 4.3.3, we will
formalize this rough argument into a proof.

We start by briefly reviewing pseudorandom unitaries, as well as the appropriate learning
result in [32] that we will use, in Sec. 4.3.1. We then explain the required alterations and
extensions necessary to apply the learning result to the holographic, N → ∞ setting in
Sec. 4.3.2. In Sec. 4.3.3 we state and prove our theorem of Cryptographic Censorship. Finally,
in Sec. 4.3.4 we comment on two code subspaces to which our theorem applies.

4.3.1 Review: pseudorandomness and complexity of learning

Pseudorandom states and unitaries will play an important role in what follows, so we will
briefly review these concepts. Within the context of quantum cryptography, pseudorandom
states were first defined in [33]. Informally, an ensemble of quantum states is pseudorandom
if the states are efficiently constructible, but indistinguishable from Haar random by any
polynomially bounded quantum algorithm — even if that algorithm is given polynomially
many copies of the state. A pseudorandom state generator G is a map from some space K
into a Hilbert space H. For each element k ∈ K, it outputs G(k) = |ψk⟩ ∈ H. The intuitive
goal of the definition is to say that the action of feeding a random sample from K to G to get
a state |ψk⟩ is indistinguishable from sampling the Haar random distribution of states (in the
computational sense defined in Sec. 4.1.1). The technical definition is as follows:

Definition 4 (Pseudorandom State Ensemble (PRS); Definition 2 in [33]). Consider an
ensemble of states Ψ = {|ψk⟩ ∈ H}k∈K, labeled by a parameter k drawn from a key space K,
where both H and K are parameterized by a security parameter κ. Then the ensemble Ψ is a
pseudorandom state ensemble if

• The states can be efficiently generated: there is an efficient quantum algorithm G that
generates the state |ψk⟩ given k as input. That is, for all k ∈ K, G(k) = |ψk⟩.

20For the likely limited number of readers who believe in the Quantum Extended Church-Turing (QECT)
thesis outside of horizons but are skeptical of arguments relying on AdS/CFT, we note that the QECT thesis
by itself also implies that causal observables must be simple.
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• The states are computationally indistinguishable from Haar random: for any polynomially
many copies of |ψk⟩ with the same k ∈ K and any efficient quantum algorithm A, there
exists a negligible function negl(κ) such that∣∣∣∣ Prk←K

[
A
(
|ψk⟩⊗poly(κ)

)
= 1
]
− Pr
|ψ⟩←µ

[
A
(
|ψ⟩⊗poly(κ)

)
= 1
]∣∣∣∣ = negl(κ) , (4.4)

where µ is the Haar measure on H.

We can define pseudorandom unitaries as in [33] in a similar fashion:

Definition 5 (Pseudorandom Unitary Ensemble (PRU); Definition 5 in [33]). Consider an
ensemble of unitaries, U = {Uk ∈ U(H)}k∈K, labeled by a parameter k drawn from a key
space K, where both K and H are parameterized by a security parameter κ. We say U is a
pseudorandom unitary ensemble if

• The unitaries are efficiently representable: there is an efficient quantum algorithm Q
such that for every k ∈ K and any |ψ⟩ ∈ H, Q(k, |ψ⟩) = Uk |ψ⟩.

• The unitaries are computationally indistinguishable from Haar random: for any efficient
quantum algorithm AU given oracle access to some U , there exists a negligible function
negl(κ) such that ∣∣∣∣ Prk←K

[
AUk = 1

]
− Pr

U←µ

[
AU = 1

]∣∣∣∣ = negl(κ) . (4.5)

We note that technically, PRSs and PRUs are actually sequences of ensembles, Ψ = {Ψκ}κ
and U = {Uκ}κ, respectively, each parametrized by κ ∈ N, and the guarantees in the above
definitions are for large κ. For ease of notation, we will instead simply write Ψ and U , as in
the above definitions, where the key k should be understood to be drawn from a key space
Kκ where κ is sufficiently large. We will make an exception to this rule in some parts of
the proof in App. 4.6.2, where it will be convenient to make the dependence on the security
parameter explicit to take the κ→∞ limit.

Finally, we remark that while explicit constructions of PRSs exist (and were given first in
[33]), there are currently no known constructions of PRUs, although candidate constructions
were proposed in [33]. We will not require any explicit constructions of either PRSs or PRUs
in this work.

Pseudorandom states vs. k-designs. For the reader familiar with the related notion
of a k-design, we briefly comment on the two main differences with PRSs. First, the
associated notion of indistinguishability is much stronger for k-designs: the states need to
be indistinguishable from Haar random even to computationally unbounded observers, e.g.,
algorithms of exponential complexity. However, k-designs only require that the moments
of these ensembles are indistinguishable up to a certain value (k), whereas PRS ensembles
are computationally indistinguishable for any poly(κ) number of moments. In this sense,
PRSs are comparable to a high-order k-design but with a parametrically weaker notion of
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indistinguishability. Note that k-designs are less relevant for our purposes as they apply to
unbounded observers, whereas our focus here is on bounded computations.

We now state the learning result of [32], which was briefly reviewed at a lower level of detail
in Sec. 4.1. This result (and our Cryptographic Censorship result) also holds for Haar random
U and |ψ⟩, but we will focus on pseudorandom states and unitaries as we believe they present
a more realistic characterization of the time evolution of physical systems.

Theorem 7 (Complexity of Learning Pseudorandom Unitaries, Theorem 2 of [32]). Let
κ ∈ N be the security parameter, and let U be any pseudorandom unitary ensemble and Ψ be
any pseudorandom state ensemble in a Hilbert space H where |H| = 2κ. For any quantum
algorithm A of poly(κ) complexity that, given oracle access to the pseudorandom unitary
U ← U , produces (a circuit representation of) an approximately norm-preserving operator21

Û as its best guess for U , there exists a constant α > 0 independent of κ such that for any
κ > κ0, the following quantity is bounded:

avg
U←U
|ψ⟩←Ψ

Û←AU

[
F
(
Û |ψ⟩ , U |ψ⟩

)]
≤ 1− α .

Here, F (Û |ψ⟩ , U |ψ⟩) = |
〈
ψ|Û †U |ψ

∣∣∣ψ|Û †U |ψ〉 |2 which is the fidelity when Û is unitary.
In this context, it is approximately the fidelity since we are working with approximately
norm-preserving operators.

This theorem shows that it is impossible for any efficient quantum learning algorithm
to use oracle access to a pseudorandom U to produce a polynomially complex circuit or
(succinct) algebraic expression that accurately implements U on a pseudorandom state |ψ⟩.
As we will explain in more detail in the next section, we will be interested in applying this
result to a sequence of code subspaces {H(κ)

code}κ each of dimension |H(κ)
code| = 2κ, where we

will take κ = poly(N).
We now comment on two aspects of this theorem that will appear extensively in the

subsequent section. First, Theorem 7 implies that, on average, there exists a distinguishing
operator that the learning algorithm fails to predict (see Appendix B in [32] for an expla-
nation).22 In particular, when the fidelity between Û |ψ⟩ and U |ψ⟩ is 1−O(1), then there
exists an operator Q such that23

avg
Û←AU

∣∣∣tr(QÛψ(Û)†)− tr
(
QUψ(U)†

)∣∣∣ ≥ O(1) . (4.6)

21We note that [32] showed this result for a wider class of algorithms — those producing any operator Û
with column norms bounded above by ≈ 1 — which includes the algorithms here. We will not need this more
general result in this paper.

22As a difference of language, [32] writes this as the distinguishing “POVM” and lower bounds the distance
between measurement outcomes obtained via this POVM.

23Note that the quantum algorithm AU , as l result of, e.g., intrinsic randomness in the outcome of
measurements during the learning process, generally outputs a Û that is not a deterministic function of U .
Therefore, we average over the algorithm’s output Û ← AU .
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In the next section, we will use measure concentration to show that for nearly all of the
unitaries in the ensemble U , such a fidelity bound holds and thus there is a distinguishing
operator.24 This operator will play a crucial role in the proof of Cryptographic Censorship.

Second, it immediately follows from Theorem 7 that

sup
κ→∞

avg
U←U
|ψ⟩←Ψ

Û←AU

[
F
(
Û |ψ⟩ , U |ψ⟩

)]
≤ 1− α , (4.7)

which crucially depends on the upper bound of 1− α being independent of κ. This will be
important in extending and applying this result to holography, where we will take the large
κ (or equivalently, large N) limit, and want the guarantee that the large N limits of these
states also have fidelity at most 1− α, and thus a distinguishing operator exists.

4.3.2 Complexity of learning in holography

We now turn to the application of this learning result to holography. Since our goal is to
constrain semiclassical gravitational phenomena, our focus will be on the large-N limit in
general and on quantities that scale with N in this limit in particular. For concreteness, and
without loss of generality, we use GN ∼ 1/N2, and consider code subspaces Hcode of dimension
eO(Ga

N ), where −1 ≤ a < 0. To this end, we will take the security parameter κ = poly(N) such
that our code subspace Hcode is of dimension 2κ. Unitary operators that are pseudorandom
on such code subspaces at any large but finite N will be called gravitationally pseudorandom
(defined precisely below); we will also resolve various technical challenges that follow from
taking the large-N limit (e.g., with regards to the existence of certain quantities). We begin
with a formal definition of gravitational pseudorandomness.

Definition 6 (Gravitationally Pseudorandom Unitary Ensemble (GPRU)). Let U = {Uk ∈
U(H)}k∈K be a pseudorandom unitary ensemble, with key space K parameterized by a security
parameter κ, where H is the Hilbert space of a large N , holographic quantum system where
N ∼ G

−1/2
N , with GN the bulk Newton’s constant. We say that U is a gravitationally

pseudorandom unitary ensemble (GPRU) if κ = poly(N).

As noted previously, at strictly infinite N there is no notion of pseudorandom unitaries.
When discussing operators we shall be primarily interested in asymptotic scaling at large N
rather than the actual operators at infinite N . When working in the actual infinite N regime,
we will only discuss limits of pseudorandom states.

Recall that we aim to apply the results of [32] to the holographic setup. The careful
reader may have by now noticed two potential points of concern: first, Theorem 7 was proved
on average for a PRU ensemble rather than for some typical instance; second, it is not
obvious that in the large-N limit, for a typical PRU, a distinguishing operator exists. Let us
briefly elaborate on each concern before proceeding to state and prove our generalization of
Theorem 7 that addresses both.

24The result on average in [32] only implies that a constant fraction of the unitaries in U have such an
operator, whereas we will show this holds for a fraction of the unitaries that goes to 1 as κ→∞.
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On the first concern, the learning result of [32] is a statement about the average fidelity
between the evolution of a pseudorandom state (PRS) evolved with the actual PRU and the
same state evolved with the algorithm’s best guess. The averaging is over the unitary drawn
from any PRU ensemble U , the state drawn from any PRS ensemble Ψ, and over the output
of any quantum learning algorithm A.

While much of the literature (see, e.g., for a few instances [34, 59, 60]) does model
gravitational systems via randomly sampled states or dynamics, this approach is in some
tension with the fact that there is just one (fixed) unitary operator that describes the time
evolution of N = 4 SYM. We therefore generalize the bound from an average to a typical
pseudorandom unitary and state by bounding the fluctuations of typical members of the
ensemble, first for Haar random unitaries and states and then for pseudorandom unitaries and
states. We emphasize that this means a learning bound applies to any single fixed unitary
and state that are both typical, as we state below in Theorem 8.

The second concern, involving the existence of a “non-simple observable” — i.e., the
distinguishing observable that the algorithm fails to predict — for typical instances of the
ensemble at large-N , is a bit more subtle. As a corollary to our theorem for learning typical
pseudorandom unitaries at large but finite N , we prove, under a reasonable assumption
on the limit of states as N → ∞, that our theorem also bounds the fidelity at N → ∞.
Consequently, our theorem guarantees that for any simple boundary algorithm, there exists a
semiclassical observable that cannot be reconstructed by the algorithm.

We now state the holographic version of Theorem 7, incorporating the generalizations
advertised above. We will subsequently use this version in Sec. 4.3.3 to prove Cryptographic
Censorship.

Consider a CFT with a large but finite UV energy cutoff, so that when N is finite the
dimension of the Hilbert space is finite.25 We prove the theorem below for any large but
finite value of N , under the assumption that the algorithm’s output as a function of U is
(randomized) K-Lipschitz for some fixed constant K. We will describe this assumption in
greater length in App. 4.6.1, but it boils down to a certain notion of continuity controlled by
a parameter K of the algorithm as a function of U .26 We subsequently state and prove a
corollary of this theorem for infinite-dimensional Hilbert spaces, under a class of assumptions.
To increase readability, we postpone both of the proofs to Apps. 4.6.1 and 4.6.2.

Theorem 8 (Complexity of Learning for Typical Pseudorandom Unitaries). Let κ = poly(N)
and consider a code subspace of dimension 2κ. Consider any (gravitationally) pseudorandom
unitary ensemble U , any pseudorandom state ensemble Ψ, and any constant ϵ > 0. For any
(randomized) K-Lipschitz quantum algorithm A of poly(N) complexity that has oracle access
to U ← U and produces an approximately norm-preserving operator Û as its best guess for U ,
and for any sufficiently large N , the following holds: for a fraction ≥ 1− e−ϵ22κ/(48(1+K)2) −
e−ϵ

22κ/192 − negl′(N) of U ∈ U and |ψ⟩ ∈ Ψ, we have that:
25We are free to consider other ways of regulating the dimension of the Hilbert space if needed.
26It is possible that this assumption actually follows directly from our other assumptions; we leave

determination of this question to future work.

95



1. the following quantity is bounded

avg
Û←AU

[
F
(
U |ψ⟩ , Û |ψ⟩

)]
≤ 1− α + 2ϵ+ negl(N) , (4.8)

where α is a constant independent of N , and

2. for any Û ← AU , there exists an operator Q (which may depend on U , |ψ⟩, and Û)
such that

avg
Û←AU

∣∣∣tr(QÛψ(Û)†)− tr
(
QUψ(U)†

)∣∣∣ ≥ 2α− 4ϵ− negl(N) . (4.9)

Proof. See App. 4.6.1.

We now extend this theorem to infinite-dimensional Hilbert spaces. For this purpose,
in what follows, we reinstate the sequences of PRSs and PRUs to make the N -dependence
explicit.

We now assume that for every N we have a code subspace H(N) on which the time
evolution operator e−iH(N)t of the CFT, for some t (possibly scaling with N), has the same
matrix elements on the code subspace as another unitary operator U (N) : H(N) → H(N), up
to exponential corrections. Furthermore, we assume there exists a (gravitationally) PRU
ensemble {U (N)}N and some N0 such that for all N ≥ N0, the ensemble U (N) contains U (N)

as a typical member. We also assume that the code subspaces H(N) can all be embedded
into an infinite-dimensional Hilbert space H(∞), which describes the physics at infinite N .

Next, we assume there exists a sequence of states {ψ(N) ∈ H(N)}N that have a well-defined
large-N limit in addition to being pseudorandom. Let us make this precise. We assume there
exists a PRS ensemble {Ψ(N)}N such that for all N ≥ N0, Ψ(N) contains ψ(N) as a typical
member and {ψ(N)}N forms a Cauchy sequence in H(∞) with respect to the one-norm on
H(∞), and converges to ψ(∞) ∈ H(∞). Additionally, {U (N)ψ(N)(U (N))†}N is a Cauchy sequence
converging to some ξ(∞) ∈ H(∞). Finally, letting the learning algorithm’s best guess for U (N)

be Û (N), we assume that {Û (N)ψ(N)(Û (N))†}N is also a Cauchy sequence that converges to
some ξ̂(∞) ∈ H(∞). We also assume that the subset of states at finite N that are the fraction
of states that are typical, converge to a subset of states in the infinite-N Hilbert space that
is of measure 1 (as the fraction of typical states limits to 1 as N →∞ in Theorem 8).

[Distinguishing Operator at N →∞] For any two sequences of states {U (N)
∣∣ψ(N)

〉
}N and

{Û (N)
∣∣ψ(N)

〉
}N that have well-defined limits

∣∣ξ(∞)
〉

and
∣∣∣ξ̂(∞)

〉
, respectively, as N →∞ and

that satisfy the assumptions stated above, both 1. and 2. in Theorem 8 also hold for the
states

∣∣ξ(∞)
〉

and
∣∣∣ξ̂(∞)

〉
. In particular, by taking the constant ϵ to be < α/2, we have for

any
∣∣∣ξ̂(∞)

〉
, the existence of an operator Q(∞) such that,

avg
ξ̂(∞)

∣∣∣tr(Q(∞)ξ̂(∞)
)
− tr

(
Q(∞)ξ(∞)

)∣∣∣ ≥ O(1) .

Proof. See App. 4.6.2.
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4.3.3 Pseudorandomness implies horizons

We are now ready to argue that when time evolution in the boundary theory is sufficiently
(i.e., gravitationally) pseudorandom, the bulk has an event horizon. Recall that the logic in
this argument is that for a typical pseudorandom time evolution operator U , (a) efficient
quantum learning algorithms cannot accurately compute the time evolution of ⟨Q⟩ for some
operator Q that may depend on U , and (b) there exists an efficient quantum algorithm that
can accurately compute the time evolution of all local operators — i.e., operators in the
causal wedge — under U . Point (a) follows directly from Corollary 4.3.2.

Point (b) is in a sense obvious holographically given the developments on complexity of
reconstruction in AdS/CFT. The general expectation following from [30] is that a simple
quantum algorithm should be able to reconstruct the causal wedge. However, as our presen-
tation thus far has been at a higher level of rigor, we aim to illustrate more precisely that
under a mild technical assumption, there exists a quantum learning algorithm satisfying the
assumptions of Theorem 7 that, given oracle access to U , can output an operator V where
V |ψ⟩ can accurately reproduce the expectation values of all simple operators in the state
U |ψ⟩. Applicability to our strengthened version, Theorem 8, does not immediately follow
and would require techniques from measure concentration. This falls outside the scope of the
current work, but we expect that this may go through if the algorithm in [61] satisfies certain
assumptions. Readers willing to accept the existence of the relevant algorithm — i.e., an
efficient algorithm for reconstructing the causal wedge — can skip directly to the statement
of Cryptographic Censorship, Theorem 10 below.

Efficiently learning the causal wedge. The starting point for our argument for (b) is the
learning algorithm of [61], which we review below, together with the assumption referenced
above that allows us to bridge the gap between [61]’s work and our Theorem 7.

Given an n-qubit system with n large, the authors of [61] showed that there exists an
efficient learning algorithm that can learn a bounded degree representation of any unknown
operator O(unk). The bounded degree representation O(k) takes the form of

O(k) =
∑

P :|P |≤k

αPP , (4.10)

where P is a Pauli operator given by a string of Pauli operators X, Y , Z, or I at each site,
and k is a constant (independent of n). By |P | we mean the number of qubits that are acted
on non-trivially by P . A bounded-degree operator is then just a sum of individual Pauli
operators with |P | not scaling with n in any way.

The algorithm of [61] works by forming a guess for the coefficients of the unknown operator
O(unk) in the Pauli basis, using a polynomial or subexponential number of measurements
involving the operator. The authors show that this guess O(k) for the operator reproduces
the correct expectation values in certain distributions of quantum states. Quantitatively:

Theorem 9 (Theorem 13 of [61]). There exists an algorithm that, for any n, ε, δ > 0, any
unknown n-qubit observable O(unk) and any n-qubit state distribution D that is invariant
under single qubit gates, given training data {ρℓ, tr

(
O(unk)ρℓ

)
}Mℓ=1 of size

M = log
(n
δ

)
2O(log(

1
ε) log(n)) , (4.11)
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the algorithm is of poly(M) complexity and can learn a function h(ρ) that achieves a prediction
error

avg
ρ←D

∣∣h(ρ)− tr
(
O(unk)ρ

)∣∣2 ≤ ε
∣∣∣∣O(unk)

∣∣∣∣2 , (4.12)

with probability at least 1− δ. Here,
∣∣∣∣O(unk)

∣∣∣∣ is the operator norm of O(unk). In particular,
the algorithm produces a bounded-degree operator O(k) =

∑
P :|P |≤k αPP and thereby learns

h(ρ) := tr
(
O(k)ρ

)
.

One example of such a distribution D is the distribution of Haar random states, which is of
particular relevance to our setting.

In general, a bounded-degree operator is any operator of the form in (4.10). In the context
of AdS/CFT, we expect that bounded-degree operators correspond to local operators in the
CFT. In particular, expectation values of these operators fully determine the causal wedge
of the entire boundary in the large-N limit. Recall that our aim is the illustration of an
algorithm that falls under the purview of Theorem 7 and can learn a V that approximates the
time-evolved expectation values of bounded-degree operators under U . Taking O(unk) = U ,
the algorithm in the above theorem (given the specified training data) learns an operator
U (k) such that

tr
(
U (k)ρ

)
≈ tr(Uρ) (4.13)

(on average over ρ). Note that this algorithm requires access to training data comprised of
expectation values of the unknown operator O(unk) = U in a collection of states {ρℓ}. We
expect that there exists an efficient algorithm to estimate the expectation values of U in
this collection of efficiently preparable states given oracle access to U so that the learning
algorithm in Theorem 9 then falls under the purview of Theorem 7.

In order to obtain a guarantee that this U (k) is such a V , we will make a mild assumption
that (4.13) holds when multiple operators are concatenated. In general, we may expect that
for any operators O1, O2, O3, using the learning algorithm in the theorem above to produce
O(k)

1 , O(k)
2 , O(k)

3 , the following holds:

tr
(
O(k)

1 O(k)
2 O(k)

3 ρ
)
≈ tr(O1O2O3ρ) .

However, to bridge the gap to Theorem 7, it suffices that the U (k) produced by the algorithm
satisfies the following for any bounded-degree operator O:

tr
(
(U (k))†OU (k)ρ

)
≈ tr

(
U †OUρ

)
, (4.14)

where the error scales with 1/N if the algorithm complexity is subexponential in N , which
is a complexity to which Theorem 7 (and its strengthening Theorem 8) can be applied.27

The upshot is that under the assumption (4.14) above, there is an efficient algorithm that
obeys the assumptions of Theorem 728 and outputs a guess V = U (k) for the time evolution

27Note that although in previous sections we have considered polynomial complexity algorithms, we expect
our results there to also apply to algorithms of subexponential complexity.

28Note that strictly speaking, Theorem 7 only applies to this algorithm if V is approximately norm-
preserving. By taking e.g. O = I in (4.14) (which holds for most ρ in the Haar distribution), we expect that
the guess V should satisfy this condition.
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unitary U , which correctly predicts expectation values of local operators in the CFT, up to
polynomial corrections in 1/N .

To summarize: we use the above (and expectations from holography) to motivate that
there exists an algorithm, which we will call ACW , that can always learn time evolution
within the causal wedge but falls under the purview of Theorem 7, which guarantees that for
pseudorandom time evolution, this algorithm cannot learn the time evolution of all operators.
This forms the basis of our theorem of Cryptographic Censorship. Under the assumptions
above, which simply boil down to the existence of ACW , together with the assumptions of
Section 1.1, we have the following theorem:

Theorem 10 (Cryptographic Censorship). Let Ufund be the time evolution operator in the
large-N limit, and assume that Ufund is well approximated on a code subspace Hcode by a
unitary U which is typical in a gravitationally pseudorandom unitary ensemble, U . Assume
furthermore (as motivated above) that there exists an efficient algorithm for causal wedge
reconstruction that is (randomized) K-Lipschitz for some K > 0, and which additionally
satisfies the criteria assumed in Theorem 8. Let |ψ(t)⟩ be a state at any time t whose
complete time evolution is dual to a strongly causal geometric29 bulk (M, g). Under the
convergence assumptions above, if there exists a single time t such that U |ψ(t)⟩ is typical in
the pseudorandom state ensemble Ψ = U |ψ(t)⟩,30 then there is an event horizon in (M, g).

Note that when we say that Ufund is well approximated by its pseudorandom doppelganger
U , we mean that the fidelity between Ufund and U acting on a state in Hcode is at worst case
exponentially close to 1.

Proof. Let U be the pseudorandom unitary approximating e−iH∆t over a time ∆t. Let the
fundamental quantum state of the system be |ψ(t)⟩ at some initial time t, and |ψ(t′)⟩ =
U |ψ(t)⟩ at some time, t′ = t+∆t. See Fig. 4.8. By assumption, we can find a t such that
|ψ(t′)⟩ is typical in the PRS ensemble Ψ = U |ψ(t)⟩.

Consider a particular (possibly randomized) algorithm, AUCW , which by the reasoning and
assumptions above based on Theorem 9, we can choose to correctly predict the values of all
operators O that are in the causal wedge for any output Û ← AUCW . By Corollary 4.3.2, on
average over the Û there exists a distinguishing operator. Thus there must exist at least
one Û for which the corresponding Q∗ distinguishes between Û |ψ(t′)⟩ and U |ψ(t′)⟩. The
operator Q∗ — whose expectation value differs by O(1) between these states — exists in the
N → ∞ algebra and so must have have a well-defined bulk dual according to the work of
[62, 63]. By construction, AUCW can correctly predict all causal wedge operators and so the
operator Q∗ must have support in a bulk spacetime region that is outside the causal wedge.
Thus a horizon exists.

We end this section by pointing out that we in fact get a more general result: the proof of
Theorem 10 goes through for any time evolution operator U that cannot be predicted (in the
sense of Theorem 8) by efficient algorithms. In particular, the diagnostic does not have to be
pseudorandomness: our theorem holds for any U that is exponentially complex to learn.

29By geometric we mean that fluctuations of the geometry are suppressed parametrically in N in the
large-N limit.

30Recall that the typical states constitute a limN→∞ 1 − e−ϵ22κ/(48(1+K)2) − e−ϵ22κ/192 − negl′(N) = 1
(recall κ = poly(N)) fraction of states in Ψ, and similarly for typical U ∈ U .
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Figure 4.8: By assumption, the time evolution operator Ufund = e−iH∆t on Hcode over a time
∆t is well approximated by some U ← U , such that |ψ(t′)⟩ is typical in the PRS ensemble
Ψ = U |ψ(t)⟩. In this case, Theorem 10 guarantees the existence of a distinguishing operator
Q that has support outside the causal wedge: there must be a horizon (indicated by the
green dotted line).

4.3.4 Possible subspaces with pseudorandom time evolution

We now discuss possible code subspaces which accommodate gravitationally pseudorandom
dynamics. We will outline two cases of interest. First, we consider a microcanonical window
about some energy above the black hole threshold. Second, we will argue that there can exist
a code subspace where all the states have the same classical geometry, with low energy modes
on top of it, and for which it is possible to obtain gravitational pseudorandomness within an
O(1) time on the boundary.

The microcanonical window

An obvious candidate for a subspace in a holographic quantum system which admits pseudo-
random time evolution is a microcanonical window about some energy E0 ∼ N2 with energy
width ∆E ∼ O(N). The microcanonical ensemble defined by this window is known to have a
stationary two-sided black hole dual [64]. Here we are interested in applying our result to
any state in this energy window with a semiclassical geometric bulk description.

For holographic theories that exhibit maximal chaos, it is an interesting question how
large T needs to be for U(T ) = e−iHT to be well approximated by a pseudorandom unitary
ensemble. A related (but different) question is how large T needs to be in a maximally
chaotic system for the unitary to be well approximated by a unitary k-design. For k = 2,
this question was answered in [65] by directly relating out-of-time-order (OTO) correlators
to the question of how close a given ensemble is to a unitary 2-design. The authors found
that if the (square of the) 2-point OTO correlator is small when averaged over all possible
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operators, then the time evolution is well modeled by a 2-design.31

As discussed above, k-designs are a different but related notion from pseudorandom
unitary ensembles. That said, this intuition suggests that the time T at which U(T ) becomes
well modeled by a pseudorandom unitary is at least the scrambling time for chaotic quantum
systems, since this is the time when the OTO is expected to match those of a 2-design. Note
that if U(T ) is ever going to be modeled by a pseudorandom unitary, it better be at times
T sub-exponential in the entropy, otherwise U will not be efficiently generated. Thus, the
expectation is that U(T ) should become pseudorandom on the microcanonical subspace for
sufficiently large T larger than the scrambling time. It would of course be nice to know what
exactly this timescale is in certain systems.

Applying Theorem 10 to this subspace, we then see that for any state in the microcanonical
window, |ψ0⟩, that is both dual to a geometric state and is also typical in the pseudorandom
state ensemble, then with a probability that is negligibly (in N) close to one there must
exist a horizon in the bulk dual to |ψ0⟩. It is natural to ask what fraction of the states in
the microcanonical window this corresponds to. We cannot give a definitive answer to this
question in the case of pseudorandom ensembles; let us just note that for Haar random
unitaries and states, this would include all but a doubly-exponentially small fraction of the
states. However, since it is not clear whether typical Haar random states can have semiclassical
geometric duals,32 we prefer to use pseudorandom ensembles. It is not implausible that a
similar fraction of the states in some pseudorandom ensemble would obey this property, but
we shall remain agnostic on this point in the absence of a proof of this statement.

A code subspace for O(1) time bands on the boundary

We will now consider a different subspace, where we restrict to O(1) time bands on the
boundary in order to preserve the geometry of states in our code subspace within exponentially
suppressed errors. We will start by making some assumptions that will apply to what follows,
as well as in Sec. 4.4. These assumptions will describe how we construct a code subspace
to describe time evolution of probe fields for O(1) times around geometries with naked
singularities.

Consider a CFT labeled by a parameter N , such that the theory in the N → ∞ limit
is dual to Einstein gravity coupled to matter.33 Let Ĥ(N) be its full Hilbert space. We are
now going to consider a finite-dimensional subspace H(N) of Ĥ(N) that we will assume to
have certain properties. This will formalize assumptions often implicitly made in the study of
AdS/CFT, but since we will (1) study somewhat exotic setups, and (2) apply certain rigorous
theorems, we are careful to state our assumptions.

Take
∣∣∣ψ(N)

i

〉
to be a basis of H(N) labeled by i. We will assume that there exists a

31The authors proved this statement for an n-qubit system and the average is over all Pauli operators on
this n-qubit Hilbert space, which provide a basis for all operators.

32Note that if the fraction of geometric states which violate our theorem is much larger than doubly
exponentially small, then there would need to be a conspiracy between having a geometry and the ability to
reconstruct all operators. Since we expect spacetimes with horizons to be much more “numerous” than those
without, this would be rather surprising.

33We always assume that any effective ’t Hooft coupling in the theory has been taken to infinity.
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one-parameter family of unitary operators

U (N)(t) : H(N) → H(N) (4.15)

such that for all t ∼ O(N0),

|ψi(t)⟩ ≡ lim
N→∞

U (N)(t)
∣∣∣ψ(N)

i

〉
(4.16)

exists in an infinite-dimensional Hilbert space H describing QFT in curved spacetime with
perturbative backreaction. Furthermore, for each i, we assume that the (one-parameter
family of) states |ψi(t)⟩ is dual to a spacetime that is the same for each i, but with different
perturbative quantum fields on top of this background. Next, we will assume that if e−iH(N)t

is the true time evolution operator in the full CFT at finite N , then for any fixed t ∼ O(N0)
and any state |φ⟩ ∈ Ĥ(N),

⟨φ| e−iH(N)t
∣∣∣ψ(N)

i

〉
= ⟨φ|U (N)(t)

∣∣∣ψ(N)
i

〉
+O(e−cG

a

) (4.17)

for some c > 0, a < 0. For |φ⟩ in the orthogonal complement of H(N), the first term is
identically zero, so our statement implies that at large N , CFT time evolution for an O(1)
amount time preserves our code subspace H(N), up to exponentially small corrections. This
is just the usual intuition that different geometries have exponentially small overlaps, so
unless we work to exponential precision, we can consider time evolution to preserve our code
subspace. Instead of working with e−iHt, we replace this operator by a unitary that genuinely
acts on H(N).

Then, under the above assumptions, Theorem 10 implies the following. Consider an
asymptotically AdS spacetime (M, g) where the boundary dynamics in an O(1) timeband
evolve according to a unitary Ufund = e−iHt and as in the above, can be approximated by
U (N)(t) which is a typical gravitationally pseudorandom unitary (as defined in Def. 6). Let
the state dual to (M, g) be typical in a pseudorandom state ensemble. Then there must be
an event horizon in (M, g).

This is the version of Cryptographic Censorship that we will use in the next section.

4.4 From Cryptographic to Cosmic Censorship

In Section 4.3.4, we adapted our main result — Cryptographic Censorship — to code subspaces
of states that have the same classical geometry and undergo gravitationally pseudorandom
boundary dynamics in an O(1) timeband. In this section we will argue that a potential
example of such a code subspace is a spacetime with a ‘large’ naked singularity. Our goal is
to connect Cryptographic Censorship to the more familiar notion of cosmic censorship, which
is roughly the expectation that naked singularities formed from collapse must be hidden
behind horizons.

Cryptographic Censorship guarantees that singularities that are well-described by gravita-
tionally pseudorandom dynamics must incur event horizons. The central task in connecting
Cryptographic Censorship to cosmic censorship is thus understanding whether — or when —

102



singularities are associated with (sufficiently) pseudorandom dynamics. If generic singularities
formed from matter collapse do indeed require pseudorandom time evolution, then they
cannot exist in horizonless spacetimes. This version of censorship of naked singularities is
distinct from the original version of cosmic censorship: even when a singularity is associated
with pseudorandom dynamics, our result does not imply that the singularity is completely
hidden. This is not a bug but a feature, since certain naked singularities do exist: e.g., the
Gregory–Laflamme (GL) instability, which occurs when a black string in D > 4 pinches off
and fragments into multiple black holes [7, 8, 66].

In the following, we take some first steps towards connecting a version of cosmic censorship
to Cryptographic Censorship, culminating in Sec. 4.4.3, where we state a cryptographically-
inspired formulation of quantum cosmic censorship. We begin by defining a mathematically
precise notion of the size of a singularity, and specifically identify how large the singularity
must be in the GN → 0 limit to accommodate gravitationally pseudorandom fundamental
dynamics. This definition usefully distinguishes between a Planckian and a classical naked
singularity (and similarly for non-naked singularities of large and small sizes). This is in itself
useful, as it separates naked singularities into classes that are expected to be excluded and
those that we expect may be permitted in a quantum theory of gravity (e.g., evaporating
black holes or Gregory–Laflamme instabilities).34 Our second step uses this quantification
to provide some evidence that large classical singularities can indeed be associated with
gravitationally pseudorandom dynamics and thus incur horizons by Cryptographic Censorship.
Finally, we propose a Quantum Weak Cosmic Censorship Conjecture, which formally requires
large naked singularities to be atypical.

4.4.1 The size of singularities

We are interested in an unambiguous and diffeomorphism-invariant way of measuring the
extent of a naked singularity. Since a naked singularity can only be distinguished from a
cloaked one via access to I , it is clear that this must be defined asymptotically. A definition
on I would be automatically diffeomorphism-invariant and would more readily admit a
straightforward dual CFT interpretation. To find this criterion, we will leverage the definition
of a naked singularity — i.e., causal visibility to I — to define what will roughly correspond
to the time evolution in the CFT that is necessary, in the Schrödinger picture, to reconstruct
near-singularity physics.

To make this precise, we first use an extant mathematical construction to single out the
singularity as a set, a nontrivial task given that the singularity is not part of the spacetime
manifold. Second, we identify the time intervals on I that are causally-separated from
this set, and finally find the minimal boundary time bands that are necessary for a full
reconstruction of the singularity. The spacetime volume of these time bands in a fixed
conformal frame is essentially our definition of the size of the singularity in that frame. There
is thus a conformal frame ambiguity in our definition of singularity size. This, however, is
immaterial for our desired application: we shall only care about scaling of the singularity
size with GN , which is independent of the choice of conformal frame. Using this scaling, we

34There is some extant literature dedicated to investigating the size of a singularity; see, e.g., [25]. These
approaches differ from ours, as we are motivated by quantum computational considerations in the fundamental
quantum description of the system.
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Figure 4.9: Example spacetime where the colored sheet represents a singularity. The two
geodesics γp,v and γp̃,ṽ by definition end on the same singular point, since γp̃,ṽ must enter any
tubular neighborhood of γp,v, and vice versa.

separate the singularities into three categories: classical, semi-Planckian, and Planckian. The
first type survives the GN → 0 limit, while the other two do not. These latter two sizes are
distinguished via the power of GN by which they vanish. Let us now turn to the details,
starting with an identification of the set comprising the singularity.

The Singularity Set. The primary difficulty in this task is that singularities are not
locations in some geodesically-incomplete manifold M but are rather associated to the
endpoints of incomplete inextendible geodesics in M . However, as shown by [67], it is possible
to treat singularities as if they are made up of a set of points Γ, although this set does not lie
in M .35 We will briefly review this construction, as it is instrumental to our classification of
singularities. The idea is to build an equivalence class of geodesics associated to an endpoint.
Consider a geodesic γp,v in M fired from a starting point p ∈ M along a non-vanishing
tangent vector va at p. We will continue γp,v so it is inextendible in the direction of va (with
starting point p). We then identify two distinct geodesics γp,v ∼ γp̃,ṽ if γp,v enters and remains
inside every tubular neighborhood of γp̃,ṽ. Explicitly, if λ ∈ [0, λ0) is an affine parameter
for γp,v, then for every given tubular neighborhood U of γp̃,ṽ, there exist a 0 ≤ λ̂ < λ0 such
that γp,v(λ) ∈ U for all λ ∈ (λ̂, λ0). See Fig. 4.9. The equivalence classes under ∼ then
form the points in Γ, and we say that γp,v, γp̃,ṽ are geodesics that end on the singular point
[γp,v] ∈ Γ. Importantly, if ps ∈ Γ, the future I+(ps) and past I−(ps) of ps in M is well-defined
even though ps is not in M . Namely, we say that p ∈ I+(ps) if there is a future-directed
timelike curve γ through p and with past “endpoint” on ps, where the latter means that γ,
sufficiently far in its past direction, enters and remains within any tubular neighborhood
of any representative geodesic in ps. Armed with a set identified as the singularity, we now
extract the part of the singularity that is naked with respect to a given conformal boundary
I as follows:

Γn(I ) = {ps ∈ Γ|I+(ps) ∩I ̸= ∅ and I−(ps) ∩I ̸= ∅}. (4.18)
35Γ also comes with a natural choice of topology [67].
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(a) (b) (c)

Figure 4.10: Some examples of spacetimes with (naked) singularities. In (a) the singularity is
timelike and classically naked. Panel (b) depicts the evaporating black hole. The non-naked
part of the singularity is classical and behind a horizon. For the naked part, see Fig. 4.12a.
Panel (c) is Reissner–Nordström-AdS; here |Γ|I = |T−|; note, however, that Γn(I ) = ∅, as
I± ∩I = ∅.

If this is nonempty, we say that Γ is naked with respect to I .

The Singularity Size. We now proceed to classify the size of any (possibly improper)
subset of a singularity. Let Γ̂ be a subset of Γ; below we will mostly be interested in taking
Γ̂ = Γn(I ), but it will be useful to take our definition to be more general. Consider the sets

T+ = {p ∈ I | ∃ an achronal past-directed null geodesic from p to Γ̂} ,
T− = {p ∈ I | ∃ an achronal future-directed null geodesic from p to Γ̂} .

(4.19)

Fig. 4.10 illustrates some examples of these sets for both naked singularities and ordinary
singularities behind horizons.

We will now define the size of Γ̂ according to properties of T+, T−. We assume that (M, g)
is conformal to the Einstein static universe on each conformal boundary, and we choose
the unique conformal frame where the boundary metric is identical to the Einstein static
universe in which the spatial spheres have radius equal to the AdS radius.36 This fixes a
unique Lorentzian metric on I , and when T+ is nonempty, we define |T+| as the absolute
value of the spacetime volume of T+ in this metric; similarly for T−. As examples, if T+ is a
timeslice or a union of a finite number of points, then |T+| = 0, since these sets are measure

36For asymptotically locally AdS spacetimes where I has another conformal class, we can also define |Γ̂|,
once we pick some preferred conformal frame.
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zero. We can now define the size |Γ̂|I of Γ̂ with respect to I as follows: first, if T+, T− are
both empty, then |Γ̂|I = 0. Second, if only one of T+, T− is nonempty, say T+, then we define
|Γ̂|I = |T+|. Third, if both T± are nonempty, we define |Γ̂|I = min(|T+|, |T−|). This finally
leads us to our definition of classical and Planckian singularities, as well as an in-between
regime, which we term semi-Planckian:

Definition 7. Let (M, g) be a geodesically incomplete spacetime of dimension D = d+1 with
a singularity Γ̂, and let

|Γ̂|I ∼ O(ℓaPl). (4.20)

If a ≤ 0, we say that Γ̂ is a classical singularity, while if 0 < a < d− 1, we say that Γ̂ is a
semi-Planckian singularity. Otherwise, it is a Planckian singularity.

Singularity Size from CFT Time Evolution. If |ψ(t)⟩ is the state whose complete past
and future history is dual to (M, g), then without access to the time evolution operator, we
can only reconstruct operators at points in spacetime that are not causally related to the
boundary time slice on which |ψ(t)⟩ lives — i.e., the Wheeler–de Witt patch Wt.37 Let us
now specialize to a spacetime with a naked singularity Γ. For some fixed t, generally only
a (possibly empty) subset of Γ will be contained in Wt: to learn everything about Γ (for
example by reconstruction of all near-singularity correlators), a certain amount of boundary
time evolution is necessary. More precisely, if T− is nonempty, and we are evolving forwards
from the past, then the past-most boundary of T− corresponds to the earliest time that some
part of Γ is encoded in the Wheeler–de Witt patch Wt. As we evolve forward through T−,
new pieces of Γ enter Wt and are encoded in the time-evolved state. Finally, once we evolve
past the futuremost boundary of T−, no new parts of Γ enter Wt that we have not already
seen, and so further forward time evolution reveals nothing new about the singularity. Thus,
everything about the naked singularity can be learned by carrying out CFT time evolution
through the band T− (plus bulk reconstruction not using the time-evolution operator). For a
singularity where T+ is also nonempty, everything about the singularity could alternatively
have been learned by evolving through T+. So as advertised, |Γ|I = min{|T−|, |T+|} measures
the minimal amount of CFT time evolution required to learn everything about the naked
singularity. Note that |Γ|I has units of spacetime volume rather than time. This is a feature:
if all information about the singularity is available upon evolution of the state forwards in a
small spatial subregion of a boundary Cauchy slice, then this should be accounted for in the
smallness of a singularity. See Fig. 4.11. Note also that if |Γ|I is large, this always is caused
by a large amount of time evolution, since timeslices have bounded volume.

Let us now make a few remarks on our definition, starting with a question. Under what
circumstances do Planckian or semi-Planckian singularities exist? The most natural case
is that we have limℓPl→0 |Γ̂|I = 0 because the CFT state acquires all information about
the singularity in a CFT timestep that shrinks to zero as ℓPl → 0. An example would be
the singularity in the evaporating black hole, illustrated in Fig. 4.12a, or a naked timelike
singularity Γ̂ lying behind another naked timelike singularity Γ̃, like in Fig. 4.12b. In this

37This assumes for simplicity that there is only one asymptotic boundary, and that the state of the CFT on
that boundary is pure — so the entanglement wedge of |ψ⟩ is the entire bulk. If there are multiple boundaries
or the state on one boundary is mixed for a different reason, we simply take the intersection of Wt with the
entanglement wedge of |ψ⟩.
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Figure 4.11: To get all information about the small singularity Γ, we only need to evolve
the state forwards in a small spatial subregion of the boundary Cauchy slice, such that the
Wheeler–de Witt patch now includes the singularity. Note that, as our artistic capabilities
are limited, we here only indicate the future boundaries of the Wheeler–de Witt patches for
times t and t+ δt.

(a) (b)

Figure 4.12: Two examples of limℓPl→0 |Γ̂|I = 0: (a) For the naked part of the singularity at
the endpoint of black hole evaporation, we expect that T± are just timeslices in the GN → 0
limit. (b) A ‘hidden’ naked timelike singularity; here, T± = ∅.
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latter case, Γ̂ is such that T+ = T− = ∅, since all causal geodesics from the boundary to
Γ̂ are necessarily chronal. This latter example shows that we probably should not assign
much meaning to the size of distinct connected components, and that we instead just should
look at the size of the full naked singularity Γn(I ), which by definition contains all connected
components.

4.4.2 Accommodating gravitational pseudorandomness

Our motivation for classifying a classical singularity via the scaling a ≤ 0 is simple: such
singularities are visible for a boundary time that diverges or remains O(1) in the GN → 0
limit. For the remaining range of a, we have chosen to separate semi-Planckian singularities
(with 0 < a < d− 1) from Planckian singularities (with a ≥ d− 1). In both cases, |Γ̂|I → 0
as GN → 0, but as we will show below, singularities with a < d − 1 are compatible with
an EFT code subspace which is sufficiently large that it can accommodate gravitational
pseudorandomness, while singularities with a ≥ d− 1 are not.

We will now show that singularities with a < d − 1 are compatible with gravitational
pseudorandomness. Consider an asymptotically AdS spacetime with a timelike naked sin-
gularity Γ = Γn(I ). We will work with large (but possibly finite) N and demand only that
effective field theory as defined by a bulk UV cutoff be valid in the asymptotic region. At
finite N we will consider the failure of EFT due to large UV corrections as the diagnostic of
a singularity.38

We will decompose our bulk state into modes with energy below the cutoff, and we will
focus on modes localized near the boundary, some of which fall into the naked singularity.
By unitarity, there must also be outgoing occupied modes as well, which can be traced back
to the singularity. However, the relation between the modes falling into the singularity and
the modes coming out is dependent on UV physics: it is inaccessible within low energy EFT.
So while the low energy modes in the asymptotic region could be semiclassical as GN → 0,
the time evolution operator that relates them is not known in the bulk EFT — it cannot
be expressed in terms of the low-energy operators. See Fig. 4.13. From the low-energy
perspective, there is a boundary condition assigned at the singularity whose precise nature
is unknown.39 Now, consider a set of ingoing wavepackets |i⟩in that eventually fall into the
singularity. We might expect that these modes scatter off the singularity in an apparently
random manner. One toy model of such dynamics turns ingoing modes into outgoing modes
of seemingly random phases θij, schematically,

|i⟩in
δt→ 1√

N
∑
j

eiθij |j⟩out , (4.21)

where N is a normalization constant. The phases θij could in principle correspond to
pseudorandom phases, which would be a consequence of pseudorandom dynamics in the

38Here we are taking EFT to be resulting solely from a UV cutoff rather than including the more complete
version of an EFT proposed by [31], which also includes a complexity restriction.

39Since quantum gravity is expected to lack global symmetries [68–70], any approximate symmetries
emergent in the semiclassical EFT should be badly violated by this boundary condition.
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Figure 4.13: From the low-energy perspective, there is an unknown, UV-sensitive boundary
condition assigned at the singularity; for example, modes that fall into the singularity are
turned into a set of outgoing modes with random phases θij.

boundary description40 (though of course determining what θij actually is requires access
to UV physics). See, e.g., [33] for explicit constructions of pseudorandom states using
pseudorandom phases. Our approach instead will be to show that once the singularity is of
classical or semi-Planckian size, then there are enough EFT modes in a code subspace in
which all of the states have the same leading order geometry to accommodate gravitational
pseudorandomness. On the other hand, if the singularity is Planckian, we show that we do
not expect this. As our analysis is asymptotic, we do not require a sharply defined geometry
near the singularity.

We now give a parametric estimate of the number of modes within semiclassical EFT that
can potentially get scrambled by the naked timelike singularity. That is, we want to know
the number of EFT modes that are affected by the highly UV-sensitive boundary condition.
Assume that T+, T− are nonempty, and assume without loss of generality |Γn(I )|I = |T−|.
Near I , the leading part of the metric can be written

ds2 =
−dt2 + dρ2 + sin2 ρdΩ2

cos2 ρ
+ . . . , (4.22)

where we work in units where the AdS radius is unity, and where I lies at ρ = π
2
. For

pedagogical simplicity we take the matter in our theory to be a conformal massless scalar and
assume that the system is spherically symmetric, so that T− can be taken to be a timeband
[−∆t, 0] × Sd−1 without loss of generality. We can now count roughly how many ingoing
single-particle modes with energy below the cutoff can be sent from T− into the singularity.
As is clear from Fig. 4.14, this simply corresponds to the number of orthogonal modes in the
strip given by ρ ∈

[
π
2
−∆t, π

2

]
at t = 0.41 As long as ∆t is less than roughly GNM ∼ O(1)

40There are constraints from overall conservation of ADM energy and gauge charge. But there will be
many collections of wavepackets that have the same energy, so that (4.21) would be consistent with charge
conservation.

41Greybody factors cause some modes to scatter off background curvature before they get close to the
singularity, but this should not change the parametric counting.
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Figure 4.14: To count the ingoing modes sent from T−, which here is the timeband [−∆t, 0]×
Sd−1, we can simple count the number of modes in the strip indicated by the red dotted line.

where M is the spacetime mass, we are always restricted to an asymptotic range of ρ where
the metric is approximately pure AdS, so the number of modes can be counted using the
pure AdS metric. We always take GN small with GNM = fixed, and we are interested in
a parametric counting that can only change if ∆t → 0 sufficiently fast in GN so we can
without loss of generality restrict to this regime. Assume now that ũi is a collection of
orthonormal flat-space positive frequency ingoing wavepackets with mean frequency ωi in
the metric −dt2 + dρ2 + sin2 ρdΩ2; furthermore, we will assume that they are well localized
within ρ ∈ (π

2
−∆t, π

2
) at some central ρ = ρ0. These have total energy approximately equal

to ωi, as long as

ωi ≫ ∆ω ≥ 1

∆t
, (4.23)

where ∆ω is the frequency spread of each wavepacket. Now, since we have a conformally
coupled scalar, ui = (cos ρ)d−1ũi is also an orthonormal set of positive frequency mode
functions in AdS.42 Each wavepacket has a total energy approximately equal to ωi, also in
AdS.43 Imposing the cutoff ωi ≤ ϵ−1,44 we want to count the orthogonal wavepackets. This is
equivalent to counting orthogonal flat-space modes; this is of the order

∆t · Vol(Sd−1)
ϵd

. (4.24)

The numerator is |Γn(I )|I , and in the absence of spherical symmetry it is clear that |Γn(I )|I
is the correct replacement for ∆t · Vol(Sd−1). So for a general naked timelike singularity, we
find that an order

|Γn(I )|I
ϵd

(4.25)

42The scaling dimension of the scalar is d−1
2 , and the conformal factor is cos2 ρ.

43There might be an overall conformal anomaly, so that HAdS = HMink +Hanomaly, but this is irrelevant
for our purposes.

44This corresponds to a proper length cutoff in AdS of ϵproper ∼ ϵ/ cos ρ0. We do not scale ρ0 with ℓPl, so
ϵ, ϵproper scale the same way.
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number of distinct EFT modes can propagate into the singularity from T−. Next, we want to
take the UV cutoff to scale as ϵ = ℓ1−δPl for some δ ∈ (0, 1) so that our modes are parametrically
below the Planck scale as ℓPl → 0. To be cautious, we demand that δ > 1/d, which ensures
that the naïve QFT entropy does not exceed the Bekenstein–Hawking entropy. To see this,
note that if V is the spatial volume occupied by our wavepackets in AdS, then we need

V

ϵdproper
= cosd ρ0

V

ϵd
≲

A

ℓd−1Pl

. (4.26)

Remembering that volume and surface area of a large shell near the boundary of AdS scale
the same way as we approach the conformal boundary, we thus need

cosd ρ0 < O(1)
ϵd

ℓd−1Pl

= O(1)ℓ1−dδPl . (4.27)

If we take δ < 1
d
, then wavepackets with mean frequency near the cutoff would give a naïve

QFT entropy exceeding the Bekenstein–Hawking entropy for any ρ0 < π/2. For δ = 1
d

we
get an O(1) bound on ρ0 that we want to avoid, and so we require δ > 1

d
. Thus, assuming

finally that |Γn(I )|I ∼ O(ℓaPl), we get that the number of distinct semiclassical modes that
can probe the naked singularity during time evolution through T− is

|Γn(I )|I
ϵd

∼ ℓa−d−dδPl . (4.28)

If a < d− 1, there is always some δ > 1/d so that this diverges in the ℓPl → 0 limit. Hence,
in the regime 0 < a < d− 1, even when the singularity shrinks to zero size as ℓPl → 0, the
singularity is in principle compatible with influencing an infinite number of EFT modes in
the GN → 0 limit: it is compatible with a gravitational amount of pseudorandomness in the
time evolution.

Let us now comment on a few well known cases of naked singularities, some of which
were briefly mentioned in Sec. 4.1: the singularity at the endpoint of black hole evaporation,
the Gregory–Laflamme (GL) instability [7, 66], which occurs as the pinch-off endpoint of
the evolution of higher dimensional extended black strings and other black objects, and
Choptuik’s critical collapse [71, 72] resulting from a collapsing massless scalar field which
is tuned to lie exactly at the threshold of black hole formation. In the case of the endpoint
of black hole evaporation, the naked part of the singularity is not extended in the GN → 0
limit. See Fig. 4.12a. Thus the naked part of the singularity is measure zero in this limit,
so this naked singularity is either Planckian or semi-Planckian. In the cases of the Gregory–
Laflamme instability and critical collapse, it is impossible to evolve past the pinch-off using
classical gravity, so in the absence of a quantum gravitational description of the system, we
cannot ascertain the nature of the naked singularity. However, it is quite plausible that these
singularities end up being Planckian or semi-Planckian. The critical collapse singularity is
in a sense a zero mass black hole, which within the resolution of semiclassical gravity is
indistinguishable from a Planck mass black hole. So if we could carry out critical collapse at
finite GN in full nonperturbative quantum gravity, and then afterwards take the GN → 0
limit, it is reasonable to expect that the singularity becomes a Planckian or semi-Planckian
singularity. The Gregory–Laflamme singularity could plausibly behave similarly: it is highly
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analogous to the fluid pinch-off phenomenon, where only a minimal amount of nonperturbative
evolution is necessary to re-enter the EFT regime. It is tempting to speculate that naked
singularities in a holographic theory of quantum gravity can never be classical, and possibly
not even semi-Planckian. We will formalize a conjecture to this effect in the next section.

Finally, let us briefly tie this discussion back to our primary theorem of Cryptographic
Censorship. The fact that classical singularities are always compatible (by our definition)
with gravitational pseudorandomness provides additional motivation for the intuition that
the dynamics of strongly gravitating systems in the GN → 0 limit may admit a description
in terms of pseudorandom unitaries. Under this supposition, Cryptographic Censorship
guarantees that any such systems — including those with naked singularities — must also
have event horizons. We leave the quantification of the subset of the singularity that is
necessarily behind a horizon to future work.

We wish to make clear that we do not claim that all classical singularities must act as
sources of pseudorandomness; a clear counterexample is given by orbifold singularities in
compact dimensions. It is the ones that weak cosmic censorship is supposed to rule out
— naked classical singularities resulting from the dynamical evolution of generic, smooth
initial data and matter collapse — that we expect to have, to a large extent, gravitationally
pseudorandom time evolution. If the singularity is static, the mode counting argument in the
previous section becomes misleading. In this case, measuring later modes scattered off the
singularity does not provide information we could not have already gained from scattering
earlier modes, unlike in the case where the singularity is evolving. Thus, there might be a
significantly smaller amount of data that is required to describe scattering off the singularity
than what the naïve mode counting argument above would suggest, making static singularities
less likely candidate sources of pseudorandom dynamics.

4.4.3 Quantum cosmic censorship

The combination of Cryptographic Censorship and our results above regarding compatibility
of naked singularities with gravitational pseudorandomness suggest a particular reformulation
of the Weak Cosmic Censorship Conjecture as a quantum gravity conjecture rather than
a classical gravity conjecture. This point bears emphasizing: there is no ab initio reason
that classical gravity must obey cosmic censorship. Even if there had been no known
counterexamples, one of the best motivations for the Weak Cosmic Censorship Conjecture is
empirical: the apparent absence of naked singularities in the night sky. Cosmic censorship is
not required by consistency of known theoretical structures within General Relativity. By
contrast, if naked singularities were typical in quantum gravity, then foundational results in
AdS/CFT — such as the behavior of the CFT thermal state OTOC being precisely attributed
to bulk event horizon dynamics — would be some remarkable conspiracy: either naked
singularities engineer themselves to mimic black holes precisely in the OTOC signature, or
black holes engineer themselves to mimic naked singularities. A similar coincidence would
be required for various results on CFT thermalization and its bulk interpretation.45 We
therefore find that a quantum gravity formulation of cosmic censorship is both theoretically
and empirically well-motivated; our results relating horizons to pseudorandomness provide

45We thank D. Harlow for extensive discussions on this point.
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a clear first step towards formulating weak cosmic censorship as an emergent phenomenon
in terms of fundamental quantities in quantum gravity. (For example, this would require
replacing the classical gravity notion of genericity — an open set in the space of solutions to
the Einstein equation — with typicality.)

For completeness, we first state the classical gravity proposal for weak cosmic censorship
in AdS, which is now known to be violated in classical gravity. (It is also trivially violated in
quantum gravity due to, e.g., evaporating black holes, although this requires violations of
classical energy conditions.)

Conjecture 1 (Classical Weak Cosmic Censorship – false). [73, 74] Consider a geodesically
complete, asymptotically AdS initial data set satisfying the dominant46 energy condition. The
maximal causal development of this initial data under the Einstein equation, together with
boundary conditions at the AdS boundary, is generically a strongly asymptotically predictable
asymptotically AdS spacetime.

Reformulating this proposal in terms of a fundamental quantum description of the theory
requires a complete revamping of the statement and the scope of its applicability. Motivated
by our results in this paper, the existing set of counterexamples to cosmic censorship, and the
top down motivation from thermalization and chaos in AdS/CFT, we propose the following
formulation of the Weak Cosmic Censorship Conjecture (below we work in the Heisenberg
picture, so a given state is its entire history):47

Conjecture 2 (Quantum Cosmic Censorship). Typical states with an emergent geometry in
quantum gravity do not have classical naked singularities.

4.5 Discussion

Cryptographic Censorship is the first precise and general result identifying concrete CFT
behavior with bulk horizon formation. (While the vox populi associates CFT thermalization
to black hole equilibration,48 this hypothetical link is at best established in certain highly
symmetric and nearly static black holes.) Our first application of the theorem guarantees
that in the microcanonical window, under assumption of pseudorandomness, states without
horizons are exponentially suppressed in probability (within their pseudorandom ensemble).

As an immediate consequence of Cryptographic Censorship, we obtain a partial resolution
to the black hole teleology problem for AdS spacetimes with a CFT dual. Event horizons
can be diagnosed, using Cryptographic Censorship, in finite time. The implications are
significant: first, black hole mechanics in AdS/CFT may admit a legitimate thermodynamic
interpretation in highly dynamical states. Second, as our primary focus in this paper, we
establish a typicality result for event horizons, which is highly suggestive of a form of Quantum

46This is the weakest reasonable statement: we could assume only the null energy condition, but counterex-
amples exist even when we demand the dominant energy condition.

47This conjecture differs slightly from the published version of this paper, in that [75] also conjectures that
semi-Planckian singularities are hidden.

48Note that black hole equilibration was only recently established in four-dimensional vacuum asymptotically
flat space [76] for a certain range of spins and remains an open problem in AdS.
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Cosmic Censorship. The fact that naïve models of code subspaces containing classical (or
semi-Planckian) timelike singularities are compatible with a sufficient amount of gravitational
pseudorandomness serves as strong motivation for our conjecture that typical states do not
have naked singularities that survive the classical limit. We emphasize that our proof of
Cryptographic Censorship in fact provides a guarantee for event horizon formation whenever
the CFT time evolution is exponentially hard to learn; our focus in this article was on
complexity of learning as a result of pseudorandomness, but any such sufficient source of
complexity would result in an equivalent theorem under the same proof. Below we will
elaborate on potential applications of our results and discuss some aspirational expansions
thereof.

Towards a Converse

Since information escapes from the black hole interior under inclusion of quantum corrections,
there is no obvious definition of a quantum event horizon (since all information eventually
reaches I and causal structures are only emergent in the classical limit). It is tempting to use
our results to define quantum event horizons — and by extension quantum black holes (i.e., at
finite N): states undergoing gravitationally pseudorandom time evolution with a semiclassical
bulk dual in the large-N limit. A definition, however, would require a proof of a converse
to Cryptographic Censorship: a statement that CFT states with a semiclassical emergent
bulk featuring a horizon typically exhibit gravitational pseudorandomness. A proof of such a
converse would additionally facilitate a complete resolution of the teleology problem in AdS.
The tentative link between chaos, thermalization, and pseudolandomness [34, 65, 77–80] could
then potentially be used to understand the horizon thermodynamics49 of highly dynamical
black holes and the statistical interpretation of the Hawking area theorem, which remains
elusive [27, 82].

Implications for the Bulk

There is an immediate implication of Cryptographic Censorship for the relationship between
complexity and black hole formation: bulk processes that source a large amount of pseudoran-
domness (e.g., a bulk quantum computer with the power to do gravitationally pseudorandom
computations) must typically collapse themselves into black holes. Prior descriptions of
black hole formation typically involve energetics; to our knowledge, this is the first proof
establishing a causal relation between bulk quantum computations and black hole formation.
Interestingly, this appears to bear some relation to the proposal of [31] that effective field
theory requires both an energy and a complexity cutoff: a bulk process sourcing large amounts
of pseudorandomness must result in high reconstruction complexity. While pseudorandomness
is itself not particularly complex to implement, reconstruction of pseudorandom quantities
is by definition of high complexity class. In this case, Cryptographic Censorship may act
to protect a computationally bounded asymptotic observer from detecting large violations
of effective field theory due to computational complexity by forcing formation of an event
horizon, depending on where the event horizon forms.

49As opposed to the thermodynamics of the apparent horizon, which are by now well-understood [28, 54, 81].
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(a) (b)

Figure 4.15: The AdS-big-crunch cosmology (a) versus the flat big-bang cosmology (b). In
the asymptotically flat case, there is no notion of unitary time evolution and no horizon. In
the AdS case, we have both.

Stringy and Cosmological Applications

It would be interesting to consider stringy effects and ask if (and how) our theorem might
apply to, e.g., the D1-D5 system, or orbifold singularities, which are horizonless (see, e.g., [83]).
Exact BPS states have trivial dynamics: we expect that to produce chaos and pseudorandom
dynamics we would need to sufficiently excite these states. If it is indeed the case that chaotic,
pseudorandom time evolution is produced as a result of heavily exciting such states, then our
theorem suggests that a horizon will appear. More generally, it is not clear that horizonless
geometries have any relation to chaos, and furthermore such states are probably not typical
in the measure concentration sense that we are using in this work.

Let us also briefly comment on non-AdS cosmological spacetimes. In particular, it is
interesting to consider why our results fail for flat cosmologies, which do not have horizons.
An obvious complaint is that our AdS/CFT arguments should not necessarily apply. They
do not apply, however, in an interesting manner: the relevant feature of AdS/CFT that fails
here is the lack of a notion of unitary time evolution on the conformal boundary (which in
this case is null). Our results crucially rely on a fundamental description of the system which
is a unitary quantum field theory. This in all likelihood does not apply to flat cosmologies.
It does, however, apply to AdS big-crunch cosmologies, and in those, we do indeed have a
horizon. See Fig. 4.15 for a comparison.

What about de Sitter? de Sitter cosmologies do have cosmological horizons, although
those are not unambiguous in the same sense as AdS ones. There have been some suggestions
(most recently [84, 85]) that de Sitter time evolution — insofar as such a notion can be defined
— is well-modeled by an isometry rather than a unitary. A generalization from pseudorandom
unitaries to pseudorandom isometries was recently proposed by [86]. It would be interesting
to see if our results can be generalized to accommodate this notion and potentially have
some bearing on de Sitter black holes and cosmologies; in particular, if there is any sense in
which the relaxation to isometries could be mapped to the observer-dependence of de Sitter
horizons.
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Some Open Questions

Cryptographic Censorship paves the way for several interesting new investigations. We have
expanded on a few of those above. We briefly enumerate a few others here:

1. The fact that gravitational pseudorandomness associated to a quantum computer in the
bulk spacetime must result in a horizon suggests a relationship between backreaction
and computational power. Does such a relation between energy and computation exist,
perhaps analogous to a gravitational version of Lloyd’s bound [87]?

2. Are singularities in general in fact associated with large amounts of pseudorandomness?50

This idea features prominently in our models of timelike naked singularities, but has
traditionally appeared in the context of postselection models of black hole singularities
and dynamics.

3. Our definition of the size of a singularity admits a middle class of singularities that
disappear in the strict larle-N limit but which could accommodate gravitational pseu-
dorandomness in code subspaces constructed from O(1) time bands. It would be
interesting to understand the significance, if any, and frequency of semi-Planckian naked
singularity portions.

4. Explicit constructions of pseudorandom unitary ensembles to date have not been found.
Still, as assumed in this work, we expect explicit examples of AdS/CFT to be well
modeled by pseudorandom dynamics. Can we use complexity theoretic conjectures
and aspects of AdS/CFT to demonstrate that holographic quantum systems like the
Sachdev–Ye–Kitaev (SYK) model actually generate a pseudorandom unitary ensemble
at long enough times?

5. Is there anything we can infer about code subspace-dependent cryptographic condi-
tions/constructions necessary for pseudorandomness from the holographic manifestation
of our results? That is, does the existence of subspaces without horizons (e.g., the
microcanonical window around the vacuum) have any meaningful implication for cryp-
tography?
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4.6 Appendix

4.6.1 Proof of Theorem 8

In this appendix, we prove Theorem 8, introduced in Sec. 4.3.2. We begin with a definition
of randomized K-Lipschitz, which we will require our algorithms to satisfy.

Definition 8 (Randomized K-Lipschitz). An algorithm A is said to be randomized K-
Lipschitz if it satisfies the following condition: there exists a constant K > 0 such that

avg
Û1←AU1

Û2←AU2

||Û1 − Û2||∞ ≤ K||U1 − U2||∞ . (4.29)

When the algorithm is deterministic, i.e., it maps a given unitary U to a single output Û , we
will just refer to this property as K-Lipschitz.

In addition, here we will work with operators that are exactly norm-preserving, i.e., ||Û ||∞ =
1. We leave it to the mathematician to confirm that this result applies equally well to
approximately norm-preserving operators.

We now repeat Theorem 8 for the reader’s convenience.

Theorem 8 (Complexity of Learning for Typical Pseudorandom Unitaries). Let κ = poly(N)
and consider a code subspace of dimension 2κ. Consider any (gravitationally) pseudorandom
unitary ensemble U , any pseudorandom state ensemble Ψ, and any constant ϵ > 0. For any
(randomized) K-Lipschitz quantum algorithm A of poly(N) complexity that has oracle access
to U ← U and produces an approximately norm-preserving operator Û as its best guess for U ,
and for any sufficiently large N , the following holds: for a fraction ≥ 1− e−ϵ22κ/(48(1+K)2) −
e−ϵ

22κ/192 − negl′(N) of U ∈ U and |ψ⟩ ∈ Ψ, we have that:

1. the following quantity is bounded

avg
Û←AU

[
F
(
U |ψ⟩ , Û |ψ⟩

)]
≤ 1− α + 2ϵ+ negl(N) , (4.8)

where α is a constant independent of N , and

2. for any Û ← AU , there exists an operator Q (which may depend on U , |ψ⟩, and Û)
such that

avg
Û←AU

∣∣∣tr(QÛψ(Û)†)− tr
(
QUψ(U)†

)∣∣∣ ≥ 2α− 4ϵ− negl(N) . (4.9)

Proof. We prove 1. and 2. consecutively for Hilbert spaces of any finite (but sufficiently
large) dimension d, where we always have in mind that d scales with κ. Note that in the
theorem above, and in the main body of the paper, we specialized to a code subspace of
dimension d = 2κ with κ = poly(N); here we will leave d general.
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1. Fidelity for typical pseudorandom unitaries. We start by proving that the bound
on the averaged fidelity in Theorem 7 also holds for typical Haar random unitaries and
states, and subsequently prove this for pseudorandom unitaries and states. To do so, we
employ techniques from measure concentration. An introduction to the theory of measure
concentration, including numerous references, is given in Appendix B of [31]. Here we only
need the following lemma for measure concentration on the unitary group.

Lemma 3 (Meckes (Corollary 17 in [89])). Let f : U(d) → R be K-Lipschitz in the sense
that |f(U1)− f(U2)| ≤ K||U1 − U2||2, with ||X||2 ≡

√
trX†X. Then in the Haar measure on

U(d) we have the following concentration inequalities for any ϵ > 0:

Pr[f ≥ ⟨f |f⟩+ ϵ] ≤ exp

{(
− ϵ2d

12K2

)}
,

Pr[f ≤ ⟨f |f⟩ − ϵ] ≤ exp

{(
− ϵ2d

12K2

)}
,

Pr[|f − ⟨f |f⟩ | ≥ ϵ] ≤ 2 exp

{(
− ϵ2d

12K2

)}
.

(4.30)

For the purposes of Theorem 8, we are interested in applying this to the function
F = F (U |ψ⟩ , Û |ψ⟩) = |

〈
ψ|U †Û |ψ

∣∣∣ψ|U †Û |ψ〉 |2, where we first consider Haar random U

and |ψ⟩, i.e., U ← µ and |ψ⟩ ← µ, and furthermore Û is the guess that the algorithm AU
outputs. Thus, our task is to show that the function F obeys the requirements for Lemma 3
to hold, such that fluctuations around the average are exponentially suppressed. That is, we
need to check that F is K-Lipschitz for some fixed K.

Note that the algorithm’s output Û depends on U . This dependence is complicated:
the quantum algorithm AU , as a result of, e.g., intrinsic randomness in the outcome of
measurements during the learning process, generally outputs a Û that is not a deterministic
function of U . In the following, we will start by considering instead a deterministic algorithm,
i.e., the algorithm is some function A(U) that maps every unitary U to some norm-preserving
operator Û .

We then prove the following lemma:

Lemma 4. Let A(U) denote any deterministic K-Lipschitz function that maps every unitary
U to some norm-preserving operator Û . Let |ψ⟩ and |φ⟩ be any two fixed states in the Hilbert
space H. Then the function F (U) ≡ F (U |ψ⟩ ,A(U) |φ⟩) is (2 + 2K)-Lipschitz in U .

Proof. Our aim is to show that

|F (U1)− F (U2)| ≤ (2 + 2K)||U1 − U2||2 . (4.31)

To show (4.31), first, notice that we can rewrite

F (U) = F (U |ψ⟩ ,A(U) |φ⟩) = tr
[
A(U) |φ⟩ ⟨φ| A(U)†U |ψ⟩ ⟨ψ|U †

]
= tr

[
(A(U)†U)† φA(U)†U ψ

]
= tr

[(
(A(U)†U)† ⊗A(U)†U

)
(φ⊗ ψ)S

]
.

(4.32)
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Here we used φ = |φ⟩ ⟨φ| and ψ = |ψ⟩ ⟨ψ|. In the third line we introduced a second copy of
the Hilbert space; S is the swap operator. For readability, in what follows, we will abbreviate
A(Ui) = Ai. Then, using Hölder’s inequality,

|F (U1)− F (U2)| =
∣∣∣tr [((A†1U1)

† ⊗A†1U1 − (A†2U2)
† ⊗A†2U2

)
(φ⊗ ψ)S

]∣∣∣
≤ ||φ⊗ ψ||1||S

(
(A†1U1)

† ⊗A†1U1 − (A†2U2)
† ⊗A†2U2

)
||∞ .

(4.33)

Since φ⊗ ψ is a state, its trace norm is 1. Now we can combine submultiplicativity of the
operator norm with the fact that S is unitary, such that

||S
(
(A†1U1)

† ⊗A†1U1−(A†2U2)
† ⊗A†2U2

)
||∞

≤ ||S||∞||
(
(A†1U1)

† ⊗A†1U1 − (A†2U2)
† ⊗A†2U2

)
||∞

= ||(A†1U1)
† ⊗A†1U1 − (A†2U2)

† ⊗A†2U2||∞ .

(4.34)

Recall that we want to show that this is upper bounded by some K ′||U1 − U2||2. Rewrite the
last line as

||(A†1U1)
† ⊗A†1U1 − (A†1U1)

† ⊗A†2U2 + (A†1U1)
† ⊗A†2U2 − (A†2U2)

† ⊗A†2U2||∞
≤ ||(A†1U1)

† ⊗A†1U1 − (A†1U1)
† ⊗A†2U2||∞ + ||(A†1U1)

† ⊗A†2U2 − (A†2U2)
† ⊗A†2U2||∞

= 2||A†1U1 −A†2U2||∞ . (4.35)

In the second line we used the triangle inequality; in the third we used ||A⊗B|| = ||A|| ||B||,
and for unitaries ||U ||∞ = 1, and we are we are working with exactly norm-preserving
operators Û such that also ||Û ||∞ = 1. We now again use the triangle inequality and
submultiplicativity of the operator norm to rewrite the final line as

2||A†1U1 −A†2U2||∞ = 2||A†1U1 −A†2U1 +A†2U1 −A†2U2||∞
≤ 2||A†1 −A†2||∞||U1||∞ + 2||A†2||∞||U1 − U2||∞
≤ (2 + 2K)||U1 − U2||∞
≤ (2 + 2K)||U1 − U2||2 .

(4.36)

In the third line we used thatA(U) isK-Lipschitz for someK, and finally we used ||·||∞ ≤ ||·||2.
This completes the proof that the function F (U) ≡ F (U |ψ⟩ ,A(U) |φ⟩) is (2 + 2K)-Lipschitz:

|F (U1)− F (U2)| ≤ (2 + 2K)||U1 − U2||2 . (4.37)

Then, by Lemma 3 and Lemma 4, we have the following measure concentration result:
that for fraction ≥ 1− e−ϵ2d/(48(1+K)2) of Haar random unitaries,

F (U |ψ⟩ ,A(U) |φ⟩)− avg
V←µ

[F (V |ψ⟩ ,A(V ) |φ⟩)] < ϵ . (4.38)

We now wish to extend this to include measure concentration over Haar random states. To
this end, we prove the following lemma.
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Lemma 5. Let A(U) denote any deterministic K-Lipschitz function that maps every unitary
U to some norm-preserving operator Û . For fraction ≥ 1− e−ϵ2d/(48(1+K)2) of Haar random
unitaries U ← µ and fraction ≥ 1− e−ϵ2d/192 of Haar random states |ψ⟩ ← µ, we have

F (U |ψ⟩ ,A(U) |ψ⟩)− avg
V←µ
|φ⟩←µ

[F (V |φ⟩ ,A(V ) |φ⟩)] < 2ϵ . (4.39)

Proof. Consider first fixing some U and A(U). Let V be a Haar random unitary and |ψ0⟩
some basis state, such that V |ψ0⟩ is a Haar random state. We show that the function

F (V ) ≡ F (UV |ψ0⟩ ,A(U)V |ψ0⟩) = F (V †A(U)†UV |ψ0⟩ , |ψ0⟩) (4.40)

is 4-Lipschitz. Following the same methods as in the proof of Lemma 4, we find the analogue
of (4.35):

|F (V1)− F (V2)| ≤ 2||V †1A(U)†UV1 − V †2A(U)†UV2||∞ . (4.41)

Then, by the triangle inequality,

|F (V1)− F (V2)| ≤ 2||V †1A(U)†UV1 − V †2A(U)†UV1 + V †2A(U)†UV1 − V †2A(U)†UV2||∞
≤ 2||V †1 − V †2 ||∞||A(U)†UV1||∞ + 2||V †2A(U)†U ||∞||V1 − V2||∞
≤ 4||V1 − V2||2 . (4.42)

Note that in the last line we used again that A(U) is exactly norm-preserving, such that
||A(U)†UVi||∞ = 1, as well as || · ||∞ ≤ || · ||2.

By Lemma 3, for fraction ≥ 1− e−ϵ2d/192 of |ψ⟩ ≡ V |ψ0⟩ ← µ,

F (U |ψ⟩ ,A(U) |ψ⟩)− avg
|φ⟩←µ

[F (U |φ⟩ ,A(U) |φ⟩)] < ϵ . (4.43)

We now combine this with measure concentration for Haar random unitaries. Starting
from (4.38) for two (fixed) states |φ⟩, and then averaging over φ← µ, we have for fraction
≥ 1− e−ϵ2d/48(1+K)2 of U ← µ,

avg
|φ⟩←µ

[F (U |φ⟩ ,A(U) |φ⟩]− avg
V←µ
|φ⟩←µ

[F (V |φ⟩ ,A(U) |φ⟩)] < ϵ . (4.44)

Now add and subtract F (U |ψ⟩ ,A(U) |ψ⟩). This gives

F (U |ψ⟩ ,A(U) |ψ⟩)− avg
V←µ
|φ⟩←µ

[F (V |φ⟩ ,A(U) |φ⟩)]

< ϵ+ F (U |ψ⟩ ,A(U) |ψ⟩)− avg
|φ⟩←µ

[F (U |φ⟩ ,A(U) |φ⟩)] .
(4.45)

Now we can use (4.43) to bound the right hand side to 2ϵ for fraction ≥ 1 − e−ϵ2d/192 of
|ψ⟩ ← µ. This concludes the proof of Lemma 5.
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To prove Theorem 8, it remains to extend the above results to (1) non-deterministic
functions A(U), e.g., quantum algorithms AU , and (2) to pseudorandom unitaries and states.
We first briefly address point (1). We can run the proofs of Lemma 4 and Lemma 5 analogously
for Ûi ← AUi until we need a smoothness property of Ûi. There, instead of K-Lipschitz, we
use the randomized K-Lipschitz property in Definition 8. Furthermore, using the inequality

|avgF (U1)− avgF (U2)| ≤ avg |F (U1)− F (U2)| , (4.46)

we have that the function F (V ) = avg
V̂←AV

[
F (V |ψ⟩ , V̂ |ψ⟩)

]
is itself (2 + 2K)-Lipschitz. This

allows us to extend our measure concentration results to this function F (V ) where previously
we proved them for F (U) = F (U |ψ⟩ , Û |ψ⟩).

Then we arrive at the following result: that for fraction ≥ 1 − e−ϵ2d/(48(1+K)2) of U ←
µ, and for fraction ≥ 1 − e−ϵ

2d/192 of |ψ⟩ ← µ (alternatively, we can think of this as
≥ 1 − e−ϵ

2d/192 − e−ϵ
2d/(48(1+K)2) fraction of U ← µ and |ψ⟩ ← µ), we have the following

concentration bound:

avg
Û←AU

[
F (U |ψ⟩ , Û |ψ⟩)

]
− avg

V←µ
|φ⟩←µ

[
avg
V̂←AV

[
F (V |φ⟩ , V̂ |φ⟩)

]]
< 2ϵ . (4.47)

Finally, we address point (2) above, and show that to preserve indistinguishability, the
above result must also hold for pseudorandom unitaries and states. Intuitively, if the
fluctuations around the Haar random averaged fidelity are exponentially suppressed, but the
fluctuations around the pseudorandom averaged fidelity are not, then one could measure
these fluctuations and thereby distinguish pseudorandom unitaries and states from Haar
random ones, breaking the pseudorandomness.

We proceed to formally show this below.

Lemma 6. Let κ = poly(N) be the security parameter. Let U be any pseudorandom unitary
(PRU) ensemble and let Ψ be any pseudorandom state (PRS) ensemble. Let Û be the output
of the learning algorithm AU , which we assume to be (randomized) K-Lipschitz, and where
U ← U . Then the following concentration inequality holds, in the measure induced on U and
Ψ, for any ϵ > 0, with probability ≥ 1− e−ϵ2d/48(1+K)2 − e−ϵ2d/192− negl′(N) over U ← U and
|ψ⟩ ← Ψ,

avg
Û←AU

F
(
U |ψ⟩ , Û |ψ⟩

)
− avg

V←U
|φ⟩←Ψ

V̂←AV

[
F
(
V |φ⟩ , V̂ |φ⟩

)]
< 2ϵ+ negl(N) .

(4.48)

Proof. To prove Lemma 6, we first extend (4.47) to pseudorandom unitaries, and then to
pseudorandom states.

First, let Ψ be any ensemble of states. For ease of notation, we write

β := avg
U←µ
|ψ⟩←Ψ

Û←AU

[
F (U |ψ⟩ , Û |ψ⟩)

]
(4.49)
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and
β′ := avg

U←U
|ψ⟩←Ψ

Û←AU

[
F (U |ψ⟩ , Û |ψ⟩)

]
. (4.50)

By Lemma 7 of [32], |β − β′| ≤ η(N) where η is a negligible function.
Assume towards contradiction that there exists a pseudorandom unitary ensemble U , any

distribution of states Ψ, and a positive polynomial p such that

Pr
U←U
|ψ⟩←Ψ

[
avg
Û←AU

F
(
U |ψ⟩ , Û |ψ⟩

)
− β′ ≥ ϵ+ η(N)

]
≥ e−ϵ

2d/48(1+K)2 +
1

p(N)
. (4.51)

If the above equation holds, then there is a state |ψ0⟩ such that this equation holds with
|ψ⟩ := |ψ0⟩:

Pr
U←U

[
avg
Û←AU

F
(
U |ψ0⟩ , Û |ψ0⟩

)
− β′ ≥ ϵ+ η(N)

]
≥ e−ϵ

2d/48(1+K)2 +
1

p(N)
. (4.52)

We now construct an efficient algorithm Dist that uses oracle access to the pseudorandom
unitary U and also can run the learning algorithm AU .51 We show that if our assumption
(4.51) is true, then Dist can distinguish between U ← µ and U ← U , thus breaking the
pseudorandomness of U .

The distinguisher Dist gets poly(N) copies of |ψ0⟩, and is also handed β.52 Then it
proceeds as follows:

1. Dist runs A and simulates the oracle for A: it receives each query from A, sends the
query to its oracle U , and returns the response to A.

2. Dist gives |ψ0⟩ to A and receives back Û |ψ0⟩. It also gives |ψ0⟩ to its oracle U and gets
back U |ψ0⟩.

3. Dist repeats this poly(N) times and then uses a quantum algorithm (e.g., [90]) to
efficiently estimate β′′ := F (U |ψ0⟩ , Û |ψ0⟩) up to some additive error ϵ̂ > 0, i.e.,
|β′′est − β′′| ≤ ϵ̂.

4. If β′′est − β ≥ ϵ̃, where ϵ̃ > ϵ̂, then Dist outputs 1.

Note that Dist runs in poly(N)-time since it can efficiently query the oracle, and further-
more the quantum algorithm for fidelity estimation is efficient.53

51Note that the distinguisher can depend on N , as ours does here, since e.g. |ψ0⟩ depends on N .
52The careful reader might worry that handing the distinguisher (multiple copies of) any state in H, or β,

breaks the computational boundedness of the algorithm. Note, however, that although the algorithms we
consider are limited to a polynomial number of queries in log dimH, each query can be for any state in H that
the algorithm a) can prepare or b) has been given as “advice". This advice can also include quantities like β.
Note that the learning algorithm we consider in, e.g, Theorem 8 gets only one copy of the physical state |ψ⟩;
the distinguisher that we describe here is a different algorithm and can receive multiple copies as advice.

53For example, the quantum algorithm of [90] runs in poly(1/ϵ̂)-time.
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We now show that Dist distinguishes between U ← µ and U ← U . For Haar random
U ← µ as the oracle,

Pr
U←µ

[Dist = 1] = Pr [β′′est − β ≥ ϵ̃] = Pr [β′′ − β ≥ ϵ̃− (β′′est − β′′)]

≤ Pr [β′′ − β ≥ ϵ̃− ϵ̂]
≤ e−(ϵ̃−ϵ̂)

2d/48(1+K)2 ,

(4.53)

where we used −ϵ̂ ≤ β′′est − β′′ ≤ ϵ̂ in the second line, and (4.38) (concentration in the Haar
measure) for ϵ = ϵ̃− ϵ̂ > 0 in the last line.

For pseudorandom U ← U as the oracle,

Pr
U←U

[Dist = 1] = Pr [β′′est − β ≥ ϵ̃] = Pr [β′′ − β′ ≥ ϵ̃− (β′′est − β′′)− (β′ − β)]
≥ Pr [β′′ − β′ ≥ ϵ̃+ ϵ̂+ η(N)]

≥ e−(ϵ̃+ϵ̂)
2d/48(1+K)2 +

1

p(N)
,

(4.54)

where we used −η(N) ≤ β − β′ ≤ η(N) in the third line, and our assumption (4.51) in the
last line for ϵ = ϵ̃+ ϵ̂.

Therefore,

Pr
U←U

[Dist = 1]− Pr
U←µ

[Dist = 1] ≥ 1

p(N)
+ e

− (ϵ̃+ϵ̂)2d

48(1+K)2 − e−
(ϵ̃−ϵ̂)2d

48(1+K)2 . (4.55)

This shows that Dist distinguishes between U ← µ and U ← U . Since Dist runs in poly(N)
time, this contradicts the pseudorandomness of U (Definition 5). Thus based on the pseudo-
randomness of U , we must have that for fraction ≤ e−ϵ

2d/48(1+K)2 + η′(N) of U ← U

avg
Û←AU

F
(
U |ψ⟩ , Û |ψ⟩

)
− avg

V←U
|φ⟩←Ψ

V̂←AV

F
(
V |φ⟩ , V̂ |φ⟩

)
≥ ϵ+ η(N) , (4.56)

where η′(N) is negligible. In particular, this holds when |ψ⟩ ← Ψ is Haar random.
Thus, we have proven a measure concentration result for fluctuations around the average

fidelity where we average over pseudorandom unitaries (and Haar random states). An
analogous proof holds for fluctuations around the average fidelity where we average over
pseudorandom states (and any distribution of unitaries D; in particular, it holds for Haar
random unitaries U ← µ). It requires Lemma 8 in [32]. This would result in the following
measure concentration result: that for fraction ≤ e−ϵ

2d/192 + η̃′(N) of |ψ⟩ ← Ψ,

avg
Û←AU

F
(
U |ψ⟩ , Û |ψ⟩

)
− avg

V←U
|φ⟩←Ψ

V̂←AV

[
F
(
V |φ⟩ , V̂ |φ⟩

)]
≥ ϵ+ η̃(N) , (4.57)

where we explicated that the negligible functions need not be the same as in (4.56). Combining
(4.56) and (4.57) concludes the proof of Lemma 6.

124



We will now use Lemma 6 to prove the first part of Theorem 8. Consider any constant
ϵ > 0. Consider any sufficiently large value of N ∈ N so that Theorem 7 from [32] holds. Let
U ← U and |ψ⟩ ← Ψ denote the pseudorandom unitary and state. Let Û denote the operator
that AU produces. To connect to the learning result (Theorem 7), we average over the output
of the algorithm, Û |ψ⟩ ← AU(|ψ⟩). We abbreviate this by Û ← AU . By Lemma 6, we have
that with probability ≥ 1− e−ϵ2d/48(1+K)2 − e−ϵ2d/192 − negl′(N),

avg
Û←AU

[
F
(
U |ψ⟩ , Û |ψ⟩

)]
− avg

V←U
|φ⟩←Ψ

V̂←AV

[
F
(
V |φ⟩ , V̂ |φ⟩

)]
< 2ϵ+ negl(N) .

(4.58)

We call (U, |ψ⟩) typical if the above equation holds. The complexity of learning result
(Theorem 7) gives us an upper bound on the average fidelity. Thus we have that for any
typical (U, |ψ⟩),

avg
Û←AU

[
F
(
U |ψ⟩ , Û |ψ⟩

)]
≤ 1− α + 2ϵ+ negl(N) . (4.59)

This shows the first part of the theorem (Equation (4.8)).

Haar random unitaries and states. Note that we obtain a stronger result for Haar random
unitaries and states: namely, that for fraction ≥ 1− e−ϵ2d/48(1+K)2 − e−ϵ2d/192 of U ← µ and
|ψ⟩ ← µ,

avg
Û←AU

[
F
(
U |ψ⟩ , Û |ψ⟩

)]
≤ 1− α + 2ϵ . (4.60)

Note that for d = 2κ with κ = poly(N), this means that the above bound is violated for only
a fraction that is doubly-exponentially suppressed in N .

2. Distinguishing operator. We now show the second part of the theorem. The
relationship between fidelity and distinguishing measurements is a known result; for any finite
dimensional Hilbert space, this is given in Appendix B in [32]. Thus, for any typical (U, |ψ⟩),
there exists an operator Q (for a given Û) for which

avg
Û←AU

∣∣∣tr(QÛψÛ †)− tr
(
QUψU †

)∣∣∣ ≥ 2α− 4ϵ− negl(N) . (4.61)

This concludes the proof of Theorem 8.

4.6.2 Proof of Corollary 4.3.2

In this appendix, we prove Corollary 4.3.2, the existence of a semiclassical distinguishing
operator. We repeat Corollary 4.3.2 here for convenience:

[Distinguishing Operator at N →∞] For any two sequences of states {U (N)
∣∣ψ(N)

〉
}N and

{Û (N)
∣∣ψ(N)

〉
}N that have well-defined limits

∣∣ξ(∞)
〉

and
∣∣∣ξ̂(∞)

〉
, respectively, as N →∞ and

that satisfy the assumptions stated above, both 1. and 2. in Theorem 8 also hold for the
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states
∣∣ξ(∞)

〉
and

∣∣∣ξ̂(∞)
〉
. In particular, by taking the constant ϵ to be < α/2, we have for

any
∣∣∣ξ̂(∞)

〉
, the existence of an operator Q(∞) such that,

avg
ξ̂(∞)

∣∣∣tr(Q(∞)ξ̂(∞)
)
− tr

(
Q(∞)ξ(∞)

)∣∣∣ ≥ O(1) .

Proof. Note that by the assumptions on the sequences {U (N)
∣∣ψ(N)

〉
}N and {Û (N)

∣∣ψ(N)
〉
}N ,

for every sufficiently large N , U (N)
∣∣ψ(N)

〉
and Û (N)

∣∣ψ(N)
〉

satisfy 1. and 2. in Theorem 8.
We first show that the result (4.59) remains true at infinite N . By assumption, the two

sequences of states {U (N)
∣∣ψ(N)

〉
}N and {Û (N)

∣∣ψ(N)
〉
}N have well-defined limits

∣∣∣ξ̂(∞)
〉

and∣∣ξ(∞)
〉

as N →∞. The fidelity itself is well-defined for infinite-dimensional operators of
bounded trace norm. Note also that the right-hand side of (4.59) becomes independent of N
as N →∞. Therefore, the result (4.59) should hold for

∣∣∣ξ̂(∞)
〉

and
∣∣ξ(∞)

〉
.

We now turn to the distinguishing operator. Let us first work at finite N . The Fuchs–van
de Graaf inequality [91] states that the fidelity of two density operators ρ and σ (in finite
dimensions) upper and lower bounds their trace norm distance:

1−
√
F (ρ, σ) ≤ 1

2
||ρ− σ||1 ≤

√
1− F (ρ, σ) . (4.62)

When σ is a pure state, the lower bound can be strengthened:

1− F (ρ, σ) ≤ 1

2
||ρ− σ||1 . (4.63)

By this equation and (4.59), for any (U (N),
∣∣ψ(N)

〉
) which is typical for the distributions

U (N), Ψ(N), we get the following, where we keep the average over Û ← AU implicit in what
will follow, ∣∣∣∣∣∣Û (N)ψ(N)(Û (N))† − U (N)ψ(N)(U (N))†

∣∣∣∣∣∣
1
≥ 2α− 4ϵ− negl(N) . (4.64)

Let ξ(N) = U (N)ψ(N)(U (N))† and ξ̂(N) = Û (N)ψ(N)(Û (N))†. Below we also write ξ and ξ̂ as
shorthand for ξ(∞) and ξ̂(∞). Using this, we find that

||ξ̂ − ξ||1 = ||(ξ̂ − ξ̂(N))− (ξ − ξ(N)) + (ξ(N) − ξ̂(N))||1
≥
∣∣∣||ξ̂(N) − ξ(N)||1 − ||(ξ̂ − ξ̂(N))− (ξ − ξ(N))||1

∣∣∣
= ||ξ̂(N) − ξ(N)||1 − ||(ξ̂ − ξ̂(N))− (ξ − ξ(N))||1
≥ ||ξ̂(N) − ξ(N)||1 − ||ξ̂ − ξ̂(N)||1 − ||ξ − ξ(N)||1
≥ 2α− 4ϵ− negl(N)− ||ξ̂ − ξ̂(N)||1 − ||ξ − ξ(N)||1.

(4.65)

where we used the reverse triangle inequality ||x− y|| ≥
∣∣||x|| − ||y||∣∣ in the second line, and

the triangle inequality ||x− y|| ≤ ||x||+ ||y|| in the fourth line. In the third line, we use that
the last term goes to zero as N →∞ to remove the absolute value. Taking now the N →∞
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limit, the last two terms vanish by assumption, and negl(N)→ 0, giving ||ξ̂ − ξ||1 ≥ 2α− 4ϵ.
Now, if A is the algebra of all bounded operators on the Hilbert space H(∞), one has that

||ρ− σ||1 = sup
a∈A:||a||∞≤1

| tr(aρ)− tr(aσ)| (4.66)

Thus, reinstating averages, there exists some bounded operator Q on H(∞), depending on Û ,
such that

avg
ξ̂

∣∣ tr(Qξ̂)− tr(Qξ)
∣∣ ≥ 2α− 4ϵ . (4.67)

In particular, by taking ϵ to be any constant smaller than α/2, we get that there exists an
operator whose expectation values for ξ̂ and ξ must differ by a constant. This concludes the
proof of Corollary 4.3.2.
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Chapter 5

Conformal Rigidity from Focusing

Abstract: The null curvature condition (NCC) is the requirement that the Ricci curvature
of a Lorentzian manifold be nonnegative along null directions, which ensures the focusing
of null geodesic congruences. In this note, we show that the NCC together with the causal
structure significantly constrain the metric. In particular, we prove that any conformal
rescaling of a vacuum spacetime introduces either geodesic incompleteness or negative null
curvature, provided the conformal factor is non-constant on at least one complete null geodesic.
In the context of bulk reconstruction in AdS/CFT, our results combined with the technique
of light-cone cuts can be used in vacuum spacetimes to reconstruct the full metric in regions
probed by complete null geodesics reaching the boundary. For non-vacuum spacetimes, our
results constrain the conformal factor, giving an approximate reconstruction of the metric.
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5.1 Introduction

Energy conditions are indispensable tools in the study of gravity. They enable the proof of
important results which are true in theories describing nature, but not in Lorentzian geometry
in general. Among the most important is the null energy condition (NEC), which underpins
the famous area theorem by Hawking [1], the Penrose singularity theorem [2], in addition
to results related to holography [3–6], wormholes [7], cosmic censorship [8, 9], topological
censorship [10], and causality [11–14].1 The great utility of the NEC comes from that fact
that it ensures the focusing of null geodesics, a physically motivated condition capturing the
attractive nature of gravity.

In the Hawking area theorem, an assumption on the causal structure of spacetime together
with the NEC is sufficient to derive how areas of certain surfaces behave – that is, properties of
the underlying geometry. While the causal structure is invariant under Weyl transformations,
areas are not. Thus, when causality is combined with the focusing of null geodesic (as implied
by the NEC), we gain control over the geometry. Other remarkable examples of the interplay
between causal structure and focusing in constraining geometry were found in [22–25]. In
these works, area comparison theorems for extremal surfaces in spacetimes with Anti-de Sitter
(AdS) asymptotics were derived from only causal relations and the null curvature condition
(NCC), a property equivalent to the NEC when assuming the Einstein equation. Together,
these results hint at a pattern where causal structure and energy conditions together constrain
geometry to a substantial degree and in physically relevant ways.

In this note we further elaborate on this pattern, and exhibit situations where the NCC
together with the conformal structure is enough fix the geometry in various ways, sometimes
even uniquely. More specifically, as one of our results we will show that if a conformal
class contains a geodesically complete spacetime with vanishing null curvature, then every
other geometry in its conformal class either violates the NCC, or suffers from geodesic
incompleteness along every geodesic along which the relative conformal factor is non-constant.
In other words, in these situations, causal structure, the NCC and geodesic completeness are
enough to uniquely fix the metric.

We begin in Section 5.2 by setting up the notation and introducing basic ideas which will
be used throughout. Sections 5.3 is devoted to presenting our main results in a self-contained
manner, with their proofs relegated to Section 5.4 for ease of reading. Finally, in Section 5.5
we discuss our findings and point out applications of our results to AdS/CFT, particularly
for bulk reconstruction.

5.2 Weyl Transformations and Null Curvature

Throughout this note, a spacetime is defined as a pair (M, g) consisting of a C2 Lorentzian
manifold M and a C2 metric tensor g : Γ(TM)× Γ(TM)→ R, where Γ(TM) denotes vector
fields of the tangent bundle TM of M . The spacetime dimension is denoted by D ≡ dimM
and we assume D ≥ 3 throughout. The causal structure of a spacetime (M, g) is invariant
under Weyl transformations, which are rescalings of the metric tensor g → Ω2g by some

1See also e.g. [15–21] for generalizations of the NEC to weaker conditions more relevant to quantum fields.
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positive function Ω on M . Hence, the specification of the causal structure of a spacetime is
equivalent to specifying the conformal class of its metric, which leaves an overall factor in the
metric undetermined.

One may deem a Weyl transformation pathological if its Weyl factor Ω is not C2 or
exhibits an undesirable asymptotic behavior. In particular, denoting the conformal boundary
of M by ∂M , one could in principle have Ω(p)→ 0 or Ω(p)→∞ as p is taken towards ∂M
along some sequence of points. In such cases, the extendibility and completeness properties
of the spacetime or the topology of its conformal boundary may be altered. It is thus useful
to distinguish these more “violent” Weyl transformations from those which do not alter such
properties. To do so, it will be helpful to parameterize Weyl transformations using Ω = eω,
with ω :M → R sometimes referred to as the Weyl exponent. In particular, it is easy to see
that Ω will not alter completeness properties of the underlying spacetime if ω is bounded
(see Lemma 5.4 for a more precise statement).

Consider now a null vector field k ∈ Γ(TM), k2 = 0, and its associated null curvature

Rkk = Ric(k, k), (5.1)

where Ric is the Ricci curvature of (M, g), also written as Rab in abstract index notation.
When Rkk ≥ 0 for every null vector field k we say that the NCC holds for (M, g) and, if
Rkk = 0 for every such k, then we say that (M, g) has zero null curvature. Importantly, the
condition of zero null curvature does not trivialize the Ricci tensor of the spacetime – indeed,
e.g. any Einstein manifold where Ric = κ g for constant κ will satisfy this property.

The NCC is a well-defined geometric condition on Lorentzian manifolds independent of
a theory of gravity (be it classical or semiclassical) or any physics at all, even if it is only
physically motivated in the classical limit. The most standard forms of field theory matter
coupled to Einstein gravity, such as minimally coupled scalars, gauge fields, and p-forms (all
with canonical kinetic terms), all source classical spacetimes respecting the NCC. The same
is true for the bosonic sector of type IIA, IIB and D = 11 supergravity,2 and in classical
bosonic string theory the NCC can be derived to leading order in α′ [27]. In the context
of AdS/CFT, it is furthermore known that classical matter violating the NCC can lead to
various pathologies in the holographic dictionary [5], and so assuming the NCC in the classical
limit is well motivated there. The assumption of the NCC is equivalent to the condition that
gravity always focuses null geodesic congruences.

Knowledge of the conformal class of a spacetime is clearly not enough to fix its metric, but
what if we also demand the NCC? Given a spacetime that obeys the NCC, one conformally
equivalent to it need not do so. Under a Weyl transformation with Weyl exponent ω, the
Ricci tensor becomes

R
(ω)
ab = Rab − (D − 2) (∇a∇bω −∇aω∇bω)−

(
∇2ω + (D − 2)(dω)2

)
gab. (5.2)

2This is immediate for D = 11 supergravity, whose bosonic sector only contains a free 3-form (besides
Chern-Simons terms of no relevance here). For type IIA and IIB supergravity, the bosonic matter stress
tensors are essentially those of free bosons and p-forms with canonical kinetic parts, up to overall dilatonic
prefactors having no effect on the NEC [26]. Various Kaluza-Klein dimensional reductions can also be checked
to preserve the NEC [27] – e.g. for N = 2 supergravity in D = 4 one just gets Einstein-Maxwell. We thank
Gary Horowitz for helpful discussion on this.
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The transformed null curvature then reads

R
(ω)
kk = Rkk − (D − 2)kakb (∇a∇bω −∇aω∇bω) . (5.3)

It follows that ω defines an NCC-preserving Weyl transformation on (M, g) if and only if,
everywhere and for any k,

R
(ω)
kk ≥ 0 ⇐⇒ (D − 2)kakb (∇a∇bω −∇aω∇bω) ≤ Rkk. (5.4)

Consider now a null geodesic curve γ : R ⊇ I →M that is affinely parameterized by λ ∈ I.
For its tangent vector field ka ≡ (∂λ)

a, which obeys the geodesic equation ∇kk = 0, the
condition on the right-hand side of (5.3) becomes simply

∇2
kω − (∇kω)

2 =
d2ωγ
dλ2

−
(
dωγ
dλ

)2

≤ 1

D − 2
Rkk, (5.5)

where ωγ ≡ ω ◦ γ is just the Weyl exponent along the pertinent geodesic. This inequality is
the starting point for our work.

5.3 Conformal Rigidity Results

In this section we derive the main inequalities from which our theorems follow. We also state
the theorems, with proofs postponed to the next section. In what follows, let ka ≡ (∂λ)

a be
tangent to an affine null geodesic γ with affine parameter λ ∈ I ⊆ R. When referring to any
scalar function on M , we will implicitly work with its composition with the curve γ, as was
done above e.g. in (5.5).3

Substituting ω = − lnu for a strictly positive function u into (5.3), we find that to satisfy
the NCC in the Weyl-rescaled spacetime we need

R
(ω)
kk (λ) = Rkk(λ) + (D − 2)

u′′(λ)

u(λ)
≥ 0. (5.6)

Multiplying through by u and integrating once and twice yields the following inequalities:

u′(λ) ⋛ u′(λ0)−
1

D − 2

∫ λ

λ0

dλ′ Rkk(λ
′)u(λ′), ∀λ ⋛ λ0, (5.7)

u(λ) ≥ u(λ0) + u′(λ0)(λ− λ0)−
1

D − 2

∫ λ

λ0

dλ′ (λ− λ′)Rkk(λ
′)u(λ′), ∀λ ∈ I, (5.8)

for any λ0 ∈ I. As a special case of these inequalities, consider a situation where I = (−∞, c),
and assume that the following limits exist

lim
λ→−∞

u(λ) ̸= 0, lim
λ→−∞

u′(λ). (5.9)

3In other words, to avoid cluttering the notation, by e.g. ω we will often mean ωγ – any exception to this
should be clear from context.
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Then we must have limλ→−∞(λu
′(λ)) = 0, for otherwise we would need u′(λ) ∼ O(1/λ) at

large λ, giving that u diverges logarithmically. Observing that u = 1/Ω and taking λ0 = −∞,
we then get

− d

dλ

(
1

Ω(λ)

)
≤ 1

D − 2

∫ λ

−∞
dλ′

Rkk(λ
′)

Ω(λ′)
, (5.10)

1

Ω(λ)
≥ 1

Ω(−∞)
− 1

D − 2

∫ λ

−∞
dλ′ (λ− λ′)Rkk(λ

′)

Ω(λ′)
. (5.11)

Thus, in the situation where Ω approaches a non-zero constant Ω(−∞) as λ→ −∞ so that
the limit limλ→−∞Ω′(λ) exists, we encounter two possibilities:

• If the original spacetime has zero null curvature Rkk = 0 and we want to preserve the
NCC, then we see from (5.11) that Ω must be monotonically non-increasing along γ as
we move away from the direction in which γ is complete.

• If the original spacetime satisfies the NCC with nonvanishing null curvature Rkk ≥ 0,
then the potential increase of Ω(λ) along a complete null geodesic γ is bounded from
above by the previous null curvature the geodesic has encountered, as dictated by (5.11).
In particular, if Ω satisfies Ω(λ) ≥ Ωmin > 0 along some complete null geodesic γ, then

− d

dλ

(
1

Ω(λ)

)
≤ Rγ

(D − 2)Ωmin

, Rγ ≡
∫ ∞
−∞

dλ′Rkk(λ
′), (5.12)

where we have defined the averaged null curvature Rγ along the null geodesic γ.4
Integrating now (5.12) from λ0 to λ, we get

1

Ω(λ)
⋛

1

Ω(λ0)
− Rγ

(D − 2)Ωmin

(λ− λ0), λ ⋛ λ0. (5.13)

When Rkk = 0 and we do not assume anything about the asymptotic behavior of Ω, we
find the following more general statement, from which most of our results will follow: Let
(M, g) be a spacetime with zero null curvature. Let Ω ∈ C2(M) be a positive function, and
let γ be any complete null geodesic affinely parameterized by λ ∈ R. Then at least one of the
following is true:

1. The spacetime (M,Ω2g) violates the NCC along γ.

2. The Weyl factor Ω is constant along γ.

3. lim
λ→∞

Ω(λ) = 0 or lim
λ→−∞

Ω(λ) = 0, with Ω decaying at least as fast as O(1/|λ|).

With this lemma in hand, together with another technical lemma relegated to the next
section, we find the following series of results. Let (M, g) be a connected and geodesically

4This object and the condition that it be nonnegative have appeared previously in e.g. [28, 29]. In general
relativity, it is analogous to the averaged null energy, arising in discussions of the averaged NEC [15–17].
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complete spacetime with zero null curvature. If ω ∈ C2(M) is bounded, then either ω is
constant on M or (M, e2ωg) violates the NCC.

Let (M, g) be a spacetime with zero null curvature. If ω ∈ C2(M) is bounded and
non-constant, then either (M, e2ωg) is null-geodesically incomplete, or it violates the NCC. If
(M, g) is null-geodesically complete, then the previous is true also when ω is only bounded
from below. The first theorem states that a conformal rescaling of a geodesically complete
vacuum spacetime with bounded ω always causes NCC violation. The second states that in
a general vacuum spacetime, after a bounded conformal rescaling, negative null curvature
or geodesic incompleteness must always be present. In the next theorem, we show that an
NCC-preserving conformal rescaling with bounded ω is only ever possible in incomplete
spacetimes:

Let (M, g) be a spacetime with zero null curvature. Let ω ∈ C2(M) be bounded and
non-constant. If (M, e2ωg) preserves the NCC, then (M, g) is null-geodesically incomplete.

Next we turn to some applications for spacetimes with commonly used asymptotics. Let
(M, g) be an asymptotically locally AdS (AlAdS) spacetime with zero null curvature. Let
Ω ∈ C2(M) be a positive function and A ⊆M the set of points p ∈M lying on at least one
complete null geodesic with both endpoints on ∂M . Assume that Ω extends to ∂M with the
same value everywhere. Then at least one of the following is true:

1. The spacetime (M,Ω2g) violates the NCC on A.

2. The Weyl factor Ω is constant on A.

3. (M,Ω2g) is not AlAdS.

Let (M, g) be an asymptotically flat spacetime with zero null curvature. Let Ω ∈ C2(M)
be a positive function and A the set of points p ∈ M lying on at least one complete null
geodesic with both endpoints lying on I + ∪I −. Assume that Ω extends to I + ∪I − with
the same value everywhere. Then at least one of the following is true:

1. The spacetime (M,Ω2g) violates the NCC on A.

2. The Weyl factor Ω is constant on A.

3. (M,Ω2g) is not asymptotically flat.

These two analogous results prove strong versions of conformal rigidity for spacetimes
asymptoting to AdS or flat metrics when subject to the NCC. In particular, they show that
with prescribed asymptotics, regions probed by boundary-anchored null geodesics do not
admit any nontrivial NCC-preserving Weyl transformation where Ω asymptotes to a constant.

Finally, as an example of how causal structure and the NCC can be used to constrain
spacetime also in regions without boundary-anchored null geodesics, we now investigate the
BTZ black hole [30], where all null geodesics except the closed photon orbits are incomplete
[31]. We find the following: Let (M, g) be the BTZ black hole spacetime and r the area
radius. Then (M, e2ωg) violates the NCC unless ω preserves spherical symmetry outside the
horizon. Furthermore, if the limits limr→∞ ω(r) and limr→∞ ω

′(r) exist, then outside the
horizon

ω′(r) ≥ 0. (5.14)
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5.4 Proofs

Let (M, g) be a spacetime with zero null curvature. Let Ω ∈ C2(M) be a positive function,
and let γ be any complete null geodesic affinely parameterized by λ ∈ R. Then at least one
of the following is true:

1. The spacetime (M,Ω2g) violates the NCC along γ.

2. The Weyl factor Ω is constant along γ.

3. lim
λ→∞

Ω(λ) = 0 or lim
λ→−∞

Ω(λ) = 0, with Ω decaying at least as fast as O(1/|λ|).

Proof. Assume (M,Ω2g) satisfies the NCC and Ω is not everywhere constant along γ. Then
there exists an affine parameter λ0 such that u′(λ0) ̸= 0. From (5.8), one has

u(λ) ≥ u′(λ0)(λ− λ0) + u0. (5.15)

Depending on the sign of u′(λ0), we get that u diverges at least as fast as |λ| as either λ→∞
or λ→ −∞. Since Ω = 1/u, the result follows.

Let γ be an inextendible null geodesic on a spacetime (M, g), and Ω ∈ C2(M) a positive
function.

• If 1/Ωγ is bounded above and γ is complete in (M, g), then γ is complete in (M,Ω2g).

• If Ωγ is bounded above and γ is complete in (M,Ω2g), then γ is complete in (M, g).

Proof. Note first that γ must be inextendible as a geodesic in (M,Ω2g), since (M,Ω2g) and
(M, g) are identical at the manifold level, so an endpoint in (M, g) is an endpoint in (M,Ω2g).
The affine parameters λ and λ̃ of γ respectively in (M, g) and (M,Ω2g) are related by

dλ̃

dλ
= cΩ2

γ, (5.16)

where one can fix c = 1 and λ(λ̃ = 0) = 0 without loss of generality. Assume 1/Ωγ is bounded
above so there exists an ϵ > 0 such that Ωγ ≥ ϵ. If γ is complete in (M, g), then

lim
λ→∞

λ̃ =

∫ λ

0

dλ Ω2
γ ≥ ϵ2

∫ ∞
0

dλ =∞, (5.17)

so γ is complete in (M,Ω2g). The proof for Ωγ bounded is analogous, replacing Ω by 1/Ω.

Let (M, g) be a connected and geodesically complete spacetime with zero null curvature.
If ω ∈ C2(M) is bounded, then either ω is constant on M or (M, e2ωg) violates the NCC.
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Proof. Assume (M, e2ωg) satisfies the NCC. Since (M, g) is complete and ω is bounded by
assumption, Lemma 5.3 implies ω is constant along every null geodesic. This will remain true
along any broken null geodesic (i.e., any piecewise differentiable curve that is the concatenation
of null geodesic segments). This is because all segments are extendible to complete geodesics,
with concatenated intersections in pairs. Now, because the manifold is connected, there exists
a path γ between any two points on M . One can approximate any such path in an arbitrarily
small neighborhood of γ by a broken null geodesic also connecting the two endpoints. Hence
ω is the same at any two points of M , proving the desired result.

Let (M, g) be a spacetime with zero null curvature. If ω ∈ C2(M) is bounded and
non-constant, then either (M, e2ωg) is null-geodesically incomplete, or it violates the NCC. If
(M, g) is null-geodesically complete, then the previous is true also when ω is only bounded
from below.

Proof. Assume (M,Ω2g) with Ω = eω does not violate the NCC. If Ω is not constant, there
must exist a null vector field k and a point p such that ∇kΩ|p ̸= 0. Let now γ be an
inextendible null geodesic passing through p with tangent k there affinely parameterized by λ.
If this geodesic is incomplete in (M, g) we are done: since Ω is bounded, Lemma 5.4 would
also imply incompleteness in (M,Ω2g). So assume γ is complete in (M, g).

By Lemma 5.3 we know that Ω ∼ 1/|λ| as either λ→ −∞ or λ→∞. Assume without
loss of generality the latter case. The affine parameter λ̃ of γ in (M,Ω2g) is related to λ by
(5.16) with the same conventions. Since there must exist constants C and ϵ > 0 such that

Ω (λ) <
C

λ
, ∀λ > 1

ϵ
, (5.18)

one can write

lim
λ→∞

λ̃ =

∫ ∞
0

dλ Ω(λ)2 =

∫ 1/ϵ

0

dλ Ω(λ)2 +

∫ ∞
1/ϵ

dλ Ω(λ)2. (5.19)

But the two terms on the right-hand side are finite, since Ω ∈ C2(M) and∫ ∞
1/ϵ

dλ Ω(λ)2 < C2

∫ ∞
1/ϵ

dλ

λ2
= C2ϵ. (5.20)

Hence γ is incomplete in (M,Ω2g).
Finally, note that the boundedness of Ω was only used to deduce that γ was complete

in (M, g). If (M, g) is geodesically complete, the assumption of Ω being bounded can be
removed.

Let (M, g) be a spacetime with zero null curvature. Let ω ∈ C2(M) be bounded and
non-constant. If (M, e2ωg) preserves the NCC, then (M, g) is null-geodesically incomplete.

Proof. Boundedness of ω implies boundedness of Ω and 1/Ω. By boundedness of Ω and
Theorem 5.3, (M,Ω2g) is null-geodesically incomplete. By boundedness of 1/Ω and Lemma 5.4,
this means (M, g) is geodesically incomplete.
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Let (M, g) be an asymptotically locally AdS (AlAdS) spacetime with zero null curvature.
Let Ω ∈ C2(M) be a positive function and A ⊆M the set of points p ∈M lying on at least
one complete null geodesic with both endpoints on ∂M . Assume that Ω extends to ∂M with
the same value everywhere. Then at least one of the following is true:

1. The spacetime (M,Ω2g) violates the NCC on A.

2. The Weyl factor Ω is constant on A.

3. (M,Ω2g) is not AlAdS.

Proof. Assume (M,Ω2g) obeys the NCC. By definition of AlAdS [32] there exists a function
z on M such that z2g extends smoothly to a metric on the conformal boundary ∂M , with
z|∂M = 0, dz|∂M ̸= 0 and z|intM > 0. By Lemma 5.3, on each boundary-anchored null
geodesic γ, if Ω is not constant on γ, then Ω ∼ c/|λ| as either λ→∞ or λ→ −∞ for some
c > 0. Assume without loss of generality that it vanishes as λ→∞. In Poincaré coordinates
of pure AdS, one can show that an affine null geodesic near the boundary has coordinate
z(λ) = α

|λ| for some α not depending on λ. The same scaling will hold asymptotically at
large λ in any AlAdS spacetime, as can be seen by using a Fefferman-Graham expansion
near ∂M [33]. Hence we have the asymptotic scaling Ω ∼ z as λ→∞ along γ. In order for
(M,Ω2g) to be AlAdS would need a function ẑ such that ẑ2ĝ = ẑ2Ω2g extends smoothly to a
metric on ∂M . This requires the asymptotic scaling ẑΩ ∼ z with some nonzero coefficient
of proportionality or, equivalently, that ẑ(λ) asymptotes to a nonzero constant as λ→∞.
However, this contradicts the requirement ẑ|∂M = 0 of a defining function, so (M,Ω2g) cannot
be asymptotically AdS. It follows that if (M,Ω2g) is AlAdS, then Ω is constant along every
boundary-anchored null geodesic γ. Since each p ∈ A has a null geodesic ending on the
boundary and Ω has a fixed value there, Ω is constant on A.

Let (M, g) be an asymptotically flat spacetime with zero null curvature. Let Ω ∈ C2(M)
be a positive function and A the set of points p ∈ M lying on at least one complete null
geodesic with both endpoints lying on I + ∪I −. Assume that Ω extends to I + ∪I − with
the same value everywhere. Then at least one of the following is true:

1. The spacetime (M,Ω2g) violates the NCC on A.

2. The Weyl factor Ω is constant on A.

3. (M,Ω2g) is not asymptotically flat.

Proof. By definition of asymptotically flat [34], there exists a function z on M such that z2g
extends smoothly to a metric ∂M = I + ∪I −, with z|∂M = 0, dz|∂M ̸= 0 and z|intM > 0.
Now, any asymptotically flat space has an asymptotic coordinate system near I ± given by
[34]

ds2 =
1

z2
(du dz + gSD−2) +O(z−1), (5.21)

where gSD−2 is the metric of the unit (D − 2)–sphere. To leading order in z and λ, the
solution of the null geodesic equation for the z–coordinate is z(λ) = c/|λ| where c > 0 for
a boundary-anchored geodesic. Notice that z is defined only up to a rescaling z → f(z)z
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by a strictly positive function f ∈ C2(M ∪ ∂M). If (M,Ω2g) is asymptotically flat, then
there is a function ẑ satisfying all properties above in the spacetime (M,Ω2g). Since z is
uniquely defined up to any such f , so is ẑ, i.e., ẑ = f(z)z/Ω. Assume now (M,Ω2g) obeys the
NCC, and that there exists a boundary-anchored null geodesic γ on which Ω is somewhere
non-constant. Then Ω ∼ O(1/|λ|) either as λ → ∞ or λ → −∞. Assume without loss
of generality the former. At large λ we then have Ω ∼ O(1/|λ|) ∼ O(z) with a nonzero
coefficient. This implies ẑ|∂M ̸= 0, yielding a contradiction. Thus (M,Ω2g) is asymptotically
flat only if Ω is constant along every boundary-anchored null geodesic. Since each p ∈ A has
a null geodesic ending on the boundary and Ω has a fixed value there, Ω is constant on A.

Let (M, g) be the BTZ black hole spacetime and r the area radius. Then (M, e2ωg)
violates the NCC unless ω preserves spherical symmetry outside the horizon. Furthermore, if
the limits limr→∞ ω(r) and limr→∞ ω

′(r) exist, then outside the horizon

ω′(r) ≥ 0. (5.14)

Proof. Firstly, note the curious property that any spherically-symmetric BTZ black hole has
circular photon orbits at every possible radius outside the horizon [31]. In other words, there
exist complete null geodesics at every fixed radius in both exteriors along which Ω must
be constant by Lemma 5.3. This means an NCC-preserving Weyl transformation on BTZ
can only possibly have radial dependence outside the horizon. Finally, if limr→∞ ω(r) and
limr→∞ ω

′(r) exist, then (5.11) implies ω is monotonically non-decreasing along a radial null
geodesic moving outwards, meaning that ω′(r) ≥ 0 outside the horizon.

5.5 Discussion

Relation to previous work: In this brief note we have shown how the combination of
causal structure and the null curvature condition significantly constrain the conformal factor
of the metric. To our knowledge, these results are new and have not appeared elsewhere in the
literature. There are nonetheless some recent results in [35] of a similar flavor. In their work,
it is shown that conformal rescalings of a class of generalized Robertson-Walker spacetimes
must introduce geodesic incompleteness when requiring the strong energy condition. This fits
well with the pattern explored in our paper, and shows that useful results can be obtained
also for non-vacuum spacetimes.

We also note that the interaction between conformal transformations, geodesic complete-
ness, and global causality conditions (without the consideration of energy conditions) were
studied in [36, 37].

Metric reconstruction in AdS/CFT with light-cone cuts: In [38–40], it was shown
that knowledge of (D+2)-point correlators of local CFT operators on the conformal boundary
∂M of a D-dimensional AlAdS spacetime is enough to reconstruct the conformal metric
in a large portion of the causal wedge CW = J+(∂M) ∩ J−(∂M). This method of bulk
reconstruction requires no knowledge of the bulk equations of motion, allows for obtaining the
internal dimensions of the bulk spacetime which trivialize asymptotically [40], and currently
constitutes the only constructive approach to partially obtaining general bulk metrics from
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CFT data.5 The downside is that light-cone cuts recover only the causal structure of the
spacetime, i.e., the conformal class of its metric. But if the bulk has vanishing null curvature,
our results provide the missing conformal factor, since from Theorem 5.3 only a single choice
of conformal factor will lead to a NCC-respecting AlAdS geometry. Note that our method only
reconstructs the conformal factor on a subset of CW which is probed by boundary-anchored
null geodesics. This constitutes a subset of the region where light-cone cuts reconstruct the
conformal metric, but as long as D ≥ 4 we expect both regions to be large subsets of CW . For
D = 3 this is not necessarily true due to the fact that gravitational interactions do not fall off
with distance. In the case of the BTZ black hole this causes all non-spherical null geodesics
to be incomplete, leading to the failure of light-cone cuts. Our methods fail at determining
completely the conformal factor anywhere in CW in the BTZ geometry for the same reason.

Future directions: Instead of analyzing complete null geodesics, one could study the effect
of Weyl transformations on either complete timelike geodesics or complete spatial slices. In
these cases the more useful energy condition would likely be the weak energy condition.6
Carrying out the analysis on a spatial slice would require PDE analysis, but could on the
other hand have the potential to constrain the conformal factor also in black hole interiors.

In cases where the bulk has null curvature, we would get constraints on the conformal factor
through (5.8) (and the less constraining but more explicit (5.13)). It would be interesting
to study more quantitatively how much (5.8) constrains geometry, and thus how good the
approximate bulk reconstruction is when null curvature is present.

The geodesic NCC in (5.5) can be recast into the bound S(fγ) ≤ 2
D−2Rkk, where S is

the Schwarzian derivative and f ′γ(λ) = e2ω(λ). It would be interesting to investigate if the
well-studied properties of the Schwarzian derivative would allow us to derive rigidity results
when Rkk ̸= 0. It could also be useful to try to study the NCC directly at the level of (5.4),
i.e., more globally rather than restricting to single null geodesics as we did. A possible step
forward in this direction is to re-interpret (5.4) as the NEC for matter fields in a Brans-Dicke
theory with ω playing the role of the dilatonic scalar [42]. This way, the NCC could be
studied as the physicality condition that it be possible to add matter fields to Brans-Dicke
such that solutions to the equations of motion obey the NEC.

Finally, in Theorem 5.3, we explored the implications of our results on BTZ, deriving
a condition on the conformal factor for spacetimes in its conformal class to obey the NCC.
This low-dimensional example illustrated the usefulness of our methods even in the absence
of boundary-anchored null geodesics. Higher-dimensional spacetimes provide an arena where
Theorems 5.3 and 5.3 would play an important role in large regions of spacetime, but where
we also expect there to be regions in CW which are not probed by boundary-anchored
null geodesics, particularly near black holes. Hence it would be interesting to explore the
implications of our methods in these regions of higher-dimensional black hole spacetimes
[43, 44].

5The reconstruction of bulk operators is a different problem which generally assumes knowledge of a
background bulk geometry in the first place – see [41] for more details. Of course, operator reconstruction
includes perturbative metric reconstruction as a special case, but this still requires a reference background on
top of which to consider graviton perturbations.

6We could also consider the dominant or strong energy conditions, but the latter is not physically well
motivated and the former is stronger than the weak one.
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Chapter 6

Subregion Independence in Gravity

Abstract: In gravity, spacelike separated regions can be dependent on each other due to the
constraint equations. In this paper, we give a natural definition of subsystem independence
and gravitational dressing of perturbations in classical gravity. We find that extremal surfaces,
non-perturbative lumps of matter, and generic trapped surfaces are structures that enable
dressing and subregion independence. This leads to a simple intuitive picture for why extremal
surfaces tend to separate independent subsystems. The underlying reason is that localized
perturbations on one side of an extremal surface contribute negatively to the mass on the
other side, making the gravitational constraints behave as if there exist both negative and
positive charges. Our results support the consistency of islands in massless gravity, shed light
on the Python’s lunch, and provide hints on the nature of the split property in perturbatively
quantized general relativity. We also prove a theorem bounding the area of certain surfaces
in spherically symmetric asymptotically de Sitter spacetimes from above and below in terms
of the horizon areas of de Sitter and Nariai. This theorem implies that it is impossible to
deform a single static patch without also deforming the opposite patch, provided we assume
spherical symmetry and an energy condition.
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6.1 Introduction

When are spacelike separated regions in a quantum theory of gravity independent? This is
a central question that holography forces us to confront. On the one hand, the constraint
equations of GR tells us that some gravitational subregions depend on each other, since
generically one cannot specify initial data on two regions independently. On the other hand,
the theory of entanglement wedges and subregion-subregion duality [1–13] in AdS/CFT
demonstrates that independent regions do exist – at least perturbatively in the GN → 0 limit.
Thus, some spatially separated regions are mutually dependent, while others are not.

For perturbative canonical quantization of GR around flat space, any compact region
in the bulk in some sense depends on a region surrounding spatial infinity, since every
compactly supported operator must be dressed to infinity when coupled to gravity [14], due
to diffeomorphism invariance. No excitation can be turned on in the center of the spacetime
without disturbing the gravitational field at infinity. An even stronger notion of dependence
on infinity has been shown for perturbations of pure AdS: to first order in perturbation theory,
two Wheeler-deWitt (WdW) functionals that agree on observables in a time-band near the
boundary must be equal [15]. It might be tempting to think that perturbatively quantized
GR itself is holographic, in the sense that perturbative data near the conformal boundary can
be used to access perturbative data in the deep bulk, without relying on non-perturbative
corrections in G−1N .1 But what about other backgrounds? While gravity contains no truly local
operators, once the background has sufficiently rich structure, there exist quasilocal operators
[22–28] that are dressed features other than conformal infinity. For such backgrounds, one
can construct operators that commute with operators near the boundary to all orders in
perturbation theory [26, 29, 30]. This shows that we must be cautious about extrapolating
lessons about subregion dependence learned from working perturbatively around featureless
spacetimes like Minkowski or AdS. At the classical level, these satisfy rigidity theorems
[31–34] that strongly constrain the nature of perturbations around these spacetimes.

In this paper, we will show that the question of subregion independence is surprisingly
interesting and illuminating already at the classical level. We will demonstrate that the
nature of the background strongly influences how and when regions become independent.
This will lead to a simple physical picture where classical extremal surfaces play an important
role in ensuring subregion independence.

To approach the precise question we will ask in this paper, consider two spatial boundary
subregions L,R on the conformal boundary of an asymptotically AdS (AAdS) spacetime.
Assume that these are spacelike separated by a small but finite gap – see Fig. 6.1. By the
so-called split property of local QFT [35–39], we then have a notion of independence for the
CFT states on L,R. Namely, for any two independent choices of states ωL and ωR on these
regions, there exists a pure state |ψ⟩ on the full Hilbert space that agrees with ωL, ωR on
L,R:2

⟨ψ| OLOR |ψ⟩ = ⟨OL⟩ωL
⟨OR⟩ωR

, (6.1)

1See [16–19] for the development of the idea that a version of holography is implied by the fact that the
Hamiltonian is boundary term, and also for discussion of the importance of non-perturbative corrections. See
also [20, 21] for recent work on these ideas.

2Strictly speaking, the split property guarantees a state on R ∪ L with this property. But we expect that
this state can be purified on the full Hilbert space.
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Figure 6.1: Illustration of an AdS Cauchy slice Σ containing Cauchy slices ΣL,ΣR for the
entanglement wedges of the boundary regions L,R. Taking the classical limit of AdS/CFT, we
expect that we can make perturbations of the classical initial data in ΣL and ΣR independently.

where OL,OR are operators in the algebra of (the domain of dependence of) L,R, respectively.
Assuming we are in a holographic CFT, ωL, ωR encodes data about the entanglement wedges
of L,R. Now, let ΣL,ΣR be Cauchy slices of the entanglement wedges of L,R, contained in a
full Cauchy slice Σ shown in Fig. 6.1. In the strictly classical limit of AdS/CFT, we expect
that ΣL,ΣR inherit some notion of independence from the QFT split property. A natural
expectation would be the following: for any two small perturbations of initial data in ΣL,ΣR,
there exists some complete set of GR initial data on all of Σ that agrees with our perturbed
data on ΣL,ΣR. Furthermore, this complete initial data is perturbatively close to the initial
data we started with. In more pedestrian language: we can wiggle the initial data in the two
subregions independently, without making drastic non-perturbatively large changes to the full
spacetime.3 However, there is no one-liner argument in GR showing that this is true, since
the constraint equations are elliptic – they have no lightcones. Generically, modifications of
matter (or pure gravity degrees of freedom) in some compact region A source gravitational
fields spacelike to A, so how do we know that there are no perturbations of initial data in
ΣL that requires us to change fields in ΣR? We might be tempted to mumble words about
dressing observables to R and L, but this is not quite satisfactory. First, we should be able to
ask this question at the level of solutions of the classical constraint equations of GR. Second,
and more importantly, this leaves no room for the extremal surface playing any kind of special
role – this explanation would lead us to conclude that any two disjoint regions Σ1,Σ2 ⊂ Σ
connected to the asymptotic boundary and separated by a gap are independent. It is not
clear that this is true.

To illustrate the problem more clearly, let us for a brief moment consider a different
example where we model gravity as electromagnetism coupled to matter with only positive
charge density, living on a fixed background geometry. In this case, Gauss’ law is a stand-in

3In AdS/CFT language, we do not have to leave the classical limit of our code subspace where the
entanglement wedges were defined.
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for the Hamiltonian constraint of GR, the electric field Ei for the gravitational field, and the
charge density ρ for the energy density. Consider now this theory on a fixed AdS-Schwarzschild
background, and let ΣL,ΣR be the left and right sides of the bifurcation surface on a canonical
t = 0 slice. We let ΣL,ΣR terminate slightly to the left and right of the bifurcation surface,
so that there is a small open region C between these slices that contains the bifurcation
surface.4 See Fig. 6.2. A perturbation of the trivial Ei = ρ = 0 initial data on ΣL is the
following: add a spherically symmetric shell of charged matter and choose that the electric
field is unchanged near left infinity. This is compatible with Gauss’ law on ΣL. However,
now Gauss’ law requires the new electric field lines sourced by the shell to travel towards the
right. Because our theory contains no negative charges, there is nothing we can do in C to
absorb the field lines before they reach ΣR. They will travel all the way to right infinity. See
Fig. 6.2. The initial data on ΣL and ΣR cannot be chosen independently.

Now let us turn to gravity proper. If the Hamiltonian constraint behaved like Gauss’
law coupled to matter with only positive charge densities, this would not bode well for the
independence of initial data perturbations in ΣR and ΣL in gravity. However, except in the
special case of perturbations around pure AdS or Minkowski, Gauss’ law coupled to purely
positive charge densities is a poor analogy for the Hamiltonian constraint. Crucially, the total
gravitational mass is not just an integral of the local energy density weighted by something
positive. As we will explain, extremal surfaces play a very practical role in ensuring that
complementary entanglement wedges are independent (after you cut out a small splitting
region). Specifically, we are going to show that if you live in ΣR, positive energy density
added to the other side of the bifurcation surface, from your perspective, acts like a negative
energy density! Furthermore, this effect is present for general extremal surfaces. This means
that positive energy densities can be used to terminate gravitational fields sourced by positive
energy densities on the opposite sides of an extremal surface.5 For compact extremal surfaces,
this effect cannot be understood by studying the Hamiltonian constraints perturbatively
around AdS or flat space, or by relying on analogies to Gauss’ law. It relies on the non-linear
nature of gravity, which causes structures of the background to significantly affect when
subregions allow independent perturbations of initial data. We argue that this effect relieves
a tension that was argued to exist between islands and massless gravity in [40] (see also
[29, 30] for arguments that islands and massless gravity are consistent). It also ensures the
independence of ΣL and ΣR in the example considered above.

Next, we will prove or argue, depending on the setup, that trapped regions of spacetime
always have a kind of indeterminate energetic behavior. From the perspective of the mass in
any asymptotic region, there are always some modes in a trapped region that, when turned on,
increase the mass, and others that reduce it.6 Together, these enable perturbations of spatial

4This case has a qualitative difference from the previous example. ΣL and ΣR are slightly smaller than
Cauchy slices of the entanglement wedges of the left and right boundaries, R,L. This is because ωL, ωR now
cannot be chosen completely independently. If their entanglement entropies disagree, there is no pure state
|ψ⟩ on the joint Hilbert space that reduces to ωR, ωL. So we leave a small number of degrees of freedom
flexible, to avoid this obstruction.

5Strictly speaking, we are able to show this in all dimensions only with spherical symmetry, while in four
spacetime dimensions we are able to remove this assumption.

6This has of course long been understood for stationary black holes, where the Killing vector that defines
the asymptotic energy flips signature in the bulk, but we will make it clear more generally that trapped
regions always have this behavior.
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Figure 6.2: Initial data for electromagnetism coupled to matter on a fixed AdS-Schwarzschild
background, on a canonical t = 0 slice. The regions ΣL,ΣR are not independent when electro-
magnetism is coupled to charge of a fixed sign. If we pick initial data on ΣL corresponding to
adding a charged shell of matter, and with the Ei = 0 at left infinity, the Gauss law imposes
that Ei ̸= 0 at right infinity.

compact support. This gives subregions of a trapped region a larger degree of independence
from nearby regions, and we will use it to argue that the islands found in the evaporating
black holes of [41, 42] easily can host a large number of localized excitations that never affect
the black hole exterior. Along the way we will also show the following fact: an object’s
contribution to the ADM mass approaches zero as the object localizes on an extremal surface
(see Secs. 6.4.2, 6.4.3, for precise statements). So around an extremal surface, we can add
arbitrarily high energy objects (as measured locally) with no or arbitrarily small change in
the ADM mass.7

In the following, we first give a precise definition of subregion independence in GR in
Sec. 6.2 and argue why it is a useful definition. We explore our definition in a series of
illuminating examples in Sec 6.3. We find that regions separated by extremal surfaces “shields”
of matter tend to classically independent. Sometimes trapped surfaces can play a similar role.
Of course, we do not expect that this independence generally persists (or can be defined) in
full non-perturbative quantum gravity, but it does appear plausible that this independence
could be inherited by a perturbative quantization of GR around a fixed background.

Then, in Sec. 6.4, we conduct a more general analysis. For spacetimes with spherical
symmetry, we prove that the behaviors we found in the examples are general: gravity truly
behaves as if it has negative and positive energies when extremal or trapped surfaces are
present. In four-dimensional spacetime, we are also able to remove the spherical symmetry
assumption, giving strong arguments at the physics level of rigor. We do expect that the
physical effects we identify to survive in other dimensions, although we do not know what
are the right tools to show this in spacetimes without symmetries.

Then, guided by findings when studying independence of subregions of de Sitter in
Sec. 6.3, in Sec. 6.5 we prove a new theorem upper and lower bounded the area of a family of
surfaces that include certain extremal and trapped surfaces in asymptotically dS spacetimes.

7This plays nicely with the ideas of [43], which propose that Wilson lines threading a wormhole really, in
the bulk UV, are split into factorizing operators by heavy charges residing near the bifurcation surface. This
ensures factorization. The fact that general classical extremal surfaces can host heavy objects without large
cost in energy supports the viability of this idea in a large class of backgrounds.
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A corollary of the theorem states that under spherical symmetry and given an energy
condition, adding matter in one static patch necessitates adding matter in the opposite patch.
Furthermore, adding matter always reduces the area of a certain extremal/trapped surface.
This result holds at the full non-linear level.

Finally, in Sec. 6.6 we discuss implications of our findings for semiclassical gravity, quantum
extremal surfaces, islands in massless gravity, localized observables, and the Python’s lunch.

6.2 Subregion Independence

6.2.1 The constraint equations

To understand subsystem independence, we need to deal with the gravitational constraint
equations. Let Σ be a manifold, possibly with boundary, and let

S ≡ (hab, Kab,Φ) (6.2)

be a regular initial dataset for the Einstein equations. Here hab is a Riemannian metric on
Σ, Kab a symmetric tensor, and Φ a label that collectively denotes initial data for all of the
matter fields. For example, when the matter is a scalar field, Φ consists of the value of the
scalar and its time-derivative on Σ. For any choice of S, assuming the matter is reasonably
well behaved, there is a unique (up to diffeomorphism) globally hyperbolic spacetime (M, g)
corresponding to the maximal evolution of (Σ, S) [44–47]. The pair (Σ, S) represents a
moment of time in (M, g), with Σ being an embedded spatial slice, and with hab, Kab being
the induced metric and extrinsic curvature of Σ, respectively. Note that we never consider
initial data such that Σ has a kink or ends in a singularity. If we extract an initial data slice
(Σ, S) from an existing spacetime (N, g), unless otherwise specified, we always assume it is
globally (AdS-)hyperbolic, with Σ being a Cauchy slice.8

Due to diffeomorphism invariance, initial data is not freely specifiable. Instead, it has to
satisfy a set of constraint equations. In the case of Einstein gravity minimally coupled to
matter, the constraint equations read (in units of 8πGN = 1)

R−KabK
ab +K2 − 2Λ = 2E , (6.3)
DbKba −DaK = Ja, (6.4)

where R is the Ricci scalar of hab, Da the hab-compatible connection on Σ, K = Ka
a , and

Λ the cosmological constant. E and Ja are the matter energy and momentum densities,
respectively. From the spacetime perspective, if na is the future unit normal to Σ, Pab the
projector onto the tangent space of Σ, and Tab the matter stress tensor, then E = Tabn

anb

and Ja = Tcbn
bP c

a . Equations (6.3) and (6.4) are known as the Hamiltonian and momentum
constraints, respectively. Unless otherwise stated, we will assume the weak energy condition
(WEC), which says that the local energy density is positive:

E ≥ 0. (6.5)

8For AAdS spacetimes, which are technically not globally hyperbolic, we assume the AdS notion of global
hyperbolicity [5].
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As will become clear soon, we are in an unusual situation where we are assuming the
WEC to make our lives harder, not easier. The positivity of local energy densities is a
significant obstruction to achieving independence of subregions in gravity, so if two regions
are independent despite the WEC, then we expect them to be independent also when the
WEC is violated.9

As alluded to in the introduction, the central property of the constraint equations for us
is that they are not hyperbolic equations. There are no lightcones. A change in the matter
fields with support on some region A ⊂ Σ might demand a change in the gravitational or
gauge fields in a different spacelike separated region B ⊂ Σ. This type of behavior is of course
already present in the Maxwell equations. For example, at t = 0 in Minkowski spacetime, it
is impossible to add an electron without also adding an electric field which either reaches
infinity, or alternatively, also adding a positron that the field can terminate on. From the
QED perspective, this is because there are no gauge-invariant operators that create a single
electron at a point x. Instead one needs to dress the operator to restore gauge invariance, for
example by adding a Wilson line that reaches out to infinity:

ei
∫∞
x Aψ(x), (6.6)

where A,ψ are the gauge and Dirac fields, respectively. This adds precisely the required
electric field to satisfy the constraints. However, there is no need study the quantum theory
to see the need for dressing – the effect is already there in the classical Gauss’ law. This
suggests that a careful understanding of the constraints, even at the classical level, can give
hints about what gauge invariant operators, and thus what algebras of observables, can exist.
This is an additional motivation for this study. We will see the Einstein constraint equations
yield behavior significantly richer than Gauss’ law.

6.2.2 Subregion independence and dressing

To define subsystem independence, we need to look at perturbations to the constraints. We
will use δS ≡ (δhab, δKab, δΦ) to denote a regular perturbative solution of the constraint
equations around some initial dataset S (Σ is often left implicit). The small perturbation
parameter is the amplitude of the perturbation. Unless otherwise specified, we assume δS is
a formal series solution to all orders in perturbation theory in this amplitude, and not just a
linearized solution. We always choose the lowest order terms in the perturbation so that the
leading order correction to the stress tensor and the metric is at the same order. Note that
some perturbations do not correspond to a physical change of the spacetime, but instead
to a diffeomorphism, either changing coordinates within Σ, or moving us to a different slice
nearby Σ in the same spacetime. We allow these.

Next, consider a subregion A ⊂ Σ. We will use the notation δS|A to refer to a perturbative
constraint solution restricted to A, and we will refer to a perturbative constraint solution δS
specified on all of Σ as an extension of δS|A if it restricts to δS|A on A. If an extension exists,
it will generally not be unique. If we specify a perturbation of the constraint on two disjoint
subregions A,B, we take δS|A ∪ δS|B to mean the obvious concatenated perturbation on
A∪B. Finally, since we have in mind working in some particular theory, when we talk about

9Modulo other complications that might arise if WEC breaking comes from considering quantum effects.
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perturbations, we only ever talk about perturbations that respect the boundary conditions
imposed on the boundaries of Σ by our theory – either at finite boundaries or at spatial
infinity.

We are now ready to define when A and B are independent:

Definition 9 (Independence). Let (Σ, S) be an initial dataset, and let A,B ⊂ Σ be two
disjoint subregions. We say that A and B are independent if for any two perturbations δS|A
and δS|B, there exists a perturbative extension δS of δS|A ∪ δS|B to all of Σ.

Definition 9 simply says that it is possible to wiggle the initial data in A,B completely
independently, provided these wiggles are perturbatively small.10 If A and B are not
independent, we say that they are dependent. If A and B are independent, it is natural to
say that classical gravity satisfies the split property across C ≡ Σ− A−B. This means that
for any (perturbative) choice of the classical state on A and B, there exist a classical state
on all of Σ that agrees with the chosen states on A and B. Note that it is important that we
work within a fixed theory, which comes with a set of allowed matter fields and boundary
conditions. We might think that we can use gluing constructions supported by delta functions
shocks to make more or less anything independent, but this is not so. Gluings will generically
produce distributional stress tensors that do not satisfy any energy conditions. Even if they
do, there is no guarantee that regularizations of these shocks can be achieved by matter in
our theory. So we might as well stick with genuinely regular initial data.

Next, note that since pure diffeomorphisms are allowed, perturbing the boundaries of
the regions A,B count as perturbing the initial data in A and B. To see this, consider the
data S and assume that the regions A, B are fixed in some gauge. Assume now that a
diffeomorphism ψ : Σ→ Σ maps the boundaries of A,B to new locations. An initial dataset
in which the boundaries have moved, but with the spacetime and the slice Σ left fixed, is
(Σ, ψ[A], ψ[B], S). By diffeomorphism invariance, this is equivalent to (Σ, A,B, ψ∗[S]), where
ψ∗ is the pull-back.11 This logic can easily be generalized to a diffeomorphism perturbing
A,B out of the slice. Thus, the regions A and B are not completely fixed – they are fuzzy at
the perturbative scale. Alternatively said, the perturbative edges modes [48] of A and B can
be activated when testing for independence. Before we apply a physical perturbation in A
that changes the spacetime, we are allowed to deform the boundaries of A by a perturbative
amount first – or the other way around.

Definition 9 can be applied to classical non-gravitational theories as well. For theories
without constraints, such as a scalar field ϕ, all regions A,B separated by an open set C are
independent. We can always match the initial data ϕ, ϕ̇ in A,B smoothly across C, since
they are completely unconstrained there. However, the splitting region C was important.
Even in free scalar theory, two regions with intersecting closures are dependent. Next, even
in the presence of a constraint like Gauss’ law of electromagnetism, on Minkowski space all

10Rather than perturbative deformations, we could alternatively work with finite but arbitrarily small
deformations with respect a Ck or Sobolev norm defined by the background metric, as is common in
mathematical studies of the constraints. See for example [46, 47] for a discussion of such norms. We expect
that the physical effects we discuss in this paper are robust to taking this approach instead.

11Note that if ψ is a “large diffeomorphism” (not large in the perturbative sense, but in the sense that it
has non-trivial action on the boundary of spacetime), then we have both changed the full physical state, in
addition to moving A and B.
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spacelike separated subregions are completely independent, provided we couple to charged
matter with both signs, as explained in the introduction. If we add a positive charge density
in A, we just need to make sure to compensate with a negative charge density in C to screen
any new multipole moments incurred in B.12

In gravity things are more interesting. Because of the positivity of local energy densities,
it is generally harder to screen perturbations, and the question of independence is non-trivial.
As an example, consider Σ to be a canonical t = 0 slice of Minkowski or AdS. Let A ⊂ Σ be a
compact region and B ⊂ Σ an infinite annulus containing spatial infinity. By the positive mass
theorem (PMT) [32–34, 51, 52], any perturbation in A which is not a pure diffeomorphism
must increase the spacetime’s mass. Since the ADM Hamiltonian is a boundary term localized
to B, this implies that the gravitational data in B must be perturbed as well. Thus A and
B are dependent. Pure AdS and Minkowski support no perturbations of compact support,
except for pure gauge.13 From the perspective of perturbative quantum gravity around flat
space and AdS, this can be seen as the classical avatar of the statement that operators must
be dressed to infinity [14], for example with a gravitational Wilson line (see for example
[53–56]). Effectively, there is no negative energy density to terminate the Wilson line on.

Going away from pure AdS or Minkowski, since matter has positive energy density, it
naively seems like we are always forced to dress a perturbation to asymptotic infinity, in turn
causing every compact subregion to depend on an annulus around spatial infinity. However,
this conclusion is much too quick. When certain geometric features are present, such as
extremal and trapped surfaces or lumps of matter, localized dressings become possible.

To streamline the discussion going forward, it is useful to give a precise notion of classical
dressing of a perturbation (as opposed to an observable):

Definition 10 (Dressing). Let (S,Σ) be an initial dataset. Let A be a subregion and δS|A
a perturbation of the constraints on A. If δS is an extension of δS|A, we say that δS is a
dressing of δS|A to the region supp(δS).

We should emphasize that given some δS|A, the choice of gravitational dressing is highly
non-unique. The independence of A and B implies that for every perturbation of A, there
exists some choice of dressing that does not intersect B. Furthermore, after dressing any
perturbation on A to C, we still have the ability to dress any perturbation in B to C as well.
The statement of independence is not that a certain perturbation in A could not be dressed
to B, if so desired.

Next, let us address two questions that naturally arise from our definition. What about
regions in spacetime that are not conveniently described as lying on the same slice? Why
only perturbative deformations?

First, in globally (AdS-)hyperbolic spacetimes,14 it is straightforward to extend our notion
12In vacuum electromagnetism on Minkowski, we also have independence of subregions [49]. However, on

non-trivial manifolds, the question of independence is more interesting. For example, as pointed out in [50],
vacuum electromagnetism on a spatial torus will not have subregion independence. For example, on T 2, this
is because the value of the electric charge on two homologous non-contractible S1’s must match in different
regions.

13It is crucial to not just work to linear order in perturbations, since compact perturbations of Minkowski
exist at linear order [49].

14We can also apply this definition within a causal diamond of an AdS spacetime without reflecting boundary
conditions.
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Figure 6.3: DA and DB are independent if there exist a slice Σ such that AΣ and BΣ are
independent.

of independence to two causal diamonds DA and DB. First, if DA and DB overlap or are
timelike separated, they should clearly not be considered independent, so assume that they
are spacelike separated. Let Σ be any (AdS-)Cauchy slice Σ, and define

AΣ = Σ ∩ (J+[DA] ∪ J−[DA]),

BΣ = Σ ∩ (J+[DB] ∪ J−[DB]),
(6.7)

where J+[X] (J−[X]) is the usual causal future (past) of a given set X. We say that DA and
DB are independent if there exists a Cauchy slice Σ such that BΣ and AΣ are independent,
in the sense already defined. See Fig. 6.3. This is natural, since by causality and global
hyperbolicity, the gravitational initial data on AΣ, BΣ contains all information about DA, DB.
Thus, any perturbation in DA and DB can, through the evolution equations, be translated
into a corresponding perturbation on AΣ and BΣ.

Second, the reason that we only consider perturbative deformations is that if we allow
large deformations of the initial data, there is no sense in which the regions are fixed. If
we could modify the data in A,B arbitrarily much, we could deform it to any data that is
compatible with the topologies of A,B, or use a diffeomorphism to move the boundaries of
A,B arbitrarily much. But then we would in the end only be asking the following question:
does there exist interpolating initial data between every possible choice of initial data on two
regions with the given topologies of A and B. But why do we even care to keep topologies
fixed at this point? Thus, going beyond the perturbative level, we quickly lose all connection
to our original question. This problem is reflective of the deeper underlying fact that, on the
global phase space of GR, there is probably no useful diffeomorphism invariant notion of a
subregion. However, when we restrict to perturbative deformations, we let the regions and
the states become fuzzy, but only at the scale of the perturbative parameter. In language
used in AdS/CFT contexts, asking about independence of two spacetime regions seems to be
a natural question only in a code subspace built of perturbations around a single background
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Figure 6.4: Using the gluing construction of [57] to embed two compact datasets in a complete
dataset with a pre-specified conformal infinity I .

(and, at the quantum level, in the small−GN limit).
It is worth making a few more comments on the non-perturbative case. However, this is a

detour, and the reader can freely skip the next section without any loss of coherence in the
rest of the paper.

Gluing constructions and independence

Consider making small deformations of initial data in A,B ⊂ Σ, but not requiring that the
change outside A ∪ B is small – i.e. we allow jumping to a point in the GR phase space
that is not near our original point. Can we then find an initial dataset interpolating between
A and B, and which still has the requisite number of conformal boundaries? While this
question has little relevance to understanding perturbative quantization around a background,
it is nevertheless interesting to see what happens in this case. In vacuum gravity, it can
be partially answered, thanks to the gluing result of [57]. This result says that in vacuum
gravity, if Σ is a smooth initial dataset and Ω1,Ω2 ⊂ Σ are two open sets whose domains of
dependence have no Killing vectors, then we can cut out geodesic balls in both Ω1,Ω2 and
glue in a handle [0, 1]× Sd−1 to connect Ω1,Ω2 with a wormhole. Furthermore, this can be
achieved so that the final initial data is smooth and unchanged outside Ω1 ∪ Ω2. Using this,
if A,B ⊂ Σ are compact and sufficiently generic, then we can embed them in a common
initial dataset through the following procedure: adjoin A and B to some compact initial
datasets Ā and B̄ such that Ā ∪ A and B̄ ∪ B are complete compact initial datasets, with
Ā, B̄ both having at least one neighbourhood whose domain of dependence has no Killing
vectors. Then take another sufficiently generic initial dataset with the required number
of conformal boundaries, and use the gluing result to attach two wormholes to it – one
connecting to Ā and one to B̄. See Fig. 6.4. One can see that a similar procedures works
if A and/or B merely have compact boundaries, so that A and B might contain complete
connected components of conformal infinity. However, if ∂A and ∂B themselves are anchored
to conformal boundaries, while we again can find a common initial dataset containing A and
B using gluings, the complete set of initial data might have too many conformal boundaries,
since the naive type of procedure described above will not connect any of the subregions of
the conformal boundary that might be present in A and B.
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Figure 6.5: An example of a d = 2 spacelike slice Σ covered by four coordinate patches of the
type (6.9), separated by every type of stationary surface. At these surfaces, B =∞.

6.3 How Background Structures Enable Independence

In this and the following section, we will show how extremal surfaces, matter, and generic
trapped surfaces can be used to dress perturbations, avoiding dressing to asymptotic regions.
They are background structures that enable subregion independence. We will first study a
set of illustrative examples in this section, where we restrict to particular backgrounds with
spherical symmetry. Then, in Sec. 6.4 we will give a more general discussion, relaxing many
of the simplifications made in our examples.

6.3.1 Setup

Our example will be Einstein gravity in d+ 1 spacetime dimensions coupled to a massless
scalar, with action

I =

∫
dd+1x

√−g
[
R +

d(d− 1)

L2
−∇aϕ∇aϕ

]
. (6.8)

For positive cosmological constant, L is imaginary, and we set L = iLdS.
Consider now a spherically symmetric spacelike initial data slice Σ. Because of spherical

symmetry, we can cover Σ with coordinate patches Ui, such that on each patch, we have local
coordinates

hµνdy
µdyν = B(r)dr2 + r2dΩ2, (6.9)

where dΩ2 is the round metric Sd−1. These coordinates break down at some given radius
r̂ if and only if B(r̂) = ∞. B(r̂) = 0 can be shown to correspond to curvature singularity
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for hab, which we do not consider. By computing the mean curvature of a sphere of radius r
within Σ, we can see that B =∞ precisely corresponds to the sphere having vanishing mean
curvature [58], meaning that the sphere is locally minimal, maximal, or saddle-like within Σ.
See Fig. 6.5.

Next, assume furthermore the mean extrinsic curvature in spacetime vanishes: K a
a = 0.

For nonpositive cosmological constant, this usually means that Σ is a maximal volume slice,
while for a positive cosmological constant, it can also mean that Σ has minimal volume. The
extrinsic curvature is conveniently parametrized by a single function K(r) as15

Kµνdy
µdyµ = K(r)

[
B(r)dr2 − r2

B(r)(d− 1)
dΩ2

]
. (6.10)

K(r) is simply the rr-component in an orthonormal basis, and so must be everywhere finite,
otherwise Σ would have a singular embedding in spacetime. Furthermore, on a slice Σ whose
embedding in spacetime does not have any kinks, K(r) must be continuous across coordinate
patches.

It turns out that our analysis will greatly simplify if we introduce the function ω(r) as

B(r) =
1

1 + r2

L2 − ω(r)
rd−2

. (6.11)

In terms of this variable, a stationary surface is characterized by

0 = 1 +
r̂2

L2
− ω(r̂)

r̂d−2
. (6.12)

When we patch together two coordinate systems at some r = r̂, ω must match in the two
patches, since ω(r̂) is uniquely fixed by r̂. Next, we have that in a patch containing conformal
infinity, where we can take r →∞, that [58]16

M =
(d− 1)Vol[Sd−1]

16πGN

ω(∞), (6.13)

where M is the ADM mass, or the AdS analogue. We refer to ω as the Hawking mass.17

Computing the constraints in our setup, we find the equations

(d− 1)
ω′(r)

rd−1
=

(
1 +

r2

L2
− ω

rd−2

)
ϕ′(r)2 + ϕ̇(r)2 +

d

d− 1
K(r)2, (6.14)

d

dr

[
rdK(r)

]
= rdϕ′(r)ϕ̇(r), (6.15)

where the first equation is the Hamiltonian constraint, and the second the momentum
constraint. Since each coordinate patch has its own set of functions {ω,K, ϕ, ϕ̇}, we will

15There is only one function’s worth of degrees of freedom in Kab, thanks to spherical symmetry and
Ka

a = 0.
16This relies on Ka

a = 0, or that K a
a → 0 sufficiently fast at infinity.

17There are two versions of the Hawking mass: the Riemannian (also known as the Geroch-Hawking mass)
[33, 59–61] and the Lorentzian versions [62–65], with the former not being directly sensitive to Kab. ω is the
Riemannian version, suitably generalized to d ̸= 3 and Λ ̸= 0, in the spacial case of spherical symmetry.

160



sometimes write ωUi
to indicate the ω-function on the i-th patch, and similarily for other

quantities. To obtain the solution on all of Σ, we solve these equations on each patch,
matching ω,K across each junction. In a spacetime with two asymptotic regions, there
are two integration constants, corresponding to ω and K at a single value of r. These are
the purely gravitational degrees of freedom in spherical symmetry. Without matter, where
every solution is (AdS-)Schwarzschild by the Birkhoff-Jebsen theorem [66–69], these numbers
determine M and tL+tR, where tL, tR are the times on the left and right conformal boundaries
at which Σ is anchored. With only one conformal boundary, or in a spacetime without any
conformal boundary, r = 0 is present on at least one coordinate patch. The spacelike nature
of Σ (B > 0) then requires that ω(r = 0) = 0, while smoothness of the embedding of Σ in
spacetime requires K(r = 0) = 0.

Now come the important observations. Since we are on a spacelike slice, we must have
B(r) > 0, meaning that the prefactor of ϕ′(r)2 term in (6.14) is positive, and thus also the
full right hand side. We conclude that

ω′(r) ≥ 0. (6.16)

ω is monotonically non-decreasing as we move towards increasing r. This conclusion does
not rely on our particular theory. It is true as long as we have the WEC (6.5). It is the
monotonicity of ω that makes excitations in gravity more difficult to screen. However, even
with one conformal boundary, the direction of increasing r does not always point towards the
conformal boundary. This is at the heart of all our subsequent results. It means that adding
matter in a patch of spacetime were r is decreasing towards the boundary can decrease the
ADM mass, despite the fact that the matter has positive local energy density.

We are now going to use Eqs. (6.14) and (6.15) to study subregion independence and
dressing of gravitational perturbations. This requires us to study the linearized versions of
(6.14) and (6.15) around some background geometry. We will restrict to spherical perturba-
tions preserving Ka

a = 0 in our explicit analysis, and give arguments that our conclusions are
unchanged under general perturbations. Now, the scalar matter corresponds to completely
free data; thus we can organize our perturbative expansion as follows:

ϕ = ϕ0(r) + κδϕ(r),

ϕ̇ = ϕ̇0(r) + κδϕ̇(r),

ω = ω0(r) +
∞∑
i=1

κiδiω(r),

K = K0(r) +
∞∑
i=1

κiδiK(r),

(6.17)

where δϕ, δϕ̇ is free data, and with δiω, δiK determined by the constraints. κ is the small
perturbative parameter controlling our expansion.18 We could also adjust δϕ, δϕ̇ more finely
at higher orders, but we will not need this.

18Morally, we could think of κ as
√
GN , although in the purely classical theory, there is no preferred

universal scale. If we were to sum the series, κ should be adjusted according to the scales of the background
solution.
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Figure 6.6: A bounded annular region A on a t = 0 slice in Schwarzschild, with one spatial
dimension suppressed. A and B are dependent regions.

Note that the fully non-perturbative solutions of (6.14), (6.15) can be written down
exactly as nested integrals over the sources ϕ(r), ϕ̇(r) (see for example [58]), but we will not
need these solutions.

6.3.2 Subregion independence in asymptotically flat and AdS space-
times

We have already shown how a compact region in the center of AdS or Minkowski depends
on an annulus around infinity. From the perspective of spherically symmetric perturbations,
this follows from integrating (6.14) from r = 0 to r =∞ and using ω(r = 0) = 0, giving that

ω(∞) = ω(∞)− ω(0) =
∫ ∞
0

dr(positive) > 0. (6.18)

Thus, let us now consider more interesting geometries. For notational convenience we take
d = 3 and a vanishing cosmological constant – the analysis is virtually identical for AdS
and/or d ̸= 3. We will treat the Λ > 0 case separately.

Schwarzschild

Let us consider the simplest non-trivial background: Schwarzschild with mass M . Let Σ be
a canonical t = 0 slice, which has Kab = 0. Let B be an infinite annulus containing right
infinity, and let A be a finite annulus in the right region, restricted to r ∈ [rA,in, rA,out], with
rA,in > 2M . See Fig. 6.6. The perturbed leading order constraints read19

2δ2ω
′(r) = r2f(r)δϕ(r)2 + r2δϕ̇2,

d

dr

(
r3δ2K(r)

)
= r3δϕ′(r)δϕ̇(r),

(6.19)

19Since the leading order perturbation of δTab is O(κ2), we do not consider δ1ω ̸= 0.
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Figure 6.7: A perturbation δϕR on the right side dressed to a perturbation on the left side,
leaving the initial data both asymptotic regions unchanged. This causes the area of the
minimal surface to decrease.

with f(r) = 1− 2M/r. The free data in A are the functions δϕ(r), δϕ̇(r) for r ∈ [rA,in, rA,out],
and two numbers, corresponding to δ2ω, δ2K a single value of the radius in A. These two
numbers are the only spherically symmetric gravitational degrees of freedom. To test for
independence, we are free to consider a perturbation with δ2ω(rA,in) = δ2K(rA,in) = 0, and
add some matter in A. With the choice δ2ω(rA,in) = δ2K(rA,in) = 0, we are choosing δS|A
such that the new gravitational field sourced by δϕ is forced to travel to the right. Then,
integrating (6.19) from rA,in to r =∞ gives that δ2ω(∞) > 0 on the right, and so A and B
are dependent. The background has no matter that we can remove outside A to screen the
perturbation. One could wonder if a non-symmetric perturbation outside A could be used to
screen the perturbation, but in this case, we can appeal to a rigorous theorem, the so-called
Riemannian Penrose inequality [70–72],20 to show that no perturbation whatsoever can save
us.21 This theorem says that if we have an asymptotically flat initial dataset with K a

a = 0,
with one asymptotic end with mass M , and with an inner boundary σ that is an outermost
minimal surface, then

M ≥
√

Area[σ]
16

, (6.20)

with equality if and only if we are identically Schwarzschild. Our chosen perturbation in
A was compatible with keeping the geometry at the minimal surface fixed, and so if a
non-symmetric dressing that did not reach B existed, it would violate the rigidity statement
of the Riemannian Penrose inequality. So graviton degrees of freedom cannot make A and B
independent.

20In the AdS case, this inequality is still conjectural, and only partial proofs exist [58, 73–76].
21We do assume that Ka

a = 0 is preserved under these perturbations, but is not a severe restriction, since
small perturbations should not break the existence of a slice with maximal volume. So even if we perturbed
away from Ka

a = 0, there should be a nearby slice in spacetime where Ka
a = 0, so we can always take our

perturbation to be a combination of the perturbation that changes spacetime, together with a diffeomorphism
that moves us to this slice.
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We thus see that any bounded region A lying strictly in the right exterior is dependent on
right infinity. Is A dependent on left infinity? To test this, again pick a perturbation where
we add some matter in A. However, we now use our gravitational degree of freedom to set
δ2ω(rA,out) = δ2K(rA,out) = 0 instead, forcing the new gravitational field lines sourced by δϕ
to travel to the left. This seems dangerous: will we now be forced to dress to left infinity?
The answer is no! We can screen the perturbation from left infinity by adding more matter,
provided we add it to the left of the bifurcation surface. Integrating the constraints, and
matching δ2ω, δ2K across the coordinate systems, we find that the functions on the left side
are22

2δ2ωL(r) =

∫ r

2M

dρρ2
[
f(ρ)(δϕ′L)

2 + (δϕ̇L)
2
]
+

∫ 2M

rA,out

dρρ2
[
f(ρ)(δϕ′R)

2 + (δϕ̇R)
2
]
, (6.21)

δ2KL(r) =
∫ r

2M

dρρ3δϕ′L(r)δϕ̇L +

∫ 2M

rA,out

dρρ3δϕ′R(r)δϕ̇R. (6.22)

The crucial thing to note in these equations is that the last term in (6.21) is negative, caused
by that fact that r increases in opposite directions on each side of the bifurcation surface.
Locally positive energy densities on one-side of an extremal surface contribute negatively to
the Hawking (and thus ADM) mass on the other side. Thus, we see that we can always pick
δϕL, δϕ̇L such that δ2ωL(r) = 0, δ2KL(r) = 0 for all r > 2M + ϵ for any ϵ > 0 (assuming ϵ
does not scale with κ to a positive power). So a positive energy density shell can be dressed
to another positive energy density shell, provided they are separated by an extremal surface.
See Fig. 6.7. As advertised earlier, now gravity behaves more like electromagnetism. Positive
energy densities seen from the other side of an extremal surface behaves as a negative energy
density.

What about perturbations in A that are not spherically symmetric, but where we keep
the solution in A fixed near the rightmost boundary, so that we are forcing the gravitational
field to change towards the left. Can these perturbations be screened from left infinity? It is
physically quite clear that they can, although we will give an argument rather a proof. First,
using a technique known as inverse mean curvature flow, which we explain in Sec. 6.4.3, it can
be shown for d = 3 that non-spherical additions of matter on the right will again contribute
negatively to the mass on the left. So again we can simply add matter on the left to bring
this back up, keeping left the mass unchanged. Of course, now we might also have to cancel
the momentum and angular momentum, but this is much easier since these are quantities
without a preferred sign. Let us assume we added some amount of angular momentum in A
that is backreacting leftwards. We might worry that the required matter or gravitons we need
to add to cancel this angular momentum forces us to overshoot the mass, causing a left mass
increase. But this can always be avoided. Rather than cancelling the angular momentum by
adding matter on the left, we can add it on the right side, between A and the minimal surface,
so that we bring the angular momentum closer to zero, while at the same time decreasing
the mass. Thus, as long as A is slightly separated from the bifurcation surface, so that we

22The reader might be worried that δ2ω ̸= 0 at r = 2M , since the rr-metric perturbation there reads, in
our gauge, δ2hrr = rδω(r − 2M)−2, which diverges at r = 2M . However, this is simply a gauge artifact that
can be fixed with the addition of a term ∇(aξb). It is simply reflecting the fact the location of the minimal
surface, and thus coordinate breakdown location of our gauge, has moved by a perturbative amount.
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Figure 6.8: A one-sided spacetime with a lump of matter around r = 0. We argue that a ball
A with radius rA is independent from an annulus B around infinity if and only if rA < rmat

have the flexibility of perturbing on both sides of it, A ought to be independent of B.
What we see from this discussion is that gravity appears to have a classical version of

the split property across the Schwarzschild bifurcation surface. Let A and B be the regions
r ≥ 2M+ϵ on the left and right, respectively, with ϵ > 0 not scaling with κ. By the discussion
above, we see that A,B are likely independent of each other. However, it is crucial that ϵ
is non-zero, and in fact non-perturbatively large, so that we can always fit enough matter
without leaving perturbation theory. Thanks to the fact that the small band between A,B
contains an extremal surface, we have access to perturbations with all combinations of signs of
charges within this band. We will see later that this property is a feature of general extremal
surfaces.

A spacetime with a lump of matter

Consider now a one-sided spherically symmetric geometry at a moment of time-symmetry,
K0 = ϕ̇0 = 0. Assume that it has no stationary surfaces, so that one coordinate patch covers
everything. Next, we take there to be a lump of matter ϕ0(r) with compact support on
r ∈ [0, rmat]. See Fig. 6.8. We demand that ϕ′0(r) is non-zero at least in r ∈ [rmat − ϵ, rmat)
for some ϵ > 0.

Let A be a ball with radius rA, and take B to be an annulus around infinity. Consider
turning on any scalar field profiles δϕ(r), δϕ̇(r) in A. The perturbative constraints are now
non-trivial at first order in κ, and read

δ1ω
′(r) = r2

[
1− ω0(r)

r

]
ϕ′0(r)δϕ

′(r)− 1

2
rδ1ω(r)ϕ

′
0(r)

2,

d

dr

(
r3δ1K

)
= r3ϕ′0(r)δϕ̇(r).

(6.23)

Can we then extend the perturbation to r > rA such that no backreaction leaks to infinity?
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If rA < rmat, then the answer is yes. The first order constraint solutions are

δ1ω(r) = e−
1
2

∫ r
0 dzzϕ′0(z)

2

∫ r

0

dρρ2e
1
2

∫ ρ
0 dzzϕ′0(z)

2

[
1− ω0(ρ)

ρ

]
ϕ′0(ρ)δϕ

′(ρ) (6.24)

δ1K(r) =
1

r3

∫ r

0

dρρ3ϕ′0(ρ)δϕ̇(ρ) (6.25)

We now see that neither integral has fixed sign, so as long as rA < rmat
23 we can always pick

δϕ, δϕ̇ on (rA, rmat] so that there is some r̂ ∈ (rA, rmat] such that

δ1ω(r ≥ r̂) = 0, δ1K(r ≥ r̂) = 0. (6.26)

Physically, what has happened is that we have removed some matter from the background
shell in order to avoid having the backreaction of our newly added matter leak out to infinity.
Since we are considering infinitesimal perturbations, the background reservoir is effectively
infinitely large, so we can keep doing this to any order in perturbation theory. All spherically
symmetric perturbations in A can be dressed to the background lump of matter. Similarly, if
we alter the mass in B, we can always add or remove some of the matter in the shell lying in
C to compensate, keeping A fixed. Assuming we can dress non-symmetric perturbations to
the lump as well, we thus find that A,B now are independent. It is physically reasonable that
it should also be possible to dress these perturbations to B. If our non-spherical perturbation
in, say, A, adds some momentum or angular momentum, we can just add more moving or
rotating matter between A and B to cancel these charges, since they do not have a preferred
sign. The only real worry is that this matter will increase the energy at the same time, but
since we are working perturbatively, we have an infinite background reservoir of matter, so we
can always remove a bit of matter from the lump to keep the energy fixed. So the background
lump of matter restores independence of the ball A from infinity, and perturbations in A
need not be dressed to infinity.

If we instead took rA > rmat, independence breaks down. This is because the spacetime
looks like Schwarzschild for r > rmat, and if we pick a perturbation on A that changes
the region (rmat, rA], but keeps everything fixed for r ∈ [0, rmat], then we have specified a
perturbation where no matter from the background is allowed to be removed, and we have
no choice but to let the backreaction leak to infinity. This time there is no minimal surface
to dress to. Non-symmetric perturbations in C cannot save us, since these would constitute
all-order compactly supported perturbations of pure Schwarzschild in one exterior, and these
perturbations could be used contradict the rigidity-part of the Riemannian Penrose inequality.

This example illustrated dressing of perturbations to background matter. It was important
that this background matter was not just perturbatively small, since then the argument
would break down – there would exist perturbations that could not be dressed to matter,
since the added matter then exceed what we might have the ability to remove. At the level
of the full perturbative series, the radius of convergence of κ thus has to be less than infinity.

Schwarzschild in pure gravity

We already discussed subsystem independence in Schwarzschild, but we crucially relied
on matter. What happens in vacuum gravity? Consider again a canonical t = 0 slice of

23And rA − rmat = O(κ0).
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Figure 6.9: Using pure gravity degrees of freedom to change the mass of the BTZ region on
the A-side without changing it on the B-side. The right geometry looks identical to BTZ in
A and B.

(AdS-)Schwarzschild, and let A and B be the regions r ≥ 2M + ϵ on the right and left,
respectively. Consider now picking a perturbation δS|A that corresponds to simply deforming
A to Schwarzschild with a lower mass. Pure gravity has no local spherically symmetric degrees
of freedom, so we can clearly not hide this perturbation from B within spherical symmetry.
However, it appears likely that the perturbation can be hidden from B if we break spherical
symmetry, so that we unlock the graviton degrees of freedom. Let us see how this happens
in a similar situation: the BTZ black hole. Unlike higher dimensions, we do not have local
degrees of freedom. However, vacuum gravity still possesses topological degrees of freedom.
Once we leverage these, it is well known (see for example [77, 78]) that we can reduce the BTZ
mass in A without changing B by filling in a higher-genus surface between A and B – see
Fig. 6.9. Of course, in this case, the change is not perturbative, since we changed the topology,
so pure 3d gravity at best has a non-perturbative notion of independence. Nevertheless,
the example is brought up to make it less surprising that pure gravity degrees of freedom
might do the job for d ≥ 3. In fact, there are mathematical results in GR supporting this
possibility. As long as we are allowed to change the geometry at the bifurcation surface, we
are not constrained by the Riemannian Penrose inequality, and Corvino and Schoen [79, 80]
have shown that being identically Schwarzschild in a neighbourhood of infinity is not a rigid
feature.24 Furthermore, by Theorem 1.1 in [81], Schwarzschild is known to support first order
pure gravity perturbations of compact support. Thus, it is a possibility that any perturbation
on A can be shielded from B by utilizing pure gravity degrees of freedom in C.

6.3.3 Subregion independence in de Sitter

Let us now treat a case with positive cosmological constant. Let the background be a minimal
slice of dS4, which has Kab = 0, and which can be covered by two coordinate patches UL, UR,
each having a range r ∈ [0, LdS]. The metric on each patch is

ds2 =
dr2

1− r2

L2
dS

+ r2dΩ2, (6.27)

24Specifically, they proved that for any asymptotically flat vacuum solution (hab,Kab) of the constraints on
R3, and for any choice of compact subset Ω ⊂ R3, there exists new vacuum initial data (h′ab,K

′
ab) that looks

identical to Kerr near infinity, and which agrees with (hab,Kab) on Ω.
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Figure 6.10: A perturbation of a minimal slice of de Sitter, which is just a round sphere of
radius LdS. The two shells are dressed to each other, so the solution looks like pure de Sitter
near the poles of A and B. At the level of spherical symmetry, adding a shell to the one
static patch requires the addition of one to the other. Thus it is possible that A and B are
dependent in the left scenario. On the right, we can screen perturbations in A from B by
adding matter around the maximal surface.

i.e. ω0(r) = 0. Together these two patches make up a round sphere of radius LdS. The
spherically symmetric constraints are non-trivial at O(κ2), and given by (6.19), except now
f(r) = 1− r2/L2

dS. At r = 0, we as usual need that δ2ω(0) = 0. Integrating (6.19) and using
that δ2ω is continuous at r = LdS, all perturbations are constrained to satisfy∫ LdS

0

dρρ2
[
f(ρ)(δϕ′L)

2 + (δϕ̇L)
2
]
=

∫ LdS

0

dρρ2
[
f(ρ)(δϕ′R)

2 + (δϕ̇R)
2
]

(6.28)

This is just a special case of the first law of thermodynamics for positive cosmological constant
[82] applied to spherical perturbations of pure dS. Since UL and UR are Cauchy slices for
the left and right static patches, we see that within the domain of spherical symmetry, it is
impossible to perturb one static patch without also perturbing the other. See Fig. 6.10. It is
easy to show the same result for all d ≥ 2. Thus, it seems plausible in dSd+1 for d ≥ 2, any
subregion of a given static patch depends on the full opposite static patch. However, we have
no proof that we cannot break spherical symmetry on the right and leverage pure vacuum
gravity degrees of freedom to shield this perturbation from the left. As we discuss in Sec. 6.5,
there very likely exist at least some non-symmetric non-trivial initial data that is strictly
localized to one static patch. Either way, A is probably independent of any B that is a strict
subset of the opposite static patch, provided B is such that C contains a neighbourhood of
the cosmological horizon. In this case, we can satisfy (6.28) by adding matter in a small
neighbourhood around the cosmological horizon, as illustrated in Fig. 6.10.

In recent work, a von Neumann algebra of diffeomorphism invariant operators was
constructed for a static patch of de Sitter that contains an observer [83]. This algebra
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consisted of operators dressed to the observer. It was found that in order to have a global
Hilbert space also describing the opposite static patch, it was necessary to include an observer
in the second patch as well. It is interesting to speculate whether this could be connected
to (6.28). An observer ought to backreact on the geometry, and the Hamiltonian constraint
forbids backreaction in a single static patch (in spherical symmetry). If the observer were to
travel on a worldline, this perturbation preserves spherical symmetry, and so some backreaction
must thus be added in the other patch. Adding a second observer solves this. In our setup, it
would however be appropriate to treat an observer as a feature of the background, rather
than a perturbation, so that dressed observables act as perturbations with respect to the
observer. To treat this case, and to get a better sense of when we can deform a single static
patch, we prove a stronger theorem in Sec. 6.5, showing that for full spherically symmetric
non-linear backreaction and d ≥ 2, it is not possible to change a single static patch. We do
this by showing that the area of the cosmological horizon must be reduced by any of these
deformations. However, before we do this, we first study gravitational independence at the
more general level.

6.4 Dressing Across Extremal and Trapped Surfaces

Above we studied examples of spherically symmetric backgrounds, and we argued that at
moments of time-symmetry, we can always dress perturbations across minimal or maximal
surfaces, at least when the theory has matter. The assumption of time-symmetry and spherical
symmetry is however restrictive. Furthermore, it would be more useful to characterize the
surfaces that we are able to dress across in terms of their spacetime properties, rather than
their properties on a particular slice. We are now going to argue that we can dress across
extremal surfaces and generic trapped surfaces. We start with general spherically symmetric
spacetimes and perturbations in Secs. 6.4.1,6.4.2. Then in Sec. 6.4.3, we remove symmetry
assumptions in the case of four spacetime dimensions.

6.4.1 Spherical symmetry

In spherical symmetry, the general constraint equations on a K a
a = 0 slice Σ read

(d− 1)
ω′(r)

rd−1
= 2E + d

d− 1
K(r)2, (6.29)

d

dr

(
rdK

)
= rdJr. (6.30)

By virtue of ω′(r) ≥ 0, as we cross any minimal or maximal surface σ, we always have a flip in
the direction in which ω grows as it encounters matter. So if we add some matter on one side
of σ, we can add some matter on the other side to compensate, keeping ω unchanged outside
a neighbourhood of σ. The assumption of time-symmetry in our examples was irrelevant to
this central point. However, at first sight, minimal and maximal surfaces in a Ka

a = 0 slice
seem like a very restricted set of surfaces. It turns out this is not true. A simple computation
shows that stationary surfaces on a K a

a = 0 slice are always either strictly (anti)trapped or
extremal (see for example Eq. (A.55) of [58]). In a moment we are going to show a partial
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Figure 6.11: (Left) Three Ka
a = 0 slices fired off σ, with η3 > η2 > η1. Only Ση2 is smooth

and complete. (Right) Deforming Ση3 to a smooth complete slice, preserving a neighbourhood
Uη3 around Σ that has Ka

a = 0.

converse in spherical symmetry: maximal or minimal surfaces on K a
a = 0 slices include all

(spherical) extremal surfaces and also all generic trapped surfaces, provided we do not require
Σ to satisfy K a

a = 0 globally.25 This will be enough for us.
Consider a general spherically symmetric spacetime (N, gab) and let σ be any sphere. Then

there always exists a one-parameter family Ση of spherically symmetric K a
a = 0 slices locally

defined in a neighbourhood around σ. To see this, note that the equation that determines
Ση is a second order ODE. This ODE is obtained by extremizing the induced volume of Σ
with respect to a single embedding coordinate, say t(r). One integration constant is fixed by
demanding that Ση passes through σ. The second integration constant is just the boost angle
η at which Ση is “fired off” σ. This is completely analogous to how we can fire a one-parameter
family of radial spacelike geodesics off some given point. Once η is fixed we can integrate
the ODE determining the location of Ση to try to extend it to a full slice, but generically
one does not get a full smooth Cauchy slice. See the left panel of Fig. 6.11. In a one-sided
spacetime, for example, this could happen because we hit r = 0 with the wrong boost angle,
so that Ση has a kink, corresponding to K →∞. Or we could fall into a singularity. However,
crucially, we will not need a full K a

a = 0 slice. We can just terminate the integration at
some finite value and then arbitrarily continue the slice in a smooth way, now giving up the
requirement that the mean curvature vanishes. This way we produce a one-parameter family
of Cauchy slices Ση, each containing σ and each having a neighbourhood Uη ⊂ Ση that has
Ka

a = 0. See the right panel of Fig. 6.11 for one such slice.
Consider now σ being a surface such that there exists an η so that σ is minimal or maximal

on Ση. Let ΣL and ΣR be the parts of Ση lying to the left and right sides of σ, respectively,
except for a small neighbourhood around σ that is included in neither – see Fig. 6.11. Thus,
ΣL and ΣR are separated by an open neighbourhood containing σ that has Ka

a = 0. We
now see that any spherical perturbation in ΣL can be screened from ΣR, and vice versa, by
exactly the mechanism we described earlier.26

25Allowing saddle-type surfaces, all trapped surfaces are included.
26Strictly speaking, we should also consider perturbations that satisfy δK a

a ̸= 0 at ∂ΣR, ∂ΣL, so we should
technically have consider the spherically symmetric Einstein equations for general Ka

a = 0. This leads to no
complications. This should be clear from the following Lorentzian analysis.
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Note that ω(r) is defined everywhere on the slice by (6.11), but ω generally has no
monotonicity properties away from Uη. This does not matter to the argument, however.
Thus, what we now to show is that for any extremal or generic trapped surface, there is some
η on which σ is maximal or minimal on Ση.

Let us now first assume that σ is extremal. That means that the area of σ is stationary
under all variations, so for every choice of η, σ is either maximal, minimal, or a saddle in Ση.
Being a saddle is clearly a fine-tuned case, and it can always be avoided. To see this, note that
when the boost angle η approaches +∞ or −∞, Uη gets closer and closer to one of the two
the null congruences fired off σ. By the focusing theorem, the area of these congruences are
shrinking both to the future and past, so once |η| is large enough, σ will be a locally maximal
surface on Uη. In the fine tuned case where the congruences fired from σ are stationary, we
are just locally in a standard spherical black hole, in which case we can just pick one of the
other slices, where we know that σ is minimal or maximal.

Next, assume that σ is a trapped or antitrapped surface, meaning that the two future null
expansions have the same sign, with both strictly nonzero. Fixing an arbitrary zero-point
of the boost angle η, let na be the future timelike unit normal to Ση=0, and let ra be a unit
normal to σ that is tangent to Ση=0. Two independent future directed null normals to σ can
be taken to be

ka± =
1√
2
(na ± ra), (6.31)

where ka+ conventionally defines “outwards”. As shown in the appendix of [58], with this
normalization of the null normals, the mean curvature H0[σ] of σ within Ση=0 reads

H0[σ] = Dar
a =

1√
2
(θ+ − θ−), (6.32)

where the null expansions are given by θ± = (gab + 2k
(a
+ k

b)
−)∇akb. Consider now boosting our

slice to Ση. Since na, ra form an orthonormal basis of the normal bundle of σ, they transform
in the canonical way under a Lorentz boost. It is easily seen that the null normals canonically
normalized with respect to the boosted na, ra are

ka±,η = e±ηka±, (6.33)

so the mean curvature of σ within Ση is

Hη[σ] =
1√
2
(eηθ+ − e−ηθ−), (6.34)

where θ+, θ− still are the expansions at η = 0. Because θ+, θ− are nonzero and have the same
sign, we can always take η = 1

2
log(θ−/θ+), giving Hη[σ] = 0. Hence, locally there is always a

Ka
a = 0 slice on which σ is stationary. Assuming we do not have the fine tuned situation

where this surface is a saddle, we see that σ posses a slice one which the left and right sides
are independent – at least with respect to spherical perturbations.

So in total, if DA and DB are two spacelike separated causal diamonds whose edges
are spacelike to a common extremal or generic trapped surface, then we expect that these
diamonds are independent, since they are contained in the domains of dependence of the
regions ΣR and ΣL that we expect to be independent – see Fig. 6.12.27

27Assuming that the edges are not parametrically close to null separated, so that the splitting region is
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Figure 6.12: Two causal diamonds separated by a trapped or extremal surface σ.

6.4.2 A Lorentzian analysis

It is illustrative to reach the same conclusion using a spacetime approach. Let us now do this,
at the same type generalizing to also allow planar or hyperbolic symmetry, in addition to
spherical. This will also let us show that arbitrarily large energy densities near an extremal
surface make arbitrarily small contributions to the ADM mass.

Let (N, gab) be a (d+1)-dimensional spacetime with one of these three types of symmetries.
This means that N can be foliated by a two-parameter family of codimension−2 surfaces
σ that have the intrinsic metric of a sphere, a plane, or the hyperbolic plane (or quotients
thereof). We can pick a double null gauge

ds2 = −2e−f(x+,x−)dx+dx− + r(x+, r−)2dΣ2
k, (6.35)

where dΣ2
k is the metric of the unit sphere, plane, and hyperbolic plane for k = −1, 0, 1,

respectively (or quotients thereof). For the leaves of our symmetric foliation, given by constant
x+, x−, we now define the following function28

µ(x+, x−) = krd−2 +
rd

L2
− 2θ+θ−
k+ · k−(d− 1)2

, (6.36)

where ka+, ka− are any two independent future-directed null normals to the surface, and θ+, θ−
the corresponding null expansions. The quantity on the RHS is covariantly defined, since
the area radius r can be viewed as a coordinate independent scalar on spacetime.29 µ is a
spacetime analog of ω, and it has some special properties. First, in AAdS or AF spacetimes,

parametrically small.
28µ is a generalization of the Lorentzian Hawking mass [62–65] to d ̸= 3, in the special case of spatial

symmetries. Without symmetries, the proper definition of the Hawking mass is unknown for d ̸= 3.
29This is not strictly true in planar symmetry. In this case, there is an ambiguity in an overall scaling of r,

reflective of the fact that there is no canonical conformal frame for the boundary of AdS, when the boundary
is conformal to Minkowski. In this case, there is also a scaling ambiguity in the mass. But this ambiguity can
be fixed in some particular spacetime.
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it can be shown to reduce to the mass at spatial infinity:30

M =
(d− 1)Vol[Σk]

16πGN

µ|r=∞. (6.37)

Second, using the Einstein equations, it was shown in [76] to satisfy

∂±µ =
2efrd

(d− 1)2
(T+−θ± − θ∓T±±). (6.38)

Let now Xa be any spacelike vector pointing outwards (Xak
a
+ ≥ 0), and assume the dominant

energy condition (DEC), which says that

TabU
aV b ≥ 0 ∀ timelike Ua, V a, (6.39)

and which implies the WEC. The DEC implies that T±± ≥ 0, T+− ≥ 0. Thus, in a “normal”
region, where θ+ ≥ 0, θ− ≤ 0, µ is monotonically non-decreasing in any outwards spacelike
direction:

Xa∇aµ ≥ 0 when θ+ ≥ 0, θ− ≤ 0. (6.40)

Next, in an “anti-normal” region, we have monotonicity in the inwards direction instead:

Xa∇aµ ≤ 0 when θ+ ≤ 0, θ− ≥ 0. (6.41)

This is the spacetime analog of monotonicity of ω, and it constitutes an obstruction to
subregion independence (if we break the DEC, this obstruction only becomes weaker).
However, we see that if σ is an extremal surface that separates a normal and an anti-normal
region, then the insertion of matter causes µ to increase in opposite directions on opposite
sides of σ, and so we regain independence between the opposite sides. If we instead find
ourselves in an (anti)trapped region of spacetime, µ is no longer monotonic, and by the
appropriate choice of turning on either T++ or T−−, we can push µ up or down as we are
moving in any fixed spacelike direction.

We also see from (6.37) and (6.38) that the contribution to the asymptotic mass is given
by a integral of T++θ−, T−−θ+, T+−θ−, T+−θ+ weighted by positive factors that are bounded
in a neighbourhood of an extremal surface. Thus, arbitrarily large energy densities make
arbitrarily small contributions to the ADM mass, provided they are localized to an extremal
surface. Similarly, a marginally trapped surface (say, θ+ = 0) can support modes with very
large T−− at low cost to the ADM mass, provided we do not make T+− large as well.

6.4.3 No symmetries

We now want to understand what happens if our spacetime does not have any symmetries.
Furthermore, even if our spacetime has symmetries, we might want to consider perturbations
or surfaces that break the symmetries of the spacetime. A prototypical example of the latter
occurs in AdS/CFT, where we might consider two regions A and B separated by a region
containing a boundary anchored extremal surface, as illustrated in Fig. 6.13.

30Provided matter fields fall off fast enough. The important thing is that µ is a spacetime function with
certain monotonicities that sometimes act as an obstruction to independence.
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Figure 6.13: A timeslice Σ of an asymptotically AdS spacetime containing two subregions
A and B that are separated by a set containing an HRT surface anchored to the conformal
boundary I .

To deal with the case of no symmetry, we need an appropriate generalization of ω. To the
author’s knowledge, the appropriate generalization is known only in four spacetime dimensions,
and so we will only treat this case. However, based on expectations from AdS/CFT and the
fact that the spherically symmetric considerations work for all d ≥ 2, we expect a similar
story holds in other dimensions, but we do not know what is the right tool to use.

Let us thus assume four spacetime dimensions. If (Σ, S) is some initial dataset with a
spacelike two-dimensional surface σ, we define

ω[σ] =
1

16π

√
Area[σ]

4π

∫
σ

[
2R−H[σ]2 +

4

L2

]
, (6.42)

where the integral is taken in the induced volume form on σ, and where R is the Ricci scalar
for the induced metric on σ. Consider now a one-parameter family of surfaces στ , where
increasing τ corresponds to flowing the surfaces along the vector field

va =
1

H[στ ]
raτ , (6.43)

with raτ being a unit normal to Σ in σ. Thus, our one-parameter family of surfaces correspond
to a flow where the velocity of the flow at p ∈ στ is set by the inverse of the mean curvature
of στ at p. This flow is known as inverse mean curvature (IMC) flow,31 and it can be shown

31In four spacetime dimensions, a Lorentzian version of IMC flow also exists [65, 84, 85], but is less
understood. It generalizes the monotonicities (6.40) and (6.41) to cases with no symmetries.
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Figure 6.14: Two IMC flows στ and σ̃τ̃ accumulating at a maximal surface σ̃τ̃3 = στ3 .

that on a slice with Ka
a = 0, assuming the WEC, we have [59]

d

dτ
Area[στ ] ≥ 0, (6.44)

d

dτ
ω[στ ] ≥ 0. (6.45)

This is the generalization of ω′(r) ≥ 0. Minimal and maximal area surfaces are special
locations where the flow terminates. See [86] for a review of these facts for compact surfaces,
and for the proof that (6.44) and (6.45) remains true also for boundary anchored surfaces in
asymptotically AdS4 spacetimes (ω is finite even when στ is boundary anchored [86]).

Consider a surface that is a minimal or maximal surface on a Ka
a = 0 slice. Then, as

illustrated in Fig. 6.14, IMC flow goes in opposite directions, so again we have a mechanism
to bypass the monotonicity of ω[στ ]. Positive energy density can now likely screen positive
energy density. Of course, to show this rigorously is challenging,32 but it would not be
surprising if it is true. It would fit perfectly with what we know about AdS/CFT, and it
is plausible that the monotonicity of ω is the sole obstruction to subregion independence
in gravity, since charges other than the mass tend to not have a preferred sign. In fact, in
various gluing results, there is typically only a finite-dimensional space of obstructions to
gluing, corresponding to a set of charges that must match or have a certain relationship
[79, 87]. In four spacetime dimensions, this is a set of 10 charges, and the mass is the only
one with a preferred sign.33 Thus, we conjecture the following:

32Note that IMC flow can have singularities. In this case, a weak version of the flow can be defined. In this
case, when a surface becomes singular, it makes a jump to a surface with larger area and Hawking mass.
However, since we are trying to screen perturbative excitations by adding matter near the minimal/maximal
surface at which we start the flow, should be able to screen the perturbation before we reach a jump, since
the jump-time is non-perturbative, so it will not get radically affected by our perturbations.

33The other charges corresponds to linear momentum, angular momentum, and center of mass.
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Figure 6.15: A small domain of dependence D. For any two spacelike separated surfaces
σ′, σ′′, we expect there to be a maximal volume slice Σ with ∂Σ = σ′ ∪ σ′′.

Conjecture. Let (Σ, S) be a smooth d-dimensional initial dataset in Einstein gravity mini-
mally coupled to matter, with K a

a = 0, and d ≥ 3. Let A,B be two closed disjoint subregions
such that Σ− A− B contains a locally minimal or maximal surface that is homologous to
∂A and ∂B. For any sufficiently small deformations δS|A and δS|B, there exists a small
extension δS of δS|A ∪ δS|B.

We are deliberately vague about what we mean with small here. We might either
consider formal perturbative solutions, or perhaps better, we could try to require that with
an appropriate choice of Ck or Sobolev norm defined by the background metric, a small
extension always exists once the norm of δS|A ∪ δS|B is sufficiently small. Note that the
above might also be true for d = 2 if matter is included, but for d = 2 vacuum gravity, we
saw that we were forced to change the topology of C to match perturbations made in A, B,
so there was no sense in which the perturbation was small.

Next, we again really want to talk about surfaces that are trapped or extremal, rather that
maximal or minimal on a K a

a = 0 slice. By the same logic as in the spherically symmetric
discussion, we thus want that every extremal and generic trapped surface σ is minimal or
maximal on some slice Σ that satisfies K a

a = 0 locally in a neighbourhood of σ. While we
will not attempt a proof, this appears very likely to be true. Consider a region of spacetime
D corresponding to a domain of dependence containing σ. Let us shrink D enough so that
its closure is compact, so that the null generators of its boundary do not terminate on
singularities or future infinity. Then for any two spacelike separated surfaces σ′, σ′′ in D,
there should exist a maximal volume hypersurface Σ bounded by σ′, σ′′. See Fig. 6.15. This
makes sense, since if Σ is deformed towards the future or past null congruences fired from
σ′, σ′′, its volume goes to zero. Provided we pick D small enough so that it does not contain a
portion of a future/past infinity where volume of space could be forever expanding, like future
infinity of de Sitter, we should not be able to make the volume of Σ arbitrary large. Thus,
there ought to be a maximal volume slice bounded by σ′, σ′′. This surface is necessarily a
K a
a = 0 slice, and so in D we ought to have a K a

a = 0 slice for every choice of two spacelike
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separated surfaces σ′, σ′′. Allowing these surfaces to vary, this likely provides more than
enough freedom for finding such a slice that contains σ, again suggesting that the setup
described by Fig. 6.12 is true without spherical symmetry as well.

6.5 de Sitter Rigidity and Area Bounds

In our discussion of pure AdS and Minkowski, we saw that these spacetimes were very rigid.
No deformation in the interior of the spacetime can be made without it altering the geometry
at infinity. Can some form of rigidity statement be made for dS? A natural question to ask is
the following: is it possible to deform the initial data in one static patch without altering
the other? At the level of spherical symmetry, we saw that the answer was no at first order
in perturbation theory. We will now prove a non-linear version of this statement. However,
as we discuss below, once we break spherical symmetry, rigidity appears to no longer hold,
unlike the case of Minkowski and AdS. This likely gives rise to large class of spacetimes that
look identical to dS in a single static patch.

We prove the following34

Theorem 11. Let (Σ, S) be a regular spherically symmetric initial dataset for the Einstein
equations with positive cosmological constant, K a

a = 0, and satisfying the WEC. If Σ has the
topology of a hemisphere (i.e. a ball) of dimension d ≥ 2, then every sphere σ in Σ has an
area radius r satisfying

r ≤ LdS. (6.46)

Equality is achieved if and only if Kab = 0, with hab the metric of a round sphere. Next, if σ∗
is a locally maximal sphere of radius r∗, then

r∗ ≥
√
d− 2

d
LdS = rNariai. (6.47)

Before the proof, let us make a few comments. First, at leading order in perturbation
theory around pure dS, the upper bound (6.46) is just a special case of the first law [88].
Next, for d = 3, the upper bound (6.46), which is equivalent to A(σ) ≤ 4πL2

dS, was proven
without spherical symmetry in [89], given certain other assumptions (see also [90]). Second,
extremal surfaces are always stationary on any slice, so for an extremal surface X in a
spherical asymptotically dS spacetime with a simply connected Cauchy slice, we expect the
area bounds (6.46), (6.47) to apply to X, provided X is a cosmological horizon type surface –
i.e. it is maximal rather than minimal/a saddle on Σ. Third, we are not aware if a bound
like (6.47), which lower bounds the area of cosmological horizon-type surfaces in terms of the
event horizon of the Nariai black hole, has been shown before (beyond the dS-Schwarzschild
family). Finally, the result shows that a spacetime with the following properties cannot exist
when the WEC holds: (1) σ is a sphere that splits a Cauchy slice in two, (2) the wedge DR of
points right-spacelike to σ looks identically like a static patch of de Sitter, and (3) the wedge
of DL points left-spacelike to σ has a Cauchy slice Σ with Ka

a = 0. See Fig. 6.16. Now to
the proof:

34The author is grateful to Matt Headrick for proposing that Nariai might set a lower area bound, and for
extensive discussions that lead directly to this result.
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Figure 6.16: A hypothetical spherically symmetric spacetime that is ruled out by Theorem 11
when the WEC holds.

Proof. By the fact that Σ is spacelike, we have

1− r2

L2
dS

− ω(r)

rd−2
≥ 0, (6.48)

as discussed in Sec. 6.3.1. Thus, if we can show that ω(r) ≥ 0 on every patch of Σ, then we
get that r ≤ LdS. Let us now show this. The Hamiltonian constraint together with K a

a = 0
implies that ω′(r) ≥ 0. Furthermore, by assumption, Σ contains the point r = 0, where we
must have ω(0) = 0. Hence, integrating (6.29) outwards, we find that ω ≥ 0 on the patch
containing r = 0. If one patch covers Σ, we are done. Thus, assume that Σ is covered
by multiple patches. Then the r = 0 patch is separated from the next patch by either a
maximal surface or a saddle – see Fig. 6.17. If it is a saddle, it does not alter the monotonicity
properties of ω as we move from r = 0 towards ∂Σ, so ω remains positive on the next patch.
Thus, assume we have a maximal surface instead. Consider first integrating ω from r = 0
to the first maximal surface, with radius rmax. We already showed that ω ≥ 0 there, so we
find that rmax ≤ LdS. Transitioning to the next patch, r and ω must now be decreasing as
we move towards ∂Σ. Either we hit ∂Σ and we are done since then r|∂Σ < rmax ≤ LdS, or
we hit a minimal surface with radius r = rmin < rmax ≤ LdS (again, we can hit a saddle, but
nothing interesting happens at these). By stationarity we get

ω(rmin)

rd−1min

= 1− r2min

L2
dS

> 1− r2max

L2
dS

≥ 0. (6.49)

Repeating this exact argument as we move past any number of minimal, maximal, or saddle
surfaces, we find that ω ≥ 0 everywhere, showing that r ≤ LdS. Next, we only find a sphere
with r = LdS if Σ a subset of exact de Sitter. This is seen by the fact that chain of potential
equalities above is broken if we encounter matter anywhere. This proves rigidity.

To prove the lower bound, note that approaching a stationary surface implies that 1/B(r)
is approaching 0 from a positive value. The surface being maximal with radius r = r∗ implies
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Figure 6.17: A spherically symmetric spatial manifold with a smooth r = 0 and a locally
maximal boundary. When K a

a = 0, the WEC implies that all spheres satisfy r ≤ LdS

that we are approaching r∗ from a smaller value of r. Thus, d
dr
B−1|r=r∗ ≤ 0, giving that

0 ≥ r∗
d

dr

[
1− r2

L2
dS

− ω(r)

rd−2

] ∣∣∣
r=r∗

= − 2r2∗
L2
dS

− ω′(r∗)

rd−3∗
+ (d− 2)

ω(r∗)

rd−2∗

= − dr
2
∗

L2
dS

+ d− 2− ω′(r∗)

rd−3∗
.

(6.50)

Using that ω′ ≥ 0, this then gives the lower bound on r∗.

Let us finally discuss the case without spherical symmetry, which turns out to be interesting.
It would be tempting to conjecture the following: if Σ is a K a

a = 0 slice where ∂Σ is an
extremal surface, then A[∂Σ] ≤ A[∂ΣdS], with equality only in the case of pure dS (assuming
the WEC). While the area inequality might hold, the rigidity part, i.e. equality only in pure
dS, is overwhelmingly likely to be false for d ≥ 3. The rigidity part is closely related to a
former conjecture by Min-Oo [91], who conjectured the following: assume hab is a metric on
a hemisphere Σ with (1) a Ricci scalar lower bound R ≥ d(d − 1)L−2dS ,35 and (2) with the
intrinsic and extrinsic geometry of ∂Σ matching that of the boundary of a round hemisphere of
radius LdS. Then Σ must be the round hemisphere.36 While according to [92] this conjecture
was proven in [93] for d = 2, after being open for 16 years, Min-Oo’s conjecture was disproven
in [92] for all d ≥ 3. They showed that there are Riemannian metrics distinct from the
canonical round sphere metric that nevertheless looks identical to it in a neighbourhood
around ∂Σ, for any d ≥ 3. Several properties of these solutions are known. They can be
constructed to have arbitrarily large volume [94],37 they always have a minimal surface [96],

35This is the lower bound one would get from the constraints, assuming the WEC and K a
a = 0.

36With hemisphere, we mean that ∂Σ is totally geodesic in Σ – it is really a half sphere, not just a cap.
37None of the solutions with volume greater than that of the static patch lie perturbatively close to the
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and they can have a wide range of topologies [94, 97]. Furthermore, for hab sufficiently close
to pure dS, the metric must disagree with the round metric somewhere in the band [98]√

d− 1

d+ 3
LdS < r < LdS, (6.51)

so these deformations cannot localize in a tiny cap. If any of these metrics can be realized as
a solution of the constraints, either with some choice of Kab ≠ 0 and/or with some choice
of matter, then the rigidity part of the upper bound in Theorem 11 cannot be true without
spherical symmetry (when d > 2). Thus, in four spacetime dimensions and higher, when we
break symmetries there might exist a large flexibility in changing the initial data in only
one static patch. The behavior of these solutions are reminiscent of another example we
have already discussed: black holes in GR with a negative cosmological constant and three
spacetime dimensions. In this case there is an infinite number of one-sided black holes that
look identical to the BTZ black hole in the exterior(s). However, they all break spherical
symmetry in the interior, and none are close to a spherically symmetric metric. Like black
holes, the de Sitter metrics discussed above also have minimal surfaces, so it seems likely
that they will be black holes as well. It would be interesting if these could be used to give
a semiclassical counting interpretation of the area of the cosmological horizon using the
Euclidean path integral approach of [99, 100].

6.6 Discussion

In this work, we have given a simple natural definition of subregion independence in classical
gravity. We argued that extremal surfaces, generic trapped surfaces, and background distri-
butions of matter are structures that enable subregion independence, i.e. independent initial
data perturbations. For extremal surfaces X, we saw that excitations added on the opposite
side of X contribute with opposite sign to any given asymptotic mass. This enables positive
energy densities to terminate the gravitational fields sourced by positive energy densities on
the other side of X, providing a simple physical picture for why an extremal surface is a good
location to separate independent subregions.

We now discuss some further implications of our perspective.

6.6.1 The semiclassical case and quantum extremal surfaces

Consider studying semiclassical gravity, where we couple the expectation value of the stress
tensor of quantum matter to the classical Einstein equation. In this case, the constraint
equations are unchanged, so our analysis is still relevant, albeit incomplete. The matter
source is now more exotic, since classical energy conditions are violated. However, in our
case, the classical energy conditions were an obstruction to independence, so we expect that
this particular effect pushes subregions to a greater tendency for independence. Nevertheless,
while quantum fields typically do not have local energy conditions, they often have global

static patch, since the results of [95] imply that WEC-respecting metrics C2-close to the static patch must
have smaller volume.
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ones, so we do not expect that the problem is trivial – the Hawking mass in a normal region
still ought to have certain monotonicity properties over sufficiently large distances.

Next, while our analysis does not directly say anything about general QESes [7], our
results are informative in many particular cases. We might for example find that QESes
themselves are classically (anti)trapped, so that we still avoid monotonicity of the Hawking
mass, boding well for the perturbative independence of the complement wedges of the QES.
Next, if a QES is a Planckian distance away from a classical extremal or (anti)trapped surface,
we can tell a similar story, since we always want to draw some splitting region around the
QES, which then contain a classically trapped or extremal surface. However, we leave a more
careful study of QESs to the future.

6.6.2 Islands in massless gravity

The new QESs discovered after the Page time [41, 42], giving rise to the island phenomenon,
are at the heart of recent breakthroughs on the information paradox [41, 42, 99, 101]. Islands
are regions of spacetime that furnish entanglement wedges for the Hawking radiation after
the Page time. They have the special property that they are compact, not reaching any
asymptotic boundaries. Since the island is supposed to be encoded in the radiation, acting
with operators in the island should correspond to acting with operators on the radiation.

In [40] it was argued that this behavior is inconsistent with having massless gravity. An
important part of their argument was the following claim: any excitation localized to the
island must have compact support, and by the Heisenberg uncertainty principle it should
have finite energy, thus altering the ADM energy. However, as should be clear by now,
non-linearities of the Einstein equations make this is false at the classical level. While turning
on excitations adds positive energy density locally, this does not imply that the ADM energy
is changed. It is true for perturbations around Minkowski space or AdS, but these examples
turn out to not be good analogies for the general case. As discussed in Sec. 6.4.1, in trapped
regions of spacetime, ingoing and outgoing modes can be added so as to affect the the ADM
mass with either sign. In the case of the evaporating black holes studied in [41, 42], the island
is in a classically trapped region of spacetime, so there is no obstruction to implementing
large classes of localized perturbations of the constraints with no influence on the geometry
outside the island.

Another part of the argument in [40] was the closely related claim that diffeomorphism
invariant operators that probe local physics in the island must be dressed to the boundary,
and so they must have non-zero commutators with operators in the complement entanglement
wedge, leading to a contradiction with subregion-subregion duality. However, at the level
of perturbative quantization in

√
GN around some background, there does exist localized

operators that are not dressed to the boundary [22–28]. Operators like this were constructed
in the CFT by [29, 30], and they argued this relieves the tension between islands and massless
gravity. We agree, and will add a few additional remarks.

It was suggested in [29, 30] that one might need to dress operators to the Hawking
radiation. While perhaps possible, this can be avoided for the evaporating black holes of
[41, 42]. To begin with, let Φ0 be some scalar field that is part of the background we are

181



Figure 6.18: A diffeomorphism invariant operator localized to the island, dressed to matter
that formed the black hole, and which probes the “barren” part of the island without becoming
highly delocalized as GN → 0.

considering, and let ϕ be a dynamical quantum field.38 Then

O(α) =

∫
dd+1x

√−gδ (Φ0(x)− α)ϕ(x) (6.52)

is a one-paramater family of diffeomorphism invariant observables. In the quantum case,
we should smear this over a window of α-values to get a proper operator, but as long as
the gradient of Φ0 is not extremely small (i.e. scaling with GN to a positive power), this
gives an approximately localized operator on appropriate backgrounds. The existence of
single-integral observables like (6.52) was acknowledged in [40]. However, they argued that
single-integral observables cannot probe large parts of the island. This is based on the fact
that once we reach the Page time, the black hole interior volume (on some nice slice) has
grown approximately linearly for a time of order t ∼ O(G−1N ), so unless the black hole has
been constantly fed matter, there are large regions in the black hole where there is no matter,
or where the matter is extremely dilute. So if we try to get the delta function in O(α) to
“click” somewhere in the dilute region, once we smear α a tiny bit, the operator strongly
delocalizes. There are however other better operators that do not have this problem. First,
note that the matter that collapsed to form the black hole never dilutes, and it is present in
the island.39 So for some windows of α, we could get operators localized inside the matter
distribution that formed the original black hole. But we can do better. Let us now consider
forming the following three-parameter family of diffeomorphism invariant observables40

O(α, β, γ) =

∫
dd+1x

√−gδ (Φ0(x)− α) δ (∇aΦ0(x)∇aΦ0(x)− β)ϕ(Xα,β,γ(x)) (6.53)

38Φ0 could also be quantum field with a non-zero VEV.
39Alternatively, if we instead evaporate a past-eternal black hole in AdS, the same goes through for the

shell of matter that falls into the black hole due to the sudden coupling of the CFT to the reservoir where we
dump the Hawking radiation.

40Here gab,∇a are the full metric and connections, so these should be expanded in a perturbative series.
Similar for Xα,β,γ .
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where the Xα,β,γ(x) is the point obtained when firing a geodesic from x along the direction
of ta = ∇aΦ0 and following it for a proper distance/time γ. See Fig. 6.18. Since we get to
fix the sign of β, we also get to fix the signature of ta, so we know whether we are using
a spacelike or timelike geodesic – i.e. the observable is well defined. To get an observable
with the potential to be promoted to a proper operator when quantizing, we could smear
over a small window of α, β, γ. If we pick α-window appropriately, then the x-integral can
localize within the concentrated matter that formed the black hole. Next, by increasing γ up
to values of order O(1/GN), we can reach into the “barren” matterless region of the island.
We could also reach this region by dressing to matter that falls into the black hole around
the Page time, if such matter exist.

All in all, perturbation theory in massless gravity appears to be consistent with compact
entanglement wedges. Of course, once we worry about exponential corrections in GN , things
are much more subtle.41 But once we consider exponential corrections, we should worry
about what right we have to talk about concepts like spacetime regions or entanglement
wedges, and it is hard to draw strong conclusions either way. But we see no clear sign of
inconsistencies between islands and massless gravity at the perturbative level.

6.6.3 Gravitational splitting and local algebras

In this paper, we have argued that classical gravity has a sort of perturbative split property,
provided the splitting region is sufficiently generic – i.e. it contains an extremal surface, a
non-perturbative amount of matter, or a generic (anti)trapped surface. It would be very
interesting to study the perturbative WdW equation to see whether this remains true in
the quantum case. Specifically, working around a sufficiently generic background, can we
choose the WdW wavefunctional on generic separated spacelike subregions separated by a
finite gap independently? [15] showed that this is not true around pure AdS, but there are
many hints that this story changes on other backgrounds. If we indeed can choose the WdW
wavefunctional independently on different generic regions (up to the local constraints on these
regions), this suggest that non-trivial perturbative algebras of localized observables exist for
generic compact regions. This would be good news, given the recent interesting developments
on algebras and their entropies in gravity [83, 103–115].

Note that we have not directly discussed the relation between independence and localized
observables, which is strictly speaking more directly tied to algebras that the states themselves.
We now turn to this.

6.6.4 From independence to localized observables

Our notion of independence deals with the structure of the phase space P of GR in a
sufficiently small neighbourhood U ⊂ P around a point Ψ ∈ P, which corresponds to our
background. It would be interesting to understand whether the independence of A,B ⊂ Σ
means that there exist observables fAC , fBC : U 7→ R that are sensitive only to the dynamical
fields in the domains of dependence of A ∪ C and B ∪ C, respectively. For example, if B is a

41See [102] for an illuminating discussion of the challenges of defining non-perturbatively diffeomorphism
invariant observables.
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collar around spatial infinity, fAC would correspond to a (perturbatively) diffeomorphism
invariant observable that is not dressed to the boundary, and it would Poisson-commute
with observables localized to B [26]. It would be natural if independence implied that such
functions exist. If they do, they are candidates for localized operators upon quantization.
Let us outline a non-rigorous argument that localized observables exist. We do not claim
that this completely settles the issue – there might be devils in the details.

Assume that there exist some gauge fixing procedure, so that the coordinate values of
∂A, ∂B are fixed, and so that every point δΨ ∈ U has a unique value of δS|A, δS|B and
δS|C . These three collections of classical field values on A,B,C are generally dependent
on each other. However, if A and B are independent, then δS|A and δS|B can be specified
independently. So they provide valid coordinates on U , and we can write a coordinate
representation

δΨ =

δS|AδS|B
δ̂S|C

 , (6.54)

where δ̂SC is a collection of coordinates parametrizing the remaining freedom in C independent
of the degrees of freedom in A and B. Clearly, by the constraints, some of the degrees of
freedom in C are dependent on the degrees of freedom in A ∪ B, so δ̂S|C must be a strict
subset of δS|C .

Now, since δS|A, δS|B can be used as coordinates, the phase space coordinate functions in
the A– and B–slots of (6.54) then seem like candidates for fAC , fBC . It might be tempting to
say that these functions are sensitive to the dynamical fields in just A or just B, since these
functions always return information about the dynamical fields in A or B. However, this
is not true. A choice of δS|C , influences the possible values of δS|A, and thus the possible
output of the coordinate functions of the A-slot. Disregarding diffeomorphism invariance for
a second, an analogy in a theory with a dynamical field ϕ and two points xA ∈ A, xC ∈ C
would be a function like fAC = ϕ(xA)θ(ϕ(xC)), where θ is the heaviside step function.

Note that if A and B were dependent, this construction would not work. The possible
values of δS|A would depend on the state on B, so any function of δΨ that returned δS|A
could not be sensitive only to the fields in A, since the possible value of the fields there
depends on the fields in B.

6.6.5 The Python’s lunch

Consider an asymptotically AdS spacetime, and let R be a spatial subregion of the conformal
boundary – or perhaps a complete connected component. Next, assume that R has three
extremal surfaces homologous to it: Xmin, Xout and Xbulge, as shown in Fig. 6.19 in the case
where R is a complete boundary component. Xmin is the HRT surface, which defines the
entanglement wedge. Xout is an extremal surface forming a candidate HRT surface, but it
has area greater than Xmin. Xbulge lies in between the two, has greater area than either, and
it is not minimal on any spatial slice. These three surfaces together form a structure known
as a “Python’s lunch” – see Fig. 6.19. It was conjectured in [116] that the computational
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Figure 6.19: A spacetime with a Python’s lunch for a complete boundary component R. The
wedge to the left and right of Xmin are the entanglement wedges of the left and the right
CFT, respectively.

complexity required to reconstruct operators in the Python’s lunch from the CFT scales as

∝ exp

(
Area[Xbulge]− Area[Xout]

8GN

)
. (6.55)

In the semiclassical case, we replace HRT with QES and Area/4GN with the generalized
entropy. Thus, the reconstruction of operators in the lunch from operators near the boundary
is non-perturbative in GN , and should not be achievable when just accessing the perturbative
bulk description (including gravitons). Further evidence for this was found in [117], where
they showed that classical boundary sources, together with repeated forwards and background
time evolution (i.e. time-folds), cannot be used to expose the lunch region and make its data
causally accessible from the boundary.

The findings in this paper play nicely with the Python’s conjecture. The bulge provides
a surface that can be dressed across, giving it a functional role. It enables perturbations
with spatial compact support around the bulge, never disturbing the complement wedges
to the lunch, including the exterior of Xout, which is the part of the entanglement wedge
that is believed to be simple to reconstruct. Furthermore, at least in spherical symmetry,
bulge surfaces are supported by matter, which provides additional background structures to
anchor diffeomorphism invariant with respect observables to. So it is quite reasonable that
the perturbatively quantized theory supports a non-trivial localized algebra of observables
inside the Python that commutes with observables in the simple wedge, and thus observables
near the boundary, to all orders in perturbation theory in GN (see [118] for a recent discussion
of this algebra).
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Chapter 7

Canonical Purification of Evaporating
Black holes

Abstract: We show that the canonical purification of an evaporating black hole after
the Page time consists of a short, connected, Lorentzian wormhole between two asymptotic
boundaries, one of which is unitarily related to the radiation. This provides a quantitative
and general realization of the predictions of ER=EPR in an evaporating black hole after
the Page time; this further gives a standard AdS/CFT calculation of the entropy of the
radiation (without modifications of the homology constraint). Before the Page time, the
canonical purification consists of two disconnected, semiclassical black holes. From this, we
construct two bipartite entangled holographic CFT states, with equal (and large) amount of
entanglement, where the semiclassical dual of one has a connected ERB and the other does
not. From this example, we speculate that measures of multipartite entanglement may offer
a more complete picture into the emergence of spacetime.
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7.1 Introduction

The recent developments on the black hole information problem were catalyzed by a holo-
graphic calculation of the entropy of an AdS black hole evaporating into a reservoir [1, 2].
Central to these results was the appearance of a novel quantum extremal surface (QES) χ [3],
a stationary point of

Sgen[χ] =
Area[χ]

4GN

+ SvN[χ], (7.1)

where the second term above computes the von Neumann entropy on one side of the surface χ.
Contrary to expectations that QESs appear only in the vicinity of their classical counterparts
(which compute von Neumann entropy in the classical setting [4–6]), QESs crucially can
appear even in spacetimes that have no classical extremal surfaces – such as black holes
formed from collapse. See [7] for a recent review.

The von Neumann entropy is expected to play a central role in the emergence of spacetime
(see work starting with [8–12]). The closely related, but not identical, conjecture of ER=EPR
proposes that (bipartite) entanglement between two parties can be geometrized by a spacetime
connecting them [13–15]. (This was originally proposed as a way to make progress on the
monogamy argument of the firewall problem [16–18] by encoding the black hole in the
radiation itself, see [14, 19–21] among others.) This expectation is realized in many examples
in AdS/CFT, most prominently in the case of the thermofield double on two identical copies
of a holographic CFT:

|TFD⟩ = 1√
Z

∑
n

e−βEn/2 |ñ⟩ |n⟩ . (7.2)

For sufficiently high temperatures (and thus entanglement), this state is dual to a static black
hole [22] with an Einstein-Rosen bridge (ERB) connecting the asymptotic boundaries. This
is despite the fact that each individual term in the sum must be disconnected whenever a
geometric dual exists. Since forming the sum creates both entanglement and connection, it
appears that entanglement is a crucial ingredient in connectedness.

There are several subtleties in the statements of ER=EPR and spacetime emergence from
entanglement. When is the connection semiclassical? Without an independent definition
of a “highly quantum” wormhole, what is a sharp (falsifiable) formulation of ER=EPR?1

In the specific context of AdS/CFT in the limit where the bulk is semiclassical, if a given
bipartite CFT state (with a semiclassical dual) has a sufficiently large amount of entanglement
, is it enough to guarantee that a semiclassical spacetime that connects them is emergent?
Addressing these questions is a critical stepping stone towards understanding spacetime as
an emergent phenomenon.

In light of these unknowns and the novel developments starting with [1, 2], let us ask the
following: does the new QES after the Page time shed light on the subtleties of ER=EPR
and how or whether entanglement builds spacetime?

A specific prediction of ER=EPR is that an old black hole should feature a semiclassical
connection between the interior and the radiation. In the context of the recent developments

1Note that there is import in ER=EPR even in the absence of such a precise definition: if there is any
sense in which the black hole interior is “connected” to the radiation, it is possible to act on the black hole
interior by acting on the radiation. We thank J. Maldacena for discussion on this point.
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on the holography of evaporating black holes, this question naively presents a puzzle: the
island [23] is not connected to the radiation via an ERB, suggesting a potential conflict with
ER=EPR.2 This is somewhat ameliorated by the doubly holographic model (see literature
starting with [23] in the context of the Page curve [24]), but the latter requires the bulk
matter to be holographic with a classical bulk dual, which limits its range of applicability.
Other connections include the Lewkowycz-Maldacena [25] style justifications for the novel
QES via spacetime replica wormholes [26, 27], where the latter may be a Euclidean avatar
of ER=EPR; these non-factorizing geometries naturally present a new and exciting set of
challenges [28–30]. Yet another possibility is turning on gravity in the reservoir – without
requiring double holography (see work starting with [31, 32]) – and subsequently testing
whether an ERB forms dynamically. In [32], it was shown that black holes evaporating into
gravitating baths in certain toy models feature a Hawking-Page-like [33] transition after the
Page time; of particular relevance is the work of [34, 35], which started out with boundary
conditions for two gravitating universes in JT gravity in the state (7.2) and showed that a
Euclidean path integral preparation gave a dominant connected geometry for the computation
of the von Neumann entropy. Yet another approach to connect the black hole to the radiation
was made in [36], relying crucially on an end-of-the-world brane to cap off the black hole
spacetime at r > 0. This allowed an additional spacetime representing a toy model of the
radiation to be glued to the brane to build connection.

As advocated in [37], we would like to work fully in the Lorentzian bulk, in broad generality,
and via operational definitions. Recall that the expectation expressed in [13] is not necessarily
that a semiclassical connection exists in the original state, but that the application of a (high
complexity) unitary to the radiation should result in a semiclassical wormhole connecting
the old black hole to the radiation; that is, since the spacetime is not already semiclassically
connected, a unitary on the radiation should render it so. We will therefore be concerned with
finding such a unitary map, independently of whether the bath is gravitating or not. Our
procedure will be entirely Lorentzian and fully generalizable to any number of dimensions,
choice of UV completion (under assumption of the QES formula), and reasonable generic
matter.

We give a precise and general procedure that shows that there exists a unitary acting only
on the radiation of an old black hole that converts the entanglement between an old black
hole and its radiation into a semiclassical ERB. In the context of a two-sided black hole, a
simple way to realize this expectation is by merging the radiation with the left black hole.
However, prior to the discovery of the novel QES, this perspective was highly nontrivial in
the context of a single-sided black hole, as there was no clear geometric division between the
“black hole” system and the subset of the interior that could be modified by high complexity
operations on the radiation.

The novel QES elucidates this picture: after the Page time, there is a region behind the
horizon that can be modified by acting exclusively on the microscopic state of the radiation
ρRAD. This is a key ingredient: the existence of a nontrivial QES after the Page time means
that a Cauchy slice of the entanglement wedge of a single-sided black hole is extendible (even

2There is a sense in which the interface between the CFT and the bath provides a connection between
the black hole and the radiation, but this is not a connection through a gravitational spacetime, and the
connection can anyway be severed by turning on reflecting boundary conditions.
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Figure 7.1: To the left we see the entanglement wedge of ρ, and in the center we see WE[ρ]
glued to its CPT conjugate across the QES/HRT surface χ. To the right we display the final
evolution of the data on Σ ∪ Σ̃, giving the spacetime dual to |√ρ⟩. Shockwaves (red) are
present when including quantum corrections.

though the boundary Cauchy slice is inextendible). One may hope to apply an explicit map:

ρRAD → UρRADU
†, (7.3)

whose bulk dual introduces a boundary behind the QES, realizing precisely the post-Page
time expectations that entanglement builds spacetime. Since the novel QES is a generic
phenomenon for old black holes [38] (possibly even away from AdS [38–41]), it may be possible
to give an algorithmic prescription for the map U that realizes ER=EPR in general old black
holes.

We give a prescription that shows that such a unitary exists using the so-called canonical
purification3. A mixed state ρ can be purified by doubling the Hilbert space on which it acts
H → H⊗H, and essentially entangling ρ with its CPT conjugate. A familiar example of
this procedure is the purification of the Gibbs ensemble via the thermofield double state. As
is standard in the literature, we shall refer to the canonically purified state as

∣∣√ρ〉, and to
the trace of

∣∣√ρ〉 over the original Hilbert space (on which ρ acts) as ρ̃. This construction
will be reviewed at greater length in Sec. 7.2.

The canonical purification has a well-understood geometric dual. Given a mixed CFT
state ρ with a classical bulk dual and entanglement wedge WE[ρ], it was proposed in [42]
that ρ̃ is dual to W̃E[ρ], the CPT-conjugate of WE[ρ], and the spacetime dual to the full
canonically purified state |√ρ⟩ is constructed by gluingWE to W̃E along the HRT surface [5].
See Fig. 7.1. [43] gave a path integral argument for this proposal (and further developed it in
the context of the reflected entropy); the proposal was generalized to include bulk quantum
corrections in [44]. When quantum corrections are included, the bulk state is canonically
purified as well, and the spacetime incurs a shock at the gluing. The geometric dual to |√ρ⟩
will also be reviewed in detail in Sec. 7.2.

We are now in position to explain our main construction. Consider an AdS black hole
coupled to a reservoir, as described in [1, 2]. There are two or three “boundary” subsystems

3Our prescription is an indirect proof of existence: the canonical purification of the black hole maps
unitarily to the radiation, but we do not know how to explicitly write down this unitary.
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Figure 7.2: The three relevant non-gravitational systems in the microscopic picture of the
evaporating two-sided black hole at a moment of time. The blue circles supports holographic
CFTs, while the orange plane supports the reservoir system.

(a) (b)

Figure 7.3: The relevant subregions and states for evaporating one-sided (a) and two-sided
(b) black holes in AdS.

of interest, depending on the whether the black hole is one- or two-sided 4: the microscopic
state of the radiation, with state ρRAD, whose entropy follows the unitary Page curve [24],
and the state of the remaining black hole ρBH; if there are two boundaries, we shall call
the remaining black hole states ρBH,L and ρBH,R. For clarity we shall always take the right
boundary to be coupled to the reservoir. This is illustrated in Fig. 7.2. On the bulk side, we
have three or four bulk regions: the non-gravitating, coarse-grained reservoir rad, whose state
we shall denote ρrad; the entanglement wedge of the old black hole, WE[ρBH], (or WE[ρBH,R]
for two boundaries), whose state we shall denote ρbh (or ρbh,r); the island [23] i, whose state
we shall denote as ρi; and if relevant, the left black hole WE[ρBH,L], whose state is denoted
by ρbh,ℓ. These are illustrated in Fig. 7.3.

We build the canonical purification |
√
ρBH(t)⟩ of the black hole subsystem, working for

now with a one-sided black hole for pedagogical clarity. Before the Page time, at t1 < tP, the
QES is empty, and so gluing WE[ρBH(t1)] to its CPT conjugate across the QES amounts to
simply introducing a second copy of the spacetime.5

4We can similarly consider more boundaries; the story is qualitatively unchanged. Of course, if there
are more than two CFT subsystems, there is an expectation that some multipartite entanglement will be
important.

5W̃E [ρBH] is introduced to replace the bath system as the purifier of ρBH, so the bath system is removed
rather than doubled.
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Figure 7.4: On the left we see the QES χ of an evaporating black hole for some time t > tP .
On the right, we see the canonical purification, dual to the state |

√
ρBH(t)⟩.

After the Page time, the dominant QES is nontrivial: CPT conjugation around the QES
yields a connected spacetime. 6 Because the QES is close to the event horizon, this is a
relatively short wormhole, reminiscent of (but not identical to) AdS-Schwarzschild. This is
illustrated in Fig. 7.4. Since the QES for ρBH is identical to that of ρ̃BH, the Page curve
for the black hole immediately implies a Page curve for its canonical purification; since the
von Neumann entropy is a unitary invariant (and purifications are unitarily-related), this
also implies a Page curve for the radiation. Let us emphasize this point: by employing this
unitary map, we circumvent any modification of the homology constraint in the QES formula:
the standard QES formula applied to the canonical purification obeys the Page curve, which
is a unitary invariant. The ERB that forms in the canonical purification after the Page time
is a more conventional and more general manifestation of the connectivity that appears in
the doubly holographic model. Because ρRAD and the canonical purification of ρBH are both
purifications of ρBH, they are related by a unitary. Thus this immediately shows that there
exists a unitary acting exclusively on the post-Page radiation, which results in a connected
spacetime.

We emphasize that while this story is consistent with earlier expectations that a black hole
maximally mixed with its radiation should have a manifestation as an AdS-Schwarzschild-
like geometry, this realization of that expectation is crucially reliant on the more recent
understanding of the phenomenon of QESs far from classical extremal surfaces.

It may be tempting at this point to conclude that the canonical purification is a good
candidate for a precise realization of the ‘entanglement builds spacetime’ paradigm: if the
canonical purification of a density matrix with sufficient entanglement has a semiclassical
bulk dual, then that bulk dual is connected.

Here, however, we recall the case of the young single-sided black hole, whose canonical
purification as described above is disconnected. Because the Page curve is non-monotonic, we
may choose t1 < tP and t2 > tP such that SvN[ρBH(t1)] = SvN[ρBH(t2)]. However |

√
ρBH(t2)⟩

gives a connected geometry, while |
√
ρBH(t1)⟩ has a disconnected bulk dual even though they

have the same von Neumann entropy. This serves as a concrete example of a holographic
semiclassical spacetime satisfying the standard QES prescription (with no modification of

6This gluing procedure bears some resemblance to [45], but the similarity is superficial.
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the homology constraint) in which the amount of fine-grained entropy cannot diagnose
the emergence of spacetime connecting the bipartite subsystems. Let us emphasize this
point: while nonstandard generalizations of the QES formula that modify the homology
constraint – i.e. the “island” formula – may require a more liberal interpretation of spacetime
emergence (e.g. in an additional dimension [23] or via replica wormholes [26, 27]), here
we have a conventional setup in which we may apply the standard QES formula (with the
disconnected dominant topology in the replica trick), and we find that a large amount of
bipartite entanglement cannot guarantee an emergent connected spacetime.

To summarize, our main technique relies on the following observation: that the canonical
purification of an entanglement wedge with a nontrivial QES is connected, while the canonical
purification of an entanglement wedge with an empty QES is disconnected. Our main purpose
here consists of applications of this observation in a context where nontrivial QESs were
previously unexpected (e.g. single-sided black holes formed from collapse). In those contexts,
this property of the canonical purification allows us to (1) give an argument for the existence
of the unitary URAD realizing ER=EPR, and (2) show that bipartite entanglement may fail
to build spacetime even in bipartite states with semiclassical bulk duals.

Furthermore, we show that obvious refinements to spacetime from bipartite entanglement
conjecture, from reflected entropy to mutual information, complexity, or proximity to the
maximally mixed state (as measured by Sthermal − SvN) cannot be solely responsible for
spacetime emergence. This requires a refinement of the general expectation (e.g. [46]) that a
sufficient von Neumann entropy of bipartite holographic states necessarily builds spacetime
between the subsystems.

Under the assumption of entanglement wedge nesting and reconstruction, our results are
robust against any unitary acting on the radiation: amount of entanglement is not a sufficient
criterion for a semiclassical connection between the black hole and the (unitarily modified)
radiation. It is simple to see why: any Cauchy slice of the entanglement wedge of the young
black hole is inextendible. Without modifying ρBH(t1) in some way, it is impossible to create
a spacetime connection between it and any other spacetime.7

This has somewhat different implications for ER=EPR and the specific question of
spacetime emergence. There is at least one interpretation of ER=EPR that maintains its
applicability to the black hole information problem and is consistent with our results: that a
factorized unitary URAD ⊗ UBH applied to the young black hole and its radiation |Ψ(t < tP )⟩
can yield a connected geometry.8 This requires UBH to change the topology of WE[ρBH],
but there is no obvious obstacle to that. However, this interpretation poses a puzzle for
spacetime emergence independent of the information problem considerations of ER=EPR.
To understand this latter phenomenon, we would like to identify the property of a given
quantum state (rather than some unitary equivalent) that generates spacetime. In the case of
a young black hole, we have a bipartite state |

√
ρ(t < tP )⟩ whose marginals have conventional

semiclassical bulk duals with O(G−1N ) bipartite entanglement, and yet that entanglement
fails to build spacetime between them. In the case of the canonically purified old black hole
|
√
ρ(t > tP )⟩, the same amount of bipartite entanglement successfully builds a connecting

spacetime. It is immaterial that a factorized unitary could possibly be applied to make
7Unless one adds additional spacetime dimensions, as in [23], or the semiclassical picture for ρBH is invalid.
8It is of course trivial that a nonfactorizing unitary can accomplish this.
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|
√
ρ(t < tP )⟩ connected: our task, to understand what gives rise to an emergent spacetime

in a given state, remains unsolved. In fact, this example makes it clear that whatever
quantity is responsible, it cannot be a unitary invariant. This, along with other considerations
that we will discuss in Sec. 7.4, is suggestive that multipartite entanglement may play a
crucial role in distinguishing between even bipartite states with connected and disconnected
semiclassical duals. We conclude with a discussion in Sec. 7.5 of the shortfalls of various
natural refinements and remaining possibilities, including the possible role of reconstruction
within a code subspace of typical microstates.

7.2 Holographic Canonical Purification

Let us begin with a brief review of the canonical purification of some mixed state ρ, for
convenience chosen to be in a diagonal basis:

ρ =
∑
i

pi|ρi⟩⟨ρi|. (7.4)

We may obtain a pure state by doubling the Hilbert space and essentially duplicating the
conjugated state by sending bras to kets:

|√ρ⟩ =
∑
i

√
pi |ρi⟩|ρ̃i⟩, (7.5)

where |ρ̃i⟩ is the CPT conjugate of |ρi⟩. We will refer to the trace of |√ρ⟩ over the original
system as ρ̃ for clarity.

A very familiar example of this procedure is the map from the Gibbs ensemble to the
thermofield double state:

ρβ =
1

Z

∑
e−βEn|n⟩⟨n| → |TFD⟩ ≡

∣∣√ρβ〉 = 1√
Z

∑
e−βEn/2|n⟩|ñ⟩. (7.6)

The canonical purification may be thought of as the generalization of this procedure to more
general, non-thermal states. The mathematically rigorous procedure, including the proof of
existence and uniqueness, is simply an implementation of the GNS construction [47, 48].

In the classical bulk regime, the holographic dual of this purification was proposed [42]
to be the CPT-conjugation of WE[ρ] across the HRT surface. To be precise, we take any
Cauchy slice of WE[ρ] with its gravitational initial data (Σ, hab, Kab) as well as initial data
for any matter fields. In an abuse of notation, we will collectively refer to this entire set of
initial data of WE[ρ] as Σ. We then CPT-conjugate Σ across the HRT surface, generating
a maximally extended Cauchy slice for a complete, possibly multi-boundary spacetime. 9

This can be thought of as a gluing of Σ to its CPT conjugate Σ̃ across the HRT surface χ.
The initial data is then evolved via the standard Cauchy problem to generate the rest of the
spacetime. This is illustrated in Fig. 7.1.

9The spacetime will be multi-boundary whenever the HRT surface in question is nontrivial for a complete
connected boundary. The procedure however can also be implemented for subregions.
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Figure 7.5: On the left we see the bulk picture of an AdS black hole evaporating into a
reservoir, with χ the QES for some time t > tP . On the right, we see the microscopic picture
at the fixed time t.

The construction is straightforward largely due to the fact that the HRT surface by
definition has vanishing mean curvature Ka = 0, which simplifies the junction conditions [42,
49] of Σ with Σ̃. Under the inclusion of quantum corrections, the classical extremality
condition Ka = 0 is replaced by quantum extremality. The quantum corrected generalization
of the holographic dual to the canonical purification naturally requires CPT conjugation
around the QES (and canonical purification of the bulk state) [44]. A QES, however, does
not generically satisfy Ka = 0. Consequently, gluing Σ to its CPT conjugate incurs a shock
that corrects for the mismatch between Ka[χ] on approach from Σ and from Σ̃. The precise
form of the shock, derived in [44], is:10

Tkk =
1

π
δ(λ)

δSout[V (λ)]

δV (λ)
, (7.7)

where ka is a null vector orthogonal to χ, Sout the von Neumann entropy of the bulk state
outside of the QES, λ the affine parameter of ka, and V (λ) a function determining the
location of a slice of the null congruence generated by ka – see [44] for details. The protocol,
including the expected location of the shocks, is illustrated in Fig. 7.1.

Note that by definition, the canonical purification leaves the original state ρ unaltered.
Likewise, its bulk dual makes no modification to WE[ρ]. Thus any canonical purification of
the boundary dual to an evaporating black hole will leave the black hole entanglement wedge
unchanged.

7.3 ER=EPR from the New QES

As a central point of ER=EPR, [13] conjectured that the Hawking radiation of an old black
hole connects to the black hole interior through a wormhole. While the wormhole may not
be geometric, the proposal was that it can be made semiclassical by acting on the Hawking
radiation with a unitary – e.g. collapsing it into a second black hole [14].

10We must multiply by a factor of two, since we are CPT conjugating about a QES rather than a quantum
minimar, leading the two shocks of [44] to coincide.
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As explained in the introduction, we take an asymptotically (say, one-sided) AdS black
hole, which we shall initially take to be evaporating into a reservoir. Let |Ψ(t)⟩ be the full
state of the system on HBH ⊗HRAD at boundary time t > tP and denote the reduced states
as ρBH(t) and ρRAD(t). See Fig. 7.5.

The canonical purification |
√
ρBH(t)⟩ ∈ HBH⊗HBH after the Page time is a new two-sided

connected spacetime, which is CPT symmetric about χ(t); the bulk quantum state |ψ(t)⟩ is
the canonical purification of ρbh(t), the bulk quantum state in WE[ρBH(t)]. How would we
diagnose connectivity in this case if we do not have access to the global geometry of spatial
slices?

Nonlinear quantities such as the mutual information have historically been proposed as
appropriate diagnostic tools for spacetime connectivity [8]. For instance, in a purely classical
bulk, the mutual information of two subregions is O(1/GN) only if their entanglement
wedge is connected. These ideas immediately break down once bulk entanglement can make
appreciable contributions to Sgen[χ], as we will see in later sections.

It is fairly simple to give a specialized sufficient condition for connectivity of a class
of low-complexity states: simply couple the two sides together via some Gao-Jafferis-Wall-
style protocol [50] (in JT gravity as in [51]). If the QES is approximately on the horizon,
by introducing this coupling, we can make the wormhole traversable; this effect is easily
detected by the near-boundary limit of bulk correlators [51]. In higher dimensions, under
the assumption that a similar protocol as in [50] can be made to work in general, the same
diagnostic may be used as a sufficient condition. For the states that we consider in this paper
this is actually enough to unambiguously diagnose connectivity. If we execute this protocol
for our post-Page time canonical purification, we will indeed recover connectivity for this
spacetime.

As an aside, we may execute this protocol whenever the spacetime has no Python’s
lunch [52]: if the outermost QES is in fact the minimal QES. In that case, the intuition
would be that the outermost (and in this case, minimal) QES lives on the bifurcation surface
whenever there is no infalling matter (and gravitational waves) [42]; this matter may in
principle be removed by acting with simple sources [42, 53], however quantum backreaction
introduces a number of subtleties discussed in [54].

Returning to the construction at hand, since any two purifications of ρBH(t) are unitarily
related,11 there exists a unitary URAD with support only on HRAD that satisfies

URAD ⊗ IBH |Ψ(t)⟩ =
∣∣∣√ρBH(t)

〉
. (7.8)

Here URAD can be seen as a quantum computation on the radiation that gives a semiclassical
geometrization of the entanglement between the radiation and the black hole. Effectively,
URAD collapses the Hawking radiation into a black hole and then shortens the resulting
wormhole as much as is possible when only acting on the radiation. Since URAD has no

11For this to be true, the two Hilbert spaces should have the same dimension. One might wonder if HRAD

is too large to be unitarily related to HBH. However, this should not cause concern: most of the Hilbert
space HRAD is not explored by the Hawking radiation – we only permit modes into HRAD that could fit into
HBH in the first place. Thus, we can divide HRAD = HENT ⊗HAUX with |HENT| = |HBH|, and act with a
unitary on the radiation to get a state that factorizes on HENT ⊗HAUX, so that the factor HENT contains all
entanglement with the black hole.
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support on HBH, the entanglement wedge of BH is left unchanged. So is the entanglement
spectrum of the black hole.

The procedure works equally well for two-sided black holes. With two CFTs on HBHL
⊗

HBHR
, with the system on HBHR

coupled to HRAD, |
√
ρBHR

(t)⟩ geometrizes the entanglement
between BHR and BHL ∪ RAD.12 Now the unitary relating the full state |Ψ(t)⟩ ∈ HBHL

⊗
HBHR

⊗HRAD to the canonical purification has support only on HBHL
⊗HRAD and effectively

throws the radiation into the left black hole and shortens the wormhole as much as possible
while leaving the right black hole alone.

Let us emphasize a few aspects of our construction. First, the canonical purification of
the (right) black hole is not identical to the thermofield double and can never be made into
the TFD as long as we only act on the radiation (and left black hole). Second, while it
might be intuitive that some action on the Hawking radiation, like collapsing it into a black
hole, can create a semiclassical geometric connection to the original black hole, there has to
our knowledge not been any explicit demonstration of a unitary implementing this in broad
generality. Our protocol relies crucially on the recently discovered post Page time QES. In
fact, more surprisingly, we will show in Sec. 7.4 that in the absence of such a QES, it is not
possible to construct a wormhole connecting an unmodified WE[ρBH] to the radiation even
when the two are highly entangled, showing that in the absence of significant modifications,
a strict interpretation of ER=EPR will not hold.

7.3.1 A Simple AdS/CFT Dictionary for Unitary Invariants

Because |
√
ρBH(t)⟩ is unitarily related to |Ψ(t)⟩ via a unitary with no support on BH,

SvN[ρRAD(t)] can be computed in the CPT conjugated spacetime. In particular, computing
SvN[ρRAD(t)] in |

√
ρBH(t)⟩ requires no modification of the homology constraint of the QES:

|
√
ρBH(t)⟩ is a standard instance of AdS/CFT. The entropy of the complement of BH is

computed by Sgen[χ[t]], and the state on the complement of BH is unitarily related to ρRAD(t);
thus Sgen[χ[t]] = SvN[ρRAD(t)]. More generally, any quantity that is invariant under local
unitaries will be identical in the two states, giving a way of computing unitary invariants
without novel modifications.13

The standard AdS/CFT picture of the radiation presented by |√ρBH⟩ provides a simple
geometrization of the difference in the experience of an infalling observer before and after the
Page time. If we turn on a sufficiently early local unitary in ρ̃BH[t > tP ], an infalling observer
will encounter the energy shock resulting from this unitary. This is illustrated in Fig. 7.6.
We naturally expect that acting on the radiation can modify the experience of the infalling
observer after the Page time; the dual of |√ρBH⟩ precisely geometrizes this expectation,
yielding the same setup as in Marolf-Wall [56]. Indeed, it is geometrically clear that there is
no localized operator acting on ρ̃BH[t < tP ] that can modify the experience of an infalling
observer prior to the Page time. See Fig. 7.6.

12Note that in this case we may also choose to canonically purify the state on HBHL ⊗HBHR , resulting in
|
√
ρBHR BHL(t)⟩. The same line of reasoning applies.

13It would be interesting to understand the import on the work of [55] regarding implications of relaxing
the homology constraint.
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Figure 7.6: Canonical purifications after (left) and before (right) the Page time. After the
Page time, a signal sent from B̃H via some local unitary Ũ can effect an infalling observer
from BH. Before the Page time, this cannot happen.

7.3.2 Concrete Example: JT Gravity with Conformal Matter

To alleviate any concerns about potential sick behavior of the canonical purification, let us
now construct fully explicit canonical purifications of the evaporating one-sided black hole in
JT gravity coupled to conformal matter. Indeed, we will see that the average null energy
condition holds and that the QES is acausally separated from the conformal boundary. We
first summarize the salient results from [2, 57].

The Evaporating Black Hole in JT Gravity

We work with JT gravity [58–60] coupled to a CFT

IJT = I0[gab] + Ig[gab, ϕ] + ICFT[gab],

I0 =
ϕ0

16πG

[∫
M

R + 2

∫
∂M

K

]
,

Ig =
1

16πG

[∫
M

ϕ(R + 2) + 2

∫
∂M

ϕ(K − 1)

]
,

(7.9)

which on-shell yields a locally AdS2 metric with the following dilaton equations of motion:

−∇a∇bϕ+ gab∇2ϕ− gabϕ = 8πGNTab, (7.10)

where Tab is the CFT stress tensor. We work in the semiclassical approximation where we
replace Tab with ⟨Tab⟩, and omit brackets from now on.

We take the boundary ∂M of the AdS2 spacetime to lie at a finite cutoff, with boundary
conditions

huu =
1

ϵ2
, ϕ|∂M =

ϕ̄r
ϵ
, (7.11)
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for constants ϕ̄r and ϵ ≪ 1, where huu is the induced metric on the boundary, and u the
boundary time. We will make use of Poincare coordinates,

ds2 = − 4dx+dx−

(x+ − x−)2 =
−dt2 + dz2

z2
, x± = t± z, (7.12)

and describe the boundary location by the function f(u), which gives its Poincare time as
function of boundary time: t|∂M = f(u). Solving (7.11) to leading order in ϵ then gives
z|∂M = ϵf ′(u).

A two-sided static JT black hole at temperature T and with energy E is given by

ϕ = 2ϕ̄r
1− (πT )2x+x−

x+ − x− , E =
πϕ̄r
4GN

T 2. (7.13)

In [2] a black hole at temperature T0 was coupled to a bath CFT2 living on a half-line by
turning on absorbing boundary conditions at the AdS boundary for t ≥ 0. Instantly turning
on absorbing boundary conditions leads to the injection of a positive energy shockwave into
the bulk that raises the temperature of the black hole to T1 > T0 at t = 0+, and after that the
effective temperature falls off as the black hole evaporates. The resulting bulk stress tensor is

Tx−x−(x
−) = ESδ(x

−)− c

24π
{f−1(x−), x−}θ(x−), Tx+x+ = Tx+x− = 0, (7.14)

where ES is the injected shockwave energy, c the central charge of the bulk CFT, {·, ·}
the Schwarzian derivative, and θ a step function. After determining the stress tensor, the
backreaction on the dilaton can be found using the fact that the dilaton equations of motion
can be directly integrated when Tx+x− = 0 [60].

Now, to explicitly solve for the boundary trajectory f(u), it is useful to have the spacetime
energy E(u), which is given by:

E(u) = θ(−u)E0 + θ(u)E1e
−ku, k =

cGN

3ϕ̄r
, (7.15)

where E0 =
πϕ̄r
4GN

T 2
0 and E1 = E0 + ES = πϕ̄r

4GN
T 2
1 . (7.15) together with (7.56) in the appendix

can be used to solve for f(u).

The Construction

Now let us turn to the case at hand: the explicit construction of the canonical purification
after the Page time, which here means u ∼ O(k−1). We can either consider the same setup
as in [2], meaning we work with a two-sided black hole evaporating on one side, or we can
replace the left conformal boundary with an (unflavored) end-of-the-world brane, so that our
spacetime is one-sided, as in [61]. The effect of this modification is that the early time QES
becomes the empty surface, which is now homologous to the right conformal boundary. The
late time QES is unchanged, giving thus the same late time canonical purification.14

14We assume the brane has sufficient tension so that, at t = 0, the location of the brane approaches that of
the would-be physical conformal boundary defined by (7.11).

205



To construct the canonical purification at some fixed boundary time u∂, we do the
following: (1) take a spatial slice Σ anchored at the late time QES and the boundary at
t∂ = f(u∂) and compute the dilaton and CFT stress tensor on Σ, (2) glue Σ to its CPT
conjugate slice Σ̃ across the QES, and (3) evolve the new initial data Σ∪ Σ̃ with some choice
of boundary conditions.

Any choice of boundary conditions will give the same spacetime in the Wheeler-de-Witt
patch D[Σ ∪ Σ̃], and so the geometry encoded in the canonical purification at time t∂ , which
encodes the entanglement structure between the black hole and the Hawking radiation at
that time, does not care about boundary conditions. However, it is interesting to see a more
complete development of the spacetime, and so we will choose to evolve the state beyond
D[Σ ∪ Σ̃] with reflecting boundary conditions. The latter means that there is no flux of
energy across the conformal boundary:

Tx−x−|∂M − Tx+x+ |∂M = 0. (7.16)

This seemingly presents a problem: the data on Σ is just the data inherited from the
evaporating black hole, so for any u∂ > 0 and choice of Σ, the left hand side of (7.16) is
nonzero. One way to deal with this is to turn off the transparent boundary conditions over
a small time window 2δu around u∂, which leads to the injection of an energy shock and
imperfect reflectivity over the time window [u∂ − δu, u∂ + δu]. We can work in the limit
δu→ 0 so that the injected shock becomes a delta function. In this case, evolving Tab with
reflecting boundary conditions translates into finding a distributional solution of ∇aT

ab = 0
that agrees with the stress tensor in D[Σ] ∪D[Σ̃], and which satisfies reflecting boundary
conditions in the distributional sense:∫ u0+δu

u0−δu
du [Tx−x−(u)− Tx+x+(u)] |∂M = 0, ∀u0 ∈ R, δu > 0. (7.17)

Initial data

Let now u∂ ∼ O(k−1) be after the Page time. We begin by finding the initial data to be
evolved in Poincare coordinates. After this we transition to global coordinates, where we do
the full evolution.

The late time QES and the boundary time in question is strictly to the future of the
shockwave arising from turning on the coupling to the bath, so the stress tensor is just given
by the Schwarzian term in (7.14). As shown in [2], for u ∼ O(k−1), we have

{f−1(u), u} = 1

2(u− t∞)2
(
1 +O(k2e−ku)

)
, (7.18)

where t∞ is the Poincare time at which the dilaton boundary terminates to the future in the
original evaporating black hole spacetime. It can be checked that the approximation (7.18) is
valid for all x− covered by a spatial slice running from the boundary to the QES, and so our
stress tensor initial data on the interior of Σ, or more precisely in D[Σ], reads

Tx−x−|D[Σ] ≈ −
c

48π

1

(x− − t∞)2
. (7.19)
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As we alluded to earlier, additional shocks will be present at ∂Σ in the canonical purification,
i.e. at the QES and at the conformal boundary. We will return to these shocks in a moment.

The calculation of the dilaton in D[Σ] is somewhat more involved, and carried out in the
appendix. The final result is

ϕ(x+, x−)|D[Σ] =
ϕ̄r

2(x+ − x−)
[
(2t∞ − x− − x+)C − k(x+ − x−)

+ k(2t∞ − x+ − x−) log
(
t∞ − x−
t∞

)]
,

(7.20)

where we have neglected terms of order O ([t∞ − x±]2) in the square brackets, which are
suppressed since t∞ − x± is non-perturbatively small on the whole of Σ. The constant C is

C = 4

t∞
+ k(2 + γ), (7.21)

where the O(1) constant γ is defined in the appendix.

Changing coordinates

We have thus far determined the initial data on D[Σ]. Let us now transition to global
coordinates, where we will work out the shocks and evolve our initial data. We define global
coordinates through

µ(t+ λ) =
sin(τ − τ0)

cos(τ − τ0) + sin ρ
, ρ ∈

(
−π
2
,
π

2

)
,

µz =
cos ρ

cos(τ − τ0) + sin ρ
,

(7.22)

where λ, τ0 ∈ R and µ > 0 are constants parametrizing isometries that we can choose freely
to obtain the most convenient coordinates. This brings the metric to the form

ds2 =
1

cos2 ρ

(
−dτ 2 + dρ2

)
=
−dw+dw−

cos2
(
w+−w−

2

) , w± = τ ∓ ρ, (7.23)

with the right conformal boundary is at ρ = π
2
.

For convenience we now want to pick λ, µ, τ0 so that our initial data slice Σ can be taken
to be the τ = 0 slice, and with the QES at ρ = 0. The solution is worked out in the appendix.
The result is

χ ≡ µ(t∞ + λ) = −1

4
+

5e−ku∂/2k

8πT1
+O(k2), (7.24)

τ0 =
π

2
− ke−ku∂/2

πT1
+O(k2), (7.25)

µ =
1

t∞ − f(u∂)

(
3

4
− 3keku∂/2

8πT1
+O(k2)

)
. (7.26)

207



Figure 7.7: Illustration of the discontinuities of the null expansions across the QES, where θ±
are the expansions in the right wedge.

Determining the shocks

Next, let us work out the shocks present at the QES caused by the discontinuous derivatives
of the dilaton after gluing Σ to Σ̃. In the appendix, we derive the null junction conditions in
JT gravity and show that a null junction S with a future-directed generator ka (unrelated to
the constant k) induces a stress tensor shock

Tabℓ
aℓb = − 1

8πGN

δ(λ)[ℓa∇aϕ], (7.27)

where ℓa =
(

d
dλ

)a is the null tangent of a future-directed (not necessarily affine) geodesic with
k · ℓ = −1 and λ = 0 on S. The bracket denotes the discontinuity across the junction in the
direction from past to future.

Consider now a specific set of null-vectors:

ℓ̃µ = (∂w+)µ, k̃µ = 2 cos

(
w+ − w−

2

)2

(∂w−)µ, (7.28)

and let us focus on the junction generated by k̃a. See Fig. 7.7. For this normalization, λ = w+.
Defining now the expansion of the QES as we approach it from D[Σ] to be

θ̃+ ≡ ℓ̃a∇aϕ|QES,Σ = ∂w+ϕ|QES,Σ, (7.29)

we have

Tw+w+|shock = −
1

8πGN

δ(w+)[θℓ̃] =
θ̃+

4πGN

δ(w+) ≡ a+δ(w
+). (7.30)
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The sign of [θℓ̃] is explained in Fig. 7.7. A completely analogous computation gives that

Tw−w−|QES shock = − θ̃−
4πGN

δ(w−) ≡ a−δ(w
−), θ̃− = ∂w−ϕ|QES,Σ. (7.31)

Again the sign is explained in Fig. 7.7. Computing the dilaton derivatives at w+ = w− = 0,
we find to leading order

a+ = − c

12π
+O(k log k),

a− =
c

12π

e−u∂k/2

t∞k
+O(log k).

(7.32)

We see that Tw+w+ has negative null energy, but it is easy to check that the ANEC holds for
any b > 0.

Evolving the stress-tensor

We have now obtained a convenient coordinate system where the QES lies at (τ, ρ) =
(w+, w−) = (0, 0), and where Σ can be taken to be the slice (τ = 0, ρ ≥ 0). Let us now change
coordinates to prepare for evolution of the data. Combining (7.79), (7.19), and (7.24), we get

g(w− ≥ 0) ≡ Tw−w− |D[Σ] =

(
∂w−

∂x−

)−2
Tx−x−|D[Σ]

= − c

48π

1

[χ+ χ sin(w− − τ0) + cos(w− − τ0)]2
.

(7.33)

We can now finally write down the initial data on the full Cauchy slice:15 CPT conjugation
acts simply on our new coordinates,

CPT(w+, w−) = (−w+,−w−), (7.34)

and so to glue Σ to its CPT conjugate, all we need to do for the stress tensor is to extend it
symmetrically about ρ = 0. For the function g(w−), we must extend g symmetrically about
w− = 0. In toto we have

Tw−w− |Σ∪Σ̃ = g(w−) + a−δ(w
−),

Tw+w+ |Σ∪Σ̃ = a+δ(w
−).

(7.35)

As explained earlier, we now want a distributional evolution that (1) agrees with (7.35) on
D[Σ] ∪D[Σ̃] and (2) has reflecting boundary conditions in the distributional sense. Finding
the solution is straight forward and carried out in the appendix. Stress tensor conservation
∇aT

ab = 0 together with conformality (T aa = 0) is enough to completely solve for Tab given
some initial data. The solution is simply given by

Tw+w+ = Tw+w+(w+), Tw+w+ = Tw−w−(w−), Tw+w− = 0. (7.36)

The only complication is working out how reflecting boundary conditions are implemented.
The result on the domain |w±| ≤ π is given in the appendix.

15Of course, it is natural to take Σ to be the τ = 0 slice, in which case we set −w+ = w− = ρ above, but it
is convenient to work directly with w± coordinates.
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Figure 7.8: Canonical purification of the evaporating black hole in JT gravity. The orange
lines show positive null energy shockwaves, while the blue line is a negative null energy shock.

Tw−w−(w−) = bδ
(
w− − π

2

)
+ bδ

(
w− +

π

2

)
+ a+δ(w

− + π) + a+δ(w
− − π) + a−δ(w

−),

+ g(w−)θ
(
w− − π

2

)
θ
(π
2
− w−

)
Tw+w+(w+) = bδ

(
w+ − π

2

)
+ bδ

(
w+ +

π

2

)
+ a−δ(w

+ + π) + a−δ(w
+ − π) + a+δ(w

+),

+ θ
(
w+ − π

2

)
g(w+ − π) + θ

(
−π
2
− w+

)
g(w+ + π),

(7.37)
The solution depends on the constant b that gives the injected energy shock caused by turning
off absorbing boundary conditions. Its value depends on the CFT dynamics and how the
coupling is turned off. However, from previous studies [2, 57] we know that b > 0.

We illustrate the shock profiles in Fig. 7.8. Note that we do not care about |w±| > π for
the following reason: we only need to keep track of the spacetime that is dual to the physical
conformal boundary, which is the union of all the WdW patches of the physical conformal
boundary. Now, if the QES is to be acausally separated from the boundary, for which b > 0
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is sufficient (see the appendix), then the physical conformal boundary must terminate to the
future and past at some |τ | ≤ π

2
. In null coordinates this translates to the fact that the part

of spacetime we are interested in is contained in the region |w±| ≤ π.

Evolving the dilaton

Changing to global coordinates, the general solution for the dilaton (7.55) is

ϕ(w+, w−) =
c1 + c2(f+ + f−) + c3f+f− + 8πGN(Î+ + Î−)

f+ − f−

Î+(w
+, w−) =

∫ w+

−ε
ds [1− sin(s− τ0)] [f+(s)− f+] [f+(s)− f−]Tw+w+(s),

Î−(w
+, w−) = −

∫ w−

ε

ds [1 + sin(s− τ0)] [f−(s)− f+] [f−(s)− f−]Tw−w−(s),

(7.38)

where implicit arguments in f± always mean f+ ≡ f+(w
+), f− ≡ f−(w

−). We have here
chosen the reference point (w+, w−) = (−ε, ε) in the integrals to lie slightly to the right of
the QES inside D[Σ], with ε > 0 arbitrarily small.

Getting the final value of the dilaton is now a matter of (1) changing to global coordinates
in the dilaton initial data (7.20), (2) matching onto (7.38) to extract the coefficients ci, and
(3) using (7.37) to compute the integrals Î+ and Î−. The integrals split up into δ-function
contributions and contributions from the continuous part of the stress tensor. The δ-function
contributions effectively add jumps to the coefficients ci as we cross shocks, so we redefine ci
to contain these steps. Obtaining the final dilaton is straightforward but somewhat involved,
and so is carried out in the appendix. The final result for w− > 0 reads

ϕ(w+, w−) = ϕ0(w
+, w−) + ϕm(w

+, w−),

ϕ0(w
+, w−) =

c1 + c2(f+ + f−) + c3f+f−
f+ − f−

,

ϕm(w
+, w−) =

1

f+ − f−

[
H1(w

+, w−)θ
(π
2
− w−

)
+H2

(
w+, w−

)
θ
(
w− − π

2

)
+ θ

(
−w+ − π

2

)
H3(w

+, w−) + θ
(
w+ − π

2

)
H4(w

+, w−)
]
,

(7.39)

where ϕ0 is a homogenous solution (away from the shocks), while ϕm describes the deviation
from a static black hole solution. The piecewise constant coefficients ci and the functions Hi

are given in the appendix.

7.4 Puzzles Before the Page Time

Let us now examine the canonical purification of a young single-sided AdS black hole
evaporating into a reservoir; to begin with, we will focus on single-sided black holes (we will
consider multiple boundaries in Sec. 7.4.3). Before the Page time, the dominant QES defining
the entanglement wedge of ρBH is simply ∅: Cauchy slices of WE[ρBH] are inextendible. As
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Figure 7.9: Choice of times to canonically purify.

discussed in the introduction, the inextendibility of WE[ρBH] has two important consequences:
first, if the pre-Page Hawking radiation is collapsed into a black hole, it will not be connected
to the original black hole via a semiclassical ERB of the same dimensionality as the original
black hole.16 This follows immediately from inextendibility of Cauchy slices of the pre-
Page entanglement wedge WE[ρBH]. Second, a sufficient amount of bipartite entanglement
cannot imply bulk connectedness of a bipartite state17 even under existence of a semiclassical
dual bulk satisfying the standard QES formula. These two points show that the strictest
interpretation of ER=EPR that does not allow modifications of ρBH cannot be correct: we
must allow for factorized unitaries. In Sec. 7.5, we will discuss the possibility that multipartite
entanglement may also play a role, even for bipartite states.

7.4.1 Entanglement Entropy is Not Enough

Let us remind the reader of the argument for point (1): that the amount of bipartite
entanglement is not a sufficient criterion for the emergence of spacetime between bipartite
states with holographic semiclassical duals. As discussed in the introduction (since the
dominant QES is ∅),

∣∣∣√ρBH[t < tP ]
〉

is dual to a two-boundary geometry, which is just two

disconnected copies of the original one-sided geometry. The bulk state is just
∣∣√ρbh〉, the

canonical purification of the bulk state in WE[ρBH].
Consider now two boundary times t1 and t2 such that t1 < tP < t2 and

SvN[ρBH(t1)] = SvN[ρBH(t2)]. (7.40)
16This does not exclude the possibility that collapsing the Hawking radiation into a black hole and acting

on the original black hole in some nontrivial way could create an ERB.
17Let us emphasize this point: while it is clear that a tripartite state will likely require some tripartite

entanglement measure, we work with bipartite states, and we still find that the von Neumann entropy falls
short.
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This choice is illustrated in Fig. 7.9. Canonically purifying ρBH(t1) yields two disconnected
spacetimes whereas canonically purifying ρBH(t2) yields a single connected spacetime. We
may pick t1 and t2 to be close to tP so that SvN[ρBH(t)] at both times is large, as in Fig. 7.9.

When the QES of a connected component of I is ∅, it is impossible to add additional
bulk regions (connected to I ) without modifying the entanglement wedge WE[ρI ] because
Cauchy slices of the entanglement wedge are inextendible. While the formula

Sgen =
Area[χ]

4G
+ SvN[ρout[χ]] (7.41)

generally contains an ambiguity in the relative contribution between area and entropy, in
the absence of a nontrivial QES, there is no choice of UV cutoff for which there is a surface
term. It may in principle be possible to diagnose a nonzero area of a QES purely from the
CFT, see [62] for an investigation for certain classes of states, although there are a number of
subtleties, e.g. [32].

We may take this to be a more general criterion: if the QES of any complete connected
component I is empty, then the bulk dual of the reduced density matrix ρI is not semi-
classically connected to the remaining spacetime. In particular, under this definition, a
spacetime with just two connected asymptotic boundaries will be disconnected whenever
the entanglement wedge of each boundary is inextendible. Note that this is not a necessary
condition, as evidenced by two components of two different thermofield double states.

As a quantitative example (and to further illustrate the disconnect between entanglement
and spacetime emergence), we will build the canonical purification of a (two-sided) black hole
before the Page time in JT gravity in Sec. 7.4.3. A single-sided example may be constructed
by including an (unflavored) end-of-the-world brane, as in [61].

Returning to |
√
ρBH[t < tP ]⟩ and |

√
ρBH[t > tP ]⟩, we obtain an immediate counterex-

ample to conjectures claiming that von Neumann entropy necessarily builds semiclassical
spacetime: here, the amount of entanglement is clearly not correlated with spacetime connec-
tivity. The spacetime can be connected – as in the post-Page time – or disconnected – as
before the Page time – with the same amount of bipartite entanglement between the two
sides. This gives a concrete illustration that bipartite entanglement is not always sufficient
for spacetime emergence in a bipartite state, even in standard AdS/CFT. In fact, since our
total state is pure, the von Neumann entropy is proportional to the reflected entropy and the
mutual information, so these quantities cannot diagnose connectivity either. Note that our
examples rely crucially on bulk matter entanglement: in the strictly classical case where the
HRT formula applies so that Sgen[∅] = 0, mutual information can always be used to diagnose
connectivity.

A potential complaint at this stage is that while the von Neumann entropy may be
identical in the two cases, only the old black hole is maximally mixed (or more correctly,
“thermally mixed”). We may thus speculate that connectedness requires our state to have
a particular entanglement structure – for example, the black hole ρBH must be maximally
mixed in addition to having a large amount of entropy. In other words, SvN[ρBH ] should be
large and SvN[ρβ]− SvN[ρBH(t)] should be small, where ρβ is the thermal state at the same
energy and charges as ρBH. This modified proposal would then identify connected geometries
with states that are (approximately) maximally (thermally) mixed. Prima facie, this appears
to diagnose the difference in the canonical purifications before and after the Page time.
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However, this turns out to be a red herring. In our example we can easily make SvN[ρβ]−
SvN[ρBH(t)] large after the Page time without altering connectedness. By throwing in a large
mass excitation in a pure state from the conformal boundary (this effect can be magnified e.g.
by adding a large number of bulk fields), we can increase SvN[ρβ], but since this operation
can be implemented by acting with a unitary with support only on HBH, SvN[ρBH(t)] is
unchanged. One may worry that this operation can modify the QES in some way that alters
the connectivity. This concern, however, is unfounded: since SvN[ρBH(t)] and Sgen[∅] are
unchanged by the addition of a pure state, we know that even after the additional excitation,

SvN[ρ
′
BH(t)] < Sgen[∅] (7.42)

where ρ′BH(t) is the state after the addition of the pure state. This immediately implies
that even if the dominant QES shifts as a result of the additional matter (and the large
number of bulk fields), it remains a nontrivial compact surface and most importantly does
not revert to the empty set. Thus the connectivity of the canonically purified old black hole
is robust against such modifications. Moving the state away from thermality does not alter
its connectivity. 18

7.4.2 Complexity is Not Enough

Another possibility for discerning the feature that is responsible for the disparity in spacetime
connectivity between the two states is computational complexity: it has previously been
suggested in work starting with [64–67] that complexity is also responsible in part of the
emergence of the black hole interior. The pre-Page canonical purification is highly complex
(more than one scrambling time after black hole formation), a fact that may be seen geometri-
cally from the existence of a nonminimal QES in the interior of the entanglement wedge [52].
Could it be that exponential complexity is responsible for lack of connection? The answer
appears to be no, as there certainly exist states with exponential complexity (which are
also submaximally mixed), which should by any reasonable definition of connectivity be
considered connected. The union of two boundaries of a three-boundary wormhole, illustrated
in Fig. 7.10, is connected to the third boundary, not maximally mixed with it, and has
non-minimal QESs inherited from the bifurcation surfaces. In the opposite direction, we also
expect that at very early times ρBH(t) is not exponentially complex, but |√ρBH(t)⟩ is still
disconnected. Thus a criterion based on complexity classes fails to diagnose the difference
between connected and disconnected spacetimes.

7.4.3 An Instructive Counterexample

In light of the failure of bipartite entanglement (and complexity) to build spacetime in
|
√
ρBH(t < tP )⟩, we must ask what, then, actually builds spacetime. To address this question,

we must understand the salient difference between the dual CFT states |
√
ρBH(t)⟩ before

and after the Page time.
We will not answer this question in this section (or in this article), but rather provide an

additional example that could serve as an arena to investigate these issues in more detail in
18See [63] for earlier work on holography of partially mixed states in the purely classical limit.
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Figure 7.10: A spatial slice of three-boundary wormhole. Assuming for example that σ1 and
σ2 ∪ σ3 are QESs with respect to I1, with σ2 ∪ σ3 the minimal one, we see that a python’s
lunch is present, and the region bounded by the σi is exponentially hard to reconstruct from
I1.
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(a) (b)

(c) (d)

Figure 7.11: In (a) we see an evaporating two-sided black hole with a Cauchy slice Σ anchored
at t < tP , and in (b) we show the spacetime dual to |

√
ρBH,LR(t)⟩. (c) and (d) shows the

same for t > tP . Red lines indicate entanglement of the bulk matter fields.

the future. We will outline the construction of this example in general and then compute it
explicitly in JT gravity coupled to conformal matter.

For this construction, we work with a two-sided black hole evaporating into a reservoir as
in [2], though we will not restrict ourselves to two dimensions just yet. At any time, we may
execute the same procedure as before, tracing out the reservoir and canonically purifying the
state ρBH,LR, which is the joint state of the left and right boundaries.

Prior to the Page time, the QES of ρBH,LR(t) is the empty set. Canonical purification of
the state generates a new two-boundary spacetime not connected to the original spacetime
via a semiclassical wormhole. This spacetime is illustrated in Fig. 7.11a.

Let us now examine this four-boundary, two component spacetime. Label the two original
boundaries L and R, and the newly generated ones L̃ and R̃. Before the Page time, L is
connected to R, and L̃ to R̃. After the Page time however, we have that L is connected to
L̃, and R to R̃. It would be interesting to study various forms of multipartite entanglement
between R, R̃, L, L̃ to see if different properties of multipartite entanglement may be at play
here;19 what amount and type of entanglement builds spacetime, or is entanglement in fact a
red herring and there is some other property of the state that is responsible for spacetime
connectivity?

Let us now construct this spacetime quantitatively in two dimensions. In JT gravity it is
straightforward to compute the canonically purified spacetime, and we carry it out in the
appendix. Carrying out the purification at boundary Poincare time t∂ = f(u∂) for u∂ ∼ O(1),

19A similar setup in SYK and JT gravity was studied in [68].
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the stress tensor reads, using the same conventions as in Sec. 7.3,

Tx−x− = θ(t∂ − x−)h(x−) + bδ(x− − t∂),
Tx+x+ = θ(t∂ − x+)h(x+) + bδ(x+ − t∂),

(7.43)

where
h(x−) = ESδ(x

−)− c

24π
θ(x−)

2(πT1)
2

[1− (πT1x−)2]
2 , (7.44)

where b > 0 is a constant depending on the microscopics of the CFT and how the absorbing
boundary conditions are turning off – just like in Sec. 7.3. The dilaton reads

ϕ =
c1 + c2(x

+ + x−) + c3x
+x−

x+ − x− + 8πGN
θ(t∂ − x−)F (x−)− θ(t∂ − x+)F (x+)

x+ − x− , (7.45)

where the piecewise constant coefficents ci and the function F are listed in the appendix.

7.5 Discussion

We have explicitly constructed (1) a precise procedure that generates a connected spacetime
from an old black hole and its radiation without modifying the black hole system – assuming
the validity of the QES formula, and (2) an example of a disconnected semiclassical spacetime
whose CFT dual is a highly entangled bipartite state. We have ruled out the possibility that
this counterexample could be dismissed by appealing to thermality of the old black hole
state or by refining the ER=EPR proposal to refer to other entanglement measures such the
reflected entropy. In particular, we have shown that no operation that leaves ρBH unchanged
can consistently construct spacetime connectivity when the bipartite entanglement is large.

ER=EPR with bipartite entanglement: If a bipartite state |ψ⟩AB has a sufficiently
large von Neumann entropy, and ERBs are indeed sourced by bipartite entanglement, then
there exist unitaries UA and UB with support strictly on A and B, respectively, such that
UA ⊗ UB |ψ⟩AB has a connected semiclassical dual. In light of the earlier discussions, if this
were to be true, then there would have to exist a unitary UBH such that the state

ρ′BH = UBHρBH(t < tP )U
†
BH (7.46)

has a non-empty QES. Then with the action of URAD, a Cauchy slice of the entanglement
wedge of BH in the state UBH ⊗ IRAD |ψ⟩ could in principle be embedded in a larger spatial
slice forming a wormhole. As a constraint on the unitaries in question, they will need to
modify the topology of the dominant QES.

Multipartite entanglement for connectivity: It is clear that for multipartite states
|ψ⟩I1···In

(or e.g. subregions), multipartite entanglement measures are necessarily for a
proper understanding of the emergent connectivity of the bulk geometry – e.g. tripartite
entanglement for a three-boundary wormhole. However, our counterexample is a strictly
bipartite state, where we would have expected bipartite entanglement to be the definitive
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Figure 7.12: Spatial slices of two different classical two-sided wormholes, both dual to states
with the same amount of entanglement between the two sides, i.e. Area[σ] = Area[σ1∪. . .∪σk],
where k ∼ O(G−1N ). The right picture represents a potential toy model for a highly quantum
ERB.

determinating quantity. Nevertheless, a key difference between ρBH(t < tP ) and ρBH(t > tP ) is
that the former is heavily correlated with itself while the latter is not. It is in principle possible
that there is some measure of these internal correlations of a system – e.g. multipartite
entanglement measures – that may be responsible for the connectivity of the spacetime when
the bipartite entanglement turns out to be too coarse. This appears to have some similarity
with the results of [69], which showed that duals to the entanglement wedge cross-section
require holographic states to have tripartite rather than primarily bipartite entanglement;
however, it is not obviously the same phenomenon: the arguments of [69] relied on the
reflected entropy and entanglement of purification at O(G−1N ) vs. O(1), whereas in our case
these quantities are O(G−1N ) in both the connected and disconnected phases. Moreover, [69]
relied primarily on subregions in their argument, and it is clear that subregions must have
at least some non-bipartite entanglement. In our case the state is truly bipartite on two
separate boundaries.

Wormhole condensation: [70] constructed a toy model for Hawking radiation where the
Hawking quanta were modeled by small classical individual ERBs connected to the original
black hole. This models a highly quantum wormhole as a very small ERB. The model is
studied at discrete timesteps between the emission of Hawking quanta, remaining agnostic
about the topology-changing process of ERB creation. It would be interesting to see if
this type of toy model also could shed light on the type of quantities that can differentiate
between the “quantum” and classical wormholes. For instance, we may consider two different
two-sided spacetimes with the same O(G−1N ) amount of entanglement, where one has an HRT
surface with one connected component of area A ∼ O(1), while the other has an HRT surface
with ∼ O(G−1N ) connected components, each having an area of order O(GN), but with the
total area of all components adding up to A. See Fig. 7.12. The latter is a toy model of the
entanglement before it is merged into semiclassical form. It would be interesting to see which
observables are sensitive to this fragmentation of the total area.
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Code Subspace Dependence: The fact that the entanglement wedge WE[ρBH] cannot be
extended prior to the Page time shows, as argued above, that there is no way to leave ρBH

unaltered while acting purely on the radiation to create a semiclassical wormhole connecting
the two. However, let us pause now for a reminder that while WE[ρBH] is the dual to ρBH,
reconstruction of the bulk is quantum error correcting [11] and requires the specification of a
nontrivial code subspace.

As shown in [71] and further elucidated in [72], state-independent reconstruction in general
covers only a subset of the entanglement wedge when quantum corrections are taken into
account. In particular, [71] argued that it is the entanglement wedge of the maximally mixed
state in the code subspace that determines the extent of state-independent reconstruction –
the so-called reconstruction wedge [72].

If we define the black hole system as the reconstruction wedge of ρBH in a large code
subspace consisting of all states with a smooth horizon, we will in fact find that when the black
hole is within the adiabatic regime, the wedge is bounded by a nontrivial QES. In this case,
the canonical purification of the maximally mixed state of Hcode is connected. The potential
relevance of the choice of code subspace and typicality for ER=EPR had been previously
noted in [73], which also clarified the arrow of implication from spacetime connectivity to a
high amount of entanglement (conversely with our construction, which illustrates a subtlety
into the arrow of implication from EPR to ER).

Experience of an infalling observer: The experience of an observer falling through the
black hole after the Page time can be causally affected by turning on some local unitary in
the canonical purification. This gives an explicit realization of action on the island via the
radiation, and specifically realizes the map between Marolf-Wall [56] and the relation between
the radiation and the black hole interior. Note that by extension, this is also an explicit
mapping from the factorization problem due to replica wormholes in the island picture to
the standard factorization problem in AdS/CFT [56, 74–76] of multiboundary geometries in
AdS/CFT.

In light of these observations, it is tempting to think of the map URAD from ρRAD to ρ̃BH

as a decoding unitary. The state ρ̃BH is simple, and thus URAD may be thought of as mapping
a high complexity state to a simply reconstructible state. However, it is not a particularly
useful ‘decoding’ map: the map URAD is dependent on which operators we choose to turn on
in the island. Nevertheless, it would be interesting to better understand the properties of
this map.
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7.6 Appendix

7.6.1 JT gravity junction conditions

The JT equations of motion with matter reads G̃ab(ϕ) = 8πGNTab, where

G̃ab = −∇a∇bϕ+ gab∇2ϕ− gabϕ (7.47)

is the effective dilaton “Einstein tensor”. Consider now gluing two spacetimes M+ and M−

along a codimension−1 null junction S generated by a null vector ka. Let M+ be to the
future of the junction and M− to the past, and define the discontinuity of some quantity A
across the junction as

[A] = A+ − A−. (7.48)

Let now ℓa =
(

d
dλ

)a be a rigging null field with k · ℓ = −1 on S. Firing geodesics along ℓa, the
parameter λ can be viewed to a scalar field on spacetime in a neighbourhood of the junction,
chosen so that λ = 0 on S. Using this, we can in a neighbourhood of the junction write

ϕ = θ(λ)ϕ+ + θ(−λ)ϕ−. (7.49)

Assume that [ϕ] = 0. This is the analogue of the first junction condition and is required in
order to have a distributional Einstein tensor. We then find that

∇aϕ = θ(λ)∇aϕ
+ + θ(−λ)∇aϕ

−,

∇b∇aϕ = ∇(b∇a)ϕ = δ(λ)∇(bλ[∇a)ϕ] + non-singular.
(7.50)

Thus the effective Einstein tensor gets a singular part

G̃ab|sing = δ(λ)
(
−∇(aλ[∇b)ϕ] + gab∇cλ[∇cϕ]

)
. (7.51)

By definition we have dxµ = ℓµdλ. Contracting this with kµ we get

kµdx
µ = −dλ = −∇µλdx

µ ⇒ ∇aλ = −ka, (7.52)

giving that
G̃ab = δ(λ)

(
k(a[∇b)ϕ]− gab[kc∇cϕ]

)
, (7.53)

or
8πGNTabℓ

aℓb = −δ(λ) [ℓa∇aϕ] . (7.54)
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7.6.2 Computing the Post Page Time Canonical Purification in JT
Gravity

Computing the dilaton on Σ

We want the dilaton on a late time slice Σ running between the QES and the conformal
boundary. The approach to compute this is the same as in [2], except we have to relax the
assumption |t∞ − x+| ≪ |t∞ − x−|, which holds near the QES but not near the conformal
boundary, and thus not on Σ in general. It is however still true that t∞−x±

t∞
is non-perturbatively

small. To make the derivation clearer, we retrace many steps from [2].
The general solution for the dilaton coupled to matter with Tx+x− = 0 reads

ϕ =
c1 + c2(x

+ + x−) + c3x
+x− + 8πGN(I

+ + I−)

x+ − x− ,

I+ =

∫ x+

x+0

ds(s− x+)(s− x−)Tx+x+(s),

I− = −
∫ x−

x−0

ds(s− x+)(s− x−)Tx−x−(s).

(7.55)

The boundary trajectory f(u), which will be useful below, can be found through an
analysis of the energy of the spacetime, whose value and rate of change is given by

E(u) = − ϕ̄r
8πGN

{f(u), u}, (7.56)

∂uE(u) = f ′(u)2 [Tx−x−(u)− Tx+x+(u)] . (7.57)

Equation (7.57) together with the stress tensor (7.14) lets us solve for E(u). Next, this
solution (given in (7.15)) together with (7.56) can be used to solve for f(u).

Now let us work out the dilaton. First, from (7.13), (7.14) and (7.55), we have that the
dilaton to the future of the shock reads

x+ − x−
2ϕ̄r

ϕ = 1− (πT1)
2x+x− +

k

2

∫ x−

0

ds(s− x+)(s− x−){f−1(s), s}, (7.58)

giving

(x+ − x−)2
2ϕ̄r

∂x±ϕ = ∓
[
1− (πT1)

2(x∓)2 +
1

2
k

∫ x−

0

ds(s− x∓)2{f−1(s), s}
]
. (7.59)

Let us now approach the endpoint of the conformal boundary at fixed x− = t∞, meaning
x+ → t∞. This endpoint is characterized by ϕ = 0, and so in order for ∂x+ϕ to stay finite
there, we must have

I∞ ≡
∫ t∞

0

ds(s− x−)2{f−1(s), s} = 2

k

[
(πT1t∞)

2 − 1
]
. (7.60)
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Let us for later convenience note that

πT1 =
1

t∞

[
1 +

k

4
t∞

]
+O(k2), (7.61)

giving

1− (πT1)
2(x±)2 +

k

2
I∞ = (πT1)

2
[
t∞ − (x±)2

]
=

1

t2∞

[
1 + t∞

k

2

]
(t∞ − x±)2t∞ +O

(
(t∞ − x±)2

)
+O(k2)

= [2 + kt∞]
t∞ − x±
t∞

+O
(
(t∞ − x±)2

)
+O(k2).

(7.62)

From now on we implicitly drop terms of order O(k2) and O ((t∞ − x±)2).
Let us now first compute ∂+ϕ. Using (7.18) we have

∂−

∫ x−

0

ds(s− x−)2{f−1(s), s} = O(1) +
∫ x−

ds
x− − s

(s− t∞)2

= −γ1 − log

(
t∞ − x−
t∞

)
+O

(
t∞ − x−

) (7.63)

where −γ1 is just some unknown constant which we have parametrized by γ1 for later
convenience (note that here and in the following, O(1) means O ([t∞ − x±]0)). We then have∫ x−

0

ds(s− x−)2{f−1(s), s} = I∞ + γ1(t∞ − x−) + (t∞ − x−) log
(
t∞ − x−
t∞

)
+O

([
t∞ − x−

]2)
.

(7.64)

Inserting (7.64) and (7.62) into (7.59) then gives

∂x+ϕ ≈ −
ϕ̄r

(x+ − x−)2
{
[4 + kt∞(2 + γ1)]

t∞ − x−
t∞

+ k(t∞ − x−) log
(
t∞ − x−
t∞

)}
. (7.65)

Next we turn to ∂x−ϕ. Expanding
∫ x−
0

ds(s− x+)2{f−1(s), s} about x+ = t∞ in (7.59),
we get

(x+ − x−)2
2ϕ̄r

∂−ϕ = 1− (πT1)
2(x+)2 +

1

2
kI (7.66)

where
I = I∞ + I0 + (x+ − t∞)I1 + (x+ − t∞)2I2,

I0 = −
∫ t∞

x−
ds(s− t∞)2{f−1(s), s},

I1 = 2

∫ x−

0

ds(t∞ − s){f−1(s), s},

I2 =
∫ x−

0

ds{f−1(s), s}.

(7.67)
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Using now again the late time Schwarzian, we get the leading behavior

I0 = −
1

2
(t∞ − x−)

I1 ∼ O(1) +
∫ x−

ds
1

(t∞ − s)
= − log

(
t∞ − x−
t∞

)
+O(1)

I2 ∼ O(1) +
∫ x−

ds
1

2(s− t∞)2
=

1

2(t∞ − x−)
+O(1)

(7.68)

We want to keep the O(1) term in I1, but we do not need the O(1) term in I2 since it
contributes as O ([t∞ − x+]2) to I, which is higher order than what we work at. Let us define
γ2 through

I1 = −
1

2
log

(
t∞ − x−
t∞

)
− γ2 +O(t∞ − x−). (7.69)

Then, assembling everything, we find

(x+ − x−)2
ϕ̄r

∂−ϕ = [4 + kt∞(2 + γ2)]
t∞ − x+
t∞

+ k
(x+ − t∞)2
2(t∞ − x−)

+ k(t∞ − x+) log
(
t∞ − x−
t∞

)
− k

2
(t∞ − x−)

(7.70)
Integrating (7.66) and (7.70) gives

ϕ

ϕ̄r
= A(x−) +

t∞ − x−
x+ − x−

[
C1 + k log

(
t∞ − x−
t∞

)]
ϕ

ϕ̄r
= B(x+) +

k

2
log

(
t∞ − x−
t∞

)
+
t∞ − x+
x+ − x−

[
C2 + k log

(
t∞ − x−
t∞

)] (7.71)

for some unknown functions A, B, where we define

Ci ≡
4 + kt∞(2 + γi)

t∞
. (7.72)

Taking the difference we find

0 = A(x−)−B(x+) +
k

2
log

(
t∞ − x−
t∞

)
+

(C1 − C2)t∞ + C1x+ − C2x−
x+ − x− (7.73)

This equation is inconsistent if we cannot break up each term into one depending purely on
x+ and one depending only on x−, and so we must have that C1 = C2 ≡ C, leading to γ1 = γ2.
Then we get the solution

B(x+) = constant ≡ B

A(x−) = B − k

2
log

(
t∞ − x−
t∞

)
+

4 + 2k

t∞

(7.74)
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and so we get

ϕ =
ϕ̄r

x+ − x−
[
C(t∞ − x+) +B(x+ − x−) + k

2
(2t∞ − x+ − x−) log

(
t∞ − x−
t∞

)]
. (7.75)

Now, plugging this back into the +− component of the dilaton equations of motion, which
reads

∂x+x−ϕ+
2ϕ

(x+ − x−)2 = 0, (7.76)

we find that we must have
B =

C − k
2

. (7.77)

giving finally (7.20). As a double check, we find that when plugging (7.20) back into the
dilaton equations of motion, we get that the solution is indeed sourced by (7.19).

Transforming to global coordinates

(7.22) and some basic algebra gives20

x± = −λ+ µ−1f±(w
±), f±(z) ≡ tan(z − τ0)±

1

cos(z − τ0)
, (7.78)

∂w±

∂x±
= µ

[
1∓ sin

(
w± − τ0

)]
. (7.79)

As indicated in the main text, we want to solve

τ(z∗, t∗) = τ(0, t∂) = ρ(z∗, t∗) = 0, (7.80)

for λ, µ, τ0, where (t∗, z∗) is the QES position in Poincare coordinates.
Through (7.22), (7.80) translates to

(t∗ + λ)µ = − tan τ0,

[f(u∂) + λ]µ = − sin τ0
1 + cos τ0

,

z∗µ =
1

cos τ0
.

(7.81)

Next, we know the QES location to leading order is given by

x+∗ = t∞ +
1

3
[t∞ − f(u∂)] ,

x−∗ = t∞ −
8πT1e

−kf−1(x−∗ )/2

3k
[t∞ − f(u∂)] .

(7.82)

20Solving for x±(w±) from (7.22) also gives another branch, but with our chosen value of τ0 the given one
will be the one where x±(w±) is continuous in the right Poincare patch.
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Solving now (7.81) and inserting (7.82), we find

χ ≡ µ(t∞ + λ) = −1

4
+

5e−kf
−1(x−∗ )/2k

8πT1
+O(k2), (7.83)

τ0 =
π

2
− ke−kf

−1(x−∗ )

πT1
+O(k2), (7.84)

µ =
1

t∞ − f(u∂)

(
3

4
− 3kekf

−1(x−∗ )/2

8πT1
+O(k2)

)
. (7.85)

Next, from [2] we have at the QES that

f−1(x−∗ (u)) ≈ u− eku/2

2πT1
log

(
8πT1e

−ku/2

3k

)
, (7.86)

which gives that
ekf

−1(x−1
∗ )/2 = eku∂/2 [1 +O(k log k)] , (7.87)

giving finally (7.24), (7.25) and (7.26).

The stress-tensor initial boundary value problem

Consider general initial data for the CFT stress tensor in global AdS on the τ = 0 slice:

Tw−w−|τ=0 = g(ρ) = g(w−)|Σ,
Tw+w+|τ=0 = h(−ρ) = h(w+)|Σ.

(7.88)

Before we even specify boundary conditions, the fact that solutions Tw−w− , Tw+w+ are functions
of only w− and w+, respectively, imposes the following boundary values

Tw−w− |∂MR
= g(w−) = g

(
τ +

π

2

)
, τ ∈

[
−π
2
, 0
]
,

Tw−w−|∂ML
= g(w−) = g

(
τ − π

2

)
, τ ∈

[
0,
π

2

]
,

Tw+w+ |∂MR
= h(w+) = h

(
τ − π

2

)
, τ ∈

[
0,
π

2

]
,

Tw+w+|∂ML
= h(w+) = h

(
τ +

π

2

)
, τ ∈

[
−π
2
, 0
]
,

(7.89)

where ∂ML/R are the left/right conformal boundaries. This is obtained simply by tracing
null rays from the initial data to the boundary, holding the relevant stress-tensor component
fixed. Now let us consider reflection boundary conditions

(Tw−w− − Tw+w+) |∂M = 0. (7.90)

The combination of (7.89) and (7.90) now determines the boundary values of Tw±w± for all
τ ∈

[
−π

2
, π
2

]
:

Tw−w−|∂MR
= Tw+w+|∂MR

= θ(−τ)g
(
τ +

π

2

)
+ θ(τ)h

(
τ − π

2

)
+ bRδ(τ),

Tw−w−|∂ML
= Tw+w+|∂ML

= θ(τ)g
(
τ − π

2

)
+ θ(−τ)h

(
τ +

π

2

)
+ bLδ(τ),

(7.91)
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Note that we have discontinuities at τ = 0, which stems from the fact that our initial data
does not satisfy (7.90) at τ = 0 for general g and h. Due to the discontinuous stress tensors
at τ = 0 there is no way to rule out a δ-function shock at τ = 0, and so this must be allowed.
Altering the boundary conditions in AdS causes the injection of energy [2], and since we are
considering the scenario where we turn off absorbing boundary condition very fast to the
future and the past, we will have that bR, bL are nonzero. The specific value of bL and bR will
depend on the specifics of the theory and the state, and so they cannot be determined at our
level of analysis. However, in order to have that the spacetime energy is constant, we must
have that that the strength w+ and w− shocks on each boundary is the same, which we used
in (7.91).

Rewriting these expressions in terms of w± we finally obtain the full solution for all
|w±| ≤ π:

Tw−w− = θ
(
−w− +

π

2

)
g
(
w−
)
+ θ

(
w− − π

2

)
h
(
w− − π

)
+ bRδ

(
w− − π

2

)
, w− ∈ [0, π]

Tw−w− = θ
(
w− +

π

2

)
g
(
w−
)
+ θ

(
−w− − π

2

)
h
(
w− + π

)
+ bLδ

(
w− +

π

2

)
, w− ∈ [−π, 0]

Tw+w+ = θ
(
w+ +

π

2

)
h
(
w+
)
+ θ

(
−w+ − π

2

)
g
(
w+ + π

)
+ bRδ

(
w+ +

π

2

)
, w+ ∈ [−π, 0]

Tw+w+ = θ
(
−w+ +

π

2

)
h
(
w+
)
+ θ

(
w+ − π

2

)
g
(
w+ − π

)
+ bLδ

(
w+ − π

2

)
, w+ ∈ [0, π] .

(7.92)
In the domain covered by |w±| ≤ π, this represents the distributional evolution that agrees
(1) agrees with our initial data everywhere in the domain of the dependence, and (2) has
reflecting boundary conditions in the weak sense. Note also that in the case relevant for us,
where Σ has CPT symmetry about the QES, we must have bL = bR. Combining (7.35) with
(7.92) gives (7.37).

Evolving the dilaton

Thanks to the CPT symmetry, it is sufficient to restrict to the region in the future and
spacelike to the right of the QES, which is covered by w− ≥ 0. Thus, in what follows we
always work in the range 0 ≤ w− ≤ π.

Changing to global coordinates in (7.20) gives the dilaton in D[Σ] (i.e. for w+ < 0, w− > 0)
on the form:

ϕ(w+, w−)|D[Σ] =
ϕ̄r

2(f+ − f−)
[
(2χ− f− − f+)C − k(f+ − f−)

+ k(2χ− f+ − f−) log
(
χ− f−
t∞µ

)]
,

(7.93)

Now we compute Î−(w+, w−) for 0 < w− < π
2
. The integral can be done analytically and
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reads

8πGN Î
− = −8πGN

∫ w−

ε

ds [1 + sin(s− τ0)]
[
f−(s)− f+(w+)

] [
f−(s)− f−(w−)

]
g(s)

=
1

2
kϕ̄r

[
2

kδτ0
+ (χ+ f− − f+) + (2χ− f+ − f−) log

(
(χ− f−)kδτ0

2

)]
≡ H1(w

+, w−),

(7.94)

where we introduced the notation

τ0 =
π

2
− kδτ0 +O(k2). (7.95)

Î+ vanishes on D[Σ], and so we can write (7.93)

ϕ = ϕ0 + ϕm,

ϕm ≡
H1(w

+, w−)

f+ − f−
,

ϕ0 ≡ ϕ− ϕm =
c
(0)
1 + c

(0)
2 (f+ + f−) + c

(0)
3 f+f−

f+ − f−
,

(7.96)

with
c
(0)
1 = ϕ̄r

[
Cχ− 1

δτ0
− k

2
χ− kχ log

(
kδτ0µ

2

)]
,

c
(0)
2 = −1

2
ϕ̄r

[
C − k log

(
kδτ0µ

2

)]
,

c
(0)
3 = 0.

(7.97)

Now let us evolve out of D[Σ]. Let’s focus first on the part of the dilaton sourced by
continuous stress-energy, focusing on the δ-function contributions afterwards. We can ignore
the ε for this, as they are only there to make sure we are not lying exactly on top of a shock.

Thanks to the step-function in (7.37), Î− for π
2
< w− < π:

8πGN Î
−|cont = −8πGN

∫ π/2

0

ds [1 + sin(s− τ0)]
[
f−(s)− f+(w+)

] [
f−(s)− f−(w−)

]
g(s)

=
kϕ̄r
2

[ 2

kδτ0
+
−1 + f+f− − (1 + f+ + f−)χ+ χ2

1 + χ

+ (2χ− f+ − f−) log
(
kδτ0(1 + χ)

2

)]
= H2(w

+, w−).
(7.98)

Next lets turn to the continuous part of Î+, which becomes nonzero either when ŵ+ ≥ π
2
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or ŵ+ ≤ −π
2
. Consider first the latter range. We find, ignoring O(k2) corrections,

8πGN Î
+|cont = 8πGN

∫ w+

−π
2

ds [1− sin(s− τ0)]
[
f+(s)− f+(w+)

] [
f+(s)− f−(w−)

]
g(s+ π)

=
ϕ̄rk

2

[
(f+ + f− − 2χ) log

∣∣∣χ− tan
s

2

∣∣∣− (f− − χ)(f+ − χ)
χ
(
χ cos s

2
− sin s

2

) − tan
s

2

] ∣∣∣∣∣
s=w+

s=−π
2

≡ H3(w
+, w−).

(7.99)
Next, in the range w+ ≥ π

2
we find

Î+|cont =
∫ w+

π
2

ds [1− sin(s− τ0)]
[
f+(s)− f+(w+)

] [
f+(s)− f−(w−)

]
g(s− π)

=
ϕ̄rk

2

[
(f+ + f− − 2χ) log

∣∣∣χ− tan
s

2

∣∣∣− (f− − χ)(f+ − χ)
χ
(
χ cos s

2
− sin s

2

) − tan
s

2

] ∣∣∣∣∣
s=w+

s=π
2

≡ H4(w
+, w−).

(7.100)

Next we turn to the contribution of the shocks. Let us start with Î−. We get a jump as
we cross w− = π

2
:

8πGN Î
−|shock = −8πGN×∫ w−

ϵ

ds [1 + sin(s− τ0)]
[
f−(s)− f+(w+)

] [
f−(s)− f−(w−)

]
bδ
(
s− π

2

)
= −8πGNbθ

(
w− − π

2

)
(1 + f+)(1 + f−),

(7.101)
where we neglect non-perturbatively small corrections. Next, consider w+. Here we have
three ranges of interest. By a similar computation as above we have

Î+
(
w+ < −π

2

)
|shock = 8πGNb(1 + f+)(1 + f−), (7.102)

Î+
(
0 < w+ <

π

2

)
|shock = 16πGNa+f+f−, (7.103)

Î+
(π
2
< w+ < π

)
|shock = 16πGNa+f+f− + 8πGNb(f+ − 1)(f− − 1) (7.104)

These contributions to ϕ can most conveniently be included by modifying the c1, c2, c3
coefficients from earlier to be step functions:

c1 = c
(0)
1 + 8πGNb

[
−θ
(
w− − π

2

)
+ θ

(
−π
2
+ w+

)
+ θ

(
w+ − π

2

)]
,

c2 = c
(0)
2 + 8πGNb

[
−θ
(
w− − π

2

)
+ θ

(
−π
2
+ w+

)
− θ

(
w+ − π

2

)]
,

c3 = c
(0)
3 + 8πGNb

[
−θ
(
w− − π

2

)
+ θ

(
−π
2
+ w+

)
+ θ

(
w+ − π

2

)]
+ 16πGNa+θ(w

+).

(7.105)
This completes the determination of the dilaton.
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Bounding b

Let us now find the leading order bound on b by demanding that the QES is causally
disconnected from the conformal boundary. This means that we need that the boundary
endpoints of the physical conformal boundary lies in the interval |τ | ≤ π

2
. Consider the future

boundary, which we thus require to lie in the region π
2
≤ w−, −π < w+ < π

2
. Evaluating the

dilaton on the boundary where f+ = f−, we get to leading order that

(f+ − f−)ϕ|∂MR
= c1 + 2c2f+ + c3f

2
+ +H2

= −8πGN(1 + f+)
2 − 4πT1ϕ̄re

−u∂/2f+ +O(k log k),
(7.106)

where w+ = τ − π
2
. In order for the physical boundary to terminate in the future some

τ ≤ π/2 we need

−8πGNb [1 + f+ (τ − π/2)]2 − 4t−1∞ ϕ̄re
−u∂/2f+ (τ − π/2) = 0 (7.107)

has a solution in the range 0 < τ < π
2
. The above can be simplified to

tan2 τ =
ce−u∂kT1
6πb2k2t∞

(
beu∂k/2k +

c

24πt∞

)
. (7.108)

This only has a solution if

b > − c

24π

e−u∂k/2

t∞k
= −2a−. (7.109)

A similar computation for τ < 0 gives the slightly stronger bound

b > − c

30π

e−u∂k/2

t∞k
. (7.110)

7.6.3 Computing the Pre Page Time Canonical Purification in JT
Gravity

Let us now build the canonical purification before the Page time, purifying at some specific
boundary time u = u∂ . For analytical convenience we work at times of order u∂ ∼ O(1), but
the general picture is also valid shortly before the Page time.

The stress tensor on the domain of dependence for our initial data slice Σ is given by
(7.14). Since we do not keep track of O(k2) corrections, we can use the early time expression

f(u) =
1

πT1
tanh (πT1u) . (7.111)

We can see this by noting that (1) the expression f̂(u) ≡ (πT1)
−1 tanh

[
2πT1
k

(1− e−ku/2)
]

solves the differential equation for f(u) to order O(k2),21 and (2) up to O(k2) corrections,
(7.111) and f̂(u) gives the same value for {f−1(x), x}. Inverting for f−1 and computing the
Schwarzian derivative, we get (7.44)

Tx−x−|D[Σ] = ESδ(x
−)− c

24π
θ(x−)

2(πT1)
2

[1− (πT1x−)2]
2 ≡ h(x−). (7.112)

21The differential equation determining f(u) is (7.56)=(7.15).
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We want to canonically purify the state at t = t∂ = f(u∂). The fact that Tx±x± is constant
along lines of constant x± implies that

Tx−x−(t1 < t < t∂)|∂M = h(t),

Tx+x+(t∂ < t < t2)|∂M = 0,
(7.113)

where t2(/t1) is the future-most (/past-most) boundary time in causal contact with Σ.
Imposing reflecting boundary conditions gives

Tx−x− |∂M = Tx+x+ |∂M = θ(t∂ − t)h(t) + bδ(t− t∂), t ∈ [t1, t2], (7.114)

which fixes the solution

Tx−x+ = θ(t∂ − x−)h(x−) + bδ(x− − t∂),
Tx+x+ = θ(t∂ − x+)h(x+) + bδ(x+ − t∂),

(7.115)

where Fig. X indicates the domain where this solution is fixed. As was the case after the Page
time, b is the amplitude of the shock caused by turning of absorbing boundary conditions.

Now we compute the dilaton. Choosing our reference point for the stress tensor integrals
at x± = t∂ ± ε for some small positive ε, we have

I+(x+, x−) =

∫ x+

t∂+ε

ds(s− x+)(s− x−) [θ(t∂ − s)h(s) + bδ(s− t∂)]

= b(t∂ − x+)(t∂ − x−)θ(x+ − t∂)− θ(−x+)x+x−ES − θ(t∂ − x+)F (x+)
(7.116)

where

F (x+) = − c

24π

∫ t∂

max{x+,0}
ds(s− x+)(s− x−)θ(s) 2(πT1)

2

[1− (πT1s)2]
2

= − c

24π

[
x+ + x− − s (1 + π2T 2

1 x
+x−)

π2T 2
1 s

2 − 1

+

(
πT1x

+x+ − 1

πT1

)
arctan (πT1s)

]∣∣∣∣∣
s=t∂

s=max{x+,0}

.

(7.117)

Similarly we get

I−(x+, x−) = −bθ(x− − t∂)(t∂ − x+)(t∂ − x−) + θ(−x−)ESx+x− + θ(t∂ − x−)F (x−).
(7.118)

In total, this gives a dilaton

ϕ =
c1 + c2(x

+ + x−) + c3x
+x−

x+ − x− + ϕm,

ϕm = 8πGN
θ(t∂ − x−)F (x−)− θ(t∂ − x+)F (x+)

x+ − x− ,

(7.119)
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with the piecewise constant coefficients ci

c1 = 2ϕ̄r + 8πGNbt
2
∂

[
θ(x+ − t∂)− θ(x− − t∂)

]
c2 = −8πGN t∂

[
θ(x+ − t∂)− θ(x− − t∂)

]
c3 = −2ϕ̄r(πT1)2 + 8πGN

[
bθ(x+ − t∂)− bθ(x− − t∂)− ESθ(−x+) + ESθ(−x−))

]
,

(7.120)

where the coefficients in D[Σ] is fixed by the knowledge that the homogeneous part of the
solution at our reference point is that of (7.13) with temperature T = T1.
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Chapter 8

General Bounds on Holographic
Compexity

Abstract: We prove a positive volume theorem for asymptotically AdS spacetimes:
the maximal volume slice has nonnegative vacuum-subtracted volume, and the vacuum-
subtracted volume vanishes if and only if the spacetime is identically pure AdS. Under the
Complexity=Volume proposal, this constitutes a positive holographic complexity theorem.
The result features a number of parallels with the positive energy theorem, including the
assumption of an energy condition that excludes false vacuum decay (the AdS weak energy
condition). Our proof is rigorously established in broad generality in four bulk dimensions,
and we provide strong evidence in favor of a generalization to arbitrary dimensions. Our
techniques also yield a holographic proof of Lloyd’s bound for a class of bulk spacetimes. We
further establish a partial rigidity result for wormholes: wormholes with a given throat size
are more complex than AdS-Schwarzschild with the same throat size.
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8.1 Introduction

The interpretation of aspects of spacetime geometry in terms of quantum information theoretic
quantities – from (quantum) extremal surfaces [1–9] to holographic circuit complexity [10–20]
has been a critical aspect of recent progress towards a complete holographic description of
the black hole interior. The Complexity=Volume dictionary entry [10], which is our focus in
this article, was initially motivated in part by the potential of the maximal volume slice to
probe the deep black hole interior. The proposal relates the circuit complexity C of preparing
the CFT state |ψ(τ)⟩ from some reference state |R⟩ and the bulk maximal volume slice Στ

anchored at τ : 1

C(|ψ(τ)⟩) = max
Στ

vol[Στ ]

GNℓ
≡ CV , (8.1)

where ℓ is a reference length scale which we take to be the AdS radius L, vol[Στ ] is the
cutoff-regulated volume of the hypersurface Στ , and the maximum is taken over all bulk
timeslices anchored at τ in the dual spacetime (M, g). Here we have given the name CV to the
geometric quantity for convenience. This proposal has led to numerous insights on spacetime
emergence in the deep interior, from the late-time behavior of wormhole volumes [10, 20], to
the connection between bulk depth and momentum [21–24], to the late-time breakdown of
classical GR [25], among others (e.g. [26]).

Several aspects of the CV proposal remain ambiguous: the appropriate reference length
scale ℓ, a complexity distance measure,2 and a choice of reference state |R⟩. It is natural
to consider the vacuum |0⟩ as reference state, but since CV (|0⟩) is non-vanishing this is not
feasible. However, we could instead identify C(|ψ⟩ , |0⟩) with the so-called complexity of
formation CF (|ψ⟩) [15, 18], which is just the vacuum-subtracted version of CV :

CF (|ψ(τ)⟩) ≡ CV (|ψ(τ)⟩)− CV (|0⟩) = max
Στ

vol[Στ ]− n vol[ΣAdS]

GNℓ
, (8.2)

where n is the number of disjoint conformal boundaries on which the CFT lives. For sufficiently
fast matter falloffs this quantity is finite as near-boundary cutoff is removed (see Sec. 8.2).

It is immediately clear that this interpretation of C requires a highly nontrivial geometric
consistency check:

CF (|ψ⟩) ≥ 0, (8.3)

where equality holds if and only if Στ is identically a maximal volume slice of pure AdS. The
positivity of CF has been investigated in particular spacetimes [18, 28] and perturbations
thereof [29, 30].

The statement (8.3) is reminiscent of the positive energy theorem [31–37], which in rough
terms states that the mass of a spacetime with a well-behaved and complete initial data set
satisfying the dominant energy condition is nonnegative; furthermore, it vanishes if and only
if the data is identically the vacuum. The positive energy theorem assumes either asymptotic

1Here we can either take the perspective where postselection is allowed, i.e. non-unitary gates are allowed,
or we can take this to compute the size of the circuit before including any postselection, and correct this by
including the python’s lunch [7].

2That is, a set of allowed unitary gates, or in the case of Nielsen geometry [27], a cost function.
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flatness [31–33], or asymptotic hyperbolicity [34–37], and in the latter case it is sufficient to
assume the weak energy condition.

Is there an analogous equally general theorem that applies to CF under the assumptions
of regularity of the initial data and some energy condition? Here we prove rigorously for a
broad class of spacetimes that the answer is yes, and that the relevant energy condition is
the AdS weak curvature condition (to which we refer as the WCC for short):

E ≡ tatb
(
Rab −

1

2
gabR−

d(d− 1)

2L2
gab

)
≥ 0, ∀ timelike ta, (8.4)

which simplifies to the usual weak energy condition Tabtatb ≥ 0 in Einstein gravity (under an
appropriate shift of a constant from the matter Lagrangian to the gravitational Lagrangian).
Our positive (holographic) complexity theorem then states:

Let Σ be a set of regular and complete asymptotically AdS4 initial data on a maximal volume
slice anchored at a static slice of the conformal boundary, and with n asymptotic boundaries.
If Σ satisfies the WCC, then it has nonnegative vacuum-subtracted volume:

vol[Σ]− n vol[ΣAdS] ≥ 0,

provided each outermost minimal surface on Σ is connected. Equality holds if and only if Σ
is a static slice of pure AdS.

Thus, among all asymptotically AdS4 spacetimes satisfying the WCC and our assumption on
minimal surfaces, the vacuum is strictly the simplest: like the positive energy theorem, our
positive complexity theorem provides a new vacuum rigidity result.

The theorem is proved in Sec. 8.2.4 via the application of a powerful mathematical result
by Brendle and Chodosh [38, 39] that grants control over volumes of asymptotically hyperbolic
Riemannian manifolds. For technical reasons, the result applies for maximal volume slices
where each outermost minimal surface (see Sec. 8.2) is connected, effectively restricting to
spacetimes where for any connected component I of the conformal boundary, ∂J−[I ]∩Σ is
connected on the maximal volume slice Σ.

Is the WCC actually necessary? Let us address this by taking inspiration from the
positive energy theorem. Positivity of the mass and rigidity of the vacuum is indeed violated
by false vacuum decay, which violates the dominant energy condition. We may expect a
similar phenomenon here, as the WCC serves the same purpose here as the dominant energy
condition: it excludes false vacuum decay and negative local energy densities. Indeed, existing
violations of positivity of CF [30, 40] do indeed violate our assumptions; we explore this in
more detail in a companion article [41], where we will demonstrate that matter fields (e.g.
scalar tachyons) violating the WCC – but satisfying the Null Energy Condition Tabkakb ≥ 0
– can indeed violate the positive complexity theorem, just as they can violate the positive
energy theorem [42]. Perhaps more surprisingly, it also turns out that the inclusion of compact
dimensions can violate positivity of CF , even when the WCC holds. Common to all of the
violations in [41] is the presence of VEVs for relevant CFT scalar primaries, and so the results
proven in this paper could in more general theories likely be viewed as constraining how
certain subsets of operators affect CV .
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Figure 8.1: Illustration of the volume comparison theorem at fixed throat area. ΣSchw is a
static slice of Schwarzschild, while Σ is a maximal volume slice anchored at a static boundary
time.

What about our restriction to four dimensions? Unlike the WCC or absence of nontrivial
compact factors, we expect that this restriction can be lifted. The generalization to arbitrary
dimensions can be proven from a generalization of a well-known mathematical conjecture by
Schoen [43]; without relying on conjectures, we give a proof under the assumption of spherical
or planar symmetry that CF is positive (again assuming the WCC). We also highlight an
existing mathematical theorem [44] proving that sufficiently small (but finite) WCC-preserving
deformations of pure AdS result in positive CF , thus establishing in all dimensions that pure
AdS is a local minimum of CF within the space of WCC-preserving asymptotically AdS
spacetimes. We consider the combination of our results, Schoen’s conjecture and the small-
deformation results [44] to be strong evidence in favor of the higher-dimensional generalization
of the positive complexity theorem.

Rigidity of the vacuum implies that the vacuum has the lowest complexity of formation –
it is simplest, under assumption of C ∼ vol[Σ]; there is an analogous expectation that the
thermofield double is a fairly simple state that minimizes holographic complexity within some
class. The corresponding AdS dual would be a proof that the Schwarzschild-AdS geometry
minimizes the volume within some class of wormholes (see related work by [45]). Such a result
about CF would in fact constitute a parallel with a less famous companion to the positive
energy theorem, the Riemannian Penrose Inequality, a lower bound on the mass given the
existence of a minimal area surface [46–49]. More precisely, the area of a minimal surface on a
maximal Cauchy slice in a spacetime of a given mass is conjectured to be identical to that of
Schwarzschild with the same mass if and only if the spacetime is identical to Schwarzschild.3

Can our techniques provide a rigorous backing to this expectation that Scwarzschild-AdS
is simplest in some precise sense? The analogy with the positive energy theorem would
suggest that the answer is yes, and indeed it is: the same methodology used to prove CF ≥ 0
yields a holographic complexity parallel of the Penrose Inequality (not restricted to a moment

3Note that while some results are established for the Riemannian Penrose Inequality in AdS [49–54], the
full statement remains conjectural. We bring it up here to draw a parallel.
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of time symmetry).

Let Σ be a complete maximal volume slice in an asymptotically AdS4 spacetime with two
disconnected asymptotic boundaries, equipped with initial data satisfying the WCC, and
anchored at a static boundary slice. If A is the area of an outermost minimal-area surface on
Σ, then

vol[Σ]− vol[ΣSchw] ≥ 0,

provided each outermost minimal surface on Σ is connected. Equality holds if and only if Σ
is identical to ΣSchw, the static slice of AdS-Schwarzschild with throat area A.

That is, the area of the throat fixes the lowest possible complexity (as computed by the
volume), which is that of Schwarzschild with the same throat area. See Fig. 8.1 for an
illustration. In general dimensions we prove this under the restriction of spherical or planar
symmetry. Once again, as we show in our companion paper [41], the WCC is necessary: it is
possible to construct classical wormhole solutions satisfying the NEC with negative CF .

Finally, we make use of the tools developed in our proof of the positive complexity theorem
to investigate a closely-related conjecture regarding the growth of complexity: Lloyd’s bound
[55]. This bound proposes that the rate of computation of a quantum system is bounded by
an expression proportional to energy, and in the form discussed in [14, 15], it reads

dC
dτ
≤ cE,

for some constant c. A large portion of the holographic complexity literature is dedicated to
the investigation of this bound in specific spacetimes. In this work, for a class of solutions, we
establish a similar result rigorously. To be precise, in minimally coupled Einstein-Maxwell-
Scalar theory with spherical symmetry and more than three bulk dimensions (assuming the
WCC), the growth of holographic complexity is bounded by the spacetime mass M :

1

GNL

∣∣∣ d
dτ

vol[Στ ]
∣∣∣ ≤ 8πM

d− 1
f(M), f(M) =

1 M ≤ M̂

1 + 2
(
M

M̂

) 1
d−2

M > M̂
, (8.5)

where M̂ is a mass scale near the Hawking-Page transition (see (8.42) for the specific value),
and Στ a maximal volume slice anchored at round sphere on the boundary – i.e. at constant τ
in the boundary metric −dτ 2+L2dΩ2. The takeaway is that late time holographic complexity
growth is at most linear,4 with the slope restricted by the mass. Since [56] showed that circuit
complexity has a linearly growing upper bound in time (with an appropriate definition of
complexity and time), this provides significant evidence for consistency of the CV proposal.

The paper is structured as follows. In Sec. 8.2 we state our proven lower bounds on
complexity and proven Penrose inequality. The proofs are then given in a separate subsection,
which can be skipped by readers only interested in the primary results, with the caveats that
(1) the technology developed there reappears in the proof of Lloyd’s bound and (2) some
of the results of the proof section are interesting on their own right. In Sec. 8.3 we discuss

4More precisely, there is a linearly growing upper bound on holographic complexity.
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Figure 8.2: Illustration of two static anchored maximal volume slices separated by boundary
static time δτ . (8.5) provides a speed limit on the growth of d vol[Στ ]

dτ
.

upper bounds on complexity growth, with a proof of (8.5). We also give a novel formula for
complexity growth in spacetimes with spherical or planar symmetry and with matter with
compact spatial support (in the radial direction). This formula is valid independent of the
WCC and the theory considered, although when assuming the former it gives a novel upper
bound on complexity growth. Finally, in Sec. 8.4 we discuss implications of our result. A
number of explicit computations are relegated to an appendix.

8.2 The Positive Complexity Theorem

In this section, we prove the positive volume (complexity) theorem for AdS4, state the
necessary conjecture for the proof of the statement in AdSd+1̸=4, and prove the general d
case for certain classes of bulk spacetimes. We also state our Penrose inequality for spatially
symmetric spacetimes. The reader only interested in the results may skip section 8.2.4, which
consists of the proofs.

8.2.1 The Vacuum is Simplest

We work with maximal volume slices Σ anchored on static boundary time slices: that is, in
the conformal frame where the boundary manifold has coordinates

ds2 = −dτ 2 + L2dQ2, (8.6)

with dQ2 the metric of a maximally symmetric spacelike manifold (i.e. a sphere, plane, or
hyperbolic space), we take our maximal volume slices to be anchored at constant τ , which
we shall refer to as static-anchored ; we further take Σ to be a manifold without boundaries
or singularities – a complete Cauchy slice.5 In particular, this means that our results do
not apply to spacetimes terminating at end-of-the-world branes, in which Cauchy slices are
manifolds with boundary.

5Σ will of course have a boundary in the conformal completion. The absence of singularities means that
the intrinsic geometry of Σ is geodesically complete, which rules out intrinsic curvature singularities on Σ
(unless they are distributional). Geodesic completeness on Σ is equivalent to the statement that all closed
and bounded sets on Σ are compact [57].
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Next, in order to discuss volume-regularization and assumptions on falloffs, it is useful to
recall that for any choice of representative of the boundary conformal structure [58–60], the
Fefferman-Graham gauge gives a unique coordinate system in a neighborhood of I :

ds2 =
L2

z2
[
dz2 + γµν(z, x)dx

µdxν
]
, (8.7)

where the conformal boundary is at z = 0, and where γµν(z = 0, x) is the chosen representative
of the boundary conformal structure. The resulting Fefferman-Graham expansion reads

γµν(z, x) = γ(0)µν (x) + z2γ(2)µν (x) + . . .+ γ(d)µν z
d + zd log zγ̄(d)µν + . . . . (8.8)

We will assume that matter falloffs are sufficiently slow so that the γ(n)µν for n < d, under the
equations of motion, only depend on the boundary geometry γ(0)µν and its derivatives. This is
the case for pure Einstein-gravity with a negative cosmological constant, and also upon the
inclusion various standard forms of matter appearing in holography [61] (provided we only
turn on normalizable modes). We will call a spacetime asymptotically AdS (AAdS) whenever
it has the above falloffs. This ensures that (1) a finite gravitational mass can be defined from
the asymptotic value of the metric (as in [62]), and (2) the divergence structure of maximal
volumes slices is universal and coincident with that of a static slice of pure AdS. Once the
boundary conformal frame is fixed, this provides a canonical way to regularize the volume:
cut off the spacetime at z = ϵ for some small ϵ > 0. After taking the volume difference with
the regularized volume of a static slice of pure AdS, the result remains finite as ϵ→ 0.

Finally, before turning to our results, we introduce one additional definition. We will say
that a compact surface σ on Σ is outermost minimal if (1) σ divides Σ into two connected
components (with one of them possibly trivial): Σin and Σout, where Σout intersects the
conformal boundary I in the conformal completion on a complete Cauchy slice of a single
connected component of I , (2) σ is a local minimum of the area functional on Σ, and (3)
there is no other surface satisfying (1) and (2) that is contained in Σout. We note that (1)
outermost minimal surfaces have the property that every surface in Σout has area greater than
σ [47] and (2) such surfaces always exist in wormhole geometries (see proof of Theorem (12)).

Our first theorem is a lower bound on maximal volume in four bulk dimensions.

Theorem 12. Let Σ be a static-anchored complete maximal volume slice of an asymptotically
globally6 AdS4 spacetime (M, g) satisfying the WCC (8.4). If the conformal boundary of
(M, g) has n connected components Ii, and the outermost minimal surface in Σ with respect
to each Ii is connected (if non-empty), then the volume of Σ is bounded from below by the
volume of n static slices ΣAdS4 of pure AdS4:

vol[Σ]− n vol[ΣAdS4 ] ≥ 0, (8.9)

with equality if and only if (M, g) is identical to pure AdS4 on Σ.

As mentioned above, while the volumes are formally infinite, comparison with the vacuum is
well defined and finite; the vacuum-subtracted volume is finite and positive as the regulator
is removed.

6By this we mean that the bulk approaches global AdS4 at the asymptotic boundary, so that Q is a sphere.
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Without the holographic interpretation of the vacuum-subtracted volume as the complexity
of formation, this is a positive (renormalized) volume theorem. With C ∝ vol[Σ] with some
fixed proportionality constant, however, we have the desired positive complexity result: given
a state |ψ(τ)⟩ of a holographic CFT3 on n copies of the static cylinder, the complexity of
|ψ(τ)⟩ is bounded from below by the complexity of the vacuum |0⟩ on n disjoint spheres:

C(|ψ⟩) ≥ C(|0⟩⊗n), (8.10)

with equality if and only if |ψ(τ)⟩ = |0⟩⊗n. The complexity of formation is guaranteed to be
positive for any bulk spacetime satisfying the WCC, and with a connected outermost minimal
surface. The latter will be true for a single n-sided black hole (i.e. a wormhole when n ≥ 1).

As noted in Sec. 8.1, the rigidity statement of the above theorem bears a strong parallel
to vacuum rigidity following from the positive energy theorem: under assumptions of the
latter, Minkowkski space [31, 32] is the unique asymptotically flat spacetime with vanishing
mass. Analogous positive energy results have been established for pure AdS [34–37] under
the assumption of the WCC. From the statement of Theorem 12, it is clear that a (WCC-
satisfying) excitation of volume above the pure AdS value is possible if and only there is a
corresponding non-zero mass: so the uniqueness of the minimal mass spacetime ensures the
uniqueness of the minimal volume spacetime.

For bulk dimensions other than four, the technical results are restricted to either (1) have
spherical or planar symmetry,7 or (2) consist of small but finite deformations of the vacuum.
Our general expectation is nevertheless that the results of four bulk dimensions continue
to hold more generally. However, in the absence of a general proof to this effect, we state
the lower bounds on complexity of formation in general dimensions as rigorously as possible,
starting with spacetimes with spatial symmetry:8

Theorem 13. Let Σ be a static-anchored complete maximal volume slice of an asymptotically
AdSd+1≥3 spacetime (M, g) with spherical or planar symmetry, and assume (M, g) satisfies
the WCC. If the conformal boundary of (M, g) has n connected components, then the vacuum-
subtracted volume of Σ is nonnegative:

vol[Σ]− n vol[ΣAdSd+1
] ≥ 0, (8.11)

with equality if and only if (M, g) is identical to n copies of pure AdSd+1 on Σ.

The upshot of this theorem is that any AAdS spacetime with spherical or planar symmetry
(but arbitrary time dependence) that satisfies the WCC has a positive complexity of formation
unless it is exactly pure AdS on the maximal volume slice, and thus also in its domain of
dependence.9 Note that spherically symmetric spacetimes should be compared with global
AdS, and planar with Poincaré-AdS.

7Meaning that (M, g) can be foliated by a family of codimension−2 surfaces left invariant by an algebra
of isometries equal to that of the d − 1 dimensional sphere or plane. The codimension−2 submanifolds σ
invariant under these symmetries are isometric to the sphere or plane, or quotients thereof.

8In fact, this theorem would also apply to hyperbolic symmetry if it could be shown analytically that static
hyperbolic black holes have volumes greater than the vacuum. This is easily checked to be true numerically,
but given the reliance on a numerical computation this result is not rigorously established.

9Note that this result holds even for AAdS spacetimes that do not have the falloffs assumed throughout
this paper, although in this case vol[Σ]− n vol[ΣAdSd+1

] is positive and divergent as the regulator is removed.
In this case the spacetime in some sense has infinite mass, since the nonstandard falloffs result in a divergent
Balasubramanian-Kraus [62] stress tensor.
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A known mathematics theorem immediately yields the desired result for perturbations
around pure AdS in general dimensions:

Theorem 14 ([44]). Let δg be a metric perturbation to global pure AdSd+1, where the perturba-
tion approaches zero sufficiently quickly to not affect the asymptotics [44]. A sufficiently small
such δg satisfying the WCC cannot increase the volume of static-anchored maximal-volume
slices.

In this result δg need not be infinitesimal, as long as it is sufficiently small in an appropriate
norm [44].

8.2.2 A Lower Bound on Wormhole Volume

In four bulk spacetime dimensions, we also prove the analogous result about wormhole
complexity:

Theorem 15. Let (M, g) be a WCC-satisfying, connected, globally asymptotically AdS4

spacetime with two conformal boundaries. Let Σ be a static-anchored complete maximal
volume slice in M , and let σ be the globally minimal surface on Σ.10 Then, if the outermost
minimal surfaces in Σ with respect to each component is connected,

vol[Σ] ≥ vol[ΣSchw], (8.12)

where ΣSchw is the totally geodesic slice of Schwarzschild-AdS whose bifurcation surface has
area given by Area[σ].

This theorem resembles a Riemannian Penrose inequality [63] for volumes, or alternatively,
for complexity: the area of a minimal surface on the maximal volume slice Σ puts a lower
bound on the complexity. The observation that Penrose-like inequalites exist for volume was
first made in [39], in the context of a result similar to Theorem 18, which is the crucial in our
proof of Theorems 14 and 15.

Similar techniques facilitate a proof of the above result in other dimensions under assump-
tion of spatial symmetry. We will use the abbreviation Statk to refer to the static AdS black
hole with metric

ds2 = −
(
k +

r2

L2
− m

rd−2

)
dt2 +

dr2

k + r2

L2 − m
rd−2

+ r2dQ2
k, (8.13)

where dQ2
k is the metric of the d− 1 dimensional unit sphere, plane, or unit hyperbolic space

for k = 1, 0,−1, respectively. The constant m is proportional to the mass. We include the
hyperbolic case, since interesting intermediate results in the next section apply for this case
as well. We will use the term maximal spatial symmetry to refer to spacetimes with either
spherical, planar or hyperbolic symmetry.

Under the assumption of maximal spatial symmetry, we prove the following:
10Such a surface must exist. See the proof of Theorem 12.
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Theorem 16. Let (M, g) be a connected asymptotically AdSd+1≥3 WCC-satisfying spacetime
with spherical or planar symmetry, and with a conformal boundary I with two connected
components. Let Σ be a static-anchored complete maximal volume slice in M , and take σ ∈ Σ
to be the globally minimal symmetric surface on Σ.11 Then

vol[Σ] ≥ vol[ΣStat], (8.14)

where ΣStat is the totally geodesic slice of Statk (depending on which symmetry (M, g) has)
whose bifurcation surface has area Area[σ].

8.2.3 A Riemannian Penrose Inequality with Spatial Symmetry

Here we present a novel application of our results, which is somewhat tangential to the main
subject of the paper. Uninterested readers may choose to skip ahead to the proofs of the
theorems in Sec. 8.2.4. The main upshot is that our results directly imply the Riemannian
Penrose inequality for maximal spatial symmetry. Using Ωk to denote the volume of the unit
sphere (k = 1), plane (k = 0) or unit hyperbolic plane (k = −1), we have

Theorem 17. Let (Σ, hab, Kab) be a complete asymptotically AdSd+1≥3 maximal volume initial
data set respecting the WCC and with maximal spatial symmetry. Let σ be the outermost
stationary symmetric surface (possibly empty, in which case we define Area[σ] = 0). Then

16πGN

(d− 1)Ωk

M ≥ k

(
Area[σ]

Ωk

) d−2
d−1

+
1

L2

(
Area[σ]

Ωk

) d
d−1

, (8.15)

where k = 1, 0,−1 for spherical, planar, or hyperbolic symmetry, respectively, and with
equality if and only if (Σ, hab, Kab) is a static slice of Statk or pure AdS.

This result does not require a moment of time symmetry, but σ will be (anti)trapped rather
than marginally (anti)trapped unless Kab = 0 at σ. Also note that while Ωk may be formally
infinite (unless we use isometries to compactify the symmetric surfaces), Area[Σ]/Ωk and
M/Ωk are well defined.12

8.2.4 Proofs of Theorems

Proof of Theorems 12 and 15

To prove Theorem 12, our main tool is an extant result about volumes of regions of conformally
compact Riemannian 3-manifolds with certain asymptotics [38, 39]. The proof of Theorem 12
is constructed by establishing that (1) the requisite technical assumptions used in the
mathematical literature hold for static-anchored maximal volume slices Σ of AAdS4 spacetimes
when the WCC holds, and (2) if Σ has n conformal boundaries it also has n disjoint asymptotic
regions of the kind appearing in the result of [38, 39].

11For a connected two-sided complete slice Σ with the given symmetries, such a surface clearly exists.
12A formulation of the non-compact cases (k = 0,−1) of this inequality to spacetimes without symmetry

would presumably have to involve some background subtraction. For example, this could likely be done for
spacetimes that, on a spatial slice, approach a static planar or hyperbolic black hole outside a compact set in
the conformal completion.
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Figure 8.3: Example of geometry appearing in Theorem 18. On the left we see an asymptotic
“arm” (Σout, h) of an asymptotically hyperbolic manifold, where ∂Σout is outermost minimal.
The region Σout is diffeomorphic to a subset Σ0 \K of the hyperbolic plane (Σ0, h0), and h0
and h are both metrics on Σout (via a judicious choice of diffeomorphism).

We can now state the result of [38, 39], which after a rephrasing reads 13

Theorem 18 ([38], [39]). Let (Σ0, h0) be hyperbolic 3-space and (Σm, hm) the totally geodesic
hypersurface of Schwarzschild-AdS of mass m, restricted to one side of the bifurcation surface.
Consider a Riemannian metric h on Σout = Σ0 \K where K is a compact set with smooth
connected boundary. Assume that we can pick K so that

• (Σout, h) is asymptotically hyperbolic, meaning that

|h− h0|h0 = O(r−2−δ), δ > 0,

lim
r→∞
|D0(h− h0)|h0 = 0,

(8.16)

where D0 is the metric-compatible connection of h0, and where r is defined through the
coordinates

h0 =
1

1 + r2
dr2 + r2dΩ2.

• The Ricci scalar of (Σ, h) satisfies R[h] ≥ −6/L2.

• ∂Σout is an outermost minimal surface with respect to h, and

Area[∂Σout, h] ≥ Area[∂Σm, hm]

for some m ≥ 0.

Then the renormalized volumes are finite and satisfy

volren(Σout, h) ≥ volren(Σm, hm),

where
volren(Σout, h) = lim

i→∞
[vol(Σout ∩ Ωi, h)− vol(Ωi, h0)] , (8.17)

13Note that while the theorem is stated with a strict inequality m > 0 in Ref. [38], Proposition 5.3 in
Ref. [39] includes the case m = 0, where we should take K empty so that ∂Σ0 = ∅.
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and {Ωi} is an exhaustion of Σ0 by compact sets, where asymptotic hyperbolicity ensures that
the renormalized volume is well defined and finite. Moreover, if and only if equality holds,
then h is isometric to hm.

See Fig. 8.3 for an illustration for quantities appearing in this theorem. Viewing (Σout, h)
as a subset of a complete Riemannian manifold (Σ, h), the theorem says that the volume of
(Σ, h) contained outside the outermost minimal surface of each asymptotic region is greater
than the volume of a totally geodesic slice of Schwarzschild-AdS on one side of the bifurcation
surface – provided that the first two conditions hold. Note that if we take (Σout, h) to be
one half of a totally geodesic slice of Schwarzschild-AdS, then we find that as expected the
volume of the static slice of Schwarzschild-AdS4 monotonically increases with mass. As a
special case, of course, for any positive mass the volume is greater than twice the volume of a
static slice of pure AdS.

Before applying the result to volumes of maximal volume slices in AAdS4 spacetimes,
we must understand how restrictive asymptotic hyperbolicity is. We relegate the details to
Appendix 8.5.1, where we prove the following:

Lemma 7. Let (M, g) be an asymptotically globally AdS4 spacetime. Then maximal volume
static-anchored slices Σ in (M, g) are asymptotically hyperbolic.

We now prove Theorem 12.

Proof. By Lemma 7, a maximal volume slice Σ is asymptotically hyperbolic. Next, by the
Gauss-Codazzi equation, the WCC and maximality (K = 0), the Ricci scalar of the induced
metric h on Σ is bounded from below:

R[h] = KαβKαβ + 2nanb
(
Rab[g]−

1

2
gabR[g]

)
= KαβKαβ −

6

L2
+ 2E ≥ − 6

L2
, (8.18)

where na is a unit normal to Σ. Thus, subsets Σout of Σ that lies outside a connected
outermost minimal surface will satisfy the criteria for Theorem 18.

Let σi for i = 1, . . . , n be the outermost minimal surface for a given connected component
Ii of I . Minimal surfaces homologous to Ii are guaranteed to exist by the results of [64, 65]
when n ≥ 2.14 Assume each σi is connected. For n = 1 we have that σ1 can be empty. If
σ1 is not empty, then by two applications of Theorem 18 we have (since for any value of
Area[σi], there is an m such that Area[σi] ≥ Area[∂Σm])

vol[Σout,i] ≥
1

2
vol[ΣSchw[σi]] ≥ vol[ΣAdS4 ], (8.19)

where ΣSchw[σi] is the totally geodesic hypersurface of Schwarzschild-AdS whose bifurcation
surface has the same area as σi. If σ1 is empty, then a single application of Theorem 18 directly

14The result of [64, 65] guarantees the existence of a marginally outer trapped surface (MOTS) in an initial
dataset with an outer trapped inner boundary and an outer untrapped outer boundary. If we take our initial
dataset (Σ, h,Kab) and turn it into the new dataset (Σ, h,Kab = 0), then MOTS in this second dataset are
exactly the minimal surfaces of (Σ, h), and so the theorems of [64, 65] guarantee the existence of minimal
surfaces when we have at least two asymptotic regions. Note that the results of [64, 65] do not rely on
constraint equations or energy conditions, so setting Kab = 0 without altering the intrinsic geometry causes
no problems.
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Figure 8.4: If two outermost minimal surface were to “weave” through each other, we would
have a contradiction since either (σi−Ui)∪Uj would have area less than σi, or (σj −Uj)∪Ui
would have area less than σj.

gives vol[Σout,1] ≥ vol[ΣAdS4 ]. For n = 1 this completes our proof, since V [Σ] ≥ V [Σout,1], so
assume now n > 1.

Take now Σout,i so that they are closed as subsets of Σ, that is, σi is included in Σout,i. If
the interiors of Σout,i and Σout,j intersect for some i ̸= j, then either σi is fully contained in the
interior of Σout,j , or the two surfaces σi and σj “weave” through each other. The former is not
possible, by outermost minimality, so consider the second case. Then σi has a subset Ui lying
in Σout,j, and σj a subset Uj in Σout,i such that σ̂i = (σi − Ui) ∪ Uj and σ̂j = (σj − Uj) ∪ Ui
lie in Σi and Σj respectively – see Fig. 8.4. Outermost minimality of σi implies that

A[σi] ≤ A[σ̂i] ⇒ A[Ui] ≤ A[Uj]. (8.20)

But this implies A[σ̂j] ≤ A[σj] contradicting the outermost minimality of σj, and so we
conclude that Σi and Σj only can intersect on a measure 0 set, giving finally that

V [Σ] ≥
n∑
i=1

V [Σout,i] = nV [ΣAdS4 ]. (8.21)

Could the above theorem be true also for higher dimensions? A hint that this likely to be
the case a comes from the following conjecture of Schoen [43]15

Conjecture 1 ([43]). Let (Σ, h0) be a closed hyperbolic Riemannian manifold with constant
negative scalar curvature R[h0]. Let h be another metric on Σ with scalar curvature R[h] ≥
R[h0]. Then vol(Σ, h) ≥ vol(Σ, h0).

As stated the conjecture applies to compact rather than conformally compact manifolds.
Nevertheless, it adds plausibility to the possibility that Theorem 12 holds in general dimensions.
It also lends support to the idea that Theorem 12 should hold without the assumption that
the outermost minimal surface is connected, since the conformally compact generalization of

15The conjecture is written in a different form in [43]. The version stated here can be found in [66].

248



Schoen’s conjecture immediately implies Theorem 12 with this assumption removed. In a
moment we add further evidence for this by proving it for d ≥ 3 spacetimes when we have
maximal spatial symmetry and when h0 is hyperbolic space.

The proof of Theorem 15 follows that of Theorem 12 mutatis mutandis by replacing (8.19)
with

vol[Σout,i] ≥
1

2
vol[ΣSchw[σi]] ≥

1

2
vol[ΣSchw[σ∗]], (8.22)

where now ΣSchw[σ∗] is the totally geodesic hypersurface of Schwarzschild-AdS with a bifurcation
surface with area equal to the globally minimal surface σ∗ on Σ. This second inequality holds
due to monotonicity of the Schwarzschild-volume (and bifurcation surface area) with mass.

Proof of Theorems 13, 16 and 17

The proof of Theorem 13 is threefold: first, we establish that the intrinsic metric of an
extremal hypersurface in an asymptotically AdS spacetime with maximal spatial symmetry
can be written as

ds2 =
1

k + r2

L2 − ω(r)
rd−2

dr2 + r2dQ2
k, (8.23)

where ω(r) is a monotonously non-decreasing function whenever the WCC holds. Second, we
show that at a stationary surface r = r∗, ω satisfies the equation

k +
r2∗
L2
− ω(r∗)

rd−2∗
= 0, (8.24)

and by the monotonicity of ω the volume contained outside r∗ is greater than the one we
obtain by replacing ω(r) with the constant ω(r∗). Third, we note that constant ω corresponds
to a constant−t slice of Statk, and taken together with (8.24) we see that the geometry
outside r∗ after the replacement ω(r) → ω(r∗) is exactly that of half a constant-t slice of
Statk. Thus, the volume outside a stationary surface at r∗ is greater than that of half a
constant-t slice of Statk with mass parameter ω(r∗), and this is in turn greater than the
volume of a static AdS slice.

We show in Appendix 8.5.2 that there is a geometric functional ω[σ,Σ] that, in an AAdS
spacetime with maximal spatial symmetry, reduces to ω(r) when σ is a surface invariant
under the spatial symmetry – which we shall call a ‘symmetric’ surface – having area radius
r – henceforth denoted σr. The quantity

MΣ[σr] ≡ ω[σr,Σ]
(d− 1)Ωk

16πGN

(8.25)

asymptotes to the spacetime mass as σr approaches the asymptotic boundary [67], where we
remind that Ωk is the volume of the unit sphere, the plane or the unit hyperbolic plane.16 In
Sec. 8.3 we will see that ω(r) ≥ 0 whenever the WCC holds, d ≥ 3 and the spatial symmetry
is spherical or planar. As an aside, in the asymptotically flat context, this quantity was used
early partial proofs of the positive energy theorem [69, 70].

16For the falloffs and symmetries assumed in this paper this mass agrees with the CFT energy up to a
fixed offset corresponding to the Casimir energy. For weaker falloffs we have that MΣ[σ] diverges towards the
boundary. For d = 3, MΣ[σ] is the so-called Geroch-Hawking mass [34, 68–72].
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Figure 8.5: Example of a two-dimensional spherically symmetric hypersurface Σ with three
stationary surfaces. This manifold can be covered by four coordinate systems of the form
(8.26), and ω(r) increases along the blue arrows.

We now prove the properties of ω(r) claimed in the beginning of this subsection (see
Fig. 8.5 for a illustration of the quantities appearing in this lemma).

Lemma 8. If Σ is a complete maximal volume slice in an AAdSd+1 spacetime with maximal
spatial symmetry satisfying the WCC, then

• Any region R that lies on Σ between two stationary symmetric surfaces can be covered
by the coordinates

ds2|Σ =
1

k + r2

L2 − ω(r)
rd−2

dr2 + r2dQ2
k. (8.26)

In particular, this is true when one of the two stationary surfaces is ∅ (r = 0) or
asymptotic infinity (r =∞).

•
ω′(r) ≥ 0. (8.27)

• There is always an outermost symmetric stationary surface σr̃ such that (8.26) covers
all r > r̃, where σr̃ = ∅ and r̃ = 0 is allowed.

Proof. Since by assumption Σ is foliated by symmetric surfaces, locally on Σ we can pick an
ADM coordinate system with respect to this foliation with vanishing shift and unit lapse:

ds2 = dρ2 + γij(ρ, x)dx
idxj,

where xi are coordinates on the symmetric surfaces. Maximal spatial symmetry implies
that γij(ρ, x)dxidxj = f(ρ)dQ2

k for some function f(ρ) that is nonnegative by the spacelike
signature of Σ. Defining the new coordinate r through

r =
√
f(ρ), (8.28)
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gives a metric of the form

ds2 = B(r)dr2 + r2dQ2
k, B(r) =

4f

(∂ρf)2
. (8.29)

These coordinates break down at r = 0 and at radii where ∂ρf(ρ) = 0, f ̸= 0⇔ B =∞, i.e.
at symmetric surfaces that are stationary. The case of B = 0 corresponds to a singularity
(the Kretschmann scalar is divergent for d ≥ 3, and there is a conical singularity for d = 2),
which is incompatible with completeness of Σ.17 To bring the metric to the required form,
we simple define ω(r) through

B(r) =
1

k + r2

L2 − ω(r)
rd−2

. (8.30)

For the second point, we use the Gauss-Codazzi equation applied to Σ, which yields

(d− 1)
ω′(r)

rd−1
= KαβKαβ + 2E ≥ 0, (8.31)

where we have used the WCC, extremality of Σ and positivity of KαβK
αβ.

Finally, since the spacetime has finite mass, ω(r) converges to some finite number m at
large r. Thus, the quantity

B(r)−1 = k +
r2

L2
− ω(r)

rd−2
(8.32)

must have a last zero r̃, unless it has none, in which case we set r̃ = 0. Consequently, for
r > r̃ there are no stationary surfaces, and so a single coordinate patch (8.29) covers this
region.

Next we prove our main volume comparison result:

Theorem 19. Let (M, g) be a maximally spatially symmetric asymptotically AdSd+1≥3 space-
time satisfying the WCC, and let Σ be a static-anchored complete maximal volume slice of M .
Let σri be the outermost symmetric stationary surface with respect to the connected component
Ii of I . Then

V (Σ) ≥
∑
i

V (Σmi
), (8.33)

with

V (Σmi
) = Ωk

∫ ∞
ri

dr
rd−1√

k + r2

L2 − mi

rd−2

, (8.34)

and with mi defined by

k +
r2i
L2
− mi

rd−2i

= 0. (8.35)

If I is connected, (8.33) is an equality if and only if Σ has the same extrinsic geometry
as that of a static slice of pure AdS. If I has multiple connected components, (8.33) is an
equality if and only if Σ has the same extrinsic geometry as that of a totally geodesic slice of
a static AdS black hole with spherical, planar, or hyperbolic horizon topology.

17A discontinuous but nonzero B(r) corresponds to a distributional energy shock on Σ, which does not
lead to breakdown of the coordinates.
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Proof. It is illustrative to begin with the one-sided case. Let σr1 be the outermost symmetric
stationary surface on Σ. If there is none then r1 = 0. Clearly the full volume of Σ is greater
or equal to the volume outside σr1 , and since by Lemma 8, ω′(r) ≥ 0, and the region outside
σr1 is covered by one patch of the coordinates (8.26), we get

V (Σ) ≥ Ωk

∫ ∞
r1

drrd−1√
k + r2

L2 − ω(r)
rd−2

≥ Ωk

∫ ∞
r1

drrd−1√
k + r2

L2 − ω(r1)
rd−2

= V (Σω(r1)),

(8.36)

where ω(r1) satisfies 0 = k +
r21
L2 − ω(r1)

rd−2
1

by stationarity of σr1 . The two-sided cases follows
from the same argument applied twice.

Finally, the above inequalities can all be replaced by equalities if and only if ω(r) is
constant, and with n ∈ {1, 2} coordinate patches fully covering Σ when there are n conformal
boundaries. This implies the intrinsic geometry corresponds to a constant−t slice of either
pure AdS (n = 1) or Statk (n = 2). From (8.31), we see that ω is constant only if Kab = 0,
and so the full extrinsic geometry is that of a constant−t slice embedded in pure AdS or
Statk.

The final ingredient for the proof of Theorems 13 and 16 is the behavior of the volume of
totally geodesic slices of Statk as a function of the mass. In the case d = 2, i.e. for the BTZ
black hole, we readily find that the volume of a totally geodesic hypersurface relative to that
of static slices of pure AdS is a positive constant independent of mass. Consider thus now
d ≥ 3, and define the vacuum-subtracted volumes:

Ik(m) = Ωk lim
rc→∞

∫ rc

rh(m)

dr
rd−1√

k + r2

L2 − m
rd−2

−
∫ rc

0

dr
rd−1√
k + r2

L2

 , k ∈ {0, 1}

I−1(m) = Ω−1 lim
rc→∞

∫ rc

rh(m)

dr
rd−1√

−1 + r2

L2 − m
rd−2

−
∫ rc

L

dr
rd−1√
−1 + r2

L2

 .
(8.37)

Here rh(m) satisfies k + r2h
L2 − m

rd−2
h

= 0. For k ∈ {0, 1}, smoothness and completeness of Σ is
only compatible with m ≥ 0. For k = −1, we can also have black holes with m̂ ≤ m < 0,
where [73, 74]

m̂ = −2Ld−2

d− 2

(
d− 2

d

) d
2

. (8.38)

The function I0(m) was computed explicitly in [18] was be seen to be positive and
monotonically increasing with m [18]. For k = 1 and d = 3 the same properties follow from
Theorem 18, as discussed previously. In the Appendix 8.5.3 we prove that this extends to all
d ≥ 3 by generalizing a proof from [38]:
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Lemma 9. The volume of a totally geodesic hypersurface of Schwarzschild-AdSd+1 is mono-
tonically increasing with mass:

∂mI1(m) > 0.

For k = −1 numerical studies [18] indicate that I−1(m) is non-negative, has a global
minimum equal to zero at m = 0, and increases monotonically with m for m > 0; at m < 0
it appears to monotonically decrease, and it diverges at m = m̂. However, at the moment
there is no rigorous proof these results, so we only state the k ∈ {0, 1} cases as theorems.

It follows from the above that that totally geodesic hypersurfaces of Statk black holes for
k ∈ {0, 1} have volumes greater than 2 vol[ΣAdSd+1

], which implies that the right-hand side of
(8.33) is greater than one or two times vol[ΣAdSd+1

]. This proves Theorem 13.
To prove Theorem 16, note that ∂mIk(m) > 0 for k ∈ {0, 1} implies ∂AIk(m(A)) > 0,

with A the area of the bifurcation surface, since the area of the bifurcation surface increases
with mass. In the case of two conformal boundaries, we can now bound the right-hand side
of (8.33) from below by vol(Σ∗), where Σ∗ is a totally geodesic slice of Statk with bifurcation
surface area equal to the globally minimal surface area.

Finally, we note that the stationarity condition k + r2∗ − ω(r∗)/rd−2∗ = 0 together with the
monotonicity of ω (giving ω(∞) ≥ ω(r∗)) immediately proves Theorem 17.

8.3 Upper Bounds on Complexity Growth

8.3.1 Lloyd’s bound

Lloyd’s bound [55] is a conjectured constraint on general quantum systems given by

1

∆τ
≤ 2E

π
, (8.39)

where E is the energy of the system and ∆τ the minimal time that a quantum state takes to
transition from an initial state to a new orthogonal state. This relation constitutes a bound
on the maximal speed of computation. The existence of a bound on the growth of either
bulk volume or action in terms of CFT energy would provide evidence for the holographic
complexity proposals, and there is a large literature devoted to investigations of holographic
complexity growth [10–12, 14, 15, 20, 75–116]. In particular, the points of interest is whether
this growth is linear at late times,18 as hypothesized in [117] , and whether there is an upper
bound on the growth of holographic complexity of the form

dC
dτ
≤ cE, (8.40)

for the CFT energy E and some constant c. In the holography literature (8.40) is typically
referred to as Lloyd’s bound. For the CV-proposal with the AdS radius as L, it is natural
to set c = 8π

d−1 , so that (8.40) is an upper bound in terms of the late time volume growth in

18But not so late as to reach the quantum recurrence time [117], where complexity saturates and fluctuates.
That circuit complexity indeed grows linearly until the recurrence time was recently argued for random
quantum circuits in [118].
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Schwarzschild-AdS as M →∞ (with the identification of E with the Schwarzschild mass M
[20]). For charged and rotating spacetimes it is expected that (8.40) can be strengthed via
the inclusion of terms depending on the charge and angular momentum on the right hand
side of (8.40) [14, 15, 75].

While specific case studies are invaluable as tests of the complexity proposals, a robust
test of whether (8.40) holds for holographic complexity via CV requires a broad investigation
of the growth of CV , which has heretofore been elusive.19 Here we make strides towards
closing that lacuna:

Theorem 20. A WCC-satisfying spherically symmetric AAdSd+1≥4 spacetime with any
number of minimally coupled U(1) gauge fields and scalars, both charged and neutral satisfies∣∣∣dCV

dτ

∣∣∣ ≤ 8πM

d− 1
f(M), (8.41)

where M is the spacetime mass and

f =

1 M ≤ M̂ ≡ (d−1) vol(Sd−1)Ld−2

16πGN

[
d

4(d−2)

] d−2
2

1 +
(
M

M̂

) 1
d−2

otherwise.
. (8.42)

Here τ is the time parameter in the boundary conformal frame −dτ 2 + L2dΩ2.

Theorem 20 is an immediate proof that CV (τ)
τ

is bounded at late times (in spacetimes subject
to our assumptions). Thus if CV is not oscillating at late times, then the late time growth of
CV is at most linear. Finally, if in some multiboundary spacetime the different boundaries
have different masses, then M in (8.41) is the one associated to the conformal boundary at
which we perturb the time anchoring.

Provided that we can identify the spacetime mass M with the CFT energy E, our bound
is identical to Lloyd’s bound (8.40) for small masses, while for large masses (M ≥ M̂) it is
qualitatively similar, although the energy dependence is now non-linear. Thus, for spacetimes
with ordinary falloffs, Theorem 20 constitutes a partial proof of a complexity growth bound,
albeit with non-linear energy dependence, and where it is the vacuum-subtracted CFT energy
that appears in the bound.20

Before turning to proving our result, let us finally note that the proof of (8.41) puts the
CV and CA proposals on quite different footings when it comes to complexity growth. It
is known that Lloyd’s bound cannot hold for the CA proposal [20, 115]; spacetimes with
ordinary AdS asymptotics and finite gravitational mass can have negative and divergent
action growth [20].

19Some partial results on Lloyd’s bound at late times in static spacetimes exist for the Complexity=Action
proposal [119].

20Our assumptions about the falloffs are naturally violated in spacetimes where the ordinary gravitational
mass M , as defined either as in [62] (with subtraction of Casimir energy) or as the Geroch-Hawking mass at
infinity, diverges. In such case the growth of extremal surface volumes can be infinite, as in e.g. [84]. In such
cases the field theory energy after subtraction of the Casimir energy is no longer equal to M , and additional
counterterms depending on scalar fields contributes to give a finite CFT energy E [67, 120–124]. In this
scenario (8.41) is true but vacuous since both sides of the inequality diverge.
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An easy way to compute complexity change: Under the assumption of maximal
spatial symmetry, the extrinsic geometry of the initial maximal volume slice at some time
is sufficient to yield a simple expression for ĊV : given a one-parameter family of extremal
slices Στ (Σ0 ≡ Σ) with boundary ∂Στ , extremality ensures that any volume change from a
perturbation must be a boundary term (see for example the appendices of [125, 126]):

dV [Στ ]

dτ
=

∫
∂Στ

ηaNa, (8.43)

where ηa = (∂τ )
a is the displacement field for ∂Στ and Na the outwards unit normal to ∂Στ

in Στ . We want to work with Στ which technically do not have boundaries. However, the
above formula can be used by cutting off Στ at a finite radius, applying the formula, and
then afterward taking the limit where ∂Στ goes to the conformal boundary.

Assume now that the gravitational mass is finite and remains so on evolution of the initial
data on Σ. Expressing ηaNa in terms of quantities over which we have control, carried out in
Appendix 8.5.4, we find for spherical or planar symmetry that

dCV
dτ

=
Ωk

GNL(d− 1)
lim
r→∞

rdKabr
arb, (8.44)

where ra is the outwards unit normal to σr tangent to Σ. Thus, knowledge of Kab near the
boundary is sufficient to compute ĊV .21 In Appendix 8.5.4 we show that we can rewrite this
expression in Einstein+matter gravity as

dCV
dτ

=
1

GNL(d− 1)

[
rthroat

∫
∂Σout

√
2θkθℓ + 8πGN

∫
Σout

rTabn
arb
]
, (8.45)

where now ∂Σout is an outermost stationary surface on Σ at radius r = rthroat, and Σout is
the part of Σ outside this surface. Here na is the future normal to Σ, k and ℓ the future null
normals to ∂Σout normalized so k · ℓ = −1, and θk and θℓ are the null geodesic expansions. It
follows from (8.139) in the appendix that θkθℓ ≥ 0 by stationarity of ∂Σout, so the square
root is always real This expression (8.45) is a special case of the more general momentum-
complexity correspondence proven in [23], with the difference that we write our integral on
only part of Σ at the cost of a boundary term. In spacetimes where narbTab = 0, which
includes AdS-Schwarzschild and AdS-Reissner-Nordström, we see that the complexity growth
is proportional

√
θkθℓ at the throat of Σ. This suggests a connection between trapped and

anti-trapped regions and complexity growth, at least in these spacetimes. The more trapped
the throat of Σ is, the faster the complexity growth.

With our convenient formulae for ĊV in hand, we can turn to proving that the mass indeed
bounds ĊV in Einstein-Maxwell-Scalar theory.

21Note however that a near boundary analysis is not enough to obtain Kab in the first place. If we treat
the determination of an extremal slice as a shooting problem from the conformal boundary, a general initial
condition at the boundary is incompatible with smoothness in the bulk, so determining ĊV still requires
deep-bulk information.
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Proof of a Lloyd’s bound in Einstein-Maxwell-Scalar theory (with
spherical symmetry)

Explicit constraint solutions

Consider Einstein-gravity minimally coupled to a U(1) gauge field and a charged scalar:

S =
1

8πGN

∫
M

dd+1x
√−g

[
1

2
R +

d(d− 1)

2L2
− |Dϕ|2 − V (ϕ, ϕ†)− 1

4
FabF

ab

]
, (8.46)

where D is covariant derivative associated with the U(1) gauge field. The stress tensor reads

8πGNTab = Daϕ(Dbϕ)† +Dbϕ(Daϕ)† − gab|Dϕ|2 − gabV (ϕ, ϕ†) + F c
a Fbc −

1

4
gabFcdF

cd.

(8.47)
We now restrict to spherical, planar or hyperbolic symmetry and work in the coordinates

(8.29):

ds2|Σ = B(r)dr2 + r2dΩ2
k =

1

k + r2

L2 − ω(r)
rd−2

dr2 + r2dΩ2
k. (8.48)

We then get that the energy density and radial energy current on Σ are

E = |Dtϕ|2 +
1

B(r)
|Drϕ|2 + V (ϕ, ϕ†) +

1

2B(r)
F 2
tr +

1

4
F ijFij

Jr = Dtϕ(Drϕ)† +Drϕ(Dtϕ)†,
(8.49)

where Dt ≡ naDa and Ftb ≡ naFab, with na is the future unit normal to Σ. The i, j-indices
run over coordinates of the transverse space. Symmetry sets Fri = Fti = 0. Certain nonzero
Fij are possible, but the constraints of Maxwell theory might set these to zero, depending on
the topology of Σ. The WCC, here equivalent to the WEC, holds when V (ϕ, ϕ†) ≥ 0.

Symmetry and K = 0 dictates that

Kαβdx
αdxβ = Krr(r)

[
dr2 − r2

B(r)(d− 1)
dΩ2

k

]
. (8.50)

Defining the function K through Krr = B(r)K(r), the constraint equations simply read22

(d− 1)
ω′(r)

rd−1
= 2E(r) + d

d− 1
K(r)2, (8.51)

1

rd
d

dr

[
rdK(r)

]
= Jr(r). (8.52)

22Note that (8.51) and (8.52) are true independent of the particular matter we are studying.

256



These equations are linear ODEs and are readily solved to give

K(r) = 1

rd

{
K(r0)rd0 +

∫ r

r0

dρρd
[
Dtϕ(Drϕ)†,+Drϕ(Dtϕ)†

]}
ω(r) = e−h(r)

[
ω(r0) +

1

d− 1

∫ r

r0

dρeh(ρ)ρd−1χ(ρ)

]
,

h(r) =
1

d− 1

∫ r

r0

dρρ
(
2|Drϕ|2 + F 2

tr

)
,

χ(r) =
d

d− 1
K(ρ)2 + 2

(
k +

ρ2

L2

)
|Drϕ|2 + 2|Dtϕ|2 + 2V (ϕ)

+

(
k +

ρ2

L2

)
F 2
tr +

1

2
F ijFij.

(8.53)

The solution for a canonically normalized real scalar is obtained by sending ϕ→ 1√
2
ϕ and

replacing Da with ∂a.
Noting now that Kabr

arb = K in an outermost coordinate patch where rα points to
increasing r, we find that the complexity change for spherical or planar symmetry is

dCV
dτ

=
Ωk

GNL(d− 1)
lim
r→∞

rdK(r), (8.54)

while the mass reads
M = lim

r→∞
MΣ[σr] =

(d− 1)Ωk

16πGN

ω(∞). (8.55)

Thus, proving Lloyd’s bound now amounts to constraining the asymptotic values of the
solution (8.53).

Some technical lemmas

We begin by establishing positivity of ω:

Lemma 10. ω(r) is positive on any complete maximal volume slice in an AAdSd+1≥4 spacetime
satisfying the WCC with spherical or planar symmetry.

Proof. Consider first a one-sided spacetime. A finite Ricci and Kretschmann scalar as r → 0
on Σ requires limr→0 ω(r) = 0, which together with monotonicity from Lemma 8 implies

ω(r) ≥ 0. (8.56)

In the two-sided case, the existence of a globally minimal surface means there is some minimal
radius r0 where

ω(r0) = krd−20 +
rd0
L2
, (8.57)

which for k ∈ {0, 1} is positive, and so by monotonicity we have ω(r) ≥ 0.
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Next, it will be convenient to introduce

δ± ≡ 2
∣∣∣Dtϕ∓ r

L
Drϕ

∣∣∣2 + 2

(
k − ω(r)

rd−2

)
|Drϕ|2 + 2V (ϕ, ϕ†)

+
d

d− 1
K(r)2 + 1

B(r)
F 2
tr +

1

2
F ijFij,

(8.58)

so that the constraint (8.51) can be written

(d− 1)
ω′

rd−1
= ±2r

L
Jr + δ±(r). (8.59)

In terms of δ± we can then state the following lemma:

Lemma 11. Consider the solution (8.53) with spherical symmetry, d ≥ 3 and V (ϕ, ϕ†) ≥ 0,
so that the WCC holds. Assume that

1− ω(r)

rd−2
(8.60)

vanishes somewhere. Then there exists a radius r̂ such that

1− ω(r̂)

r̂d−2
= 0, (8.61)

2E(r̂) + d

d− 1
K(r̂)2 ≤ (d− 1)(d− 2)

r̂2
, (8.62)

δ±(r) ≥ 0 ∀r ≥ r̂, (8.63)

and
±
∫ ∞
r̂

drrdJr(r) =
(d− 1)L

2

[
ω(∞)− r̂d−2 − 1

d− 1

∫ ∞
r̂

drrd−1δ±(r)

]
. (8.64)

Proof. Denote for convenience P (r) = 1 − ω(r)
rd−2 . Since ω(r) converges to a finite positive

number at r = ∞ and d > 2, P is everywhere positive above some large radius. Since P
is negative somewhere, we have by continuity that there must be a last zero of P that is
approached from negative P , so that P ′ > 0 there. Let us denote this zero by r = r̂.

Writing (8.51) in terms of P , we find

P ′(r) =
(d− 2)

r
(1− P )− r

d− 1

[
2E + d

d− 1
K(r)2

]
, (8.65)

which through P ′(r̂) ≥ 0, P (r̂) = 0 implies

d− 2

r̂
− r̂

d− 1

[
2E(r̂) + d

d− 1
K(r̂)2

]
≥ 0, (8.66)

giving (8.62).
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Next, note that a single coordinate system is valid for all r ≥ r̂ since 1
B(r)

= r2 + P must
be strictly positive there. Then, integrating (8.59) from r = r̂ up to r =∞ and remembering
that ω(r̂) = r̂d−2, we find

(d− 1)
[
ω(∞)− r̂d−2

]
=

∫ ∞
r̂

drrd−1
[
±2r

L
Jr + δ±(r)

]
, (8.67)

yielding (8.64).
Finally, note that the only potentially negative term in δ± is 2P |Drϕ|2. However, since P

is positive above r̂, so is δ±, giving (8.63).

Proving a Lloyd’s bound in Einstein-Maxwell-Scalar theory

We now finally prove our bound on complexity growth (Theorem 20):

Proof. Assume first that P = 1− ω(r)
rd−2 is not everywhere positive. The two-sided case will

always be this category, since at a minimal surface, which must always be present on a
complete slice, we have P = −r2. Then by Lemma 11 there exists an r = r̂ > 0 such that

±
∫ ∞
r̂

drrdJr(r) ≤
(d− 1)L

2
[ω(∞)− r̂d−2]. (8.68)

Adding ±K(r̂)r̂d to both sides of the inequality, we see from the solution of the constraint
(8.53) that we get

± lim
r→∞

rdK(r) ≤ (d− 1)L

2

[
ω(∞)− r̂d−2 ± 2

(d− 1)L
K(r̂)r̂d

]
(8.69)

Let us now without loss of generality assume that K(r̂) ≥ 0 – the proof of the opposite sign
is entirely analogous. Taking the lower sign inequality, multiplying by − Ω+1

GNL(d−1)
, neglecting

the two positive terms proportional to K and r̂d−2, and using (8.54) and (8.55), we get

ĊV ≥ −
8πM

d− 1
. (8.70)

Next, (8.62) together with the positivity of E from the WEC gives K(r̂)2 ≤ (d−1)2(d−2)
dr̂2

.
Using this, the upper sign inequality reads

lim
r→∞

rdK(r) ≤ (d− 1)L

2

[
ω(∞) + r̂d−2

(
2

L

√
d− 2

d
r̂ − 1

)]
. (8.71)

By monotonicity of ω we know that

r̂d−2 = ω(r̂) ≤ ω(∞). (8.72)

Thus, if
2

L

√
d− 2

d
ω(∞)

1
d−2 − 1 ≤ 0, (8.73)
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then the second bracket of (8.71) is negative, and so we find ĊV ≤ 8πM
d−1 after multiplying by

Ω+1/GNL(d− 1). In terms of a mass, the bound (8.73) reads

M ≤ (d− 1) vol[Sd−1]Ld−2

16πGN

[
d

4(d− 2)

] d−2
2

≡ M̂, (8.74)

where we use the notation Ω+1 = vol[Sd−1]. If M does not satisfy this bound, we instead
neglect the −r̂d−2 term in (8.71) and use r̂d−1 ≤ ω(∞)

d−1
d−2 . Multiplying by the usual factor

we get

ĊV ≤
8πM

d− 1

[
1 +

(
M

M̂

) 1
d−2

]
. (8.75)

Since we proved ĊV ≥ −8πM
d−1 for any mass, the above bound also holds for the absolute value,

and so our bound is proven in the case where P vanishes somewhere.
Assume now P ≥ 0 everywhere, which is only possible in the one-sided case. Then we

can cover the whole of Σ with one coordinate system, and (8.68) holds with r̂ = 0, which
immediately gives |ĊV | ≤ 8π

d−1M after multiplying an overall factor.
Finally, we note that the proof for real scalars is entirely analogous, and the only change

with multiple fields is that δ± contains a linear sum over the various fields. Lemma 11 remains
true in this case also. Thus the above proof applies equally well to any number of gauge
fields and scalars.

8.3.2 A simple formula for ĊV for matter of compact support

Theorem 21. Consider an AAdS spacetime with spherical or planar symmetry, and let r be
the area radius. Let Σ be a maximal volume slice and assume that the matter has support
only for r ≤ ρ on Σ. Let σρ be the r = ρ surface. Then

Ċ2V =
Area[σρ]

4GN

64πρ

(d− 1)L2
(M −MΣ[σρ]), (8.76)

If in addition the spacetime satisfies the WCC, then

Ċ2V ≤
16πρArea[σρ]

(d− 1)GNL2
M. (8.77)

Proof. Since matter has compact support, we can explicitly solve (8.51) and (8.52) outside
the support of the matter:

K(r) = ρd

rd
K(ρ)

ω(r) = ω(ρ) +
1

(d− 1)2
K(ρ)2

(ρ
r

)d
(rd − ρd),

(8.78)

Using that

ĊV =
Ωk

GNL(d− 1)
ρdK(ρ),

MΣ(ρ) =
(d− 1)Ωk

16πGN

ω(ρ),

(8.79)

260



we find
M =

(d− 1)GNL
2

16πΩk

1

ρd
Ċ2 +MΣ(ρ), (8.80)

giving (8.76). If the WCC holds, then we know that MΣ(ρ) ≥ 0 from Lemma 10, giving
(8.77).

These formulas make reference to bulk quantities, and so they are useful only when
working on the gravitational side. Furthermore, the compact support restriction makes the
result less relevant when gauge fields are present. But the bound can be useful for other
kinds of matter, or when compact support is a good approximation. Note also that we do
not need compact support in spacetime – only on a spatial slice.

8.4 Discussion

The volumes of maximal slices are among the most natural diffeomorphism invariant gravi-
tational observables in AAdS spacetimes; these are sensitive to the black hole interior and
more generally constitute a more fine-grained gravitational observable than e.g. the areas
of extremal surfaces. The Complexity=Volume relation stands to shed light on significant
aspects of the holographic correspondence if the details of the proposal can be made precise
and the proposal can be rigorously established (see [127] for some steps in this direction).

Here we have investigated the consistency of CV from a bulk perspective: if the proposal
is a fundamental entry in the holographic dictionary, it dictates constraints on the behavior of
maximal volume slices that should be provable independently using just geometry, analogous
to the geometric proof of strong subadditivity of holographic entanglement entropy [3, 128],
entanglement wedge nesting [3], causal wedge inclusion [3], etc. Under an interpretation
of CF as complexity with the vacuum as reference state, vacuum-subtracted volumes must
be strictly positive in all spacetimes not identical to pure AdS. We established this result
rigorously in broad generality in four bulk dimensions, assuming the weak energy condition.
We have also established a weaker statement in other dimensions, that the vacuum-subtracted
volume is positive in spacetimes with sufficient symmetry or in perturbations of the AdS
vacuum [44] (again assuming the weak energy condition). The more general statement for
arbitrary spacetimes satisfying the weak energy condition would follow from a modification
of a well-known mathematical conjecture [43, 66] from compact to conformally compact
manifolds.

Until now, broadly applicable results on maximal volume slices in holography have been
sparse in comparison with those on (quantum) extremal surfaces.23 This gap is at least partly
a consequence of relatively few available techniques for maximal volumes; the holographic
entanglement entropy proposal benefited from a readily-available arsenal of geometric tools
controlling the behavior of codimension-two surfaces long predating holography [129–131].
Here we initiated the construction of a similar toolbox for maximal volumes, adapting results
from mathematics [38, 39, 64, 65] in four dimensions and developing new techniques in general
D. The utility of our technology is immediate: beyond the positive complexity theorem in
four dimensions, the new tools have given a derivation of a version of a Lloyd’s bound for

23Although not entirely absent: see [93] for example.
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spatially symmetric maximal volume slices in a large class of matter, which is thus far the
broadest proof of the bound on holographic complexity growth. We have also shown that
wormhole complexity is indeed bounded from below by the thermofield double (with given
energy) in general spacetimes satisfying the weak energy condition.

It would be interesting to see if our methods could be refined to derive stronger bounds
on complexity growth when charge is present, given that our proof amounted to writing a
formula (d−1)|Ċ| = 8πM −∆ where there pure gauge field terms always contribute positively
to ∆.24 A strictly positive lower bound on their contribution to ∆ in terms of charge would
give a strengthening of our bound. It is also a possibility that our bound on complexity
growth is not strict, and that the bound is true with f(M) = 1. Yet another possible avenue
for further exploration is in spacetimes of different asymptotics, such as those of [132–136].

The ubiquity of the weak energy condition as an assumption in our theorems raises
a potential question: why must we exchange the null energy condition, typically used to
prove consistency in the holographic entropy context, for the more restrictive weak energy
condition? As we will show in a companion article, the weak energy condition is in fact
necessary, and violations of it such as vacuum decay can indeed result in negative vacuum-
subtracted complexity, even in wormhole geometries. A potential conclusion is that the gap
between the weak energy condition and the null energy condition is sourced by classical
matter whose fine-grained properties in holography are qualitatively different from weak
energy condition respecting fields in ways that are less obvious in coarser observables such
as entropy. In particular, CF as currently defined cannot be reinterpreted as the complexity
itself for spacetimes with such matter (consisting of e.g. tachyonic scalars satisfying the
Breitenlohner-Freedman bound.)

The assumption of hyperbolicity in our theorems is a more innocuous one in AdS/CFT,
although it is nevertheless possible to violate it via the inclusion of compact dimensions. That
is, an asymptotically AdSd+1 ×K spacetime, K can be picked to be a compact space that
spoils the assumption of hyperbolicity even for static slices of pure AdS (when the compact
dimensions are included). In an upcoming paper [41] we show that when this happens (which
can be the case in many supergravity theories of interest), then the comparison theorems
can be violated even when the weak energy condition holds, resulting in negative CF . This
suggests that the effects of compact dimensions on the CV proposal are nontrivial and deserve
further study.

Let us now briefly discuss a potential application of our results to the open question of
holographic complexity as applied to subregions.

Mixed state holographic complexity: Given a reduced density matrix ρR, what is
the holographic dual of the least complex purification of ρR (under the constraint of no
unentangled qubits in the purifier)? This question was initially asked by [137], who dubbed
the corresponding quantity the purification complexity CP (ρR).25 The natural bulk dual to
this quantity would require a minimax procedure: consider the maximal volume slices of all

24More precisely, we have ±(d − 1)ĊV = 8πM − ∆± where ∆± is proportional to the intergral of the
quantity rd−1δ± given by (8.58).

25It was proposed by [13] that the relevant geometric quantity is the volume of ΣER
, the maximal volume

slice of the entanglement wedge of R. However, this proposal falls short of satisfying the requisite qualitative
properties predicted by tensor network models [137].
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Figure 8.6: Example of the proceedure used to build the simplest WCC respecting spherically
symmetric spacetime (at time R) containing the entanglement wedge ER of R. The extremal
Cauchy slice ΣER

of an entanglement wedge ER (left) is glued to a ball Σ0 of the hyperbolic
plane with extrinsic curvature Kab = 0 (center). Then the maximal Cauchy evolution of
ΣER
∪ Σ0 gives the wanted spacetime (right). The red wiggly lines describe positive energy

shocks.

possible classical26 bulks that complete the entanglement wedge of R into an inextendible
spacetime, and then minimize its volume over the spacetime geometries. The relevant
question then appears to be: given ρR, what is the spacetime of least complexity containing
the entanglement wedge of R?

The volume of the maximal volume slice of this spacetime is the obvious candidate to
CP (ρR).27 The results from Sec. 8.2 allow for a concrete computation. Consider the case of a
two-sided spherically symmetric connected spacetime, and take R to be a complete timeslice
of one of the two conformal boundaries. Assuming the weak energy condition, a computation
carried out in Appendix 8.5.5 proves that the spherically symmetric spacetime of least CV
complexity that contains ER is a one-sided spacetime with CV complexity

V (ΣER
)

GNL
+ SvN(ρR)

4r

dL
2F1

(
1

2
,
d

2
,
2 + d

2
,− r

2

L2

)
, (8.81)

where r is the area radius of the HRT surface.28 The above is just the volume obtained after
gluing a ball of the hyperbolic plane to the maximal volume slice of the entanglement wedge,
so that the resulting surface is a complete initial data set (with K = 0). See Fig. 8.6 for an
illustration.

Ref. [137] argued for several qualitative features of CP that are satisfied by (8.81). First,
CP (ρR) is expected to go as c1n+ |c2|S(ρR) for unknown ci, where n is the number of qubits

26It is of course possible that the optimal purification does not have a semiclassical dual. However, at
least in some cases – e.g. for optimized (n-point) correlation measures – it was established in [138] that a
minimization over semiclassical bulk spacetimes will in fact accomplish a global minimum over a holographic
CFT’s Hilbert space.

27This way of computing CP (ρR) was proposed in [139], although they also minimized the complexity over
bulk cutoffs, allowing the bulk cutoff to move deep into the bulk. Then then solution is that ΣER

itself is the
Cauchy slice of the purified bulk spacetime, with the conformal boundary moved in sufficiently far that the
HRT surface itself now corresponds to a piece of the conformal boundary. This leads to a peculiar situation
where the state proposed to purify ρR is a state on a QFT where the UV cutoff drastically differs in different
regions of space. This appears in tension with purity, since the theory on the HRT surface must purify the
state on the real conformal boundary, even as the UV cutoff is taken arbitrarily small and the number of
qubits there grows without bound. Avoiding the minimization over the cutoff altogether appears to be the
more natural option.

28We cannot rule out that there is a spacetime that breaks spherical symmetry with even lower complexity.
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in the state. Since the leading UV-divergence of the volume of ΣER
is of the form vol[R]/ϵd−1,

which can be thought of as counting the number of lattice sites in the discretized theory, the
two terms in Eq. (8.81) have this form. Second, CP was argued to satisfy subadditivity for
the thermofield double state: 2CP (ρβ) > C(|TFD, β⟩). Again, this is realized by our result
when applied to one side of a Schwarzschild black hole, unlike in the case where the second
term of (8.81) is not included.

We can make further progress on this front by making the assumption that the optimal
purification is always given by completing ΣER

with a compact subset H of the hyperbolic
plane.29 This assumption is motivated by the conformally compact generalization of Schoen’s
conjecture and the following theorem (together with the fact that hyperbolic space has
constant sectional curvature sectional curvature − 1

L2 ):

Theorem 22 ([140]). Let Σ be a compact domain in a d-dimensional complete simply
connected Riemannian manifold with sectional curvature bounded from above by −κ2. Then

vol[Σ] ≤ Area[∂Σ]

(d− 1)|κ| . (8.82)

This immediately yields the following lower and upper bounds on purification complexity:

vol[ΣER
]

GNL
≤ CP (ρR) ≤

vol[ΣER
]

GNL
+

4

d− 1
SvN(ρR). (8.83)

Note that if the WCC is violated but there is still a lower bound on local energy density, we
could get a similar bound, but with an altered prefactor in the entropy term.
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8.5 Appendix

8.5.1 Asymptotic hyperbolicity

Let now (Σ̃, h̃) be hyperbolic 3-space, with metric

ds2 =
1

1 + r2
dr2 + r2dΩ2. (8.84)

Consider a second Riemannian 3-manifold (Σ, h), potentially with boundary, where Σ = Σ̃\K
for a compact (possibly empy) set K. Then (Σ, h) is in Ref. [38] defined to be asymptotically
hyperbolic if

|h− h̃|h̃ = O(r−2−δ), δ > 0,

lim
r→∞
|D̃(h− h̃)|h̃ = 0,

(8.85)

where | · |h̃ is the pointwise tensor norm taken with respect to h̃.
Consider now an AAdS4 spacetime (M, g) and pick a boundary conformal frame so that

ds2|∂M = −dt2 + dΩ2. (8.86)

We proceed now to show that an extremal hypersurface Σ in an AAdS4 spacetime anchored
at t = const slice on the boundary is asymptotically hyperbolic.

First, note that the Fefferman-Graham coordinates of pure AdS4 adapted to the Einstein
static universe of unit spatial radius on the boundary reads

ds2 =
1

z2

[
dz2 − (4 + z2)2

16
dt2 +

(4− z2)2
16

dΩ2

]
. (8.87)

Going to a general AAdS4 spacetime with the falloffs we are considering, we have

ds2 =
1

z2

[
dz2 −

(
1 +

z2

2

)
dt2 +

(
1− z2

2

)
dΩ2 + z3Tij(x)dxidxj +O(z4)

]
, (8.88)

where i, j are boundary coordinate indices running over t, θ, φ.
Consider now a spatial hypersurface Σ in (M, g) that is extremal, and with intrinsic

coordinates xα = (z, θ, φ) and embedding coordinates Xµ = (z, t(z, θ, φ), θ, φ). Generically,
once the boundary anchoring time is fixed, there is only one slice that will be smooth and
complete in the bulk, and so the integration constant which determines how Σ leaves the
boundary is fixed once the boundary anchoring location of Σ is fixed. However, from a near
boundary analysis it is impossible to know this integration constant, so we will have to allow
it to be general.

Let us take the ansatz for the expansion of t(z, θ, φ) near the boundary to be given by

t(z, θ, φ) =
∞∑
n=0

tn(θ, φ)z
n. (8.89)

Since we consider a slice of constant t on the boundary, we have that t0 is a constant. With
this expansion we can compute the mean curvature K in a small−z expansion and demand
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that it vanishes order by order in z. The exact form of the equations are ugly and not needed.
We only need the basic structure. We find that

t1(θ, φ) = t2(θ, φ) = t3(θ, φ) = 0. (8.90)

If the anchoring time t0 was not constant, then t2 would become nonzero and given by an
algebraic expression of the derivatives of t0. The function t4 is the integration constant
referred to above. It encodes deep bulk information and is fixed by requiring that Σ is a
smooth slice. Higher tn are fixed by t0, t4, Tij and higher order terms in the metric (which in
turn depends only on the boundary conformal structure and Tij).

The induced metric on Σ now reads

hαβ = gαβ + gtt∂αt∂βt

=
1

z2

1 0 0

0 (1− z2

2
) + z3Tθθ Tθϕz3

0 Tϕθz3 (1− 1
2
z2) sin θ2 + Tϕϕz3

+O(z2). (8.91)

In the above, higher order terms depend both on the spacetime geometry and t4. Since the
t4 dependence is in the higher order term, setting Tij = 0 gives the metric of the hyperbolic
plane, h̃αβ, up to O(z2) corrections. Defining for notational convenience Tαβ = Tij when
α, β, i, j ∈ {θ, φ} and Tzα = 0, we have

|h− h̃|2
h̃
= h̃αγh̃βδ(h− h̃)αβ(h− h̃)γδ
=

1

z4
h̃αγh̃βδ

(
z3Tαβ +O(z4)

) (
z3Tγδ +O(z4)

)
= O(z6).

(8.92)

But to leading order, we have z = 1
r
+ O(r−2), where r is the coordinate used to define

asymptotic hyperbolicity. Thus we find

|h− h̃|h̃ = O(r−3), (8.93)

meaning that Σ satisfies the first condition for asymptotic hyperbolicity. Next, note that

D̃γ(h− h̃)αβ = D̃γ

[
zTαβ(x) +O(z2)

]
= O(1). (8.94)

Since the three inverse metrics involved in calculating |D̃(h− h̃)|2 brings a total power of z6,
we find that

|D̃(h− h̃)| = O(z3) = O(r−3) (8.95)

and so the second condition,
lim
r→∞
|D̃(h− h̃)| = 0, (8.96)

holds. Hence Σ is asymptotically hyperbolic.
Finally we note that if t0 was not constant, then t2 would not vanish, and we would have

O(1) corrections in hzz depending on t2. This factor would not be present for the metric of
hyperbolic space, and so (h− h̃)αβ would now be O(z2) rather than O(z3), and so the falloff
in Eq. (8.92) would end up being O(z4) instead, which would mean Σ was not asymptotically
hyperbolic in general.
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8.5.2 d-dimensional Geroch-Hawking-mass with a cosmological
constant

Consider a maximal volume slice Σ of a spacetime with maximal spatial symmetry. The
mean curvature of a constant−r surface σ in Σ in the coordinate system (8.29) reads

H = Dαr
α =

d− 1

r
√
B(r)

, (8.97)

where rα = 1√
A
(∂r)

α is the unit normal pointing to increasing r. We find

H2 =
(d− 1)2

r2

(
k +

r2

L2
− ω(r)

rd−2

)
. (8.98)

Noting that a constant−r surface has intrinsic Ricci scalar

R = k
(d− 1)(d− 2)

r2
,

we can rewrite ω as follows:

8.5.3 Monotonicity of the volume of Statk with respect to mass

Assume d > 2 and consider the regularized volume of (half a) totally geodesic slice of Statk:

V (rh) =

∫ rc

rh

drrd−1
[
k + r2 −

(rh
r

)d−2
(k + r2h)

]−1/2
, (8.99)

where we pick units where L = 1 and divide out the overall factor of Ωk. Changing now
variables

r = etrh dr = rdt, τ ≡ t(rc) = log

(
rc
rh

)
, (8.100)

we get

V (rh) = rdh

∫ τ

0

dtedt
[
k + e2tr2h − e−(d−2)t(k + r2h)

]−1/2
= rdh

∫ τ

0

dte(d−1)t
[
k
(
e−2t − e−dt

)
+ r2h

(
1− e−dt

)]−1/2 (8.101)

and

V (eαrh) = rdh

∫ τ−α

0

dted(t+α)
[
k
(
1− e−(d−2)t

)
+ r2he

2α
(
e2t − e−(d−2)t

)]−1/2
= rdh

∫ τ

α

dtedt
[
k
(
1− e−(d−2)(t−α)

)
+ r2he

2α
(
e2(t−α) − e−(d−2)(t−α)

)]−1/2
= rdh

∫ τ

α

dte(d−1)t
[
k
(
e−2t − e(d−2)αe−dt

)
+ r2h

(
1− edαe−dt

)]−1/2
.

(8.102)
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Consider now the difference in volume of a slice with horizon eαrh and one with rh. Fur-
thermore, introduce a new regulator ϵ≪ 1 by modifying the denominators above with the
replacement [. . .]→ [ϵ+ . . .]. The (rescaled and ϵ-regulated) volume difference reads

∆ϵ(α, rh) ≡ lim
τ→∞

Vϵ(e
αrh)− Vϵ(rh)

rdh
. (8.103)

We have that ∂rhV (rh), ∂mIk(m) and ∂α∆ϵ(α, rh)|α=0,ϵ=0 all have the same sign, so let us
focus on the latter.

We have

∆ϵ(α, rh) =

∫ ∞
α

dte(d−1)t
{ [
ϵ+ k

(
e−2t − e(d−2)αe−dt

)
+ r2h

(
1− edαe−dt

)]−1/2
−
[
ϵ+ k

(
e−2t − e−dt

)
+ r2h

(
1− e−dt

)]−1/2 }
−
∫ α

0

dte(d−1)t
[
ϵ+ k

(
e−2t − e−dt

)
+ r2h

(
1− e−dt

)]−1/2
,

(8.104)

and so taking the α-derivative we obtain

∂α∆ϵ(α) =

∫ ∞
α

dte(d−1)t∂α{. . .} − e(d−1)αϵ−1/2. (8.105)

Next, note that

∂α[. . .]
−1/2 =

1

2
[. . .]−3/2d

(
k
d− 2

d
e−2α + r2h

)
eαde−dt. (8.106)

Defining now µ = k d−2
d

+ r2h, we find that

∂α∆ϵ|α=0 = −ϵ−1/2

+
dµ

2

∫ ∞
0

dte−t
[
ϵ+ µ

(
1− e−dt

)
+ k

(
e−2t − e−dt

)
− kd− 2

d
(1− e−dt)

]−3/2
= −ϵ−1/2 + dµ

2

∫ ∞
0

dte−t
[
ϵ+ µ

(
1− e−dt

)
+ kf(t)

]−3/2
(8.107)

where
f(t) ≡ e−2t − e−dt − d− 2

d

(
1− e−dt

)
. (8.108)

Now we must consider various cases.

The case of k ≥ 0:

For all t ≥ 0 we have that
f(t) ≤ 0. (8.109)

Furthermore, for k ≥ 0 we have µ ≥ 0 for all rh > 0, and so replacing f(t)→ 0 we get the
inequality

∂α∆ϵ|α=0 ≥ −ϵ−1/2 +
dµ

2

∫ ∞
0

dte−t
[
ϵ+ µ

(
1− e−dt

)]−3/2
. (8.110)
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This intergral is a hypergeometric function whose expansion about ϵ = 0 reads

∂α∆ϵ|α=0 ≥ −ϵ−1/2 +
dµ

2

[
2

dµ
√
ϵ
− 2
√
πΓ
(
1 + 1

d

)
µ3/2Γ

(
−1

2
+ 1

d

) +O(√ϵ)] , (8.111)

giving finally that

∂α∆ϵ|α=0,ϵ=0 ≥ −
d
√
πΓ
(
1 + 1

d

)
µ1/2Γ

(
−1

2
+ 1

d

) > 0, (8.112)

where we use that d > 2 so that the Gamma-function in the denominator is negative. Thus,
for a spherical or planar static black hole we have that the complexity of formation is positive
and monotonically increasing with horizon radius, and thus also mass.

The case of k = −1:

Below we only show monotonicity for sufficiently large masses.
Consider µ > 0. Then the integral in (8.107) can be expanded

J ≡ d

2
√
µ

∫ ∞
0

dte−t
[
ϵµ−1 +

(
1− e−dt

)
− µ−1f(t)

]−3/2
=

d

2
√
µ

∞∑
n=0

cnµ
−n
∫ ∞
0

dte−t
f(t)n

[ϵµ−1 + (1− e−dt)]3/2+n
,

where cn are the positive coefficients appearing in

1

(1− x)3/2 =
∞∑
n=0

cnx
n.

Note that f(t) ∼ O(t2) at small t, so in this limit the numerator behaves as ∼ t2n while the
denominator behaves as ∼ (ϵ+ t)3/2+n. After carrying out the integral and sending ϵ→ 0
only the n = 0 term diverges, so after carrying out the integral each n ≥ 1 term scales as
O(ϵ0). Thus up to O(ϵ) corrections we have

J =
d

2
√
µ

∫ ∞
0

dte−t
1

[ϵµ−1 + 1− e−dt]3/2
+
∞∑
n=1

cndµ
−n− 1

2

2

∫ ∞
0

dt
e−tf(t)n

[1− e−dt]3/2+n
.

The first term is exactly the integral computed above, so we find

∂α∆ϵ|α=0,ϵ=0 = −
d
√
πΓ
(
1 + 1

d

)
µ1/2Γ

(
−1

2
+ 1

d

) + ∞∑
n=1

cndµ
−n− 1

2

2

∫ ∞
0

dt
e−tf(t)n

[1− e−dt]3/2+n
.

We can readily check that, for t ≥ 0, we have the lower bound

f(t) ≥ −d− 2

d
(1− e−dt)2.
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giving

f(t)n ≥
{
0 n even
−(d−2

d
)n(1− e−dt)2n n odd.

Thus we find

∂α∆ϵ|α=0,ϵ=0 ≥ −
d
√
πΓ
(
1 + 1

d

)
µ1/2Γ

(
−1

2
+ 1

d

) − ∞∑
n=1,odd

cndµ
−n− 1

2

2

(
d− 2

d

)n ∫ ∞
0

dte−t
[
1− e−dt

]n− 3
2

= − d
√
πΓ
(
1 + 1

d

)
µ1/2Γ

(
−1

2
+ 1

d

) − ∞∑
n=1,odd

cndµ
−n− 1

2

2

(
d− 2

d

)n Γ (1 + 1
d

)
Γ
(
−1

2
+ n
)

Γ
(
−1

2
+ 1

d
+ n
) .

This last sum can be carried out exactly and evalutes to a hypergeometric function, but the
exact expression is not particularly useful. However, it does scale like O(µ−3/2) at large µ, so
since the first term which goes as O(µ−1/2) has a positive coefficient, this means that there
exists a µ̂ > 0 such that ∂α∆ϵ|α=0,ϵ=0 ≥ 0 for all µ ≥ µ̂.

8.5.4 Computing Ċ
We study only spacetimes that have finite gravitational mass, so that the mass (8.55) coincides
the CFT energy up to the Casimir energy. In the coordinates (8.29) this means that the
following integrals must be assumed finite:∫ ∞

drrd−1E ,
∫ ∞

drrdJr(ρ), (8.113)

where Jr is given by
Jr = 8πGNn

a(∂r)
bTab, (8.114)

and where 8πGNTab = Rab − 1
2
gabR− d(d−1)

2L2 gab.
We now want to express ηaNa, as defined in Sec. 8.3.1, in terms of quantities over which

we have control. To do this we temporarily introduce an ADM coordinate system xµ on
spacetime with vanishing shift, and lapse equal to r:

ds2|M = gµνdx
µdxν = −r2dt2 + hαβ(t, x

α)dxαdxβ, (8.115)

where
ds2|Σ = hαβ(t = 0, xα)dxαdxβ = B(r)dr2 + r2dΩ2

k,

∂thαβ(x)|t=0 = 2rKαβ(x).
(8.116)

We proceed to locate the conformal boundary in a small neighborhood around Σ. This will
let us determine ηa, which is tangent to ∂M .

Let us for notational convenience now take the spherically symmetric case, and let us install
coordinates yi = (τ,Ω) on ∂M and take ∂M ∩Σ = ∂Σ to be located (r = rc, t = τ = 0), where
we temporarily work with a finite cutoff at r = rc. We want to find embedding coordinates
(r(τ), t(τ)) for ∂M so that the induced metric reads

ds2|∂M = γijdy
idyj =

r2c
L2

(−dτ 2 + L2dΩ2). (8.117)
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Thus, we must solve the equations

γττ = grrṙ
2 − r2ṫ2 = −r2c/L2,

γθθ = gθθ = r2c ,
(8.118)

where dots are derivatives with respect to τ . In fact we will only need ṙ(0) and τ̇(0). Taking
a derivative of the second equation and then setting τ = 0 gives the pair of equations

ṙ(0)2grr(0, rc)− r2c ṫ(0)2 = −r2c/L2,

∂tgθθ(0, rc)ṫ(0) + ∂rgθθ(0, rc)ṙ(0) = 0,
(8.119)

or
ṙ(0)2B(rc)− r2c ṫ(0)2 = −r2c/L2,

2rcKθθ(rc)ṫ(0) + 2rcṙ(0) = 0,
(8.120)

which are easily solved to give

ṫ(0) =
1√

1−BK2
θθr
−2L2

∣∣∣
r=rc

,

ṙ(0) = − Kθθ√
1−BK2

θθr
−2L2

∣∣∣
r=rc

,

(8.121)

where we choose the branch where ṫ > 0. Remembering from Eq. (8.50) that

Kθθ = −
Krrr

2

(d− 1)B(r)
, (8.122)

we find that the term BK2
θθr
−2 at large r behaves like

BK2
θθr
−2 ∼ K2

rrr
2

B
∼ K2

rrr
4L−2 (8.123)

The solution of (8.52) gives that K(r) ∼ O(r−d), so we have

Krr = B(r)K(r) ∼ 1

rd+2
, (8.124)

implying that BK2
θθr
−2 ∼ O

(
r−2d

)
. We thus find

ṫ(0) = 1 +O
(
r−2dc

)
,

ṙ(0) =
Krrr

2

(d− 1)B(r)

(
1 +O

(
r−2d

)) ∣∣∣
r=rc

.

In our spacetime coordinates, ηa and Na reads

ηa = (∂τ )
a = ṫ(0)(∂t)

a + ṙ(0)(∂r)
a,

Na =
1√
B(rc)

(∂r)
a,
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giving finally that

ηaNa =
√
B(rc)ṙ(0) =

Krrr
2

(d− 1)
√
B(r)

[
1 +O

(
r−2d

)] ∣∣∣
r=rc

. (8.125)

This implies
dV [Σ]

dτ
=

Ωkr
d+1Krr

(d− 1)
√
B(r)

[
1 +O(r−2d)

]
|r=rc

=
Ωkr

d+2Krr

d− 1

[
1 +O(r−2, ω(r)r−d)

]
|r=rc

(8.126)

This is clearly finite when ω(∞) is finite. Furthermore rd+2Krr ∼ O(1) and so we have

dCV
dτ

=
Ωk

GNL(d− 1)
lim
r→∞

rd+2Krr =
Ωk

GNL(d− 1)
lim
r→∞

rdK(r). (8.127)

Note that the above derivations holds upon the replacement of dΩ2 with dx2, and θ with one
of the Cartesian boundary directions. The hyperbolic case requires minor modifications, but
is not needed for us.

If we plug in the solution of Eq. (8.52) into the expression for Ċ, we find

dCV
dτ

=
Ωk

GNL(d− 1)

[
K(r0)rd0 +

∫ ∞
r0

drrdJr(r)

]
=

1

GNL(d− 1)

[
r0

∫
∂Σout(r0)

rαrβKαβ + 8πGN

∫
Σout(r0)

rTαβn
αrβ
]
,

(8.128)

If we take r0 to be at an outermost stationary surface, r0 = rthroat, where K(r0) =
√
2θkθℓ,

we find the expression

dCV
dτ

=
1

GNL(d− 1)

[
rthroat

∫
∂Σout(rthroat)

√
2θkθℓ + 8πGN

∫
Σout(rthroat)

rTαβn
αrβ
]
. (8.129)

8.5.5 A simple purification

A spherically symmetric simplification

Consider a spherically symmetric bulk causal diamond D anchored at a bulk subregion R
that is just a boundary sphere. D could be an entanglement wedge (intersected with the
Wheeler-de-Witt patch of R – i.e. the domain of dependence is taken in the strict bulk sense),
but need not be. Let Σ be the maximal volume slice of D. Then the edge of D, which equals
∂Σ, has the intrinsic metric of a sphere. We now want to find a surface Σ0 and initial data
(Σ0, h,Kab) such that Σ∪Σ0 (1) is complete, (2) is an extremal hypersurface, (3) satisfies our
energy conditions and (4) has minimal volume consistent with (1)–(3). Let us only consider
Σ0 to be spherically symmetric – in principle there might be a Σ0 with even less volume
satisfying our above conditions which breaks spherical symmetry.

If it is compatible with energy conditions to have Σ0 be compact, i.e. without a conformal
boundary, then this is always the correct choice, since adding a second conformal boundary
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Figure 8.7: Construction of the simplified spacetime. The slice Σ0 has intrinsic and extrinsic
geometry of a static slice of AdS.

introduces new UV divergences. Let us thus assume Σ0 is one-sided and later return to
when this is consistent. Our computations in Sec. 8.2.4 showing that pure AdS was the least
complex space did not rely on r =∞ being the upper bound of the volume integral. Let Γ be
some compact spherically symmetric extremal spacelike manifold with a spherical boundary
of radius r. Then

V [Γ] = vol[Sd−1]

∫ r

0

dρρd−1√
1 + ρ2/L2 − ω(ρ)

ρd−2

≥ vol[Sd−1]

∫ r

0

dρρd−1√
1 + ρ2/L2

= V [Σ0] =
vol[Sd−1]rd

d
2F1

(
1

2
,
d

2
,
2 + d

2
,− r

2

L2

)
,

(8.130)

where Σ0 is the ball in the hyperbolic plane with boundary of area radius r. Here we used
that ω(r) ≥ 0, which is shown in Lemma 10. Thus, of all spherically symmetric manifolds
with boundary of area radius r, a ball in hyperbolic space has the least volume – assuming
the WCC. Thus, we should just choose the completion Σ0 of Σ to be a ball in hyperbolic
space, provided that the energy shell induced at the junction between Σ and Σ0 is compatible
with the WCC and the NEC, which we return to in a moment. See Fig. 8.7 for an illustration
of the new spacetime.

Now let us prove that any other spacetime with spherical symmetry has higher complexity:
Let (M̃, g̃) be any spherically symmetric spacetime containing D, and let R̃ be a boundary
Cauchy slice containing R. If R is a strict subset of R̃, then the maximal volume slice
anchored at R̃ trivially has larger volume due to additional UV-divergences. Thus, assume
R = R̃, meaning that (M̃, g̃) is one-sided. Let Γ be an extremal Cauchy slice of the inner
wedge IW [∂Σ] of ∂Σ in (M̃, g̃) – see Fig. 8.8. Let Σ̃ be the maximal volume slice of (M̃, g̃)
anchored at R. Since Σ ∪ Γ is a complete but non-extremal slice due to the kink at the
joining, we have that its volume is less than the volume of Σ̃:

V [Σ̃] ≥ V [Σ] + V [Γ]. (8.131)

But Γ is a spherically symmetric compact manifold with boundary being a sphere, so it has
greater or equal volume than the ball Σ0 of the hyperbolic plane with the same area of its
boundary. Thus

V [Σ̃] ≥ V [Σ] + V [Γ] ≥ V [Σ] + V [Σ0], (8.132)
completing our proof.
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Figure 8.8: A spherically symmetric spacetime (M̃, g̃) containing D[Σ]. The maximal volume
slice Σ̃ must have volume greater or equal to (8.81).

Energy conditions at the junction

By trying to glue Σ to a subset of the hyperbolic plane Σ0, the thing that can go wrong
is that we might be forced to violate the WCC or the NEC, since a junction supports a
distributional Ricci tensor that might or might not respect our energy conditions. Below we
show that the WCC (and thus the NEC) is preserved by the energy shell at the junction if
Kαβ = 0 on Σ0 and if

√
2θk[∂Σ] ≤ HΣ0 [∂Σ0],

√
2θℓ[∂Σ] ≥ −HΣ0 [∂Σ0], (8.133)

where k, ℓ are the future directed normals to ∂Σ with k pointing towards R, and with

k · n = ℓ · n = − 1√
2
, (8.134)

where na is the future unit normal to Σ. Here HΣ0 [∂Σ0] is the mean curvature in Σ0 with
respect to the normal of ∂Σ0 pointing toward Σ. For the case of spherical symmetry the
conditions read

θk[∂Σ] ≤
d− 1√

2

√
1

r2
+

1

L2
, θℓ[∂Σ] ≥ −

d− 1√
2

√
1

r2
+

1

L2
, (8.135)

These are clearly satisfied for an HRT surface, since θk[∂Σ] = θℓ[∂Σ] = 0.
Let us now derive these conditions. Consider a surface σ contained in an extremal

hypersurface Σ. Consider the null vectors

ka =
1√
2
(na + ra), ℓa =

1√
2
(na − ra), (8.136)

where we na is the future timelike unit normal to Σ and ra the spacelike outwards normal to
σ contained in Σ. Letting P ab be the projector Σ and hab the projector on σ, we find

√
2θk = hab∇a(nb + rb) = (P ab − rarb)(∇anb +∇arb)

= K + P ab∇arb − rarb∇anb

= K +HΣ[σ]− rαrβKαβ.

(8.137)
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A similar calculation shows that
√
2θℓ = K −HΣ[σ]− rαrβKαβ. (8.138)

Thus,

HΣ[σ] =
1√
2
[θkΣ − θℓΣ ] . (8.139)

If Kαβ = 0, which is the case for a constant-t slice of AdS, then

θk = −θℓ, (8.140)

and
HΣ[σ] =

√
2θk = −

√
2θℓ. (8.141)

Let us now consider the junction conditions. In [141], it is shown that for a null junction
between two spacetime regions M+ and M− generated by ka, we have

Rℓℓ|singular =
δ(τ)

−k · n
(
θ−ℓ − θ+ℓ

)
, (8.142)

where na is tangent to a time-like congruence crossing the junction and τ the proper time
from the junction along the congruence generated by na. For this formula to be valid we
must have

[n · k] ≡ n · k|+ − n · k|− = 0. (8.143)

The region M+ is the region to the future of the junction and M− to the past. Taking na to
be future directed, and taking ka and to be future-directed and to point towards R, we have
that the M−-region contains Σ. Thus the NEC demands

θℓ[∂Σ]− θℓ[∂Σ0] ≥ 0. (8.144)

Similarly, for a null-junction generated by ℓ we find

Rkk|sing =
δ(τ)

−ℓ · n
(
θ−k − θ+k

)
, (8.145)

where [ℓ · n] = 0. This time however, the M−-region contains Σ0, and so the NEC demands

θk[∂Σ0]− θk[∂Σ] ≥ 0. (8.146)

Finally let us now consider what (non-null) energy shock is required. We do this by
directly applying the spacelike junction conditions in the Riemannian setting, forgetting
about the ambient spacetime. Define

[A] = A|out − A|in. (8.147)

The Riemannian Einstein tensor is given by [141]

Gαβ = non-singular + δ(s)Sαβ, (8.148)
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where s is the proper distance from σ and

Sαβ = −[Hαβ] + [H]hαβ, (8.149)

where we remind that hαβ is the intrinsic metric on Σ and Hαβ the extrinsic curvature of σ
in Σ with respect the outwards normal rα (pointing towards R). This computation is purely
geometric and does not assume Einstein’s equations. Taking the trace, we thus find

R(h)

(
1− d

2

)
= non-singular + δ(s)(d− 2)[H]. (8.150)

Intergrating R on a small curve tangent ra accross σ, we find∫ −δ
δ

dsR(h) = −2[H] +O(δ). (8.151)

Applying the Gauss-Codazzi equation, this gives∫ δ

−δ
dℓ(2E +KabKab) = −2[H] +O(δ). (8.152)

Thus, for an arbitrarily small δ > 0 the WCC dictates that∫ δ

−δ
dℓE = H|in −H|out −

∫
1

2
KabKab ≥ 0. (8.153)

It appears likely that KabK
ab should not make any contribution to this integra in general,

since DαK
αβ = Jβ should be solvable with a Green’s function that smears the potential delta

function in J , causing Kαβ to be merely discontinous rather than distributional, and so

H|in ≥ Hout. (8.154)

should be a sufficient condition for a positive energy shell. For spherical, planar and hyperbolic
symmetry we can explicitly check that this indeed is exactly what happens. By formula
(8.139) we see that the constraint on H reduces to

θk[∂Σ0]− θℓ[∂Σ0] ≥ θk[∂Σ]− θℓ[∂Σ], (8.155)

which is true when conditions on the NEC holds.
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Chapter 9

Negative Complexity of Formation: the
Compact Dimensions Strike Back

Abstract: We show that the vacuum-subtracted maximal volume, the proposed holographic
dual to complexity of formation, can be negative when contributions from compact directions
are included. We construct explicit solutions with arbitrarily negative complexity of formation
in asymptotically AdS4×S7 SUGRA. These examples rely critically on the compact directions,
specifically the fact that the full eleven-dimensional spacetime is not asymptotically AdS11.
While there is some ambiguity in the extension of the holographic complexity proposal to the
compact directions, we show that the two natural candidates can both have arbitrarily negative
complexity of formation in SUGRA solutions. We further find examples in which complexity
can even decrease at late times, including cases of both single-sided geometries and two-sided
wormholes. In particular, we construct a cosmological wormhole with simultaneously negative
and decreasing complexity of formation (as computed by volume) at late times. We find
a distinguished role for relevant primaries in these constructions and comment on possible
interpretations.
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9.1 Introduction

Recent progress on the emergence of spacetime has crucially relied on the geometrization
of quantum information theoretic quantities [1–16]. A relative newcomer to this set of
connections has been the geometrization of computational complexity [11–14], either through
the proposed Complexity=Action [13, 14] or Complexity=Volume duality [12]. The latter,
which is our focus in this article, relates the circuit complexity C of a given holographic CFTd

state |ψ(τ)⟩ relative to some reference state |R⟩ to regulated bulk spatial volumes:

C
(
|ψ(τ)⟩ , |R⟩

)
= max

Σ

vol[Σ]

GNL
≡ CV (|ψ(τ)⟩) , (9.1)

where Σ a bulk hypersurface that intersects the conformal boundary on the timeslice τ ; L is
a length scale which we will take to be the AdS radius, and CV a convenient shorthand for
the gravitational quantity.

In a recent paper [17], we proved that the complexity of formation CF [14, 18] satisfies

CF (|ψ⟩) ≡ CV (|ψ⟩)− CV (|0⟩) ≥ 0, (9.2)

with equality if and only if |ψ⟩ = |0⟩, where |0⟩ is the vacuum dual to pure AdSd+1. We
established this for asymptotically AdSd+1 spacetimes under the assumption of the weak
curvature condition (WCC):

tatb
(
Rab −

1

2
gabR−

d(d− 1)

L2
gab

)
≥ 0, ∀ timelike ta, (9.3)

which in Einstein gravity reduces to the weak energy condition (WEC): Tabtatb ≥ 0 for all
timelike ta. The result (9.2) implies that among the states with a classical asymptotically
AdSd+1 dual respecting the WCC, the vacuum is the least CV –complex. That is, WCC-
respecting excitations of the vacuum move away from the reference state as measured by the
complexity. The necessity of the WCC is clear from [19, 20], who found examples in which
the vacuum-subtracted volume is negative; in those examples the WCC is violated.

The assumption of the WCC is somewhat unnatural from a holographic perspective:
consistency conditions in the large-N , large-λ limit of the AdS/CFT correspondence are
typically proven using the Null Curvature Condition (NCC) Rabk

akb ≥ 0 for null vectors ka.
The latter (strictly weaker) condition is expected to be true for any valid classical matter; the
same, however, is not true for the WCC [21]. Nevertheless, it turns out that the WCC holds
in type II and eleven-dimensional SUGRA (see appendix 9.4.1): even though the dimensional
reduction of an asymptotically AdSd+1 × K over the compact dimensions K may violate
the WCC while satisfying the NCC, inclusion of the compact dimensions restores the WCC.
Prima facie, then, it may be tempting to conclude that when working in full ten or eleven
dimensional SUGRA, our results immediately imply that complexity of formation is always
positive. It would then be natural to conclude that C(|ψ⟩ , |R⟩) should be identified with
CF (|ψ⟩), with a reference state |R⟩ that is identically the vacuum |0⟩.

This naive conclusion, however, suffers from several flaws. First, the Complexity=Volume
proposal does not admit an obvious generalization allowing the inclusion of compact directions.
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There are (at least) two natural candidates: (1) the volume of the maximal volume slice Σfull

in the full AdSd+1 ×K spacetime; or (2) the volume of the maximal volume slice Σreduced

extended in the non-compact directions. It is simple (see Sec. 9.2) to show that in general
the dimensional reduction of Σfull does not result in Σreduced, and that consequently

vol[Σfull] ̸= vol[Σreduced ×K].

A maximal volume slice in the full spacetime need not be maximal in the AdS directions,
and vice versa.

Our goal here, however, will not be to argue in favor of either (1) or (2) but to demonstrate
that neither candidate can avoid a negative complexity of formation: the WCC restoration
that accompanies the inclusion of compact directions fails to save either candidate from
predicting that certain valid spacetimes in AdS/CFT are simpler than the vacuum1. As a
consequence, since CF is not positive semi-definite, it cannot be reinterpreted as the complexity
with the vacuum as the reference state. To simplify matters, we will demonstrate this in a
special case where the two candidate proposals coincide: a moment of time symmetry. In
such a case, Σfull reduces in the AdS directions to Σreduced, so that any conclusions are free of
ambiguities relating to a choice between (1) and (2).

This result may at first appear to contradict our proof in [17]. How can the vacuum-
subtracted maximal volume be negative in spacetimes respecting the WCC? The answer is a
prime realization of the principle of conservation of misery: while the inclusion of compact
directions restores the WCC, it in turn violates our assumption about AdSd+1 asymptotics.
Thus we have two (mutually exclusive) options: accept violations of WCC in the absence
of compact directions, or accept violations of AdSd+1 asymptotics. As it turns out, either
option leads to states with negative complexity of formation.

In the following, we find a family of AdS4 initial data supported by scalar tachyons above
the Breitenlohner-Freedman bound [22], inherited from a truncation and dimensional reduction
over the compact directions of eleven-dimensional SUGRA. In the full asymptotically AdS4×S7

data, the WCC is satisfied, but upon dimensional reduction the resulting spacetimes violate
the WCC and satisfy the NCC. These geometries come in two flavors 2: with and without
boundary sources. For the former, the inclusion of boundary sources yields asymptotically
AdS4 spacetimes undergoing AdS false vacuum decay; such spacetimes, again supported
by scalar tachyons, have a negatively divergent complexity of formation that decreases at
late times. Among these spacetimes is a novel cosmological wormhole; even though the
spacetime connects two asymptotic boundaries (with no dS region in between [25]), we
find that the holographic volume complexity is nevertheless smaller than that of pure AdS.
While spacetimes with negative and divergent CF due to boundary sources were previously
considered by [26], our examples without boundary sources are quite distinct, and should

1By ‘valid’ here we mean a stricter definition than is typically used (which is often just the requirement
of the NEC and global hyperbolicity: here we mean that they are inherited from top down truncations of
SUGRA.

2For computational facility, the examples with boundary sources are not constructed in an exact dimensional
reduction of eleven-dimensional SUGRA, but instead with a slightly modified (but qualitatively similar) scalar
potential, which enables analytical solutions. Analogous one-sided spacetimes were considered in D = 11
SUGRA reduced to AdS4 × S7 in [23, 24], and we expect all of our qualitative findings in Sec. 9.3 to apply in
D = 11 SUGRA.
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be regarded as the main finding of this paper (although we also expand on examples with
boundary sources, more analogous to the ones discussed in [26]). In this case we find initial
data with arbitrarily negative (but finite) complexity of formation, both when viewed in eleven
and four dimensions. The arbitrarily low complexity in this case is not caused by altering the
boundary theory. Instead, it is obtained by a smooth deformation of the CFT state away
from vacuum, and the low CV is a genuine IR-effect caused by the compact dimensions.

There is however an underlying common denominator to all of our examples: they are
constructed by turning on relevant scalar primaries in the CFT. This pattern together with the
theorems of [17] suggests potential insights into the landscape of low complexity holographic
states. If tachyonic bulk scalars, which are dual to relevant CFT scalar primaries, happen to
be the only WEC-violating fields, then the only way to reduce the “distance” – as measured
by CV – to |R⟩ below the fixed nonzero value CV (|0⟩) is to turn on VEVs for relevant scalars.
Other operators will be dual to WEC-respecting fields, and so turning them on will cause CV
to increase with respect to the vacuum value. Thus, the presence of unstable directions of
the IR fixed point correlates with the possibility of reducing complexity below the vacuum
value. This could be due to the fact that the vacuum of a potential gapped phase at the end
of the RG flow has significantly fewer correlations, simplifying the preparation of the state.

Our particular examples of low complexity spacetimes also provide potential insight into
the reference state |R⟩ implicit in the CV proposal. These examples are constructed by
creating pockets of approximately constant scalar field at a moment of time-symmetry in the
bulk, resulting in an effective AdS radius smaller than the asymptotic value L within the
pocket. We find that CF becomes arbitrarily negative as the pocket becomes larger: that is,
the complexity becomes progressively closer to that of |R⟩ via this reduction of the effective
AdS radius in an increasingly large region. Since the limit of small AdS radius is not a
well-defined classical geometry, this finding is consistent with the common perspective that
|R⟩ is a state without a geometric dual, e.g. a set of factorized qubits.

What is the upshot of our results for the Complexity=Volume proposal? At minimum,
there is need for an unambiguous prescription that accounts for contributions from compact
dimensions. It is clear that volumes can have a qualitatively different behavior when compact
dimensions are included. On a more speculative level, there appears to be a sharp distinction
(in the dimensionally-reduced picture) between operators whose dual is WCC-respecting and
WCC-violating; acting on the vacuum with the former can only increase complexity; the
latter, however, can decrease complexity. It would be interesting to understand this better in
the dual CFT, perhaps using the proposed definitions of complexity in [27–30].

The paper is structured as follows. In Sec. 9.2 we present our SUGRA maximal volume
asymptotically AdS4 × S7 initial data, together with its dimensional reduction. Then, to
ensure that our constructed initial data gives the unique maximal volume slice in the evolved
spacetime, we derive general properties of maximal volume slices in type II and D = 11
SUGRA in Sec. 9.4.2. Finally, in Sec. 9.3 we turn on boundary sources to study spacetimes
undergoing AdS vacuum decay, both one-sided and two-sided. The appendix 9.4 provides
technical details omitted in the main text.
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9.2 Lower Unbounded Complexity of Formation

We begin by constructing asymptotically AdS4 × S7 examples with negative complexity of
formation supported by a well-studied truncation of eleven-dimensional SUGRA compactified
on the S7 [31]3

S =
1

8πGN

∫
M

d4x
√−g

[
1

2
R +

3

L2
− 1

2
(∇ϕ)2 − V (ϕ)

]
, (9.4)

with scalar potential

V (ϕ) =
1

L2

(
1− cosh

√
2ϕ
)
. (9.5)

Since V (ϕ) is unbounded below, this theory violates the WEC (and equivalently the WCC).
However, it is simple to check that the tachyonic scalar mass about the ϕ = 0 vacuum is
above the BF bound. Furthermore, the null energy condition is satisfied, as always is the
case for minimally coupled scalars.

A solution to the equations of motion of (9.4) with four-dimensional line element ds24 lifts
to a solution of eleven dimensional SUGRA with geometry

ds2 = ∆2/3ds24 +
4L2

∆1/3

4∑
i=1

X−1i
(
dµ2

i + µ2
idψ

2
i

)
, (9.6)

where ds24 is the four-dimensional metric and

µi = (sin θ, cos θ sinφ, cos θ cosφ sin ξ, cos θ cosφ cos ξ) ,

X ≡ X1 = X2 = e
− ϕ√

2 ,

X3 = X4 = X−1,

∆ =
4∑
i=1

Xiµ
2
i .

(9.7)

The angles (θ, φ, ψ1, ψ2, ψ3, ψ4) run over the range [0, π], while ξ ∈ [0, 2π). If we set ϕ = 0
(Xi = 1), then the transverse space just becomes a round S7 with radius 2L: turning on the
scalar ϕ squashes the S7.

We now want to construct initial data on a spherically symmetric maximal volume slice Σ
which has arbitrarily low complexity of formation in the (d+1) = 4 theory (9.4). Furthermore,
upon success of this endeavor, we want to investigate whether considering the full volume in
eleven-dimensional SUGRA restores positivity or boundedness from below. Let us first note
that in the spherically symmetric case, if Σ has embedding coordinates (t(r), r,Ωi) where Ωi
are the angles on the 2-sphere, then Σ can be lifted to a slice Σ̃ in the eleven-dimensional
spacetime with embedding coordinates (t(r), r,Ωi, θ, φ, ξ, ψi). However, the slice Σ̃ is generally
not a maximal volume slice (even though Σ is): turning on the scalar ϕ induces volume in the

3This theory was used to construct big crunch geometries in [23, 24]. Our boundary conditions will differ
from [23, 24], so that the boundary dual will be different. The spacetimes in the next section will more closely
resemble the situation in [23, 24].
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compact dimensions, so if ∂tϕ ̸= 0 on Σ, then we can gain volume in the eleven-dimensional
spacetime (M̃, g̃) by deforming Σ̃. However, letting Kab denote the extrinsic curvature, if we
take a moment of time symmetry, Kab[Σ] = ∂tϕ = 0, then we will also be at a moment of
time-symmetry in eleven dimensions, and so Σ̃ is also extremal in (M̃, g̃).

In a moment we will construct explicit initial data, but let us first find an expression for
the volume of Σ̃. We can take our coordinates on Σ so that

ds2|Σ = B(r)dr2 + r2dΩ2,

ds2|Σ̃ = ∆2/3
(
B(r)dr2 + r2dΩ2

)
+

4L2

∆1/3

4∑
i=1

X−1i
(
dµ2

i + µ2
idψ

2
i

)
,

(9.8)

for some B(r) > 0. Integrating out the compact dimensions, we find an effective volume form
ϵ̃ on Σ:

ϵ̃ = (2L)7f
(
e
− ϕ√

2

)
ϵ, (9.9)

where ϵ is the canonical volume form on Σ induced in the four-dimensional spacetime (M, g)
and

f(X) = π49
(
1 +X2/3

) (
2 + 4X2/3 + 8X4/3 + 7X2 + 8X8/3 + 4X10/3 + 2X4

)
70X1/3(1 +X2/3 +X4/3)3

. (9.10)

When ϵ̃ is integrated over Σ, it gives the volume of Σ̃. Since f(X) ≥ f(1) = vol[S7], including
the compact dimensions always increases the volume compared to the naive multiplication of
the d = 3 volume with (2L)7 vol[S7]. For large |ϕ|, to leading order

ϵ̃ =
27

35
(2L)7 vol[S7]e

|ϕ|
3
√
2ϵ. (9.11)

Thus, for large scalar condensates there is generally an exponential difference in |ϕ| between
the naive (2L)7 vol[S7] vol[Σ] and the true volume vol[Σ̃]. This clearly demonstrates that
compact directions can dramatically modify the volume even if the extremal slice is unchanged.

We now want to pick initial data leveraging the negativity of V (ϕ) to minimize the
volume of Σ. The solution of the constraint equations for Einstein-Maxwell-Scalar theory on
a spherically symmetric maximal volume slice at a moment of time symmetry and with d = 3
is [17]

B(r) =

(
1 + r2 − ω(r)

r

)−1
,

ω(r) =
1

2

∫ r

0

dρρ2e
1
2

∫ ρ
r dzϕ′(z)2

[(
1 + ρ2

)
ϕ′(ρ)2 + 2− 2 cosh

√
2ϕ
]
,

(9.12)

where we pick units of L = 1 for brevity. The quantity ω(r) is a quasi-local mass function,
and ω(∞) is proportional to the conserved spacetime mass when ω(∞) is finite [23].

We now pick the scalar profile on Σ to fall off in such a way so that the evolution of the
initial data on Σ does not spoil the AdS asymptotics. Furthermore, we must ensure that
B(r) > 0 everywhere so that Σ is everywhere spacelike. Beyond these two constraints, we
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are free to choose the profile for ϕ.4 The usual near boundary analysis of the Einstein-Klein-
Gordon system constrains the asymptotic behavior of ϕ:

ϕ(r, x) = r−∆−
(
ϕ(0)(x) + ϕ(2)(x)r−2 + . . .

)
+ r−∆+

(
ψ(0)(x) + ψ(2)(x)r−2 + . . .

)
, (9.13)

where ∆− = 1 and ∆+ = 2. In order to avoid turning on boundary sources and to keep
ω(∞) finite (so the volume divergence structure agrees with that of pure AdS and so the
Balasubramanian-Kraus stress tensor is defined [33]), we take ϕ(2n) = 0.

Let us construct one-sided initial data with no minimal surfaces, so that one coordinate
patch covers the whole of Σ (this happens when B(r) is nowhere divergent [17]). We choose
the profile

ϕ(r) = 1− e−a2/r2 , (9.14)

which has the requisite O(r−2) behavior needed to keep ω(∞) finite. In the appendix we
prove that in type II and D = 11 SUGRA, (1) any K = 0 slice is maximal, and (2) there can
only be one maximal slice at a fixed anchoring. Thus, the spacetime obtained by evolving
our initial data cannot possess another maximum volume slice with larger volume.

It can be checked that the profile (9.14) results in 0 < B(r) <∞, so that our assumption
of no minimal surfaces is satisfied. We now proceed to calculate volumes of Σ and Σ̃ relative
a constant−t slice of AdS4 and AdS4 × S7, respectively:

∆VΣ(a) = vol[S2]

∫ ∞
0

drr2

 1√
1 + r2 − ω(r)

r

− 1√
1 + r2

 ,
∆VΣ̃(a) = vol[S2]27

∫ ∞
0

drr2

 f
(
e
− ϕ√

2

)
√
1 + r2 − ω(r)

r

− vol[S7]√
1 + r2

 ,
(9.15)

(Here the factor 27 appears since the round S7 has radius 2 in units of L = 1.)
In Fig. 9.1 we plot the result: we show ∆VΣ and ∆VΣ̃/V (S7)27 plotted against a, together

with the profile ω(r) for the value a = 5. Other values of a give a qualitatively similar shape
for ω(r). We see that the vacuum subtracted volume for Σ becomes negative as we increase a.
We find no signs of this decrease stopping for very large values of a. However, if we impose a
finite cutoff at r ∼ 1

ϵ
, the decrease will saturate at a ∼ 1/ϵ. Either way, we see that turning

on an increasingly large condensate of our tachyonic scalar field (or in the CFT language,
turning on an increasingly large VEV for a relevant scalar primary) takes us closer to the
reference state |R⟩. This is a very distinct behavior which a CFT dual to volume ought to
reproduce.

4We do not have a guarantee that it is possible to prepare (9.14) via the Euclidean path integral. However,
for our conclusions to fail, it would have to be impossible to construct any qualitatively similar scalar
condensate at a moment of time symmetry, since our findings do not depend on the particular quantitative
details of the condensate (9.14). Any tachyonic scalar condensate should give the same conclusion as long
as we have (1) a pocket where ϕ is non-zero and approximately constant, (2) the pocket is of size at least
r ∼ L, and (3) the scalar falls off as slowly as is consistent (9.13) and finite energy. It seems unlikely that
such profiles cannot be prepared. In fact, [32] shows perturbatively that such profiles can be prepared using
the Euclidean path integral.
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Figure 9.1: (a) ω(r) for a = 5, and (b) the vacuum-subtracted volume as function of a in
units of L.

What is the bulk mechanism leveraged in these examples that allow negative CF ? In the
WEC-violating case (d = 3) it is the absence of a lower bound on the intrinsic Ricci scalar of
maximal volume slices. It is illustrative to look at a conjecture of Schoen (which is proven
for d = 3 [34–36]), which states that5

Conjecture 2 ([37]). Let (Σ, h0) be a closed hyperbolic Riemannian manifold with constant
negative scalar curvature R[h0]. Let h be another metric on Σ with scalar curvature R[h] ≥
R[h0]. Then vol[Σ, h] ≥ vol[Σ, h0].

While this conjecture pertains to compact rather than conformally compact manifolds, there
are good reasons to believe it holds for conformally compact manifolds with AdS asymptotics,
as discussed in [17]. Now, in our d = 3 data the inequality R[h] ≥ R[h0] with h0 being the
metric of hyperbolic space of radius L = 1 no longer holds as a consequence of the tachyon
condensate, so this is presumably what allows CF < 0. What about the eleven-dimensional
case? Since the WCC allows us to put a lower bound on the intrinsic Ricci scalar of Σ̃, it
might look like the conditions of Schoen’s theorem hold. But this is not so: the comparison
manifold must have a hyperbolic metric h0, and static slices of AdS4 × S7 are not hyperbolic.
Type IIA, IIB and eleven-dimensional SUGRA all satisfy (see Appendix 9.4.1)6

tatb
(
Rab[g]−

1

2
gabR[g]

)
≥ 0, (9.16)

which through the Gauss-Codazzi equation implies that the intrinsic Ricci scalar of any
extremal hypersurface in every solution of these theories is positive. Thus, hyperbolic volume
comparison theorems no longer apply.7 While we do not know of any volume comparison

5The conjecture is phrased in a different but equivalent way in [37]. The version stated here can be found
in [38].

6Thus any AdS vacuum of these theories will satisfy the WCC (9.3) with the relevant AdS radius.
7Strictly speaking they could apply for some choice of h0, but not when we pick h0 to be a solution of the

maximal-volume constraints in our theory, which is the relevant case for CF .
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results for asymptotically AdSd+1 ×K type manifolds satisfying (9.16), it is instructive to
note that volume comparison results for manifolds of spherical topology tend to imply lower
volume when the Ricci scalar is higher [38].8 This together with our example indicates that,
with respect to volume, deformations that mainly affect the compact dimensions behave very
different from those that mainly deform the non-compact dimensions.

Finally, let us inquire about the fate of our very low CV data upon time-evolution. A guess,
in keeping with earlier work on the same tachyonic scalar theory [23] and the spacetimes
considered in the next section, would be that it collapses into a big crunch singularity. The
negative and unbounded potential V (ϕ) ∼ 1 − cosh

√
2ϕ seems to favor such a collapse.

However, our data is different from that of [23] and the next section in a significant way: ours
has only normalizable modes turned on, so that the ordinary definition of the energy is finite
and positive. Furthermore, the source of the decay to a big crunch in [23, 24] was argued
to be the presence of a lower unbounded triple trace term in the dual theory Hamiltonian
caused by the non-normalizable mode, but here this term is not turned on due to the faster
scalar field falloff. It seems likely that our data evolves to eventually form a black hole.

The skeptical reader may at this point refuse to take such unboundedly low CF in single-
sided spacetimes seriously, pointing out that the CV-proposal was in its original formulation
intended to describe wormholes and the volume in the interior of a horizon. Possibly, such a
reader may concede, there are some subtleties in one-sided geometries; but surely wormholes
– the original motivation for CV – are still safe.

Any such perspective is however about to be disappointed: a small modification of the
construction above allows us to build two-boundary geometries supported by tachyonic scalars
with unboundedly small vacuum-subtracted volumes. To do so, we modify our construction
above by using the following solution to the constraint equations

ω(r) =
1

2
e
− 1

2

∫ r
r0

dρρϕ′(ρ)2
{
ω0 +

∫ r

r0

dρρ2e
1
2

∫ ρ
r0

dzϕ′(z)2
[(
1 + ρ2

)
ϕ′(ρ)2 + 2− 2 cosh

√
2ϕ
]}

,

(9.17)
where 1 + r20 − ω0

r0
= 0. For any r0 we can use a profile similar to (9.14) to make vol[Σ]

arbitrarily negative compared to two copies of pure AdS. Thus the phenomenon of lower
unbounded CF is equally relevant for wormholes.

9.3 Negatively Divergent Complexity of Formation

The clear culprit for negative CF in Sec. 9.2 was compact dimensions or tachyonic scalars.
While the main point of interest in this article is the effect of including the compact dimensions,
the importance of the scalar tachyons above clearly bears some further investigation. In
this section we provide additional examples of tachyonic scalars causing unusual volume
behavior. Previous work [26] has conducted a near-boundary analysis that found that turning
on boundary sources for these tachyons (thus changing the asymptotic structure, in contrast
with the previous section in which the asymptotics were unmodified) can result in initial
data that has divergent ĊF . Our results in this section support this conclusions and expand

8Note however that in this case, a bound on just the Ricci scalar is not sufficient for volume comparisons.
Further bounds on Rab must be satisfied [38].
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it further by (1) providing a full spacetime evolution to clarify the physical picture and (2)
constructing wormholes with the same properties.

The setting will be unstable asymptotically AdS spacetimes undergoing decay. We will
leverage that there are analytical examples of such spacetimes, rather than just initial data.
The price we pay is that (1) the theory under consideration does not come from a known
realization of AdS/CFT, and (2) the scalar potential is only known numerically. We do
not expect this price to be conceptually meaningful: spacetimes that are entirely analogous
qualitatively can be constructed numerically directly from the SUGRA potential [23, 24].
Here we prefer to work with an analytically known metric, but we do not expect any of
the qualitative features of our analysis to change by the modification of the potential. As
emphasized above, we here deviate from the setup of the previous section: the scalar field
falloff, which is sufficiently slow that boundary sources are turned on, resulting in a divergent
Balasubramanian-Kraus [33] stress tensor. Defining a boundary stress tensor then requires
additional counterterms involving the scalar field [23, 39–43]. As we will see, this in turn
causes the divergence structure of extremal surface volumes to differ from pure AdS, leading
to a UV-divergent CF and dCV

dt
.

9.3.1 AdS Vacuum Decay

The one-sided spacetimes we consider are given by the one-parameter family of metrics
constructed in [44], parametrized by the real positive parameter c. These geometries are
covered by two coordinate patches, with patch I having metric

ds2I = dξ2 + a(ξ)2
(
−dζ2 + cosh2 ζdΩ2

)
, (9.18)

where dΩ2 now is the metric of a d− 1–dimensional sphere, and with

a(ξ) = (1 + c) sinh ξ − 2c sinh
ξ

2
. (9.19)

The second patch, with coordinates (t, ρ,Ωi), is obtained by the analytic continuation
ξ = it, τ = iρ. Patch I is the causal wedge of the spacetime, with the AdS boundary at
ξ =∞, where the scalar field is in the false vacuum (a local maximum). As ξ approaches 0,
where the edge of the causal wedge lies, the scalar field approaches the true vacuum value.
Patch II is an FRW-region which initially expands with motion away from t = 0 and then
crunches, with a curvature singularity at t = ±t∗, where a(it∗) = 0. Physically, the ζ = 0
slice is a bubble of true vacuum that nucleates inside the false vacuum at a moment of time
symmetry. Forward or backward time-evolution results in the subsequent decay of the false
AdS vacuum. See Fig. 9.2 for a conformal diagram drawn for the case c = 1, d = 3 (see
Appendix 9.4.3 for the computation).

This spacetime has past and future cosmological singularities, and in the boundary
conformal frame of the static cylinder, the boundary exists only for a finite time. The dual
field theory, if it exists, can either be viewed as living on de Sitter space, or it can be seen
as a field theory on the Einstein static universe whose evolution terminates in finite time –
possibly due to a Hamiltonian that is unbounded below, as discussed in [23].
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Figure 9.2: Conformal diagram of the spacetime (9.18) with d = 3 and c = 1. Dashed lines
running vertically are hypersurfaces of constant ρ and ξ, with equidistant coordinate spacing.
Dashed lines running horizontally are hypersurfaces of constant t and ζ, with equidistant
coordinate spacing. The blue line is the spacelike section of a holographic screen, while
the red line is the timelike portion. The darker horizontal dashed lines are the constant−t
surfaces at which the FRW region transitions between expanding and crunching (a′(t) = 0),
which are totally geodesic. These are extremal surface barriers.
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CF is negative and divergent

Consider again the coordinates

ds2|Σ =
1

1 + r2 − ω(r)
rd−2

dr + r2dΩ2, (9.20)

on Σ. Assume now that ω(r) is divergent at large r, with the leading behavior at large−r
given by ω(r) ∼ ωsr

s for 0 < s < d.9 The leading ω-dependent divergence in the volume then
is given by:

vol[Σ] ∼ vol[Sd−1]

∫ rcut

dr
rd−1√

1 + r2 − ω(r)
rd−2

∼ vol[Sd−1]

∫ rcut

drrd−2
[

1

2rd−s
ωs + . . .

]
∼ ωs

vol[Sd−1]rs−1cut

2(s− 1)
,

(9.21)

Comparing with a slice of pure AdS with cutoff at the same area-radius rcut, we find

vol[Σ]− vol[ΣAdS4 ] = ωs
vol[Sd−1]rs−1cut

2(s− 1)
+ subleading. (9.22)

We now proceed to show that for our spacetime, we have s = d− 1
2

and ωs < 0, giving that
CF is negative and divergent.

To calculate ωs, it is useful to know that there is a geometric functional ω[σ,Σ] that
reduces to ω(r) when σ is a symmetric codimension−2 spatial surface and Σ spherically
symmetric [17]:10

ω[σ,Σ] =
1

vol[Sd−1]

(
A[σ]

vol[Sd−1]

) 1
d−1
∫
σ

[ R
(d− 1)(d− 2)

− H2

(d− 1)2
+

1

L2

]
, (9.23)

where H[σ] is the mean curvature of σ inside Σ and R the intrinsic Ricci scalar of σ. Let
now Σ be the ζ = 0 hypersurface, which is a maximal volume slice since it is a moment of
time symmetry. Evaluating ω[σ,Σ] for a constant ξ surface σ, we find

ω(ξ) = a(ξ)d−2
(
1 + a(ξ)2 − a′(ξ)2

)
= − 1

2d−1
c(1 + c)2e(d−

1
2)ξ +O(e(d−1)ξ). (9.24)

If we were to change coordinates to the form (9.20) we would find r = O(eξ), and so indeed
we have s = d− 1/2, ωs < 0, showing that CF is negative and divergent.

Note that pure AdS-subtracted volume here is somewhat unnatural from the field theory
perspective. The scalar field falls off sufficiently slowly so as to turn on a source on the
boundary: pure AdS is not a solution of the boundary theory dual to (9.18), so the comparison
appears ill-motivated. In this particular setting – though not in the previous section –
the negatively divergent CF should be viewed as a statement purely about volumes in
asymptotically AdS spacetimes, rather than as a statement pertaining to a single field theory.
It is in principle possible that the field theory dual to (9.18), if it exists, has a preferred state
for the volume subtraction, for which CF would be positive.

9s ≥ d is incompatible with being asymptotically AdS with radius 1.
10This is proportional to the so-called Geroch-Hawking mass when d = 3.
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Complexity change

Let us now compute the leading divergent contribution to the complexity change for spherically
symmetric maximal volume slices. To compute the change in complexity we must choose
the bulk cutoff carefully. Any given conformal frame induces a unique Fefferman-Graham
coordinate system in a neighbourhood of the conformal boundary [45–47]:

ds2 =
1

z2
[dz2 + γµν(z, x)dx

µdxν ], (9.25)

where z = 0 is the conformal boundary and γµν(0, x) the chosen conformal representative.
Given this coordinate system, we can cut off volumes at z = ϵ.

In the case at hand there are two natural conformal frames; we can either choose the
boundary to be dSd or the static cylinder. With respect to the dSd conformal frame it can
readily be checked that the leading divergence in the volume of the maximal volume slice
anchored at a constant ζ is

vol[Σζ ] =
vol[Sd−1] cosh ζd−1

(d− 1)ϵd−1
+O

(
ϵd−3/2

)
. (9.26)

This increases to the future and past of ζ = 0 simply because (1) when regulating with a
Fefferman-Graham cutoff, the divergence of maximal volume slices is always proportional to
the boundary volume in the chosen conformal frame, and (2) the volume of constant ζ slices
of de Sitter increases to the future and past.

Next, let us look at the more interesting case of the static cylinder conformal frame. A
computation (see appendix 9.4.3) of the leading order complexity change with cutoff adapted
to the static cylinder gives

d vol[Σt]

dt
= − 1

ϵd−
3
2

d− 1

d− 3
2

√
c2

2(c+ 1)

sin t

(cos t)3/2
+O(ϵ−d+2), t ∈

(
−π
2
,
π

2

)
. (9.27)

This is clearly negative and divergent, and so unlike in well known examples of black holes,
the moment of time-symmetry is here a maximum of CV , rather than a minimum. This
is in constrast with the case of the dS conformal frame, and so highlights how extremal
hypersurface volume is an observable whose UV-divergence structure depends strongly on the
choice of boundary conformal frame. This is consistent with [26]’s near-boundary analysis,
which also found a divergent rate of change for tachyonic scalars with boundary sources
turned on. In our example we have the additional benefit of knowing the spacetime globally,
providing a physical picture of what is happening in the bulk.

The decrease of CV is a UV effect, and the volume behind the horizon is admittedly
increasing towards the future (before the crunch region that is, which is anyway hidden from
all extremal surfaces). However, the volume behind the horizon is not a natural observable
to associate to a boundary state at a fixed time, since turning on sources in the future would
alter the horizon location, and thus also the volume behind it. Nevertheless, it does seem
that the CV proposal needs some modification in the spacetimes considered in this section.
One possibility is some generalized volume functional that includes contributions from the
scalar fields, which from a dimensional reduction perspective this appears natural.
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9.3.2 Decaying Cosmological Wormholes

Figure 9.3: Black lines show numerically computed features of a coarse-grained spacetime
formed from a marginally trapped (minimar [48]) surface µ on the spacelike section of the
holographic screen shown Fig. 9.2. Dashed lines represent apparent horizons, while X is
the HRT surface. Grey lines lie outside the range of our numerics, and are pure sketches
representing a qualitative image of how the full spacetime could look like. For an illustration
with additional details, see Fig. 9.4 in the appendix.

Can we find a wormhole with the same properties as the spacetime considered above – a
wormhole with cosmological singularities, negative divergent complexity of formation, and
decreasing late time complexity? That would appear to be in some tension with the paradigm
of wormhole volume corresponding to increasing complexity; such an example would add
urgency in finding an appropriate modification of CV that can accommodate such spacetimes.

It turns out that we can, in fact, build such a spacetime. The procedure is borrowed
from [48, 49], which constructs a two-boundary wormhole from a single-sided spacetime
containing a marginally trapped surface satisfying certain assumptions. The protocol is
roughly as follows: one fixes the data in the exterior of a given marginally trapped surface µ;
the rest of the initial data is provided on a stationary null hypersurface fired towards the
past interior from µ. This hypersurface eventually develops an extremal surface on it; at
this surface, the initial data is CPT conjugated, resulting in a second boundary. The initial
data is characteristic; in our case, fixing a spherically symmetric marginally trapped surface
means that obtaining the spacetime requires numerical evolution of the spherically symmetric
characteristic Einstein-Klein-Gordon equations. We will not expound on the details of the
numerics here (although they are surprisingly simple), instead just briefly summarizing our
results. Figure 9.3 illustrates one of these wormholes. On the left, we show the marginally
trapped surface µ used to build the wormhole embedded in the original spacetime. On
the left we see the coarse-grained spacetime in the regions where we are able to obtain it
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numerically. We have not obtained any parts of the spacetime in the future or past of X,
since this requires evolution past a shockwave, requiring more sophisticated methods than
our fairly straightforward technique. The upshot of this solution is that spacetime emergence
connecting two asymptotic boundaries via an interior need not feature a simple complexity
growth with time, emphasizing the necessity of a refinement to the Complexity=Volume
proposal that takes into account the different behaviors of deformed theories. We emphasize
that this is qualitatively (as well as quantitatively) different from the negative CF of the
previous section, in which no boundary sources were turned on.
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9.4 Appendix

9.4.1 The DEC and SEC in type II and D = 11 SUGRA

The DEC and the SEC for p-forms

Consider a stress tensor

Tab =
1

p!

[
pF c2...cp

a Fbc2...cp −
k

2
gabF

c1...cpFc1...cp

]
, 1 ≤ k ≤ p, (9.28)

where Fc1...cp is a p-form. For k = 1 this is just the stress tensor of a free (p− 1) form with
curvature Fc1...cp and action S = −1

2

∫
F ∧ ⋆F . We first check the DEC. Let ua, vb be any

two timelike vectors at a point p. We will normalize them to our convenience, since the DEC
is independent of the choice of normalization. Choose Riemann normal coordinates at q, so
that gµν |q = ηµν and uµ = (∂t)

µ, where ηµν is the Minkowski metric in Cartesian coordinates.
Next, we can always rescale v and perform a rotation of our coordinates so that

vµ = (∂t)
µ + f(∂x)

µ, (9.29)

for some constant f ≥ 0. With this, we now find at q that

vaubTab = Ttt + fTtx. (9.30)
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We compute that

p!Ttt =
∑
µi

(
pF

µ2...µp
t Ftµ2...µp +

k

2
F µ1...µpFµ1...µp

)
=

(
p− k

2

)∑
µi

F 2
tµ2...µp

+
k

2

∑
µi,µ1 ̸=t

F 2
µ1...µp

≥
(
p− k

2

)∑
µi

F 2
tµ2...µp

+
k

2

∑
µi

F 2
xµ2...µp

,

(9.31)

and
p!Ttx =

∑
µi

pF
µ2...µp
t Fxµ2...µp = p

∑
µi

Ftµ2...µpFxµ2...µp . (9.32)

And so adding up (9.31) and (9.32) we get

p!Tabu
avb ≥ p

∑
µi

[(
1− k

2p

)
F 2
tµ2...µp

+
1

2
fFtµ2...µpFxµ2...µp +

k

2
F 2
xµ2...µp

]
+

1

2
pf
∑
µi

Ftµ2...µpFxµ2...µp

≥ p
∑
µi

[(
1− k

2p

)
F 2
tµ2...µp

+
1

2
fFtµ2...µpFxµ2...µp +

k

2
F 2
xµ2...µp

]
.

(9.33)

This is non-negative for each term in the sum. If Ftµ2...µpFxµ2...µp ≥ 0 this is obvious, since
we assumed 1 ≤ k ≤ p, giving that each term is manifestly non-negative. So assume
Ftµ2...µpFxµ2...µp < 0. In this case we get a smaller term if we replace (1) f → 2, (2) k → p in
the first term, and (3) k → 1 in the last term:

p!Tabu
avb ≥ p

∑
µi

[
1

2
F 2
tµ2...µp

+ Ftµ2...µpFxµ2...µp +
1

2
F 2
xµ2...µp

]
≥ 0. (9.34)

Thus the DEC holds for the stress tensor (9.28). Together with Gab = 8πGNTab, this implies
the WCC (9.3).

Next, let us turn to the SEC. Set 8πGN = 1. Then

T ≡ T aa = gabGab = (1−D/2)R (9.35)

and so

Rabt
atb =

(
Gab +

1

2
gabR

)
tatb = Tabt

atb − 1

2
R = Tabt

atb − 1

2−DT. (9.36)

Our stress tensor gives

p!T =
1

2
(2p− kD)F c1...cpFc1...cp . (9.37)
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Choosing again Riemann normal coordinates at our point of interest, we get

p!Rµνt
µtν =

(
p− k

2

)∑
µi

F 2
tµ2...µp

+
k

2

∑
µi,µ1 ̸=t

F 2
µ1...µp

− 1

2

2p− kD
2−D Fµ1...µpF

µ1...µp

≥
(
p− k

2
− 1

2

kD − 2p

D − 2

)∑
µi

F 2
tµ2...µp

≥
(
p− p

2
− 1

2

pD − 2p

D − 2

)∑
µi

F 2
tµ2...µp

= 0,

where we used that 1 ≤ k ≤ p above. Thus the SEC holds for the stress tensor (9.28).

Type IIB

From [50, 51] we have that the gravitational equations of motion of the bosonic sector of type
IIB supergravity in the Einstein frame can be written as

Rab =
1

2
∇aϕ∇bϕ+

1

2
e2ϕ∇aχ∇bχ+

1

96
HacdefH

cdef
b +

1

4
e−ϕ

[
FacdF

cd
b − 1

12
gabFcdeF

cde

]
+

1

4
e−ϕ

[
LacdL

cd
b −

1

12
gabLcdeL

cde

]
(9.38)

where H is a five form and F and L are three-forms. The scalar stress tensors are (up to a
positive rescaling in the case of χ) just stress tensors of massless scalars and so satisfies the
DEC and the SEC. Thus we just need to check that the p-forms. Rewriting the equation in
Einstein form we get stress tensors

T
(H)
ab =

1

5× 96

(
5HacdefH

cdef
b − 5

2
gabHcdefgH

cdefg

)
T

(F )
ab =

1

12
e−ϕ

(
3FacdF

cd
b − 1

2
gabFcdeF

cde

)
T

(L)
ab =

1

12
eϕ
(
3LacdL

cd
b −

1

2
gabLcdeL

cde

) (9.39)

All of these stress tensors are proportional to (9.28) with a positive coefficient, and so the
DEC and SEC holds.

Type IIA and D = 11 supergravity

In the Einstein frame, the stress tensors of the bosonic matter in type IIA and eleven-
dimensional supergravity is just that of free p-form fields, except for an overall positive factor
proportional to an exponential of the dilaton in the case of type IIA [52]. The exact kind of
computation as was carried out above shows that the WEC holds classically in these theories.
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9.4.2 General properties of K = 0 slices in SUGRA

We here derive and highlight some general results on slices of vanishing mean curvature in
type IIA/B and D = 11 SUGRA. This will justify our statement that the initial data in
Sec. 9.2 gives the unique maximal volume slice in the evolved spacetime.

The first observation is the following:

Proposition 1. The bosonic matter fields of type IIA, IIB and D = 11 supergravity in the
Einstein frame satisfies the strong energy condition (SEC) and the dominant energy condition
(DEC):

SEC : Tabu
aub +

1

D − 2
T aa ≥ 0, ∀timelike ua,

DEC : Tabu
ava ≥ 0, ∀timelike ua, va.

(9.40)

This result is known in the literature [53–55], but for convenience we included a derivation
above, as the result is often stated without proof. Note that this result applies to the
standard bosonic fields, and does not include stringy curvature corrections or additional
massive fields. Also, dimensional reduction will in general both break the SEC [55] and the
DEC [21] (although for specific types of compactifications they might survive [54]).

The well known fact that the SEC combined with K = 0 implies maximality [56, 57] now
immediately gives

Proposition 2. Let (M, g) be any classical solution of type IIA, IIB, or D = 11 SUGRA in
the Einstein frame. If Σ is a K = 0 spacelike hypersurface, possibly with boundary, then Σ is
maximal under any variation that leaves its boundary fixed.

This is a manifestation of the well known fact that the SEC ensures focusing of timelike
congruences. The result follows from calculating the second variation of the volume of a
spacelike K = 0 hypersurface, which reads [56, 57]

δ2 vol[Σ] = −
∫
Σ

(|DN |2 +N2KabK
ab +N2Rabn

ana) ≤ 0, (9.41)

where τa is the vector field generating the variation of Σ, na a unit normal to Σ, Da the
connection on Σ, and N = τ · n. It is assumed that the boundary of Σ is kept fixed in (9.41).

As described above, Proposition 2 will generally not be true in dimensionally reduced
spacetime, and so in this case we actually have better control in the full D = 10, 11 spacetime.
This shows a situation in AdS/CFT where the compact dimensions should be viewed as a
resource rather than a nuissance.

Next, [58] has showed that if the SEC holds, then there cannot be two K = 0 slices
anchored at the same boundary time in an asymptotically AdS spacetime (the proof survives
when we also have a compact space). Thus we have the result

Proposition 3. Let (M, g) be an asymptotically AdSd+1 ×X solution of type IIA, IIB, or
D = 11 SUGRA in the Einstein frame for some compact manifold X. Let Σ be a complete
maximal volume slice anchored at boundary time C. Then there is no other maximal volume
slice in the domain of dependence of Σ that is anchored at C.
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Proposition 2 and 3 now justifies our assertion from Sec. 9.2 that our initial data Σ is the
true maximal volume slice.

Finally, we remark that Proposition 2 and 3 remain true if we add additional SEC-
respecting matter, such p-dimensional branes B with action

S = −
∫
B

dpx
√
−hT +

∫
B

Cp, (9.42)

where T is a non-negative potentially field-dependent scalar and Cp a p-form – both indepen-
dent of the induced metric hab on B.

9.4.3 AdS Vacuum Decay Computations

Kruskal coordinates

Define
â(t) = a(it) = (1 + c) sin t− 2c sin

t

2
. (9.43)

Consider the metric (9.18) in the special case of c = 1 and d = 3. Define the functions

R(ξ) =

∫ ξ

ξ0

dξ′

a(ξ′)
=

1

3
log

[
f(ξ)

f(ξ0)

]
, T (t) =

∫ t

t0

dt′

â(t′)
=

1

3
log

[
f̂(t)

f̂(t0)

]
(9.44)

where

f(ξ) =
cosh

(
ξ
4

)
sinh

(
ξ
4

)3(
1− 2 cosh

(
ξ
2

))2 =

{
ξ3

64
+O(ξ5) ξ ≪ 1

1
16
− 3

16
e−ξ − 1

8
e−3ξ/2 +O(e−2ξ) ξ ≫ 1

f̂(t) =
cos
(
t
4

)
sin
(
t
4

)3(
1− 2 cos

(
t
2

))2 =

{
t3

64
+O(t5) t≪ 1
1

4
√
3(t∗−t)2

− 1
8(t∗−t) +O(1) t∗ − t≪ 1

(9.45)

where t∗ = 2π
3

is the location of the future singularity, ie. the maximal value of t. The
constants t0 > 0 and ξ0 > 0 will be chosen later. We have T ∈ R with T = ∞ the future
singularity and T = −∞ the future event horizon, so the coordinate T covers only the future
FRW region. We have R ∈ (−∞, R∂) where R = −∞ is the event horizon and R∂ the
conformal boundary. Define now Kruskal coordinates

U =

{
eT (t)−ρ Region II
−e−ζ+R(ξ) Region I

V =

{
eT (t)+ρ Region II
eζ+R(ξ) Region I

. (9.46)

where we now take Region II temporarily to mean the future part only. This gives

T (U, V ) =
1

2
log(UV ), ρ(U, V ) =

1

2
log(V/U), U > 0, (9.47)

ζ(U, V ) =
1

2
log(−V/U), R(U, V ) =

1

2
log(−V U), U < 0. (9.48)

The future event horizon is now at U = 0 and the past event horizon at V = 0. The octant
V ≥ U ≥ 0 covers the future part of of region I, with ρ = 0 at U = V . The singularity lies at
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(U > 0, V =∞). The conformal boundary is at V U = −e2R∂ , and region I is covered by the
regions U ≤ 0 and 0 ≤ V ≤ − e2R∂

U
.

Let us now define the functions

t̂(X) = T−1
(
1

2
logX

)
, ξ̂(X) = R−1

(
1

2
log(−X)

)
, (9.49)

so that t(U, V ) = t̂(UV ) and ξ(U, V ) = ξ̂(UV ). The domain of t̂ is X ∈ (0,∞). Since
R ∈ (−∞, Rmax), we have that the domain of ξ̂ is X ∈ (−e2Rmax , 0). Finally changing the
coordinates, we find that the metric is

ds2 = b(UV )

[
−dUdV +

(
V − U

2

)2

dΩ2

]
, (9.50)

where

b(UV ) =

{
â(t̂(UV ))2√

U2V 2
, U > 0, V > 0,

a(ξ̂(UV ))2√
U2V 2

, U < 0, V > 0.
(9.51)

Note that the inverse functions T−1 and R−1 must be computed numerically, and so the same
is also true of b.

In order for b(X) to be continous at X = 0 we need to choose ξ0, t0 appropriately. For
small arguments we have

log(−UV )

2
= R(ξ) = log

(
ξ

4

)
− 1

3
log f(ξ0) +O(ξ2),

logUV

2
= T (t) = log

(
t

4

)
− 1

3
log f̂(t0) +O(t2),

(9.52)

which at small t and ξ gives the relation

ξ = 4f(ξ0)
1/3
√
−UV ,

t = 4f̂(t0)
1/3
√
UV .

(9.53)

Now, near the horizon we have that â(t) = t+ . . . and a(ξ) = ξ + . . ., so the function b near
the horizon reads

b(UV ) =

{
16f̂(t0)

2/3 + . . .

16f(ξ0)
2/3 + . . .

. (9.54)

Thus, continuity of b requires t0 and ξ0 to be related by

f(ξ0) = f̂(t0). (9.55)

The conformal diagram

The metric (9.50) is just conformal to Minkowski, and so drawing the conformal diagram is
just as for Minkowski, with two exceptions:
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• In the region of negative U , −UV ≥ e2R∂ is excised since it lies beyond the conformal
boundary.

• The part which corresponds to null infinity in Minkowski (and which is not in the
excised region) is here instead a singularity at a finite proper distance.

From these observations, we easily find Fig. 9.2. In our representation have chosen t0 = 1 and
rescaled the null coordinates by a convenient overall factor in order to bring the holographic
screen closer to the center of the diagram.

The holographic screen

Consider the radial null vectors

ka =
1√
2â(t)

[
(∂t)

a +
1

â(t)
(∂ρ)

a

]
, ℓa =

â(t)√
2

[
(∂t)

a − 1

â(t)
(∂ρ)

a

]
, (9.56)

which are normalized so that k · ℓ = −1 and so that ka∇ak
b = 0. Calculating the expansions,

we find

θk =

√
2

â(t)2

(
â′(t) +

1

tanh ρ

)
θℓ = −

√
2

(
−â′(t) + 1

tanh ρ

) (9.57)

For times where â′(t) < −1, we have marginally trapped surfaces at

ρ(t) = arctanh

(
− 1

â′(t)

)
. (9.58)

The unnormalized tangents to the screen that are orthogonal to the marginally trapped leaves
are

ηa = (∂t)
a + ρ′(t)(∂ρ)

a = (∂t)
a +

â′′(t)

1− â′(t)2 (∂ρ)
a. (9.59)

Its norm is given by

η2 = −1 + â(t)2â′′(t)2

(â′(t)2 − 1)2
, (9.60)

which starts out being positive and then transitions to negative at late times.

Timelike geodesics must cross the horizon

Consider a timelike geodesic in region II, which by spherical symmetry can be taken to lie at
θ = π/2 without loss of generality. The effective Lagrangian for a geodesic is

L = gµνu
µuν = ξ̇2 − a(ξ)2ζ̇2 + a(ξ)2 cosh2 ζφ̇2, (9.61)

Parametrizing by proper time, so that L = −1, gives

−ζ̇2 + cosh2 ζφ̇2 = −1 + ξ̇2

a2
. (9.62)
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Then the geodesic equation for ξ can then be written

0 = ξ̈ − aa′
(
−ζ̇2 + cosh2 ζφ̇2

)
= ξ̈ +

a′

a
(1 + ξ̇2). (9.63)

Interestingly the angular momentum makes no presence here, so there is no angular moment
barrier between the horizon and the conformal boundary. Since a′(ξ)/a(ξ) > 1 everywhere,
this equation effectively describes a particle subject to friction and a force always pushing
in the direction of negative ξ. Thus no geodesic can avoid reaching ξ = 0. After this, it
enters region II, where it is doomed to encounter the singularity in finite time. Thus, every
timelike geodesic ends up in the singularity, and so the singularity is rightfully described as
cosmological.

Computing ĊV

Let us consider the static cylinder conformal frame. Defining ξ = − log z, the metric in the
causal wedge becomes

ds2I =
1

z2
[
dz2 + f(z)2

(
dζ2 + cosh2 ζdΩ2

)]
f(z) =

[1− z] [1 + c(
√
z − 1)2 + z]

2
=

1 + c

2
− c√z +O(z).

(9.64)

Next we introduce new coordinates (w, t) through:

ζ = 2arctanh

(
tan

t

2

)
,

z = w
c+ 1

2 cos t
.

(9.65)

To subleading order in w, this transforms the metric into Fefferman-Graham coordinates of
the static cylinder:

ds2I =
1

w2

[
dw2 + h(w, t)2

(
−dt2 + dΩ2

)
+O(w)

]
,

h(w, t) = 1−√w
√

2c2

(c+ 1) cos t
,

(9.66)

where t lies in the finite range |t| < π/2. Consider now a hypersurface Σt0 with embedding
coordinates (w, t(w),Ωi), and where t(0) = t0. Its volume reads

vol[Σt0 ] = vol[Sd−1]

∫
dw

h(w, t)d−1

wd

√
1− h(w, t)t′(w)2. (9.67)

Expanding near the boundary,

t(w) = t0 + t1w +O(w3/2), (9.68)
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we find that extremality imposes t1 = 0. Consequentially, the divergence of the volume to
subleading order is

vol[Σt0 ] = vol[Sd−1]

∫
ϵ

dw

(
w−d − w−d+1/2(d− 1)

√
2c2

(c+ 1) cos t0
+O(w−d+1)

)

= vol[Sd−1]

[
1

(d− 1)
ϵ−d+1 − d− 1

d− 3
2

ϵ−d+
3
2

√
2c2

(c+ 1) cos t0
+O(ϵ−d+2)

]
.

(9.69)

This implies that the leading order complexity change with cutoff adapted to the static
cylinder is given by (9.27).

Plot of the Cosmological Wormhole

Fig. 9.4 shows the domain for which the numerical determination of the coarse grained
spacetime has been carried out, together with data on null expansions and area–radii in the
geometry.

Figure 9.4: To the left, we have zoomed into the outer wedge OW [µ] of a marginally trapped
surface µ on the spacelike section of the holographic screen in Fig. 9.2. On the right, we
show the coarse-grained spacetime corresponding to µ in the regions where we have been
able to obtain the metric numerically. The black contour lines show surfaces of constant area
radius, saturating at r = 5 and with spacings of δr ≈ 0.2. The colored contours show the
product of the null expansions θkθℓ for constant−r surfaces, with gray regions corresponding
to θkθℓ > 4. The shockwave passing through the HRT surface X carries no null energy, but
does source a discontinuity in the inaffinity of ℓa, which is the null vector along the direction
of the shockwave. The quantity ℓa∇aϕ is discontinuous at X.
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Chapter 10

Maximal Entangling Rates from
Holography

Abstract: We prove novel speed limits on the growth of entanglement, equal-time
correlators, and spacelike Wilson loops in spatially uniform time-evolving states in strongly
coupled CFTs with holographic duals. These bounds can also be viewed as quantum weak
energy conditions. Several of the speed limits are valid for regions of arbitrary size and
with multiple connected components, and our findings imply new bounds on the effective
entanglement velocity of small subregions. In 2d CFT, our results prove a conjecture by Liu
and Suh for a large class of states. We also bound spatial derivatives of entanglement and
correlators. Key to our findings is a momentum-entanglement correspondence, showing that
entanglement growth is computed by the momentum crossing the HRT surface. In our setup,
we prove a number of general features of boundary-anchored extremal surfaces, such as a
sharp bound on the smallest radius that a surface can probe, and that the tips of extremal
surfaces cannot lie in trapped regions. Our methods rely on novel global GR techniques,
including a delicate interplay between Lorentzian and Riemannian Hawking masses. While
our proofs assume the dominant energy condition in the bulk, we provide numerical evidence
that our bounds are true under less restrictive assumptions.

10.1 Introduction

Entanglement is one of the key features unique to quantum mechanics, and its effects are
ubiquitous in modern physics. It is now clear that entanglement and entanglement entropy is
a central quantity across a diverse range of fields, such as quantum many-body physics [1–3],
quantum information theory [4–6], quantum gravity [7–21], and quantum field theories and
their RG flows [22–30].

A central question relevant to all of the above subjects is how entanglement behaves
dynamically. In this paper, we address the following questions: are there general bounds
on the entanglement entropy in time-dependent states? Does there exist speed limits on
how fast it can grow? The latter question is relevant to understanding how rapidly quantum
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information can propagate, how long it takes a many-body system to thermalize, or, in
quantum gravity, for constraining the dynamics of spacetime itself.

While calculating entanglement entropies is notoriously hard, many lessons have been
learned over the last two decades. Quantum quenches in particular have received considerable
interest. In a quantum quench, the Hamiltonian is abruptly changed, or a source is turned
on over a small time interval δt. In either case, there is an abrupt injection of energy into the
system, kicking the state out of equilibrium. The subsequent approach to equilibrium can
then be computed in various setups. In the seminal paper by Calabrese and Cardy [23], the
entanglement entropy SR of an interval R of length ℓ in a (1 + 1)-dimensional conformal field
theory (CFT) after a uniform quench was computed, and for large times and interval lengths,
it was found to behave as

SR(t)− SR(t = 0) =

{
2stht t < ℓ/2

sthℓ t ≥ ℓ/2
, (10.1)

where sth the thermal entropy density of the final state. Linear growth of entanglement for
large regions R after uniform quenches has also been found in higher dimensional holographic
CFTs [31–34]. In particular, after local equilibration and before late time saturation, the
entanglement entropy of a region R after a quench was found to behave as [33, 34]

SR(t)− SR(t = 0) = vEsthArea[∂R]t+ . . . (10.2)

with vE the so-called entanglement velocity, which satisfies vE ≤ 1.
While quenches provide useful insights on entanglement dynamics, they do not cover all

kinds of states, and it would be useful to have more general constraints. Some such results do
exist. Consider two quantum systems A∪ a and B ∪ b coupled by an interaction Hamiltonian
H acting only on A and B. In [35] (building on [36]) it was proven that∣∣∣dSA∪a

dt

∣∣∣ ≤ η∥H∥ log d, (10.3)

where d = min{dimA, dimB}, and where η is an order 1 constant. While this bound has
broad generality for finite-dimensional systems, it is not useful in QFT, where d is infinite.
Even if we UV-regulate to make d finite, ∥H∥ is infeasible to compute. Furthermore, the
bound is state-independent, and it is natural to suspect there exists stronger bounds that
depend on the conserved charges of the state.

A bound more useful in QFT was conjectured [33, 34], based on the findings in holographic
quenches. It was proposed that a normalized instantaneous entanglement growth R in
relativistic QFT satisfies the bound

R ≡ 1

Area[∂R]sth

∣∣∣dSR
dt

∣∣∣ ≤ 1. (10.4)

In [37] relativistic QFT was used to prove that R ≤ 1 for large convex regions R in spatially
uniform states, neglecting contributions to SR not scaling with volume.1 However, it was

1A proof was also given in [38] for half-planes, taking linear growth of entanglement as an assumption.
For quenches, it was proven for large regions holographically in [39], together with many other properties of
quenches.
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found in [34] that the largest values for R were obtained for intermediate sized regions, where
it could exceed vE (for d > 2), and where existing proofs of R ≤ 1 do not apply. Thus, the
validity of (10.4) for general regions is still an open question.2

In this work, for holographic CFTs with large coupling and large−N (large effective
central charge), we prove novel bounds that imply R ≤ 1 for a large class of situations not
covered by [37, 38]. We also prove several bounds that to our knowledge have not been
previously discussed, including growth bounds on correlators and Wilson loops. We will see
that our growth bounds can be seen as new types of quantum energy conditions, valid for
uniform states. We also derive absolute bounds on entanglement entropy and equal-time
correlators.

Let us now summarize our results. Consider first a 2d CFT on S1×R or Minkowski space
in a homogeneous and isotropic state undergoing time-evolution. Let t label the timeslices
on which the state is uniform. Let R be a union of n finite intervals of any size. Assuming
an energy condition and certain falloff conditions on the matter fields in the bulk, which we
assume for all bounds presented in the following, we prove that∣∣∣dSR

dt

∣∣∣ ≤ n

√
8πc

3

(
⟨Ttt⟩ − ⟨Ttt⟩vacuum

)
, (10.5)

where c is the central charge and ⟨Ttt⟩ the CFT energy density one-point function, which is
the same everywhere in a uniform state. If we work with uncharged states, (10.5) implies
that R ≤ 1. Thus, for the 2d theories under consideration, we have given a proof of R ≤ 1 to
regions of arbitrary finite size and with any number of connected components.3

Next, consider d ≥ 2-dimensional holographic CFTs on Minkowski space, again in a
time-evolving uniform state. Taking R to be either a single ball or strip of characteristic size
ℓ, we prove that ∣∣∣dSR

dt

∣∣∣ ≤ κVol[R] ⟨Ttt⟩
[
1 +O

(
ℓd ⟨Ttt⟩
ceff

)]
, (10.6)

where κ is an O(1) numerical constant given in (10.31), and which depends on d and the
shape of R. ceff is the effective central charge, to be defined in the following. For small regions
this bound is much stronger than R ≤ 1.4 If β is the effective inverse temperature at which
the thermal energy density equals ⟨Ttt⟩, we get

R ≤ O(ℓ/β)≪ 1. (10.7)

We also prove a higher-dimensional analogue of (10.5), although the proof is more limited.
2In fact, since generic QFTs can have state-dependent divergences in SR [40], ∂tSR can be divergent in

some theories, and so (10.4) cannot be true in all relativistic QFTs. This means that a generalization of the
proofs of [37, 38] to include contributions not scaling with volume impossible without more input on the
theories under consideration.

3For holographic CFTs, (10.5) also improves on a bound proven for single intervals of any size in all 2d

CFTs by [37], which can be written as R ≤ coth

(
πℓ
√

πc
6⟨Ttt⟩

)
.

4See [41] for a discussion of a different definition of R, where sth is replaced by the vacuum-subtracted
entanglement entropy per volume in the final state. With this definition, R is O(1) for small subregions, but
it can exceed 1.
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We prove for states that are somewhat more general than quench states that

∣∣∣dSR
dt

∣∣∣ ≤ 1

4
Area[∂R]ceff

[
16π

(d− 1)ceff
⟨Ttt⟩

] d−1
d

, (10.8)

where R either is a single ball, or the union of any number of strips. Considering a neutral
state, (10.8) translates into R ≤ 1. While our proof of (10.8) applies to a smaller class of
states, we give substantial numerical evidence that (10.8) holds more generally for all uniform
states.

For strips, we also prove bounds on the entanglement entropy itself. For Rℓ a strip of
width ℓ at fixed time t, we prove that the vacuum subtracted entropy ∆S(ℓ) satisfies

∂ℓ∆S(ℓ) ≥ 0, (10.9)

which in particular implies ∆S ≥ 0.
In the special dimensions of d = 2, 3, 4, we prove additional bounds. Assuming the

geodesic approximation for correlators [42], we prove that the equal-time two-point function
of a scalar operator O of large scaling dimension ∆ in d = 2 satisfies∣∣∣ d

dt
log ⟨O(x)O(0)⟩ρ(t)

∣∣∣ ≤√96π∆2

c

(
⟨Ttt⟩ − ⟨Ttt⟩vac

)
, (10.10)

where ρ(t) is the state under consideration. This bound is saturated in the global CFT2

quenches studied in [43, 44] (for any ∆ and c). We also prove a tighter bound when x is
small: ∣∣∣ d

dt
log ⟨O(x)O(0)⟩ρ(t)

∣∣∣ ≤ 12π∆|x|
c

(
⟨Ttt⟩ − ⟨Ttt⟩vac

)
[1 + . . .] , (10.11)

where dots indicateO (x2 ⟨Ttt⟩ /c) corrections. We furthermore prove a bound on the correlator
itself. Letting x > 0, we have

d

dx
ln ⟨O(x)O(0)⟩ρ(t) ≤

d

dx
ln ⟨O(x)O(0)⟩vacuum = −2∆

x
, (10.12)

which shows that for the states covered by our assumptions, correlations between heavy
scalars must die off faster than in the vacuum.

When d = 3, 4, we prove bounds on Wilson loops W(C) of spacelike circles C, assuming
we can compute these using classical worldsheets in the bulk. Assuming N = 4 SYM with
gauge group SU(N) and ’t Hooft coupling λ on the boundary, we show that5

∣∣∣ d
dt

log ⟨W(C)⟩ρ(t)
∣∣∣ ≤ Length[C]

√
2λ

3N2
⟨Ttt⟩, d = 4. (10.13)

In d = 3, we prove a similar result, but for the more restricted set of states which includes
global quenches (see (10.132)). For small Wilson loops, we also have stricter bounds, which
we give in the main text (see (10.127)).

5For other potential d = 4 holographic CFTs, our result can be written in terms of the effective central
charge and effective coupling – see main text.
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How are these bounds proven? Let us give the broad picture, restricting to the time-
derivative of the entanglement entropy of a strip for concreteness. For CFTs dual to classical
Einstein gravity, the von Neumann entropy of the reduced state ρR on a subregion R is given
by the HRT formula [10, 11, 45], which says that

SR =
Area[X]

4GN

, (10.14)

where X is the HRT surface in the gravitational bulk, which roughly means a codimension
2 spacelike surface that has stationary area under perturbations of X in the bulk interior.
Bounding ∂tSR in uniform states now corresponds to bounding ∂tArea[Xt], where Xt is a
one-parameter family of HRT surfaces living in general time-dependent spacetimes with
planar symmetry. Key to our proofs then is carrying out the analysis locally on a planar
symmetric spatial slice Σ that contains Xt. We then show that the change in entanglement
entropy is given by

dSR
dt

=

∫
X

GP, (10.15)

where P is the matter momentum density in a direction orthogonal to HRT surface, and
G essentially a propagator that only depends on the smallest radius probed by X, and not
any other details of the spacetime. We thus see that the flux of matter falling out of the
entanglement wedge is directly responsible for the increase of entanglement entropy. The
formula (10.15) can be seen as momentum-entanglement correspondence, analogue to the
momentum-complexity correspondence proposed in [46] and given a precise form in [47–49].
To further leverage this formula to get our proofs, we study two quasilocal masses and find
in certain dimensions the integral in (10.15) is exactly encoded in the difference between
these two quasilocal masses at infinity. A detailed analysis of the monotonicity properties
of these masses under various flows then lets us prove our final bounds, essentially using a
combination of Lorentzian and Riemannian inverse mean curvature flows. We emphasize
that beyond our assumed symmetries, we do not need to assume a particular form of the
spacetimes we are considering, and we are certainly not restricted to quenches for our most
general bounds.

Along the way we derive various general properties of the HRT surfaces of strips and
spheres in planar symmetric spacetimes. For example, for d = 2 we prove that the radius r0
of the tip of the HRT surface of a strip of width ℓ satisfies

r0 ≥
2L2

ℓ
, (10.16)

where L the AdS radius. We prove similar bounds in higher dimensions. We also prove that
the tip of an HRT surface of a sphere or a strip can never lie in a trapped region in spacetime.
The same is shown for boundary anchored extremal surfaces of dimension q + 1 anchored at
q-spheres.

This paper is organized as follows. In Sec. 10.2 we set up our assumptions and prove all our
entanglement growth bounds for strip subregions R. In Sec. 10.3 we prove the entanglement
growth bounds for ball shaped regions R and furthermore derive general properties (q + 1)-
dimensional extremal surfaces anchored at q-dimensional spheres on the boundary, leading
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to our results for correlators and Wilson loops. In Sec. 10.4 we prove bounds on spatial
derivatives of the entanglement entropy of strips and equal-time two-point correlators in
d = 2. In Sec. 10.5, for a subset of our bounds, we give significant numerical evidence that
the dominant energy condition, which was assumed for our proofs, can be replaced by less
restrictive assumptions. Finally, in Sec. 10.6, we conclude with a discussion of the implications
of our findings, together with future directions. For a reader only wanting to understand
the results without getting into the details of the proofs, it is possible to only read sections
10.2.1, 10.3.1, 10.4, 10.5, and 10.6.

10.2 Maximal Entanglement Rates for Strips

10.2.1 Setup and summary of results

Consider a d-dimensional holographic CFT in Minkowski space dual to classical Einstein
gravity. Consider now some general time-evolving state ρ(t) possessing a geometric dual, and
having spatially homogeneous and isotropic one-point functions for local operators dual to
bulk fields, such as the CFT stress tensor Tij. Homogeneity and isotropy ensures that the
dual asymptotically AdSd+1 spacetime (M, g) has planar symmetry. We allow ρ(t) to live on
either one or two copies of Minkowski space, so that the dual spacetime can have either one
or two asymptotic boundaries. For a single system, we allow ρ(t) to be mixed.6

Our goal in this section is to use the HRT entropy formula in this setup to derive a speed
limit on the growth of the entanglement for a strip, and in some cases the union of any number
of strips, provided they all live on the same connected component of the conformal boundary.
In Sec. 10.3 we will generalize to spherical subregions, and to Wilson loops and two-point
correlators. However, we will present the results on entanglement growth for spherical regions
in this section, since they naturally are presented together with the results for strips.

Before presenting our results, let us set up our assumptions. We will assume that
our spacetimes are AdS-hyperbolic, meaning that we can foliate (M, gab) with spacelike
hypersurfaces Σt that all have the same topology and are geodesically complete as Riemannian
manifolds. These represent moments of time. Next, letting L be the asymptotic AdS radius,
we assume that (M, gab) satisfies the Einstein equations

Rab −
1

2
gabR−

d(d− 1)

2L2
gab = 8πGNTab, (10.17)

and that the dominant energy condition (DEC) holds for the bulk stress tensor Tab, meaning
that

Tabuavb ≥ 0 for all timelike ua, vb. (10.18)

Next, we assume that the Balasubramanian-Kraus [51] boundary stress tensor ⟨Tij⟩ is
finite. When it is finite, it corresponds to the one-point function of the CFT stress tensor.
To specify falloff assumptions more explicitly, let Ω be any defining function, meaning any

6Allowing two-sided spacetimes means that automatically allow mixed states on a single CFT, since we
can always find a purification dual to a wormhole, simply by gluing a second CPT-conjugate copy of the
spacetime to itself along the HRT surface [50].
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function on the conformal compactification ofM such that the pullback of Ω2gab|∂M to the
conformal boundary is a Lorentzian metric. We then require that the bulk stress tensor
satisfies

Tabuavb ∼ o
(
Ωd
)
, ∀ unit vectors va, ua, (10.19)

near the conformal boundary ∂M. In the radial coordinate r introduced below, this means the
stress tensor in an orthonormal basis falls off as o(r−d). Matter fields with falloffs sufficiently
slow to require modifications of the definition of the spacetime mass are not covered by our
results.7 To avoid having to repeat the same assumptions in every theorem, let us define the
following:

Definition 11. We say that an AAdSd+1 spacetime (M, gab) is regular if it is AdS-hyperbolic,
has falloffs (10.19), and gab is C2.

For index conventions, we will take a, b, . . . to be abstract spacetime indices, and α, β, . . .
to be abstract indices on spacelike hypersurfaces Σ. We take µ, ν, . . . to be coordinate indices
on Σ. Other indices should be clear in the context. Furthermore, whenever intrinsic tensors
on submanifolds are written with spacetime indices, we mean the pushforward/pullback to
spacetime using the embedding map.

To describe the boundary regions covered by our results, we select a Minkowski conformal
frame on the conformal boundary with coordinates

ds2|∂M = −dt2 + L2(dϕ2 + dx2), ϕ ∈ R, x ∈ Rd−2, (10.20)

where the constant t-slices are the ones on which we have uniform one-point functions for
local operators. For d = 2 we can allow ϕ to be periodically identified, in which case we
say thatM has spherical symmetry. If ∂M has two connected components, we focus on a
particular one. We define Rt′ to be the one-parameter family of boundary regions given by

− ℓ

2L
≤ ϕ ≤ ℓ

2L
, t = t′, (10.21)

which just corresponds to a strip or interval of length ℓ at time t′. In this section, when we
talk about strips or refer to a one-parameter family, we always mean the family (10.21). We
will abbreviate Rt=0 ≡ R, and define

Area[∂Rt] = Area[∂R] = Ld−2
∫
Rd−2

dd−2x, d > 2, (10.22)

while for d = 2, we have Area[∂R] = 2. For d > 2 this is of course divergent, but since it
always appears as an overall prefactor it causes no difficulties.

Next, the HRT formula [10, 11, 45] states that the von Neumann entropy of the reduced
CFT state on Rt, ρR(t) ≡ trRc ρ(t), is given by

SR(t) = − tr [ρR(t) ln ρR(t)] =
Area[Xt]

4GN

, (10.23)

7In this case, depending on how slow the falloffs are, subleading divergences in the entropy might become
state dependent [40], in which case R ≤ 1 cannot remain true. See discussion in Sec. 10.6.

318



where Xt is the minimal codimension-2 spacelike surface in (M, gab) that is (1) a stationary
point of the area functional (i.e. extremal), (2) anchored at ∂Rt on the conformal boundary
(∂Xt = ∂Rt), and (3) homologous to Rt. The latter means that there exists spacelike
hypersurface Σ with ∂Σ = Xt ∪ Rt, where we here mean the boundary in the conformal
completion. We will use the gravitational description to derive an upper bound on∣∣∣∣ ddt

(
Area[Xt]

4GN

)∣∣∣∣ (10.24)

purely in terms of quantities that have a known interpretation in the CFT. While Area[Xt] is
formally divergent, since we (1) work with spacetimes with falloffs (10.19) and (2) Area[∂Rt]
is time-independent, (10.24) is in fact finite up to the Area[∂R] prefactor.

Let us now summarize our main results, which are broadly divided into two categories.
The first class of bounds scales like Area[∂R], and they are strongest when R is large. The
second class of bounds scales like Vol[R], and they are consequently the strongest for small
subregions. For intermediate sized regions, where the entanglement entropy is about the
enter the volume-scaling regime, we expect the two types of upper bounds to be roughly
comparable.

First, for a three-dimensional bulk, we obtain the following

Theorem 23. Let (M, gab) be a regular asymptotically AdS3 spacetime with planar or spherical
symmetry satisfying the DEC. Assume that Xt is the HRT surface of a finite interval Rt.
Then ∣∣∣∣ ddt

(
Area[Xt]

4GN

)∣∣∣∣ ≤
√

8πc

3

(
⟨Ttt⟩ − ⟨Ttt⟩vac

)
, (10.25)

where c = 3L
2GN

.

Since the HRT surface of a union of strips is just the union of HRT surfaces of a collection of
individual strips, this bound immediately implies that if R is a union of n intervals contained
in a single moment of time on one of the connected components of ∂M, then∣∣∣∣ ddtSR

∣∣∣∣ ≤ n

√
8πc

3

(
⟨Ttt⟩ − ⟨Ttt⟩vac

)
. (10.26)

While we are not able to give a general proof of the analogue of Theorem 23 in higher
dimensions, we prove a generalization in thin-shell spacetimes:

Theorem 24. Let (M, gab) be an asymptotically AdSd+1≥3 spacetime with planar symmetry
satisfying the DEC. Assume that Xt is the HRT surface of a region Rt corresponding to either
a finite width strip or a ball. Assume that the bulk matter consists of U(1) gauge fields and a
thin shell of matter:

Tab = T shell
ab + T Maxwell

ab , (10.27)

where T shell
ab has delta function support on a codimension−1 worldvolume that is timelike or

null, and with T shell
ab separately satisfying the DEC. Assume (M, gab) is regular, except we do

not require gab to be C2 at the shell. Then∣∣∣∣ ddt
(
Area[Xt]

4GN

)∣∣∣∣ ≤ 1

4
Area[∂R]ceff

[
16π

(d− 1)ceff
⟨Ttt⟩

] d−1
d

, (10.28)
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where ceff = Ld−1/GN .

This theorem applies to thin-shell Vaidya spacetimes and charged generalizations. These
spacetimes (and related setups) have been studied extensively [31–34, 39, 41, 52–92] as
holographic models CFT quenches. However, more general cases than Vaidya are allowed,
where the shell might correspond to some brane in the bulk, propagating in a timelike
direction. Using the duality between radius and scale in the CFT, thin shell spacetimes
correspond to CFT states where all dynamics is happening at a single scale (that evolves
with time). We also should note that (10.28) holds if R is a union of any number of strips
on the same conformal boundary, due to the fact that the HRT surface of n strips is just
equal to n HRT surfaces of n (generally different) strips. One can hope that this might also
be true for multiple spheres, but this does not follow from our current analysis. Also, while
we do not have a proof, we conjecture that (10.28) is valid in all DEC respecting regular
planar symmetric AAdSd+1 spacetimes, and we provide strong numerical evidence for this in
Sec. 10.5.

Also, note that ceff can be defined purely in CFT in terms of a universal prefactor of the
sphere vacuum entanglement entropy [10, 45], or in terms of the renormalized entanglement
entropy [93, 94]. So our final bounds on |∂tS| make no reference to the bulk.

The previous two results give upper bounds scaling like Area[∂R]. Now let us turn to
bounds scaling like Vol[R]. We prove the following bound on small regions, valid for all d ≥ 2:

Theorem 25. Let (M, gab) be a regular asymptotically AdSd+1≥3 spacetime with planar
symmetry satisfying the DEC. Assume that Xt is the HRT surface of a region Rt corresponding
to either a strip or a ball. Let ℓ be either the strip width or ball radius, and assume that

ℓd ⟨Ttt⟩
ceff

≪ 1. (10.29)

Then ∣∣∣∣ ddt
(
Area[Xt]

4GN

)∣∣∣∣ ≤ κdVol[R] ⟨Ttt⟩
[
1 +O

(⟨Ttt⟩ ℓd
ceff

)]
. (10.30)

where

κd =
Γ
(

1
2(d−1)

)
Γ
(

d
2(d−1)

)

2π R is an interval and d = 2,
√
π

d−1 R is a strip and d > 2,

2
√
π R is a ball and d > 2.

(10.31)

Next, for thin shell spacetimes, volume-type bounds can be proven exactly for subregions of
any size, at the cost of a slightly larger prefactor:

Theorem 26. Consider the same setup as in Theorem 24. Then∣∣∣∣ ddt
(
Area[Xt]

4GN

)∣∣∣∣ ≤ κ′dVol[R] ⟨Ttt⟩ , (10.32)

with

κ′d = d−
d

2(d−1)

Γ
(

1
2(d−1)

)
Γ
(

d
2(d−1)

)

2π R is an interval and d = 2,√

4π
(d−1) R is a strip and d > 2,√
16π(d− 1) R is a ball and d > 2.

(10.33)
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For a strip, a few values of the prefactors are

κd =


2π d = 2

2.62 . . . d = 3

2.43 . . . d = 4

2 d =∞

, κ′d =


2π d = 2

3.25 . . . d = 3

3.34 . . . d = 4

4 d =∞.

(10.34)

We will now outline the strategy used to obtain these bounds. First, we observe that
there exists exactly one homology hypersurface Σt that both contains Xt, and which respects
the planar symmetry of (M, gab). Then we show that the location of Xt on Σt can be solved
for exactly in terms of the intrinsic geometry on Σt. Together with the DEC, this fact allows
us to lower bound the radius of the tip of the HRT surface. Next, we use the fact that since
Xt is extremal, the first order variation of its area is a pure boundary term located at ∂Xt

[95], and we show that this boundary term is simply given by a particular component of
the extrinsic curvature of Σt as r →∞. Then we work out the form of Einstein constraint
equations on Σt, and show that the relevant extrinsic curvature component can be written as
an integral of the matter flux over the HRT surface. Finally, essentially relying on inverse
mean curvature flow of Lorentzian and Riemannian Hawking masses, and their monotonicity
properties under these flows, we bound the integrated matter flux across the HRT surface
from above in terms of the mass of the spacetime.

Now, before we dive in, we should clarify the meaning of radii in planar symmetric
spacetimes. Since we have planar symmetry, spacetime has a two-parameter foliation where
each leaf is a codimension−2 spacelike plane that has the usual flat intrinsic metric. When
we talk about a plane, we always mean one of these leafs. These planes can all be assigned
an “area radius” r, and it is possible to view r as a scalar function on spacetime which is
not tied to any coordinate. Nevertheless, unlike in spherical symmetry, there is an overall
scaling ambiguity in this function, since the non-compactness of the planes means we cannot
normalize r to some area – there is no “unit plane”. However, if we choose some Minkowski
conformal frame on the boundary, we can fix the overall normalization of r by demanding
that the defining function Ω that takes us to the chosen conformal frame is Ω = r/L. We
will implicitly assume such a choice, and refer to the radius of a plane.

10.2.2 An explicit solution for the HRT surface location

Without loss of generality, we will bound the time-derivative at t = 0 and use the shorthands
Xt=0 = X and Rt=0 = R. Since R is a strip contained in a canonical time slice of Minkowski,
and since the ambient spacetime has planar symmetry, there exists a homology hypersurface
Σ̂ of X respecting the planar symmetry – see Figure 10.1. We can pick coordinates on Σ̂ so
that its induced metric Hαβ reads

Hµνdy
µdyν = B(r)dr2 + r2(dϕ2 + dx2), r ∈ [r0,∞), ϕ ∈ [−Φ(r),Φ(r)], (10.35)

where ϕ = Φ(r) is the coordinate embedding function of (half of) the HRT surface in
Σ̂, as illustrated in Figure 10.1. r0 is the smallest value of r probed by the HRT surface,
corresponding to its tip. Σ̂ can naturally be extended to include all ϕ ∈ R by planar symmetry,
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r =∞R

X

r

φ

r0

r = 0

Σ

Σ̂ φ = Φ(r)φ = −Φ(r)

r = 0

Σ′

Σ

θ+, θ− < 0

∂M

Rt

Rt′

r0

r′0

Figure 10.1: Left: the planar symmetric homology hypersurface Σ̂ with respect to the HRT
surface X. Σ is the extended homology hypersurface, whose boundary is the plane at r = r0.
Dashed lines are planes – i.e. constant r surfaces. Right: example conformal diagram
indicating possible embeddings of two extended homology hypersurfaces Σ and Σ′. The grey
line is an apparent horizon, with vanishing outwards null expansion, θ+ = 0.

and this choice turns out to be convenient for us. We denote the corresponding hypersurface
as Σ, and refer to it as the extended homology hypersurface.8 See Figure 10.1. The boundary
of Σ (in the bulk proper) is a plane of radius r0.

Relying on the formulas derived in the remainder of this section, we prove the following
Lemma in appendix 10.7.5:

Lemma 12. Let Σ be the extended homology hypersurface of an HRT surface X anchored at
a strip region given by (10.21). Then a single coordinate system of the form

ds2 = B(r)dr2 + r2dx2 (10.36)

is enough to cover all of Σ. Furthermore, X has only one turning point, meaning that
embedding function r(ϕ) is monotonically increasing for ϕ ≥ 0.

This means one function Φ(r) contains all the information about the embedding of X in Σ –
we do not need multiple branches. It also means that Σ cannot have any locally stationary
planes – that is – no planes of vanishing mean curvature, where B(r) would blow up. The
means we never need to worry about patching across coordinate systems when working on Σ.
Geometrically, it implies that Σ has no “throats”.

Now, taking (r,x) to be coordinates on X, the induced metric on X reads

ds2|X =
[
B(r) + r2Φ′(r)2

]
dr2 + r2dx2. (10.37)

Since X is an extremal surface, its area is stationary under all variations, including under
variations within Σ. Enforcing this gives an ODE for Φ(r) in terms of B(r). To find it, we

8Σ̂ and Σ are unique. Planar symmetry means that (M, gab) can be foliated by planes, and every point
p ∈ X lies in some plane in this foliation. Demanding planar symmetry of Σ requires that the full leaf
intersected by p is included in Σ, and so we have a one-parameter family of codimension−2 surfaces picked
out by X, which thus fully specifies Σ, and similarly for Σ̂.
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compute the mean curvature K of X viewed as a submanifold of Σ and demand it to be zero.
This gives the equation (see appendix 10.7.1 for a computation)

rBΦ′′ + (d− 1)r2 (Φ′)
3
+ Φ′

(
dB − r

2
B′
)
= 0. (10.38)

The relevant boundary conditions are

Φ′(r0) =∞, Φ(r0) = 0, (10.39)

where the former says that r0 is the radius of the plane tangent to the tip of the HRT surface
(i.e. where dr

dϕ
= 0), while the latter implements that ϕ = 0 corresponds to the center of the

strip. It turns out that equation (10.38) can be integrated, and the solution with the correct
boundary condition is

Φ(r) =

∫ r

r0

dρ

√
B(ρ)

ρ
√

(ρ/r0)2d−2 − 1
. (10.40)

This gives the location of the HRT surface within Σ explicitly in terms of the geometry of Σ.
We now use this solution to determine the Einstein constraint equations on Σ, and to derive
a formula for the rate of change of the entanglement growth.

10.2.3 A momentum-entanglement correspondence

Since Xt is extremal, its first order variation reduces to a pure boundary term given by (see
for example the appendix of [95, 96]):

dArea[Xt]

dt

∣∣∣
t=0

=

∫
∂X

Naηa, (10.41)

where ηa is the translation vector generating the flow of ∂Xt at conformal infinity at t = 0,
while Na is the normal to ∂X that is also tangent to X, and that points towards the
conformal boundary. In writing this formula, we implicitly assume that it is evaluated with
some near-boundary cutoff that is subsequently removed. As is well known, given some
choice of boundary conformal frame, a canonical choice of cutoff exists [97–99], which in our
case reduces to a cutoff in the radial coordinate r. With a cutoff adapted to the Minkowski
conformal frame and the falloffs (10.19), (10.41) is finite, even though Area[Xt] diverges.

Now we write (10.41) in a more useful form. We will give all the main steps, but relegate
tedious but straight forward computations to the appendix.

Using the planar symmetry of Σ, the extrinsic curvature Kαβ of Σ is given by

Kµνdy
µdyν = Krr(r)dr

2 +Kϕϕ(r)
[
dϕ2 + dx2

]
, (10.42)

where we take the extrinsic curvature to be defined with respect to the future directed normal.
Using this, we show in appendix (10.7.3), retracing the steps of [100], that

dArea[Xt]

dt

∣∣∣
t=0

= −Area[∂R]
Ld−2

lim
r→∞

rd−3Kϕϕ. (10.43)
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Physically, limr→∞ r
d−3Kϕϕ measures the boost angle at which X hits the conformal boundary,

or rather, the subleading part of the angle, since extremality implies that X hits ∂M
orthogonally. This can be seen by studying extremal surfaces in a near-boundary expansion.
Thus, we see that the entanglement growth is, up to a factor, identically given by the
(subleading) boost angle at which the HRT surface hits the boundary. The same was found
for maximal volume slices in [100].

Next we want to find a more explicit expression for limr→∞ r
d−3Kϕϕ. To do this, we need

to use the Einstein constraint equations, which read

R+K2 −KαβKαβ +
d(d− 1)

L2
= 16πGNTabtatb,

DαK
α
β −DβK = 8πGNTabtaebβ,

(10.44)

where R is the Ricci scalar of the metric on Σ, ta the future unit normal to Σ, K = HαβKαβ,
and eaα a set of tangent vectors to Σ. To write these equations in coordinate form, it is
convenient to introduce the function ω(r) as

B(r) =
1

r2

L2 − ω(r)
rd−2

. (10.45)

We will call ω(r) the Riemannian Hawking mass.9 It will play a central role in our work.
Whether or not ω(∞) is proportional to the spacetime mass for some general spacelike
hypersurface Σ depends on the behavior of the extrinsic curvature Σ at large r. It turns out
that for d ≥ 3, and with Σ being the extended homology hypersurface of an HRT surface, it
has the property that it is proportional to the CFT energy density:

⟨Ttt⟩ =
d− 1

16πGNLd−1
ω(∞), d ≥ 3. (10.46)

For d = 2, the right hand side is a lower bound on ⟨Ttt⟩ − ⟨Ttt⟩vac, where the vacuum energy
must be subtracted when we allow ϕ to be periodic. We will explain these facts in Sec. 10.2.5.

It is also convenient to redefine Krr(r) in terms of a function F (r) which is the rr-
component of the extrinsic curvature in an orthonormal basis

Krr(r) ≡ B(r)F (r). (10.47)

In terms of these functions, the constraint equations in coordinate form read

(d− 1)
ω′(r)

rd−1
= 2E(r)− (d2 − 3d+ 2)

r4
Kϕϕ(r)

2 − 2(d− 1)

r2
F (r)Kϕϕ(r), (10.48)

K ′ϕϕ(r)−
Kϕϕ(r)

r
= rF (r)− r2

d− 1
J (r), (10.49)

where we introduced the notation

E = 8πGNTabtatb,
J = 8πGNTab(∂r)atb.

(10.50)

9For d = 3 it is also known as the Geroch-Hawking mass [101–104], and its was used to prove the
Riemannian Penrose inequality [104].
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These are (proportional to) the energy density and radial momentum density of the matter
with respect to the frame ta. J > 0 corresponds to matter falling into the bulk towards
smaller r. From (10.19) and the fact that B(r) ∼ O(r−1), we find that

E ∼ o
(
1/rd

)
, J ∼ o

(
1/rd+1

)
, (10.51)

where we use that 1√
B
(∂r)

a is a unit vector.
To turn (10.48) and (10.49) into a closed system, we will eliminate F (r). We do this by

imposing extremality of X in the direction of ta. To do this, note that the inwards (outwards)
null expansion θ+ (θ−) of X can be written as (see for example the appendix of [100])

√
2θ±[X] = ±K[X] +K − nαnβKαβ, (10.52)

where nα is the outwards normal to X within Σ,10 and where we remind that K[X] is the
mean curvature of X within Σ. Extremality means θ+ = θ− = 0, which implies that K = 0
and

K|X = nαnβKαβ|X . (10.53)

This equation holds at ϕ = Φ(r), which by planar symmetry means it holds everywhere on Σ.
Writing out this equation in coordinates, carried out in appendix 10.7.2, we find

F +
(d− 2)Kϕϕ

r2
+ (d− 1)Kϕϕ

(Φ′)2

B
= 0. (10.54)

Plugging in the solution for Φ(r), given in (10.40), we get that

F (r) = −Kϕϕ(r)

r2

(
(d− 2)r2d−2 + r2d−20

r2d−2 − r2d−20

)
, (10.55)

which upon insertion into the constraints, gives a closed system of ODEs

ω′(r)

rd−1
=

2

d− 1
E(r) +

K2
ϕϕ

r4
h1(r), (10.56)

K ′ϕϕ(r) +
Kϕϕ

r
h2(r) = −

r2

d− 1
J (r), (10.57)

where

h1(r) =
(d− 2) (r/r0)

2d−2 + d

(r/r0)
2d−2 − 1

, h2(r) =
(d− 3) (r/r0)

2d−2 + 2

(r/r0)
2d−2 − 1

. (10.58)

Now, F (r) is a component of the extrinsic curvature in an orthonormal basis, so it must be
finite at r0. Using this to fix an integration constant, we find that the solutions of (10.56)
and (10.57) are

Kϕϕ(r) = −
r2

(d− 1)
√
(r/r0)2d−2 − 1

∫ r

r0

dρJ (ρ)
√

(ρ/r0)2d−2 − 1, (10.59)

ω(r) = ω(r0) +

∫ r

r0

dρ

[
ρd−5h1(ρ)Kϕϕ(ρ)

2 +
2ρd−1

d− 1
E(ρ)

]
, (10.60)

10We have here taken the outwards and inwards null vectors, ka+ and ka−, respectively, to be ka± =

2−1/2(ta ± na).
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where Kϕϕ(r0) = 0 since J (ρ) must be bounded.11 Inserting (10.59) into (10.43) and
multiplying by (4GN)

−1, we get that

dSR
dt

∣∣∣
t=0

=
Area[∂R]

4GNLd−2(d− 1)

∫ ∞
r0

drJ (r)
√
r2d−2 − r2d−20 . (10.61)

Since J > 0 corresponds to a flux of energy density towards decreasing r, we see that matter
falling out of the entanglement wedge and deeper into the bulk is directly responsible for
the increase of entanglement. Conversely, outgoing matter is responsible for decrease in
entanglement. We can also rewrite this formula in a covariant way. In appendix 10.7.3 we
show that

dSR
dt

∣∣∣
t=0

=

∫
X

GTabnata (10.62)

where na is the outwards unit normal to X that is tangent to Σ, and

G(r) =
2πrd

(d− 1)rd−10

. (10.63)

The formulas (10.43), (10.59)–(10.63) are the main results of this section. These results
together with the theorems proven in the following section are crucial pieces to our proven
bounds.

10.2.4 Geometric constraints on the HRT surface

In this section, we prove the following

Theorem 27. Let (M, gab) be a regular asymptotically AdSd+1≥3 spacetime with planar
symmetry satisfying the DEC. Let X be the HRT surface of a strip R of width ℓ, and let be
r0 be the smallest radius probed by X. Then

L2

r0
≤

Γ
(

1
2(d−1)

)
2
√
πΓ
(

d
2(d−1)

)ℓ. (10.64)

Furthermore, if r0,vac is the smallest radius probed by the HRT surface X0 of a strip of width
ℓ in pure AdSd+1, then

r0 ≥ r0,vac. (10.65)

We now give the proof assuming that ω(r0) ≥ 0, and then we will spend most of the rest of
this section proving this assertion.

Proof. By Lemma 14, proven below, we have that ω(r0) ≥ 0. Furthermore, the DEC implies
that E is positive. Hence, (10.60) gives that ω(r) is everywhere positive. But this means that

B(r) =
1

r2

L2 − ω(r)
rd−2

≥ L2

r2
, (10.66)

11For thin-shell spacetimes J (ρ) can be a delta function, but we can safely assume this delta function does
not have support exactly at r = r0.
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which allows us to lower bound the strip width as follows:

ℓ = 2LΦ(∞) = 2L

∫ ∞
r0

dρ

√
B(ρ)

ρ
√

(ρ/r0)2d−2 − 1

≥ 2L2

∫ ∞
r0

dρ
1

ρ2
√

(ρ/r0)2d−2 − 1

=
2L2

r0

√
πΓ
(

d
2(d−1)

)
Γ
(

1
2(d−1)

) .

(10.67)

Finally, if we are in pure AdS, we must have have that the spacetime mass is vanishing,
implying that ω(∞) = 0, and so by ω′(r) ≥ 0 and the fact that ω(r0) ≥ 0, we must have
ω(r) = 0 everywhere. But that means that the above inequalities become equalities, giving
L2

r0
≥ L2

r0,vac
, which implies (10.65).

Now we turn to proving that ω(r0) is non-negative. The crucial tool is a planar-symmetric
AdSd+1 version of the Lorentzian Hawking mass [105], which we define for a planar surface σ
as

µ[σ] =
rd

L2
− 2rdθ+θ−
k+ · k−(d− 1)2

, (10.68)

where k+ and k− are the outwards and inwards null vectors orthogonal to σ, respectively,
and θ± the corresponding null expansions. In [106], generalizing the results of [107] to
planar symmetry and AAdSd+1 spacetimes, it was shown that the DEC implies that µ[σ] is
monotonically non-decreasing when σ is moving in an outwards spacelike direction, provided
we are in a normal region of spacetime, meaning that θ+ ≥ 0, θ− ≤ 0 when we take ka+ and
ka− to be future directed.12

Furthermore, it is useful to rewrite the Riemannian Hawking mass ω(r) in a different
way. ω can be thought of as a function of a planar surface σ together with a hypersurface Σ
containing it, and in [100] it is shown that we can write ω as

ω[σ,Σ] =
rd

L2
− K[σ]2

(d− 1)2
, (10.69)

where K is the mean curvature of σ in Σ. Using (10.52), which assumes the normalization
k+ ·k− = −1, we see that 2θ+θ− = (K−nαnβKαβ)

2−K2, and so we get the following relation
between the Hawking masses

µ[σ] = ω[σ,Σ] +
rd

(d− 1)2
(K − nαnβKαβ)

2. (10.70)

With this in hand, we prove the following Lemma.
12This monotonicity is a planar-symmetric Lorentzian version of the monotonicity the Riemannian Hawking

mass under inverse mean curvature flow, which has been used to prove Riemannian Penrose inequalities
[101–104]. A Lorentzian flow with a monotonic Lorentzian Hawking mass for compact surfaces in three
dimensions, without any symmetry assumptions, was studied in [108].
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Figure 10.2: Example of two complete hypersurfaces Γ and Γ′. The Lorentzian Hawking
mass is vanishing at r = 0 and positive at marginally trapped surfaces, given by the planes
contained in the gray line. µ is monotonically non-decreasing along spacelike outwards flows
in the untrapped region, where θ+ ≥ 0, θ− ≤ 0. At the boundary σ of the extended homology
hypersurface Σ, the Riemannian Hawking mass ω with respect to Σ agrees with the Lorentzian
Hawking mass µ.

Lemma 13. Let Γ be a complete planar symmetric hypersurface with one conformal boundary.
Let σr be a one-parameter family of planes in Γ with radius r, and with r ∈ (0, ϵ] for any
ϵ > 0. Then

lim
r→0

µ[σr] ≥ 0. (10.71)

Proof. Let us pick coordinates

ds2|Γ =

[
r2

L2
− ω(r)

rd−2

]−1
dr2 + r2dx2 (10.72)

on Γ in a neighborhood of r = 0. Since Γ is complete and we only have one conformal boundary,
arbitrarily small r must be part of Γ. Since Γ is spacelike, we must have ω(r) ≤ rd/L2, which
means that ω(r) ∼ O(rd) at small r. Now, from (10.70) we see that µ[σr] ≥ ω[σr,Γ] and so

µ[σr] ≥ O(rd). (10.73)

Taking r → 0 proves our assertion.

Now we are ready to prove that ω(r0) ≥ 0, together with the fact that the tip of the HRT
surface cannot lie in a trapped region.

Lemma 14. Let (M, gab) be a planar-symmetric regular asymptotically AdSd+1 spacetime.
Let X be the HRT surface of a strip. Then the tip of X lies in an untrapped region of
spacetime, meaning the future null expansions of the plane σ tangent to X at the tip satisfies

θ+[σ] ≥ 0, θ−[σ] ≤ 0. (10.74)
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Furthermore, if the DEC holds and (M, g) is regular, the Riemannian Hawking mass of σ is
non-negative:

ω[σ,Σ] = ω(r0) ≥ 0. (10.75)

Proof. Let Σ be the unique planar symmetric extended homology hypersurface containing X.
Let σ be the boundary of Σ in the bulk, having radius r0. Its null expansion is

√
2θ±[σ] = ±K[σ] +K − rαrβKαβ, (10.76)

where rα = 1√
B
(∂r)

α. An explicit computation gives

K[σ] = d− 1

r0
√
B(r0)

,

K =
1

B
Krr +

Kϕϕ(d− 1)

r2
,

(10.77)

and so we find √
2θ±[σ] = ±

d− 1

r0
√
B(r0)

− Kϕϕ(r0)(d− 1)

r20
. (10.78)

From (10.59) we have that Kϕϕ(r0) = 0, and so we get that

±θ± ≥ 0, (10.79)

proving the first assertion.
Next, since Kϕϕ(r0) = 0 we see that 2θ+θ−|σ = −K2|σ, implying that µ[σ] = ω[σ,Σ]. Now,

since our spacetime is AdS-hyperbolic, we can embed σ in a complete hypersurface with
planar symmetry Γ, see Figure 10.2. Since σ lies in an untrapped region of spacetime, and
since Γ is spacelike, µ[σ] is monotonically non-increasing as we deform σ in inwards along Γ
while preserving its planar symmetry. Since the gab is C2, θ± are continuous, and so as we
deform σ inwards, one of two things happen. Either we hit a marginally trapped surface,
where θ+θ− = 0 and where µ is manifestly positive, or we approach r = 0, where we again
have that µ is non-negative by Lemma 13. See Figure 10.2. But since µ is non-increasing
along this deformation, and since it ends up somewhere non-negative, we must have µ[σ] ≥ 0.
But µ[σ] = ω[σ,Σ], completing the proof.

We have illustrated the fact that the tip cannot lie in a trapped region of spacetime in
Figure 10.1 – the tip cannot lie behind the gray line. Note that the proof of this fact does not
rely on the DEC. This result improves on the findings of [109] in the special case where we
have planar symmetry. In [109], they showed without any symmetry assumptions that the tip
of an HRT surface in a (2 + 1)–dimensional spacetime can never lie in the so-called umbral
region, which is a special subset of the trapped region that lies behind regular holographic
screens [109, 110]. They also showed this result with planar symmetry in all dimensions.
Here we extend this result to show that the whole trapped region is forbidden, although our
result is more limited in that it always requires planar symmetry and a strip (or spherical)
boundary region. Note also that this result does not forbid X to probe inside trapped regions
– it is only the tip that is forbidden to lie there (see Figure 10.1). For example, for early times
after a quench, the HRT surface will have portions threading through the trapped region
[33, 34].
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10.2.5 Proofs

Proof of d = 2 bound

We are now ready to prove Theorem 23. Evaluating the Lorentzian Hawking mass on a
sphere at large r in a planar symmetric AAdSd+1 spacetime with falloffs (10.19), we get that

⟨Ttt⟩ =
d− 1

16πGNLd−1
µ(∞). (10.80)

This is valid also for d = 2, except if ϕ is periodically identified, we must replace the left hand
side with ⟨Ttt⟩ − ⟨Ttt⟩vac. It can be seen to be true by evaluating µ(∞) near the boundary in
the usual Fefferman-Graham expansion [97–99]. Now, from (10.70) and (10.77) we have that

µ(r) = ω(r) + rd−4Kϕϕ(r)
2. (10.81)

From (10.59), we see that Kϕϕ has asymptotic falloff Kϕϕ ∼ O(r3−d). Thus, we get that for
d ≥ 3, µ(∞) = ω(∞), while for d = 2, we have

µ(∞) = ω(∞) +
(
lim
r→∞

r−1Kϕϕ

)2
. (10.82)

Since ω(∞) ≥ 0 by the DEC, when d = 2 we obtain∣∣∣ lim
r→∞

r−1Kϕϕ

∣∣∣ ≤√µ(∞) =
√
16πGNL ⟨Ttt⟩. (10.83)

Using that Area[∂Rt] = 2, and combining (10.83) and (10.43) then yields∣∣∣dSR
dt

∣∣∣
t=0
≤ 1

2GN

√
16πGNL ⟨Ttt⟩ =

√
8πc

3
⟨Ttt⟩, (10.84)

where we used the known Brown-Henneaux expression for the central charge: c = 3L
2GN

[111].
This proves Theorem 23.

Proof of bound for small ℓ

Now let us consider the result for small subregions, given by Theorem 25. The following
Lemma is what we need:

Lemma 15. Let (M, gab) be a regular asymptotically AdSd+1≥3 spacetime with planar sym-
metry satisfying the DEC. Let X be the HRT surface of a strip R of width ℓ, and let be r0 be
the smallest radius probed by X. Assume that

ℓd ⟨Ttt⟩
ceff

≪ 1. (10.85)

Then ∣∣∣ lim
r→∞

rd−3Kϕϕ

∣∣∣ ≤ L

2r0
ω(∞)

[
1 +O

(
ℓd ⟨Ttt⟩
ceff

)]
. (10.86)
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Proof. Let us for convenience define W = − limr→∞ r
d−3Kϕϕ, and assume without loss of

generality that W > 0 (otherwise, just reverse the time direction). Using the solutions (10.59)
and (10.60), we have that

W

ω(∞)
=

1

d− 1

∫∞
r0

drJ (r)
√
r2d−2 − r2d−20

ω(r0) +
∫∞
r0

dr
[
rd−5h1(r)Kϕϕ(r)2 +

2rd−1

d−1 E(r)
]

≤
∫∞
r0

drrd−1J (r)
2
∫∞
r0

drrd−1E(ρ) .

(10.87)

The DEC requires that

0 ≤ 8πGNTab
[
ta ± 1√

B
(∂r)

a

]
tb = E ± 1√

B
J , (10.88)

and so we have that
E ≥ 1√

B
|J |. (10.89)

Writing B in terms of ω, and enforcing the DEC, we get

W

ω(∞)
≤

∫∞
r0

drrd−1J (r)
2
L

∫∞
r0

drrd
√
1− ω(r)L2

rd
|J (r)|

. (10.90)

Let us now for a moment assume that we are perturbatively close to the vacuum, where ϵ
is a perturbative parameter parametrizing the magnitude of ω(∞). By monotonicity and
positivity of ω(r), ω(r) ∼ O(ϵ) as well, and so the ω(r) appearing in the square root gives
higher order contributions:

W

ω(∞)
≤

∫∞
r0

drrd−1|J (r)|
2
L

[∫∞
r0

drrd|J (r)| − L2

2

∫∞
r0

drω(r)|J (r)|+ . . .
]

=
L

2

∫∞
r0

drrd−1|J (r)|∫∞
r0

drrd|J (r)|

[
1 +

L2

2

∫∞
r0

drω(r)|J |∫∞
r0

drrd|J | + . . .

]

≤ L

2r0

[
1 +

L2

rd0
ω(∞) + . . .

]
≤ L

2r0

[
1 +

L2d

rd0

µ(∞)

L2d−2 + . . .

]
=

L

2r0

[
1 +

16πηd
d− 1

ℓd ⟨Ttt⟩
ceff

+ . . .

]

(10.91)

where ηd is the O(1) number coming from using (10.64). We see that the effective expansion
parameter is the dimensionless quantity ℓd⟨Ttt⟩

ceff
. So the expansion is not really in small mass,

which is dimensionful, but in small strip width relative to the inverse energy density per CFT
degree of freedom.
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Figure 10.3: Examples of thin-shell spacetimes, where the blue lines correspond to the shells.
The left space is dual to a uniform quench, where matter is thrown in from the boundary,
while the right is a spacetime with a brane in the bulk interior.

From (10.43) and (10.64), we get, up to the perturbative corrections,

∣∣∣dSR
dt

∣∣∣ ≤ Area[∂R]
4GNLd−2

L

2r0
ω(∞) ≤

√
π

d− 1

Γ
(

1
2(d−1)

)
Γ
(

d
2(d−1)

)ℓArea[∂R] ⟨Ttt⟩

= Vol[R] ⟨Ttt⟩

2π d = 2
√
π

d−1
Γ( 1

2(d−1))
Γ( d

2(d−1))
d > 2

,

(10.92)

where we used (10.64) and (10.46) in the second inequality. This also holds for d = 2, since
ω(∞) ≤ µ(∞), provided we replace ⟨Ttt⟩ → ⟨Ttt⟩ − ⟨Ttt⟩vac if ϕ is compact. Also, note that
for d = 2 we have that ℓArea[∂R] = 2Vol[R]. This completes the proof of Theorem 25 for
strip regions.

Proof of bounds in thin-shell spacetimes

We now turn our attention to thin-shell spacetimes, where we will be able to establish
that a bound of the form |∂tS| ≤ #Vol[R] ⟨Ttt⟩ holds for any ℓ. Furthermore, in this class
of spacetimes we will prove our conjectured generalization of Theorem 23 to d > 2, i.e.
Theorem 24.

Consider a spacetime where the matter consists of a single thin shell of matter that
separately satisfies the DEC, together with a possible contribution from any number of U(1)
gauge fields:

E = κδ(r − r̂) + EMaxwell,

J = ηδ(r − r̂), (10.93)

for some η, κ, r̂ > r0. See Figure 10.3. Here we used that in planar symmetry, Maxwell fields
give no contribution to the radial momentum density J (see for example Sec. 3 of [100]). In
fact, we can add to the U(1) gauge fields any matter that has a positive contribution to E
but no contribution to J .
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The DEC, through (10.89), imposes that J only can have support at r̂. Without loss
of generality, we take η > 0. Let us in this section also use our scaling freedom in r to set
r0 = L and choice of units to set L = 1.

Define again W = − limr→∞ r
d−3Kϕϕ. Plugging (10.93) into (10.59), the solution for Kϕϕ

is

Kϕϕ(r) = −
r2

d− 1
η

√
r̂2d−2 − 1

r2d−2 − 1
θ(r − r̂), (10.94)

and so
η =

(d− 1)W√
r̂2d−2 − 1

, (10.95)

which gives

Kϕϕ(r) = −
r2W√
r2d−2 − 1

θ(r − r̂). (10.96)

Next, let us solve for the contribution to ω(r) from the squared extrinsic curvature term in
(10.60):

Q(r) ≡
∫ r

1

dρρd−5Kϕϕ(ρ)
2h1(ρ)

= θ(r − r̂)W 2

∫ r

r̂

dρρd−1
h1(ρ)

[ρ2d−2 − 1]

= W 2θ(r − r̂)
[

r̂d

r̂2d−2 − 1
− rd

r2d−2 − 1

]
.

(10.97)

To proceed, we need to understand what happens to ω as we cross the shock. Restricting
attention to a small neighborhood of r̂, where we can treat explicit occurrences of r not
appearing in delta functions as constant, the equation for ω reads

(d− 1)
ω′(r)

r̂d−1
= 2E shell + . . . , (10.98)

where the terms indicated with dots will make no contribution to the discontinuity. Re-
membering that the DEC implies that

√
BE ≥ |J |, imposing the DEC on the shell means

that

E shell ≥
√
r̂2 − ω(r)

r̂d−2
ηδ(r − r̂). (10.99)

Inserting (10.99) into (10.98), dividing by the prefactor of the delta function, and integrating
from r̂ − ε to r̂ + ε for some small positive ε, we find√

r̂2 − ω−
r̂d−2

−
√
r̂2 − ω+

r̂d−2
≥ r̂

d− 1
η +O(ε), (10.100)

where we defined ω± = ω(r̂ ± ε). We only have a sensible solution when B(r) is real and
positive everywhere, which requires

1

d− 1
η ≤

√
1− ω−

r̂d
. (10.101)
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Solving for ω− from (10.100) and inserting our expression for η, we get that

ω+ ≥ ω− +
r̂d√

r̂2d−2 − 1
W

[√
1− ω−

r̂d
− W√

r̂2d−2 − 1

]
. (10.102)

Using this and (10.81), the Lorentzian Hawking mass at infinity has the lower bound

µ(∞) = ω(∞) + δd2W
2

≥ ω− +
r̂d√

r̂2d−2 − 1
W

[√
1− ω−

r̂d
− W√

r̂2d−2 − 1

]
+Q(∞) + δd2W

2

= ω− +
r̂d√

r̂2d−2 − 1
W

√
1− ω−

r̂d
,

(10.103)

where δij is the Kronecker delta. Thus, for any real n, we have that

W n

µ(∞)
≤ W n

ω− + r̂d√
r̂2d−2−1

W
√
1− ω−

r̂d

≡ Un, (10.104)

together with the constraints

0 ≤ ω− ≤ r̂d, (10.105)

W ≤
√
r̂2d−2 − 1

√
1− ω−

r̂d
. (10.106)

Our goal will now be to upper bound Un for all legal triplets (W, r̂, ω−) for n = 1 and n = d
d−1 ,

which turns out to be values that will give interesting growth bounds.
Note first that we have

∂2ω−Un ≥ 0, (10.107)

so any local extremum of Un with respect to ω− is a minimum. Thus, for any given W and
r̂, Un is maximized when ω− is on the boundary of its domain. First, take ω− = 0. Then,
assuming that 1 ≤ n ≤ d

d−1 ,

Un =
W n−1

√
r̂2d−2 − 1

r̂d
≤
[
r̂2d−2 − 1

]n
2

r̂d
≤ r̂n(d−1)

r̂d
≤ 1, (10.108)

where we used (10.106) in the second inequality. For n = 1, we get the stronger bound

U1 ≤
√
r̂2d−2 − 1

r̂d
≤
√
d− 1

d
d

d−1

≡ αd, (10.109)

where the upper bound is found by maximizing with respect to r̂. Next, let us look at the
maximal value for ω−, where we have the equality

W =
√
r̂2d−2 − 1

√
1− ω−

r̂d
. (10.110)
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Figure 10.4: Possible HRT surfaces X and X ′ of the region R1∪R3, projected onto a timeslice.

Neglecting the first ω− in the denominator of Un and using W ≤
√
r̂2d−2 − 1, we get

Un ≤
[
r̂2d−2 − 1

]n/2
r̂d

. (10.111)

But this is just the expression bounded earlier, and so (10.108) and (10.109) holds generally.
Restoring factors of L, r0, we have the following true bounds

W ≤ L
d−2
d ω(∞)

d−1
d , (10.112)

W ≤ αd
L

r0
ω(∞). (10.113)

Redoing the steps in (10.92) with the numerical factor from in (10.113), we get Theorem 26
for strip regions. Next, inserting (10.112) into (10.43), we find

∣∣∣dSR
dt

∣∣∣ ≤ Area[∂R]
4GNLd−2

L
d−2
d

[
16πGNL

d−1

d− 1
⟨Ttt⟩

] d−1
d

=
1

4
Area[∂R]ceff

[
16π

(d− 1)ceff
⟨Ttt⟩

] d−1
d

,

(10.114)
proving Theorem 24 for strip regions.

10.2.6 Multiple strips and mutual information

Our results not scaling with Vol[R] can be generalized to regions R consisting of n disjoint
finite strips by simply applying the same argument to each connected component of the HRT
surface separately. For d = 2 this results in∣∣∣∣dSRdt

∣∣∣∣ ≤ n

√
8πc

3
⟨Ttt⟩. (10.115)

It is easy to see that (10.114) also holds true for n strips. No modification is needed, since
Area[∂R] implicitly contains the factor of n present in the d = 2 case.

For the bounds scaling like volume, the behavior is different, since the upper bound
depends on the connectivity properties of the entanglement wedge. Consider for example
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d = 2 and the three intervals R1, R2, R3 in Figure 10.4, and let R = R1 ∪ R3 be the region
under consideration. We then see that∣∣∣dSR

dt

∣∣∣ ≤ κ ⟨Ttt⟩
{

Vol[R] the entanglement wedge is disconnected,
Vol[R] + 2Vol[R2] the entanglement wedge is connected,

(10.116)

where κ is the relevant numerical prefactor of either Theorem 25 or 26. We get this result
by adding the different volume factors from each connected component of the HRT surface.
Similar games can be played for n strips in d dimensions.

Next, lets us consider d = 2 and the mutual information between two subsystems R1 and
R2 consisting of n1 and n2 finite intervals, respectively. We then have∣∣∣∂tI(R1, R2)

∣∣∣ = |∂tSR1 + ∂tSR2 − ∂tSR1R2| ≤ |∂tSR1|+ |∂tSR2|+ |∂tSR1R2 |

≤ (2n1 + 2n2)

√
8πc

3
⟨Ttt⟩.

(10.117)

Using (10.28), the generalization to higher d is obvious.

10.3 Maximal Rates for Balls, Wilson Loops and Corre-
lators

10.3.1 Setup and summary of results

In this section we will consider extremal surfaces Xt of dimension q + 1 anchored at q-
dimensional spheres ∂Rt at time t on the conformal boundary, where extremal means that
all the mean curvatures of Xt are zero.13 We take the spheres to have radius R. For q = 0,
∂Rt just consists of two points, and Xt is a one-parameter family of geodesics. For q = d− 2,
Xt is a one-parameter family of HRT surfaces anchored at spheres. For q = 1, Xt are
two-dimensional spacelike worldsheets anchored at circles.

As before we are working with planar symmetric spacetimes, subject to the same assump-
tions described in Sec. 10.2.1. The logical steps will be mostly identical to Sec. 10.2, but
with extra technicalities coming from the curvature of ∂Rt. Note that since we now have
submanifolds of varying dimensions, we will use the symbol ∥·∥ to indicate the measure of
the surface in the natural induced volume form. For quantities on the conformal boundary,
∥·∥ means with respect to the induced metric from the Minkowski conformal frame. We will
use Length[], Area[] and Vol[] to refer to the measure of surfaces of dimension 1, codimension
2, and codimension 1, respectively.

To describe the relevant subregions in our results, let z be Cartesian coordinates in
the direction transverse to the sphere ∂Rt. We now choose coordinates for our Minkowski
conformal frame on the boundary to be

ds2 = −dt2 + L2
(
dϕ2 + ϕ2dΩ2

q + dz2
)
, (10.118)

13This means that the generalized volume of Xt is stationary under perturbations with compact support.
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with dΩ2
q the metric of a round unit q-sphere, and with the constant−t slices the ones on

which one-point functions of local operators are constant. For q = 0 there is no dΩ2
q–term,

while for q = d − 2 there is no dz2 term. ϕ is a dimensionless radial coordinate on the
boundary, and Rt′ is given by

0 ≤ ϕ ≤ R
L
, t = t′, z = 0. (10.119)

We now have
∥∂Rt∥ = ∥∂R∥ = ΩqRq, (10.120)

where Ωq is the volume of a unit q-sphere.
Let us now summarize the results proven in this section. For entanglement entropy, we will

prove the parts Theorems 24, 25 and 26 that refer to spherical ∂R. For extremal surfaces of
other dimensionalities, the following theorem applies to the most general class of spacetimes
and subregions:

Theorem 28. Let (M, gab) be a regular asymptotically AdSd+1 spacetime with planar sym-
metry satisfying the DEC. Assume that d is even, and let be Xt be an extremal surface of
dimension d/2, anchored on the conformal boundary at the sphere ∂Rt. Then∣∣∣∣ ddt∥Xt∥

∣∣∣∣ ≤ ∥∂R∥L d
2

√
16π

ceff(d− 1)
⟨Ttt⟩. (10.121)

Of course, for d = 2, this just reduces to Theorem 23. For d = 4 this can be converted to the
growth bound on circular Wilson loops, given by (10.13). Next, for surfaces Xt anchored at
small spheres on the boundary, we get the following:

Theorem 29. Let (M, gab) be a regular asymptotically AdSd+1 spacetime with planar sym-
metry satisfying the DEC. Let be Xt be an extremal surface of dimension q + 1, anchored on
the conformal boundary at the sphere ∂Rt having radius R. Assume that

q ≥ d− 2

2
(10.122)

and
Rd ⟨Ttt⟩
ceff

≪ 1. (10.123)

Then ∣∣∣∣ ddt∥Xt∥
∣∣∣∣ ≤ ηd,q∥∂R∥Lq+1Rd−q−1 ⟨Ttt⟩

ceff

[
1 +O

(Rd ⟨Ttt⟩
ceff

)]
, (10.124)

where

ηd,q =
8π

d− 1

 Γ
(

1
2(q+1)

)
√
πΓ
(

q+2
2(q+1)

)
d−q−1 . (10.125)
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Using well known dictionary entries, described in Sec. 10.3.6, this converts to growth
bounds on the entanglement of small balls, small circular Wilson loops, and heavy two-point
functions at small separations. Specifically, for the latter two, we get∣∣∣ d

dt
log | ⟨O(x)O(0)⟩ρ(t) |

∣∣∣ ≤ 8π∆

ceff
|x| ⟨Ttt⟩

[
1 +O

( |x|2 ⟨Ttt⟩
ceff

)]
, d = 2, (10.126)

and∣∣∣ d
dt

log | ⟨W(C)⟩ρ(t) |
∣∣∣ ≤ 8π

√
λeff

(d− 1)ceff
ηd,1Rd−1 ⟨Ttt⟩

[
1 +O

(Rd ⟨Ttt⟩
ceff

)]
, d ∈ {3, 4},

(10.127)
where

√
λeff = L2/ℓ2string is the effective ’t Hooft coupling, and ℓstring the bulk string length.

Finally, for thin-shell spacetimes, we prove the following:

Theorem 30. Let (M, gab) be an asymptotically AdSd+1 spacetime with planar symmetry
satisfying the DEC. Assume that Xt is an extremal surface anchored at a boundary sphere of
dimension

q ≥ d− 2

2
. (10.128)

Next, assume that the bulk matter consists of U(1) gauge fields and a thin shell of matter:

Tab = T shell
ab + T Maxwell

ab , (10.129)

where T shell
ab has delta function support on a codimension−1 worldvolume that is timelike

or null, and that separately satisfies the DEC. Assume (M, g) is regular, except we do not
require gab to be C2 at the shell. Then∣∣∣ d

dt
∥Xt∥

∣∣∣ ≤ ∥∂R∥Lq+1

[
16π

(d− 1)ceff
⟨Ttt⟩

] q+1
d

(10.130)

and ∣∣∣∣ ddt∥Xt∥
∣∣∣∣ ≤ κd,q∥∂R∥Lq+1Rd−q−1 ⟨Ttt⟩

ceff
(10.131)

with κd,q given by (10.192).

The main application of (10.130) is to bound Wilson loops in d = 3, where we get∣∣∣ d
dt

log | ⟨W(C)⟩ρ(t) |
∣∣∣ ≤ √λeffLength[C]

2π

[
8π

ceff
⟨Ttt⟩

]2/3
. (10.132)

Let us now turn to the proofs.

10.3.2 An implicit solution for the extremal surface location

As earlier, let Σ be the extended planar symmetric homology hypersurface containing X. For
the exact same reason as earlier, there is a unique choice of Σ. We can now pick coordinates
on Σ given by

ds2|Σ = Hµνdy
µdyν = B(r)dr2 + r2

(
dϕ2 + ϕ2dΩ2

q + dz2
)
. (10.133)
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Again, one such coordinate system covers all of Σ, as shown in appendix 10.7.5.
We take our intrinsic coordinates on X to be (r,Ωi), where Ωi are coordinates on the

sphere. The embedding coordinates of X in Σ reads

Xµ = (r, ϕ = Φ(r),Ωi, z = 0), (10.134)

where the symmetries of the problem dictate z = 0. The induced metric on X is

ds2|X =
[
B(r) + r2Φ′(r)2

]
dr2 + r2Φ(r)2dΩ2

q. (10.135)

Now we must implement the condition that X is extremal, which requires us to compute all
its mean curvatures and demand them to be vanishing. To do this, let nIa be an orthonormal
basis of normal forms to X that are tangent to Σ, labeled by I. Let ta be the future timelike
normal orthogonal to Σ. A complete basis of mean curvatures of X now is

KI = hab∇an
I
b ,

K0 = hab∇atb,
(10.136)

where hab = gab + tatb − δIJnaInbJ . All of these quantities must vanish. Considering the KI
corresponding the z directions, we just get 0 by our symmetries. Letting I = n denote the
remaining normal direction in Σ, we get by direct computation that (see appendix (10.7.6)
for some of the required ingredients)

Kn =
1

r
√
B [B + r2(Φ′)2]3/2

[
r2BΦ′′ + (q + 1)r3(Φ′)3

+

(
(q + 2)B − 1

2
rB′
)
rΦ′ − qB

Φ

(
B + r2(Φ′)2

) ]
.

(10.137)

If it was not for the last term, we would reproduce (10.38) by setting q = d− 2. The new
term is caused by the curvature of ∂R. Now, with this last term, we no longer have an
explicit analytical solution (when q > 0). However, we can find an implicit solution that lets
us proceed. Define

χ(r) =
qB

ΦΦ′

(
B

Φ′2
+ r2

)
, (10.138)

so that our equation for extremality reads

(q + 1)r3(Φ′)3 +

(
(q + 2)B − 1

2
rB′
)
rΦ′ + r2BΦ′′ − (Φ′)3χ(r) = 0. (10.139)

Imposing Φ(r0) = 0, where r0 is the tip of the extremal surface, we have the implicit solution

Φ(r) =

∫ r

r0

dρ

√
B(ρ)

ρ
√
Cρ2q+2h(ρ)− 1

, (10.140)

where
h(r) = 1− 2

C

∫ r

r0

dρχ(ρ)ρ−6−2q, (10.141)
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for some C that is fixed by imposing Φ′(r0) = ∞. Assuming h(r0) is finite, we get that
C = r−2q−20 . This is indeed correct, even though χ(r0) looks superficially divergent. Since we
are near a minimum of r(Φ) we have that r = r0 +O(Φ2) near r0, and so for r close to r0 we
get Φ = α

√
r − r0 for some α. Even though Φ goes to zero at r0 we find that

χ(r) ∼ O(1) (10.142)

near r0, and so h(r0) = 1. Next, reality of Φ(r) demands that h(ρ) ≥ (r0/r)
2q+2, while

positivity of Φ and Φ′ ensures that h(r) ≤ 1, and so in total we know that14

Φ(r) =

∫ r

r0

dρ

√
B(ρ)

ρ
√

(ρ/r0)2q+2h(ρ)− 1
, 0 < (r0/r)

2q+2 < h(r) ≤ 1. (10.143)

10.3.3 The relation between the Hawking masses

Take Kαβ to be the extrinsic curvature of the extended homology hypersurface. Like in the
case of the strip, we have that

µ(r) = ω(r) + rd−4Kϕϕ(r)
2, (10.144)

which follows from the same computation as in the previous section, together with (10.270)
in appendix 10.7.6. We have that Kϕϕ ∼ O(1/rq−1), as becomes clear in the next section.
Thus, at large r we have

µ(r) = ω(r) +O
(
rd−2−2q

)
. (10.145)

Consequently, ω(∞) is proportional to spacetime mass if and only if

q >
d− 2

2
. (10.146)

If 2q = d − 2, ω(∞) is smaller than µ(∞) by some finite number. For 2q < d − 2, we get
ω(∞) = −∞ by (10.145) and the fact that µ(∞) is finite and positive. We will see below
that this comes out of the constraint equations, since exactly when 2q < d− 2, ω(r) is neither
positive nor monotonically increasing. We will not be able to say anything about the case
2q < d− 2.

10.3.4 ∂t∥Xt∥ ≤ momentum on Xt

The time-derivative of the generalized volume satisfies [95, 96]

d

dt
∥Xt∥ =

∫
∂Xt

Naηa, (10.147)

where ηa = (∂t)
a generates the deformation of ∂Xt, while Na is the unit vector that is (1)

tangent to Xt, (2) orthogonal to ∂Xt, and (3) pointing towards the conformal boundary. A
computation in appendix 10.7.4 shows that (10.147) can be written as

d

dt
∥Xt∥

∣∣∣
t=0

=
∥∂R∥
Lq

lim
r→∞

rq−1Kϕϕ(r). (10.148)

14By the same kind of analysis as in appendix 10.7.5, we cannot have additional turning points where Φ′(r)
diverges, and so we have strict inequality in the lower bound.
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Now we again reach the stage where we must write the Einstein constraint equations as a
closed system, which requires us to impose extremality in the timelike direction.

First, note that from the planar symmetry of Σ, if x are Cartesian coordinates on the
plane containing R, then we have that the extrinsic curvature of Σ reads

Kµνdy
µdyν = Krr(r)dr

2 +Kϕϕ(r)
(
dx2 + dz2

)
= Krr(r)dr

2 +Kϕϕ(r)
(
dϕ2 + ϕ2dΩ2

q + dz2
)
.

(10.149)

Thus, the components of the extrinsic curvature with indices in the sphere directions reads

Kij = Kϕϕ(r)ϕ
2wij, (10.150)

where wij is the unit metric on the q-sphere. Define again F (r) through the relation Krr(r) =
F (r)B(r). Computing K0 = 0, using (10.150), and solving for F (r) (see Appendix 10.7.6),
we get, after substituting our expression for Φ(r), that

F (r) = −Kϕϕ(r)

r2
H(r), (10.151)

where we for convenience defined the function

H(r) =
q(r/r0)

2q+2h(r) + 1

(r/r0)2q+2h(r)− 1
. (10.152)

Since ∂hH < 0 and h(r) ≤ 1, we get the lower bound

H(r) ≥ q(r/r0)
2q+2 + 1

(r/r0)2q+2 − 1
≡ HL(r). (10.153)

The constraint equations (10.48) and (10.49) are unchanged, except now the expression for
F (r) is different. Plugging it in we get

(d− 1)
ω′(r)

rd−1
= 2E + (d− 1)

r4
Kϕϕ(r)

2 [2H(r)− d+ 2] , (10.154)

K ′ϕϕ + [H(r)− 1]
Kϕϕ

r
= − r2

d− 1
J (r). (10.155)

Now, using the lower bound HL(r), let us note the following:

2H(r)− d+ 2 ≥ (2q − d+ 2)(r/r0)
2q+2 + d− 1

(r/r0)2q+2 − 1
. (10.156)

This is positive definite for all r only when q ≥ d−2
2

, so for geodesics (q = 0), we only have
monotonicity of ω(r) when d = 2. But this is just the case studied in the previous section.
For (q = 1), which is the relevant case for Wilson loops, we have monotonicity of ω(r) only
for d ≤ 4. For an HRT surface we have q = d − 2, and so we have monotonicity in all
dimensions. It is in fact quite surprising that we have monotonicity for any q whatsoever,
since when looking at the Einstein constraint equations in covariant form, monotonicity of
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the Riemannian Hawking mass is only manifest on hypersurfaces that have vanishing mean
curvature.

Let us assume 2q ≥ d− 2 going forward, and let us bound Kϕϕ and µ at infinity. Fixing
an integration constant by demanding that F (r0) = finite, the solution to the momentum
constraint is

Kϕϕ(r) = −
1

d− 1

∫ r

r0

dρρ2J (ρ)e−
∫ r
ρ d 1

z
(H(z)−1). (10.157)

We have that

|Kϕϕ(r)| ≤
1

d− 1

∫ r

r0

dρρ2|J (ρ)|e−
∫ r
ρ d 1

z
(HL(z)−1)

=
r2

(d− 1)
√
(r/r0)2q+2 − 1

∫ r

r0

dρ|J (ρ)|
√

(ρ/r0)2q+2 − 1.

(10.158)

We see from this expression that Kϕϕ ∼ O(1/rq−1). Also, in this last expression, if we replace
|J | → −J , we just get the solution of (10.155) with H(r) replaced by HL(r). We will use
this fact later.

Inserting (10.158) in (10.148), we finally get∣∣∣ d
dt
∥Xt∥

∣∣∣ ≤ (d− 1)∥∂R∥
Lq

∫ ∞
r0

dρ|J (ρ)|
√
ρ2q+2 − r2q+2

0 . (10.159)

Unlike for an HRT surface anchored at a strip, we are here only able to write an inequality.
Next, let us turn to the second ingredient: the mass. Rewriting (10.154) in terms of µ(r),

we get

(d− 1)
µ′(r)

rd−1
= 2E + (d− 1)

r4
Kϕϕ(r)

2 [2H(r) + d− 6] +
2(d− 1)

r3
d

dr
K2
ϕϕ. (10.160)

After an integration by parts and using H(r) ≥ HL(r), we get that

µ(∞) ≥ µ(r0) +
2

d− 1

∫ ∞
r0

dρρd−1E(ρ) +
∫ ∞
r0

dρρd−5Kϕϕ(r)
2 [2HL(r) + d] (10.161)

where
2HL(r) + d =

(d+ 2q)(r/r0)
2q+2 + (d− 2)

(r/r0)2q+2 − 1
≥ 0. (10.162)

Possessing now an upper bound on ∂t∥Xt∥ and a lower bound on mass, we next need an
upper bound on L2/r0.

10.3.5 Constraints on boundary anchored extremal surfaces

It turns out that generalizations of Lemmata 13 and 14 remain true for the surfaces con-
sidered in this section. The proof of Lemma 13 is unchanged, while from the discussion
in appendix 10.7.5 and 10.7.6, together with the proof of Lemma 14, we get the following
constraints on the tip of X:
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Lemma 16. Let (M, gab) be an asymptotically AdSd+1≥3 spacetime with planar symmetry.
Let X be a (q + 1)-dimensional extremal surface anchored at a q-sphere on the conformal
boundary. Then the tip of X lies in an untrapped region. Furthermore, if (M, gab) is regular
and satisfies the DEC, then ω(r0) ≥ 0, where r0 is the radius of the tip of X.

With this in hand, we readily obtain the spherical dimension–(q+1) version of Theorem 27:

Theorem 31. Let (M, gab) be a regular planar-symmetric asymptotically AdSd+1≥3 spacetime
satisfying the DEC. Let X be a dimension q + 1 extremal surface anchored at a sphere of
radius R. Let be r0 be the radius of the plane tangent to the tip of X. Then if

q ≥ d− 2

2
, (10.163)

we have

L2

r0
≤

Γ
(

1
2(q+1)

)
√
πΓ
(

q+2
2(q+1)

)R. (10.164)

Proof. For 2q ≥ d−2, (10.154) implies ω′(r) ≥ 0. Combining with ω(r0) ≥ 0, we get ω(r) ≥ 0.
Using now h(r) < 1 and that ω(r) ≥ 0 implies B(r) ≥ L/r, we get

R = LΦ(∞) = L

∫ ∞
r0

dr

√
B(r)

r
√
(r/r0)2q+2h(r)− 1

≥ L2

∫ ∞
r0

dr
1

r2
√

(r/r0)2q+2 − 1
=
L2

r0

√
πΓ
(

q+2
2(q+1)

)
Γ
(

1
2(q+1)

) .

(10.165)

10.3.6 Proofs

Proof of bounds in d = 2 and d = 4

Consider the special dimension

q =
d− 2

2
, (10.166)

which can only happen when d is even. As seen previously, we have that ω(r) ≥ 0 in this
case. Furthermore, (10.144) becomes

µ(∞) = ω(∞) +
[
lim
r→∞

rq−1Kϕϕ

]2
, (10.167)

and so ∣∣∣ lim
r→∞

rq−1Kϕϕ(∞)
∣∣∣ ≤√µ(∞), (10.168)

which gives∣∣∣ d
dt
∥Xt∥

∣∣∣
t=0
≤ ∥∂R∥

Lq

√
µ(∞) = ∥∂R∥Lq+1

√
16π

ceff(d− 1)
⟨Ttt⟩. (10.169)

343



This proves Theorem 28. For q = 0, d = 2, this is just the formula we used to derive (10.25).
The above result implies a bound on correlators that can be computed using the geodesic

approximation. The geodesic approximation says that the two-point function of a CFT scalar
operator O of large scaling dimension ∆≫ 1 can be computed as

⟨O(x)O(0)⟩ρ(t) = ηe−
∆
L
∥Xt∥reg , (10.170)

where η is some constant, and ∥Xt∥reg is the regularized distance of a geodesic anchored at
the points (t,x) and (t, 0) on the conformal boundary. We here adopted the Schrödinger
picture. Combining (10.169) and (10.170) and taking d = 2, we get15

∣∣∣ d
dt

log ⟨O(x)O(0)⟩ρ(t)
∣∣∣ ≤√96π∆2

c
⟨Ttt⟩, d = 2. (10.171)

Next, for d = 4, (10.169) holds for q = 1, where the Xt are two-dimensional worldsheets
anchored at circles on the boundary. If W(C) is a Wilson loop of a circle C = S1, we have
that [112, 113]

⟨W(C)⟩ρ(t) = ηe−
1

2πα′ ∥Xt∥, (10.172)

where α′ = ℓ2string and η again some constant. Combining (10.169) and (10.172) we get

∣∣∣ d
dt

log ⟨W(C)⟩ρ(t)
∣∣∣ ≤ Length[C]

√
4λeff
3πceff

⟨Ttt⟩, d = 4, (10.173)

where Length[C] = 2πR. With the precise dictionary for the duality between type IIB
supergravity on AdS5 × S5 and N = 4 super Yang-Mills with gauge group SU(N) and ’t
Hooft coupling λ, given by

GN

R3
=

π

2N2
,
√
λ =

L2

α′
, (10.174)

(10.173) can be written as (10.13).

Proof of bounds for small R

Next we prove bounds that are strong at small radii R. We have:

Lemma 17. Consider the same assumptions as in Theorem 31. Assume furthermore that
Rd ⟨Ttt⟩ /ceff ≪ 1 and 2q ≥ d− 2. Then∣∣∣ lim

r→∞
rd−3Kϕϕ

∣∣∣ ≤ L

2rd−q−10

ω(∞)

[
1 +O

(Rd ⟨Ttt⟩
ceff

)]
. (10.175)

15Of course, we could have derived this in Sec. 10.2, given that that geodesics coincide with the HRT
surface when d = 2.
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Proof. Define W = − limr→∞ r
q−1Kϕϕ, and assume without loss of generality that W > 0.

Using (10.59) and (10.154) and the exact same logic as in the proof of Lemma 15, we get

W

ω(∞)
≤

L
∫∞
r0

drrq+1|J (r)|

2
∫∞
r0

drrd
√

1− ω(r)L2

rd
|J (r)|

≤
L
∫∞
r0

drrq+1|J (r)|
2
∫∞
r0

drrd|J (r)|

[
1 +

L2ω(∞)

2rd0
+ . . .

]
≤ L

2rd−q−10

[
1 +O

(Rd ⟨Ttt⟩
ceff

)]
.

(10.176)

Inserting now (10.175) into (10.148), we get∣∣∣ d
dt
∥Xt∥

∣∣∣
t=0
≤ 8π∥∂R∥L1+q

(d− 1)ceff

L2(d−q−1)

rd−q−10

⟨Ttt⟩

≤ ∥∂R∥L
1+q

ceff
ηd,qRd−q−1 ⟨Ttt⟩

(10.177)

where

ηd,q =
8π

d− 1

 Γ
(

1
2(q+1)

)
√
πΓ
(

q+2
2(q+1)

)
d−q−1 . (10.178)

We can convert this to bounds on two-point functions and circular Wilson loops. Combining
(10.177) with (10.170) and (10.172), we get the bounds (10.126) and (10.127).

Finally, with q = d− 2 and d > 2, the entanglement entropy of small spheres is bounded
as ∣∣∣dSR

dt

∣∣∣ ≤ 2
√
πΓ
(

1
2(d−1)

)
Γ
(

d
2(d−1)

) Vol[R] ⟨Ttt⟩+ . . . (10.179)

where we used that Vol[R] = Area[∂R]R/(d− 1). The proves the part of Theorem 25 where
∂R is a sphere.

Proof of bounds for thin-shell spacetimes

Finally, let us prove our thin-shell results valid all for R, assuming 2q ≥ d − 2. Since we
already have general bounds for two-point correlators in d = 2 and Wilson loops in d = 4,
this section is mostly relevant for entanglement in medium or large balls in general d, and for
medium and large Wilson loops in d = 3. We consider the same setup as in Sec. 10.2.5, and
use the same notation. Again, we choose r0 = L = 1.

Now, let us consider the solutions (10.154) and (10.155) with the replacement H(r)→
HL(r). As discussed in Sec. 10.3.4, this gives a smaller value for µ(∞) and larger value for∣∣∣ lim rq−1Kϕϕ

∣∣∣ if J has a fixed sign, which is the case here. Since we will consider bounds of
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the form lim rq−1Kϕϕ ≤ #µ(∞)n for n > 0, the bounds we obtain with this replacement will
be valid for the original spacetime.

Now, with a delta function shock, solution for Kϕϕ reads

Kϕϕ(r) = −
r2

d− 1
η

√
r̂2q+2 − 1

r2q+2 − 1
θ(r − r̂) = − r2W√

r2q+2 − 1
θ(r − r̂). (10.180)

From (10.161) we get that the contribution to µ(∞) from the extrinsic curvature reads

Q(∞) ≡
∫ ∞
r0

dρρd−5Kϕϕ(r)
2 (d+ 2q)r2q+2 + (d− 2)

r2q+2 − 1

= W 2 r̂d

r̂2q+2 − 1
.

(10.181)

The analysis of how the DEC changes across the shock is unchanged from the strip case,
except for a few exponents, and we find

ω+ = ω− +
r̂d√

r̂2q+2 − 1
W

[√
1− ω−

r̂d
− W√

r̂2q+2 − 1

]
. (10.182)

By the same logic as in Sec. 10.2.5 we get,

W n

µ(∞)
≤ W n

ω− +W r̂d√
r̂2q+2−1

√
1− ω−

r̂d

≡ Un (10.183)

where

0 ≤ ω− ≤ r̂d, (10.184)

W ≤
√
r2q+2 − 1

√
1− ω−

r̂d
. (10.185)

Again, it now suffices to take ω− at the boundary of its allowed domain. With ω− = 0 and
1 ≤ n ≤ d

q+1
we get

Un =
W n−1

√
r̂2q−2 − 1

r̂d
≤ [r2q+2 − 1]n/2

r̂d
≤ 1, (10.186)

and for n = 1 we get the stronger bound

U1 ≤
√
q + 1

d

(
d

d− 1− q

) q+1−d
2(q+1)

≡ αd,q. (10.187)

For saturation of (10.185), neglecting the first ω− in the denominator of Un and using that
W ≤

√
r̂2q+q − 1, we get

Un ≤
[r2q+2 − 1]n/2

r̂d
≤ 1. (10.188)
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Restoring factors of L, r0, we have the following general bounds

W ≤ αq,d
L

rd−q−10

ω(∞), (10.189)

W ≤ L
2q+2−d

d ω(∞)
q+1
d . (10.190)

Combining (10.189) with (10.148) and (10.163) now gives that∣∣∣ d
dt
∥Xt∥

∣∣∣ ≤ κd,q∥∂R∥L1+qRd−q−1 ⟨Ttt⟩
ceff

, (10.191)

where

κd,q = 2αd,qηd,q =
16π

d− 1

√
q + 1

d

(
d

d− 1− q

) q+1−d
2(q+1)

 Γ
(

1
2(q+1)

)
√
πΓ
(

q+2
2(q+1)

)
d−q−1 . (10.192)

This shows that the type of bounds derived in the small R limit holds in thin shell spacetimes
for all R, at price of a larger prefactor. For the entanglement entropy of balls, we get

∣∣∣dSR
dt

∣∣∣ ≤ 4

√
π(d− 1)

d
d

d−1

Γ
(

1
2(d−1)

)
Γ
(

d
2(d−1)

)Vol[R] ⟨Ttt⟩ . (10.193)

For Wilson loops we get

∣∣∣ d
dt

log | ⟨W(C)⟩ρ(t) |
∣∣∣ ≤ √λeff

ceff
Rd−1 ⟨Ttt⟩

{√
128πΓ(1/4)

33/4Γ(3/4)
≈ 26 d = 3

8Γ(1/4)2

3Γ(3/4)2
≈ 23 d = 4

. (10.194)

Next, consider (10.190). This gives us that

∣∣∣ d
dt
∥Xt∥

∣∣∣
t=0
≤ ∥∂R∥Lq+1

[
16π

(d− 1)ceff
⟨Ttt⟩

] q+1
d

(10.195)

For q = d − 2, corresponding to entanglement for ball subregions, this just gives (10.28),
verifying that it holds for spheres as well, completing the proof of the part of Theorem 26
concerning spherical ∂R.

For q = 0, d = 2 and q = 1, d = 4 we just reproduce the bounds of Sec. 10.3.6, which are
anyway proven with weaker assumptions there. For q = 1, d = 3 we get a new bound on
Wilson loops, given by (10.132).

10.4 Bounding Spatial Derivatives

The technology we have developed to bound time derivatives also lets us bound spatial
derivatives of extremal surface areas for strips.
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Consider a one parameter family of strips Rℓ of variable width ℓ at some fixed boundary
time, given by (10.21) with t′ now held fixed. Let Xℓ be the corresponding one-parameter
family of HRT surfaces. A computation in appendix 10.7.3 gives that

d

dℓ
Area[Xℓ] =

Area[∂R]
Ld−1

rd−10 . (10.196)

For a strip, we thus see that the depth of the HRT surface tip uniquely determines ∂ℓS. Using
our lower bound on r0 given by (10.64), we now immediately get the following:

Theorem 32. Let (M, gab) be a regular asymptotically AdSd+1≥3 spacetime with planar
symmetry satisfying the DEC. If Xℓ is the HRT surface of a strip Rℓ of width ℓ, then

d

dℓ

[
Area[Xℓ]

4GN

]
≥ ceff

4ℓd−1
Area[∂R]

2√πΓ
(

d
2(d−1)

)
Γ
(

1
2(d−1)

)
d−1 . (10.197)

The lower bound is equal to ∂ℓSvacuum, and so we get

d

dℓ
∆S[ρRℓ

] ≥ 0 (10.198)

where ∆S is the vacuum subtracted entropy. Since we get the vacuum entanglement entropy
in the limit ℓ→ 0, this implies that

∆S ≥ 0. (10.199)

It is easy to see that (10.198) and (10.199) applies to a subregion R corresponding to a union
of any number of finite width strips, with ∂ℓ now interpreted as the derivative with respect
to increasing width of one or more of the connected components.

For d = 2, we also get a bound on correlators of heavy scalar single trace primaries.
Working at a fixed moment of time with a homogeneous state ρ, the combination of (10.196),
(10.64) and (10.170) for x > 0 gives

d

dx
ln ⟨O(x)O(0)⟩ρ ≤

d

dx
ln ⟨O(x)O(0)⟩vacuum = −2∆

x
(10.200)

which means that correlations must die of faster than the vacuum for the states and operators
covered by our assumptions. This in particular implies that

⟨O(x)O(0)⟩ρ ≤ ⟨O(x)O(0)⟩vacuum , (10.201)

since we just get the vacuum correlator as x→ 0.

10.5 Evidence for Broader Validity of Bounds

In the previous sections, we have shown that the DEC allows us to prove several general
bounds on the growth of entanglement, correlators and Wilson loops. However, the proofs
crucially relied on the dominant energy condition. While the dominant energy condition
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holds in type IIA, IIB and eleven-dimensional supergravity (see for example the appendix of
[114]), it is typically violated after dimensional reduction [115]. The prototypical example is
a scalar field dual to a relevant CFT operator. This field has negative mass squared, leading
to DEC violation.

Even though our proofs assumed the DEC, we will now provide strong evidence for a
subset of the bounds that they hold when the DEC is violated in reasonable ways. That is,
we provide evidence in scalar theories that violate the DEC, but which have proven positive
mass theorems [116, 117] (so pure AdS is stable) and respect the null energy condition (NEC).
This is evidence that our bounds are true even in CFTs with DEC-violating bulks, since the
NEC and a stable vacuum are both necessary conditions for sensible bulk theories.16

In fact, we provide evidence not just that

R ≤ 1, (10.202)

but also that when d > 2,
R ≤ v

(SAdS)
E + δvE < 1 (10.203)

for some small δvE that seems to depend on the scalar potential. Here

v
(SAdS)
E =

√
d

d− 2

(
d− 2

2(d− 1)

) d−1
d

(10.204)

is the entanglement velocity computed in a quench in holography, with the final state being
neutral, dual to the AdS-Schwarzschild type black brane [33, 34].

The theories we will consider are neutral scalars minimally coupled to gravity,

8πGNL =
1

2
R− d(d− 1)

2L2
− 1

2
|dϕ|2 − V (ϕ), (10.205)

where V is negative somewhere, leading to violation of the DEC (but not the NEC). These
theories are common in consistent truncations and dimensional reductions of type IIA, IIB,
and eleven-dimensional supergravity [118–121]. We consider these theories because, for
standard forms of minimally coupled bosonic matter, neutral scalars appear to pose the
biggest risk to our bounds. This is because gauge fields give no direct contribution to J , and
they have a manifestly positive contributions to the mass (they respect the DEC).

For free theories where V = 1
2
m2ϕ2, in order to maximize the chance of violating our

bounds, we choose potentials that are close to “maximally negative”, meaning we pick m2

just slightly above the Breitenlohner-Freedman [122, 123] bound:

m2L2 ≥ m2
BFL

2 ≡ −(d/2)2. (10.206)

It is known that if m2 < m2
BF, AdS is unstable, and so these theories cannot be dual to CFTs

with a Hamiltonian that is bounded from below. Additionally, to have an example of an
interacting potential, in d = 3 we consider a top down potential that becomes exponentially
negative for large |ϕ|.

16If we choose completely arbitrary bulk scalar theories, we have no positive mass theorem, so we can have
⟨Ttt⟩ < 0 in a homogeneous state, and the bounds are clearly violated. But in these situations there is no
sensible holographic dual.
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The numerical method

Let us now explain our procedure. For a given V (ϕ) and spacetime dimension, we will
construct an n-parameter family of initial data, parametrized by coefficients {fi}ni=1. The
data will be provided on an extended homology hypersurface of some HRT surface. Then we
will define the function A ({fi}) to be equal to the ratio∣∣∣ lim

r→∞
rd−3Kϕϕ

∣∣∣ /µ(∞)
d−1
d (10.207)

in the initial dataset specified by parameters {fi}. Different initial datasets correspond to
different moments of time in different spacetimes (with different sizes of R). The value of
A in some particular initial dataset corresponds to the instantaneous entanglement velocity
R in that configuration, and we will do a numerical maximization of A with respect to the
parameters {fi}. If we find that A is upper bounded, and that the upper bound is Amax, we
have provided evidence that∣∣∣∣dSRdt

∣∣∣∣ ≤ 1

4
AmaxArea[∂R]ceff

[
16π

(d− 1)ceff
⟨Ttt⟩

] d−1
d

. (10.208)

If A is not upper bounded, or if Amax > 1, we have a counterexample to R ≤ 1 in the theory
under consideration.

We will also evaluate the function B({fi}), which we define as the value of

|∂tSR|
Vol[R] ⟨Ttt⟩

=
4π

d− 1

L

ℓ

∣∣lim rd−3Kϕϕ

∣∣
µ(∞)

×
{
2 d = 2

1 d > 2
(10.209)

for any given initial dataset. By the same logic as earlier, if B is upper bounded by Bmax, we
have evidence that ∣∣∣∣ ddtS[ρR(t)]

∣∣∣∣ ≤ BmaxVol[R] ⟨Ttt⟩ . (10.210)

If B is not upper bounded, then our volume-type bounds break without the DEC.
Assuming we work with strips R, for a single evaluation of A and B, we need to numerically

solve the ODEs given by (10.56) and (10.57). For simplicity we will restrict to strips, since
for spheres we cannot solve for Φ(r) analytically. In this case we would need to solve a set of
three coupled equations instead.

Let us now specify our family of initial data. An explicit computation gives that

E =
1

2
ϕ̇(r)2 +

1

2

(
r2

L2
− ω(r)

rd−2

)
ϕ′(r)2 + V (ϕ),

J = ϕ̇(r)ϕ(r),

(10.211)

where ϕ̇ = ta∇aϕ|Σ. Specifying an initial dataset now corresponds to specifying the two
profiles ϕ(r) and ϕ̇(r), together with the initial value of ω(r0). Letting

∆ = d/2 +
√

(d/2)2 +m2L2 (10.212)
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be the scaling dimension of the CFT operator dual O to ϕ, the profiles we consider are

ϕ = f1 exp

[
−
(
r − f2
f3

)2
]
+
f4
r∆

+
f5
r∆+2

ϕ̇ = f6 exp

[
−
(
r − f7
f8

)2
]
+

f9
r∆+1

+
f10
r∆+3

(10.213)

which gives a ten-parameter family of initial data. The gaussians give localized lumps of
matter, while the power law falloffs ensures that we can turn on a VEV of O in the CFT,
with ⟨O⟩ ∝ f4 and ⟨∂tO⟩ ∝ f8. Note that the seemingly unusual 1/r∆+1 falloff in ϕ̇ is just
caused by the fact that the time derivative is with respect to a unit normal rather than the
more standard global time coordinate near the conformal boundary.

What remains is to pick ω(r0). To minimize the CFT energy, we want ω(r0) small. When
the DEC holds, we know that AdS hyperbolicity implies that ω(r0) ≥ 0, as proven in Lemma
14. However, without the DEC we can have that ω(r0) is negative, but not arbitrarily negative.
If we pick ω(r0) too negative, it will forbid an embedding of Σ in a complete slice. The
difficulty is that how negative ω(r0) can be depends on ϕ(r0), ϕ̇(r0), and V (ϕ). We will thus
restrict to ω(r0) = 0 and relegate a more complete study of the future. Even with ω(r0) = 0,
it is far from obvious if our results survive breaking of the DEC, as we can easily obtain large
regions of ω < 0 even with ω(r0) = 0.

Finally, we need to deal with invalid datasets. For a given scalar profile, it could be that
ω(r) overshoots rd/L2. In this case, the relevant solution does not correspond to a spacelike
hypersurface, and so it must be discarded. In this case we conventionally define A = B = 0.
Consequently, the functions we are maximizing will have discontinuities.

We are now ready to proceed to the numerical results.

d = 2

We now consider a free massive scalar field with mass

m2L2 = 0.9m2
BFL

2 = −0.9, (10.214)

dual to a relevant operator with ∆ ≈ 1.32. We do not consider saturation of the BF bound,
since this requires modification of the mass formula, and additionally causes |∂tS| to be
divergent (for any d). Furthermore, we do not want to go too close to the BF bound, since
then ω(r) converges slowly at large r, and so the numerical maximization procedure becomes
prohibitively expensive.

Using now Mathematica’s built in NMaximize function, trying all methods for nonconvex
optimization implemented in Mathematica and picking the best result, we find that

Amax ≈ 0.999 ≤ vE|d=2 = 1. (10.215)

Thus, in d = 2 we have evidence that (10.25) holds without the DEC – at least in free
tachyonic scalar theories.
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Next, maximizing B, we find that

Bmax ≈ 3.29 ≤ κd=2 = 2π. (10.216)

This provides evidence that (10.32) holds when the DEC is violated, and that O(ℓd ⟨Ttt⟩ c−1eff )
corrections are not needed, even though we could not prove their absence outside thin shell
spacetimes. In fact, given the large gap between Bmax and κd=2, the numerical results suggest
that our proofs might possibly be sharpened.

d = 3

Now we consider two potentials:

VI(ϕ) =
1

2

(
0.9m2

BF

)
ϕ2,

VII(ϕ) = 1− cosh
√
2ϕ,

(10.217)

with ϕ dual to operators with scaling dimensions ∆I ≈ 1.97 and ∆II = 2, respectively.
The potential VII comes from a consistent truncation and dimensional reduction of eleven-
dimensional SUGRA on AdS4 × S7 [118]. We find

AI,max ≈ 0.693,

AII,max ≈ 0.702.
(10.218)

In both cases Amax < 1, and so we have evidence that the conjectured bound (10.28) is true –
even without the DEC and outside thin-shell spacetimes.

Now, we have that

v
(SAdS)
E =

√
3

24/3
= 0.687 . . .

In both cases Amax is close to v(SAdS)
E , although it is slightly larger. It seems possible that a

stronger bound
R ≤ v

(SAdS)
E + δvE (10.219)

is true for some small δvE that potentially depends on the scalar potential.
For B we find

BI,max ≈ 1.71 ≤ κd=3 ≈ 2.62,

BII,max ≈ 1.72.
(10.220)

Again, there is a significant gap, with the implications being the same as for d = 2.

d = 4

We now consider
V (ϕ) =

1

2

(
0.9m2

BF

)
ϕ2. (10.221)

and find
Amax ≈ 0.643. (10.222)
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Table 10.1: Proven bounds on entanglement, spatial Wilson loops and equal-time correlators.
We suppress O(1) numerical constants in the table. Dots mean corrections scaling as
O(ℓd ⟨Ttt⟩ /c) where ℓ is the relevant characteristic length scale, corresponding to strip width
or ball radius. We abbreviate the effective central charge and ’t Hooft coupling as c and λ,
respectively. For proof validity equal to quench+, we mean proofs valid for states dual to
spacetimes with thin-shell matter, which includes quenches as a subset.

∂tS ≤ d Region R Proof validity Eq.√
⟨Ttt⟩ /c 2 n intervals general (10.25)

Vol[R] ⟨Ttt⟩+ . . . ≥ 2 small strip or ball general (10.30)
Area[∂R][⟨Ttt⟩ /c](d−1)/d ≥ 2 n strips quench+ (10.28)
Area[∂R][⟨Ttt⟩ /c](d−1)/d ≥ 2 ball quench+ (10.28)
Vol[R] ⟨Ttt⟩ ≥ 2 strip or ball quench+ (10.32)
∂ℓS ≥
∂ℓSvacuum ≥ 2 n strips general (10.197)
∂t ln ⟨W(C)⟩ ≤ Length[C]√
λLength[C] [⟨Ttt⟩ /c]1/2 4 any general (10.173)√
λLength[C]d−1 ⟨Ttt⟩+ . . . 3, 4 small general (10.127)√
λLength[C] [⟨Ttt⟩ /c]2/3 3 any quench+ (10.132)

∂t ln ⟨O(x)O(0)⟩ ≤ |x|
∆
√
⟨Ttt⟩ /c 2 any general (10.171)

∆|x| ⟨Ttt⟩ /c+ . . . 2 small general (10.126)
∂x ln ⟨O(x)O(0)⟩ ≤
∂x ln ⟨O(x)O(0)⟩vacuum 2 any general (10.200)

Again we find evidence that (10.8) is true without the DEC or outside thin-shell spacetimes.
We have

v
(SAdS)
E =

√
2

33/4
= 0.620 . . . , (10.223)

and so that the instantaneous growth can be above v(SAdS)
E , but possibly only slightly so.

We also find
Bmax = 1.91 ≤ κd=4 ≈ 2.43. (10.224)

Again, there is a significant gap, with the implications being the same as for d = 2.

10.6 Discussion

In this work we have proven several new upper bounds on the rate of change of entanglement
entropy, spacelike Wilson loops, and equal-time two-point functions of heavy operators. The
proofs apply for spatially homogeneous and isotropic states in strongly coupled CFTs with a
holographic dual. We summarize our bounds in table 10.1. We have also provided numerical
evidence that the bounds have broader validity than our proofs. We will now discuss our
findings and possible future directions.
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A 2d QWEC: The bound (10.5) can also be seen as a quantum weak energy condition
(QWEC). Let S be the entropy of be a single interval as a function of one of the endpoints
p, so that ∂tS now refers to the change of S under the perturbation of this single interval
endpoint, rather than both. Then we have

⟨Ttt⟩ ≥ ⟨Ttt⟩vac +
3

2πc
(∂tS)

2 , (10.225)

while the classical weak energy condition implies that Ttt ≥ 0. Equation (10.225) closely
resembles the conformal quantum null energy condition (QNEC) [19, 124–128] in two dimen-
sions.17 Consider 2d Minkowski space, where ⟨Ttt⟩vac = 0. Letting x± be null coordinates,
the conformal QNEC says that [124, 127]

⟨T++⟩ |p ≥
1

2π
∂2+S +

3

πc
(∂+S)

2 . (10.226)

The structural similarity between (10.225) and (10.226) is obvious. While (10.225) does not
contain a second derivative, it is in principle possible that (10.225) could be true also for
inhomogeneous states, provided we include a term a∂2t S to the right hand side for some fixed
constant a. In fact, the conformal QNEC suggests that a = (4π)−1, since in the special case
of a half-space in a homogeneous state, where ∂xS = 0, the conformal QNEC and T µ

µ = 0
implies

⟨Ttt⟩ |p ≥
1

4π
∂2t S +

3

2πc
(∂tS)

2 . (10.227)

Why do things fall? In [46] it was proposed that the process of gravitational attraction
is dual to the increase of complexity in the CFT. Assuming the complexity=volume conjecture
[68], this was given a precise realization in [47–49] (see also [100]), where it was shown that
the rate of change of the volume of a maximal volume slice is given by the momentum
integrated on the slice. However, our formula

dSR
dt

=

∫
X

GtanbTab (10.228)

shows that change in entanglement can also be seen as directly responsible for the radial
momentum of matter. Thus, at present, “the increase of entanglement” seems like an equally
good explanation for why things fall.

Relevant scalars, compact dimensions, and DEC breaking: Our proofs rely
critically on the dominant energy condition – almost all steps of the proofs break without
it. This rules out having scalars with negative squared mass, which are dual to relevant
operators in the CFT. Nevertheless, we found numerical evidence that the bounds hold true
without the DEC, as long as the scalar theories we consider allow a positive mass theorem,
so that AdS is stable and ⟨Ttt⟩ is guaranteed to be positive.

However, there are other reasons to believe that our bounds remain true for these theories
beyond our numerical findings – at least when working with top-down theories. Consider
working with a theory that is a dimensional reduction and consistent truncation of type
IIA, IIB, or eleven-dimensional SUGRA, so that any solution can be lifted to solutions on

17See [129] for a study on how the QNEC constrains entanglement growth.
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asymptotically AdSd+1 ×K spacetimes for some compact manifold K. These solutions will
typically be warped products rather than direct products, but there exists significant evidence
[130] that the entropy computed by the HRT formula in the uplifted spacetime agrees with the
one computed in the dimensionally reduced spacetime – even when the product is not direct.
But in the uplifted spacetime the DEC holds, since it holds for type II and eleven-dimensional
SUGRA. Thus, if our methods can be generalized to work for warped compactifications over
spherically symmetric AAdSd+1 bases, this appears to be an avenue to prove our bounds even
with relevant scalars turned on. The drawback is that the proofs might have to be carried
out separately for each family of compactifications.

Strengthened bounds: Our proof that∣∣∣dSR
dt

∣∣∣ ≤ 1

4
Area[∂R]ceff

[
16π

(d− 1)ceff
⟨Ttt⟩

] d−1
d

, (10.229)

which implies that R ≤ 1 in neutral states, only applied to thin-shell spacetimes, which are
dual to CFT states where all dynamics happen at a single energy scale (that evolves with
time). However, we gave numerical evidence that this bound also holds in general planar
symmetric spacetimes with extended matter profiles. A natural extension of this work is
trying to generalize the proof to include this. This will likely require a better understanding
of non-linearities of the Einstein constraint equations.

Next, we found that in our numerical maximization of R over a ten-parameter family of
initial datasets in d = 3, 4, that

R ≤ v
(SAdS)
E + δvE, (10.230)

where

v
(SAdS)
E =

√
d

d− 2

(
d− 2

2(d− 1)

) d−1
d

(10.231)

is the entanglement velocity computed in a holographic quench having a neutral final state,
and δvE a small correction that seemed to depend on the scalar potential, but which was
always small for the theories we studied (less than 0.03). This hints that it might be possible to
strengthen the prefactor in (10.229). Similarly, our numerics suggested that the prefactors of
(10.6) could be strengthened, and furthermore that this bound is true without O

(
ℓd ⟨Ttt⟩ /ceff

)
corrections.

1/N corrections: It seems quite likely that R ≤ 1 remains true with perturbative
1/N corrections. In fact, the pure QFT proofs of R ≤ 1 for large subregions [37, 38] made
no assumption about large-N , so only intermediate and small subregions could be sources
violation. But for small subregions we showed that R ≤ O(ℓ/β) ≪ 1 for β the effective
inverse temperature, which means perturbative 1/N corrections are unlikely to pose a of
danger.18 For intermediate sized regions things are less clear, but for d = 3, 4 we numerically
did not manage to push R close to 1, hinting that 1/N corrections do not pose a danger in
these dimensions.

Disentangling the vacuum: Under our assumptions, we have proven for strips that the
vacuum-subtracted entanglement is positive. Thus it is impossible to disentangle the vacuum

18The discovery of quantum extremal surfaces (QES) [18] far from classical extremal surfaces [20, 21] might
make this argument somewhat less convincing, but it seems unlikely that these dominate/exist for small
subregions, whose QES reside close to the conformal boundary.
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in a spatially uniform way without either breaking the existence of a holographic dual, or
turning on operators dual to fields that violate the DEC in the bulk. In the scenario where
classical DEC violation is caused by tachyonic scalars only, this implies that all uniform
states with less entanglement than the vacuum must have non-zero VEV for some relevant
scalar single trace primaries.

Finite coupling: Our bounds were proven at strong coupling, but it seems possible that
our bounds survive for arbitrary coupling. In [38] it was found that the entanglement velocity
of a free theory (for d > 2) is strictly smaller than the holographic strong coupling result,
suggesting that dialing up the coupling increases the capability of generating entanglement.

Primaries close to the unitarity bound: In order to turn on bulk fields dual to
relevant CFT operators with scaling dimensions ∆ in the window

d− 2

2
≤ ∆ <

d

2
, (10.232)

we must consider scalars with masses

m2
BF ≤ m2 < m2

BF + 1/L2, (10.233)

and turn on the slow falloffs rather than fast falloffs (see for example [131–134]). This leads
to violation of the falloff assumptions (10.19), and causes the ordinary definition of the
spacetime mass to be divergent. Then neither of the Hawking masses reduce to the CFT
energy at conformal infinity. Consequently, significant modifications of our proofs would be
required. The same holds if we turn on sources that perturb us away from a CFT. Things
can get even more challenging, given that for some falloffs ∂tS itself might become divergent
[40]. In this case we should only try to bound finite quantities, like the mutual information
or the renormalized entanglement entropy [93, 94], where these divergences cancel.

Hartman-Maldacena surfaces and half-spaces: Our bounds are restricted to subre-
gions that lie in a single component of the conformal boundary. Our formalism can however
readily be modified to deal with HRT surfaces corresponding to a CFT region R with con-
nected components in different CFTs, so that the corresponding HRT surface threads a
wormhole, like those studied in [135].19 It would be interesting to see if the bounds remain
unchanged. We also only considered strips of finite width, but it is clear that our formalism
can also handle half-spaces, where ℓ =∞. Since (10.5) and (10.8) do not depend on ℓ, they
almost certainly remain true for half-spaces.

End-of-the-world branes: Our bounds are proven with the assumption that the Cauchy
slices are complete manifolds, which rules out spacetimes with end-of-the-world (EOW)
branes. However, for HRT surfaces that do not end on the EOW brane, our proofs survive
as long as we assume that the Hawking mass of the brane is positive, which ensures that
Lemma 14 remains true. In the case where the surfaces end on the EOW brane, we expect
the analysis to look similar to the analysis for HRT surfaces threading a wormhole.

Vaidya has optimal entanglement growth: There is a sense in which Vaidya
spacetimes are maximizing the growth of entanglement for some given distribution of bulk
energy density E(r), within the class DEC respecting planar spacetimes. In (10.89), we
saw that the DEC imposed that the energy density at a point was lower bounded by the

19See [136] for a discussion of speed limits for these surfaces in static black holes.
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momentum-density the same point (up to a factor). As is clear from our proofs, excess energy
density above the lower bound contributes to increasing the CFT energy without increasing
∂tS, and so we see that spacetimes saturating the DEC have the greatest ∂tS compatible
with their distribution of energy density. But a direct computation shows that all Vaidya
spacetimes saturate the DEC. This makes sense, since we have shown that infalling matter
leads to entanglement growth and outgoing matter gives entanglement decrease, and in
Vaidya no matter is wasted on being outgoing. While this is no proof, it suggests that speed
limits that hold in all Vaidya spacetimes also hold in other planar-symmetric spacetimes
respecting the DEC.

Inhomogeneous states: It would be interesting to prove bounds for inhomogeneous
states, but this appears to be a difficult task, given how crucial the bulk planar symmetry
was for our proofs. Furthermore, our bounds imply a strengthening of the positive mass
theorem (PMT) for planar symmetry, and if generalizations of our results exist without the
uniformity assumption, it appears likely that these result will strengthen the general PMT
for AAdS spacetimes. Given how challenging it was to prove the PMT [137, 138], and how
the Penrose inequality, which is the most famous strengthening of the PMT, still does not
have a general proof, this is a daunting task.

Bounds with charge: It is a persistent finding that U(1) gauge fields tend to slow
down the growth of extremal surfaces of various dimensions [33, 34, 39, 139]. It thus seems
plausible that our bounds can be strengthened by taking into account nonzero charges in
the CFT. It is suggestive that, in spherical symmetry, U(1) gauge fields contribute energy
density, but they have no pure contribution to the momentum density – that is – they only
contribute to J through gauge covariant derivatives acting on other matter fields.

Approximate bounds for large regions: To derive our bounds scaling with the volume
of the region R, we used the inequality

L2

r0
≤ ηdℓ, (10.234)

where ηd is a numerical constant. Assume now that we consider a state that has volume
law scaling for the entropy when ℓ is roughly above some length scale β. For ℓ≫ β, as we
increase ℓ, we expect r0 to saturate at some radius rbarrier, and so (10.234) becomes a very
poor bound. It seems likely that we can get stronger approximate bounds in this limit, by
relating rbarrier to an effective inverse temperature βeff , so that we effectively get a bound like
|∂tS| ≤ #Area[∂R]βeff ⟨Ttt⟩. This bound might or might not reduce to (10.229).

A numerical laboratory: Our formalism makes it very easy to numerically compute
properties HRT surfaces in planar symmetric spacetimes and test various hypothesis about
their behavior without constructing full spacetimes and having to deal with the evolution of
the Einstein equations. We imagine this can be used as a laboratory to learn more about the
properties of HRT surfaces.

Other boundary geometries: Except for d = 2, our proofs always assumed Minkowski
space on the boundary. However, our bounds survive if we compactify on a torus, so the
boundary geometry is R× T d−1, provided we make a few additional assumptions. For the
bounds of the type |∂tS| ≤ κVol[R] ⟨Ttt⟩+ . . . (and the similar bounds for Wilson loops), we
should always consider regions less than half the system size – otherwise Vol[R] should be
replaced with the volume of the complement. For bounds with multiple strips, if we have
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a torus, we need to make sure that the entangling surfaces are all parallel, which happens
automatically in Minkowski due to the parallel postulate.

Next, our proofs for single regions should imply growth bounds for CFTs on the static
cylinder R× Sd−1, as long as we take the regions to be very small compared to the curvature
radius of the boundary sphere. The results for balls will translate to results for small caps,
while the result for strips will translate to results for thin belts around the equator.
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10.7 Appendix

10.7.1 The mean curvature of X in Σ

Let now A,B, . . . be indices for tensors on X, and α, β, . . . be indices for tensors on Σ, and
consider intrinsic coordinates on Σ and X from Sec. 10.2.2. The induced metrics are

ds2|Σ = Hµνdx
µdxν = B(r)dr2 + r2

[
dϕ2 + δijdx

idxj
]

ds2|X = γABdy
AdyB =

[
B(r) + r2Φ′(r)2

]
dr2 + r2δijdx

idxj.
(10.235)

A basis of tangent vectors to X in Σ is {eαA}, with coordinate expressions

eµr = (1,Φ(r), 0),

eµi = (0, 0, δαi ).
(10.236)

The normal to X inside Σ reads

nµ =

√
Br2

B + r2(Φ′)2
(Φ′(r),−1, 0) (10.237)

With this in hand, we can compute the mean curvature of X in Σ:

K = γABeµAe
ν
B∇µnν

=
1

r
√
B [B + r2(Φ′)2]3/2

[
(d− 1)r3Φ′(r)3 +

(
dB − 1

2
rB′
)
rΦ′ + r2BΦ′′

]
.

(10.238)
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10.7.2 Explicit form of K − nαnβKαβ

Noting that

nµ =

√
Br2

B + r2(Φ′)2

(
Φ′(r)

B(r)
,− 1

r2
, 0

)
(10.239)

we get

K = HαβKαβ =
1

B
Krr +

d− 1

r2
Kϕϕ,

Kαβn
αnβ =

Br2

B + r2Φ′(r)2

[
Φ′(r)2

B2
Krr +

1

r4
Kϕϕ

]
.

(10.240)

Inserting Krr(r) = B(r)F (r) and doing some algebra, K − nαnβKαβ = 0 becomes (10.54).

10.7.3 Deriving formulas for ∂tS and ∂ℓS

A formula for ∂tS

In this section, we show that the entropy growth is proportional to the infalling matter flux.
We will first need to prove that

dArea[Xt]

dt

∣∣∣∣
t=0

=

∫
∂X

Naηa = −
Area[∂R]
Ld−2

lim
r→∞

rd−3Kϕϕ (10.241)

For the calculation, we will construct the vector ηa, which is tangent to the boundary ∂M,
and Na, the outwards unit normal to ∂Σ = ∂M∩ Σ in Σ, in a coordinate system. To do so,
introduce the ADM coordinates adapted to the extended homology hypersurface

ds2|M = −r2dτ 2 +Hµν(τ, x)dx
νdxν , (10.242)

where we took the shift to be vanishing, and the lapse to be r. xµ = (r,x) are the coordinates
on Σ, and Hµν(τ = 0, x) its induced metric, given by (10.36). The extinsic curvare of Σ reads

Kαβ =
1

2r
∂τHαβ|τ=0. (10.243)

Imagine now we have the coordinates zi = (t,x) on ∂M and take ∂Σ to be located at
(r = rc, t = τ = 0) with a temporary cutoff r = rc. We want to find embedding coordinates
(r(t), τ(t)) for ∂M such that the induced metric reads

ds2|∂M = hijdz
idzj =

r2c
L2

[
−dt2 + L2dϕ2 + L2 dx2

]
(10.244)

The components of the induced metric then satisfy

htt = grrṙ
2 − r2τ̇ 2 = − r

2
c

L2
, (10.245)

hϕϕ = gϕϕ = r2c . (10.246)
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Taking the derivative of the second equation, and then setting t = 0 gives a system of
equations that is easily solved to give (see the appendix of [100])

τ̇(0) =
1

L
√

1−BK2
ϕϕr
−2

∣∣∣∣
r=rc

, (10.247)

ṙ(0) = − Kϕϕ

L
√

1−BK2
ϕϕr
−2

∣∣∣∣
r=rc

, (10.248)

where we have chosen the branch τ̇ > 0. Thus, ηa in our ADM coordinate system reads

ηa = (∂t)
a = τ̇(0)(∂t)

a + ṙ(0)(∂r)
a. (10.249)

Now, the tangents to ∂X are tangent to ∂R, and the sole remaining tangent vector eαr in
(10.236) is then the normal to ∂Σ. Hence, up to a normalization C,

Nµ = Ceµr = C(1,Φ′, 0), (10.250)

which can be unit normalized and pushed forward to a spacetime vector yielding (in the
coordinates (10.242)),

Na =
1√

B(r) + r2cΦ
′(r)2

(0, 1,Φ′(r), 0)|r=rc . (10.251)

We can now compute the integral on the cutoff regulated ∂X:∫
∂X

ηaNa = −
Kϕϕ

L
√

1−B(rc)K2
ϕϕ/r

2
c

× B(rc)√
B(rc) + r2c (∂rΦ)

2
× rd−2c

∫
dd−2x

= − Kϕϕ

√
B(rc)

L
√

1−B(rc)K2
ϕϕ/r

2
c

×
√
1− (r0/rc)2 × rd−2c

Area[∂R]
Ld−2

,

(10.252)

where we have used the differential equation for the embedding function Φ(r). In the large r
limit, the asymptotic behaviors are

B(r) ∼ O(r−2), Kϕϕ ∼ O(r−(d−3)). (10.253)

Taking the cutoff to the boundary, one finds the area growth to be given by (10.43).

A covariant formula for ∂tS

Now let us write the intergral formula for ∂tS in a covariant way. Letting ta be the future
unit normal to Σ and na the outwards normal to X tangent to Σ, we have for some function
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G on X that only depends on r:

8πGN

∫
X

G(r)tanbTab =
∫

dd−2x

∫ ∞
r0

drrd−2
√
B + r2(Φ′)2G(r)nrJ

=
Area[∂R]
Ld−2

∫
drrd−2

√
Br

B + r2(Φ′)2
Φ′G(r)J

=
Area[∂R]
Ld−2

∫
drrd−2

(r0
r

)2d−2
G(r)J

√
(r/r0)

2d−2 − 1

=
Area[∂R]
Ld−2

∫
dr
rd−10

rd
G(r)J

√
r2d−2 − r2d−20 ,

(10.254)

where we used (10.237) and (10.40). Letting

G(r) =
2πrd

(d− 1)rd−10

, (10.255)

we get a covariant formula for the entropy growth

dSR
dt

=

∫
X

GtanbTab (10.256)

A formula for ∂ℓS

Consider a one-parameter family of HRT surfaces Xℓ anchored at the strip region region Rℓ,
given by (10.21), but letting now ℓ vary, holding t fixed. Taking the vector field ηa generating
the flow of ∂Xℓ to be ηa|∂M = 1

L
(∂ϕ)

a, (10.41) becomes

d

dℓ
Area[Xℓ] =

Area[∂R]
Ld−1

lim
r→∞

rd−2gϕϕN
ϕ. (10.257)

Using (10.251), (10.242), and (10.40), this evaluates to

d

dℓ
Area[Xℓ] =

Area[∂R]
Ld−1

lim
r→∞

rd
Φ′√

B + r2(Φ′)2
=

Area[∂R]
Ld−1

rd−10 . (10.258)

10.7.4 Expression for ∂t∥Xt∥
The derivation of (10.148) is almost identical to the derivation in Sec. 10.7.3. Let us just
highlight what must be changed. First, we do not have an explicit formula for Φ′(r), but
this does not matter, since everything we need is its rate of falloff, which we can read off to
be Φ′(r) ∼ O (1/rq+2) from (10.143). Next, in (10.252), it is sufficient to replace rd−2c → rqc .
After doing that, and taking into account that Kϕϕ now has falloff O(1/rq−1), the rc →∞
limit of (10.252) with these modifications gives (10.148).
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10.7.5 Geometric properties of X and Σ

Let us now prove various properties of extended homology hypersurfaces. We give the proof
for HRT surfaces of strips and comment how the proofs are modified for (q + 1)-dimension
extremal surfaces anchored at spheres.

Lemma 18. The extended homology hypersurface Σ of a strip region in a spacetime with
planar symmetry cannot have a throat in its interior, i.e., a radius where B(r) diverges.

Proof. Assume for contradiction that Σ has a throat T in its interior – if there are multiple,
take T to be the outermost one. Since Σ by definition terminates at the plane tangent to
the tip of X, this means that X must pass beyond the throat. But if X crosses the throat,
there must be a point on X ∩ T where X is not tangent to T . Let now U ⊂ Σ be the region
outside T , which we can always cover with a coordinate system

ds2|U = B(r)dr2 + r2dx2, r ∈ [rT ,∞), B(rT ) =∞, B(r > rT ) <∞. (10.259)

where the throat is at r = rT . The fact that X is not tangent to T means that |Φ′(rT )| <∞.
But the solution for the extremal surface reads

Φ′(r)2 =
B(r)

r2(r2d−2c− 1)
(10.260)

for some constant c, and so |Φ′(rT )| =∞, which is a contradiction. Hence T cannot exist in
the interior of Σ.

This proof goes through the case of X anchored at a dimension q sphere, as discussed in
Sec. 10.3, simply taking Φ′ to be computed from (10.143).

Next, we have the following:

Lemma 19. The HRT surface X of a strip region R can only have one turning point.

Proof. Assume for contradiction that X has multiple turning points. Then there must be at
least one turning point of X in the interior of Σ that is a local maximum of the embedding
function r(ϕ). Let ϕ = ϕt where this turning point occurs, and let us restrict our attention
to a neighbourhood ϕ ∈ Oϵ = (ϕt, ϕt + ϵ), where we can invert r(ϕ) to get Φ(r), describing
the embedding in Oϵ. We see that Φ′(r) < 0 and Φ′′(r) < 0 in this neighbourhood. Now, the
equation for the HRT surface in the neighbourhood Oϵ is

(d− 1)r3Φ′3 + r2BΦ′′ + rΦ′
(
dB − r

2
B′
)
= 0. (10.261)

Since we are in the interior of Σ, B is bounded on Oϵ by Lemma 18. Since Φ′ diverges at the
turning point, the equation for Φ′ near the turning point reads

r2BΦ′′ = −(d− 1)r3Φ′3
[
1 +O

(
1

(Φ′)2

)]
, (10.262)

where the correction can be neglected to arbitrarily good precision since B is bounded. But
this implies that Φ′′ and Φ′ must have opposite signs in Oϵ for sufficiently small ϵ, which is a
contradiction. Hence X can only have one turning point.
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We did not consider the case where r′(ϕt) = r′′(ϕt) = 0, but this was shown to be ruled
out by [109]. Also, note that this proof survives the case of spherical boundary anchoring
and a (q + 1)-dimensional extremal surface, since the new term (Φ′)3χ(r) in the extremality
equation (10.139) is subleading at the prospective turning point, since it scales like χ ∼ 1/Φ′.
Thus, (10.262) remains true (up to a numerical factor and an O(1/Φ′) correction).

10.7.6 General extremality conditions

Let
Hab = gab + tatb (10.263)

be the induced metric on Σ. Then we have hab = Hab − δIJnaInbJ , and so

K0 = (Hab − δIJnaInbJ)∇atb

= K − δIJnaInbJ∇(atb)

= K − δIJnaInbJKab

(10.264)

where we in the last line used that naInbJ is tangent to Σ, which projects out the difference
∇(atb) −Kab. Now, a collection of tangents eµI to X are

eµr = (1,Φ′(r), 0, 0),

eµi = (0, 0, δµi , 0),
(10.265)

where i runs over sphere directions. The second to last slot here runs over the sphere
directions, with the last slot runs over the z-directions. The unit normals to X (in Σ) are

nrµ = (α, β, 0, 0),

niµ = (0, 0, 0, rδy
i

µ ),
(10.266)

for some α, β we now work out, and where the coordinates are with respect to the index µ on
Σ. r, i should be view as indices in the orthonormal tangent basis labeled by I on X. Now

0 = nrµe
µ
r = α + βΦ′(r),

1 = Hµνnrµn
r
ν =

α2

B
+
β2

r2
.

(10.267)

Solving for α, β, we get

nrµ =

√
Br2

B + r2(Φ′)2
(Φ′,−1, 0, 0) , nrµ =

√
Br2

B + r2(Φ′)2

(
1

B
Φ′,− 1

r2
, 0, 0

)
. (10.268)

Now we want to impose
K0 = K − δIJnaInbJKab = 0. (10.269)

Explicitly we have

K = HµνKµν =
1

B
Krr +

1

r2
Kϕϕ +

wij

r2ϕ2
× ϕ2wijKϕϕ︸ ︷︷ ︸

Kij

+
d− 2− q

r2
Kϕϕ︸︷︷︸
Kzz

,

=
1

B
Krr +

d− 1

r2
Kϕϕ,

(10.270)
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and
δIJnaIn

b
JKab = (nrr)2Krr + (nrϕ)2Kϕϕ + (d− 2− q) 1

r2
Kϕϕ. (10.271)

Thus, with Krr = BF , condtion (10.269) reads[
1−B(nrr)

2
]
F +

[
q + 1

r2
− (nϕr )

2

]
Kϕϕ = 0 (10.272)

Using the explicit formula for nrr, nϕr in (10.268), inserting the explicit formula for Φ(r) from
(10.143), and solving for F (r), we find (10.151).

Note also that thanks to (10.270), (10.78) is unchanged, and so the proof that ±θ±[∂Σ] ≥ 0
for strips survive for dimension–q + 1 surfaces anchored at q-spheres.
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